

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE GEOCIÊNCIAS

ELEMENTOS-TRAÇOS EM MINERAIS DO COMPLEXO ALCALINO CARBONATÍTICO DE TAPIRA - MG

DISSERTAÇÃO DE MESTRADO

Área de Concentração: Geologia Regional

Por: Daliane Bandeira Eberhardt

Dissertação De Mestrado nº <u>326</u>

> Brasília - DF 15/Julho/2014

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE GEOCIÊNCIAS

ELEMENTOS-TRAÇOS EM MINERAIS DO COMPLEXO ALCALINO CARBONATÍTICO DE TAPIRA - MG

Por: Daliane Bandeira Eberhardt

DISSERTAÇÃO DE MESTRADO

nº <u>326</u>

Orientador: Prof. José Affonso Brod - IG/UnB

Membros da Banca:

Sérgio de Castro Valente - UFRuralRJ

Nilson Francisquine Botelho - UnB

José Affonso Brod - UnB

BRASÍLIA – DF

15/Julho/2014

Ficha catalográfica elaborada pela Biblioteca Central da Universidade de Brasília. Acervo 1017404.

Eberhardt, Daliane Bandeira.
Elementos-traços em minerais do complexo alcalino carbonatítico de Tapira - MG / Daliane Bandeira Eberhardt.
- 2014.
xiii, 111 f. : il. ; 30 cm.
Dissertação (mestrado) - Universidade de Brasília, Instituto de Geociências, 2014.
Inclui bibliografia.
Orientação: José Affonso Brod.
1. Rochas ígneas alcalinas. 2. Perovskita. 3. Apatita.
4. Flogopita. 5. Granada (Mineral). 6. Carbonatos.
7. Piroxênio. 8. Triângulo Mineiro/Alto Paranaíba (MG : Mesorregião). 1. Brod, José Affonso. 11. Título.

Agradecimentos

Agradeço ao meu querido, admirável orientador e amigo José Affonso Brod por tudo, por ter acreditado e me aturado este tempo todo.

À Unb pelo apoio nas análises de microssonda, bem como a todos os professores da Geo e demais funcionários.

Ao IGC-USP pelo apoio nas análises de LA-ICP-MS especialmente ao Prof. Valdecir Janasi e a Sandra Andrade.

Aos meus grandes e queridos amigos de longa data Luana Moreira Florisbal, Karine Gollmann e Luciano Stropper, vocês são especiais, e aos que de certa forma ou outra também participaram deste projeto.

Ao Mauricio, Giulia e Marina meu máximo obrigado.

Aos meus pais por sempre estarem presentes, apesar da distância, e me apoiando principalmente com as crianças nas minhas muitas ausências.

Resumo

O Complexo Alcalino-Carbonatítico de Tapira faz parte da Província Ígnea do Alto Paranaíba (APIP), que possui estruturas circulares intrusivas alinhadas por mais de 1000 Km, na direção NW-SE, na borda nordeste da Bacia do Paraná. Ocorre encaixado em quartzitos e xistos pré-cambrianos do Grupo Canastra e tem idade K/Ar em flogopita do Neocretáceo (85,6 e 87,2 Ma). Na Província encontram-se alinhados, ainda, outros complexos intrusivos análogos, tais como: Araxá, Salitre, Serra Negra e Catalão. Estes complexos são portadores de diversas mineralizações, como nióbio, fosfato, terras raras, titânio, vermiculita e barita, dentre outros. Atualmente, são minerados depósitos de fosfato (Araxá, Tapira, Catalão 1) e nióbio (Araxá, Catalão 1, Catalão 2) localizados no manto de intemperismo.

Tapira consiste de uma Série Silicática Plutônica, composta de wehrlitos, piroxenitos (bebedouritos) e sienitos, e de uma série carbonatítica, composta de calcitacarbonatitos, calcita-dolomita carbonatitos e dolomita carbonatitos. Dentre as rochas ultramáficas foram identificadas duas gerações (B1 e B2) e dentre os carbonatitos cinco (C1 a C5).

A determinação geoquímica de elementos maiores e traços por microanálise em apatita, perovskita, diopsídio, flogopita, granada e carbonatos demonstra possíveis relações entre a composição química de elementos-traço e processos específicos de diferenciação magmática, tais como cristalização fracionada e imiscibilidade de líquidos, com ênfase nos elementos terras raras e em razões elementares como Nb/Ta e Zr/Hf. As estimativas de coeficientes de partição (mineral/rocha) contribuem com o avanço do conhecimento sobre o magmatismo alcalino da Província Ígnea do Alto Paranaíba, especialmente no tocante ao fracionamento de elementos traço em minerais específicos destas rochas.

Palavras chave: Complexo Alcalino-Carbonatítico de Tapira, LA-ICP-MS, perovskita, apatita, flogopita, granada, carbonato, clinopiroxênio, Kd.

Abstract

The Tapira Alkaline-Carbonatite Complex belongs to the Alto Paranaiba Igneous Province (APIP). The province consists of a 1000km-long NW-SE trend of alkaline rocks, including intrusive circular carbonatite complexes and is emplaced in the NE border of Paraná Basin. Tapira has a 85.6 - 87.2 Ma age (K/Ar in phlogopite), and intrudes Precambrian quartzites and schists of the Canastra Group. Other similar intrusive complexes occur in the APIP, such as Araxá, Salitre, Serra Negra and Catalão. These complexes contain various ore deposits, mainly niobium, phosphates, REE, titanium, vermiculite and barite. There are active phosphate mines in Araxá, Tapira, Catalão 1 and active niobium mines in Araxá, Catalão 1 and Catalão 2, all currently exploiting the weathering cover.

Tapira is formed by a plutonic silicate series composed of wehrlites, pyroxenites (bebedourites) and syenites, and a carbonatite series formed by calcite carbonatite, calcite-dolomite carbonatite and dolomite carbonatite. Two distinct generations of ultramafic plutonic rocks (B1 and B1) and five generations of carbonatite (C1 to C5) have been recognized.

The electron microprobe and LA-ICP-MS geochemical studies carried out in apatite, perovskite, diopside, flogopite, garnet and carbonates demonstrate possible relationships between the trace element composition of these minerals and specific magma differentiation processes such as fractional crystallization and liquid immiscibility, which can be observed especially in the REE and in incompatible element ratios such as Nb/Ta and Zr/Hf. Estimates of mineral/rock partition coefficients contribute to the knowledge about the evolution of the alkaline and carbonatite magmatism in the Alto Paranaíbe Igneous Province, especially regarding trace element fractionation in specific minerals and rocks of the Province.

Keywords: Tapira Alkaline-Carbonatitic Complex, LA-ICP-MS, perovskite, apatite, flogopite, garnet, calcite, clinopyroxene, Kd.

ÍNDICE

CAPÍTULO 1 – INTRODUÇÃO	1
1.1- Introdução	1
1.2 – Objetivos	2
1.3 - Localização	3
CAPÍTULO 2 - MINERALOGIA DE COMPLEXOS CARBONATÍTICOS	4
2.1 – Introdução	4
2.2 - Apatita	4
2.3 – Perovskita	7
2.4 - Clinopiroxênio	10
2.5 – Flogopita	12
CAPÍTULO 3 - CONTEXTO GEOLÓGICO	14
3.1 - Introdução	14
3.2 - Província Ígnea do Alto Paranaíba	15
3.3 - Complexo Alcalino-Carbonatítico de Tapira	18
3.3.1 – Petrografia	19
CAPÍTULO 4 - MÉTODOS ANALÍTICOS	23
4.1- Preparação de Amostras	23
4.2 – Química Mineral	23
4.2.1 - Elementos Maiores (microssonda eletrônica)	23
4.2.2 - Elementos Traços por LA-ICPMS	24
4.2.3 – Analise Química de Rocha Total	25
CAPÍTULO 5 - QUÍMICA MINERAL	26
5.1 – Introdução	26
5.2 – Apatita	26
5.2.1 - Elementos Maiores por Microssonda Eletrônica	26
5.2.2 - Elementos Traços (Laser Ablation) iv	36

5.3 - Perovskita	41
5.3.1 - Elementos Maiores (microssonda eletrônica)	41
5.3.2 - Elementos Traços (Laser Ablation)	43
5.4 – Clinopiroxênio	48
5.4.1 - Elementos Maiores (microssonda eletrônica)	48
5.4.2 - Elementos Traços (Laser Ablation)	55
5.5 – Flogopita/Tetra-ferriflogopita	59
5.5.1 - Elementos Maiores (microssonda)	59
5.5.2 - Elementos Traços (Laser Ablation)	62
5.6 – Carbonatos	67
5.6.1 - Elementos Maiores (microssonda eletrônica)	67
5.6.2 - Elementos Traços (Laser Ablation)	68
5.7 – Granadas	72
5.7.1 - Elementos Maiores (microssonda eletrônica)	72
5.7.2 - Elementos Traços (Laser Ablation)	75
CAPÍTULO 6 - QUÍMICA DE ROCHA E DISCUSSÃO DOS RESULTADOS	77
6.1 – Introdução	77
6.2 – Química de Rocha	77
6.3 – Aranhagramas	87
6.4 – Estimativa de Coeficientes de Partição (Kd)	91
6.4.1 – Kd _{Mineral/Rocha}	91
CAPÍTULO 7 – CONSIDERAÇÕES FINAIS	104
REFERÊNCIAS BIBLIOGRÁFICAS	106
ANEXOS	111

ANEXOS

Anexo 1 a 12 - Tabelas de análises por Microssonda Eletrônica e Laser Ablation nos minerais de Tapira.

Anexo 13 – Tabelas de análises de Rocha Total.

ÍNDICE DE TABELAS

Tabela 3.1 - Composição modal das amostras estudadas. Ap (apatita), Tfflo (tetra- ferriflogopita), Flo (flogopita), Car (carbonato), Dp (diopsídio), Ol (olivina), Tt (titanita), Bar (barita), Af (anfibólio), Prv (perovskita), Gr (granada), Felds (feldspato), Pir (pirocloro), Zir (zircão), Op (opacos)
Tabela 4.1 – Padrões químicos utilizados para análise por microssonda eletrônica em apatita, perovskita, carbonato, clinopiroxênio, flogopita e granada24
Tabela 5.1 – Composições químicas médias das apatitas do Complexo Carbonatítico de Tapira
Tabela 5.1 (Cont.) – Composições químicas médias das apatitas do Complexo Carbonatítico de Tapira29
Tabela 5.2 – Médias das análises por Espectrometria de Massa com ablação por laser das apatitas do Complexo Carbonatítico de Tapira, valores em ppm
Tabela 5.3 – Composições químicas médias das perovskitas do Complexo de Tapira42
Tabela 5.4 – Análises por Espectrometria de Massa com ablação por laser em perovskitas do Complexo Carbonatítico de Tapira, valores em ppm44
Tabela 5.4 (Cont.) – Análises por Espectrometria de Massa com ablação por laser em perovskitas do Complexo Carbonatítico de Tapira, valores em ppm45
Tabela 5.5 – Composições químicas médias dos clinopiroxênios do Complexo Carbonatítico de Tapira49
Tabela 5.6 – Análises por Espectrometria de Massa com ablação por laser em clinopiroxênios do Complexo Carbonatítico de Tapira, valores em ppm54
Tabela 5.6 (Cont.) – Análises por Espectrometria de Massa com ablação por laser em clinopiroxênios do Complexo Carbonatítico de Tapira, valores em ppm
Tabela 5.7 – Composições químicas médias das micas do Complexo Carbonatítico de Tapira60
Tabela 5.8 – Análises por Espectrometria de Massa com ablação por laser em micas do Complexo Carbonatítico de Tapira, valores em ppm62
Tabela 5.8 (Cont.)– Análises por Espectrometria de Massa com ablação por laser em micas do Complexo Carbonatítico de Tapira, valores em ppm63
Tabela 5.9 – Composição média dos carbonatos estudados em Tapira67
Tabela 5.10 – Análises por Espectrometria de Massa com ablação por laser em carbonatos do Complexo Carbonatítico de Tapira, valores em ppm69
Tabela 5.10 (cont.) - Análises por Espectrometria de Massa com ablação por laser emcarbonatos do Complexo Carbonatítico de Tapira, valores em ppm
Tabela 5.10 (cont.) - Análises por Espectrometria de Massa com ablação por laser em carbonatos do Complexo Carbonatítico de Tapira, valores em ppm

Tabela 5.11 – Composições químicas das granadas do Complexo Carbonatítico de Tapira, Fe_2O_3 calculado de acordo com Locock (2008)73
Tabela 5.11 (cont.) – Composições químicas das granadas do Complexo Carbonatítico de Tapira, Fe2O3 calculado de acordo com Locock (2008).
Tabela 5.12 – Análises por Espectrometria de Massa com ablação por laser em granadas doComplexo Carbonatítico de Tapira, valores em ppm
ÍNDICE DE FIGURAS
Figura 1.1 - Mapa de Localização do Complexo de Tapira03
Figura 2.1 — Estrutura da fluorapatita [Ca10(PO4)6F2], projetada no plano 0001. As linhas tracejadas indicam a cela unitária (Deer <i>et al.</i> , 1992)05
Figura 2.2 – Estrutura da perovskita (modificado de Deer <i>et al.,</i> 1992)08
Figura 2.3 – Estrutura do diopsídio http://webmineral.com/data/Diopside.shtml11
Figura 2.4 – Estrutura da flogopita http://webmineral.com/data/Flogopite.shtml12
Figura 3.1 - Localização e idade das províncias alcalinas na borda da Bacia do Paraná adaptado de Lagorio (2008)14
Figura 3.2 - Mapa geológico da Província Ígnea do Alto Paranaíba (APIP). Adaptado de Oliveira et al. (2004), com a localização dos complexos plutônicos alcalino– carbonatíticos
Figura 3.3 - Esboço geológico do substrato (rocha fresca) do complexo de Tapira, com base em informações de testemunhos de sondagem (Brod 1999), com a imagem da mina de fosfato em 2011. B1 e B2 representam unidades de cumulados bebedouríticos. C1 a C5 são sucessivas intrusões carbonatíticas. A área em azul na porção noroeste é uma intrusão sienítica. A linha amarela delimita o contato com as
encaixantes18
Figura 3.4 a e 3.4 b – Na figura 3.4 (a) fenocristal de olivina envolto por flogopita intersticial. Na figura 3.4 (b) substituição de flogopita por tetra-ferriflogopita (Ol-olivina, Flog-flogopita, Prv-perovskita). Amostra AT-25, unidade B121
Figura 3.5 a e 3.5 b - Na figura 3.5 (a) orientação mineral em granada envolta por flogopita intersticial, na figura 3.5 (b) fenocristal de diopsídio com apatita e flogopita intersticiais (Gr-granada, Flog-flogopita, Diop-diopsídio). Amostra AT-125 (B2) e amostra AT-12 (sienito)
Figura 3.6 e 3.6 b - Na figura 3.6 (a) cristais euédricos de apatita envoltos por matriz carbonática. Na figura 3.6 (b) fenocristais de tetra-ferriflogopita e apatita intersticial (em detalhe locais das análises por Laser). Amostra AT-508 (N1) e amostra AT-501 (N2)
Figura 5.1 – Gráfico Ca X Sr (átomos por unidade de fórmula) em apatita das rochas da série
silicática do Complexo Carbonatítico de Tapira30

Figura 5.6 – Diagrama ternário contendo os campos para comparação dos foscoritos e carbonatitos da Provincia de Kola, A (Sokli), B (Vuoriyarvi), C (Kovdor) e Complexo de Catalão I (P1, P2, P3, DC), Cordeiro et al (2010), juntamente com as rochas da série carbonática de Tapira (N1, N2, C1a, C1b, C3 e C4).

Figura 5.11 – Aranhagrama dos elementos traços normalizados pelo flogopita picrito em apatitas do Complexo de Tapira......40

Figura 5.12 – Diagrama Tausonita (SrTiO3) – Perovskita (CaTiO3) – Loparita (NaCeTi2O6) evidenciando a composição das perovskitas de Tapira (Mitchell, 2002)......43

Figura 5.14 – Distribuição dos elementos terras raras em perovskitas do B1 e B2 (médias), comparadas aos dados de Melluso et al (2008), IND (Indaiá), LIM (Limeira), PAN (Pântano), SR

(Santa Rosa) e MAL (Malaquias), valores normalizados ao condrito de acordo com McDonough and Sun (1995)......47

Figura 5.16 – Clinopiroxênios do Complexo de Tapira plotados nos diagramas QxJ, Morimoto (1988), Q=Ca+Mg+Fe2+ e J=2Na......50

Figura 5.17 – Seção do diagrama ternário Ca-Mg-Fe dos clinopiroxênios do Complexo de Tapira (mol %)......50

Figura 5.26 – Diagrama ternário do sistema Al-Mg-Fe evidenciando a composição das micas estudadas em Tapira em comparação a dados anteriores deste mesmo complexo. Campos

para análises anteriores de micas de Tapira de acordo com Brod *et al.* (2001).....61

Figura 5.33– Aranhagrama dos elementos traços normalizados pelo flogopita picrito em carbonatos do Complexo de Tapira......72

Figura 6.02 – Distribuição dos elementos terras raras nos kamafugitos e Kimberlitos de Melluso et al (2008), IND (Indaiá), VER (Veridiana), LIM (Limeira), PAN (Pântano), MAL (Malaquias), CN

(Canas), SR (Santa Rosa), VER (Veridiana), PO (Presidente Olegário) valores normalizados ao condrito de acordo com McDonough and Sun (1995)......79

Figura 6.15 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do B1......87 Figura 6.16 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas Figura 6.17 – Aranhagrama dos elementos tracos normalizados ao Thompson (1982) no Figura 6.18 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas Figura 6.19 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas Figura 6.20 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do Complexo Alto Paranaiba de Melluso et al (2008), LIM (Limeira), IND (Indaiá), PAN (Pantano), PO (Presidente Olegário), VER (Veridiana), SR (Santa Rosa) e MAL (Malaquias), CAN (Canas)......90 Figura 6.21 – Coeficiente de partição (Kdmineral/rocha) em perovskitas dos bebedouritos B1 e B2 comparados aos Kdmineral/rocha obtidos para as perovskitas de kimberlitos e kamafugitos da APIP (Melluso et al., 2008)......93 Figura 6.22 – Coeficiente de Partição (Kdmineral/rocha) em flogopita de bebedourito B1 e B2, comparados aos valores de Kdmineral/rocha) calculados utilizando os dados de Melluso et al (2008) para flogopitas de kamafugitos e kimberlitos da APIP (PO = Presidente Olegário, VER = Veridiana, LIM = Limeira, PAN = Pantano)......94 Figura 6.23 – Coeficiente de Partição (Kdmineral/rocha) em flogopita de carbonatitos, comparados aos valores de Kdmineral/rocha para as flogopitas de kamafugitos e kimberlitos APIP analisadas por Melluso et al (2008) (MAL = Malaquias, da IND = Indaiá)......95 Figura 6.25 – Coeficiente de Partição em diopsídios dos bebedouritos B1 e B2 de Tapira Figura 6.26 – Coeficiente de Partição (Kdmineral/rocha) em diopsídios do carbonatito C3 e do sienito (AT-12) de Tapira, comparados aos valores de Kd para os diopsídios da APIP (Melluso *et* Figura 6.27 – Coeficiente de Partição (Kdmineral/rocha) em aegirina do bebedourito B2 e do sienito (AT-12) de Tapira......98 Figura 6.28 – Coeficiente de Partição (Kdmineral/rocha) em apatitas dos bebedouritos B1 e B2 Figura 6.29 – Coeficiente de Partição (Kdmineral/rocha) em apatitas de carbonatito e nelsonito (C3 e N2) de Tapira......100 Figura 6.30 – Coeficiente de Partição (Kdmineral/rocha) em calcitas de carbonatitos (C3 e C4) e nelsonito (N2) de Tapira.

Figura 6.31 – Coeficiente de Partição (Kdmineral/rocha) em ancilita e burbankita c	de
carbonatito (C1a) de Tapira	D2
Figura 6.32 – Coeficiente de partição (Kdmineral/rocha) em dolomita e norsetita o carbonatito (C1a) de Tapira102	de
Figura 6.33 – Coeficiente de Partição (Kdmineral/rocha) em granada do bebedourito B2 o	de
Tapira10	03

CAPÍTULO 1 - INTRODUÇÃO

1.1- Introdução

O Complexo Alcalino-Carbonatítico de Tapira faz parte da Província Ígnea Alto Paranaíba-APIP (Almeida 1983, Rodrigues & Lima 1984, Gibson *et al.* 1995b), que possui estruturas circulares intrusivas alinhadas por mais de 1000 Km, na direção NW-SE, na borda nordeste da Bacia do Paraná. Ocorre encaixado em quartzitos e xistos pré-cambrianos do Grupo Canastra. Sonoki & Garda (1988) reportam idades do Neocretácio, entre 85.6 e 87.2 Ma (K/Ar em flogopita) Nesta Província encontram-se ainda outros complexos intrusivos análogos, tais como: Araxá, Salitre, Serra Negra e Catalão.

Os complexos alcalino-carbonatíticos da APIP são portadores de diversas mineralizações, como nióbio, fosfato, terras raras, titânio, vermiculita e barita, dentre outros. Atualmente, são minerados depósitos de fosfato (Araxá, Tapira, Catalão 1) e nióbio (Araxá, Catalão 1, Catalão 2) localizados no manto de intemperismo.

A gênese das jazidas residuais de Tapira é resultado de enriquecimento supérgeno pela alteração intempérica de rochas ultramáficas anomalamente enriquecidas em titânio e fósforo Grossi Sad & Torres (1971). O processo de mineralização teria sido desenvolvido a partir do Terciário, favorecido pelo clima tropical, pelo grau de fraturamento e pela maior susceptibilidade ao intemperismo das rochas alcalinas, relativamente às rochas encaixantes. Esta diferença levou ao estabelecimento, em muitos complexos, de um anel topograficamente elevado de rochas metamórficas mais resistentes, o que impediu a remoção do manto de intemperismo gerado sobre as rochas alcalinas (Mariano & Marchetto 1991, Brod *et al.* 2004).

As mineralizações primárias, em rocha fresca, nos complexos carbonatíticos da APIP, têm recebido atenção recente de vários pesquisadores, buscando estabelecer critérios metalogenéticos para a formação das concentrações magmáticas de apatita, perovskita, monazita, etc., que serviram de base para as mineralizações supergênicas (Cordeiro *et al.* 2010a, 2010b, Cordeiro *et al.* 2011, Torres 2008, Barbosa *et al.* 2012, Palmieri 2011, Ribeiro 2008, Grasso 2010). O alto grau de preservação das rochas do complexo de Tapira, relativamente ao grau de metassomatismo observado em alguns dos outros complexos alcalinos da província (Catalão, Araxá) fornece uma excelente oportunidade para investigar as variações composicionais de elementos-traço em minerais durante a evolução magmática.

Minerais como apatita, flogopita, perovskita e magnetita do complexo de Tapira foram estudados anteriormente (*Brigatti et al. 2004, Brigatti et al. 1996, Brod et*

al. 2001, Brod 1999, Brod *et al.* 2005b), com diferentes objetivos e técnicas, mas o comportamento geoquímico dos elementos terras raras (ETR) e outros traços em minerais durante a evolução magmática do complexo não se encontra ainda perfeitamente definido.

Brod (1999) estabeleceu um arcabouço petrológico detalhado para o complexo de Tapira com base em estudos de química mineral, geoquímica de rocha total e geologia isotópica. Segundo aquele autor, o complexo de Tapira consiste de uma Série Silicática Plutônica, composta de wehrlitos, piroxenitos (bebedouritos) e sienitos, e uma série carbonatítica, composta de calcita carbonatitos, calcita-dolomita carbonatitos e dolomita carbonatitos. Dentre as rochas ultramáficas foram identificadas duas gerações (B1 e B2) e dentre os carbonatitos cinco (C1 a C5). Posteriormente, Brod *et al.* (2005b) sugeriram, com base em dados de química mineral, que parte dos wehrlitos B1 poderia, alternativamente, representar cumulados foscoríticos. Estas rochas são particularmente abundantes nas proximidades do corpo central de carbonatito, para onde progridem atualmente as atividades de mineração (Brod *et al.* 2004).

O trabalho de Brod (1999) focalizou os aspectos petrogenéticos do complexo, mas não abordou a química mineral dos minerais de minério (apatita, anatásio, pirocloro) presentes, nem detalhou o estudo de elementos-traço nestes minerais e em minerais formadores de rocha (olivina, piroxênio, flogopita, etc.), o que justifica o estudo de detalhe proposto neste projeto.

1.2 - Objetivos

A pesquisa desenvolvida para a presente dissertação visou:

- a caracterização química dos minerais de minério e minerais formadores de rocha do Complexo Alcalino-Carbonatítico de Tapira, com determinação de elementos maiores e traços (química mineral por microssonda eletrônica e LA-ICP-MS).
- b) a determinação da variação de elementos-traço em resposta à evolução magmática, em diferentes minerais (e.g. apatita, piroxênio, flogopita, perovskita, etc.)
- c) o estudo de possíveis relações entre a composição química de elementostraço e processos específicos de diferenciação magmática, tais como cristalização fracionada e imiscibilidade de líquidos, com ênfase nos elementos terras raras e razões elementares como Nb/Ta e Zr/Hf.
- d) analisar as implicações das variações composicionais para os processos metalogenéticos e critérios de prospecção.

1.3 - Localização

O Complexo de Tapira contém a maior operação de mineração de rocha fosfática atual no Brasil. Localiza-se no município de Tapira, aproximadamente a 35 km a sudoeste da cidade de Araxá, por ligação rodoviária, a uma distância da ordem de 600 km a norte da cidade de São Paulo e de 400 km a oeste de Belo Horizonte (Figura 1.1).

Figura 1.1 - Mapa de Localização do Complexo de Tapira.

CAPÍTULO 2 - MINERALOGIA DE COMPLEXOS CARBONATÍTICOS

2.1 – Introdução

Os complexos alcalinos carbonatíticos brasileiros tem sido estudados do ponto de vista mineralógico e cristaloquímico com diversos objetivos, entre eles os de caracterizar as variações de composição, de estrutura e de morfologia dos seus constituintes minerais. Neste capítulo é realizada uma revisão das principais características químicas dos minerais abordados no presente estudo.

2.2 - Apatita

É o mineral de minério dos depósitos fosfáticos explotados no mundo, os quais podem ser de origem magmática (complexos alcalino carbonatíticos, sienitos) ou sedimentar (fosforitos marinhos). Estes depósitos submetidos ao intemperismo em ambiente subtropical podem desenvolver espessos mantos de alteração, resultando em concentração supergência de apatita, relativamente a outros minerais primários menos resistentes. As principais jazidas de fosfato magmatogênico do Brasil se enquadram neste tipo.

Os complexos alcalinos carbonatíticos brasileiros alimentam a demanda de fosfato nacional, enquanto que em algumas outras partes do mundo o fosfato lavrado provém de fosforitos marinhos. O principal mineral fosfático destes complexos é a fluorapatita, porém podem ser encontrados monazita, rabdofânio, autunita, xenotímio e torbernita (Soubies 1991, Pereira 1995, Ferrari 2000), embora estes não constituam minério de fosfato.

A ocupação do sítio aniônico monovalente denomina as espécies dentro do grupo da apatita: fluorapatita (figura 2.1), com fórmula simplificada Ca₁₀(PO₄)₆F₂, hidroxiapatita, com fórmula simplificada Ca₁₀(PO₄)₆(OH)₂, carbonato-apatita, com fórmula simplificada Ca₁₀(PO₄,CO₃,OH)₆(F,OH)₂ e cloroapatita, com fórmula simplificada Ca₁₀(PO₄)₆CI₂. Normalmente, nenhuma destas composições ideais ocorre na apatita natural, devido às inúmeras substituições nos sítios dos cátions, além das substituições aniônicas descritas acima. De acordo com Toledo & Pereira (2001), a composição da apatita depende do meio de formação, mas é também influenciada pela necessidade de compensação de cargas quando ocorrem substituições entre íons de carga diferente em relação à apatita ideal. A variedade de composição, admitindo várias substituições, resulta em diferenças de densidade, índice de refração, birrefrigência, susceptibilidade magnética, solubilidade, etc.

Figura 2.1 – Estrutura da fluorapatita [Ca10(PO4)6F2], projetada no plano 0001. As linhas tracejadas indicam a cela unitária (Deer *et al.* 1992).

De acordo com Hogarth (1989) a apatita de carbonatitos contém sempre quantidades significativas de C em sua estrutura, por ter sido precipitada a partir de um meio rico em carbonato, sendo as gerações mais tardias as mais ricas neste elemento. Aquele autor ainda admitiu a possibilidade de substituição de PO_4^{3-} por CO_3^{2-} + F⁻. Este flúor representaria uma quantidade de F além daquela relativa à ocupação dos canais na estrutura da apatita, configurando um excesso de flúor. Este ânion parece desempenhar um papel fundamental no balanço de cargas quando da carbonatação da apatita (Toledo & Pereira 2001).

Toledo & Pereira (2001) ressaltam que é importante considerar que nem todos os ânions são analisados nas pesquisas e, frequentemente, o OH⁻ é obtido por diferença, o que pode levar a erros na definição das fórmulas, pois se trata justamente de um mineral que pode apresentar problemas na definição do conteúdo estequiométrico, em função da possibilidade de ocorrência de excessos nos teores em F⁻ e mesmo em OH⁻, que acompanhariam as substituições carentes de mecanismos de compensação de cargas.

Segundo Liu & Comodi (1993), a apatita de carbonatitos e de rochas alcalinas possui teores de SiO₂ muito variados, mesmo numa mesma amostra, tendo sido verificados valores de 0,16 a 4,88% em peso de SiO₂. Aqueles autores afirmam que altas relações Si/S, C/S, Sr/Mn e baixa razão F/OH, juntamente com conteúdos consideráveis em ETR, Si e $CO_3^{2^-}$ foram considerados característicos de apatita proveniente de estágios

carbonatíticos precoces, sendo feições distintivas de apatita de rochas alcalinas relacionadas, que são anteriores aos carbonatitos.

O teor de enxofre é normalmente baixo na apatita de carbonatitos, variando segundo Hogarth (1989), de centésimos a décimos de 1% em SO₃. No entanto, Toledo & Pereira (2001) encontraram valores elevados de SO₃ (até 2,98% em peso) para a apatita de rochas ultrabásicas alcalinas e carbonatíticas.

Smith (1981) calculou o estoque de halogênios na Terra, concluindo, baseado em análises anteriores em minerais de xenólitos mantélicos, que a apatita representaria o principal reservatório de cloro no manto, contendo entre 0,9 e 1% em peso deste elemento, mais do que mica e anfibólio. Nas rochas carbonatíticas da crosta, no entanto, o conteúdo em Cl na apatita é geralmente baixo (Hogarth 1989). Liu & Comodi (1993), estudando apatita de várias origens, encontraram teores negligenciáveis de cloro (menos do que 0,15% em peso), exceto na apatita de rochas alcalinas de Vulture (Itália), com 0,3 a 0,8% em peso de Cl.

Para o Na, Liu & Comodi (1993), relatam teores da ordem de décimos de por cento para a apatita primária e centésimos de por cento para a apatita secundária. A apatita de carbonatitos e rochas ultrabásicas parece apresentar teores maiores de Na do que apatitas de outros tipos de rochas ígneas e metamórficas.

O conteúdo de ETR na apatita de carbonatitos, segundo Hogarth (1989) varia de menos de 1% a mais de 8% em peso do somatório dos óxidos de ETR (ETR_2O_3). O mesmo autor notou um enriquecimento em ETR na apatita de carbonatitos tardios em relação às fases iniciais, no carbonatito de Kovdor (Rússia). Afirma ainda que a alta razão ETRL:ETRP é típica da apatita de carbonatitos, podendo chegar a 300:1, como é o caso da apatita de Oka e Gatineau (Canadá).

Análises de apatita secundária de Tapira (Minas Gerais, Brasil), apresentadas por Roeder *et al.* (1987), mostraram um fracionamento dos ETR em favor dos ETRP, com a razão La:Yb atingindo valores muito mais baixos que o normal para apatita de carbonatitos (aproximadamente 12). Por outro lado, pode ser esperado um enriquecimento de Ce em apatita formada em condições oxidantes de superfície, devido à possibilidade do Ce ser oxidado e tornar-se menos móvel que os outros ETR.

Segundo Brasseur *et al.* (1962, apud Hogarth 1989) altos teores de Sr e baixos de Mn são característicos de apatita de carbonatitos, chegando a valores de até 50:1 para a relação Sr:Mn, comparada com valores menores, de 0,2:1, encontrados em apatita de rochas ígneas ácidas. Outros estudos de Hogarth (1989) apresentam valores ainda maiores para esta relação em apatita de carbonatitos, com os teores de Sr ultrapassando 1,5%. Esse último autor afirma que, em geral, o teor de Sr em apatita aumenta das fases iniciais para as fases tardias de carbonatito. Para o Fe, Hogarth (1989) indicou teores da ordem de décimos de por cento na apatita de carbonatitos em geral.

Segundo Toledo & Pereira (2001), os teores de U e Th são geralmente muito baixos na apatita, e a presença de U pode ser prejudicial se a apatita for utilizada como matéria prima para fertilizantes ou produtos para a indústria alimentar animal.

2.3 – Perovskita

A perovskita é um mineral de grande importância científica e econômica, por conter em sua estrutura concentrações significativas de elementos terras raras (ETR) e Nb. É mineral acessório comum em kimberlitos, melilititos, foiditos, dunitos e clinopiroxenitos alcalinos. Pode ocorrer como cristais discretos ou estar intercrescida com diferentes óxidos, em decorrência da reação de fluidos intersticiais com o óxido previamente formado. As composições simplificadas de interesse para rochas alcalinas são: CaTiO₃ (perovskita, figura 2.2), NaETRTi₂O₆ (loparita), SrTiO₃ (tausonita), NaNbO₃ (lueshita). Porém, ocorrem consideráveis substituições dos elementos terras raras ou álcalis nos sítios catiônicos (Deer, Howie et al 1992). Assim como também podem ter em sua estrutura cátions como Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺e Pb²⁺, ocupando o sítio de coordenação 12, uma vez que seus raios são próximos ao raios O²⁻. Um quarto da ocupação do sítio octaédrico, é geralmente feita por íons de Ti⁴⁺, de modo que este não tenha contato com os cátions maiores (aqueles que ocupam o sítio de coordenação 12). O titânio pode ser substituído por elementos de valência maior (Nb⁵⁺) ou menor (Fe³⁺) dependendo do elemento que entrar neste sítio. Entretanto, a estrutura ideal da perovskita pode sofrer alterações e estruturas complexas como desordens ocupacionais são eventualmente encontradas tanto na natureza quanto em compostos artificiais. A desordem mais comum é a substitucional, na qual espécies químicas diferentes ocupam o mesmo sítio, como é o caso do mineral latrappita (CaNb_{0.5}Fe_{0.5}O₃), no qual átomos de nióbio e ferro são estatisticamente distribuídos ao longo dos sítios octaédricos (Gravina 2009).

Figura 2.2 – Estrutura da perovskita (modificado de Deer et al. 1992).

A perovskita é instável em ambientes ricos em CO_2 , como carbonatitos e kimberlitos (Mitchell & Chakhmouradian 1998). Em condições hidrotermais, a reação com fluidos ricos em carbonato resulta na lixiviação do cálcio, (Nesbitt *et al.* 1981), e na consequente substituição da perovskita por polimorfos de TiO₂, principalmente anatásio (Mitchell & Chakhmouradian 1998, Chakhmouradian & Mitchell 2000). Outra forma da alteração de perovskita comum em kimberlitos são intercrescimentos lamelares de TiO₂ com titanita ou ainda a conversão de perovskita em ilmenita (Mitchell & Chakhmouradian 1998).

Em kimberlitos, perovskita aparece em concentrações abaixo de 10% em volume (Mitchell 1986) como cristais bem formados, imersos em matriz constituída de calcita e serpentina. Alguns cristais individuais apresentam hábito cúbico ou cubo-octaédrico e podem ter geminação de interpenetração, ou formas variadas de cristais esqueletais (Chakhmouradian & Mitchell 2000). Ocorre ainda como inclusões em micas, como constituinte da matriz, associada a olivina, espinélio, apatita, calcita, serpentina, monticelita, ilmenita e sulfetos (Mitchell 1986), como coroas de reação a partir de óxidos primários ricos em Ti (Boctor & Boyd 1981), ou como relictos em pseudomorfos formados por óxidos de Ti e calcita (Mitchell & Chakhmouradian 1998).

Chakhmouradian & Mitchell (1997) estudaram a paragênese do complexo alcalino de Kola, Rússia, e mostraram que, entre os minerais primários, olivina e clinopiroxênio, a perovskita primária apresentou conteúdos baixos de ETR_2O_3 (0,3 – 5,2 % em peso), Nb_2O_5 (<0,7 % em peso) e Na_2O (<0,4 % em peso). A perovskita de calcita-carbonatitos

e foscoritos é normalmente enriquecida em ETR_2O_3 (7 – 13 % em peso), Nb_2O_5 (1 - 14 % em peso), Na_2O (0,5 – 4,5 % em peso) e ThO_2 (<3 % em peso).

Na Província Ígnea do Alto Paranaíba, a perovskita é descrita principalmente como um constituinte importante de kimberlitos, kamafugitos, sienitos e de rochas ultramáficas plutônicas associadas aos complexos carbonatíticos (Seer *et al.* 1988, Mariano & Marchetto 1991, Brod *et al.* 2000, Sgarbi 2000, Heaman *et al.* 2000, Melluso *et al.* 2008).

Melluso *et al.* (2008) estudaram a mineralogia de kamafugitos e kimberlitos da APIP, descrevendo a composição da perovskita como geralmente muito próxima da perovskita sensu stricto (CaTiO₃ – 92-96 mol.%). Nos kimberlitos a perovskita atinge valores elevados de La₂O₃ e Ce₂O₃, principalmente nas amostras de Três Ranchos (até 3,2 e 8,2 % em peso, respectivamente) e menor proporção de CaTiO₃ (88-73 mol.%). A perovskita de Três Ranchos pode atingir valores de Nb₂O₅ de até 1,76 % em peso, de Na₂O de até 2,33 % em peso. A perovskita de Indaiá atinge aproximadamente 2 % em peso em Na₂O e 2,68 % em peso de SrO. Melluso *et al.* (2008) comprovaram que a concentração de óxidos como La₂O₃, Ce₂O₃, Nb₂O₅, Na₂O e SrO diminuem do núcleo para as bordas nas perovskitas de Indaiá. Este mineral tem como característica o conteúdo de ETR leves de até 46000 vezes o condrito, juntamente com um forte fracionamento de ETR leves em relação aos ETR pesados (La/Yb_n variando aproximadamente de 175 a 2000).

Análises por Espectrometria de Massa com ablação por laser em perovskitas do kimberlito de Limeira por Melluso *et al.* (2008) indicaram alto conteúdo de Nb (mais de 8500 ppm, 1,21 % em peso de Nb₂O₅) assim como altos conteúdos de Th, Ta, Pb e U (4300, 1220, 370 e 120 ppm, respectivamente). O Zr atinge valores em torno de 2600 ppm, a razão Zr/Hf, próxima do condrito (16-37), sugere que não houve fracionamento importante entre estes elementos. A razão Nb/Ta encontrada é geralmente menor que o condrito (3,8 – 25,3, mas a maioria das amostras apresentou Nb/Ta abaixo de 12), sugerindo um ligeiro fracionamento de Ta neste mineral. A razão Lu/Hf apresentou valores de 0,007 – 0,12.

Brod (1999) e Barbosa *et al.* (2012) demonstraram que a perovskita é um eficiente indicador de instauração extrema em sílica, dando lugar ou sendo substituída por silicatos de cálcio e titânio, como titanita e granadas do tipo melanita-schorlomita, quando a atividade de sílica no sistema aumenta.

2.4 - Clinopiroxênio

Os piroxênios são um importante grupo de minerais ferromagnesianos formadores de rochas, ocorrendo como fases estáveis em muitos tipos de rocha ígnea. O subgrupo de piroxênios ortorrômbicos (ortopiroxênios) consiste essencialmente numa série química simples com termos de composição (Mg, Fe)SiO₃, em contraste com o grupo dos piroxênios monoclínicos (clinopiroxênios), o qual é mais numeroso e tem uma variação mais extensa de composição química. Rochas alcalinas insaturadas contêm apenas representantes do grupo dos clinopiroxênios, uma vez que ortopiroxênios requerem saturação em sílica para sua cristalização. Muitos clinopiroxênios podem ser considerados como membros de um sistema de quatro componentes CaMgSi₂O₆-Kg₂Si₂O₆-Fe₂Si₂O₆ (Deer *et al.* 1992).

A estrutura do grupo dos piroxênios baseia-se em duas unidades. Tetraedros de silício e oxigênio ligados por dois vértices de modo a formar uma cadeia infinita $(TO_3)^{2^-}$ paralela ao eixo "z" e, na qual, a base de cada um dos tetraedros tem uma disposição aproximadamente paralela ao plano (001). A figura 2.3 representa a estrutura idealizada do diopsídio.

Os cátions M da camada octaédrica ocupam duas posições diferentes, M1 e M2. Os átomos M1 dispõem-se, principalmente, entre os vértices das cadeias SiO₃, enquanto os átomos M2 se dipõem, principalmente, entre as bases da cadeia. M2 é a posição ocupada pelo Ca no diopsídio. Quando presentes, íons de grande raio (Ca,Na) geralmente ocupam a posição M2 e não a posição M1. A coordenação do oxigênio ao redor de M1 é, aproximadamente, um octaedro regular, mas a coordenação da posição M2 é irregular, variando de acordo com o átomo presente (por exemplo, coordenação 6 para o Mg e coordenação 8 para Ca e Na).

Como exemplo de como a estrutura dos piroxênios pode variar ressalta-se que a substituição de cátions de diferentes dimensões pode causar uma expansão ou contração proporcionais em um ou mais parametros da malha unitária, originando apenas uma pequena variação na estrutura básica, ou mesmo nenhuma. Este fato é notado pela série diopsídio-hedembergita, na qual a posição M1 é ocupada por (Mg-Fe) e a posição M2 por Ca. A substituição Mg-Fe é acompanhada por pequenas alterações na configuração da cadeia Si-O.

Figura 2.3 – Estrutura do diopsídio (http://webmineral.com/data/Diopside.shtml).

O conhecimento detalhado da variação composicional dos minerais silicáticos nos carbonatitos é de suma importância para a compreensão dos processos de diferenciação magmática como cristalização fracionada e imiscibilidade de líquidos (Reguir *et al.* 2012).

No estudo feito por Reguir *et al.* (2012) sobre clinopiroxênios de carbonatitos ficou confirmado que não há um "gap" composicional entre os clinopiroxênios cálcicos e sódicos, mas sim um "trend" de variação contínua de diopisídio para aegirina-augita.

Sgarbi *et al.* (2000) estudaram a química dos piroxênios de duas ocorrências de kamafugitos brasileiros, Santo Antônio da Barra (GO) e Mata da Corda (MG), e constataram que os de Santo Antônio da Barra são mais ricos em Al₂O₃. Contudo, o Ti apresenta o mesmo intervalo de valores para a maioria dos clinopiroxênios de ambas ocorrências (0 – 0,08 cátions por fórmula). Em relação ao teor de sílica, verificaram que os clinopiroxênios de Santo Antônio da Barra são semelhantes aos de kamafugitos africanos, porém contendo mais Al^{IV}. Os clinopiroxênios de Mata da Corda são similares tanto aos de kamafugitos italianos como aos de lamproítos e orangeítos, cuja característica é o maior conteúdo de Si no sítio tetraédrico. Tanto nos clinopiroxênios de Santo Antônio da Barra como nos de Mata da Corda o teor de alumínio não é suficiente para completar o sítio tetraédrico e, assim, a substituição de Si por Fe³⁺ é necessária. No entanto, em alguns casos o conteúdo de Fe³⁺, calculado por balanço de carga, também não é suficiente para preencher o sítio tetraédrico, que vem a ser completado por Ti. Estes exemplos de variação composicional do clinopiroxênio

refletem a resposta deste mineral a alterações composicionais do magma. Sgarbi *et al.* (2000) ainda concluem que não se pode distinguir a variedade composicional de clinopiroxênios de orangeítos, lamproítos ou kamafugitos com base no conteúdo de Al e Ti.

2.5 – Flogopita

A química da flogopita tem sido usada para discriminar diferentes tipos de rochas alcalinas e seus respectivos ambientes tectônicos (Mitchell 1995).

Micas trioctaédricas ferromagnesianas como macrocristais/fenocristais são comuns em kimberlitos e carbonatitos. O tipo mais freqüente é a flogopita (figura 2.4) [KMg₃AlSi₃O₁₀(OH,F)₂] que forma solução sólida com membros finais ricos em ferro, como annita [KFe₃AlSi₃O₁₀(OH)₂], tetra-ferriflogopita [KMg₃FeSi₃O₁₀(OH)₂] e siderofilita [KFe₂Al₂Si₂O₁₀(OH)₂]. Biotita normalmente é um membro intermediário nesta complexa solução sólida (Reguir *et al.* 2009). Os dados (de Sc, Rb, Cs, Zr, Nb e Ta) obtidos por Reguir *et al.* (2009), permitiram àqueles autores refinar e ampliar o conhecimento sobre a composição das flogopitas de rochas derivadas do manto. Suas conclusões confirmam que as flogopitas de kimberlitos não podem ser distinguidas das flogopitas de carbonatitos através dos elementos maiores (Brod *et al.* 2001), e indicam que apenas composições ricas em Fe e Na [Fe/(Fe+Mg)>-0,2, Na₂O>0,3 % em peso] estariam restritas a carbonatitos, mas que o estudo dos elementos traços pode ser usado como um indicador petrogenético.

Figura 2.4 – Estrutura da flogopita (http://webmineral.com/data/Flogopite.shtml).

Brod et al. (2001), apresentaram os resultados do estudo de química mineral em flogopitas e tetra-ferriflogopitas nos complexos carbonatíticos de Catalão, Jacupiranga e Tapira. Uma grande variedade textural foi encontrada, desde cristais magmáticos primários até fases metassomáticas de estágios tardios. Em todos os três complexos as micas de rochas silicáticas evoluem no sentido de flogopita para annita. Aqueles autores ressaltam que os cátions que comumente ocupam a posição octaédrica nas flogopitas são Mg²⁺, Al³⁺, Fe²⁺ e Fe³⁺, menos frequentemente ocorrem Ti⁴⁺, Mn²⁺, Li²⁺ e Cr³⁺ entre outros. Entre todas as substituições possíveis, a que ocorre entre Fe³⁺ e Al³⁺ no sítio tetraédrico é de suma importância em rochas alcalinas e carbonatitos, pois ela define as séries flogopita-tetra-ferriflogopita e annita-tetra-ferriannita. Já a substituição de Fe²⁺ por Mg²⁺ no sítio octaédrico caracteriza a série flogopita-annita e é provavelmente a substituição mais comum em micas trioctaédricas de rochas ígneas. As pesquisas de Brod et al. (2001) comprovam que as micas dos carbonatitos de Jacupiranga e dos carbonatitos da APIP têm comportamento contrastante. Em Jacupiranga as micas de carbonatitos evoluem por diminuição de Al e concomitante aumento de Mg, com Fe relativamente constante. Nos carbonatitos da APIP a flogopita magmática é virtualmente livre de Al.

CAPÍTULO 3 - CONTEXTO GEOLÓGICO

3.1 - Introdução

As bordas da Bacia do Paraná (Fig. 3.1) são caracterizadas pela presença de províncias alcalinas variando em idade do Eocretáceo ao Eoceno (Comin-Chiaramonti & Gomes 2005, Lagorio 2008). Algumas destas províncias são resultado de magmatismo alcalino sódico, enquanto outras são tipicamente ultrapotássicas. Dentre as últimas, destacamse duas das principais províncias kamafugíticas do mundo, a Província Ígnea do Alto Paranaíba-APIP (Gibson *et al.* 1995b), na borda nordeste, e a Província Alcalina de Goiás-GAP (Brod *et al.* 2005a), na borda norte da bacia.

Figura 3.1 - Localização e idade das províncias alcalinas na borda da Bacia do Paraná adaptado de Lagorio (2008).

A origem desse magmatismo alcalino ainda é discutida. Gibson *et al.* (1995a,) sugerem que o magmatismo alcalino do Eocretáceo está associado ao impacto da pluma mantélica de Tristão da Cunha que também foi responsável pelos basaltos da Bacia do Paraná. O magmatismo do Neocretáceo e Eoceno nas margens norte e nordeste da Bacia do Paraná é relacionado à pluma mantélica de Trindade (Gibson *et al.* 1995b, 1997, Thompson *et al.* 1998). De acordo com esse modelo, as províncias do Alto Paranaíba e de Goiás estão associadas com o impacto inicial da pluma sob o Brasil central durante o Neocretáceo, que provocou aquecimento e fusão de porções ricas em potássio do manto litosférico sobrejacente.

3.2 - Província Ígnea do Alto Paranaíba

Entre as bacias do Paraná e Sanfransciscana ocorre uma importante estrutura alongada segundo NW-SE, denominada Arco do Alto Paranaíba, cujo soerguimento começou no Eocretáceo, porém foi intensa no Neocretáceo, influenciando diretamente a evolução tectono-estratigráfica independente das duas bacias (Campos & Dardenne 1997). Gibson *et al.* (1995b) chamaram de Província Ígnea do Alto Paranaíba (Fig. 3.2) as rochas alcalinas localizadas na região do triângulo mineiro, em Minas Gerais, e no sudeste do Estado de Goiás. Ainda segundo Gibson *et al.* (1995b), o volume estimado de magma potássico nesta região faz dela uma das maiores províncias alcalinas intracontinentais do mundo. A APIP é constituída por um conjunto de rochas kamafugíticas, kimberlíticas e carbonatíticas que ocorrem sob a forma de diques, pipes, plugs, diatremas, derrames de lavas, depósitos piroclásticos e grandes complexos plutônicos. Os complexos intrudem rochas metamórficas neoproterozóicas dos domínios interno e externo da Faixa Brasília, as quais são tipicamente deformadas em estruturas dômicas (Gibson *et al.* 1995b, Brod *et al.* 2004).

Figura 3.2 - Mapa geológico da Província Ígnea do Alto Paranaíba (APIP). Adaptado de Oliveira et al. (2004), com a localização dos complexos plutônicos alcalino–carbonatíticos.

Os complexos carbonatíticos aflorantes conhecidos na Província Ígnea do Alto Paranaíba (Catalão I e II, Serra Negra, Salitre I, II e III, Araxá e Tapira) são constituídos por associações de flogopita picritos, dunitos, piroxenitos (bebedouritos), sienitos, foscoritos e carbonatitos. Dentre os últimos, predominam calcita carbonatitos e dolomita carbonatitos (Brod *et al.* 2004).

O Complexo de Catalão I está situado a cerca de 20 km a NE da cidade de Catalão, Goiás. Tem forma dômica, com uma área aflorante de 27 km², hospeda mineralizações de Ti, P, Nb, ETR e vermiculita e é atualmente minerado para apatita e pirocloro. É constituído por flogopititos, piroxenitos, dunitos, foscoritos, nelsonitos e carbonatitos (Ribeiro 2008, Cordeiro *et al.* 2010a). A idade obtida neste complexo pelo método K-Ar é de 85 ± 6,9 Ma (Sonoki & Garda 1988).

O Complexo de Catalão II está localizado a 5 km a norte de Catalão I sendo constituído por piroxenitos, sienitos, foscoritos, carbonatitos e lamprófiros (Machado Junior 1991). Possui forma elíptica alongada segundo N-S, com área de 14 km². Mello (1999) concluiu que, ao contrário de Catalão I, o principal tipo de carbonatito em Catalão II é calcítico, e que as rochas da série carbonática evoluíram indepedentemente das rochas

ultramáficas. Machado Junior (1992) obteve uma idade Rb-Sr de 83,4 ± 0,9 Ma para o complexo.

O complexo de Serra Negra, localizado a leste da cidade de Patrocínio, é o maior dos complexos carbonatíticos do Alto Paranaíba. Foi formado pela intrusão forçada em quartzitos do Grupo Canastra, gerando deformação dômica. Mariano & Marchetto (1991) descreveram-no como sendo composto por um núcleo central de calciocarbonatito, com diâmetro estimado de 4,5 km, frequentemente contendo mais de 20% de apatita e até 5% de dolomita, com quantidades acessórias de flogopita, magnetita, humita, rutilo, pirocloro, baddeleyta, pirrotita e pirita. Amaral *et al.* (1967) obtiveram idades de 83,7 e 83,4 Ma em biotita de peridotito.

Os complexos de Salitre I, II e III ocorrem imediatamente a sul do complexo de Serra Negra, na região de Patrocínio, MG. O maior deles, Salitre I, apresenta forma oval distorcida, e é composto de rochas das séries bebedourítica, foscorítica e carbonatítica, além de sienitos e flogopita picritos subordinados (Barbosa 2009). Salitre II é uma pequena intrusão localizada a norte de Salitre I e a sul de Serra Negra, formada por bebedouritos e olivina piroxenitos cortados por pequenos diques de lamprófiro carbonatado. Um terceiro corpo denominado de Salitre III está situado ao sul de Salitre I sem nenhuma feição topográfica particular. É constituído de carbonatitos, foscoritos e piroxenitos, cortados por diques e brechas. Datação K/Ar em flogopita de bebedourito de Salitre I forneceu uma idade de 86,3 ± 5,7 Ma (Sonoki & Garda 1988).

O Complexo de Araxá, também conhecido como Barreiro, localiza-se cerca de 6 km ao sul da cidade de Araxá. É um dos mais importantes complexos alcalino-carbonatíticos do mundo, contendo expressivos recursos minerais. Hospeda a maior reserva mundial de nióbio (bariopirocloro) e é minerado para fosfato e nióbio. Um plug principal de carbonatitos e foscoritos, e uma série de outras intrusões carbonatíticas de menor expressão ocorrem no núcleo do complexo. Uma zona de flogopitito metassomático ocorre entre este núcleo carbonatítico/foscorítico e a rocha encaixante fenitizada. Flogopititos metassomáticos são volumetricamente muito significativos no complexo, localmente com relictos de grãos de piroxênio e olivina, e raros restos preservados das rochas ultramáficas primárias. Ao contrário de outros complexos na província, em Araxá (e em Catalão) o tipo predominante de carbonatito é dolomítico, com calcita carbonatitos típicos presentes apenas na porção NW do complexo (Silva 1986). Idades K/Ar disponíveis para o complexo variam de 77 a 97 Ma (Sonoki & Garda 1988)

Tapira é o mais meridional dos complexos carbonatíticos da província, adjacente à cidade homônima e distante cerca de 30 km a SE da cidade de Araxá. Ocorre encaixado em quartzitos e xistos pré-cambrianos do Grupo Canastra. Sua idade determinada pelo método K/Ar em mica de piroxenito é de 86 a 87 Ma (Sonoki & Garda 1988). Este

complexo é o objeto da presente dissertação, e sua geologia é descrita em detalhe na seção 3.3.

3.3 - Complexo Alcalino-Carbonatítico de Tapira

O complexo de Tapira é uma intrusão multifásica, resultado da amalgamação de pelo menos duas intrusões de magma ultramáfico, cinco de carbonatito e uma de sienito (Brod 1999). Em termos de volume, é dominado por rochas ultramáficas (80%), em grande parte representadas por dunitos, peridotitos, piroxenitos e bebedouritos, com ampla predominância destes últimos. A figura 3.3 mostra um mapa geológico do substrato (rocha fresca) do complexo de acordo com (Brod 1999). Reis (2010) identificou a presença de glimeritos na porção centro oeste do complexo.

Figura 3.3 - Esboço geológico do substrato (rocha fresca) do complexo de Tapira, com base em informações de testemunhos de sondagem (Brod 1999), com a imagem da mina de fosfato em 2011. B1 e B2 representam unidades de cumulados bebedouríticos. C1 a C5 são sucessivas intrusões carbonatíticas. A área em azul na porção noroeste é uma intrusão sienítica. A linha amarela delimita o contato com as rochas encaixantes.

Os bebedouritos, que compreendem o maior volume do complexo, são cumulados ultramáficos caracterizados por amplas variações modais dos minerais essenciais diopsídio, olivina, perovskita, apatita, magnetita e flogopita. Granada rica em titânio (melanita) e titanita ocorrem em proporções subordinadas. K-feldspato é um raro constituinte, nos termos mais evoluídos da série bebedourítica. Sienitos e diques de traquito representam os líquidos silicáticos félsicos no complexo. De acordo com Reis (2010) os traquitos são rochas porfiríticas com fenocristais de ortoclásio imersas numa matriz de biotita, aegirina e melanita. É notória a ausência de rochas ígneas silicáticas de composição intermediária (Brod 1999).

Os carbonatitos são predominantemente calcíticos, mais raramente dolomíticos e ocorrem como pequenas intrusões (Fig. 3.3) ou enxames de diques cortando as rochas ultramáficas. A intrusão central corresponde a um calcita-dolomita carbonatito com pirocloro disseminado, que é o protominério do depósito supergênico de nióbio de Tapira.

Os flogopita-picritos ocorrem como diques de granulação fina, por vezes com textura porfirítica caracterizada por fenocristais de olivina, flogopita e apatita em uma matriz composta por estas mesmas fases, além de carbonato, perovskita e espinélio rico em cromo. Podem apresentar textura fluidal e evidências de diferenciação por fluxo. Estas rochas foram interpretadas por Brod *et al.* (2000) como representativas dos magmas parentais do complexo.

Concentrações de titânio, fosfato, nióbio, terras raras e vermiculita estão associadas com o manto de intemperismo em Tapira. Esses depósitos residuais são formados pela alteração intempérica de rochas ultramáficas anomalamente enriquecidas em titânio e fósforo (Grossi Sad & Torres 1971), ou de carbonatitos enriquecidos em pirocloro e terras raras. Os minerais mais suscetíveis ao intemperismo, como minerais máficos e carbonatos, são destruídos e seus constituintes lixiviados, resultando na acumulação residual de minerais resistentes ou produtos de alteração teria sido desenvolvido a partir do terciário, e favorecido pelo clima tropical, pelo grau de fraturamento e pela heterogeneidade das rochas. O complexo é atualmente minerado para fosfato e titânio.

3.3.1 – Petrografia

Para o estudo da química dos minerais do Complexo Alcalino-Carbonatítico de Tapira, foram amostrados exemplares das séries silicática (bebedouritos B1 e B2 e sienitos), carbonática (calciocarbonatito, Ba-calciocarbonatito, carbonato-apatitito, Bamagnesiocarbonatito e foscorítica (apatitito e pseudo-nelsonito). A proporção modal por amostra pode ser verificada na tabela 3.1. Texturalmente os bebedouritos são finos a grossos, localmente pegmatíticos. Orientação mineral e acamamento magmático são comuns. Os bebedouritos B1 apresentam maior conteúdo em apatita, olivina, diopsídio, flogopita e perovskita (Figura 3.4 a e 3.4 b). Minerais opacos ocorrem como acessório. Os bebedouritos B2 destacam-se principalmente pela presença de diopsídio, flogopita, tetraferiflogopita, granada e apatita, tendo como principais acessórios titanita, perovskita e carbonatos (Figura 3.5 a e 3.5 b). Variações modais produzem cumulados ricos em olivina (dunitos, wehrlitos), perovskita (perovskititos), magnetita (magnetititos) ou apatita (apatititos).

Sienitos ocorrem como fragmentos em brechas carbonáticas e como pequenas intrusões independentes. São essencialmente compostos por feldspato potássico, flogopita e aegirina com quantidades acessórias de zircão e titanita.

Diversos corpos de carbonatito, subdivididos em cinco unidades (C1 a C5) ocorrem no complexo. A intrusão de carbonatitos em rochas ultramáficas resulta no desenvolvimento de flogopitito metassomático (flogopita+magnetita+dolomita), cujos melhores exemplos estão em testemunhos de sondagem do contato entre as unidades C1 e B1. Na porção NW do complexo, carbonatitos C2 intrudem sienitos, formando brechas monomíticas do tipo *magmatic stoping*, com fragmentos angulosos de sienito com coroa de flogopita. Atividade explosiva localizada resultou em brechas polimíticas, com blocos angulosos de rochas da série bebedourítica e, mais raramente, da rocha encaixante regional, em matriz dominada por microfenocritais de carbonato primário (Brod 1999).

Três tipos composicionais de carbonatito foram reconhecidos no complexo: (a) calciocarbonatitos (C1, C3, C4) médios a finos, essencialmente compostos de calcita, flogopita e/ou tetra-ferriflogopita e apatita com quantidades acessórias de pirocloro e magnetita, (b) magnesiocarbonatitos (C1, C2, C5) médios a finos, como corpos maciços a diques, às vezes microporfiríticos (fenocristais de calcita em matriz de calcita e dolomita) e com estrutura de fluxo. Flogopita e/ou tetra-ferriflogopita, pirocloro e barita são acessórios comuns e (c) Ba-calciocarbonatito e Ba-magnesiocarbonatito, como diques e veios tardios disseminados, finos, às vezes bandados e com estrutura de fluxo. Flogopita, apatita e barita são acessórios comuns.

Raros nelsonitos (Figuras 3.6 a e 3.6 b) foram identificados entre as amostras de Tapira. Estas rochas possuem textura média a grossa compostas por flogopita, tetraferriflogopita, apatita, magnetita e carbonato. Como acessórios ocorrem pirocloro e anfibólio. Os nelsonitos estão divididos em N1 e N2, de acordo com a sugestão de Palmieri (2011) para o complexo de Catalão 2. N1 representa nelsonitos ricos em apatita, variando até apatititos, cristalizados a partir de um magma fosfático. N2 representa cumulados de composição nelsonítica (essencialmente apatita +
magnetita), com tetra-ferriflogopita, formados nas paredes de diques carbonatíticos. Por não serem cristalizados diretamente a partir de um magma fosfático, esses cumulados foram denominados de pseudonelsonitos por Palmieri (2010), conceito que também é adotado no presente trabalho.

Tabela 3.1 - Composição modal das amostras estudadas. Ap (apatita), Tfflo (tetraferriflogopita), Flo (flogopita), Car (carbonato), Dp (diopsídio), Ol (olivina), Tt (titanita), Bar (barita), Af (anfibólio), Prv (perovskita), Gr (granada), Felds (feldspato), Pir (pirocloro), Zir (zircão), Op (opacos).

Amostra	Ар	Ttflo	Flo	Car	Dp	OI	Tt	Bar	Af	Prk	Gr	Felds	Pir	Zir	Ор	Total %	Classificação
AT-502	1	0,5		81				8,5							9	100	Ba-calciocarbonatito-C1a
AT-503		20		60				1					<1%		19	100	Ba-Magnesiocarbonatito-C1b
AT-04	26		30		35					7					2	100	Bebedourito - B1
AT-25	2		34		5	30				22					7	100	Bebedourito - B1
AT-38	10		13	2	60		4			7	2				2	100	Bebedourito - B2
AT-11-B	23		8		50					3	16					100	Bebedourito - B2
AT-505	60	3	7						3						27	100	Apatitito-B2
AT-125	3		40	2	30						25					100	Bebedourito - B2
AT-43	10		21	55	9										5	100	Calciocarbonatito-C3
AT-60	20		28	50	1										1	100	Calciocarbonatito-C3
AT-504	7	2		70	4										17	100	Calciocarbonatito-C4
AT-508	67		1	30					2							100	Carbonato Apatitito-N1
AT-501	19	34		8									6		33	100	Pseudo-Nelsonito-N2
AT-12			20		30							40		<1%	10	100	Sienito

Figura 3.4 a e 3.4 b – Na figura 3.4 (a) fenocristal de olivina envolto por flogopita intersticial. Na figura 3.4 (b) substituição de flogopita por tetra-ferriflogopita (Ol-olivina, Flog-flogopita, Prv-perovskita). Amostra AT-25, unidade B1.

Figura 3.5 a e 3.5 b - Na figura 3.5 (a) orientação mineral em granada envolta por flogopita intersticial, na figura 3.5 (b) fenocristal de diopsídio com apatita e flogopita intersticiais (Gr-granada, Flog-flogopita, Diop-diopsídio). Amostra AT-125 (B2) e amostra AT-12 (sienito).

Figura 3.6 e 3.6 b - Na figura 3.6 (a) cristais euédricos de apatita envoltos por matriz carbonática. Na figura 3.6 (b) fenocristais de tetra-ferriflogopita e apatita intersticial (em detalhe locais das análises por Laser). Amostra AT-508 (N1) e amostra AT-501 (N2).

CAPÍTULO 4 - MÉTODOS ANALÍTICOS

4.1- Preparação de Amostras

Uma alíquota das amostras estudadas foi cominuída manualmente e, em seguida, levada ao moinho de disco para pulverização. Uma porção de aproximadamente 10 g de amostra pulverizada foi separada para posterior análise química de elementos maiores e traços em rocha total. Outra alíquota da amostra macroscópica foi destinada a corte e preparação de lâminas delgadas-polidas para posteriores estudos petrográficos e de química mineral. As seções polidas delgadas analisadas foram metalizadas com carbono em câmara de vácuo.

4.2 – Química Mineral

4.2.1 - Elementos Maiores por Microssonda Eletrônica

As análises químicas nos minerais foram feitas no Laboratório de Microssonda Eletrônica do Instituto de Geociências da Universidade de Brasília sob supervisão e colaboração do operador Ricardo Marques. O equipamento utilizado foi uma microssonda da marca JEOL modelo JXA-8230 - composto por espectrômetros de dispersão de comprimento de onda (WDS), cada um com 2 cristais analisadores. As condições de operação foram aceleração de 20 Kv para os elementos terras raras e 15Kv para os demais elementos, diâmetro do feixe de elétrons em 1 µm, corrente em 15 nA. Correções de efeitos de matriz foram feitas com o procedimento de correção ZAF (número atômico, absorção, fluorescência).

Os minerais analisados foram apatita, perovskita, flogopita, clinopiroxênio, granada e carbonato. Os padrões utilizados para calibração da microssonda encontram-se na tabela 4.1.

Tabela 4.1 -	 Padrões q 	Juímicos	utilizados	para an	iálise p	or mi	crosson	da elet	rônica e	em a	patita,
perovskita,	carbonato,	, clinopir	oxênio, flo	gopita	e gran	ada.					

Elemento	Padrão	Elemento	Padrão	Elemento	Padrão
Na	Albita	CI-V	Vanadinita	Ва	Barita
Mg	Olivina	S-Pb	Galena	Ti-Mn: MnTiO ₃	Pirophanita
AI	Coríndon	К	Ortoclasio	U	Uraninita
Si-Ca	Wolastonita	Sr	Celestita	Th	Thorita
Y	* (Y ₃ Fe ₅ O ₁₂)	Р	Apatita	Li-Nb-O	Litotantita**
Fe	Hematita	Ni:NiO	Bunsenita	Ca-Si-Fe	Andradita

*Mineral Sintético **Litotantita (LiNb₃O₈).

4.2.2 - Elementos Traços por LA-ICPMS

As análises de elementos traço foram obtidas pelo espectrômetro de massa modelo ELAN 6100DRC quadrupolo da PerkinElmer/Sciex no Laboratório de ICP do Instituto de Geociências da USP, sob orientação da Química Sandra Andrade. O amostrador de ablação por laser é o equipamento UP-213 da New Wave, operando no modo raster, 70% de potência, 20Hz de freqüência, 30 micrômetros de spot, 12 J/cm² e 0,090mJ, em média para as análises. As rotinas de análise permitem alcançar limites de detecção da ordem de sub-ppm para a maior parte dos elementos traços nos minerais de interesse. Os tempos de integração foram de 3652ms para todos os isótopos, com exceção do P que foi 1826ms. O sinal produzido pelos íons amostrados é quantitativamente estimado a partir da calibração contra materiais de referência certificados, que incluem um padrão externo e ainda um padrão interno. Neste trabalho o padrão NIST-610 foi utilizado para calibração e controle de drift, enquanto o NIST-612 como controle de qualidade. O software utilizado para o cálculo das concentrações e controle de *drift* instrumental foi o GLITTER 3.0^(R).

Foram analisados cristais de apatita, clinopiroxênio, flogopita, perovskita, granada e carbonato. Como padrões internos para normalização das concentrações

dos demais foram utilizados os teores de elementos maiores obtidos por microssonda eletrônica.

4.2.3 – Análise Química de Rocha Total

As determinações de elementos maiores e traços em rocha total foram feitas no Laboratório Acme (Vancouver, Canada) pelo método de ICP-AES+ICP-MS. Análises químicas de amostras adicionais utilizadas neste trabalho foram obtidas por Brod (1999) na Universidade de Durham pelo método de Fluorescência de raios-X+ICP-MS, ver anexo 13.

CAPÍTULO 5 - QUÍMICA MINERAL

5.1 – Introdução

O estudo de maciços alcalinos é de extrema importância, pois sua origem e evolução pode envolver uma ampla variedade de processos como cristalização fracionada, imiscibilidade de líquidos, metassomatismo, hidrotermalismo, que são formadores de paragêneses variadas e complexas, muitas vezes contendo fases minerais raras. Neste sentido a caracterização química dos minerais de minério e dos minerais formadores de rocha do Complexo Alcalino-Carbonatítico de Tapira visou, entre outras coisas, avaliar as implicações das variações composicionais para os processos metalogenéticos e possíveis critérios de prospecção.

5.2 – Apatita

As apatitas do Complexo Alcalino-Carbonatítico de Tapira apresentam granulação de 0,01 até 8 mm, sendo um dos principais constituintes das rochas do Complexo. A proporção modal de apatita nas amostras estudadas varia de 1 até 70%.

As formas dos grãos são variadas. Normalmente são prismas pequenos com textura cumulática, mas também ocorrem como cristais ovoides grandes e isolados. Frequentemente têm extinção ondulante e não apresentam evidências óbvias de zonação óptica.

5.2.1 - Elementos Maiores (microssonda eletrônica)

A apatita pode apresentar um grande número de substituições em sua composição. Considerando a fórmula geral $A_5(XO_4)_3Z$ da apatita, o sítio A pode ser ocupado por Ca^{2+} , Sr^{2+} , Mn^{2+} , Mg^{2+} , Zn^{2+} , Cd^{2+} , Fe^{2+} , Ni^{2+} , Cu^{2+} , Pb^{2+} , Sn^{2+} , Na^+ , K^+ , Li^+ , Sc^{3+} , Y^{3+} , Al^{3+} , ETR^{3+} , U^{4+} , U^{6+} . O sítio X é geralmente ocupado por P^{5+} , As^{5+} , V^{5+} , Cr^{3+} , Si^{4+} , C^{4+} , S^{6+} , e o sítio Z por F,. OH⁻, Cl⁻, CO_3^{2-} , SO_4^{2-} , Br⁻, I⁻ (Hogarth 1989).

As composições médias das apatitas do Complexo de Tapira são apresentadas na tabela 5.1. As fórmulas estruturais dos grãos analisados foram calculadas normalizando os cátions dos sítios A e X, respectivamente, aos valores de 5 e 3. Os dados mostram composições relativamente variadas deste mineral, com valores de SiO₂ chegando até 1,79%, CaO variando de 47 a 54,5%, FeO < 0,81%, MgO < 0,25%, Na₂O < 1,34%, SrO de 0,4 a 3,26% e P₂O₅ de 29,12 a 42,94%. Alguns valores anomalamente baixos de fósforo são possivelmente consequência de problemas analíticos. Os baixos teores de ferro (no máximo 0,81%) confirmam a afirmação de Toledo & Pereira (2001) que destacam a dificuldade do Fe²⁺ de entrar na estrutura da apatita. Os teores muito baixos de CI e altos de F (até 0,04% e 3,83%, respectivamente)

indicam que a variedade preponderante é fluorapatita. Entretanto, tendo em vista que não é possível obter análises diretas de CO₂ e H₂O pelos métodos empregados, não é possível estabelecer uma classificação mais precisa das apatitas estudadas.

Visando compreender as possíveis substituições nas apatitas analisadas foram calculadas matrizes de correlação dos resultados das análises por EPMA (Electron Probe Micro-Analyses). Além de se confirmar algumas correlações esperadas como, por exemplo, as altas correlações negativas de estrôncio e sódio com o cálcio e, ainda, entre o silício e o fósforo (-1,00), verifica-se que a soma dos ETR (La, Ce, Pr e Nd) mostra uma significativa correlação positiva com estrôncio (+0,5) e sódio (+0,62) e negativa com cálcio (-0,74).

Segundo Liu & Comodi (1993), o conteúdo de Na₂O é baixo e geralmente em torno de 0,2% em apatitas cristalizadas em magmas alcalinos. As apatitas de Tapira apresentam teores de Na₂O mais altos do que esta expectativa, chegando a cerca de 1,3 % em um carbonatito tardio.

Amostra	AT-22	AT-25	AT-16	AT-04	AT-113	AT-03	AT-38	AT-29	AT-33	AT-11b	AT-125	AT-505
Rocha	Picrito	Bebedo	Bebedour									
Unidade	Picrito	B1	B1	B1	B1	B1	B2	B2	B2	B2	B2	B2
Nº Análises	5	15	2	9	8	10	10	4	9	11	9	12
SiO ₂	0,47	1,02	1,13	0,52	0,41	0,84	0,59	0,60	0,64	0,69	0,59	0,44
FeO	0,05	0,13	0,14	0,04			0,01	0,03		0,04	0,19	0,23
MnO		0,02		0,01			0,03			0,02	0,02	0,02
MgO		0,05	0,04	0,04			0,01			0,01	0,01	0,03
CaO	52,10	53,27	54,50	53,41	53,36	53,69	53,67	53,41	52,68	52,64	53,21	51,74
Na2O	0,18	0,11	0,52	0,09	0,15	0,10	0,07	0,11	0,13	0,13	0,09	0,31
P ₂ O ₅	41,54	39,92	38,55	35,27	41,78	41,40	39,24	41,16	41,33	40,77	41,36	33,87
BaO	0,00	0,00	0,01	0,01			0,00	0,00		0,01	0,01	0,01
SrO	0,73	0,50	0,87	1,08	1,01	1,04	1,30	1,30	1,37	1,22	1,25	0,97
PbO		0,05								0,02	0,02	
F	1,29	1,71	3,83	1,24	1,90	2,24	1,67	2,34	2,69	1,78	2,10	1,22
Cl	0,01	0,01	0,01	0,01			0,00	0,01		0,01	0,01	0,01
SO ₃	0,01	0,09	0,10	0,07			0,04	0,03		0,03	0,02	0,03
La ₂ O ₃	0,08	0,20	0,11	0,09	0,06	0,13	0,16	0,31	0,27	0,23	0,27	0,28
Ce ₂ O ₃	0,23	0,30	0,10	0,10	0,06	0,13	0,26	0,44	0,43	0,46	0,49	0,69
Pr ₂ O ₃	0,03	0,13	0,01	0,02			0,06	0,02		0,13	0,09	0,11
Nd_2O_3	0,14	0,20	0,03	0,03	0,16	0,17	0,10	0,24	0,29	0,19	0,15	0,33
Soma ETR ₂ O	0,48	0,75	0,25	0,24	0,28	0,43	0,58	1,01	0,99	1,01	1,00	1,42
Total	96,83	97,49	100,00	92,05	98,88	99,73	97,28	99,98	99,84	98,46	100,04	90,33
O=F,Cl	0,54	0,72	1,61	0,52	0,80	0,94	0,70	0,99	1,13	0,75	0,89	0,52
Total	96,28	96,77	98,39	91,53	98,09	98,79	96,58	98,99	98,70	97,71	99,15	89,82
Ca	9,871	9,863	9,792	9,851	9,865	9,866	9,832	9,816	9,809	9,809	9,790	9,758
Na	0,031	0,018	0,084	0,014	0,026	0,017	0,011	0,018	0,022	0,021	0,015	0,052
Sr	0,075	0,050	0,085	0,108	0,101	0,103	0,129	0,129	0,138	0,123	0,124	0,099
Mn	0,000	0,003	0,000	0,002	0,000	0,000	0,004	0,000	0,000	0,003	0,002	0,002
Mg	0,000	0,013	0,010	0,010	0,000	0,000	0,002	0,000	0,000	0,001	0,002	0,007
Fe	0,007	0,019	0,020	0,006	0,000	0,000	0,002	0,005	0,000	0,005	0,027	0,033
La	0,003	0,006	0,003	0,003	0,002	0,004	0,005	0,010	0,009	0,007	0,009	0,009
Ce	0,007	0,009	0,003	0,003	0,002	0,004	0,008	0,014	0,014	0,015	0,015	0,022
Pr	0,001	0,004	0,000	0,001	0,000	0,000	0,002	0,001	0,000	0,004	0,003	0,004
Nd	0,005	0,006	0,001	0,001	0,005	0,005	0,003	0,007	0,009	0,006	0,005	0,010
Th	0,000	0,001	0,001	0,001	0,000	0,000	0,001	0,000	0,000	0,003	0,003	0,001
Р	5,842	5,633	5,581	5,776	5,864	5,727	5,782	5,791	5,788	5,762	5,795	5,811
S	0,002	0,022	0,025	0,020	0,000	0,000	0,009	0,008	0,000	0,007	0,005	0,009
Si	0,155	0,341	0,387	0,203	0,136	0,273	0,205	0,200	0,212	0,229	0,196	0,178

Tabela 5.1 – Composições químicas médias das apatitas (base de 26 O,OH,F,Cl) do Complexo Carbonatítico de Tapira.

Amostra	AT-12	AT-122	AT-55	AT-502	AT-44	AT-43	AT-60	AT-504	AT-131	AT-508	AT-501
Rocha	Sienito	Sienito	Carbona	Cb-Apat	Nelsonit						
Unidade	Sienito	Sienito	C1	C1	C1	C3	C3	C4	C4	N1	N1
Nº Análises	10	7	7	2	2	14	11	12	4	10	11
SiO ₂	0,20	0,06	0,06	0,00	0,21	0,80	0,26	0,07	0,21	0,37	0,03
FeO	0,10	0,08	0,01	0,06		0,07	0,09	0,03		0,02	0,07
MnO	0,04			0,03		0,02	0,03	0,02		0,01	0,01
MgO	0,00			0,06		0,02	0,03	0,03		0,01	0,03
CaO	52,61	52,98	52,45	47,00	50,70	52,02	53,62	52,24	52,75	52,72	52,46
Na2O	0,12	0,39	0,23	1,24	0,43	0,18	0,27	0,26	0,22	0,31	0,33
P ₂ O ₅	40,86	41,97	39,55	37,44	41,16	38,13	40,74	41,81	41,82	33,28	38,62
BaO	0,01	0,00	0,01	0,00		0,01	0,02	0,02		0,01	0,01
SrO	2,11	1,31	0,95	3,26	2,05	1,06	1,11	1,02	0,48	1,39	1,56
PbO	0,00			0,14		0,04	0,04	0,03			0,00
F	2,13	2,31	2,11	2,74	2,69	1,99	2,24	1,74	1,91	1,86	1,96
Cl	0,00	0,00	0,00	0,01		0,01	0,01	0,00		0,02	0,01
SO ₃	0,02	0,02	0,02	0,02		0,03	0,01	0,05		0,01	0,07
La ₂ O ₃	0,19	0,13	0,18	0,64	0,45	0,25	0,13	0,20	0,18	0,27	0,22
Ce ₂ O ₃	0,35	0,35	0,45	1,44	0,93	0,54	0,33	0,53	0,43	0,58	0,50
Pr ₂ O ₃	0,05	0,04	0,04	0,15		0,11	0,05	0,11		0,09	0,11
Nd_2O_3	0,12	0,18	0,19	0,60	0,42	0,22	0,16	0,24	0,36	0,24	0,20
Soma ETR ₂ O	0,71	0,70	0,86	2,84	1,80	1,12	0,67	1,08	0,97	1,18	1,04
Total	98,90	99,82	96,26	94,92	99,04	95,30	99,14	98,45	98,36	91,30	96,25
O=F,Cl	0,90	0,97	0,89	1,15	1,13	0,84	0,94	0,73	0,80	0,79	0,83
Total	98,01	98,85	95,37	93,76	97,90	94,45	98,20	97,72	97,56	90,51	95,42
Ca	9,720	9,771	9,834	9,291	9,656	9,797	9,793	9,798	9,883	9,759	9,733
Na	0,020	0,065	0,040	0,222	0,074	0,030	0,045	0,045	0,037	0,052	0,055
Sr	0,211	0,131	0,097	0,349	0,211	0,108	0,109	0,104	0,049	0,139	0,157
Mn	0,005	0,000	0,000	0,005	0,000	0,003	0,005	0,003	0,000	0,002	0,002
Mg	0,000	0,000	0,000	0,017	0,000	0,005	0,006	0,007	0,000	0,003	0,007
Fe	0,014	0,012	0,002	0,009	0,000	0,011	0,013	0,005	0,000	0,003	0,010
La	0,006	0,004	0,006	0,022	0,015	0,008	0,004	0,006	0,006	0,008	0,007
Ce	0,011	0,011	0,014	0,049	0,030	0,017	0,010	0,017	0,014	0,018	0,016
Pr	0,002	0,001	0,001	0,005	0,000	0,003	0,001	0,003	0,000	0,003	0,004
Nd	0,004	0,006	0,006	0,020	0,013	0,007	0,005	0,008	0,011	0,007	0,006
Th	0,000	0,000	0,000	0,001	0,000	0,001	0,001	0,001	0,000	0,003	0,001
Р	5,924	5,975	5,972	5,994	5,929	5,706	5,909	5,962	5,930	5,842	5,968
S	0,004	0,004	0,005	0,006	0,000	0,009	0,002	0,012	0,000	0,004	0,019
Si	0,070	0,021	0,023	0,000	0,071	0,282	0,087	0,024	0,070	0,154	0,010

Tabela 5.1 (Cont.) – Composições químicas médias das apatitas do Complexo Carbonatítico de Tapira.

Entre os elementos que podem ocupar o sítio do Ca, Sr é um dos principais. Hogarth (1989) afirma que o estrôncio entra preferencialmente na estrutura da calcita nos carbonatitos iniciais, sendo que nos estágios finais este elemento prefere a apatita, barita e estroncianita. As variações nas apatitas das amostras estudadas apresentam um padrão de evolução geral obtido pelas variações do Ca e Sr. As figuras 5.1, 5.2, 5.3 e 5.4 demonstram a evolução das rochas da série silicática (Picrito - B1 – B2 – Sienito 2 – Sienito 1) e da série carbonática (C4 – C1b – C3 – N1 – N2 – C1a) em relação ao comportamento Sr:Ca, indicando que a substituição $Ca^{2+} \leftrightarrow Sr^{2+}$ desempenha um papel importante na evolução destas apatitas. Nota-se que a grande maioria das amostras da série silicática se encaixa na linha 1:1, ou seja, que para cada átomo de estrôncio que ingressa na estrutura da apatita deixa de ingressar um de cálcio. Entretanto, a apatita de algumas amostras de sienito (grupo Sie 2) se enquadram melhor na linha 2:1, o que estaria indicando a atuação de outros elementos, como os terras raras, na substituição do cálcio. Nas rochas carbonatíticas, a maioria das apatitas estudadas se adequam à linha 2:1. Nas diferentes gerações de apatitas analisadas, foi possível identificar que elas tendem a enriquecer-se em estrôncio à medida que o magma evolui.

Figura 5.1 – Gráfico Ca X Sr (átomos por unidade de fórmula) em apatita das rochas da série silicática do Complexo Carbonatítico de Tapira.

Figura 5.2 – Gráfico Ca X Sr nas rochas da série carbonática do Complexo Carbonatítico de Tapira, o campo tracejado representa a série silicática da figura anterior.

Figura 5.3 – Gráfico Ca+P X Si+ETR (átomos por unidade de fórmula) nas rochas da série silicática do Complexo Carbonatítico de Tapira.

Figura 5.4 – Gráfico Ca+P X Si+ETR nas rochas da série carbonática do Complexo Carbonatítico de Tapira.

As apatitas de rochas da série silicática estão dispostas ao longo de uma linha 1:1 para a substituição de Ca + P por Si + ETR (fig. 5.3), indicando que esta substituição é importante em apatitas bebedouríticas. Apesar da superposição considerável, existe uma tendência de o teor de Si + ETR na apatita diminuir com a evolução magmática dessas rochas. Nelsonitos e carbonatitos (fig. 5.4) formam grupos de comportamento contrastante. Enquanto os carbonatitos C3 e C4, mais precoces, alinham-se ao longo da mesma linha 1:1 que os bebedouritos, os carbonatitos C1a e C1b, mais tardios, definem uma linha com inclinação muito mais baixa, indicando que o ingresso de ETR nas apatitas dos estágios mais tardios não é controlado por essa substituição acoplada com sílica. Nelsonitos N1 alinham-se com a distribuição dos carbonatitos mais precoces (C3 + C4), enquanto nelsonitos do tipo N2 alinham-se com a distribuição dos carbonatitos mais tardios (C1a + C1b).

Cordeiro *et al.* (2010) estabeleceram a evolução das apatitas do complexo de Catalão I com uma progressão geral com evolução de magma análoga à observada nos complexos de província de Kola, sugerindo que o conteúdo de Sr em apatita é um índice confiável de evolução do magma nas séries carbonatítica e foscorítica.

No diagrama triangular da figura 5.5 as apatitas de rochas silicáticas de Tapira (picrito, B1 e B2) evoluem na mesma direção que a apatita dos foscoritos mais primitivos de Catalão I (P1, de Cordeiro *et al.* 2010), os sienitos I e II seguem outro padrão, em direção ao enriquecimento em Sr, semelhante ao observado para os nelsonitos (P2) de Catalão I (Cordeiro *et al.* 2010). Na série carbonática (Figura 5.6) os carbonatitos mais primitivos, do grupo C3 e os nelsonitos espalham-se no mesmo espectro de composição dos foscoritos primitivos de Catalão (P1). Já as apatitas das unidades C4, C1a, C1b e N1 obedecem ao mesmo *trend* de nelsonitos evoluídos (P2, P3) e dolomita carbonatitos tardios (DC) de Catalão.

Chama, ainda, a atenção o fato de que as apatitas de Catalão I, principalmente as tardias, serem muito mais ricas em Sr do que a maioria das apatitas de carbonatitos de Tapira. Este fato está possivelmente relacionado com a predominância de dolomita nos carbonatitos de Catalão e de calcita nos carbonatitos de Tapira, pois a calcita tende a concentrar mais estrôncio, competindo mais por esse elemento com a apatita coexistente. Os trends observados em Catalão I, somados com as novas informações obtidas em Tapira sugerem que as apatitas das rochas silicáticas são mais pobres em Sr e têm teores mais variáveis e mais altos de Si e ETR do que as de carbonatitos. Estas últimas são pobres em silício, o que resulta provavelmente da baixa concentração de silício no magma carbonatítico, e mais ricas em Sr. Entretanto, a quantidade de Sr na apatita pode ser fortemente influenciada pelo tipo de carbonato coexistente (calcita ou dolomita). Consideradas estas particularidades e controles específicos, a apatita pode ser utilizada como um indicador de evolução magmática e, portanto, do potencial metalogenético do sistema. A semelhança das apatitas de C3 com as de bebedouritos e a composição das apatitas de C4, no extremo pobre em sílica do trend dos bebedouritos reforçam a sugestão de Brod (1999) de que C3 e C4 são carbonatitos residuais da diferenciação dos bebedouritos por cristalização fracionada e de que muitos dos minerais não carbonáticos em C3 são na verdade xenocristais derivados de bebedouritos.

Figura 5.5 – Diagrama ternário contendo os campos para comparação dos foscoritos e carbonatitos da Provincia de Kola, A (Sokli), B (Vuoriyarvi), C (Kovdor) e Complexo de Catalão I (P1, P2, P3, DC), Cordeiro *et al.* (2010), juntamente com as rochas da série silicática de Tapira (Picrito, B1, B2 e Sienito).

Figura 5.6 – Diagrama ternário contendo os campos para comparação dos foscoritos e carbonatitos da Provincia de Kola, A (Sokli), B (Vuoriyarvi), C (Kovdor) e Complexo de Catalão I (P1, P2, P3, DC), Cordeiro *et al.* (2010), juntamente com as rochas da série carbonática de Tapira (N1, N2, C1a, C1b, C3 e C4).

5.2.2 - Elementos Traços (Laser Ablation)

Análises por Espectrometria de Massa com ablação por laser em apatitas de Tapira indicaram conteúdo de Sr até 15881ppm, Hf até 1,64ppm, Y até 449ppm, Nb até 24,1ppm, La até 3499ppm, Ce até 8181ppm, Pr até 848ppm, Nd até 3348ppm, Sm até 478ppm, Gd até 343ppm, Dy até 134ppm e Yb até 18ppm, cujas médias dos resultados encontram-se na tabela 5.2.

Tabela 5.2 – Médias das análises por Espectrometria de Massa com ablação por laser das apatitas do Complexo Carbonatítico de Tapira, valores em ppm.

A	4 700 4	4 7020	A TEOF	4 74 25	A TE 00	A TE 04	4 70 42	4 7000
Amostra	A1004	A1038	A1505	AT125	A1508	A1501	A1043	A1060
Unidade	B1	B2	B2	B2	N1	N2	C3	C3
Rocha	Bebedouri	Bebedouri	Bebedouri	Bebedour	Ap-Carb-P	Nelsonito	Carbonati	Carbonatit
N⁰Análises	7	6	5	6	7	6	4	5
Ва	63	63	79	51	193	152	59	98
Sr	7749	11613	8888	11111	12003	15882	8961	11111
Hf	0,2	0,2	0,2	0,1	0,2	0,1	0,2	0,1
Y	266	169	450	38	380	216	256	180
Nb	0,1	0,7	293	1,1	0,6	0,8	1,9	2,0
Та	0,00	0,02	0,49	0,01	0,00	0,00	0,02	0,04
Th	3,6	26	404	204	137	30	55	58
U	6	10	18	16	10	215	34	33
V	137	178	56	64	41	25	108	38
As	10	9	27	14	24	18	12	10
La	1110	1798	3137	2955	3500	1952	1726	1307
Ce	1280	3869	8182	5770	7681	5556	3666	3523
Pr	113	335	848	390	810	544	425	449
Nd	406	1071	3349	1492	2786	1881	1623	1686
Sm	80	157	479	109	385	240	222	232
Eu	29	47	126	29	113	61	66	54
Gd	90	120	344	88	314	144	166	139
Tb	11	12	33	3	27	14	17	13
Dy	51	48	135	17	108	58	71	54
Но	9	7	19	1	17	9	11	8
Er	19	13	36	3	34	19	21	15
Tm	2	1	4	0,3	3	2	2	1
Yb	11	5	19	1	16	9	11	7
Lu	1,4	0,6	2,0	0,1	1,8	0,9	1,2	0,8

Segundo Hogarth (1989) o conteúdo de ETR na apatita de carbonatitos varia de menos de 1% a mais de 8% em peso do somatório dos óxidos de ETR (ETR_2O_3). Em Tapira este somatório varia de menos de 1% a mais de 3% em peso destes óxidos. O mesmo autor notou um enriquecimento em ETR na apatita de carbonatitos tardios em relação às fases iniciais, no carbonatito de Kovdor (Rússia). Essas feições foram também observadas nas apatitas de Tapira.

Os padrões de ETR obtidos nas apatitas de rochas alcalinas e carbonatitos de Tapira foram comparados aos dados de ETR obtidos para o magma primitivo dos complexos alcalino-carbonatíticos da APIP (flogopita picrito de Catalão I, Cordeiro *et al.* 2010). Todas as apatitas estudadas em Tapira possuem alto grau de fracionamento dos terras raras leves (ETRL) em relação aos terras raras pesados (ETRP). Entretanto, em detalhe observa-se algumas características específicas de apatitas de diferentes tipos de rocha.

O padrão de ETR obtido para a apatita de bebedouritos da unidade B1 (Fig. 5.7) possui uma declividade menor do que a do campo do flogopita picrito, o que indica o reflexo da cristalização simultânea de perovskita com a apatita desta unidade. A perovskita concentra fortemente as terras raras, em particular as leves, e sua cristalização simultânea com apatita resulta em um empobrecimento desta última em ETRL.

Nas apatitas de bebedouritos da unidade B2 a declividade da curva de ETR (Fig. 5.8) acompanha a tendência original do magma primitivo. Como a perovskita é um mineral subordinado a ausente em B2, não há tanta competição pelas terras raras leves, que são agora incorporadas na proporção normal pela apatita.

No padrão de ETR das apatitas dos carbonatitos C3 (Fig. 5.9) observa-se o mesmo comportamento das apatitas dos bebedouritos B2 reforçando a sugestão de Brod (1999) de que C3 é um carbonatito residual decorrente da cristalização do magma B2.

As curvas de ETRs dos nelsonitos N1 e N2 (Fig. 5.10) apresentam uma declividade mais acentuada do que a do campo dos picritos, evidenciando um forte fracionamento ETRL/ETRP comparado ao magma primitivo.

Figura 5.7 – Distribuição dos elementos terras raras em apatitas do B1. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.8 – Distribuição dos elementos terras raras em apatitas do B2. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.9 – Distribuição dos elementos terras raras em apatitas do C3. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.10 – Distribuição dos elementos terras raras em apatitas do N1 e N2. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Para caracterizar melhor o comportamento geoquímico dos elementos traço em minerais foram feitos diagramas multielementares (aranhagramas) que mostram a distribuição dos elementos traço normalizados pela composição do magma primitivo. A figura 5.11 mostra que no fracionamento da apatita o líquido residual ficará enriquecido em todos os elementos HFS (elementos com alto potencial iônico) e LIL (elementos litófilos de raio iônico grande). Por outro lado, o líquido residual produzido por fracionamento de apatita a partir de um magma picrítico seria empobrecido em terras raras totais, com ou sem modificação do fracionamento ETRL/ETRP, dependendo do estágio de evolução. Apatitas dos bebedouritos B2 mostram alguns teores anômalos pontuais, como alto Nb e Ta na amostra AT-505, e baixos valores de ETRP na amostra AT-125. A razão para os altos teores de Nb e Ta na amostra AT-505 não é clara, mas pode tratar-se de contaminação com microinclusões. A deficiência de ETRP na amostra AT-125 é provavelmente consequência da cristalização concomitante de abundante granada, mineral que concentra preferencialmente terras raras pesadas.

Por outro lado as variações na razão Nb/Ta normalizada ao condrito (declividade da linha Nb-Ta no diagrama, que deveria ser constante para amostras cogenéticas) não

são tão facilmente explicadas e podem estar relacionadas a eventos extremos como imiscibilidade de líquidos (e.g. Brod *et al.* 2013).

Figura 5.11 – Aranhagrama dos elementos traços normalizados pelo flogopita picrito em apatitas do Complexo de Tapira.

5.3 - Perovskita

As perovskitas do Complexo Alcalino-Carbonatítico de Tapira apresentam granulação variável de 0,01 até 1 mm. A proporção modal de perovskita nas amostras estudadas varia de 3 até 22%.

As formas dos grãos são variadas, mas os cristais são frequentemente poiquilíticos com inclusões geralmente de apatita. Perovskita pode ocorrer associada à granada, que a substitui parcialmente, e à flogopita.

5.3.1 - Elementos Maiores (microssonda eletrônica)

A fórmula ideal da perovskita é ABX₃ onde A e B representam os cátions e X representa os ânions. Em perovskitas naturais os ânions são oxigênio e a fórmula pode ser reescrita com ABO₃. Os cátions A podem ser Ca²⁺, Na⁺, K⁺, ETR³⁺, Pb²⁺ e Ba²⁺. Os cátions B podem ser Ti⁴⁺, Nb⁵⁺, Fe³⁺, Fe²⁺, Ta⁵⁺ e Zr⁴⁺ (Mitchell 2002). A maior parte das análises apresenta uma substituição considerável do Ca por elementos do grupo das terras raras e por álcalis e, frequentemente, do Ti por Nb ou Ta. As composições médias das perovskitas do Complexo de Tapira são apresentadas na tabela 5.3, em conjunto com as fórmulas estruturais calculadas na base de três oxigênios. Os dados mostram conteúdo de SiO₂ chegando até 0,47%, TiO₂ de 50,45 até 56,79%, FeO variando de 1,04 a 2,76%, CaO de 33,71 a 40%, Na₂O <0,89%, SrO <1,05, Nb₂O₅<2,21%, ThO₂<0,44, La₂O₃<1,4, Ce₂O₃<3,42, Pr₂O₃<1,07 e Gd₂O₃<0,44.

Melluso *et al.* (2008) estudaram a mineralogia de kamafugitos e kimberlitos da APIP, descrevendo a composição da perovskita como geralmente muito próxima da perovskita sensu stricto (CaTiO₃ – 92-96 mol.%). A composição das perovskitas de Tapira (Fig. 5.12) também se encaixa nesta descrição, com os dados concentrados próximo ao vértice da perovskita ideal, e uma pequena solução sólida em direção à loparita. Não foram detectadas diferenças relevantes entre as perovskitas dos bebedouritos B1 e B2.

Neste trabalho os dados estudados por Melluso *et al.* (2008) serviram como balizador para comparações e conclusões no diz respeito principalmente ao comportamento dos elementos traços dos kamafugitos e kimberlitos da APIP, não só para perovskita, mas também para clinopiroxênio e flogopita. Os kamafugitos considerados foram: PO – Presidente Olegário, VER – Veridiana, SR – Santa Rosa, CAN – Canas e MAL - Malaquias. Os kimberlitos foram: IN – Indaiá, LIM – Limeira e PAN – Pântano.

Tabela 5.3 – Composições químicas médias das perovskitas do Complexo de Tapira.

Rocha	Bebed	Bebed	Bebed
N⁰Análise	9	27	25
SiO ₂	0,02	0,00	0,01
TiO ₂	53,22	55,76	54,72
Fe_2O_3	1,90	1,43	1,52
MnO	0,02	0,01	0,02
MgO	0,02	0,01	0,01
CaO	36,24	39,15	35,80
Na ₂ O	0,49	0,29	0,76
SrO	0,32	0,55	0,79
Nb_2O_5	0,93	0,83	1,02
ThO ₂	0,17	0,03	0,14
La_2O_3	0,85		0,97
Ce ₂ O ₃	2,22		2,23
Pr_2O_3	0,43		0,31
Sm ₂ O ₃	0,05		0,10
Gd_2O_3	0,11		0,19
Yb ₂ O ₃	0,01		0,01
ΣETR_2O_3	3,66	0,30	3,81
Total	100,65	98,35	102,38
Ti	3,85	3,91	3,90
Fe2	0,12	0,09	0,10
Са	3,73	3,91	3,63
Na	0,09	0,05	0,14
Sr	0,02	0,03	0,04
Nb	0,04	0,04	0,04
Th	0,00	0,00	0,00
La	0,03	0,00	0,03
Ce	0,08	0,00	0,08
Pr	0,02	0,00	0,01

Figura 5.12 – Diagrama Tausonita (SrTiO₃) – Perovskita (CaTiO₃) – Loparita (NaCeTi₂O₆) evidenciando a composição das perovskitas de Tapira (Mitchell 2002).

5.3.2 - Elementos Traços (Laser Ablation)

A perovskita geralmente é o principal portador de elementos terras raras, Nb, Ta, Sr, Th e U da assembleia mineral de bebedouritos. Em Tapira, o conteúdo total de ETR nos grãos de perovskita analisados varia de 2 a 5,9% de óxidos de terras raras.

Análises por Espectrometria de Massa com ablação por laser em perovskitas de Tapira indicaram alto conteúdo de Nb (mais de 7100 ppm) assim como altos conteúdos de Ta, Th e U (496, 2639 e 245 ppm, respectivamente). Este mineral tem como característica o conteúdo de ETR leves aproximadamente mil vezes o condrito, juntamente com um forte fracionamento de ETR leves em relação aos ETR pesados (La/Yb_n de 275 a 800).

Para o estudo dos elementos terras raras (ETR) em perovskita, foram selecionadas amostras representativas dos bebedouritos B1 e B2 do Complexo de Tapira. Os dados químicos obtidos por LA-ICP-MS estão na tabela 5.4. Percebe-se algumas diferenças sutis entre rochas das unidades B1 e B2, com um discreto aumento das concentrações de Nb, Sr e ETR na perovskita com a evolução magmática.

Tabela 5.4 – Análises por Espectrometria de	e Massa	com	ablação	por	laser	em	perovski	tas	do
Complexo Carbonatítico de Tapira, valores er	m ppm.								

Amostra	AT004_a	AT004_b	AT004_c	AT025_a	AT025_b
Unidade	B1	B1	B1	B1	B1
Rocha	Bebed	Bebed	Bebed	Bebed	Bebed
Ва	17	10	15	99	14
Sr	4636	4449	4409	3364	2645
Hf	35	34	37	42	21
Nb	4855	6827	4857	6826	2647
Та	132	84	120	165	480
Th	100	49	105	517	2639
U	143	216	163	137	92
V	135	150	123	172	129
As	15	13	15	25	31
La	6403	5762	6302	11657	7796
Ce	11243	9472	10373	24590	20630
Pr	1036	824,6	969,6	1890	2422
Nd	3398	2784	3385	6939	8799
Sm	547	464	536	868	1103
Eu	156	149	159	273	251
Gd	372	365	384	517	494
Tb	36	38	39	46	42
Dy	150	168	154	203	135
Но	19	22	20	26	16
Er	30	39	35	45	25
Tm	2,6	3,5	3,1	4,4	1,8
Yb	12	17	13	20	8
Lu	0,95	1,4	1,2	1,8	0,61

Amostra	AT038_a	AT038_b	AT038_c	AT038_d	AT038_e	AT038_f	AT038_g	AT038_h
Unidade	B2							
Rocha	Bebed							
Ва	128	15	14	11	16	39	12	11
Sr	6474	7124	6281	5934	6896	6064	6667	5778
Hf	20	17	23	17	18	18	20	19
Nb	6659	7146	6561	6365	6422	5762	7051	6261
Та	422	460	477	423	479	387	496	400
Th	465	906	473	1164	1189	466	756	533
U	245	192	233	166	154	244	234	235
V	183	172	188	145	150	197	200	189
As	36	40	35	44	43	32	41	29
La	10115	12893	9918	13085	14926	8708	11597	9039
Ce	20553	26494	20143	28855	29251	19428	23352	20638
Pr	2073	2581	2008	2958	2971	1778	2313	1833
Nd	7459	8692	7538	10363	9769	6875	8628	6685
Sm	1144	1082	1158	1175	1101	1105	1296	1094
Eu	328	284	329	273	263	329	349	318
Gd	802	724	764	672	665	690	844	650
Tb	76	58	77	54	53	71	79	66
Dy	312	230	313	208	200	281	306	263
Но	39	27	39	26	24	36	37	33
Er	64	45	65	43	40	61	63	56
Tm	5,4	3,6	5,7	3,4	3,1	5,3	5,0	4,5
Yb	24	16	25	15	13	23	21	20
Lu	1,7	1,2	1,9	1,2	1,1	1,8	1,8	1,6

Tabela 5.4 (Cont.) – Análises por Espectrometria de Massa com ablação por laser em perovskitas do Complexo Carbonatítico de Tapira, valores em ppm.

Existem estudos que confirmam o enriquecimento em ETR leves (La-Gd) nas perovskitas das rochas alcalinas, mas não detalham o comportamento individual dos elementos em particular dos ETR pesados (Tb-Lu) (Mitchell 1988). Dentre os minerais estudados do complexo de Tapira, durante o presente trabalho, perovskita apresenta as maiores concentrações absolutas de ETR e também o maior grau de fracionamento ETRL/ETRP.

O conhecimento do comportamento geoquímico dos elementos traços na perovskita é particularmente importante para o entendimento dos processos de diferenciação em magmas alcalinos (Mitchell 1988). Na figura 5.13 os padrões de ETR mostram a diferença entre perovskitas dos bebedouritos B1 e B2. Ambos os grupos de bebedourito possuem padrões de ETR com inclinação mais forte do que a observada nos flogopita picritos. Portanto, espera-se que o fracionamento significativo de perovskita a partir deste tipo de magma provoque o empobrecimento de ETR e uma diminuição do fracionamento ETRL/ETRP no líquido residual. Dentre as perovskitas do grupo B1 ocorrem dois sub-grupos, um representado pela amostra AT-025, cujas perovskitas têm padrões de ETR muito semelhantes às de B2, e outro representado

pela amostra AT-004, onde a perovskita tem um padrão de ETR um pouco menos inclinado, ou seja, com menor fracionamento ETRL/ETRP. As razões para este comportamento ligeiramente diferente da perovskita da amostra AT-004 ainda não são claras. Entretanto, ela pode representar uma variação composicional resultante da evolução do magma B1, uma vez que a mineralogia desta amostra, dominada por diopsídio e flogopita é mais evoluída que a da outra amostra B1 (AT-025), dominada por olivina e perovskita (ver tabela 3.1 – composição modal).

Na figura 5.14 o padrão médio das perovskitas dos bebedouritos B1 se aproxima ao padrão do kamafugito de Santa Rosa (SR), de Melluso *et al.* (2008), enquanto o padrão médio da perovskita dos bebedouritos B2 é semelhante ao dos kimberlitos Limeira (LIM), Pântano (PAN) e Indaiá (IN).

No aranhagrama da perovskita (Fig. 5.15) observa-se que o fracionamento de perovskita a partir de um magma parental com composição de flogopita picrito acarretaria o enriquecimento do líquido residual em Ba, Rb, K e P, e seu empobrecimento em Nb, Ta e terras raras, particularmente as leves. Os teores de Sr, Zr e Hf seriam pouco afetados pela remoção de perovskita do magma. As perovskitas de outras rochas alcalinas da APIP, como kamafugitos (SR, MAL) e kimberlitos (LIM, PAN e IND) têm padrões de elementos traço semelhantes às dos bebedouritos de Tapira. Pequenas inconsistências observadas nas razões Nb/Ta e Zr/Hf podem, como observado para a apatita, representar flutuações locais dessas razões nos magmas em função de eventos como imiscibilidade de líquidos.

Figura 5.13 – Distribuição dos elementos terras raras em perovskitas do B1 e B2. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.14 – Distribuição dos elementos terras raras em perovskitas do B1 e B2 (médias), comparadas aos dados de Melluso *et al.* (2008), IND (Indaiá), LIM (Limeira), PAN (Pântano), SR (Santa Rosa) e MAL (Malaquias), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.15 – Aranhagrama dos elementos traços normalizados pelo flogopita picrito (Cordeiro *et al.* 2010) em perovskitas do Complexo de Tapira, comparadas aos dados de Melluso *et al.* (2008) para perovskita dos kimberlitos de Indaiá (IND), Limeira (LIM) e Pântano (PAN), e perovskita dos kamafugitos de Santa Rosa (SR) e Malaquias (MAL).

5.4 – Clinopiroxênio

Os clinopiroxênios das amostras estudadas do Complexo Alcalino-Carbonatítico de Tapira têm granulação variável de 0,1 até 8 mm. Sua proporção modal nas amostras estudadas varia de 1 até 60%. Geralmente têm composição de diopsídio, mas podem apresentar zonação óptica com núcleo incolor, borda esverdeada e contornos anedrais. São tipicamente uma fase cumulus em bebedouritos, envoltos por assembleias intersticiais de apatita fina, flogopita e opacos.

5.4.1 - Elementos Maiores (microssonda eletrônica)

A fórmula dos piroxênios pode ser expressa como M2M1T₂O₆, em que M2 e M1 correspondem a cátions com coordenação octaédrica geralmente distorcida e regular, respectivamente, e T refere-se a cátions com coordenação tetraédrica.

As composições médias dos clinopiroxênios do Complexo de Tapira são apresentadas na tabela 5.5, em conjunto com as fórmulas estruturais calculadas na base de seis oxigênios.

Nos piroxênios de Tapira existe uma deficiência de Al para o preenchimento do sítio tetraédrico, o que leva à necessidade de substituição de Si por Fe³. O sítio M1 é ocupado principalmente por Mg (0,8 átomos por fórmula) e quantidades subordinadas de Al, Ti⁴⁺, Fe³⁺, Fe²⁺, Cr e Ni. O sítio M2 é ocupado majoritariamente por Ca (0,9 átomos por fórmula), com valores subordinados de Mg, Fe²⁺, Mn, Na e K.

Amostra	AT-004	AT-025	AT-011b	AT-038	AT-504	AT-043	AT-060	AT-125	AT-012
Rocha	Bebed	Bebed	Bebed	Bebed	Carbon	Carbon	Carbon	Bebed	Sienito
Unidade	B1	B1	B2	B2	C4	C3	C3	C3	Sie
Nº de An	15	10	9	7	5	6	7	5	11
SiO ₂	53,41	53,64	50,63	53,12	50,84	51,92	54,87	52,45	51,31
TiO ₂	0,76	0,36	0,71	0,69	0,72	0,79	0,11	0,12	0,86
AI_2O_3	0,95	0,17	1,86	1,29	1,22	1,18	0,03	0,57	1,27
Fe ₂ O ₃	2,41	2,37	2,33	2,40	2,32	2,35	2,41	2,36	2,35
Cr ₂ O ₃	0,00	0,00	0,08	0,04	0,00	0,04	0,03	0,00	0,00
FeO	2,09	0,16	6,26	4,14	9,05	4,07	2,17	6,06	7,16
MnO	0,08	0,12	0,28	0,13	0,36	0,24	0,29	0,41	0,29
MgO	15,80	16,76	12,89	14,43	11,42	14,08	15,96	13,28	12,70
CaO	25,01	24,75	23,00	24,59	22,56	24,06	24,30	23,57	23,11
Na ₂ O	0,33	0,19	0,83	0,55	1,12	0,44	0,57	1,10	0,95
K ₂ O	0,02	0,00	0,00	0,01	0,00	0,00	0,01	0,03	0,01
Total	100,86	98,51	98,88	101,39	99,62	99,15	100,74	99,95	100,01
Si	1,94	1,98	1,92	1,94	1,93	1,94	1,99	1,96	1,93
Ti	0,02	0,01	0,02	0,02	0,02	0,02	0,00	0,00	0,02
Al	0,04	0,01	0,08	0,06	0,05	0,05	0,00	0,03	0,06
Fe ₃	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
Fe ₂	0,06	0,00	0,20	0,13	0,29	0,13	0,07	0,19	0,23
Mg	0,86	0,92	0,73	0,79	0,65	0,78	0,86	0,74	0,71
Ca	0,98	0,98	0,93	0,96	0,92	0,96	0,95	0,95	0,93
Na	0,02	0,01	0,06	0,04	0,08	0,03	0,04	0,08	0,07
Cátions	3,99	3,98	4,02	4,00	4,03	3,99	3,99	4,03	4,02
Wo	51,44	51,36	50,20	51,33	51,38	51,39	50,42	50,38	49,29
En	45,20	48,38	39,13	41,92	48,62	41,83	46,06	39,51	38,31
Fs	3,35	0,26	10,66	6,75	0,00	6,78	3,51	10,12	12,40

Tabela 5.5 – Composições químicas médias dos clinopiroxênios do Complexo Carbonatítico de Tapira.

Nas amostras analisadas, os diagramas de classificação de piroxênios de Morimoto (1988) demonstram a predominância de piroxênios cálcicos da série diopsídiohedembergita em bebedouritos, com termos mais sódicos (aegiriga-augita) em sienitos (Figuras 5.16 e 5.17). No diagrama ternário Aegirina-Diopsídio-Hedenbergita (Fig. 5.18) a composição dos piroxênios estudados em Tapira é comparada aos dados de outras províncias ou complexos. Os piroxênios dos bebedouritos de Tapira são semelhantes aos de kamafugitos brasileiros e mundiais, apresentando enriquecimento apenas moderado em hedembergita e evoluindo para termos mais ricos em aegirina nas fases finais.

Figura 5.16 – Clinopiroxênios do Complexo de Tapira plotados nos diagramas QxJ, Morimoto (1988), Q=Ca+Mg+Fe²⁺ e J=2Na.

Figura 5.17 – Seção do diagrama ternário Ca-Mg-Fe dos clinopiroxênios do Complexo de Tapira (mol %).

Figura 5.18 – Diagrama ternário Aegirina-Diopsídio-Hedenbergita mostrando a composição dos piroxênios estudados em Tapira em comparação aos dados de outras províncias ou complexos.

De acordo com Melluso *et al.* (2008), o clinopiroxênio que está presente nas amostras de kamafugitos e kimberlitos da APIP pertence à série diopsídio-hedenbergita. Os valores de Al_2O_3 e TiO₂ podem chegar a 4,6 e 4,0 % em peso, respectivamente. O Al relativamente baixo destes clinopiroxênios é uma característica notável. Esta feição provavelmente resulta do fato de que kamafugitos e kimberlitos são magmas ultrapotássicos tipicamente pobres em alumínio, gerados a partir de fontes mantélicas empobrecidas neste componente.

Nas análises obtidas do Complexo de Tapira os valores de Al₂O₃ e TiO₂ chegaram aos valores máximos de 2,6 e 1,08% respectivamente. As figuras 5.19 e 5.20 mostram os diagramas Al₂O₃ versus TiO₂ nota-se que os clinopiroxênios dos bebedouritos B2 são ligeiramente mais aluminosos do que os dos bebedouritos B1. Os clinopiroxênios nos carbonatitos C3 mostram o mesmo intervalo composicional do que os dos bebedouritos, o que é consistente com a hipótese de Brod (1999) de que estes piroxênios são xenocristais no magma carbonatítico C3. Os piroxênios no carbonatito C4 claramente mostram uma composição muito mais restrita em termos de titânio e alumínio, consistente com sua cristalização a partir do magma carbonatítico.

Os clinopiroxênios de kamafugitos da APIP (Melluso *et al.* 2008) estão agrupados em dois conjuntos, um principal, contendo os kamafugitos PO – VER – MAL – SR, mais rico em titânio, e outro conjunto mais rico em Al, formado por amostras do kamafugito de Canas (Fig. 5.20). Neste último, o aumento da disponibilidade de Al pode ser decorrência de imiscibilidade de líquidos com incremento residual de Al no conjugado silicático.

Figura 5.19 – Clinopiroxênios do Complexo de Tapira plotados no diagrama Al₂O₃ versus TiO₂.

Figura 5.20 – Clinopiroxênios do Complexo de Tapira plotados no diagrama Al₂O₃ versus TiO_{2,} comparados aos dados de Melluso *et al.* (2008), PO (Presidente Olegário), VER (Veridiana), SR (Santa Rosa) CN (Canas) e MAL (Malaquias).

5.4.2 - Elementos Traços (Laser Ablation)

Para o estudo dos elementos terras raras (ETR) foram selecionados clinopiroxênios de amostras representativas do complexo. Os dados químicos obtidos para este mineral estão na tabela 5.6. As análises por Espectrometria de Massa com ablação por laser em clinopiroxênios de Tapira indicaram concentração relativamente alta de ETRL (até 473,2 ppm de La e 528,2 ppm de Ce) e Pb (até 20,72 ppm) e concentrações menores de Y (até 99,97 ppm) e ETRP (até 3,96 ppm de Yb e 0,4 ppm de Lu).

Amostra	AT25_a	AT25_b	AT004	AT038_a	AT038_b	AT038_c	AT038_d	AT038_e	AT038_f	AT125_a	AT125_b	AT125_c
Unidade	B1	B1	B1	B2								
Rocha	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed
Ва	1	7	0,43	77	1	0,3	195	15	3	58	499	95
Sr	1007	539	655	922	808	868	977	775	654	948	1347	667
Zr	514	236		589	339	382	715	448	301	200	78	116
Hf	21	10	8	20	11	14	28	17	12	7	2	3
Y	10	6	4	7	6	7	7	6	4	3	4	1
Nb	0,6	3,4	0,1	1020	0,3	0,4	1737	0,7	0,4	8,1	3,2	3,1
Та	0,0	0,0		0,1	0,0	0,0	0,1	0,0	0,0	0,5	0,1	0,0
Th	0,0	0,1		0,0	0,0	0,0	0,1	0,0	0,0	1,3	1,3	0,7
U	0,0	0,0		0,0		0,0	0,1	0,0	0,0	0,2	0,4	0,2
Sc	181	148		43	42	49	45	45	41	108	68	73
V	65	32	27	91	73	80	101	75	64	113	77	82
Pb	2	1		1,5	0,2	0,3	21	1126	1,2	1,2	5,0	1,6
Rb	0,1	0,2								3	16	10
Li	0,6	0,6								3	2,7	1,3
Ве	3	6								4	3	2
Zn	24	24								86	93	38
Ga	8	4								2	3	2
Ge	3	3								1	1	1
Cs	0,0	0,0								0,0	0,1	0,1
La	5	7	3	11	9	10	15	11	8	8	22	13
Ce	7	15	6	25	21	25	33	27	19	13	32	20
Pr	0,8	2	1	4	3	3	4	4	3	2	3	2
Nd	3	9	3	17	12	16	20	16	12	6	11	7
Sm	1	2	1	4	3	3	4	4	3	1	1	1
Eu	0,5	0,7	0,4	1,2	0,8	1	1	1	0,8	0,2	0,4	0,3
Gd	2	2	1	3	2	3	3	3	2	1	1	0,8
Tb	0,2	0,3	0,2	0,4	0,3	0,4	0,4	0,4	0,2	0,1	0,1	0,1
Dy	1	1	1	2	1	2	2	2	1	0,5	0,8	0,3
Но	0,3	0,2	0,1	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,1	0,0
Er	0,6	0,6	0,4	0,8	0,6	0,6	0,6	0,7	0,4	0,3	0,3	0,1
Tm	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0
Yb	0,7	0,7	0,4	0,9	0,8	0,7	0,8	0,7	0,6	0,5	0,4	0,2
Lu	0,1	0,1	0,1	0,2	0,1	0,2	0,2	0,1	0,1	0,1	0,1	0,0
Total	22	41	17	69	54	66	85	70	50	32	74	46
LA/Yb	5	7	6	8	8	10	13	11	9	11	45	54
Zr/Hf	25	23	0	29	31	27	26	27	25	30	32	38

Tabela 5.6 – Análises por Espectrometria de Massa com ablação por laser em clinopiroxênios do Complexo Carbonatítico de Tapira, valores em ppm.

Amostra	AT43_a	AT43_b	AT43_c	AT60_a	AT60_b	AT60_c	AT12_a	AT12_b	AT12_c	AT12_d
Unidade	C3	C3	C3	C3	C3	C3	Sie	Sie	Sie	Sie
Rocha	Calciocarb	Calciocarb	Calciocarb	Calciocarb	Calciocarb	Calciocart	Sienito	Sienito	Sienito	Sienito
Ва	10	17	0	1	24	37	721	7	1	77
Sr	726	761	707	480	707	730	440	1048	1196	957
Zr	1798	1136	2446	1643	1077	105		381	410	486
Hf	70	47	104	62	31	6	113	12	13	17
Y	14	11	23	12	14	8	100	8	7	8
Nb	4	1	2	10	3	12	1083	2	1	2
Та	0,6	0,2	0,4	1,1	0,3	0,4	61	0,0	0,0	0,0
Th	0,1	0,0	0,0	0,1	0,0	0,5	2	0,1	0,0	0,1
U	0,1	0,0	0,1	0,7	0,0	2	4	0,0	0,0	0,1
Sc	67	55	119	491	411	107		57	37	37
V	145	120	120	266	317	77	265	211	247	282
Pb	2	3	2	2	1	0		1	1	1
Rb	1	1	0	0	0	0		1	0	2
Li	1	1	1	1	1	0		3	1	16
Ве	16	4	10	2	6	4		3	2	5
Zn	65	82	75	73	57	33		85	112	102
Ga	17	7	12	1	1	1		5	7	6
Ge	4	3	4	2	2	3		2	3	2
Cs	0,0	0,0	0,0	0,0	0,0	0,0		0,0	0,0	0,0
La	13	10	20	14	16	14	283	10	9	9
Ce	37	22	55	55	51	43	456	22	24	24
Pr	7	4	10	10	12	8	77	4	3	3
Nd	28	21	51	51	54	37	271	13	13	13
Sm	6	4	11	9	12	6	53	3	2	3
Eu	2	1	3	3	3	2	23	1	1	1
Gd	5	3	10	7	9	5	30	2	2	3
Tb	1	0	1	1	1	0	5	0	0	0
Dy	3	3	6	4	5	2	21	2	2	2
Но	0,5	0,3	0,9	0,4	0,7	0,4	3,4	0,3	0,3	0,3
Er	1	0,8	2	1	1	0,8	10	0,7	0,7	0,9
Tm	0,2	0,1	0,3	0,2	0,2	0,1	0,5	0,1	0,2	0,1
Yb	2	1	2	1	2	0,7	4	1	1	2
Lu	0,3	0,3	0,4	0,2	0,3	0,1	0,3	0,3	0,3	0,4
Total	106	71	173	156	167	120	1238	59	59	62
LA/Yb	6	6	7	8	7	15	51	5	4	4
Zr/Hf	26	24	24	27	35	16	0	32	33	28

Tabela 5.6 (Cont.) – Análises por Espectrometria de Massa com ablação por laser em clinopiroxênios do Complexo Carbonatítico de Tapira, valores em ppm.

Na figura 5.21 os padrões de ETR mostram a diferença entre clinopiroxênios dos bebedouritos B1 e B2. Ambos os padrões são aproximadamente 500 vezes mais pobres em ETRL do que o magma primitivo, mas o piroxênio de B1 é ainda mais pobre em ETRL do que o de B2. Assim como observado para a apatita, a composição do piroxênio dos carbonatitos C3 (Fig. 5.22) é compatível com a do piroxênio de bebedouritos. No sienito, as duas variedades existentes de clinopiroxênio (diopsídio e aegirina-augita) distinguem-se tanto pela concentração de terras raras quanto pela inclinação do padrão, mais acentuada no caso da aegirina-augita (Fig. 5.23).

Na figura 5.24 os padrões dos clinopiroxênios do B1, Sie (diopsídio), B2 e C3 se aproximam dos padrões dos kamafugitos de Santa Rosa (SR), Presidente Olegário (PO) e Veridiana (VER). Porém, em Canas (CN) e Malaquias (MAL) o padrão é praticamente horizontal e o conteúdo de ETR do piroxênio de Malaquias é bem menor do que os demais.

No diagrama multielementar (Fig. 5.25) normalizado à composição do flogopita picrito observa-se que o fracionamento de quantidades importantes de clinopiroxênio levará ao enriquecimento do líquido residual em todos os elementos considerados no diagrama, exceto, talvez, o Y e os ETR mais pesados. Os piroxênios dos kamafugitos de Santa Rosa e Canas (Melluso *et al.* 2008), inclusive, apresentam teores de Y, Yb e Lu mais altos do que a média do flogopita-picrito. Estas mesmas amostras têm outras peculiaridades, como deficiência de Zr e de Sr, relativamente aos demais piroxênios. Embora não conste na configuração tradicional de diagramas multielementares, o Sc pode ser um importante indicador de fracionamento de piroxênio, tendo em vista os teores relativamente altos deste elemento no mineral (ver tabela 5.6).

Figura 5.21 – Distribuição dos elementos terras raras em clinopiroxênios dos bebedouritos B1 e B2 do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picritos de Catalão I (Cordeiro *et al.* 2010). Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.22 – Distribuição dos elementos terras raras em clinopiroxênios do carbonatito C3 do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.23 – Distribuição dos elementos terras raras em clinopiroxênios do Sienito I do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.24 – Distribuição dos elementos terras raras em clinopiroxênios de Tapira (médias), comparadas aos dados de Melluso *et al.* (2008), PO (Presidente Olegário), VER (Veridiana), SR (Santa Rosa) e MAL (Malaquias), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.25 – Aranhagrama dos elementos traços normalizados pelo flogopita picrito em piroxênios do Complexo de Tapira, comparadas aos dados de Melluso *et al.* (2008), PO (Presidente Olegário), VER (Veridiana), SR (Santa Rosa) e MAL (Malaquias), CAN (Canas).

5.5 – Flogopita/Tetra-ferriflogopita

As micas das amostras estudadas do Complexo Alcalino-Carbonatítico de Tapira variam em granulação de 0,1 até 8 mm. A flogopita predomina nos bebedouritos e sienitos (8 até 40%), a tetra-ferriflogopita é predominante nos carbonatitos (0,5 até 34%). Geralmente, as micas ocorrem como cristais idiomórficos disseminados, e podem ser poiquilíticas, com inclusões de apatita.

5.5.1 - Elementos Maiores (microssonda)

A fórmula geral das micas pode ser expressa como $X_2Y_{4-6}Z_8O_{20}(OH,F)_4$, em que X é essencialmente K, Na ou Ca, mas também pode ser Ba e Rb. Y é essencialmente Al, Mg ou Fe, mas também pode ser Mn, Cr e Ti. O sítio Z é essencialmente ocupado por Si e Al, mas é também possível a presença de Fe³⁺ e Ti, nos casos em que a soma de Si e Al não é suficiente para preencher integralmente o sítio. A mica mais freqüente em Tapira é a flogopita [KMg₃AlSi₃O₁₀(OH,F)₂] que forma solução sólida com membros finais ricos em ferro, como annita [KFe₃AlSi₃O₁₀(OH)₂], tetra-ferriflogopita [KMg₃FeSi₃O₁₀(OH)₂] e siderofilita [KFe₂Al₂Si₂O₁₀(OH)₂]. Biotita normalmente é um membro intermediário nesta complexa solução sólida (Reguir *et al.* 2009).

As composições médias das micas do Complexo de Tapira são apresentadas na tabela 5.7, em conjunto com as fórmulas estruturais calculadas na base de 22 oxigênios, H₂O foi calculado por estequiometria. Os dados mostram SiO₂ de 35,5 até 40,03%, TiO₂ de 0,98 até 3,3%, Al₂O₃ de 8,93 a 13,6%, FeO de 5,4 a 28,91%, MnO<1,02%, MgO de 8,4 até 25,2%, CaO <0,3%, Na₂O <0,3%, K₂O de 7,9 até 10%, SrO<0,1 e BaO<1,4. A figura 5.26 mostra a composição das micas no diagrama ternário Al-Mg-Fe.

Amostra	AT004	AT025	AT011b	AT505	AT125	AT505	AT012	AT043	AT060	AT504	AT501	AT502	AT503
Unidade	B1	B1	B2	B2	B2	B2	Sien	C3	C3	C4	N2	C1a	C1b
Rocha	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Sienito	Carb	Carb	Carb	Pseudo-N	Carb	Carb
SiO ₂	39,06	38,53	35,79	41,54	37,65	40,41	36,45	37,32	39,75	39,04	40,97	39,48	40,91
TiO ₂	1,74	1,70	2,61	0,68	1,58	0,20	2,10	2,31	1,91	0,60	0,16	0,09	0,20
Al ₂ O ₃	13,44	12,02	12,89	8,79	10,31	0,43	10,10	10,47	10,99	11,92	0,01	0,25	0,07
Fe ₂ O ₃	0,18	1,60	1,02	3,58	2,55	13,86	2,31	2,37	1,84	1,14	14,96	14,26	14,83
FeO	9,25	4,18	16,09	5,53	14,40	8,36	23,46	14,31	8,86	4,95	3,10	7,27	2,90
MnO	0,10	0,09	0,41	0,07	0,36	0,17	0,90	0,34	0,19	0,21	0,07	0,11	0,11
MgO	21,54	24,21	15,57	24,73	17,35	21,21	10,60	16,70	21,24	24,44	24,74	21,46	24,80
CaO	0,01	0,03	0,07	0,03	0,12	0,07	0,12	0,12	0,06	0,26	0,01	0,11	0,20
Na ₂ O	0,29	0,22	0,07	0,25	0,14	0,05	0,05	0,07	0,10	0,09	0,13	0,11	0,12
K ₂ O	9,66	9,71	9,45	10,17	9,67	9,59	9,31	9,27	9,94	9,68	9,88	9,77	9,45
SrO		0,02	0,03		0,03		0,06	0,04	0,03	0,02	0,02	0,02	0,01
BaO	0,89	0,49	0,48		0,33		0,18	0,26	0,15	0,74	0,04	0,02	0,00
F	0,00	0,16		0,00	0,18		0,10	0,25	0,40	0,18	0,11	1,07	1,00
Cl	0,01	0,02	0,00	0,02	0,03		0,01	0,01	0,00	0,00	0,01	0,01	0,02
Cr ₂ O ₃	0,01	0,06	0,01	0,01	0,01	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,02
H ₂ O	4,12	3,98	3,89	4,14	3,82	3,89	3,74	3,77	3,89	3,97	3,90	3,31	3,47
O=F,Cl	0,00	0,07	0,00	0,01	0,08	0,00	0,04	0,11	0,17	0,08	0,05	0,45	0,43
Total	100	96,95	98,39	99,53	98,44	98,26	99,48	97,51	99,19	97,20	98,11	96,90	97,67
Cations na	a base de 2	22 O (OH,F	,CI)										
Si	5,67	5,69	5,51	6,01	5,77	6,24	5,77	5,75	5,84	5,77	6,21	6,19	6,21
Al iv	2,30	2,09	2,34	1,50	1,86	0,08	1,88	1,90	1,90	2,08	0,00	0,05	0,01
Fe ³	0,02	0,18	0,12	0,39	0,29	1,61	0,28	0,27	0,20	0,13	1,71	1,68	1,69
Total IV	8,00	7,96	7,97	7,90	7,93	7,92	7,93	7,93	7,95	7,97	7,92	7,92	7,92
Ti	0,19	0,19	0,30	0,07	0,18	0,02	0,25	0,27	0,21	0,07	0,02	0,01	0,02
Cr	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe	1,12	0,52	2,07	0,67	1,85	1,08	3,11	1,84	1,09	0,61	0,39	0,95	0,37
Mn	0,01	0,01	0,05	0,01	0,05	0,02	0,12	0,04	0,02	0,03	0,01	0,01	0,01
Mg	4,66	5,33	3,57	5,34	3,96	4,88	2,50	3,84	4,65	5,38	5,59	5,02	5,61
Total VI	5,80	5,85	5,70	6,01	5,85	5,98	5,73	5,73	5,77	6,02	5,99	5,98	6,00
Ca	0,00	0,00	0,01	0,00	0,02	0,01	0,02	0,02	0,01	0,04	0,00	0,02	0,03
Na	0,08	0,06	0,02	0,07	0,04	0,02	0,02	0,02	0,03	0,03	0,04	0,03	0,03
К	1,79	1,83	1,86	1,88	1,89	1,89	1,88	1,82	1,86	1,82	1,91	1,95	1,83
Sr	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Ва	0,05	0,03	0,03	0,00	0,02	0,00	0,01	0,02	0,01	0,04	0,00	0,00	0,00
Total XII	1,92	1,93	1,92	1,95	1,97	1,92	1,93	1,88	1,91	1,94	1,96	2,01	1,90
Cations	15,72	15,74	15,59	15,87	15,75	15,82	15,59	15,54	15,63	15,92	15,87	15,91	15,82
ОН	4,00	3,92	4,00	3,99	3,90	4,00	3,95	3,88	3,81	3,92	3,94	3,47	3,51
Al total	2,30	2,09	2,34	1,50	1,86	0,08	1,88	1,90	1,90	2,08	0,00	0,05	0,01
Fe/Fe+Me	0,20	0,12	0,38	0,17	0,35	0,36	0,57	0,36	0,22	0,12	0,27	0,34	0,27

Tabela 5.7 – Composições químicas médias das micas do Complexo Carbonatítico de Tapira.

Figura 5.26 – Diagrama ternário do sistema Al-Mg-Fe evidenciando a composição das micas estudadas em Tapira em comparação a dados anteriores deste mesmo complexo. Campos para análises anteriores de micas de Tapira de acordo com Brod *et al.* (2001).

Observa-se da figura 5.26 que as micas progridem por substituição de Mg por Fe²⁺ no sentido B1 – B2 – Sienitos, enquanto as micas dos carbonatitos C3 e C4 são composicionalmente semelhantes às de bebedouritos. Os dados da presente dissertação estendem o intervalo composicional para valores mais ricos na molécula de annita, em micas de sienitos, relativamente aos resultados anteriores de Brod *et al.* (2001). Parte das micas de C4, e as micas dos nelsonitos N2 e dos carbonatitos C1a e C1b são tetra-ferriflogopita, o que reflete o caráter extremamente deficiente em alumínio desses magmas.

5.5.2 - Elementos Traços (Laser Ablation)

Análises por Espectrometria de Massa com ablação por laser nas micas de Tapira indicaram concentrações de até 295 ppm de La e 420 ppm de Ce, Nd até 134 ppm, Y até 41 ppm, até 1,41 ppm de Yb e 0,26 ppm de Lu. Para o estudo dos elementos terras raras (ETR), foram selecionadas micas de amostras representativas do Complexo, os dados químicos obtidos para este mineral estão na tabela 5.8.

Tabela 5.8 – Análises por Espectrometria de Massa com ablação por laser em micas do Complexo Carbonatítico de Tapira, valores em ppm.

Amostra	AT038	AT505_a	AT505_b	AT505_c	AT125_a	AT125_b	AT125_c	AT12_b	AT12_c	AT12_d	AT12_e
Unidade	B2	B2	B2	B2	B2	B2	B2	Sien	Sien	Sien	Sien
Rocha	Bebed	Apatit	Apatit	Apatit	Bebed	Bebed	Bebed	Sienito	Sienito	Sienito	Sienito
Ва	48	981	1302	949	4184	1699	1160	7755	877,5	2782	712
Sr	1693	3,08	1,94	2,56	25,28	10,95	4,65	538	349	5,51	3,45
Zr		5,51	2,55	4,71	10,39	12,42	5,14	25,02	5,80	3,68	1,25
Hf	34,65	0,14	0,20	0,27	0,26	0,47	0,20	1,28	0,21	0,22	
Y	13,36	0,01	0,01	0,01	0,15	0,16	0,10	0,35	1,42	0,06	0,02
Nb	1,65	66,23	61,36	62,87	30,22	31,65	33,10	4,14	53,55	72,32	91,99
Та	0,14	0,43	0,78	0,43	0,52	0,23	0,38	0,17	0,39	0,27	0,34
Th	0,47	0,07	0,02	0,01	0,06	0,08	0,06	0,10	0,06	0,05	0,00
U	0,06	0,00	0,00	0,00	0,02	0,06	0,02	0,09	0,00	0,15	0,07
Sc		4,96	4,19	4,00	1,57	1,33	1,19	1,35	0,38	0,78	0,47
V	178	12	14	15	102	84	85	0,7	210	605	423
Pb		0,08	0,03	0,04	1,29	1,80	1,20	1,58	0,23	0,72	1,02
Rb		295	288	270	268	229	235	125	256	284	344
Li					6,73	6,73	6,18		31,88	42,43	49,33
Ве					6,79	2,55	3,21		10,37	4,82	2,97
Zn		132	141	135	311	241	246		888	1049	1004
Ga		67,10	72,16	71,14	34,66	34,97	39,95		100	82,24	109
Ge					1,60	0,66	0,98		2,05	2,12	1,78
Cs		8,26	8,96	6,82	3,46	3,30	2,95		5,44	5,69	9,98
La	20,70	0,04	0,00	0,00	0,24	0,74	0,29	0,96	5,09	0,15	0,01
Ce	58,72	0,07	0,01	0,00	0,39	0,85	0,42	1,81	7,25	0,28	0,03
Pr	7,17	0,01	0,00	0,00	0,04	0,07	0,06	0,23	0,77	0,03	0,00
Nd	32,64	0,04	0,02	0,03	0,21	0,38	0,21	0,61	3,32	0,10	0,05
Sm	7,32	0,02	0,01	0,02	0,03	0,04	0,06	0,07	0,43	0,04	0,04
Eu	2,51	0,02	0,02	0,02	0,05	0,04	0,03	0,05	0,12	0,02	0,02
Gd	5,92	0,15	0,13	0,13	0,41	0,22	0,22	0,96	0,47	0,10	0,11
Tb	0,71	0,00	0,00	0,00	0,02	0,01	0,01	0,01	0,06	0,01	0,01
Dy	3,05	0,01	0,01	0,01	0,06	0,07	0,04	0,05	0,26	0,04	0,00
Но	0,52	0,00	0,00	0,00	0,01	0,02	0,02	0,01	0,04	0,01	0,01
Er	1,17	0,01	0,01	0,01	0,03	0,03	0,04	0,02	0,23	0,02	0,01
Tm	0,23	0,00	0,00	0,00	0,01	0,01	0,02	0,01	0,01	0,01	0,01
Yb	1,41	0,03	0,02	0,02	0,08	0,07	0,02	0,04	0,05	0,06	0,06
Lu	0,26	0,00	0,00	0,00	0,01	0,01	0,02	0,01	0,02	0,01	0,01
La/Yb	10,5	1,0	0,2	0,1	2,2	7,8	11,1	18,0	71,6	1,7	0,1
Zr/Hf	0,0	40,2	12,9	17,4	40,0	26,4	25,3	19,5	27,6	16,7	
Nb/Ta	12,2	154,4	79,1	145,9	57,9	140,0	86,9	24,6	137,3	264,9	267,4
Th/U	8,3	19,7	8,4	1,6	2,5	1,4	2,3	1,2		0,3	0,0

Amostra	AT25_a	AT25_b	AT25_c	AT25_d	AT43_a	AT43_b	AT43_c	AT43_d	AT60_a	AT60_b	AT60_c	AT502_a	AT502_b	AT501
Unidade	B1	B1	B1	B1	C3	C1a	C1a	C1a						
Rocha	Bebed	Bebed	Bebed	Bebed	Carbon	Carbon	Carbon							
Ва	7380	4927	5061	5436	2168	3272	4484	2706	2762	1635	2205	25,45	424,8	245,4
Sr	75,86	42,76	48,84	39,12	5,53	13,69	17,82	8,66	5,47	2,82	2,42	1,19	11,89	1,36
Zr	117	61,09	94,08	75,00	10,66	8,17	108,59	21,26	17,11	18,25	27,46	0,48	5,32	
Hf	2,78	2,12	3,10	2,44	0,57	0,44	2,10	1,07	0,95	1,11	0,79	0,08	0,57	0,17
Y	1,09	0,08	0,60	0,08		0,25	0,26	0,10	0,07	0,04	0,04	0,01	0,26	0,04
Nb	33,76	18,68	34,59	24,55	182	264	137	211	616	427	121	24,76	35,77	103
Та	0,44	0,41	0,88	0,49	3,77	10,18	3,70	3,83	41,22	27,24	5,42	0,09	0,15	0,57
Th	0,12	0,00	0,14	0,04	0,00	0,09	0,04	0,01	0,04	0,00	0,03	0,06	0,21	0,74
U	0,03	0,01	0,07	0,01	0,01	2,18	0,84	0,26	0,29	0,03	0,05	0,00	0,01	0,01
Sc	42,46	30,56	47,24	38,09	4,20	5,24	4,45	2,89	15,59	11,11	6,49	1,08	3,21	
V	70,48	54,56	57,30	47,17	214	304	293	221	225	158	74,94	5,20	12,06	7,74
Pb	3,36	0,99	0,83	1,41	1,06	1,30	1,25	1,18	1,08	1,42	1,19	2,14	0,79	
Rb	378	249	312	337	275	263	202	194	247	255	219	255	233	
Li	2,83	3,71	1,37	1,29	8,82	4,62	5,78	5,56	4,04	1,63	2,55	148	162	
Be	3,54	2,38	2,03	2,51	1,73	3,10	2,71	0,98	9,20	4,81	5,51	26,25	30,96	
Zn	106	79,37	88,48	96,79	334	308	261	268	261	288	238	304	267	
Ga	41,07	25,27	34,03	37,08	51,84	48,23	46,13	37,31	45,13	48,84	46,09	11,05	55,90	
Ge	1,55	0,96	1,36	1,59	2,25	1,66	2,06	1,51	2,04	1,65	1,50	3,90	2,58	
Cs	5,70	3,45	3,40	3,89	3,67	3,56	3,56	2,53	3,33	3,27	3,33	5,19	3,76	
La	3,82	0,03	8,38	0,17	0,03	0,30	0,45	0,06	0,13	0,08	0,06	0,48	0,33	0,01
Ce	9,40	0,03	20,07	0,40	0,03	0,61	0,73	0,13	0,24	0,18	0,13	0,46	0,62	0,06
Pr	0,93	0,01	2,00	0,04	0,01	0,11	0,11	0,03	0,04	0,02	0,02	0,05	0,06	0,01
Nd	2,31	0,05	6,19	0,37	0,06	0,50	0,28	0,04	0,13	0,17	0,10	0,17	0,24	0,06
Sm	0,32	0,04	0,89	0,05	0,05	0,10	0,06	0,03	0,07	0,03	0,05	0,06	0,06	0,04
Eu	0,18	0,02	0,23	0,03	0,03	0,07	0,07	0,02	0,03	0,04	0,03	0,02	0,01	0,01
Gd	1,81	0,72	1,48	0,95	0,18	0,51	0,61	0,44	0,26	0,13	0,18	0,06	0,07	0,07
Tb	0,02	0,01	0,08	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,00	0,01	0,01
Dy	0,19	0,00	0,32	0,03	0,03	0,09	0,04	0,01	0,06	0,06	0,05	0,03	0,03	0,01
Но	0,03	0,01	0,03	0,01	0,01	0,02	0,01	0,00	0,01	0,01	0,02	0,01	0,01	0,00
Er	0,11	0,02	0,08	0,02	0,03	0,03	0,02	0,01	0,04	0,02	0,03	0,04	0,04	0,02
Tm	0,01	0,00	0,01	0,02	0,01	0,01	0,00	0,00	0,01	0,01	0,02	0,01	0,01	0,00
Yb	0,13	0,05	0,04	0,11	0,04	0,05	0,06	0,03	0,05	0,05	0,10	0,04	0,09	0,04
Lu	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00
La/Yb	21,1	0,5	154,1	1,1	0,5	4,1	5,5	1,2	1,8	1,1	0,4	7,8	2,6	0,3
Zr/Hf	42,1	28,8	30,3	30,7	18,7	18,6	51,7	19,9	18,0	16,4	34,8	6,0	9,3	0,0
Nb/Ta	76,7	45,5	39,3	50,6	48,2	26,0	36,9	55,0	14,9	15,7	22,4	269,1	240,1	181,1
Th/U	4.3	0.3	1.9	7.2	0.0	0.0	0.0	0.0	0.1	0.0	0.5	20.3	16.1	119.7

Tabela 5.8 (Cont.)– Análises por Espectrometria de Massa com ablação por laser em micas do Complexo Carbonatítico de Tapira, valores em ppm.

As figuras 5.27 e 5.28 mostram os padrões de ETR das micas das unidades B1, B2, C3, Sie, C1 e N2. De forma geral as micas são mil vezes mais empobrecidas em ETR do que o flogopita picrito. As concentrações muito baixas de ETR neste mineral resultam em uma maior oscilação nos valores analíticos. Por exemplo, em uma mesma amostra de B1 o conteúdo de ETRL na mica varia de 0,1 até aproximadamente 50 ppm para ETRL, embora para ETRP a oscilação seja muito pequena (0,1 a 1 ppm). Também em função das baixas concentrações algumas amostras apresentam anomalias inesperadas (por exemplo, Dy) que possivelmente são artefatos analíticos e não anomalias reais.

Nos bebedouritos B2 a quantidade de ETRL varia de 0,01 a aproximadamente 5 ppm, e o padrão de ETR é praticamente horizontal.

Flogopita dos carbonatitos C3 e C1 e do nelsonito N2 possuem padrões monótonos e semelhantes.

Em micas de sienitos (amostra Sie) as análises mostraram conteúdos variados de ETR para micas da mesma amostra, principalmente para os ETRL cuja variação pode chegar a 50 ppm.

Na figura 5.29 as curvas padrão do kamafugito Malaquias e do kimberlito Limeira são semelhantes as curvas das micas de bebedouritos B1 e B2. No kamafugito Veridiana e no Kimberlito Pântano o padrão é praticamente plano com maior enriquecimento em ETRP e no kimberlito Indaiá as flogopitas são extremamente empobrecidas em ETR.

No aranhagrama (Fig. 5.30) dos elementos traço normalizados pelo flogopita picrito as micas dos bebedouritos B2, estão mais enriquecidas em termos de ETRP em relação às demais e sua curva padrão se assemelha à da mica do kamafugito Veridiana.

Figura 5.27 – Distribuição dos elementos terras raras em micas do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picritos de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.28 – Distribuição dos elementos terras raras em micas do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picritos de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.29 – Distribuição dos elementos terras raras em micas de Tapira (médias), comparadas aos dados de Melluso *et al.* (2008), IND (Indaiá), VER (Veridiana), LIM (Limeira), PAN (Pântano) e MAL (Malaquias), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.30 – Aranhagrama dos elementos traços normalizados pelo flogopita picrito em micas do Complexo de Tapira, comparadas aos dados de Melluso *et al.* (2008), IND (Indaiá), VER (Veridiana), LIM (Limeira), PAN (Pântano) e MAL (Malaquias) e PO (Presidente Olegário).

5.6 – Carbonatos

Os carbonatos do Complexo Alcalino-Carbonatítico de Tapira estudados apresentam granulação de 0,2 até 7 mm. A proporção modal de carbonato nas amostras estudadas varia de 2 a 81%. Geralmente os carbonatos ocorrem como cristais hipidiomórficos, ora englobando olivina, mas também idiomórficos preenchendo fraturas, análises de microssonda revelam a presença de calcita, dolomita, estroncianita, norsethita e burbankita.

5.6.1 - Elementos Maiores (microssonda eletrônica)

A fórmula geral dos carbonatos pode ser expressa como XCO_3 , em que X é essencialmente Ca (calcita, aragonita), Mg (magnesita), Mn (rodocrosita), Fe (siderita), Ca e Mg (dolomita), Sr (estroncianita) e Ba (viterita). Os carbonatos mais frequentes em Tapira são a calcita (CaCO₃) e a dolomita (CaMg(CO₃)₂) (Fig. 5.31).

As composições médias dos carbonatos de Tapira são apresentadas na tabela 5.9, em conjunto com as fórmulas estruturais calculadas na base de 6 oxigênios.

Sample	AT11b	AT125	AT502	AT502	AT503	AT043	AT060	AT504	AT502	AT501	AT012
Unidade	B2	B2	C1	C1	C1	C3	C3	C4	N1	N2	Sie
Mineral	Calcita	Calcita	Calcita	Norsethita	Estronciani	Calcita	Calcita	Calcita	Dolomita	Calcita	Calcita
Rocha	Bebedourito	Bebedourito	Ba-calcioca	Ba-calcioca	Ba-calcioca	calciocarbo	calciocarbo	calciocarbo	Ba-calcioca	nelsonito	sienito
P ₂ O ₅	0,06	0,03	0,03	0,00	0,01	0,03	0,03	0,03	0,01	0,04	0,04
SO ₃	0,00	0,01	0,01	0,00	0,04	0,03	0,02	0,03	0,01	0,05	0,00
K ₂ O	0,05	0,02	0,00	0,02	0,01	0,03	0,02	0,01	0,01	0,01	0,03
Y ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,20	0,10	0,35	0,60	0,09	0,02	0,17	0,03	2,29	0,16	0,61
MnO	0,00	0,05	0,39	0,20	0,00	0,05	0,19	0,06	0,62	0,09	0,02
MgO	0,00	0,05	0,84	16,96	0,00	0,05	0,35	0,20	20,84	0,12	0,01
CaO	52,50	52,29	50,78	0,18	3,07	51,59	52,52	52,57	29,68	55,01	51,72
Na ₂ O	0,05	0,05	0,02	0,10	0,01	0,02	0,04	0,02	0,02	0,00	0,04
SrO	1,87	2,36	1,92	0,60	62,00	1,84	1,84	1,90	0,74	0,32	2,01
BaO	0,25	0,37	0,35	53,90	0,32	0,24	0,28	0,30	0,03	0,04	0,23
ThO ₂	0,00	0,05	0,03	0,00	0,04	0,02	0,04	0,03	0,02	0,06	0,00
La ₂ O ₃	0,02	0,03	0,00	0,00	0,02	0,02	0,03	0,02	0,01	0,00	0,03
Ce ₂ O ₃	0,13	0,07	0,05	0,20	0,12	0,06	0,11	0,09	0,00	0,00	0,04
Pr_2O_3	0,22	0,06	0,03	0,12	0,02	0,11	0,07	0,16	0,06	0,12	0,02
Nd ₂ O ₃	0,03	0,01	0,01	0,00	0,04	0,00	0,03	0,02	0,00	0,00	0,00
Sm ₂ O ₃	0,03	0,00	0,01	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,03
cátions na b	ase de 6 O.										
Р	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe	0,01	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0,06	0,00	0,02
Ca	1,94	1,93	1,89	0,01	0,17	1,95	1,92	1,94	0,97	1,96	1,93
Sr	0,04	0,05	0,04	0,01	1,82	0,04	0,04	0,04	0,01	0,01	0,04
Βα	0,00	0,00	0,00	0,88	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Ce	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
С	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00

Tabela 5.9 – Composição média dos carbonatos estudados em Tapira.

Figura 5.31 – Composições químicas médias dos carbonatos do Complexo Carbonatítico de Tapira.

5.6.2 - Elementos Traços (Laser Ablation)

Análises por Espectrometria de Massa com ablação por laser em carbonatos de Tapira indicaram concentrações de até 162351 ppm de Ba, 98003 ppm de Sr, 130591 ppm de La e 166595 ppm de Ce, Nd até 28372 ppm, de Y até 2447 ppm, de até 61 ppm de Yb e de 4 ppm de Lu. Para o estudo dos elementos terras raras (ETR) foram selecionadas carbonatos de amostras representativas do complexo. Os dados químicos obtidos para este mineral estão na tabela 5.10.

				,								
Amostra	AT-43b-a	AT-43b-b	AT-43b-c	AT-43b-d	AT-43b-e	AT-43b-f	AT-60-a	AT-60-b	AT-60-c	AT-60-d	АТ-60-е	AT-60-f
Mineral	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita
Unidade	C3	C3	C3	C3	C3	C3	C3	C3	C3	C3	C3	C3
Rocha	Calciocarbo	Calciocarbona	Calciocarb	Calciocarb	Calciocarbo	Calciocarb	Calciocarb	Calciocarb	Calciocarb	Calciocarb	Calciocarb	Calciocarl
Ba	2855	2930	2008	3028	2562	2194	3875	2999	2698	2910	3326	3488
Sr	18325	18202	17000	23546	17624	18816	20469	19811	19371	19922	19176	20957
Y	50,8	46,7	60,1	58,8	49,2	63,6	79,6	64,5	65,1	64,1	65,9	63,5
Sc	0,62	<0.19	<0.23	0,65	0,27	<0.31	2,44	1,43	2,39	2,01	2,19	2,40
V	0,30	0,07	<0.070	0,77	<0.060	<0.084	0,05	0,05	<0.029	0,05	0,06	0,06
As	227	17,22	3,54	307	0,41	<0.39	1,62	1,18	1,09	1,27	1,36	2,45
Pb	6,60	6,03	4,22	9,16	6,16	7,17	7,69	7,74	6,52	6,90	7,07	11,26
Zn	0,66	0,53	<0.61	1,22	0,73	0,95	0,95	1,16	0,56	1,09	0,79	0,67
Ga	2,46	1,46	1,90	2,68	1,68	2,09	6,33	5,34	5,21	5,31	5,06	5,17
Co	0,11	0,04	<0.036	0,05	0,03	<0.044	0,09	0,11	0,13	0,07	0,09	0,10
Cu	1,14	1,03	0,77	0,86	0,82	1,02	0,53	0,34	0,42	<0.26	<0.30	1,50
La	294	274	289	347	297	343	596	532	476	550	556	569
Ce	368	297	302	429	352	375	1112	966	830	846	902	933
Pr	41	37	30	43	41	47	127	118	99	100	102	104
Nd	133	124	141	162	147	166	419	344	296	339	327	328
Eu	5,03	4,34	4,60	6,37	5,61	5,58	16,67	13,42	12,13	12,86	11,98	12,27
Gd	15,71	13,73	14,14	19,13	15,55	21,78	35,07	28,82	33,32	29,89	31,03	29,24
Tb	1,79	1,50	1,98	2,40	1,74	2,64	3,62	3,03	3,95	3,21	3,20	3,08
Dy	10,92	7,85	13,39	11,58	9,78	14,31	16,30	13,12	13,93	14,15	14,95	14,35
Но	1,83	1,41	1,45	2,01	1,89	2,22	2,74	2,00	2,29	2,15	2,30	2,28
Er	3,71	3,75	4,48	4,81	4,35	5,48	6,58	5,23	5,88	5,83	5,89	5,57
Tm	0,50	0,45	0,49	0,59	0,45	0,68	0,74	0,52	0,63	0,62	0,64	0,63
Yb	2,74	1,96	2,66	4,19	3,02	4,10	4,98	3,41	4,14	3,63	3,92	3,92
Lu	0,4	0,3	0,5	0,6	0,4	0,7	0,6	0,5	0,5	0,5	0,5	0,5
La/Yb	77	100	78	59	70	60	86	112	83	109	102	104

Tabela 5.10 – Análises por Espectrometria de Massa com ablação por laser em carbonatos do Complexo Carbonatítico de Tapira, valores em ppm.

Tabela 5.10 (cont.) - Análises por Espectrometria de Massa com ablação por laser em carbonatos do Complexo Carbonatítico de Tapira, valores em ppm.

Amostra	At-125-a	At-125-b	At-125-c	At-125-d	AT-504-Cc1	AT-501_a	AT-501_c	AT-501_d	AT-501_e
Mineral	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita	Calcita
Unidade	B2	B2	B2	B2	C4	N2	N2	N2	N2
Rocha	Bebedourit	Bebedourito	Bebedour	Bebedour	Calciocarbo	Nelsonito	Nelsonito	Nelsonito	Nelsonito
Ва	3529	3190	2955	3188	2143	17935	3639	1607	3006
Sr	16152	17672	16488	23502	15045	98003	26220	33929	23155
Y	5,17	6,03	5,13	5,59	68,34	75,03	72,77	43,52	73,20
Sc	0,80	0,36	0,41	0,41	3,62				
V	2,07	0,73	4,67	0,31	2,73	0,85	4,09	1119	4,25
As	196	85,5	141	278		2,09	1,23	0,53	1,75
Pb	6,03	4,99	5,20	5,82	5,05				
Zn	4,69	1,31	9,75	0,86	7,44				
Ga	2,07	1,85	3,11	2,00	5,98				
Со	0,47	0,16	2,78	0,14					
Cu	1,27	1,13	0,74	0,98					
La	259	289	252	295	469	848	151	51,66	301
Ce	343	315	317	360	717	1588	365	85,85	552
Pr	25,65	28,06	28,72	30,10	93,36	120,37	32,85	8,29	52,76
Nd	61,45	63,22	74,11	76,69	317	398	124	25,50	195
Eu	1,49	1,58	1,56	1,29	11,82	12,80	7,79	1,63	9,15
Gd	3,54	3,86	3,92	3,55	35,39	37,39	19,07	5,78	22,15
Tb	0,30	0,31	0,32	0,34	3,18	3,62	2,91	1,29	2,30
Dy	1,28	1,30	1,30	1,01	15,85	15,62	14,62	8,67	13,27
Но	0,15	0,18	0,18	0,23	2,56	2,65	2,50	1,57	1,87
Er	0,46	0,42	0,34	0,53	6,32	5,37	6,86	4,37	5,01
Tm	0,05	0,04	0,05	0,02	0,64	0,75	0,89	0,61	0,78
Yb	0,28	0,22	0,24	0,23	2,94	4,83	5,51	2,91	4,62
Lu	0,07	0,03	0,03	0,05	0,46	0,57	0,81	0,55	0,69
La/Yb	668	951	750	919	115	126	20	13	47

Amostra	AT-502-a	AT-502-b	AT-502-c	AT-502-d	АТ-502-е	AT-502-f	AT-502-h	AT-502-i
Mineral	Calcita	Calcita	Calcita	Calcita	Calcita	Dolomita	Burbankit	Burbankita
Unidade	C1a	C1a	C1a	C1a	C1a	C1a	C1a	C1a
Rocha	Ba-calcioca	Ba-calciocarbo	Ba-calcioc	Ba-calcioc	Ba-calcioca	Ba-calcioca	Ba-calcioc	Ba-calcioca
Ва	3304	2135	647	467	336	323	162351	1358
Sr	24866	16151	22270	16151	32668	18947	97832	53469
Y	105	68,36	8,23	5,96	13,87	9,83	2447	660
Sc	19,12	12,37	15,76	11,38	38,83		9,51	13,55
V	2,20	1,42	2,32	1,67	2,56	2,40	2,90	1,73
As	0,71	0,46	0,91	0,66		<0.48		
Pb	13,36	8,62	17,07	12,30	11,21		106,43	212,17
Zn	1,44	0,94	33,01	23,91	42,52		12,44	<1.57
Ga	1,51	0,98	1,06	0,76	1,87		597	162
Со	0,12	0,08	3,99	2,88				
Cu	0,65	0,42	1,31	0,95				
La	72,52	46,90	47,53	34,33	40,77	27,43	130591	32120
Ce	165	107	102	73,90	104	63,85	166595	38022
Pr	21,47	13,89	11,43	8,26	10,72	8,09	10853	2385
Nd	77,86	50,19	34,28	24,69	37,95	28,79	28372	7561
Eu	6,32	4,08	1,35	0,98	2,21	1,82	441	115
Gd	19,55	12,63	3,84	2,77	4,68	4,00	2200	465
Tb	3,03	1,96	0,33	0,24	0,51	0,46	137	31,41
Dy	17,60	11,47	1,89	1,38	3,54	2,83	865	194
Но	3,45	2,23	0,32	0,23	0,49	0,29	114	27,62
Er	8,25	5,33	0,60	0,43	1,22	0,84	227	55,30
Tm	1,02	0,66	0,11	0,08	0,14	0,07	17,53	4,76
Yb	5,82	3,77	0,67	0,48	1,31	0,72	60,75	21,58
Lu	0,96	0,62	0,13	0,09	0,09	0,11	4,24	1,45
La/Yb	9	9	51	51	22	27	1542	1068

Tabela 5.10 (cont.) – Análises por Espectrometria de Massa com ablação por laser em carbonatos do Complexo Carbonatítico de Tapira, valores em ppm.

Na figura 5.32 os padrões de ETR mostram a diferença entre os carbonatos das unidades B2, C3, C4, C1 e N2.

Os carbonatos dos bebedouritos B2 possuem um padrão de ETR com inclinação mais acentuada do que os flogopita picritos, indicando maior concentração de ETRL e empobrecimento de ETRP.

As curvas de ETR dos carbonatitos C3 e C4 acompanham a inclinação do flogopita picrito. Em C3 as duas amostras (AT-043 e AT-060) mostram padrões com inclinação ligeiramente diferente, indicando uma possível diferença de estágio evolutivo entre elas. Em C4 a análise obtida indica um enriquecimento proporcional de todos os ETR em relação ao picrito.

Na amostra de carbonatito C1 os padrões de ETR sugerem a presença de pelo menos três variedades de carbonato. As análises de burbankita (AT502-i e AT502-h) mostram um enriquecimento de mais de 10000 vezes o condrito, porém sem mudança de inclinação em relação ao campo do magma primitivo. Já as análises feitas em calcitas

(AT502-a e AT502-b) mostram um padrão mais plano. A dolomita teve sua curva abaixo do campo do flogopita picrito.

As análises das calcitas do nelsonito N2 (AT501) variam até 10000 ppm quanto ao conteúdo de ETRL. No diagrama normalizado da figura 5.32, observa-se que os ETR pesados têm concentrações mais ou menos constantes.

A figura 5.33 mostra o aranhagrama dos elementos traços nos carbonatos normalizados pelo flogopita picrito, o padrão geral evidencia picos de La, Sr e Sm e um enriquecimento em Tb, Y, Yb e Lu.

Figura 5.32 – Distribuição dos elementos terras raras em carbonatos do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.33– Aranhagrama dos elementos traços normalizados pelo flogopita picrito em carbonatos do Complexo de Tapira.

5.7 – Granadas

Granada ocorre nos bebedouritos B1 e B2, principalmente no segundo, onde é o principal mineral de titânio. As granadas estudadas variam em tamanho de 0,1 até 10 mm. A proporção modal de granada nas amostras estudadas varia de 2 até 25%. Geralmente a granada ocorre como cristais idiomórficos, disseminados, mas também concentrada em níveis, preferencialmente associada à perovskita.

5.7.1 - Elementos Maiores (microssonda eletrônica)

A fórmula geral do grupo das granadas pode ser expressa como $X_3Y_2Si_3O_{12}$. O grupo pode ser subdividido nas espécies: piropo (Mg₃Al₂Si₃O₁₂), almandina (Fe²⁺₃Al₂Si₃O₁₂), espessartina (Mn₃Al₂Si₃O₁₂), grossulária (Ca₃Al₂Si₃O₁₂), andradita (Ca₃(Fe³⁺,Ti)₂Si₃O₁₂) e uvarovita (Ca₃Cr₂Si₃O₁₂).

As composições médias das granadas do Complexo de Tapira são apresentadas na tabela 5.11, em conjunto com as fórmulas estruturais calculadas na base de 24 oxigênios. São granadas do tipo andradita, com quantidades variáveis de titânio. Os dados mostram concentrações de SiO₂ de 25,65 até 32,03%, TiO₂ de 6,55 até 15,29%,

Al₂O₃ de 0,16 a 1,66%, Cr₂O₃ até 0,13%, FeO de 1,4 a 24,12%, Fe₂O₃ de 20,38 até 21,85%, MnO<0,42%, MgO <1,29%, CaO de 30,88 até 32,99%. Os principais "endmembers" envolvidos, calculados segundo o esquema de classificação proposto por Locock (2008) são andradita, schorlomita e morimotoita (Fig. 5.34). Não se observa uma clara distinção composicional entre as granadas dos bebedouritos B1 e B2. As granadas de bebedouritos de Tapira são semelhantes às dos bebedouritos mais evoluídos de Salitre (Barbosa *et al.* 2012).

Amostra	AT025_a	AT025_b	AT025_c	AT025_d	At038	AT11b_a	AT11b_b	AT11b_c	AT11b_d	AT11b_e	AT11b_f	AT11b_g	AT11b_h	AT11b_i
Unidade	B1	B1	B1	B1	B2	B2	B2	B2	B2	B2	B2	B2	B2	B2
Rocha	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed	Bebed
SiO ₂	29,80	30,18	29,72	28,84	28,37	25,66	29,87	31,84	26,82	26,61	26,26	28,67	32,03	28,80
TiO ₂	11,22	10,46	11,70	13,02	14,31	15,23	9,037	6,547	13,53	13,32	15,29	11,85	6,937	11,29
Al ₂ O ₃	1,51	. 1,15	1,23	1,64	0,91	1,56	0,16	0,18	1,23	1,19	1,66	1,04	0,19	0,76
Cr ₂ O ₃	0,12	0,13	0,08	0,00	0,07	0,04		0,03		0,03	0,02			0,03
FeO	1,99	2,93	2,63	1,40	2,33	2,44	2,31	2,06	1,77	0,94	2,90	2,54	2,93	2,37
Fe ₂ O ₃	21,59	21,85	20,45	21,21	20,39	17,77	22,25	24,52	19,72	20,66	16,66	19,32	22,68	20,01
MnO	0,19	0,15	0,16	0,20	0,20	0,31	0,36	0,38	0,27	0,40	0,38	0,22	0,37	0,25
MgO	1,09	0,88	0,86	1,28	1,27	1,15	0,68	0,49	1,16	1,11	1,23	1,10	0,50	1,12
CaO	32,03	31,66	32,18	31,96	31,51	30,88	31,18	31,73	31,32	31,60	30,97	31,38	31,49	31,21
Total	99,55	99,39	99,01	99,55	99,36	95,04	95,85	97,77	95,82	95,86	95,38	96,11	97,12	95,83
Cátions calculados														
Si	2,53	2,57	2,52	2,44	2,43	2,29	2,64	2,76	2,38	2,36	2,33	2,52	2,79	2,54
Ti	0,72	0,67	0,74	0,83	0,92	1,02	0,60	0,43	0,90	0,89	1,02	0,78	0,45	0,74
Al	0,15	0,11	. 0,12	0,16	0,09	0,16	0,02	0,02	0,13	0,12	0,17	0,11	0,02	0,08
Cr	0,08	0,01	. 0,01	0,00	0,00	0,00		0,00		0,00	0,00			0,00
Fe ²⁺	0,14	0,21	0,19	0,10	0,17	0,18	0,17	0,15	0,13	0,01	0,22	0,19	0,21	0,17
Fe ³⁺	1,06	1,09	1,01	0,96	0,84	0,65	1,15	1,38	0,82	0,86	0,62	0,91	1,30	0,95
Fe ³⁺	0,31	0,31	0,30	0,39	0,48	0,54	0,34	0,22	0,50	0,52	0,49	0,37	0,19	0,38
Mn ²⁺	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,03	0,02	0,03	0,03	0,02	0,03	0,02
Mg	0,07	0,09	0,06	0,06	0,09	0,02	0,01	0,02	0,01		0,02	0,02		0,03
Mg	0,06	0,02	0,05	0,10	0,07	0,14	0,08	0,04	0,15	0,15	0,14	0,12	0,03	0,12
Ca	2,92	2,89	2,93	2,91	2,89	2,96	2,96	2,95	2,97	3,00	2,94	2,96	2,94	2,95
Membros Finais (%)														
Schorlomita - Al	15,72	15,49	14,97	19,44	23,89	27,09	16,8	10,98	24,75	25,82	24,65	18,49	9,45	18,82
Morimotoita - Mg	14,1	20,87	18,69	9,96	16,71	18,26	17,1	14,92	13,15	6,96	21,53	18,72	21,38	17,48
Andradita	52,58	52,15	50,42	48,28	41,83	31,33	56,11	67,37	40,11	43,09	29,33	44,09	62,94	46,14
Calderita	0,47	0,36				0,79	0,9	0,93	0,68		0,95	0,55	0,9	0,61
Khoharita	0.23	2 16				0.59	0.4	0.75	0.21		0.77	0.82	1.09	0.92

Tabela 5.11 – Composições químicas das granadas do Complexo Carbonatítico de Tapira, Fe_2O_3 calculado de acordo com Locock (2008).

Amostra	AT125_a	AT125_B	AT125_c	AT125_d	AT125_e	AT125_f	AT125_g	AT125_h	AT125_i	AT125_j	AT125_I	AT125_m	AT125_n	AT125_0
Unidade	B2													
Rocha	Bebed													
SiO ₂	31,99	31,84	31,59	31,91	32,03	31,66	31,45	30,66	31,05	29,80	29,24	30,68	29,82	29,85
TiO ₂	8,08	8,75	9,39	10,02	7,66	8,68	10,92	10,27	8,55	11,81	12,54	9,19	10,56	11,25
Al ₂ O ₃	0,52	0,23	0,26	0,33	0,33	0,26	0,34	0,17	0,24	0,35	0,49	0,47	0,19	0,18
Cr ₂ O ₃	0,01		0,00		0,05		0,05	0,01			0,04	0,02	0,04	0,03
FeO	1,54	3,60	3,58	2,92	2,84	2,72	3,50	3,23	1,72	2,82	1,47	1,94	2,02	2,99
Fe ₂ O ₃	22,56	20,70	20,37	20,50	21,96	22,41	19,87	20,97	24,19	20,48	21,18	23,27	22,85	21,81
MnO	0,16	0,34	0,42	0,26	0,29	0,21	0,29	0,35	0,26	0,33	0,22	0,24	0,30	0,36
MgO	1,13	0,73	0,70	0,96	0,63	0,70	1,10	0,80	0,69	0,83	1,29	0,74	0,71	0,71
CaO	32,62	31,77	31,97	32,99	31,96	32,39	32,53	31,92	32,47	32,49	32,98	32,36	32,44	32,15
Total	98,61	97,96	98,29	99,88	97,74	99,03	100,04	98,38	99,17	98,90	99,44	98,90	98,94	99,33
Cátions calculados														
Si	2,73	2,75	2,72	2,70	2,77	2,71	2,66	2,64	2,66	2,55	2,49	2,63	2,56	2,56
Ti	0,52	0,57	0,61	0,64	0,50	0,56	0,69	0,67	0,55	0,76	0,80	0,59	0,68	0,73
Al	0,05	0,02	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,04	0,05	0,05	0,02	0,02
Cr	0,00		0,00		0,00		0,00	0,00			0,00	0,00	0,00	0,00
Fe ²⁺	0,11	0,26	0,26	0,21	0,21	0,19	0,25	0,23	0,12	0,20	0,10	0,14	0,15	0,21
Fe ³⁺	1,23	1,12	1,07	1,03	1,23	1,18	0,95	1,02	1,24	0,92	0,90	1,18	1,06	0,99
Fe ³⁺	0,22	0,23	0,25	0,27	0,20	0,27	0,31	0,34	0,32	0,41	0,46	0,32	0,41	0,42
Mn ²⁺	0,01	0,02	0,03	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,03
Mg		0,04	0,02		0,02	0,02	0,04	0,03	0,00			0,01		0,02
Mg	0,14	0,06	0,07	0,12	0,06	0,07	0,10	0,08	0,09	0,11	0,16	0,09	0,09	0,07
Ca	2,98	2,93	2,95	2,98	2,96	2,97	2,94	2,95	2,97	2,99	3,01	2,97	2,99	2,95
Membros Finais (%)														
Schorlomita - Al	10,87	11,44	12,70	13,59	9,88	13,33	15,49	16,91	15,87	20,32	22,95	16,02	20,74	21,10
Morimotoita - Mg	11,02	25,97	25,79	20,61	20,56	19,43	24,74	23,33	12,33	20,24	10,48	13,92	14,52	21,43
Andradita	61,02	53,69	51,55	51,56	60,21	57,70	45,78	49,45	61,32	45,83	44,96	58,22	53,22	47,77
Calderita	0,39	0,82	1,03		0,70	0,52	0,68	0,85	0,63			0,57		0,87
Khoharita	0,17	1,26	0,69		0,63	0,57	1,19	0,84	0,11			0,30)	0,64

Tabela 5.11 (cont.) – Composições químicas das granadas do Complexo Carbonatítico de Tapira, Fe_2O_3 calculado de acordo com Locock (2008).

Figura5.34 – Diagrama ternário schorlomita-andratita-morimotoita (Locock 2008),evidenciando a composição das granadas dos bebedouritos B1 e B2 de Tapira em comparaçãoaos campos dos diferentes tipos de bebedouritos de Salitre (Barbosa *et al.* 2012), schorlomita(Schrlm),andratita(Andr),morimotoita(Mrmt).

5.7.2 - Elementos Traços (Laser Ablation)

Análises por Espectrometria de Massa com ablação por laser em granadas de Tapira indicaram concentrações de até 991,8 ppm de Ba, 331,3 ppm de Sr, 41,3 ppm de La e 246,4 ppm de Ce, Nd até 388,7 ppm, de Y até 150,1 ppm, de até 7,5 ppm de Yb e de 1,7 ppm de Lu. Para o estudo dos elementos terras raras (ETR), foram selecionadas granadas de amostras representativas do Complexo, os dados químicos obtidos para este mineral estão na tabela 5.12. Apenas granadas de bebedouritos B2 foram analisadas, visto que nos bebedouritos da unidade B1 a granada é muito subordinada em proporção modal.

Tabela 5.12 – Análises por Espectrometria de Massa com ablação por laser em granadas do Complexo Carbonatítico de Tapira, valores em ppm.

Amostra	AT125-a	AT125-c	AT125-d	Amostra	AT125-a	AT125-c	AT125-d
Unidade	B2	B2	B2	Unidade	B2	B2	B2
Rocha	Bebed	Bebed	Bebed	Rocha	Bebed	Bebed	Bebed
Ва	355,82	178,52	197,35	La	38,30	37,29	41,25
Sr	229,26	299,68	331,33	Ce	182,10	222,83	246,36
Zr	1087,10			Pr	26,47	36,88	40,81
Hf	20,69	18,00	19,90	Nd	182,89	351,39	388,74
Y	115,42	135,71	150,10	Pm			
Nb	189,02	343,75	380,21	Sm	44,98	68,40	75,63
Та	5,56	5,56	6,15	Eu	16,09	30,38	33,59
Th	12,27	20,35	22,50	Gd	50,69	80,54	89,02
U	11,21	20,76	22,96	Tb	5,14	6,37	7,05
Sc	48,26			Dy	33,74	57,38	63,49
V	548,19	412,97	456,44	Но	3,80	6,18	6,83
As		2,36	2,61	Er	11,14	15,31	16,94
Pb	0,82			Tm	1,40	1,81	2,00
Rb	67,99			Yb	6,56	6,82	7,54
Li	4,35			Lu	0,84	1,53	1,69
Zn	143,20						
Ga	16,61						
Ge	2,61						
Cs	1,75						

A figura 5.35 mostra a distribuição dos elementos terras raras nas granadas do bebedourito B2, as curvas evidenciam o empobrecimento dos ETRL e o enriquecimento dos ETRP em relação ao padrão do magma parental.

No aranhagrama (Fig 5.36) dos elementos traços nos carbonatos normalizados pelo flogopita picrito, o padrão crescente no sentido ETRL - ETRP fica claro. O potencial do fracionamento de granada para alterar o padrão de ETR do líquido residual é muito alto, uma vez que a granada tem ETRL com concentração mais baixa e ETRP com concentração mais alta do que o flogopita picrito, cruzando a linha de valor 1,0 no diagrama. Por outro lado, os valores de HFSE do líquido residual tendem a ser pouco afetados por fracionamento de granada, pois os teores de Nb, Ta, Zr e Hf da granada são semelhantes aos do flogopita picrito, embora, no detalhe, a granada seja ligeiramente enriquecida em Zr e Hf, e ligeiramente empobrecida em Nb e Ta.

Figura 5.35 – Distribuição dos elementos terras raras em granadas do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I, Cordeiro *et al.* (2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 5.36 – Aranhagrama dos elementos traços normalizados pelo flogopita picrito em granadas do Complexo de Tapira.

CAPÍTULO 6 - QUÍMICA DE ROCHA E DISCUSSÃO DOS RESULTADOS

6.1 – Introdução

Neste capítulo serão abordadas informações quanto a química de rocha e os seus relativos coeficientes de partição (Kd) e compará-los a rochas similares (kimberlitos e kamafugitos) de Melluso *et al.* (2008).

6.2 – Química de Rocha

Tal como estabelecido em Brod (1999) muitas das rochas do Complexo de Tapira representam acumulações de cristais, ao invés de apenas líquidos. Por isso, ao longo deste trabalho, fizemos uso da composição média dos diques de flogopita picrito para chegarmos à composição aproximada do líquido magmático primitivo em Tapira.

A figura 6.1 mostra a distribuição dos elementos terras raras nas rochas estudadas onde é possível observar o comportamento dos diferentes tipos de rochas em relação ao campo do flogopita picrito, e compará-los aos tipos estudados por Melluso *et al.* (2008) da figura 6.2.

Os diagramas mostram que as rochas de B1, B2 e C3 estudadas estão pelo menos mil vezes enriquecidas em elementos terras raras leves, relativamente ao flogopita picrito. Exceções são o sienito, que se mostrou depletado principalmente em ETRL, e aos exemplares de carbonatitos C1b e C4 e de nelsonito N2, todos com composição semelhante a do líquido primitivo.

É possível argumentar que a remoção de perovskita do líquido (flogopita picrito) resultaria em uma diminuição de ETRL na evolução dos bebedouritos.

Nas amostras de Melluso *et al.* (2008) de kamafugitos e kimberlitos da APIP observase um padrão de comportamento dos elementos terras raras muito semelhante ao do flogopita picrito.

Figura 6.1 – Distribuição dos elementos terras raras nas rochas do Complexo de Tapira. O campo verde representa a composição de ETR dos flogopita picrito de Catalão I (Cordeiro *et al.* 2010), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.2 – Distribuição dos elementos terras raras nos kamafugitos e Kimberlitos de Melluso *et al.* (2008), IND (Indaiá), VER (Veridiana), LIM (Limeira), PAN (Pântano), MAL (Malaquias), CN (Canas), SR (Santa Rosa), VER (Veridiana), PO (Presidente Olegário) valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Os diagramas a seguir mostram a distribuição média dos elementos terras raras dos minerais de algumas rochas do Complexo de Tapira (figuras 6.03 a 6.13) e também dos minerais dos kamafugitos e kimberlitos (figura 6.14) de Melluso et al (2008).

Nos bebedouritos B1 (Figs. 6.3 e 6.4) ocorre um intenso fracionamento de ETRL em relação aos ETRP na perovskita e na apatita. Esses minerais são também os mais ricos em terras raras totais, o que lhes dá um potencial de controlar fortemente a composição obtida em rocha total, quando a rocha é um cumulado. Com efeito, as amostras analisadas de B1 são cumulados ricos em perovskita, e os diagramas mostram que este mineral é o que exerce o maior controle sobre a composição de rocha total. O clinopiroxênio e a flogopita contêm quantidades muito baixas de terras raras totais e, por essa razão, seu fracionamento deve afetar menos a composição do líquido residual.

Nos bebedouritos B2 (Figs. 6.5 a 6.7) a granada predomina sobre a perovskita, que ocorre em proporções acessórias ou está ausente. As relações gerais entre os minerais analisados são semelhantes às observadas em B1: na sequência perovskita – apatita – clinopiroxênio – flogopita observa-se uma progressiva diminuição na concentração de ETR totais, bem como uma tendência à horizontalidade progressiva do padrão de ETR. A granada analisada apresenta um padrão de ETR convexo para cima, com valores normalizados máximos entre Nd e Gd. A calcita apresenta um padrão levemente côncavo para cima, com importante fracionamento de ETRL/ETRP. A flogopita apresenta um padrão tetrad do tipo W.

Assim como em B1, o padrão de ETR em rocha total dos bebedouritos B2 é fortemente controlado por fatores mineralógicos. Na amostra AT-125, que não contém perovskita, o padrão de ETR de rocha total é praticamente idêntico ao padrão da apatita. Algumas

amostras do grupo B2 têm um padrão de ETR com declividade pequena, ou seja, baixo grau de fracionamento ETRL/ETRP, que pode ser devido à influencia da cristalização de granada.

Figura 6.3 – Distribuição média dos elementos terras raras nos minerais da amostra de bebedourito AT-04 do Complexo de Tapira. Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.4 – Distribuição média dos elementos terras raras nos minerais da amostra de bebedourito AT-25 do Complexo de Tapira. Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.5 – Distribuição média dos elementos terras raras nos minerais da amostra de bebedourito B2 AT-38 do Complexo de Tapira.Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.6 – Distribuição média dos elementos terras raras nos minerais da amostra de bebedourito B2 AT-125 do Complexo de Tapira. Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.7 – Distribuição média dos elementos terras raras nos minerais da amostra de bebedourito B2 AT-505 do Complexo de Tapira, valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Os minerais analisados no sienito I (AT-12) apresentam um comportamento semelhante aos minerais do B2 (Fig. 6.08). Este grupo têm tipicamente duas variedades de clinopiroxênio, um diopsidio mais precoce, e uma aegirina mais tardia. Os padrões de ETR destes dois tipos de piroxênio também variam, com a aegirina apresentando concentrações mais altas para os ETR e um padrão mais fracionado do que o diopsídio. Assim como observado em uma das amostras de B2, a flogopita apresenta padrão tetrad do tipo W.

Figura 6.8 – Distribuição média dos elementos terras raras nos minerais da amostra de sienito AT-12 do Complexo de Tapira. Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Nas duas amostras de calcita carbonatitos da unidade C3, os padrões de rocha total são praticamente coincidentes com os da apatita contida na respectiva amostra, sugerindo que a apatita controla a distribuição das terras raras nessas rochas (Figs. 6.9 e 6.10).

Figura 6.9 – Distribuição média dos elementos terras raras nos minerais da amostra de carbonatito C3 AT-43 do Complexo de Tapira, valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.10 – Distribuição média dos elementos terras raras nos minerais da amostra de carbonatito C3 AT-60 do Complexo de Tapira. Valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Na apatita e calcita analisadas no C1a o padrão de ETRL está mais empobrecido em comparação ao C3, porém o da flogopita coincide. O padrão de rocha total é semelhante com o da apatita contida na respectiva amostra, sugerindo que a apatita também controla a distribuição das terras raras nessas rochas. O C1b apresenta o padrão de rocha total ainda mais empobrecido do que o do C1a (Figs. 6.11 e 6.12).

Figura 6.11 – Distribuição média dos elementos terras raras nos minerais da amostra de carbonatito C1a AT-502 do Complexo de Tapira, valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Figura 6.12 – Distribuição média dos elementos terras raras nos minerais da amostra de Carbonatito C1b AT-503 do Complexo de Tapira, valores normalizados ao condrito de acordo com McDonough & Sun (1995).

Na apatita e calcita analisadas no C4 o padrão de ETR está semelhante ao do C3. O padrão de rocha total é coincidente com o da calcita contida na respectiva amostra, sugerindo que a calcita controla a distribuição das terras raras nessas rochas (Fig. 6.13).

Figura 6.13 – Distribuição média dos elementos terras raras nos minerais da amostra de carbonatito C4 AT-504 do Complexo de Tapira, valores normalizados ao condrito de acordo com McDonough & Sun (1995).

A distribuição dos elementos terras raras nos diopsídios, flogopitas e perovskitas dos kamafugitos e kimberlitos da Província Alto Paranaiba (Melluso *et al.* 2008) é mostrada na figura 6.14. Os piroxênios dos kamafugitos de Presidente Olegário (PO) e Malaquias (MAL) são os que possuem padrões mais empobrecidos em relação aos demais, porém são os que mais se assemelham aos padrões obtidos para o B1. Os padrões das perovskitas dos kamafugitos e kimberlitos estão muito próximos dos padrões encontrados para as rochas do B1 e B2. Para a flogopita os padrões de terras raras dos kimberlitos Pântano (PAN), Limeira (LIM) e Indaia (IND) são semelhantes aos padrões encontrados para o B1, B2 e C3 respectivamente.

Figura 6.14 – Distribuição média dos elementos terras raras nos diopsídios, flogopitas e perovskitas dos kamafugitos e kimberlitos da Província Alto Paranaiba (Melluso *et al.* 2008), LIM (Limeira), IND (Indaiá), PAN (Pantano), PO (Presidente Olegário), VER (Veridiana), SR (Santa Rosa), MAL (Malaquias) e CAN (Canas), valores normalizados ao condrito de acordo com McDonough & Sun (1995).

6.3 – Aranhagramas

Os aranhagramas dos elementos normalizados aos valores de Thompson (1982), dos diferentes tipos litológicos de Tapira estão dispostos nas figuras de 6.15 a 6.20. O comportamento dos ETR é de forma geral coerente nos bebedouritos B1 e B2 e nas amostras de kamafugitos e kimberlitos. São notáveis anomalias negativas de Rb, K e Sr juntamente com uma mais sutil anomalia de Ti. A amostra AT11-b (com composição modal enriquecida em granada) é mais rica em Sm, Zr, Hf, Y e Yb e mostra uma anomalia negativa de Ti consistente com o fracionamento de perovskita durante a evolução do magma B1.

Altas concentrações modais de apatita estão representadas por anomalias positivas de P nos diagramas.

Os diagramas sugerem que as anomalias de K, Rb, e Sr se traduzem em uma assinatura geral para a Província Alto Paranaíba, em concordância com dados de trabalhos anteriores (Gibson *et al.* 1995, Brod *et al.* 2000) e provavelmente refletem a retenção de flogopita e uma fase rica em Sr (possivelmente carbonato, já que nem sempre há uma correspondente anomalia de P) na área fonte mantélica. As alterações na razão Nb/Ta e nos teores de Zr e Hf observadas nos diagramas multielementares dos grupos N2 e C1 são consistentes com as assinaturas de imiscibilidade de líquidos propostas por Brod *et al.* (2013).

Figura 6.15 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do B1.

Figura 6.16 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do B2.

Figura 6.17 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) no sienito.

Figura 6.18 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do N2 e C1.

Figura 6.19 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do C3 e C4.

Figura 6.20 – Aranhagrama dos elementos traços normalizados ao Thompson (1982) em rochas do Complexo Alto Paranaiba de Melluso *et al.* (2008), LIM (Limeira), IND (Indaiá), PAN (Pantano), PO (Presidente Olegário), VER (Veridiana), SR (Santa Rosa) e MAL (Malaquias), CAN (Canas).

6.4 – Estimativa de Coeficientes de Partição (Kd)

Uma das maiores dificuldades no estudo da petrologia de rochas alcalinas e carbonatitos é a falta de coeficientes de partição adequados para representar estes sistemas, especialmente no tocante ao fracionamento de elementos traço em minerais específicos. O trabalho de Melluso *et al.* (2008) foi pioneiro na determinação desses coeficientes para rochas da Província Ígnea do Alto Paranaíba, compreendendo análises de olivina, diopsídio, flogopita, espinélio e ilmenita em kimberlitos e/ou kamafugitos da província. Entretanto, outros minerais importantes, como apatita, granada titanífera e carbonatos ainda não foram contemplados na literatura.

O coeficiente de partição (Kd) representa a distribuição de um dado elemento químico ou razão de elementos químicos em um sistema. É possível calcular coeficientes de partição para diversas situações, como sólido/líquido (e.g. cristalização fracionada), líquido/sólido (e.g. fusão parcial), líquido/líquido (e.g. imiscibilidade de líquidos) e mineral/mineral (e.g. competição de minerais cogenéticos por elementos químicos). Em sistemas magmáticos, o Kd é geralmente determinado utilizando dados experimentais ou pela comparação de fenocristais e matriz em rochas vulcânicas.

Nas seções a seguir são apresentados os resultados da estimativa de coeficientes de partição entre os minerais estudados e a rocha que os contém (Kd_{mineral/rocha}).

6.4.1 – Kd Mineral/Rocha

O cálculo do coeficiente de partição (Kd) mineral/rocha para as amostras de Tapira foi obtido pelo quociente entre a concentração do elemento em cada mineral de interesse e a concentração do elemento na rocha. Assumindo-se que a composição da rocha representa aproximadamente o líquido a partir do qual ela cristalizou, os coeficientes de partição assim calculados traduziriam a distribuição dos elementos químicos durante a cristalização fracionada.

Neste estudo, combinou-se os dados de elementos traço obtidos por ICP-MS com dados de microssonda eletrônica, para elementos que não puderam ser determinados com precisão por ICP-MS (K, Na, Mg, Ca, P, V, Ni, Cr) nos minerais estudados. Para ambos tipos de dados tomou-se a média das determinações em uma mesma amostra, ao invés de considerar análises individuais.

Perovskita

A perovskita (fig. 6.21) é o principal concentrador de terras raras nos bebedouritos, com coeficientes de partição que variam de 2 nos ETRP a 10-20 nos ETRL. É também responsável pelas maiores concentrações de elementos de alto potencial iônico (HFSE) como Nb, Ta e Ti. Alguns HFSE, como o Zr e o Hf são menos enriquecidos que os demais, mas ainda apresentam Kd geralmente maior que 1 para a perovskita (exceto para os bebedouritos B2 – amostra AT038). Por outro lado, alguns elementos incompatíveis de íon grande (LILE) como o K e o Ba são caracteristicamente empobrecidos na perovskita, enquanto outros como Na e Sr podem ser ligeiramente enriquecidos. Espera-se, portanto, que a cristalização fracionada de perovskita em um magma bebedourítico promova um importante empobrecimento do líquido residual em HFSE e em ETR, e enriquecimento em Ba e K. As razões La/Lu devem variar para valores mais baixos no líquido residual.

A figura 6.21 também compara os resultados do presente estudo com coeficientes de partição obtidos a partir dos dados de Melluso *et al.* (2008) em minerais e rocha total de kamafugitos e kimberlitos da província. Observa-se uma boa similaridade dos coeficientes de partição obtidos nos dois casos, para a maioria dos elementos. Ressalta-se que os coeficientes de partição de Zr e Hf são mais baixos do que os dos demais HFSE. É também notável a diferença de comportamento dos coeficientes de partição dos ETR nas perovskitas dos kimberlitos e kamafugitos de Melluso *et al.* (2008). Nos kamafugitos, as diferenças entre Kd dos ETRL e ETRP são menores do que nos kimberlitos, indicando que o fracionamento de perovskita a partir do magma kimberlítico tem um efeito maior no fracionamento ETRL/ETRP do que o fracionamento de perovskita a partir do magma komportamento praticamente idêntico ao dos kamafugitos de Melluso *et al.* (2008).

Figura 6.21 – Coeficiente de partição (Kd_{mineral/rocha}) em perovskitas dos bebedouritos B1 e B2 comparados aos Kd_{mineral/rocha} obtidos para as perovskitas de kimberlitos e kamafugitos da APIP (Melluso *et al.* 2008).

Mica

De forma geral as micas apresentam coeficientes de partição muito baixos para a maioria dos elementos considerados. Nas flogopitas dos bebedouritos B1 e B2 os coeficientes de partição formam padrões semelhantes (Fig. 6.22), embora com oscilações que provavelmente resultam do fato de que este mineral contém concentrações muito baixas de muitos elementos traço, especialmente os ETR. Os elementos Cs, Rb, K, Ba e Mg apresentam coeficientes de partição acima de 1, indicando que são compatíveis na flogopita dos bebedouritos. Os ETR são todos incompatíveis, mostrando coeficientes de partição várias ordens de magnitude abaixo de 1. Mesmo assim, observa-se um padrão coerente de distribuição, onde os Kds aumentam progressivamente, dos ETRL para os ETRP.

Na figura 6.22 é mostrado também o campo de flogopitas de kimberlitos e kamafugitos da APIP (Melluso *et al.* 2008). Em particular, os kimberlitos de Limeira e Pântano, e os kamafugitos de Presidente Olegário e Veridiana mostram grande semelhança com os padrões de coeficientes de partição obtidos para as flogopitas de bebedouritos de Tapira, embora os dados de Melluso *et al.* (2008) estendam-se para valores mais altos.

Figura 6.22 – Coeficiente de Partição (Kd_{mineral/rocha}) em flogopita de bebedourito B1 e B2, comparados aos valores de Kd_{mineral/rocha}) calculados utilizando os dados de Melluso *et al.* (2008) para flogopitas de kamafugitos e kimberlitos da APIP (PO = Presidente Olegário, VER = Veridiana, LIM = Limeira, PAN = Pantano).

Nas micas dos carbonatitos C3 e C1 e do nelsonito N2 (fig. 6.23), observa-se um comportamento semelhante, porém com variações dos LILE e dos HFSE de maior magnitude do que nos bebedouritos. Cs, Rb, K e Ba tem comportamento compatível, como esperado. Dentre os HFSE, Nb e Ta mostram coeficientes acima ou próximos de 1 para a flogopita da maioria dos carbonatitos, indicando que estes elementos concentram-se neste mineral nas fases finais de evolução do complexo. Zr e Hf têm coeficientes mais baixos, e só mostram enriquecimento efetivo nas micas de carbonatitos mais evoluídos (C1). Todos os HFSE apresentam baixo coeficiente de partição entre flogopita e nelsonitos, possivelmente em função da concentração preferencial destes elementos em pirocloro. Para comparação é plotado o campo de coeficientes de partição para flogopitas de kamafugito (Malaquias) e kimberlito (Indaiá) da APIP, que mostram uma boa coincidência com os dados obtidos nesta dissertação.

Figura 6.23 – Coeficiente de Partição (Kd_{mineral/rocha}) em flogopita de carbonatitos, comparados aos valores de Kd_{mineral/rocha} para as flogopitas de kamafugitos e kimberlitos da APIP analisadas por Melluso *et al.* (2008) (MAL = Malaquias, IND = Indaiá).

Nos sienitos de Tapira (fig. 6.24) observa-se Kd_{flogopita/rocha} muito baixos para os ETR, com uma ligeira tendência de aumento dos ETRL para os ETRP. Ao contrário das micas de carbonatito e bebedourito, as de sienitos mostram coeficientes de partição muito baixos para o par Zr e Hf, o que é devido à presença de zircão como um constituinte comum dos sienitos em Tapira. Na cristalização concomitante de flogopita e zircão os elementos Zr e Hf, bem como os ETRP concentram-se neste último.

Figura 6.24 – Coeficiente de Partição (Kd_{mineral/rocha}) em flogopita do sienito de Tapira.

Clinopiroxênio

O diopsídio (fig. 6.25) apresenta um comportamento muito regular entre os diferentes tipos de rocha, com coeficientes de partição ligeiramente maiores do que 1 para Na, Ca e Sr. Há uma clara diferenciação entre os bebedouritos B1 e B2, com relação aos Kd_{diopsídio/rocha} de Nb,Ta e Zr: em B1 os valores dos coeficientes se aproximam de 0,001 em média e em B2 oscilam entre 0,02 e 1,2. Esta feição está provavelmente ligada à incorporação destes HFSE em perovskita, mineral abundante em B1 e raro a ausente em B2. Especificamente na amostra AT-125, um bebedourito da unidade B2 rico em granada e sem perovskita, os coeficientes de partição de ETR entre piroxênio e rocha total formam um padrão relativamente horizontal, isto é, sem preferencia acentuada por ETRL ou ETRP. Nesta amostra observam-se também os maiores coeficientes de partição para Nb e Ta e os menores coeficientes para Zr e Hf, o que é interpretado também como produto da assembleia mineral específica.

Nos carbonatitos e no sienito (fig. 6.26) os coeficientes de partição se comportam de forma muito semelhante aos dos bebedouritos tanto para Na, Ca e Sr, como para outros LILE, porém, no sienito, os valores de coeficiente de partição se apresentam ainda mais baixos para os HFSE Nb, Ta, Zr e Hf o que é consistente com a interpretação anterior de forte incorporação destes elementos em zircão. Na comparação com os dados de kamafugitos da APIP existe uma diferença significativa para as amostras de Tapira e a maioria dos Kd_{diopsídio/kamafugito} obtidos a partir dos dados publicados por Melluso *et al.* (2008), especialmente na região dos ETR. Apenas o kamafugito de Malaquias mostra similaridade com as amostras de Tapira na figura 6.25. De qualquer maneira, independente da concentração absoluta, clinopiroxênios tanto de bebedouritos quanto de kamafugitos tendem a favorecer ligeiramente a incorporação de ETRP em relação aos ETRL. Na maioria das amostras de kamafugitos da APIP existe a partição de Eu para o piroxênio é um pouco menor do que a dos ETR vizinhos, feição que não é observada nas amostras de Tapira nem no kamafugito de Malaquias.

Figura 6.25 – Coeficiente de Partição (Kd_{mineral/rocha}) em diopsídios dos bebedouritos B1 e B2 de Tapira comparados aos valores de Kd para os diopsídios da APIP (Melluso *et al.* 2008). MAL = Malaquias.

Figura 6.26 – Coeficiente de Partição (Kd_{mineral/rocha}) em diopsídios do carbonatito C3 e do sienito (AT-12) de Tapira, comparados aos valores de Kd para os diopsídios da APIP (Melluso *et al.* 2008). MAL = Malaquias.

Aegirina foi identificada em uma amostra de B2 (AT-125) e em sienitos. No bebedourito B2, o padrão de coeficientes de partição dos ETR diminui do La ao Lu, comportamento oposto ao observado no diopsídio. Na, Ca, Sr, V e Cr apresentam coeficiente de partição >1 para a aegirina do bebedourito. Sc, que é usualmente enriquecido em piroxênios apresenta comportamento incompatível em relação à aegirina.

O comportamento dos coeficientes de partição da aegirina no sienito forma um padrão horizontalizado nos ETR. Os HFSE, o Na e o Ca mostram comportamento compatível na aegirina de sienitos. Por outro lado, o coeficiente de partição do Sc é <1, ao contrário do observado para o diopsídio. É possível que este comportamento reflita o caráter mais tardio da aegirina, tanto no sienito quanto no bebedourito B2.

Figura 6.27 – Coeficiente de Partição (Kd_{mineral/rocha}) em aegirina do bebedourito B2 e do sienito (AT-12) de Tapira.

Apatita

Na apatita de bebedouritos (Fig. 6.28) o Kd_{apatita/rocha} dos HFSE é sempre muito baixo (0,0002 a 0,02), indicando que estes elementos são altamente incompatíveis no mineral. Por outro lado, os LILE divalentes (exceto Ba) são compatíveis na apatita, com Kd ligeiramente mais altos do que os da perovskita. LILE monovalentes tem comportamento incompatível em relação à apatita de bebedouritos. É notável no diagrama a diferença no comportamento das terras raras entre a apatita coexistente com abundante perovskita (bebedouritos B1) e apatita de bebedouritos dominados por granada (B2). No primeiro caso, a cristalização concomitante de perovskita (alta razão ETRL/ETRP) resulta em uma apatita com enriquecimento relativo nas terras raras pesadas. O padrão da apatita que cristaliza junto com granada e na ausência de perovskita mostra um claro enriquecimento em terras raras leves relativamente às

pesadas. Estas feições sugerem que a estrutura da apatita exerce pouco controle sobre o fracionamento interno do grupo das terras raras, predominando os controles cristaloquímicos da perovskita e da granada, conforme o caso.

Figura 6.28 – Coeficiente de Partição (Kd_{mineral/rocha}) em apatitas dos bebedouritos B1 e B2 de Tapira.

Na apatita cristalizada a partir de carbonatitos (Fig. 6.29) também podem ser observadas variações composicionais dependentes da associação mineral. Por exemplo, nos calcita-carbonatitos C3, que se formam nos estágios finais da cristalização de um magma bebedourítico, a apatita coexiste com abundante piroxênio, flogopita e calcita, mas não com perovskita nem com granada. Neste caso, a distribuição dos coeficientes de partição de ETR é horizontalizada, com uma leve tendência a valores maiores nas terras raras médias.

Na figura 6.29 são apresentados também os Kds para apatita de nelsonito. Nesta rocha a apatita coexiste com quantidades significativas de pirocloro, tetra-ferriflogopita e magnetita. Esta associação é típica dos estágios finais de atividade carbonatítica nos complexos da Província (e.g. Cordeiro *et al.* 2010, Palmieri 2011) e pode incluir outros minerais ricos em terras raras, como fosfatos (monazita) e carbonatos (ancilita, bastnaesita, burbankita, etc). O padrão observado caracteriza-se por coeficientes de partição muito baixos de HFSE (Nb, Ta, Hf) e Th, que provavelmente estarão alojados preferencialmente no pirocloro, Kds altos para Na, Ca, Sr e U, e um padrão com formato côncavo na região dos ETR. Este comportamento é consistente com a entrada em cena de outras fases minerais portadoras de ETR, além da apatita.

Figura 6.29 – Coeficiente de Partição (Kd_{mineral/rocha}) em apatitas de carbonatito e nelsonito (C3 e N2) de Tapira.

Carbonatos

Na figura 6.30 são ilustrados os coeficientes de partição entre calcita e rocha para nelsonitos e carbonatitos. Na amostra de nelsonito (N2) os Kds apresentam uma distribuição com formato côncavo na região dos ETR, consistente com o comportamento já observado na apatita desta mesma unidade, e com a interpretação de que o pirocloro desempenha papel fundamental na concentração de terras raras. Para a maioria dos carbonatitos C3 e C4 os Kd_{calcita/rocha} possuem comportamento muito semelhante ao da apatita cristalizada a partir de um líquido carbonatítico. A distribuição dos ETR nesses padrões é horizontalizada, com valores de Kd em torno de 1.

Uma exceção notável dentre os carbonatitos é a amostra AT-43, cujos Kd_{calcita/rocha} para terras raras formam um padrão côncavo, semelhante ao da amostra de nelsonito, o que pode sugerir o fracionamento de um mineral rico em terras raras médias. Entretanto, ao contrário dos nelsonitos, não se observou pirocloro nos carbonatitos C3. Dentre os minerais identificados nas rochas deste grupo, apenas apatita poderia explicar a variação observada.

Figura 6.30 – Coeficiente de Partição (Kd_{mineral/rocha}) em calcitas de carbonatitos (C3 e C4) e nelsonito (N2) de Tapira.

Coeficientes de partição mineral/rocha para outras espécies de carbonato são apresentados nas figuras 6.31 e 6.32. A unidade de carbonatitos C1a representa magmas evoluídos, ricos em ETR, Ba e Nb. Nesses magmas, a alta concentração de ETR levou à cristalização de carbonatos ricos em terras raras, como ancilita e burbankita, além de carbonatos ricos em magnésio, como dolomita e norsethita.

A figura 6.31 mostra os coeficientes de partição calculados para esses carbonatos ricos em ETR na amostra AT-502. A burbankita apresenta um padrão horizontalizado, com notável aumento nos coeficientes de partição de ETRP em relação à ancilita (Kd_{Lu} variando de 0,08 na ancilita a 3.5 na burbankita). O padrão com declividade acentuada desta última na figura 6.31 indica que o seu fracionamento afetaria substancialmente a relação ETRL/ETRP do líquido residual.

Entre os carbonatos magnesianos (Fig. 6.32) dessa mesma amostra observa-se, no geral, coeficientes de partição maiores para os ETRP e ETRM do que para os ETRL. Esta feição é interpretada como resultado da competição direta entre ancilita+burbankita e dolomita+norsethita pelos ETRL. Os teores absolutos muito mais altos de ETR na ancilita e burbankita (ver fig. 5.31) implicam em que estes carbonatos controlam efetivamente a distribuição dos ETR, sendo o padrão observado na dolomita e norsethita apenas uma consequência do empobrecimento do magma em ETRL causado pela cristalização concomitante de ancilita e/ou burbankita. A norsethita apresenta comportamento semelhante à dolomita com relação aos ETR, exceto que na primeira observa-se um padrão convexo para os coeficientes de partição na região dos ETRP, além dos altos valores de Kd para Ba, esperados no caso de norsethita.

Figura 6.31 – Coeficiente de Partição (Kd_{mineral/rocha}) em ancilita e burbankita de carbonatito (C1a) de Tapira.

Figura 6.32 – Coeficiente de partição (Kd_{mineral/rocha}) em dolomita e norsetita de carbonatito (C1a) de Tapira.

Granada

Os coeficientes de partição dos LILE em relação à granada são geralmente próximos de 1, com exceção de K e Sr, que são claramente incompatíveis na granada. O coeficiente de partição também é baixo para P e Mg. Dentre os ETR, observa-se um aumento do coeficiente de partição do La ao Lu, variação que é mais acentuado nos ETRL do quer nos ETRP. A partir do Nd todos os ETR mais pesados são compatíveis na granada.

Figura 6.33 – Coeficiente de Partição (Kd_{mineral/rocha}) em granada do bebedourito B2 de Tapira.

CAPÍTULO 7 – CONSIDERAÇÕES FINAIS

O estudo realizado nas rochas do Complexo de Tapira mostrou que os minerais apatita, perovskita e granada sofrem uma evidente variação em relação aos elementos traços em resposta à evolução magmática. A perovskita é o principal concentrador de terras raras e outros elementos como os HFSE nos bebedouritos. A presença ou não da granada e/ou da perovskita determina o comportamento desses elementos traço em outras fases presentes na assembleia mineral de bebedouritos, como a apatita.

A determinação geoquímica por micro-análise em apatita nas diferentes unidades do complexo deixa claro que a semelhança composicional das apatitas dos carbonatitos C3 com as de bebedouritos e a composição singular das apatitas de C4 reforçam a sugestão de Brod (1999) de que C3 e C4 são carbonatitos residuais, produto de diferenciação dos bebedouritos por cristalização fracionada. Entre os demais minerais estudados, os clinopiroxênios dos carbonatitos C3 mostram o mesmo intervalo composicional do que os dos bebedouritos, o que é consistente com a hipótese de Brod (1999) de que estes piroxênios são xenocristais no magma carbonatítico C3. Os piroxênios no carbonatito C4 claramente mostram uma composição muito mais restrita em termos de titânio e alumínio, consistente com sua cristalização a partir do magma carbonatítico.

Estudos anteriores, como o de Cordeiro *et al.* (2010) observaram que a variação composicional da apatita de Catalão I, especialmente a concentração de Sr nesse mineral, pode ser fortemente influenciada pelo tipo de carbonato coexistente (calcita ou dolomita) e, consequentemente, pelo estágio de evolução do complexo. Nas apatitas de Tapira também foi observado que a quantidade de Sr na apatita aumenta à medida que o magma evolui. Considerando o tipo de carbonato presente e controles específicos, a apatita pode ser utilizada como um indicador de evolução magmática e, portanto, do potencial metalogenético do sistema. A apatita de nelsonito, que coexiste com quantidades significativas de pirocloro, tetra-ferriflogopita e magnetita, em uma típica associação dos estágios finais de atividade carbonatítica nos complexos da Província (e.g. Cordeiro *et al.* 2010, Palmieri 2011) e pode incluir outros minerais ricos em terras raras, como fosfatos (monazita) e carbonatos (ancilita, bastnaesita, burbankita, etc).

Os dados da presente dissertação estendem o intervalo composicional para valores mais ricos na molécula de annita, em micas de sienitos de Tapira, relativamente aos resultados anteriores de Brod *et al.* (2001). Parte das micas de C4, e as micas dos nelsonitos N2 e dos carbonatitos C1a e C1b são tetra-ferriflogopita, o que reflete o

caráter extremamente deficiente em alumínio desses magmas e também corresponde a estágios mais evoluídos.

Os resultados das análises químicas de rocha total indicam uma assinatura geral com anomalias de K, Rb e Sr, para a Província Alto Paranaíba, em concordância com dados de trabalhos anteriores (Gibson *et al.* 1995, Brod *et al.* 2000), que provavelmente refletem a retenção de flogopita e uma fase rica em Sr (possivelmente carbonato, já que nem sempre há uma correspondente anomalia de P) na área-fonte mantélica. As alterações na razão Nb/Ta e nos teores de Zr e Hf observadas nos diagramas multielementares dos grupos N2 e C1 são consistentes com as assinaturas de imiscibilidade de líquidos propostas por Brod *et al.* (2013).

Os coeficientes de partição calculados no presente trabalho são os primeiros valores obtidos para minerais de bebedouritos. A forte consistência observada com os valores de coeficientes de partição obtidos por Melluso *et al.* (2008) para diopsídio, flogopita e perovskita de kamafugitos da provincia reforçam o conceito de uma associação kamafugito-carbonatito na APIP (e.g. Brod *et al.* 2013). Além disso, os resultados da presente dissertação complementam o arcabouço de dados petrológicos para esta associação, agregando coeficientes de partição para novos minerais de importância petrológica, como granada, apatita e carbonatos, e estendendo o escopo dos dados para outras composições, como sienitos, carbonatitos e nelsonitos. Espera-se que este arcabouço seja um passo fundamental para futuros estudos de modelamento geoquímico em sistemas magmáticos ultrapotássicos com carbonatitos associados.

REFERENCIAS BIBLIOGRÁFICAS

- Almeida F.F.M. 1983. Rela1986ções tectônicas das rochas alcalinas mesozóicas da região meridional da Plataforma Sul-Americana. *Revista Brasileira de Geociências*, **13**: 139-158.
- Amaral G., Bushee J., Cordani U.G., Kawashita K., Reynolds J.H. 1967. Potassiumargon ages of alkaline rocks from Southern Brazil. *Geochimica et Cosmochimica Acta*, **31**: 117-1986142.
- Barbosa E.S.R. 2009. *Mineralogia e Petrologia do Complexo Carbonatítico-Foscorítico de Salitre, MG*. Tese de Doutorado, Instituto de Geociências, Universidade de Brasília, 434 p.
- Barbosa E.S.R., Brod J.A., Junqueira-Brod T.C., Dantas E.L., Cordeiro P.F.O., Gomide C.S. 2012. Bebedourite from its type area (Salitre I Complex): a key petrogenetic series in the Late-Cretaceous Alto Paranaíba Kamafugite-Carbonatite-Phoscorite Association, Central Brazil. *Lithos*, **144-145**: 56-72.
- Boctor N.Z. & Boyd F.R. 1981. Oxide minerals in a layered kimberlite-carbonate sill from Benfontein, South Africa. *Contributions to Mineralogy and Petrology*, **76**: 253-259.
- Brigatti M.F., Malferrari D., Medici L., Ottolini L., Poppi L. 2004. Crystal chemistry of apatites from the Tapira carbonatite complex, Brazil. *European Journal of Mineralogy*, **16**: 677-685.
- Brigatti M.F., Medici L., Saccani E., Vaccaro C. 1996. Crystal chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil. *American Mineralogist*, 81: 913-927.
- Brod J.A. 1999. *Petrology and geochemistry of the Tapira alkaline complex, Minas Gerais State, Brazil.* Tese de doutorado, Department of Geological Sciences, University Durham, Durham, 486 p.
- Brod J.A., Barbosa E.S.R., Junqueira-Brod T.C., Gaspar J.C., Diniz-Pinto H.S., Sgarbi P.B.A., Petrinovic I.A. 2005a. The Late-Cretaceous Goiás Alkaline Province (GAP), Central Brazil. In: Comin-Chiaramont P. & Gomes C. B. (ed.) Mesozoic and Cenozoic alkaline magmatism in the Brazilian Platform. São Paulo, EDUSP/FAPESP, p.261-316.
- Brod J.A., Gaspar J.C., Araújo D.P. de, Gibson S.A., Thompson R.N., Junqueira-Brod T.C. 2001. Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. *Journal of Asian Earth Sciences*, **19**: 265-296.
- Brod J.A., Gaspar J.C., Diniz-Pinto H. S. & Junqueira-Brod T.C. 2005b. Spinel chemistry and petrogenetic processes in the Tapira alkaline-carbonatite complex, Minas Gerais, Brazil. *Revista Brasileira de Geociências*, **35**: 23-32.
- Brod J.A., Gibson S.A., Thompson R.N., Junqueira-Brod T.C., Seer H.J., Moraes L.C., Boaventura G.R. 2000. The kamafugite-carbonatite association in the Alto Paranaíba igneous province, southeasthern Brazil. *Revista Brasileira de Geociências*, **30**: 408-412.
- Brod J.A., Junqueira-Brod T.C., Gaspar J.C., Petrinovic I.A., Valente S.C., Corval A. 2013. Decoupling of paired elements, crossover REE patterns, and mirrored spider

diagrams: Fingerprinting liquid immiscibility in the Tapira alkaline- carbonatite complex, SE Brazil. *Journal of South American Earth Sciences*, **41**: 41-56.

- Brod J.A., Ribeiro C.C., Gaspar J.C., Junqueira-Brod T.C., Barbosa E.S.R., Riffel B.F., Silva J.F., Chaban N., Ferrari A.J.D. 2004. Geologia e mineralizações dos complexos alcalino-carbonatíticos da Província Ígnea do Alto Paranaíba. *In* Congresso Brasileiro de Geologia, Araxá, Minas Gerais, *42*, *Atas*, p. 1-29.
- Brotzu P., Melluso L., Bennio L., Gomes C.B., Lustrino M., Morbidelli L., Morra V., Ruberti E., Tassinari C., D'Antonio M. 2007. Petrogenesis of the Early Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil. *Journal of South American Earth Science*, 24: 93-115.
- Campos J.E.G. & Dardenne M.A. 1997. Origem e evolução tectônica da bacia Sanfranciscana. *Revista Brasileira de Geociências*, **27**: 283-294.
- Chakhmouradian A.R. & Mitchell R.H. 1997. Compositional variation of perovskitegroup minerals from the carbonatite complexes of the Kola Alkaline Province, Russia. *Canadian Mineralogist*, **35**: 1293-1310.
- Chakhmouradian A.R. & Mitchell R.H. 2000. Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. *Canadian Mineralogist*, **38**: 975-994.
- Comin-Chiaramonti P. & Gomes C.B. 2005. Mesozoic and Cenozoic alkaline magmatism in the Brazilian Platform. 751. São Paulo: Edusp.
- Cordeiro P. F. O., Brod J. A., Dantas E. L., Barbosa E. S. R. 2010a. Mineral chemistry, isotope geochemistry and petrogenesis of niobium-rich rocks from the Catalão I carbonatite-phoscorite complex, Central Brazil. *Lithos*, **118**: 223-237.
- Cordeiro P.F.O., Brod J.A., Palmieri M., Oliveira C.G., Barbosa S.R.E., Santos R.V., Gaspar J.C., Assis L.C. 2011. The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geology Reviews, 41: 112-121.
- Cordeiro P.F.O., Brod J.A., Santos R.V., Dantas E.L., Oliveira C.G., Barbosa E.S.R. 2010b. Stable (C, O) and radiogenic (Sr, Nd) isotopes of carbonates as indicators of magmatic and post-magmatic processes of phoscorite-series rocks and carbonatites from Catalão I, central Brazil. *Contributions to Mineralogy and Petrology*, **161**: 451-464.
- Deer W.A., Howie R.A. & Zussman J. 1992. An introduction to rock-forming minerals. London, Longman, 696 p.
- Ferrari V.C. 2000. Fosfatos primários e secundários nos perfis de intemperismo sobre os Maciços Alcalino-Carbonatíticos de Juquiá (SP), Anitápolis (SC) e Tapira (MG). Tese de Doutorado, Instituto de Geociências, Universidade de São Paulo, São Paulo, 208 p.
- Gibson S.A., Thompson R.N., Dickin A.P., Leonardos O.H. 1995a. High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis. *Earth and Planetary Science Letters*, **136**: 149-165.
- Gibson S.A., Thompson R.N., Leonardos O.H., Dickin A.P., Dickin J.G. 1995b. The Late Cretaceous Impact of the Trindade Mantle Plume - Evidence from Large-Volume, Mafic, Potassic Magmatism in Se Brazil. *Journal of Petrology*, **36**: 189-229.
- Gibson S.A., Thompson R.N., Weska R.K., Dickin A.P., Leonardos O.H. 1997. Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle

plume head beneath western Brazil. *Contributions to Mineralogy and Petrology,* **126**: 303-314.

- Grasso C.B. 2010. *Petrologia do Complexo Alcalino-Carbonatítico de Serra Negra, MG*. Dissertação de Mestrado, Instituto de Geociências, Universidade de Brásilia, Brásilia, 209 p.
- Gravina É.G. Caracterização cristaloquímica de minerais ricos em titânio: perovskita e ti-granada da região de Tapira, MG. Tese de Doutorado, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Minas Gerais, 171 p.
- Grossi Sad J.H. & Torres N. 1971. Geologia e recursos minerais do Complexo de Tapira -MG, Brasil. Minas Gerais, DNPM - Departameno Nacional de Produção Mineral, 68p.
- Heaman L.M, Kjarsgaard B.A. 1999. Timing of eastern North American kimberlite magmatism: continental exetension of the Great Meteor hotspot track. *Earth and Planetary Science Letters*, **178**: 253-268
- Hogarth D.D. 1989. Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. *Carbonatites: genesis and evolution*, London, Unwin Hyman, p.105-148.
- Lagorio S.L. 2008. Early Cretaceous alkaline volcanism of the Sierra Chica de Córdoba (Argentina): Mineralogy, geochemistry and petrogenesis. *Journal of South American Earth Science*, **26**: 152-171.
- Liu Y. & Comodi P. 1993. Some Aspects of the Crystal-Chemistry of Apatites. *Mineralogical Magazine*, **57**: 709-719.
- Locock A.J. 2008. An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. *Computers & Geosciences*, 34: 1769-1780.
- Machado Junior D.L. 1991. *Geologia e Aspectos Metalogenéticos do Complexo Alcalino-Carbonatítico de Catalão II (GO)*. Dissertação de Mestrado, Instituto de Geociências, Universidade Estadual de Campinas, São Paulo, 101 p.
- Machado Junior D.L. 1992. Idades Rb/Sr do complexo alcalino-carbonatítico de Catalão II (GO). *In*: Congresso Brasileiro de Geologia, São Paulo, *Atas, p.*91-93.
- Mariano, A.N. & Marchetto M. 1991. Serra Negra and Salitre carbonatite alkaline igneous complex. In: Leonardos O. H., Meyer H. O. A., Gaspar J. C. (ed.) 5th International Kimberlite Conference. Araxá, Brazil, CPRM, p.75-79.
- Mariano, A.N. & Marchetto M. 1991. Serra Negra and Salitre carbonatite alkaline igneous complex. In: Leonardos O. H., Meyer H. O. A., Gaspar J. C. (ed.) 5th International Kimberlite Conference. Araxá, Brazil, CPRM, p.251-253.
- McDonough W.F., Sun S. 1995. The composition of the Earth. *Chemical geology*, **120**: 223-253
- Melluso L., Lustrino M., Ruberti E., Brotzu P., Gomes C.B., Morbidelli L., Morra V., Svisero D., D'Amelio F. 2008. Major- and trace-element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaíba, Brazil. *Canadian Mineralogist*, **46**: 19-40.
- Melo M.V.L.C. 1999. *Química dos minerais das rochas do Complexo Carbonatítico de Catalão II: Implicações Petrogenéticas*. Dissertação de Mestrado, Instituto de Geociências, Universidade de Brasília, Brasília.

- Mitchell R.H. 1986. *Kimberlites: Mineralogy, Geochemistry, and Petrology*. Estados Unidos, Springer, 442 p.
- Mitchell R.H. 1995. Compositional variation of micas in kimberlites, orangeites, lamproites and lamprophyres. *In*: 6th International Kimberlite Conference, Novosibirsk, Russia, p.390-392.
- Mitchell R.H. & Chakhmouradian A.R. 1998. Instability of perovskite in a CO2-rich environment: Examples from carbonatite and kimberlite. *Canadian Mineralogist*, **36**: 939-951.
- Mitchell R.H. & Chakhmouradian A.R. 1998. Instability of perovskite in a CO₂-rich environment: exemples from carbonatite and kimberlite. *Canadian Mineralogist*, **36**: 939-952.
- Mitchell R.H. 2002. Perovskites: modern and ancient. Ontario, Almaz Press, 309 p.
- Nesbitt H. W., Bancroft G. M., Fyfe W. S., Karkhanis S. N., Nishijima A., Shin S. 1981. Thermodynamic stability and kinetics of perovskite dissolution. *Nature*, 289: 358-362.
- Oliveira I.W.B., Sachs L.L.B., Silva V.A., Batista I.H. 2004. *Folha SE.23-Belo Horizonte*. Brasília, CPRM-Serviços Geológico do Brasil, mapa geológico, escala 1: 1.000.000.
- Palmieri M. 2011. Modelo Geológico e Avaliação de Recursos Minerais do Depósito de Nióbio Morro do Padre, Complexo alcalino-carbonatítico Catalão II, GO. Dissertação de Mestrado, Instituto de Geociências, Universidade de Brasília. Brasília, 130 p.
- Pereira V.P. 1995. Alteração no Maciço Alcalino- Carbonatítico de Catalão I. Tese de doutorado, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 279 p.
- Reguir E.P., Chakhmouradian A.R., Halden N.M., Malkovets V.G., Yang P. 2009. Majorand trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. *Lithos*, **112**: 372-384.
- Reguir E.P., Chakhmouradian A.R., Pisiak L., Halden N.M., Yang P., Xu C., Kynicky J., Coueslan C.G. 2012. Trace-element composition and zoning in clinopyroxeneand amphibole-group minerals: Implications for element partitioning and evolution of carbonatites. *Lithos*, **128-13**1: 27-45.
- Reis R.C. 2010. Estudo de estabilidade de taludes da mina de Tapira MG. Dissertação de Mestrado, Escola de Minas, Universidade Federal de Ouro Preto, Minas Gerais, 95p.
- Ribeiro C.C. 2008. Geologia, geometalurgia, controles e gênese dos depósitos de fósforo, terras raras e titânio do Complexo Carbonatítico de Catalão I, GO. Tese de Doutorado, Instituto de Geociências, Universidade de Brasília, Brasília, 473p.
- Rodrigues C. S. & Lima P. 1984. Complexos carbonatíticos do Brasil. In: *Complexos Carbonatiticos do Brasil: Geologia*. São Paulo, CBMN, p.1-15.
- Roeder P.L., MacArthur D., Ma X.P., Palmer G.R., Mariano A.N. 1987. Cathodoluminescence and microprobe study of rare-earth elements in apatite. *American Mineralogist*, **72**: 801-811.
- Seer H.J. & Moraes L.C. 1988. Estudo petrográfico das rochas ígneas alcalinas da região de Lagoa Formosa, MG. *Revista Brasileira de Geociências*, **18**: 134-140.

- Sgarbi P.B.A., Heaman L.M., Gaspar J.C. 2000. U-Pb Perovskite ages for Brazilian kamafugites. *In:* International Geological Congress. Australia, 31, *Atas*.
- Silva A.B. 1986. Jazida de nióbio de Araxá, Minas Gerais. *In*: Schobbenhaus C. (ed.) Principais depósitos minerais do Brasil. Brasília, MME/DNPM, p. 456-462.
- Smith J.V. 1981. Halogen and Phosphorus Storage in the Earth. *Nature*, **289**: 762-765.
- Sonoki I.K. & Garda G.M. 1988. Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilação e adaptação as novas constantes de decaimento. *Boletim do IG USP Serie Científica,* **19**: 63-85.
- Soubies F., Melfi A.J., Autefage F. 1991. Comportamento geoquímico dos elementos terras raras nos alteritos da jazida de fosfato e titânio de Tapira (Minas Gerais, Brasil): a importância dos fosfatos. *Revista Brasileira de Geociências*, **21**: 3-16.
- Thompson R.N. 1982. Magmatism of the British Tertiary Volcanic Province, Scottish Journal of Geology, **18**: 49-107.
- Thompson R.N., Gibson S.A., Mitchell J.G., Dickin A.P., Leonardos O.L., Brod J.A., Greenwood J.C. 1998. Migrating Cretaceous-Eocene magmatism in the Serra do Mar alkaline province, SE Brazil: Melts from the deflected Trindade mantle plume. *Journal of Petrology*, **39**: 1493-1526.
- Toledo M.C.M., Pereira V.P. 2001. A variabilidade de composição da apatita associada a carbonatitos. *Revista do Instituto Geológico*, **22**: 27-64.
- Torres M.G. 2008. *Composição química superficial e nanotopográfica da apatita do proto-minério da Mina do Barreiro, Araxá, MG*. Tese de doutorado, Instituto de Geociências, Universidade de Brasília, Brasília, 246 p.

ANEXOS

- Anexo 1 Análises de Apatita de Tapira por Laser Ablation
- Anexo 2 Análises de apatita de Tapira por Microssonda Eletrônica
- Anexo 3 Análises de Carbonatos de Tapira por Laser Ablation
- Anexo 4 Análises de carbonatos de Tapira por Microssonda Eletrônica
- Anexo 5 Análises de Clinopiroxênio de Tapira por Laser Ablation
- Anexo 6 Análises de Clinopiroxênio de Tapira por Microssonda Eletrônica
- Anexo 7 Análises de Mica de Tapira por Laser Ablation
- Anexo 8 Análises de Mica de Tapira por Microssonda Eletrônica
- Anexo 9 Análises de Granada de Tapira por Microssonda Eletrônica
- Anexo 10 Análises de Granada de Tapira por Laser Ablation
- Anexo 11 Análises de Perovskita de Tapira por Laser Ablation
- Anexo 12 Análises de Perovskita de Tapira por Microssonda Eletrônica
- Anexo 13 Análises de Rocha Total (Acme)

Anexo 1 - Análi	ses de A	patita de Tapira po	or La s	er Abla	ation																				
Amostra	Unidade	Rocha	Ва	Sr	Hf	Y	Nb	Th	U	v	As	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
LSAT-004-Ap01	B1	Bebedourito	59	7009		253		3,66	3,99	113	11,01	1002	1126	103	383	76	26,58	83	9,50	48,20	7,87	16,20	1,82	10,10	1,25
LSAT-004-Ap02	B1	Bebedourito	55	7540	0,14	246	0,06	4,01	7,19	125	11,15	1012	1115	100	375	75	27,26	81	9,73	46,64	7,98	17,41	1,97	11,06	1,29
LSAT-004-Ap03	B1	Bebedourito	55	7746	0,09	243	0,03	2,89	4,06	131	11,44	1048	1143	97	347	66	23,81	75	8,78	45,48	8,06	17,98	2,02	11,59	1,27
LSAT-004-Ap04	B1	Bebedourito	68	8420	0,04	255	0,04	3,54	6,82	135	11,77	1126	1271	109	382	76	28,32	91	10,22	48,55	8,37	18,15	2,08	10,89	1,38
LSAT-004-Ap05	B1	Bebedourito	78	7413	0,19	330	0,07	3,07	6,76	141	10,63	1356	1607	146	532	105	37,32	111	13,20	61,31	10,39	22,34	2,55	13,76	1,72
LSAT-004-Ap06	B1	Bebedourito	55	7754	0,19	234	0,13	3,24	6,77	138	9,02	995	1156	100	344	66	24,30	83	9,31	48,18	7,71	17,24	1,94	11,11	1,30
LSAT-004-Ap07	B1	Bebedourito	71	8359	0,41	299	0,48	4,61	7,54	173	8,32	1234	1542	133	482	99	35,04	106	12,84	60,54	9,84	20,77	2,25	11,88	1,36
LSAT-508-Ap01	N1	Carbonato Apatitit	254	13739	0,24	382	0,45	74,93	6,90	38	23,35	3770	7595	784	2817	368	101,06	361	28,75	107,19	17,55	34,19	3,31	17,03	1,91
LSAT-508-Ap02	N1	Carbonato Apatitit	303	13942	0,19	439	0,49	96,03	10,85	40	22,82	3541	6417	701	2613	383	108,80	367	31,71	122,09	18,90	37,03	3,74	17,69	1,91
LSAT-508-Ap03	N1	Carbonato Apatitit	325	13371	0,26	458	0,44	147,36	9,83	44	23,23	4186	7280	732	2716	416	122,02	355	29,90	126,24	20,02	37,68	3,72	19,35	2,12
LSAT-508-Ap04	N1	Carbonato Apatitit	81	9460	0,05	225	0,97	107,36	4,07	31	21,95	2066	5853	676	2233	291	88,81	217	18,43	71,30	10,61	21,54	2,13	10,20	1,08
LSAT-508-Ap05	N1	Carbonato Apatitit	125	11897	0,06	350	0,66	125,23	8,70	33	23,72	3525	8002	801	2698	359	109,24	289	27,15	110,10	16,27	31,65	3,26	14,89	1,74
LSAT-508-Ap06	N1	Carbonato Apatitit	116	8963	0,19	342	0,49	141,64	12,45	41	20,68	3261	8073	896	2910	395	111,78	273	23,89	100,24	16,31	32,11	3,22	16,17	1,62
LSAT-038-Ap01	B2	Bebedourito	63	11021	0,18	131	0,51	30,92	9,36	140	10,53	1524	2704	271	982	145	42,32	133	10,05	42,45	6,37	11,61	1,05	4,78	0,48
LSAT-038-Ap02	B2	Bebedourito	73	11537	0,22	162	0,65	36,87	14,08	158	12,28	1979	3584	342	1207	170	51,02	182	11,89	49,61	6,94	13,01	1,06	5,20	0,62
LSAT-038-Ap03	B2	Bebedourito	50	10975	0,06	112	0,19	37,54	7,80	108	9,64	1547	2958	283	1018	141	43,20	120	9,26	35,96	4,79	9,01	0,79	3,54	0,39
LSAT-038-Ap04	B2	Bebedourito	64	11045	0,25	184	0,57	30,46	9,78	151	10,66	1870	3309	312	1102	168	54,43	181	12,74	51,52	6,84	12,89	1,22	5,57	0,65
LSAT-038-Ap05	B2	Bebedourito	66	11256	0,11	139	0,52	30,92	8,29	138	9,00	1380	2224	218	893	126	34,50	112	9,15	36,96	5,06	9,81	0,76	3,88	0,46
LSAT-038-Ap06	B2	Bebedourito	63	11613	0,24	169	0,71	25,87	9,53	178	9,40	1798	3869	335	1071	157	46,85	120	11,85	48,43	7,11	12,62	1,15	5,34	0,61
LSAT-501-Ap02	N2	Pseudonelsonito	82	14381	0,06	154	0,38	14,51	0,01	25	15,66	1693	4530	464	1660	215	54,00	137	12,01	46,71	6,87	13,20	1,26	5,98	0,61
LSAT-501-Ap03	N2	Pseudonelsonito	94	16276		166	0,54	15,51		28	17,38	1732	4871	474	1631	203	50,51	116	11,29	43,23	6,10	12,79	1,16	5,62	0,61
LSAT-501-Ap04	N2	Pseudonelsonito	135	16716	0,10	298	0,73	47,89	1,83	24	18,03	2123	6593	647	2203	274	70,95	163	16,50	74,73	11,00	27,40	3,14	13,86	1,41
LSAT-501-Ap05	N2	Pseudonelsonito	257	16759		195	1,09	33,45	0,27	31	20,34	2264	6024	578	1969	240	61,94	146	13,81	54,02	7,77	15,78	1,53	6,56	0,84
LSAT-501-Ap06	N2	Pseudonelsonito	232	16175	0,08	233	1,06	32,15	0,51	20	17,39	1921	5705	571	1967	266	71,13	165	16,40	64,98	9,46	19,91	1,92	8,58	0,93
LSAT-505-Ap02	B2	Apatitito	95	9397	0,13	504	24,10	444,12	21,77	53	25,76	3072	8542	876	3577	507	129,90	342	35,05	140,87	20,06	38,29	3,99	19,49	2,07
LSAT-505-Ap03	B2	Apatitito	87	9396	0,16	379	2,17	287,77	12,40	52	22,07	2966	7781	797	3053	418	105,87	284	28,07	115,44	15,95	30,64	3,27	16,01	1,72
LSAT-505-Ap04	B2	Apatitito	75	7936	0,29	531	21,00	554,49	28,53	69	30,05	3455	8925	936	3595	536	146,22	394	40,18	159,59	21,58	40,97	4,54	23,71	2,44
LSAT-43b-Ap01	C3	Carbonatito	60	9760	0,10	271	2,09	48,15	31,68	118	13,77	1864	4362	511	1730	229	71,45	168	17,15	74,48	10,77	21,29	2,28	12,15	1,09
LSAT-43b-Ap02	C3	Carbonatito	53	8266	n.d.	146	0,40	47,52	13,89	63	10,22	1111	2253	273	1075	144	44,62	136	12,89	47,63	7,14	12,29	1,20	6,41	0,66
LSAT-43b-Ap03	C3	Carbonatito	63	8977	0,52	447	4,48	72,76	63,89	168	12,47	2737	5793	659	2637	371	106,38	258	28,23	118,99	18,23	38,04	4,05	20,08	2,18
LSAT-43b-Ap04	C3	Carbonatito	60	8842	0,06	159	0,52	52,09	25,37	82	10,71	1190	2255	260	1049	145	42,25	102	9,81	41,44	6,67	14,13	1,25	6,93	0,88
LSAT-060-Ap01	C3	Carbonatito	98	12432	0,02	215	1,91	70,61	19,58	30	10,45	1610	4792	510	1915	265	62,21	154	13,73	62,54	8,65	17,15	1,59	8,36	0,88
LSAT-060-Ap02	C3	Carbonatito	88	10711	0,11	175	1,56	44,16	14,69	47	9,06	1204	3041	420	1603	216	49,70	130	11,87	51,25	7,46	14,58	1,34	6,33	0,84
LSAT-060-Ap03	C3	Carbonatito	102	10166	n.d.	200	2,93	72,65	58,03	43	11,12	1390	3590	476	1828	260	63,09	168	15,68	60,65	7,97	16,03	1,46	6,58	0,96
LSAT-060-Ap04	C3	Carbonatito	101	10723	n.d.	109	1,10	41,16	17,86	19	8,32	845	2378	318	1164	159	35,80	88	7,85	32,99	4,75	9,17	0,84	4,72	0,54
LSAT-060-Ap05	C3	Carbonatito	101	11526	0,12	200	2,41	59,40	55,91	51	10,05	1489	3817	523	1920	260	60,26	158	14,12	60,60	9,11	17,25	1,47	7,84	0,87
LSAT-125-Ap01	B2	Bebedourito	61	13391	n.d.	39	1,23	221,81	16,36	69	15,94	2929	6994	391	1694	120	30,25	97	4,12	17,86	1,47	3,37	0,25	0,95	0,09
LSAT-125-Ap02	B2	Bebedourito	63	13787	n.d.	40	1,26	228,41	16,85	71	16,44	3019	7201	403	1746	124	31,15	100	4,24	18,43	1,51	3,48	0,26	0,98	0,09
LSAT-125-Ap03	B2	Bebedourito	41	8895	0,09	37	0,98	187,62	15,50	60	11,60	3025	4578	394	1302	99	28,88	79	2,83	16,12	1,31	2,97	0,28	1,01	0,13
LSAT-125-Ap04	B2	Bebedourito	39	8369	0,09	35	0,92	176,55	14,58	56	10,93	2849	4307	371	1226	94	27,18	74	2,66	15,19	1,23	2,80	0,27	0,95	0,12

Anexo 2 - Ar	nálise	s de apa	atita de Tapira por Mi	icrosso	nda Ele	trônica									
Amostra	Obs1	Unidade	Rocha	SiO2	FeO	MgO	CaO	Na2O	P2O5	BaO	SrO	F	Cl	SO3	Total
AT-004-Ap01	(c)	B1	Bebedourito	0,53	0,04	0,00	54,13	0,09	35,71	0,00	0,97	1,41	0,00	0,03	92,90
AT-004-Ap02	(b)	B1	Bebedourito	0,65	0,15	0,00	53,55	0,07	33,77	0,11	0,73	1,30	0,02	0,05	90,38
AT-004-Ap03	(c)	B1	Bebedourito	0,34	0,00	0,00	53,01	0,08	35,66	0,00	1,25	1,17	0,00	0,09	91,60
AT-004-Ap04	(b)	B1	Bebedourito	0,38	0,10	0,07	52,83	0,08	35,57	0,03	1,06	1,23	0,00	0,08	91,43
AT-004-Ap05	(c)	B1	Bebedourito	0,46	0,00	0,01	52,40	0,08	34,04	0,03	0,90	1,25	0,00	0,11	89,26
AT-004-Ap06	(b)	B1	Bebedourito	0,90	0,18	0,09	52,27	0,13	34,74	0,01	0,81	1,27	0,02	0,13	90,54
AT-004-Ap07	(b)	B1	Bebedourito	0,48	0,10	0,03	53,32	0,04	35,17	0,00	1,11	1,22	0,01	0,06	91,53
AT-004-Ap08	(c)	B1	Bebedourito	0,48	0,01	0,00	52,82	0,07	34,67	0,03	1,14	1,27	0,03	0,07	90,58
AT-004-Ap09	(c)	B1	Bebedourito	0,67	0,00	0,04	54,32	0,13	35,60	0,00	1,04	1,27	0,00	0,05	93,12
AT-004-Ap10	(b)	B1	Bebedourito	0,50	0,06	0,11	53,10	0,07	36,04	0,00	1,00	1,25	0,01	0,09	92,23
AT-004-Ap11	(b)	B1	Bebedourito	0,77	0,06	0,10	53,32	0,10	34,45	0,00	1,12	1,22	0,01	0,08	91,23
AT-004-Ap12	(c)	B1	Bebedourito	0,57	0,02	0,00	53,80	0,10	34,60	0,00	1,02	1,09	0,00	0,07	91,26
AT-004-Ap13	(c)	B1	Bebedourito	0,27	0,00	0,04	55,41	0,04	31,23	0,00	0,99	1,33	0,01	0,12	89,44
AT-004-Ap14	(b)	B1	Bebedourito	0,80	0,01	0,00	54,88	0,13	28,12	0,00	0,81	1,24	0,01	0,10	86,10
AT-004-Ap15	(b)	B1	Bebedourito	0,48	0,00	0,03	55,16	0,11	27,80	0,02	1,02	1,38	0,02	0,11	86,12
AT-004-Ap16	(c)	B1	Bebedourito	0,24	0,00	0,00	55,64	0,01	27,83	0,01	1,10	1,35	0,00	0,10	86,29
AT-004-Ap17	(b)	B1	Bebedourito	0,59	0,05	0,02	55,06	0,08	27,48	0,00	0,91	1,38	0,00	0,10	85,66
AT-004-Ap18	(b)	B1	Bebedourito	0,28	0,05	0,00	55,31	0,04	28,30	0,15	0,91	1,46	0,00	0,09	86,60
AT-004-Ap19	(c)	B1	Bebedourito	0,91	0,11	0,10	55,30	0,05	26,55	0,08	0,89	1,44	0,00	0,16	85,56
AT-004-Ap20	(b)	B1	Bebedourito	0,43	0,03	0,03	54,61	0,11	27,11	0,00	1,03	1,41	0,00	0,07	84,83
AT-004-Ap21	(b)	B1	Bebedourito	0,35	0,00	0,00	55,75	0,05	25,35	0,00	1,05	1,46	0,00	0,11	84,12
AT-004-Ap22	(c)	B1	Bebedourito	0,82	0,00	0,02	55,42	0,10	26,07	0,00	0,97	1,21	0,00	0,13	84,73
AT-004-Ap23	(b)	B1	Bebedourito	0,77	0,10	0,00	54,91	0,16	25,86	0,00	0,93	1,30	0,01	0,10	84,13
AT-004-Ap24	(b)	B1	Bebedourito	0,65	0,00	0,03	55,06	0,11	25,63	0,00	0,92	1,26	0,00	0,09	83,74
AT-004-Ap25	(c)	B1	Bebedourito	0,43	0,01	0,01	56,52	0,06	26,08	0,07	0,81	1,58	0,02	0,01	85,60
AT-004-Ap26	(b)	B1	Bebedourito	0,33	0,02	0,01	55,95	0,04	25,82	0,08	0,87	1,47	0,02	0,08	84,68
AT-004-Ap27	(b)	B1	Bebedourito	0,37	0,00	0,02	55,62	0,04	26,91	0,00	1,10	1,40	0,00	0,01	85,46
AT-011b-Ap01		B2	Bebedourito	0,85	0,03	0,01	52,48	0,13	41,02	0,01	1,26	1,76	0,02	0,08	97,66
AT-011b-Ap02		B2	Bebedourito	0,89	0,03	0,00	52,65	0,06	40,00	0,03	1,30	1,92	0,00	0,01	96,89
AT-011b-Ap03		B2	Bebedourito	0,36	0,05	0,00	52,62	0,10	40,79	0,00	0,77	1,66	0,00	0,08	96,44
AT-011b-Ap04		B2	Bebedourito	0,63	0,04	0,00	52,88	0,13	41,70	0,00	1,03	2,05	0,00	0,01	98,47
AT-011b-Ap05		B2	Bebedourito	0,94	0,06	0,00	52,05	0,17	40,37	0,00	1,24	1,67	0,02	0,01	96,52
AT-011b-Ap06		B2	Bebedourito	0,85	0,05	0,00	52,19	0,14	40,01	0,00	1,40	1,63	0,01	0,05	96,32
AT-011b-Ap07		B2	Bebedourito	0,82	0,02	0,02	52,92	0,13	39,91	0,00	1,32	1,75	0,01	0,05	96,94
AT-011b-Ap08	(c)	B2	Bebedourito	0,47	0,04	0,01	53,11	0,10	41,41	0,00	1,39	1,77	0,01	0,00	98,33
AT-011b-Ap09	(b)	B2	Bebedourito	0,43	0,00	0,00	53,24	0,16	41,14	0,00	1,27	1,72	0,00	0,02	97,98
AT-011b-Ap10	(c)	B2	Bebedourito	0,67	0,00	0,00	52,31	0,11	40,44	0,00	1,03	1,74	0,00	0,00	96,29
AT-011b-Ap11	(b)	B2	Bebedourito	0,63	0,06	0,00	52,58	0,17	41,70	0,04	1,41	1,88	0,00	0,01	98,49
AT-012-Ap01	(c)	Sien	Sienito	0,23	0,10	0,00	52,79	0,12	43,01	0,00	2,10	3,28	0,02	0,00	101,65
AT-012-Ap02	(b)	Sien	Sienito	0,25	0,02	0,01	53,31	0,09	42,44	0,00	2,18	3,01	0,00	0,00	101,31
AT-012-Ap03	(c)	Sien	Sienito	0,22	0,03	0,00	53,32	0,08	42,71	0,00	1,88	2,64	0,01	0,02	100,91
AT-012-Ap04	(b)	Sien	Sienito	0,45	0,03	0,00	52,56	0,16	42,03	0,00	2,45	2,56	0,00	0,03	100,28

Anexo 2 (Co	nt.) -	Análise	s de apatita de Tapi	ra por N	1icrosso	nda Elet	rônica								
Amostra	Obs1	Unidade	Rocha	SiO2	FeO	MgO	CaO	Na2O	P2O5	BaO	SrO	F	Cl	SO3	Total
AT-025-Ap01	(c)	B1	Bebedourito	0,55	0,08	0,02	53,06	0,01	38,86	0,00	1,27	1,38	0,01	0,09	95,33
AT-025-Ap02	(b)	B1	Bebedourito	0,74	0,10	0,03	53,06	0,07	38,27	0,00	0,37	1,36	0,00	0,02	94,02
AT-025-Ap03		B1	Bebedourito	1,44	0,15	0,05	52,66	0,05	37,37	0,00	0,53	1,44	0,00	0,26	93,96
AT-025-Ap04		B1	Bebedourito	1,26	0,29	0,09	52,32	0,12	37,26	0,00	0,44	1,32	0,02	0,11	93,22
AT-025-Ap05	(c)	B1	Bebedourito	1,02	0,04	0,01	52,78	0,15	39,67	0,00	0,56	1,56	0,01	0,06	95,85
AT-025-Ap06	(b)	B1	Bebedourito	1,12	0,09	0,04	52,98	0,16	40,74	0,03	0,62	1,54	0,02	0,08	97,41
AT-025-Ap07	(c)	B1	Bebedourito	0,64	0,02	0,04	52,90	0,15	40,26	0,00	0,67	1,26	0,03	0,08	96,06
AT-025-Ap08	(b)	B1	Bebedourito	0,54	0,25	0,07	52,91	0,10	40,10	0,00	0,62	1,41	0,03	0,01	96,03
AT-038-Ap01	(c)	B2	Bebedourito	0,85	0,00	0,00	53,64	0,04	42,67	0,00	1,13	1,60	0,01	0,03	99,97
AT-038-Ap02	(b)	B2	Bebedourito	0,67	0,01	0,01	52,47	0,05	40,73	0,00	1,31	1,62	0,00	0,05	96,93
AT-038-Ap03	(c)	B2	Bebedourito	0,49	0,00	0,01	54,26	0,10	40,27	0,00	1,30	1,43	0,00	0,00	97,87
AT-038-Ap04	(b)	B2	Bebedourito	0,30	0,00	0,00	54,47	0,04	39,63	0,00	1,07	1,65	0,01	0,05	97,23
AT-038-Ap05	(c)	B2	Bebedourito	0,45	0,00	0,01	53,51	0,04	39,33	0,00	1,25	1,60	0,00	0,03	96,21
AT-038-Ap06	(b)	B2	Bebedourito	0,35	0,01	0,01	54,28	0,10	39,23	0,02	1,29	1,89	0,00	0,02	97,20
AT-038-Ap07	(c)	B2	Bebedourito	0,88	0,00	0,00	53,86	0,11	37,41	0,00	1,25	1,71	0,01	0,00	95,25
AT-038-Ap08	(b)	B2	Bebedourito	0,57	0,00	0,01	54,04	0,06	37,50	0,00	1,67	1,96	0,00	0,14	95,95
AT-038-Ap09	(c)	B2	Bebedourito	0,94	0,01	0,00	53,40	0,10	37,10	0,00	1,39	1,57	0,00	0,04	94,56
AT-038-Ap10	(b)	B2	Bebedourito	0,41	0,07	0,02	52,78	0,00	38,59	0,00	1,35	1,69	0,00	0,00	94,90
AT-038-Ap11	(c)	B2	Bebedourito	0,96	0,06	0,03	54,83	0,09	25,43	0,00	1,16	1,99	0,00	0,00	84,55
AT-038-Ap12	(b)	B2	Bebedourito	0,93	0,09	0,00	54,99	0,08	25,63	0,08	1,34	1,77	0,00	0,05	84,95
AT-038-Ap13	(b)	B2	Bebedourito	0,91	0,06	0,03	54,91	0,12	25,57	0,06	1,39	1,86	0,01	0,06	84,98
AT-038-Ap14	(c)	B2	Bebedourito	0,47	0,00	0,00	53,97	0,04	24,91	0,00	1,37	2,08	0,00	0,00	82,83
AT-038-Ap15	(b)	B2	Bebedourito	0,83	0,04	0,02	54,43	0,09	25,81	0,00	1,39	1,64	0,02	0,00	84,28
AT-038-Ap16	(b)	B2	Bebedourito	0,92	0,02	0,04	54,21	0,05	26,03	0,03	1,36	1,63	0,00	0,01	84,30
AT-038-Ap17	(c)	B2	Bebedourito	0,75	0,00	0,00	54,86	0,04	25,56	0,00	1,16	1,64	0,00	0,05	84,06
AT-038-Ap18	(b)	B2	Bebedourito	0,30	0,00	0,00	54,68	0,07	24,38	0,05	1,22	1,59	0,00	0,00	82,29
AT-038-Ap19	(b)	B2	Bebedourito	1,02	0,03	0,00	54,39	0,10	25,32	0,00	1,33	1,83	0,00	0,01	84,03
AT-038-Ap20	(c)	B2	Bebedourito	0,82	0,00	0,00	55,76	0,09	25,56	0,00	1,48	1,85	0,01	0,02	85,58
AT-038-Ap21	(b)	B2	Bebedourito	1,01	0,08	0,00	54,95	0,07	25,33	0,00	1,29	1,95	0,00	0,08	84,76
AT-038-Ap22	(b)	B2	Bebedourito	0,66	0,02	0,00	55,65	0,06	24,77	0,00	1,21	1,96	0,00	0,07	84,40
AT-038-Ap23	(c)	B2	Bebedourito	0,82	0,05	0,02	54,46	0,10	24,14	0,20	1,56	1,63	0,01	0,05	83,03
AT-038-Ap24	(b)	B2	Bebedourito	0,97	0,00	0,01	54,70	0,12	25,46	0,12	1,19	1,85	0,00	0,01	84,43
AT-038-Ap25	(b)	B2	Bebedourito	1,02	0,00	0,00	54,15	0,10	24,89	0,09	1,29	1,65	0,00	0,05	83,23
AT043-Ap01	(c)	C3	Carbonatito	0,72	0,06	0,01	52,42	0,17	37,89	0,00	1,04	1,70	0,01	0,00	94,02
AT043-Ap02	(b)	C3	Carbonatito	1,19	0,07	0,01	51,99	0,16	37,18	0,00	0,97	1,63	0,02	0,01	93,23
AT043-Ap03	(c)	C3	Carbonatito	0,42	0,02	0,01	52,60	0,14	40,16	0,00	0,98	1,65	0,00	0,10	96,08
AT043-Ap04	(b)	C3	Carbonatito	1,51	0,01	0,05	51,59	0,26	36,22	0,00	1,11	1,68	0,01	0,05	92,47
AT043-Ap05	(c)	C3	Carbonatito	0,73	0,03	0,03	52,94	0,19	38,18	0,00	0,98	2,25	0,01	0,05	95,38
AT043-Ap06	(b)	C3	Carbonatito	0,58	0,00	0,01	52,22	0,08	38,99	0,00	1,07	2,07	0,00	0,05	95,07
AT043-Ap07		C3	Carbonatito	0,88	0,51	0,04	51,90	0,09	38,85	0,02	1,19	2,09	0,01	0,06	95,62
AT-060-Ap01	(c)	C3	Carbonatito	0,07	0,08	0,02	53,41	0,44	42,09	0,05	1,16	1,93	0,01	0,00	99,27
AT-060-Ap02	(b)	C3	Carbonatito	0,60	0,10	0,04	53,01	0,34	40,27	0,01	1,30	2,20	0,02	0,00	97,89

Anexo 2 (Co	nt.) -	Análises	s de apatita de Tapi	ra por N	licrosso	nda Elet	rônica								
Amostra	Obs1	Unidade	Rocha	SiO2	FeO	MgO	CaO	Na2O	P2O5	BaO	SrO	F	Cl	SO3	Total
AT-060-Ap03	(c)	C3	Carbonatito	0,04	0,07	0,00	54,62	0,15	41,11	0,00	0,90	2,37	0,00	0,00	99,25
AT-060-Ap04	(b)	C3	Carbonatito	0,05	0,13	0,01	53,38	0,24	42,06	0,00	0,89	2,44	0,00	0,00	99,20
AT-060-Ap05	(c)	C3	Carbonatito	0,37	0,04	0,03	53,41	0,19	41,20	0,00	1,04	2,20	0,00	0,00	98,48
AT-060-Ap06	(b)	C3	Carbonatito	0,25	0,08	0,02	53,69	0,13	40,88	0,02	1,06	2,42	0,00	0,00	98,54
AT-060-Ap07	(c)	C3	Carbonatito	0,21	0,11	0,05	53,73	0,37	40,90	0,00	1,18	2,24	0,02	0,00	98,81
AT-060-Ap08	(b)	C3	Carbonatito	0,22	0,09	0,03	53,55	0,41	40,41	0,00	1,23	2,39	0,01	0,00	98,33
AT-060-Ap09	(c)	C3	Carbonatito	0,46	0,04	0,02	53,26	0,19	38,34	0,08	1,07	2,19	0,01	0,06	95,71
AT-060-Ap10	(b)	C3	Carbonatito	0,09	0,12	0,02	54,54	0,26	40,55	0,08	1,15	2,20	0,00	0,01	99,03
AT-125-Ap01		B2	Bebedourito	0,51	0,28	0,03	52,78	0,07	40,56	0,00	1,29	1,87	0,01	0,05	97,46
AT-125-Ap02		B2	Bebedourito	0,71	0,05	0,01	53,12	0,07	41,43	0,00	1,04	1,93	0,02	0,00	98,40
AT-125-Ap03		B2	Bebedourito	0,62	0,38	0,01	52,96	0,09	41,83	0,00	1,07	1,98	0,00	0,00	98,94
AT-125-Ap04		B2	Bebedourito	0,53	0,20	0,00	53,09	0,06	41,80	0,00	1,36	2,43	0,00	0,00	99,46
AT-125-Ap05		B2	Bebedourito	0,82	0,12	0,00	53,32	0,04	41,26	0,02	1,33	1,92	0,00	0,06	98,88
AT-125-Ap06		B2	Bebedourito	0,40	0,25	0,00	52,75	0,15	41,42	0,00	1,38	2,44	0,00	0,00	98,79
AT-125-Ap07		B2	Bebedourito	0,48	0,12	0,00	53,63	0,09	41,65	0,05	1,46	2,09	0,00	0,00	99,57
AT-125-Ap08		B2	Bebedourito	0,64	0,09	0,01	53,75	0,11	41,29	0,00	1,04	2,32	0,00	0,04	99,30
AT-125-Ap09		B2	Bebedourito	0,61	0,20	0,02	53,53	0,14	41,03	0,00	1,28	1,92	0,04	0,02	98,80
AT-501-Ap01	(c)	N2	Pseudonelsonito	0,04	0,16	0,02	52,43	0,31	37,35	0,00	1,52	1,74	0,01	0,08	93,65
AT-501-Ap02	(b)	N2	Pseudonelsonito	0,01	0,33	0,03	52,22	0,27	34,76	0,00	1,75	1,63	0,03	0,04	91,07
AT-501-Ap03	(c)	N2	Pseudonelsonito	0,02	0,14	0,03	52,75	0,24	36,96	0,00	1,58	1,87	0,00	0,04	93,62
AT-501-Ap04	(b)	N2	Pseudonelsonito	0,00	0,12	0,02	52,30	0,21	38,18	0,07	1,79	2,08	0,00	0,13	94,90
AT-501-Ap05	(c)	N2	Pseudonelsonito	0,06	0,09	0,02	53,46	0,23	36,27	0,00	1,56	2,26	0,00	0,05	94,00
AT-501-Ap06	(b)	N2	Pseudonelsonito	0,06	0,18	0,04	52,44	0,23	36,17	0,01	1,53	2,01	0,00	0,07	92,72
AT-501-Ap07	(b)	N2	Pseudonelsonito	0,04	0,11	0,03	52,31	0,24	35,74	0,01	1,56	1,91	0,01	0,03	91,99
AT-501-Ap08	(c)	N2	Pseudonelsonito	0,05	0,16	0,04	52,03	0,35	37,33	0,00	1,61	1,97	0,01	0,08	93,64
AT-501-Ap09	(c)	N2	Pseudonelsonito	0,05	0,05	0,01	52,45	0,30	36,23	0,04	1,84	1,95	0,02	0,01	92,95
AT-501-Ap10	(b)	N2	Pseudonelsonito	0,06	0,09	0,01	52,45	0,30	36,74	0,00	1,65	2,02	0,01	0,05	93,37
AT-501-Ap11	(b)	N2	Pseudonelsonito	0,17	0,26	0,11	51,00	0,47	35,18	0,00	1,74	1,84	0,01	0,18	90,96
AT-501-Ap12	(c)	N2	Pseudonelsonito	0,10	0,09	0,03	52,20	0,32	36,57	0,00	1,66	1,67	0,00	0,02	92,66
AT-501-Ap13	(c)	N2	Pseudonelsonito	0,01	0,06	0,04	54,51	0,14	26,98	0,00	1,48	1,97	0,01	0,02	85,22
AT-501-Ap14	(b)	N2	Pseudonelsonito	0,10	0,00	0,10	53,47	0,76	24,51	0,00	1,76	1,74	0,01	0,02	82,46
AT-501-Ap15	(b)	N2	Pseudonelsonito	0,00	0,14	0,09	53,03	0,43	24,70	0,00	1,55	1,81	0,00	0,09	81,82
AT-501-Ap16	(c)	N2	Pseudonelsonito	0,00	0,03	0,01	53,21	0,22	25,41	0,04	1,70	1,86	0,01	0,08	82,58
AT-501-Ap17	(b)	N2	Pseudonelsonito	0,05	0,01	0,03	52,65	0,26	25,47	0,07	1,44	1,78	0,02	0,06	81,85
AT-501-Ap18	(b)	N2	Pseudonelsonito	0,00	0,04	0,05	52,25	0,41	24,88	0,00	1,71	1,99	0,00	0,01	81,35
AT-501-Ap19	(c)	N2	Pseudonelsonito	0,02	0,04	0,04	53,91	0,42	36,25	0,00	1,39	1,89	0,00	0,07	94,03
AT-501-Ap20	(b)	N2	Pseudonelsonito	0,05	0,06	0,03	54,54	0,32	35,82	0,00	1,35	2,06	0,00	0,00	94,23
AT-501-Ap21	(b)	N2	Pseudonelsonito	0,02	0,07	0,05	53,62	0,46	33,77	0,01	1,63	1,84	0,02	0,04	91,54
AT-501-Ap22	(c)	N2	Pseudonelsonito	0,00	0,00	0,01	53,59	0,34	35,06	0,00	1,80	1,85	0,02	0,04	92,71
AT-501-Ap23	(b)	N2	Pseudonelsonito	0,05	0,11	0,04	54,81	0,33	33,11	0,10	1,40	2,12	0,00	0,07	92,14

Anexo 2 (Co	nt.) -	Análises	s de apatita de Tapi	ra por N	licrosso	nda Elet	trônica									
Amostra	Obs1	Unidade	Rocha	SiO2	FeO	MgO	CaO	Na2O	P2O5	BaO	SrO	F	Cl	SO3	Total	
AT-501-Ap24	(b)	N2	Pseudonelsonito	0,05	0,08	0,01	54,13	0,40	33,73	0,01	1,75	1,87	0,00	0,04	92,07	
AT-501-Ap25	(c)	N2	Pseudonelsonito	0,00	0,03	0,00	51,19	0,38	42,62	0,00	1,54	1,76	0,02	0,04	97,57	
AT-501-Ap26	(b)	N2	Pseudonelsonito	0,00	0,00	0,04	52,02	0,25	41,80	0,03	1,44	1,89	0,02	0,10	97,58	
AT-501-Ap27	(c)	N2	Pseudonelsonito	0,00	0,03	0,00	52,04	0,26	42,24	0,00	1,53	2,09	0,00	0,07	98,26	
AT-501-Ap28	(b)	N2	Pseudonelsonito	0,07	0,00	0,09	50,39	0,67	40,62	0,00	1,76	1,71	0,01	0,14	95,45	
AT-502-Ap01	(c)	C1a	Carbonatito	0,00	0,08	0,09	46,66	1,34	36,63	0,00	3,29	2,66	0,00	0,00	90,75	
AT-502-Ap02	(b)	C1a	Carbonatito	0,00	0,05	0,04	47,34	1,14	38,24	0,00	3,24	2,81	0,02	0,04	92,91	
AT-504-Ap01	(c)	C4	Carbonatito	0,34	0,00	0,07	53,12	0,26	41,29	0,09	0,85	1,64	0,00	0,08	97,74	
AT-504-Ap02	(b)	C4	Carbonatito	0,01	0,05	0,03	52,11	0,22	41,66	0,00	1,14	1,71	0,00	0,05	96,97	
AT-504-Ap03	(c)	C4	Carbonatito	0,06	0,03	0,01	51,65	0,27	41,36	0,01	1,11	1,66	0,01	0,05	96,22	
AT-504-Ap04	(b)	C4	Carbonatito	0,13	0,03	0,02	52,42	0,25	41,60	0,00	1,22	1,50	0,01	0,05	97,24	
AT-504-Ap05	(c)	C4	Carbonatito	0,06	0,03	0,03	52,45	0,28	42,13	0,10	1,10	1,67	0,00	0,04	97,88	
AT-504-Ap06	(b)	C4	Carbonatito	0,03	0,08	0,06	51,99	0,26	42,11	0,00	1,06	1,80	0,01	0,04	97,43	
AT-504-Ap07	(c)	C4	Carbonatito	0,02	0,10	0,01	51,74	0,36	41,40	0,00	1,08	2,04	0,00	0,00	96,75	
AT-504-Ap08	(b)	C4	Carbonatito	0,00	0,06	0,02	52,23	0,35	41,28	0,00	1,00	1,93	0,00	0,08	96,95	
AT-504-Ap09	(c)	C4	Carbonatito	0,05	0,00	0,04	52,40	0,22	42,56	0,00	0,81	1,63	0,00	0,11	97,81	
AT-504-Ap10	(b)	C4	Carbonatito	2,76	0,03	0,07	51,41	0,12	36,05	0,00	0,89	1,49	0,00	0,09	92,90	
AT-504-Ap11	(c)	C4	Carbonatito	0,09	0,01	0,00	52,67	0,16	42,14	0,02	1,09	1,70	0,00	0,03	97,90	
AT-504-Ap12	(b)	C4	Carbonatito	0,02	0,00	0,00	51,83	0,26	42,38	0,00	0,76	1,83	0,01	0,02	97,12	
AT-505-Ap01	(c)	B2	Apatitito	0,08	0,20	0,05	51,70	0,59	35,29	0,00	0,70	1,30	0,02	0,02	89,95	
AT-505-Ap02	(b)	B2	Apatitito	0,06	0,58	0,01	52,78	0,13	35,25	0,05	0,79	1,20	0,03	0,02	90,89	
AT-505-Ap03	(c)	B2	Apatitito	0,01	0,00	0,06	50,81	0,57	34,51	0,00	0,80	1,24	0,02	0,00	88,01	
AT-505-Ap04	(b)	B2	Apatitito	0,03	0,28	0,00	53,00	0,12	34,57	0,04	0,77	1,42	0,00	0,01	90,24	
AT-505-Ap05	(c)	B2	Apatitito	0,75	0,03	0,00	50,74	0,24	33,40	0,00	1,46	1,12	0,00	0,01	87,74	
AT-505-Ap06	(b)	B2	Apatitito	0,73	0,81	0,02	51,30	0,26	32,16	0,05	0,87	1,05	0,00	0,02	87,26	
AT-505-Ap07	(c)	B2	Apatitito	0,76	0,00	0,01	50,87	0,22	32,91	0,00	1,17	1,07	0,02	0,06	87,09	
AT-505-Ap08	(b)	B2	Apatitito	0,80	0,14	0,09	50,72	0,23	32,76	0,00	0,98	1,15	0,02	0,06	86,95	
AT-505-Ap09	(c)	B2	Apatitito	0,04	0,00	0,00	51,39	0,56	34,22	0,00	0,76	1,35	0,00	0,02	88,35	
AT-505-Ap10	(b)	B2	Apatitito	0,63	0,40	0,02	52,36	0,29	33,70	0,00	1,22	1,27	0,00	0,05	89,94	
AT-505-Ap11	(c)	B2	Apatitito	0,79	0,02	0,02	52,47	0,24	34,09	0,00	1,05	1,24	0,00	0,06	89,98	
AT-505-Ap12	(b)	B2	Apatitito	0,60	0,24	0,04	52,78	0,23	33,56	0,00	1,14	1,25	0,02	0,05	89,90	
AT-505-Ap13	(c)	B2	Apatitito	0,49	0,01	0,05	54,55	0,14	24,41	0,00	1,07	1,38	0,01	0,00	82,11	
AT-505-Ap14	(b)	B2	Apatitito	0,40	0,04	0,03	54,04	0,20	25,45	0,00	1,00	1,52	0,03	0,00	82,70	
AT-505-Ap15	(b)	82	Apatitito	0,44	0,00	0,00	54,10	0,27	25,39	0,00	1,12	1,58	0,02	0,06	82,98	
AT-505-Ap16	(c)	B2	Apatitito	0,55	0,06	0,01	54,35	0,22	25,01	0,00	1,06	1,40	0,00	0,03	82,70	
AT-505-Ap17	(b)	82	Apatitito	0,20	0,00	0,00	55,28	0,21	25,37	0,00	0,79	1,58	0,00	0,00	83,43	
AT-505-Ap18	(d)	BZ N1	Apatitito	0,10	0,01	0,00	54,72	0,29	26,86	0,00	0,81	1,58	0,00	0,02	84,39	
AT-508-Ap01	(C)	NI	Carbonato Apatitito	0,64	0,00	0,01	52,07	0,23	33,23	0,00	1,31	1,//	0,01	0,01	89,28	
AT-508-Ap02	(D)	N1	Carbonato Apatitito	0,39	0,06	0,00	52,01	0,27	32,49	0,06	1,31	1,83	0,01	0,01	88,42	
AT-508-Ap03	(d)	N1	Carbonato Apatitito	0,34	0,03	0,01	52,79	0,29	32,82	0,00	1,15	1,63	0,02	0,04	89,12	
AT 508-Ap04	(C)	N1	Carbonato Apatitito	0,25	0,04	0,00	52,19	0,32	33,64	0,00	1,43	1,6/	0,00	0,05	89,58	
AT-508-Ap05	(u)		Carbonato Apatitito	0,21	0,02	0,03	52,54	0,42	33,09	0,00	1,38	2,05	0,02	0,00	89,74	
AT-508-Ap06	(C)		Carbonato Apatitito	0,36	0,00	0,00	53,28	0,29	33,93	0,00	1,33	2,03	0,03	0,00	91,26	
AT 508-Ap07	(C)	N1	Carbonato Apatitito	0,52	0,04	0,00	53,50	0,27	34,07	0,00	1,55	2,10	0,01	0,00	92,12	
AT 508 A=00	(D) (b)		Carbonato Apatitito	0,19	0,02	0,00	52,96	0,36	33,00	0,00	1,61	1,96	0,03	0,00	90,13	
AT 508 Ap10	(u)		Carbonato Apatitito	0,73	0,02	0,05	54,11	0,24	33,82	0,00	1,19	1,//	0,02	0,00	91,94	
A1-508-Ap10	(C)	INT	Carbonato Apatitito	0,11	0,01	0,01	51,70	0,43	32,75	0,00	т,67	1,75	0,02	0,00	ŏŏ,44	
c= centro																
u= porda																

Anexo 3 - Aná	lises de Carbo	onatos de Tapira po	or Laser	Ablatior	1																		
Amostra	Obs Unidade	Rocha	Ва	Sr	Y	Sc	v	As	Pb	La	Ce	Pr	Nd	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu	
AT-501-Cb-03	1 N1	Pseudonelsonito	17935	98003	75		0,9	2,1		848	1588	120	398	12,80	37,39	3,62	15,62	2,65	5,37	0,75	4,83	0,57	
AT-501-Cb-05	1 N1	Pseudonelsonito	850	8777	126		11,2	0,3		86	159	18	59	3,49	10,99	2,17	17,81	4,02	11,19	1,41	6,88	0,79	
AT-501-Cb-04	1 N1	Pseudonelsonito	3639	26220	73		4,1	1,2		151	365	33	124	7,79	19,07	2,91	14,62	2,50	6,86	0,89	5,51	0,81	
AT-501-Cb-06	1 N1	Pseudonelsonito	1607	33929	44		1119	0,5		52	86	8	26	1,63	5,78	1,29	8,67	1,57	4,37	0,61	2,91	0,55	
AT-501-Cb-07	1 N1	Pseudonelsonito	3006	23155	73		4,3	1,8		301	552	53	195	9,15	22,15	2,30	13,27	1,87	5,01	0,78	4,62	0,69	
AT-43b-Cc1	1 C3	Carbonatito	2855	18325	51	0,6	0,3	227,2	6,6	294	368	41	133	5,03	15,71	1,79	10,92	1,83	3,71	0,50	2,74	0,37	
AT-43b-Cc2	1 C3	Carbonatito	2930	18202	47	n.d.	0,1	17,2	6,0	274	297	37	124	4,34	13,73	1,50	7,85	1,41	3,75	0,45	1,96	0,30	
AT-43b-Cc3	1 C3	Carbonatito	2008	17000	60	n.d.	n.d.	3,5	4,2	289	302	30	141	4,60	14,14	1,98	13,39	1,45	4,48	0,49	2,66	0,45	
AT-43b-Cc4	1 C3	Carbonatito	3028	23546	59	0,7	0,8	307,5	9,2	347	429	43	162	6,37	19,13	2,40	11,58	2,01	4,81	0,59	4,19	0,61	
AT-43b-Cc5	1 C3	Carbonatito	2562	17624	49	0,3	n.d.	0,4	6,2	297	352	41	147	5,61	15,55	1,74	9,78	1,89	4,35	0,45	3,02	0,41	
AT-43b-Cc6	1 C3	Carbonatito	2194	18816	64	n.d.	n.d.	n.d.	7,2	343	375	47	166	5,58	21,78	2,64	14,31	2,22	5,48	0,68	4,10	0,67	
AT-60-Cc1	1 C3	Carbonatito	3875	20469	80	2,4	0,1	1,6	7,7	596	1112	127	419	16,67	35,07	3,62	16,30	2,74	6,58	0,74	4,98	0,64	
AT-60-Cc2	1 C3	Carbonatito	2999	19811	65	1,4	0,0	1,2	7,7	532	966	118	344	13,42	28,82	3,03	13,12	2,00	5,23	0,52	3,41	0,45	
AT-60-Cc3	1 C3	Carbonatito	2698	19371	65	2,4	n.d.	1,1	6,5	476	830	99	296	12,13	33,32	3,95	13,93	2,29	5,88	0,63	4,14	0,55	
AT-60-Cc4	1 C3	Carbonatito	2910	19922	64	2,0	0,1	1,3	6,9	550	846	100	339	12,86	29,89	3,21	14,15	2,15	5,83	0,62	3,63	0,49	
AT-60-Cc5	1 C3	Carbonatito	3326	19176	66	2,2	0,1	1,4	7,1	556	902	102	327	11,98	31,03	3,20	14,95	2,30	5,89	0,64	3,92	0,51	
AT-60-Cc6	1 C3	Carbonatito	3488	20957	63	2,4	0,1	2,5	11,3	569	933	104	328	12,27	29,24	3,08	14,35	2,28	5,57	0,63	3,92	0,48	
At-125-Cc1	1 B2	Bebedourito	3529	16152	5	0,8	2,1	196,1	6,0	259	343	26	61	1,49	3,54	0,30	1,28	0,15	0,46	0,05	0,28	0,07	
At-125-Cc2	1 B2	Bebedourito	3190	17672	6	0,4	0,7	85,5	5,0	289	315	28	63	1,58	3,86	0,31	1,30	0,18	0,42	0,04	0,22	0,03	
At-125-Cc3	1 B2	Bebedourito	2955	16488	5	0,4	4,7	141,2	5,2	252	317	29	74	1,56	3,92	0,32	1,30	0,18	0,34	0,05	0,24	0,03	
At-125-Cc4	1 B2	Bebedourito	3188	23502	6	0,4	0,3	277,6	5,8	295	360	30	77	1,29	3,55	0,34	1,01	0,23	0,53	0,02	0,23	0,05	
AT-502-Cc1	1 C1a	Carbonatito	3304	24866	105	19,1	2,2	0,7	13,4	73	165	21	78	6,32	19,55	3,03	17,60	3,45	8,25	1,02	5,82	0,96	
AT-502-Cc1	1 C1a	Carbonatito	2135	16151	68	12,4	1,4	0,5	8,6	47	107	14	50	4,08	12,63	1,96	11,47	2,23	5,33	0,66	3,77	0,62	
AT-502-Cc3	1 C1a	Carbonatito	336	32668	14	38,8	2,6		11,2	41	104	11	38	2,21	4,68	0,51	3,54	0,49	1,22	0,14	1,31	0,09	
AT-502-Dol1	2 C1a	Carbonatito	323	18947	10		2,4	n.d.		27	64	8	29	1,82	4,00	0,46	2,83	0,29	0,84	0,07	0,72	0,11	
AT-502-Anc1	5 C1a	Carbonatito	114173	259225	54		n.d.	45,8		38609	57769	4254	12494	161,3	404,8	15,09	31,72	2,75	5,33	0,22	0,57	0,07	
AT-502-Burb1	4 C1a	Carbonatito	162351	97832	2447	9,5	2,9		106	130591	166595	10853	28372	441	2200	137	865	114	227	18	61	4,24	
AT-502-Burb2	4 C1a	Carbonatito	1358	53469	660	13,6	1,7		212,2	32120	38022	2385	7561	114,59	465,43	31,41	193,58	27,62	55,30	4,76	21,58	1,45	
C-1apt	3 C1a	Carbonatito	583	86	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,01	0,06	n.d.	0,01	n.d.	n.d.	n.d.	n.d.	n.d.	
AT-504-Cc1	1 C4	Carbonatito	2143	15045	68	3,6	2,7		5,1	469	717	93	317	11,82	35,39	3,18	15,85	2,56	6,32	0,64	2,94	0,46	
1=calcita																							
2=dolomita																							
3=norsethita																							
4=burbankita																							
5=ancylita																							

Anexo 4 - Análise	s de ca	rbona	tos de Tap	oira por Microsso	onda Ele	trônica								
Amostra	Obs1	Obs2	Unidade	Rocha	FeO	MnO	MgO	CaO	Na2O	P2O5	BaO	SrO	Nb2O5	Total
AT-011b-Cc01	1		B2	Bebedourito	0,20	0,00	0,00	52,50	0,05	0,06	0,25	1,87	0,00	54,93
AT-012-Cc01	1		Sien	Sienito	1,07	0,03	0,00	52,40	0,04	0,08	0,27	0,94	0,18	55,01
AT-012-Cc02	1		Sien	Sienito	0,16	0,00	0,01	51,04	0,03	0,01	0,19	3,08	0,23	54,74
AT-043-Cc01	1	(c)	C3	Carbonatito	0,03	0,06	0,05	51,50	0,00	0,03	0,11	1,89	0,00	53,66
AT-043-Cc02	1	(b)	C3	Carbonatito	0,01	0,09	0,03	51,78	0,00	0,00	0,33	1,70	0,00	53,95
AT-043-Cc03	1		C3	Carbonatito	0,02	0,01	0,07	51,18	0,02	0,07	0,29	1,99	0,00	53,64
AT-043-Cc04	1		C3	Carbonatito	0,02	0,05	0,04	51,82	0,00	0,02	0,32	2,07	0,00	54,33
AT-043-Cc05	1		C3	Carbonatito	0,03	0,06	0,06	51,63	0,05	0,02	0,21	1,88	0,00	53,94
AT-043-Cc06	1		C3	Carbonatito	0,04	0,03	0,05	51,38	0,03	0,02	0,15	1,72	0,00	53,42
AT-043-Cc07	1		C3	Carbonatito	0,02	0,07	0,03	52,73	0,03	0,03	0,26	2,02	0,34	55,51
AT-043-Cc08	1		C3	Carbonatito	0,03	0,07	0,03	50,86	0,01	0,01	0,28	1,86	0,22	53,37
AT-043-Cc09	1		C3	Carbonatito	0,03	0,00	0,05	51,43	0,05	0,12	0,22	1,46	0,00	53,35
AT-060-Cc01	1	(c)	C3	Carbonatito	0,15	0,21	0,32	52,90	0,03	0,00	0,29	1,96	0,02	55,88
AT-060-Cc02	1	(b)	C3	Carbonatito	0,24	0,26	0,38	52,82	0,03	0,05	0,36	1,86	0,00	55,99
AT-060-Cc03	1	(c)	C3	Carbonatito	0,22	0,23	0,36	52,04	0,03	0,00	0,23	1,82	0,03	54,96
AT-060-Cc04	1	(b)	C3	Carbonatito	0,15	0,18	0,46	52,08	0,03	0,00	0,38	2,31	0,20	55,78
AT-060-Cc05	1	(b)	C3	Carbonatito	0,09	0,06	0,21	53,04	0,09	0,04	0,00	1,11	0,16	54,81
AT-060-Cc06	1	(c)	C3	Carbonatito	0,15	0,17	0,36	52,27	0,04	0,08	0,41	1,96	0,24	55,68
AT-125-Cc01	1	(c)	B2	Bebedourito	0,08	0,03	0,03	52,25	0,06	0,01	0,47	2,55	0,00	55,48
AT-125-Cc02	1	(b)	B2	Bebedourito	0,13	0,06	0,04	52,28	0,02	0,00	0,18	2,50	0,00	55,20
AT-125-Cc03	1	(c)	B2	Bebedourito	0,05	0,07	0,07	52,29	0,05	0,01	0,43	2,25	0,00	55,21
AT-125-Cc04	1	(b)	B2	Bebedourito	0,17	0,00	0,04	51,75	0,05	0,04	0,24	2,23	0,25	54,77
AT-125-Cc05	1	(c)	B2	Bebedourito	0,04	0,05	0,02	52,69	0,05	0,02	0,38	2,35	0,17	55,77
AT-125-Cc06	1	(b)	B2	Bebedourito	0,22	0,06	0,06	50,98	0,07	0,03	0,51	2,52	0,08	54,53
AT-125-Cc07	1	(c)	B2	Bebedourito	0,04	0,05	0,06	52,75	0,02	0,04	0,31	2,26	0,00	55,52
AT-125-Cc08	1	(b)	B2	Bebedourito	0,10	0,08	0,04	53,34	0,11	0,08	0,41	2,26	0,00	56,41
AT-501-Cc01	1	(c)	C1a	Pseudonelsor	0,27	0,17	0,05	55,58	0,00	0,03	0,08	0,13	0,16	56,47
AT-501-Cc02	1	(b)	C1a	Pseudonelsor	0,06	0,00	0,19	54,45	0,00	0,05	0,00	0,50	0,24	55,49
AT-502-Cc01	1		C1a	Carbonatito	0,18	0,31	0,24	52,14	0,00	0,00	0,29	0,74	0,00	53,90
AT-502-Cc02	1		C1a	Carbonatito	0,26	0,44	0,36	51,99	0,02	0,05	0,00	0,71	0,11	53,92
AT-502-Cc03	1		C1a	Carbonatito	0,44	0,41	1,32	50,00	0,02	0,05	0,64	3,36	0,00	56,23

Anexo 4 (Cont.) - A	Análise	s de ca	rbonatos	de Tapira por N	1i crossoi	nda Eletro	ônica							
Amostra	Obs1	Obs2	Unidade	Rocha	FeO	MnO	MgO	CaO	Na2O	P2O5	BaO	SrO	Nb2O5	Total
AT-502-Cc04	1		C1a	Carbonatito	0,51	0,41	1,43	48,99	0,05	0,02	0,48	2,86	0,25	54,99
AT-504-Cc01	1	(c)	C4	Carbonatito	0,02	0,09	0,27	57,29	0,04	0,00	0,00	1,60	0,09	59,41
AT-504-Cc02	1	(b)	C4	Carbonatito	0,04	0,00	0,14	54,81	0,01	0,06	0,34	1,93	0,09	57,42
AT-504-Cc03	1	(c)	C4	Carbonatito	0,03	0,00	0,17	53,59	0,00	0,01	0,30	2,30	0,00	56,40
AT-504-Cc04	1	(b)	C4	Carbonatito	0,00	0,06	0,14	50,75	0,02	0,00	0,37	2,06	0,00	53,39
AT-504-Cc05	1	(c)	C4	Carbonatito	0,03	0,03	0,16	52,87	0,03	0,04	0,44	2,18	0,16	55,94
AT-504-Cc06	1	(b)	C4	Carbonatito	0,02	0,05	0,16	50,91	0,01	0,06	0,36	1,85	0,00	53,42
AT-504-Cc07	1	(c)	C4	Carbonatito	0,00	0,01	0,21	51,94	0,02	0,03	0,32	1,97	0,15	54,65
AT-504-Cc08	1	(b)	C4	Carbonatito	0,02	0,09	0,18	51,40	0,04	0,01	0,26	1,99	0,00	53,98
AT-504-Cc09	1	(c)	C4	Carbonatito	0,00	0,20	0,04	53,56	0,03	0,01	0,00	0,46	0,04	54,34
AT-504-Cc10	1	(b)	C4	Carbonatito	0,14	0,13	0,20	51,46	0,05	0,02	0,42	1,88	0,05	54,35
AT-504-Cc11	1	(c)	C4	Carbonatito	0,00	0,04	0,30	50,22	0,01	0,04	0,43	2,07	0,00	53,09
AT-504-Cc12	1	(b)	C4	Carbonatito	0,04	0,08	0,24	51,02	0,02	0,04	0,38	2,05	0,00	53,86
AT-504-Cc13	1	(c)	C4	Carbonatito	0,02	0,03	0,38	53,46	0,05	0,08	0,30	2,08	0,20	56,62
AT-504-Cc14	1	(b)	C4	Carbonatito	0,02	0,08	0,16	52,52	0,02	0,06	0,42	1,91	0,00	55,19
AT-504-Cc15	1	(c)	C4	Carbonatito	0,00	0,05	0,27	53,05	0,00	0,00	0,26	1,95	0,00	55,58
AT-504-Cc16	1	(b)	C4	Carbonatito	0,03	0,03	0,15	52,27	0,01	0,00	0,26	2,12	0,00	54,88
AT-501-Dd01	2	(c)	C1a	Pseudonelsor	1,55	0,67	19,51	31,21	0,03	0,00	0,07	1,23	0,14	54,41
AT-502-Dd01	2		C1a	Carbonatito	2,31	0,56	21,77	29,35	0,00	0,03	0,05	0,70	0,00	54,75
AT-502-Dd02	2		C1a	Carbonatito	2,46	0,69	20,95	29,12	0,01	0,00	0,04	0,84	0,00	54,10
AT-502-Dd03	2	(c)	C1a	Carbonatito	2,81	0,52	20,85	29,56	0,07	0,00	0,00	0,35	0,21	54,36
AT-502-Dd04	2	(b)	C1a	Carbonatito	2,32	0,66	21,14	29,18	0,00	0,00	0,02	0,60	0,00	53,91
AT-503-Dd01	2		C1a	Carbonatito	2,80	0,16	17,78	35,33	0,00	0,03	0,05	0,42	0,00	56,57
AT-503-Dd02	2		C1a	Carbonatito	2,41	0,17	10,64	28,64	0,00	0,08	0,03	0,39	0,00	42,35
AT-502-Nst01	3		C1a	Carbonatito	0,62	0,16	16,82	0,16	0,09	0,00	53,11	0,64	0,14	71,74
AT-502-Nst02	3		C1a	Carbonatito	0,57	0,24	17,11	0,20	0,11	0,00	54,68	0,57	0,41	73,87
AT-502-Str01	4		C1a	Carbonatito	0,03	0,00	0,03	4,79	0,02	0,03	0,70	54,39	0,01	60,00
AT-503-Str01	4		C1a	Carbonatito	0,09	0,00	0,00	3,08	0,03	0,00	0,00	62,19	0,00	65,39
AT-503-Str02	4		C1a	Carbonatito	0,03	0,01	0,00	2,90	0,00	0,00	0,23	62,46	0,23	65,86
AT-503-Str03	4		C1a	Carbonatito	0,14	0,00	0,00	3,23	0,00	0,04	0,74	61,34	0,10	65,58
1-02/0:12	0-00 5+	-												
2-dolomita	b=bcm	10												
2-u0i0iiiild	D=DOR	b												
3=norsetnita														
4=estroncianita														

Anexo 5 - Anális	es de	Clinopirox	ênio de Tapira	por Las	er Abla	ation																
Amostra	Obs	Unidade	Rocha	Ва	Sr	Zr	Hf	Y	Nb	Sc	v	Pb	Rb	Li	Ве	Zn	Ga	Ge	La	Ce	Pr	Nd
AT-04-Px-011	1	L B1	Bebedourito	0,4	655		8,4	4,2	0,1		26,9								3,21	5,65	0,68	3,13
AT-38-Px-01	1	L B2	Bebedourito	77,4	922	589	20,1	7,1	1020	42,7	90,6	1,5							10,78	25,44	3,53	16,85
AT-38-Px-02	1	L B2	Bebedourito	1,3	808	339	11,1	6,3	0,3	42,0	73,0	0,2							8,50	21,32	2,89	12,38
AT-38-Px-03	1	L B2	Bebedourito	0,3	868	382	13,9	6,6	0,4	49,4	80,3	0,3							10,30	25,33	3,44	15,89
AT-38-Px-04	1	L B2	Bebedourito	195	977	715	27,9	6,8	1737	44,9	100,8	20,7							15,43	33,11	4,41	20,20
AT-38-Px-01b	1	L B2	Bebedourito	15,5	775	448	16,6	6,5	0,7	45,1	75,4	1126							11,31	26,58	3,63	16,35
AT-38-Px-02b	1	L B2	Bebedourito	2,9	654	301	12,2	4,1	0,4	41,2	64,4	1,2							7,50	19,25	2,79	11,90
AT-12-Cpx1	1	L Sien	Sienito	6,7	1048	381	11,9	7,6	1,9	57,3	210,6	1,3	1,5	3,0	n.d.	85,4	5,3	1,9	9,77	21,50	3,54	13,42
AT-12-Cpx2	1	L Sien	Sienito	0,9	1196	410	12,5	7,3	0,5	36,8	246,7	1,0	n.d.	1,3	1,9	111,8	7,2	2,5	8,87	23,88	3,31	13,11
AT-12-Cpx3	1	L Sien	Sienito	77,5	957	486	17,3	8,2	1,6	37,2	282,2	1,3	1,8	16,4	n.d.	101,5	5,8	2,0	9,05	24,02	3,40	13,04
AT-25-Cpx1	1	L B1	Bebedourito	1,1	1007	514	20,7	10,0	0,6	180,8	65,0	1,9	0,1	0,6	n.d.	24,1	8,2	2,6	4,50	7,45	0,80	2,82
AT-25-Cpx2	1	L B1	Bebedourito	7,0	539	236	10,2	6,0	3,4	147,7	32,0	1,3	0,2	n.d.	6,4	23,9	3,5	2,6	6,69	15,07	2,19	9,23
AT-43b-Cpx1	1	L C3	Carbonatito	10,3	726	1798	70,4	13,7	4,2	66,8	144,7	2,4	0,8	1,0	16,1	65,3	17,2	4,4	12,88	37,08	6,52	27,92
AT-43b-Cpx2	1	L C3	Carbonatito	16,6	761	1136	47,4	10,5	1,4	54,7	119,9	3,1	1,5	1,5	4,5	82,4	6,9	3,5	10,31	21,56	3,96	20,83
AT-43b-Cpx3	1	L C3	Carbonatito	0,4	707	2446	104,0	22,9	2,0	119,4	120,1	1,8	n.d.	0,8	10,4	75,0	11,5	3,6	19,89	54,90	9,92	50,85
AT-60-Cpx1	1	L C3	Carbonatito	0,8	480	1643	62,0	12,1	10,0	491,4	266,5	1,6	n.d.	n.d.	2,5	72,8	0,9	2,0	14,06	55,31	9,65	51,21
AT-60-Cpx2	1	L C3	Carbonatito	23,6	707	1077	30,5	14,1	2,8	410,7	316,8	1,0	0,2	0,6	6,0	57,2	0,8	2,5	16,49	51,13	11,71	53,74
AT-60-Cpx3	1	L C3	Carbonatito	36,5	730	105	6,5	8,4	12,0	106,7	76,6	0,4	0,3	0,5	3,6	33,0	1,3	3,2	13,82	43,35	7,73	37,11
AT-125-Cpx1	1	L B2	Bebedourito	57,8	948	200	6,7	2,8	8,1	107,6	113,2	1,2	3,3	2,9	4,2	86,2	2,0	1,2	7,62	13,17	1,50	5,69
AT-125-Cpx2	1	L B2	Bebedourito	498,8	1347	78	2,5	3,7	3,2	68,4	76,8	5,0	16,3	2,7	n.d.	93,4	3,3	1,3	22,41	32,22	3,35	11,45
AT-125-Cpx4	1	L B2	Bebedourito	95,3	667	116	3,1	1,2	3,1	73,0	81,6	1,6	9,6	1,3	n.d.	37,5	2,3	1,1	13,20	20,19	2,03	7,08
AT-12-Aegirina1	2	2 sien	Sienito	720,9	440		113,2	100,0	1083		265,0								283,47	455,96	76,99	271,25
1=diopsídio																						
2=aegirina																						

Anexo 6 - Anális	es de	Clinop	iroxênio	de Tapira por I	Vicrosso	nda Elet	rônica						
Amostra	Obs1	Obs2	Unidade	Rocha	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	Total
AT-004-Px01	1	(c)	B1	Bebedourito	53,03	0,86	1,13	4,50	0,08	15,59	25,02	0,40	100,60
AT-004-Px02	1	(b)	B1	Bebedourito	54,10	0,26	0,43	3,60	0,16	16,53	25,21	0,26	100,55
AT-004-Px03	1	(b)	B1	Bebedourito	53,22	0,69	0,88	3,88	0,10	15,73	25,23	0,32	100,05
AT-004-Px04	1	(c)	B1	Bebedourito	53,76	0,72	0,87	4,03	0,07	15,92	24,83	0,30	100,50
AT-004-Px05	1	(b)	B1	Bebedourito	54,59	0,47	0,49	4,27	0,02	15,87	25,03	0,34	101,09
AT-004-Px06	1	(b)	B1	Bebedourito	53,86	0,64	0,75	4,07	0,02	16,03	25,26	0,26	100,88
AT-004-Px07	1	(c)	B1	Bebedourito	53,36	0,61	0,81	4,24	0,10	16,09	25,23	0,28	100,71
AT-004-Px08	1	(b)	B1	Bebedourito	53,05	0,51	0,98	4,73	0,13	15,35	24,70	0,37	99,82
AT-004-Px09	1	(b)	B1	Bebedourito	52,61	1,04	1,17	4,37	0,04	15,89	24,74	0,30	100,17
AT-004-Px10	1	(c)	B1	Bebedourito	52,96	1,08	1,42	4,68	0,11	15,12	24,78	0,39	100,54
AT-004-Px11	1	(b)	B1	Bebedourito	54,20	0,52	0,75	4,19	0,10	15,81	25,01	0,32	100,90
AT-004-Px12	1	(b)	B1	Bebedourito	53,26	1,08	1,23	4,59	0,06	15,85	24,85	0,38	101,29
AT-004-Px13	1	(c)	B1	Bebedourito	52,67	1,03	1,11	4,12	0,06	15,82	25,10	0,27	100,17
AT-004-Px14	1	(b)	B1	Bebedourito	53,00	1,00	1,18	4,30	0,10	15,96	25,19	0,33	101,06
AT-004-Px15	1	(b)	B1	Bebedourito	53,50	0,93	1,12	4,24	0,05	15,39	24,99	0,40	100,62
AT-011b-Px01	1	(c)	B2	Bebedourito	49,74	0,82	2,60	8,75	0,26	12,73	23,30	0,80	98,99
AT-011b-Px02	1	(b)	B2	Bebedourito	50,60	0,73	1,97	8,22	0,28	12,75	23,15	0,78	98,48
AT-011b-Px03	1	(c)	B2	Bebedourito	50,80	0,68	1,59	8,47	0,31	12,69	22,78	0,95	98,26
AT-011b-Px04	1	(b)	B2	Bebedourito	51,41	0,61	1,30	8,26	0,29	13,37	22,77	0,81	98,81
AT-012-Px01	1	(c)	Sien	Sienito	50,84	0,72	1,22	11,21	0,36	11,42	22,56	1,12	99,47
AT-012-Px02	1	(b)	Sien	Sienito	51,31	0,86	1,28	9,47	0,35	12,65	22,64	1,04	99,58
AT0-12-Px03	1	(b)	Sien	Sienito	51,31	0,86	1,27	9,33	0,29	12,70	23,11	0,95	99,81
AT-012-Aeg01	2	(c)	Sien	Sienito	51,92	0,22	0,55	18,30	0,59	6,58	15,44	5,33	98,93
AT-012-Aeg02	2	(b)	Sien	Sienito	51,04	0,26	0,60	17,66	0,49	7,03	17,27	4,05	98,41
AT-012-Aeg03	2	(c)	Sien	Sienito	52,02	0,13	0,30	17,05	0,61	8,02	15,99	4,84	98,95
AT-012-Aeg04	2	(b)	Sien	Sienito	51,46	0,26	0,34	18,97	0,46	6,50	14,37	5,52	97,88
AT-012-Aeg05	2	(c)	Sien	Sienito	51,44	0,32	0,57	19,49	0,68	6,04	16,03	4,85	99,40
AT-012-Aeg06	2	(c)	Sien	Sienito	52,15	0,03	0,37	17,01	0,96	7,35	17,36	4,20	99,43

Anexo 6 (Cont.) -	Anális	ses de	Clinopir	oxênio de Tapi	ra por M	icrosson	da Eletrôi	nica					
Amostra	Obs1	Obs2	Unidade	Rocha	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	Total
AT-025-Px01	1	(c)	B1	Bebedourito	53,47	0,37	0,15	2,66	0,09	16,58	24,49	0,23	98,05
AT-025-Px02	1		B1	Bebedourito	53,80	0,35	0,18	1,99	0,15	16,93	25,01	0,15	98,57
AT-038-Px01	1	(c)	B2	Bebedourito	52,06	1,00	1,93	6,67	0,13	14,09	24,11	0,65	100,64
AT-038-Px02	1	(b)	B2	Bebedourito	53,27	0,58	0,86	6,05	0,16	14,79	25,05	0,39	101,14
AT-038-Px03	1	(b)	B2	Bebedourito	51,71	1,08	2,19	6,88	0,12	13,52	24,40	0,65	100,55
AT-038-Px04	1	(c)	B2	Bebedourito	51,90	1,07	2,19	7,27	0,11	13,74	24,35	0,67	101,30
AT-038-Px05	1	(b)	B2	Bebedourito	52,91	0,74	1,38	6,16	0,10	14,64	24,80	0,51	101,25
AT-038-Px06	1	(b)	B2	Bebedourito	52,22	0,90	1,76	6,85	0,15	13,93	24,08	0,64	100,53
AT-038-Px07	1	(c)	B2	Bebedourito	53,88	0,51	0,73	5,94	0,11	14,92	24,92	0,39	101,40
AT-038-Px08	1	(b)	B2	Bebedourito	53,28	0,50	1,09	5,83	0,13	14,73	24,58	0,55	100,69
AT-038-Px09	1	(b)	B2	Bebedourito	53,86	0,58	1,06	5,87	0,11	14,64	24,43	0,62	101,16
AT-038-Px10	1	(c)	B2	Bebedourito	52,87	0,84	1,47	6,56	0,11	14,28	24,32	0,59	101,03
AT-038-Px11	1	(b)	B2	Bebedourito	54,59	0,27	0,45	5,72	0,13	15,16	24,86	0,47	101,66
AT-038-Px12	1	(b)	B2	Bebedourito	53,05	0,78	1,60	6,72	0,17	14,07	24,43	0,60	101,41
AT-038-Px13	1	(c)	B2	Bebedourito	53,87	0,54	1,05	5,81	0,08	14,57	24,49	0,55	100,96
AT-038-Px14	1	(b)	B2	Bebedourito	53,49	0,52	0,81	6,06	0,12	14,74	25,15	0,39	101,29
AT-038-Px15	1	(b)	B2	Bebedourito	53,83	0,41	0,80	6,22	0,16	14,68	24,87	0,56	101,52
AT-043-Px01	1	(c)	C3	Carbonatito	51,88	0,97	1,42	6,17	0,17	14,16	24,03	0,52	99,31
AT-043-Px02	1	(b)	C3	Carbonatito	51,36	1,02	1,40	6,31	0,22	13,89	23,87	0,51	98,57
AT-043-Px03	1	(c)	C3	Carbonatito	51,51	0,91	1,32	6,43	0,24	14,03	24,07	0,38	98,88
AT-043-Px04	1	(b)	C3	Carbonatito	52,91	0,25	0,57	6,01	0,34	14,23	24,29	0,37	98,97
AT-060-Px01	1	(c)	C3	Carbonatito	54,96	0,04	0,03	3,91	0,27	16,38	24,12	0,49	100,20
AT-060-Px02	1	(b)	C3	Carbonatito	54,44	0,16	0,01	4,30	0,32	15,63	24,56	0,36	99,77
AT-060-Px03	1	(c)	C3	Carbonatito	54,87	0,13	0,03	4,51	0,30	16,02	24,51	0,40	100,78
AT-060-Px04	1	(b)	C3	Carbonatito	54,80	0,12	0,06	3,84	0,31	16,28	25,26	0,16	100,84
AT-060-Px05	1	(c)	C3	Carbonatito	55,05	0,14	0,01	5,48	0,18	15,16	22,85	1,58	100,44
AT-060-Px06	1	(b)	C3	Carbonatito	55,11	0,09	0,03	3,97	0,36	16,26	24,50	0,44	100,76
AT-125-Px01	1		B2	Bebedourito	52,29	0,13	0,24	8,08	0,41	13,59	24,40	0,89	100,03
AT-125-Px02	1		B2	Bebedourito	52,24	0,10	0,29	8,23	0,44	13,21	24,24	0,90	99,66
AT-125-Px03	1		B2	Bebedourito	52,66	0,09	0,09	7,60	0,35	13,93	23,80	1,04	99,55
AT-125-Px04	1		B2	Bebedourito	52,29	0,17	0,30	8,18	0,41	13,18	24,47	0,91	99,92
AT-125-Px05	1		B2	Bebedourito	51,86	0,08	2,39	8,98	0,53	12,34	22,09	1,35	99,61
AT-125-Px06	1		B2	Bebedourito	53,35	0,15	0,14	8,29	0,30	13,45	22,41	1,50	99,59
AT-504-Px01	1	(c)	C4	Carbonatito	53,26	0,03	0,00	1,49	0,24	17,37	25,15	0,08	97,62
AT-504-Px02	1	(b)	C4	Carbonatito	53,83	0,09	0,04	2,21	0,22	16,83	25,12	0,13	98,48
c=centro													
b=borda													
1=diopsídio													
2=aegirina													

Anexo 7 - Ana	Iexo 7 - Análises de Mica de Tapira por Laser Ab Iostra Obs1 Unidade Rocha Ba Sr 04-FI-01 (1) B1 Bebedourito 27441,89																				
Amostra	Obs1	Unidade	Rocha	Ва	Sr	Zr	Hf	Y	Nb	Та	Th	U	Sc	v	Pb	Rb	Li	Ве	Zn	Ga	Ge
AT-04-FI-01	(1)	B1	Bebedourito	27441,89	78,84		1,04	0,37	35,02	0,42		0,03		134,62							
AT-38-FI-02	(1)	B2	Bebedourito	48,27	1692,64		34,65	13,36	1,65	0,14	0,47	0,06		178,37							
AT-501-FI-01	(1)	C1a	Nelsonito	245,37	1,36		0,17	0,04	102,53	0,57	0,74	n.d.		7,74							
AT-505-FI-01	(1)	B2	Bebedourito	981,31	3,08	5,51	0,14	0,01	66,23	0,43	0,07	0,00	4,96	11,96	0,08	295,45			131,68	67,10	
AT-505-FI-02	(1)	B2	Bebedourito	1301,61	1,94	2,55	0,20	0,01	61,36	0,78	0,02	0,00	4,19	14,11	0,03	287,69			140,81	72,16	
AT-505-FI-03	(1)	B2	Bebedourito	948,78	2,56	4,71	0,27	0,01	62,87	0,43	n.d.	0,00	4,00	14,73	0,04	269,73			135,07	71,14	
AT-12-Flog1	(1)	Sien	Sienito	877,51	349,45	5,80	n.d.	1,42	53,55	0,39	0,06	n.d.	n.d.	210,02	0,23	256,11	31,88	10,37	887,65	100,37	2,05
AT-12-Flog4	(1)	Sien	Sienito	2782,29	5,51	3,68	0,22	0,06	72,32	0,27	0,05	0,15	0,78	605,45	0,72	284,26	42,43	4,82	1048,90	82,24	2,12
AT-12-Flog5	(1)	Sien	Sienito	712,17	3,45	1,25	n.d.	0,02	91,99	0,34	n.d.	0,07	0,47	423,14	1,02	344,20	49,33	2,97	1003,61	109,47	1,78
AT-25-Flog1	(1)	B1	Bebedourito	7379,86	75,86	117,08	2,78	1,09	33,76	0,44	0,12	0,03	42,46	70,48	3,36	378,19	2,83	3,54	106,47	41,07	1,55
AT-25-Flog2	(1)	B1	Bebedourito	4927,16	42,76	61,09	2,12	0,08	18,68	0,41	0,00	n.d.	30,56	54,56	0,99	249,13	3,71	n.d.	79,37	25,27	0,96
AT-25-Flog3	(1)	B1	Bebedourito	5060,92	48,84	94,08	3,10	0,60	34,59	0,88	0,14	0,07	47,24	57,30	0,83	311,65	1,37	n.d.	88,48	34,03	1,36
AT-25-Flog4	(1)	B1	Bebedourito	5435,76	39,12	75,00	2,44	0,08	24,55	0,49	0,04	0,01	38,09	47,17	1,41	336,87	1,29	n.d.	96,79	37,08	1,59
AT-43b-Flog1	(1)	C3	Carbonatito	2167,66	5,53	10,66	0,57	n.d.	181,78	3,77	n.d.	n.d.	4,20	214,46	1,06	274,90	8,82	1,73	333,57	51,84	2,25
AT-43b-Flog2	(1)	C3	Carbonatito	3272,30	13,69	8,17	0,44	0,25	264,18	10,18	0,09	2,18	5,24	303,95	1,30	263,38	4,62	n.d.	307,93	48,23	1,66
AT-43b-Flog3	(1)	C3	Carbonatito	4484,26	17,82	108,59	2,10	0,26	136,62	3,70	0,04	0,84	4,45	293,22	1,25	202,27	5,78	2,71	260,77	46,13	2,06
AT-43b-Flog4	(1)	C3	Carbonatito	2705,55	8,66	21,26	1,07	0,10	210,71	3,83	n.d.	0,26	2,89	221,33	1,18	193,64	5,56	n.d.	268,15	37,31	1,51
AT-60-Flog1	(1)	C3	Carbonatito	2761,80	5,47	17,11	0,95	0,07	615,66	41,22	n.d.	0,29	15,59	225,22	1,08	247,35	4,04	9,20	261,15	45,13	2,04
AT-60-Flog2	(1)	C3	Carbonatito	1634,83	2,82	18,25	1,11	0,04	427,06	27,24	n.d.	n.d.	11,11	157,62	1,42	254,74	1,63	4,81	287,56	48,84	1,65
AT-60-Flog3	(1)	C3	Carbonatito	2204,60	2,42	27,46	0,79	0,04	121,25	5,42	n.d.	0,05	6,49	74,94	1,19	219,27	2,55	5,51	237,89	46,09	1,50
AT-125-Flog2	(1)	B2	Bebedourito	4184,29	25,28	10,39	0,26	0,15	30,22	0,52	0,06	0,02	1,57	102,16	1,29	268,08	6,73	6,79	310,95	34,66	1,60
AT-125-Flog3	(1)	B2	Bebedourito	1698,89	10,95	12,42	0,47	0,16	31,65	0,23	0,08	0,06	1,33	83,80	1,80	229,06	6,73	n.d.	240,66	34,97	n.d.
AT-125-Flog1	(1)	B2	Bebedourito	1160,02	4,65	5,14	0,20	0,10	33,10	0,38	0,06	0,02	1,19	84,99	1,20	234,91	6,18	n.d.	245,97	39,95	0,98
AT-12-Flog2	(1)	Sien	Sienito	10735,34	37722,21	28,32	0,85	41,91	15,88	0,27	1,15	0,23	1,46	22,50	2,95	113,65					
AT-12-Flog3	(1)	Sien	Sienito	7755,27	538,42	25,02	1,28	0,35	4,14	0,17	0,10	0,09	1,35	0,71	1,58	124,55					
AT-502-Flog1	(2)	C1a	Carbonatito	25,45	1,19	0,48	0,08	0,01	24,76	0,09	0,06	0,00	1,08	5,20	2,14	255,02	147,83	26,25	303,65	11,05	3,90
AT-502-Flog2	(2)	C1a	Carbonatito	424,82	11,89	5,32	0,57	0,26	35,77	0,15	0,21	0,01	3,21	12,06	0,79	233,49	161,74	30,96	267,23	55,90	2,58
AT-504-Flog1	(1)	C4	Carbonatito	2143,10	15044,59	7,88	0,06	68,34	3,91	0,35	0,82	1,14	3,62	2,73	5,05	2,84	0,56	0,45	7,44	5,98	1,86
(1)=Flogopita																					
(2) Tetraferri-fl	ogopit	a																			

Anexo 8 - Aná	lises	de Mi	ca de Ta	pira por Micross	onda Ele	etrônica															
Amostra	Obs1	Obs2	Unidade	Rocha	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	К2О	BaO	SrO	Cr2O3	NiO	V2O5	F	Cl	Total
AT-004-FI01	(1)	(c)	B1	Bebedourito	39,27	1,62	13,38	8,98	0,07	21,65	n.d.	0,31	9,48	0,84		0,00	0,00		n.d.	0,01	95,61
AT-004-FI02	(1)	(b)	B1	Bebedourito	38,94	1,60	13,49	9,44	0,11	21,47	0,01	0,34	9,57	0,67		0,01	0,00		n.d.	n.d.	95,64
AT-004-FI03	(1)	(b)	B1	Bebedourito	39,34	1,41	13,39	9,56	0,07	21,28	n.d.	0,28	9,47	1,20		0,00	0,02		n.d.	0,00	96,03
AT-004-FI04	(1)	(c)	B1	Bebedourito	39,13	2,22	13,19	9,31	0,11	21,54	0,02	0,26	9,64	0,62		0,00	0,03		0,02	0,02	96,10
AT-004-FI05	(1)	(b)	B1	Bebedourito	38,78	1,90	13,62	9,24	0,07	21,55	0,06	0,30	9,67	0,79		0,02	0,04		n.d.	n.d.	96,03
AT-004-FI06	(1)	(b)	B1	Bebedourito	39,03	1,71	13,33	9,45	0,12	21,51	n.d.	0,32	9,48	0,83		0,00	0,00		n.d.	0,02	95,79
AT-004-FI07	(1)	(c)	B1	Bebedourito	38,34	2,89	13,45	9,69	0,09	20,94	n.d.	0,24	9,66	0,87		0,05	0,00		n.d.	n.d.	96,22
AT-004-FI08	(1)	(b)	B1	Bebedourito	38,92	1,97	13,69	9,22	0,13	21,55	0,01	0,22	9,89	0,96		0,05	0,00		n.d.	0,00	96,62
AT-004-FI09	(1)	(b)	B1	Bebedourito	39,23	1,63	13,67	9,64	0,11	21,69	n.d.	0,24	9,51	0,78		0,00	0,02		n.d.	n.d.	96,52
AT-004-FI10	(1)	(c)	B1	Bebedourito	38,94	1,34	13,24	9,67	0,08	21,76	0,01	0,27	9,68	0,81		0,00	0,00		n.d.	n.d.	95,79
AT-004-FI11	(1)	(b)	B1	Bebedourito	39,03	1,45	13,42	9,66	0,08	21,62	0,02	0,35	9,88	0,83		0,00	0,00		n.d.	0,02	96,36
AT-004-FI12	(1)	(b)	B1	Bebedourito	39,43	1,30	13,26	9,74	0,09	21,56	0,01	0,29	9,72	1,12		0,00	0,07		n.d.	0,02	96,61
AT-004-FI13	(1)	(c)	B1	Bebedourito	38,87	2,10	13,66	9,21	0,12	21,50	n.d.	0,34	9,72	0,85		0,00	0,00		n.d.	0,02	96,39
AT-004-FI14	(1)	(b)	B1	Bebedourito	39,36	1,42	13,62	9,27	0,13	21,93	0,03	0,33	9,54	1,44		0,00	0,00		n.d.	0,01	97,07
AT-004-FI15	(1)	(b)	B1	Bebedourito	39,28	1,49	13,24	9,31	0,09	21,60	0,01	0,30	9,95	0,72		0,00	0,03		n.d.	0,01	96,01
AT-011b-FI01	(1)	(c)	B2	Bebedourito	35,54	2,58	13,08	18,09	0,47	14,60	n.d.	0,08	9,72	0,56	0,00	0,01		0,04		0,01	94,77
AT-011b-FI02	(1)	(b)	B2	Bebedourito	35,66	2,53	12,71	18,44	0,44	14,70	0,10	0,07	9,35	0,42	0,04	0,00		0,02		n.d.	94,46
AT-011b-FI03	(1)	(c)	B2	Bebedourito	35,85	2,64	13,11	16,67	0,38	15,89	0,07	0,11	9,46	0,35	0,00	0,02		0,10		n.d.	94,65
AT-011b-FI04	(1)	(b)	B2	Bebedourito	36,23	2,32	12,07	17,26	0,43	16,13	0,08	0,08	9,53	0,51	0,00	0,01		0,00		n.d.	94,65
AT-011b-FI05	(1)	(c)	B2	Bebedourito	35,62	2,92	12,97	16,58	0,42	15,87	0,08	0,02	9,18	0,48	0,13	0,04		0,03		n.d.	94,33
AT-011b-FI06	(1)	(b)	B2	Bebedourito	35,82	2,69	13,43	15,61	0,33	16,22	0,07	0,04	9,46	0,56	0,00	0,00		0,03		0,01	94,27
AT-012-FI01	(1)	(c)	Sien	Sienito	36,76	2,21	10,23	23,96	1,03	11,69	0,08	0,04	9,38	0,22	0,08	0,00		0,06		0,02	95,74
AT-012-FI02	(1)	(b)	Sien	Sienito	36.41	2.16	10.56	24.00	0.98	11.62	0.16	0.07	9.55	0.32	0.12	0.00		0.06		0.02	96.03
AT-012-FI03	(1)	(c)	Sien	Sienito	35.97	1.84	9.81	27.91	0.82	9.60	n.d.	0.04	9.36	0.11	0.03	0.09		0.10		n.d.	95.66
AT-012-FI04	(1)	(b)	Sien	Sienito	36.20	2.52	9.52	28.25	0.96	8.80	0.02	0.07	9.52	0.07	0.03	0.00		0.08		0.01	96.04
AT-012-FI05	(1)		Sien	Sienito	35.65	2.08	10.17	28.91	0.89	8.41	0.15	0.07	9.28	0.21	0.00	0.02	0.01	0.10	n.d.	0.02	95.98
AT-012-FI06	(1)		Sien	Sienito	37.72	1.78	10.31	21.60	0.72	13.50	0.33	0.02	8.75	0.13	0.11	0.00	0.02	0.02	0.19	0.01	95.22
AT-025-FI01	(1)	(c)	B1	Bebedourito	38.38	2.51	12.50	5.81	0.10	23.69	0.03	0.17	10.00	0.43	0.01	0.12	-,	0.08	0.14	0.00	93.97
AT-025-FI02	(1)	(b)	B1	Bebedourito	40.04	0.95	11.73	5,41	0.09	25.10	0.02	0.27	9.86	0.45	0.14	0.03		0.03	0.18	n.d.	94.29
AT-025-FI03	(1)	(c)	B1	Bebedourito	37.76	3.31	12.90	5.51	0.11	23.05	0.01	0.20	9,68	0.54	0.00	0.06		0.05	0.09	0.01	93.25
AT-025-FI04	(1)	(b)	B1	Bebedourito	38.95	1.54	12.06	5.98	0.09	24.11	0.08	0.23	9,69	0.54	0.00	0.11		0.03	0.22	0.01	93.63
AT-025-EI05	(1)	(~)	B1	Bebedourito	39.84	1.37	11.29	5.79	0.09	24.52	0.05	0.17	9,95	0.48	0.00	0.03		0.00	0.16	0.01	93.73
AT-025-FI06	(1)	(c)	B1	Bebedourito	36.25	1.55	11.84	5.64	0.11	23.00	n.d.	0.16	9.34	0.42	0.00	0.05		0.03	0.15	0.11	88.67
AT-025-FI07	(1)	(b)	B1	Behedourito	39 71	0.94	11 22	5 66	0.08	25.09	n d	0.24	9.96	0.27	0.02	0.03		0.02	0.20	0.02	93 45
AT-025-FI08	(1)	(c)	B1	Bebedourito	39.40	1 05	11 41	5 56	0.08	25,05	0.04	0.27	9 42	0.37	0.00	0.02		0.00	0.10	0.01	92.88
AT-025-FL09	(1)	(c) (h)	B1	Behedourito	38 16	1 73	12 21	6.00	0,00	23,10	0,04	0.22	9 71	0,55	0.05	0.12		0.04	0.12	0.01	93.22
AT-025-FI10	(1)	(c)	B1	Behedourito	37.46	2 14	12,21	6 20	0,09	23,20	0,03	0.22	9 90	0,55	0,00	0,12		0,04	0.21	0.01	93.92
AT-025-FI11	(1)	(b)	B1	Bebedourito	37 85	1 65	12,55	6 01	0.09	24 45	n d	0.25	9 29	0 71	0,00	0.05		0.00	0.13	0.02	92 65
AT-043-FI01	(1)	(c)	C3	Carbonatito	35.85	2 51	8 93	23 74	0,09	12 99	0.23	0.12	7 95	0 37	0.07	0.04		0.12	0.20	0.002	93 40
AT-043-FI02	(1)	(b)	<u> </u>	Carbonatito	38.45	2,31	10 79	13.9/	0,20	18 18	0.18	0.05	9 74	0 19	0.01	0.07		0.02	0.27	n d	94 52
ΔΤ-043-FI02	(1)	(c)	<u> </u>	Carbonatito	37 51	2,37	11 26	14 26	0.42	17 90	0,10	0,05	9.52	0.27	0.00	0,02		0.03	0.22	0.01	94 02
AT-043-FI03	(1)	(c) (b)	3	Carbonatito	27 16	2,32	10.00	14,50	0,42	17.50	0,03	0,04	0 00	0.27	0,00	0,00		0,03	0,20	0,01	02 61
AT-045-FI04	(1)	(u)	63	Carbonatito	57,40	2,05	10,90	14,00	0,55	1/,/4	0,03	0,09	9,00	0,20	0,09	0,02		0,02	0,24	0,01	55,04

Anexo 8 (Con	t.) - Anális	es de Mica	a de Tapira por M	licrosso	nda Ele	trônica														
Amostra	Obs1 Obs	2 Unidade	Rocha	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	К2О	BaO	SrO	Cr2O3	NiO	V2O5	F	Cl	Total
AT-060-FI01	(1) (c)	C3	Carbonatito	39,82	2,09	12,23	9,87	0,21	21,30	0,07	0,06	9,72	0,21	0,00	0,00	0,01	0,04	0,29	n.d.	95,91
AT-060-FI02	(1) (b)	C3	Carbonatito	39,66	1,79	11,64	9,57	0,18	21,68	0,05	0,12	9,46	0,06	0,00	0,01	0,00	0,05	0,40	n.d.	94,67
AT-060-FI03	(1) (c)	C3	Carbonatito	37,10	1,56	12,90	10,88	0,20	19,81	0,04	0,12	9,56	0,43	0,07	0,00		0,03	0,47	0,00	93,17
AT-060-FI04	(1) (b)	C3	Carbonatito	39,69	1,61	12,15	9,47	0,25	21,66	0,02	0,10	9,96	0,35	0,01	0,04		0,04	0,55	0,00	95,89
AT-060-FI05	(1) (c)	C3	Carbonatito	40,12	1,87	9,82	11,41	0,14	21,52	0,01	0,06	10,15	0,00	0,00	0,00		0,04	0,40	n.d.	95,53
AT-060-FI06	(1) (b)	C3	Carbonatito	40,58	1,80	10,55	10,23	0,20	21,49	0,09	0,13	10,21	0,05	0,00	0,00		0,08	0,43	n.d.	95,84
AT-060-FI07	(1) (c)	C3	Carbonatito	40,65	1,97	10,11	10,42	0,18	21,52	0,03	0,09	10,26	0,04	0,00	0,00		0,00	0,40	0,01	95,68
AT-060-F108	(1) (b)	C3	Carbonatito	39,62	2,04	8,28	13,20	0,15	20,97	0,07	0,11	10,02	0,01	0,05	0,01		0,00	0,26	0,01	94,80
AT-060-FI09	(1) (c)	C3	Carbonatito	39,44	2,35	12,11	11,36	0,21	20,48	0,05	0,09	10,00	0,29	0,06	0,01		0,08	0,35	0,00	96,85
AT-060-FI10	(1) (b)	C3	Carbonatito	40,85	2,04	10,10	10,55	0,22	21,97	0,14	0,10	10,08	0,07	0,07	0,00		0,09	0,47	0,01	96,77
AT-125-FI01	(1)	B2	Bebedourito	38,21	1,52	9,98	17,06	0,38	17,70	0,10	0,07	9,67	0,24	0,00	0,00		0,03	0,22	0,01	95,17
AT-125-FI02	(1)	B2	Bebedourito	38,81	1,30	9,56	16,52	0,33	17,38	0,24	0,07	9,93	0,12	0,00	0,00		0,01	0,19	0,01	94,48
AT-125-FI03	(1) (c)	B2	Bebedourito	37,14	1,78	11,32	17,38	0,32	16,79	0,14	0,08	9,25	0,46	0,04	0,00		0,03	0,20	0,01	94,93
AT-125-FI04	(1) (b)	B2	Bebedourito	38,49	1,42	9,79	16,78	0,32	17,90	0,27	0,11	9,18	0,08	0,04	0,02		0,02	0,21	0,02	94,64
AT-125-FI05	(1)	B2	Bebedourito	37,40	1,53	10,44	17,75	0,38	16,74	0,08	0,13	9,50	0,48	0,00	0,00		0,01	0,16	0,07	94,65
AT-125-FI06	(1)	B2	Bebedourito	38,44	1,30	9,63	16,48	0,39	17,84	0,08	0,21	9,74	0,14	0,09	0,01		0,05	0,17	0,03	94,60
AT-125-FI07	(1)	B2	Bebedourito	38,03	1,56	10,23	16,98	0,37	17,41	0,08	0,09	9,67	0,29	0,05	0,00		0,00	0,13	0,03	94,90
AT-125-FI08	(1)	B2	Bebedourito	36,72	1,96	10,79	16,85	0,33	17,05	0,14	0,16	9,30	0,43	0,05	0,02		0,00	0,19	0,03	94,01
AT-125-FI09	(1)	B2	Bebedourito	37,23	1,73	10,56	17,12	0,36	17,25	0,13	0,24	9,90	0,50	0,04	0,00		0,00	0,20	0,06	95,33
AT-125-FI10	(1)	B2	Bebedourito	36,61	1,80	10,92	17,41	0,36	16,55	0,07	0,20	9,89	0,56	0,01	0,00		0,00	0,24	0,04	94,67
AT-125-FI11	(1)	B2	Bebedourito	37,13	1,75	10,45	17,33	0,41	17,37	0,13	0,07	9,80	0,67	0,01	0,00		0,02	0,09	0,01	95,21
AT-125-FI12	(1)	B2	Bebedourito	37,51	1,39	9,80	16,13	0,36	17,89	n.d.	0,20	9,99	0,07	0,00	0,02		0,04	0,21	0,05	93,67
AT-125-FI13	(1)	B2	Bebedourito	37,74	1,56	10,56	16,62	0,36	17,63	0,08	0,15	9,87	0,25	0,07	0,03		0,00	0,18	0,04	95,13
AT-501-FI01	(2) (c)	N2	Pseudonelsonit	42,00	0,14	0,00	17,23	0,05	24,67	0,01	0,09	9,97	0,03		0,00	0,00		0,19	n.d.	94,38
AT-501-FI02	(2) (b)	N2	Pseudonelsonit	42,18	0,24	0,01	18,00	0,07	24,67	n.d.	0,16	10,01	0,00		0,00	0,00		0,12	0,01	95,46
AT-501-FI03	(2) (b)	N2	Pseudonelsonit	42,51	0,17	0,00	17,93	0,10	25,14	0,02	0,11	10,14	0,00		0,00	0,01		0,09	0,01	96,22
AT-501-FI04	(2) (c)	N2	Pseudonelsonit	40,90	0,07	0,02	18,54	0,04	24,65	0,01	0,14	10,21	0,00		0,05	0,00		n.d.	n.d.	94,63
AT-501-FI05	(2) (b)	N2	Pseudonelsonit	40,52	0,23	0,00	18,53	0,07	24,36	0,01	0,08	10,09	0,11		0,01	0,00		0,11	n.d.	94,11
AT-501-FI06	(2) (b)	N2	Pseudonelsonit	40,94	0,17	0,00	19,09	0,08	25,17	0,02	0,10	9,97	0,06		0,00	0,02		0,00	0,01	95,63
AT-501-FI07	(2) (c)	N2	Pseudonelsonit	40,82	0,17	0,02	19,29	0,05	24,83	0,03	0,18	10,14	0,00		0,08	0,00		0,01	0,02	95,63
AT-501-FI08	(2) (b)	N2	Pseudonelsonit	40,34	0,15	0,04	19,12	0,06	24,61	0,00	0,13	10,06	0,02		0,00	0,04		0,00	0,01	94,57
AT-501-FI09	(2) (b)	N2	Pseudonelsonit	40,67	0,16	0,04	19,09	0,05	24,96	0,00	0,06	10,11	0,06		0,02	0,00		0,07	n.d.	95,29
AT-501-FI10	(2) (c)	N2	Pseudonelsonit	41,87	0,16	0,02	18,01	0,05	24,66	n.d.	0,15	9,84	0,00		0,00	0,03		0,10	0,01	94,89
AT-501-FI11	(2) (b)	N2	Pseudonelsonit	41,90	0,15	0,03	17,68	0,00	25,17	0,01	0,19	10,18	0,18		0,01	0,00		0,07	n.d.	95,57
AT-501-FI12	(2) (c)	N2	Pseudonelsonit	42,68	0,15	0,00	17,01	0,05	25,41	0,00	0,21	9,67	0,00		0,04	0,00		0,06	n.d.	95,29
AT-501-FI13	(2) (b)	N2	Pseudonelsonit	41,56	0,16	0,00	17,99	0,08	25,07	0,01	0,15	9,98	0,00		0,02	0,00		0,06	0,03	95,10
AT-501-FI14	(2) (b)	N2	Pseudonelsonit	42,43	0,12	0,00	17,07	0,09	24,91	0,01	0,16	9,84	0,09		0,02	0,05		0,08	n.d.	94,85
AT-501-FI15	(2) (c)	N2	Pseudonelsonit	40,04	0,24	0,06	17,00	0,05	24,73	n.d.	0,08	9,50	0,00	0,01	0,01		0,00	0,30	0,02	92,04
AT-501-FI16	(2) (b)	N2	Pseudonelsonit	39,23	0,16	0,00	18,22	0,12	23,66	0,05	0,13	9,64	0,10	0,02	0,06		0,00	0,24	0,01	91,63
AT-501-FI17	(2) (c)	N2	Pseudonelsonit	40,10	0,14	0,00	17,63	0,06	24,66	0,03	0,19	9,55	0,01	0,08	0,04		0,02	0,24	0,03	92,77
AT-501-FI18	(2) (b)	N2	Pseudonelsonit	39,40	0,08	0,00	18,21	0,14	24,71	0,02	0,10	9,70	0,02	0,00	0,00		0,00	0,27	0,02	92,67
AT-501-FI19	(2) (c)	N2	Pseudonelsonit	39,82	0,20	0,00	17,25	0,09	24,44	0,02	0,08	9,39	0,12	0,00	0,02		0,01	0,15	0,02	91,61
AT-501-FI20	(2) (b)	N2	Pseudonelsonit	39,59	0,13	0,00	18,35	0,11	24,38	0,02	0,09	9,69	0,03	0,00	0,00		0,00	0,13	0,01	92,53
AT-502-FI01	(2) (c)	C1a	Carbonatito	40,50	0,06	0,09	20,64	0,08	21,74	0,05	0,18	9,94	0,00	0,05	0,00		0,00	1,42	n.d.	94,74
AT-502-FI02	(2) (b)	C1a	Carbonatito	39,45	0,02	0,19	21,48	0,09	22,28	0,11	0,07	9,81	0,07	0,00	0,00		0,00	0,90	0,01	94,49
AT-502-FI03	(2) (c)	C1a	Carbonatito	39,34	0,19	0,50	21,79	0,11	21,20	0,10	0,10	9,66	0,00	0,04	0,05		0,03	1,03	0,00	94,12
AT-502-FI04	(2) (b)	C1a	Carbonatito	38,64	0,09	0,22	22,23	0,16	20,61	0,19	0,07	9,66	0,01	0,00	0,01		0,07	0,94	0,02	92,91

Anexo 8 (Cont	.) - Ar	nálise	s de Mica	a de Tapira por N																	
Amostra	Obs1	Obs2	Unidade	Rocha	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	К2О	BaO	SrO	Cr2O3	NiO	V2O5	F	Cl	Total
AT-503-FI01	(2)	(c)	C1b	Carbonatito	41,59	0,21	0,08	17,25	0,11	24,72	0,11	0,15	9,56	0,00	0,00	0,02		0,00		0,02	93,81
AT-503-FI02	(2)	(b)	C1b	Carbonatito	40,23	0,19	0,06	18,19	0,11	24,88	0,28	0,09	9,35	0,01	0,03	0,01		0,00		0,02	93,44
AT-504-FI01	(1)		C4	Carbonatito	38,95	0,67	13,17	5,28	0,21	24,56	0,39	0,09	9,17	1,04	0,06	0,03		0,00	0,16	n.d.	93,77
AT-504-FI02	(1)		C4	Carbonatito	40,45	0,28	9,80	6,35	0,21	25,24	0,11	0,12	10,01	0,19	0,00	0,00		0,00	0,16	n.d.	92,92
AT-504-FI03	(1)	(c)	C4	Carbonatito	39,22	0,46	11,22	6,82	0,23	24,79	0,40	0,15	9,62	0,64	0,01	0,04		0,07	0,11	n.d.	93,77
AT-504-FI04	(1)	(b)	C4	Carbonatito	39,64	0,41	11,46	6,25	0,22	24,80	0,23	0,04	10,00	0,78	0,05	0,00		0,00	0,22	n.d.	94,08
AT-504-FI05	(1)	(c)	C4	Carbonatito	38,32	0,69	12,10	5,66	0,19	24,35	0,18	0,09	9,57	0,76	0,01	0,03		0,01	0,23	n.d.	92,18
AT-504-FI06	(1)	(b)	C4	Carbonatito	37,68	1,07	13,79	6,20	0,18	22,93	0,25	0,08	9,70	1,05	0,00	0,02		0,06	0,22	n.d.	93,22
AT-505-FI01	(1)	(c)	B2	Bebedourito	41,49	0,53	8,82	9,19	0,10	24,80	0,02	0,19	10,04	0,10		0,03	0,00		0,01	0,02	95,33
AT-505-FI02	(1)	(b)	B2	Bebedourito	41,66	0,51	8,49	9,32	0,07	24,67	0,07	0,31	10,23	0,00		0,00	0,01		n.d.	0,02	95,35
AT-505-FI03	(1)	(b)	B2	Bebedourito	41,63	0,56	8,77	9,37	0,07	24,73	0,04	0,31	10,09	0,12		0,00	0,03		n.d.	0,03	95,73
AT-505-FI04	(1)	(c)	B2	Bebedourito	41,86	0,53	8,62	9,05	0,11	25,27	0,05	0,25	10,07	0,17		0,04	0,00		n.d.	0,01	96,02
AT-505-FI05	(1)	(b)	B2	Bebedourito	41,76	0,52	7,84	9,86	0,07	24,56	0,06	0,29	10,02	0,16		0,00	0,00		n.d.	0,03	95,17
AT-505-FI06	(1)	(b)	B2	Bebedourito	41,48	0,63	8,53	9,13	0,03	24,48	0,04	0,26	10,10	0,11		0,03	0,02		0,02	0,02	94,87
AT-505-FI07	(1)	(c)	B2	Bebedourito	41,81	0,57	8,60	9,08	0,03	24,69	0,00	0,26	10,36	0,00		0,00	0,02		n.d.	0,01	95,43
AT-505-FI08	(1)	(b)	B2	Bebedourito	40,43	1,67	10,82	7,95	0,08	24,21	n.d.	0,20	10,31	0,42		0,00	0,00		n.d.	0,02	96,11
AT-505-FI09	(1)	(b)	B2	Bebedourito	41,72	0,59	8,58	9,02	0,07	25,16	n.d.	0,20	10,27	0,16		0,01	0,00		n.d.	0,01	95,78
AT-505-TFF01	(2)	(c)	B2	Bebedourito	40,83	0,22	0,34	21,73	0,14	21,67	0,04	0,05	9,53			0,00	0,01				94,57
AT-505-TFF02	(2)	(b)	B2	Bebedourito	40,33	0,21	0,64	22,44	0,19	20,45	0,06	0,07	9,47			0,05	0,00				93,91
AT-505-TFF03	(2)	(b)	B2	Bebedourito	40,28	0,16	0,17	22,44	0,18	21,63	0,05	0,02	9,67			0,03	0,00				94,62
AT-505-TFF04	(2)	(c)	B2	Bebedourito	40,71	0,18	0,56	21,62	0,15	21,22	0,05	0,05	9,63			0,00	0,02				94,17
AT-505-TFF05	(2)	(b)	B2	Bebedourito	40,26	0,25	0,48	22,58	0,19	21,09	0,14	0,08	9,50			0,00	0,00				94,56
AT-505-TFF06	(2)	(b)	B2	Bebedourito	40,06	0,20	0,38	22,48	0,14	21,20	0,09	0,04	9,77			0,02	0,02				94,39
(1)=Flogopita																					
(2) Tetraferri-	flogo	pita																			
c= centro																					
b=borda																					

Anexo 9 - Anál	ises de G	Granada de Ta										
Amostra	Unidade	Rocha	MnO	MgO	CaO	Na2O	V2O5	Total				
AT-011b-Gn01	B2	Bebedourito	25,66	15,23	1,56	18,43	0,31	1,15	30,88	0,28	0,22	93,71
AT-011b-Gn02	B2	Bebedourito	29,87	9,04	0,16	22,33	0,36	0,68	31,18	0,48	0,22	94,32
AT-011b-Gn03	B2	Bebedourito	31,84	6,55	0,18	24,12	0,38	0,49	31,73	0,38	0,40	96,06
AT-011b-Gn04	B2	Bebedourito	26,82	13,53	1,23	19,52	0,27	1,16	31,32	0,30	0,19	94,34
AT-011b-Gn05	B2	Bebedourito	26,61	13,32	1,19	19,53	0,40	1,11	31,60	0,26	0,18	94,19
AT-011b-Gn06	B2	Bebedourito	26,26	15,29	1,66	17,89	0,38	1,23	30,97	0,26	0,19	94,13
AT-011b-Gn07	B2	Bebedourito	28,67	11,85	1,04	19,93	0,22	1,10	31,38	0,15	0,11	94,43
AT-011b-Gn08	B2	Bebedourito	32,03	6,94	0,19	23,34	0,37	0,50	31,49	0,36	0,28	95,50
AT-011b-Gn09	B2	Bebedourito	28,80	11,29	0,76	20,37	0,25	1,12	31,21	0,19	0,15	94,13
AT-125-Gn01	B2	Bebedourito	31,99	8,08	0,52	21,84	0,16	1,13	32,62	0,09	0,25	96,68
AT-125-Gn02	B2	Bebedourito	31,84	8,75	0,23	22,22	0,34	0,73	31,77	0,20	0,21	96,30
AT-125-Gn03	B2	Bebedourito	31,59	9,39	0,26	21,91	0,42	0,70	31,97	0,26	0,33	96,84
AT-125-Gn04	B2	Bebedourito	31,91	10,02	0,33	21,36	0,26	0,96	32,99	0,09	0,19	98,10
AT-125-Gn05	B2	Bebedourito	32,03	7,66	0,33	22,60	0,29	0,63	31,96	0,27	0,30	96,06
AT-125-Gn06	B2	Bebedourito	31,66	8,68	0,26	22,88	0,21	0,70	32,39	0,19	0,25	97,22
AT-125-Gn07	B2	Bebedourito	31,45	10,92	0,34	21,38	0,29	1,10	32,53	0,04	0,21	98,25
AT-125-Gn08	B2	Bebedourito	30,66	10,27	0,17	22,10	0,35	0,80	31,92	0,34	0,26	96,88
AT-125-Gn09	B2	Bebedourito	31,05	8,55	0,24	23,49	0,26	0,69	32,47	0,18	0,28	97,21
AT-125-Gn10	B2	Bebedourito	29,80	11,81	0,35	21,25	0,33	0,83	32,49	0,24	0,16	97,25
AT-125-Gn11	B2	Bebedourito	29,24	12,54	0,49	20,53	0,22	1,29	32,98	0,17	0,13	97,58
AT-125-Gn12	B2	Bebedourito	30,68	9,19	0,47	22,88	0,24	0,74	32,36	0,28	0,23	97,07
AT-125-Gn13	B2	Bebedourito	29,82	10,56	0,19	22,58	0,30	0,71	32,44	0,29	0,23	97,13
AT-125-Gn14	B2	Bebedourito	29,85	11,25	0,18	22,61	0,36	0,71	32,15	0,33	0,38	97,82

Anexo 10 - Análises de Granada de Tapira por Laser Ablation																											
Amostra	Unidade	Rocha	Ва	Sr	Zr	Hf	Y	Nb	Та	Th	U	Sc	V	Pb	Rb	Li	Zn	Ga	Ge	La	Ce	Pr					
AT-125-Grt1	B2	Bebedourito	356	229	1087	20,69	115	189	5,56	12,27	11,2	48,26	548	0,82	67,99	4,35	143	16,61	2,61	38,3	182	26,47					
AT-125-Grt2	B2	Bebedourito	992	4,22	6,6	0,27	0,58	28,78	0,294	0,081	0,08	0,76	81,85	0,47	195,8	5,81	228	33,55	0,85	0,172	0,607	0,115					
Amostra	Unidade	Rocha	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu														
AT-125-Grt1	B2	Bebedourito	182,89	44,98	16,09	50,69	5,14	33,74	3,8	11,14	1,4	6,56	0,84														
AT-125-Grt2	B2	Bebedourito	0,75	0,34	0,054	0,143	0,026	n.d.	0,039	0,067	0,02	n.d.	n.d.														
Anexo 11 - A	Análises d	e Perovskita de	e Tapira p	orLase	er Abl	ation																					
--------------	------------	-----------------	------------	--------	--------	---------	----	------	-----	------	-----	-----	----	-------	-------	------	-------	------	-----	-----	----	-----	----	----	------	----	------
Amostra	Unidade	Rocha	Al2O3	CaO	Ва	Sr	Hf	Nb	Та	Th	U	v	As	La	Ce	Pr	Nd	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
AT-04-Pv-01	B1	Bebedourito	0,08	37	17	4636	35	4855	132	100	143	135	15	6403	11243	1036	3398	547	156	372	36	150	19	30	2,55	12	0,95
AT-04-Pv-02	B1	Bebedourito	0,07	37	10	4449	34	6827	84	49	216	150	13	5762	9472	825	2784	464	149	365	38	168	22	39	3,50	17	1,38
AT-04-Pv-03	B1	Bebedourito	0,08	37	15	4409	37	4857	120	105	163	123	15	6302	10373	970	3385	536	159	384	39	154	20	35	3,08	13	1,16
AT-38-Pv-01	B2	Bebedourito	0,12	35	128	6474	20	6659	422	465	245	183	36	10115	20553	2073	7459	1144	328	802	76	312	39	64	5,42	24	1,70
AT-38-Pv-02	B2	Bebedourito	0,13	35	15	7124	17	7146	460	906	192	172	40	12893	26494	2581	8692	1082	284	724	58	230	27	45	3,60	16	1,18
AT-38-Pv-02	B2	Bebedourito	0,14	35	14	6281	23	6561	477	473	233	188	35	9918	20143	2008	7538	1158	329	764	77	313	39	65	5,65	25	1,94
AT-38-Pv-03	B2	Bebedourito	0,12	35	11	5934	17	6365	423	1164	166	145	44	13085	28855	2958	10363	1175	273	672	54	208	26	43	3,43	15	1,16
AT-38-Pv-04	B2	Bebedourito	0,14	35	16	6896	18	6422	479	1189	154	150	43	14926	29251	2971	9769	1101	263	665	53	200	24	40	3,11	13	1,10
AT-38-Pv-05	B2	Bebedourito	0,12	35	39	6064	18	5762	387	466	244	197	32	8708	19428	1778	6875	1105	329	690	71	281	36	61	5,26	23	1,80
AT-38-Pv-06	B2	Bebedourito	0,12	35	12	6667	20	7051	496	756	234	200	41	11597	23352	2313	8628	1296	349	844	79	306	37	63	5,01	21	1,75
AT-38-Pv-07	B2	Bebedourito	0,11	35	11	5778	19	6261	400	533	235	189	29	9039	20638	1833	6685	1094	318	650	66	263	33	56	4,52	20	1,61
AT-25-Pv-02	B1	Bebedourito			14	2645,08	21	2647	480	2639	92	129	31	7796	20630	2422	8799	1103	251	494	42	135	16	25	1,83	8	0,61

Anexo 12 - Análises de Perovskita de Tapira por Microssonda Eletrônica																	
Amostra	Obs	Unidade	Rocha	TiO2	FeO	CaO	Na2O	SrO	Nb2O5	ThO2	La2O3	Ce2O3	Pr2O3	Sm2O3	Gd2O3	Yb2O3	Total
AT-025-PV01		B1	Bebedourito	54,76	1,13	38,01	0,17	0,41	0,25	0,09	0,30	0,62	0,49	0,10	0,48	n.d.	95,88
AT-025-PV02	(c)	B1	Bebedourito	54,05	1,46	37,27	0,42	0,00	0,46	0,16	0,48	1,69	0,26	0,05	n.d.	n.d.	94,58
AT-025-PV03	(b)	B1	Bebedourito	51,22	2,37	35,53	0,57	0,41	1,41	0,08	1,22	2,78	0,49	0,10	n.d.	n.d.	92,19
AT-025-PV04	(c)	B1	Bebedourito	54,97	1,11	37,54	0,37										94,74
AT-025-PV05	(b)	B1	Bebedourito	53,37	1,90	36,04	0,45										92,37
AT-025-PV06	(c)	B1	Bebedourito	53,85	1,25	34,37	0,90	0,39	0,40	0,44	0,92	2,81	n.d.	0,07	n.d.	n.d.	92,42
AT-025-PV07	(b)	B1	Bebedourito	51,36	2,30	35,42	0,47	0,27	1,43	0,14	1,25	2,84	0,09	n.d.	n.d.	0,02	92,40
AT-025-PV08	(c)	B1	Bebedourito	54,98	1,11	37,61	0,30	0,34	0,34	0,20	0,40	1,38	0,59	0,00	n.d.	0,02	95,78
AT-025-PV09	(b)	B1	Bebedourito	50,45	2,76	34,39	0,74	0,42	2,21	0,10	1,40	3,42	1,07	0,00	0,29	n.d.	91,87
AT-038-Pv01	(c)	B2	Bebedourito	54,73	1,34	35,59	0,66	0,83	1,33	0,09	0,89	1,86	0,28	0,11	0,35	n.d.	94,67
AT-038-Pv02	(b)	B2	Bebedourito	54,12	1,41	34,81	0,86	1,01	1,09	0,22	0,95	2,05	0,33	0,08	0,29	n.d.	93,59
AT-038-Pv03	(c)	B2	Bebedourito	54,19	1,32	34,69	0,78	0,85	1,41	0,21	0,98	2,00	0,35	0,11	0,31	n.d.	93,47
AT-038-Pv04	(b)	B2	Bebedourito	53,95	1,33	34,50	0,80	0,88	0,77	0,23	1,07	2,40	0,36	0,09	0,28	0,07	92,50
AT-038-Pv05	(b)	B2	Bebedourito	53,91	1,51	34,27	0,81	0,66	0,98	0,12	1,21	2,66	0,42	0,12	0,34	n.d.	92,26
AT-038-Pv06	(c)	B2	Bebedourito	54,44	1,29	35,03	0,73	0,85	1,39	0,19	1,09	2,42	0,32	0,08	0,28	n.d.	93,97
AT-038-Pv07	(c)	B2	Bebedourito	53,96	1,37	35,00	0,86	0,72	0,86	0,19	1,08	2,45	0,32	0,11	0,27	n.d.	93,06
AT-038-Pv08	(b)	B2	Bebedourito	53,57	1,47	33,71	0,81	1,05	1,37	0,19	1,10	2,70	0,38	0,10	0,30	n.d.	92,18
AT-038-Pv09	(b)	B2	Bebedourito	53,78	1,29	34,56	0,79	0,68	1,59	0,10	1,08	2,38	0,32	0,09	0,20	0,05	92,85
AT-038-Pv10	(c)	B2	Bebedourito	53,18	1,38	33,85	0,82	0,92	0,57	0,01	1,12	2,50	0,38	0,08	0,44	0,07	90,79
AT-038-Pv11	(c)	B2	Bebedourito	54,73	1,52	35,78	0,81	0,85	0,73	0,14	1,08	2,63	0,31	0,11	n.d.	n.d.	94,58
AT-038-Pv12	(b)	B2	Bebedourito	54,53	1,55	35,63	0,79	0,74	0,86	0,23	1,15	2,72	0,36	0,09	n.d.	n.d.	94,35
AT-038-Pv13	(b)	B2	Bebedourito	54,78	1,31	35,74	0,86	0,63	0,75	0,20	1,14	2,73	0,34	0,09	n.d.	0,01	94,30
AT-038-Pv14	(c)	B2	Bebedourito	55,39	1,19	37,48	0,67	0,60	1,03	0,13	0,73	1,67	0,23	0,15	0,05	0,01	96,52
AT-038-Pv15	(b)	B2	Bebedourito	55,55	1,36	36,32	0,83	0,78	0,43	n.d.	0,98	2,46	0,39	0,06	n.d.	n.d.	95,31
AT-038-Pv16	(b)	B2	Bebedourito	55,26	1,40	36,39	0,72	0,72	0,89	0,13	1,11	2,60	0,29	0,05	n.d.	n.d.	95,52
AT-038-Pv17	(c)	B2	Bebedourito	55,59	1,30	37,89	0,56	0,81	0,86	0,01	0,77	1,58	0,22	0,08	0,16	n.d.	97,08
AT-038-Pv18	(b)	B2	Bebedourito	55,71	1,19	37,36	0,66	0,98	1,26	0,17	0,83	1,72	0,23	0,12	0,16	n.d.	97,36
AT-038-Pv19	(b)	B2	Bebedourito	55,64	1,09	37,26	0,63	0,90	1,64	0,02	0,83	2,06	0,24	0,08	0,17	n.d.	97,18
AT-038-Pv20	(c)	B2	Bebedourito	55,90	1,25	37,16	0,71	0,67	1,03	0,09	0,75	1,90	0,27	0,13	0,23	0,01	96,82
AT-038-Pv21	(b)	B2	Bebedourito	55,54	1,34	37,07	0,62	0,73	1,14	0,09	0,74	1,79	0,20	0,11	0,23	n.d.	96,62
AT-038-Pv22	(b)	B2	Bebedourito	54,98	1,33	37,44	0,71	0,45	1,06	0,08	0,75	1,68	0,26	0,09	0,23	n.d.	96,07
AT-038-Pv23	(c)	B2	Bebedourito	54,99	1,45	36,17	0,83	0,89	0,52	0,36							95,21
AT-038-Pv24	(b)	B2	Bebedourito	54,66	1,50	35,51	0,86	0,90	0,95	0,14							94,60
AT-038-Pv25	(b)	B2	Bebedourito	54,86	1,67	35,71	0,79	0,57	0,92	0,08							94,62
AT-004-Pv01	(c)	B1	Bebedourito	55,63	1,30	37,33	0,25	0,64	0,68	n.d.	0,52	0,91	0,13	0,04	0,09	0,02	95,92
AT-004-Pv02	(b)	B1	Bebedourito	54,86	1,29	37,14	0,26	0,57	0,78	n.d.	0,60	1,01	0,21	0,05	0,17	0,00	94,89
AT-004-Pv03	(b)	B1	Bebedourito	55,67	1,05	38,06	0,23	0,57	1,78	n.d.	0,56	0,75	0,22	0,00	0,21	n.d.	97,36
AT-004-Pv04	(c)	B1	Bebedourito	55,08	1,07	37,60	0,34	0,42	1,54	0,08	0,57	0,92	0,13	0,05	0,17	n.d.	96,15
AT-004-Pv05	(c)	B1	Bebedourito	54,95	1,21	37,46	0,31	0,53	0,94	n.d.	0,58	0,85	0,21	0,04	0,16	n.d.	95,48
AT-004-Pv06	(b)	B1	Bebedourito	55,64	1,07	37,70	0,31	0,60	1,39	0,06	0,58	0,85	0,15	0,06	0,20	n.d.	96,80
AT-004-Pv07	(b)	B1	Bebedourito	56,79	1,08	35,53	0,38	0,71	1,10	0,07	0,55	0,80	0,14	0,05	0,20	n.d.	96,33
AT-004-Pv08	(c)	B1	Bebedourito	54,22	1,25	37,34	0,36	0,68	1,38	0,06	0,58	0,99	0,20	0,01	0,18	0,02	95,36
AT-004-Pv09	(c)	B1	Bebedourito	55,12	1,14	37,05	0,34	0,64	1,37	0,11	0,54	0,91	0,20	0,05	0,23	n.d.	95,78

Anexo 12 (Cor	nt.) - A	Análises de	Perovskita de Ta	pira por	Microsso	nda Elet	trônica										
Amostra	Obs	Unidade	Rocha	TiO2	FeO	CaO	Na2O	SrO	Nb2O5	ThO2	La2O3	Ce2O3	Pr2O3	Sm2O3	Gd2O3	Yb2O3	Total
AT-004-Pv10	(b)	B1	Bebedourito	55,11	1,21	37,73	0,25	0,34	1,37	0,04	0,55	0,80	0,13	0,05	0,15	n.d.	96,16
AT-004-Pv11	(c)	B1	Bebedourito	54,59	1,42	37,31	0,33	0,53	1,39	n.d.	0,65	1,05	0,15	0,03	0,16	n.d.	95,62
AT-004-Pv12	(b)	B1	Bebedourito	54,70	1,47	36,68	0,40	0,66	0,95	0,07	0,64	1,15	0,25	0,05	0,20	0,01	94,95
AT-004-Pvb01	(c)	B1	Bebedourito	55,58	1,21	39,46	0,29	0,38	1,63	n.d.							98,57
AT-004-Pvb02	(b)	B1	Bebedourito	56,00	1,28	39,41	0,21	0,60	1,29	n.d.							98,78
AT-004-Pvb03	(b)	B1	Bebedourito	54,87	1,21	39,48	0,34	0,47	0,53	0,01							96,91
AT-004-Pvb04	(c)	B1	Bebedourito	55,86	1,47	38,37	0,44	0,51	0,37	n.d.							97,09
AT-004-Pvb05	(b)	B1	Bebedourito	55,33	1,37	39,01	0,29	0,61	0,81	0,07							97,49
AT-004-Pvb06	(b)	B1	Bebedourito	55,33	1,38	39,13	0,37	0,56	0,74	n.d.							97,56
AT-004-Pvb07	(c)	B1	Bebedourito	54,46	1,24	38,89	0,21	0,37	0,92	0,04							96,15
AT-004-Pvb08	(b)	B1	Bebedourito	56,27	1,28	39,14	0,25	0,57	0,78	0,06							98,39
AT-004-Pvb09	(b)	B1	Bebedourito	56,08	1,40	39,34	0,23	0,78	0,56	0,02							98,43
AT-004-Pvb10	(c)	B1	Bebedourito	55,72	1,39	39,04	0,40	0,54	0,54	n.d.							97,63
AT-004-Pvb11	(b)	B1	Bebedourito	56,21	1,16	38,98	0,38	0,55	0,86	n.d.							98,15
AT-004-Pvb12	(b)	B1	Bebedourito	56,60	1,07	40,00	0,22	0,57	0,82	0,12							99,39
AT-004-Pvb13	(c)	B1	Bebedourito	56,66	1,35	39,54	0,15	0,64	1,25	n.d.							99,59
AT-004-Pvb14	(b)	B1	Bebedourito	56,14	1,29	38,80	0,25	0,66	0,70	0,10							97,95
AT-004-Pvb15	(b)	B1	Bebedourito	55,24	1,19	38,65	0,27	0,46	0,70	0,07							96,63
C= centro																	
b= borda																	

Anexo 13	- Análises	deRocha	Total (Aci	me)										
Rocha	AT004	AT012	AT025	AT038a	AT011B	AT-125	Tapira							
Complexe	Tapira	Tapira	Tapira	Tapira	Tapira	Tapira	19,32	0,51	3,03	1,29	29,79	8,49	7,66	
SiO2	30,76	49,04	32,86	40,07	31,23	32,48	2,79	0,005	0,33	0,17	4,77	0,89	0,54	
TiO2	4,73	2,21	5,12	3,49	4,74	3,37	0,01	0,06	0,005	0,13	3,25	1,69	2,16	
AI2O3	5,14	10,61	2,75	1,59	1,83	4,29	23,94	0,92	5,71	3,39	12,89	7,18	2,89	
FeO(t)	10,99	9,46	13,38	9,19	14,05	14,22	0,24	0,32	0,21	0,11	0,2	0,15	0,11	
MnO	0,16	0,22	0,39	0,19	0,29	0,28	12,8	3,12	9,35	0,97	11,96	2,96	3,62	
MgO	12,75	2,48	29,12	10,89	6,46	9,61	14,78	43,68	38,18	50,84	20,62	41,66	42,98	
CaO	20,66	9,16	8,42	25,58	27,23	20,51	0,24	0,46	0,04	0,06	0,72	0,59	0,42	
Na2O	0,53	1,51	0,48	0,67	0,56	0,32	4,87	0,08	0,69	0,14	2,64	1,50	1,90	
K2O	3,36	8,75	2,18	0,49	1,23	4,32	5,62	0,2	0,43	1,53	6,42	7,72	3,47	
P2O5	7,16	0,35	1,63	3,98	7,63	4,46	0,16	2,86	0,97	0,28	0,30	0,18	0,25	
BaO	0,29	0,57	0,12	0,03	0,06	0,09	0,77	5,54	1,56	1,92	0,27	1,33	1,61	
SrO	0,25	0,26	0,09	0,26	0,35	0,30								