

Instituto de Ciências Exatas

Departamento de Matemática

Mínimos em C^1 versus Orlicz-Sobolev e multiplicidade global de soluções positivas para problemas elípticos quasilineares

Lais Moreira dos Santos

Universidade de Brasília

Instituto de Ciências Exatas Departamento de Matemática

Mínimos em C^1 versus Orlicz-Sobolev e multiplicidade global de soluções positivas para problemas elípticos quasilineares

Lais Moreira dos Santos

Dissertação apresentada como requisito parcial para a obtenção do título de Mestre em Matemática.

Orientador

Prof. Dr. Carlos Alberto Pereira dos Santos

Brasília

Universidade de Brasília Instituto de Ciências Exatas Departamento de Matemática

Mínimos em C1 versus Orliz-Sobolev e multiplicidade global de soluções positivas para problemas elípticos quasilineares.

por

Laís Moreira dos Santos*

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática-UnB, como requisito parcial para obtenção do grau de

MESTRE EM MATEMÁTICA

Brasília, 21 de março de 2014.

Comissão Examinadora:

Prof. Dr. Carlos Alberto Pereira dos Santos – MAT/UnB (Orientador)

Prof. Dr. José Valdo Abreu Gonçalves – UFG/GO

Prof. Dr. Ricardo Ruviaro - MAT/UnB

^{*} A autora foi bolsista CAPES e CNPq durante a elaboração desta dissertação.

Aos meus pais Vera e Jairo e aos meus avós Therezinha e Claudomicio (in memoriam).

Agradecimentos

Aos meus pais, agradeço pelo amor incondicional, pelo respeito, apoio e confiança em meu trabalho e minhas escolhas. Aos meus avós, por serem exemplos maiores de amor, determinação e perseverança. Aos meus irmãos, por todo carinho e proteção. Amo vocês!

À minha amiga/irmã Eliana, por estar sempre comigo. Obrigada pelo seu amor e zelo, por nunca ter me deixado vacilar.

Ao meu grande amigo Wildes, por todos os dias me presentear com seu sorriso afável e por ser meu porto seguro.

Aos meus amigos Éder, Iran, Oscar, Larissa, Yerko, Valdiego e Alexandre, por fazerem parte da minha vida de maneira essencial.

Aos professores da banca examinadora, Ricardo e José Valdo, agradeço pelas sugestões.

Ao professor Carlo Alberto, pela orientação, dedicação e incentivo.

Aos professores e funcionários do Departamento de Matemática, por todo o apoio prestado.

Ao CNPQ pelo apoio finaceiro.

Resumo

Os principais objetivos deste trabalho consistem em estudar os espaços de Orlicz, Orlicz-Sobolev e abordar a relação entre a minimalidade de um funcional na topologia de $C^1(\overline{\Omega})$ com a minimalidade desse funcional na topologia dos espaços de Orlicz-Sobolev. Como consequência disso, estabeleceremos um resultado de "multiplicidade global" de soluções positivas para uma classe de problemas de equações diferenciais parciais, no ambiente dos espaços de Orlicz-Sobolev.

Palavras-chave: Espaços de Orlicz e Orlicz-Sobolev, Multiplicidade Global de Soluções Positivas, Sub e Supersolução, Teoremas do Passo da Montanha.

Abstract

The main goals of this work are to study of the Orlicz and Orlicz-Sobolev spaces and discuss the connection between the minimality of functionals in the topology $C^1(\overline{\Omega})$ and the minimality this functionals in the topology of $W_0^{1,P}(\Omega)$. Consequently, we are going to establish a result of "global multiplicity" of positive solutions for a class of partial differential equations in the setting of Orlicz-Sobolev spaces.

Keywords: Orlicz and Orlicz-Sobolev spaces, Global Multiplicity of Positive Solutions, Sub and Supersolutions, Mountain Pass Theorems.

Sumário

Sumário

Introdução 1				
1	Espaços de Orlicz e Orlicz - Sobolev			
	1.1	N-Funções	8	
	1.2	Classes de Orlicz	16	
	1.3	Espaços de Orlicz	20	
	1.4	Imersão em espaços de Orlicz	26	
	1.5	Consequências da condição (p_2)	29	
	1.6	O espaço $E^P(\Omega)$	31	
	1.7	Dualidade em Espaços de Orlicz	34	
	1.8	Espaços de Orlicz-Sobolev	38	
	1.9	Imersões de Orlicz-Sobolev	40	
2	Funcionais definidos no espaço de Orlicz-Sobolev $W^{1,P}_0(\Omega)$			
	2.1	Propriedades dos funcionais	51	
	2.2	Operador solução associado ao problema (2.4)	61	
3	C^1	versus $W_0^{1,P}$ mínimos locais e resultados de regularidade	64	
	3.1	Regularidade	64	
	3.2	$W_0^{1,P}$ versus C^1 mínimos locais	71	
4	Teorema de sub e supersolução e multiplicidade global			
	4.1	Princípios de Comparação	81	
	4.2	Mínimo local via teorema de sub e supersolução	86	
	4.3	Multiplicidade global de soluções positivas	94	

5 Apêndice	107
Referências Bibliográficas	114

Introdução

Os principais objetivos deste trabalho consistem em estudar os espaços de Orlicz, Orlicz-Sobolev e abordar a relação entre a minimalidade de um funcional na topologia de $C^1(\overline{\Omega})$ com a minimalidade desse funcional na topologia dos espaços de Orlicz-Sobolev $W_0^{1,P}(\Omega)$, onde $\Omega \subset \mathbb{R}^N$ é um domínio limitado com fronteira suave. Como consequência disso, estabeleceremos um resultado de " multiplicidade global " de soluções positivas para uma classe de problemas de equações diferencias parciais, no ambiente dos espaços de Orlicz-Sobolev.

Em geral, um mínimo local de um funcional na topologia de $C^1(\overline{\Omega})$ não necessariamente é mínimo desse funcional na topologia de outros espaços ambientes. Nesse sentido, citamos o trabalho de Alama e Tarantelo [2], no qual prova-se que $u \equiv 0$ é mínimo local do funcional I na topologia de $C^1(\overline{\Omega})$ mas não é mínimo local de I na topologia do espaço de Sobolev $H_0^1(\Omega)$, com I definido por

$$I(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - \frac{\lambda}{2} u^2 - \frac{1}{q+1} |u|^{q+1} + \frac{1}{p+1} h(x) |u|^{p+1} \right) dx, \qquad u \in H^1_0(\Omega),$$

onde $N \geq 3, \ h \geq 0, \ h \in L^{\infty}(\Omega),$ $2^* < q+1 < p+1$ e h satisfaz algumas hipóteses adicionais.

Por outro lado, no ano de 1993, em seu notável trabalho " H^1 versus C^1 local minimizers" (ver [8]), Brezis e Nirenberg mostraram que, para alguns funcionais, um mínimo local $u \in H^1_0(\Omega)$ na topologia de $C^1(\overline{\Omega})$ é mínimo local na topologia de $H^1_0(\Omega)$. Mais especificamente, eles consideraram

$$I(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 dx - \int_{\Omega} F(x, u) dx, \qquad u \in H_0^1(\Omega),$$

em que

$$F(x,t) = \int_0^t f(x,s)ds \tag{1}$$

e f(x,s) é Carathéodory em $\Omega \times \mathbb{R}$, isto é, f é mensurável em $x \in \mathbb{R}^N$ para cada s fixado e contínua em $s \in \mathbb{R}$, satisfazendo a seguinte condição de crescimento:

$$|f(x,s)| \le C(1+|s|^m),$$

para algum $1 \le m \le (N+2)/(N-2) := 2^* - 1$, se $N \ge 3$ e $1 \le m < \infty$, se N = 1 ou N = 2. O resultado provado por Brezis e Nirenberg é o seguinte:

" Suponha que $u_0 \in H_0^1(\Omega)$ é um mínimo local de I na topologia C^1 , isto é, existe r > 0 tal que

$$I(u_0) \le I(u_0 + v), \quad para \ todo \quad v \in C_0^1(\overline{\Omega}) \ com \ |v|_{C^1} \le r.$$

 $Ent\~ao\ u_0\ \'e\ um\ m\'inimo\ local\ de\ I\ na\ topologia\ H^1_0(\Omega),\ ou\ seja,\ existe\ \varepsilon_0>0\ tal\ que$

$$I(u_0) \leq I(u_0 + v)$$
, para todo $v \in H_0^1(\Omega)$ com $|v|_{H^1} \leq \varepsilon_0$."

Nesse sentido, em 2000, Alonso, Azorero e Manfredi [3] estenderam o resultado de Brezis e Nirenberg para o espaço de Sobolev $W_0^{1,p}(\Omega)$, considerando o funcional

$$I(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \int_{\Omega} F(x, u) dx,$$

onde p>1 e f é uma função Carathéodory definida em $\Omega\times\mathbb{R}$ tal que $|f(x,s)|\leq C(1+|s|^{r-1}),$ para algum $r< p^*,$ com

$$p^* = \begin{cases} \frac{Np}{N-p}, & \text{se } p < N, \\ \infty, & \text{se } p \ge N. \end{cases}$$

Eles provaram que todo ponto de $W_0^{1,p}(\Omega)$ que é mínimo local de I na topologia de $C^1(\overline{\Omega})$, é também mínimo local de I na topologia de $W_0^{1,p}(\Omega)$. Um ponto crucial na prova do resultado apresentado por Alonso, Azorero e Manfredi é a obtenção da regularidade $C^{1,\alpha}(\overline{\Omega})$ para os pontos críticos de I, fato esse que é dificultado pela não linearidade do operador p-Laplaciano.

Prosseguindo com essa ideia, podemos citar ainda o trabalho de Fan [12] de 2007, que melhorou os trabalhos anteriores por provar o mesmo resultado estabelecido por Alonso, Azorero e Manfredi, porém com o funcional em questão definido em $W_0^{1,p(x)}(\Omega)$, no qual p(x) satisfaz condições apropriadas.

Em 2013, Tan e Fang [14] também generalizaram o resultado de Alonso, Azorero e Manfredi, porém eles consideraram o funcional definido no espaço de Orlicz-Sobolev, que denotaremos por $W_0^{1,P}(\Omega)$. Mais especificamente, para enunciarmos o resultado provado por eles, que é o principal resultado apresentado nesta dissertação, vamos considerar que $\Omega \subset \mathbb{R}^N$ é um domínio limitado com fronteira suave, $f: \Omega \times \mathbb{R} \to \mathbb{R}$ é uma função contínua e $a: (0,\infty) \to (0,\infty)$ satisfaz a seguinte hipótese:

 (p_1) : $a \in C^1(0, +\infty)$, a > 0 e monótona.

A partir disso, consideraremos a função

$$p(t) = \begin{cases} a(|t|)t, & \text{se } t \neq 0, \\ 0, & \text{se } t = 0, \end{cases}$$

e assumiremos que p é um homeomorfismo crescente de $\mathbb R$ em $\mathbb R$. Nesse caso, ficam bem definidas as N-funções

$$P(t) = \int_0^t p(s)ds$$
 e $\tilde{P}(t) = \int_0^t p^{-1}(s)ds$, $t > 0$,

em que P é denominada N-função representada por p e \tilde{P} , a N-função representada por p^{-1} . Admitiremos ainda que valem as seguintes designaldades:

$$(p_2): 1 < p^- := \inf_{t>0} \frac{tp(t)}{P(t)} \leqslant p^+ := \sup_{t>0} \frac{tp(t)}{P(t)} < +\infty;$$

$$(p_3): 0 < a^- := \inf_{t>0} \frac{tp'(t)}{p(t)} \leqslant a^+ := \sup_{t>0} \frac{tp'(t)}{p(t)} < +\infty.$$

Assim, das considerações acima, podemos definir o espaço de Orlicz-Sobolev $W_0^{1,P}(\Omega)$ associado a N-função P que, sob a hipótese (p_2) , é um espaço de Banach, reflexivo e separável.

Dessa forma, podemos considerar o seguinte funcional definido em $W_0^{1,P}(\Omega)$ por

$$I(u) = \int_{\Omega} P(|\nabla u|) dx - \int_{\Omega} F(x, u) dx,$$

em que F é dado por (1) e f satisfaz a seguinte condição:

 $(f_*): f(x,0) = 0$ e existem um homeomorfismo ímpar e crescente $h: \mathbb{R} \to \mathbb{R}$ $(h(\mathbb{R}) = \mathbb{R})$ e constantes não negativas a_1 e a_2 , tais que

$$|f(x,t)| \leq a_1 + a_2 h(|t|), \quad \forall t \in \mathbb{R}, \forall x \in \overline{\Omega}$$

e

$$\lim_{t \to \infty} \frac{H(t)}{P^*(kt)} = 0, \ \forall \ k > 0, \tag{2}$$

onde

$$H(t) := \int_0^t h(s)ds$$

é a N-função representada por he P^{\ast} é a N-função cuja a inversa é dada por

$$(P^*)^{-1}(t) = \int_0^t \frac{P^{-1}(s)}{s^{1+\frac{1}{N}}} ds$$

(aqui estamos admitindo que $\int_0^1 \frac{P^{-1}(s)}{s^{1+\frac{1}{N}}} ds < \infty \text{ e } \int_1^\infty \frac{P^{-1}(s)}{s^{1+\frac{1}{N}}} ds = \infty, \text{ para que } P^*$ exista e seja uma N-função.)

Adicionalmente, denotando por

$$h^{-} := \inf_{t>0} \frac{th(t)}{H(t)}, \quad h^{+} := \sup_{t>0} \frac{th(t)}{H(t)}, \quad p^{*-} := \inf_{t>0} \frac{tp^{*}(t)}{P^{*}(t)} \quad e \quad p^{*+} := \sup_{t>0} \frac{tp^{*}(t)}{P^{*}(t)}$$

vamos admitir que H satisfaz:

$$(h_1): 1 < h^- := \inf_{t>0} \frac{th(t)}{H(t)} \leqslant h^+ := \sup_{t>0} \frac{th(t)}{H(t)} < +\infty;$$

$$(h_2): p^+ < h^- \le h^+ \le p^{*-}.$$

Sob essas hipóteses, provaremos o seguinte resultado que generaliza o teorema apresentado por Alonso, Azorero e Manfredi:

Teorema A: Assuma que (p_1) , (p_2) , (p_3) , (f_*) , (h_1) e (h_2) valem. Se $u_0 \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega})$ é um mínimo local de I na topologia de $C^1(\overline{\Omega})$, então u_0 é mínimo local de I na topologia de $W_0^{1,P}(\Omega)$.

Como uma consequência desse teorema, vamos estabelecer um teorema de sub e supersolução para a seguinte classe de problemas:

(P):
$$\begin{cases} -\Delta_P u = f(x, u), & \text{em } \Omega, \\ u = 0, & \text{na } \partial \Omega, \end{cases}$$

onde $\Delta_P u := div(a(|\nabla u|)\nabla u)$. A solução obtida por esse método, via Teorema A, tem a propriedade peculiar de ser mínimo local de I na topologia de $W_0^{1,P}(\Omega)$.

Nesse sentido, diremos que $v \in W^{1,P}(\Omega)$ é uma subsolução (respectivamente, uma supersolução) de (P) se $v \leq$ (resp. \geq) 0 em $\partial\Omega$ e para todo $\phi \in W^{1,P}_0(\Omega)$ com $\phi \geq 0$,

$$\int_{\Omega} a(|\nabla v(x)|) \nabla v(x) \cdot \nabla \phi(x) dx \le (\text{resp.} \ge) \int_{\Omega} f(x, v(x)) \phi(x) dx$$

e que $u \in W_0^{1,P}(\Omega)$ é solução fraca de (P) se

$$\int_{\Omega} a(|\nabla u(x)|) \nabla u(x) \cdot \nabla \phi(x) dx = \int_{\Omega} f(x, u(x)) \phi(x) dx, \qquad \forall \ \phi \in W_0^{1, P}(\Omega). \tag{3}$$

Em particular, em [10] prova-se que os pontos críticos de I são exatamente as soluções fracas de (P). Nesse contexto, mostraremos um resultado de multiplicidade global de soluções positivas para o seguinte problema de autovalor:

$$(P_{\lambda}): \begin{cases} -\Delta_{P}u = \lambda f(x, u) + \mu |u|^{q-2}u, & \text{em } \Omega, \\ u > 0 & \text{em } \Omega & \text{e} \quad u = 0 \text{ na } \partial \Omega, \end{cases}$$

onde $q>p^+,\,\mu\geq 0$ é um número fixado, $f\in C(\overline{\Omega}\times\mathbb{R},\mathbb{R})$ e satisfaz a seguinte hipótese:

$$(F_0)$$
 $f(x,t) \ge 0$ se $t \ge 0$, $f(x,t)$ é não decrescente em $t \ge 0$.

Mais precisamente, se considerarmos os conjuntos

$$\Lambda = \{\lambda > 0 : (P_{\lambda}) \text{ tem uma solução } u_{\lambda}\},$$

$$\Lambda_0 = \Big\{\lambda > 0 : (P_{\lambda}) \text{ tem uma solução } u_{\lambda} \in W_0^{1,P}(\Omega)$$
 que é um mínimo local de I_{λ} na topologia $C^1\}$

e assumirmos que f satisfaz uma das condições:

- (F1) $f(x,0) \neq 0 \text{ em } \Omega$, ou
- (F2) f(x,0) = 0 e existem um conjunto aberto $U \subset \Omega$, uma bola fechada $\overline{B}(x_0,\varepsilon) \subset U$, $r_0 > 1$ e c > 0 constantes reais, tais que $f(x,t) \geq ct^{r_0-1}$ para todo $x \in \overline{B}(x_0,\varepsilon)$ e $t \in [0,1]$.

provaremos os seguintes resultados:

Teorema B: Assuma que (p_1) , (p_2) e (p_3) valem e que $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ satisfaz (F_0) e (F_1) ou (F_2) . Então Λ_0 e Λ são ambos intervalos não vazios, inf $\Lambda_0 = \inf \Lambda = 0$ e $int\Lambda \subset \Lambda_0$, para cada $\mu \geq 0$ fixado.

Teorema C: Sob as hipóteses do Teorema B, assuma adicionalmente que f satisfaz (f_*) e que valham as sequintes condições:

- 1. $\mu > 0$, $q > p_*^-$ e
- 2. existem $\theta > p^+$ e $R_1 > 0$, tais que $0 \le \theta F(x,t) \le tf(x,t)$, para todo $|t| \ge R_1$ e todo $x \in \overline{\Omega}$.

Então para cada $\lambda \in int\Lambda$, (P_{λ}) tem pelo menos duas soluções u_{λ} e v_{λ} tais que $u_{\lambda} < v_{\lambda}$ e u_{λ} é um mínimo local de I_{λ} na topologia de $W_0^{1,P}(\Omega)$.

Esses teoremas generalizam para os espaços de Orlicz-Sobolev um resultado apresentado por Alonso, Azorero e Manfredi para os espaços de Sobolev $W_0^{1,p}(\Omega)$, que pode ser enunciado como segue:

" Considere o seguinte problema de autovalor:

$$(P_{\lambda}):$$

$$\begin{cases}
-\Delta_{p}u = |u|^{r-2}u + \lambda|u|^{q-2}u, & \text{em } \Omega, \\
u = 0 & \text{na } \partial\Omega,
\end{cases}$$

com $1 < q < p < r < p^*$, $\lambda > 0$ e $\Omega \subset \mathbb{R}^N$ um domínio limitado e suave. Existe $0 < \lambda_0 < \infty$ tal que :

- Se $\lambda > \lambda_0$, o problema (P_{λ}) não tem solução positiva;
- Se $\lambda = \lambda_0$, então o problema (P_{λ}) admite pelo menos uma solução positiva $u \in W_0^{1,p}(\Omega)$;
- Se $0 < \lambda < \lambda_0$, então o problema (P_{λ}) tem pelo menos duas soluções positivas em $W_0^{1,p}(\Omega)$."

A organização deste trabalho é a seguinte:

No primeiro capítulo trataremos dos espaços de Orlicz e Orlicz-Sobolev. Na seção 1.1, expomos os conceito de N-função e provamos as propriedades básicas dessa classe especial de funções. Dada uma N-função P, definimos a classe de Orlicz $\mathcal{L}^P(\Omega)$ por

$$\mathcal{L}^P(\Omega) = \{u : \Omega \to \mathbb{R} \text{ mensurável} : \int_{\Omega} P(u(x)) dx < \infty\}.$$

O espaço de Orlicz $L^P(\Omega)$ é definido como sendo o espaço vetorial gerado por $\mathcal{L}^P(\Omega)$, isto é, $L^P(\Omega) = \langle \mathcal{L}^P(\Omega) \rangle$. No caso em que $P(t) = |t|^p/p$, $L^P(\Omega)$ é o bem conhecido espaço de Lebesgue $L^p(\Omega)$, portanto os espaços de Orlicz tratam-se de uma generalização dos espaços de Lebesgue. Podemos definir uma norma, de tal maneira que $L^P(\Omega)$ munido dessa norma seja um espaço de Banach. Veremos que, se a N-função P satisfaz certas condições, então a classe de Orlicz $\mathcal{L}^P(\Omega)$ coincide com o espaço de Orlicz $L^P(\Omega)$ e, além disso, $L^P(\Omega)$ tem propriedades satisfatórias, como reflexividade e separabilidade.

Na seção 1.6, definiremos os espaços de Orlicz-Sobolev a partir dos espaços de Orlicz de maneira análoga a que se obtem os espaços de Sobolev a partir dos espaços de Lebesgue. Na seção 1.7, provaremos um importante resultado de imersão dos espaços de Orlicz-Sobolev em espaços de Orlicz. Por fim, definiremos $W_0^{1,P}(\Omega)$, que será o subespaço apropriado para definirmos o funcional I associado ao problema (P).

No segundo capítulo, provaremos algumas propriedades do funcional I que serão úteis nos capítulos seguintes.

O objetivo principal do terceiro capítulo é a demonstração do Teorema A. Precisamos primeiramente provar uma regularidade do tipo $C^{1,\alpha}(\overline{\Omega})$ para as soluções de (P). Devido a não-linearidade do operador associado ao problema (P), a teoria de regularidade deve ser desonvolvida passo a passo. O que faremos no primeiro momento é provar que as soluções de (P) pertencem a $L^{\infty}(\Omega)$. A partir disso, a regularidade $C^{1,\alpha}(\overline{\Omega})$ segue dos trabalhos de Lieberman [23] e [24]. Com base na regularidade obtida e usando as propriedades do funcional I provaremos o Teorema A, que é o resultado principal desta dissertação.

No quarto e último capítulo daremos uma aplicação do resultado abstrato apresentado no capítulo 3. Primeiramente, vamos introduzir um método de sub e supersolução para o problema (P). Por meio do Teorema A veremos que, sob certas condições, a existência de

uma subsolução \underline{u} e uma supersolução \overline{u} nos garante a existência de uma solução u, que é mínimo local de I em $W_0^{1,P}(\Omega)$. Como uma aplicação deste fato, provaremos um resultado de multiplicidade global para o problema (P_{λ}) . Veremos que existe um intervalo, tal que para todo $\lambda > 0$ no interior desse intervalo o problema (P_{λ}) tem pelo menos duas soluções positivas, onde uma delas é obtida através do método de sub e supersolução e a segunda é obtida a partir do Teorema do Passo da Montanha.

Capítulo 1

Espaços de Orlicz e Orlicz - Sobolev

Neste capítulo apresentaremos alguns resultados clássicos envolvendo espaços de Orlicz e Orlicz-Sobolev.

1.1 - N-Funções

Definição 1.1. Dizemos que $P: \mathbb{R} \longrightarrow \mathbb{R}$ é uma N-função (ou função de Young) se

$$P(t) = \int_0^{|t|} p(s)ds, \quad t \in \mathbb{R},$$

onde a função real $p:[0,+\infty)\longrightarrow [0,+\infty)$ tem as seguintes propriedades:

- (i) p(0) = 0;
- (ii) p(s) > 0 para s > 0;
- (iii) p é contínua à direita para qualquer $s \ge 0$, isto é, se $s \ge 0$, então $\lim_{t \to s^+} p(t) = p(s)$;
- (iv) p é não decrescente em $[0, +\infty)$;
- (v) $\lim_{s\to\infty} p(s) = \infty$. Nesse caso diremos que P é a N-função representada por p. Segue da monotonicidade de p, que P é uma função convexa.

A proposição seguinte nos dá uma outra maneira de definir N-função:

Proposição 1.2. (Ver [21] ou [19]) Uma função convexa e contínua $P : \mathbb{R} \to [0, +\infty)$ é N-função se, somente se, satisfaz as seguintes propriedades:

(a) P é par;

(b) $P \in extritamente crescente em [0, +\infty);$

(c)
$$\lim_{t \to 0} \frac{P(t)}{t} = 0;$$

(d)
$$\lim_{t \to +\infty} \frac{P(t)}{t} = +\infty.$$

Se P é uma função convexa satisfazendo as condições (a)-(d), então sua representante integral é $p:[0,+\infty) \to [0,+\infty)$, onde p é a derivada à direita de P.

Exemplo 1.3. As funções a seguir são exemplos de N-funções:

1.
$$P(t) = \frac{|t|^p}{p}, \quad 1$$

2.
$$P(t) = e^{t^2} - 1$$
;

3.
$$P(t) = e^{|t|} - |t| - 1$$
;

4.
$$P(t) = (1 + |t|) \ln(1 + |t|) - |t|$$
.

Considere $p:[0,+\infty) \longrightarrow [0,+\infty)$ uma função satisfazendo as condições (i)-(v) da Definição 1.1. Assim, fica bem definida a função

$$\tilde{p}(s) = \sup_{p(t) \le s} t. \tag{1.1}$$

Proposição 1.4. Sejam p satisfazendo as condições (i)-(v) da definição 1.1 e \tilde{p} definido como em (1.1). Então valem as seguintes designaldades:

1.
$$\tilde{p}(p(t)) \geq t, \ \forall \ t \in \mathbb{R}^+;$$

2.
$$p(\tilde{p}(s)) \ge s, \ \forall \ s \in \mathbb{R}^+;$$

3.
$$\tilde{p}(p(t) - \varepsilon) \le t$$
, $\forall \ \varepsilon > 0 \ e \ \forall \ t \in \mathbb{R}^+$;

4.
$$p(\tilde{p}(s) - \varepsilon) \le s, \ \forall \ \varepsilon > 0 \ e \ \forall \ s \in \mathbb{R}^+.$$

Demonstração.

1. Considere o conjunto $A_t = \{t' : p(t') \le p(t)\}$. Claramente $t \in A_t$ e assim

$$\tilde{p}(p(t)) = \sup\{t' : p(t') \le p(t)\} \ge t.$$

2. Definindo $t_n = \tilde{p}(s) + \frac{1}{n}$, então $p(t_n) > s$ para todo $n \in \mathbb{N}$ e $t_n \setminus \tilde{p}(s)$. Usando a continuidade à direita de p, segue que $p(\tilde{p}(s)) \geq s$.

3. Se t' satisfaz $p(t') \le p(t) - \varepsilon < p(t)$, então do fato de p ser não decrescente segue que t' < t. Portanto t é cota superior de

$$\{t': p(t') \le p(t) - \varepsilon\}$$

e assim $\tilde{p}(p(t) - \varepsilon) = \sup\{t' : p(t') \le p(t) - \varepsilon\} \le t$.

- 4. Dado $\varepsilon > 0$, pela definição de supremo existe t_0 em $\{t : p(t) \leq s\}$ satisfazendo $\tilde{p}(s) \varepsilon \leq t_0 \leq \tilde{p}(s)$, donde $p(\tilde{p}(s) \varepsilon) \leq p(t_0) \leq s$.
- **Observação 1.5.** 1. A partir da proposição anterior, podemos reobter p a partir de \tilde{p} da seguinte maneira:

$$p(t) = \sup\{s : \tilde{p}(s) \le t\}.$$

- 2. \tilde{p} satisfaz as condições (i)-(v) da Definição 1.1 (Ver [19]).
- 3. Se p é contínua e estritamente crescente em $[0, +\infty)$, então \tilde{p} coincide com p^{-1} .

Definição 1.6. Considere P a N-função representada por p. Pela Observação 1.5-(2), podemos construir a N-função representada por $\tilde{p}(s) = \sup_{p(t) \leq s} t$, que é dada por

$$\tilde{P}(t) = \int_0^{|t|} \tilde{p}(s)ds, \quad t \in \mathbb{R}.$$

Nesse caso diremos que \tilde{P} é a N-função complementar a P.

- **Exemplo 1.7.** (a) Seja $P_1(t) = |t|^p/p$ a N-função representada por $p_1(t) = t^{p-1}$, com $1 . Então <math>\tilde{p}_1(s) = s^{\frac{1}{p-1}}$ e portanto $\tilde{P}_1(s) = |s|^q/q$, onde 1/p + 1/q = 1;
 - (b) Para a função de Young $P_2(t) = e^{|t|} |t| 1$, temos que $p_2(t) = (P_2(t))' = e^t 1$ $(t \ge 0)$, donde segue que $\tilde{p}_2(s) = \ln(s+1)$ $(s \ge 0)$ e

$$\tilde{P}_2(s) = \int_0^{|s|} \tilde{p}_2(r)dr = (1+|s|)ln(1+|s|) - |s|.$$

Vale observar que nem sempre é possível encontrar uma fórmula explícita para a N-função complementar. Por exemplo, se $P(t) = e^{t^2} - 1$, então $p(t) = 2te^{t^2}$ e não podemos explicitar uma expressão para $\tilde{p}(s)$.

Para quaisquer $t, s \in \mathbb{R}$, segue da desigualdade de Young que

$$ts \le \frac{|t|^p}{p} + \frac{|s|^q}{q}, \text{ onde } p, q > 1 \text{ e } \frac{1}{p} + \frac{1}{q} = 1.$$
 (1.2)

A próxima proposição nos assegura que a desigualdade (1.2) ainda permanece válida se trocarmos as N-funções $|t|^p/p$ e $|t|^q/q$ por qualquer outro par de N-funções complementares.

Proposição 1.8. (Designaldade de Young) Sejam P e \tilde{P} um par de N-funções complementares. Então para quaisquer t e s $\in \mathbb{R}$ vale a seguinte designaldade:

$$ts \le P(t) + \tilde{P}(s).$$

Demonstração.

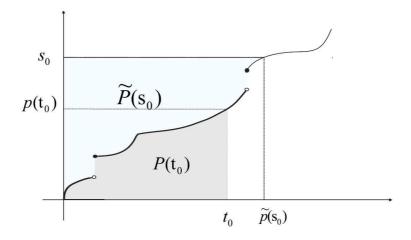


Figura 1.1: N-funções complementares

Pela construção de \tilde{P} é geometricamente claro que

$$|t|p(|t|) = P(|t|) + \tilde{P}(p(|t|))$$
 (1.3)

е

$$|s|\tilde{p}(|s|) = P(\tilde{p}(|s|)) + \tilde{P}(|s|). \tag{1.4}$$

Pela paridade de P e \tilde{P} , precisamos provar a desigualdade apenas no caso em que $t,s\geq 0$. Primeiramente suponha que $p(t)\leq s$. Pela Proposição 1.4

$$\int_{p(t)}^{s} \tilde{p}(r)dr \ge \tilde{p}(p(t))(s - p(t)) \ge t(s - p(t)).$$

Daí

$$P(t) + \tilde{P}(s) = P(t) + \int_0^s \tilde{p}(r)dr$$

$$= P(t) + \int_0^{p(t)} \tilde{p}(r)dr + \int_{p(t)}^s \tilde{p}(r)dr$$

$$\geq P(t) + st - tp(t) + \int_0^{p(t)} \tilde{p}(r)dr$$

$$= P(t) + \tilde{P}(p(t)) + st - tp(t)$$

$$\stackrel{(1.3)}{=} st$$

Por outro lado, se p(t) > s, então $\tilde{p}(s) < t$ e portanto por um raciocínio análogo e usando a identidade (1.4) obtemos também a desigualdade requerida.

Provaremos a seguir algumas propriedades úteis das N-funções:

Proposição 1.9. Sejam P e \tilde{P} um par de N-funções complementares. Então as seguintes propriedades se verificam:

- 1. $P(\alpha t) \leq \alpha P(t) \text{ para } \alpha \in [0, 1];$
- 2. P(t) < tp(t), para todo t > 0;
- 3. $P(\beta t) > \beta P(t)$ para todo $\beta > 1$ e $t \neq 0$;
- 4. $\tilde{P}(p(t)) \leq P(2t)$, para todo $t \geq 0$;
- 5. $\tilde{P}\left(\frac{P(t)}{t}\right) < P(t)$, para todo t > 0;
- 6. $t < P^{-1}(t)\tilde{P}^{-1}(t)$, para todo t > 0.

Demonstração.

- 1. Segue diretamente da convexidade de P;
- 2. Usando o fato de p ser não decrescente

$$P(t) = \int_0^t p(s)ds \le p(t)t.$$

Suponha que exista $t_0 > 0$ satisfazendo $P(t_0) = t_0 p(t_0)$. Nesse caso

$$\int_0^{t_0} p(t_0)dr = t_0 p(t_0) = P(t_0) = \int_0^{t_0} p(r)dr.$$
(1.5)

Como $t_0 > 0$ e $p(t_0) \ge p(r)$, para todo $0 \le r \le t_0$, então para que (1.5) valha, devemos ter $p(r) = p(t_0)$, q.t.p $r \in (0, t_0)$. Assim, pela continuidade à direita de p obtemos $0 < p(t_0) = p(0) = 0$, o que é absurdo. Portanto P(t) < tp(t), $\forall t > 0$;

3. Pela paridade de P, precisamos provar a desigualdade apenas para t>0. Tome então t>0, desse modo

$$P(\beta t) = \int_0^{\beta t} p(r)dr = \int_0^t p(r)dr + \int_t^{\beta t} p(r)dr$$

$$\geq P(t) + (\beta - 1)tp(t) > \beta P(t);$$

e portanto a desigualdade segue;

4.
$$\tilde{P}(p(t)) \stackrel{(1.3)}{=} tp(t) - P(t) \le tp(t) \le \int_{t}^{2t} p(r)dr \le \int_{0}^{2t} p(r)dr = P(2t);$$

5. Tomando t > 0, pelo item 2 desta proposição, P(t)/t < p(t). Considere $\varepsilon > 0$ tal que $P(t)/t = p(t) - \varepsilon$. Pela Proposição 1.4 e a identidade (1.4), temos

$$\tilde{P}\left(\frac{P(t)}{t}\right) < \frac{P(t)}{t}\tilde{p}\left(\frac{P(t)}{t}\right) = \frac{P(t)}{t}\tilde{p}(p(t) - \varepsilon) \le \frac{P(t)}{t}t = P(t);$$

6. Pelo item anterior temos que $\tilde{P}\left(\frac{P(t)}{t}\right) < P(t)$. Como P é bijetiva em $[0, \infty)$, consideremos s > 0 tal que P(s) = t. Sendo assim,

$$\tilde{P}\left(\frac{t}{P^{-1}(t)}\right) < t,$$

portanto $t < P^{-1}(t)\tilde{P}^{-1}(t)$.

Definição 1.10. Seja P uma N-função. Dizemos que P satisfaz a condição Δ_2 ($P \in \Delta_2$) se existem constantes k>0 e $t_0\geq 0$ tais que

$$P(2t) \le kP(t), \quad \forall \ t \ge t_0.$$

Exemplo 1.11. Satisfazem a condição Δ_2 :

1.
$$P_1(t) = \frac{|t|^p}{p}$$
, $1 ;$

2.
$$\tilde{P}_2(s) = (1+|s|)\ln(1+|s|) - |s|;$$

Não satisfazem a condição Δ_2 :

- 3. $P_2(t) = e^{|t|} |t| 1;$
- 4. $P(t) = e^{t^2} 1$.

Lema 1.12. Uma N-função P satisfaz a condição Δ_2 se, somente se, para cada l>1, existem constantes k_l e $t_0 \geq 0$ satisfazendo

$$P(lt) \le k_l P(t), \ t \ge t_0. \tag{1.6}$$

Demonstração. Suponha que $P \in \Delta_2$. Então

$$P(2t) < kP(t), \forall t > t_0.$$

Considerando l>1 arbitrário e $n\in\mathbb{N}$ tal que $l<2^n$, temos que para $t\geq t_0$

$$P(lt) < P(2^n t) < k^n P(t).$$

Reciprocamente, se vale (1.6) para todo l > 1, então em particular (1.6) vale para l = 2.

Lema 1.13. Uma condição necessária e suficiente para que uma N-função P satisfaça a condição Δ_2 é que existam constantes $t_0 > 0$ e $\alpha > 1$ tal que

$$\frac{tp(t)}{P(t)} < \alpha$$
, para todo $t \ge t_0$.

Demonstração. Se $P \in \Delta_2$, considere k e t_0 tais que

$$P(2t) \le kP(t), \quad \forall \ t \ge t_0.$$

Pela Proposição 1.9, $2P(t) < P(2t) \le kP(t)$ para todo t > 0, assim k > 2. Tomando $t \ge t_0$, temos

$$kP(t) \ge P(2t) = \int_0^{2t} p(r)dr \ge \int_t^{2t} p(r)dr \ge p(t)t.$$

Portanto

$$\frac{tp(t)}{P(t)} \le k, \ \forall \ t \ge t_0,$$

onde k > 2.

Reciprocamente, se existem constantes $t_0 > 0$ e $\alpha > 1$ satisfazendo

$$\frac{tp(t)}{P(t)} < \alpha, \quad \forall \ t \ge t_0,$$

então

$$\ln\left(\frac{P(2t)}{P(t)}\right) = \int_t^{2t} \frac{p(r)}{P(r)} dr \le \int_t^{2t} \frac{\alpha P(r)}{r P(r)} dr = \alpha (\ln(2t) - \ln t) = \alpha \ln 2,$$

donde $P(2t) \leq 2^{\alpha} P(t), \ \forall \ t \geq t_0.$

Observação 1.14. Se $P \in \Delta_2$, então pelo Lema 1.13 e considerando, sem perda de generalidade, $t_0 > 1$ temos que

$$\ln\left(\frac{P(t)}{P(t_0)}\right) = \int_{t_0}^t \frac{p(r)}{P(r)} dr \le \int_{t_0}^t \frac{\alpha}{r} dr = \ln\left(\frac{t}{t_0}\right)^{\alpha}$$

e portanto $P(t) \leq Ct^{\alpha}$ para todo $t \geq t_0$ e alguma constante $\alpha > 1$. Consequentemente o grau de uma N-função $P \in \Delta_2$ é dominado, para t suficientemente grande, por uma função polinomial Ct^{α} com $\alpha > 1$. Por essa razão as N-funções $e^{|t|} - |t| - 1$ e $e^{t^2} - 1$ não satisfazem a condição Δ_2 , pois elas vão para infinito mais rápido que qualquer função polinomial.

Definição 1.15. Dizemos que uma N-função P satisfaz a condição $\tilde{\Delta}_2$, se existem constantes l>1 e $s_0\geq 0$ tal que

$$2l\tilde{P}(s) \le \tilde{P}(ls), \ \forall \ s \ge s_0.$$

Lema 1.16. Considere P a N-função representada por p. Se existem constantes $\beta > 1$ e $t_0 > 0$ satisfazendo

$$\frac{tp(t)}{P(t)} \ge \beta, \quad \forall \ t \ge t_0,$$

então P satisfaz a condição $\tilde{\Delta}_2$.

Demonstração. Segue de maneira análoga ao Lema 1.13

Lema 1.17. Uma N-função P satisfaz Δ_2 se, e somente se, \tilde{P} satisfaz $\tilde{\Delta}_2$, onde \tilde{P} é a N-função complementar a P.

Demonstração. Suponha que $\tilde{P} \in \tilde{\Delta}_2$. Nesse caso existem constantes l > 1 e $s_0 \geq 0$ tais que

$$\tilde{P}(s) \le \frac{1}{2l}\tilde{P}(ls), \quad \forall \ s \ge s_0.$$

Defina

$$P_1(s) = \frac{1}{2l}\tilde{P}(ls).$$

Afirmação 1.18. $\tilde{P}_1(t) = \frac{1}{2l}P(2t)$.

Observe que

$$P_1(s) = \frac{1}{2l}\tilde{P}(ls) = \frac{1}{2l}\int_0^{ls} \tilde{p}(r)dr = \frac{1}{2}\int_0^s \tilde{p}(lr)dr,$$

desse modo P_1 é a N-função representada por $p_1(r) := \frac{1}{2}\tilde{p}(lr)$. Sendo assim

$$\tilde{p}_1(s) = \sup\{r : p_1(r) \le s\}$$

$$= \sup\{r : \tilde{p}(lr) \le 2s\}$$

$$= \frac{1}{l} \sup\{r : \tilde{p}(r) \le 2s\} = \frac{1}{l} p(2s),$$

donde obtemos que

$$\tilde{P}_1(t) = \int_0^t \tilde{p}_1(r)dr = \frac{1}{l} \int_0^t p(2r)dr = \frac{1}{2l} \int_0^{2t} p(r)dr = \frac{1}{2l} P(2t).$$

Afirmação 1.19. $\frac{1}{2l}P(2t) \leq P(t), \ \forall \ t \geq t_0 = p_1(s_0).$

Por hipótese

$$\tilde{P}(s) \le P_1(s), \quad s \ge s_0, \tag{1.7}$$

entretanto, considerando $t \geq t_0$, temos pela Proposição 1.4 que

$$\tilde{p}_1(t) \ge \tilde{p}_1(t_0) = \tilde{p}_1(p_1(s_0)) \ge s_0.$$
 (1.8)

Por outro lado, por (1.4) segue que

$$\tilde{p}_1(t)t = P_1(\tilde{p}_1(t)) + \tilde{P}_1(t)$$

e pela desigualdade de Young temos

$$\tilde{p}_1(t)t \leq \tilde{P}(\tilde{p}_1(t)) + P(t).$$

Assim,

$$P_1(\tilde{p}_1(t)) + \tilde{P}_1(t) \le \tilde{P}(\tilde{p}_1(t)) + P(t).$$
 (1.9)

Desse modo, se $t \ge t_0$, então por (1.7) - (1.9) obtemos

$$\tilde{P}_1(t) \le [\tilde{P}(\tilde{p}_1(t)) - P_1(\tilde{p}_1(t))] + P(t) \le P(t),$$

isto é, $P(2t) \leq 2lP(t)$, $t \geq t_0$. Portanto P satisfaz Δ_2 .

Reciprocamente, suponha que $P \in \Delta_2$. Desse modo existem constantes k > 0 e $t_0 \ge 0$ tais que

$$P(2t) \le kP(t), \quad \forall \ t \ge t_0.$$

Além disso, segue da Proposição 1.9 que k>2. Definindo $P_2(t)=\frac{1}{k}P(2t)$, pelo mesmo argumento anterior obtemos que $\tilde{P}_2(s)=\frac{1}{k}\tilde{P}\left(\frac{k}{2}s\right)$ e $\tilde{P}(s)\leq \tilde{P}_2(s), \ \forall \ s\geq s_0=p(t_0)$. Portanto $\tilde{P}\in\tilde{\Delta}_2$, como queríamos provar.

Definição 1.20. Dizemos que uma N-função P é Δ - regular, se $P \in \Delta_2 \cap \tilde{\Delta}_2$.

Exemplo 1.21. $P_1(t) = |t|^p/p$ é Δ - regular.

1.2 - Classes de Orlicz

No que segue $\Omega \subset \mathbb{R}^N$ é um domínio limitado com fronteira suave, onde estamos considerando a medida de Lebesgue.

Definição 1.22. Seja P uma N-função. A classe de Orlicz $\mathcal{L}^P(\Omega)$ é definida por

$$\mathcal{L}^{P}(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ mensurável; } \int_{\Omega} P(u(x)) dx < +\infty \right\}.$$

Em particular, $L^{\infty}(\Omega) \subset \mathcal{L}^{P}(\Omega)$, para qualquer N-função P.

Observação 1.23. Adotaremos a seguinte notação:

$$\rho(u) = \rho(u, P) := \int_{\Omega} P(u(x)) dx.$$

Exemplo 1.24. Os espaços de Lebesgue $L^p(\Omega)$ com p > 1, são casos especiais de classes de Orlicz. De fato, se considerarmos a N-função $P(t) = |t|^p/p$, temos que o conjunto $L^p(\Omega) = \mathcal{L}^p(\Omega)$.

Teorema 1.25. $L^1(\Omega) = \bigcup_{P} \mathcal{L}^P(\Omega)$, onde a união é tomada sobre todas as N-funções.

Demonstração. Considere $u \in \mathcal{L}^P(\Omega)$, para alguma N-função $P(t) = \int_0^{|t|} p(r) dr$. Se u é limitada, então $u \in L^1(\Omega)$. Suponha então que u é ilimitada.

Como $p(t) \to +\infty$ quando $t \to +\infty$, então tomemos K > 0 tal que $p\left(\frac{|u(x)|}{2}\right) \ge 1$, para todo |u(x)| > K. Definindo

$$\Omega_K = \{ x \in \Omega : |u(x)| \le K \},$$

obtemos:

$$+\infty > 2 \int_{\Omega} P(|u|) dx = 2 \int_{\Omega} \int_{0}^{|u(x)|} p(r) dr dx \ge 2 \int_{\Omega} \int_{|u(x)|/2}^{|u(x)|} p(r) dr dx$$
$$\ge \int_{\Omega} p\left(\frac{|u(x)|}{2}\right) |u(x)| dx \ge \int_{\Omega \setminus \Omega_K} p\left(\frac{|u(x)|}{2}\right) |u(x)| dx. \tag{1.10}$$

Daí,

$$\begin{split} \int_{\Omega} |u(x)| dx &= \int_{\Omega \backslash \Omega_K} |u(x)| dx + \int_{\Omega_K} |u(x)| dx \\ &\leq \int_{\Omega \backslash \Omega_K} |u(x)| dx + K |\Omega_K| \\ &\leq \int_{\Omega \backslash \Omega_K} p\left(\frac{|u(x)|}{2}\right) |u(x)| dx + K |\Omega_K| \overset{(1.10)}{<} + \infty, \end{split}$$

portanto $u \in L^1(\Omega)$.

Tome agora $u \in L^1(\Omega)$. Queremos provar que $u \in \mathcal{L}^P(\Omega)$, para alguma N-função P. Para isso considere os conjuntos

$$\Omega_n = \{ x \in \Omega : n - 1 \le |u(x)| < n \}.$$

Assim,

$$\int_{\Omega} |u(x)| dx = \sum_{n=1}^{\infty} \int_{\Omega_n} |u(x)| dx$$
$$\geq \sum_{n=1}^{\infty} (n-1) |\Omega_n| = \sum_{n=1}^{\infty} n |\Omega_n| - |\Omega|.$$

Portanto,

$$\sum_{n=1}^{\infty} n |\Omega_n| < +\infty.$$

Seja $\{\alpha_n\} \subset \mathbb{R}$ uma sequência estritamente crescente, crescendo indefinidamente, com $\alpha_1 = 1$, para a qual ainda tenhamos

$$\sum_{n=1}^{\infty} \alpha_n n |\Omega_n| < +\infty.$$

Definindo $p:[0,\infty)\longrightarrow [0,\infty)$ por

$$p(t) = \begin{cases} t, & 0 \le t < 1, \\ \alpha_n, & n \le t < n+1, \end{cases}$$

temos que p é não decrescente, contínua à direita, $p(0)=0,\ p(t)>0$ para t>0 e $\lim_{t\to\infty}p(t)=\infty.$ Considerando a N-função

$$P(t) = \int_0^{|t|} p(r)dr,$$

pelo fato de $P(n) = \int_0^n p(r)dr \le n\alpha_n$ temos

$$\int_{\Omega} P(|u(x)|)dx = \sum_{n=1}^{\infty} \int_{\Omega_n} P(|u(x)|)dx$$

$$\leq \sum_{n=1}^{\infty} P(n)|\Omega_n| \leq \sum_{n=1}^{\infty} n\alpha_n |\Omega_n| < \infty.$$

Portanto $u \in \mathcal{L}^P(\Omega)$, como queríamos provar.

O próximo resultado estabelece uma maneira de comparar duas classes de Orlicz.

Teorema 1.26. Sejam P_1 e P_2 duas N-funções. A inclusão

$$\mathcal{L}^{P_1}(\Omega) \subset \mathcal{L}^{P_2}(\Omega)$$

ocorre se, somente se, existem constantes positivas t_0 e a tais que

$$P_2(t) \le aP_1(t), \quad \forall \ t \ge t_0. \tag{1.11}$$

Demonstração. (\Leftarrow) Considerando $u \in \mathcal{L}^{P_1}(\Omega)$, temos que

$$\rho(u, P_2) \le |\Omega| P_2(t_0) + a\rho(u, P_1) < \infty.$$

 (\Rightarrow) Suponha, por absurdo, que (1.11) não se verifique. Nesse caso existe uma sequência crescente $\{t_n\}$, com $t_1>0$, tal que

$$P_2(t_n) > 2^n P_1(t_n).$$

Dividindo Ω em subdomínios Ω_n tais que

$$|\Omega_n| = \frac{P_1(t_1)|\Omega|}{2^n P_1(t_n)},$$

vamos definir $u:\Omega\longrightarrow\mathbb{R}$ como segue:

$$u(x) = \begin{cases} t_n, & \text{se } x \in \Omega_n, \\ 0, & \text{se } x \notin \bigcup_{n=1}^{\infty} \Omega_n. \end{cases}$$

Afirmamos que u assim definida pertence a $\mathcal{L}^{P_1}(\Omega)$. De fato,

$$\rho(u, P_1) = \sum_{n=1}^{\infty} \int_{\Omega_n} P_1(u(x)) dx = \sum_{n=1}^{\infty} P_1(t_n) |\Omega_n| = P_1(t_1) |\Omega| \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty.$$

Provaremos agora que $u \notin \mathcal{L}^{P_2}(\Omega)$, o que é um absurdo. Para isto, observe que

$$\rho(u, P_2) = \sum_{n=1}^{\infty} \int_{\Omega_n} P_2(u(x)) dx = \sum_{n=1}^{\infty} P_2(t_n) |\Omega_n|$$

$$> \sum_{n=1}^{\infty} 2^n P_1(t_n) |\Omega_n| = \sum_{n=1}^{\infty} 2^n P_1(t_n) |\Omega| \frac{P_1(t_1)}{P_1(t_n)} = \infty.$$

Observação 1.27. Segue do teorema anterior que duas N-funções P_1 e P_2 determinam a mesma classe de Orlicz se, somente se, existem constantes positivas a, b e t_0 , tais que

$$aP_2(t) \le P_1(t) \le bP_2(t), \quad \forall \ t \ge t_0.$$

De modo geral, uma classe de Orlicz não tem estrutura de espaço vetorial (ver [19], pg 65). O próximo resultado nos dá uma condição necessária e suficiente para que uma determinada classe de Orlicz seja um espaço vetorial.

Teorema 1.28. Seja P uma N-função. Então $\mathcal{L}^P(\Omega)$ é espaço vetorial se, e somente se, $P \in \Delta_2$.

Demonstração. (\Rightarrow) Se $\mathcal{L}^P(\Omega)$ é espaço vetorial e $u \in \mathcal{L}^P(\Omega)$, então $2u \in \mathcal{L}^P(\Omega)$, isto é $\rho(u, P_1) < \infty$, onde P_1 é a N-função dada por $P_1(t) := P(2t)$. Portanto

$$\mathcal{L}^{P}(\Omega) \subset \mathcal{L}^{P_1}(\Omega),$$

e assim segue do Teorema 1.26 que existem constantes positivas t_0 e a tais que

$$P(2t) \le aP(t), \quad \forall \ t \ge t_0,$$

ou seja, $P \in \Delta_2$.

 (\Leftarrow) Suponha que $P \in \Delta_2$, então dado l > 1 existem constantes positivas k_l e t_0 tais que

$$P(lt) \le k_l P(t), \quad \forall \ t \ge t_0.$$

Tomando $u \in \mathcal{L}^P(\Omega)$ e considerando o conjunto $A = \{x : \Omega : |u(x)| < t_0\}$, temos que

$$\rho(lu, P) = \int_{\Omega \setminus A} P(lu(x))dx + \int_{A} P(lu(x))dx$$

$$\leq k_l \int_{\Omega \setminus A} P(u(x)) dx + P(lt_0)|A| < \infty,$$

portanto $lu \in \mathcal{L}^P(\Omega)$ para l > 1.

Se $0 \le l \le 1$, então para todo $x \in \Omega$ temos $P(lu(x)) \le P(u(x))$, pois P é par e crescente, assim $\rho(lu, P) \le \rho(u, P) < +\infty$. No caso em que l < 0, $lu \in \mathcal{L}^P(\Omega)$, pois $-lu \in \mathcal{L}^P(\Omega)$ e P é par.

Considere agora u_1 e $u_2 \in \mathcal{L}^P(\Omega)$. Então

$$\rho(u_1 + u_2, P) = \int_{\Omega} P\left(\frac{1}{2}(u_1(x) + u_2(x))\right) dx \le \frac{1}{2}\rho(2u_1, P) + \frac{1}{2}\rho(2u_2, P) < +\infty,$$

portanto $u_1 + u_2 \in \mathcal{L}^P(\Omega)$.

De tudo que mostramos, $\mathcal{L}^P(\Omega)$ é espaço vetorial.

1.3 - Espaços de Orlicz

Dada uma N-função P, denotaremos por $L^P(\Omega)$ o menor espaço vetorial que contém $\mathcal{L}^P(\Omega)$. Em outras palavras, $L^P(\Omega)$ é o espaço vetorial gerado por $\mathcal{L}^P(\Omega)$, isto é,

$$L^P(\Omega) = \langle \mathcal{L}^P(\Omega) \rangle$$
.

Pelo Teorema 1.28, $L^P(\Omega)$ coincide com $\mathcal{L}^P(\Omega)$ se, somente se, P satisfaz Δ_2 . Definiremos a seguinte norma em $L^P(\Omega)$:

$$||u||_P := \sup \left\{ \left| \int_{\Omega} u(x)v(x)dx \right| : \rho(v,\tilde{P}) \le 1 \right\},$$

que é denominada norma de Orlicz.

Lema 1.29. Considere P a N-função representada por p. Suponha que $u \in L^P(\Omega)$ e $||u||_P \le 1$. Então a função $v_0(x) := p(|u(x)|)$ pertence a $\mathcal{L}^{\tilde{P}}(\Omega)$ e $\rho(v_0, \tilde{P}) \le 1$.

Demonstração. Primeiramente provaremos que para toda função $v \in \mathcal{L}^{\tilde{P}}(\Omega)$ temos

$$\left| \int_{\Omega} u(x)v(x)dx \right| \le \begin{cases} \|u\|_{P}, & \text{se } \rho(v,\tilde{P}) \le 1, \\ \|u\|_{P} \rho(v,\tilde{P}), & \text{se } \rho(v,\tilde{P}) > 1. \end{cases}$$
 (1.12)

A primeira inequação em (1.12) segue diretamente da definição da norma $\|\cdot\|_P$. Para obter a segunda inequação, note que pela convexidade de P temos

$$\tilde{P}\left(\frac{v(x)}{\rho(v,\tilde{P})}\right) \le \frac{1}{\rho(v,\tilde{P})}\tilde{P}(v(x)),$$

donde

$$\int_{\Omega} \tilde{P}\left(\frac{v(x)}{\rho(v,\tilde{P})}\right) dx \leq \frac{1}{\rho(v,\tilde{P})} \int_{\Omega} \tilde{P}(v(x)) dx = 1.$$

Sendo assim, $\rho\left(\frac{v}{\rho(v,\tilde{P})},\tilde{P}\right) \leq 1$, o que implica em

$$\left| \int_{\Omega} u(x) \frac{v(x)}{\rho(v, \tilde{P})} dx \right| \le ||u||_{P}$$

desse modo obtemos a inequação desejada.

Suponha que $||u||_P \le 1$ e considere a seguinte sequência:

$$u_n(x) = \begin{cases} |u(x)|, & \text{se } |u(x)| \le n, \\ 0, & \text{se } |u(x)| > n. \end{cases}$$

Como as funções u_n são limitadas, temos que $\tilde{P}(p(|u_n|))$ são limitadas (note que p e \tilde{P} são não decrescentes) e portanto mensuráveis. Suponha por absurdo que a afirmação do lema não seja verdadeira, então $\rho(v_0, \tilde{P}) > 1$. Pela continuidade de p e \tilde{P} , temos que

$$\tilde{P}(p(|u_n(x)|)) \longrightarrow \tilde{P}(p(|u(x)|)), \quad x \in \Omega.$$

Além disso, $\tilde{P}(p(|u_n|)) \leq \tilde{P}(p(|u_{n+1}|))$, $\forall n \in \mathbb{N}$. Portanto, segue do Teorema A.3 que

$$\lim_{\Omega} \int_{\Omega} \tilde{P}(p(|u_n|)) dx = \int_{\Omega} \tilde{P}(p(|u|)) dx > 1$$

e assim existe $n_0 \in \mathbb{N}$ tal que

$$\int_{\Omega} \tilde{P}(p(|u_{n_0}|)dx > 1.$$

Por outro lado,

$$\tilde{P}(p(|u_{n_0}(x)|)) < P(|u_{n_0}(x)|) + \tilde{P}(p(|u_{n_0}(x)|)) \stackrel{\text{(1.3)}}{=} |u_{n_0}(x)|p(|u_{n_0}(x)|). \tag{1.13}$$

Como $p(|u_{n_0}|) \in \mathcal{L}^{\tilde{P}}(\Omega)$, então integrando (1.13) obtemos:

$$\int_{\Omega} \tilde{P}(p(|u_{n_0}(x)|))dx < \int_{\Omega} |u_{n_0}(x)|p(|u_{n_0}(x)|dx \leq ||u_{n_0}||_{P} \int_{\Omega} \tilde{P}(p(|u_{n_0}(x)|))dx,$$

e isto contradiz a inequação $||u_{n_0}||_P \le ||u_n||_P \le 1$.

Lema 1.30. Suponha que $u \in L^P(\Omega)$ e que $\|u\|_P \leq 1$. Então $u \in \mathcal{L}^P(\Omega)$ e $\rho(u,P) \leq \|u\|_P$.

Demonstração. Seja $v_0(x) = p(|u(x)|)sgnu(x)$, então pelo Lema 1.29 temos que $\rho(v_0, \tilde{P}) \leq 1$ e pela identidade

$$u(x)v_0(x) = P(u(x)) + \tilde{P}(v_0(x)),$$

obtemos

$$\int_{\Omega} P(u(x))dx \leq \int_{\Omega} P(u(x))dx + \int_{\Omega} \tilde{P}(v_0(x))dx$$
$$= \int_{\Omega} u(x)v_0(x)dx \leq \|u\|_{P}.$$

Para calcular a norma $||u||_P$, precisamos conhecer a expressão da N-função complementar a P e isto nem sempre é simples de se obter. A seguir definiremos uma norma equivalente a norma $||\cdot||_P$ em $L^P(\Omega)$, que é expressa somente em termos de P.

Proposição 1.31. A expressão

$$|u|_P := \inf\{\lambda > 0 : \int_{\Omega} P\left(\frac{u(x)}{\lambda}\right) dx \le 1\},$$

define uma norma em $L^{P}(\Omega)$, chamada norma de Luxemburgo.

Demonstração. Considerando $0 \neq u \in L^P(\Omega)$, pelo Lema 1.30

$$\rho\left(\frac{u}{\|u\|_P}, P\right) \le 1$$

e assim $|u|_P < +\infty$. Se u = 0, então $|u|_P = 0$. Portanto , em qualquer caso, $|\cdot|_P$ está bem definido.

• Claramente, se u=0 então $|u|_P=0$, pois nesse caso

$$\rho\left(\frac{u}{\lambda}, P\right) = 0$$
 para todo $\lambda > 0$.

Por outro lado, se $|u|_P = 0$ então existe uma sequência de números positivos $\{\lambda_n\}$ tal que

$$\lambda_n \to |u|_P = 0 \quad \text{e} \quad \rho\left(\frac{u}{\lambda_n}, P\right) \le 1, \quad \forall \ n \in \mathbb{N}.$$

Fixando $n_0 \in \mathbb{N}$, para n suficientemente grande temos que $\frac{\lambda_{n_0}}{\lambda_n} > 1$, assim segue da Proposição 1.9 que

$$P\left(\frac{u(x)}{\lambda_n}\right) = P\left(\frac{\lambda_{n_0}}{\lambda_n} \cdot \frac{|u(x)|}{\lambda_{n_0}}\right)$$
$$> \frac{\lambda_{n_0}}{\lambda_n} P\left(\frac{|u(x)|}{\lambda_{n_0}}\right) = \frac{\lambda_{n_0}}{\lambda_n} P\left(\frac{u(x)}{\lambda_{n_0}}\right).$$

Portanto

$$\frac{\lambda_{n_0}}{\lambda_n} \rho\left(\frac{u(x)}{\lambda_{n_0}}, P\right) \le \rho\left(\frac{u(x)}{\lambda_n}, P\right) \le 1,\tag{1.14}$$

para todo n suficientemente grande.

Fazendo $n \to \infty$ em (1.14), obtemos

$$+\infty = \lim_{n \to \infty} \rho\left(\frac{u(x)}{\lambda_{n_0}}, P\right) \le 1,$$

exceto se $\rho\left(\frac{u(x)}{\lambda_{n_0}}, P\right) = 0$ q.t.p em Ω . Nesse caso u(x) = 0 q.t.p em Ω , como queríamos obter.

$$\begin{aligned} |\alpha u|_P &= \inf\{\lambda > 0 : \rho\left(\frac{|\alpha|u}{\lambda}, P\right) \le 1\} \\ &= \inf\{|\alpha|\lambda' > 0 : \rho\left(\frac{u}{\lambda'}, P\right) \le 1\} \\ &= |\alpha|\inf\{\lambda' > 0 : \rho\left(\frac{u}{\lambda'}, P\right) \le 1\} = |\alpha||u|_P. \end{aligned}$$

• Tomando u e v em $L^P(\Omega)$, se u ou v é zero então a desigualdade triangular segue trivialmente. Se ambos forem não identicamente nulos, então

$$\rho\left(\frac{u(x) + v(x)}{|u|_P + |v|_P}, P\right) \le \rho\left(\frac{|u(x)| + |v(x)|}{|u|_P + |v|_P}, P\right)$$

$$= \rho\left(\frac{|u|_P}{|u|_P + |v|_P} \cdot \frac{|u(x)|}{|u|_P} + \frac{|v|_P}{|u|_P + |v|_P} \cdot \frac{|v(x)|}{|v|_P}, P\right)$$

$$\le \frac{|u|_P}{|u|_P + |v|_P} \rho\left(\frac{|u(x)|}{|u|_P}, P\right) + \frac{|v|_P}{|u|_P + |v|_P} \rho\left(\frac{|v(x)|}{|v|_P}, P\right) \le 1$$

pois veremos posteriomente que $|u|_p = \min\{\lambda > 0 : \rho\left(\frac{u}{\lambda}, P\right) \le 1\}$. Assim $|u+v|_P \le |u|_P + |v|_P$.

Proposição 1.32. $|u|_P = \min\{\lambda > 0 : \rho\left(\frac{u}{\lambda}, P\right) \le 1\}.$

Demonstração. Considere $0 \neq u \in L^P(\Omega)$ e seja $\{\lambda_n\}$ uma sequência minimizante de $|u|_P$, isto é, $\{\lambda_n\}$ é uma sequência de números positivos convergindo para $|u|_P$. Sendo assim, para todo $x \in \Omega$ temos

$$P\left(\frac{u(x)}{\lambda_n}\right) \longrightarrow P\left(\frac{u(x)}{|u|_P}\right).$$

Como $P\left(\frac{u(x)}{\lambda_n}\right) \geq 0, \ \forall \ x \in \Omega$, então pelo Teorema A.4 segue que

$$\int_{\Omega} P\left(\frac{u(x)}{|u|_P}\right) dx \le \sup_{n} \left\{ \int_{\Omega} P\left(\frac{u(x)}{\lambda_n}\right) dx \right\} \le 1,$$

como queríamos.

Observação 1.33. Se K > 0 é tal que $\int_{\Omega} P\left(\frac{u(x)}{K}\right) dx = 1$, então $|u|_P = K$. De fato, basta observar que para todo $\varepsilon > 0$ satisfazendo $K - \varepsilon > 0$, tem-se

$$\int_{\Omega} P\left(\frac{u(x)}{K-\varepsilon}\right) dx = \int_{\Omega} P\left(\frac{|u(x)|}{K-\varepsilon}\right) dx > \int_{\Omega} P\left(\frac{|u(x)|}{K}\right) dx = \int_{\Omega} P\left(\frac{u(x)}{K}\right) dx = 1.$$

Por outro lado, se P satisfaz Δ_2 e $|u|_P=K$ então tomando $\varepsilon\in(0,K/2)$ temos que

$$\int_{\Omega} P\left(\frac{u(x)}{K - \varepsilon}\right) dx > 1 \quad \text{e} \quad P\left(\frac{|u(x)|}{K - \varepsilon}\right) \le P\left(\frac{2|u(x)|}{K}\right) \in L^{1}(\Omega).$$

Como

$$\lim_{\varepsilon \to 0^+} P\left(\frac{|u(x)|}{K - \varepsilon}\right) = P\left(\frac{|u(x)|}{K}\right),\,$$

então pelo Teorema A.1

$$1 \le \lim_{\varepsilon \to 0^+} \int_{\Omega} P\left(\frac{|u(x)|}{K - \varepsilon}\right) dx = \int_{\Omega} P\left(\frac{|u(x)|}{K}\right) dx \le 1.$$

Portanto

$$\int_{\Omega} P\left(\frac{u(x)}{K}\right) dx = 1.$$

Proposição 1.34. Para cada $u \in L^{P}(\Omega)$,

$$|u|_P \le ||u||_P \le 2|u|_P.$$

 Demonstração. Se u=0, não há o que fazer. Suponha então que $u\neq 0$. Neste caso, pelo Lema 1.30

$$\rho\left(\frac{u(x)}{\|u\|_P}, P\right) \le 1,$$

portanto $|u|_P \leq ||u||_P$.

Por outro lado, segue da Proposição 1.32 que $\rho\left(\frac{u(x)}{|u|_P},P\right) \leq 1$, assim

$$\left\| \frac{u}{|u|_P} \right\|_P = \sup_{\rho(v,\tilde{P}) < 1} \left| \int_{\Omega} \frac{u(x)}{|u|_P} v(x) dx \right| \stackrel{Young}{\leq} \rho \left(\frac{u}{|u|_P}, P \right) + 1 \leq 2,$$

portanto $||u||_P \le 2|u|_P$.

Definição 1.35. O espaço vetorial normado $(L^P(\Omega), |\cdot|_P)$ é chamado espaço de Orlicz com respeito a N-função P.

Afim de simplificar a notação, iremos nos referir ao espaço $(L^P(\Omega), |\cdot|_P)$ apenas como $L^P(\Omega)$.

Teorema 1.36. $L^P(\Omega) \stackrel{cont.}{\hookrightarrow} L^1(\Omega)$.

Demonstração. Primeiramente, como $\mathcal{L}^P(\Omega) \subset L^1(\Omega)$, então $L^P(\Omega) = \langle \mathcal{L}^P(\Omega) \rangle \subset L^1(\Omega)$. Considere agora \tilde{P} a N-função complementar a P, C > 0 tal que $\tilde{P}(C) = 1/|\Omega|$ e $u \in L^P(\Omega)$. Como $\int_{\Omega} \tilde{P}(C) dx = 1$, temos

$$\int_{\Omega} |u(x)| dx = \frac{1}{C} \int_{\Omega} Cu(x) \operatorname{sgn} u(x) dx$$

$$\leq \frac{1}{C} \sup_{\rho(v,\tilde{P}) < 1} \left| \int_{\Omega} u(x) v(x) dx \right| = \frac{1}{C} \|u\|_{P} \leq \frac{2}{C} |u|_{P},$$

como queríamos obter.

Teorema 1.37. Todo espaço de Orlicz é completo.

Demonstração. Como as normas $|\cdot|_P$ e $||\cdot||_P$ são equivalentes, então adotaremos a norma $||\cdot||_P$ para o provar o teorema.

Seja $\{u_n\}\subset L^P(\Omega)$ sequência de Cauchy, isto é,

$$\lim_{n,m\to\infty} \|u_m - u_n\|_P = 0.$$

Pelo Teorema 1.36, $\{u_n\}$ é sequência de Cauchy em $L^1(\Omega)$. Como $L^1(\Omega)$ é completo, então existe $u_0 \in L^1(\Omega)$ tal que

$$u_n \to u_0$$
, em $L^1(\Omega)$.

Pelo Teorema A.2, existe uma subsequência $\{u_{n_k}\}$ tal que

$$u_{n_k}(x) \to u_0(x)$$
, q.t.p em Ω .

Como $\{u_{n_k}\}$ é ainda uma sequência de Cauchy em $L^P(\Omega)$, então tomando $\varepsilon > 0$ arbitrário, podemos encontrar $k(\varepsilon) > 0$, tal que para todo $k, k + p > k(\varepsilon)$ tenhamos

$$\int_{\Omega} |u_{n_{k+p}} - u_{n_k}| |v| dx < \varepsilon, \tag{1.15}$$

para todo $v \in \mathcal{L}^{\tilde{P}}(\Omega)$ com $\rho(v, \tilde{P}) \leq 1$. Do Teorema A.4, fazendo $p \to \infty$, segue que

$$\int_{\Omega} |u_0 - u_{n_k}| |v| dx \le \varepsilon, \tag{1.16}$$

para todo $v \in \mathcal{L}^{\tilde{P}}(\Omega)$ com $\rho(v, \tilde{P}) \leq 1$ e $k > k(\varepsilon)$.

Por (1.16), temos que $u_0 - u_{n_k} \in L^P(\Omega)$. Como $u_{n_k} \in L^P(\Omega)$, então $u_0 \in L^P(\Omega)$. Além disso, ainda por (1.16)

$$||u_{n_k} - u_0||_P \le \varepsilon, \quad \forall \ k > k(\varepsilon),$$

assim $\{u_{n_k}\}$ converge em $L^P(\Omega)$ para u_0 e portanto $\{u_n\}$ converge para u_0 em $L^P(\Omega)$, pois $\{u_n\}$ é uma sequência de Cauchy que admite subsequência converjindo para u_0 .

Teorema 1.38. (Designaldade de Hölder) Se P e \tilde{P} são N-funções complementares, então $uv \in L^1(\Omega)$ e

$$\left| \int_{\Omega} u(x)v(x)dx \right| \le 2|u|_p|v|_{\tilde{P}}.$$

Demonstração. Pela desigualdade de Young

$$\int_{\Omega} \frac{|u|}{|u|_P} \frac{|v|}{|v|_P} dx \le \rho \left(\frac{u}{|u|_P}\right) + \rho \left(\frac{v}{|v|_P}\right) \le 2.$$

Portanto

$$\int_{\Omega} |uv| dx \le 2|u|_P |v|_P.$$

1.4 - Imersão em espaços de Orlicz

Definição 1.39. Sejam P_1 e P_2 N-funções. Dizemos que P_2 cresce mais lento que P_1 ($P_2 \prec P_1$), se existem constantes positivas k e t_0 tais que

$$P_2(t) \le P_1(kt), \quad \forall \ t \ge t_0.$$

Se $P_2 \prec P_1$ e $P_1 \prec P_2$, então diremos que P_1 e P_2 são equivalentes.

Exemplo 1.40. $P_1 \prec P_2$, onde $P_1(t) = t^p \in P_2(t) = t^q$, com 1 .

Definição 1.41. Se P_1 e P_2 são N-funções tais que

$$\lim_{t \to \infty} \frac{P_2(\lambda t)}{P_1(t)} = 0,$$

para todo $\lambda > 0$, então dizemos que P_2 cresce estritamente mais lento que P_1 e denotamos isso por $P_2 \prec \prec P_1$.

A seguir, vamos apresentar alguns resultados de imersão para espaços de Orlicz.

Teorema 1.42. Se $P_2 \prec P_1$, então $L^{P_1}(\Omega) \stackrel{cont.}{\hookrightarrow} L^{P_2}(\Omega)$.

Demonstração. Tomemos constantes positivas λ e t_0 tais que

$$P_2(t) \le P_1(\lambda t), \quad \forall \ t \ge t_0 \tag{1.17}$$

e consideremos $t_1 = P_2^{-1}\left(\frac{1}{2|\Omega|}\right)$ e $\Lambda = \max\{1, \frac{P_2(t_0)}{P_1(\lambda t_1)}\}$.

Afirmação 1.43. Para $t > t_1$, tem-se $P_2(t) \leq \Lambda P_1(\lambda t)$.

De fato, se $t_1 \geq t_0$, então a desigualdade desejada segue diretamente de (1.17) e do fato que $\Lambda \geq 1$. Se $t_1 < t_0$ e $t \geq t_0$ também não há o que ser feito. Se $t_1 < t_0$ e $t_1 \leq t \leq t_0$, então $P_1(\lambda t_1) \leq P_1(\lambda t)$ e $P_2(t) \leq P_2(t_0)$. Nesse caso

$$P_2(t) \le P_2(t_0) \frac{P_1(\lambda t)}{P_1(\lambda t_1)} \le \Lambda P_1(\lambda t),$$

o que conclui a prova da afirmação.

Tomando $u \in L^{P_1}(\Omega)$ e definindo

$$\Omega(u) = \{ x \in \Omega : \frac{|u(x)|}{2\Lambda\lambda |u|_{P_1}} < t_1 \},$$

temos

$$\begin{split} \int_{\Omega} P_2 \left(\frac{|u(x)|}{2\Lambda\lambda |u|_{P_1}} \right) dx &= \int_{\Omega(u)} P_2 \left(\frac{|u(x)|}{2\Lambda\lambda |u|_{P_1}} \right) dx + \int_{\Omega\backslash\Omega(u)} P_2 \left(\frac{|u(x)|}{2\Lambda\lambda |u|_{P_1}} \right) dx \\ &\stackrel{\text{Af.1.43}}{\leq} \int_{\Omega(u)} P_2(t_1) dx + \frac{1}{2} \int_{\Omega\backslash\Omega(u)} P_1 \left(\frac{|u(x)|}{|u|_{P_1}} \right) dx \\ &\leq P_2(t_1) |\Omega| + \frac{1}{2} \int_{\Omega} P_1 \left(\frac{|u(x)|}{|u|_{P_1}} \right) dx \\ &\leq \frac{1}{2} + \frac{1}{2} = 1. \end{split}$$

Assim

$$|u|_{P_2} \le 2\Lambda \lambda |u|_{P_1}.$$

Além disso, por (1.17)

$$\rho\left(\frac{u}{\lambda}, P_2\right) \le |\Omega| P_2(t_0) + \rho(u, P_1) < +\infty,$$

portanto $L^{P_1}(\Omega) \subset L^{P_2}(\Omega)$.

Definição 1.44. Dizemos que uma sequência $\{f_n\}$ de funções mensuráveis converge em medida para $f: \Omega \longrightarrow \mathbb{R}$, se para cada $\varepsilon > 0$ e $\delta > 0$ dados, exitir um inteiro M tal que se n > M, então

$$vol({x \in \Omega : |f_n(x) - f(x)| > \varepsilon}) \le \delta.$$

Observação 1.45. Toda sequência $\{f_n\}$ covergente em medida é Cauchy em medida. De fato, suponha que $f_n \to f$ em medida. Considere a > 0 e $m, n \in \mathbb{N}$ e defina

$$E_n(a) = \{x \in \Omega : |f_n(x) - f(x)| \ge a\}$$

 \mathbf{e}

$$E_{m,n}(a) = \{ x \in \Omega : |f_m(x) - f_n(x)| \ge a \}.$$

Se $x \notin E_m(a/2)$ e $x \notin E_n(a/2)$, então $|f_m(x) - f(x)| < a/2$ e $|f_n(x) - f(x)| < a/2$. Assim, $|f_m(x) - f_n(x)| < a$, donde $x \notin E_{m,n}(a)$. Portanto, se $x \in E_{m,n}(a)$, então $x \in E_m(a/2) \cup E_n(a/2)$, daí $|E_{m,n}(a)| \le |E_m(a/2)| + |E_n(a/2)| \xrightarrow{n,m \to \infty} 0$, pois $f_n \to f$ em medida.

Os próximos resultados serão úteis quando falarmos sobre imersões em espaços de Orlicz-Sobolev.

Teorema 1.46. Considere P_1 e P_2 N-funções e suponha que $P_2 \prec \prec P_1$. Se uma sequência $\{u_n\}$ é limitada em $L^{P_1}(\Omega)$ e convergente em medida, então $\{u_n\}$ converge em $L^{P_2}(\Omega)$.

Demonstração. Fixe $\varepsilon > 0$ e considere $v_{j,k}(x) = \frac{u_j(x) - u_k(x)}{\varepsilon}$. Claramente $v_{j,k}$ é limitada em $L^{P_1}(\Omega)$, digamos que $|v_{j,k}|_{P_1} \leq K$. O fato de $P_2 \prec \prec P_1$, nos diz que podemos encontrar $t_0 > 0$ tal que

$$P_2(t) \le P_1\left(\frac{t}{4K}\right) \le \frac{1}{4}P_1\left(\frac{t}{K}\right), \quad \forall \ t \ge t_0.$$

Considere $\delta = \frac{1}{4P_2(t_0)}$ e defina

$$\Omega_{j,k} = \left\{ x \in \Omega : |v_{j,k}(x)| \ge P_2^{-1} \left(\frac{1}{2|\Omega|} \right) \right\}.$$

Concluímos da Observação 1.45 que existe um inteiro N, suficientemente grande, tal que se $j, k \geq N$, então $vol(\Omega_{j,k}) \leq \delta$. Definindo

$$\Omega'_{j,k} = \{x \in \Omega_{j,k} : |v_{j,k}(x)| \ge t_0\}, \qquad \Omega''_{j,k} = \Omega_{j,k} - \Omega'_{j,k},$$

então para $j, k \geq N$ temos

$$\int_{\Omega} P_{2}(|v_{j,k}(x)|) dx = \int_{\Omega \setminus \Omega_{j,k}} P_{2}(|v_{j,k}(x)|) dx + \int_{\Omega'_{j,k}} P_{2}(|v_{j,k}(x)|) dx + \int_{\Omega''_{j,k}} P_{2}(|v$$

Assim $|v_{j,k}|_{P_2} \le 1$, donde $|u_j - u_k|_{P_2} \le \varepsilon$.

Corolário 1.47. Suponha que $P_2 \prec \prec P_1$, $S \subset L^{P_1}(\Omega)$ é limitado em $L^{P_1}(\Omega)$ e pré-compacto em $L^1(\Omega)$, então S é pré-compacto em $L^{P_2}(\Omega)$.

Demonstração. Tomando $\{u_n\}$ uma sequência em S e usando o fato de S ser pré-compacto em $L^1(\Omega)$, então podemos obter uma subsequência $\{u_{n_k}\}$ e $u \in S$ de tal modo que $u_{n_k} \to u$ em $L^1(\Omega)$. Pelo Teorema A.6, $\{u_k\}$ converge em medida. Assim, pelo teorema anterior temos que $\{u_{n_k}\}$ é convergente em $L^{P_2}(\Omega)$.

1.5 - Consequências da condição (p_2)

Seja P uma função de Young representada pelo homeomorfismo $p: \mathbb{R} \to \mathbb{R}$, onde P satisfaz (p_2) . Provaremos agora algumas desigualdades que serão úteis ao longo deste trabalho.

Lema 1.48. Suponha que P é uma N-função que satisfaz (p_2) . Então:

- (1) se $0 < t \le 1$, então $t^{p^+}P(l) \le P(tl) \le t^{p^-}P(l)$,
- (2) se t > 1, então $t^{p^-}P(l) \leqslant P(tl) \leqslant t^{p^+}P(l)$,
- (3) $se |u|_P \le 1$, $ent\tilde{a}o |u|_P^{p^+} \le \rho(u) \le |u|_P^{p^-}$,
- (4) $se |u|_P > 1$, $ent\tilde{a}o |u|_P^{p^-} \leq \rho(u) \leq |u|_P^{p^+}$.

Demonstração.

(1) Pela paridade de P, é suficiente considerarmos o caso em que l > 0. Tome então l > 0 e $t \in (0, 1]$. Desse modo,

$$\ln\left(\frac{P(tl)}{P(l)}\right) = -\int_{tl}^{l} \frac{p(s)ds}{P(s)} \stackrel{(p_2)}{\leq} -p^{-} \int_{tl}^{l} \frac{1}{s} ds = \ln t^{p^{-}}$$

e assim

$$P(tl)\leqslant t^{p^-}P(l),\ \forall\ l>0\ \mathrm{e}\ t\in(0,1].$$

Da mesma forma,

$$P(tl) \geqslant t^{p^+} P(l), \quad \forall \ l > 0 \ \ e \ t \in (0, 1].$$

- (2) Análogo ao item (1).
- (3) Se $|u|_P \leq 1$, então segue do item anterior com l = u(x) e $t = 1/|u|_P$, que

$$\frac{1}{|u|_P^{-}} \int_{\Omega} P(u(x)) dx \leqslant \int_{\Omega} P\left(\frac{u(x)}{|u|_P}\right) dx$$

е

$$\int_{\Omega} P\left(\frac{u(x)}{|u|_P}\right) dx \le \frac{1}{|u|_P^{p^+}} \int_{\Omega} P(u(x)) dx.$$

Assim, da Observação 1.33 segue que $\int_{\Omega} P\left(\frac{u(x)}{|u|_P}\right) dx = 1$ e portanto

$$\frac{1}{|u|_{P}^{p^{-}}} \int_{\Omega} P(u(x)) dx \le 1 \le \frac{1}{|u|_{P}^{p^{+}}} \int_{\Omega} P(u(x)) dx,$$

donde obtemos a desigualdade desejada.

(4) Análogo ao item (3).

Lema 1.49. Considere que P é uma N-função, \tilde{P} é a N-função complementar à P e

$$\tilde{\rho}(u) = \rho(u, \tilde{p}) = \int_{\Omega} \tilde{P}(u(x)) dx.$$

Suponha (p_2) . Então:

(1) se
$$0 < t \le 1$$
, então $t^{\frac{p^-}{p^- - 1}} \tilde{P}(l) \leqslant \tilde{P}(tl) \leqslant t^{\frac{p^+}{p^+ - 1}} \tilde{P}(l)$,

(2)
$$se \ t > 1$$
, $ent\tilde{a}o \ t^{\frac{p^+}{p^+-1}} \tilde{P}(l) \leqslant \tilde{P}(tl) \leqslant t^{\frac{p^-}{p^--1}} \tilde{P}(l)$,

(3)
$$se |u|_{\tilde{P}} \leq 1$$
, $ent\tilde{a}o |u|_{\tilde{P}}^{\frac{p^{-}}{p^{-}-1}} \leqslant \tilde{\rho}(u) \leqslant |u|_{\tilde{P}}^{\frac{p^{+}}{p^{+}-1}}$,

(4)
$$se |u|_{\tilde{P}} > 1$$
, $ent\tilde{a}o |u|_{\tilde{P}}^{\frac{p^+}{p^+-1}} \leqslant \tilde{\rho}(u) \leqslant |u|_{\tilde{P}}^{\frac{p^-}{p^--1}}$

Demonstração. Seguindo os passos da prova do lema anterior, é suficiente mostrar que

$$\frac{p^+}{p^+ - 1} \leqslant \frac{tp^{-1}(t)}{\tilde{P}(t)} \leqslant \frac{p^-}{p^- - 1}, \ \forall \ t > 0.$$

Ora, por hipótese

$$p^{-} \leqslant \frac{sp(s)}{P(s)} \leqslant p^{+}, \quad \forall \ s > 0.$$
 (1.18)

Substituindo s por $p^{-1}(t)$ em (1.18), obtemos

$$p^{-1}P(p^{-1}(t)) \leq tp^{-1}(t) \leq p^+P(p^{-1}(t)), \quad t > 0.$$

Além disso, de (1.4) segue que

$$p^{-}\left(tp^{-1}(t) - \tilde{P}(t)\right) \leqslant tp^{-1}(t) \leqslant p^{+}\left(tp^{-1}(t) - \tilde{P}(t)\right),$$

portanto

$$\frac{p^+}{p^+ - 1} \le \frac{p^{-1}(t)t}{\tilde{P}(t)} \le \frac{p^-}{p^- - 1},$$

como queríamos provar.

1.6 - O espaço $E^P(\Omega)$

Definição 1.50. Dizemos que uma sequência $\{u_n\} \subset L^P(\Omega)$ converge em média para $u \in L^P(\Omega)$ quando

$$\lim_{n \to \infty} \rho(u_n - u) = \lim_{n \to \infty} \int_{\Omega} P(u_n - u) dx = 0.$$

Observação 1.51. Vimos que se $u \in L^P(\Omega)$ e $|u|_P \le 1$, então pelo Lema 1.30 e pela Proposição 1.34,

$$\rho(u, P) \le 2|u|_P. \tag{1.19}$$

Assim, se $u_n \to u$ em $L^P(\Omega)$, então por (1.19) segue que u_n converge em média para u. Portanto, convergência em $L^P(\Omega)$ implica em convergência em média. A recíproca desse fato nem sempre é verdadeira (ver [19], pag 75). O próximo resultado nos da uma condição para que esses dois tipos de convergência sejam equivalentes.

Teorema 1.52. Considere P uma N-função que satisfaz Δ_2 . Se

$$\int_{\Omega} P(u_n) dx \to 0,$$

 $ent\~ao$

$$u_n \to 0$$
, $em L^P(\Omega)$.

Demonstração. Como P satisfaz Δ_2 , então para cada $\varepsilon \in (0,1)$ existem constantes positivas k_ε e t_ε satisfazendo

$$P\left(\frac{t}{\varepsilon}\right) \le k_{\varepsilon}P(t), \quad \forall \ t \ge t_{\varepsilon}.$$

Daí

$$\int_{\Omega} P\left(\frac{u_n}{\varepsilon}\right) dx \le \int_{[|u_n| < t_{\varepsilon}]} P\left(\frac{u_n}{\varepsilon}\right) dx + k_{\varepsilon} \int_{[|u_n| > t_{\varepsilon}]} P(u_n) dx.$$

Desde que u_n converge para 0 em média, então $k_{\varepsilon} \int_{[|u_n|>t_{\varepsilon}]} P(u_n) dx \xrightarrow{n\to\infty} 0$.

Afirmação 1.53. $\int_{[|u_n| \le t_{\varepsilon}]} P\left(\frac{u_n}{\varepsilon}\right) dx \to 0$ quando $n \to \infty$.

De fato, seja

$$x_n = \int_{[|u_n| \le t_-]} P\left(\frac{u_n}{\varepsilon}\right) dx, \quad n \in \mathbb{N}.$$

Como $\int_{\Omega} P(u_n) dx \to 0$, então segue do Teorema A.2 que existe uma subsequência $\{u_{n_k}\}$ tal que

$$u_{n_k}(x) \to 0$$
, q.t.p em Ω .

Assim,

$$P\left(\frac{u_{n_k}(x)}{\varepsilon}\right)\chi_{[|u_{n_k}| \le t_{\varepsilon}]}(x) \longrightarrow 0, \quad \text{q.t.p em } \Omega,$$
(1.20)

onde $\chi_{[|u_{n_k}| \leq t_{\varepsilon}]}(x)$ é a função característica do conjunto $\{x \in \Omega : |u_{n_k}(x)| \leq t_{\varepsilon}\}.$

Observe ainda que

$$P\left(\frac{u_{n_k}(x)}{\varepsilon}\right)\chi_{[|u_{n_k}| \le t_{\varepsilon}]}(x) \le P\left(\frac{t_{\varepsilon}}{\varepsilon}\right) \in L^1(\Omega). \tag{1.21}$$

De (1.20) e (1.21), segue pelo Teorema A.1 que

$$\int_{\Omega} P\left(\frac{u_{n_k}(x)}{\varepsilon}\right) \chi_{[|u_{n_k}| \le t_{\varepsilon}]}(x) dx \to 0,$$

isto é

$$\int_{[|u_{n_k}| \le t_{\varepsilon}]} P\left(\frac{u_{n_k}}{\varepsilon}\right) dx \to 0.$$

Desse modo,

$$\int_{\Omega} P\left(\frac{u_{n_k}}{\varepsilon}\right) dx \le 1$$

e portanto $|u_{n_k}|_P \leq \varepsilon$, para todo n_k suficientemente grande. Repetindo esse argumento, concluímos que toda subsequência de $\{u_n\}$ admite subsequência convergindo para 0, portanto $\{u_n\}$ converge para 0.

Definição 1.54. Definimos $E^P(\Omega)$ como sendo o fecho em $L^P(\Omega)$ do espaço das funções essencialmente limitadas $L^{\infty}(\Omega)$. Em resumo,

$$E^{P}(\Omega) = \overline{L^{\infty}(\Omega)}^{|\cdot|_{P}},$$

e esse é um espaço normado com a norma induzida de $L^{P}(\Omega)$.

Teorema 1.55. Considere a N-função P. Então $E^P(\Omega) = L^P(\Omega)$ se, e somente se, P satisfaz Δ_2 .

Demonstração. Primeiramente observe que se $u \in E^P(\Omega)$, então exite $u_0 \in L^{\infty}(\Omega)$ tal que $|u - u_0|_P < 1/2$. Desse modo, pelo Proposição 1.9

$$\frac{1}{2|u - u_0|_P} \int_{\Omega} P(2u(x) - 2u_0(x)) dx \le \int_{\Omega} P\left(\frac{u(x) - u_0(x)}{|u - u_0|_P}\right) dx \le 1,$$

donde

$$\int_{\Omega} P(2u(x) - 2u_0(x))dx \le 2|u - u_0|_P < 1$$

e portanto $2u-2u_0 \in \mathcal{L}^P(\Omega)$. Como $u_0 \in L^\infty(\Omega) \subset \mathcal{L}^P(\Omega)$, então pelo fato de P ser convexa e par, temos que

$$u = \frac{1}{2}(2u - 2u_0) + \frac{1}{2}(2u_0) \in \mathcal{L}^P(\Omega).$$

Concluímos então que $E^P(\Omega) \subset \mathcal{L}^P(\Omega)$. Desse modo, se $E^P(\Omega) = L^P(\Omega)$ então necessariamente $P \in \Delta_2$, caso contrário, pelo Teorema 1.28

$$E^P(\Omega) \subset \mathcal{L}^P(\Omega) \subsetneq L^P(\Omega).$$

Reciprocamente, suponha que $P \in \Delta_2$. Nesse caso, vimos que

$$\mathcal{L}^P(\Omega) = L^P(\Omega).$$

Considere $u \in L^P(\Omega)$ e a seguinte sequência de funções essencialmente limitadas:

$$u_n(x) = \begin{cases} u(x), & \text{se } |u(x)| \le n, \\ 0, & \text{se } |u(x)| > n. \end{cases}$$

Como $P(|u(x) - u_n(x)|) \le P(|u(x)|) \in L^1(\Omega)$, então pelo Teorema A.1

$$\int_{\Omega} P(|u(x) - u_n(x)|) dx \to 0$$

e assim segue do Teorema 1.52 que $u_n \to u$ em $L^P(\Omega)$, portanto $u \in E^P(\Omega)$.

Teorema 1.56. O espaço $E^P(\Omega)$ é separável.

Demonstração. Considere $u \in L^{\infty}(\Omega)$, onde $|u|_{\infty} = a$. Pelo Teorema A.7, existe uma sequência de funções contínuas $\{u_n\}$, onde $|u_n(x)| \leq a$ e $u(x) - u_n(x)$ é diferente de zero somente em um conjunto $\Omega_n \subset \Omega$ cuja medida é menor que 1/n. Desse modo

$$||u - u_n||_P = \sup_{\rho(v,\tilde{P}) \le 1} \left| \int_{\Omega} [u(x) - u_n(x)] v(x) dx \right|$$

$$\le 2a \sup_{\rho(v,\tilde{P}) \le 1} \int_{\Omega_n} |v(x)| dx = 2a ||\chi_{\Omega_n}||_P,$$

onde $\chi_{\Omega_n}(x)$ é a função característica do conjunto Ω_n .

Observe ainda que

$$\int_{\Omega} P\left(\chi_{\Omega_n}(x)P^{-1}\left(\frac{1}{|\Omega_n|}\right)\right) dx = \int_{\Omega} \chi_{\Omega_n}(x)\frac{1}{|\Omega_n|} dx = 1,$$

donde

$$|\chi_{\Omega_n}|_P = \frac{1}{P^{-1}(1/|\Omega_n|)}.$$

Portanto $|\chi_{\Omega_n}|_P \stackrel{n \to \infty}{\longrightarrow} 0$ e assim

$$\|u - u_n\|_P \le 2a \|\chi_{\Omega_n}\|_P \stackrel{n \to \infty}{\longrightarrow} 0,$$

devido a equivalência das normas $|\cdot|_P$ e $||\cdot||_P$.

Provamos então que o conjunto das funções contínuas é denso em $E^P(\Omega)$. Por outro lado, para toda função contínua u, podemos encontrar uma sequência de funções polinimiais com coeficientes racionais que converge uniformemente para u. No entanto, toda sequência de funções $\{u_n\}$ que converge uniformemente para u, converge para u na norma $\|\cdot\|_P$, pois se considerarmos $\varepsilon > 0$ arbitrário, então podemos obter $n_0 \in \mathbb{N}$ tal que

$$|u_n(x) - u(x)| < \varepsilon, \quad \forall \ n \ge n_0 \ \text{e} \ x \in \Omega.$$

Assim, se $n \ge n_0$, temos que

$$||u_n - u||_P \leq \sup_{\rho(v,\tilde{P}) \leq 1} \int_{\Omega} |u_n(x) - u(x)| |v| dx$$

$$\leq \varepsilon \sup_{\rho(v,\tilde{P}) \leq 1} \int_{\Omega} |v(x)| dx$$
Young
$$\leq \varepsilon \left(\int_{\Omega} P(1) dx + 1 \right),$$

portanto concluímos que $||u_n - u||_P \to 0$. Consequentemente, o conjunto contável dos polinômios com coeficientes racionais é denso em $E^P(\Omega)$.

Corolário 1.57. Se $P \in \Delta_2$ então $L^P(\Omega)$ é separável.

Demonstração. Se $P \in \Delta_2$, então pelo Teorema 1.55 obtemos que $E^P(\Omega) = L^P(\Omega)$ e portanto, pelo teorema anterior, $L^P(\Omega)$ é separável.

Observação 1.58. A recíproca do Corolário 1.57 é verdadeira. Em ([19], Teorema 10.2), prova-se que se $P \notin \Delta_2$, então $L^P(\Omega)$ não pode ser separável.

1.7 - Dualidade em Espaços de Orlicz

Considere $(L^P(\Omega))'$ o espaço dual de $L^P(\Omega)$. Admitiremos a seguinte norma em $(L^P(\Omega))'$:

$$||F||_{(L^P)'} := \sup\{|F(u)| : |u|_P \le 1\}.$$

Lema 1.59. Dado $v \in L^{\tilde{P}}(\Omega)$, o functional linear $F_v : L^P(\Omega) \to \mathbb{R}$, definido por

$$F_v(u) = \int_{\Omega} u(x)v(x)dx \tag{1.22}$$

pertence ao espaço dual $(L^P(\Omega))'$ e a norma $\|F\|_{(L^P)'}$ satisfaz

$$|v|_{\tilde{P}} \le ||F_v||_{(L^P)'} \le 2|v|_{\tilde{P}}.$$
 (1.23)

Demonstração. Claramente F_v é linear. Além disso, segue da desigualdade de Hölder que

$$|F_v(u)| \le 2|u|_P|v|_{\tilde{P}}, \quad \forall \ u \in L^P(\Omega).$$

Para estabelecer a outra desigualdade vamos assumir que $v \neq 0$ e que $||F_v||_{(L^P)'} = K > 0$. Defina

$$u(x) = \begin{cases} \frac{\tilde{P}\left(\frac{|v(x)|}{K}\right)}{\frac{|v(x)|}{K}}, & \text{se } v(x) \neq 0, \\ 0, & \text{se } v(x) = 0. \end{cases}$$

Se $|u|_P > 1$, então pela convexidade de P e a Proposição 1.9, obtemos

$$|u|_P \le \int_{\Omega} P(|u(x)|) dx = \int_{\Omega} P\left(\frac{\tilde{P}\left(\frac{|v(x)|}{K}\right)}{\frac{|v(x)|}{K}}\right) dx$$

$$<\int_{\Omega} \tilde{P}\left(\frac{|v(x)|}{K}\right) dx = \frac{1}{K} \int_{\Omega} u(x)|v(x)|dx.$$
 (1.24)

Entretanto

$$\int_{\Omega} \frac{u(x)}{|u|_{P}} |v(x)| dx \le ||F_{v}||_{(L^{P})'},$$

donde

$$\frac{1}{\|F_v\|_{(L^P)'}} \int_{\Omega} u(x)|v(x)| dx \le |u|_P. \tag{1.25}$$

Desse modo, por (1.24) e (1.25) concluímos que $|u|_P < |u|_P$, o que é absurdo. Essa contradição mostra que $|u|_P \le 1$ e portanto $|u.{\rm sgn} v|_P \le 1$. Assim

$$||F_v||_{(L^P)'} = \sup_{|w|_P \le 1} |F_v(w)| \ge |F_v(\operatorname{sgn} v.u)| = ||F_v||_{(L^P)'} \left| \int_{\Omega} \tilde{P}\left(\frac{|v(x)|}{K}\right) dx \right|,$$

de modo que

$$\int_{\Omega} \tilde{P}\left(\frac{|v(x)|}{\|F_v\|_{(L^P)'}}\right) \le 1,\tag{1.26}$$

donde concluímos que

$$|v|_{\tilde{P}} \leq ||F_v||_{(L^P)'}$$
.

35

Observação 1.60. O Lema anterior permanece válido se consideramos F_v como um elemento de $(E^P(\Omega))'$, isto é, quando restringimos a ação de F_v aos elementos de $E^P(\Omega)$. Nesse caso, para obter a primeira inequação de (1.23), substituimos $||F_v||_{(L^P)'}$ por $||F_v||_{(E^P)'}$ e u por $\chi_n u$, onde χ_n é a função característica de

$$\Omega_n = \{ x \in \Omega : |u(x)| \le n \}.$$

Evidentemente $\chi_n u \in E^P(\Omega)$, além disso, pelo mesmo argumento usado no Lema 1.59, obtemos que $|\chi_n u|_P \le 1$ e assim a desigualdade (1.26) é substituída por

$$\int_{\Omega} \chi_n(x) \tilde{P}\left(\frac{|v(x)|}{\|F_v\|_{(E^P)'}}\right) dx \le 1.$$

Como

$$\lim_{n \to \infty} \chi_n(x) = 1, \quad \text{q.t.p em } \Omega,$$

então pelo Teorema A.4 temos

$$\int_{\Omega} \tilde{P}\left(\frac{|v(x)|}{\|F_v\|_{(E^P)'}}\right) dx \le 1,$$

assim $|v|_{\tilde{P}} \leq ||F_v||_{(E^P)'}$. Pela desigualdade de Hölder obtemos também que $||F_v||_{(E^P)'} \leq 2|v|_{\tilde{P}}$. Portanto $|v|_{\tilde{P}} \leq ||F_v||_{(E^P)'} \leq 2|v|_{\tilde{P}}$.

Definamos a seguinte aplicação:

$$\Gamma: L^{\tilde{P}}(\Omega) \longrightarrow (E^{P}(\Omega))'$$

$$v \longmapsto \Gamma(v): E^{P}(\Omega) \longrightarrow \mathbb{R}$$

$$u \longmapsto \langle \Gamma(v), u \rangle := F_{v}(u) = \int_{\Omega} u(x)v(x)dx.$$

É fácil ver que Γ é linear. Além disso, segue da observação anterior que Γ é uma aplicação injetiva. Provaremos a seguir que Γ é também sobrejetiva.

Teorema 1.61. Seja F um funcional linear limitado em $E^P(\Omega)$, isto é, $F \in (E^P(\Omega))'$. Então existe $v \in L^{\tilde{P}}(\Omega)$ tal que

$$F(u) = \int_{\Omega} u(x)v(x)dx, \quad \forall u \in E^{P}(\Omega).$$

Demonstração. Consideremos $F \in (E^P(\Omega))'$ e

$$\Sigma = \{S \subseteq \Omega : S \quad \text{\'e mensur\'avel}\}.$$

Vamos definir a seguinte função

$$T: \Sigma \longrightarrow \mathbb{R}$$

 $S \longmapsto T(S) = F(\chi_S),$

onde χ_S é a função característica de S.

Vimos que

$$\int_{\Omega} P\left(|\chi_S(x)|P^{-1}\left(\frac{1}{|S|}\right)\right) dx = 1,$$

assim

$$|T(S)| = |F(\chi_S)| \le ||F||_{(E^P)'} |\chi_S|_P = \frac{||F||_{(E^P)'}}{P^{-1}(1/|S|)} \xrightarrow{|S| \to 0} 0.$$

Pelo Teorema A.9, podemos encontrar uma função mensurável v tal que

$$T(S) = \int_{S} v(x)dx. \tag{1.27}$$

Se u é uma função simples, isto é,

$$u(x) = \sum_{i=1}^{m} \alpha_i \chi_{S_i}(x),$$

com $S_i \subset \Omega$, $S_i \cap S_j = \emptyset$ para $i \neq j$, então por (1.27) temos que

$$F(u) = \sum_{i=1}^{m} \alpha_i F(\chi_{S_i}) = \sum_{i=1}^{m} \alpha_i T(S_i)$$
$$= \sum_{i=1}^{m} \alpha_i \int_{S_i} v(x) dx = \sum_{i=1}^{m} \int_{\Omega} v(x) \chi_{S_i}(x) dx = \int_{\Omega} u(x) v(x) dx.$$

Agora seja F_1 o funcional dado por

$$F_1(u) = \int_{\Omega} u(x)v(x)dx, \qquad u \in E^P(\Omega).$$

Pelo que foi observado $F_1(u) = F(u)$, para toda função simples u. Entretanto o conjunto das funções simples é denso em $E^P(\Omega)$, consequentemente $F_1(u) = F(u)$, $\forall u \in E^P(\Omega)$.

Nos resta provar que $v\in L^{\tilde{P}}(\Omega)$. Ora, considerando $u\in L^{P}(\Omega)$ e a sequência $\{u_n\}\subset L^{\infty}(\Omega)$ onde

$$u_n(x) = \begin{cases} u(x), & \text{se } |u_n(x)| \le n, \\ 0, & \text{se } |u_n(x)| > n \end{cases}$$

temos que $|u_n|_P \le |u|_P$ e

$$\lim_{n \to \infty} |u_n(x)v(x)| = |u(x)v(x)|$$

para quase todo $x \in \Omega$. Dese modo, pelo Teorema A.4

$$\left| \int_{\Omega} u(x)v(x)dx \right| \le \sup_{n} \int_{\Omega} |u_{n}(x)v(x)|dx$$
$$= \sup_{n} F(|u_{n}|\operatorname{sgn}v)| \le ||F||_{(E^{P})'} |u|_{P} < \infty.$$

Portanto $v \in L^{\tilde{P}}(\Omega)$, como queríamos provar.

Da linearidade de Γ , da Observação 1.60 e do Teorema 1.61 concluímos que Γ é um isomorfismo e assim, por meio deste isomorfismo, escreveremos

$$L^{\tilde{P}}(\Omega) = (E^{P}(\Omega))'.$$

Se P satisfaz a condição Δ_2 , então pelo Teorema 1.55

$$L^{\tilde{P}}(\Omega) = (L^{P}(\Omega))'.$$

Da mesma forma, se \tilde{P} satisfaz Δ_2 , então

$$L^{P}(\Omega) = (L^{\tilde{P}}(\Omega))'.$$

A partir disso, podemos enunciar o seguinte resultado:

Teorema 1.62. Se P é Δ -regular, então $L^{P}(\Omega)$ é reflexivo.

Observação 1.63. Se P não satisfaz Δ_2 , então pode-se provar que existe um funcional linear contínuo em $(L^P(\Omega))'$ que não pode ser dado por (1.22), para nenhum $v \in L^{\tilde{P}}(\Omega)$ (ver [21], Teorema 3.13.5). Dessa maneira podemos concluir que a recíproca do Teorema 1.62 é verdadeira.

1.8 - Espaços de Orlicz-Sobolev

Definiremos os espaços de Orlicz-Sobolev de maneira análoga a que se define os espaços de Sobolev a partir dos espaços de Lebesgue.

Definição 1.64. Dada P uma N-função, definimos $W^{1,P}(\Omega)$ como sendo o espaço vetorial

$$\begin{split} W^{1,P}(\Omega) = & \{u \in L^P(\Omega): \ \exists \ f_1,...,f_n \in L^P(\Omega) \ \text{satisfazendo} \\ & \int_{\Omega} u \frac{\partial \phi}{\partial x_i} dx = -\int_{\Omega} f_i \phi dx, \ \forall \ \phi \ \in \ C_0^\infty(\Omega), \ \forall \ i=1,...,n\}. \end{split}$$

Se $\mathbf{u} \in W^{1,P}(\Omega)$, então pelo lema de Du Bois Raymond tais funções f_i são únicas e são chamadas derivadas fracas de u. Denotaremos $f_i = \frac{\partial u}{\partial x_i}$ e $\nabla u = (\frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n})$.

Podemos definir em $W^{1,P}(\Omega)$ a seguinte norma,

$$|u|_{1,P} = |u|_P + |\nabla u|_P, \quad \forall \ u \in W^{1,P}(\Omega),$$

onde estamos denotando por $|\nabla u|_P$ a norma de Luxemburgo de $|\nabla u|$.

Definição 1.65. O espaço $W^{1,P}(\Omega)$ munido da norma $|\cdot|_P$ é chamado espaço de Orlicz-Sobolev associado a N-função P.

Teorema 1.66. $W^{1,P}(\Omega) := (W^{1,P}(\Omega), |.|_{1,P})$ é um espaço de Banach.

Demonstração. Consideremos o espaço vetorial $(L^P(\Omega))^{N+1} = L^P(\Omega) \times L^P(\Omega) \times \cdots \times L^P(\Omega)$ munido da seguinte norma:

$$|u|_{(L^P)^{N+1}} = |u_0|_P + |(u_1, ..., u_N)|_P, \quad \forall \ u \in (L^P(\Omega))^{N+1}.$$

Definindo a aplicação

$$T: W^{1,P}(\Omega) \longrightarrow (L^P(\Omega))^{N+1}$$

 $u \longmapsto (u, \nabla u),$

podemos identificar $W^{1,P}(\Omega)$ com $T(W^{1,P}(\Omega))$, subespaço de $(L^P(\Omega))^{N+1}$. Como $(L^P(\Omega))^{N+1}$ é espaço de Banach e T é uma isometria entre $W^{1,P}(\Omega)$ e $T(W^{1,P}(\Omega))$, precisamos apenas provar que $T(W^{1,P}(\Omega))$ é fechado.

Seja
$$(u_k, \nabla u_k) \stackrel{k \to \infty}{\longrightarrow} (u, u_1, \dots, u_N)$$
, em $(L^P(\Omega))^{N+1}$. Então

$$u_k \xrightarrow{L^P} u$$
 e $\frac{\partial u_k}{\partial x_i} \xrightarrow{L^P} u_i$, para cada $i = 1, \dots, N$.

Fixemos $\Phi \in C_0^{\infty}(\Omega)$ arbitrário. Desse modo Φ e $\frac{\partial \Phi}{\partial x_i} \in L^{\tilde{P}}(\Omega)$, para cada i, onde \tilde{P} é a N - função complementar a P.

Da desigualdade de Hölder, segue que os funcionais lineares $F_{\Phi}:L^{P}(\Omega)\to\mathbb{R}$ e $F_{\frac{\partial\Phi}{\partial x_{i}}}:L^{P}(\Omega)\to\mathbb{R}$, definidos por

$$F_{\Phi}(v) = \int_{\Omega} v(x)\Phi(x)dx$$
 e $F_{\frac{\partial \Phi}{\partial x_i}}(v) = \int_{\Omega} v(x)\frac{\partial \Phi}{\partial x_i}$

são contínuos em $L^P(\Omega)$. Assim

$$\int_{\Omega} u_k(x) \frac{\partial \Phi(x)}{\partial x_i} dx \longrightarrow \int_{\Omega} u(x) \frac{\partial \Phi(x)}{\partial x_i} dx \quad e$$

$$\int_{\Omega} \frac{\partial u_k}{\partial x_i} \Phi(x) \, dx \longrightarrow \int_{\Omega} u_i \, \Phi(x) \, dx.$$

Como

$$\int_{\Omega} u_k \frac{\partial \Phi}{\partial x_i} dx = -\int_{\Omega} \frac{\partial u_k}{\partial x_i} \Phi dx,$$

segue que

$$\int_{\Omega} u(x) \frac{\partial \Phi}{\partial x_i} dx = -\int_{\Omega} u_i \Phi(x) dx, \ \forall \ i = 1, \dots, N.$$

Da arbitrariedade de Φ , temos que $u_i = \frac{\partial u}{\partial x_i},$ para cada i.

Como consequência do Corolário 1.57, do Teorema 1.62 e da Observação 1.63 obtemos o seguinte resultado:

Teorema 1.67. Suponha que P é uma N-função. Então:

- 1. $W^{1,P}(\Omega)$ é separável, se $P \in \Delta_2$;
- 2. Para cada $F \in (W^{1,P}(\Omega))' := W^{-1,\tilde{P}}(\Omega)$, existem $v_i \in L^{\tilde{P}}(\Omega)$, i = 0,...,N tais que

$$F(u) = \int_{\Omega} u(x)v_0(x)dx + \sum_{i=1}^n \int_{\Omega} \frac{\partial u(x)}{\partial x_i} v_i(x)dx, \quad \forall \ u \in W^{1,P}(\Omega);$$

3. $W^{1,P}(\Omega)$ é reflexivo se, e somente se, P e \tilde{P} satisfazem Δ_2 .

Demonstração. Ver [1].

1.9 - Imersões de Orlicz-Sobolev

Estudaremos agora as imersões de espaços de Orlicz-Sobolev em espaços de Orlicz.

Lema 1.68. Seja P uma N-função satisfazendo

$$\int_{0}^{1} \frac{P^{-1}(s)}{s^{1+\frac{1}{N}}} ds < \infty \tag{1.28}$$

e

$$\int_{1}^{\infty} \frac{P^{-1}(s)}{s^{1+\frac{1}{N}}} ds = \infty.$$
 (1.29)

Então a função $(P^*)^{-1}:[0,\infty)\longrightarrow [0,\infty)$ dada por

$$(P^*)^{-1}(t) = \int_0^t \frac{P^{-1}(s)}{s^{1+\frac{1}{N}}} ds$$

é bijetiva e a sua inversa P^* (estendida de forma par para todo \mathbb{R}) é N-função.

Demonstração. Obviamente $(P^*)^{-1}$ é estritamente crescente e portanto é injetiva. Além disso, pela definição de $(P^*)^{-1}$ é fácil ver que $(P^*)^{-1}(0) = 0$. Pela condição (1.29), $(P^*)^{-1} \to \infty$ quando $t \to \infty$. Observado isto e pela continuidade de $(P^*)^{-1}$ segue que $(P^*)^{-1}$ é sobrejetiva. Portanto $(P^*)^{-1}$ tem inversa bem definida e a denotaremos por P^* .

Afirmação 1.69. P^* é uma N-função.

De fato,

- A continuidade de P^* decorre da continuidade de $(P^*)^{-1}$;
- P^* é estritamente crescente pois $(P^*)^{-1}$ é estritamente crescente;
- Como $(P^*)^{-1}(0) = 0$, então $P^*(0) = P^*((P^*)^{-1}(0)) = 0$;
- Provar que P^* é convexa é equivalente a provar que $(P^*)^{-1}$ é côncava. Nesse sentido, observando que

$$(P^{*-1})'(t) = \frac{P^{-1}(t)}{t^{1+\frac{1}{N}}}.$$

e considerando $t \geq 0$ e $0 \leq \alpha \leq 1$ arbitrários, temos pela convexidade de P que

$$P(\alpha P^{-1}(t)) \le \alpha P(P^{-1}(t)) = \alpha t,$$

portanto $\alpha P^{-1}(t) \leq P^{-1}(\alpha t)$. Suponha que $0 < a \leq b$, então $a/b \leq 1$. Desse modo, tomando $\alpha = \frac{a}{b}$ e t = b, temos

$$P^{-1}(a) \ge \frac{a}{b} P^{-1}(b) \ge \left(\frac{a}{b}\right)^{1+\frac{1}{N}} P^{-1}(b).$$

Assim,

$$\frac{d}{dt}(P^*)^{-1}(a) = \frac{P^{-1}(a)}{a^{1+\frac{1}{N}}} \ge \frac{P^{-1}(b)}{b^{1+\frac{1}{N}}} = \frac{d}{dt}(P^*)^{-1}(b),$$

donde $\frac{d}{dt}(P^*)^{-1}$ é não crescente e portanto $(P^*)^{-1}$ é côncava;

• Pela Regra de L'Hospital e pela Proposição 1.2, temos que

$$\lim_{t \to \infty} \frac{(P^*)^{-1}(t)}{t} = \lim_{t \to \infty} \frac{P^{-1}(t)}{t^{1 + \frac{1}{N}}} = 0,$$

portanto

$$\lim_{t \to \infty} \frac{P^*(t)}{t} = \infty;$$

• Por um raciocínio análogo ao anterior, obtemos que

$$\lim_{t \to 0} \frac{P^*(t)}{t} = 0,$$

o que conclui a prova da afirmação.

Exemplo 1.70. Considere a N-função $P(t)=|t|^p,\ p>1.$ Temos que $P^{-1}(t)=t^{1/p},$ assim para que P satisfaça (1.28) e (1.29) devemos ter 1/p-1/N-1>-1, donde p< N. Nesse caso, para p< N, obtemos

$$(P^*)^{-1}(t) = \int_0^t \frac{s^{1/p}}{s^{1+1/N}} ds = \int_0^t s^{1/p-1/N-1} ds = \frac{pN}{N-p} t^{\frac{N-p}{pN}}, \quad t \ge 0$$

e portanto

$$P^*(t) = \frac{|t|^{p^*}}{p^*}, \quad t \in \mathbb{R},$$

onde $p^* = \frac{pN}{N-p}$.

Definição 1.71. Dizemos que Ω é um domínio admissível, se em Ω ocorre as imersões de Sobolev

$$W^{1,1}(\Omega) \stackrel{\text{cont.}}{\hookrightarrow} L^q(\Omega), \quad q \in [1, N/(N-1)].$$

Teorema 1.72. Seja Ω um domínio limitado e admissível. Suponha que P satisfaz (1.28) e (1.29). Então

$$W^{1,P}(\Omega) \stackrel{cont.}{\hookrightarrow} L^{P^*}(\Omega).$$

Além disso, se H é uma N-função e $H \prec \prec P^*$, então

$$W^{1,P}(\Omega) \stackrel{comp}{\hookrightarrow} L^H(\Omega).$$

Demonstração. Defina $s = P^*(t)$. Então

$$\frac{dP^*}{dt}(t).\frac{d(P^*)^{-1}}{ds}(s) = 1, \quad s > 0$$

assim

$$\frac{dP^*}{dt}(t) = \frac{s^{1+\frac{1}{N}}}{P^{-1}(s)} = \frac{(P^*(t))^{1+\frac{1}{N}}}{P^{-1}(P^*(t))}.$$

Desse modo, P satisfaz a seguinte equação:

$$P^{-1}(P^*(t)) \cdot \frac{dP^*}{dt}(t) = (P^*(t))^{1+\frac{1}{N}}.$$
(1.30)

Considere \tilde{P} a N-função complementar a P. Pela Proposição 1.9, temos que

$$P^*(t) < P^{-1}(P^*(t))\tilde{P}^{-1}(P^*(t)).$$

De (1.30) segue a seguinte desigualdade:

$$P^{-1}(P^*(t))\frac{dP^*}{dt}(t) = (P^*(t))^{\frac{1}{N}}P^*(t) < (P^*(t))^{\frac{1}{N}}P^{-1}(P^*(t))\tilde{P}^{-1}(P^*(t)),$$

donde

$$\frac{dP^*}{dt}(t) \le (P^*(t))^{\frac{1}{N}} . \tilde{P}^{-1}(P^*(t)), \quad \forall \ t \in \mathbb{R}.$$

Definindo $\sigma(t) = (P^*(t))^{\frac{N-1}{N}}$, obtemos que

$$\frac{d\sigma}{dt} = \frac{N-1}{N} (P^*)^{-\frac{1}{N}} (t) \frac{dP^*}{dt} (t)$$

$$\leq \frac{N-1}{N} (P^*)^{-\frac{1}{N}} (t) (P^*)^{\frac{1}{N}} (t) \tilde{P}^{-1} (P^*(t)) = \frac{N-1}{N} \tilde{P}^{-1} \left(\sigma(t)^{\frac{N}{N-1}} \right) . \tag{1.31}$$

Seja $u \in W^{1,P}(\Omega)$ e suponha, por um momento, que u é limitada em Ω e $u \neq 0$. Nesse caso

$$\int_{\Omega} P^* \left(\frac{|u|}{\lambda} \right) dx$$

decresce continuamente de infinito para 0 quando λ cresce de 0 para infinito. Dessa maneira, existe K>0 tal que

$$\int_{\Omega} P^* \left(\frac{|u|}{K} \right) dx = 1$$

e pela Observação 1.33, $K = |u|_{P^*}$. Tomando $f(x) = \sigma\left(\frac{|u(x)|}{K}\right)$, decorre de (1.31) e do fato de estarmos supondo u essencialmente limitada que σ é Lipschitziana em $[0, \frac{|u|_{\infty}}{K}]$. Além disso $u \in W^{1,P}(\Omega)$, então segue do Teorema 1.36 que $u \in W^{1,1}(\Omega)$. Pelo Teorema A.13, obtemos que $f \in W^{1,1}(\Omega)$ e pela Regra da Cadeia para espaços de Sobolev (ver Teorema A.14), temos ainda a seguinte identidade:

$$\frac{\partial f}{\partial x_i} = \sigma' \left(\frac{|u(x)|}{K} \right) \frac{1}{K} \operatorname{sgn} u(x) \frac{\partial u}{\partial x_i}(x).$$

Como

$$W^{1,1}(\Omega) \hookrightarrow L^{\frac{N}{N-1}}(\Omega),$$

então

$$|f|_{\frac{N}{N-1}} \le C_1 \left(\sum_{j=1}^N \left| \frac{\partial f}{\partial x_j} \right|_1 + |f|_1 \right) = C_1 \left(\frac{1}{K} \sum_{j=1}^N \int_{\Omega} \sigma' \left(\frac{|u(x)|}{K} \right) \left| \frac{\partial u}{\partial x_i} (x) \right| dx + \int_{\Omega} \sigma \left(\frac{|u(x)|}{K} \right) dx \right).$$

Assim

$$1 = \left(\int_{\Omega} P^* \left(\frac{|u(x)|}{K}\right) dx\right)^{\frac{N-1}{N}} = \left(\int_{\Omega} \sigma \left(\frac{|u(x)|}{K}\right)^{\frac{N}{N-1}} dx\right)^{\frac{N-1}{N}}$$

$$= |f|_{\frac{N}{N-1}} \le C_1 \left(\frac{1}{K} \sum_{j=1}^{N} \int_{\Omega} \sigma' \left(\frac{|u(x)|}{K}\right) \left|\frac{\partial u}{\partial x_i}(x)\right| dx + \int_{\Omega} \sigma \left(\frac{|u(x)|}{K}\right) dx\right)$$

$$\stackrel{\text{H\"{o}lder}}{\le} \frac{2C_1}{K} \left(\sum_{j=1}^{N} \left|\sigma' \left(\frac{|u|}{K}\right)\right|_{\tilde{P}} \left|\frac{\partial u}{\partial x_i}\right|_{P}\right) + C_1 \int_{\Omega} \sigma \left(\frac{|u(x)|}{K}\right) dx. \tag{1.32}$$

Por (1.31) temos ainda que

$$\left| \sigma' \left(\frac{|u|}{K} \right) \right|_{\tilde{P}} \leq \frac{N-1}{N} \left| \tilde{P}^{-1} \left[\left(\sigma \left(\frac{|u|}{K} \right) \right)^{\frac{N}{N-1}} \right] \right|_{\tilde{P}}$$

$$= \frac{N-1}{N} \inf \left\{ \lambda > 0 : \int_{\Omega} \tilde{P} \left(\frac{\tilde{P}^{-1} \left(P^* \left(\frac{|u(x)|}{K} \right) \right)}{\lambda} \right) dx \leq 1 \right\}. \tag{1.33}$$

Da convexidade de \tilde{P} , segue que para todo $\lambda > 1$

$$\int_{\Omega} \tilde{P}\left(\frac{\tilde{P}^{-1}\left(P^*\left(\frac{|u(x)|}{K}\right)\right)}{\lambda}\right) dx \le \frac{1}{\lambda} \int_{\Omega} P^*\left(\frac{|u(x)|}{K}\right) dx \le \frac{1}{\lambda} < 1,$$

portanto

$$\inf \left\{ \lambda > 0 : \int_{\Omega} \tilde{P}\left(\frac{\tilde{P}^{-1}[P^*\left(\frac{|u(x|)|}{K}\right)]}{\lambda}\right) dx \le 1 \right\} \le 1. \tag{1.34}$$

Assim, de (1.33) e (1.34) obtemos que

$$\left| \sigma' \left(\frac{|u|}{K} \right) \right|_{\tilde{P}} \le \frac{N-1}{N}. \tag{1.35}$$

Definindo

$$g(t) = \frac{P^*(t)}{t}$$
 e $h(t) = \frac{\sigma(t)}{t}$,

então

$$\lim_{t \to \infty} \frac{g(t)}{h(t)} = \lim_{t \to \infty} \frac{P^*(t)}{\sigma(t)} = \lim_{t \to \infty} \frac{P^*(t)}{(P^*(t))^{1 - \frac{1}{N}}} = \lim_{t \to \infty} (P^*(t))^{\frac{1}{N}} = \infty$$

e daí podemos encontrar $t_0 > 0$ tal que

$$h(t) \le \frac{g(t)}{2C_1}, \quad \forall \ t \ge t_0.$$

Além disso, pela fato de P* ser N-função, segue da Proposição 1.2 que

$$\lim_{t \to 0} h(t) = \lim_{t \to 0} \frac{P^*(t)^{1-1/N}}{t} = \lim_{t \to 0} \frac{P^*(t)}{t} \cdot \frac{1}{P^*(t)^{1/N}} = 0,$$

assim h é limitada em intervalos limitados. Tomando $C_2=C_1\sup h(t)$, temos que para cada $t\geq t_0,$

$$\sigma(t) = th(t) \le \frac{1}{2C_1}g(t)t = \frac{1}{2C_1}P^*(t)$$

e para cada $0 \le t < t_0$,

$$\sigma(t) = th(t) \le \frac{C_2}{C_1}t.$$

Portanto,

$$\sigma(t) \le \frac{1}{2C_1} P^*(t) + \frac{C_2 t}{C_1}, \quad \forall \ t \ge 0$$

e assim

$$C_{1} \int_{\Omega} \sigma\left(\frac{|u(x)|}{K}\right) dx \leq \frac{1}{2} \int_{\Omega} P^{*}\left(\frac{|u(x)|}{K}\right) dx + C_{2} \int_{\Omega} \frac{|u(x)|}{K} dx$$

$$\stackrel{Holder}{\leq} \frac{1}{2} + \frac{2C_{2}}{K} |u|_{P} |1|_{\tilde{P}} = \frac{1}{2} + \frac{C_{3}}{K} |u|_{P}, \tag{1.36}$$

onde $C_3 = 2C_2|1|_{\tilde{P}}$.

Combinando as desigualdades (1.32), (1.35) e (1.36), obtemos que

$$1 \le \frac{2C_1(N-1)}{KN} \sum_{j=1}^{N} \left| \frac{\partial u}{\partial x_j} \right|_P + \frac{1}{2} + \frac{C_3}{K} |u|_P.$$

Portanto,

$$|u|_{P^*} = K \le 2\left(\frac{2C_1N(N-1)}{N} + C_3\right) \max_{1 \le i \le N} \left\{|u|_P, \left|\frac{\partial u}{\partial x_i}\right|_P\right\}. \tag{1.37}$$

Como

$$\max_{1 \le i \le N} \left\{ |u|_P, \left| \frac{\partial u}{\partial x_i} \right|_P \right\}$$

define uma norma em $W^{1,P}(\Omega)$, que é equivalente a norma $|\cdot|_{1,P}$, então (1.37) nos diz que existe uma constante positiva C para a qual

$$|u|_{P^*} = K \le C|u|_{1,P},\tag{1.38}$$

o que prova que a imersão requerida é válida para todo $u \in W^{1,P}(\Omega) \cap L^{\infty}(\Omega)$. Para estender (1.38) para uma função arbitrária $u \in W^{1,P}(\Omega)$, definamos a seguinte sequência :

$$u_k(x) = \begin{cases} |u(x)|, & \text{se } |u(x)| \le k, \\ k, & \text{se } |u(x)| > k. \end{cases}$$

Claramente $u_k \in L^\infty(\Omega) \cap W^{1,P}(\Omega)$ e

$$\left| \frac{\partial u_k}{\partial x_j}(x) \right| = \begin{cases} \left| \frac{\partial u}{\partial x_j}(x) \right|, & \text{se } |u(x)| \le k, \\ 0, & \text{se } |u(x)| > k. \end{cases}$$

Note ainda que se $k_1 < k_2$, então $|u_{k_1}|_{P^*} \le |u_{k_2}|_{P^*}$, isto é, a sequência $\{|u_k|_{P^*}\}$ é não decrescente. Além disso

$$|u_k(x)| \le |u(x)|$$
 e $\left|\frac{\partial u_k}{\partial x_j}(x)\right| \le \left|\frac{\partial u}{\partial x_j}(x)\right|, \quad \forall \ x \in \Omega,$

assim

$$|u_k|_P \le |u|_P \quad e \quad \left| \frac{\partial u_k}{\partial x_j} \right|_P \le \left| \frac{\partial u}{\partial x_j} \right|_P,$$

no que resulta em

$$|u_k|_{P^*} \le C|u_k|_{1,P} \le C|u|_{1,P}$$
.

Portanto $\{|u_k|_{P^*}\}$ é limitada. Desse modo, existe $\lim_{k\to\infty}|u_k|_{P^*}$ e

$$\Lambda := \lim_{k \to \infty} |u_k|_{P^*} \le C|u|_{1,P}.$$

Por fim, uma vez que

$$P^*\left(\frac{|u_k(x)|}{\Lambda}\right) \longrightarrow P^*\left(\frac{|u(x)|}{\Lambda}\right), \quad \forall \ x \in \Omega,$$

segue do Teorema A.4 que

$$\int_{\Omega} P^* \left(\frac{|u(x)|}{\Lambda} \right) dx \le \sup_{k} \int_{\Omega} P^* \left(\frac{|u_k(x)|}{\Lambda} \right) dx \le 1,$$

onde a última desigualdade se verifica pelo fato de $\Lambda \geq |u_k|_{P^*}$. Assim

$$|u|_{P^*} \leq \Lambda \leq C|u|_{1,P},$$

donde concluímos que

$$W^{1,P}(\Omega) \stackrel{\text{cont.}}{\hookrightarrow} L^{P^*}(\Omega).$$

Suponha agora que $H \prec \prec P^*$. Nesse caso, pelo Teorema 1.42 temos que $L^{P^*}(\Omega) \stackrel{\text{cont.}}{\hookrightarrow} L^H(\Omega)$, portanto $W^{1,P}(\Omega) \stackrel{\text{cont.}}{\hookrightarrow} L^H(\Omega)$. Provaremos agora que esta imersão é compacta. Considere então S um subconjunto limitado de $W^{1,P}(\Omega)$. Como

$$W^{1,P}(\Omega) \stackrel{\mathrm{cont.}}{\hookrightarrow} L^{P^*}(\Omega),$$

então S é limitado em $L^{P^*}(\Omega)$. Além disso, segue do Teorema 1.36 que $W^{1,P}(\Omega) \stackrel{\text{cont.}}{\hookrightarrow} W^{1,1}(\Omega)$ e pelo Teorema A.15, $W^{1,1}(\Omega) \stackrel{\text{comp.}}{\hookrightarrow} L^1(\Omega)$, portanto S é pré-compacto em $L^1(\Omega)$. Assim, pelo Corolário 1.47 concluímos que S é pré-compacto em $L^H(\Omega)$.

Corolário 1.73. $W^{1,P}(\Omega) \stackrel{comp.}{\hookrightarrow} L^P(\Omega)$.

Demonstração. Afirmamos que $P \prec \prec P^*$. De fato, de acordo com [1, pag 265], é suficiente provar que

$$\lim_{t \to \infty} \frac{(P^*)^{-1}(t)}{P^{-1}(t)} = 0.$$

Facilmente obtemos este limite, aplicando a Regra de L'Hospital.

No caso de espaços de Sobolev, sabemos que se p>N então

$$W^{1,p}(\Omega) \stackrel{\text{cont.}}{\hookrightarrow} C^{0,1-N/p}(\overline{\Omega}).$$

Em se tratando dos espaços de Orlicz-Sobolev, a condição correspondente a p > N é

$$\int_{1}^{\infty} \frac{P^{-1}(s)}{s^{1+1/N}} ds < \infty.$$

Nesse caso, temos também um teorema de imersão que é análogo ao teorema de imersão de Sobolev. Antes de enunciá-lo vamos definir o espaço $C^{0,\sigma(t)}(\overline{\Omega})$.

Definição 1.74. Seja $\sigma = \sigma(t)$ uma função definida em $[0, +\infty)$ que é crescente, contínua e satisfaz $\sigma(0) = 0$. Dizemos que uma função $u \in C^0(\overline{\Omega})$ pertence ao espaço $C^{0,\sigma(t)}(\overline{\Omega})$, se

$$H_{\sigma(t)}(u) = \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \frac{|u(x) - u(y)|}{\sigma(|x - y|)} < \infty.$$

 $C^{0,\sigma(t)}(\overline{\Omega})$ é um espaço vetorial normado por

$$|u|_{\sigma(t)} = \max_{x \in \overline{\Omega}} |u(x)| + H_{\sigma(t)}(u).$$

Teorema 1.75. Considere $\Omega \subset \mathbb{R}^N$ um domínio limitado e regular e P uma N-função satisfazendo

$$\int_{1}^{\infty} \frac{P^{-1}(s)}{s^{1+1/N}} ds < \infty.$$

 $Ent\tilde{a}o$

$$W^{1,P}(\Omega) \overset{cont.}{\hookrightarrow} C^{0,\sigma(t)}(\overline{\Omega}),$$

onde

$$\sigma(t) = \int_{t^{-N}}^{\infty} \frac{P^{-1}(s)}{s^{1+1/N}} ds.$$

Demonstração. Ver [1], Teorema 8.40 ou [21], Teorema 7.2.14.

Definição 1.76. Definimos o espaço $W_0^{1,P}(\Omega)$ como sendo o fecho de $C_0^{\infty}(\Omega)$ em $W^{1,P}(\Omega)$, isto é,

$$W_0^{1,P}(\Omega) = \overline{C_0^{\infty}(\Omega)}^{|\cdot|_{1,P}}.$$

 $W_0^{1,P}(\Omega)$ com a norma induzida de $W^{1,P}(\Omega)$ é um espaço vetorial normado.

Proposição 1.77. (Designaldade de Poincaré) Suponha Ω domínio limitado com fronteira regular. Então existe uma constante positiva K_0 , tal que

$$|u|_P \le K_0 |\nabla u|_P, \quad \forall \ u \in W_0^{1,P}(\Omega).$$

Demonstração. Ver [17], pag 71.

Segue da Desigualdade de Poincaré que as normas $|u|_{1,P}$ e $|\nabla u|_P$ são equivalentes. De agora em diante consideraremos $|\nabla u|_P$ como sendo a norma do espaço $W_0^{1,P}(\Omega)$.

Observação 1.78. Se P é Δ -regular, então $W_0^{1,P}(\Omega)$ é um subespaço fechado de $W^{1,P}(\Omega)$ e como consequência disso segue que $W_0^{1,P}(\Omega)$ é espaço de Banach reflexivo.

Notação: $(W_0^{1,P}(\Omega))' = W_0^{-1,\tilde{P}}(\Omega)$.

Capítulo 2

Funcionais definidos no espaço de Orlicz-Sobolev $W_0^{1,P}(\Omega)$

Considere $\Omega \subset \mathbb{R}^N$ um domínio limitado com fronteira regular $\partial\Omega$, $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ e $a:(0,\infty)\to(0,\infty)$ satisfazendo a seguinte hipótese:

 $(p_1):\,a\in C^1(0,+\infty),\,a$ é positiva e monótona.

Agora, defina

$$p(t) := \begin{cases} a(|t|)t, & t \neq 0, \\ 0, & t = 0 \end{cases}$$
 (2.1)

e admita que p é um homeomorfismo crescente de $\mathbb R$ em $\mathbb R$. Desse modo, ficam bem definidas as N-funções

$$P(t) := \int_0^t p(s)ds$$
 e $\tilde{P}(t) := \int_0^t p^{-1}(s)ds$, $t \ge 0$.

Com relação à N-função P, consideraremos

$$(p_2): 1 < p^- := \inf_{t>0} \frac{tp(t)}{P(t)} \leqslant p^+ := \sup_{t>0} \frac{tp(t)}{P(t)} < +\infty;$$

$$(p_3): 0 < a^- := \inf_{t>0} \frac{tp'(t)}{p(t)} \leqslant a^+ := \sup_{t>0} \frac{tp'(t)}{p(t)} < +\infty.$$

Pelos Lemas 1.13 e 1.16, a condição (p_2) implica que a N-função P é Δ -regular e assim segue dos Teoremas 1.37, 1.62, 1.66 e 1.67 e da Observação 1.78 que $L^P(\Omega)$, $W^{1,P}(\Omega)$ e $W_0^{1,P}(\Omega)$ são espaços de Banach reflexivos. Além disso, pelo Teorema 1.28, $L^P(\Omega)$ coincide com a classe de Orlicz $\mathcal{L}^P(\Omega)$.

Consideraremos também que P satisfaz as condições (1.28) e (1.29). Neste caso podemos definir a N-função P^* da mesma maneira que foi feito no Lema 1.68.

Dessa forma, assumiremos que $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfaz a seguinte hipótese:

 $(f_*): f(x,0) = 0$ e existem um homeomorfismo ímpar e crescente $h: \mathbb{R} \to \mathbb{R}$ e constantes $a_1, a_2 \ge 0$ tais que

$$|f(x,t)| \leq a_1 + a_2 h(|t|)$$
, para todo $t \in \mathbb{R}$ e $x \in \overline{\Omega}$

 \mathbf{e}

$$\lim_{t \to \infty} \frac{H(t)}{P^*(kt)} = 0, \ \forall \ k > 0,$$
 (2.2)

onde

$$H(t) := \int_0^t h(s)ds, \qquad t \ge 0$$

é a N-função representada por h.

Assim, segue do Teorema 1.72 que

$$W^{1,P}(\Omega) \stackrel{\text{comp.}}{\hookrightarrow} L^H(\Omega).$$
 (2.3)

Denotando por

$$h^{-} := \inf_{t>0} \frac{th(t)}{H(t)}, \quad h^{+} := \sup_{t>0} \frac{th(t)}{H(t)}, \quad p_{*}^{-} := \inf_{t>0} \frac{tP^{*'}(t)}{P^{*}(t)} \text{ e } p_{*}^{+} := \sup_{t>0} \frac{tP^{*'}(t)}{P^{*}(t)},$$

vamos admitir que H satisfaz:

$$(h_1): 1 < h^- := \inf_{t>0} \frac{th(t)}{H(t)} \le \sup_{t>0} \frac{th(t)}{H(t)} := h^+ < +\infty;$$

$$(h_2): p^+ < h^- \le h^+ < p_*^-.$$

Sob essas condições, considere o funcional $I: W_0^{1,P}(\Omega) \to \mathbb{R}$ dado por

$$I(u) = \int_{\Omega} P(|\nabla u(x)|) dx - \int_{\Omega} F(x, u(x)) dx,$$

onde $F(x,t) = \int_0^t f(x,s)ds$, para todo $(x,t) \in \overline{\Omega} \times \mathbb{R}$.

Denotaremos por $\mathcal{P}: W_0^{1,P}(\Omega) \to \mathbb{R} \ \mathrm{e} \ \mathcal{F}: W_0^{1,P}(\Omega) \to \mathbb{R} \ \mathrm{os} \ \mathrm{funcionais}$

$$\mathcal{P}(u) = \int_{\Omega} P(|\nabla u(x)|) dx$$
 e $\mathcal{F}(u) = \int_{\Omega} F(x, u(x)) dx$.

Dessa maneira, $I(u) = \mathcal{P}(u) - \mathcal{F}(u), \quad u \in W_0^{1,P}(\Omega).$

Observe que se $u \in W_0^{1,P}(\Omega)$, então segue do Teorema 1.28 que $|\nabla u| \in \mathcal{L}^P(\Omega)$ e portanto

$$\int_{\Omega} P(|\nabla u(x)|) dx < \infty.$$

Da mesma forma, pela condição (f_*) temos que

$$|F(x, u(x))| \le a_1|u(x)| + a_2H(|u(x)|),$$

e consequentemente

$$\int_{\Omega} |F(x, u(x))| dx \leqslant a_1 \int_{\Omega} |u(x)| dx + a_2 \int_{\Omega} H(|u(x)|) dx.$$

Pelo Teorema 1.36, sabemos que $\int_{\Omega} |u(x)| dx < \infty$. Além disso, de (2.3) obtemos que $u \in L^H(\Omega)$ e como H satisfaz (h_1) , então H é Δ -regular e assim segue novamente do Teorema 1.28 que

$$\int_{\Omega} H(|u(x)|)dx < \infty.$$

Portanto \mathcal{P} e \mathcal{F} estão bem definidos, logo $I:W_0^{1,P}(\Omega)\to\mathbb{R}$ também está bem definido. Este capítulo está dividido em duas seções. Na primeira seção trataremos de algumas propriedades dos funcionais I, \mathcal{P} e \mathcal{F} , que serão úteis no decorrer deste trabalho. Na segunda seção consideraremos o seguinte problema de contorno:

$$\begin{cases}
-\Delta_P u = g, & \text{em } \Omega, \\
u = 0, & \text{na } \partial\Omega,
\end{cases}$$
(2.4)

para $g \in W_0^{-1,\tilde{P}}(\Omega)$. Veremos que, através do Teorema de Browder-Minty, podemos definir o operador solução associado ao problema (2.4) e que tal operador é um homeomorfismo.

2.1 - Propriedades dos funcionais

Provaremos agora algumas propriedades dos funcionais $I, \mathcal{P} \in \mathcal{F}$.

Lema 2.1. Suponha que P é uma N-função satisfazendo (p_2) . Então existe K > 0 tal que

$$P(a+b) \le K[P(a) + P(b)],$$
 para todo $a, b \ge 0.$

Demonstração. Segue da convexidade de P e do fato de P satisfazer (p_2) que

$$P(a+b) \stackrel{\text{conv.}}{\leq} \frac{1}{2}P(2a) + \frac{1}{2}P(2b) \stackrel{lema1.13}{\leq} 2^{p^+-1}[P(a) + P(b)].$$

Considerando $K = 2^{p^+-1}$, obtemos a desigualdade desejada.

Proposição 2.2. Se P satisfaz (p_2) , então $\mathcal{P} \in C^1(W_0^{1,P}(\Omega),\mathbb{R})$ e

$$\langle \mathcal{P}'(u), \varphi \rangle = \int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx, \quad para \ todo \ u \ e \ \varphi \ \in \ W_0^{1,P}(\Omega).$$

Demonstração.

Afirmação 2.3. \mathcal{P} é contínuo.

Com efeito, se $u_n \to u \; \text{ em } \; W_0^{1,P}(\Omega),$ então, pela Observação 1.51,

$$\int_{\Omega} P(|\nabla u_n - \nabla u|) dx \to 0.$$

Assim, segue do Teorema A.2 e do fato de P ser homeomorfismo satisfazendo $P^{-1}(0) = 0$, que, a menos de subsequência,

$$|\nabla u_n - \nabla u| \to 0$$
 e $P(|\nabla u_n - \nabla u|) \le \eta$, q.t.p em Ω , para algum $\eta \in L^1(\Omega)$.

Além disso, como $P \in \Delta_2$ então pelo Lema 2.1, a desigualdade triangular e o fato de P ser crescente, temos

$$|P(|\nabla u_n|) - P(|\nabla u|)| \le P(|\nabla u_n - \nabla u| + |\nabla u|) + P(|\nabla u|) \le K \left[P(|\nabla u_n - \nabla u|) + P(|\nabla u|)\right].$$

Portanto, a menos de subsequência,

$$|P(|\nabla u_n|) - P(|\nabla u|)| \le K\eta + KP(|\nabla u|) \in L^1(\Omega).$$

Pelo Teorema A.1 obtemos

$$\lim_{n \to \infty} \int_{\Omega} P(|\nabla u_n|) dx = \int_{\Omega} P(|\nabla u|) dx,$$

a menos de subsequência.

Repetindo esse argumento, concluímos que toda subsequência de $\{u_n\}$ admite subsequência $\{u_{n_{k_i}}\}$ tal que

$$\lim_{n_{k_{i}}\to\infty}\int_{\Omega}P(|\nabla u_{n_{k_{i}}}|)dx=\int_{\Omega}P(|\nabla u|)dx$$

e portanto

$$\lim_{n\to\infty} \int_{\Omega} P(|\nabla u_n|) dx = \int_{\Omega} P(|\nabla u|) dx,$$

como queríamos obter.

Afirmação 2.4. \mathcal{P} admite derivada de Gâteaux.

De fato, considere $f(x) = P(|x|), x \in \mathbb{R}^N$. Usando a Proposição 1.2 é fácil ver que $f \in C^1(\mathbb{R}^N, \mathbb{R})$ e

$$\frac{\partial f}{\partial x_i}(w) = \begin{cases} w_i a(|w|), & w \neq 0, \\ 0, & w = 0. \end{cases}$$

Desse modo,

$$\lim_{t \to 0} \frac{P(|\nabla u + t\nabla \varphi|) - P(|\nabla u|)}{t} = \frac{\partial f}{\partial \nabla \varphi}(\nabla u) = a(|\nabla u|)\nabla u \nabla \varphi, \quad \forall \ u, \varphi \in W_0^{1,P}(\Omega).$$
 (2.5)

Fixados $x \in \Omega$ e $|t| \in (0,1)$, então pelo Teorema do Valor Médio existe $\theta_x \in (0,1)$ tal que

$$\left| \frac{P(|\nabla u + t \nabla \varphi|) - P(|\nabla u|)}{t} \right| \leqslant a(|\nabla u + t \theta_x \nabla \varphi|) |\nabla u + t \theta_x \nabla \varphi| |\nabla \varphi|.$$

Como $|\nabla u + t\theta_x \nabla \varphi| \leq |\nabla u| + |\nabla \varphi|$ e a(t)t é crescente para t > 0, então

$$a(|\nabla u + t\theta_x \nabla \varphi|)|\nabla u + t\theta_x \nabla \varphi| \leq a(|\nabla u| + |\nabla \varphi|)(|\nabla u| + |\nabla \varphi|).$$

Assim,

$$\left| \frac{P(|\nabla u + t\nabla\varphi) - P(|\nabla u|)}{t} \right| \leq a(|\nabla u| + |\nabla\varphi|)(|\nabla u| + |\nabla\varphi|)|\nabla\varphi|
\leq a(|\nabla u| + |\nabla\varphi|)(|\nabla u| + |\nabla\varphi|)^{2}
\leq p^{+}P(|\nabla u| + |\nabla\varphi|) \in L^{1}(\Omega).$$
(2.6)

Por (2.5), (2.6) e pelo Teorema A.1, temos

$$\lim_{t \to 0} \int_{\Omega} \frac{P(|\nabla u + t \nabla \varphi|) - P(|\nabla u|)}{t} dx = \int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx.$$

Afirmação 2.5. Para cada φ fixado, $\frac{\partial \mathcal{P}}{\partial \varphi}$ é contínua.

Com efeito, considere $\{u_n\} \subset W_0^{1,P}(\Omega)$ tal que $u_n \to u$ em $W_0^{1,P}(\Omega)$. Então segue da desigualdade de Hölder que

$$\left| \frac{\partial \mathcal{P}}{\partial \varphi}(u_n) - \frac{\partial \mathcal{P}}{\partial \varphi}(u) \right| = \left| \int_{\Omega} \left[a(|\nabla u_n|) \nabla u_n - a(|\nabla u|) \nabla u \right] \nabla \varphi dx \right|$$

$$\leq 2|\nabla \varphi|_P |a(|\nabla u_n|) \nabla u_n - a(|\nabla u|) \nabla u|_{\tilde{P}}.$$

Além disso, do fato de \tilde{P} ser crescente, do Lema 2.1 e da Proposição 1.9, temos que

$$\tilde{P}(|a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u|) \leqslant \tilde{P}(a(|\nabla u_n|)|\nabla u_n| + a(|\nabla u|)|\nabla u|)
\leqslant K[\tilde{P}(a(|\nabla u_n|)|\nabla u_n|) + \tilde{P}(a(|\nabla u|)|\nabla u|)]
\leqslant K[P(2|\nabla u_n|) + P(2|\nabla u|)]
\leqslant K[P(|\nabla u_n|) + P(|\nabla u|)],$$
(2.7)

onde estamos considerando K uma constante cumulativa.

Como $u_n \to u$ em $W_0^{1,P}(\Omega)$, então

$$\int_{\Omega} P(|\nabla u_n - \nabla u|) dx = 0$$

e assim, considerando uma subsequência se necessário, existe $\eta \in L^1(\Omega)$ tal que

$$P(|\nabla u_n - \nabla u|) \leqslant \eta$$
, q.t.p em Ω . (2.8)

Portanto, de (2.7) e (2.8) obtemos que

$$\tilde{P}(|a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u|) \leqslant K[\eta + P(|\nabla u|)] \in L^1(\Omega),$$

onde novamente K é uma constante cumulativa.

Além disso, como $|\nabla u_n - \nabla u|_P \to 0$, então a menos de subsequência, temos que $|\nabla u_n - \nabla u| \to 0$, q.t.p em Ω . Portanto

$$\tilde{P}(|a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u|) \to 0$$
, q.t.p em Ω .

Pelo Teorema A.1, resulta que

$$\int_{\Omega} \tilde{P}(|a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u|)dx \to 0.$$
(2.9)

Como \tilde{P} satisfaz Δ_2 , então segue de (2.9) que

$$|a(|\nabla u_{n_k}|)\nabla u_{n_k} - a(|\nabla u|)\nabla u|_{\tilde{P}} \to 0$$

e portanto

$$\left| \frac{\partial \mathcal{P}}{\partial \varphi}(u_n) - \frac{\partial \mathcal{P}}{\partial \varphi}(u) \right| \to 0,$$

o que conclui a prova da Afirmação 2.5.

Das Afirmações 2.3 - 2.5, segue do Teorema A.18 que $\mathcal{P} \in C^1(W^{1,P}_0(\Omega),\mathbb{R})$ e

$$\langle \mathcal{P}'(u), \varphi \rangle = \int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx, \ \text{ para todo } u \in \varphi \ \in \ W_0^{1,P}(\Omega).$$

Proposição 2.6. Suponha que P satisfaça (p_2) . Então P é fracamente semicontínua inferiormente.

Demonstração. Considere $u_n \rightharpoonup u$ em $W_0^{1,P}(\Omega)$ e $\mathcal{P}'(u) \in W_0^{-1,\tilde{P}}(\Omega)$ a derivada de Fréchet de \mathcal{P} em u. Pela convexidade de \mathcal{P} , temos que

$$\mathcal{P}(u_n) \geqslant \mathcal{P}(u) + \langle \mathcal{P}'(u), u_n - u \rangle$$
.

Assim

$$\lim_{n \to \infty} \inf \mathcal{P}(u_n) \geqslant \lim_{n \to \infty} \inf [\mathcal{P}(u) + \langle \mathcal{P}'(u), u_n - u \rangle]$$

$$\geqslant \mathcal{P}(u) + \lim_{n \to \infty} \inf \langle \mathcal{P}'(u), u_n - u \rangle = \mathcal{P}(u).$$

Proposição 2.7. Assuma que P satisfaz (p_2) . Então \mathcal{P}' é coercivo.

Demonstração. Seja $u \in W_0^{1,P}(\Omega)$. Então uma vez que a condição (p_2) é satisfeita, decorre do Lema 1.48 que

$$p^{-}\min\{|\nabla u|_{P}^{p^{-}-1}, |\nabla u|_{P}^{p^{+}-1}\} \le p^{-}\frac{\int_{\Omega} P(|\nabla u|)dx}{|\nabla u|_{P}} \le \frac{\int_{\Omega} a(|\nabla u|)|\nabla u|^{2}dx}{|\nabla u|_{P}} = \frac{\langle \mathcal{P}'(u), u \rangle}{|\nabla u|_{P}}.$$

Portanto,

$$\frac{\langle \mathcal{P}'(u), u \rangle}{|\nabla u|_P} \to +\infty \quad \text{quando} \quad |\nabla u|_P \to +\infty.$$

Lema 2.8. Seja $b:(0,\infty)\to(0,\infty)$ uma função contínua satisfazendo

(i)
$$\lim_{s \to 0} sb(s) = 0$$
 e $\lim_{s \to \infty} sb(s) = \infty$;

(ii) $s \mapsto sb(s)$ é estritamente crescente em $(0, \infty)$.

Nesse caso,

$$(b(|x|)x - b(|y|)y, x - y) > 0, \quad \forall \ x, y \in \mathbb{R}^N, \quad com \ \ x \neq y.$$

Demonstração. Da desigualdade de Cauchy-Schwarz é fácil ver que

$$(b(|x|)x - b(|y|)y, x - y) \geqslant b(|x|)|x|(|x| - |y|) + b(|y|)|y|(|y| - |x|), \quad \forall \ x, y \in \mathbb{R}^{N}.$$

Se |x| < |y|, então como b(|t|)t é estritamente crescente, temos que

$$(b(|x|)x - b(|y|)y, x - y) \ge b(|x|)|x|(|x| - |y|) + b(|y|)|y|(|y| - |x|)$$

> $b(|x|)|x|(|x| - |y|) + b(|x|)|x|(|y| - |x|) = 0.$

Da mesma forma, se |y| < |x|, temos

$$(b(|x|)x - b(|y|)y, x - y) > 0.$$

Se $|y| = |x| \operatorname{com} x \neq y$, então

$$(b(|x|)x - b(|y|)y, x - y) = (b(|x|)x - b(|x|)y, x - y) = b(|x|)|x - y|^2 > 0.$$

Em qualquer caso,

$$(b(|x|)x - b(|y|)y, x - y) > 0, \quad \forall x, y \in \mathbb{R}^N, x \neq y.$$

Proposição 2.9. Considere $p: \mathbb{R} \to \mathbb{R}$ definido como em (2.1) e suponha que $P(t) = \int_0^{|t|} p(s)ds$ satisfaça (p_2) . Então \mathcal{P}' é estritamente monotônico, isto é,

$$\langle \mathcal{P}'(u) - \mathcal{P}'(v), u - v \rangle > 0, \ \forall \ u, v \in W_0^{1,P}(\Omega), \ u \neq v.$$

Demonstração. Se $u \neq v$, então pelo Lema 2.8 existe um subconjunto $\Omega_0 \subset \Omega$ de medida positiva tal que

$$(a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla u - \nabla v) > 0,$$
 q.t.p em Ω ,

assim

$$\langle \mathcal{P}'(u) - \mathcal{P}'(v), u - v \rangle = \int_{\Omega} (a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla u - \nabla v) dx > 0.$$

Agora provaremos mais uma propriedade de \mathcal{P}' que será utilizada posteriormente. Para isso precisaremos dos seguintes lemas:

Lema 2.10. Sejam $G: \mathbb{R}^N \to \mathbb{R}^N$ uma aplicação estritamente monotônica e $\{x_n\} \subset \mathbb{R}^N$ tal que

$$(G(x_n) - G(x), x_n - x) \stackrel{n \to \infty}{\longrightarrow} 0 \quad em \ \mathbb{R}.$$

 $Ent\tilde{a}o \ x_n \to x \ em \ \mathbb{R}^N.$

Demonstração. (Ver Lema 6, [11]).

Lema 2.11. Se P satisfaz (p_2) , então \mathcal{P}' é pseudomonotônico, isto é, se $\{u_n\} \subset W_0^{1,P}(\Omega)$ é tal que

$$u_n \rightharpoonup u \quad em \quad W_0^{1,P}(\Omega) \quad e \quad \lim_{n \to \infty} \sup \langle \mathcal{P}'(u_n), u_n - u \rangle \leq 0,$$

 $ent\~ao$

$$\mathcal{P}'(u_n) \rightharpoonup \mathcal{P}'(u) \quad em \ W_0^{-1,\tilde{P}}(\Omega) \quad e \quad \langle \mathcal{P}'(u_n), u_n \rangle \to \langle \mathcal{P}'(u), u \rangle.$$

Demonstração. Vimos que \mathcal{P}' é contínua em $W_0^{1,P}(\Omega)$. Além disso, segue da Proposição 2.9 que \mathcal{P}' é monotônico. Assim, pelo Lema 2.98 de [9] obtemos que \mathcal{P}' é pseudomonotônico.

Proposição 2.12. Nas hipóteses da Proposição 2.9, $\mathcal{P}': W_0^{1,P}(\Omega) \to W_0^{-1,\tilde{P}}(\Omega)$ é um operador do tipo (S_+) , isto é, se

$$u_n \rightharpoonup u$$
 e $\lim_{n \to \infty} \sup \langle \mathcal{P}'(u_n), u_n - u \rangle \leqslant 0$ $ent\tilde{a}o$ $u_n \to u$ em $W_0^{1,P}(\Omega)$.

Demonstração. Considere $\{u_n\} \subset W_0^{1,P}(\Omega)$ tal que

$$u_n \rightharpoonup u \text{ em } W_0^{1,P}(\Omega) \text{ e } \lim_{n \to \infty} \sup \langle P(u_n), u_n - u \rangle \leqslant 0.$$

Como \mathcal{P}' é monotômico, temos que

$$\langle \mathcal{P}'(u_n) - \mathcal{P}'(u), u_n - u \rangle = \int_{\Omega} (a(|\nabla u_n|) \nabla u_n - a(|\nabla u|) \nabla u, \nabla u_n - \nabla u) dx \geqslant 0.$$

Assim,

$$0 = \lim_{n \to \infty} \inf \langle \mathcal{P}'(u), u_n - u \rangle \leqslant \lim_{n \to \infty} \inf \langle \mathcal{P}'(u_n), u_n - u \rangle \leqslant \limsup_{n \to \infty} \langle \mathcal{P}'(u_n), u_n - u \rangle \leq 0.$$

Portanto,

$$\lim_{n \to \infty} \langle \mathcal{P}'(u_n), u_n - u \rangle = 0,$$

isto é,

$$(a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u, \nabla u_n - \nabla u) \to 0 \text{ em } L^1(\Omega),$$

daí

$$(a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u, \nabla u_n - \nabla u) \to 0, \quad \text{q.t.p em } \Omega.$$

Desse modo, pelo Lema 2.10 temos que $\nabla u_n \to \nabla u$, q.t.p em Ω , donde pela continuidade de P obtemos que

$$P(|\nabla u_n - \nabla u|) \to 0$$
, q.t.p em Ω . (2.10)

Além disso, segue da condição (p_2) e do Lema 2.1 que

$$P(|\nabla u_n - \nabla u|) \leqslant P(|\nabla u_n| + |\nabla u|)$$

$$\leqslant K[P(|\nabla u_n|) + P(|\nabla u|)]$$

$$\leqslant K[|\nabla u_n|^2 a(|\nabla u_n|) + P(|\nabla u|)], \tag{2.11}$$

onde K é uma constante cumulativa.

Por outro lado, pela Proposição 1.9

$$\tilde{P}(a(|\nabla u|)|\nabla u|) \leqslant P(2|\nabla u|),$$

portanto $a(|\nabla u|)|\nabla u| \in L^{\tilde{P}}$. Assim,

$$|\nabla u|^2 a(|\nabla u|) \stackrel{(1.3)}{=} P(|\nabla u|) + \tilde{P}(|\nabla u|a(|\nabla u|)) \in L^1(\Omega).$$

Do Lema 2.11, obtemos que

$$\lim_{n \to \infty} \int_{\Omega} a(|\nabla u_n|) |\nabla u_n|^2 dx = \int_{\Omega} a(|\nabla u|) |\nabla u|^2 dx,$$

daí, combinando os teoremas A.2 e A.5, podemos encontrar $\theta \in L^1(\Omega)$ tal que

$$a(|\nabla u_n|)|\nabla u_n|^2 \le \theta, \quad \text{q.t.p em } \Omega,$$
 (2.12)

a menos de subsequência.

Por (2.11) e (2.12), concluímos que a menos de subsequência

$$P(|\nabla u_n - \nabla u|) \le K[\theta + P(|\nabla u|)] \in L^1(\Omega). \tag{2.13}$$

Assim por (2.10) e (2.13), segue do Teorema A.1 que

$$\int_{\Omega} P(|\nabla u_n - \nabla u|) dx = 0$$

e portanto, pelo Teorema 1.52, obtemos que

$$u_n \to u \text{ em } W_0^{1,P}(\Omega).$$

Neste trabalho, também utilizaremos a seguinte propriedade de \mathcal{F} :

Proposição 2.13. Se f satisfaz (f_*) e vale a condição (h_1) , então $\mathcal{F} \in C^1(W_0^{1,P}(\Omega),\mathbb{R})$ e

$$\langle \mathcal{F}'(u), \varphi \rangle = \int_{\Omega} f(x, u(x)) \varphi(x) dx, \quad \forall u, \varphi \in W_0^{1,P}(\Omega).$$

Demonstração. De maneira análoga ao que foi feito na Proposição 2.2, provaremos que \mathcal{F} é Gâteaux diferenciável em $W_0^{1,P}(\Omega)$ e que \mathcal{F}' é linear e contínua.

Sejamue $\varphi\in W^{1,P}_0(\Omega)$ e
 $t\in (0,1).$ Então

$$\frac{1}{t}[\mathcal{F}(u+t\varphi)-\mathcal{F}(u)] = \frac{1}{t}\int_{\Omega} [F(x,u+t\varphi)-F(x,u)]dx,$$

е

$$\frac{1}{t}[F(x,u+t\varphi)-F(x,u)] \xrightarrow{t\to 0} f(x,u)\varphi(x), \ \forall \ x\in \Omega.$$

Segue da condição (f_*) e do fato de h ser um homeormorfismo crescente satisfazendo (h_1)

que

$$\left| \frac{[F(x, u + t\varphi) - F(x, u)]}{t} \right| = \frac{1}{t} \left| \int_0^{u + t\varphi} f(x, s) ds - \int_0^u f(x, s) ds \right|$$

$$= \left| \frac{1}{t} \int_u^{u + t\varphi} f(x, s) ds \right| = \left| \frac{1}{t} \int_0^1 f(x, u + st\varphi) t\varphi ds \right|$$

$$\leqslant \int_0^1 |f(x, u + st\varphi)| \varphi |ds$$

$$\stackrel{(f_*)}{\leqslant} \int_0^1 [a_1 |\varphi| + a_2 h(|u + st\varphi|) |\varphi|] ds$$

$$\leqslant a_1 |\varphi| + a_2 h(|u| + |\varphi|) |\varphi|$$

$$\leqslant a_1 |\varphi| + a_2 h(|u| + |\varphi|) (|u| + |\varphi|)$$

$$\stackrel{(h_1)}{\leqslant} a_1 |\varphi| + a_2 h^+ H(|u| + |\varphi|).$$

Entretanto, como $\varphi \in W_0^{1,P}(\Omega)$, então $\varphi \in L^1(\Omega)$. Além disso, $W_0^{1,P}(\Omega) \hookrightarrow L^H(\Omega)$, portanto $|u| + |\varphi| \in L^H(\Omega)$ e assim $a_1|\varphi| + a_2h^+H(|u| + |\varphi|) \in L^1(\Omega)$. Visto isso, segue do Teorema A.1 que

$$\frac{\partial \mathcal{F}}{\partial \varphi}(u) = \lim_{t \to 0} \frac{1}{t} [\mathcal{F}(u + t\varphi) - \mathcal{F}(u)]$$

$$= \lim_{t \to 0} \int_{\Omega} \frac{1}{t} [F(x, u + t\varphi) - F(x)] dx$$

$$= \int_{\Omega} f(x, u) \varphi(x) dx.$$

Assuma agora que $u_n \to u$ em $W_0^{1,P}(\Omega)$. Então

$$\left| \frac{\partial \mathcal{F}}{\partial \varphi}(u_n) - \frac{\partial \mathcal{F}}{\partial \varphi}(u) \right| \leqslant \int_{\Omega} |f(x, u_n) - f(x, u)| |\varphi| dx$$

$$\leqslant 2|\varphi|_H |f(\cdot, u_n) - f(\cdot, u)|_{\tilde{H}}.$$

Afirmação 2.14.

$$\lim_{n \to \infty} \int_{\Omega} \tilde{H}(|f(x, u_n) - f(x, u)|) dx = 0.$$

De fato, como $W_0^{1,P}(\Omega) \hookrightarrow L^H(\Omega)$ e $u_n \to u$ em $W_0^{1,P}(\Omega)$, então $u_n \to u$ em $L^H(\Omega)$. Podemos assumir que $|u_n - u|_H < 1/4$. Assim,

$$\int_{\Omega} H(4|u_n - u|) dx = \int_{\Omega} H\left(\frac{4|u_n - u|}{4|u_n - u|_H} \cdot (4|u_n - u|_H)\right) dx$$

$$\leqslant 4|u_n - u|_H \int_{\Omega} H\left(\frac{|u_n - u|}{|u_n - u|_H}\right) dx$$

$$= 4|u_n - u|_H \xrightarrow{n \to \infty} 0,$$

logo

$$H(4|u_n-u|) \to 0 \text{ em } L^1(\Omega).$$

Desse modo, existe $\theta_1 \in L^1(\Omega)$ tal que a menos de subsequência

$$H(4|u_n-u|) \to 0$$
 e $H(4|u_n(x)-u(x)|) \leqslant \theta_1(x)$, q.t.p em Ω ,

donde $u_n(x) \to u(x)$, q.t.p em Ω .

Pela monotonicidade e convexidade de H temos ainda

$$H(2|u_n|) \leqslant \frac{1}{2}H(4|u_n - u|) + \frac{1}{2}H(4|u|).$$
 (2.14)

Como $4u \in L^H$, então de (2.14) segue que

$$\theta_2 := \frac{1}{2}H(4|u|) + \frac{1}{2}\theta_1 \in L^1(\Omega)$$

 \mathbf{e}

$$H(2|u_n(x)|) \leqslant \theta_2(x)$$
, q.t.p em Ω .

Assim, pela Proposição 1.9

$$\tilde{H}(h(|u_n(x)|)) \leqslant \theta_2(x), \text{ q.t.p em } \Omega.$$
 (2.15)

Também, da convexidade de \tilde{H} , segue que

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \leq \tilde{H}(2a_1 + a_2h(|u_n|) + a_2h(|u|))
\leq \frac{\tilde{H}(6a_1) + \tilde{H}(3a_2h(|u_n|)) + \tilde{H}(3a_2h(|u|))}{3}$$

e por um argumento análogo ao usado para obter a desigualdade (2.15), concluímos que existe $\theta_3 \in L^1(\Omega)$ tal que

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \le \theta_3(x),$$
 q.t.p em Ω .

Além disso, pela continuidade de \tilde{H} e f temos que

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \to 0$$
, q.t.p em Ω .

Desse modo, pelo Teorema A.1

$$\lim_{n \to \infty} \int_{\Omega} \tilde{H}(|f(x, u_n) - f(x, u)|) dx = 0,$$

como queríamos demonstrar.

Observação 2.15. Segue das Proposições 2.2 e 2.13 que $I = \mathcal{P} - \mathcal{F} \in C^1(W_0^{1,P}(\Omega),\mathbb{R})$ e

$$\langle I'(u), \varphi \rangle = \int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx - \int_{\Omega} f(x, u) \varphi dx, \quad \forall \ u, \varphi \in W_0^{1, P}(\Omega).$$

2.2 - Operador solução associado ao problema (2.4)

Nesta seção, enunciaremos o Teorema de Browder-Minty e a partir dele provaremos que o operador solução associado ao problema (2.4) está bem definido e é um homeomorfismo entre os espaços $W_0^{-1,\tilde{P}}(\Omega)$ e $W_0^{1,P}(\Omega)$.

Lema 2.16. (Teorema de Browder-Minty) Sejam E um espaço de Banach reflexivo e A: $E \longrightarrow E'$ um operador contínuo, monotônico e coercivo. Então para cada $f \in E'$ existe uma única solução $u \in E$ da equação Au = f.

Demonstração. (Ver [7]).

Considerando o operador $\mathcal{P}':W_0^{1,P}(\Omega)\to W_0^{-1,\tilde{P}}(\Omega)$, então pelas Proposições 2.7 e 2.9 segue do Lema 2.16 que para cada $g\in W_0^{-1,\tilde{P}}(\Omega)$, existe único $u\in W_0^{1,P}(\Omega)$ tal que

$$\mathcal{P}'(u) = g,$$

isto é,

$$\langle \mathcal{P}'(u), \varphi \rangle = \langle g, \varphi \rangle, \quad \forall \ \varphi \in W_0^{1,P}(\Omega).$$

Mais especificamente, segue da Proposição 2.2 que dado $g \in W_0^{-1,\tilde{P}}(\Omega)$, existe uma única $u \in W_0^{1,P}(\Omega)$, solução de (2.4). Dessa maneira fica bem definido o operador solução

$$S: W_0^{-1,\tilde{P}}(\Omega) \longrightarrow W_0^{1,P}(\Omega)$$

 $q \longmapsto S(q) := u,$

onde u é a única solução de (2.4).

Proposição 2.17. $S = (\mathcal{P}')^{-1}$ e S é contínuo .

Demonstração. Dado $g \in W_0^{-1,\tilde{P}}(\Omega)$, vimos que existe um único $u \in W_0^{1,P}(\Omega)$ tal que $g = \mathcal{P}'(u) = (\mathcal{P}' \circ S)(g)$. Por outro lado, dado $u \in W_0^{1,P}(\Omega)$, se definirmos $g := \mathcal{P}'(u)$, segue que $u = S(g) = S(\mathcal{P}'(u))$, portanto $S = (\mathcal{P}')^{-1}$.

Provaremos agora que S é contínuo. Para isso, considere $\{g_n\} \subset W_0^{-1,\tilde{P}}(\Omega)$ tal que $g_n \to g$ em $W_0^{-1,\tilde{P}}(\Omega)$ e seja $u_n = S(g_n)$ e u = S(g), isto é,

$$\langle g_n, \varphi \rangle = \int_{\Omega} a(|\nabla u_n|) \nabla u_n \nabla \varphi dx \quad \text{e} \quad \langle g, \varphi \rangle = \int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx, \quad \text{para toda } \varphi \in W_0^{1,P}(\Omega).$$

Afirmação 2.18. $\{|\nabla u_n|_P\}$ é limitado.

De fato, caso contrário existiria uma subsequência $\{u_{n_k}\}\subset\{u_n\}$ tal que $|\nabla u_{n_k}|_P\to\infty$. Daí,

$$\int_{\Omega} P(|\nabla u_{n_k}|) dx \leqslant \int_{\Omega} |\nabla u_{n_k}|^2 a(|\nabla u_{n_k}|) dx$$

$$= \langle g_{n_k}, u_{n_k} \rangle$$

$$\leqslant ||g_{n_k}|| ||\nabla u_{n_k}||_P,$$

e pelo Lema 1.48

$$||g_{n_k}|| \geqslant \frac{\int_{\Omega} P(|\nabla u_{n_k}|)}{|\nabla u_{n_k}|_P} \geqslant \min\{|\nabla u_{n_k}|_P^{p^--1}, |\nabla u_{n_k}|_P^{p^+-1}\} \to \infty,$$

o que é um absurdo, visto que $\{g_{n_k}\}$ é convergente e portanto limitada.

Assim, segue da Afirmação 2.18 que

$$0 \leqslant \int_{\Omega} (a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u, \nabla u_n - \nabla u)dx$$
$$= \langle g_n - g, u_n - u \rangle$$
$$\leqslant ||g_n - g|| \underbrace{|\nabla u_n - \nabla u|_P}_{ltda} \to 0.$$

Desse modo,

$$\beta_n := (a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u, \nabla u_n - \nabla u) \to 0 \text{ em } L^1(\Omega)$$

e portanto, a menos de subsequência, $\beta_n(x) \to 0$ q.t.p em Ω , donde pelo Lema 2.10

$$\nabla u_n \to \nabla u$$
, q.t.p em Ω .

Queremos provar que $u_n \to u$ em $W_0^{1,P}(\Omega)$, isto é,

$$\lim_{n \to \infty} \int_{\Omega} P(|\nabla u_n - \nabla u|) dx = 0.$$

Ora, como $\nabla u_n \to \nabla u$ q.t.p em Ω , então pela continuidade de P temos que

$$P(|\nabla u_n - \nabla u|) \to 0$$
 q.t.p em Ω . (2.16)

Além disso, segue do Lema 2.1 e da condição (p_2) que

$$P(|\nabla u_n - \nabla u|) \leqslant K[|\nabla u_n|^2 a(|\nabla u_n|) + P(|\nabla u|)],$$

para alguma constante positiva K.

Como $\{|\nabla u_n|_P\}\subset W_0^{1,P}(\Omega)$ é limitado e $W_0^{1,P}(\Omega)$ é reflexivo, então, considerando uma subsequência se necessário, $u_n \to u$. Unindo isso ao fato que

$$|\langle g_n - g, u_n \rangle| \le ||g_n - g|| |\nabla u_n|_P \to 0,$$

temos o seguinte:

$$\langle g_n, u_n \rangle = \int_{\Omega} a(|\nabla u_n|) |\nabla u_n|^2 dx$$
$$= \langle g_n - g, u_n \rangle + \langle g, u_n \rangle \to \langle g, u \rangle = \int_{\Omega} a(|\nabla u|) |\nabla u|^2 dx,$$

donde

$$\lim_{n\to\infty} \int_{\Omega} K[|\nabla u_n|^2 a(|\nabla u_n|) + P(|\nabla u|)] dx = \lim_{n\to\infty} \int_{\Omega} K[a(|\nabla u|)|\nabla u|^2 + P(|\nabla u|)] dx.$$

Assim, pelos teoremas A.2 e A.5, existe $\eta \in L^1(\Omega)$ tal que

$$K[|\nabla u_n(x)|^2 a(|\nabla u_n(x)|) + P(|\nabla u(x)|)] \leqslant \eta(x), \quad \text{q.t.p em } \Omega,$$
(2.17)

a menos de subsequência. Portanto, pelo Teorema A.1, segue de (2.16) e (2.17) que

$$\int_{\Omega} P(|\nabla u_n - \nabla u|) dx \to 0,$$

ou seja, $u_n \to u$ em $W_0^{1,P}(\Omega)$.

Corolário 2.19. $\mathcal{P}':W_0^{1,P}(\Omega)\longrightarrow W_0^{-1,\tilde{P}}(\Omega)$ é homeomorfismo.

Demonstração. Segue diretamente das Proposições 2.2 e 2.17.

Capítulo 3

C^1 versus $W_0^{1,P}$ mínimos locais e resultados de regularidade

Antes de provar o resultado principal deste trabalho, precisamos estudar a regularidade das soluções de (P), em que (P) é o seguinte problema de contorno:

$$(P): \begin{cases} -\Delta_P u = f(x, u), & \text{em } \Omega, \\ u = 0, & \text{na } \partial \Omega, \end{cases}$$

Com base no trabalho de Fusco [15], provaremos que as soluções fracas de (P) estão em $L^{\infty}(\Omega)$. A partir disso, uma vez que $\partial\Omega$ é regular, recaímos nas hipóteses de Lieberman ([23] e [24]) e assim concluímos que as soluções de (P) pertencem à $C^{1,\alpha}(\overline{\Omega})$.

Este capítulo está dividido em duas seções. Na primeira seção trataremos dos resultados de regularidade do problema (P). Na segunda seção veremos que, sob a condição de crescimento (f_*) , um mínimo local de I na topologia de $C^1(\overline{\Omega})$ é também mínimo local de I na topologia de $W_0^{1,P}(\Omega)$.

3.1 - Regularidade

De modo geral, se $u \in W_0^{1,P}(\Omega)$, então pelas condições (p_2) e (f_*) valem as seguintes designaldades:

$$a(|\nabla u|)|\nabla u|^2 \ge p^- P(|\nabla u|) \ge p^- P(|\nabla u|) - a_1;$$
 (3.1)

$$|a(|\nabla u|)\nabla u| = p(|\nabla u|) \le p(|\nabla u|) + a_1; \tag{3.2}$$

$$|f(x,u)| \le a_1 + a_2 h(|u|).$$
 (3.3)

O lema a seguir pode ser encontrado em [15].

Lema 3.1. Seja $u \in W^{1,p}(\Omega)$ (p > 1). Se para qualquer $B_{\rho}(x_0) \subset\subset \Omega$, com $\rho < R_0$ e quaisquer $\sigma \in (0,1)$ e $k \geq k_0 > 0$ vale

$$\int_{A_{k,\rho-\sigma\rho}} |\nabla u|^p dx \le c \left[\int_{A_{k,\rho}} \left| \frac{u-k}{\sigma\rho} \right|^{p^*} dx + (k^r+1)|A_{k,\rho}| \right], \tag{3.4}$$

onde $A_{k,\rho} = \{x \in B_{\rho}(x_0) : u(x) > k\}, 0 < r \leq p^*, p^* \text{ \'e o expoente cr\'itico de Sobolev e c \'e uma constante positiva, então u \'e localmente limitada superiormente em <math>\Omega$.

Com base no lema anterior, podemos provar o seguinte teorema de regularidade para o problema (P):

Teorema 3.2. Assuma que $a \in C^1(0, +\infty)$, a(t) > 0 e que se verificam as hipóteses (p_2) , (f_*) , (h_1) e (h_2) . Se $u \in W_0^{1,P}(\Omega)$ é solução fraca de P), então $u \in L^{\infty}_{loc}(\Omega)$. Se adicionalmente u é limitada em $\partial\Omega$, então $u \in L^{\infty}(\Omega)$.

Demonstração. Seja u solução fraca de (P) e $x_0 \in \Omega$. Provaremos primeiramente que u é localmente limitada. Tome então $B_{r_0}(x_0) \subset \Omega$ e considere

$$\overline{B_t}(x') \subset B_s(x') \subset B_{r_0}(x_0)$$

onde s-t<1. Consideremos $\xi\in C^{\infty}(\Omega)$ tal que

$$0 \le \xi \le 1$$
, supp $\xi \subset B_s(x')$, $\xi \equiv 1$ em $B_t(x')$, $|\nabla \xi| \le \frac{2}{s-t}$

e a partir disso $\eta = \xi^{p^+} \max\{u - k, 0\}$, para $k \ge 1$.

Como $u \in W_0^{1,P}(\Omega)$ e $\xi^{p^+} \in C^{\infty}(\Omega)$, então $\eta \in W^{1,P}(\Omega)$. Além disso, η tem suporte estritamente contido em Ω , portando $\eta \in W_0^{1,P}(\Omega)$. Uma vez que

$$\eta(x) = \begin{cases} \xi^{p^+}(u(x) - k), & \text{se } u(x) > k, \\ 0, & \text{c.c.}, \end{cases}$$

temos que

$$\frac{\partial \eta}{\partial x_i}(x) = \begin{cases} \xi^{p^+} \frac{\partial u}{\partial x_i}(x) + p^+ \xi^{p^+ - 1} \frac{\partial \xi}{\partial x_i}.(u - k), & \text{se } u(x) > k, \\ 0, & \text{c.c.} \end{cases}$$

Desde que $\eta \in W_0^{1,P}(\Omega)$, substituindo η em (3), obtemos

$$\int_{A_{k,s}} a(|\nabla u|) \nabla u \left[\xi^{p^{+}} \nabla u + p^{+} \xi^{p^{+}-1} (u-k) \nabla \xi \right] dx
- \int_{A_{k,s}} f(x,u) \xi^{p^{+}} (u-k) dx = 0,$$
(3.5)

onde $A_{k,s} = \{x \in B_s : u(x) > k\}.$

Denotando por

$$J = \int_{A_{k,s}} P(|\nabla u|) \xi^{p^+} dx \quad \text{e } Q = \int_{A_{k,s}} \left| \frac{u - k}{s - t} \right|^{p_*^-} dx,$$

então

$$p^{-}J = p^{-} \int_{A_{k,s}} P(|\nabla u|) \xi^{p^{+}} dx \overset{(3.1)}{\leq} \int_{A_{k,s}} a(|\nabla u|) |\nabla u|^{2} \xi^{p^{+}} dx + a_{1} \int \xi^{p^{+}} dx$$

$$\overset{(3.5)}{\leq} a_{1} \int \xi^{p^{+}} dx + \int_{A_{k,s}} |f(x,u)| \xi^{p^{+}} (u-k) dx$$

$$+ p^{+} \int_{A_{k,s}} \xi^{p^{+}-1} |\nabla \xi| a(|\nabla u|) |\nabla u| (u-k) dx.$$

Assim, pelas desigualdades (3.2) e (3.3), temos que

$$p^{-}J \leq a_{1} \int_{A_{k,s}} \xi^{p^{+}} dx + a_{1} \int_{A_{k,s}} \xi^{p^{+}} (u - k) dx$$

$$+ a_{2} \int_{A_{k,s}} h(|u|) \xi^{p^{+}} (u - k) dx$$

$$+ p^{+} \int_{A_{k,s}} p(|\nabla u|) \xi^{p^{+}-1} |\nabla \xi| (u - k) dx$$

$$+ a_{1} p^{+} \int_{A_{k,s}} \xi^{p^{+}-1} |\nabla \xi| (u - k) dx. \tag{3.6}$$

Valem as seguintes estimativas:

1.
$$\int_{A_{k,s}} \xi^{p^+} dx \le \int_{A_{k,s}} 1 dx = |A_{k,s}|.$$

2. Como $0 \le \xi \le 1$, então

$$\begin{split} \int_{A_{k,s}} \xi^{p^+}(u-k) dx & \leq \int_{A_{k,s}} |u-k| dx \\ & \leq \int_{A_{k,s} \cap \{x \in \Omega: |u-k| \leq 1\}} |u-k| dx \\ & + \int_{A_{k,s} \cap \{x \in \Omega: |u-k| > 1\}} |u-k| dx. \end{split}$$

Além disso, do fato de 0 < s-t < 1 e $p_*^- > 1$, temos que $|u-k| \le \left|\frac{u-k}{s-t}\right|^{p_*^-}$ se $|u-k| \ge 1$. Assim, obtemos:

$$\int_{A_{k,s}} \xi^{p^{+}}(u-k)dx \leq \int_{A_{k,s}} 1dx + \int_{A_{k,s}} \left| \frac{u-k}{s-t} \right|^{p_{*}^{-}} dx$$
$$= |A_{k,s}| + Q.$$

3. Do mesmo modo, como $0 \le \xi \le 1$ e $|\nabla \xi| \le 2/(s-t)$, então

$$\int_{A_{k,s}} \xi^{p^{+}-1} |\nabla \xi| (u-k) dx \leq \int_{A_{k,s}} 2\xi^{p^{+}-1} \left| \frac{u-k}{s-t} \right| dx \\
\leq 2 \int_{A_{k,s}} \left| \frac{u-k}{s-t} \right| dx \leq 2|A_{k,s}| + 2Q.$$

4. Desde que 0 < s - t < 1 e $p^+ < h^+ < p_*^-$, temos

$$\int_{A_{k,s}} h(|u|) \xi^{p^{+}}(u-k) dx \leq \int_{A_{k,s}} h(|u|)(u-k) dx
= \int_{A_{k,s}} \frac{h(|u|)|u|}{|u|} (u-k) dx
\stackrel{(h_{1})}{\leq} h^{+} \int_{A_{k,s}} \frac{H(|u|)}{|u|} (u-k) dx
\stackrel{Young}{\leq} h^{+} \int_{A_{k,s}} \tilde{H}\left(\frac{H(|u|)}{|u|}\right) dx + h^{+} \int_{A_{k,s}} H(|u-k|) dx.$$

Pela Proposição 1.9 e o Lema 1.48, segue que

$$\begin{split} &\int_{A_{k,s}} h(|u|)\xi^{p^{+}}(u-k)dx \overset{\text{prop. }1.9}{\leq} h^{+} \int_{A_{k,s}} H(|u|)dx + h^{+} \int_{A_{k,s}} H(|u-k|)dx \\ &\leq h^{+} \int_{A_{k,s}} H(|u-k|+k)dx + h^{+} \int_{A_{k,s}} H(|u-k|)dx \\ \overset{\text{lema1.48}}{\leq} h^{+}H(1) \int_{A_{k,s}} (|u-k|+k)^{h^{+}}dx + h^{+} \left(H(1)|A_{k,s}| + H(1) \int_{A_{k,s}} |u-k|^{h^{+}}dx \right) \\ &= h^{+}H(1)2^{h^{+}}k^{h^{+}}|A_{k,s}| + h^{+}H(1)2^{h^{+}} \int_{A_{k,s}} |u-k|^{h^{+}}dx \\ &+ h^{+}H(1)|A_{k,s}| + h^{+}H(1) \int_{A_{k,s}} |u-k|^{h^{+}}dx \\ &\leq |A_{k,s}| \left[h^{+}H(1)2^{h^{+}}k^{h^{+}} + h^{+}H(1) \right] + \left(h^{+}H(1)2^{h^{+}} + h^{+}H(1) \right) \int_{A_{k,s}} |u-k|^{h^{+}}dx. \end{split}$$

Por outro lado,

$$\int_{A_{k,s}} |u - k|^{h^+} dx \le |A_{k,s}| + Q,$$

daí

$$\int_{A_{k,s}} h(|u|) \xi^{p^{+}}(u-k) dx \leq |A_{k,s}| \left[h^{+}H(1) 2^{h^{+}} k^{h^{+}} + h^{+}H(1) \right]
+ \left[h^{+}H(1) 2^{h^{+}} + h^{+}H(1) \right] \int_{A_{k,s}} |u-k|^{h^{+}} dx \leq c_{1} |A_{k,s}| (1+k^{h^{+}}) + c_{2}Q,$$

para algumas constante positivas c_1 e c_2 .

5. Tomando $\varepsilon_1 \in (0,1)$ tal que $(p^+)^2 \varepsilon_1^{p^+/(p^+-1)} = p^-/4$, então segue da condição (p_2) , da desigualdade de Young e do Lema 1.49 que

$$p^{+} \int_{A_{k,s}} p(|\nabla u|) \xi^{p^{+}-1} |\nabla \xi| (u-k) dx = p^{+} \int_{A_{k,s}} \frac{p(|\nabla u|) |\nabla u|}{|\nabla u|} \xi^{p^{+}-1} |\nabla \xi| (u-k) dx$$

$$\stackrel{(p_{2})}{\leq} (p^{+})^{2} \int_{A_{k,s}} \frac{P(|\nabla u|)}{|\nabla u|} \xi^{p^{+}-1} |\nabla \xi| (u-k) dx \stackrel{\text{Young}}{\leq} (p^{+})^{2} \int_{A_{k,s}} \tilde{P} \left(\frac{\varepsilon_{1} P(|\nabla u|) \xi^{p^{+}-1}}{|\nabla u|} \right) dx + (p^{+})^{2} \int_{A_{k,s}} P\left(\frac{|\nabla \xi| (u-k)}{\varepsilon_{1}} \right) dx \stackrel{\text{lema 1.49}}{\leq} (p^{+})^{2} \varepsilon_{1}^{\frac{p^{+}}{p^{+}-1}} \int_{A_{k,s}} \xi^{p^{+}} \tilde{P} \left(\frac{P(|\nabla u|)}{|\nabla u|} \right) dx + \frac{(p^{+})^{2}}{\varepsilon_{1}^{p^{+}}} \int_{A_{k,s}} P(|\nabla \xi| (u-k)) dx.$$

Além disso, pela Proposição 1.9, o Lema 1.48 e o fato de $p^+ < p_*^-$, temos ainda a seguinte desigualdade:

$$p^{+} \int_{A_{k,s}} p(|\nabla u|) \xi^{p^{+}-1} |\nabla \xi| (u-k) dx \leq (p^{+})^{2} \varepsilon_{1}^{\frac{p^{+}}{p^{+}-1}} \int_{A_{k,s}} \xi^{p^{+}} P(|\nabla u|) dx +$$

$$+ (p^{+})^{2} \varepsilon_{1}^{-p^{+}} \int_{A_{k,s}} P\left(\frac{2(u-k)}{|s-t|}\right) dx = \frac{p^{-}}{4} J + (p^{+})^{2} \varepsilon_{1}^{-p^{+}} 2^{p^{+}} \int_{A_{k,s}} P\left(\frac{|u-k|}{|s-t|}\right) dx$$

$$\leq \frac{p^{-}}{4} J + (p^{+})^{2} \varepsilon_{1}^{-p^{+}} 2^{p^{+}} \left[\int_{A_{k,s}} P(1) dx + P(1) \int_{A_{k,s}} \left|\frac{u-k}{s-t}\right|^{p_{s}^{-}} dx\right]$$

$$= \frac{p^{-}}{4} J + (p^{+})^{2} \varepsilon_{1}^{-p^{+}} 2^{p^{+}} \left[P(1) |A_{k,s}| + P(1)Q\right] = \frac{p^{-}}{4} J + c_{3} |A_{k,s}| + c_{3}Q,$$
onde $c_{3} = (p^{+})^{2} \varepsilon_{1}^{-p^{+}} 2^{p^{+}} P(1).$

Portanto, substituindo as desigualdades obtidas em (1) - (5) em (3.6), concluímos que

$$J \le c_4[Q + |A_{k,s}|(k^{h^+} + 1)], \tag{3.7}$$

para algum $c_4 > 0$.

Finalmente, se $|\nabla u| \leq 1$, então

$$\int_{A_{k,t}} |\nabla u|^{p^{-}} dx \le |A_{k,t}| < |A_{k,s}| \le \left[\int_{A_{k,s}} \left| \frac{u-k}{s-t} \right|^{p_{*}^{-}} dx + (k^{h^{+}} + 1)|A_{k,s}| \right].$$

Caso contrário, isto é, se $|\nabla u| > 1$, então segue do Lema 1.48 e de (3.7) que

$$P(1) \int_{A_{k,t}} |\nabla u|^{p^{-}} dx \le \int_{A_{k,t}} P(|\nabla u|) dx \le c_{4} [Q + (k^{h^{+}} + 1)|A_{k,s}|].$$

Tomando $c_5 = \frac{c_4}{P(1)} + 1$, temos

$$\int_{A_{k,t}} |\nabla u|^{p^{-}} dx \le c_{5}[Q + (k^{h^{+}} + 1)|A_{k,s}|], \tag{3.8}$$

portanto (3.4) é satisfeito. Assim, segue do Lema 3.1 que u é localmente limitada superiormente em Ω .

De maneira análoga, podemos provar que -u satisfaz (3.8). Desse modo, novamente pelo Lema 3.1, temos que -u é localmente limitada superiomete em Ω e portanto $u \in L^{\infty}_{loc}(\Omega)$. Além disso, como u é limitada em $\partial\Omega$, considere $M = \max_{\partial\Omega} |u(x)|$. Para todo $x_0 \in \partial\Omega$, por um argumento similar, podemos provar que (3.8) vale pra $k \geq M$ e portanto $u \in L^{\infty}(\Omega)$ (ver [22], página 80, Observações).

Em [23] e [24], Lieberman estudou a regularidade das soluções da seguinte classe de problemas:

$$\begin{cases}
-div(A(x, u, \nabla u)) + B(x, u, \nabla u) = 0, & \text{em } \Omega, \\
u = 0, & \text{na } \partial\Omega.
\end{cases}$$
(3.9)

Da exposição feita em [23], a regularidade até o bordo pode ser obtida pelas mesmas condições de crescimento apresentadas em [24].

Estamos interessados em aplicar os resultados de Lieberman para estudar a regularidade das soluções de (P).

Seja u solução fraca de (P), então segue do Teorema 3.2 que $u \in L^{\infty}(\Omega)$, desse modo considere $M_0 = |u|_{\infty}$. Defina $A : \overline{\Omega} \times \mathbb{R}^N \to \mathbb{R}$ e $B : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ por

$$A(x, \eta) = a(|\eta|)\eta$$
 e
 $B(x, t) = f(x, t)$.

Admitindo válidas as hipóteses $(p_1), (p_2), (p_3)$ e (f_*) , então para todo $x, y \in \overline{\Omega}, \quad \eta \in \mathbb{R}^N \setminus \{0\}, \quad \xi \in \mathbb{R}^N$ e $t \in \mathbb{R}$, valem as seguintes estimativas:

 $(A_1) \ A(x,0) = 0;$

$$(A_2) \sum_{i,j=1}^{N} \frac{\partial A_i}{\partial \eta_j}(x,\eta) \xi_i \xi_j \ge \Gamma_1 \frac{p(|\eta|)}{|\eta|} |\xi|^2;$$

$$(A_3) \sum_{i,j=1}^{N} \left| \frac{\partial A_i}{\partial \eta_j}(x,\eta) \right| |\eta| \le c(1+p(|\eta|));$$

$$(A_4) |A(x,\eta) - A(y,\eta)| \le c(1 + p(|\eta|))|x - y|^{\theta}, \text{ para algum } \theta \in (0,1);$$

 $(B_1) |B(x,t)| \le c + ch(|t|).$

Antes de verificarmos as estimativas acima, precisamos do seguinte lema:

Lema 3.3. Suponha que a condição (p_3) se verifique. Então vale a seguinte designaldade:

$$a^{-} - 1 = \inf_{t>0} \frac{ta'(t)}{a(t)} \leqslant \sup_{t>0} \frac{ta'(t)}{a(t)} = a^{+} - 1 < +\infty, \tag{3.10}$$

e portanto, de maneira similar ao Lema 1.48, temos que :

(1) se
$$0 < t < 1$$
, então $t^{a^+-1}a(l) \le a(tl) \le t^{a^--1}a(l)$, $l \in [0, +\infty)$;

(2) se
$$t > 1$$
, então $t^{a^{-}-1}a(l) \le a(tl) \le t^{a^{+}-1}a(l)$, $l \in [0, +\infty)$.

Demonstração. A prova de (1) e (2) segue de maneira análoga a prova do Lema 1.48, restando assim verificarmos que vale a desigualdade (3.10).

Primeiramente observe que

$$\frac{tp'(t)}{p(t)} = \frac{ta'(t) + a(t)}{a(t)} = \frac{ta'(t)}{a(t)} + 1, \qquad t > 0.$$

Desse modo, pela condição (p_3) segue que

$$a^{-} - 1 = \inf_{t>0} \frac{ta'(t)}{a(t)} \le \sup_{t>0} \frac{ta'(t)}{a(t)} = a^{+} - 1.$$

Provaremos agora as desigualdades (A_1) - (A_4) e (B_1) .

Prova de (A_1) : $|A(x,\eta)| \le a(|\eta|)|\eta| = p(|\eta|)$. Quando $\eta = 0$, segue da definição de p que $p(|\eta|) = 0$ e assim A(x,0) = 0.

Prova de (A_2) :

$$\sum_{i,j=1}^{N} \frac{\partial A_i}{\partial \eta_j} \xi_i \xi_j = \sum_{i,j=1}^{N} \left[\frac{a'(|\eta|)}{|\eta|} \xi_i \xi_j \eta_i \eta_j + a(|\eta|) \delta_{ij} \xi_i \xi_j \right]$$
$$= a'(|\eta|) \frac{|\langle \eta, \xi \rangle|^2}{|\eta|} + a(|\eta|) |\xi|^2.$$

Se $a'(|\eta|) \ge 0$, então

$$\sum_{i,j=1}^{N} \frac{\partial A_i}{\partial \eta_j} \xi_i \xi_j \ge a(|\eta|)|\xi|^2.$$

Se $a'(|\eta|) < 0$, então pelo Lema 3.3

$$a'(|\eta|) \frac{|\langle \eta, \xi \rangle|^2}{|\eta|} \ge a'(|\eta|) |\eta| |\xi|^2 \ge (a^- - 1) |\xi|^2 a(|\eta|),$$

donde

$$\sum_{i,j=1}^{N} \frac{\partial A_i}{\partial \eta_j} \xi_i \xi_j \ge a^- |\xi|^2 a(|\eta|).$$

Portanto, tomando $\Gamma_1 = \min\{1, a^-\}$, temos que

$$\sum_{i,j=1}^{N} \frac{\partial A_i}{\partial \eta_j} \xi_i \xi_j \ge \Gamma_1 |\xi|^2 a(|\eta|), \quad \forall \ x \in \overline{\Omega}, \ p \in \mathbb{R}^N \setminus \{0\} \ \text{e} \ \xi \in \mathbb{R}^N.$$

Prova de (A_3) : Usando o Lema 3.3, temos:

$$\sum_{i,j=1}^{N} \left| \frac{\partial A_i}{\partial \eta_j} \right| |\eta| \leq \sum_{i,j=1}^{N} \left[\frac{|a'(|\eta|)| |\eta_i \eta_j|}{|\eta|} + a(|\eta|) \delta_{ij} \right] |\eta|
\leq a(|\eta|) |\eta| \sum_{i,j=1}^{N} \left\{ \max\{|a^- - 1|, |a^+ - 1|\} \frac{|\eta_i \eta_j|}{|\eta|^2} + \delta_{ij} \right\}
\leq a(|\eta|) |\eta| \sum_{i,j=1}^{N} \left[\max\{|a^- - 1|, |a^+ - 1|\} + \delta_{ij} \right] \leq c(1 + p(|\eta|)),$$

para todo $x \in \overline{\Omega}, \eta \in \mathbb{R}^N \setminus \{0\}$ e alguma constante c > 0.

Prova de (A_4) :

$$|A(x,\eta) - A(y,\eta)| = |a(|\eta|)\eta - a(|\eta|)\eta| = 0 \le c(1 + a(|\eta|)|x - y|^{\theta},$$

 $\forall \; x,y \in \overline{\Omega}, \; \eta \; \in \mathbb{R}^N \backslash \{0\} \; \text{e qualquer} \; \; \theta \in (0,1).$

Prova de (B_1) : Pela condição (f_*) segue que

$$|B(x,t)| = |f(x,t)| \le c + ch(|t|).$$

Pelo Teorema 3.2 e as desigualdades $(A_1) - (A_4)$ e (B_1) , segue de Lieberman ([23], [24]) o seguinte resultado.

Teorema 3.4. ([23], [24]) Se valem as hipóteses (p_1) , (p_2) , (p_3) , (f_*) , (h_1) , (h_2) e u é u ma solução fraca em $W_0^{1,P}(\Omega)$ do problema (P), então $u \in C^{1,\alpha}(\overline{\Omega})$, onde $\alpha > 0$ e $|u|_{C^{1,\alpha}} \leq C(p^-, p^+, \Gamma_1, c, \theta, M_0, N, \Omega)$.

3.2 - $W_0^{1,P}$ versus C^1 mínimos locais

Motivados pelos trabalhos de Brezis e Niremberg [8] e Azorero, Peral e Manfredi [3], apresentaremos agora a demonstração do resultado principal deste trabalho. Antes disso precisamos provar os seguintes lemas:

Lema 3.5. Se a condição (p_3) é satisfeita, então existe uma constante positiva d_1 , dependendo de a^- e a^+ , tal que

$$|a(|\eta|)\eta - a(|\xi|)\xi| \le d_1|\eta - \xi|a(|\eta| + |\xi|).$$

Demonstração. Suponha primeiramente que a(t) é não decrescente para t > 0. Assumiremos, sem perda de generalidade, que $|\xi| \ge |\eta|$. Desse modo, pelo Lema 3.3 temos

$$|a(|\eta|)\eta - a(|\xi|)\xi| = \left| \int_0^1 \frac{d}{dt} \{ a(|\xi + t(\eta - \xi)|)(\xi + t(\eta - \xi)) \} dt \right|$$

$$= \left| \int_0^1 a'(|\xi + t(\eta - \xi)|) \frac{(\xi + t(\eta - \xi)) \cdot (\eta - \xi)}{|\xi + t(\eta - \xi)|} (\xi + t(\eta - \xi)) dt + \int_0^1 a(|\xi + t(\eta - \xi)|)(\eta - \xi) dt \right|$$

$$\leq |\eta - \xi| \int_0^1 \left[|a'(|\xi + t(\eta - \xi)|)| |\xi + t(\eta - \xi)| + a(|\xi + t(\eta - \xi)|) \right] dt$$

$$\leq |\eta - \xi| \int_0^1 \left[1 + \max\{|a^- - 1|, |a^+ - 1|\} \right] a(|\xi + t(\eta - \xi)|) dt.$$

Desde que $|\xi + t(\eta - \xi)| \le |\eta| + |\xi|$ para todo $t \in (0,1)$ e a(t) é não decrescente para t > 0, temos que $a(|\xi + t(\eta - \xi)|) \le a(|\eta| + |\xi|)$, o que implica em

$$|a(|\eta|)\eta - a(|\xi|)\xi| \le [1 + \max\{|a^- - 1|, |a^+ - 1|\}] |\eta - \xi|a(|\eta| + |\xi|).$$

Assuma agora que a(t) é não crescente para t>0. Assim, como no caso anterior, temos a seguinte desigualdade

$$|a(|\eta|)\eta - a(|\xi|)\xi| \le [1 + \max\{|a^{-} - 1|, |a^{+} - 1|\}]|\eta - \xi| \int_{0}^{1} a(|\xi + t(\eta - \xi)|)dt.$$

Afirmamos que

$$\int_0^1 a(|\xi + t(\eta - \xi)|) dt \le Ca(|\eta| + |\xi|),$$

para alguma constante positiva C.

De fato, se $|\eta-\xi|\leq |\xi|/2,$ usando que $|\xi|\geq |\eta|$ temos

$$|\xi + t(\eta - \xi)| \ge |\xi| - |\eta - \xi| \ge \frac{|\xi|}{2} = \frac{|\xi|}{4} + \frac{|\xi|}{4} \ge \frac{|\xi| + |\eta|}{4}.$$

Assim, pelo Lema 3.3

$$\int_0^1 a(|\xi + t(\eta - \xi)|) dt \le a\left(\frac{|\xi| + |\eta|}{4}\right) \le \left(\frac{1}{4}\right)^{a^{-1}} a(|\xi| + |\eta|).$$

Caso contrário, isto é, se $|\eta - \xi| > |\xi|/2 > 0$, então definindo $t_0 := |\xi|/|\eta - \xi|$, temos que $t_0 \in (0,2)$ e

$$\begin{aligned} |\xi + t(\eta - \xi)| &\ge ||\xi| - t|\eta - \xi|| = |t - t_0||\eta - \xi| \\ &> |t - t_0|\frac{|\xi|}{2} = |t - t_0|\left(\frac{|\xi|}{4} + \frac{|\xi|}{4}\right) \ge |t - t_0|\left(\frac{|\xi| + |\eta|}{4}\right). \end{aligned}$$

Como $t_0 \in (0, 2)$, então $|t - t_0|/4 \le 1$ para todo $t \in (0, 1)$, daí segue do fato de a(t) ser não crescente e do Lema 3.3 que

$$\int_0^1 a(|\xi + t(\eta - \xi)|) dt \leq \int_0^1 a\left(\frac{|t - t_0|}{4}(|\eta| + |\xi|)\right) dt$$
$$\leq \int_0^1 \left(\frac{|t - t_0|}{4}\right)^{a^- - 1} a(|\eta| + |\xi|) dt.$$

Se considerarmos $C=\max\left\{\int_0^1\left(\frac{|t-t_0|}{4}\right)^{a^--1}dt,\left(\frac{1}{4}\right)^{a^--1}\right\}$, então

$$\int_0^1 a(|\xi + t(\eta - \xi)|) dt \le Ca(|\eta| + |\xi|),$$

o que conclui a prova da afirmação.

Tomando $d_1 = \max\{C, 1 + \max\{|a^- - 1|, |a^+ - 1|\}\}$, temos que

$$|a(\eta)\eta - a(\xi)\xi| \le d_1|\eta - \xi|a(|\eta| + |\xi|).$$

Lema 3.6. Suponha que vale a hipótese (p_2) . Então existe C > 0 tal que

$$p(a+b) \le C[p(a) + p(b)],$$

para todo $a, b \ge 0$ com $a + b \ne 0$.

Demonstração. Segue da convexidade de P e do Lema 2.1 que

$$P(a+b) \le \frac{1}{2}P(2a) + \frac{1}{2}P(2b) \stackrel{\text{lema2.1}}{\le} \frac{K}{2p^-}[ap(a) + bp(b)].$$

Além disso, pela condição (p_2)

$$\frac{1}{n^+}p(a+b)(a+b) \le P(a+b),$$

portanto

$$(a+b)p(a+b) \le \frac{Kp^+}{2p^-}[ap(a) + bp(b)] \le \frac{Kp^+}{2p^-}(a+b)[p(a) + p(b)],$$

donde $p(a + b) \le C[p(a) + p(b)]$, em que $C = Kp^{+}/2p^{-}$.

Apresentaremos agora uma prova do Teorema A, que é o principal resultado deste trabalho. Veremos posteriormente que esse teorema é uma ferramenta útil no estudo de multiplicidade global de soluções positivas para uma classe de equações elípticas quasilineares.

Teorema A: Assuma que (p_1) , (p_2) , (p_3) , (f_*) , (h_1) e (h_2) valem. $u_0 \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega})$ é um mínimo local de I na topologia de $C^1(\overline{\Omega})$, então u_0 é mínimo local de I na topologia de $W_0^{1,P}(\Omega)$.

Demonstração. Considere $u_0 \in C^1(\overline{\Omega}) \cap W^{1,P}_0(\Omega)$ mínimo local de I na topologia de $C^1(\overline{\Omega})$. Defina

$$G(u) = \int_{\Omega} P(|\nabla u - \nabla u_0|) dx, \quad u \in W_0^{1,P}(\Omega)$$

e

$$D_{\varepsilon} = \{ u \in W_0^{1,P}(\Omega) : G(u) \le \varepsilon \}, \text{ para } \varepsilon \in (0,1).$$

Assim, temos que:

- 1. D_{ε} contém $u_0, \ \forall \ \varepsilon > 0$.
- 2. D_{ε} é limitado em $W_0^{1,P}(\Omega)$, pois se $u \in D_{\varepsilon}$, então $|\nabla u \nabla u_0|_P \leq 1$.
- 3. Como P é convexa, segue que D_{ε} é um subconjunto convexo de $W_0^{1,P}(\Omega)$.

Concluímos então que D_{ε} é um subconjunto fracamente fechado e limitado de $W_0^{1,P}(\Omega)$ e portanto D_{ε} é fracamente compacto (ver Teorema A.10).

Por outro lado, se $u_n \rightharpoonup u$ em $W_0^{1,P}(\Omega)$, então como a imersão de $W_0^{1,P}(\Omega)$ sobre $L^H(\Omega)$ é compacta, podemos supor que $u_n \to u$ em $L^H(\Omega)$. De maneira análoga a Proposição 2.13, podemos provar que $\mathcal{F} \in C^1(L^H(\Omega), \mathbb{R})$ e assim $\mathcal{F}(u_n) \to \mathcal{F}(u)$. Unindo isso a Proposição 2.6, concluímos que I é fracamente sequencialmente semicontínua inferiormente e portanto existe $u_{\varepsilon} \in D_{\varepsilon}$ tal que $I(u_{\varepsilon}) = \min_{D_{\varepsilon}} I$ (ver Teorema A.11). Se $u_{\varepsilon} \in \text{int} D_{\varepsilon}$, então $I'(u_{\varepsilon}) = 0$ e assim tomando $\mu_{\varepsilon} = 0$ segue que $I'(u_{\varepsilon}) = \mu_{\varepsilon} G'(u_{\varepsilon})$.

Suponha agora que $u_{\varepsilon} \in \partial D_{\varepsilon} = \{u \in W_0^{1,P}(\Omega) : G(u) = \varepsilon\}$. Primeiramente note que, pela Proposição 2.2, $G \in C^1(W_0^{1,P}(\Omega), \mathbb{R})$. Além disso,

$$\int_{\Omega} P(|\nabla u - \nabla u_0|) dx = \varepsilon > 0, \quad \text{para todo } u \in \partial D_{\varepsilon}.$$

Portanto $|\nabla u - \nabla u_0| > 0$ em um conjunto de medida positiva. Assim,

$$\langle G'(u), (u-u_0) \rangle = \int_{\Omega} p(|\nabla u - \nabla u_0|) |\nabla u - \nabla u_0| dx > 0,$$

donde $G'(u) \neq 0$. Como, pela Observação 2.15, $I \in C^1(W_0^{1,P}(\Omega),\mathbb{R})$, então pelo Teorema A.20 existe $\mu_{\varepsilon} \in \mathbb{R}$ tal que $I'(u_{\varepsilon}) = \mu_{\varepsilon}G'(u_{\varepsilon})$. Afirmamos que nesse caso $\mu_{\varepsilon} \leq 0$.

De fato, caso contrário segue da Proposição 2.2 que

$$\langle I'(u_{\varepsilon}), u_{\varepsilon} - u_{0} \rangle = \mu_{\varepsilon} \langle G'(u_{\varepsilon}), u_{\varepsilon} - u_{0} \rangle = \mu_{\varepsilon} \int_{\Omega} a(|\nabla u_{\varepsilon} - \nabla u_{0}|) |\nabla u_{\varepsilon} - \nabla u_{0}|^{2} dx > 0.$$

Assim

$$\lim_{t\to 0} \frac{I(u_{\varepsilon} + t(u_{\varepsilon} - u_0)) - I(u_{\varepsilon})}{t} = \langle I'(u_{\varepsilon}), u_{\varepsilon} - u_0 \rangle > 0.$$

Daí, tomando $t \in (-1,0)$ suficientemente próximo de 0 teríamos

$$I(u_{\varepsilon} + t(u_{\varepsilon} - u_0)) < I(u_{\varepsilon}). \tag{3.11}$$

Como D_{ε} é convexo e $t \in (-1,0)$, então $u_{\varepsilon} + t(u_{\varepsilon} - u_0) = (1+t)u_{\varepsilon} - tu_0 \in D_{\varepsilon}$ e assim (3.11) contradiria o fato de u_{ε} ser mínimo local de I em D_{ε} . Portanto, em qualquer caso existe $\mu_{\varepsilon} \leq 0$ tal que $I'(u_{\varepsilon}) = \mu_{\varepsilon}G'(u_{\varepsilon})$, isto é, $u_{\varepsilon} \in W_0^{1,P}(\Omega)$ satisfaz

$$\int_{\Omega} a(|\nabla u_{\varepsilon}|) \nabla u_{\varepsilon} \nabla \phi dx - \int_{\Omega} f(x, u_{\varepsilon}) dx = \mu_{\varepsilon} \int_{\Omega} a(|\nabla u_{\varepsilon} - \nabla u_{0}|) (\nabla u_{\varepsilon} - \nabla u_{0}) \nabla \phi dx, \ \forall \ \phi \in W_{0}^{1, P}(\Omega),$$

ou equivalentemente,

$$-div\{a(|\nabla u_{\varepsilon}|)\nabla u_{\varepsilon}\} + \mu_{\varepsilon}div\{a(|\nabla u_{\varepsilon} - \nabla u_{0}|)(\nabla u_{\varepsilon} - \nabla u_{0})\} = f(x, u_{\varepsilon}). \tag{3.12}$$

ou ainda, divindindo ambos os lados de (3.12) por $1 - \mu_{\varepsilon}$, u_{ε} satisfaz

$$-div\left\{\frac{1}{1-\mu_{\varepsilon}}\left[a(|\nabla u_{\varepsilon}|)\nabla u_{\varepsilon} - \mu_{\varepsilon}a(|\nabla u_{\varepsilon} - \nabla u_{0}|)(\nabla u_{\varepsilon} - \nabla u_{0})\right]\right\} = \frac{1}{1-\mu_{\varepsilon}}f(x, u_{\varepsilon}). (3.13)$$

Suponha, por contradição, que u_0 não seja mínimo local de I na topologia de $W_0^{1,P}(\Omega)$. Então para cada $\varepsilon \in (0,1), \quad u_{\varepsilon} \neq u_0$ e $I(u_{\varepsilon}) < I(u_0)$.

Por outro lado, como $|\nabla u_{\varepsilon} - \nabla u_0|_P \le 1$, então segue da Observação 1.33 e do Lema 1.48 que

$$|\nabla u_{\varepsilon} - \nabla u_0|_P^{p^+} = |\nabla u_{\varepsilon} - \nabla u_0|_P^{p^+} \int_{\Omega} P\left(\frac{|\nabla u_{\varepsilon} - \nabla u_0|}{|\nabla u_{\varepsilon} - \nabla u_0|_P}\right) dx \le \int_{\Omega} P(|\nabla u_{\varepsilon} - \nabla u_0|) dx \le \varepsilon.$$

Dessa forma, $u_{\varepsilon} \to u_0$ em $W_0^{1,P}(\Omega)$ quando $\varepsilon \to 0$.

Em seguida, provaremos que $u_{\varepsilon} \to u_0$ em $C^1(\overline{\Omega})$, o que contradiz o fato de u_0 ser mínimo local de I na topologia de $C^1(\overline{\Omega})$. Para isso defina

$$A_{\varepsilon}: \overline{\Omega} \times \mathbb{R}^N \longrightarrow \mathbb{R}^N \ \ \text{e} \ \ B_{\varepsilon}: \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$$

por

$$A_{\varepsilon}(x,\eta) = \frac{1}{1-\mu_{\varepsilon}} \left[a(|\eta|)\eta - \mu_{\varepsilon} a(|\eta - \nabla u_0|)(\eta - \nabla u_0) \right]$$
e
$$B_{\varepsilon}(x,t) = \frac{1}{1-\mu_{\varepsilon}} f(x,t).$$

Com essa notação, segue de (3.13) que u_{ε} satisfaz

$$\begin{cases}
-div(A_{\varepsilon}(x, \nabla u)) = B_{\varepsilon}(x, u), & \text{em } \Omega, \\
u = 0, & \text{na } \partial\Omega.
\end{cases}$$

Afirmação 3.7. Valem as seguintes desigualdades:

1.
$$A_{\varepsilon}(x,\eta)\eta \geq a_0 P(|\eta|) - c;$$

2.
$$A_{\varepsilon}(x,\eta) \leq a_1 p(|\eta|) + c$$
;

3.
$$B_{\varepsilon}(x,t) \leq bh(|t|) + c$$
,

onde a_0 , a_1 , b e c são constantes positivas e independentes de ε .

De fato:

Prova de 1:

Como $P(|\eta|) \leq p(|\eta|)|\eta|$ para todo $\eta \in \mathbb{R}^N$, então

$$A_{\varepsilon}(x,\eta)\eta = \frac{1}{1-\mu_{\varepsilon}} \left\{ [a(|\eta|)\eta - \mu_{\varepsilon}a(|\eta|)\eta] - \mu_{\varepsilon} \left[a(|\eta - \nabla u_{0}|)(\eta - \nabla u_{0}) - a(|\eta|)\eta \right] \right\} \eta$$

$$= \frac{1}{1-\mu_{\varepsilon}} (1-\mu_{\varepsilon})a(|\eta|)|\eta|^{2} - \frac{\mu_{\varepsilon}}{1-\mu_{\varepsilon}} J \ge \frac{1}{1-\mu_{\varepsilon}} [(1-\mu_{\varepsilon})P(|\eta|) - \mu_{\varepsilon} J],$$

onde
$$J = [a(|\eta - \nabla u_0|)(\eta - \nabla u_0) - a(|\eta|)\eta] \eta.$$

Além disso, pelo Lema 3.5

$$|J| \le |a(|\eta - \nabla u_0|)(\eta - \nabla u_0) - a(|\eta|)\eta ||\eta| \le d_1 |\nabla u_0| a(|\eta - \nabla u_0| + |\eta|)|\eta|. \tag{3.14}$$

Se a for não crescente, então usando o fato de $|\nabla u_0|$ ser limitada em Ω e a condição (p_2) , temos que existe uma constante positiva c (consideraremos c uma constante cumulativa) tal que

$$\begin{split} |J| & \leq ca(|\eta|)|\eta| = cp(|\eta|) \overset{\text{Young}}{\leq} P(2cp^+) + \tilde{P}\left(\frac{p(|\eta|)}{2p^+}\right) \\ & \leq c + \frac{1}{2p^+} \tilde{P}(p(|\eta|)) = c + \frac{1}{2p^+} \int_0^{p(|\eta|)} p^{-1}(s) ds \\ & \leq c + \frac{1}{2n^+} p(|\eta|) p^{-1}(p(|\eta|)) = c + \frac{1}{2n^+} |\eta| p(|\eta|) \leq c + \frac{1}{2} P(|\eta|). \end{split}$$

Por outro lado, se a for não decrescente, então segue do fato de $|\nabla u_0|$ ser limitado em Ω , do Lema 3.6 e da desigualdade de Young a seguinte desigualdade:

$$|J| \leq d_{1}|\nabla u_{0}|a(|\eta - \nabla u_{0}| + |\eta|)|\eta|$$

$$\leq d_{1}|\nabla u_{0}||\eta|a(2|\eta| + |\nabla u_{0}|) \leq d_{1}|\nabla u_{0}|p(2|\eta| + |\nabla u_{0}|) \stackrel{lema3.6}{\leq} c_{1}p(|\eta|) + c_{2}p(|\nabla u_{0}|)$$

$$\stackrel{Young}{\leq} \tilde{P}(c_{1}4p^{+}) + \tilde{P}(\frac{1}{4p^{+}}p(|\eta|)) + c_{2}p(|\nabla u_{0}|) \leq c + \frac{1}{2}P(|\eta|).$$

Assim,

$$A_{\varepsilon}(x,\eta)\eta \geq \frac{1}{1-\mu_{\varepsilon}}[(1-\mu_{\varepsilon})P(|\eta|) - \mu_{\varepsilon}J]$$

$$\geq \frac{1}{1-\mu_{\varepsilon}}[P(|\eta|)(1-\frac{\mu_{\varepsilon}}{2}) + \mu_{\varepsilon}c]$$

$$\geq \frac{1}{2}P(|\eta|) - c,$$

o que prova (1).

Prova de 2:

Usando o Lema 3.5, temos

$$|A_{\varepsilon}(x,\eta)| \leq \frac{1}{1-\mu_{\varepsilon}} [(1-\mu_{\varepsilon})|a(|\eta|)\eta| - \mu_{\varepsilon}|a(|\eta-\nabla u_{0}|)(\eta-\nabla u_{0}) - a(|\eta|)\eta|]$$

$$= p(|\eta|) - \frac{\mu_{\varepsilon}}{1-\mu_{\varepsilon}} |a(|\eta-\nabla u_{0}|)(\eta-\nabla u_{0}) - a(|\eta|)\eta|$$

$$\leq p(|\eta|) + d_{1}|\nabla u_{0}|a(|\eta-\nabla u_{0}| + |\eta|).$$

Se a for não crescente, então pelo fato de $|\nabla u_0|$ ser limitado temos:

$$|A_{\varepsilon}(x,\eta)| \le p(|\eta|) + d_1 p(|\nabla u_0|) \le p(|\eta|) + c.$$

Se a for não decrescente, então segue do Lema 3.6 que

$$|A_{\varepsilon}(x,\eta)| \leq p(|\eta|) + d_1 p(|\eta - \nabla u_0| + |\eta|)$$

$$\leq p(|\eta|) + c_1 p(|\eta|) + c_2 p(|\nabla u_0|) \leq c_3 p(|\eta|) + c.$$

Tomando $a_1 = \max\{1, c_3\}$, obtemos a desigualdade requerida.

Prova de 3: Neste caso, segue de $\mu_{\varepsilon} \leq 0$ e (f_*) , que

$$|B_{\varepsilon}(x,t)| = \frac{1}{1-\mu_{\varepsilon}}|f(x,t)| \le |f(x,t)| \le c + bh(|t|).$$

Assim, verificadas as desigualdades 1-3, decorre do Teorema 3.2 que $u_{\varepsilon} \in L^{\infty}(\Omega)$. Além disso, seguindo as ideias do Teorema 2.2 de [13] e do Lema 2.4 de [15], obtemos que a norma L^{∞} de u_{ε} depende somente da norma de u_{ε} em $W_0^{1,P}(\Omega)$, p^+, p^- e das constantes, a_0, a_1, b e c. Portanto, como u_{ε} e uniformemente limitada em $W_0^{1,P}(\Omega)$ e a_0, a_1, b e c não dependem de ε , então existe C>0 satisfazendo $|u_{\varepsilon}|_{\infty} \leq C$, $\forall \varepsilon \in (0,1)$. A partir dos resultados de Lieberman em [23] e [24], provaremos que u_{ε} é também uniformemente limitada em $C^{1,\alpha}(\overline{\Omega})$. Dividiremos a prova em dois casos:

Caso 1 : $\mu_{\varepsilon} \in [-1, 0]$.

Como u_0 é mínimo de I na topologia de $C^1(\overline{\Omega})$, segue que $I'(u_0) = 0$, isto é, u_0 satisfaz a seguinte equação

$$-div(a(|\nabla u_0|)\nabla u_0) = f(x, u_0).$$

Consequentemente, podemos reescrever (3.12) como

$$-div\{a(|\nabla u_\varepsilon|)\nabla u_\varepsilon - \mu_\varepsilon a(|\nabla u_\varepsilon - \nabla u_0|)(\nabla u_\varepsilon - \nabla u_0) - \mu_\varepsilon a(|\nabla u_0|)\nabla u_0\} = f(x,u_\varepsilon) - \mu_\varepsilon f(x,u_0).$$

Agora definindo

$$\overline{A}_{\varepsilon}: \overline{\Omega} \times \mathbb{R}^N \longrightarrow \mathbb{R}^N \ \ \mathrm{e} \ \ \overline{B}_{\varepsilon}: \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$$

por

$$\overline{A}_{\varepsilon}(x,\eta) = a(|\eta|)\eta - \mu_{\varepsilon}a(|\eta - \nabla u_0|)(\eta - \nabla u_0) - \mu_{\varepsilon}a(|\nabla u_0|)\nabla u_0$$

 \mathbf{e}

$$\overline{B}_{\varepsilon}(x,t) = f(x,t) - \mu_{\varepsilon}f(x,u_0),$$

segue que u_{ε} satisfaz:

$$\begin{cases} -div(\overline{A}_{\varepsilon}(x,\nabla u)) = \overline{B}_{\varepsilon}(x,u), & \text{em } \Omega, \\ u = 0, & \text{na } \partial\Omega. \end{cases}$$

Queremos provar que $u_{\varepsilon} \in C^{1,\alpha}(\overline{\Omega})$. Para isso, baseado nos trabalhos de Lieberman ([23] e [24]), precisamos mostrar que para $x,y\in\overline{\Omega},\eta\in\mathbb{R}^N\setminus\{0\},\ \xi\in\mathbb{R}^N$ e $t\in\mathbb{R}$, valem as seguintes estimativas :

•

$$\overline{A}_{\varepsilon}(x,0) = 0; \tag{3.15}$$

•

$$\sum_{i,j=1}^{N} \frac{\partial (\overline{A}_{\varepsilon})_{j}}{\partial \eta_{i}}(x,\eta) \xi_{i} \xi_{j} \geq \Gamma_{1} \frac{p(|\eta|)}{|\eta|} |\xi|^{2}; \tag{3.16}$$

•

$$\sum_{i,j=1}^{N} \left| \frac{\partial (\overline{A}_{\varepsilon})_{j}}{\partial \eta_{i}}(x,\eta) \right| |\eta| \le C(1+p(|\eta|)); \tag{3.17}$$

•

$$|\overline{A}_{\varepsilon}(x,\eta) - \overline{A}_{\varepsilon}(y,\eta)| \le C(1 + p(|\eta|)(|x-y|^{\theta}),$$
(3.18)

para algum $\theta \in (0,1)$;

•

$$|\overline{B}_{\varepsilon}(x,t)| \le C + Ch(|t|).$$
 (3.19)

É fácil ver que (3.15) se verifica. Para provar (3.16), note que

$$(\overline{A}_{\varepsilon})_{j} = a(|\eta|)\eta_{j} - \mu_{\varepsilon}a(|\eta - \nabla u_{0}|)\left(\eta_{j} - \frac{\partial u_{0}}{\partial x_{j}}\right) - \mu_{\varepsilon}a(|\nabla u_{0}|)\frac{\partial u_{0}}{\partial x_{j}}$$

e daí

$$\frac{\partial (A_{\varepsilon})_{j}}{\partial \eta_{i}} = a'(|\eta|) \frac{\eta_{i} \eta_{j}}{|\eta|} + a(|\eta|) \delta_{ij}$$

$$-\mu_{\varepsilon} \delta_{ij} a(|\eta - \nabla u_{0}|) - \mu_{\varepsilon} \left(\eta_{j} - \frac{\partial u_{0}}{\partial x_{j}} \right) \frac{\eta_{i} - \frac{\partial u_{0}}{\partial x_{i}}}{|\eta - \nabla u_{0}|} a'(|\eta - \nabla u_{0}|).$$
(3.20)

Assim,

$$\sum_{i,j=1}^{N} \frac{\partial (\overline{A}_{\varepsilon})_{j}}{\partial \eta_{i}}(x,\eta) \xi_{i} \xi_{j} = a'(|\eta|) \frac{|\langle \eta, \xi \rangle|^{2}}{|\eta|} + a(|\eta|) |\xi|^{2}$$
$$-\mu_{\varepsilon} a(|\eta - \nabla u_{0}|) |\xi|^{2} - \mu_{\varepsilon} a'(|\eta - \nabla u_{0}|) \frac{|\langle \eta - \nabla u_{0}, \xi \rangle|^{2}}{|\eta - \nabla u_{0}|}.$$

Se $a' \geq 0$, então pelo fato de $\mu_{\varepsilon} \leq 0$ temos

$$\sum_{i,j=1}^{N} \frac{\partial (\overline{A}_{\varepsilon})_{j}}{\partial \eta_{i}}(x,\eta)\xi_{i}\xi_{j} \ge a(|\eta|)|\xi|^{2} = \frac{p(|\eta|)}{|\eta|}|\xi|^{2}.$$
(3.21)

Se a' < 0, então de

$$a'(|\eta|) |\langle \eta, \xi \rangle|^2 \ge a'(|\eta|) |\eta|^2 |\xi|^2$$

e do Lema 3.3 segue que

$$a'(|\eta|)\frac{|\langle \eta, \xi \rangle|^2}{|\eta|} \ge a'(|\eta|)\frac{|\eta|^2|\xi|^2}{|\eta|} \ge (a^- - 1)a(|\eta|)|\xi|^2 = (a^- - 1)\frac{p(|\eta|)|\xi|^2}{|\eta|}.$$

Da mesma forma,

$$-\mu_{\varepsilon}a'(|\eta - \nabla u_0|)\frac{|\langle \eta - \nabla u_0, \xi \rangle|^2}{|\eta - \nabla u_0|} \ge -\mu_{\varepsilon}(a^- - 1)a(|\eta - \nabla u_0|)|\xi|^2,$$

e assim

$$\sum_{i,j=1}^{N} \frac{\partial (\overline{A}_{\varepsilon})_{j}}{\partial \eta_{i}}(x,\eta) \xi_{i} \xi_{j} \geq a^{-} a(|\eta|) |\xi|^{2} - \mu_{\varepsilon} a^{-} a(|\eta - \nabla u_{0}|) |\xi|^{2} \geq a^{-} \frac{p(|\eta|)}{|\eta|} |\xi|^{2}.$$
 (3.22)

Considerando $\Gamma_1 = \min\{1, a^-\}$, então de (3.21) e (3.22) obtemos a desigualdade (3.16).

A prova de (3.17) decorre da expressão (3.20), Lema 3.3 e Lema 3.5, enquanto a prova (3.18) segue do fato de $u_0 \in C^{1,\alpha}(\overline{\Omega})$ e do Lema 3.5.

Por fim, como f satisfaz (f_*) e estamos supondo que $|\mu_{\varepsilon}| \leq 1$, então a prova de (3.19) segue da seguinte maneira:

$$|\overline{B}_{\varepsilon}(x,t)| = |f(x,t) - \mu_{\varepsilon}f(x,u_0)|$$

$$\leq |f(x,t)| + |f(x,u_0)|$$

$$\leq a_1 + a_2h(|t|) + a_1 + a_2h(|u_0|)$$

$$\leq C + Ch(|t|).$$

Verificadas as condições (3.15) - (3.19) , pelo fato de u_{ε} ser uniformemente limitada em $L^{\infty}(\Omega)$ e Γ_1 , C não dependerem de ε , segue de Lieberman ([23], [24]) que $u_{\varepsilon} \in C^{1,\alpha}(\overline{\Omega})$ para todo $\varepsilon \in (0,1)$. Além disso, $\{u_{\varepsilon}\}$ é uniformemente limitada em $C^{1,\alpha}(\overline{\Omega})$ e portanto $\{u_{\varepsilon}\}$ é equilimitada em $C^{1}(\overline{\Omega})$. Desde que $\{u_{\varepsilon}\}$ é equincontínua, segue do Teorema de Arzela-Áscoli que existe $u \in C^1(\overline{\Omega})$ tal que $u_{\varepsilon} \to u$ em $C^1(\overline{\Omega})$, a menos de subsequências. Como $u_{\varepsilon} \to u_0$ em $W_0^{1,P}(\Omega)$, então pela unicidade do limite no sentido das distribuições obtemos que $u = u_0$ e assim $u_{\varepsilon} \to u_0$ em $C^1(\overline{\Omega})$, o que contradiz o fato de u_0 ser mínimo local de I na topologia $C^1(\overline{\Omega})$.

Caso 2: $\mu_{\varepsilon} < -1$

Considere $v_{\varepsilon}=u_{\varepsilon}-u_{0}$. Então por (3.12), v_{ε} satisfaz

$$-div\left[a(|\nabla v_{\varepsilon}|)\nabla v_{\varepsilon} + \frac{1}{|\mu_{\varepsilon}|}a(|\nabla v_{\varepsilon} + \nabla u_{0}|)(\nabla v_{\varepsilon} + \nabla u_{0}) - \frac{1}{|\mu_{\varepsilon}|}a(|\nabla u_{0}|)\nabla u_{0}\right]$$

$$= \frac{1}{|\mu_{\varepsilon}|}[f(x, v_{\varepsilon} + u_{0}) - f(x, u_{0})].$$

Definindo

$$\tilde{A}_{\varepsilon}(x,\eta) = a(|\eta|)\eta + \frac{1}{|\mu_{\varepsilon}|}a(|\eta + \nabla u_0|)(\eta + \nabla u_0) - \frac{1}{|\mu_{\varepsilon}|}a(|\nabla u_0|)\nabla u_0$$

 \mathbf{e}

$$\tilde{B}_{\varepsilon}(x,t) = \frac{1}{|\mu_{\varepsilon}|} [f(x,t+u_0) - f(x,u_0)],$$

de maneira análoga ao Caso 1, obtemos as desigualdades (3.15) - (3.19). Assim, novamente pelos resultado de Lieberman, $v_{\varepsilon} \in C^{1,\alpha}(\overline{\Omega})$ e $v_{\varepsilon} \to 0$ em $C^{1}(\overline{\Omega})$, donde $u_{\varepsilon} \in C^{1,\alpha}(\overline{\Omega})$ e $u_{\varepsilon} \to u_{0}$ em $C^{1}(\overline{\Omega})$, o que contradiz o fato de u_{0} ser mínimo local de I na topologia C^{1} .

Da contradição obtida em ambos os casos, concluimos que u_0 deve ser mínimo de I na topologia $W_0^{1,P}(\Omega)$, como queríamos provar.

Capítulo 4

Teorema de sub e supersolução e multiplicidade global

Neste capítulo, vamos apresentar e provar um teorema de sub e supersolução para o problema (P). Com base no Teorema A veremos que, sob certas condições, a existência de uma subsolução $\underline{u} \in W_0^{1,P}(\Omega)$ e uma supersolução $\overline{u} \in W_0^{1,P}(\Omega)$ garante a existência de uma solução $u \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega})$ que é mínimo local de I na topologia de $W_0^{1,P}(\Omega)$. Como uma aplicação desse fato, provaremos um resultado de multiplicidade global de soluções positivas para a seguinte classe de problemas

$$(P_{\lambda}) \left\{ \begin{array}{ll} -\Delta_{P} u = \lambda f(x, u) + \mu |u|^{q-2} u, & \text{em } \Omega, \\ u > 0, & \text{em } \Omega \quad \text{e} \quad u = 0, & \text{na } \partial \Omega, \end{array} \right.$$

onde Ω é um domínio limitado em \mathbb{R}^N com fronteira suave, $q>p^+,\lambda>0$ é um parâmetro real, $\mu>0$ é um número dado e $f\in C(\overline{\Omega}\times\mathbb{R},\mathbb{R})$ satisfaz a seguinte hipótese:

 $(F_0) \quad f(x,t) \geq 0 \ \ \text{para} \ \ t \geq 0 \ \text{e} \ f(x,t) \ \text{\'e} \ \text{n\~ao} \ \text{decrescente} \ \text{em} \ t \geq 0, \ \text{para} \ \text{cada} \ x \in \Omega.$

Ao longo de todo este capítulo admitiremos válidas as hipóteses (p_1) e (p_2) .

4.1 - Princípios de Comparação

Nesta seção, provaremos dois princípios de comparação para o problema (P) que, junto com os resultados de regularidade apresentados no Capítulo 3, nos permitirão provar um teorema de sub e supersolução para (P).

Definição 4.1. Sejam $u \in v \in W^{1,P}(\Omega)$. Dizemos que $-\Delta_P u \leq -\Delta_P v$, se

$$\int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx \le \int_{\Omega} a(|\nabla v|) \nabla v \nabla \varphi dx, \tag{4.1}$$

para toda $\varphi \in W_0^{1,P}(\Omega)$ com $\varphi \geq 0$.

Lema 4.2. Assuma que $u \ e \ v \in W^{1,P}(\Omega)$. Se :

- 1. $-\Delta_P u \leq -\Delta_P v \ e \ u \leq v \ na \ \partial\Omega \ (isto \ \acute{e}, \ (u-v)^+ \ \in \ W_0^{1,P}(\Omega)), \ ent \ \widetilde{ao} \ u \leq v \ em \ \Omega,$
- 2. as hipóteses do item anterior ocorrem, $u \ e \ v \in C(\overline{\Omega}) \ e \ S = \{x \in \Omega : u(x) = v(x)\} \ é$ um subconjunto compacto de Ω , então $S = \emptyset$.

Demonstração.

1. Como $-\Delta_P u \leq -\Delta_P v$ e $(u-v)^+ \in W_0^{1,P}(\Omega)$, então

$$\int_{\Omega} a(|\nabla u|) \nabla u \nabla (u-v)^{+} dx \le \int_{\Omega} a(|\nabla v|) \nabla v \nabla (u-v)^{+} dx.$$

Desse modo,

$$\int_{\Omega_1} \langle a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla(u-v)\rangle \, dx = \int_{\Omega} \langle a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla(u-v)^+\rangle \, dx \le 0,$$

onde $\Omega_1 = \{ x \in \Omega : u(x) - v(x) \ge 0 \}.$

Pelo Lema 2.8, temos que

$$\langle a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla(u-v)\rangle \ge 0$$
, em Ω .

Assim,

$$\int_{\Omega_1} \langle a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla(u-v)\rangle \, dx = 0.$$

Além disso,

$$\langle a(|\nabla u|)\nabla u - a(|\nabla v|)\nabla v, \nabla(u-v)\rangle > 0,$$

sempre que $\nabla u(x) \neq \nabla v(x)$. Daí $\nabla (u-v) = 0$, q.t.p em Ω_1 , donde segue que $\nabla (u-v)^+ = 0$, q.t.p em Ω . Portanto, como $(u-v)^+ \in W_0^{1,P}(\Omega)$, resulta que $(u-v)^+ = 0$, isto é, $u \leq v$, q.t.p em Ω .

2. Assuma que S é compacto e $S \neq \emptyset$. Como $dist(S, \partial\Omega) > 0$, então existe $\Omega_2 \subset \Omega$, tal que $S \subset \Omega_2 \subset \overline{\Omega_2} \subset \Omega$.

Pelo item (1) e a definição de S, segue que u < v em $\Omega \backslash S$. Em particular, u < v na $\partial \Omega_2$.

Por hipótese $u \in V \in C(\overline{\Omega})$, então tomando

$$\max_{x \in \partial \Omega_2} \{ u(x) - v(x) \} = -\varepsilon,$$

segue-se que $u \leq v - \varepsilon$ na $\partial \Omega_2$. Assim, de $-\Delta_p u \leq -\Delta_P (v - \varepsilon)$, obtemos pelo item anterior que $u \leq v - \varepsilon$ em Ω_2 , o que contradiz o fato de u = v em $S \subset \Omega_2$.

A prova do próximo resultado segue as ideias de Guedda e Veron [18] para o operador p-Laplaciano.

Lema 4.3. Sejam $f,g\in L^\infty(\Omega)$ com $0\leq g(x)\leq f(x)$ q.t.p em Ω e $u,v\in W^{1,P}_0(\Omega)$. Se

$$-\Delta_P v = g \le f = -\Delta_P u$$

e o conjunto

$$C = \{x \in \Omega : f(x) = g(x), q.t.p \ em \ \Omega\}$$

tem interior vazio, então

$$0 \le v < u \ em \ \Omega \quad e \quad \frac{\partial u}{\partial \nu} < \frac{\partial v}{\partial \nu} \le 0 \ na \ \partial \Omega$$

e portanto existe uma constante positiva ε tal que

$$\frac{\partial(v-u)}{\partial\nu} \ge \varepsilon,$$

onde ν denota a normal exterior unitária a $\partial\Omega$.

Demonstração.

Primeiramente observemos que existe um conjunto de medida positiva onde f > 0. Caso contrário f = 0 q.t.p em Ω , donde g = 0 q.t.p em Ω e portanto $C = \Omega$, o que contradiz o fato de C ter interior vazio. Desse modo, $u \not\equiv 0$. Além disso, como

$$0 \le -\Delta_P v \le -\Delta_P u$$
 e $u, v \in W_0^{1,P}(\Omega)$,

obtemos do Lema 4.2 que $u \ge v \ge 0$ em Ω . Assim, pela estimativa (A_2) obtida no capítulo 2 e o fato de $u \ge 0$ com $u \not\equiv 0$, segue Teorema A.21 que

$$u(x) > 0$$
 em Ω e $\frac{\partial u(x)}{\partial \nu} < 0$ na $\partial \Omega$.

Considere

$$S = \{x \in \Omega : u(x) = v(x)\} \subset \Omega$$

e suponha por contradição que $S \neq \emptyset$. Como f e $g \in L^{\infty}(\Omega)$, então pelo Teorema 3.4 obtemos que u e $v \in C^1(\overline{\Omega})$, portanto recaímos nas hipóteses do Lema 4.2 e assim concluímos que S não pode ser compacto. Entretanto S é relativamente fechado em Ω , pois $S = (u-v)^{-1}(\{0\})$. Desse modo, S é da forma $S = \Omega \cap F$, onde F é um fechado de \mathbb{R}^N que intersecta $\partial \Omega$. Portanto, deve existir $x_0 \in \partial \Omega$ e $\{x_n\} \subset S \subset \Omega$ tal que $x_n \to x_0$.

Como $\nabla u = \nabla v$ em S, pela continuidade de ∇u e ∇v em $\overline{\Omega}$ temos $\nabla u(x_0) = \nabla v(x_0)$ e portanto

$$\frac{\partial v(x_0)}{\partial \nu} = \frac{\partial u(x_0)}{\partial \nu} < 0.$$

Sabemos também que

$$0 \le f - g = -div(a(|\nabla u|)\nabla u) + div(a(|\nabla v|)\nabla v)$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[-a(|\nabla u|) \frac{\partial u}{\partial x_i} + a(|\nabla v|) \frac{\partial v}{\partial x_i} \right]. \tag{4.2}$$

Por outro lado, escrevendo $F_i(z) = a(|z|)z_i$, temos que $\frac{\partial F_i(z)}{\partial z_j} = \delta_{ij}a(|z|) + \frac{z_iz_j}{|z|}a'(|z|)$ sempre que $z \neq 0$ e assim, pelo Teorema do Valor Médio, existe $z^i(x)$ no segmento que une os vetores $\nabla u(x)$ e $\nabla v(x)$ de tal maneira que

$$F_{i}(\nabla u) - F_{i}(\nabla v) = \langle \nabla F_{i}(z^{i}), \nabla w \rangle$$

$$= \sum_{j=1}^{n} \frac{\partial F_{i}(z^{i})}{\partial z_{j}} \frac{\partial w}{\partial x_{j}}$$

$$= \sum_{j=1}^{n} \left[\delta_{ij} a(|z^{i}|) + \frac{z_{i}^{i} z_{j}^{i}}{|z^{i}|} a'(|z^{i}|) \right] \frac{\partial w}{\partial x_{j}}, \tag{4.3}$$

onde w = u - v e $z^i = t_i \nabla u + (1 - t_i) \nabla v$, para algum $t_i \in (0, 1)$.

Dessa maneira, considerando

$$A_{ij}(x) = \delta_{ij}a(|z^{i}(x)|) + \frac{z_{i}^{i}z_{j}^{i}}{|z^{i}|}a'(|z^{i}(x)|),$$

segue de (4.2) e (4.3) que

$$0 \le f - g = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial w}{\partial x_j} \right), \tag{4.4}$$

para $x \in \Omega$ tal que $z^i(x) \neq 0$.

Em particular, como $\nabla u(x_0) = \nabla v(x_0) \neq 0$, temos

$$A_{ij}(x_0) = \delta_{ij}a(|\nabla u(x_0)|) + \frac{u_{x_i}(x_0)u_{x_j}(x_0)a'(|\nabla u(x_0)|)}{|\nabla u(x_0)|}.$$

е

$$\sum_{i,j=1}^{n} A_{ij}(x_0)\xi_i\xi_j = \sum_{i,j=1}^{n} \left[\delta_{ij}a(|\nabla u(x_0)|) + \frac{u_{x_i}(x_0)u_{x_j}(x_0)a'(|\nabla u(x_0)|)}{|\nabla u(x_0)|} \right] \xi_i\xi_j \ge \theta |\xi|^2,$$

para todo $\xi \in \mathbb{R}^N$ e para algum $\theta = \theta(x_0) > 0$. Pela continuidade de ∇u e ∇v podemos obter uma bola $B \subset \Omega$ tal que $x_0 \in \partial B$, sobre a qual o operador elíptico definido pelos A_{ij} seja estritamente elíptico, isto é,

$$\sum_{i,j=1}^{n} A_{ij}(x)\xi_i\xi_j \ge \gamma |\xi|^2, \tag{4.5}$$

para todo $\xi \in \mathbb{R}^N$, $x \in B$ e para algum $\gamma > 0$ independente de x.

Sabemos que $w \geq 0$ em B. Se $w \equiv 0$ em B, então u = v, donde segue que f = g em B e isso novamente contradiz o fato de C ter interior vazio. Se $w \not\equiv 0$ em B, então pelas inequações (4.4) e (4.5) decorre do Teorema A.21 que w > 0 em B e $\frac{\partial w(x_0)}{\partial \nu} < 0$, o que contradiz o fato de $\frac{\partial w(x_0)}{\partial \nu} = 0$. Portanto, como em qualquer caso chegamos a um absurdo, resta que $S = \emptyset$, donde $u > v \geq 0$ em Ω .

Falta agora provar que

$$0 \ge \frac{\partial v(x)}{\partial \nu} > \frac{\partial u(x)}{\partial \nu}, \ \forall \ x \in \partial \Omega.$$

Ora, como u = 0 = v em $\partial \Omega$, temos que

$$\nabla u(x_0) = \pm |\nabla u(x_0)| \nu$$
 e $\nabla v(x_0) = \pm |\nabla v(x_0)| \nu$,

onde ν é a normal exterior a $\partial\Omega$ em x_0 .

Suponha por contradição que

$$\frac{\partial v(x_0)}{\partial \nu} = \frac{\partial u(x_0)}{\partial \nu},$$

para algum $x_0 \in \partial \Omega$. Então $|\nabla u(x_0)| = |\nabla v(x_0)|$, o que implica em $\nabla v(x_0) = \pm |\nabla u(x_0)|\nu$. Assim, pelo mesmo argumento usado para obter (4.5), obtemos pela continuidade de ∇u e ∇v em $\overline{\Omega}$ que

$$\sum_{i,j=1}^{n} A_{ij}(x)\xi_{i}\xi_{j} \ge \gamma |\xi|^{2}, \tag{4.6}$$

para todo $\xi \in \mathbb{R}^N$, $x \in B \subset \Omega$ e para algum $\gamma > 0$, com $x_0 \in \partial B$.

Como w=u-v>0 em Ω e vale as desigualdades (4.4) e (4.6), temos pelo Teorema A.21 que $\frac{\partial w(x_0)}{\partial \nu}<0$, o que contraria o fato de

$$\frac{\partial v(x_0)}{\partial \nu} = \frac{\partial u(x_0)}{\partial \nu}.$$

Portanto

$$0 \geq \frac{\partial v}{\partial \nu} > \frac{\partial u}{\partial \nu} \text{ na } \partial \Omega.$$

4.2 - Mínimo local via teorema de sub e supersolução

No capítulo 2, provamos que o operador

$$\mathcal{P}': W_0^{1,P}(\Omega) \longrightarrow W_0^{-1,\tilde{P}}(\Omega)$$

$$u \longmapsto \mathcal{P}'(u): W_0^{1,P}(\Omega) \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \langle \mathcal{P}'(u), \varphi \rangle,$$

onde $\langle \mathcal{P}'(u), \varphi \rangle = \int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx$, é um homeomorfismo. Além disso, dado $g \in L^{\tilde{H}}(\Omega)$, a aplicação definida por

$$\tilde{g}: L^H \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \int_{\Omega} g\varphi dx$$

define um funcional linear contínuo em $L^H(\Omega)$ e portanto $\tilde{g}|_{W_0^{1,P}} \in W_0^{-1,\tilde{P}}(\Omega)$.

Dessa forma, existe um único $u=u_{\tilde{g}}\in W_0^{1,P}(\Omega)$ tal que $\mathcal{P}'(u)=\tilde{g}|_{W_0^{1,P}}$, ou seja,

$$\langle \mathcal{P}'(u), \varphi \rangle = \langle \tilde{g}, \varphi \rangle, \quad \forall \ \varphi \in W_0^{1,P}(\Omega),$$

ou equivalentemente,

$$\int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx = \int_{\Omega} g \varphi dx, \ \forall \ \varphi \in W_0^{1,P}(\Omega),$$

isto é,

$$-\Delta_P u = q \text{ em } \Omega.$$

Visto isso, para cada $g\in L^{\tilde{H}}(\Omega)$ denotaremos por $\tilde{K}(g):=u$ o único elemento de $W^{1,P}_0(\Omega)$ que satisfaz

$$-\Delta_P u = q \text{ em } \Omega.$$

Note ainda que, como H satisfaz (h_1) , então pelo Teorema 1.55 $E^H(\Omega) = L^H(\Omega)$. Daí, considerando $\Gamma: L^{\tilde{H}}(\Omega) \to (E^H(\Omega))' = (L^H(\Omega))'$ o isomorfismo construído no capítulo 2, então por meio desse isomorfismo podemos reescrever \tilde{K} como $\tilde{K} = (\mathcal{P}')^{-1} \circ \Gamma$. Portanto, a continuidade de \tilde{K} decorre diretamente da continuidade de $(\mathcal{P}')^{-1}$ e Γ .

Afirmação 4.4. \tilde{K} é limitado, isto é, $\tilde{K}(U)$ é limitado em $W_0^{1,P}(\Omega)$ para todo subconjunto limitado $U \subset L^{\tilde{H}}(\Omega)$.

De fato, devido a relação obtida em (1.23) é suficiente provarmos que $S:=(\mathcal{P}')^{-1}$ é um operador limitado.

Considere então X subconjunto limitado de $W_0^{-1,\tilde{P}}(\Omega)$ e suponha que $S(X)\subset W_0^{1,P}(\Omega)$ seja ilimitado. Então existe uma sequência $\{g_n\}\subset X$, tal que

$$|\nabla u_n|_P \to \infty$$
,

onde $u_n = S(g_n)$, isto é,

$$\langle g_n, v \rangle = \int_{\Omega} a(|\nabla u_n|) \nabla u_n \nabla \varphi dx, \ \forall \ \varphi \in \ W_0^{1,P}(\Omega).$$

Por outro lado

$$\int_{\Omega} P(|\nabla u_n|) dx \leq \int_{\Omega} a(|\nabla u_n|) \nabla u_n \nabla u_n dx$$
$$= \langle g_n, u_n \rangle \leq ||g_n|| |\nabla u_n|_P.$$

Assim,

$$\min\{|\nabla u_n|_P^{p^--1}, |\nabla u_n|_P^{p^+-1}\} \le \frac{\int_{\Omega} P(|\nabla u_n|) dx}{|\nabla u_n|_P} \le ||g_n||$$

e portanto

$$\min\{|\nabla u_n|_P^{p^--1}, |\nabla u_n|_P^{p^+-1}\} \to \infty \text{ quando } n \to \infty,$$

o que contradiz o fato de $\{h_n\}$ ser uma sequência contida em um subconjunto limitado de $W_0^{-1,\tilde{P}}(\Omega)$. Concluímos assim que S é limitado e portanto \tilde{K} é um operador limitado.

Além disso, como a aplicação inclusão

$$i: W_0^{1,P}(\Omega) \longrightarrow L^H(\Omega)$$

é compacta, segue que $K:=i\circ \tilde{K}:L^{\tilde{H}}(\Omega)\longrightarrow L^{H}(\Omega)$ é um operador compacto.

Definição 4.5. Dizemos que $u \in W_0^{1,P}(\Omega)$ é um subsolução (respectivamente, supersolução) de (P), se $u \leq$ (respc. u \geq) 0 na $\partial\Omega$ e para todo $\varphi \in W_0^{1,P}(\Omega)$ com $\varphi \geq 0$

$$\int_{\Omega} a(|\nabla u|) \nabla u \nabla \varphi dx \le (\text{resp. } \ge) \int_{\Omega} f(x, u) \varphi dx.$$

Provaremos agora um teorema de sub e supersolução para o problema (P). Os conceitos utilizados ao longo desta demonstração se encontram no Apêndice.

Teorema 4.6. Assuma que f satisfaz a condição (f_*) , f(x,t) é não decrescente em $t \in \mathbb{R}$ e H satisfaz (h_1) . Se existe uma subsolução $\underline{u} \in W^{1,P}(\Omega)$ e uma supersolução $\overline{u} \in W^{1,P}(\Omega)$ do problema (P) tal que $\underline{u} \leq \overline{u}$, então o problema (P) tem uma solução minimal u_* e uma solução maximal v^* no intervalo ordenado $[\underline{u}, \overline{u}]$, isto é,

$$u < u_* < v^* < \overline{u}$$
,

e se u é qualquer outra solução de (P) tal que $\underline{u} \le u \le \overline{u}$, então $u_* \le u \le v^*$.

Demonstração. Primeiramente note que $L^H(\Omega) = (L^H, |\cdot|_H)$ com a relação de ordem

$$u \le v \Leftrightarrow u(x) \le v(x)$$
, q.t.p em Ω

é um espaço de Banach ordenado, em que o cone positivo

$$P = L_{+}^{H} = \{ u \in L^{H}(\Omega) : u(x) \ge 0, \text{ q.t.p em } \Omega \}$$

é fechado.

Por outro lado, se $0 \le u \le v$, então, como H é crescente em \mathbb{R}^+ , segue que

$$0 \le \int_{\Omega} H\left(\frac{u}{|v|_H}\right) dx \le \int_{\Omega} H\left(\frac{v}{|v|_H}\right) dx = 1,$$

donde $|u|_H \leq |v|_H$. Portanto L_+^H é normal e assim, pela Proposição A.26, segue que $[\underline{u}, \overline{u}]$ é limitado em $L^H(\Omega)$.

Defina $T:L^H(\Omega)\longrightarrow L^H(\Omega)$ por $T(u)=K(f(\cdot,u)).$

Afirmação 4.7. T é contínua.

De fato, tomemos $u_n \to u$ em $L^H(\Omega)$, isto é , $\int_{\Omega} H(|u_n - u|) dx \to 0$ quando $n \to \infty$. Então, pelo Teorema A.2 e considerando uma subsequência se necessário, temos que $u_n(x) \to u(x)$, q.t.p em Ω .

Como $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ e \tilde{H} é contínua, segue que

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \longrightarrow 0$$
, q.t.p em Ω . (4.7)

Por outro lado, pela condição (f_*) temos

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \leq M \left[\tilde{H}(|f(x, u_n(x))|) + \tilde{H}(|f(x, u(x))|) \right] \\
\leq M \left[\tilde{H}(|a_1 + a_2 h(|u_n|) + \tilde{H}(|a_1 + a_2 h(|u|))) \right].$$

Podemos assumir, sem perda de generalidade, que $a_2 \in \mathbb{N}$. Assim, da hipótese (h_1) obtemos pelo Lema 1.17 que $\tilde{H} \in \Delta_2$ e portanto pelo Lema 2.1 e a Proposição 1.9 temos que

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \le M \left[\tilde{H}(a_1) + \tilde{H}(h(|u_n|)) + \tilde{H}(h(|u|)) \right]$$

 $\le M \left[\tilde{H}(a_1) + \tilde{H}(|u_n|) + \tilde{H}(|u|) \right],$

onde M é uma constante cumulativa.

Como $u_n \to u$ em $L^H(\Omega)$, então segue da Observação 1.51 que $H(|u_n - u|) \to 0$ em $L^1(\Omega)$ e assim, pelo Teorema A.2, podemor obter $\theta \in L^1(\Omega)$ tal que

$$H(|u_n - u|) \le \theta$$
, q.t.p em Ω ,

a menos de subsequência. Desse modo

$$H(|u_n|) \leq M[H(|u_n - u|) + H(|u|)]$$

$$\leq M[\theta + H(|u|)],$$

onde $M[\theta+H(|u|)]\in L^1(\Omega)$. Segue disso que, a menos de subsequência, $\tilde{H}(|f(x,u_n(x))-f(x,u(x))|)$ pode ser majorada por uma função de $L^1(\Omega)$. Assim, por (4.7) e pelo Teorema A.1, resulta que

$$f(\cdot, u_n) \longrightarrow f(\cdot, u) \text{ em } L^{\tilde{H}}(\Omega).$$

Por outro lado, da continuidade de K em $L^{\tilde{H}}(\Omega)$, obtemos ainda

$$K(f(\cdot, u_n)) \longrightarrow K(f(\cdot, u)) \text{ em } L^H(\Omega)$$

e portanto

$$T(u_n) \longrightarrow T(u) \text{ em } L^H(\Omega).$$

Afirmação 4.8. Existe $\Lambda > 0$ tal que $|f(\cdot, u)|_{\tilde{H}} \leq \Lambda$, para todo u em $[\underline{u}, \overline{u}]$.

De fato, como $[\underline{u}, \overline{u}]$ é limitado em $L^H(\Omega)$, então existe $1 < \Gamma \in \mathbb{N}$ satisfazendo $|u|_H \le \Gamma$ para todo $u \in [\underline{u}, \overline{u}]$. Além disso, pela condição (f_*) , a Proposição 1.9 e a convexidade de \tilde{H} , segue que

$$\int_{\Omega} \tilde{H}(f(x, u(x))dx \leq \int_{\Omega} M[\tilde{H}(a_1) + \tilde{H}(h(|u|))]dx
\leq M \int_{\Omega} [\tilde{H}(a_1) + H(|u|)]dx
= M \int_{\Omega} [\tilde{H}(a_1) + H(\frac{\Gamma|u|}{\Gamma})]dx
\leq M \int_{\Omega} [\tilde{H}(a_1) + H(\frac{|u|}{\Gamma})]dx
\leq M(\tilde{H}(a_1)|\Omega| + 1) := \Lambda,$$

onde novamente estamos considerando M uma constante cumulativa.

Podemos assumir que $\Lambda > 1$. Daí, pela desigualdade anterior e pela convexidade de \tilde{H}

$$\int_{\Omega} \tilde{H}\left(\frac{f(x,u)}{\Lambda}\right) dx \le \frac{1}{\Lambda} \int_{\Omega} \tilde{H}(f(x,u)) dx \le 1,$$

donde concluímos que $|f(\cdot,u)|_{\tilde{H}} \leq \Lambda$, para todo u em $[\underline{u},\overline{u}]$.

Da Afirmação 4.8 e do fato de K ser um operador compacto, temos que $T([\underline{u}, \overline{u}])$ é relativamente compacto em $L^H(\Omega)$. Além disso, pelo Lema 4.2 temos que $K(u) \leq K(v)$, sempre que $u \leq v$. Portanto, como

$$-\Delta_P \underline{u} \le f(x, \underline{u}) \le f(x, \overline{u}) \le -\Delta_P \overline{u}$$

segue que $\underline{u} \leq T(\underline{u}) \leq T(\overline{u}) \leq \overline{u}$, pois T é não decrescente, já que f e K o são. Assim $T([\underline{u},\overline{u}]) \subset [\underline{u},\overline{u}]$.

De tudo que foi observado, o resultado segue diretamente do Teorema A.28.

Corolário 4.9. Assuma que $\underline{u}, \overline{u} \in W^{1,P}(\Omega) \cap L^{\infty}(\Omega)$ são subsolução e supersolução de (P), respectivamente e $\underline{u} \leq \overline{u}$. Se $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ satisfaz:

$$f(x,t)$$
 não decrescente em $t \in [\inf \underline{u}(x), \sup \overline{u}(x)],$ (4.8)

então a conclusão do Teorema 4.6 é válida.

Demonstração. Da mesma forma que no Teorema 4.6, consideremos $T:L^H(\Omega)\longrightarrow L^H(\Omega)$, onde $T(u)=K(f(\cdot,u))$.

Como $\underline{u} \leq T(\underline{u}), \quad T(\overline{u}) \leq \overline{u}$ e T é não decrescente, então $T([\underline{u}, \overline{u}]) \subset [\underline{u}, \overline{u}]$. Nos resta verificar que $T(u_n) \to T(u)$ sempre que $u_n \to u$ em $L^H(\Omega)$, onde $u, u_n \in [\underline{u}, \overline{u}]$ e que $T([\underline{u}, \overline{u}])$ é relativamente compacto.

Considere então $u \in [\underline{u}, \overline{u}]$ e $u_n \to u$ em $L^H(\Omega)$, com $\{u_n\} \subset [\underline{u}, \overline{u}]$. Assim,

$$u_n(x) \to u(x)$$
, q.t.p em Ω ,

a menos de subsequência.

Da continuidade de f e H, segue que

$$\tilde{H}(|f(x,u_n(x)) - f(x,u(x)|) \longrightarrow 0$$
, q.t.p em Ω ,

a menos de subsequência.

Por outro lado, $\underline{u} \in \overline{u} \in L^{\infty}(\Omega)$, donde segue que $u \in u_n \in L^{\infty}(\Omega)$, para todo $n \in \mathbb{N}$. E mais,

$$\underline{m} := \inf \underline{u}(x) \le u(x), u_n(x) \le \sup \overline{u}(x) := \overline{m}.$$

Como f(x,t) é não decrescente em $t \in [\inf \underline{u}(x), \sup \overline{u}(x)]$, obtemos que

$$f(x,\underline{m}) \le f(x,u_n(x)) \le f(x,\overline{m}) e f(x,\underline{m}) \le f(x,u(x)) \le f(x,\overline{m}), \text{ q.t.p em } \Omega.$$

Unindo isto ao fato de $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$, concluímos que existe $\Gamma > 0$ tal que $|f(\cdot, u_n)|_{\infty} \leq \Gamma$ e $|f(\cdot, u)|_{\infty} \leq \Gamma$. Assim, pela desigualdade triangular e o Lema 2.1 temos

$$\tilde{H}(|f(x, u_n(x)) - f(x, u(x))|) \leq M[\tilde{H}(|f(x, u_n(x))|) + \tilde{H}(|f(x, u(x))|)]
\leq 2M\tilde{H}(\Gamma) \in L^1(\Omega).$$

Portanto, pelo Teorema A.1, $T(u_n) \to T(u)$ em $L^H(\Omega)$.

Por fim, como $|f(\cdot,v)|_{\infty} \leq \Gamma$, para todo $v \in [\underline{u},\overline{u}]$, então $f(\cdot,[\underline{u},\overline{u}])$ é limitado em $L^{\tilde{H}}(\Omega)$ e assim

$$T([\underline{u}, \overline{u}]) = K(f(., [\underline{u}, \overline{u}]))$$

é relativamente compacto em $L^H(\Omega)$.

Novamente o resultado segue do Teorema A.28.

Provaremos agora um resultado de existência de soluções para o problema (P), envolvendo método de sub e supersolução.

Teorema 4.10. Assuma que $f(x,t) \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ satisfaz a condição (4.8), (p_1) , (p_2) , (p_3) valem e que \underline{u} , $\overline{u} \in W_0^{1,P}(\Omega)$ são uma subsolução e uma supersolução do problema (P), respectivamente, satisfazendo $-\Delta_P\underline{u} = h_1(x)$, $-\Delta_P\overline{u} = h_2(x)$, com h_1 , $h_2 \in L^{\infty}(\Omega)$, $0 \le h_1 \le h_2$ e $h_1(x) \not\equiv h_2(x)$.

Adicionalmente, se nem \underline{u} e nem \overline{u} é solução de (P), ou nem \underline{u} e nem \overline{u} é mínimo de I em $[\underline{u}, \overline{u}] \cap W_0^{1,P}(\Omega)$, no caso de ser solução de (P), então existe $u_* \in [\underline{u}, \overline{u}] \cap C^{1,\alpha}(\overline{\Omega})$ tal que

$$I(u_*) = \inf\{I(u) : u \in [\underline{u}, \overline{u}] \cap W_0^{1,P}(\Omega)\},\$$

 u_* é uma solução de (P) e u_* é um mínimo local de I na topologia $W_0^{1,P}(\Omega)$.

Demonstração. Como h_1 e $h_2 \in L^{\infty}(\Omega)$, então pelo Teorema 3.4, $\underline{u}, \overline{u} \in C^{1,\alpha}(\overline{\Omega})$. Considere $\tilde{f}: \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$\tilde{f}(x,t) = \begin{cases}
f(x,\underline{u}(x)), & \text{se } t < \underline{u}(x), \\
f(x,t), & \text{se } \underline{u}(x) \le t \le \overline{u}(x), \\
f(x,\overline{u}(x)), & \text{se } t > \overline{u}(x).
\end{cases}$$

Seja ainda $\tilde{F}(x,t) = \int_0^t \tilde{f}(x,s)ds$ e

$$\tilde{I}(u) = \int_{\Omega} P(|\nabla u|) dx - \int_{\Omega} \tilde{F}(x, u) dx, \quad \forall \ u \in W_0^{1, P}(\Omega).$$

Afirmação 4.11. \tilde{I} é coercivo.

Para isso observemos que, como $f(x,t) \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ e $\underline{u}, \overline{u} \in C^{1,\alpha}(\overline{\Omega})$, então $\tilde{f}(x,t)$ é limitada. Assim, existe M > 0, para o qual

$$|\tilde{f}(x,t)| < M, \ \forall \ (x,t) \in \overline{\Omega} \times \mathbb{R}.$$

Desse modo,

$$|\tilde{F}(x,u(x))| = \left| \int_0^{u(x)} \tilde{f}(x,s) ds \right| \le \int_0^{u(x)} \left| \tilde{f}(x,s) \right| ds \le M|u(x)|. \tag{4.9}$$

Logo

$$\int_{\Omega} \tilde{F}(x, u(x)) dx \le \int_{\Omega} M|u(x)| dx \le C|\nabla u|_{P}, \tag{4.10}$$

onde na última desigualdade usamos o fato de $W_0^{1,P}(\Omega)$ estar imerso continuamente em $L^1(\Omega)$.

Além disso, pelo Lema 1.48,

$$\int_{\Omega} P(|\nabla u|) dx \ge \min\{|\nabla u|_{P}^{p^{+}}, |\nabla u|_{P}^{p^{-}}\}, \tag{4.11}$$

em que $p^+, p^- > 1$.

Por (4.10) e (4.11) segue que

$$\tilde{I}(u) = \int_{\Omega} P(|\nabla u|) dx - \int_{\Omega} \tilde{F}(x, u) dx$$

$$\geq \min\{|\nabla u|_{P}^{p^{+}}, |\nabla u|_{P}^{p^{-}}\} - C|\nabla u|_{P}, \tag{4.12}$$

e portanto \tilde{I} é coercivo.

Afirmação 4.12. \tilde{I} é fracamente semicontínuo inferiormente.

De fato, vimos na Proposição 2.6 que

$$\mathcal{P}(u) = \int_{\Omega} P(|\nabla u|) du$$

é fracamente semicontínuo inferiormente.

Por outro lado, se considerarmos uma sequência $\{u_n\}$ convergindo fraco para u em $W_0^{1,P}(\Omega)$, então como $W_0^{1,P}(\Omega)$ está imerso compactamente em $L^H(\Omega)$, segue que $u_n \to u$ em $L^H(\Omega)$, a menos de subsequência, e portanto :

- 1. $u_n(x) \to u(x)$ q.t.p em Ω ,
- 2. $|u_n(x)| \leq \theta(x)$, q.t.p em Ω , para alguma função $\theta \in L^1(\Omega)$.

De (4.9) temos que $\tilde{F}(x, u_n(x)) \leq M|u_n(x)| \leq M\theta(x)$, q.t.p em Ω . Assim, pelo Teorema A.1

$$\int_{\Omega} \tilde{F}(x, u_n(x)) dx \longrightarrow \int_{\Omega} \tilde{F}(x, u(x)) dx,$$

donde concluímos que \tilde{F} é fracamente semicontínua inferiormente. Portanto \tilde{I} é fracamente semicontínua inferiormente.

Sabemos também que $W_0^{1,P}(\Omega)$ é reflexivo, então pelas Afirmações 4.11 e 4.12 segue do Teorema A.12 que existe $u_* \in W_0^{1,P}(\Omega)$, minimizador global de \tilde{I} em $W_0^{1,P}(\Omega)$. Assim, u_* satisfaz a equação

$$-\Delta_P u_* = \tilde{f}(x, u_*)$$

e novamente pelo Teorema 3.2, $u_* \in C^{1,\alpha}(\overline{\Omega})$. Também, pela definição de \tilde{f} temos que

$$-\Delta_P \underline{u} \le f(x,\underline{u}) = \tilde{f}(x,\underline{u}) \le \tilde{f}(x,u_*) = -\Delta_P u_*,$$

e então segue do Lema 4.2 que $0 \le \underline{u} \le u_*$. Da mesma forma concluímos que $u_* \le \overline{u}$.

Além disso,

$$\tilde{F}(x,u) - F(x,u) = \int_0^{\underline{u}(x)} \tilde{f}(x,s)ds - \int_0^{\underline{u}(x)} f(x,s)ds,$$

para toda $u \in [\underline{u}, \overline{u}]$. Disto resulta que $\tilde{F}(x, u) - F(x, u)$, no intervalo $[\underline{u}, \overline{u}]$, é uma função de x independente de u. Assim $\tilde{I} - I$ é constante em $[\underline{u}, \overline{u}]$. Portanto, u_* é uma solução do problema (P) e é um mínimo de I em $[\underline{u}, \overline{u}] \cap W_0^{1,P}(\Omega)$.

E mais, como nem \underline{u} e nem \overline{u} é solução de (P), ou nem \underline{u} e nem \overline{u} é mínimo de I em $[\underline{u},\overline{u}]\cap W_0^{1,P}(\Omega)$, no caso de ser solução de (P), então $u_*\not\equiv\underline{u}$ e $u_*\not\equiv\overline{u}$. Daí, uma vez que $u_*-\underline{u}\geq 0$ e $\overline{u}-u_*\geq 0$, então repetindo os passos da demonstração do Lema 4.3 obtemos que

$$\frac{\partial \overline{u}}{\partial \nu} < \frac{\partial u_*}{\partial \nu} < \frac{\partial \underline{u}}{\partial \nu} \le 0 \text{ na } \partial \Omega.$$

Desse modo, existe uma constante positiva ε satisfazendo

$$\frac{\partial(u_* - \overline{u})}{\partial \nu}, \frac{\partial(\underline{u} - u_*)}{\partial \nu} \ge \varepsilon, \quad \text{na } \partial\Omega$$
 (4.13)

Afirmação 4.13. Existe $\varepsilon_0 > 0$ tal que

$$\underline{u}(x) + \varepsilon_0 \operatorname{dist}(x, \partial \Omega) \le u_*(x) \le \overline{u}(x) - \varepsilon_0 \operatorname{dist}(x, \partial \Omega), \ \forall \ x \in \Omega.$$
 (4.14)

Com efeito, como $\partial(u_* - \overline{u})/\partial\nu \in C(\overline{\Omega})$, então por (4.13) podemos encontrar $\delta > 0$ de tal modo que para todo $x \in \Omega_{\delta} := \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) < \delta\}$ tenhamos

$$\frac{\partial(u_* - \overline{u})}{\nu(x)}(x) > \frac{\varepsilon}{2}$$
, onde $\nu(x) = \frac{x_0 - x}{|x_0 - x|}$,

em que $x_0 \in \partial \Omega$ é tal que $|x - x_0| = \text{dist}\{x, \partial \Omega\}$.

Assim, como $(u_* - \overline{u})(x_0) = 0$, pois $u_* - \overline{u} \in C^1(\overline{\Omega}) \cap W_0^{1,P}(\Omega)$, então segue do Teorema Fundamental do Cálculo que

$$\frac{u_*(x) - \overline{u}(x)}{|x_0 - x|} = -\int_0^1 \nabla (u_* - \underline{u})(x + t(x_0 - x)) \frac{x_0 - x}{|x_0 - x|} dt \le -\frac{\varepsilon}{2}.$$

Daí $u_*(x) - \overline{u}(x) \le -\frac{\varepsilon}{2}|x - x_0| = -\frac{\varepsilon}{2} \mathrm{dist}(x, \partial \Omega).$

Por outro lado, como $\overline{\Omega \setminus \Omega_{\delta}}$ é compacto e $u_* - \overline{u} < 0$ em Ω , então tomando $0 > -m_0 = \max_{\overline{\Omega \setminus \Omega_{\delta}}} (u_* - \overline{u})$ e levando em consideração que $\delta \leq |x - y| \leq d$, para todo $y \in \partial \Omega$, onde d é o diâmetro de Ω , temos

$$u_*(x) - \overline{u}(x) \le -\frac{m_0}{\operatorname{dist}(x,\partial\Omega)}\operatorname{dist}(x,\partial\Omega) \le -\frac{m_0}{d}\operatorname{dist}(x,\partial\Omega), \text{ para todo } x \in \overline{\Omega\setminus\Omega_\delta}.$$

Denotando por $\varepsilon_0 = \max\{-\varepsilon/2, -m_0/d\}$, então

$$u_*(x) - \overline{u}(x) \le -\varepsilon_0 \operatorname{dist}(x, \partial\Omega), \text{ para todo } x \in \Omega.$$

Da mesma forma obtemos que

$$u_*(x) - \underline{u}(x) \ge \varepsilon_0 \operatorname{dist}(x, \partial \Omega)$$
, para todo $x \in \Omega$.

Da Afirmação 4.13, obtemos que $\underline{u} < u_* < \overline{u}$ em Ω .

Afirmação 4.14. Existe $0 < \varepsilon_1 < \varepsilon_0$ tal que

$$W^{1,P}_0(\Omega)\cap B_{C^1(\overline{\Omega})}(u_*,\varepsilon_1):=\{u\in W^{1,P}_0(\Omega)\cap C^1(\overline{\Omega}): \|u-u_*\|_{C^1(\overline{\Omega})}<\varepsilon_1\}\subset [\underline{u},\overline{u}].$$

De fato, tomando $\varepsilon_1 > 0$ (que será fixado posteriormente), observe que para todo $u \in B_{C^1(\overline{\Omega})}(u_*, \varepsilon_1)$, tem-se

$$(\nabla u - \nabla \overline{u})\nu = (\nabla u - \nabla u_*)\nu + (\nabla u_* - \nabla \overline{u})\nu \stackrel{(4.13)}{\geq} (\nabla u - \nabla u_*)\nu + \varepsilon, \text{ na } \partial\Omega.$$
 (4.15)

Da desigualdade de Cauchy- Schwarz e do fato de $|\nu|=1$, temos ainda que

$$|(\nabla u - \nabla u_*)\nu| \le |\nabla u - \nabla u_*||\nu| \le ||\nabla u - \nabla u_*||_{\infty} \le ||u - u_*||_{C^1(\overline{\Omega})} \le \varepsilon_1.$$

Assim, segue de (4.15) que $(\nabla u - \nabla \overline{u})\nu \geq \varepsilon - \varepsilon_1$. Desse modo, para $\varepsilon_1 = \varepsilon/2$ obtemos $(\nabla u - \nabla \overline{u})\nu \geq \varepsilon/2$, para todo $x \in \partial \Omega$. Da mesma forma, concluímos que $(\nabla \underline{u} - \nabla u)\nu \geq \varepsilon/2$, para $x \in \partial \Omega$.

Repetindo o argumento da Afirmação 4.13, podemos obter $\tilde{\varepsilon_1} > 0$ para o qual

$$\underline{u}(x) + \tilde{\varepsilon_1} \mathrm{dist}(x, \partial \Omega) \le u(x) \le \overline{u}(x) - \tilde{\varepsilon_1} \mathrm{dist}(x, \partial \Omega), \ \forall \ x \in \Omega,$$

donde $u \in [\underline{u}, \overline{u}].$

Portanto, como u_* é mínimo local de I na topologia de $C^1(\overline{\Omega})$, então segue do Teorema A que u_* é mínimo local de I na topologia de $W_0^{1,P}(\Omega)$, como queríamos provar.

4.3 - Multiplicidade global de soluções positivas

Estudaremos agora o seguinte problema de autovalor

$$(P_{\lambda}) \left\{ \begin{array}{ll} -\Delta_{p}u = \lambda f(x,u) + \mu |u|^{q-2}u, & \text{ em } \Omega, \\ u > 0, & \text{ em } \Omega, \\ u = 0, & \text{ na } \partial \Omega, \end{array} \right.$$

onde Ω é um domínio limitado em \mathbb{R}^N com fronteira suave, $q > p^+, \mu \geq 0$ é um número fixado, $\lambda > 0$ é um parâmetro real e $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ satisfaz a seguinte condição:

 (F_0) $f(x,t) \ge 0$ quando $t \ge 0$ e f(x,t) é não decrescente em $t \ge 0$.

Assumiremos ainda que f satisfaz uma das seguintes hipóteses:

- (F_1) $f(x,0) \neq 0$ em Ω , ou
- (F_2) f(x,0)=0 e existem um conjunto aberto $U\subset\Omega$, uma bola fechada $\overline{B}(x_0,\varepsilon)\subset U$, $r_0>1$ e c>0 constantes reais, tais que $f(x,t)\geq ct^{r_0-1}$ para todo $x\in\overline{B}(x_0,\varepsilon)$ e $t\in[0,1]$.

O funcional energia associado ao problema (P_{λ}) é

$$I_{\lambda}(u) = \int_{\Omega} P(|\nabla u|) dx - \lambda \int_{\Omega} F(x, u) dx - \frac{\mu}{q} \int_{\Omega} |u|^{q} dx, \ \forall \ u \in W_{0}^{1, P}(\Omega),$$

onde
$$F(x,t) = \int_0^t f(x,s)ds$$
.

Nem sempre é fácil encontrar subsolução \underline{u} e supersolução \overline{u} de (P) satisfazendo $\underline{u} \leq \overline{u}$. O próximo lema é uma ferramenta útil quando queremos encontrar supersoluções de (P).

Lema 4.15. Suponha que P satisfaz (p_1) e (p_2) , M > 0 e $u \in W_0^{1,P}(\Omega)$ é a única solução do problema

$$(A) \begin{cases} -\Delta_P u = M, & em \ \Omega, \\ u = 0, & na \ \partial \Omega. \end{cases}$$

Considere C_0 a constante dada pela imersão $W_0^{1,1}(\Omega) \hookrightarrow L^{\frac{N}{N-1}}(\Omega)$ e $m=1/(2|\Omega|^{\frac{1}{N}}C_0)$. Então, quando $M \geq m$, $|u|_{\infty} \leq C^*M^{\frac{1}{p^--1}}$ e quando M < m, $|u|_{\infty} \leq C_*M^{\frac{1}{p^+-1}}$, onde C_* e C^* são constantes positivas dependendo de $p^+, p^-, N, |\Omega|$ e C_0 .

Demonstração. Seja u solução de (A), então

$$-\Delta_p u = M > 0 = -\Delta_p 0,$$

portanto, pelo Lema 4.3, u > 0. Para $k \ge 0$, defina

$$A_k = \{ x \in \Omega : u(x) > k \}.$$

Tomando $(u-k)^+$ como função teste em (A), temos

$$\int_{A_k} P(|\nabla u|) dx \le \int_{A_k} p(|\nabla u|) |\nabla u| dx = M \int_{A_k} (u - k) dx. \tag{4.16}$$

Tendo em vista que $W_0^{1,P}(\Omega) \hookrightarrow W_0^{1,1}(\Omega) \hookrightarrow L^{\frac{N}{N-1}}(\Omega)$, então aplicando a desigualdade de Holder e Young em (4.16) obtemos

$$\int_{A_{k}} P(|\nabla u|) dx \leq M|A_{k}|^{\frac{1}{N}} |(u-k)^{+}|_{L^{\frac{N}{N-1}}(\Omega)}$$

$$\leq C_{0}M|A_{k}|^{\frac{1}{N}} \int_{A_{k}} \varepsilon |\nabla u| \varepsilon^{-1} dx$$

$$\leq C_{0}M|A_{k}|^{\frac{1}{N}} \int_{A_{k}} [P(\varepsilon|\nabla u|) + \tilde{P}(\varepsilon^{-1})] dx, \tag{4.17}$$

onde C_0 é a constante de Sobolev associada a imersão $W_0^{1,1}(\Omega) \hookrightarrow L^{\frac{N}{N-1}}(\Omega)$.

• Se $M \ge m$, então tomando

$$\varepsilon = \left(\frac{1}{2M|\Omega|^{\frac{1}{N}}C_0}\right)^{\frac{1}{p^-}} = \left(\frac{m}{M}\right)^{\frac{1}{p^-}} \le 1$$

e substituindo em (4.17), obtemos pelo Lema 1.48

$$\int_{A_{k}} P(|\nabla u|) dx \leq C_{0} M |A_{k}|^{\frac{1}{N}} \varepsilon^{p^{-}} \int_{A_{k}} P(|\nabla u|) dx + C_{0} M |A_{k}|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1})
= \frac{|A_{k}|^{1/N}}{2|\Omega|^{1/N}} \int_{A_{k}} P(|\nabla u|) dx + C_{0} M |A_{k}|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1})
\leq \frac{1}{2} \int_{A_{k}} P(|\nabla u|) dx + C_{0} M |A_{k}|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1}).$$

Portanto,

$$\int_{A_k} P(|\nabla u|) dx \le 2C_0 M |A_k|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1}). \tag{4.18}$$

Note ainda que

$$tp(t) \le \int_t^{2t} p(s)ds \le \int_0^{2t} p(s)ds = P(2t),$$
 para todo $t \ge 0.$

Observado isso, segue da Proposição 1.9 e do Lema 2.1 que

$$\int_{A_k} (u - k) dx = \frac{1}{M} \int_{A_k} p(|\nabla u|) |\nabla u| dx$$

$$\leq \frac{1}{M} \int P(2|\nabla u|) dx \leq \frac{K}{M} \int_{A_k} P(|\nabla u|)$$

$$\stackrel{(4.18)}{\leq} 2KC_0 \tilde{P}(\varepsilon^{-1}) |A_k|^{\frac{1}{N} + 1} = \gamma |A_k|^{1 + \frac{1}{N}}$$
(4.19)

onde $\gamma = 2KC_0\tilde{P}(\varepsilon^{-1})$. Pelo Lema 5.1 em [22], obtemos de (4.19) que

$$|u|_{\infty} \le \gamma(N+1)|\Omega|^{\frac{1}{N}}.$$

Além disso, pelo Lema 1.49

$$\gamma = 2KC_0\tilde{P}(\varepsilon^{-1}) \le 2KC_0(2M|\Omega|^{\frac{1}{N}}C_0)^{\frac{1}{p^{-1}}}\tilde{P}(1),$$

donde resulta que

$$|u|_{\infty} \le C^* M^{\frac{1}{p^- - 1}},$$

com
$$C^* = K(2C_0)^{\frac{p^-}{p^--1}} (N+1)\tilde{P}(1) |\Omega|^{\frac{p^-}{N(p^--1)}}$$
.

• Se M < m, considere

$$\varepsilon = \left(\frac{1}{2M|\Omega|^{\frac{1}{N}}C_0}\right)^{\frac{1}{p^+}} = \left(\frac{m}{M}\right)^{\frac{1}{p^+}} > 1.$$

De (4.17) e do Lema 1.48 segue a seguinte desigualdade:

$$\int_{A_{k}} P(|\nabla u|) dx \leq C_{0} M |A_{k}|^{\frac{1}{N}} \varepsilon^{p^{+}} \int_{A_{k}} P(|\nabla u|) dx + C_{0} M |A_{k}|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1})
= \frac{|A_{k}|^{\frac{1}{N}}}{2|\Omega|^{\frac{1}{N}}} \int_{A_{k}} P(|\nabla u|) dx + C_{0} M |A_{k}|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1})
\leq \frac{1}{2} \int_{A_{k}} P(|\nabla u|) dx + C_{0} M |A_{k}|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1}),$$

portanto

$$\int_{A_k} P(|\nabla u|) \le 2C_0 M|A_k|^{\frac{1}{N}+1} \tilde{P}(\varepsilon^{-1}). \tag{4.20}$$

Desse modo, pela Proposição 1.9 e o Lema 2.1 temos

$$\int_{A_{k}} (u - k) dx = \frac{1}{M} \int_{A_{k}} p(|\nabla u|) |\nabla u| dx
\leq \frac{1}{M} \int_{A_{k}} P(2|\nabla u|) dx \leq \frac{K}{M} \int_{A_{k}} P(|\nabla u|)
\stackrel{(4.20)}{\leq} 2K C_{0} \tilde{P}(\varepsilon^{-1}) |A_{k}|^{\frac{1}{N}+1} = \gamma |A_{k}|^{1+\frac{1}{N}},$$
(4.21)

onde $\gamma = 2KC_0\tilde{P}(\varepsilon^{-1})$.

Mais uma vez, pelo Lema 5.1 de [22], segue de (4.21) que

$$|u|_{\infty} \le \gamma(N+1)|\Omega|^{\frac{1}{N}},$$

e pelo Lema 1.49

$$\gamma = 2KC_0\tilde{P}(\varepsilon^{-1}) \le 2KC_0(2M|\Omega|^{\frac{1}{N}}C_0)^{\frac{1}{p^{+-1}}}\tilde{P}(1),$$

o que resulta em

$$|u|_{\infty} < C_* M^{\frac{1}{p^+-1}}.$$

com
$$C_* = K(2C_0)^{\frac{p^+}{p^+-1}} (N+1)\tilde{P}(1)|\Omega|^{\frac{p^+}{N(p^+-1)}}.$$

Lema 4.16. Suponha que as hipóteses (p_1) , (p_2) e (p_3) sejam satisfeitas e que $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ satisfaça (F_0) e (F_1) ou (F_2) . Então para $\lambda > 0$ suficientemente pequeno, o problema (P_{λ}) tem solução $u_{\lambda} \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega})$ que é um mínimo local de I_{λ} na topologia de $C^1(\overline{\Omega})$. Além disso,

$$|u_{\lambda}|_{C^1} \to 0$$
, quando $\lambda \to 0$.

Demonstração. Tome 0 < M < m, onde m é como no Lema 4.15. Seja também $v = v_M$ a única solução positiva de

$$(A) \begin{cases} -\Delta_p u = M, & \text{em}\Omega, \\ u = 0, & \text{em}\ \partial\Omega, \end{cases}$$

Pelo Lema 4.15 , $|v|_{\infty} \le C_* M^{\frac{1}{p^+-1}}$.

Dado $\mu \geq 0$, segue de $q > p^+$ que podemos escolher M suficientemente pequeno de tal modo que $\mu\left(C_*^{q-1}M^{\frac{q-p^+}{p^+-1}}\right) < 1/2$, isto é, $\mu\left(C_*M^{\frac{1}{p^+-1}}\right)^{q-1} < M/2$ e portanto $\mu v^{q-1} < M/2$. Seja $\lambda > 0$ suficientemente pequeno e tal que $\lambda f(x,v) < M/2$, (isto é possível pois $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ e $v \in C(\overline{\Omega})$). Então, para tais $\lambda > 0$

$$-\Delta_P v = M > \lambda f(x, v) + M|v|^{q-2}v.$$

Portanto v é supersolução de (P_{λ}) e não é solução de (P_{λ}) .

No caso que f satifaz (F_1) , 0 é subsolução de (P_{λ}) mas não satisfaz a equação (P_{λ}) . Assim, pelo Teorema 4.10, (P_{λ}) tem uma solução $u_{\lambda} \in [0, v] \cap C^1(\overline{\Omega})$, que é mínimo local de I_{λ} na topologia de $C^1(\overline{\Omega})$.

No caso que f satisfaz (F_2) , 0 é solução de (P_{λ}) . Afirmamos que 0 não é mínimo de I_{λ} em $[0,v] \cap W_0^{1,P}(\Omega)$. De fato, para ver isso note que $I_{\lambda}(0) = 0$ e assim é suficiente mostrar que inf $\{I_{\lambda}(u) : u \in [0,v] \cap W_0^{1,P}(\Omega)\} < 0$.

Para $\delta > 0$, defina

$$U_{\delta} = \{x \in U : \operatorname{dist}(x, \partial\Omega) < \delta\}.$$

Pela condição (F_2) , podemos encontrar δ suficientemente pequeno tal que $\overline{B}(x_0,\varepsilon) \subset U \setminus U_\delta$. Considere $w \in C_0^\infty(U)$ de tal modo que $0 \le w \le 1$ e w = 1 em $U \setminus U_\delta$. Para t > 0

suficientemente pequeno, $tw \in [0, v]$ e pelo Lema 1.48 temos

$$I_{\lambda}(tw) \leq \int_{\Omega} P(|\nabla(tw)|)dx - \lambda \int_{\Omega} F(x,tw)dx$$

$$\leq \int_{U_{\delta}} P(|\nabla(tw)|)dx - \lambda \int_{\overline{B}(x_{0},\varepsilon)} F(x,tw)dx$$

$$\leq t^{p^{-}} \int_{U_{\delta}} P(|\nabla w|)dx - \lambda \int_{\overline{B}(x_{0},\varepsilon)} F(x,tw)dx$$

$$\leq t^{p^{-}} \int_{U_{\delta}} P(|\nabla w|)dx - c_{1}\lambda t^{r_{0}} \int_{\overline{B}(x_{0},\varepsilon)} w^{r_{0}}dx.$$

Como $r_0 < p^-$, então para t > 0 suficientemente pequeno, $I_{\lambda}(tw) < 0$, o que prova a afirmação.

Portanto, decorre do Teorema 4.10 que podemos encontrar $u_{\lambda} \in [0, v] \cap C^{1,\alpha}(\overline{\Omega})$ tal que

$$I_{\lambda}(u_{\lambda}) = \inf\{I_{\lambda}(u) : u \in [0, v] \cap W_0^{1, P}(\Omega)\},\$$

 u_{λ} é solução de (P_{λ}) e é um mínimo local de I_{λ} na topologia de $C^{1}(\overline{\Omega})$.

Por fim, quando $\lambda \to 0$, podemos tomar $M \to 0$, consequentemente

$$|v_M|_{\infty} \le C_* M^{\frac{1}{p^+-1}} \to 0.$$

Além disso, segue do Teorema 4.10 que existe δ_λ tal que

$$B_{C^1}(u_\lambda,\delta_\lambda)\cap W^{1,P}_0(\Omega)=\{u\in W^{1,P}_0(\Omega)\cap C^1(\overline{\Omega}):|u-u_\lambda|_{C^1}<\delta_\lambda\}\subset [0,v_M],$$
então $|u_\lambda|_{C^1}\to 0.$

Antes de enunciarmos o próximo teorema, definiremos os seguintes conjuntos:

$$\Lambda = \{\lambda > 0 : (P_{\lambda}) \text{ tem uma solução } u_{\lambda} \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega})\}$$

е

$$\Lambda_0 = \left\{ \lambda > 0 : (P_\lambda) \text{ tem uma solução } u_\lambda \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega}) \right.$$
que é um mínimo local de I_λ na topologia C^1 .

Teorema B: Assuma que (p_1) , (p_2) e (p_3) valem e que $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ satisfaz (F_0) e (F_1) ou (F_2) . Então Λ_0 e Λ são ambos intervalos não vazios, inf $\Lambda_0 = \inf \Lambda = 0$ e $int\Lambda \subset \Lambda_0$.

Demonstração. Do Lema 4.16, concluímos que Λ_0 e Λ são ambos intervalos não vazios. Obviamente $\Lambda_0 \subset \Lambda$ e além disso, pelo Lema 4.16, inf $\Lambda_0 = \inf \Lambda = 0$. Considere $\lambda_1 \in \Lambda$ e

 $\lambda \in (0, \lambda_1)$ arbitrário. Seja u_{λ_1} uma solução de (P_{λ_1}) , então pelo fato de $f(x, t) \geq 0$ para $t \geq 0$, segue que

$$-\Delta_P u_{\lambda_1} = \lambda_1 f(x, u_{\lambda_1}) + \mu |u_{\lambda_1}|^{q-2} u_{\lambda_1} \ge \lambda f(x, u_{\lambda_1}) + \mu |u_{\lambda_1}|^{q-2} u_{\lambda_1}$$

e assim u_{λ_1} é supersolução de (P_{λ}) . Por outro lado, segue do Lema 4.16 que podemos obter $\lambda_2 < \lambda$ suficientemente pequeno de tal modo que (P_{λ_2}) tenha solução u_{λ_2} e $u_{\lambda_2} < u_{\lambda_1}$ em Ω . Também u_{λ_2} satisfaz

$$-\Delta_P u_{\lambda_2} = \lambda_2 f(x, u_{\lambda_2}) + \mu |u_{\lambda_2}|^{q-2} u_{\lambda_2} < \lambda f(x, u_{\lambda_2}) + \mu |u_{\lambda_2}|^{q-2} u_{\lambda_2},$$

donde u_{λ_2} é subsolução de (P_{λ}) . Pelo Teorema 4.10, (P_{λ}) tem uma solução u_{λ} que é mínimo local de I_{λ} na topologia C^1 , o que mostra que $\lambda \in \Lambda_0$ e portanto $\lambda \in \Lambda$. Assim $\Lambda \in \Lambda_0$ são intervalos e int $\Lambda \subset \Lambda_0$.

Teorema C: Sob as hipóteses do Teorema B, assuma adicionalmente que f satisfaz (f_*) e que valham as seguintes condições:

- 1. $\mu > 0$, $q < p_*^-$ e
- 2. existem $\theta > p^+$ e $R_1 > 0$ tais que $0 \le \theta F(x,t) \le t f(x,t)$, para todo $|t| \ge R_1$ e todo $x \in \overline{\Omega}$.

Então para cada $\lambda \in int\Lambda$, (P_{λ}) tem pelo menos duas soluções u_{λ} e v_{λ} tais que $u_{\lambda} < v_{\lambda}$ e u_{λ} é um mínimo local de I_{λ} na topologia de $W_0^{1,P}(\Omega)$.

Demonstração. Se definirmos

$$f_{\lambda,\mu}(x,t) = \lambda f(x,t) + \mu |t|^{q-2}t,$$

então, pela condição (f_*) , podemos obter uma constante positiva C_{λ} para a qual

$$|f_{\lambda,\mu}(x,t)| = |\lambda f(x,t) + \mu |t|^{q-2}t| \le C_{\lambda}(1+h(|t|)+|t|^{q-1}),$$

onde, $h(|t|) + |t|^{q-2}t$ é um homeormorfismo ímpar e crescente. Além disso, pelo Lema 1.48, para k>0 temos

$$\lim_{t \to \infty} \frac{|t|^q}{P_*(kt)} \le \lim_{t \to \infty} \frac{|t|^q}{t^{p_*} P_*(k)} = 0, \tag{4.22}$$

onde na última igualdade usamos o fato de $q < p_*^-$. Desse modo, a N-função definida por

$$Q(t) = \int_0^t [h(s) + s^{q-1}] ds$$

satisfaz Δ_2 e cresce estritamente mais lento que P_* , portanto $f_{\lambda,\mu}$ satisfaz uma condição do tipo (f_*) . Assim, pela Observação 2.15 obtemos que $I_{\lambda} \in C^1(W_0^{1,P}(\Omega),\mathbb{R})$.

Tome $\lambda \in \operatorname{int}\Lambda \subset \Lambda_0$ e considere λ_1 e $\lambda_2 \in \Lambda_0$ satisfazendo $\lambda_1 < \lambda < \lambda_2$ e u_{λ_1} e u_{λ_2} as soluções de (P_{λ_1}) e (P_{λ_2}) , respectivamente.

Como $f(x,t) \ge 0$ para $t \ge 0$, então

$$\begin{split} -\Delta_P u_{\lambda_1} &= \lambda_1 f(x, u_{\lambda_1}) + \mu |u_{\lambda_1}|^{q-2} u_{\lambda_1} \\ &< \lambda f(x, u_{\lambda_1}) + \mu |u_{\lambda_1}|^{q-2} u_{\lambda_1}, \end{split}$$

 \mathbf{e}

$$-\Delta_P u_{\lambda_2} = \lambda_2 f(x, u_{\lambda_2}) + \mu |u_{\lambda_2}|^{q-2} u_{\lambda_2} > \lambda f(x, u_{\lambda_2}) + \mu |u_{\lambda_2}|^{q-2} u_{\lambda_2},$$

daí u_{λ_1} e u_{λ_2} são subsolução e supersolução do problema (P_{λ}) , respectivamente. Pelo Teorema 4.10 temos que existe $u_{\lambda} \in W_0^{1,P}(\Omega) \cap C^1(\overline{\Omega})$ solução de (P_{λ}) que é um mínimo local de I_{λ} na topologia de $W_0^{1,P}(\Omega)$ e satisfaz

$$u_{\lambda_1} \leq u_{\lambda} \leq u_{\lambda_2}$$
.

Defina

$$\tilde{f}_{\lambda}(x,t) = \begin{cases} f(x,t), & \text{se } t > u_{\lambda}(x), \\ f(x,u_{\lambda}), & \text{se } t \leq u_{\lambda}(x), \end{cases}$$

$$\tilde{g}_{\lambda}(x,t) = \begin{cases} t^{q-1}, & \text{se } t > u_{\lambda}(x), \\ (u_{\lambda}(x))^{q-1}, & \text{se } t \leq u_{\lambda}(x), \end{cases}$$

$$\tilde{F}_{\lambda}(x,t) = \int_{0}^{t} \tilde{f}_{\lambda}(x,s)ds$$
 e $\tilde{G}_{\lambda}(x,t) = \int_{0}^{t} \tilde{g}_{\lambda}(x,s)ds$.

Vamos considerar o problema

$$(\tilde{P}_{\lambda}) \begin{cases} -\Delta_{P} u = \lambda \tilde{f}_{\lambda}(x, u) + \mu \tilde{g}_{\lambda}(x, u) & \text{em } \Omega, \\ u > 0, & \text{em } \Omega, \\ u = 0, & \text{na } \partial \Omega \end{cases}$$

e denotaremos por \tilde{I}_{λ} o funcional associado ao problema (\tilde{P}_{λ}) , isto é,

$$\tilde{I}_{\lambda}(u) = \int_{\Omega} P(|\nabla u|) dx - \int_{\Omega} \tilde{F}_{\lambda,\mu}(x,u) dx, \quad \forall \ u \in W_0^{1,P}(\Omega),$$

onde

$$\tilde{F}_{\lambda,\mu}(x,t) = \int_0^t \tilde{f}_{\lambda,\mu}(x,s)ds,$$

em que $\tilde{f}_{\lambda,\mu}(x,t) = \lambda \tilde{f}_{\lambda}(x,t) + \mu \tilde{g}_{\lambda}(x,t)$.

Como, pela condição (F_0)

$$-\Delta_P u_{\lambda_2} = \lambda_2 f(x, u_{\lambda_2}) + \mu |u_{\lambda_2}|^{q-2} u_{\lambda_2}$$

> $\lambda f(x, u_{\lambda_2}) + \mu |u_{\lambda_2}|^{q-2} u_{\lambda_2}$
= $\lambda \tilde{f}_{\lambda}(x, u_{\lambda_2}) + \mu \tilde{g}_{\lambda}(x, u_{\lambda_2})$

е

$$\begin{split} -\Delta_P u_{\lambda_1} &= \lambda_1 f(x, u_{\lambda_1}) + \mu |u_{\lambda_1}|^{q-2} u_{\lambda_1} \\ &< \lambda f(x, u_{\lambda}) + \mu |u_{\lambda}|^{q-2} u_{\lambda} \\ &= \lambda \tilde{f}_{\lambda}(x, u_{\lambda_1}) + \mu \tilde{g}_{\lambda}(x, u_{\lambda_1}), \end{split}$$

então u_{λ_1} e u_{λ_2} são, respectivamente, subsolução e supersolução de (\tilde{P}_{λ}) . Pelo Teorema 4.10, existe $u_{\lambda}^* \in [u_{\lambda_1}, u_{\lambda_2}] \cap C^1(\overline{\Omega}) \cap W_0^{1,P}(\Omega)$ tal que u_{λ}^* é solução de (\tilde{P}_{λ}) e é mínimo local de \tilde{I}_{λ} na topologia de $W_0^{1,P}(\Omega)$. Além disso,

$$-\Delta_P u_\lambda = \lambda f(x, u_\lambda) + \mu |u_\lambda|^{q-2} u_\lambda$$
$$= \lambda f(x, u_\lambda) + \mu \tilde{g}_\lambda(x, u_\lambda)$$
$$\leq \lambda \tilde{f}_\lambda(x, u_\lambda^*) + \mu \tilde{g}_\lambda(x, u_\lambda^*)$$
$$= -\Delta_P u_\lambda^*$$

e portanto pelo Lema 4.2, obtemos que $u_{\lambda} \leq u_{\lambda}^*$. Por outro lado, pela maneira que foram definidas \tilde{f}_{λ} e \tilde{g}_{λ} ,

$$-div(a(|\nabla u_{\lambda}^*|)\nabla u_{\lambda}^*) = \lambda \tilde{f}_{\lambda}(x, u_{\lambda}^*) + \mu \tilde{g}_{\lambda}(x, u_{\lambda}^*)$$
$$= \lambda f(x, u_{\lambda}^*) + \mu |u_{\lambda}^*|^{q-1} u_{\lambda}^*,$$

e assim u_{λ}^* é solução de (P_{λ}) .

Se $u_{\lambda}^* \neq u_{\lambda}$, então a conclusão do teorema segue diretamente. Assumiremos então que $u_{\lambda}^* = u_{\lambda}$. Agora u_{λ} é um mínimo local de \tilde{I}_{λ} na topologia de $W_0^{1,P}(\Omega)$. Nós podemos assumir que u_{λ} é um mínimo local estrito de \tilde{I}_{λ} na topologia de $W_0^{1,P}(\Omega)$, caso contrário novamente a conclusão do teorema segue diretamente.

De maneira análoga ao que foi feito no capítulo 2, podemos provar que $\tilde{I}_{\lambda} \in C^1(W_0^{1,P}(\Omega),\mathbb{R})$, pois $\lambda \tilde{f}_{\lambda}(x,t) + \mu \tilde{g}_{\lambda}(x,t)$ satifaz uma condição do tipo (f_*) .

Afirmação 4.17. \tilde{I}_{λ} satisfaz (PS) .

De fato, considere $\{u_n\} \subset W_0^{1,P}(\Omega)$, onde

$$\|\tilde{I}'_{\lambda}(u_n)\| \to 0 \text{ e } \tilde{I}_{\lambda}(u_n) \to c.$$

Como $\tilde{I}_{\lambda}(u_n) \to c$, então existe M > 0 tal que $\tilde{I}_{\lambda}(u_n) \leq M$, $\forall n \in \mathbb{N}$. Também, escrevendo $\varepsilon_n = \|\tilde{I}'_{\lambda}(u_n)\|$ tem-se

$$\left|\left\langle \tilde{I}'_{\lambda}(u_n), v \right\rangle\right| \leq \varepsilon_n |\nabla v|_P \text{ e } \varepsilon_n \to 0.$$

Primeiramente provaremos que $\{u_n\}$ é limitada em $W_0^{1,P}(\Omega)$.

Ora, uma vez que

$$\tilde{f}_{\lambda,\mu}(x,t) = \begin{cases} \lambda f(x,t) + \mu t^{q-1}, & \text{se } t > u_{\lambda}(x), \\ \lambda f(x,u_{\lambda}(x)) + \mu (u_{\lambda}(x))^{q-1}, & \text{se } t \leq u_{\lambda}(x), \end{cases}$$

se considerarmos $R > \max\{|u_{\lambda}|_{\infty}, R_1\}$, então para t > R e usando o fato de f(x,t) pertencer a $C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$, $u_* \in C^{1,\alpha}(\overline{\Omega})$ e a condição (2) deste teorema, podemos obter uma constante positiva C_1 tal que

$$\tilde{F}_{\lambda,\mu}(x,t) = \int_{0}^{u_{\lambda}(x)} [\lambda f(x,u_{\lambda}(x)) + \mu(u_{\lambda}(x))^{q-1}] ds + \int_{u_{\lambda}(x)}^{t} [\lambda f(x,s) + \mu s^{q-1}] ds$$

$$\leq C_{1} + \int_{0}^{t} [\lambda f(x,s) + \mu s^{q-1}] ds$$

$$\leq C_{1} + \lambda F(x,t) + \frac{\mu}{q} t^{q}$$

$$\leq C_{1} + \frac{\lambda}{\theta} t f(x,t) + \frac{\mu}{q} t^{q}$$

$$\leq C_{1} + \frac{1}{\alpha} t \tilde{f}_{\lambda,\mu}(x,t),$$

onde $\alpha = \min\{q, \theta\} > p^+ > 1$. Por outro lado, se $t \leq -R$ então

$$\tilde{F}_{\lambda,\mu}(x,t) = \int_0^t [\lambda f(x, u_{\lambda}(x)) + \mu(u_{\lambda}(x))^{q-1}] ds$$
$$= (\lambda f(x, u_{\lambda}(x)) + \mu u_{\lambda}(x)^{q-1})t = t\tilde{f}_{\lambda,\mu}(x,t) < 0$$

e daí $\alpha \tilde{F}_{\lambda,\mu}(x,t) < t\tilde{f}_{\lambda,\mu}(x,t)$.

Suponha, por absurdo, que $\{u_n\}$ é ilimitada em $W_0^{1,P}(\Omega)$. Então podemos obter uma subsequência $\{u_{n_k}\}$, tal que $|\nabla u_{n_k}|_P \ge n_k$ para todo $k \in \mathbb{N}$. Nesse caso

$$1 = \int_{\Omega} P\left(\frac{|\nabla u_{n_k}|}{|\nabla u_{n_k}|_P}\right) dx \le \frac{1}{|\nabla u_{n_k}|_P} \int_{\Omega} P(|\nabla u_{n_k}|) dx,$$

portanto

$$|\nabla u_{n_k}|_P \le \int_{\Omega} P(|\nabla u_{n_k}|) dx, \quad \forall \ n_k. \tag{4.23}$$

Considere os seguintes conjuntos:

$$\Omega_{1,n_k} = \{ x \in \Omega : |\nabla u_{n_k}(x)| \le R \}, \qquad \Omega_{2,n_k} = \{ x \in \Omega : |\nabla u_{n_k}(x)| > R \},$$

$$\Omega_{3,n_k} = \{ x \in \Omega : |u_{n_k}(x)| \le R \}, \qquad \Omega_{4,n_k} = \{ x \in \Omega : u_{n_k}(x) > R \}$$

e

$$\Omega_{5,n_k} = \{ x \in \Omega : u_{n_k}(x) < -R \}.$$

Assim

$$\int_{\Omega_{1,n_{k}}} \left(P(|\nabla u_{n_{k}}|) - \frac{1}{\alpha} a(|\nabla u_{n_{k}}|) |\nabla u_{n_{k}}|^{2} \right) dx
+ \int_{\Omega_{2,n_{k}}} \left(P(|\nabla u_{n_{k}}|) - \frac{1}{\alpha} a(|\nabla u_{n_{k}}|) |\nabla u_{n_{k}}|^{2} \right) dx
- \int_{\Omega_{3,n_{k}}} \left(\tilde{F}_{\lambda,\mu}(x,u_{n_{k}}) - \frac{1}{\alpha} \tilde{f}_{\lambda,\mu}(x,u_{n_{k}}) u_{n_{k}} \right) dx
- \int_{\Omega_{4,n_{k}}} \left(\tilde{F}_{\lambda,\mu}(x,u_{n_{k}}) - \frac{1}{\alpha} \tilde{f}_{\lambda,\mu}(x,u_{n_{k}}) u_{n_{k}} \right) dx
- \int_{\Omega_{5,n_{k}}} \left(\tilde{F}_{\lambda,\mu}(x,u_{n_{k}}) - \frac{1}{\alpha} \tilde{f}_{\lambda,\mu}(x,u_{n_{k}}) u_{n_{k}} \right) dx
= \tilde{I}_{\lambda}(u_{n_{k}}) - \frac{1}{\alpha} \left\langle \tilde{I}'_{\lambda}(u_{n_{k}}), u_{n_{k}} \right\rangle \stackrel{(4.23)}{\leq} M + \frac{\varepsilon_{n_{k}}}{\alpha} \int_{\Omega} P(|\nabla u_{n_{k}}|) dx.$$

Observe que, como f satisfaz (f_*) , então podemos obter uma constante positiva C tal que

$$|\tilde{f}_{\lambda,\mu}(x,t)| \le C(1 + h(|t|) + |t|^{q-1}), \quad t \in \mathbb{R}$$

e assim fica fácil ver que

$$\int_{\Omega_{3,n_k}} \left(\tilde{F}_{\lambda,\mu}(x, u_{n_k}) - \frac{1}{\alpha} \tilde{f}_{\lambda,\mu}(x, u_{n_k}) u_{n_k} \right) dx$$

é limitada por uma constante positiva independente de n_k . Também, usando o fato de p e P serem crescentes, temos que

$$\int_{\Omega_{1,n_k}} \left(P(|\nabla u_{n_k}|) - \frac{1}{\alpha} a(|\nabla u_{n_k}|) |\nabla u_{n_k}|^2 \right) dx$$

é limitada uniformemente. Pelo que já observamos

$$-\int_{\Omega_{5,n_k}} \left(\tilde{F}_{\lambda,\mu}(x, u_{n_k}) - \frac{1}{\alpha} \tilde{f}_{\lambda,\mu}(x, u_{n_k}) u_{n_k} \right) dx > 0$$

е

$$\int_{\Omega_{4,n_k}} \left(\tilde{F}_{\lambda,\mu}(x, u_{n_k}) - \frac{1}{\alpha} \tilde{f}_{\lambda,\mu}(x, u_{n_k}) u_{n_k} \right) dx \le C_1 |\Omega|.$$

Por fim, concluímos que

$$\int_{\Omega_{2,n_k}} \left(P(|\nabla u_{n_k}|) - \frac{1}{\alpha} a(|\nabla u_{n_k}|) |\nabla u_{n_k}|^2 \right) dx \le M_1 + \frac{\varepsilon_{n_k}}{\alpha} \int_{\Omega} P(|\nabla u_{n_k}|) dx,$$

para alguma constante positiva M_1 independente de n_k .

Por outro lado, pela condição (p_2)

$$\int_{\Omega_{2,n_k}} \left(P(|\nabla u_{n_k}|) - \frac{1}{\alpha} a(|\nabla u_{n_k}|) |\nabla u_{n_k}|^2 \right) dx > \left(1 - \frac{p^+}{\alpha} \right) \int_{\Omega_{2,n_k}} P(|\nabla u_{n_k}|) dx,$$

daí

$$\int_{\Omega_{2,n_k}} P(|\nabla u_{n_k}|) dx < M_2 + \frac{\varepsilon_{n_k}}{\alpha - p^+} \int_{\Omega} P(|\nabla u_{n_k}|) dx.$$

Note também que

$$\int_{\Omega} P(|\nabla u_{n_k}|) dx = \int_{\Omega_{1,n_k}} P(|\nabla u_{n_k}|) dx + \int_{\Omega_{2,n_k}} P(|\nabla u_{n_k}|) dx$$

$$< M_3 + \frac{\varepsilon_{n_k}}{\alpha - p^+} \int_{\Omega} P(|\nabla u_{n_k}|) dx$$

e assim, tomando n_k suficientemente grande de modo que $\varepsilon_{n_k}/(\alpha-p^+)<1/2$, temos ainda

$$\int_{\Omega} P(|\nabla u_{n_k}|) dx \le 2M_3,$$

o que contradiz (4.23).

Provado que $\{u_n\}$ é limitada, mostraremos a seguir que $\{u_n\}$ admite subsequência convergente em $W_0^{1,P}(\Omega)$. Ora, como $W_0^{1,P}(\Omega)$ é reflexivo, então existe $u \in W_0^{1,P}(\Omega)$ tal que $u_n \rightharpoonup u$, a menos de subsequência. Por outro lado, segue da imersão compacta $W_0^{1,P}(\Omega) \stackrel{cpta}{\hookrightarrow} L^Q(\Omega)$ que, considerando uma subsequência se necessário, $u_n \to u$ em $L^Q(\Omega)$. Além disso, como $\tilde{I}'_{\lambda}(u_n) \to 0$ e $u_n \rightharpoonup u$ em $W_0^{1,P}(\Omega)$, então

$$\left\langle \tilde{I}'_{\lambda}(u_n), u_n - u \right\rangle = \mathcal{P}'(u_n)(u_n - u) - \int_{\Omega} \tilde{f}_{\lambda,\mu}(x, u_n)(u_n - u) dx \to 0.$$

De maneira inteiramente análoga a Proposição 2.13, obtemos que

$$\tilde{\mathcal{F}}_{\lambda,\mu}(u) = \int_{\Omega} \tilde{F}_{\lambda,\mu}(u) dx \in C^1(L^Q(\Omega), \mathbb{R})$$

e portanto

$$\left\langle \tilde{\mathcal{F}}'_{\lambda,\mu}(u_n), u_n - u \right\rangle = \int_{\Omega} \tilde{f}_{\lambda,\mu}(x, u_n)(u_n - u)dx \to 0,$$

restando assim que $\mathcal{P}'(u_n)(u_n-u)\to 0$.

Segue da Proposição 2.12 que \mathcal{P}' é do tipo (S_+) , portanto, a menos de subsequência, $u_n \to u$ em $W_0^{1,P}(\Omega)$, como queríamos provar.

Afirmação 4.18.

$$\inf\{\tilde{I}_{\lambda}(u): u \in W_0^{1,P}(\Omega)\} = -\infty.$$

De fato, consideremos $u_{\lambda} \in W_0^{1,P}(\Omega)$, onde $u_{\lambda} \geq 0$ e $u_{\lambda} \not\equiv 0$. Então para t > 1, segue do Lema 1.48 que

$$\tilde{I}_{\lambda}(tu_{\lambda}) = \int_{\Omega} P(t|\nabla u_{\lambda}|)dx - \lambda \int_{\Omega} \tilde{F}_{\lambda}(x,tu_{\lambda})dx - \mu \int_{\Omega} \tilde{G}_{\lambda}(x,tu_{\lambda})dx
\leq t^{p^{+}} \int_{\Omega} P(|\nabla u_{\lambda}|)dx - \mu \int_{\Omega} \tilde{G}_{\lambda}(x,tu_{\lambda})dx
= t^{p^{+}} \int_{\Omega} P(|\nabla u_{\lambda}|)dx - \mu \int_{\Omega} \left[(u_{\lambda}(x))^{q} + \frac{1}{q} t^{q} (u_{\lambda}(x))^{q} - \frac{1}{q} (u_{\lambda}(x))^{q} \right] dx.$$

Como $\mu > 0$ e $q > p^+$, então fazendo $t \to \infty$ na desigualdade acima, obtemos que $\tilde{I}_{\lambda}(tu_{\lambda}) \to -\infty$. Portanto $\inf\{\tilde{I}_{\lambda}(u): u \in W_0^{1,P}(\Omega)\} = -\infty$ e assim podemos escolher T > 0 de tal modo que $v_0 = Tu_{\lambda}$ satifaça $\tilde{I}_{\lambda}(v_0) < \tilde{I}_{\lambda}(u_{\lambda})$. Além disso, como u_{λ} é mínimo estrito de \tilde{I}_{λ} na topologia de $W_0^{1,P}(\Omega)$, então existe $\delta > 0$ tal que $\tilde{I}_{\lambda}(v) > \tilde{I}_{\lambda}(u_{\lambda})$, $\forall v \in \partial B_{\delta}(u_{\lambda})$. Em particular, $v_0 \in B_{\delta}^c(u_{\lambda})$.

Consideremos

$$\Gamma = \{ \gamma \in C([0,1], W_0^{1,P}(\Omega)) : \gamma(0) = u_\lambda \text{ e } \gamma(1) = v_0 \}$$

 \mathbf{e}

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \tilde{I}_{\lambda}(\gamma(t)) \ge \alpha,$$

onde $\alpha = \tilde{I}_{\lambda}(u_{\lambda})$. Se $\alpha < c$, então pela Afirmação 4.17 segue do Teorema A.29 que existe um ponto v_{λ} no nível c, que é ponto crítico de \tilde{I}_{λ} e portanto é solução de (P_{λ}) .

Por outro lado, se $\alpha = c$, considere

$$F = W_0^{1,P}(\Omega) \backslash B_{\frac{\delta}{2}}(u_{\lambda}).$$

Então

$$F \cap \{v \in W_0^{1,P}(\Omega) : \tilde{I}_{\lambda}(v) \ge c\}$$

separa os pontos u_{λ} e v_0 . Além disso, como \tilde{I}_{λ} satisfaz (PS), então \tilde{I}_{λ} saitsfaz $(PS)_{F,c}$ e assim pelo Teorema A.32 concluímos que \tilde{I}_{λ} tem um ponto crítico v_{λ} em F com valor crítico c e novamente obtemos o resultado desejado.

Apêndice

Neste apêndice enunciaremos alguns teoremas utilizados ao longo desta dissertação. No que segue $\Omega \subset \mathbb{R}^N$ é um conjunto mensurável.

Teorema A. 1. (Teorema da Convergência Dominada de Lebesgue)(Ver [6])

Seja $\{f_n\}$ uma sequência de funções integráveis definidas em $\Omega \subset \mathbb{R}^N$ e que converge em quase todo ponto para f(x). Suponha que exista uma função g, com integral de Lebesgue finita sobre Ω , tal que

 $|f_n(x)| \le g(x)$, para todo $n \in \mathbb{N}$ e quase todo $x \in \Omega$.

Então f é integrável e

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx.$$

Teorema A. 2. (Ver [7]) Sejam $\{f_n\}$ uma sequência em $L^p(\Omega)$ e $f \in L^p(\Omega)$ tal que $|f_n - f|_p \to 0$. Então existe uma subsequência $\{f_{n_k}\}$ e uma função $h \in L^p(\Omega)$ tais que

- (a) $f_{n_k}(x) \to f(x)$, q.t.p em Ω ;
- (b) $|f_{n_k}(x)| \le h(x)$, para todo $k \in \mathbb{N}$ e quase todo $x \in \Omega$.

Teorema A. 3. (Teorema da Convergência Monótona) (Ver [27]) Seja $\{f_n\}$ uma sequência de funções mensuráveis definidas em Ω e tais que $0 \le f_1(x) \le f_2(x) \le ...$ ($x \in \Omega$). Definindo $f(x) := \lim_{n \to \infty} f_n(x) = \sup_{n \ge 1} f_n(x)$, então

$$\int_{\Omega} f(x) = \lim_{n \to \infty} \int_{\Omega} f_n(x) dx.$$

Teorema A. 4. (Lema de Fatou) (Ver [26]) Seja $\{f_n\}$ uma sequência de funções nãonegativas que converge em quase todo ponto para f(x). Então

$$\int_{\Omega} f(x)dx \le \sup_{n} \left\{ \int_{\Omega} f_{n}(x)dx \right\}.$$

Teorema A. 5. (Ver [20]) Considere $1 \leq p < \infty$, $f \in L^p(\Omega)$ e $\{f_n\}$ uma sequência em $L^p(\Omega)$. Suponha que

$$f_n(x) \to f(x)$$
 q.t.p em Ω e $\lim_{n \to \infty} ||f_n||_p = ||f||_p$.

 $\operatorname{Ent} \tilde{a} \circ \lim_{n \to \infty} \|f_n - f\|_p = 0.$

Teorema A. 6. (Teorema da Convergência de Egorov e Vitali) (Ver [7]) Assuma que $|\Omega| < \infty$. Seja $\{f_n\}$ uma sequência de funções mensuráveis tal que $f_n(x) \to f(x)$ q.t.p em Ω , com $|f(x)| < \infty$ em quase todo ponto. Tomando $\delta > 0$ arbitrariamente, então

$$|\{x \in \Omega : |f_n(x) - f(x)| > \delta\}| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Teorema A. 7. (Teorema de Luzin)(Ver [28]) Seja $\Omega \subset \mathbb{R}^N$ domínio limitado e f uma função mensurável definida em Ω . Para todo $\varepsilon > 0$, existe uma função contínua g tal que

$$|\{x \in \Omega : f(x) \neq g(x)\}| < \varepsilon.$$

Além disso, se $|f(x)| \le k$, então $|g(x)| \le k$.

Definição A. 8. Seja

$$\Sigma = \{S \subseteq \Omega : S \ \textit{\'e mensur\'avel}\}$$

e ν uma função σ -aditiva definida em Σ . Suponha que $\nu(\emptyset) = 0$. Nós dizemos que ν é absolutamente contínua com respeito a medida de Lebesgue μ e escrevemos $\nu \in AC[\mu]$, se

$$\mu(S) = 0$$
 implicar $\nu(S) = 0$,

para todo subconjunto mensurável $S \subset \Omega$.

Teorema A. 9. (Teorema de Radon-Nikodin)(Ver [21]) Seja $\nu \in AC[\mu]$ uma função finita. Então existe uma única $f \in L^1(\Omega)$ tal que

$$\nu(S) = \int_{S} f(x)dx,$$

para todo subconjunto mensurável $S \subset \Omega$.

Teorema A. 10. (Ver [7]) Seja E um espaço de Banach reflexivo e $K \subset E$ um subconjunto limitado, fechado e convexo. Então K é um subconjunto fracamente compacto de E.

Teorema A. 11. (Ver [7]) Se (E, τ) é um espaço topológico compacto e $f : E \to \mathbb{R}$ é uma função semicontínua inferiormente na topologia τ , então existe $x_0 \in E$ tal que $f(x_0) = \min_E f(x)$.

Teorema A. 12. Sejam E um espaço de Banach reflexivo com norma $|\cdot|_E$, $M \subset E$ um subconjunto fracamente fechado em E e I: $E \to \mathbb{R}$ um funcional coercivo e fracamente semicontínuo inferiormente em M. Então I é limitado inferiormente sobre M e atinge mínimo em M.

Teorema A. 13. (Ver [1]) Seja $u \in W^{1,1}_{loc}(\Omega)$ e f uma função real que satisfaz a condição de Lipschitz em \mathbb{R} . Se g(x) = f(|u(x)|), então $g \in W^{1,1}_{loc}(\Omega)$ e

$$\frac{\partial g}{\partial x_i}(x) = f'(|u(x)|)sgnu(x)\frac{\partial u}{\partial x_i}(x).$$

Teorema A. 14. (Ver [7]) Seja $G \in C^1(\mathbb{R})$ tal que G(0) = 0 e $|G'(s)| \leq M$, para todo $s \in \mathbb{R}$ e alguma constante M. Considere $u \in W^{1,p}(\Omega)$, com $1 \leq p \leq \infty$. Então $G \circ u \in W^{1,p}(\Omega)$ e

$$\frac{\partial (G \circ u)}{\partial x_i}(x) = (G' \circ u) \frac{\partial u}{\partial x_i}(x).$$

Teorema A. 15. (Ver [7]) (Teorema de Rellich-Kondrachov) Suponha que $\Omega \subset \mathbb{R}^N$ é um domínio limitado de classe C^1 . Então temos a seguinte imersão compacta:

$$W^{1,1}(\Omega) \stackrel{comp.}{\hookrightarrow} L^1(\Omega).$$

Definição A. 16. Seja $I: E \longrightarrow \mathbb{R}$ um funcional definido sobre um espaço de Banach E. Dado $u \in E$, dizemos que I tem derivada de Gateaux no ponto $u \in E$ se existe $l \in E'$ tal que

$$\langle l, v \rangle = \lim_{t \to 0} \frac{I(u + tv) - I(u)}{t}, \quad para \ todo \ v \in E.$$

A derivada de Gateaux, quando existe, é única e será denotada por DI(u).

Definição A. 17. Dizemos que o funcional I possui derivada de Fréchet no ponto $u \in E$ quando existe um funcional linear $F \in E'$ tal que

$$\lim_{|v|_E \to 0} \frac{I(u+v) - I(u) - \langle F, v \rangle}{|v|_E} = 0.$$

A derivada de Fréchet no ponto u, quando existe, é única. Assim, vamos denotá-la simplesmente por I'(u).

Se $A \subset E$ é um conjunto aberto, dizemos que $I \in C^1(A, \mathbb{R})$ se a derivada de Fréchet de I existe em todo ponto $u \in A$ e a aplicação $I' : A \longrightarrow E'$ é contínua.

Observação: Pode-se mostrar que se I é derivável no sentido de Fréchet, então I é também Gateaux diferenciável com DI(u) = I'(u).

Teorema A. 18. (Ver [20]) Suponha que $I: E \longrightarrow \mathbb{R}$ é contínua e tem derivada de Gateaux contínua em E. Então I é diferenciável segundo Fréchet e $I \in C^1(E, \mathbb{R})$.

Definição A. 19. Sejam E um espaço de Banach, $F \in C^1(E, \mathbb{R})$ e $S := \{v \in E : F(v) = 0\}$. Suponhamos que para todo $u \in S$, $F'(u) \neq 0$. Se $J \in C^1(E, \mathbb{R})$, então dizemos que $c \in \mathbb{R}$ é valor crítico de J sobre S se existe $u \in S$ e $\lambda \in \mathbb{R}$ tais que J(u) = c e $J'(u) = \lambda f'(u)$. Nesse caso u é um ponto crítico de J sobre S e o número real λ é chamado multiplicador de Lagrange para o valor crítico c.

Teorema A. 20. (Teorema dos Multiplicadores de Lagrange) (Ver [20]) Sob as hipóteses e notações da Definição A.19, assuma que $u_0 \in S$ satisfaz $J(u_0) = \inf_{v \in S} J(v)$. Então existe $\lambda \in \mathbb{R}$ tal que

$$J'(u_0) = \lambda F'(u_0).$$

Teorema A. 21. (Princípio do Máximo Estrito de Vazquez) (Ver [29]) Considere o operador linear

$$L(u) = \sum_{i,j=1}^{N} D_j(a_{i,j}(x)D_iu),$$

onde $D_j = \partial/\partial x_j, \ 1 \leq j \leq N$ e as funções $a_{i,j}$ satisfazem

 (C_1) $a_{i,j} \in W^{1\infty}_{loc}(\Omega),$

$$(C_2) \sum_{i,j=1}^{N} a_{i,j}(x)\xi_i\xi_j \ge \lambda(x)|\xi|^2 > 0, \quad para \ todo \ \xi \in \mathbb{R}^N, \xi \ne 0.$$

Seja $u \in C^1(\Omega)$ uma função não negativa tal $-Lu(x) \geq 0$ q.t.p em Ω . Se u não é identicamente nula, então u é positiva em Ω . Além disso, se $u \in C^1(\Omega \cup \{x_0\})$ para um $x_0 \in \partial \Omega$ que satisfaz a condição da esfera interior, então

$$\frac{\partial u}{\partial \nu}(x_0) > 0,$$

onde ν é a normal interior a $\partial\Omega$ em x_0 .

Observação: O Teorema A.21 continua verdadeiro se trocamos L por um operador quasilinear.

Definição A. 22. Seja V um espaço vetorial real. Uma relação de ordem \leq em V é chamada linear se

• $x < y \Rightarrow x + z < y + z, \ \forall \ z \in V;$

• $x \le y \Rightarrow \alpha x \le \alpha y, \forall \alpha \in \mathbb{R}_+.$

Um espaço vetorial junto com uma relação de ordem linear é chamado espaço vetorial ordenado (OVS).

Definição A. 23. Seja V um OVS. Um subconjunto não-vazio P de V é dito um cone se ele satisfaz as seguintes propriedades :

- 1. $P + P \subset P$;
- 2. $\mathbb{R}_+P\subset P$;
- 3. $P \cap (-P) = \{0\}.$

Observação: Seja V um espaço vetorial real e P um cone. A relação \leq definida por

$$x \le y \iff y - x \in P$$

é uma relação de ordem linear em V. Nesse caso, dizemos que a relação \leq é induzida pelo cone P.

Por outro lado, se V é um espaço vetorial ordenado, com uma relação de ordem \leq , o conjunto

$$P = \{x \in V : x \ge 0\}$$

é um cone e P é dito ser o cone positivo da ordenação.

Consequentemente, para todo espaço vetorial V existe uma relação biunívoca entre a família de cones em V e a família de relações de ordem linear.

Definição A. 24. Seja $E = (E, \|\cdot\|)$ espaço de Banach ordenado por um cone P. Então E é chamado espaço de Banach ordenado (OBS) se o cone positivo da ordenação é fechado.

Um espaço de Banach ordenado é usualmente denotado por (E, P).

Definição A. 25. Dizemos que o cone positivo de um OBS é normal, se existe $\delta > 0$ constante, tal que para todo $x, y \in E$ satisfazendo $0 \le x \le y$ implicar em $||x|| \le \delta ||y||$, isto é, a norma é semi-monótona

A seguinte proposição pode ser encontrada em [4].

Proposição A. 26. Se E é um OBS com cone positivo P, então P é normal se e somente se todo intervalo ordenado da forma $[y, \overline{y}]$ é limitado.

Demonstração. Ver [4], página 627, Teorema 1.5.

Definição A. 27. Seja X um subconjunto não-vazio de um espaço ordenado Y. Um ponto fixo x de uma aplicação $f: X \to Y$ é chamado minimal (maximal) se todo ponto fixo y de f em X satisfaz $x \le y(y \le x)$.

Teorema A. 28. Seja E um espaço de Banach ordenado pelo cone P e $[\underline{y}, \overline{y}] \subset E$ um intervalo ordenado não-vazio. Suponha que $f: [\underline{y}, \overline{y}] \to E$ é um operador crescente e compacto tal que $\underline{y} \leq f(\underline{y})$ e $f(\overline{y}) \leq \overline{y}$. Então f tem um ponto fixo minimal \underline{x} e um ponto fixo maximal \overline{x} .

Teorema A. 29. (Teorema do Passo da Montanha de Ambrosetti-Rabinowitz)(Ver [5]) Seja E um espaço de Banach e $I \in C^1(E,\mathbb{R})$. Suponha que existam $x_0, x_1 \in E$ e r > 0 tais que

$$(I_1)$$
 $b = \inf\{I(y) : |y - x_0| = r\} > I(x_1);$

$$(I_2) |x_0 - x_1| > r \ e \ I(x_0) < b.$$

Considere

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)),$$

onde

$$\Gamma = \{ \gamma \in C([0,1], E) : \gamma(0) = x_0 \ e \ \gamma(1) = x_1 \}.$$

Se I satisfaz $(PS)_c$, então c é um valor crítico de I.

Definição A. 30. Dizemos que um subconjunto fechado F de um espaço de Banach E separa dois pontos u e $v \in E$, se u e v pertencem a componentes conexas disjuntas de $E \setminus F$.

Denotaremos por Γ_u^v o conjunto de todos os caminhos contínuos ligando u e v, isto \acute{e} ,

$$\Gamma_u^v = \{ \gamma \in C([0,1], E) : \gamma(0) = u \ e \ \gamma(1) = v \}.$$

Definição A. 31. Sejam E um espaço de Banach, $I \in C^1(E, \mathbb{R})$, F um subconjunto de E e c um número real. Dizemos que I verifica a condição $(PS)_{F,c}$ se toda sequência $\{x_n\} \subset E$ satisfazendo

1.
$$\lim_{n\to\infty} dist(x_n, F) = 0;$$

$$2. \lim_{n \to \infty} I(x_n) = c;$$

$$3. \lim_{n \to \infty} ||I'(x_n)|| = 0$$

admite subsequência convergente.

Teorema A. 32. (Ver Ghoussoub-Preiss [16]) Sejam E espaço de Banach e $I \in C^1(E, \mathbb{R})$. Tome u e $v \in E$ e considere

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)),$$

onde $\Gamma = \Gamma_u^v$. Suponha que F é um subconjunto fechado de E tal que

$$F \cap \{x \in E : I(x) \ge c\}$$

separa os pontos u e v e que I verifica a condição $(PS)_{F,c}$. Então existe um ponto crítico de I em F com valor crítico c.

Referências Bibliográficas

- [1] Adams, R.A., Fournier, J.J.F., *Sobolev Spaces*, second edition, Elsevier Science, Oxford, (2003).
- [2] Alama, S., Tarantello, G., Some remarks on C^1 versus H^1 minimizers, C. R. Acad. Paris 319, Série I, (1994), 1165 1169.
- [3] Alonso, I. P., Azorero, J. G., Manfredi, J.J., Sobolev versus Hölder local minimizer and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math. 2, (2000), 385 404.
- [4] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18, (1976), 620 709.
- [5] Ambrosetti, A., Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, (1973), 349 - 381.
- [6] Bartle, Robert G., Elements of Integration and Lebesgue Measuare, Wiley Classics Library Edition Published, New York, (1995).
- [7] Brezis, H., Functional Analysis Sobolev Spaces and Partial Differential Equations, Springer, (2010).
- [8] Brezis, H., Nirenberg, L., H^1 versus C^1 local minimizers, C. R. Acad. Sci. Paris 317, (1993), 465 472.
- [9] Carl, S.; LE, V. K.; Motreanu, D., Nonsmooth variational problems and their inequalities Comparison principles and applications, Springer, New York, (2007).
- [10] Clément, Ph., García-Huidobro, M., Manásevich, R., Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11, (2000), 33 - 62.

- [11] Dal Maso, G., Murat, F., Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31, (1998), 405 412.
- [12] Fan, X., On the sub-supersolution method for p(x)-Laplacian equations, J. Math., Anal. Appl. 330, (2007), 665 682.
- [13] Fan, X.L., Zhao, D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36, (1996), 295 318.
- [14] Fang, Fei., Tan, Z., Orlicz-Sobolev versus Hölder local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402, (2013), 348 370.
- [15] Fusco, N., Sbordone, C., Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18, (1993), 153–167.
- [16] Ghoussoub, N., Preiss, D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6, (1989), 321 330.
- [17] Gossez, J.P., Orlicz-Sobolev spaces and strongly nonlinear elliptic problems, Trabalho de Matemática, N° 103, Departamento de Matemática, Universidade de Brasíla, (1976).
- [18] Guedda, M., Veron, L., Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Anal TMA, Vol 1, N° 8, (1989), 879 902.
- [19] Krsasnosel'skii, M.A., Rutickii, J.B., Convex Functions and Orlicz Sobolev, Translated from the first Russian edition by L.F Boron, P. Noordhoff International Groningen, (1961).
- [20] Kavian, O., Introduction à la Théorie des Points Critiques et Applications aux Problémes Elliptiques, Springer-Verlag, (1993).
- [21] Kufner, A., John, O., Fucik, S., Function Space, Noordhoff International Publishing, (1977).
- [22] Ladyzhenskaya, O., Ural'tseva, N., Linear and Quasilinear Elliptic Equations, Academic Press, (1968).
- [23] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12, (1988), 1203 - 1219.
- [24] Lieberman, G. M., The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16, (1991), 311 - 361.

- [25] Li, Y., Xuan, B., Two functionals for which C_0^1 minimizers are also $W_0^{1,p}$ minimizers, Eletronic Journal of Differential Equations, Vol. 2002, N° 09, pp. 1-18, ISSN: 1072 6691
- [26] Natanson, I., Theory of functions of a real variable, Ungar, New York, Vol. I (1955);
- [27] Rudin, W., Principles of Mathematical Analysis, McGraw-Will, (1976).
- [28] Rudin, W., Real and Complex Analysis, McGraw-Hill, (1986)
- [29] Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. Vol 12, (1984), 191 - 202.