

# FABRICAÇÃO E AVALIAÇÃO DE DESEMPENHO DE COMBUSTÍVEL A BASE DE PARAFINA E CERA VEGETAL PARA MOTOR FOGUETE A PROPELENTES HÍBRIDOS.

Sumaya Caroline Santos Gonçalves

**ORIENTADOR: Carlos Alberto Gurgel Veras** 

DISSERTAÇÃO DE MESTRADO

Brasília – 2013

Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica

# FABRICAÇÃO E AVALIAÇÃO DE DESEMPENHO DE COMBUSTÍVEL A BASE DE PARAFINA E CERA VEGETAL PARA MOTOR FOGUETE A PROPELENTES HÍBRIDOS.

Sumaya Caroline Santos Gonçalves

DISSERTAÇÃO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA MECÂNICA DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISÍTOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE.

**APROVADA POR:** Acuta Siles In G Prof. Carlos Alberto Gurgel Veras (ENM-UnB) (Orientador) Profa. Palloma Vieira Muterlle ( ENM- UnB) (Examinador Interno)

Prof. Olexiy Shynkarenko (UnB-Gama) ( Examinador Externo)

BRASÍLIA-DF, 04 de Dezembro de 2013

#### FICHA CATALOGRÁFICA

#### GONÇALVES, SUMAYA CAROLINE SANTOS

Fabricação e Avaliação de Desempenho de Combustível a Base de Parafina e Cera Vegetal para Motor Foguete a Propelentes Híbridos [Distrito Federal] 2013.

xi, 72p.,210 x 297 mm (ENM/FT/UnB,Mestre, Ciências Mecânicas, 2013).

Dissertação de Mestrado – Universidade de Brasília. Faculdade de Tecnologia.

Departamento de Engenharia Mecânica.

- 1. Introdução 2. Revisão Bibliográfica
- 3. Materiais e Métodos 4. Resultados
- 5. Conclusões e Sugestões
- I. ENM/FT/UnB II. Título (série)

#### **REFERÊNCIA BIBLIOGRÁFICA**

GONÇALVES, S. C. S. (2013). Fabricação e Avaliação de Desempenho de Combustível a Base de Parafina e Cera Vegetal para Motor Foguete a Propelentes Híbridos. Dissertação de Mestrado, Publicação ENM.DM-209A/13, Departamento de Engenharia Mecânica, Universidade de Brasília, Brasília/DF, 72p.

#### **CESSÃO DE DIREITOS**

AUTOR: Sumaya Caroline Santos Gonçalves.

TÍTULO: Fabricação e Avaliação de Desempenho de Combustível a Base de Parafina e Cera Vegetal para Motor Foguete a Propelentes Híbridos.

GRAU: Mestre ANO: 2013

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação, e nenhuma parte desta dissertação de mestrado pode ser reproduzida sem sua autorização por escrito.

Sumaya Caroline Santos Gonçalves SHCES 711 Bloco A apto 301 70655-600 Brasília/DF

## Agradecimentos

Agradeço primeiramente a Deus, nosso Mestre maior, e aos meus anjos e amigos protetores;

Aos meus pais, Arcênio e Evilázia, e meu irmão, Hugo, que sempre estiveram presentes, me apoiando e acreditando no meu potencial;

Ao meu companheiro e esposo, Tiago, por todo apoio e incentivo constantes;

Ao amigo Lennom, por ter me apresentado o professor Gurgel, que se tornou meu mestre e orientador e possibilitou a realização deste trabalho;

Ao professor Carlos Alberto Gurgel Veras, que acreditou desde o início que este seria um trabalho importante para a comunidade científica;

A todos os colegas de curso que de alguma forma me ajudaram na concretização deste sonho, principalmente as 'meninas' Ângela, Gabriela e Rose, pois sem o estudo em grupo não teria sido possível realizar este trabalho;

À Tammy, Erlan, Fábio, Gabriel, Luiz e Nivaldo que sempre me socorreram no laboratório e me auxiliaram quando necessário;

Ao Artur Bertoldi, pela importante e fundamental orientação na reta final do trabalho;

E ao Grupo de Propulsão Híbrida da Universidade de Brasília (UnB), amigos que auxiliaram no trabalho.

"Se esse ou aquele plano de trabalho está incubado em seu pensamento, agora é o momento de começar a realizá-lo." André Luiz

Dedicado à minha família. Sem ela nada faria sentido!

## Resumo

#### FABRICAÇÃO E AVALIAÇÃO DE DESEMPENHO DE COMBUSTÍVEL A BASE DE PARAFINA E CERA VEGETAL PARA MOTOR FOGUETE A PROPELENTES HÍBRIDOS

O trabalho desenvolvido nesta dissertação diz respeito a um estudo experimental com a finalidade de desenvolver e aprimorar grãos de combustíveis sólidos para foguetes híbridos. A matriz combustível confeccionada neste trabalho é à base de parafina alternativa, derivada de uma cera natural que pode ser encontrada em abundância na região Nordeste do Brasil. Os objetivos principais foram: identificar, caracterizar e avaliar química e fisicamente a parafina alternativa e desenvolver métodos de confecção e ajuste no grão, não tóxico ou explosivo. Os resultados da adição desta cera à matriz sólida de parafina fóssil foram considerados satisfatórios do ponto estrutural e de desempenho, em regime de queima. Desta forma, pode se concluir que ocorreram importantes melhorias nas características gerais do combustível sólido, se comparado com aquele empregado anteriormente a esta pesquisa.

Palavras Chave: motor a propelentes híbridos, parafina, cera vegetal

#### Abstract

### MANUFACTURING AND PERFORMANCE EVALUATION OF FUEL BASE PARAFFIN AND VEGETABLE WAX TO PROPELLANTS HYBRID ROCKET MOTOR

The work in this thesis is an experimental study in order to develop and improve grains of solid fuels to be used in hybrid rockets.. The matrix fuel confectioned in this work is from alternative paraffin, derived from a natural wax it can be found in abundance in northeastern Brazil. The main objectives were to identify, to characterize and to evaluate chemically and physically the alternative paraffin and to develop methods of preparation and adjustment in the grain, not toxic or explosive. The results of this addition to the solid wax matrix fossil paraffin were considered satisfactory and the structural point of performance, under burning. Thus, it can be concluded that there were significant improvements in the general characteristics of the solid fuel as compared with that previously used for this study.

Keywords: Engine hybrid propellants, paraffin, vegetable wax

# Sumário

| Resumo                                                                      | vi           |
|-----------------------------------------------------------------------------|--------------|
| Abstract                                                                    | vi           |
| Sumário                                                                     | vii          |
| Lista de Tabelas                                                            | viii         |
| Lista de Figuras                                                            | ix           |
| Lista de Símbolos e Siglas                                                  | x            |
| 1. INTRODUÇÃO                                                               | 1            |
| 2. REVISÃO BIBLIOGRÁFICA                                                    | 4            |
| 2.1 SISTEMAS PROPULSIVOS                                                    | 4            |
| 2.2 ESTUDOS ENVOLVENDO COMBUSTÍVEIS EM MOTORES HÍBRIDOS                     | 7            |
| 2.3 MOTORES HÍBRIDOS E COMBUSTÍVEL SÓLIDO                                   | 9            |
| 2.4 PROCESSOS DE COMBUSTÃO NOS FOGUETES HÍBRIDOS                            |              |
| 2.5 PROPELENTES UTILIZADOS NOS MOTORES HÍBRIDOS                             |              |
| 2.6 TAXA DE REGRESSÃO                                                       |              |
| 3. MATERIAIS E MÉTODOS                                                      |              |
| 3.1 CARACTERIZAÇÃO FÍSICO-QUÍMICA                                           |              |
| 3.1.1 Medida Dureza (HRL)                                                   |              |
| 3.2 DOPAGEM DO GRÃO COM PARAFINA ALTERNATIVA                                |              |
| 3.3 BANCADA DE TESTES HORIZONTAL                                            |              |
| 3.3.1 Funcionamento da Bancada                                              |              |
| 4. RESULTADOS                                                               |              |
| 4.1 TESTES REALIZADOS NO IQ/UNB E INTERPRETAÇÃO DO ES<br>INFRAVERMELHO (IV) | PECTRO<br>30 |
| 4.2 GRÃOS FABRICADOS E SELECIONADOS PARA TESTE                              |              |
| 4.3. ENSAIOS DE BANCADA                                                     |              |
| 4.3.1 Dados obtidos por meio dos testes                                     |              |
| 4.3.2 Análise de dados                                                      |              |
| 5. CONCLUSÕES E SUGESTÕES                                                   |              |
| Referências Bibliográficas                                                  |              |
| Apêndices                                                                   | 50           |

# Lista de Tabelas

| Tabela 2.2:Vantagens dos Híbridos.6Tabela 2.3: Desempenho de propelentes híbridos , Pc= 500 psia e Pe= 14.7 psia19Tabela 4.1:Escala de Dureza Rockwell L33Tabela 4.2: Dados dos grãos utilizados nos ensaios.38Tabela 4.3:Valores obtidos de taxa de regressão, vazão mássica e fluxo mássico a partir dos39Tabela 4.4: Valores das taxas de regressão utilizando os métodos de variação de massa e42Stanford.42Tabela 4.5:Taxa de regressão e fluxo mássico utilizando HTPB como combustível.43Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usados43Tabela 4.7: Valores de pressão e empuxos dos combustíveis tradicionalmente usados44 | Tabela 2.1:Métodos de Propulsão Convencionais                                    | 6               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|
| Tabela 2.3: Desempenho de propelentes híbridos , Pc= 500 psia e Pe= 14.7 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tabela 2.2:Vantagens dos Híbridos                                                | 6               |
| Tabela 4.1:Escala de Dureza Rockwell L33Tabela 4.2: Dados dos grãos utilizados nos ensaios38Tabela 4.3:Valores obtidos de taxa de regressão, vazão mássica e fluxo mássico a partir dos39Tabela 4.4: Valores das taxas de regressão utilizando os métodos de variação de massa e39Stanford.42Tabela 4.5:Taxa de regressão e fluxo mássico utilizando HTPB como combustível43Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usados43Tabela 4.7: Valores de pressão e empuxo encontrados nos testes realizados44                                                                                                                             | Tabela 2.3: Desempenho de propelentes híbridos , Pc= 500 psia e Pe= 14.7 psia    |                 |
| Tabela 4.2: Dados dos grãos utilizados nos ensaios38Tabela 4.3:Valores obtidos de taxa de regressão, vazão mássica e fluxo mássico a partir dos39Tabela 4.4: Valores das taxas de regressão utilizando os métodos de variação de massa e42Stanford.42Tabela 4.5:Taxa de regressão e fluxo mássico utilizando HTPB como combustível.43Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usados43Tabela 4.7: Valores de pressão e empuxo encontrados nos testes realizados.44                                                                                                                                                                   | Tabela 4.1:Escala de Dureza Rockwell L                                           |                 |
| Tabela 4.3:Valores obtidos de taxa de regressão, vazão mássica e fluxo mássico a partir dos         9         Tabela 4.4: Valores das taxas de regressão utilizando os métodos de variação de massa e         Stanford.         42         Tabela 4.5:Taxa de regressão e fluxo mássico utilizando HTPB como combustível.         43         Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usados         43         Tabela 4.7: Valores de pressão e empuxo encontrados nos testes realizados.                                                                                                                                           | Tabela 4.2: Dados dos grãos utilizados nos ensaios                               |                 |
| ensaios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tabela 4.3: Valores obtidos de taxa de regressão, vazão mássica e fluxo mássic   | co a partir dos |
| Tabela 4.4: Valores das taxas de regressão utilizando os métodos de variação de massa e         Stanford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ensaios                                                                          |                 |
| Stanford.42Tabela 4.5:Taxa de regressão e fluxo mássico utilizando HTPB como combustível.43Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tabela 4.4: Valores das taxas de regressão utilizando os métodos de variação     | o de massa e    |
| Tabela 4.5:Taxa de regressão e fluxo mássico utilizando HTPB como combustível                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stanford                                                                         |                 |
| Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tabela 4.5: Taxa de regressão e fluxo mássico utilizando HTPB como combustível   |                 |
| Tabela 4.7: Valores de pressão e empuxo encontrados nos testes realizados 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usado | os 43           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tabela 4.7: Valores de pressão e empuxo encontrados nos testes realizados        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |                 |

# Lista de Figuras

| Figura 1.1: Esquema motor de foguete híbrido.Fonte: Gouvêa (2007)                                 | 1    |
|---------------------------------------------------------------------------------------------------|------|
| Figura 1.2: Teste do motor (híbrido) de 250 kN da nave SpaceShip Two                              | 2    |
| Figura <b>1.3</b>                                                                                 | 3    |
| Figura 2.1:                                                                                       | 6    |
| Figura 2.3:Fórmula Estrutural do polibutadieno hidroxilado HTPB                                   | . 12 |
| Figura 2.4:Fórmula Estrutural do polietileno – PE                                                 | . 13 |
| Figura 2.5: Fórmula Estrutural do policloreto de vinila PVC                                       | . 13 |
| Figura 2.6: Mecanismo de carregamento de massa da camada limite                                   | . 15 |
| Figura 3.1: Medição do Ponto de fusão do IQ/UnB                                                   | . 24 |
| Figura 3.2: Agitador magnético com aquecedor                                                      | . 24 |
| Figura 3.3: pastilha de parafina alternativa a ser utilizada no espectrômetro de IV               | . 25 |
| Figura 3.4: Espectrômetro de Infravermelho IQ/UnB                                                 | . 25 |
| Figura 3.6                                                                                        | . 27 |
| Figura 3.7:Câmaras de combustão fabricada em náilon                                               | . 28 |
| Figura <b>3.8</b> : Tubeira com câmara de resfriamento                                            | . 29 |
| Figura 3.9: Esquema da bancada de testes                                                          | . 30 |
| Figura 4.1: Espectro de Infravermelho da amostra de parafina alternativa                          | . 31 |
| Figura 4.2: Funçao éster onde R e R <sub>1</sub> são radicais orgânicos                           | . 32 |
| Figura 4.3: Velas confeccionadas com parafina alternativa e óleo de Babaçu                        | . 33 |
| Figura 4.4: Velas compostas com 50% de parafina alternativa e 50% de óleo de babaçu               | . 33 |
| Figura 4.5: Detalhe da vela com 90% de parafina alternativa e 10% de óleo de babaçu               | . 34 |
| Figura 4.6: Grão formado por 50% de parafina alternativa com 50% de óleo de babaçu                | . 34 |
| Figura 4.7: Vista do grão formado com 50% parafina, 25% Óleo de babaçu e 25% parafina alternativa | . 35 |
| Figura 4.8: Detalhe do grão da figura 4.7                                                         | . 35 |
| Figura 4.9: Grão confeccionado com 50% parafina derivada de petróleo e 50% parafina alternativa   | . 36 |
| Figura 4.10:Detalhe do grão confeccionado com 80% parafina derivada de petróleo e 20% de para     | fina |
| alternativa                                                                                       | . 36 |
| Figura 4.11:Detalhe do grão confeccionado com 85% de parafina derivada de petróleo e 15% de para  | fina |
| alternativa                                                                                       | . 37 |
| Figura 4.12:Grão 85/15 utilizado em teste de queima                                               | . 37 |
| Figura 4.13: fluxo mássico x taxa de regressão do combustível sólido                              | . 39 |
| Figura 4.14:Primeiro gráfico utilizando o método da Universidade de Stanford                      | . 40 |
| Figura 4.15: Segundo gráfico utilizando o método da Universidade de Stanford                      | . 41 |
| Figura 4.16:Terceiro gráfico utilizando o método da Universidade de Stanford                      | . 41 |
| Figura 4.17: Taxa de Regressão com os valores das Estimativas de Erro Er pelo método Stanford     | . 42 |
| Figura 4.19: Empuxo do teste 01 realizado com parafina derivada de petróleo                       | . 45 |
| Figura 4.20: Pressão do teste 12realizado com grão confeccionado na proporção 85/15               | . 45 |
| Figura 4.21: Empuxo do teste 12 realizado com o grão confeccionado na proporção 85/15             | . 45 |

## Lista de Símbolos e Siglas

#### LATINOS

a : coeficiente da taxa de regressão Aor: área do orifício do sistema de alimentação Cox: velocidade característica de exaustão para o gás à pressão ambiente d : diâmetro d<sub>f</sub>, d<sub>i</sub>: diâmetros iniciais e finais da porta de combustão G : fluxo de massa Gox: fluxo de massa de oxidante I sp: impulso específico L g: comprimento do grão O/F: razão de mistura entre oxidante combustível m: expoente do comprimento do grão m: vazão mássica de oxidante m<sub>ox</sub><sup>ter</sup>: vazão mássica de oxidante no início do evento de decaimento do empuxo mf: massa final *m*<sub>o</sub>: massa inicial M:massa molar n: expoente do fluxo de mássico de oxidante n<sub>o</sub>: n<sup>o</sup> de mols inicial n<sub>f</sub>: n<sup>o</sup> de mols final r: taxa de regressão do combustível t q: tempo da queima V<sub>f</sub>: volume de oxidante

#### GREGOS

- Δ: variação entre duas grandezas similares
- $\rho_{f:}$  densidade do grão combustível
- γ: razão entre os calores específicos

## SIGLAS

ABNT: Associação Brasileira de Normas Técnicas GLP: Gás Liquefeito de Petróleo GOX: Oxigênio gasoso HTPB: Polibutadieno hidroxilado IV: Infravermelho LOX: Oxigênio líquido N<sub>2</sub>O: Óxido Nitroso PE: Polietileno

PVC: Policloreto de vinil

# 1. INTRODUÇÃO

A Propulsão híbrida consiste no emprego de propelentes em diferentes fases, geralmente combustível na fase sólida e oxidante na fase líquida. Tais características conferem ao sistema propulsivo importantes vantagens comparativas com as tecnologias mais utilizadas, como motores a propelentes sólidos ou líquidos. A figura 1.1 mostra esquematicamente um motor de foguete que utiliza propulsão híbrida.



Figura 1.1: Esquema motor de foguete híbrido.Fonte: Gouvêa (2007)

**Tanque do gás pressurizante:** esse tanque tem o objetivo de manter a pressão constante no tanque de propelente, usualmente acima de 50 MPa. São geralmente utilizados os gases Hélio (He) e Nitrogênio ( $N_2$ ).

Regulador: regulador de pressão entre o tanque pressurizante e o tanque de propelente.

**Tanque de propelente:** utilizado para estocar líquido ou gás, mantido sob pressão inferior à do gás pressurizante.

Válvula e Placa Injetora: alimenta a câmara com o combustível oxidante e ajuda a atomizar o propelente sob pressões diminuídas de 20% a 30%.

Grão Propelente: combustível sólido utilizado.

Portas de Combustão: espaço formado no grão para início da reação de ignição.

Tubeira: utilizada para expandir e acelerar os gases provenientes do motor.

Oiknine (2006) e Davydenko *et al.* (2007) destacam as vantagens da propulsão híbrida sobre outros sistemas, como:

 Segurança (na fabricação, no transporte e armazenamento devido à separação do oxidante e combustível);

- Confiabilidade (devido à grande margem de tolerância em imperfeições de grão e em condições ambientais);
- Flexibilidade (em virtude da modulação de empuxo e múltipla ignições);
- Custos (devido ao pequeno investimento em desenvolvimento, operação e em custos de fabricação do motor);
- Meio ambiente (os subprodutos da combustão são normalmente atóxicos e os propelentes são estáveis facilitando estocagem e transporte);
- Redução no período de desenvolvimento do sistema propulsivo, de quatro a cinco anos para seis a dez meses, comparativamente aos sistemas tradicionais;
- Redução no custo de fabricação;
- Redução nos custos de lançamento, devido a fatores como menor tempo de fase de prélançamento (-200 a -300%), materiais, custos operacionais (-40 a -50%), menor custo para sistemas de segurança (incêndio e explosão).

Karabeyoglu (2008) argumenta que a propulsão híbrida deve ser empregada e financiada para atender nichos em que os custos e a segurança se sobrepõem ao desempenho na escolha do motor foguete. Tal expectativa já está se materializando, com o anúncio de alguns sistemas espaciais que se valem largamente da propulsão híbrida.

Em termos práticos, pode-se destacar a proposta da *Virgin Galactic* em que o sistema de propulsão híbrida foi usado na nave espacial *SpaceShip2 Virgin Galactic*. Os voos foram operados com 100% de sucesso e ocorreram respectivamente em 29 de abril e 05 de setembro deste ano. A figura 1.2 apresenta uma fotografia da nave com o motor de 250 kN em operação. A nave foi projetada para realizar voos suborbitais (> 100 km de altitude) com foco no turismo espacial.



Figura 1.2: Teste do motor (híbrido) de 250 kN da nave SpaceShip Two

O programa *Dream Chaser* (figura 1.3), da *Sierra Nevada Corporation* dos Estados Unidos, projetou um veículo para voos tripulados ao espaço em que a propulsão híbrida é empregada como meio de escape da plataforma de lançamento, em caso de emergência bem como em manobras de reentrada orbital. Segundo a empresa, além de usarem combustíveis não tóxicos e oferecer maior segurança à tripulação, a tecnologia apresenta menores custos e benefícios operacionais e ambientais. Tais projetos possuem fortes financiamentos da NASA.



Figura 1.3:Dream Chaser (http://www.sncspace.com/ss\_space\_exploration.php)

Como pode se observar, a propulsão baseada inteiramente em propelentes híbridos tem sido colocada em prática em importantes projetos, num contexto de exploração de nichos. Outras oportunidades se apresentam notadamente no que concerne a veículos lançadores de satélites de pequeno porte.

A Universidade de Brasília (UnB), por meio do Grupo de Propulsão Híbrida (*Hybrid Propulsion Team*) foi pioneira no Brasil no desenvolvimento de motor foguete a propulsão híbrida. O grupo desenvolve e testa motores a propelentes híbridos desde o ano 2000, e desde então vem aprimorando os estudos nessa área (Viegas e Salemi, 2000, Santos *et al.*, 2004; Almeida e Santos, 2004, Contaifer, 2005 e Bertoldi, 2007).

Recentemente, num acordo de cooperação da UnB com Dnipropetrovsk National University (DNU) da Ucrânia, foram produzidas algumas dissertações de mestrado na área espacial. Neste grupo, destaca-se o trabalho de Da Cás (2013) onde o autor projetou um veículo lançador de microsatélite empregando algoritmos de otimização multivariavel e multidisciplinar. Tal ferramenta produziu um veículo lançador inteiramente baseado em propulsão híbrida capaz de colocar microsatélites em órbita baixa.

Assim, este trabalho objetiva realizar avanços na pesquisa de propelentes híbridos desenvolvidos pela UnB. Neste trabalho foi desenvolvida uma matriz inédita de combustível sólido a ser empregada em foguetes a propelentes híbridos. Como requisito principal, este combustível apresenta melhorias na sua qualidade estrutural, do propelente sólido, principalmente no quesito dureza. Adicionalmente, este combustível apresenta melhores valores de taxa de regressão, na medida em que possui oxigênio na sua matriz. Para isso, valeu-se de uma cera vegetal que foi adicionada a parafina fóssil em proporções adequadas, obtendo-se uma matriz sólida homogênea, com desempenho superior a parafina inteiramente fóssil.

A partir da identificação, caracterização e avaliação química e física de um polímero derivado de cera vegetal (denominada parafina alternativa) pôde-se chegar a uma proporção ideal de combustível sólido a ser empregado em motores híbridos. Para isso, foram fabricados vários grãos, em diferentes proporções de cera vegetal e parafina fóssil até que se atingisse a qualidade estrutural desejável, sem comprometimento da taxa de regressão do combustível sólido. A adição desta cera também eleva a temperatura de fusão do combustível sólido. Este fator é relevante em aplicações militares.

Por meio de testes estáticos, foi possível mensurar valores de taxa de regressão e empuxo do motor operando com os grãos fabricados e comparar com os valores usuais, abrindo espaço para uma nova gama de combustíveis e/ou aditivos a serem empregados em motores a propelentes híbridos.

# 2. REVISÃO BIBLIOGRÁFICA

#### 2.1 SISTEMAS PROPULSIVOS

Sistemas de propulsão de foguetes podem ser classificados de acordo com a fonte de energia; a função básica (fase de reforço, sustentador, controle de atitude, manutenção de órbita da estação, etc.); o tipo de veículo (aeronave, míssil, decolagem assistida, veículo espacial); tamanho; tipo de combustível; tipo de construção ou número de unidades de propulsão de foguetes utilizados num dado veículo. Podem-se classificar também os sistemas de propulsão pelo método de produção de empuxo. A seguir, alguns exemplos dos tipos mais utilizados de propulsão:

- Propulsão a gás frio: utilizada por apresentar a vantagem de ser menos prejudicial ao meio ambiente e operar com um sistema relativamente simples. Porém, apresenta baixo desempenho se comparada com sistemas que utilizam uma reação química para inicio da queima. A principal aplicação é controle de altitude e de transferência de órbita secundária. Esse sistema de propulsão utiliza energia pré-armazenada de um gás comprimido para produzir empuxo.
- Foguete a propelente líquido: esse tipo de foguete armazena o combustível e o oxidante em tanques e os transferem para uma câmara de combustão em que a energia é liberada

por meio de reações químicas. Nos casos de decomposição química, apenas um líquido reage, formando o sistema de propulsão denominado monopropelente. A principal vantagem na utilização desse sistema é que ele possui melhor desempenho entre os sistemas químicos convencionais e a modulação do empuxo pode ser controlada, entretanto, é um sistema bastante complexo e caro.

- Foguete a propelentes sólidos: os propelentes são armazenados na câmara de empuxo do motor e misturados antes do lançamento. Os produtos da reação química geralmente são tóxicos e perigosos, já que, iniciada a reação, o operador não consegue cessá-la.
- Foguete a propelentes híbridos: esse sistema utiliza geralmente oxidante no estado líquido e combustível no estado sólido, armazenado na câmara de combustão. O oxidante líquido ou gasoso é alimentado por meio de sistema similar aos dos foguetes a propelentes líquidos convencionais. O combustível sólido vaporiza com o calor proveniente do processo de combustão e se mistura com o vapor do oxidante para produzir combustão. Os gases aquecidos são ejetados através de um bocal. São mais simples que os foguetes que utilizam propulsão líquida, podem fornecer impulso específico maior que os dos propelentes sólidos, comumente mais seguros e menos tóxicos. A principal desvantagem é o menor desempenho em termos de baixa densidade de empacotamento quando comparado aos bipropelentes líquidos e a baixa taxa de regressão quando comparadas a propelentes sólidos
- Foguetes a Propelente Nuclear: esse sistema é semelhante ao de propulsão líquida monopropelente, já que um único propelente, geralmente hidrogênio, é aquecido diretamente em um trocador de calor produzido por reação de fissão nuclear. Em seguida, os gases aquecidos são expandidos em um bocal. Apesar de ser sistema complexo e apresentar bastante divergência política, esse tipo de foguete possui alto desempenho com relação ao impulso específico e nível de empuxo. [Contaifer, 2009]

A figura 2.1 mostra esquematicamente os métodos de propulsão utilizados em foguetes.

Na tabela 2.1 é mostrado o impulso específico que é a quantidade de impulso que pode ser produzida usando uma unidade de combustível. Essa é a característica que determina a velocidade máxima que pode ser obtida pelo foguete e duração em tempo de combustão médio do método.



Figura 2.1:Métodos de Propulsão em foguetes

Fonte: Space Propulsion Group, Inc. Karabeyoglu, com modificações(2008)

| Propulsão                                   | Impulso<br>específico<br>(segundos) | Duração                      |
|---------------------------------------------|-------------------------------------|------------------------------|
| Química- Sólida ou<br>Líquida bipropelente. | 200-410                             | Segundos a<br>poucos minutos |
| Química- Líquida<br>monopropelente          | 180-223                             | Segundos a<br>Minutos        |
| Fissão nuclear                              | 500-860                             | Segundos a<br>Minutos        |

**Tabela 2.1:**Métodos de Propulsão Convencionais fonte: Sutton, G.P.;BiBlarz, O.;Rocket Propulsion Elements (2001) (com modificações)

Na tabela 2.2 são mostradas as comparações e vantagens no uso dos motores de propulsão híbrida em relação ao uso de propelentes sólido e líquidos.

| Comparação<br>em relação a | Sólidos                                                                                | Líquidos                                                                               |  |  |
|----------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Simplicidade               | -Quimicamente mais simples<br>-Resistente ao processamento de<br>erros                 | -Mecanicamente mais simples<br>-Tolerante a erros de fabricação                        |  |  |
| Segurança                  | -Risco de explosão química<br>reduzido<br>-Possibilidade de abortar a missão           | -Redução dos riscos de<br>incêndios<br>-Menos propensos a erros<br>durante as partidas |  |  |
| Desempenho<br>relacionado  | -Otimização/ capacidade de<br>reiniciar<br>-Melhor impulso específico no<br>desempenho | -Maior densidade de<br>combustível<br>-Fácil inclusão de aditivos<br>sólidos           |  |  |
| Outros                     | -Reduz o impacto ambiental                                                             | -Reduz o número de<br>quantidade de líquidos                                           |  |  |
| Custo                      | -Espera-se redução de custos de desenvolvimento e recorrentes                          |                                                                                        |  |  |

Tabela 2.2: Vantagens dos Híbridos

fonte: Space Propulsion Group, Inc - Karabeyoglu (2008), com modificações

#### 2.2 ESTUDOS ENVOLVENDO COMBUSTÍVEIS EM MOTORES HÍBRIDOS

Chiaverini *et al.* (2000) investigaram a taxa de regressão do combustível sólido polibutadieno hidroxilado (HTPB) queimando com oxigênio. A geometria do motor híbrido era em escala de laboratório e permitia um sistema de radiografia obter dados da taxa regressão instantâneos do combustível sólido em qualquer posição axial. Foi observado que a taxa de regressão exibiu grande dependência da posição axial. Nesse estudo foi observada, ainda, significativa influência da radiação térmica em níveis baixos de fluxo de massa; e a taxa de regressão também foi afetada pela adição de pó de alumínio ativado. De acordo com os autores, a adição de 20% de peso de alumínio ativado no HTPB aumenta 70% o fluxo de massa do combustível em relação ao HTPB puro. Uma correlação para a taxa de regressão com as condições operacionais e geometria da porta foi produzida para o HTPB puro e HTPB carregado com certas frações de alumínio ativado

George *et al.* (2001) realizaram investigações experimentais sobre o incremento da taxa de regressão do HTPB em motores de foguete a propelente híbrido dopando o combustível sólido com perclorato de amônia e alumínio. Verificaram que reduzindo o diâmetro da porta e adicionando o metal há um incremento na taxa de regressão, no entanto, o efeito devido à adição de alumínio mostrou-se mais significativo.

Karabeyoglu *et al.* (2004) identificaram uma classe de combustíveis de parafina que queimam com alta taxa de regressão e propõem um modelo de queima. O beneficiamento envolve o uso de material que forma fina camada líquida hidrodinamicamente instável na superfície, em fusão do combustível.

Em 2004, a *Lockheed Martin Space Systems Company*, em conjunto com a Universidade de Stanford, seguindo as pesquisas de Karabeyoglu *et al.* (2004) lançaram dois foguetes de sondagem de 101,6 mm de diâmetro externo baseados em tecnologia híbrida e utilizando o par propelente parafina-óxido nitroso -  $N_2O$ .

Santos *et al.* (2004) realizaram investigações experimentais de motores híbridos à base de parafina, com empuxo da ordem de 200 N, utilizando oxigênio gasoso e N<sub>2</sub>O como oxidante. Os resultados obtidos mostraram o melhor comportamento da parafina em comparação ao polietileno.

Lacava *et al.* (2004) avaliaram o desempenho de sistemas de injeção *pressure-swirl* para turbinas a gás e motores de foguetes a propelente líquido, sugerindo um processo de manufatura e a forma de validação desse tipo de injetor.

Almeira *et al.* (2005) projetaram, lançaram e construíram dois protótipos híbridos utilizando par propelente parafina-óxido nitroso. Acredita-se que esses foram os primeiros lançamentos de foguetes híbridos à base de parafina na América Latina.

Lyne *et al.* (2005), devido a preocupações ambientais em relação à contaminação de alimentos e água no subsolo por combustíveis de foguetes, deram os primeiros passos na Universidade do Tennessee no desenvolvimento de combustíveis bioderivados para foguetes híbridos. Em seus esforços incluíram testes, bem-sucedidos, com parafina e cera de abelha.

Chang *et al.* (2005) desenvolveram técnicas para aumentar a taxa de regressão do combustível sólido em motores de foguetes a propelente híbrido. E o fizeram por meio da dopagem do combustível com redes metálicas e promovendo ranhuras no grão combustível de polimetilmetacrilato de forma a gerar um efeito de *swirl* na superfície de queima. Seus resultados mostraram que, para as condições utilizadas em sua pesquisa, a dopagem do combustível com redes metálicas trouxe efeitos negligenciáveis sobre a taxa de regressão, no entanto, a aplicação do efeito de *swirl* se mostrou método mais efetivo de incremento da velocidade da queima.

Carmicino *et al.* (2005) realizaram testes para investigar a influência da injeção do oxidante sobre o comportamento da taxa de regressão do combustível sólido dos foguetes a propelentes híbridos.

Contaifer (2006) projetou e lançou o foguete SD-1 cujo motor era propulsionado à base do par propelente parafina-N<sub>2</sub>O. O protótipo que desenvolveu altitudes em torno de 5.000 m continha computador de bordo e sistema de recuperação.

Gouvêa (2007) realizou investigação teórico-experimental do emprego do par parafina–peróxido de hidrogênio ( $H_2O_2$ ) como propelente em motores híbridos. Determinou, por meio de um código computacional de equilíbrio químico, as características propulsivas dos propelentes. A partir de uma análise de distribuição de massa mostrou a viabilidade do lançamento via aeronave de foguete de multiestágios para a colocação de satélites em órbita. Ao final, demonstrou a tecnologia operando propulsor de 70 N baseado no par parafina– $H_2O_2$ .

Bertoldi (2007) avaliou experimentalmente a queima de parafina e óxido nitroso em motores híbridos de cerca de 250 N, desenvolvendo uma relação para a taxa de regressão baseada no fluxo total de massa e na posição axial da porta de combustão.

Sakay e Araújo (2009) construíram um bancada experimental para medição da variação de empuxo em foguetes híbridos.

Da Cás e Vilanova (2011) realizaram um estudo técnico para a utilização de motor de reentrada, baseado em tecnologia de propelentes híbridos.

Muitos desafios ainda existem no desenvolvimento e na performance da propulsão dos foguetes híbridos. Chiaverini *et al.*(2007) afirmaram que esses desafios podem ser divididos em três áreas: 1) continuação do desenvolvimento de combustíveis energéticos e oxidantes ao adquirir melhor conhecimento e compreensão do comportamento de sua ignição e combustão; 2) melhorias no projeto e operação altamente confiável para motores de foguete híbrido com grandes flexibilidades operacionais; 3) obtenção de apoio forte e contínuo dos fabricantes de foguetes a propulsão e de gestores de programas a fim de reconhecer a importância e vantagens desse tipo de sistema de propulsão.

## 2.3 MOTORES HÍBRIDOS E COMBUSTÍVEL SÓLIDO

Os motores de foguetes a propelente híbrido foram desenvolvidos inicialmente em 1930, com o programa espacial russo, porém não tiveram tanta atenção quanto os foguetes a propulsão sólida ou líquida. Somente a partir da década de 1970, os Estados Unidos desenvolveram pesquisas com motores híbridos.[Almeida, 2005]

Apesar de haver muitos componentes em comum com os foguetes a propelentes líquidos ou sólidos, os foguetes a propelentes híbridos operam de forma distinta. Em foguetes a propelente sólido (homogêneo), o oxidante e o combustível estão intimamente misturados numa única fase sólida, e a combustão ocorre quando a superfície exposta é aquecida até alcançar a temperatura de ignição. Em foguetes a propelentes líquidos, o combustível e o oxidante no estado líquido são misturados por meio de sistema de injeção, formando mistura combustível dentro de uma câmara de combustão. Busca-se, em geral, nesse caso, mistura uniforme entre o oxidante e combustível ao longo da câmara de combustão. Em foguetes híbridos, a queima se dá por um processo de difusão turbulenta macroscópica, de forma que a razão oxidante/combustível varia, em geral, ao longo da câmara de combustão e ao longo do tempo (Altman e Holzman, 2007).

A Figura 2.2 mostra um esquema de um foguete híbrido onde o oxidante é injetado e passa pela porta de combustão. Exibe também a chama de difusão turbulenta que se estabelece entre o escoamento central e a parede do grão que regride devido à evaporação e queima da parafina sólida.



**Figura 2.2**Esquema de propulsor híbrido clássico e modelo de combustão no interior do grão. Fonte: Chiaverini e Kuo (2007), com modificações.

Com o passar do tempo e com pesquisas buscando por meios propulsivos mais seguros, menos complexos e com bom nível de controle, principalmente a procura por propelentes pouco tóxicos e poluentes, conhecidos por *green propellants*, verificou-se que há várias vantagens no uso de foguetes com motor híbrido em relação aos foguetes que usam combustíveis sólidos ou líquidos, principalmente quanto à segurança dos sistemas híbridos, que vem do fato de o combustível sólido e o oxidante líquido estarem fisicamente separados e armazenados em fases distintas; utilizando apenas um tanque, em contraste ao propulsor líquido bipropelente que utiliza mais tanques e aos propulsores sólidos que utilizam grãos sólidos como propelente, susceptíveis a rachaduras e imperfeições.[Contaifer, 2009]

Por possuírem apenas contato superficial durante a reação, os motores híbridos não geram efeito cadeia de reações químicas tampouco alteração de pressão da câmara. Dessa forma, o descontrole da queima ou acidentes é evitado. Outra característica importante é a independência da taxa de regressão com a pressão de câmara, o que torna sistemas híbridos mais seguros. Os combustíveis utilizados em motores híbridos são, em sua maioria, atóxicos e não perigosos, gerando produtos menos poluentes, ou seja, os fatores de busca por *green propellants*, em conjunto com necessidades de segurança de operação, armazenamento, redução de custos das missões e interesse pelo lançamento de pequenas cargas ou pequenos satélites, tornaram mais atrativos os foguetes que utilizam propulsão híbrida.[Gouvêa,2007]

Os motores híbridos são mais confiáveis para a fabricação, manuseio, transporte e armazenamento, já que dispensam a necessidade de utilizar dois tanques. E oferecem a possibilidade de controle, podendo iniciar, parar e reiniciar a queima do sistema propulsivo de forma relativamente simples e conforme a necessidade, facilitando ajustes e correções de trajetória. O sistema híbrido possui ainda a vantagem de emitir menos poluentes na atmosfera.[Gouvêa,2007]

Pela versatilidade dos propelentes disponíveis, os foguetes híbridos podem ser utilizados para várias aplicações em que os demais foguetes também são empregados. A grande faixa de

desempenho e a possibilidade de controle de empuxo, interrupção da queima e demais reações contam muito para que os foguetes híbridos cada vez mais ganhem espaço entre a comunidade científica. Entre as aplicações que os híbridos levam vantagem, podem-se destacar os foguetes de sondagem para medidas e testes em grandes altitudes, pois possuem campo de aplicação vasto; unidades de força auxiliar que são geradores de gás para diversas aplicações como alimentar turbinas, gerar gás quente (podendo ser ricos em combustível ou em oxidante), tochas; foguetes táticos em que há a possibilidade de controle do empuxo, que permite impulsionar ou manter a velocidade dependendo da demanda, isso não é facilmente atingível com foguetes a propelentes sólidos; motores para aplicações no espaço, pois, com a capacidade de controle do empuxo, interrupção e reacionamento da queima, são características desejáveis para o posicionamento e inserção de satélites em órbita. O uso de motores adicionais híbridos permite aumento do empuxo com controle de aceleração. Os maiores motores foguetes híbridos testados apresentavam cerca de 1100 kN de empuxo. Foram construídos por duas organizações: a American Company Rocket (AMROC), nos anos 90,e o consórcio formado pela Lockheed, Chemical Division (CSD) eThiokol (ATK), durante os anos de 2000 a 2002. Esses motores utilizavam oxigênio líquido e HTPB como propelentes. [Contaifer,2009]

Segundo Humble *et al.* (1995), Moore, G.E. (1956) e Sutton (1992), algumas características citadas abaixo indicam as vantagens e desvantagens dos foguetes a propulsão híbrida. Dentre as vantagens, destacam-se:

- Os propelentes não são pré-misturados como nos foguetes sólidos, e, portanto, propulsores híbridos são mais seguros que os sólidos;
- Menor custo em relação aos foguetes líquidos bipropelentes, porque apenas um dos combustíveis necessita de sistema de injeção, bombas e tanques;
- Sua simplicidade em geral leva a maior confiabilidade, tanto em relação aos sistemas sólidos quanto aos líquidos bipropelentes;
- Desempenho e segurança não são afetados por pequenas falhas ou rachaduras no grão propelente, pois em motores híbridos a pressão de câmara é proporcional à taxa de injeção do oxidante e não à área superficial do grão exposta à chama;
- O controle sobre a injeção do oxidante fornece a possibilidade de controle de empuxo, além de ligar e desligar o motor como desejado;
- A combustão se dá de forma estável, não ocorrendo grandes picos de pressão;
- Os combustíveis são considerados atóxicos e não perigosos, gerando comumente produtos menos poluentes que outros sistemas.

Dentre as desvantagens podem-se destacar:

 A razão de mistura varia com o decorrer da queima, variando então os parâmetros de desempenho do foguete, que nem sempre é desejável ou permissível;

- A eficiência de combustão é levemente mais baixa do quem em motores líquidos ou sólidos;
- A baixa taxa de regressão acarreta um limite de empuxo, para uma dada configuração do grão.

Previstos para serem utilizados em veículos lançadores de satélite, mísseis táticos e foguetes de sondagem, atualmente os motores híbridos estão sendo usados em substituição de *boosters* sólidos e em veículos suborbitais tripulados.[Bertoldi,2007]

O principal motivo que desestimulava a pesquisa e desenvolvimento de foguetes com propelentes híbridos era a baixa taxa de regressão do combustível sólido, taxa que mede a velocidade radial de queima do grão combustível.

A taxa de regressão do combustível sólido pode ser mensurada pelo aumento do raio da porta de combustão durante a queima. A taxa de regressão é diretamente proporcional à taxa de queima, gerando melhor desempenho do foguete. A justificativa é que quanto maior a taxa de regressão, maior a quantidade de combustível consumido, o que gera aumento na vazão mássica de propelentes no bocal de exaustão dos gases, melhorando o empuxo e a eficiência do motor.[Bertoldi,2007]

Os combustíveis tradicionalmente usados em motores híbridos são os polímeros: polibutadieno hidroxilado - HTPB, polietileno-PE e policloreto de vinila - PVC, sendo o HTPB o mais utilizado. Estudos de Luchini, C. *et al.* (1996) usaram hidrocarbonetos como aditivos no polímero, com o objetivo de aumentar a taxa de regressão. A justificativa para a utilização desses compostos seria que os aditivos contêm apenas átomos de carbono e hidrogênio, possuem menor energia de vaporização e não interferem na polimerização. Porém os estudos não foram bem-sucedidos. .[Santos,2009]

Nas figuras a seguir são mostradas as fórmulas estruturais, referente às disposições dos átomos dos polímeros tradicionalmente usados como combustível sólido.







Figura 2.4:Fórmula Estrutural do polietileno – PE fonte: Google imagens



Figura 2.5: Fórmula Estrutural do policloreto de vinila PVC fonte: Google imagens

Propulsores híbridos usando combustíveis convencionais (PE, HTPB) apresentam nível de empuxo relativamente baixo, devido às baixas taxas de regressão (taxas de queima) do grão de combustível, tornando necessário o uso de grande número de portas no grão. Karabeyoglu *et al.* (2003) mostraram as seguintes desvantagens do uso de grãos com várias portas de combustão (multiporta): [Santos,2009]

- Grandes frações do combustível permanecem não queimadas e não são usadas para propulsão;
- Problemas de integridade do grão no fim da queima quando a espessura entre os furos (*web thickness*) é muito pequena, tornando o grão suscetível a falha estrutural (suportes podem ser usados para resolver o problema, entretanto eles aumentam a massa e a complexidade do sistema);
- Fabricação de grãos multiporta é mais difícil e tem maior custo quando comparados agrãos monoperfurados;
- Necessidade de injetores múltiplos ou de câmara de pré-combustão;
- Possibilidade de queima não uniforme entre as portas.

Com isso, novos pares combustíveis/oxidantes estão sendo testados, visando obter maiores taxas de regressão e gerar maiores empuxos, fazendo o uso de grãos com apenas uma porta de combustão (monoperfurados).

Ainda na tentativa de aprimorar a taxa de regressão utilizando HTPB, Chiaverini *et al.* (2000) investigaram a transferência de calor e aumento da taxa de regressão utilizando dopagem metálica, adicionando aos grãos combustível pó de alumínio. Com estudos sendo realizados nessa linha de dopagem metálica, foi descoberto que os metais da família 13 da tabela periódica especialmente alumínio e boro são mais efetivos e possuem melhor aumento na taxa de queima, devido ao acréscimo de energia liberada pela oxidação de nano partículas adicionadas ao grão.

Karabeyoglu *et al.* (2004) identificaram uma classe de combustíveis à base de parafina que possuem taxa de regressão entre três e quatro vezes maior que a dos combustíveis geralmente utilizados. O progresso implica a utilização de parafina líquida, formando fina camada líquida, de baixa tensão superficial e viscosidade, se tornando hidrodinamicamente instável na superfície em fusão do combustível. Isso ocorre pelo fato de os combustíveis estarem separados fisicamente e os motores híbridos operarem com configuração heterogênea na camada limite. Gotas do combustível se desprendem da camada líquida formada na superfície do grão combustível e reagem no escoamento central. A camada da parafina que vaporiza na superfície do líquido queima na chama de difusão próxima ao combustível. Os efeitos da chama de difusão, formação de gotas e as ondas formadas no filme líquido são acumuladas e implicam o aumento da taxa de regressão.

Essa camada líquida foi chamada de *entrainment,* e pela patente US nº 6,684,625 B2 sua razão pode ser calculada seguindo a fórmula:

Razão do entrainment das gotas de liquido

$$\dot{r}(ent)^{\tau} \approx ((C_{\downarrow}fP_{\downarrow}d))^{\tau} \alpha h \beta^{\tau} \beta) / (\mu^{\tau} \gamma \sigma^{\uparrow} \pi)$$
[2.1]

Para um ponto de fluxo mássico  $G = \rho_g u_g$ , onde $\rho_g$ é a média da densidade do gás e  $u_g$ é a média da velocidade do gás e a pequena altura da camada de líquido formada na superfície do combustível, em que o valor do ponto de fluxo da massa e a espessura satisfazem a relação $G^{1.6}h^{0.6} \ge a_{onset}$ ; Sendo $a_{onset}$  o parâmetro inicial do *entrainment*é dado po*r*:

$$a_{onset} = 1.05 \times 10^{-2} \left(\frac{\rho_{g}^{1.2}}{\rho_{l}^{0.2}}\right) \frac{1}{((C_{fref} C_{Bl})^{0.8})(\frac{1}{\mu_{g}})\sigma \mu_{l}^{0.6}}$$
[2.2]

A instabilidade dessa camada é induzida pelo escoamento de oxidante gasoso que proporciona o descolamento e a entrada de gotículas de combustível na corrente gasosa, aumentando consideravelmente a taxa de transferência de massa de combustível, como mostra a Figura 2.5.



Figura 2.6: Mecanismo de carregamento de massa da camada limite Fonte: Space Propulsion Group, Inc -Karabeyoglu (2008), com modificações

Esse mecanismo funciona como sistema de injeção de spray contínuo distribuído ao longo da superfície de queima. Uma vez que a transferência de gotículas não é limitada pela transferência de calor por difusão da zona de combustão para o combustível, esse mecanismo pode levar à taxa de regressão maior do que as apresentadas por combustíveis poliméricos convencionais que dependem somente de evaporação. [Gouvêa, 2007]

Uma camada química de cisalhamento se desenvolve ao longo da superfície do combustível sólido devido à reação entre o oxidante injetado na região final do motor e as espécies de combustível decompostas termicamente (espécies pirolisadas). A reação de cisalhamento tem comportamento de camada-limite, principalmente na região anterior ao estágio completamente desenvolvido. O comportamento da camada limite na maior parte do grão de combustível sólido é turbulento. Essa turbulência é caracterizada pela alta velocidade, temperatura, e gradientes de espécies normais à superfície: massa, momentum, transporte de energia е flutuações.[Chiaverini,2000]

Chiaverini *et al* . (2000) argumenta que próximo à superfície do combustível podem ocorrer sequencialmente, ou mesmo simultaneamente, diversos processos físico-químicos complexos, a saber:

1) Fusão da camada de formação por liquefação;

 Quebra da cadeia de polímero e reorganização das moléculas na zona aquecida do combustível sólido;

 Reações heterogêneas entre os fragmentos de polímero e oxidantes difundido por meio da chama de difusão gasosa;

 Deslocamento da superfície de dessorção dos fragmentos de polímeros e difusão da massa, advecção (espalhamento) das espécies de combustível pirolisadas na direção transversal para a camada de cisalhamento;

 Formação de ondulações da superfície e saliências, devido à interação do fluxo de cisalhamento com material de superfície de pirólise. Devido à perda de massa e mecânica de compressão/descompressão associada à variação de pressão da câmara, a taxa de regressão de superfície é afetada por esses processos físicoquímicos complexos. Isso poderia ser uma das razões pelas quais o sistema de propulsão híbrida não foi completamente desenvolvido.

Há ainda uma lista deconsiderações a serem seguidas com a finalidade de aumentar a eficiência de combustãoe melhorar a utilização da razão combustível/oxidante em motores de foguetes híbridos. Dentre elas destacam-se:

 Caso o oxidante líquido seja utilizado, os padrões de injeção desse oxidante deve ser bem conhecido e controlado para ser compatível com a estrutura geométrica do grão de combustível;
 Os sistemas de ignição devem ser adequadamente projetados para líquidos oxidantes a fim de reagir de forma eficiente com o combustível sólido. Seu impacto sobre o desempenho deve ser consideradono projeto do sistemade propulsão;

 A geometria do grão deve ser considerada a fim de que seja a mais adequada para o processo de combustão, melhorando a cinética dos gases envolvidos na reação.[Sutton,1992]

### 2.4 PROCESSOS DE COMBUSTÃO NOS FOGUETES HÍBRIDOS

Kuo *et al (2007)* relatam que existem numerosos processos físico-químicos que ocorrem na câmara de combustão, que consiste de uma câmara de vaporização na extremidade dianteira, uma seção de combustível sólido de grãos e uma câmara traseira de mistura ligada ao bocal de saída.

A câmara de vaporização é às vezes chamada de câmara de pré-combustão e a câmara traseira de mistura é também chamada de câmara de pós-combustão.

Uma reação química de fluxo de cisalhamento se desenvolve ao longo da superfície do combustível sólido, devido à reação entre o oxidante injetado na região final do motor e os fragmentos das espécies pirolisadas de combustível.

A reação do fluxo de cisalhamento possui comportamento da camada limite, especialmente na região anterior da estação completamente desenvolvida. O comportamento da camada limite na maior parte do grão de combustível sólido é turbulento. Essa turbulência é caracterizada pelas altas velocidade, temperatura e gradientes de espécies normais à superfície: massa, momentum, transporte de energia e flutuações.

Há uma lista envolvida nos processos que ocorrem em cada componente principal dos motores de foguete híbridos:

#### Câmara de pré-combustão:

a) Injeção de material pirofórico ou atuação de dispositivo de ignição;

b) Atomização do oxidante líquido por spray;

c) Calor térmico e pirólise do combustível sólido;

d) Pressurização rápida da câmara no início da inflamação devido à descarga de ignição;

 e) Supressão de uma fração da superfície de combustível causada por choque nas ligações dos líquidos frios e gotículas;

 f) Avanço da frente de pirólise sobre todas as superfícies expostas de combustível e de chama de fixação perto de determinados locais;

g) Penetração de fluxos de oxidante líquido vaporizado e nas portas do grão combustível sólido;

h) Regressão da superfície do combustível devido à pirólise e variações de contorno;

i) Combustão do combustível vaporizado em ambiente rico de oxidante.

#### Seção do grão combustível sólido:

a) Aquecimento térmico e pirólise do combustível sólido;

b) Dessorção de fragmentos de polímeros a partir das superfícies de combustível pirolisado;

c) Difusão das espécies de combustível fragmentados em direção à zona de chama;

d) Formação da camada limite como fluxo de cisalhamento próximo às regiões da superfície do grão combustível sólido;

e) Difusão do oxidante não queimado para as superfícies do combustível e envolvimento de reações heterogêneas;

f) Propagação da frente de pirólise sobre as superfícies expostas de combustível;

g) Regressão da superfície de combustível devido ao aquecimento da chama de difusão;

h) Aumento do fluxo de massa axial ao longo da porta do grão combustível devido à adição de massa;

 i) Aceleração do fluxo de massa em direção axial e, como a área da porta aumenta, há redução do fluxo de massa no estágio seguinte;

j) Deformação de grãos em resposta a eventuais forças desbalanceadas devido ao início da ignição;

k) Não uniformidade de queima nas portas não circulares do grão multiportas;

I) Encaminhamento para o fim da queima;

m) Atenuação ou amplificação de quaisquer perturbação de combustão ou ondas de instabilidade;

n) Potencial de ejeção de resíduos não queimados.

#### Câmara de pós-combustão:

a) Mistura de jatos de água a partir da porta de combustível sólido;

b) Aquecimento do material de isolamento térmico;

c) Continuação das reações químicas entre quaisquer combustível e espécies oxidantes que não reagiram;

d) Produtos gasosos esgotados, fuligem e qualquer outra partícula na fase condensada da tubeira;
e) Amortecimento ou amplificação de distúrbios de combustão ou ondas de instabilidade; f) erosão da garganta da tubeira.

## 2.5 PROPELENTES UTILIZADOS NOS MOTORES HÍBRIDOS

O primeiro esforço significativo no desenvolvimento de foguete híbrido foi realizado em meados dos anos 1940 pela Pacific Rocket Society (Sociedade foguete Pacífico) quando foi empregado oxigênio líquido (LOX) em conjunto com outros materiais combustíveis tais como madeira, uma cera carregada com negro de fumo, e, finalmente, um combustível à base de borracha. Na configuração inicial registrada, foi usado um bico no qual foi embebido em uma solução de cloreto de zinco e amônio, com o objetivo de tornar essa mistura resistente ao calor. A Sociedade passou por mais 19 projetos antes de finalmente chegar ao XDF-23, que utilizou configuração mais prática, contendo LOX combustível à base de borracha e uma liga de alumínio. O foguete voou em junho de 1951, atingindo altitude estimada de 30.000 pés.[Bertoldi, 2007]

Devido às características de um foguete híbrido, os combustíveis e oxidantes testados excedem muito os utilizados em foguetes líquidos e sólidos. O panorama de propulsores disponíveis é expandido devido às duas fases estarem disponíveis. O foguete híbrido clássico contendo combustível sólido inerte e oxidante líquido tem o maior estoque de propulsores, enquanto que o híbrido inverso é mais restrito. Isso porque oxidantes sólidos adequados são limitados em número, geralmente cristalinos, e difíceis de serem fundidos e estocados por causa de limitações de propriedades mecânicas.[Kuo,2007]

Outras combinações de propelentes foram testadas, e podem ser visualizadas na tabela 2.2, a seguir

| Combustível | Oxidante                      | O/F | Nível do mar<br>I <sub>sp</sub> , s | C, ft/s |
|-------------|-------------------------------|-----|-------------------------------------|---------|
| НТРВ        | LOX                           | 1.9 | 280                                 | 5972    |
| PMM(C5H8O2) | LOX                           | 1.5 | 259                                 | 5449    |
| НТРВ        | N <sub>2</sub> O              | 7.1 | 247                                 | 5264    |
| НТРВ        | N <sub>2</sub> O <sub>4</sub> | 3.5 | 258                                 | 5456    |
| НТРВ        | FLOX(OF <sub>2</sub> )        | 3.3 | 314                                 | 6701    |
| Li/LiH/HTPB | FLOX(OF <sub>2</sub> )        | 2.8 | 326                                 | 6950    |
| PE          | LOX                           | 2.5 | 279                                 | 5877    |

| PE           | N <sub>2</sub> O              | 8.0  | 247 | 5248 |
|--------------|-------------------------------|------|-----|------|
| PARAFINA     | LOX                           | 2.5  | 281 | 5920 |
| PARAFINA     | N <sub>2</sub> O              | 8.0  | 248 | 5268 |
| PARAFINA     | N <sub>2</sub> O <sub>4</sub> | 4.0  | 259 | 5469 |
| HTPB/AI(40%) | LOX                           | 1.1  | 274 | 5766 |
| HTPB/AI(40%) | N <sub>2</sub> O              | 3.5  | 252 | 5370 |
| HTPB/AI(40%) | N <sub>2</sub> O <sub>4</sub> | 1.7  | 261 | 5509 |
| HTPB/AI(60%) | FLOX                          | 2.5  | 312 | 6582 |
| CELULOSE     | GOX                           | 1.0  | 247 | 5159 |
| CARBONO      | AR                            | 11.3 | 184 | 4017 |
| CARBONO      | LOX                           | 1.9  | 249 | 5245 |
| CARBONO      | N <sub>2</sub> O              | 6.3  | 236 | 4992 |

**Tabela 2.3:** Desempenho de propelentes híbridos, Pc= 500 psia e Pe= 14.7 psia Fonte: Fundamentals of Hybrid Rocket Combustion and Propulsion P. 9, com modificações.

Os propelentes criogênicos sólidos de alto desempenho têm valores *I*<sub>SP</sub> apenas ligeiramente menor do que os não criogênicos homólogos no estado líquido, pois o calor de fusão é pequeno em relação ao calor de combustão. A combinação que mais se assemelha a propelente líquido LOX/querosene é o híbrido LOX/parafina seguido de LOX/HTPB. Madeira, que é aproximada por celulose, mostra desempenho satisfatório com oxigênio gasoso (GOX). Como esperado, a combinação de mais baixo desempenho é carbono/ar, devido à diluição do oxigênio por nitrogênio.[Gouvêa, 2007]

#### 2.6 TAXA DE REGRESSÃO

Karabeyoglu *et al* (2004) desenvolveram fórmula para medir a taxa de regressão utilizando uma média de taxas de regressão para foguetes híbridos. Uma série de dados em escala superior foi realizada, porém os resultados estão de acordo com testes laboratoriais de baixo fluxo de massa realizados na Universidade de Stanford.

O processo de combustão do foguete híbrido é de difusão limitada, tornando a taxa de regressão do combustível dependente principalmente do fluxo de massa. [Karabeyogly, 2004]

Na prática, o sistema híbrido requer o estudo completo da dependência da taxa de regressão sobre o fluxo de massa e outros parâmetros operacionais, tais como pressão e comprimento de grãos. Essa relação funcional é comumente referida como a "lei de velocidade de regressão", e

cada combinação de propulsor tem a sua taxa de regressão única devido às diferenças nas propriedades termofísicas e termoquímicas dos componentes do propelente. [Bertoldi,2007]

Devido à falta de fidelidade nos modelos de combustão atualmente disponíveis para os foguetes híbridos, uma determinação teórica exata da lei de regressão baseada nas propriedades fundamentais dos propulsores ainda não é possível. No entanto. há teorias que podem predizer a forma da dependência da taxa de regressão sobre as propriedades do sistema. Por isso, o objetivo dos estudos do grupo de Karabeyoglu foi desenvolver expressões de espaço-tempo para taxas de regressão médias a partir da equação clássica da taxa de regressão instantânea local, no formato de lei de potência. Os expoentes de fluxo de massa e da distância axial são mantidos como parâmetros livres para preservar a generalidade nas fórmulas derivadas.[Bertoldi,2007]

Não existe uma teoria universalmente aceitável e altamente precisa para prever a taxa de regressão local de um grão de combustível híbrido, num dado instante da operação do motor. A maioria dos modelos completos desenvolvidos até hoje são a teoria de difusão clássica limitada (Marxman) e as relações semi-empíricas (Chiaverini). Por questão de simplicidade, foi utilizada a teoria clássica como a linha de base das derivações. Resultados semelhantes podem também ser obtidos usando Chiaverini.

De acordo com a teoria da difusão limitada desenvolvido por Marxman (1964), a velocidade instantânea de recessão local do combustível híbrido pode ser expressa como uma lei de potência em termos de fluxo de massa local, e axial da posição na porta.

$$\dot{r} = aG^n \tag{2.3}$$

Os valores clássicos para o fluxo de massa e comprimento expoentes são 0,8 e -0,2, respectivamente. Esses valores são originários da transferência de calor da turbulencia da camada limite, e os argumentos foram determinados para uma camada limite sem diluição do oxidante no fluxo livre ao longo do eixo da porta cilíndrica.[Contaifer, 2009]

Na realidade, o processo de combustão que ocorre em um foguete híbrido é mais complexo. Por exemplo, a chama de difusão que se forma sobre a superfície está de acordo com a geometria cilíndrica interna do canal de combustível e há vários outros fatores de complicação que não estão incluídos no modelo relativamente simples, tais como a variação do tamanho do grão como parâmetro de comprimento.[Contaifer,2009]

O coeficiente *a*, pode ser assumido como sendo constante para uma dada combinação de propelentes. Sob condições de fluxo de massa extremas ou para os sistemas carregados de metal, a expressão da taxa de regressão torna-se dependente da pressão. Nesse caso, o

20

coeficiente de um pode ser tomado como uma função da pressão da câmara. Para condições de operação encontradas nos motores híbridos típicos, o efeito da pressão sobre a taxa de regressão é geralmente insignificante.[ Contaifer,2009]

Para simplificar o cálculo da média da taxa regressão sobre a superfície de queima do grão combustível, a taxa de regressão é assumida como constante em torno da circunferência da porta de combustão em qualquer ponto axial. Essa é uma aproximação que pode ser utilizada para as portas circulares, mas perde sua validade para as formas de porta com cantos afiados. [Contaifer,2009]

A variação espacial da taxa de regressão é estimada por meio do diâmetro inicial da porta de combustão e medidas de consumo da massa de combustível. Geralmetne, a taxa de regressão do combustível sólido dos motores de foguetes hibrídos pode ser dada pela equação 2.2 [Karabeyolglu,2004]

$$\overline{\dot{r}} = \frac{d_f - d_i}{2t_q}$$
[2.4]

Em que o diâmetro final da porta ( $d_f$ ) pode ser estimado pela equação 3.3, a partir da medida da variação da massa de combustível consumido. Determinando, consequentemente, a taxa de regressão, pois a medida direta do diâmetro final da porta de combustão fornece elevados erros devido à complexa mensuração dessa grandeza após os testes.[Karabeyolglu,2004]

$$d_f = \left[d_i^2 + \frac{4\Delta m_f}{\pi \rho_f L_g}\right]^{1/2}$$
[2.5]

Os principais problemas para medição da taxa de regressão média do grão de parafina são os transientes de desligamento e ignição do motor.O método de correção desenvolvido pela Universidade de Stanford é baseado em estimativa da mudança do diâmetro da porta de combustão durante o processo de transiente de decaimento do empuxo. Dessa forma, a taxa de regressão é expressa pela seguinte equação 2.4 [Karabeyolglu,2004]

$$\overline{r} = \frac{d_{vc} - d_i}{2t_q}$$
[2.6]

Com essa equação é possível se determinar o diâmetro da porta de combustão no início do término da medida do empuxo ( $d_{vc}$ ), que é a correção proposta devido ao transiente de desligamento, e é expresso pela equação 2.5. Esta equação :

$$d_{vc} = \left( \left\{ \left[ (2n+1/n) \right] (2^{n+1}/\pi^n) \tau_{fs} \cdot a \cdot \dot{m}_{ox}^{ter} \left[ 1 - \exp(-nt_f/\tau_{fs}) \right] \right\} + d_f^{2n+1} \right)^{1/(2n+1)}$$

[2.7]

Em que  $\dot{m}_{ox}^{ter}$  é a vazão mássica de oxidante no inicio do evento de decaimento do empuxo.

O tempo de queima  $t_q$  é definido como o tempo entre a ignição e os eventos de fechamento das válvulas, obtido por meio das curvas de pressão e empuxo.

Em todos os cálculos usados por Stanfors, usou-se a razão entre o tempo após o fechamento da válvula principal e a escala de tempo característica do sistema de alimentação como 1. Ou seja,  $t_f/\tau_{fs}$ =1. Isso se deve ao fato que a taxa de regressão diminui rapidamente para valores maiores que 1, devido ao decaimento da vazão mássica [Santos,2009]

O tempo de decaimento do empuxo é tomado desde o instante de fechamento das válvulas até o completo desligamento do motor. Nesse período ainda resta bastante oxidante nas linhas, porém, nesse momento, a taxa de regressão pode ser negligenciada devido à baixa vazão mássica de oxidante. O oxidante que reside na linha ao final dos testes é o que leva ao uso da equação 2.5.[Bertoldi,2007]

A escala de tempo característica do sistema de alimentação é definida como:

$$\tau_{fs} = \frac{V_f}{A_{or} C_{ox}^* \Gamma^2} \quad \mathbf{e}$$
[2.8]

Onde a constante de fluxo característico é dada por

$$\Gamma = \sqrt{\gamma} [2/(\gamma + 1)]^{(\gamma + 1)/2(\gamma - 1)}$$
[2.9]

Os valores de  $V_f$  representam o volume de oxidante transportado pelo sistema de alimentação,  $A_{or}$ , a área do orifício do sistema de alimentação e Cox, a velocidade característica para o gás oxidante à pressão ambiente.

O tempo característico de esvaziamento do sistema de alimentação é estimado a partir dos dados temporais da pressão ajustando-os a uma função exponencial. Para certas condições, o tempo característico pode ser tão longo quanto o tempo nominal de queima. Desta forma, o erro que seria introduzido usando equação 2.8 é eliminado. Nesse caso, a variável temporal *Tf* é definida

como o tempo após o fechamento da válvula principal, quando a taxa de regressão do combustível pode ser desprezada.[Bertoldi, 2007]

A taxa de regressão do combustível sólido dos motores de foguetes híbridos apresenta como principal influência o fluxo de massa de oxidante ( $G_{ox}$ ), que é função dependente da vazão mássica de oxidante ( $\dot{m}_{ox}$ ) e da geometria da porta de combustão.

$$\overline{G_{ox}} = \frac{16\overline{m_{ox}}}{\pi (d_i + d_{vc})^2}$$
[2.10]

A vazão mássica de oxidante pode ser medida através de um orifício sônico, por um *venturi* calibrado, inserido na linha principal do oxidante, ou pela medição da massa de oxidante contida em um volume de controle ao passar pelos furos de um injetor. Para as medidas com o orifício sônico, a vazão mássica pode ser expressa como:

$$\dot{m}_{ox} = p_f A_{or} C_d / C_{ox}^*$$
[2.11]

Dessa forma é possível calcular a taxa de regressão média e o fluxo de massa médio de oxidante para determinado ensaio. Cada ensaio define um par de coordenadas e após uma sequência de testes é possível traçar uma curva da taxa de regressão média em função do fluxo de massa médio de oxidante. Por meio da equação 3.10 e dos pontos no gráfico se define o valor das constantes *a* e *n*, que devem ser corrigidos e aplicados novamente na equação para calcular o novo valor de  $d_{vc}$ .

$$\overline{\dot{r}} = a \cdot \overline{G_{ox}^n}$$
[2.12]

Um novo gráfico da taxa de regressão é traçado pelo fluxo de massa de oxidante, e pela equação acima se calculam os valores das constantes *a* e *n* até que atinjam um critério de convergência. [Bertoldi, 2007]

## 3. MATERIAIS E MÉTODOS

Para que o grão combustível se torne desejável, é necessário que ele tenha o tamanho correto, sua estrutrura seja simples, de alta performance, custo acessível e principalmente que seja seguro quanto ao seu manuseio.[Sutton,1992]

A Pólvora Negra ou Nitrato de potássio - KNO<sub>3</sub>, foi tradicionalemte utilizada como combustível sólido. Outros exemplos de propelentes sólidos são a mistura de perclorato de amônio e poliisobutano e, ainda, a combinação de polibutadieno hidroxilado, HTPB, (15%) e alumínio (15%), podendo ser usado também o óxido de ferro III atuando como catalisador da reação.[Sutton,1992]

Na composição do grão combustível é possível empregar como combustível a parafina usada na fabricação de velas. E por meio de reação extremamente exotérmica produzem-se gases quentes que são expelidos através de uma tubeira tornando possível a propulsão.

O combustível sólido utilizado neste trabalho foi fabricado utilizando a chamada parafina alternativa, derivada de um vegetal brasileiro. Com o objetivo de definir o material do grão que estava sendo utilizado na fabricação do combustível e ainda para assegurar o manuseio apropriado sob condições normais e de acordo com a aplicação requerida, foram realizados testes de caracterização: Solubilidade em água e em óleos naturais, realizando a dissolução a temperaturas ambiente e a temperaturas elevadas; definição de ponto de fusão; análise do espectro de infravermelho; velocidade de queima; medição da taxa de regressão.

## 3.1 CARACTERIZAÇÃO FÍSICO-QUÍMICA

Foram realizados no Instituto de Química da Universidade de Brasília (IQ/UnB) testes de ponto de fusão, solubilidade e infravermelho.

A determinação do ponto de fusão foi realizada em um aparelho digital modelo MQAPF- 302, ilustrado na figura 3.1. Três amostras em grão de parafina alternativa foram utilizadas.

A solubilidade em água, e em óleo de babaçu foi testada à temperatura ambiente e a temperatura de 80°C, utilizando um agitador magnético com aquecimento similar ao da figura 3.3.

A análise do infravermelho foi realizada utilizando uma amostra da parafina alternativa em pastilha (figura 3.3) no Espectrômetro de Absorção na Região do Infravermelho Bomem Hartmann & Braun/MB, conforme figura 3.4.



Figura 3.1: Medição do Ponto de fusão do IQ/UnB



Figura 3.2: Agitador magnético com aquecedor



Figura 3.3: pastilha de parafina alternativa a ser utilizada no espectrômetro de IV



Figura 3.4: Espectrômetro de Infravermelho IQ/UnB

#### 3.1.1 Medida Dureza (HRL)

Santos, F. R. P. dos e Gomes, R. C (2010) realizaram medidas de dureza em função das diferentes porcentagens em massa da parafina alternativa em relação à parafina convencional.

De acordo com as Normas ISO 2039-1 e DIN 53456, o método de Dureza Rockwell L é comumente utilizado em polímeros. Tendo em vista o comportamento semelhante da parafina utilizada nos grãos, esse foi o método escolhido para estimar a dureza do combustível sólido deste trabalho.

Os ensaios Rockwell L são relativamente simples de serem executados. As diferentes escalas são utilizadas a partir de combinações possíveis de vários penetradores e cargas. Os penetradores incluem esferas de aço endurecidas, com diâmetros variados e um penetrador cônico de diamante (Brale), usado para materiais mais rijos. Um número índice de dureza é determinado pela diferença na profundidade de penetração que resulta da aplicação de uma carga inicial menor seguida por uma carga principal maior. Os ensaios foram realizados com base na escala vermelha de acordo com a ASTM D785, carga de 60Kg, esfera de aço de ¼ de polegada. Os dados podem ser vistos na tabela 3.1:


Figura 3.5: Ensaio de dureza de Rockwell Fonte: Santos, F. R. P. dos e Gomes, R. C (2010)

### 3.2 DOPAGEM DO GRÃO COM PARAFINA ALTERNATIVA

O primeiro e grande desafio desta pesquisa foi confeccionar os grãos de combustíveis de forma que eles ficassem estáveis e com aparência semelhante à dos grãos de parafina fóssil, geralmente utilizada nos testes e em foguetes híbridos.

Os grãos feitos com a nova parafina apresentaram maior dureza em relação à parafina fóssil, e em consequência alguns se tornam quebradiços e chegaram a formar trincas. Após a realização dos testes físico-químicos e com o objetivo de diminuir ou mesmo cessar essas trincas, observou-se que a nova parafina, quando misturada com óleos naturais e em temperaturas até 70 °C, apresenta melhor solubilidade, tornando assim o grão mais estável e menos quebradiço.

Os testes mostraram que ao aquecer a nova parafina usando banho de óleo, e deixando secar em caixa de material isolante, formam-se grãos mais estáveis e sem trincas, sendo assim a melhor maneira de moldá-la para o sistema de injeção e realização dos testes para medição da taxa de regressão de foguetes híbridos.

Em alguns grãos foram adicionados negro de fumo para que o grão ficasse com coloração mais escura, o que auxilia na queima, porém foi verificado que o negro de fumo decantava. Logo, foi substituído por corante preto. A adição de corante é realizada com a finalidade de tornar o grão opaco e criar fina camada liquida para atomização do combustível. O principal objetivo é reduzir a absorção interna de calor pelo combustível, inibindo a transferência de calor por radiação para a parede do motor, aumentando, assim, a taxa de regressão do combustível. [Almeida,2005]

O principal entrave ao confeccionar os grãos dessa maneira foi o momento de formar a porta de combustão, pois, corria-se o risco de o grão se partir ao meio, no momento de furar o centro do grão para que se forme a porta de combustão.

Com o intuito de melhorar e dar celeridade ao processo de confecção do grão combustível, os alunos do grupo Hybrid Team da Universidade de Brasília projetaram e desenvolveram máquina para centrifugar e secar os grãos a rotações de 1800 rpm, adquirindo, dessa maneira, melhor

qualidade estrutural, já que a porta de combustão está sendo formada sem a necessidade de furar o grão. As rotações constantes são importantes para que o grão se torne mais estável e menos quebradiço.

Câmara, G.Z., Inglez, T.M.D., (2013), detalharam em seu projeto o processo de fabricação mais eficiente de grão, de maneira a estabelecer produção constante e de fácil manuseio. Dessa maneira, estabeleceu-se sistema de moldes para os grãos, sendo necessário somente o seu preenchimento com a parafina a ser testada.

Os modelos de moldes e desenhos do projeto da máquina desenvolvida encontram-se no apêndice -A. Processo de Fabricação do Grão Combustível- deste trabalho.

### 3.3 BANCADA DE TESTES HORIZONTAL

A bancada modular da UnB tem sido utilizada para diferentes testes como: modulação de empuxo, pesquisa de bioparafina (parafina alternativa), refrigeração da tubeira e caracterização da instabilidade da combustão.





A parede da câmara de combustão (*case*) foi fabricada em náilon, permitindo que o próprio grão de combustível a proteja termicamente.



Figura 3.7: Câmaras de combustão fabricada em náilon.

Na segunda etapa do projeto, alunos do Hybrid Team UnB reprojetaram a bancada afim de que o manuseio fosse mais seguro e eficaz. Com a nova configuração, a bancada permite ensaios de câmaras de combustão de tamanhos diferentes e ainda a medição de pressão e temperatura.

Os elementos da bancada são formados por um suporte para o motor em estrutura metálica, e ainda os demais elencados abaixo:

- Flange principal-entrada
- Flange de fechamento do motor-saída
- Flange de fixação do bocal convergente/divergente
- Dispositivo de suporte em que fica apoiado o motor, montado com perfis metálicos soldados.
- Motor em que se encaixa o grão propelente
- Bocal em bronze refrigerado
- Câmara de refrigeração do bocal com entrada e saída de água
- Base de fixação do motor
- Suporte para a distribuição do gás GLP e oxigênio
- Espaço para a utilização de calibradores e medidores
- Válvula de controle de vazão do oxidante
- Sistema elétrico da ignição e abertura de válvulas
- Transdutores de pressão
- Termopares
- Quadro elétrico para acionamento de válvulas
- Computador para aquisição de dados
- Os cilindros de gás separados da bancada experimental
- Tubos que transportam o gás conectados por válvulas de segurança.

O tubo do gás oxigênio é conectado por meio de conexão em "T" que divide o fluxo pra que o gás seja inserido na câmara de combustão pelos dois lados.



Figura 3.8: Tubeira com câmara de resfriamento

#### 3.3.1 Funcionamento da Bancada

A bancada possui três tipos de sensores para aquisição: Pressão, temperatura e empuxo. O inicio do teste de propulsão se inicia da seguinte maneira:

Por meio de controle de válvulas, abre-se a entrada de GLP e a entrada de GOX, em seguida, aciona-se a vela de ignição. O oxidante é injetado através da porta de combustão, reagindo com o combustível vaporizado pela queima deste em uma chama difusiva turbulenta, o calor da combustão mantém a reação vaporizando mais o combustível e alimenta a chama de forma constante. [Câmara, 2013]

Uma primeira chama é gerada através de uma mistura de GLP e ar sintético o que fornece energia suficiente para inicio da reação GOX/PARAFINA. A válvula principal é operada por sistema de dados e seu tempo de abertura é programado. Para o inicio desse processo, é necessário sistema de ignição para vaporizar quantidade inicial de combustível, para que, uma vez injetado o oxidante, o ambiente da câmara já esteja em temperatura suficiente para ocorrer a reação.



Figura 3.9: Esquema da bancada de testes

1-Central de Comando; 2-Estrutura de apoio; 3-Balança de empuxo; 4-Motor; 5-Tanque de ar comprimido; 6-Tanque de Oxigênio; 7- Tanque de GLP; 8-Bateria e 9-Placa de Orifício.

## 4. RESULTADOS

## 4.1 TESTES REALIZADOS NO IQ/UNB E INTERPRETAÇÃO DO ESPECTRO INFRAVERMELHO (IV)

O teste de ponto de fusão apresentou resultados na faixa de 81 a 83 °C.

As amostras foram solúveis em éter e insolúveis em benzeno, diclorometano, água e acetona.

A espectroscopia de infravermelho (espectroscopia IV) usa a região do infravermelho do espectro eletromagnético e, assim como as demais técnicas espectroscópicas, ela pode ser usada para identificar um composto ou investigar a composição de uma amostra.

A espectroscopia do infravermelho se baseia no fato de que as ligações químicas das substâncias possuem frequências de vibração específicas, as quais correspondem a níveis de energia da molécula (níveis vibracionais). Tais frequências dependem da forma da superfície de energia potencial da molécula, da geometria molecular, das massas dos átomos e eventualmente do acoplamento vibrônico.

A fim de se fazerem medidas em uma amostra, um raio monocromático de luz infravermelha é passado pela amostra, e a quantidade de energia transmitida é registrada. Repetindo-se

essa operação ao longo de uma faixa de comprimentos de onda de interesse (normalmente 4000-400 cm<sup>-1</sup>), um gráfico pode ser construído, com "número de onda" em cm<sup>-1</sup> no eixo horizontal e transmitância em % no eixo vertical.



Figura 4.1: Espectro de Infravermelho da amostra de parafina alternativa

Ao analisar o gráfico representado na figura 4.1 e realizar comparações com a literatura, pode-se identificar a substância por meio dos grupos orgânicos que ela possui.

Dessa forma, pôde-se observar que:

- As bandas de 4000 cm<sup>-1</sup> e 3000 cm<sup>-1</sup> são caracterizadas por ruídos do aparelho
- A banda correspondente a 2922.99 cm<sup>-1</sup> é característica de Ligação C-H
- Banda a 2850.8 cm<sup>-1</sup> refere-se a CH<sub>2</sub>
- Banda a 2358.06 cm<sup>-1</sup> é característica de H-C=O
- Entre as bandas de absorção a 1800-1500 cm<sup>-1</sup> temos C=C
- As ligações de 1500 cm<sup>-1</sup> a 900 cm<sup>-1</sup>são caracterizadas por ligações saturadas entre carbonos C-C,
- E as bandas < 900 se referem à absorção do solvente.

Assim, na amostra analisada caracteriza-se **o éster** pelas bandas de absorção 1736.35 cm<sup>-1</sup> e 1171.96 cm<sup>-1</sup>



Figura 4.2: Funçao éster onde R e R1 são radicais orgânicos

Os ésteres são compostos orgânicos cujas moléculas possuem o grupo acilato (COO) ligado a dois radicais orgânicos que podem ser diferentes ou a um radical orgânico e um hidrogênio.

Muitos ésteres possuem odor agradável característicos de frutos e podem ser obtidos por intermédio dos extratos de plantas. Os ésteres mais comuns que se encontram na natureza são as gorduras e os óleos vegetais, os quais são ésteres de glicerol e de ácidos graxos.

Os ésteres são derivados de ácidos pela substituição do hidrogênio do ácido por um radical orgânico, ou seja, é o produto da reação de um ácido (geralmente orgânico) com um álcool. Eles resultam frequentemente da condensação (reação que tem água como produto) de um ácido carboxílico e de um álcool, conhecida como esterificação.[Silverstein,2000]

Apesar de o éster ser produto de uma reação com o ácido carboxílico, podemos afirmar que o composto (parafina alternativa) **não** é um ácido carboxílico, pois o espectro não apresenta absorções característica dessa função que é absorção a 1710 cm<sup>-1</sup> para ácidos carboxílicos saturados e 1680-1690cm<sup>-1</sup> para ácidos carboxílicos insaturados.

Devido ao composto não ser solúvel em benzeno, diclorometano, água e acetona, não foi possível realizar o espectro de Ressonância Magnética Nuclear – RMN, pois o aparelho disponível só permite utilizar como solvente os compostos supracitados.

#### 4.2 GRÃOS FABRICADOS E SELECIONADOS PARA TESTE

Como poderá ser visto no apêndice - A. Processo de Fabricação do Grão Combustível, primeiramente foram confeccionados diversos grãos utilizando 100% de parafina alternativa, porém, os grãos formados se tornaram muito frágeis e quebradiços, pois como mostra a tabela 4.1 quanto maior a concentração de parafina alternativa, maior dureza apresenta o grão, se tornando frágil e extremamente quebradiço.

| Porcentagem mássica de<br>parafina derivada de<br>petróleo | Dureza Rockwell L |
|------------------------------------------------------------|-------------------|
| 90                                                         | 15                |
| 85                                                         | 17                |
| 80                                                         | 22                |

| 70 | 25 |
|----|----|
| 60 | 39 |
| 50 | 51 |
| 40 | 59 |
| 30 | 64 |
| 20 | 72 |
| 10 | 89 |

 Tabela 4.1:Escala de Dureza Rockwell L

 Fonte: Santos, F. R. P. dos e Gomes, R. C (2009), com modificações

Com o objetivo de cessar ou diminuir a fragilidade do grão combustível foram confeccionadas velas com composições que variam de 20% a 90% de parafina alternativa adicionada a óleo de babaçu, composto de aproximadamente 85% de ácidos graxos saturados. A intenção era verificar qual a melhor composição e em seguida fabricar o grão com a proporção escolhida.



Figura 4.3: Velas confeccionadas com parafina alternativa e óleo de Babaçu

As velas que possuíam concentração a partir de 60% parafina alternativa e 50% óleo de babaçu, começaram a apresentar rachaduras e maior dureza, aumentando conforme a quantidade de parafina alternativa adicionada.



Figura 4.4: Velas compostas com 50% de parafina alternativa e 50% de óleo de babaçu.



Figura 4.5: Detalhe da vela com 90% de parafina alternativa e 10% de óleo de babaçu.

Tendo em vista a presença de rachaduras, foi escolhida para formar os grãos de combustível a concentração de 50% de parafina alternativa com 50% de óleo de babaçu, porém o grão formado foi instável e quebradiço, conforme figura 4.6 abaixo:



Figura 4.6: Grão formado por 50% de parafina alternativa com 50% de óleo de babaçu.

Ainda na tentativa de estabilizar o grão e utilizar o óleo de babaçu, foram confeccionados outros combustíveis sólidos em diferentes proporções, adicionando-se também a parafina derivada de petróleo. Porém, os grãos formados foram novamente quebradiços, além de apresentar características que as substâncias são imiscíveis. Assim, os grãos utilizando óleo de babaçu foram descartados nos testes de queima.



Figura 4.7: Vista do grão formado com 50% parafina, 25% Óleo de babaçu e 25% parafina alternativa.



Figura 4.8: Detalhe do grão da figura 4.7

Após alguns testes e tentativas de fabricação do grão utilizando óleo de soja, óleo de babaçu, decidiu-se fabricar grãos com porcentagem de parafina fóssil e parafina alternativa.

A primeira tentativa foi utilizar 50% de parafina fóssil e 50% de parafina alternativa, mas o grão formado foi extremamente duro e quebradiço, sendo descartado. O outro grão fabricado continha 70% de parafina fóssil e 30% de parafina alternativa. Foi observada melhora na qualidade estrutural, porém ainda continha rachaduras, o que poderia se tornar perigoso durante o teste de queima, pois, caso o grão combustível quebre durante o teste, um pedaço poderia obstruir a passagem dos gases e afetar toda a bancada de testes. Por isso, decidiu-se fabricar grãos de proporção 85/15 parafina fóssil/parafina alternativa, estes foram selecionados para os testes que seriam realizados na bancada.



Figura 4.9: Grão confeccionado com 50% parafina derivada de petróleo e 50% parafina alternativa



Figura 4.10:Detalhe do grão confeccionado com 80% parafina derivada de petróleo e 20% de parafina alternativa

Para realizar os cálculos, foram realizadas as medidas de densidade dos grãos 85/15, utilizando o método de deslocamento de volume, que se encontram no apêndice A.



**Figura 4.11:**Detalhe do grão confeccionado com 85% de parafina derivada de petróleo e 15% de parafina alternativa



Figura 4.12: Grão 85/15 utilizado em teste de queima

### 4.3. ENSAIOS DE BANCADA

#### 4.3.1 Dados obtidos por meio dos testes

Os dados para cálculo da taxa de regressão foram obtidos de uma série de quinze testes realizados com os grãos na proporção de 85% de parafina convencional e 15% de parafina alternativa. Foram realizados também mais dois testes com parafina 100% cujo objetivo é servir de parâmetro de comparação do desempenho da nova matriz combustível. Optou-se por realizar apenas dois testes com parafina 100 % pois já existe uma grande série de dados na literatura, inclusive do próprio grupo de propulsão híbrida da UnB. As características dos grãos podem ser vistas na tabela 4.2.

| Teste | Combustível | Di (m) | mi (Kg) | mf(kg) | L (m) | t <sub>q</sub> (s) | ρ<br>(Kg/m³) |
|-------|-------------|--------|---------|--------|-------|--------------------|--------------|
| 1     | 85/15       | 0,05   | 6,340   | 5,91   | 0,201 | 10,02              | 933,3        |
| 2     | 8515        | 0,043  | 6,680   | 6,20   | 0,202 | 6,671              | 933,3        |
| 3     | 85/15       | 0,04   | 6,680   | 6,241  | 0,195 | 11,381             | 933,3        |
| 4     | 8515        | 0,04   | 7,235   | 6,685  | 0,216 | 10,846             | 933,3        |
| 5     | 85/15       | 0,04   | 7,155   | 6,685  | 0,216 | 10,823             | 933,3        |
| 6     | 8515        | 0,05   | 6,510   | 6,21   | 0,202 | 9,125              | 933,3        |
| 7     | 85/15       | 0,05   | 6,895   | 6,425  | 0,209 | 12,495             | 933,3        |
| 8     | 8515        | 0,06   | 6,275   | 5,654  | 0,196 | 17,023             | 933,3        |
| 9     | 85/15       | 0,05   | 6,470   | 5,968  | 0,196 | 13,719             | 933,3        |
| 10    | 8515        | 0,06   | 6,70    | 6,365  | 0,207 | 10,664             | 933,3        |
| 11    | 85/15       | 0,05   | 6,995   | 6,375  | 0,275 | 16,172             | 933,3        |
| 12    | 8515        | 0,04   | 6,585   | 5,945  | 0,195 | 9,408              | 933,3        |
| 13    | 85/15       | 0,043  | 6,945   | 6,475  | 0,210 | 10,982             | 933,3        |
| 14    | 8515        | 0,06   | 6,725   | 6,380  | 0,213 | 10,868             | 933,3        |
| 15    | 85/15       | 0,06   | 6,825   | 6,435  | 0,213 | 10,232             | 933,3        |
| 1     | 100         | 0,039  | 7,05    | 6,385  | 0,202 | 12,318             | 859          |

Tabela 4.2: Dados dos grãos utilizados nos ensaios

A partir dos dados da tabela 4.2 e por meio do método de variação de massas descrito na equação 2.5 pôde-se definir a taxa de regressão bem como a vazão mássica, o fluxo mássico do oxidante e realizar a primeira aproximação dos valores das constantes *a* e *n*.

| Teste | Comb. | $ar{r}$ (mm/s) | $\overline{\dot{m}}_{ox}$ (g/s) | $\overline{G_{ox}}$ (kg/m <sup>2</sup> /s) | <i>P<sub>c</sub></i> (bar) |
|-------|-------|----------------|---------------------------------|--------------------------------------------|----------------------------|
| 3     | 85/15 | 1,21           | 46,2                            | 2,0365                                     | 3,7                        |
| 4     | 85/15 | 1,44           | 65,7                            | 2,707                                      | 5,26                       |
| 5     | 85/15 | 1,27           | 62,0                            | 2,728                                      | 4,96                       |
| 6     | 85/15 | 0,95           | 45,7                            | 1,694                                      | 3,66                       |
| 7     | 85/15 | 0,87           | 60,6                            | 1,539                                      | 4,85                       |
| 8     | 85/15 | 0,85           | 54,2                            | 1,243                                      | 4,335                      |
| 9     | 85/15 | 1,00           | 47,6                            | 1,499                                      | 3,81                       |
| 10    | 85/15 | 0,76           | 40,6                            | 1,115                                      | 3,25                       |
| 11    | 85/15 | 0,76           | 53,5                            | 1,753                                      | 4,28                       |
| 12    | 85/15 | 2,01           | 55,0                            | 2,013                                      | 4,4                        |
| 13    | 85/15 | 1,23           | 52,5                            | 2,094                                      | 4,2                        |
| 14    | 85/15 | 0,75           | 42,5                            | 1,166                                      | 3,4                        |
| 15    | 85/15 | 0,87           | 53,7                            | 1,440                                      | 4,3                        |
| 1     | 100   | 1,66           | 50,57                           | 1,818                                      | 1,73                       |
| 2     | 100   | 0,77           | 21,63                           | 0,828                                      | 4,05                       |

 Tabela 4.3: Valores obtidos de taxa de regressão, vazão mássica e fluxo mássico a partir dos ensaios.

#### 4.3.2 Análise de dados

Utilizando o par de coordenadas encontrado nos ensaios e traçando a curva da taxa de regressão a partir do fluxo mássico, podem-se definir os valores dos índices *a* e *n* da equação 2.12.

A Tabela 4.3 foi obtida a partir dos valores calculados de taxa de regressão, vazão mássica e fluxo mássico dos testes realizados.



Figura 4.13: fluxo mássico x taxa de regressão do combustível sólido

A partir do gráfico representado na figura 5.1, temos que a= 0,6827e n= 0,7715.

Conforme explanado, até que se atinja um valor de convergência, e a diferença entre os valores das constantes *a* e *n* se tornem mínimas, foi utilizado o método de correção desenvolvido pela Universidade de Stanford e determinado o diâmetro da porta de combustão no início do término da medida do empuxo ( $d_{vc}$ )

$$d_{vc} = \left(\left\{\left[(2n+1/n)\right](2^{n+1}/\pi^n)\tau_{fs}.a.\dot{m}_{ox}^{ter}\left[1-\exp(-nt_f/\tau_{fs})\right]\right\} + d_f^{2n+1}\right)^{1/(2n+1)}$$

Por meio da equação 2.12 e dos pontos no gráfico se define o valor das constantes *a* e *n*, corrigidos e aplicados novamente na equação para calcular o novo valor de  $d_{vc..}$ 

Novos gráficos da taxa de regressão são traçados pelo fluxo de massa de oxidante, e pela equação se calculam os valores das constantes *a* e *n*. Esses gráficos gerados a partir dos valores de  $d_{vc}$  estão esboçados nas figuras de 4.14 a 4.16. Os valores comparando os resultados obtidos pelo método de variação de massa e pelo método da Universidade de Stanford podem ser visualizados na tabela 4.4. O cálculo com as estimativas de erros estão no apêndice - Análise de erros.



Figura 4.14: Primeiro gráfico utilizando o método da Universidade de Stanford

*a*= 0,707 e *n*=0,785



Figura 4.15: Segundo gráfico utilizando o método da Universidade de Stanford

*a*= 0,709 e *n*=0,787





*a*= 0,710 e *n*=0,787

| Teste | Taxa de regressão pelo<br>método Variação de<br>Massa | Taxa de regressão pelo<br>método Stanford | Estimativa de Erro<br>E <sub>r</sub> |
|-------|-------------------------------------------------------|-------------------------------------------|--------------------------------------|
| 3     | 1,25008914                                            | 1,213049                                  | 0,050723                             |
| 4     | 1,49706459                                            | 1,504189                                  | 0,046386                             |
| 5     | 1,33342326                                            | 1,511792                                  | 0,05031                              |
| 6     | 0,99501675                                            | 1,054015                                  | 0,085444                             |
| 7     | 0,90239426                                            | 0,980466                                  | 0,082964                             |
| 8     | 0,8701012                                             | 0,83448                                   | 0,066439                             |
| 9     | 1,02528496                                            | 0,959474                                  | 0,060125                             |
| 10    | 0,79105438                                            | 0,766679                                  | 0,106179                             |
| 11    | 0,7905904                                             | 1,082688                                  | 0,064758                             |
| 12    | 2,06024585                                            | 1,205247                                  | 0,041286                             |
| 13    | 1,27515369                                            | 1,238457                                  | 0,054036                             |
| 14    | 0,77822961                                            | 0,793426                                  | 0,105955                             |
| 15    | 0,91568595                                            | 0,931714                                  | 0,097039                             |

**Tabela 4.4:** Valores das taxas de regressão utilizando os métodos de variação de massa e<br/>Stanford.



Figura 4.17: Taxa de Regressão com os valores das Estimativas de Erro Er pelo método Stanford

Ao compararmos os dados em um grão combustível com porta de combustão semelhante (50 mm) confeccionado com parafina derivada de petróleo, observa-se aumento em torno de 32% no valor da taxa de regressão dos grãos confeccionados com parafina alternativa.

Nos grãos confeccionados com porta de 40 mm, os valores obtidos para taxa de regressão são próximos aos confeccionados com porta de combustão de 39 mm. Assim, pode-se concluir que a adição da parafina alternativa não trás perdas em termos de taxa de regressão e trás melhorias estruturais, o que pode ser notado ao observar a tabela 4.1, que mostra valores para a escala da dureza de Rockwel L, por exemplo: para o grão combustível confeccionado com 85% de parafina

derivada de petróleo o valor da dureza é de 17 enquanto que para o grão preparado com 90% de parafina alternativa é de 89 Outros parâmetros a serem ressaltados são os aspectos de custo x benefício, segurança, menor impacto ambiental e qualidade da cera utilizada como aditivo.

Após análise dos dados foram observadas que quanto maior a porta de combustão, menores os valores obtidos para a taxa de regressão, o objetivo em se variar o tamanho das portas se deve aos requisitos de dimensões do motor.

Ao comparar os valores da taxa de regressão utilizando HTPB como combustível pode-se perceber que os valores são semelhantes aos valores da taxa de regressão utilizando o combustível desenvolvido nesta dissertação. Porém, nota-se que para produzir resultados de taxa de regressão da mesma ordem, é necessário um fluxo de massa de cerca de 100 vezes maior com o uso de HTPB

| Combustível               | Fluxo mássico G₀<br>(kg/cm²s)        | Taxa de regressão<br>(mm/s) |
|---------------------------|--------------------------------------|-----------------------------|
| HTPB                      | 0.0151                               | 1.36                        |
| HTPB                      | 0.0114                               | 0.87                        |
| HTPB                      | 0.0082                               | 0.72                        |
| HTPB <sup>1</sup>         | 0.0118                               | 0.92                        |
| HTPB                      | 0.0274                               | 1.54                        |
| HTPB <sup>2</sup>         | 0.0174                               | 1.25                        |
| HTPB <sup>1</sup> + 0,25% | de negro de fumo HTPB <sup>2</sup> · | + 20% Al                    |

 Tabela 4.5: Taxa de regressão e fluxo mássico utilizando HTPB como combustível

 Fonte: (chiaverini *et al.* 2001, com adaptações)

Também foram coletados dados relativos ao empuxo, que podem ser vistos nas figuras de 4.18 a 4.21 e tabela 4.7. Observou-se que os valores de empuxo são maiores do que os encontrados em foguetes operados com combustíveis tradicionalmente usados, relacionados na tabela 4.6.

| Combustível | Pressão (bar) | Empuxo (N) |
|-------------|---------------|------------|
| Wax/GOX     | 3,79          | 48,1       |
| Wax/GOX     | 6,4           | 87         |
| Wax/GOX     | 13,8          | 207        |
| HTPB/GOX    | 3,45          | 107        |
| HTPB/GOX    | 5,17          | 63         |
| HTPB/GOX    | 4.14          | 134        |

Tabela 4.6: Valores de pressão e empuxos dos combustíveis tradicionalmente usadosFonte: Câmara, G.Z., Inglez, T.M.D., (2013), com adaptações

| Teste | Combustível | Porta | Pressão (bar) | Empuxo (kgf) | Empuxo (N) |
|-------|-------------|-------|---------------|--------------|------------|
| 1     | 85/15       | 50    | 4,486         | 21,185       | 207,61     |
| 2     | 85/16       | 43    | -0,378        | 22,016       | 215,76     |
| 3     | 85/17       | 40    | 3,673         | 17,773       | 174,18     |
| 4     | 85/18       | 40    | 5,457         | 26,276       | 257,50     |
| 5     | 85/19       | 40    | 4,933         | 18,71        | 183,36     |
| 6     | 85/20       | 50    | 3,647         | 13,991       | 137,11     |
| 7     | 85/21       | 60    | 5,101         | 21,019       | 205,99     |
| 8     | 85/22       | 60    | 3,931         | 14,37        | 140,83     |
| 9     | 85/23       | 50    | 3,879         | 17,453       | 171,04     |
| 10    | 85/24       | 60    | 4,174         | 20,598       | 201,86     |
| 11    | 85/25       | 50    | 3,17          | 15,697       | 153,83     |
| 12    | 85/26       | 40    | 4,88          | 23,94        | 234,61     |
| 13    | 85/27       | 43    | 4,379         | 23,684       | 232,10     |
| 14    | 85/28       | 60    | 3,301         | 15,369       | 150,62     |
| 15    | 85/29       | 60    | 4,085         | 18,86        | 184,83     |
| 1     | 100         | 39    | 4,005         | 19,449       | 190,60     |
| 2     | 100         | 50    | 1,594         | 11,921       | 116,83     |

 Tabela 4.7:
 Valores de pressão e empuxo encontrados nos testes realizados



:Figura 4.18: Pressão do teste um realizado com parafina derivada de petróleo



Figura 4.19: Empuxo do teste 01 realizado com parafina derivada de petróleo.



Figura 4.20: Pressão do teste 12 realizado com grão confeccionado na proporção 85/15.



Figura 4.21: Empuxo do teste 12 realizado com o grão confeccionado na proporção 85/15.

## 5. CONCLUSÕES E SUGESTÕES

O objetivo deste trabalho consistia em desenvolver uma matriz inédita de grão combustível para foguetes híbridos. A meta principal de encontrar taxas de regressão maiores ou semelhantes quando comparada com os combustíveis tradicionalmente usados foi atingida, visto que os valores demonstrados na tabela4.4 indicam que a taxa de regressão, utilizando fluxos e vazão mássica menores, são da mesma ordem das medidas de combustíveis tradicionalmente usados, conforme tabela 4.5.

Durante o período do trabalho foram confeccionadas diversas proporções e combinações de parafina alternativa e parafina derivada de petróleo, porém pela constituição frágil encontrada nos grãos, muitos foram descartados. Dessa forma, apenas a fração 85/15 foi selecionada para realização dos testes, já que, satisfez as condições estruturais necessárias para a utilização da bancada.

Além de o combustível ser fabricado com materiais mais seguros e econômicos, conta-se, ainda com a vantagem de o grão combustível apresentar melhores empuxos quando comparadas as tabelas 4.6 e 4.7, e aspectos estruturais, como por exemplo, a dureza,

Outra grande característica a ser considerada é que o aditivo usado no grão combustível é uma cera derivada de um fruto encontrado exclusivamente no Nordeste brasileiro, o que pode facilitar o processo de reconhecimento do estudo e da patente como propriedades intelectuais.

Sugere-se que os estudos em torno da parafina alternativa prossigam utilizando como par oxidante o  $N_2O$ . Pode-se também, continuar a busca por melhores combinações de parafina alternativa e óleos naturais, tais como mamona, dendê, e girassol. Vale ressaltar ainda, a possibilidade de utilizar aditivos metálicos, tais como hidreto de lítio ou alumínio na matriz desenvolvida.

### Referências Bibliográficas

Almeida, L., A., R., Santos, L., M. C., (2005) "Projeto, Construção e Lançamento de umFoguete Híbrido a Base do Par Propelente Parafina-N2O" – projeto de graduação, Universidade de Brasília, 83p.

**Bertoldi, A. E. M.,(2007)** "Avaliação Experimental da Queima de Parafina e Óxido Nitroso em Motores Híbridos"- dissertação de mestrado, Universidade de Brasília, 129p.

**Brasil e Ucrânia discutem cooperação na área espacial,** disponível em: http://www.administradores.com.br/noticias/cotidiano/brasil-e-ucrania-discutem-cooperacao-naarea-espacial/59566/> Acesso em: 02/09/2012

**Carmicino, C., Sorge, A. R., (2005)** "Role of Injection in Hybrid Rockets RegressionRate Behavior", In: *Journal of Propulsion and Power*. v. 21, No. 4, pp. 606-612.

**Câmara, G.Z., Inglez, T.M.D., (2013)** "Desenvolvimento e teste de combustível alternativo a base de parafina para motores de foguete a propelente híbrido"- projeto de graduação, Universidade de Brasília, 53p.

**Chang S.Y., Lee, C., Shin, K.S., (2005)** "The Enhancement of Regression Rate of Hybrid Rocket Fuel by Various Methods", 43rd AIAA – Aerospace Sciences Meeting and Exhibit, Reno, Nevada.

Chiaverini M. J., Serin N., Johnson D. K., Lu, Y., Kuo, K. K., Risha, G. A., (2000) "Regression Rate Behavior of Hybrid Rocket Solid Fuels", *Journal Of Propulsion And Power.*v. 16, No. 1.

Colburn, W. H., (2004) "A Manual for Hybrid Propulsion System Designer"

**Contaifer, R. A., (2009)** "Desenvolvimento de uma Bancada de Testesde Propulsores Híbridos de Baixo Empuxo" – dissertação de mestrado, Instituto Nacional de Pesquisas Espaciais, 223p.

**Da Cás, Pedro L. K; Vilanova, Cristiano Q. (2011)** "otimização multidisciplinar de configuração de foguetes de propulsãohibrida"- projeto de graduação, Universidade de Brasília, 95p.

**Davydenko, N.A., Gollender, R.G., Gubertov, A.M., Mironov, V.V., Volkov, N.N. (2007),** "Hybrid rocket engines: The benefits and prospects", Aerospace Science and Technology, 11, 55-60.

George P., Krishnan S., Varkey, P. M., Ravindrans M., Ramachandran L., (2001) "Fuel Regression Rate In Hydroxyl-Terminated-Polybutadiene/Gaseous-Oxygen HybridRocket Motors", *Journal Of Propulsion And Power*, v. 17, No. 1, pp. 35-42, 2001.

Goddard, R., disponível em: http://pt.wikipedia.org/wiki/Robert\_Goddardacesso em 03/08/2012

**Gouvêa, L. H., (2007)** "Análise De Desempenho De Um Motor Híbrido UtilizandoParafina E Peróxido De Hidrogênio Como Propelentes" - dissertação de mestrado, Instituto Nacional de Pesquisas Espaciais, 138p.

**Gulman R., Chan., H., (2004)** "Overview of a 4-Inch od Paraffin-Based Hybrid Sounding Rocket Program", *40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit* Fort Lauderdale, Florida.

Humble, R. W., Henry, G. N., Larson, W. J., (1995) "Space Propulsion Analysis AndDesigner", MacGraw-Hill Companies, Inc. Primis Custom Publishing.

Karabeyoglu, A., Cantwell, B. J., Zilliac, G., DeZilwa. S., Castellucci, P., (2004) "Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rockets Fuel", *Journal ofPropulsion and Power*, Vol. 20, No. 6.

Karabeyoglu, A., Zilwa, B., Zilliac, G., (2005) "Modeling of Hybrid Rocket LowFrequency Instabilities", *Journal of Propulsion and Power* v. 21, No. 6, pp. 1107-1106.

**Karabeyoglu, A., Cantwell, B. J., Zilliac, G., (2005)** "Development of Scalable Space-Time Averaged Regression Rate Expressions for Hybrid Rockets", *41st AIAA/ASME/ASEE Joint Propulsion Conference*, Tucson AZ.

Kuo, K. K., Chiaverini J. M., (2007) "Fundamentals of Hybrid Rocket combustion and Propulsion" American Institute of Aeronautics and Astronautics, Inc.

Lacava, P. T., Bastos-Neto, D., Pimenta, A. P., (2004) "Design Procedure And Experimental Evaluation Of Pressure –Swirl Atomizers", 24th International Congress of the Aeronautical Sciences, ICAS 2004.

Lyne, J. E., Naoumov, V. I, Scholes J., Dodge, M., Elton, B., Wozniak P., Austin D., Combs C., (2005) "First Steps in the Development and Testing of Nontoxic, BioderivedFuels for Hybrid Rocket Motors", *43rd AIAA Aerospace Sciences Meeting and Exhibit*, Reno, Nevada.

**Mcmurry, J.** Química Orgânica- Combo- Tradução da 6ª edição Norte-Americana, 1ª Edição, Rio de Janeiro, Editora Pioneira Thomson, 2005, 1006 p.

**Oiknine, C (2006)**, "New Perspectives for Hybrid Propulsion," 42<sup>nd</sup> AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento-USA,

**O Setor aeroespacial Brasileiro**, disponível em: <a href="http://www.aerospacecluster-brasil.com.br.">http://www.aerospacecluster-brasil.com.br.</a> Acesso em: 05/05/2012.

**Projeto formará engenheiros para empresa aeroespacial,** disponível em: <a href="http://www.cntu.org.br/cntu/internas.php?pag=MTE3MQ==#sthash.WWu3M5XZ.oDAuLMqU.dpbs">http://www.cntu.org.br/cntu/internas.php?pag=MTE3MQ==#sthash.WWu3M5XZ.oDAuLMqU.dpbs</a> Acesso em: 08/05/2012

Propulsão em naves espaciais, disponível em:< http://pt.wikipedia.org/wiki/Propuls%C3%A3o\_de\_naves\_espaciais.> Acesso em: 28/04/2012

**Salvador, C. A. V.(2009)** "Investigação Experimental de um Propulsor Híbrido para satélites e Veículos Espaciais Usando Parafina e N<sub>2</sub>O<sub>4</sub> como Propelentes" - Tese de Doutorado- Instituto Nacional de Pesquisas Espaciais,179p.

Santos, F. R. P., Gomes, R. C. (2009) "Estudo experimental da taxa de regressão de parafina alternativa para foguetes híbridos" -projeto de graduação, Universidade de Brasília, 58 p.

Santos, L., M., C., Almeida, L., A., R., Fraga, A., M., Veras, C., A., G. (2004) "Experimental Investigation of a Paraffin Based Hybrid Rocket". In: *10TH Brazilian Congress of Thermal Sciences and Engineering*, Rio de Janeiro.

**Silverstein, Robert M.**, Identificação Espectrométrica de Compostos Orgânicos 6ª Edição, Rio de Janeiro, Editora LTC, 2000, 460p.

Sutton, G. P., (1992) "Rocket Propulsion Elements", John Wiley & Sons INC. 7TH edition.

Tamura, T., Yuasa, S., Yamamato, K., (1999) "Effects Of Swirling Oxidizer Flow On Fuel Regression Rate Of Hybrid Rockets", *35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit*, Los Angeles, California.

Tajmar, M., (2003) "Advanced Space Propulsion Systems", Springer-Verlag/Wien.

**Tsiolkovsky, K. E.**, disponível em: http://www.karl.benz.nom.br/hce/person/tsiolkovsky.asp acesso 06/08/2012

Tsong-Sheng Lee, A. Potapkin, (2002)"The performance of a hybrid rocketwithSwirling gox injection"

Turner, M. J. L., (2003) "Rocket And Spacecraft Propulsion", Springer, 20 edição.

**Zakirov, V., Sweeting, M., (2001)** "Nitrous Oxide As A Rocket Propellant", ActaAstronautica, v. 48, No. 5-12, pp 353-362.

Apêndices

## A. Processo de Fabricação do Grão Combustível

Na primeira etapa do projeto, as amostras foram derretidas em banho-maria até a temperatura máxima de 80°C, colocadas em formas redondas e deixadas em uma caixa confeccionada de material isolante térmico.

Os grãos ficavam em torno de 24 horas nas caixas; período necessário para que seque e se torne fisicamente estável e apropriado para a confecção da porta de combustão.



Na segunda etapa do projeto, os alunos desenvolveram máquina que visa aperfeiçoar o tempo gasto na fabricação dos grãos.

Primeiramente, foi realizado um molde para a estrutura dos grãos combustíveis, conforme figura a seguir:



**Molde dos grãos** Fonte: Câmara, G. Z.; Imglez, T.M.D. (2013)

Os moldes, chamados de *cases*, possuem uma tampa superior e uma inferior usadas para vedação durante o processo de produção dos grãos. Essas tampas serão retiradas após o resfriamento completo da parafina.[Câmara, 2013]

A máquina desenvolvida é composta por um rotor e um sistema de controle de velocidade. As rotações do motor são transmitidas a um eixo onde se acopla o molde do grão



Esquema do motor para esfriamento da parafina Fonte: Câmara, G. Z.; Imglez, T.M.D. (2013)

O propelente (mistura de parafina alternativa e fóssil) é aquecido até chegar ao estado líquido e inserido no molde lacrado através de um furo de alimentação localizado na tampa superior até completar seu volume. Após o preenchimento do molde a máquina é ligada a 1800 rpm.

O grão é preenchido até o endurecimento completo da parafina. Para garantir esse endurecimento, o grão gira por 8 horas. A parafina, após resfriada, contrai, por isso, abre-se, novamente o furo de alimentação e adiciona-se mais da mistura líquida feita anteriormente a fim de preencher todo o volume do *case*. Esse sistema do motor ligado ao grão permite resfriamento mais rápido e mistura mais homogênea do combustível. Após a fabricação uniformiza-se o centro do grão com uma broca de comprimento predefinido de forma a criar uma porta de combustão regular.

Foram medidas as densidades dos grãos dopados com parafina alternativa:



$$\rho_{85/15} = \frac{m}{v} = 0,933 \, g/cm^3$$

Figura 3.20: Medida da densidade dos grãos confeccionado utilizando 85% de parafina e 15% de parafina alternativa.

### B. Análise de erros

Segundo Karabeyoglu *et al.* (2004) pode-se conduzir investigação para determinar o grau de incerteza na taxa de regressão. O erro relativo na estimativa do diâmetro da porta no início do decaimento do empuxo, *Edvc* pode ser estimado em termos dos erros relativos nos valores de *df*, R e T.

$$R \approx 0.25(\tau_{fs}/\tau_b) (1 + d_i/d_f)^2 (1 - d_i/d_f)$$

$$E_{dvc} = \left[ E_{df}^2 + (f_R E_R)^2 + (f_T E_T)^2 \right]^{1/2}$$

$$f_R = 2R(1 - e^{-T})/n \qquad e \qquad f_T = f_R [Te^{-T}/(1 - e^{-T})]$$

O erro relativo na medida do diâmetro final, *E* df, pode ser escrito em termos do erro relativo da medida da perda da massa de combustível,  $E\Delta M$ , densidade do combustível,  $E\rho$  e comprimento do grão *EL*.

$$E_{df} = 0.5 (1 + d_i/d_f) [E_{\Delta M}^2 + E_{\rho}^2 + E_L^2)]^{1/2}$$

O erro na estimativa da taxa de regressão, *Er*, pode ser escrito em termos do erro relativo no diâmetro da porta no decaimento do empuxo, *Edvc*, diâmetro inicial da porta, *Edi*, e tempo de queima, *Et*.

$$E_{r} = \left[ \left( \frac{d_{vc}/d_{i}}{d_{vc}/d_{1} - 1} E_{dvc} \right)^{2} + \left( \frac{1}{d_{vc}/d_{i} - 1} E_{di} \right)^{2} + E_{t}^{2} \right]^{1/2}$$

O erro na taxa de regressão pode ser estimado embasado nas medidas dos erros do diâmetro inicial da porta, peso de combustível consumido, densidade do combustível, comprimento do grão e tempo de queima. Tomando como base a sequência de testes dessa dissertação o desvio padrão do erro na medida da taxa de regressão foi estimado em ±0,022864 e o erro médio foi de 0,064757 mm/s.

#### C. Propriedades do propelente utilizado.

Em temperatura ambiente e pressão atmosférica, o oxigênio é um gás oxidante, não tóxico, incolor, inodoro, distribuído em cilindros de aço como um gás não liquefeito à pressão de cerca de 200 bar a 21 °C.

| Propriedades Físicas                                                  |                                                    |
|-----------------------------------------------------------------------|----------------------------------------------------|
| Calor específico, líquido a 90,18 K.                                  | 1,703 kJ(kg x K)                                   |
| Calor latente de fusão a 54,363 K.                                    | 444,76 J/mol; 106,3 cal /mol                       |
| Calor molar específico, gás a 101,325 kPa e 25°C a pressão constante. | 29,427 J/(mol x K)                                 |
| Calor molar específico, gás a 101,325 kPa e 25°C a volume constante.  | 20,817 J/(mol x K)                                 |
| Densidade absoluta, gás a 101,325 kPa e 25°C.                         | 1,309 kg/m <sup>3</sup>                            |
| Densidade crítica.                                                    | 0,436 kg/dm <sup>3</sup>                           |
| Densidade, líquido a 54,363 K.                                        | 1,3215 kg/L                                        |
| Densidade, líquido a 90,18 K.                                         | 1,1407 kg/L                                        |
| Densidade relativa, gás a 101,325 kPa e 25ºC (ar=1).                  | 1,105                                              |
| Fórmula.                                                              | 0 <sub>2</sub>                                     |
| Massa Molecular.                                                      | 31,9988                                            |
| Ponto de ebulição a 101,325 kPa.                                      | 90,18 K;                                           |
| Razão do calor específico, gás a 101,325 kPa e 25°C, Cp/Cv.           | 1,414                                              |
| Solubilidade em água a 101,325 kPa e 0ºC.                             | 4,889 cm <sup>3</sup> /100 cm <sup>3</sup> de água |
| Velocidade do som no $O_2$ gasoso a 101,325 kPa e 20°C                | 326 m/s                                            |

Fonte: www.gamagases.com.br, com modificações

|                                          | Universida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ade de Brasílis |                        | ~                    | 85/15 %            |                   |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------------------|--------------------|-------------------|
|                                          | Engenhar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ia Aeroespacial | r                      | _                    | Data: 30/01        | /2013             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Teste 1         |                        |                      |                    |                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      |                    |                   |
| Arquivo                                  | Sinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unidade         | Lim. Inf.              | Lim. Sup.            | Min / Max          |                   |
| tire_1_30_01_2013.LTD<br>_30/01/13_19:47 | √ Empuxo<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kgf             | -0.5<br>0000:07:36.000 | 60<br>0000:07:48.000 | 0,392967 / 51,587  | 4                 |
| tire_1_30_01_2013.LTD<br>_30/01/13_19:47 | ∇ P. Camera T50     Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bar             | -0.5<br>0000:07:36.000 | 15<br>0000:07:48.000 | -0,393828 / 13,953 | 4                 |
| tire_1_30_01_2013.LTD<br>_30/01/13_19:47 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bar             | -0.5<br>0000:07:36.000 | 50<br>0000:07:48.000 | -0,133931 / 40,845 |                   |
| tire_1 30 01 2013.LTD<br>_30/01/13 19:47 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bar             | -0.5<br>0000:07:36.000 | 15<br>0000:07:48.000 | -0,281127 / 13,022 | 9                 |
| tire_1_30_01_2013.LTD<br>_30/01/13_19:47 | Tempo     Tempo | Ş               | 17<br>0000:07:36.000   | 20<br>0000:07:48.000 | 17,9506/19,3686    |                   |
| tire_1_30_01_2013.LTD<br>_30/01/13_19:47 | ⊽ Placa saida<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ş               | 20<br>0000:07:36.000   | 23<br>0000:07:48.000 | 20,907 / 22,4418   |                   |
| 50 Marine                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | Empuso             | (kgf)-            |
| 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | P. Camara T50      | (bar)             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | 4                  |                   |
| 8                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | P. Orificio In     | (bar)             |
| 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      |                    |                   |
| 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | P. Orificio Out    | (bar)             |
| 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      |                    |                   |
| 20                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | Place entrade      | <mark>(2</mark> ) |
| 18                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      |                    |                   |
| 8                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      | Place saids        | 8                 |
| R                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                        |                      |                    |                   |
| 0:07:36                                  | 0:07:38 0:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .40 0:07:       | .42 0:0                | 7:44 0               | 0:07:46            | 0:07:48           |

# D. Gráficos obtidos por meio do sistema lynx

|                                                                                        | Iniversida                 | lo do Bracíli |                        |             | 85/15 % |                      |      |
|----------------------------------------------------------------------------------------|----------------------------|---------------|------------------------|-------------|---------|----------------------|------|
|                                                                                        | OIIIVEI SIUAU              |               | 8                      |             |         |                      | 9    |
|                                                                                        | Engenharia                 | Aeroespacial  |                        |             | Data:   | 18/02/20             | 2    |
|                                                                                        |                            | Teste 2       |                        |             |         |                      |      |
| Arquívo                                                                                | Ginal                      | Unidade       | Lim. Inf.              | Lim.6       | Sup.    | Min / Max            |      |
| tiro_1 18 02 2013.LTD<br>18/02/13 20:58                                                | Empuso     Tempo     Tempo | kgf           | -0.5<br>0000:01:38.000 | 3000:01:    | 46.000  | 0,678799 / 24,7495   |      |
| tiro_1 18 02 2013.LTD<br>_18/02/13 20:58                                               |                            | bar           | -0.5<br>0000:01:38.000 | 0000:01     | 46.000  | -0,424189/-0,350185  |      |
| tiro_1 18 02 2013.LTD<br>_18/02/13 20:58                                               |                            | bar           | -0.5<br>0000:01:38.000 | 0000:01:    | 46.000  | -0,160401 / 42,6119  |      |
| tiro_1_18_02_2013.LTD<br>_18/02/13_20:58                                               |                            | bar           | -0.5<br>0000:01:38.000 | 15 0000:01: | 46,000  | -0,296521 / 13,1488  |      |
| tiro_1 18 02 2013.LTD<br>_18/02/13 20:58                                               | Termcoar PC ENT     Tempo  | Ŷ             | 17<br>0000:01:38.000   | 10 0000:01: | 46.000  | 17,9431 / 18,7481    |      |
| tiro_1 18 02 2013.LTD<br>                                                              | Termobar PC SAI     Tempo  | Ŷ             | 25<br>0000:01:38.000   | 30 000:01:  | 46.000  | 25,6753/27,7324      |      |
| 8                                                                                      |                            |               |                        |             |         | Empuso (kgf)         |      |
| - 0                                                                                    |                            |               |                        |             |         | Pressao Camara (bar) |      |
| 8                                                                                      |                            | 5             |                        |             |         | Pressao PC ENT (bar) |      |
|                                                                                        |                            |               |                        |             |         | Presseo PC SAI (bar) |      |
| 19<br>18<br>18<br>19<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |                            |               |                        |             |         | Termoper PC ENT (*C) |      |
|                                                                                        |                            |               |                        |             |         | Termopar PC SAI (*C) |      |
| 25 0:01:3                                                                              | 0:01:40                    | 0:01:41 0:01  | 42 0:01:41             | 0:01        | 44 0:0  | 1:45 0:0             | 1:46 |

|                                               |       | Universida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ade de Bras     | ilia                  |             | 85     | /15 %     |                |          |
|-----------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-------------|--------|-----------|----------------|----------|
|                                               |       | Engenhari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ia Aeroespacial | -                     |             | õ      | ata:      | 04/03/2013     |          |
|                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tes             | ste 3                 |             |        |           |                |          |
| Arquivo                                       |       | Ginal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unidade         | Lim. Inf.             | Lim. S      | ġ      | Min       | / Max          | _        |
| tiro_1_4_03_2013 teste3.LTD<br>04/03/13_20:25 |       | Embuco     Tempo     Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pat             | 0000:01:08:00         | 0000:012    | 1,000  | 1,39642   | / 21,7088      | 11       |
| tiro_1_4_03_2013 teste3.LTD<br>04/03/13 20:25 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bar             | -0.5<br>0000:01:08.00 | 00 000:012  | 21.000 | -0,416590 | 9/ 5,01225     | <u> </u> |
| tiro_1_4_03_2013 teste3.LTD<br>04/03/13 20:25 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bar             | -0.5<br>0000:01:08.00 | 00 000:012  | 21.000 | -0,19821( | 3/ 34,8372     | <u> </u> |
| tiro_1_4_03_2013 teste3.LTD<br>04/03/13 20:25 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bar             | -0.5<br>0000:01:08.00 | 00 000:012  | 21.000 | -0,2996   | / 10,3502      | <u> </u> |
| tiro_1_4_03_2013 teste3.LTD<br>04/03/13 20:25 |       | ⊽ Termonar PC ENT<br>Termoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ş               | 24<br>0000:01:08:00   | 00 000:012  | 21.000 | 24,906/   | 30,0028        | <u> </u> |
| tiro_1_4_03_2013 teste3.LTD<br>04/03/13_20:25 |       | ⊽ Termober PC SAI<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ş               | 0000:01:08:00         | 00 000:01:2 | 21.000 | 25,7326   | / 27,1024      | <u> </u> |
|                                               |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               |                       |             | -      |           |                |          |
| 20                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        | {         | Empuso (kgt)-  |          |
| 0                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        |           |                |          |
| 2                                             | İ     | and the second |                 |                       |             |        | Pressao   | Camara (bar)-  |          |
|                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        | ſ         |                |          |
| - 5                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             | -      |           |                |          |
|                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        | Pressao   | PC ENT (bar)   |          |
| 0 1                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        |           |                |          |
| 10                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        | Pressac   | PC SAI (bar)   |          |
|                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | -                     |             |        |           |                |          |
| 9 06                                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        | Termonal  | PC ENT (*C)-   |          |
|                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        |           |                |          |
| 4.8                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             | _      |           |                |          |
| 8 8                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        | Termops   | ir PC SAI (°C) |          |
| 6                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                       |             |        |           |                |          |
| 0:01:08                                       | 0:01: | 0:01:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0:01:1          | 14 0:01               | 116 0       | 01:18  | 0:0       | 20             |          |

| e de Brasília | veroespacial |
|---------------|--------------|
| Jniversidade  | Engenharia A |

85/15 % 05/03/2013 05/03/2013

| • | 5 | t |
|---|---|---|
|   | 9 | Ņ |
|   | ģ | ņ |
| ŀ | Q | Ľ |
| ' |   |   |

| IVER F THICK | 0,490271/52,6273                       | 0,416599 / 19,1906                     | -0,167964/ 45,656                      | -0,321152/14,171                       | 18,7749/19,6218                        | 21,304/21,7833                         | Empuso (kgf)                          |      | Presseo Cemara (bar) | 4 | Presseo PC ENT (bar) | -Presseo PC SAI (bar) | Termoper PC ENT (°C) | Termopar PC SAI (°C) | الطبيب والمستحل والعراجي     | 0:00:38 |
|--------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|------|----------------------|---|----------------------|-----------------------|----------------------|----------------------|------------------------------|---------|
| Lim. Sup.    | 0000:00:39:000                         | 20<br>0000:00:39,000                   | 50<br>0000:00:39,000                   | 15<br>0000:00:39,000                   | 20<br>000:00:39.000                    | 22<br>0000:00:39.000                   |                                       |      |                      |   |                      |                       |                      |                      |                              | 0:00:36 |
| Lim. Inf.    | -0.5<br>0000:00:27.000                 | -0.5<br>0000:00:27.000                 | -0.5<br>0000:00:27.000                 | -0.5<br>0000:00:27.000                 | 18<br>0000:00:27.000                   | 21<br>0000:00:27.000                   |                                       |      |                      |   |                      | <br>                  |                      |                      |                              | 0:00:34 |
| Uhidade      | kgf                                    | bar                                    | bar                                    | bar                                    | Ş                                      | Ş                                      |                                       |      |                      |   |                      | <br>-                 |                      |                      |                              | 0:00:32 |
| Sinal        | impuxo<br>Tempo                        | ao Camara<br>Fempo                     | ao PC ENT<br>Fempo                     | sao PC SAI<br>Fempo                    | oar PC ENT<br>Fempo                    | boar PC SA I<br>Fempo                  |                                       |      |                      |   |                      |                       |                      |                      | أنحمه والمعاقب فجريا المراجل | 0:30    |
|              |                                        | ⊽ Press                                | Press<br>P                             | Press                                  | ⊽ Termo                                | ⊽ Termo                                |                                       |      |                      |   |                      |                       |                      |                      | والمعالية المعالية           | 0:0     |
| Arquivo      | 5 03 2013 teste3.LTD<br>05/03/13 21:01 | A A A A A A A A A A A A A A A A A A A | A NA |                      |   |                      |                       |                      |                      |                              | 0:00:28 |

|                                   | 12/03/2013 |         |         | Max                   | 22,1284                              | 6,27411                               | 41,5077                               | 12,7701                              | 24,2737                              | 23,6986                               |   | mpuso (kgf)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | amara (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |     | C ENT (bar) | PC SAI (bar) |                                 | PC ENT (PC) |                                                                                                                | 00.041.000 | LC SM (-C) | 0:02:34     |
|-----------------------------------|------------|---------|---------|-----------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------------|--------------|---------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|------------|------------|-------------|
| 15 %                              | ta:        |         |         | Mn /                  | -0'379389                            | -0,505783                             | -0,205779                             | -0,321152                            | 23,5011/                             | 23,2742/                              | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Pressao (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4   |     | Pressao F   | Pressao      | 4                               | Termoper    |                                                                                                                | •          | I ermopar  | 02:32       |
| 85/                               | Da         |         |         | Lim. Sup.             | 25<br>0000:02:34,000                 | 8<br>0000:02:34,000                   | 50<br>0000:02:34,000                  | 15<br>0000:02:34,000                 | 25<br>0000:02:34,000                 | 24<br>0000:02:34.000                  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |             |              |                                 |             | ومراجع والمراقع ومرجع ومرجع ومرجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم |            |            | 530         |
|                                   |            |         |         | Lim. Inf.             | -2<br>0000:02:21.000                 | -0.5<br>0000:02:21.000                | -0.5<br>0000:02:21.000                | -0.5<br>0000:02:21.000               | 23<br>0000:02:21.000                 | 23<br>0000:02:21.000                  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |             |              |                                 |             |                                                                                                                |            |            | 28 0:0      |
| e Brasília<br><sub>espacial</sub> |            | Teste 5 | Teste 5 | Unidade               | hgf                                  | bar                                   | bar                                   | bar                                  | Ş                                    | Ş                                     | - | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | and a subscription of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |             |              |                                 |             | 1                                                                                                              |            |            | 26 0:02     |
| iversidade d<br>Engenharia Aero   |            | Sinal   | Empuso  | issao Camara<br>Tempo | ssao PC ENT<br>Tempo                 | ssao PC SAI<br>Tempo                  | nopar PC ENT<br>Tempo                 | moper PC SAI<br>Tempo                | -                                    |                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |             |              | a the desired little of a large |             |                                                                                                                | 24 0:02    |            |             |
|                                   | ,          |         |         |                       |                                      | LTD 7 Pre                             | LTD 🔻 Pre                             |                                      | LTD 🔻 Terr                           | LTD 🔻 Ten                             | - | and the second s | Jor ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | And a state of the |     |     |             |              |                                 |             |                                                                                                                |            |            | 22 0:02     |
|                                   |            |         |         | Arquivo               | tiro_1 12 03 2013.<br>12/03/13 20:49 | tire_1 12 03 2013.<br>_12/03/13 20:49 | tire_1 12 03 2013.<br>_12/03/13 20:49 | tiro_1 12 03 2013.<br>12/03/13 20:49 | tiro_1 12 03 2013.<br>12/03/13 20:49 | tiro_1 12 03 2013.<br>_12/03/13 20:49 |   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , | - 2 | 3           |              | 2 0                             | 8           | 24                                                                                                             | <br>24,0   | 23,5       | 23,0 - 0:02 |

| /15 % 12/03/2013                          |         | Min / Max | -0,318574/ 15,9558                     | -0,496295/4,48474       | -0,175527 / 39,7947                    | -0,290363 / 12,0836     | 22,1977 / 22,945                        | 24,7845/25,1683          |   | Empuso (kgf) | 0:01:12 | Pressao Camara (bar) | 0:01:12 | Pressao PC ENT (bar) | 0:01:12 | Pressao PC SAI (bar) | 0:01:12 | and the second s | 0:01:12 | Termopar PC SAI (°C)                                                                                            | 3.000    |
|-------------------------------------------|---------|-----------|----------------------------------------|-------------------------|----------------------------------------|-------------------------|-----------------------------------------|--------------------------|---|--------------|---------|----------------------|---------|----------------------|---------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|----------|
| 2<br>D<br>D                               |         | Lim. Sup. | 20<br>0000:01:13.000                   | 6<br>0000:01:13.000     | 50<br>0000:01:13.000                   | 15<br>0000:01:13.000    | 23<br>0000:01:13.000                    | 26<br>0000:01:03.000     | - |              | 0:01:10 |                      | 0:01:10 | -                    | 0:01:10 |                      | 0:01:10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:01:10 |                                                                                                                 | 0 2.5    |
|                                           |         | Lim. Inf. | -0.5<br>0000:01:03.000                 | -0.5<br>0000:01:03.000  | -0.5<br>0000:01:03.000                 | -0.5<br>0000:01:03.000  | 22<br>0000:01:03.000                    | 24<br>0000:01:00.000     |   |              | 8       |                      | œ       |                      | 8       |                      | 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                 | 2.00     |
| le de Brasília<br><sup>Aeroespacial</sup> | Teste 6 | Uhidade   | kgf                                    | bar                     | bar                                    | bar                     | Ş                                       | Ş                        | - |              | 0:01:0  |                      | 0:01:0  |                      | 0:01:0  |                      | 0:01:0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:01:0  | in a second a second | 1.50     |
| Universidac<br>Engenharia                 |         | Ginal     | Empuso<br>Tempo                        | Pressao Camara<br>Tempo | Pressao PC ENT<br>Tempo                | Pressao PC SAI<br>Tempo | Termonar PC ENT<br>Tempo                | Termoper PC SAI<br>Tempo | - |              | 0:01:06 |                      | 0:01:06 |                      | 0:01:06 |                      | 0:01:06 | The state of the s | 0:01:08 | inau ang ang atang ang ang ang ang ang ang ang ang ang                                                          | 1.000    |
|                                           |         | Arquivo   | tiro 1 12 03 2013.LTD   T2/03/13 22:34 | tiro_1 12 03 2013.LTD   | tiro 1 12 03 2013.LTD   T2/03/13 22:34 | tiro_1 12 03 2013.LTD ⊽ | tire_1_12_03_2013.LTD  _ 12/03/13_22:34 | tire 1 12 03 2013.LTD    |   |              | 0:01:04 | 2                    | 0:01:04 |                      | 0:01:04 |                      | 0:01:04 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:01:04 | viannipanasalanninninninnipan                                                                                   | 24 0.500 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iniversidad                                           | la da Bracília |                                                                                                                  |                      | 85/15 %   |               |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|----------------------|-----------|---------------|
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Engenharia                                            | Aeroespacial   | 3                                                                                                                |                      | Data:     | 20/03/2013    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | Teste 7        |                                                                                                                  |                      |           |               |
| Arquivo                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ginal                                                 | Uhidade        | Lim. Inf.                                                                                                        | Lim. Sup.            | Wu        | Max           |
| tiro_1 grao 2 20 03<br>20/03/13 21: | 2013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Empuxo<br>Tempo                                       | łąf            | -0.5<br>0000:02:07.000                                                                                           | 30<br>0000:02:21.000 | -0,002334 | 6/24,7982     |
| tiro_1 grao_2_20_03<br>20/03/13_21: | 2013.LTD 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pressao Camara<br>Tempo                               | bar            | -0.5<br>0000:02:07.000                                                                                           | 0000:02:21.000       | -0,486806 | :/ 6,25893    |
| tiro_1 grao 2 20 03<br>20/03/13 21: | 2013.LTD 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pressao PC ENT<br>Tempo                               | bar            | -0.5<br>0000:02:07.000                                                                                           | 0000:02:21.000       | -0,14149  | 1/ 43,164     |
| tiro_1 grao 2 20 03<br>20/03/13 21: | 2013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pressao PC SAI<br>Tempo                               | bar            | -0.5<br>0000:02:07.000                                                                                           | 0000:02:21.000       | -0,284206 | // 13,0503    |
| tiro_1 grao 2 20 03<br>20/03/13 21: | 2013.LTD 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Termonar PC ENT<br>Tempo                              | Ŷ              | 16<br>0000:02:07.000                                                                                             | 0000:02:21.000       | 16,3842   | / 18,148      |
| tiro_1 grao 2 20 03<br>20/03/13 21: | 2013.LTD 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Termoper PC SAI<br>Tempo                              | Ş              | 20<br>0000:02:07.000                                                                                             | 0000:02:21.000       | 20,6929   | 21,2801       |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      |           |               |
| 8                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      |           | Empuso (kgf)  |
| -                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                |                                                                                                                  |                      |           |               |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      | Prasean   | Camara (har)  |
| 2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      |           | (ma) mmmm     |
| 0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      |           |               |
| <br>چ                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      | Pressao   | PC ENT (bar)  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      |           | ļ             |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      | Pressao   | PC SAI (bar)  |
| 2 0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      |           |               |
| 18                                  | and the second se |                                                       |                | and the second |                      | Termopar  | PC ENT (°C)   |
| 10                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a sa manana na sa |                |                                                                                                                  |                      |           |               |
| 281 2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                |                                                                                                                  |                      | Termopa   | r PC SAI (°C) |
| . 6                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                | والمراجع والمراجع المراجع والمراجع والمراجع والمراجع                                                             |                      |           |               |
| 30                                  | 25:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0:02:10 0:0                                           | 2:12 0:02      | :14 0:02                                                                                                         | 2:16 0:02            | :18 0:0   | 2:20          |

| Argue         Strenge         Canada         Lim. Sup.           Image: Strenge         Argue         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.           Image: Strenge         Image: Strenge         Small         Lim. Sup.         Lim. Sup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de de Duccilie |                        |                      | 85/15 % |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|----------------------|---------|------------------|
| Engenharia Aeroespacial           Teste 8         Teste 8 <u>hu-19</u> 200313223413117 <u>hul-19</u> 00000236000 <u>hul-19</u> <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | Universiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                        | <u>´</u>             | 2 2 20  |                  |
| Teste 8       Anuko     Anuko     Sinal     Unidade     Lin. Int.       Into-1200313224     Int. Int.     Lin. Int.     Lin. Suc.       Into-1200313224     Entropo     Mol 0000200.000     00000200.000     00000200.000       Int. 1200313224     Entropo     Mol 0000200.000     00000200.000     00000200.000       Int. 1200313224     Entropo     Mol 0000200.000     00000200.000     00000200.000       Int. 1200313224     Entropo     Mol 00000200.000     000000200.000     000000200.000       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                | Engenhari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Aeroespacial |                        |                      | Data:   | 20/03/2013       |
| Autor         Sind         Unidade         Lin. Ivi.         Lin. Ku.           100-1300 320 03 2013.11         7         Ferration         Voldade         Lin. Ivi.         Lin. Ku.           100-1300 320 03 2013.11         7         Ferration         Voldade         Lin. Ivi.         Lin. Ku.           100-1300 320 03 2013.11         7         Ferration         Voldade         Lin. Ivi.         Lin. Ku.           2010 322 34         110         7         Ferration         Voldade         Voldade<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                        | ]                    |         |                  |
| Arquito         Strait         Unitade         Lim. Lim.         Lim. Eqn.           through the control of the cont |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Teste 8        |                        |                      |         |                  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      |         |                  |
| from         from         frame         f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arquivo                                        | Sinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Uhidade        | Lim. Inf.              | Lim. Sup.            | v       | n / Max          |
| itio 1 geo 3 20 (3 2)13.LTD         T         Presso Camaa         bar         0000020100         00000218 000           100 1 gray 3 20 (3 2)13.LTD         T         Presso Camaa         bar         0000020000         00000218 000           200 (313 122.41         T         Presso PC ENT         bar         0000020000         00000218 000           200 (313 122.41         T         Presso PC ENT         bar         0000020000         00000218 000           201 1 gray 3 20 (3 2)13.LTD         T         Presso PC ENT         bar         0000020000         00000218 000           200 (31 2)22.41         T         Presso PC ENT         bar         0000020000         00000218 000           200 (31 2)22.31         T         Tempo C ENT         bar         00000200.000         00000218 000           201 1 gray 3 20 (3 2)3.22.34         T         Tempo C ENT         bar         bar         00000200.000         00000218 000           201 1 gray 3 20 (3 2) 22.34         T         Tempo C ENT         bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tiro_1 grao 3 20 03 2013.LTD<br>20/03/13 22:34 | ⊽ Empuxo<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kgf            | -1<br>0000:02:00.000   | 20<br>0000:02:18.000 | -0,799  | 015/16,582       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tiro_1 grao 3 20 03 2013.LTD<br>20'03/13 22:34 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bar            | -0.5<br>0000:02:00.000 | 6<br>0000:02:18.000  | -0,5095 | 78/4,70485       |
| III-         IIII-         IIII-         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tiro_1 grao_3_20_03_2013.LTD<br>20'03/13_22:34 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bar            | -2<br>0000:02:00.000   | 40<br>0000:02:18.000 | -0,1339 | 31 / 37,9191     |
| IIIC_1         Term         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tiro_1 grao 3 20 03 2013.LTD<br>20'03/13 22:34 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bar            | -0.5<br>0000:02:00.000 | 15<br>0000:02:18.000 | -0,2811 | 27 / 11,3262     |
| tio_1 grao 3 20 03 2013.LTD 7 Tempos PC Sk1 000.020 000.0218.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tiro_1 grao_3_20_03_2013.LTD<br>20/03/13_22:34 | Termonar PC ENT     Termonar PC ENT     Termon     Termon | Ş              | 14<br>0000:02:00.000   | 17<br>0000:02:18.000 | 15,019  | 13/ 16,9951      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tiro_1 grao 3 20 03 2013.LTD<br>2003/13 22:34  | ⊽ Termoper PC SAI<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ç              | 20<br>0000:02:00.000   | 22<br>0000:02:18.000 | 20,883  | 2/22,2442        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      |         | Empuso (kgf)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - u                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      | Presse  | io Camara (bar)- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      | Pressa  | o PC ENT (bar)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / 0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | -<br>-<br>             |                      | Press   | so PC SAI (bar)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      | Termop  | er PC ENT (*C)   |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 13                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      | Termo   | par PC SAI (°C)  |
| 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 8                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                        |                      | -       |                  |
| 0:02:00 0:02:05 0:02:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0:02:00                                        | 0:02:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 0:02:10                | 0                    | 0:02:15 |                  |

|                                                           |                      | h okohina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - <b>1</b> |                        |                      | 85/15 %     |                |
|-----------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|----------------------|-------------|----------------|
|                                                           |                      | ersigade g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e brasilia |                        |                      | 2 2 20      |                |
|                                                           | ū                    | ngenharia Aero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | espacial   |                        |                      | Data:       | 20/03/2013     |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -          |                        | -                    |             |                |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tooto 0    |                        |                      |             |                |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l este a   |                        |                      |             |                |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
| Arquivo                                                   | цю.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unidade    | Lim. Inf.              | Lim. Sup.            | Mn/1        | Aax            |
| tiro_tteste_3 ctrato_4_20_03_2013.LTC<br>_21/03/13_00:44_ | 0 ⊽ Emor             | Do<br>Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kgf        | -0.5<br>0000:03:34.000 | 25<br>0000:03:49.000 | -0,00233346 | / 20,8878      |
| tiro_tteste_3 crao_4_20_03_2013.LTC<br>_21/03/13_00:44    | 0 🗸 Pressao(         | Camara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bar        | -0.5<br>0000:03:34.000 | 6<br>0000:03:49.000  | -0,519066/  | 4,86614        |
| tiro_tteste_3 crao_4_20_03_2013.LTC<br>_21/03/13 00:44    | 0 ⊽ PressaoF<br>Tem  | PC ENT<br>po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bar        | -0.5<br>0000:03:34.000 | 50<br>0000:03:49.000 | -0,15662 /  | 40,9329        |
| tiro_1teste_3 crao_4_20_03_2013.LTC<br>_21/03/13 00:44    | 0 ⊽ Pressaol<br>Tem  | PC SAI<br>po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bar        | -0.5<br>0000:03:34.000 | 15<br>0000:03:49.000 | -0,305758/  | 12,0651        |
| tiro_tteste_3 crao_4_20_03_2013.LTC<br>_21/03/13_00:44    | 0 ⊽ Termopar<br>Term | PC ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ş          | 16<br>0000:03:34.000   | 18<br>0000:03:49.000 | 16,486 / 1  | 7,5516         |
| tiro_tteste_3 crao_4_20_03_2013.LTC<br>_21/03/13_00:44    | 0 ⊽ Termobar<br>Tem  | PC SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ş          | 20<br>0000:03:34.000   | 22<br>0000:03:49.000 | 20,3124/    | 21,9167        |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
| 8                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      | Ē           | mpuso (kgf).   |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
| 2 January 19                                              |                      | and the second se |            |                        |                      | Pressao C   | amara (bar)-   |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
|                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      | Presseo P   | C ENT (bar)    |
| ,                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      | Presser     | PC SAI (bar)   |
| 10                                                        |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                        |                      |             | d mark in an o |
| 18                                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      | Termopar    | C ENT (°C)     |
| - 21                                                      |                      | فتتعيين وتعتره فالمتعالية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                        |                      |             |                |
| 16                                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        | -                    |             |                |
| 23                                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        | 1                    |             | 1001100        |
| 21 -                                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      | . I ermopar | PC SAI (*C)    |
| 8                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                        |                      |             |                |
| -00:00                                                    | 36 0:03              | 3:38 0:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3:40 0:00  | 3:42 0:03              | 44 0:03              | 146 0:00    | :48            |

|                                                                  | Universidad                 | e de Brasíl  | <u>.</u>             |     |                      | 85/15 % |                  |
|------------------------------------------------------------------|-----------------------------|--------------|----------------------|-----|----------------------|---------|------------------|
|                                                                  | Engenharia /                | Aeroespacial | 5                    |     |                      | Data:   | 21/03/2013       |
|                                                                  |                             | Toeto        | 10                   |     |                      |         |                  |
|                                                                  |                             | - ASI        | 2                    |     |                      |         |                  |
| Arquivo                                                          | Sinal                       | Unidade      | Lim. Inf.            |     | Lim. Sup.            | 2       | fn / Max         |
| tiro_1_teste_1_areo 5_21_03_2013.LTD 7<br>21/03/13 20:10         | Tempo                       | ۲۵           | -0.5<br>0000:01:44.0 | 8   | 30<br>0000:02:01.000 | 0,8675  | 327 / 24,9137    |
| tiro_1_teste_1 area 5 21 03_2013.LTD21/03/13 20:1021/03/13 20:10 | Pressao Camara<br>Tempo     | bar          | -0.5<br>0000:01:44.( | 00  | 6<br>0000:02:01.000  | -0,513  | 373 / 5,52269    |
| tiro_1_teste_1 area 5 21 03_2013.LTD 7<br>_21/03/13 20:10        | 7 Pressao PC ENT<br>Tempo   | bar          | -0.5<br>0000:01:44.( | 00  | 50<br>0000:02:01.000 | -0,164  | 183/47,0287      |
| tiro_1_teste_1_arao_5_21_03_2013.LTD_721/03/13_20:107            | 7 Pressao PC SAI<br>Tempo   | bar          | -0.5<br>0000:01:44.( | 00  | 15<br>0000:02:01.000 | -0,290  | 363 / 14,1064    |
| tiro_1_teste_1_areo_5_21_03_2013.LTD 7<br>_21/03/13_20:10        | 7 Termonar PC ENT<br>Termon | Ş            | 0000:01:44.0         | 00  | 21<br>0000:02:01.000 | 18,75   | 09 / 20,3865     |
| tiro_1_teste_1 area 5 21 03_2013.LTD 7<br>_21/03/13 20:10        | Termoper PC SAI<br>Tempo    | Ş            | 0000:01:44.0         | 00  | 23<br>0000:02:01.000 | 21,65   | 63/22,7419       |
|                                                                  |                             |              |                      |     |                      |         | Empuso (kaf)     |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           |                             |              |                      |     |                      |         | 2                |
|                                                                  |                             |              |                      |     |                      | •       | -                |
| 0                                                                |                             |              |                      |     |                      | L'16 88 | ao Gamara (bar)  |
| •                                                                | _                           |              |                      |     |                      |         |                  |
| 8                                                                |                             |              |                      |     |                      | Pres    | so PC ENT (bar)  |
|                                                                  |                             |              |                      |     |                      | Press   | sao PC SAI (bar) |
| 0                                                                |                             |              |                      |     | ¢                    |         | 2                |
| 8                                                                |                             |              |                      |     |                      | Temo    | par PC ENT (°C)  |
| 8                                                                |                             | r            |                      |     |                      |         |                  |
| 28                                                               |                             |              |                      |     |                      | Term    | opar PC SAI (*C) |
| 2                                                                |                             |              |                      |     |                      |         |                  |
| 0:01:46                                                          | 0:01:48 0:01:6              | 50 0:01:52   | 0:01:54              | 0:0 | 1:56                 | 0:01:58 | 0:02:00          |

|              | 0             |          |           |                                                        |                                                         |                                                      |                                                       |                                                      |                                                    |              |   |                      |   |      |                      |   |                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                      |    | ЯŚ.         |
|--------------|---------------|----------|-----------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------|---|----------------------|---|------|----------------------|---|----------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|----|-------------|
| %            | 21/03/201     |          | Min / Max | -0,154372/17,8835                                      | -0,479218/4,13559                                       | -0,15662 / 37,4842                                   | -0,296521 / 11,1199                                   | 18,401 / 19,4718                                     | 20,8155/21,4979                                    | Empuso (kgl) | J | Pressao Camara (bar) | 7 | ;    | Pressao PC ENT (bar) |   | Pressao PC SAI (bar) | / | Termoper PC ENT (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Termopar PC SAI (°C) |    |             |
| 85/15        | Data:         |          | Lim. Sup. | 20<br>0000:01:36.000                                   | 5<br>0000:01:36.000                                     | 40<br>0000:01:36.000                                 | 15<br>0000:01:36.000                                  | 20<br>0000:01:36.000                                 | 22<br>0000:01:36.000                               |              |   |                      |   |      |                      |   |                      | C | and the second se | and a second |                      |    | 0.00        |
|              |               |          | Lim. Inf. | -0.5<br>0000:01:23.000                                 | -0.5<br>0000:01:23.000                                  | -2<br>0000:01:23.000                                 | -0.5<br>0000:01:23.000                                | 18<br>0000:01:23.000                                 | 20<br>0000:01:23.000                               |              |   |                      |   |      |                      |   |                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                      |    | 000         |
| de Brasília  | eroespacial   | Teste 11 | Uhidade   | łąf                                                    | bar                                                     | bar                                                  | bar                                                   | Ŷ                                                    | Ŷ                                                  |              |   |                      |   |      |                      |   |                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a da manana ang manana ka sa ka                                                                                |                      |    |             |
| Universidade | Engenharia Ae |          | Sinal     | Empuxo<br>Tempo                                        | Pressao Camara<br>Tempo                                 | Pressao PC ENT<br>Tempo                              | Pressao PC SAI<br>Tempo                               | Termonar PC ENT<br>Tempo                             | Termopar PC SA1<br>Tempo                           |              |   |                      |   |      |                      |   |                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                      |    | 0.00        |
|              |               |          | Arquivo   | ro_1_teste_2_grap_1_21_03_2013.LTD 7<br>21/03/13.21:29 | ro_1_teste_2_grap_1_21_03_2013.LTD 7<br>_21/03/13_21:29 | ro_1_teste_2_grap_1_21_03_2013.LTD  7 21/03/13_21:29 | ro_1_teste_2 grao_1_21_03_2013.LTD<br>_21/03/13_21:29 | ro_1_teste_2 grao_1_21_03_2013.LTD  7 21/03/13 21:29 | ro_1_teste_2 grao_1_21_03_2013.LTD  21/03/13_21:29 | 20           |   | 2                    |   | - 0P | 8                    | / |                      | 0 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                             | 28                   | 21 | 20 - 001-01 |

|                                                                                                                 | Universidad              | e de Brasília |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 85/15 %                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 | Engenharia /             | Aeroespacial  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Data:                                                                                                           | 05/04/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                 | <b>,</b>                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                          | Teste 12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arquivo                                                                                                         | Sinal                    | Uhidade       | Lim. Inf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lim. Sup.             | 2                                                                                                               | fn / Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tiro_1_teste 1 05 04 2013.LTD  05/04/13 22:07                                                                   | Empuxo<br>Tempo          | hgf           | -0.5<br>0000:08:02.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>0000:08:13.000  | -0'367                                                                                                          | 226/26,6713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tiro_1_teste 1 05 04 2013.LTD<br>05/04/13 22:07                                                                 | Presseo Camara<br>Tempo  | bar           | -0.5<br>0000:08:02.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>0000:08:13.000   | -0,494                                                                                                          | 398 / 5,80352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tiro_1_teste 1 05 04 2013.LTD 7<br>05/04/13 22:07                                                               | Pressao PC ENT<br>Tempo  | bar           | -0.5<br>0000:08:02.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50<br>0000:08:13.000  | -0,175                                                                                                          | 527 / 44,5972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tiro_1_teste 1 05 04 2013.LTD<br>05/04/13 22:07                                                                 | Pressao PC SAI<br>Tempo  | bar           | -0.5<br>0000:08:02.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>0000:08:13.000  | -0'305                                                                                                          | 758 / 13,6476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tiro_1_teste 1 05 04 2013.LTD  V 05/04/13 22:07                                                                 | Termonar PC ENT<br>Tempo | Ş             | 26<br>0000:08:02.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>0000:08:13.000  | 27,04                                                                                                           | 04/27,8862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| tiro_1_teste 1 06 04 2013.LTD  05/04/13 22:07                                                                   | Termoper PC SAI<br>Tempo | ç             | 21<br>0000:08:02.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22<br>0000:08:13.000  | 21,11                                                                                                           | 02/21,7797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                 | Empuso (kgf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ~                                                                                                               |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 7                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Piese                                                                                                           | ao Camara (har)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 7                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                          |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Press                                                                                                           | ao PC ENI (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                                               |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                              |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Press                                                                                                           | sao PC SAI (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , 8                                                                                                             |                          |               | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | ome                                                                                                             | par PC ENT (*C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                               |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | :                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22,0                                                                                                            |                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Termo                                                                                                           | oper PC SAI (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21,5 - The second se |                          |               | and the second se | and the second second | and the state of the | And in case of the local division of the loc |
| 0:08:02 0:0                                                                                                     | 8:04 0:00                | 8:06          | 0:08:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0:08:10               | 0:0                                                                                                             | t12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/15 OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Presidade de      | <b>Bras</b>  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | Т   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ingenharia Aeroes | spacial      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05/04/2013                                                                                                     |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                 |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | I [ |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Teste 13     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
| Arquivo                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lai               | Unidade      | Lim. Inf.              | Lim.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / Max                                                                                                          |     |
| tiro_1_teste 2 05 04 2<br>06/04/13 00:05 | 013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊽ Emc<br>Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | upto<br>Data      | kgf          | -0.5<br>0000:00:55.00( | 0000:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3599(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/ 27,3342                                                                                                     |     |
| tiro_1_teste 2 05 04 2<br>06/04/13 00:05 | 013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊽ Pressao<br>Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Camara<br>npo     | bar          | -0.5<br>0000:00:55.00( | 0000:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,48301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/5,41643                                                                                                      |     |
| tiro_1_teste 2 06 04 2<br>06/04/13 00:06 | 013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¬ Pressao Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PC ENT            | bar          | -0.5<br>0000:00:55.00( | 0 000:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,12636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 / 42,9863                                                                                                    |     |
| tiro_1_teste 2 05 04 2<br>06/04/13 00:05 | 013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊽ Pressao<br>Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PC SAI            | bar          | -0.5<br>0000:00:55.00( | 0 0000:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,28726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 / 13,0842                                                                                                   |     |
| tiro_1_teste 2 05 04 2<br>06/04/13 00:05 | 013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊽ Termooa<br>Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r PC ENT          | Ş            | 26<br>0000:00:55.00(   | 0 000:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26,1037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 / 27,0392                                                                                                    |     |
| tiro_1_teste 2 06 04 2<br>06/04/13 00:05 | 013.LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊽ Termona<br>Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r PC SAI          | Ş            | 21<br>0000:00:55.00(   | 0000:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21,3406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/ 21,8107                                                                                                     |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emeran (bal)                                                                                                   |     |
| 8                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | www.www.www. |                        | and a second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (iBi) conduct                                                                                                  |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 m m                                                                                                          |     |
| 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o Cermaria (Deir)-                                                                                             |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
| ß                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pressac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o PC ENT (bar)                                                                                                 |     |
| 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
| 9                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pressa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o PC SAI (bar)                                                                                                 |     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
| 8 8                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Termopi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # PC ENT (*C)                                                                                                  |     |
| 8                                        | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        | and a photo second photo she                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Section of the sectio | And the second se | a second and the second se |     |
| 22,0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Termop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er PC SAI (*C)                                                                                                 |     |
| 21,5                                     | - Bahata anda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the strength of the strength o |                   |              | na al norma de los     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |     |
| 0:0                                      | 0:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:00:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000               | 1:00         | 0:01:02                | 0:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                             |     |

|                                                 | Univers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | idade de Bras     | sília                 |                | 85/15 %          |                |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------|------------------|----------------|
|                                                 | Engen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | haria Aeroespacia |                       |                | Data:            | 06/04/2013     |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tes               | te 14                 |                |                  |                |
| Arquivo                                         | Sinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unidade           | Lim. Inf.             | Lim. Sup.      | Min              | / Max          |
| tiro_1_teste 1 06 04 2013.LTD<br>06/04/13 13:26 | Empuso     Tempo     Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kgf               | -5<br>0000:00:30.00   | 0000:00:43:000 | -3,12216         | / 21,7392      |
| tiro_1_teste 1 06 04 2013.LTD<br>06/04/13 13:26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bar               | -0.5<br>0000:00:30.00 | 0000:00:43.000 | -0,498190        | 3/4,77316      |
| tiro_1_teste 1 06 04 2013.LTD<br>06/04/13 13:26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bar               | -0.5                  | 0000:00:43.000 | -0,15682         | / 39,0611      |
| tiro_1_teste 1 06 04 2013.LTD<br>06/04/13 13:26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bar               | -0.5<br>0000:00:30:00 | 0000:00:43.000 | -0,290363        | 3/ 11,8311     |
| tiro_1_teste 1 06 04 2013.LTD<br>06/04/13 13:26 | Termonar PC ENT     Termon     Term | Ş                 | 0000:00:30.00         | 0000:00:43.000 | 24,1223          | / 25,1402      |
| tiro_1_teste_1_06_04_2013.LTD<br>06/04/13 13:26 | ⊽ Termober PC SAI<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ş                 | 0000:00:30.00         | 0000:00:43:000 | 20,9237          | / 21,7871      |
|                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                 | -                     | -              | -                |                |
| 8                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  | -Empuso (kgf)- |
| •                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
| 2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                | Pressao          | Camara (bar)-  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                | $\left( \right)$ |                |
| 0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       | _              | r                |                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                | Pressao          | PC ENT (bar)   |
| 3                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                | Pressao          | PC SAI (bar)   |
| 0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
| ×8                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                | Termopa          | PC ENT (°C)    |
| 24                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
| 3                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
| 5 8                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | :                     |                | Termops          | ar PC SAI (°C) |
| 8                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                       |                |                  |                |
| 0:0                                             | 0:32 0:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0:00:             | 36 0:00               | :38 0:00:40    | 0:0              | :42            |

|                                                 | Universid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ade de Brasília  |                        |                      | 85/15 %           |         |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|----------------------|-------------------|---------|
|                                                 | Engenha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ria Aeroespacial |                        |                      | Data: 06/0        | t/2013  |
|                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                        |                      |                   |         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Teste 15         | 10                     |                      |                   |         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| Arquivo                                         | Sinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unidade          | Lim. Inf.              | Lim. Sup.            | Min / Max         |         |
| tiro_2_teste 1 06 04 2013.LTD<br>06/04/13 15:25 | ⊽ Empuxo<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kgf              | -0.5<br>0000:02:10.000 | 25<br>0000:02:22.000 | 0,435538 / 23,19  | D       |
| tiro_2_teste 1_06_04_2013.LTD<br>06/04/13_15:25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bar              | -0.5<br>0000:02:10.000 | 6<br>0000:02:22.000  | -0,481115/5,150   | 4       |
| tiro_2_teste 1_06_04_2013.LTD<br>06/04/13_15:25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bar              | -0.5<br>0000:02:10.000 | 45<br>0000:02:22.000 | -0,171745/38,29   | 72      |
| tiro_2_teste 1_06_04_2013.LTD<br>06/04/13_15:25 | Tempo     Tempo | bar              | -0.5<br>0000:02:10.000 | 15<br>0000:02:22.000 | -0,296521 / 11,72 | 56      |
| tiro_2_teste 1_06_04_2013.LTD<br>06/04/13_15:25 | ⊽ Termoper PC SAI<br>Tempo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ş                | 23<br>0000:02:10.000   | 28<br>0000:02:22.000 | 23,9073/27,250    | 6       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | Emotor            | (korf)  |
| 3                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | J                 |         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | Pressao Camars    | (bar)   |
| 4                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | {                 |         |
| 2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| 0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| 07                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | Pressao PC EN     | (bar)-  |
| 2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | ſ                 |         |
| 2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | J                 |         |
| 1Š                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | Presson PC SA     | (har)   |
| 10                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| 4                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| , , ,                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| .8                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   | 1000    |
| 8                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      | Termopar PC S/    | ĵ)      |
| 2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| *                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |                      |                   |         |
| 0:02:10 0:                                      | 02:12 0:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2:14 0:02:1      | 16 0:02                | 218                  | 0:02:20           | 0:02:22 |

|                                          | Univ               | ersidade d     | e Brasília     |                        |                      | 100 %      |                |
|------------------------------------------|--------------------|----------------|----------------|------------------------|----------------------|------------|----------------|
|                                          | ū                  | ngenharia Aero | espacial       |                        |                      | Data:      | 23/02/2013     |
|                                          |                    |                | Teste 1        |                        |                      |            |                |
|                                          |                    | Pa             | rafina Sem Dop | agem                   |                      |            |                |
| Arquivo                                  | ŝ                  |                | Unidade        | Lim. Inf.              | Lim. Sup.            | /wu/       | Max            |
| tiro_1 23 02 2013.LTD<br>_23/02/13 17:22 | Emo                | Do Do          | hgf            | -0.5<br>0000:00:20:000 | 40 0000:00:35.000    | 0,532842 / | 32,1325        |
| tire_1_23_02_2013.LTD<br>_23/02/13.17:22 | ⊽ Pressao (<br>Tem | Camara<br>po   | bar            | -0.5<br>0000:00:20.000 | 8<br>0000:00:35.000  | -0,414701  | 5,37278        |
| tire_1 23 02 2013.LTD<br>_23/02/13 17:22 | ⊽ Pressaol<br>Tem  | PC ENT         | bar            | -0.5<br>0000:00:20.000 | 40 0000:00:35.000    | -0,205779. | 38,0628        |
| tire_1_23_02_2013.LTD<br>_23/02/13_17:22 | ⊽ Pressao          | PC SAI<br>po   | bar            | -0.5<br>0000:00:20.000 | 15<br>0000:00:35.000 | -0,318073/ | 11,7849        |
| tiro_1 23 02 2013.LTD<br>_23/02/13 17:22 | ⊽ Termopar<br>Term | PC ENT<br>PC   | Ş              | 24<br>0000:00:20.000   | 26<br>0000:00:35.000 | 24,5326/   | 25,2772        |
| tire_1_23_02_2013.LTD<br>_23/02/13_17:22 | ⊽ Termopar         | PC SAI<br>Po   | Ŷ              | 25<br>0000:00:20.000   | 27<br>0000:00:35.000 | 25,58/2    | 6,0731         |
| :                                        |                    |                |                |                        |                      |            |                |
|                                          |                    |                |                |                        |                      |            | (JBI) conduc   |
|                                          |                    |                |                |                        |                      |            |                |
|                                          |                    |                |                |                        |                      | Barren     | (hard) and     |
| 5                                        |                    |                |                |                        |                      | LIESSBO    | karmara (Dari) |
| 0                                        |                    |                |                |                        |                      |            |                |
| ,4                                       |                    |                |                |                        |                      | Pressan    | C ENT (her)    |
| 8                                        |                    |                |                |                        |                      |            |                |
| 0                                        |                    |                |                |                        |                      |            |                |
| 2                                        |                    |                |                |                        | 1                    | Pressao    | PC SAI (bar)   |
| · ·                                      |                    |                |                |                        |                      |            |                |
| 8                                        |                    |                |                |                        |                      | Termopar   | PC ENT (°C)    |
| 22                                       |                    |                |                |                        |                      |            |                |
| 24                                       |                    |                |                |                        |                      |            |                |
| 1 8                                      |                    |                |                |                        |                      | Termopar   | PC SAI (°C)    |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |                    |                |                |                        |                      |            |                |
| 00:00                                    | 22 0:00            | ):24 0:0       | 0:26 0:0       | 0:28 0:00              | 30 0:00              | 0:02 0:00  | 134            |

|                                          | Π | niversidade de                                                                                                  | Brasília                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 100 %   |                   |
|------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------------|
|                                          | ) | Engenharia Aeroe                                                                                                | spacial                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | Data:   | 15/01/2013        |
|                                          |   |                                                                                                                 | Teste 2                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |                   |
|                                          |   | Para                                                                                                            | ıfina Sem Dopag∈                                                                                                | шe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         |                   |
| Arquivo                                  |   | Sinal                                                                                                           | Unidade                                                                                                         | Lim. Inf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lim. Sup.            | W       | n / Max           |
| tiro_1_15_01_2013.LTD<br>_15/01/13_20:31 | ₽ | Empuxo<br>Tempo                                                                                                 | kgŕ                                                                                                             | 000:00:31.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20<br>000:00:43.000  | 2,3512  | 2/ 16,5212        |
| tiro_1 15 01 2013.LTD<br>_15/01/13 20:31 | Þ | P. Camera T50<br>Tempo                                                                                          | bar                                                                                                             | -0.5<br>000:00:31.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>0000:00:43.000  | -0,3843 | 41 / 2,69156      |
| tire_1_15_01_2013.LTD<br>_15/01/13_20:31 | ⊳ | P. Orificio In<br>Tempo                                                                                         | bar 0                                                                                                           | -0.5<br>000:00:31.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>000:00:43.000  | -0,1830 | 9 / 22,5436       |
| tiro_1 15 01 2013.LTD<br>_15/01/13 20:31 | ⊳ | P. Orificio Out<br>Tempo                                                                                        | bar 0                                                                                                           | -0.5<br>000:00:31.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>0000:00:43.000  | -0,2965 | 21 / 6,33533      |
| tiro_1_15_01_2013.LTD<br>_15/01/13_20:31 | ⊳ | Placa entrada<br>Tempo                                                                                          | Ş                                                                                                               | 18<br>000:00:31.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>0000:00:43.000 | 18,25(  | 3 / 19,259        |
| 20<br>10                                 |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         | Empuso (kgf)      |
|                                          |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | а.<br>8 | mara T50 (bar)    |
|                                          |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 2       |                   |
| 8                                        |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | [a] _   | Orificio In (bar) |
| 8 2 0                                    |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |                   |
| 2 S                                      |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>           | P.O     | hificio Out (bar) |
| 0                                        |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |                   |
| 8                                        |   |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 8       | ca entrada (°C)   |
| 19                                       |   | and the second secon | and the second secon | al and a state of the state of |                      |         |                   |
| 0:00:32                                  |   | 0:00:34 0:0                                                                                                     | 0:36                                                                                                            | 0:00:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0:00:40              | 0:0     | 42                |