

Espacialização e Quantificação de Sesquióxidos de Ferro (Goethita e Hematita) em Solos Tropicais por Meio de Sensoriamento Remoto Hiperespectral

Charles Dayler Silva de Almeida

Brasília – DF

Junho de 2012

Espacialização e Quantificação de Sesquióxidos de Ferro (Goethita e Hematita) em Solos Tropicais por Meio de Sensoriamento Remoto Hiperespectral

Charles Dayler Silva de Almeida

Orientador: Prof. Dr. Gustavo Macedo de Mello Baptista

Dissertação apresentada à banca Examinadora do Instituto de Geociências, como exigência final à obtenção do Título de Mestre em Geociências Aplicadas.

Brasília – DF

Junho de 2012

Espacialização e Quantificação de Sesquióxidos de Ferro (Goethita e Hematita) em Solos Tropicais por Meio de Sensoriamento Remoto Hiperespectral

Charles Dayler Silva de Almeida

Orientador: Prof. Dr. Gustavo Macedo de Mello Baptista

Dissertação apresentada à banca Examinadora do Instituto de Geociências, como exigência final à obtenção do Título de Mestre em Geociências Aplicadas.

Banca Examinadora:

Prof. Dra. Tati de Almeida

Prof. Dr. Lênio Soares Galvão

Brasília – DF

Junho de 2012

"Com o conhecimento nossas dúvidas aumentam."

Johann Wolfgang Von Goethe

DEDICATÓRIA

Dedico à minha família, em especial aos meus pais Antônio Roberto Teixeira de Almeida e Helenita Leite da Silva de Almeida, por todo o esforço e dedicação durante a minha criação que resultou nesse momento de sucesso. Dedico também ao meu filho, Carlos Eduardo de Castro Almeida, pessoa que faz desse momento não o último, e sim mais um degrau na minha busca por realização pessoal e profissional.

AGRADECIMENTOS

Agradeço ao meu orientador Prof. Dr. Gustavo Macedo de Mello Baptista pela oportunidade de desenvolver a dissertação e por toda orientação e ajuda no desenrolar do trabalho.

À coordenação de aperfeiçoamento de Pessoal de Nível Supeior – CAPES, pelo apoio financeiro.

Aos professores, servidores e colegas do IGD / UnB pelo suporte aos estudos e pelo apoio nesses dois anos.

A todos que contribuíram de forma direta e indireta para a obtenção do presente material.

ÍNDICE

LISTA DE FIGURAS			
LISTA D	LISTA DE TABELAS		
LISTA D	E ABREVIATURAS	iv,v	
RESUM	0	vi	
ABSTRA	ACT	vii	
1 – INTF	1 – INTRODUÇÃO		
2 – REV	2 – REVISÃO BIBLIOGRÁFICA		
	2.1 – Solos	4	
	2.2 – Latossolos	4	
	2.2.1 – Horizontes e Camadas	6	
	2.2.2 – Goethita e Hematita	6	
	2.2.3 – Cor	7	
	2.3 – Sensoriamento Remoto	9	
	2.3.1 – Comportamento Espectral do Solo	9	
	2.3.2 – Sensoriamento Remoto Hiperespectral	10	
	2.3.3 – Satélite EO-1	12	
	2.3.4 – Sensor Hyperion	13	
	2.3.5 – Aplicações do Sensor Hyperion	14	
	2.3.6 – Relação Sinal/Ruído	16	
	2.4 – Pré-Processamento	17	
	2.4.1 – Correção Geométrica	17	
	2.4.2 - Correção Atmosférica	18	
	2.4.3 – Destriping	20	
3 – ÁREA DE ESTUDO		22	
3.1 - Descrição Geológica		23	
4 – MATERIAL E MÉTODOS		24	
4.1 – Equipamentos e Softwares Utilizados			
	4.2 – Aquisição da Imagem e Seleção da Área de Estudo	26	
	4.3 – Campanha de Campo	26	
	4.3.1 – Coleta de Amostras de Solo	26	

4.3.2 – Análise da Cor do Solo	27
4.4 – Pré-Processamento dos Dados Hyperion	27
4.4.1 – Redimensionamento do número de bandas da imagem	27
4.4.2 – Analise por componentes principais (ACP)	28
4.4.3 – Destriping	28
4.4.4 – Correção Atmosférica	29
4.4.4.1 – Quick Atmospheric Correction (QUAC)	29
4.4.4.2 – Fast Line-Of-Sight Atmospheric Analysis of Spectral Hyper (FLAASH)	rcubes 29
4.4.5 – Correção Geométrica	30
4.4.6 – Reamostragem da Biblioteca Espectral	30
4.4.7 – Spectral Feature Fitting	31
4.4.8 – Obtenção do Índice RHGt _{scale} E RHGt _{Munsell}	31
4.4.9 – Obtenção dos Valores dos Pixels	32
4.4.10 – Analise Estatística	32
5 – RESULTADOS E DISCUSSÃO	33
5.1 – Seleção da Área de Estudo e Coleta de Solo	33
5.2 – Correção Geométrica	34
5.3 – Remoção das Stripes	34
5.4 – Spectral Feature Fitting	36
5.5 – Índice RHGt _{munsell} e RHGt _{scale}	39
6 – CONCLUSÕES E RECOMENDAÇÕES	46
7 – REFERÊNCIAS BIBLIOGRÁFICAS	47
8 – ANEXOS	59
8.1 – Tabela de Coordenadas Geográficas e Dados do Índice RHGt Calculados.	59

LISTA DE FIGURAS

Figura 1 – Mapa representativo da extensão territorial do bioma cerrado.	2
Figura 2 – Ilustração da Carta de Munsell.	8
Figura 3 – Comparação entre o espectro contínuo de dados hiperespectrais e as bandas de se espectral.	nsor multi 11
Figura 4 – Cubo hiperespectral mostrando as bandas do sensor AVIRIS após a correção atm redução dos dados de radiância para a reflectância de superfície.	osférica e 11
Figura 5 – Órbita dos satélites LANDSAT 7 e EO-1.	12
Figura 6 – Imagem ilustrativa do sensor Hyperion	13
Figura 7 – Imagem mostrando a área de obtenção de dados dos sensores ETM+, ALI, LAC e H	yperion.
	14
Figura 8 – Espectros comparativos de três cultivares de Soja.	15
Figura 9 – Espectros comparativos de solos com diferentes porcentagens de MO.	16
Figura 10 – Curva mostrando a SNR do sensor Hyperion.	17
Figura 11 – Janelas atmosféricas e os gases que interferem na radiação incidente na Terra.	19
Figura 12 – Imagem do sensor Hyperion apresentando <i>stripes</i>	24
Figura 13 – Imagem Hyperion em composição cor real (R: 640nm G: 548nm B: 538nm) conte de estudo destacada com seus limites em vermelho.	ndo a área 22
Figura 14 – Fluxograma do Trabalho	25
Figura 15 – Espectros de Goethita (perfil azul) e Hematita (perfil vermelho) provenientes da do JPL-NASA.	biblioteca 30
Figura 16 – Imagem Hyperion em composição cor real (R: 640nm G: 548nm B: 538nm) conte	ndo a área
de estudo, destacando as regiões com solo mais claro com limites em amarelo.	33
Figura 17 – Área de estudo apresentando os pontos de coleta de solo para o transecto A-B (A grade regular (B).	 A) e para a 34

Figura 18 – Autovalores da ACP na imagem em estudo.

Figura 19 – Imagens corrigidas para remoção das *stripes*. Em A, temos a cena original do USGS, em B os dados brutos, em C a remoção de bandas ruidosas e em D o destriping. As setas indicam o local das estripes. As setas indicam o local das estripes.

35

Figura 20 – Imagens processadas pelo SFF apresentando *stripes* brancas tanto para as *scales* de goethita(Figura 20 A) quanto para hematita (Figura 20 B).37

Figura 21- Resultado do SFF aplicado na imagem de estudo proveniente do tratamento 2 com algoritmoFLAASH. Sendo a imagem A SCALE Goethita e a imagem B SCALE para Hematita. Em C e D têm-serespectivamente a imagem RMS Goethita e RMS Hematita.38

Figura 22 – Comparativo entre o índice RHGt para a imagem QUAC (A) e para o FLAASH (B). Ospontos em cor laranja representam a grade regular aplicada na área de estudo.39

Figura 23 – Comparação entre os *endmembers* de hematita e de goethita da biblioteca do JPL e os espectros obtidos para um mesmo pixel em dados corrigidos com o FLAASH e com o QUAC. **40**

Figura 24 – Valores do índice RHGt da imagem para QUAC e FLAASH no transecto A. 40

Figura 25 – Dados do índice RHGt_{munsell} com base na cor das amostras de solo coletadas em campo. 41

Figura 26 – Valores de RHGt_{scale} para a grade regular aplicada na área de estudo. **42**

Figura 27 – *Fit image* para a goethita (A) e para hematita (B). As setas indicam na imagem para goethita as áreas mais hematíticas e na imagem para hematita a área mais goethítica. **43**

Figura 28 – RHGt_{scale} dos dados corrigidos pelo QUAC da área de estudo. A área mais escura destacada pela seta amarela apresenta a predominância de goethita e as áreas mais claras destacadas pelas setas vermelhas apresentam predomínio de hematita.
44

Figura 29 – Imagem ilustrando a cor real dos solos nos locais estudados. Na fotografia superior temos um latossolo vermelho oriundo da área com maiores teores de Hematita e na fotografia inferior solo da região com dominância de Goethita.

LISTA DE TABELAS

Tabela 1 - Correlação entre Classes de Declive (classes de relevo),	Superfícies
Geomorfológicas e Grupamentos de Solos.	5
Tabela 2 – Configuração do satélite EO-1.	13
Tabela 3 – Comparação da relação sinal-ruído entre AVIRIS e Hyperion.	17
Tabela 4 – Dados da cena Hyperion.	26
Tabela 5 – Lista de bandas do sensor Hyperion que apresentam stripes.	28
Tabela 6 – Parâmetros utilizados para realizar a correção atmosférica	utilizando o
FLAASH	29

LISTA DE ABREVIATURAS

- AIS Airborne Imaging Spectrometer
- ALI Advanced Land Imager
- AVIRIS Airborne Visible / Infrared Imaging Spectrometer
- **CAI** Cellulose Absorption Index
- CEPEA Centro de Estudos Avançados em Economia Aplicada
- CG Correção Geométrica
- CMM Covariance Matrix Method
- CTC Capacidade de Troca De Cátions
- **DOS** Dark Object Subtraction
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária
- FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
- **EO 1** *Earth Observing 1*
- **ETM** + Enhanced Thematic Mapper
- ESALQ Escola Superior de Agricultura "Luiz de Queiroz"
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária
- **GPS** Global Positioning System
- IBGE Instituto Brasileiro de Geografia e Estatística
- **IFOV** Instantaneous Field of VIew
- **JPL** Jet Propulsion Laboratory
- LAC Leisa Atmospheric Corrector
- MO Matéria Orgânica
- **MODTRAN** Moderate Resolution Transmittance
- **NASA** National Aeronautics and Space Administration
- ND Número Digital
- **NDWI** Normalized Difference Water Index

- **PC** Principais Componentes
- **QUAC** *Quick Atmospheric Correction*
- **RHGt** Relação Hematita-Goethita
- **RMS** *Error Root Mean Square Error*
- **SFF** Spectral Feature Fitting
- SIG Sistemas de Informações Geográficas
- SITAC Spectral Information Technical Applications Center
- **SNR** Signal to Noise Ratio
- SZA Solar Zenith Angle
- **TM** + *Thematic Mapper*
- USGS United States Geological Survey
- USP Universidade de São Paulo
- VZA View Zenith Angle

RESUMO

Com o potencial agrícola do Brasil, conhecer as características dos seus solos para obtenção de melhores resultados é fundamental. Os latossolos são solos com boas características físicas e suas propriedades químicas podem ser corrigidas para fins agrícolas. Métodos convencionais de caracterização de solos são caros e demorados, o que abre espaço para novas técnicas, dentre elas o sensoriamento remoto. Um dos sensores utilizados para estes fins é o sensor Hyperion, hiperespectral, possuindo 242 bandas de 10nm e com 30m de resolução espacial, recobrindo a faixa de 400 a 2500nm. Tais dados devem passar por uma série de processamentos para a obtenção das informações da superfície, dentre eles a correção atmosférica. O objeto do trabalho é testar o potencial do sensor Hyperion na detecção de óxidos e hidróxidos de ferro em ambiente tropical, assim como a interferência de diferentes corretores atmosféricos nos valores obtidos. As imagens Hyperion são obtidas junto ao USGS, para obtenção dos dados de trabalho as imagens receberam três diferentes pré-processamentos, dados brutos, remoção de bandas ruidosas e *destriping*. Posteriormente foi escolhido um local, com duas áreas, para a coleta de amostras georreferenciadas de solo em campo e sua analise de cor pela carta de Munsell. Para a espacialização dos dados da imagem foi usado o Spectral Feature Fitting (SFF) e com base em seus dados foi calculado o índice RHGt para a imagem e para os dados de campo com base na cor das amostras. Todas as imagens foram georreferenciadas e tiveram suas stripes muito atenuadas ou suprimidas. A imagem escolhida recebeu o tratamento com FLAASH e QUAC e ao analisar os espectros se notou que o espectro da hematita gerado pelo FLAASH está deslocado em direção à feição da Goethita. A análise dos dados do SFF mostrou a presença de stripes brancas no pré-processamento destriping, o que levou à exclusão do mesmo, e analisando os restantes optou-se pelo pré-processamento de remoção de bandas ruidosas para continuação do trabalho. Calculado o índice RHGt para a cena a cena com QUAC apresentou dados consistentes com o observado em campo, possibilitando uma separação de área com diferentes concentrações minerais, com FLAASH isso não foi possível. O índice RHGt calculado com base nos dados de campo não apresentou correlação com nenhum dos índices da imagem, e nem os índices da imagem entre si. Para os dados que apresentaram dados coerentes com o observado em campo, foram calculadas as imagens fit, que indicam a probabilidade de se ter o endmember em cena, que apresentaram boa espacialização dos minerais estudados.

Palavras Chave: Óxidos de Fe, Hyperion, Correção atmosférica, Spectral Feature Fitting

ABSTRACT

With the agricultural potential of Brazil, to know the characteristics of their soils for best results is critical. The Oxisols are soils with good physical and chemical properties agricultural purposes. Conventional methods of soil can be corrected for characterization are expensive and time consuming, which makes room for new techniques, among them the remote sensing. One of the sensors used for this purpose is the Hyperion, hyperspectral having bands of 10 nm and 242 30m spatial resolution, covering the range of 400 to 2500 nm. Such data must pass through a series of processes for obtaining information from the surface, including the atmospheric correction. The object of the work is to test the potential of Hyperion for the detection of oxides and hydroxides of iron in a tropical environment, as well as the interference of different brokers in the atmospheric values. The Hyperion images are obtained from the USGS, to obtain data of the images were working three different pre-processing, raw data, removal of noisy bands and destriping. Later a site was chosen, with two areas for the collection of georeferenced soil samples and their analysis in the field of color by the Munsell charts. For the spatial distribution of the image data was used the Spectral Feature Fitting (SFF) and based on your data RHGt index was calculated for the image and field data based on the color of the samples. All images were georeferenced and had their stripes much reduced or resolved. The chosen image received treatment with FLAASH and QUAC and analyze the spectra noted that the spectrum of hematite generated by FLAASH is shifted towards the feature of Goethite. Data analysis showed the presence of the SFF white stripes in preprocessing destriping, which led to the exclusion of the same, and analyzing the remaining opted for the pre-processing removal of noisy bands for further work. Calculated index RHGt to the scene to scene with QUAC presented data consistent with that observed in the field, allowing a separation area with different concentrations of minerals, with FLAASH it was not possible. The index RHGt calculated based on field data showed no correlation with any of the contents of the image, or the contents of the image together. For data that were consistent with the data observed in the field, we calculated the fit images that indicate the likelihood of having endmember in the scene, which showed good spatial distribution of the minerals studied.

Key Words: Iron Oxides, Hyperion, Atmospheric Correction, Spectral Feature Fitting

1 – INTRODUÇÃO

O setor do agronegócio é um importante na economia brasileira. Na última década teve uma participação média de 24,28% no total do Produto Interno Bruto (PIB) brasileiro, e há indicações de que no ano de 2011 essa participação seja de aproximadamente 26%. No terceiro trimestre de 2011, um semestre de crescimento nulo na economia, o agronegócio teve uma alavancagem de 3,2%, segundo o Instituto Brasileiro de Geografia e Estatística (CEPEA, 2011; IBGE, 2011).

Essa força do agronegócio se deu inicialmente nas regiões Sul e Sudeste, onde tradicionalmente se desenvolveu a agricultura. Contudo, devido ao esgotamento de terras cultiváveis novas áreas tornaram-se necessárias. Nessa mesma época, década de 40, o governo de Getúlio Vargas, já dava início à colonização da região do cerrado, com início nas cidades de Dourados no Mato Grosso do Sul e Ceres em Goiás. Pouco tempo depois, no Governo JK, teve início o plano de metas, que aliado à Revolução Verde promoveu uma agricultura com maior uso de novas tecnologias, tais como fertilizantes minerais, agrotóxicos, maquinário e implementos (SILVA,2000).

O Cerrado possui uma área total de 2,04 milhões de km² (Figura 1), correspondente a cerca de 20% do território brasileiro e é considerada a savana mais rica do mundo em biodiversidade. Perde em tamanho e em diversidade biológica somente para a Amazônia. Estende-se desde os Estados do Mato Grosso do Sul e Goiás, chegando a regiões norte do Maranhão e manchas isoladas no norte do Pará. É berço de bacias hidrográficas importantes como a do Rio Paraná, Rio São Francisco e do Tocantins-Araguaia (REZENDE, 2002).

Um dos principais componentes do bem sucedido processo de ocupação agrícola dos cerrados é o seu solo, com especial atenção aos latossolos. Os latossoslos eram considerados no início como inaptos para a agricultura devido a sua baixa concentração de nutrientes e alta toxicidade e acidez por alumínio. Tornou-se grande agente de desenvolvimento, com a introdução de maquinário agrícola e de corretivos minerais (SANTOS *et al.*, 2010).

Figura 1 - Mapa representativo da extensão territorial do bioma cerrado. Fonte: <u>http://www.jardimbotanico.df.gov.br/</u>. Acesso em 14/08/2011.

Dada a dimensão da área agricultável no Brasil, e da potencialmente agricultável, um fato importante para a tomada de decisões agrárias, urbanas e ambientais é o conhecimento dos diferentes tipos de solo e a sua correta espacialização em escalas cada vez maiores. Exemplos dessa necessidade estão em estudos para análise da viabilidade de assentamentos rurais, análises de microbacias hidrográficas assim como para estudos de uso e manejo de solos em municípios. No Brasil atualmente os mapeamentos de caráter nacional estão em escalas muito pequenas, a exemplo do projeto Radam Brasil com escalas da ordem de 1:1.000.000, que recobrem cerca de 80% do nosso território. Para o DF existe o mapeamento pedológico da EMBRAPA CERRADOS, que recobre toda a região com escala de 1:100.000 (REATTO *et al.*, 2004; FIGUEIREDO *et al.*, 2008).

Contudo, a obtenção de mapas pedológicos pela metodologia clássica tem custos elevados. Demandam grandes e demoradas campanhas de campo, pessoal altamente qualificado, tornando exequíveis somente em pequenas extensões territoriais. O delineamento das unidades de solo geralmente são feitas por meio de pares estereoscópicos, tornado necessárias campanhas de campo posteriores para a validação dos resultados (IPPOLITI *et al.*, 2005; FIGUEIREDO *et al.*, 2008).

Conhecer as relações entre geologia, superfícies geomórficas e os solos, além de um bom entendimento sobre seus fatores de formação, são importantes para a predição das ocorrências de determinados tipos de solos em certas regiões. Entender essas correlações nos possibilita a construção de modelos que são capazes de fazer predições de pedoambientes com boa precisão. Uma ferramenta que tem sido bastante explorada e vem dando ótimos resultados na construção desses modelos são os Sistemas de Informação Geográfica (SIG). Em relação ao mapeamento convencional, o mapeamento digital é barato e rápido e possibilita cobrir grandes extensões de terra com equipe reduzida. O cruzamento de dados já existentes de solos, geomorfologia e geologia, além das tecnologias mais recentes como os modelos digitais de terreno, geram resultados confiáveis (TERAMOTO *et al.*, 2001; SARMENTO *et al.*, 2008; SOUSA JUNIOR *et al.*, 2008; CRIVELENTI *et al.*, 2009).

Além das ferramentas já citadas, hoje em dia existe a possibilidade de se conhecer a composição mineralógica do solo fazendo-se uso de ferramentas de sensoriamento remoto. Em suas diversas modalidades espectrais (multiespectrais, hiperespectrais), espaciais (baixa, média e alta resolução espacial), com relação à fonte (passivos e ativos), dentre outras características, os sensores remotos possibilitam a obtenção de informações precisas que servem de base para a caracterização do solo graças a características únicas de cada um provenientes de sua assinatura espectral. Um sensor com forte potencial de uso é o Hyperion, sendo hiperespectral, identifica maiores detalhes da assinatura espectral dos alvos e seus resultados podem incentivar novos sensores orbitais. (NANNI *et al.*, 2005).

Nesse contexto, o objeto do trabalho é testar a potencialidade do sensor Hyperion na detecção de óxidos e hidróxidos de ferro em ambiente tropical.

Além disso, busca-se de forma mais específica verificar se há diferenças na qualidade da detecção entre diferentes métodos de correção atmosférica (QUAC e FLAASH).

2 – REVISÃO BIBLIOGRÁFICA

2.1 - SOLOS

Os solos são um conjunto de elementos de diferentes tamanhos e formas, constituídos por fase sólida, líquida e gasosa, em sua maioria de origem mineral, havendo também a colaboração de fração orgânica e ocupam a face superior da crosta continental. Sendo a camada de suporte de plantas e animais (EMBRAPA, 1999).

Os tipos de solos variam conforme a região na qual estão sendo estudados. Existem cinco fatores principais na formação dos solos, sendo eles: material de origem, relevo, clima, organismos vivos e o tempo. Desses, o clima e os organismos são considerados fatores ativos, já que controlam fluxos de energia, solventes e temperatura. O relevo é um fator controlador, devido à sua característica de controlar a interação de outros fatores em menor ou maior grau, como os fluxos de água por exemplo. Tem-se ainda o material de origem, que é quem confere as características mineralógicas ao solo, e também o tempo que é quem regula a duração das interações. Além dos fatores de formação dos solos, existem também os mecanismos de formação dos solos, que são a adição, remoção, transformação e a translocação. (BALIEIRO & TAVARES, 2008).

2.2 – LATOSSOLOS

O principal processo de formação dos latossolos é a latolização, que consiste na ação de intemperismo químico (hidrólise e oxidação) e os mecanismos de transformação e da remoção. São processos que atuam por longos períodos de tempo removendo sílica de minerais primários (montmorilonita por exemplo) e convertendo-os em minerais secundários da fração argila (caulinita). Pode ocorrer uma remoção tão intensa que há uma concentração de óxidos de Ferro e Alumínio no solo (BALIEIRO & TAVARES, 2008).

Os latossolos correspondem aproximadamente a 45,7% de todos os solos da região dos cerrados. São comumente encontrados em regiões de chapadas e terrenos com relevos suave-ondulados e em posições de topo até o terço médio das encostas

suave-onduladas, podem ocorrer em áreas de derrames basálticos (EBERHARDT *et al.*, 2008). Na tabela 1 observam-se dados sobre relações de relevo e os tipos de solos.

Considerando a morfologia dos latossolos pode-se dizer que são solos minerais, não hidromórficos, com profundidades superiores a 2m e horizonte B bastante espesso. A diferenciação entre horizontes é difícil e suas cores variam de vermelhas na superfície até amareladas no horizonte C. Tem predominância de estruturas maciças ou blocos subangulares ou ainda formas angulares diminutas (SANO & ALMEIDA, 1998). A tabela 1 apresenta as relações entre relevo e tipo de solo.

Classes de Declive	Classes de Relevo	Superfície Geomorfológica ⁽¹⁾	Classes de Solos (1º nível categórico)
0-3	Plano de Topo	Superfícies 1 e 2	Latossolos
3 - 10	Suave Ondulado	Superfícies 1, 2 e 3	Latossolos
10 - 45	Ondulado a Forte Ondulado	Superfícies 1 e 2	Cambissolos
10 - 24	Ondulado	Superfície 3	Solos B Texturais
24 - 45	Forte Ondulado	Superfície 3	Cambissolos
> 45	Montanhoso	Superfície 1,2 e 3	Cambissolos e Neossolos (Litólicos e Regolíticos)

Tabela 1 – Relação entre Classes de Declive, Classes de Relevo, Superfícies Geomorfológicas e Grupamentos de Solos.

⁽¹⁾ Superfícies geomorfológicas do Distrito Federal, Segundo Novaes Pinto (1990), Superfície 1 – Região de chapada, com cotas entre 1.300 e 1.500m, constituídas por chapadas e topos aplainados; Superfície 2 – Região de dissecação intermediária, com altitudes variando entre 1.000 a 1.500m e Superfície 3 – Região dissecada de Vale, com formas de relevo acidentado, com cotas entre 1000 a 750m. Fonte: Adaptado de Lacerda *et al.*, (2005).

Os latossolos possuem baixo teor de silte, chegando a no máximo 20%, e o teor de argila variando de 15% a 80%. Tais percentuais interferem em outras características como o potencial de drenagem do solo que podem variar de excessivamente drenado (baixos teores de argila) a acentualmente drenados (solos muito argilosos). Possuem alta permeabilidade á água, podendo ser trabalhados em várias faixas de umidade, também apresentam tendência a encrostamento superficial, devido possivelmente à floculação das argilas ou pelo próprio conteúdo de silte (SOUZA & LOBATO, 2004; SANO & ALMEIDA, 1998).

Os latossolos são solos muito antigos, o que devido à atividade do intemperismo, tem poucas reservas nutricionais, fato evidenciado por sua baixa capacidade de troca de cátions (CTC). Mais de 95% dos latossolos são distróficos e com pH em torno de 4,0 a 5,5. São solos deficitários em nutrientes, quando consideramos espécies agrícolas (SOUZA & LOBATO, 2004).

2.2.1 – HORIZONTES E CAMADAS

Conforme se desenvolvem os diferentes tipos de solos passam a ter características únicas que os identificam e auxiliam no seu estudo. Dessas características, podemos citar os horizontes e camadas.

Os horizontes são faixas de constituição mineral ou orgânica, paralela à superfície do terreno, podendo encontrar-se exposta no perfil e sendo dotada de propriedades geradas por processos formadores dos solos que lhe conferem características de inter-relacionamento com outros horizontes componentes do perfil, dos quais se diferenciam em virtude da diversidade de propriedades, resultantes da ação da pedogênese (USDA, 1993).

Os horizontes podem ser diferenciados em genéticos, quando são avaliados qualitativamente em determinadas porções dos solos, condicionadas por diferentes graus de alteração pelos quais o material de origem foi submetido. Tais alterações são avaliadas em conjunto levando à distinção do horizonte de estudo dos demais. Por horizonte diagnóstico entende-se aquele nos quais as características que o diferenciam são arbitradas para auxiliar o um ajuste mais fácil ao objetivo dos estudos (IBGE, 2007). A figura 2 mostra exemplo de horizontes pedológicos e suas transições.

Camada é uma seção de constituição mineral ou orgânica que sofreu pouca ou nenhuma influência de processos pedogenéticos. Os principais horizontes para estudos buscando caracterizar mineralogicamente os solos são os horizontes A e B, que são onde temos a concentração da maior parte dos minerais constituintes dos solos.

2.2.2 – GOETHITA E HEMATITA

Em climas tropicais, rochas básicas é a matéria prima para a origem dos minerais secundários conhecidos como óxidos e hidróxidos de ferro. Tais minerais podem se apresentar com estrutura cristalina definida ou como materiais amorfos e tem influência marcante nas características químicas e físicas do solo (TREMOCOLDI, 2003).

Mesmo sendo a caulinita o mineral predominante em solos tropicais, os óxidos de ferro também desempenham um papel importante, determinando a cor, estrutura, reações de troca iônica dos solos, além de servir como indicadores de ambientes pedogenéticos. Do ponto de vista da gênese de solos, a composição e as transformações mineralógicas dos seus materiais possibilitam melhor entendimento da evolução dos sistemas de intemperismo e pedogenético, já que os minerais são indicadores da dimensão com que os diferentes processos têm atuado nas paisagens atuais. Via de regra, os óxidos de Fe têm elevada superfície específica, o que resulta em alto poder de adsorção de ânions. São também ricos em micronutrientes e tem ação cimentante, o que confere a esse grupo de minerais, grande importância agrícola (COELHO & VIDAL-TORRADO, 2003; MOTA *et al.*, 2007).

Os óxidos de Fe tem sua formação influenciada pela dinâmica da água no solo. Além da dessilicação, a percolação da água promove a concentração de ácidos húmicos, favorecendo a formação de Goethita (FeOOH). Nas partes superiores do relevo, mais quentes e menos úmidas, forma-se principalmente a hematita. Esses minerais variam bastante em elação às suas propriedades cristalográficas, como, por exemplo, cristalinidade, diâmetro médio do cristal, substituição isomórfica de elementos na estrutura e superfície específica (ALLEONI *et al.*, 1995; MELO *et al.*, 2001; GHIDIN *et al.*, 2006).

Os óxidos e hidróxidos de ferro aparecem principalmente sob a forma de Goethita (FeOOH), presente em quase todos os tipos de solos e regiões climáticas, respondendo esta pela coloração amarelada e amarronzada nos solos. Possui alta superfície específica e também altos graus de substituição isomórfica em sua estrutura, principalmente por Al. A Hematita (Fe₂O₃), apesar de estar presente em menores quantidades que a Goethita, apresenta alto poder pigmentante, e uma amostra de solo com teor superior a 1,7% já impregna o solo de vermelho. Concentrações de 1%, desde mineral bem dispersas, tornam solos amarelados em solos vermelhos. (SCHEFFER *et al.*, 1958; TREMOCOLDI, 2003; DAS *et al.*, 2011).

2.2.3 - COR

Uma das mais importantes e fáceis formas de se diferenciar os tipos de solos é por meio de sua coloração. A cor é um reflexo da composição mineralógica, conteúdo de matéria orgânica e composição textural. As cores resultam da interação da luz com a retina originando um sinal transmitido até o cérebro por meio do nervo óptico (MADEIRA NETTO & BAPTISTA, 2000). Tal característica é importante, principalmente em se tratamento dos solos altamente intemperizados da região dos Cerrados (ESCADAFAL *et al.*, 1989)

Os diversos componentes minerais dos solos contribuem de forma diferenciada na coloração do mesmo. Podemos citar como exemplo e caulinita e a gibssita, que são dois dos minerais proeminentes na fração argila em solos tropicais e possuem pouca participação na coloração dos mesmos. Ao passo que, minerais como goethita e hematita respondem por grande parte da coloração dos solos tropicais. Sendo que a hematita responde pela coloração vermelha e a goethita é responsável pela coloração amarela. Outro fator importante na coloração dos solos é a matéria orgânica (FONTES, 2005).

Figura 2 – Ilustração da Carta de Munsell. Fonte: <u>http://www.pedologiafacil.com.br</u> – Acesso em 25/08/2011

Uma das principais formas de se determinar suas as cores é por meio da carta de Munsell (figura 2). Usada principalmente em estudos de campo, traz a vantagem de fornecer uma informação colorimétrica rápida, porém pouco precisa. A pouca precisão do processo provem dos fatores subjetivos envolvidos, tais quais, luminosidade do ambiente, experiência do avaliador e teor de umidade da amostra. Com isso, dados laboratoriais tornam-se necessários para o fornecimento de fontes precisas de cor para os solos, facilitando inclusive a comparação entre resultados de diferentes grupos de pesquisa (TORRENT, 1993).

2.3 – SENSORIAMENTO REMOTO

2.3.1 – COMPORTAMENTO ESPECTRAL DO SOLO

O estudo dos solos é importante por se tratar do meio no qual o homem está inserido, obtendo grande parte dos recursos usados na sua subsistência. Contudo, esses estudos costumam serem dispendiosos em relação a tempo e recursos humanos e financeiros, fazendo-se necessárias novas técnicas que possibilitem a obtenção de tais informações (DINIZ *et al.*, 2005).

Uma das técnicas mais utilizadas é a espectrorradiometria. É uma técnica de sensoriamento remoto, ou seja, obtêm dados sem o contato direto com o material em estudo. Registra a quantidade de energia refletida pelo solo, sendo essa energia função da fonte luminosa, que pode ser natural ou artificial e depende também do balanço entre a quantidade de energia radiada e irradiada pelo solo. Os espectrorradiômetros são responsáveis pela obtenção de espectros eletromagnéticos em diferentes comprimentos de onda, em pequenos intervalos da faixa espectral, de forma contígua.

Esses dados são obtidos na forma numérica ou em gráficos que são conhecidos como assinaturas espectrais, que são função da composição química do solo, principalmente dos minerais da fração argila. Tais assinaturas podem ser obtidas na faixa de 400 a 2500nm, englobando todo o espectro óptico refletido, e trazendo consigo as feições de absorção que são resultado da interação da luz com moléculas e átomos (HUNT *et al.*, 1971; MADEIRA NETTO, 2001; DALMOLIN *et al.*, 2005).

As feições de absorção visualizadas nas curvas de assinatura espectral têm duas origens distintas, podem ocorrer em função dos saltos dos eletrônicos entre os diferentes orbitais atômicos em função da excitação gerada pela energia recebida, sendo esses processos percebidos na faixa do visível e do infravermelho próximo. Como exemplo pode-se citar a goethita apresentando feições nos comprimentos de onda de 0,435, 0,480, 0,650 e 0,917µm e a hematita 0,445, 0,530, 0,650 e 0,885µm, com destaque para as transições eletrônicas de efeito de campo cristalino $2(^{6}A_{1}) => 2(^{4}T_{1})$ que ocorrem em 0,480 para a goethita e em 0,530 na hematita. Essas feições conferem a coloração aos minerais (SHERMAN & WAITE, 1985).

No caso do processo vibracional, sua existência é baseada na vibração das ligações inter e intramoleculares geradas pela energia incidente. Vão gerar feições na região do infravermelho médio. Como exemplos têm a Caulinita (2,205µm) e a Gibbsita (2,265µm) (HUNT *et al.*, 1971; BAPTISTA, 2001; MADEIRA NETTO, 2001; DALMOLIN *et al.*, 2005; BAPTISTA, 2006).

2.3.2 – SENSORIAMENTO REMOTO HIPERESPECTRAL

Avaliações e monitoramentos ambientais estão se tornando cada vez mais precisos devido às tecnologias de sensoriamento remoto. As principais vantagens estão na disponibilidade de séries históricas e na cobertura de grandes áreas em uma única cena. Por muito tempo esse monitoramento foi feito exclusivamente com uso de sensores multi espectrais, ou seja, que leem algumas faixas do espectro eletromagnético em grandes intervalos de comprimento de onda.

Como exemplo de sensor multiespectral pode-se citar o ETM+ do Landsat 7. Contudo, o desenvolvimento em laboratório de equipamentos capazes de fazer a leitura do espectro eletromagnético em faixas muito estreitas de comprimento de onda, da ordem de 2nm de variação, apresentou um potencial promissor para a aplicação desses equipamentos em campo. Resolução espectral refere-se à divisão do espectro em termos de comprimentos de onda e número de bandas contínuas. Sensores de alta resolução cobrem muito bem os dois requisitos com muitas bandas contíguas a estreitos intervalos de comprimento, o que permite detectar variações bem sutis nas assinaturas espectrais dos alvos (PIZARRO *et al.*, 1998; MUTANGA *et al.*, 2009). A figura 3 mostra um comparativo entre um espectro de bandas contíguas e um multiespectral.

Figura 3 – Comparação entre o espectro contínuo de dados hiperespectrais e as bandas de sensor multi espectral TM5. Adaptado de http://makalu.jpl.nasa.gov em 15/06/1997.

Hoje em dia esses dados podem ser coletados em laboratório, campo, aeronaves e satélites. Cada pixel da imagem hiperespectral traz consigo um espectro contínuo do elemento captado. Uma imagem hiperespectral é composta por várias bandas adquiridas simultaneamente dentro do intervalo de 400 até 2500nm. Suas principais aplicações até o momento tem sido para estudos mineralógicos, constituintes atmosféricos, vegetação e água (MUTANGA *et al.*, 2009; KRUSE *et al.*, 2012).

Figura 4 – Cubo hiperespectral mostrando as bandas do sensor AVIRIS após a correção atmosférica e redução dos dados de radiância para a reflectância de superfície. Fonte: <u>www.sarracenia.com</u> – Acesso em 25/08/2011

Os primeiros passos para a obtenção de um sensor capaz de trabalhar com qualidade próxima a um espectrorradiômetro tiveram início com o sensor AIS (*Airborne Imaging Spectrometer*) que foi idealizado para testar um novo arranjo de detectores de infravermelho e obtenção de dados de engenharia. Com o suporte de seus dados foi possível o desenvolvimento do sensor aerotransportado AVIRIS (*Airborne Visible/InfraRed Imaging Spectrometer*), a bordo de um avião de modelo ER-2, que possui as vantagens de ser muito estável, por voar na estratosfera, e possuir grande autonomia. O sensor opera capturando 224 bandas, com largura de 10nm, na faixa de 400 a 2500nm (figura 4) (VANE *et al.*, 1993a; VANE *et al.*, 1993b; BAPTISTA *et al.*, 2000; BAPTISTA *et al.*, 2011).

2.3.3 – SATÉLITE EO-1

Foi lançado como parte do programa New Millenium da NASA visando testar um novo sensor e meios mais baratos de coleta de dados por satélites. O EO-1 segue a mesma órbita do LANDSAT 7, com aproximadamente 1 minuto de defasagem. Isso possibilitou a coleta de dados ao mesmo que o LANDSAT 7, o que levou a comparação de dados entre os sensores. Na mesma órbita (figura 5) que os dois vêm os satélites da "*morning constellation*", SAC-C (Argentino) e o TERRA (FOLKMAN *et al.*, 2001; FOLKMAN *et al.*, 2001; PETROPOULOS *et al.*, 2012b).

Figura 5 – Orbita dos satélites LANDSAT 7 e EO-1 Fonte: LINN, (2008). Adaptado de PEARLMAN *et al.*, 2001.

Os três principais instrumentos do EO-1 são o sensor ALI, o Hyperion e o LAC. O ALI é um sensor multiespectral calibrado e dotado de um telescópio de visada larga de 15° seu campo de visão é de aproximadamente 37km o que nos da 1/5 da visada do LANDSAT. O sensor LAC é um sensor destinado ao monitoramento das janelas de absorção da água para posteriormente ser usado na correção atmosférica de sensores multiespectrais como o ETM+ do LANDSAT por exemplo (FOLKMAN *et al.*, 2001; PEARLMAN *et al.*, 2001). A tabela 2 apresenta informações técnicas sobre os componentes do satélite EO-1.

Tabela 2 - Configuração do satélite EO-1. Fonte: Adaptado PEARLMAN et al., 2001

Danâmatraa	EO - 1			
Farametros —	ALI	Hyperion	LAC	
Cobertura Espectral	0.4 – 2.4 µm	$0.4 - 2.4 \ \mu m$	0.9 – 1.6 μm	
Resolução Espacial	30m	30m	250m	
Faixa de varredura	36km	7.6km	185km	
Resolução espectral	Variável	10nm	бnm	
Cobertura Espectral	Discreta	Contígua	Contígua	
Resolução da Banda	10m	N/A	N/A	
Pancromática	10111	$1\sqrt{2x}$	N/A	
Total de bandas	10	242	256	

2.3.4 – SENSOR HYPERION

O Sensor Hyperion (figura 6) fornece dados hiperespectrais calibrados de alta qualidade para estudos terrestres. Possui um único telescópio e dois espectrorradiômetros, um cobrindo todo o espectro do visível e infravermelho próximo e o outro cobrindo o infravermelho de ondas curtas. (FOLKMAN *et al.*, 2001; HAN *et al.*, 2002; PETROPOULOS *et al.*, 2012a).

Figura 6 –Sensor Hyperion Fonte: <u>http://eo1.gsfc.nasa.gov/new/images/pageSpecific/hypfotos/RtViewLg.JPG</u> - Acesso em 8/7/2012.

É composto por três unidades básicas, que são o sistema de captura de dados, o controle eletrônico do sistema e o sistema de refrigeração *criocooler*. O telescópio tem um IFOV de 7,5km x 30m metros na direção de voo do sensor, sendo essa imagem direcionada aos dois espectrorradiômetros do aparelho, ficando um responsável pelo intervalo de 400 a 1000nm e o outro de 900 a 2500nm. A faixa compreendida entre 900 e 1000nm é sobreposta entre os sistemas permitindo a calibração entre os mesmos. O sensor captura 242 bandas contíguas cobrindo, cada uma, 10nm. A faixa do espectro compreendida entre 356 e 2577nm é coberta, contudo somente 196 bandas são calibradas. Suas imagens possuem 7,5 km de comprimento perpendicular ao plano de voo e 42 km de comprimento como padrão, porém sob demanda, essa faixa pode atingir 185 km de extensão, na figura 7 tem-se a comparação da área de cobertura de diferentes sensores. Sua resolução radiométrica é de 12bits e a resolução espacial é de 30 m (FOLKMAN *et al.*, 2001; PEARLMAN *et al.*, 2001; BECK, R. 2003; GALVÃO *et al.*, 2009; PETROPOULOS *et al.*, 2012a; PETROPOULOS *et al.*, 2012b).

Figura 7 –Comparação das áreas de aquisição de dados dos sensores ETM+, ALI, AC e Hyperion. Fonte: NASA

2.3.5 – APLICAÇÕES DO SENSOR HYPERION

O sensor Hyperion foi desenvolvido para funcionar pelo período de um ano. Mas seus resultados foram tão bons que sua operação foi prolongada, porém hoje em dia o mesmo não se encontra mais em operação, mas ainda são publicados inúmeros trabalhos sobre o tema. Galvão *et al.* (2009) avaliando o potencial do sensor para diferenciar cultivares de soja e estudar as relações entre índices de vegetação e os campos

cultivados a partir de diferentes ângulos de visada, numa fazenda no município de Querência, MT.

Foi possível diferenciar as três cultivares (figura 8) estudadas com alto grau de precisão e dos índices estudados o NDWI (*Normalized Difference Water Index* - Índice de Água por Diferença Normalizada, GAO, 1996) foi o que melhor respondeu aos campos cultivados. Em outro estudo, Pengra *et al.*, (2007) avaliaram o potencial do sensor Hyperion na identificação de *Phragmites australis*, uma gramínea de grande porte que vem competindo com plantas nativas na região dos Grandes Lagos nos Estados Unidos. A partir de espectros de referência gerados pelo próprio Hyperion, os pesquisadores conseguiram chegar ao valor de 3,4% da área de estudo infestada com nível de confiança de 81,4%.

Figura 8 - Espectros comparativos de três cultivares de Soja. Adaptado de Galvão et al., (2009).

Daughtry *et al.*, (2006) em estudo para avaliar o potencial do LANDSAT TM e do sensor Hyperion na identificação de restos de culturas em sistemas de plantio direto para classificar áreas na região central de IOWA – Estados Unidos com relação à intensidade de gradagem no solo. Os dados de LANDSAT mostraram baixa correlação com os dados de campo, já os dados Hyperion, usados para calcular o índice *Cellulose Absorption Index* (CAI) apresentaram relação linear com os dados de campo. Os coeficientes de determinação foram de no mínimo 77%, conseguindo separar três classes de gradagem com precisão de 82%.

Matéria orgânica é um indicador de degradação do solo, e por consequência da paisagem. A perda de Matéria Orgânica (MO) favorece processos erosivos, redução da fertilidade dos solos e consequentemente redução na produtividade. No trabalho de Wang *et al.*, (2010) buscaram desenvolver um método, por meio de dados Hyperion (figura 9), para a avaliação em escala regional dos valores de MO no solo, já que essas análises em campo são demoradas e caras. Ao final do trabalho foi possível determinar o teor de MO no campo com margem de segurança de 72%.

Figura 9 – Espectros comparativos de solos com diferentes porcentagens de MO. Fonte: Adaptado de Wang *et al.*, (2010).

Giardino *et al.*, (2003) estudou a qualidade da água do Lago Garda – Itália com auxílio do sensor Hyperion para monitorar as quantidades de clorofila-a e tripton. Para clorofila-a a correlação com os dados de campo chegou a 77% e a maiorias dos valores da imagem bateram com os dados do transecto. O mesmo ocorrendo para os dados de tripton analisados.

2.3.6 – RELAÇÃO SINAL RUÍDO - SNR

A qualidade dos dados de sensoriamento remoto está diretamente ligada com a quantidade de ruído em relação ao sinal do sensor, sendo expressa pela relação sinal ruído, uma medida adimensional que da uma noção geral do desempenho do sistema. A tabela 3 apresenta a comparação entre os sensores na faixa do SWIR (infravermelho de ondas curtas) do AVIRIS e do Hyperion, na qual fica evidente a forte participação do ruído nos dados Hyperion (KRUSE *et al.*, 2003).

Sensor	Resolução Espectral	Resolução Espacial	Faixa de cobertura	SNR - SWIR
AVIRIS – Alta Altitude	10nm	20m	12km	~500:1
Hyperion	10nm	30m	7,5km	~50:1

Tabela 3 – Comparação da relação sinal-ruído entre AVIRIS e Hyperion. Fonte: KRUSE et al., 2003.

Fonte: KRUSE et al., 2003.

O ruído é devido ao desenho do sistema e leva em conta fatores como a performance/sensibilidade do detector, resolução espacial e espectral e ruído derivado das características eletrônicas do sensor. Os valores de ruído geralmente são fixos para os sensores. A figura 10 apresenta a relação Sinal Ruído - SNR calculada para o sensor Hyperion a partir de modelagem matemática. Pode-se observar que nos dados na faixa do visível (400 a 900nm) a relação é cerca de 50% mais alta, se comparada ao SWIR, diminuindo à medida que se desloca para comprimentos de onda maiores (PEARLMAN *et al.*, 2000; KRUSE *et al.*, 2003).

Figura 10 - Curva mostrando a SNR do sensor Hyperion. Fonte: Adaptado de Folkman et al., (2001).

2.4 – PRÉ-PROCESSAMENTO

2.4.1 – CORREÇÃO GEOMÉTRICA (GC)

A correção geométrica tem por função reorganizar os pixels da imagem de forma que os mesmos passem a ter embutidas informações geográficas pertinentes. Um dos focos desse processamento é a redução de distorções geométricas geradas durante o processo de obtenção do dado. Conforme aumenta a resolução espacial do sensor, maior importância tem a CG, visto que os pontos na superfície tem que representar exatamente o que é visto na imagem. Vários estudos são possíveis tendo imagens georreferenciadas, já que passa a ser possível a superposição das mesmas, inclusive de imagens e mapas, o que aumenta a precisão de dados que envolvam séries históricas, por exemplo, (BUITEN *et al.*, 1997; LUIZ *et al.*, 2003).

A correção geométrica é realizada basicamente por dois passos. No primeiro há a coleta de pontos de controle na imagem base e dos mesmos pontos na imagem a ser georreferenciada. O segundo passo se dá por meio de operações matemáticas, nas quais os demais pontos da imagem recebem coordenadas geográficas. A coleta de pontos pode ser feita de forma manual ou automática. Manualmente buscam-se coletar os pontos em feições de fácil identificação nas imagens, como intersecção de estradas, quinas de talhões e edificações isoladas, por exemplo. No método automático são selecionados centros de janelas contendo máximas variâncias locais, linhas de intersecção e pontos de máxima curvatura local em linhas de contorno (GOSHTASBY, 1988; HUINCA *et al.*, 2005).

Os pontos de controle podem ser obtidos de diferentes formas, imagem-imagem, imagem-vetor e imagem-mapa, por exemplo. Contendo os pontos de controle os métodos matemáticos mais comumente envolvidos são o polinomial simples, polinomial racional e o rigoroso ou paramétrico. Em ambas as formas de coleta de pontos de controle a única medida quantitativa usada na avaliação é o erro médio quadrático (Root Mean Square Error – RMS Error). Contudo na ausência de outros parâmetros quantitativos, o RMS pode validar pontos de controle de baixa qualidade. A correção geométrica de baixa qualidade pode ser resultado de poucos pontos de controle, pontos imprecisos e também de pontos mal distribuídos pela cena (LUIZ *et al.*, 2003; GONÇALVES *et al.*, 2009).

3.4.2 – CORREÇÃO ATMOSFÉRICA

Quando a Terra é observada a partir de um sensor orbital, a atmosfera é um grande fator de incerteza associada à medida da reflectância da superfície. Tanto no caminho em direção a Terra quanto no seu retorno ao sensor, o fóton captado pode sofrer influência da absorção atmosférica e do espalhamento. Outros dois fatores que também afetam a intensidade da radiância são o ângulo de incidência zenital (*View Zenith Angle* - VZA) e o ângulo zenital solar (*Solar Zenith Angle* - SZA). Quanto mais distantes do NADIR, maior será o caminho percorrido pelo fóton, logo maior será a

interferência atmosférica (GORDON *et al.*, 1981; JIMÉNEZ-MUÑOZ *et al.*, 2010; PROUD *et al.*, 2010).

Os componentes atmosféricos (figura 11) com as maiores atividades na radiação solar são os gases atmosféricos (O₃, CO₂, CH₄), vapor d'água e os aerossóis (fumaça e poeira, por exemplo). Esses componentes absorvem ou espalham os fótons de forma que os sensores orbitais só recebem parte dessa radiação. Existem ainda os fótons espalhados antes de entrar na atmosfera que são devolvidos ao sensor sem assinatura espectral de alvo algum. Conhecendo os efeitos atmosféricos na radiação é possível tentar anular ou pelo menos atenuar seus efeitos, obtendo como resultado a radiância da superfície, ou após processamento a reflectância dos alvos (FALLAH-ADL *et al.*, 1996; SONG *et al.*, 2001; GUANTER *et al.*, 2007).

Figura 11 – Janelas atmosféricas e os principais gases que interferem na radiação recebida pela Terra. Fonte: <u>www.sarracenia.com</u> – Acesso em 25/08/2011

Formas computacionais de se eliminar esses efeitos são desenvolvidas há décadas e hoje existem inúmeros procedimentos para tal propósito. Têm-se dois tipos principais de algoritmos de correção atmosférica, os modelos empíricos, que são baseados em informações contidas nas próprias imagens e os modelos físicos que fazem a correção com base em informações ambientais e modelos de transferência radiativa. Representando os modelos empíricos pode-se citar o QUAC (*Quick Atmospheric Correction*), e para os modelos físicos tem-se o FLAASH (*Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes*).

FLAASH é um código de correção bastante eficiente baseado no MODTRAN (*Moderate Resolution Transmittance*) que foi desenvolvido por um programa de colaboração entre *Spectral Science, Inc.* e *Air Force Research Laboratory*, com assistência do *Spectral Information Technical Applications Center* (SITAC). Os principais objetivos de sua criação foram fornecer informação precisa; derivar, baseada em fatores físicos da atmosfera tais quais, pressão na superfície, a coluna de vapor d'água, os aerossóis e a cobertura de nuvens incorporando essas informações numa matriz de correção para no fim obter a reflectância a partir dos dados de radiância. O FLAASH é baseado na equação padrão para radiância no pixel do sensor considerando os comprimentos de onda do visível (COOLEY *et al.*, 2002; MATTHEW *et al.*, 2002; FELDE *et al.*, 2003) (equação 1):

 $L^* = A\rho/(1-\rho_e S) + B\rho_e/(1-\rho_e S) + L^*a$ (eq. 1)

Onde ρ é a reflectância da superfície do pixel; ρ e é a reflectância media do pixel e sua região vizinha; S é o albedo esférico da atmosfera; A e B são dependentes das condições atmosféricas e geométricas; e L*a é a radiância retroespalhada pela atmosfera.

O QUAC é um algoritmo recentemente desenvolvido para correção atmosférica rápida na própria cena. Ele trabalha com uma relação aproximadamente linear entre as unidades da cena e a reflectância espectral por meio de analise estatística de uma vasta gama de assinaturas espectrais padrões, obtidas de uma cena com características bem diversificadas, observando-se a não presença de material vegetal. O deslocamento espectral utilizado na transformação QUAC é equivalente à sombra ou ponto escuro usado por normalização da vegetação. A escala de ganho para reflexão ocorre em função da média dos espectros sofrer pouca interferência com a variação na quantidade dos mesmos. No pressuposto de que um resultado semelhante é válido para a reflectância média do *endmember* em uma cena complexa de sensores hiperespectrais, um ganho relativo espectral que converte pixels de imagem escura subtraídos de unidades de cena para reflectância pode ser aproximada por a razão entre o membro espectros média respectiva extremidade (BERNSTEIN *et al.*, 2004; BERNSTEIN *et al.*, 2005; EISMANN *et al.*, 2008).

2.4.3 – DESTRIPING

O sensor Hyperion trás consigo um tipo de ruído sistemático chamado *stripes*. É um erro frequentemente associado a detectores do tipo *pushbroom* e pode ter várias causas como não linearidades do detector, deslocamento do corte em relação ao plano focal e também a efeitos de temperatura. A presença das *stripes* é marcante nas bandas do infravermelho de ondas curtas, contudo também pode ser notado no visível e no infravermelho próximo, contudo sua presença não é periódica. Na figura 12 temos exemplos da presença de *stripes* (KRUSE *et al.*, 2003; DUCART *et al.*, 2007; LIU *et al.*, 2009).

A presença de *stripes* também atrapalha a análise qualitativa das imagens. Tornando tendenciosos os resultados do processamento posterior destinado a extrair parâmetros quantitativos, tais como os que se baseiam na detecção de estrutura geométrica, a segmentação de imagem, e correlação cruzada de imagem. As estripes são de quatro tipos: contínuos com valores de ND atípicos; contínuos com valores de ND contínuos; intermitentes com valores de ND atípicos; intermitentes com baixos valores de ND (GOODENOUGH *et al.*, 2003; CARFANTAN *et al.*, 2010).

Figura 12 – Imagem do sensor Hyperion apresentando stripes. Adaptado de TSAI et al., 2005.

Existem várias formas de *destriping*, sendo que todas elas devem ser aplicadas antes dos demais processamentos que possam vir a ocorrer na cena. Vários são os autores que apostam soluções, contudo elas não são solúveis triviais que possam sem aplicadas sem certo domínio de técnicas avançadas de processamento de imagens (DATT *et al.*, 2003; GOODENOUGH *et al.*, 2003; TSAI *et al.*, 2005; TSAI *et al.*, 2008 CARFANTAN *et al.*, 2010).
3 – ÁREA DE ESTUDO

A área de estudo (Figura 13) é apresentada com seus limites definidos em vermelho. Representando um talhão de 90ha e outro de 231ha em uma propriedade no município de São Gabriel – GO. A área apresenta histórico de plantio de soja, milho, feijão em sistema de agricultura de precisão. Os solos da área são classificados como latossolos vermelho-amarelos distróficos com textura argilosa, sendo essas informações obtidas junto ao proprietário com base nas análises já existentes.

Figura 13 – Imagem Hyperion em composição cor real (R: 640nm G: 548nm B: 538nm) contendo a área de estudo destacada com seus limites em vermelho.

3.1 – DESCRIÇÃO GEOLÓGICA

A descrição geológica está baseada nos estudos de Nascimento (1992); Condé *et al.*, (1994) e Campos *et al.*, (2009) que salientam que a área de estudo está inserida na Serra Geral do Paranã, em uma região de sequência pelítica com intercalações de arenito. É pertencente ao Grupo Paranoá, que nessa região encontra-se sobreposto concordantemente pela formação Paraopeba. Também está em contato com a formação três Marias, composta na região por arcóseos e pelitos, devido a uma grande falha de cavalgamento a Oeste do Vale do Rio Paranã.

Na área em questão a litoestratigrafia é composta por seis unidades, sendo essas unidades pertencentes à base do grupo. A unidade inicial ou A, Conglomerado de São Miguel, está restrita a zona de cisalhamento perpendicular à frente de empurrão, localizada no rio Palmeiras. A granulometria da matriz é de fina a média, bastante carbonática, com clastos de composição variada (quartzo, quartzito, siltito e calcáreo). O Metassiltito, Unidade B, aflora apenas na zona de cisalhamento e proximidades, mostrando, aparentemente, contato brusco e concordante com o Conglomerado São Miguel. Trata-se de litotipo Maciço (pouco estratificado), granulometria fina, coloração vermelha e clivagem ardosiana desenvolvida.

A unidade C, Quartzito Inferior, ocorre tanto em sobreposição ao Conglomerado de São Miguel, quanto em contato tectônico com a formação Três Marias. Constitui-se de meta-arenitos finos a médios, coloração rosa-esbranquiaçada a amarelada disposto em camadas de 30 a 40cm. A Unidade D, Metarritimito Inferior, caracteriza-se por bancos centimétricos de arenitos finos rosados, intercalados a siltitos e níveis milimétricos de lamitos de coloração esbranquiçada.

A unidade E, Quartzito Superior, é formado por camadas decimétricas a métricas de meta-arenitos amarelo-esbranquiçados, de granulometria média. Localmente, ocorrem níveis de arenitos microconglomeráticos, feldspáticos (alterados ou não), com seixos e grânulos principalmente quartzosos, subanguloso e angulosos. O metarritmito Superior, Unidade F, Constitui a unidade topo do Grupo Paranoá, na área estudada. Trata-se de arenitos finos a médios, em geral com espessura de 5 cm, podendo atingir 30cm, intercalados a lâminas de silte e argila. Nessa unidade ainda se individualizam pacotes métricos de 1 a 5m de quartzitos finos, feldspáticos ou não, com estratificação cruzada espinha de peixe.

4 – MATERIAL E MÉTODOS

4.1 – EQUIPAMENTOS E SOFTWARES UTILIZADOS

Todos os insumos, equipamentos e softwares, usados no presente trabalho estão listados abaixo. A sequência da metodologia usada no trabalho está demonstrada no fluxograma da figura 14.

- Sistema Google Earth
- Programa ENVI 4.7
- Pacote ArcGIS 9.3
- Imagem GeoCOVER
- Programa Mapsouce GARMIN
- Receptor GPS GARMIN GPSMAP 62s
- Notebook Dell Inspiron 14R 810 i5, 3GB RAM, HD 640GB
- Câmera digital Kodak Easyshare M575 14 Megapixels
- Cena Hyperion
- Trena de 50m de Fibra
- Carta de Munsell
- Piceta com água destilada

Figura 14 – Fluxograma.

4.2 – AQUISIÇÃO DA IMAGEM E SELEÇÃO DA ÁREA DE ESTUDO

No momento da seleção um fator importante foi à obtenção de imagens contendo áreas com solo exposto, próximas à região do DF, já que o plantio direto inviabiliza a obtenção dos dados da superfície do solo e é uma pratica muito difundida na região. As imagens foram obtidas a partir do bando de dados *Earth Explorer* do *U.S. Geological Survey* – USGS. Selecionada uma área no sistema o programa acessa o banco de dados e nos retorna todas as imagens existentes da área. Foram solicitadas mais de trinta cenas, sendo que só uma apresentou área com solo exposto. Na tabela 4 temos os parâmetros da cena usada no estudo.

EO12210712006323110K6 Arquivo Orbita 221/071 Nível de correção 1**R** BIL Intervalo Data de Aquisição 8/08/2006 Número de bandas 242 Coordenadas dos cantos -15.232964; -47.572739 -15.247826; -47.502781 -16.078094; -47.764389 -16.093013; -47.694127

Tabela 4 – Dados da cena Hyperion. Fonte: USGS

4.3 – CAMPANHA DE CAMPO

4.3.1 – COLETA DAS AMOSTRAS DE SOLO

A campanha de campo foi realizada nos dias 21, 22 e 23 de Outubro de 2011 na área de estudo. Foi definido um transecto na área de 90ha, no qual se coletaram amostras a cada 25 metros. No transecto da área de 231ha, com extensão de 1200m, foram coletadas 49 amostras também da camada de 0-20cm. Todas as coletas foram feitas com trado holandês e as distâncias medidas com auxílio de trena de fibra com 50m de comprimento.

Na área de estudo de 90ha foi feita uma grade regular para a coleta de material. Devido ao formato irregular da área a grade teve seu início com menores intervalos de distância de coleta, começando com 25m entre fileiras, nas duas primeiras fileiras de coleta. Da terceira até a quinta fileira a distância entre pontos foi de 50 metros e da sexta fileira em diante a distância foi de 100 metros. A distância entre pontos de coleta foi regular e igual a 100m.

Todos os pontos foram georreferenciados com uso de Receptor GPS GARMIN – GPSMAP 62s, com precisão de três metros. As coordenadas foram obtidas em UTM fuso 23, com datum WGS 84.

4.3.2 – ANÁLISE DA COR DO SOLO

Para a cor do solo foi usada à carta de Munsell, em condições de iluminação natural. As amostras eram umedecidas e então se procedia à classificação para a obtenção do matiz, valor e croma.

4.4 – PRÉ-PROCESSAMENTO DOS DADOS HYPERION

Com o intuito de se obter os resultados esperados de acordo com os objetivos do trabalho, foram testadas três diferentes maneiras de pré-processamento, a fim de se eliminarem as *stripes* e reduzir os ruídos das cenas. No primeiro pré-processamento os dados brutos provenientes do USGS foram usados. No segundo tratamento foi feita a remoção de bandas já tidas como ruidosas seguindo depois com os pré-processamentos. No terceiro método de pré-processamento testado, foi executado o programa *Vertical Stripe Removal* seguindo-se então os pré-processamentos utilizados nos outros dois métodos de pré-processamento.

4.4.1 - REDIMENSIONAMENTO DO NÚMERO DE BANDAS DA IMAGEM

Após a aquisição da cena, procedeu-se ao seu redimensionamento de bandas via software ENVI 4.7 por meio da opção *resize data* encontrada no menu *basic tools*. As bandas usadas no estudo estão compreendidas no intervalo da banda 8 até 55, por serem bandas radiometricamente calibradas do nível 1R (LINN, 2008). Contudo, Diversos estudos relatam a existência de bandas ruidosas e recomendam a remoção das mesmas.

O trabalho que serviu como base para a operação de remoção foi de Goodenough *et al.*, (2003). A Tabela 5 apresenta as bandas removidas a fim de se melhorar à qualidade da cena. Após a eliminação das bandas ruidosas restaram 42 bandas do VNIR que foram utilizadas ao longo do trabalho.

Local De Detecção De Pixels Anormais Baseados Na Correção De Cena Hyperion GVWD Nível 1B1				
Banda	Coluna	Banda	Coluna	
9	6, 68, 114, 121	127	215	
10-11	6, 114, 199	128	45, 146, 223, 240	
12	6, 114	129	5, 73, 223	
13	114	130	67, 72, 83, 120, 169, 194, 209, 223, 233	
14	114, 247	132	90, 245	
15-34	114	165	147	
55	13, 20	168	2, 229	
77	250	174	226	
120	194	178	202, 246	
121	231	181	190	
122	150, 204	186	110, 198	
123	79, 87, 125, 169, 179, 194	191	193	
124	66, 131, 133, 152, 158, 201	221	246	
125	180, 221, 253	222	97	
126	29, 67, 110, 121, 127, 133, 187, 191, 249	223	95	

Tabela 5 – Lista de bandas do sensor Hyperion que apresentam estripes. Fonte: Adaptado de Goodenough *et al.*, (2003).

4.4.2 – ANALISE POR COMPONENTES PRINCIPAIS (ACP)

É uma técnica estatística multivariada que permite a decorrelação entre informações. Foi aplicada na cena com uso do software ENVI 4.7, selecionando-se o menu *transform* no qual se têm acesso ao algoritmo de calculo das principais componentes. Em seguida, pela análise dos autovalores e autovetores é possível selecionar as PCs que irão minimizar o ruído dos dados. Em seguida faz-se a operação inversa das PC, trazendo para a dimensão espacial os dados sem as PCs que são responsáveis pelo ruído, permitindo que esses dados possam ser utilizados nos processamentos posteriores.

4.4.3 – DESTRIPING

Para a correção das estripes foi utilizado o software Vertical Stripes Removal, presente no módulo SPEAR TOOLS que integra o software ENVI 4.7. O programa

corrige as *stripes* ajustando o brilho de cada coluna (em todas as cenas) com base no brilho médio calculado para toda a cena.

4.4.4 – CORREÇÃO ATMOSFÉRICA

4.4.4.1 – QUICK ATMOSPHERIC CORRECTION (QUAC)

O QUAC determina os parâmetros de compensação atmosférica a partir das informações disponíveis na própria imagem (por meio dos espectros dos pixels), sem a necessidade de informações complementares. Ao contrário de outros métodos, para a recuperação das perdas por aerossóis não requerem a presença de pixels escuros.

Para utilizar o corretor atmosférico foi usado o software ENVI 4.7 bastando selecionar o arquivo a ser corrigido a informando ao programa qual é o sensor de origem da imagem.

4.4.4.2 – FAST LINE-OF-SIGHT ATMOSPHERIC ANALYSIS OF SPECTRAL HYPERCUBES (FLAASH).

O FLAASH é um algoritmo baseado no modelo de transferência radiativa MODTRAN 4, que funciona atenuando os efeitos do espalhamento e da absorção atmosférica (aerossóis e gases atmosféricos), convertendo os valores de radiância para dados de reflectância de superfície. A configuração aplicada ao presente estudo é apresentada na tabela 6.

Coordenada Central	-15 33 18.36; -47 36 23.40		
Altitude do Sensor	705km		
Elevação média do Terreno	1200m		
Tamanho do Pixel	30		
Data de Aquisição	19 de Novembro de 2006		
Modelo Atmosférico	Tropical		
Visibilidade Atmosférica	40km		

Tabela 6 - Parâmetros utilizados para realizar a correção atmosférica utilizando o FLAASH

4.4.5 – CORREÇÃO GEOMÉTRICA

Para a correção geométrica usou-se como imagem base uma cena GeoCover (Landsat 5 TM) com resolução espacial de 28,5m ortoretificadas. Essas imagens são obtidas no servidor Zulu da NASA, http://zulu.ssc.nasa.gov/mrsid/.

4.4.6 - REAMOSTRAGEM DAS BIBLIOTECAS AMOSTRAIS

A partir da biblioteca espectral do Jet Propulsion Laboratoty - NASA (JPL-NASA) a biblioteca foi reamostrada, por meio do módulo *Spectral library resampling*, para o sensor Hyperion, podendo então servir de base para a comparação com os espectros da imagem. A figura 15 apresenta os espectros de goethita e hematita após reamostragem para as funções de ganho dos detectores do Hyperion. A escolha desses espectros deveu-se ao fato de o modelo RHGt_{scale} ter sido desenvolvido utilizando-se essa biblioteca espectral (OLIVEIRA e BAPTISTA, 2001).

Figura 15 – Espectros de Goethita (perfil azul) e Hematita (perfil vermelho) provenientes da biblioteca do JPL-NASA.

4.4.7 - SPECTRAL FEATURE FITTING (SFF)

Spectral Feature Fitting (SFF) é um método de ajuste por mínimos quadrados dos espectros de imagem aos espectros de referência, ou endmembers. A partir da

biblioteca espectral do JPL, usadas no software ENVI 4.7 foram selecionados os espectros da hematita e da goethita reamostradas, e então usadas como referência para a comparação com os dados da imagem.

Caso a imagem não tenha tido o contínuo espectral removido, o próprio SFF processa essa operação. O contínuo é um método de normalização do espectro que se baseia em segmentos de reta conectados aos pontos de máxima reflectância do espectro (BAPTISTA, 2006). A partir desse processamento são obtidos dois resultados as imagens *Scale* e as imagens RMS. As imagens *Scale* são resultado da comparação entre os espectros de referência e os espectros das imagens de trabalho por meio de ajuste por mínimos quadrados e coeficiente linear de correlação. Elas indicam a intensidade da feição ou a sua profundidade relativa, que segundo Baptista (2001) é proporcional ao teor dos minerais. E as imagens RMS são os erros quadráticos determinados para cada espectro. O SFF foi aplicado às imagens provenientes de todos os tratamentos.

4.4.8 – OBTENÇÃO DO ÍNDICE RHGt_{scale} E RHGt_{Munsell}

O cálculo da razão Hematita/(Hematita+ Goethita) para as imagens Hyperion foi realizado utilizando-se a seguinte expressão: *scale* de Hematita/(*scale* de Hematita + *scale* de Goethita), obtidas pelo método SFF em dados provenientes da correção atmosférica com QUAC e com FLAASH. Na imagem gerada pela operação, ou índice RHGt_{scale} quanto mais claros os valores dos pixels, maiores são os valores para a Hematita.

Para cálculo do índice RHGt a partir dos dados de cor do solo da carta de Munsell utilizou-se metodologia proposta por Santana, (1984) e seguida por Martins, (2000) na qual primeiro se calcula o fator de vermelho que leva em conta o croma (C) e o valor (V) e o complementar dos matizes (M*), todos obtidos a partir da observação visual das cores a partir da carta de Munsell.

$$FV = M^* + C/V$$
 (Eq. 2)

Os valores de M* são obtidos pelos valores complementares dos matizes (M). Por exemplo para uma cor de 2,5YR, o valor M* é igual a 7,5, para 5YR, o valor M* seria 5. Os únicos casos em que M* =M são quando encontramos matizes estritamente vermelhos, por exemplo, 10R, o M* é igual a 10. De posse desses valores usamos a fórmula abaixo para a obtenção do índice a partir da observação de dor do solo.

4.4.9 – OBTENÇÃO DOS VALORES DOS PIXELS

Para correlacionar os valores de RHGt_{scale} e RHGt_{Munsell} foi necessário extrair dos pixels das imagens os valores de seus pixels. Para tanto fez-se a sobreposição dos pontos coletados em campo nas imagens do índice, já georreferenciadas, e com auxílio das ferramentas "*pixel locator*" e "*cursor location/value*" percorreu-se toda a cena coletando os valores dos pixels um a um.

4.4.10 – ANALISE ESTATÍSTICA

Com uso do software Excel foi realizado um teste t do coeficiente angular (b) da regressão linear, com intervalo de confiança de p=0,05, a fim de se testar a hipótese nula de que b=0, ou seja, que não correlação entre as variáveis.

5 – RESULTADOS E DISCUSSÃO

5.1 – SELEÇÃO DA ÁREA DE ESTUDO E COLETA DE SOLO

Foram identificados dois locais com potencial de realização do estudo (figura 16). Na área maior de 231ha, durante a realização do transecto de coleta de solos, observou-se que as duas regiões mais claras, destacadas em amarelo na figura 16, não condiziam com os dados observados em campo. Nessa região o solo foi caracterizado como latossolo vermelho em toda a sua extensão. Provavelmente as manchas claras tem origem em restos de cobertura vegetal, já que o plantio direto é técnica usual na propriedade.

Figura 16 – Imagem Hyperion em composição cor real (R 640nm; G 548nm, B 538nm) contendo a área de estudo, destacando as regiões com solo mais claro com limites em amarelo.

O mesmo não ocorreu na realização do transecto na área menor de 90 ha, na região da cena na qual se vê uma mancha mais clara de solo, realmente há a presença de latossolo amarelo.

A área menor passou a ser o objeto de investigação desse estudo recebendo, então, uma grade regular objetivando cobrir parte da região de variação da cor do solo. A figura 17 apresenta os locais dos pontos de coleta do transecto (figura 17 A) e da grade regular (figura 17 B) na área de estudo. Em função da quantidade de dados a tabela com as coordenadas dos pontos e a analise da cor com o cálculo do índice RGHt_{Munsell} segue como anexo 1 à esta dissertação.

Figura 17 – Área de estudo apresentando os pontos de coleta de solo para o transecto A-B (A) e para a grade regular (B).

5.2 – CORREÇÃO GEOMÉTRICA

Foram selecionados 13 pontos de controle na imagem *geocover* distribuídos em toda a cena. Sendo que três pontos foram desativados (2,10,11), por apresentarem RMS muito elevados e estarem prejudicando o valor final. Finalizado o ajuste polinomial o valor RMS foi de 0,523401.

5.3 – REMOÇÃO DAS STRIPES

Para a remoção das *stripes* foram testados três procedimentos. Todos os processamentos passaram pela análise por componentes principais, sendo selecionadas as primeiras 7 componentes. A figura 18 apresenta os autovalores obtidos na ACP.

Figura 18 – Autovalores da ACP na imagem em estudo.

Pode-se observar quando se comparam as cenas obtidas após os tratamentos, que os dados brutos e a remoção de bandas ruidosas tiveram efeito atenuador sobre as *stripes*, levando à correção de algumas e suavizando outras. O destriping, no qual foi usado o *Vertical Stripe Removal*, foi o único a corrigir as *stripes* em sua totalidade. O resultado do destriping corrobora o que se encontra na literatura, na qual diversos métodos de interpolação são aplicados buscando solucionar as diversas classes de *stripes* (GOODENOUGH, *et al.*, 2003; TSAI *et al.*, 2005; TSAI *et al.*, 2008).

A figura 19 apresenta o comparativo dos tratamentos destacando-se a banda 11, (457nm). Em A, cena original do USGS; B, os dados brutos; C, a remoção de bandas ruidosas; e D, o *destriping*. As setas indicam o local das *stripes*.

Figura 19 – Imagens corrigidas para remoção das *stripes*. Em A, cena original do USGS; em B, os dados brutos; em C, a remoção de bandas ruidosas; e em D, o *destriping*. As setas indicam o local das estripes. As setas indicam o local das *stripes*.

5.4 – SPECTRAL FEATURE FITTING (SFF)

O SFF foi aplicado a todas as imagens geradas na etapa de pré-processamento, gerando resultados diferentes com relação às imagens *scale* obtidas. A imagem que foi submetida ao pré-processamento por meio do módulo *Vertical Stripes Removal* (VSR), apresentou problemas de ruído tanto para as *scales* de goethita (Figura 20 A) quanto para hematita (Figura 20 B). Nas colunas centrais de toda a cena foram introduzidas *stripes* brancas descontínuas, o que inviabilizou seu uso para a geração do índice RHGt_{scale}.

Figura 20 – Imagens processadas pelo SFF apresentando *stripes* brancas tanto para as *scales* de goethita (Figura 20 A) quanto para hematita (Figura 20 B).

Nas cenas provenientes dos outros dois pré-processamentos o problema verificado de surgimento das *stripes* nos dados provenientes do VSR não foi observado. Contudo, existe sim, diferença na qualidade de exibição dos dados. Optou-se pela imagem com a remoção das bandas ruins em detrimento da dos dados brutos, pois se entende que essa remoção melhoraria a qualidade do processamento SFF.

Contudo, um dos objetivos do trabalho é a comparação entre algoritmos de correção atmosférica para avaliar se os mesmos interferem nos valores obtidos para o índice RHGt. Por isso, aplicaram-se nos dados da remoção de bandas ruidosas, escolhido por apresentar melhores resultados para a espacialização, tanto o algoritmo

QUAC como o FLAASH. Houve uma perda na qualidade das imagens com dificuldade de diferenciação dos objetos na imagem. As imagens passaram, então, por expansão histogrâmica visando melhorar a visualização e possibilitando distinguir melhor os objetos na cena.

A Figura 21 apresenta o resultado dos dados sem bandas ruidosas, corrigido pelo FLAASH, com a imagem *scale* de goethita (A) e a *scale* de hematita (B). Em C e D têm-se respectivamente a imagem RMS goethita e RMS hematita.

Figura 21– Resultado do SFF aplicado na imagem de estudo proveniente dos dados sem bandas ruidosas com algoritmo FLAASH. Sendo a imagem A, a *scale* de goethita e a imagem B, *scale* para hematita. Em C e D têm-se respectivamente a imagem RMS goethita e RMS hematita.

5.5 – ÍNDICE RHGt_{Munsell} e RHGt_{scale}

De posse dos dados do SFF para QUAC, FLAASH e também dos dados de avaliação de cor baseada na carta de Munsell, se realizou o cálculo do índice RHGt para os dados da Carta de Munsell, realizado de acordo com metodologia descrita por Martins (2000).

O índice RHGt_{scale} das imagens obtido por operações aritmética de bandas são apresentadas na Figura 22 para o tratamento com FLAASH (B) e para o tratamento com QUAC (A).

Figura 22 – Comparativo entre o índice RHGt_{scale} para a imagem QUAC (A) e para o FLAASH (B). Os pontos em cor laranja representam a grade regular aplicada na área de estudo.

Visualmente se observa uma melhor diferenciação espacial dos minerais na imagem gerada a partir dos dados QUAC, a imagem FLAASH não possibilita a distinção entre concentração dos minerais. Após a aplicação dos métodos de correção atmosférica e de redução dos dados de radiância para a reflectância de superfície, os espectros obtidos apresentaram feições características das transições eletrônicas do ferro presente no solo. Contudo, ao comparar um pixel de uma porção da cena cujo solo apresenta maior concentração de hematita, percebeu-se que os dados provenientes da correção com o FLAASH apresentam seu ponto de mínima correspondendo à feição da goethita, enquanto que os dados obtidos por meio do QUAC apresentaram seu ponto de mínima correspondendo ao *endmember* de hematita (Figura 23).

Figura 23 – Comparação entre os *endmembers* de hematita e de goethita da biblioteca do JPL e os espectros obtidos para um mesmo pixel em dados corrigidos com o FLAASH e com o QUAC.

A partir dos valores dos pixels captados na imagem foram gerados gráficos para os transectos e para a grade regular. Observando o transecto (A-B) (figura 24), podemse notar maiores valores nos pontos iniciais, decrescentes à medida que se avança e com retomada do crescimento nos pontos finais, situação também encontrada na imagem onde os pontos mais claros da cena QUAC apresentam os maiores valores de concentração de hematita. A figura 24 apresenta os valores do índice RHGt_{scale} calculados para as cenas corrigidas com o FLAASH e com o QUAC.

Figura 24 – Valores do índice RHGt_{scale} da imagem para QUAC e FLAASH no transecto.

O transecto sai de uma porção hematítica, passa por uma goethítica e finaliza em outra porção hematítica. O transecto obtido na imagem RHGt_{scale} por meio dos dados QUAC apresenta-se em concordância com a percepção dos solos no campo. O RHGt_{scale} por meio dos dados FLAASH não apresentou a mesma tendência e tanto na imagem, quanto na análise dos valores dos pixels no transecto, não foi possível fazer distinção das áreas mais hematíticas quanto goethíticas. Tal situação, nos dados corrigidos pelo FLAASH, pode ter ocorrido em função do deslocamento da feição da hematita para a posição ocupada pela feição da goethita na biblioteca espectral, já que o SFF compara os espectros dos pixels da cena com os *endmembers*.

A figura 25 apresenta o mesmo transecto para os valores do RGHt obtidos por meio da carta de Munsell e não se percebe coerência com a percepção visual no campo. Analisando os valores obtidos pelo RHGt_{Munsell} para os dois transectos, A e B, e também para a grade regular não apresentaram coerência nem com a percepção visual no campo, nem com a imagem corrigida pelo método QUAC, que mais se aproxima da representação do terreno. Percebe-se que o método apresentou um erro sistemático que, se interpretado espacialmente, apresentaria uma faixa de solos hematíticos, seguido de solos goethíticos, depois hematíticos e assim sucessivamente, mostrando uma intercalação incoerente em termos pedológicos. Inicialmente, aventou-se a possibilidade de erro na execução do método, porém, o mesmo foi revisado com o Pesquisador Éder Martins, o autor na Comunicação Técnica da Embrapa (Martins, 2000). Além disso, a sistematização do "erro" se verificou nos dois transectos e na grade regular.

Figura 25 – Dados do índice RHGt_{Munsell} com base na cor das amostras de solo coletadas em campo.

Os trabalhos de Escadafal, (1989) e de Campos, (2001) buscam correlações entre dados de cor e medidas físicas para avaliar discriminação do solo. Ambos colocam a necessidade para uma boa correlação entre os dados, que a medida pela carta de Munsell deve ocorrer em ambiente com iluminação controlada e deve ser realizada por observadores experientes.

Campos, (2001) comparou a capacidade de pesquisadores na classificação da cor do solo por meio de índice de precisão das medidas e faz algumas considerações como somente em 8,75% das amostras úmidas houve concordância entre a classificação dos pesquisadores e as medidas de colorímetro. Na média os pesquisadores superestimam os valores de matiz.

O fato da determinação da cor ter sido feita em condições de iluminação natural e de essa classificação ter transcorrido ao longo do dia inteiro afetou as condições de iluminação, também se deve atentar à experiência do avaliador como fato limitante do processo. Abaixo é mostrado o gráfico plotado a partir dos dados do índice RHGt_{Munsell} a partir das medidas de campo.

Todas as considerações verificadas em relação ao transecto também se verificam para a grade regular. A figura 26 se encontra subdividida como forma de representar as quatro linhas ao longo da área de estudo que compõem a grade regular sob a imagem corrigida atmosfericamente com o QUAC. Vale observar que todas as quatro linhas apresentam perfil similar ao transecto, já analisado, ou seja, saindo de uma porção mais hematítica, passando por uma porção central goethítica e chegando a uma porção mais hematítica novamente.

Figura 26 – Valores de RHGt_{scale} para a grade regular aplicada na área de estudo.

Apesar dos indícios visuais de que os dados do FLAASH e Munsell não apresentam identidade com os dados da imagem. Foi realizado um teste "t" no coeficiente B para verificar se existia correlação entre os dados do transecto. Em todos os casos testados Munsell x QUAC, Munsell x FLAASH e FLAASH x QUAC não se rejeitou a hipótese inicial que b=0, ou seja, não há correlação entre as variáveis ou os diversos métodos adotados sob os dados Hyperion.

Com base nos dados que mais se aproximaram da percepção visual no campo, foram geradas as *fit images*, que podem ser entendidas como a probabilidade de existência do *endmember* em cada pixel. Na *fit image* para a goethita (Figura 27A) seus altos teores aparecem sob a forma de pixels mais claros e os pixels mais escuros na área de solo exposto correspondem os locais mais ricos em hematita. O resultado oposto é obtido quando se processa a *fit image* para a hematita (Figura 27 B). Existem locais que apresentam altos valores, bem como baixos valores para os dois minerais, pois eles ocorrem concomitantemente em vários contextos pedológicos (Figura 28). Na figura 29 observamos a área de estudo com fotografias ilustrando a cor dos solos encontrada nas regiões mais hematíticas e nas regiões mais goethitícas.

Figura 27 – *Fit image* para a goethita (A) e para hematita (B). As setas indicam na imagem para goethita as áreas mais hematíticas e na imagem para hematita a área mais goethítica.

Figura 28 – RHGt_{scale} dos dados corrigidos pelo QUAC da área de estudo. A área mais escura destacada pela seta amarela apresenta a predominância de goethita e as áreas mais claras destacadas pelas setas vermelhas apresentam predomínio de hematita.

Figura 29 – Imagem ilustrando a cor real dos solos nos locais estudados. Na fotografia superior temos um latossolo vermelho oriundo da área com maiores teores de Hematita e na fotografia inferior solo da região com dominância de Goethita.

6 – CONCLUSÕES E RECOMENDAÇÕES

No que tange as estratégias de remoção das *stripes*, o pré-processamento 3, aplicação do *Vertical Destriping Removal*, foi o que apresentou o melhor resultado.Contudo, no momento em que se aplicou o SFF, surgiram ruídos na forma de *stripes* brancas por toda a cena, o que inviabilizou a sua utilização para o cálculo do índice RHGt_{scale}. O pré-processamento 2, que consiste de remoção de bandas ruins e análise por componentes principais resultou em dados de boa qualidade viabilizando a sequência dos trabalhos.

A comparação entre os métodos de correção atmosférica mostrou que a espacialização a partir dos dados QUAC estava coerente com as características do solo observado em campo. O mesmo não foi observado com os dados corrigidos com o FLAASH. Isso pode ser devido ao deslocamento da feição espectral verificada em espectros de pixels de solos com predomínio de hematita ter se apresentado deslocada em direção à região onde se espera verificar a feição espectral da goethita, próximo à 480 nm.

O índice RHGt_{Munsell} não foi compatível com as observações de campo. As possíveis razões para tal, podem ser a variação da iluminação no período de leitura da cor e também a experiência dos observadores, que sempre é fator importante ressaltado pela literatura. Com isso a validação da quantificação das imagens ficou comprometida. O índice RHGt_{scale} calculado para as imagens possibilitaram a quantificação, contudo só os dados QUAC tinham coerência entre os valores dos pixels e a visualização da imagem, o que também foi mostrado por meio de gráficos.

Para possibilitar a comparação entre os dados de campo artifícios mais eficientes devem ser utilizados para possibilitar a validação dos dados obtidos por imagens hiperespectrais, tais quais, analise de espectro por meio de espectrorradiometros em laboratório, a quantificação dos óxidos e hidróxidos de Fe com ataque sulfúrico, além da difratometria de raios-X.

Novos trabalhos devem ser incentivados visando à compreensão das potencialidades do sensor Hyperion como ferramenta nos estudos de coberturas pedológicas.

7 – REFERÊNCIAS BILIOGRÁFICAS

AGRAWAL, G., SARUP, J. 2011. Comparision of QUAC and FLAASH Atmospheric Correction Modules on EO-1 Hyperion Data of Sanchi. (Ijaest) International Journal Of Advanced Engineering Sciences And Technologies. Vol No. 4, Issue No. 1, 178–186.

ALLEONI, L.R.F., CAMARGO, O.A. 1995. Óxidos de ferro e de alumínio e a mineralogia da fração argila deferrificada de latossolos ácricos. **Sci. Agric.** Piracicaba. 52(3):416-421, Set/Dez.

BALIEIRO, F.C., TAVARES, S.R.L. 2008. Curso de Recuperação de Áreas
Degradadas. A Visão da Ciência do Solo no Contexto do Diagnóstico, Manejo,
Indicadores de Monitoramento e Estratégias de Recuperação. Documentos 103.
Embrapa Solos.

BAPTISTA, G.M.M., MADEIRA NETTO, J.S., MENESES, P. R. 2000. Mapeamento dos teores de argila de solos tropicais, por meio de dados de sensoriamento remoto multiespectral (ASTER) e hiperespectral (AVIRIS). . Sociedade & Natureza, Urbelândia - MG, v. ano 12, n. 23.

BAPTISTA, G.M.M. 2001. Mapeamento e Quantificação da Relação Mineralógica Caulinita/(Caulinita+Gibbsita) de Solos Tropicais, por meio dos Dados do Sensor Hiperespectral AVIRIS (JPL/NASA). **Tese de Doutorado**, Instituto de Geociências, Universidade de Brasília, Brasília, DF, 139p.

BAPTISTA, G.M.M. 2006. Sensoriamento Remoto Hiperespetral: o novo paradigma nos estudos de solos tropicais.. 1. Ed. Brasília: Editora Universa. v. 1. 212 p.

BAPTISTA, G.M.M., CORREA, R. S. ; SANTOS, P.F., MADEIRA NETTO, J.S., MENESES, P. R. . Use of Imaging Spectroscopy for Mapping and Quantifying The Weathering Degree of Tropical Soils in Central Brazil. **Applied and Environmental Soil Science**, v. 2011, p. 1-7, 2011.

BECK, R. 2003. EO-1 User Guide - Version 2.3. Department of Geography University of Cincinnati. 74p.

BUITEN, H.J., VAN PUTTEN, B. 1997. Quality assessment of remote sensing image registration — analysis and testing of control point residuals. **ISPRS Journal of Photogrammetry & Remote Sensing.** 52, 57-73.

BERNSTEIN, L. S., ADLER-GOLDEN, S. M., SUNDBERG, R. L., LEVINE, R. Y., PERKINS, T. C., BERK, A., RATKOWSKI, A. J., HOKE, M.L. 2004. A new method for atmospheric correction and aerosol property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick AmosphericCorrection). **Proceedings of the 2004 AVIRIS Workshop**, Jet Propulsion Laboratory, Pasadena, CA.

BERNSTEIN, L.S., ADLER-GOLDEN, S.M., SUNDBERG, R.L., LEVINE, R.Y., PERKINS, T.C., BERK, A., RATKOWSKIB, A.J., FELDEB, G., HOKEB, M.L. 2005. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Proceedings of SPIE Vol. 5806 (SPIE, Bellingham, WA).

CAMPOS, R.C. 2001. Determinação da cor do solo e sua utilização na predição dos teores de Hematita. **Dissertação de mestrado**. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. Piracicaba – SP. 59p.

CAMPOS, J.E.G., Monteiro, C.F., DARDENNE, M.A. 2009. Conglomerado São Miguel no Vale da Lua, sul da Chapada dos Veadeiros, GO. *Cenário exótico de rara beleza modelado pela erosão fluvial*. In: Winge,M. (Ed.) *et al*. 2009. **Sítios Geológicos e Paleontológicos do Brasil**. Brasília: CPRM,. v. 2. 515 p. il. color.

CARFANTAN, H., IDIER, J. 2010. Statistical Linear Destriping of Satellite-Based Pushbroom-Type Images. **IEEE Transactions On Geoscience And Remote Sensing**, VOL. 48, NO. 4, APRIL.

CARRINO, T.A., SILVA, A.M., SILVA, A.A.C., BOTELHO, N.F. 2009. Sensoriamento remoto orbital, aerogeofísica e dados geológicos integrados para pesquisa mineral da região noroeste da Província Mineral do Tapajós. **Anais XIV Simpósio Brasileiro de Sensoriamento Remoto**, Natal, Brasil, 25-30 abril, INPE, p. 3205-3212 CARVALHO JÚNIOR, O.A., RIBEIRO, M.N.C., MARTINS, É.S.; GUIMARÃES, E.M., MENESES, P.R., GUIMARÃES, R.F. 2007. Análise de dados hiperespectrais em mina de manganês laterítico, São João da Aliança (GO). **Rev. Bras. Geof**. vol.25 no.2 São Paulo Apr./June.

CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA (CEPEA) - ESALQ/USP <u>http://www.cepea.esalq.usp.br/pib/</u> - visitado em 22 de Dezembro de 2011

COELHO, M.R. & VIDAL-TORRADO, P. 2003. Caracterização e gênese de perfis plínticos desenvolvidos de arenito do Grupo Bauru. II - Mineralogia. **R. Bras. Ci. Solo**, 27:495-507.

COOLEY, T., ANDERSON, G. P., FELDE, G. W., HOKE, M. L., RATKOWSKIA, A. J., CHETWYND, J. H., GARDNER, J. A., ADLER-GOLDEN, S.M., MATTHEW, M.W., BERK, A., BERNSTEIN, L. S., ACHARYA, P.K., MILLER, D., LEWISE, P. 2002. FLAASH, a MODTRAN4-based Atmospheric Correction Algorithm, Its Application and Validation. **IEEE, Computer society**.

CONDÉ, V.C., CAMPOS, J.E.G., DARDENNE, M.A., FARIA, A. 1994. Posicionamento estratigráfico das Unidades do Grupo Paranoá na Serra Geral do Paranã, a Leste da Cidade de São Gabriel – GO. **IV Simpósio de Geologia do Centro-Oeste**.

CRIVELENTI, R.C., COELHO, R.M., ADAMI, S.F., OLIVEIRA, S.R.M. 2009. Mineração de dados para inferência de relações solo-paisagem em mapeamentos digitais de solo. **Pesq. agropec. bras**, Brasília, v.44, n.12, p.1707-1715, dez.

DALMOLIN, R.S.D., GONÇALVES, C.N., KLAMT, E., DICK, D.P. 2005. Relação entre os constituintes do solo e seu comportamento espectral. **Ciência Rural**, v.35, n.2, mar-abr.

D'ARCO, E., ALVARENGA, B.S., MOURA, P., TEIXEIRA, C.G. 2003. Estudos De Reflectância De Amostras De 5 Tipos De Solos Brasileiros, Em Condições De Laboratório. **Anais XI SBSR**, Belo Horizonte, Brasil, 05 – 10, abril, INPE, p. 2327 -2334.

DAS, S., HENDRY, M.J. 2011. Changes of crystal morphology of aged goethite over a range of pH (2–13) at 100°C. **Applied Clay Science** 51, 192–197.

DATT, B., MCVICAR, T.R., VAN NIEL, T.G., JUPP, D.L.B., PEARLMAN, J.S. 2003. Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes. IEEE Transactions On Geoscience And Remote Sensing, VOL. 41, NO. 6, JUNE.

DAUGHTRY, C.S.T., DORAISWAMY, P.C., HUNT JR, E.R., STERN, A.J., MCMURTREY III, J.E., PRUEGER, J.H. 2006. Remote sensing of crop residue cover and soil tillage intensity. **Soil & Tillage Research**, 91, 101–108.

DEMATTÊ, J.A.M., EPIPHANIO, J.C.N., FORMAGGIO, A.R. 2003. Influência Da Matéria Orgânica E De Formas De Ferro Na Reflectância De Solos Tropicais. **Bragantia**, Campinas, v.62, n.3, p.451-464.

DINIZ, A.A., BATISTA, R.B., SANTOS, R.F. 2005. Popularização da taxonomia de solo: vocabulário mínimo e aspectos sócio-econômicos no contexto do ensino fundamental, em São Miguel, Esperança (PB). **R. Bras. Ci. Solo**, 29:309-316.

DUCART, D.F., CRÓSTA, A.P., SOUZA FILHO, C.R. 2007. Processamento de imagens hiperespectrais do EO-1/Hyperion para o mapeamento de minerais de alteração hidrotermal na Patagônia Argentina. **Anais XIII Simpósio Brasileiro de Sensoriamento Remoto**, Florianópolis, Brasil, 21-26 abril, INPE, p. 6449-6451.

EBERHARDT, D.N., VENDRAME, P.R.S., BECQUER, T., GUIMARÃES, M.F. 2008. Influência da granulometria e da mineralogia sobre a retenção do fósforo em latossolos sob pastagens no cerrado. **R. Bras. Ci. Solo**, 32:1009-1016.

EISMANN, M.T., MEOLA, J., STOCKER, A.D., BEAVEN, S.G., SCHAUM, A.P. 2008. Airborne hyperspectral detection of small changes. **APPLIED OPTICS**, 1 October / Vol. 47, No. 28.

ESCADAFAL, R., COURAULT, M.C.G.D. 1989. Munsell Soft Color and Soil Reflectance in the Visible Spectral Bands of Landsat MSS and TM Data. **Remote Sens. Environ**. 27:37-46.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA –EMBRAPA. 1999. Sistema Brasileiro de Classificação de Solos. Rio de Janeiro, Centro Nacional de Pesquisa de Solos. 412p. FALLAH-ADL, H., JÁJÁ, J., LIANG, S., TOWNSHEND, J., KAUHAN, Y.J. 1996.
Fast Algorithms for removing atmospheric effects from satellite images. IEEE
COMPUTATIONSACLI ENCE & ENGINEERING. p. 66 – 77.

FELDE, G.W., ANDERSON, G.P., COOLEY, T.W., MATTHEW, M.W., ADLER-GOLDEN, S.M., BERK, A., LEE, J. 2003. Analysis of Hyperion Data with the FLAASH Atmospheric Correction Algorithm. **IEEE, Computer society.**

FIGUEIREDO, S.R., GIASSON, E., TORNQUIST, C.G., NASCIMENTO, P.C. 2008. Uso De Regressões Logísticas Múltiplas Para Mapeamento Digital De Solos No Planalto Médio Do Rs. R. Bras. Ci. Solo, 32:2779-2785, Número Especial.

FOLKMAN, M., PEARIMAN, J., LIAO, L., JARECKE, P. 2001. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration . **Proc. SPIE** Vol. 4151.

FONTES, M.P.F. CARVALHO JR, I.A. 2005. Color Attributes and Mineralogical Characteristics, Evaluated by Radiometry. **Soil Sci. Soc. Am. J**. 69:1162–1172.

GALVÃO, L.S., FORMAGGIO, A.R., BREUNIG, F.M. 2009a. Relações entre índices de vegetação e produtividade de soja com dados de visada fora do nadir do sensor Hyperion/EO-1. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 25-30 abril, INPE, p. 1095-1102.

GALVÃO, L.S., ROBERTS, D.A., FORMAGGIO, A.R., NUMATA, I., BREUNIG, F.M. 2009b. View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data. **Remote Sensing of Environment** 113, 846–856.

GHIDIN, A.A., MELO, V.F., LIMA, V.C., LIMA, J.M.J.C. 2006. Toposseqüências de latossolos originados de rochas basálticas no Paraná. I – Mineralogia da fração argila. **R. Bras. Ci. Solo**, 30:293-306.

GIARDINO, C., BRANDO, V.E., DEKKER, A.G., STRÖMBECK, N., CANDIANI, G. 2007. Assessment of water quality in Lake Garda (Italy) using Hyperion. **Remote Sensing of Environment**, 109, 183–195.

GONÇALVES, H., GONÇALVES, J.A., CORTE-REAL, L. 2009. Measures for an Objective Evaluation of the Geometric Correction Process Quality. **IEEE GEOSCIENCE AND REMOTE SENSING LETTERS**, VOL. 6, NO. 2, APRIL.

GOODENOUGH, D.G., DYK, A., NIEMANN, K.O., PEARLMAN, J.S., CHEN, H., HAN, T., MURDOCH, M., WEST, C. 2003. Processing Hyperion and ALI for Forest Classification. **IEEE Transactions On Geoscience And Remote Sensing**, VOL. 41, NO. 6, JUNE.

GORDON, H.R., CLARK, D.K. 1981. Clear water radiances for atmospheric correction of coastal zone color scanner imagery. **APPLIED OPTICS**, Vol. 20, No. 24, 15 December.

GOSHTASBY, A. 1988. Image registration by local approximation methods. **Image** and Vision Computing, Volume 6, Issue 4, November, Pages 255-261.

GUANTER, L., ESTELLÉS, V., MORENO, J. 2007. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. **Remote Sensing of Environment** 109, 54–65.

HADJIMITSIS, D.G., CLAYTON, C.R.I., RETALIS, A. 2009. The use of selected pseudo-invariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery. **International Journal of Applied Earth Observation and Geoinformation**, 11, 192–200.

HAN, T., GOODENOUGH, D. G., DYK, A., LOVE, J. 2002. Detection and Correction of Abnormal Pixels in Hyperion Images. **IEEE**.

HUINCA, S.C.M., ARAKI, H., CAVALHEIRO, A.C. 2005. Correção geométrica de imagem Quickbird para áreas urbanas utilizando modelos geométricos generalizados e dados de laser scanning. **Anais XII Simpósio Brasileiro de Sensoriamento Remoto**, Goiânia, Brasil, 16-21 abril, INPE, p. 4545-4551.

HUNT, G.R. *et al.* 1971. Visible and near-infrared spectra of minerals and rocks: III Oxides and hydroxides. **Modern Geology**, New York, v.1, p.195-205.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=203 7&id_pagina=1 – visitado em 22 de Dezembro de 2011.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). 2007. Manual Técnico de Pedologia. 2ª Edição. Manuais Técnicos em Geociências. Rio de Janeiro.

IPPOLITI, R. G. A.; COSTA, L. M.; SCHAEFER, C. E. G. R.; FERNANDES FILHO, E. I.; GAGGERO, M. R.; SOUZA, E. 2005. Análise digital do terreno: ferramenta na identificação de pedoformas em microbacia na região de "Mar de Morros" (MG). **Revista Brasileira de Ciência do Solo**, Campinas, v. 29, p. 267-276.

JARDIMBOTÂNICODEBRASÍLIA-http://www.jardimbotanico.df.gov.br/005/00502001.asp?ttCD_CHAVE=12917-Visitado em 25 de dezembro de 2011.

JIMÉNEZ-MUÑOZ, J.C., SOBRINO, J.A., MATTAR, C., FRANCH, B. 2010. Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products. **Remote Sensing of Environment**, 114, 2195–2210.

KRUSE, F.A., BOARDMAN, J.W., HUNTINGTON, J.F. 2003. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. **IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING**, VOL. 41, NO. 6, JUNE.

KRUSE, F.A., BEDELL, R.L., TARANIK, J.V., PEPPIN, W.A., WEATHERBEE, OLIVER., CALVIN, W.M. 2012. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. **International Journal of Remote Sensing**, Volume 33, Issue 6.

LACERDA, M.P.C., BARBOSA, I.O., MENESES, P.R., ROSA, J.W.C., ROIG, H.L. 2005. Aplicação de geotecnologias em correlações entre solos, geomofologia, geologia e vegetação nativa no Distrito Federal, DF. **Anais XII Simpósio Brasileiro de Sensoriamento Remoto**, Goiânia, Brasil, 16-21 abril, INPE, p. 2211-2218.

LINN, R.M. Avaliação Dos Modelos De Mistura Espectral Mesma E SMA Aplicados Aos Dados Hiperespectrais Hyperion/EO-1 Adquiridos Na Planície Costeira Do Rio Grande Do Sul. **Tese de Doutorado**. Centro Estadual De Pesquisas Em Sensoriamento Remoto E Meteorologia – CEPSRM. Universidade Federal do Rio Grande do Sul – UFRGS. Rio Grande do Sul. 140p.

LIU, B., ZHANG, L., ZHANG, X., ZHANG, B. TONG, Q. 2009. Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach. **Sensors**, 9, 3090-3108.

LUIZ, S., OLIVEIRA, C.G., OKIDA, R. 2003. Comparação entre diferentes métodos de correção geométrica em imagem radarsat-1 no flona tapajós. **Anais XI SBSR**, Belo Horizonte, Brasil, 05-10 abril, INPE, p. 325-332.

MADEIRA NETTO, J.S. 2001. Comportamento espectral dos solos. In: MENESES, P.R.; MADEIRA NETTO, J.S. Sensoriamento remoto - reflectância dos alvos naturais. Brasília, DF : UnB; Planaltina: EMBRAPA Cerrados. p.127-147.

MARTINS, É.S. 2000. Método integrado de caracterização mineralógica de solos profundamente intemperizados. **Comunicado técnico**, nº 37, EMBRAPA CERRADOS. 5p. Novembro.

MATTHEW, M. W., ADLER-GOLDEN, S. M., BERK, A., FELDE, G., ANDERSON, G. P., GORODETZKY, D., PASWATERS, S., SHIPPERT, M. 2002. Atmospheric Correction of Spectral Imagery: Evaluation of the FLAASH Algorithm with AVIRIS Data. **Proceedings of the 31st Applied Imagery Pattern Recognition Workshop.** IEEE, Computer Society, (AIPR'02).

MELO, V.F., FONTES, M.P.F.; NOVAIS, R.F.; SINGH, B. & SCHAEFER, C.E.G.R.
2001. Características dos óxidos de ferro e de alumínio de diferentes classes de solos. R.
Bras. Ci. Solo, 25:19-32.

MOTA, J.C.A., ASSIS JÚNIOR, R.N., AMARO FILHO, J., ROMERO, R.E., MOTA, F.O.B., LIBARDI, P.L. 2007. Atributos mineralógicos de três solos explorados com a cultura do melão na Chapada do Apodi – RN. **R. Bras. Ci. Solo**, 31:445-454.

MUTANGA, O., AARDTB, J.V., KUMARC, L. 2009. Imaging spectroscopy (hyperspectral remote sensing) in southern Africa: an overview. **South African Journal of Science** 105, May/June.

NANNI, M.R.; DEMATTÊ, J.A.M.; FIORIO, P.R. 2005. Resposta espectral na análise discriminante dos solos. **Anais XII Simpósio Brasileiro de Sensoriamento Remoto**, Goiânia, Brasil, 16-21 abril, INPE, p. 407-414.

NASCIMENTO, M.A.L.S. 1992. Geomorfologia do Estado De Goiás. **Boletim Goiano de Geografia**. Instituto de Química e Geociências, Departamento de Geografia. Vol. 12, nº 1 – JAN-DEZ.

OLIVEIRA, R.B.; BAPTISTA, G.M.M. 2001. Diferenciação Mineralógica de Solos Lateríticos por meio da Relação Hematita/(Hematita+Goethita), a partir dos Dados do Sensor AVIRIS (Airborne Visible/InfraRed Imaging Spectrometer). CIORD/UnB. Mimeo.

PEARLMAN, J., SEGAL, C., LIAO, L., CARMAN, S., FOLKMAN, M., BROWNE, B., ONG, L., UNGAR, S. 2000. Development and Operations of the EO-1 Hyperion Imaging Spectrometer. http://www.eoc.csiro.au/hswww/oz_pi/techforum/Other/Yperion%20SPIE%20Publicati

<u>on.pdf</u> Acessado em 30/04/2012.

PEARLMAN, J., CARMAN, S., SEGAL, C., JARECKE, P., BARRY, P., BROWNE, W. 2001. Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission. **IGARSS**.

PENGRA, B.W., JOHNSTON, C.A., LOVELAND, T.R. 2007. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. **Remote Sensing of Environment**. 108. 74–81.

PETROPOULOS, G.P., ARVANITIS, K., SIGRIMIS, N. 2012a. Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. **Expert Systems with Applications**, 39, 3800–3809.

PETROPOULOS, G.P., KALAITZIDIS, C., VADREVU, K.P. 2012b. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. **Computers&Geosciences**, 41, 99–107.

PIZARRO, M.A., EPIPHANIO, J.C.N., GALVÃO, L.S. 1998. Identificação de Minerais em Solos Tropicais a partir de Dados Hiperespectrais do Sensor AVIRIS.

Anais IX Simpósio Brasileiro de Sensoriamento Remoto, Santos, Brasil, 11-18 setembro, INPE, p. 1315-1325.

PROUD, S.R., RASMUSSEN, M.O., FENSHOLT, R., SANDHOLT, I., SHISANYA, C., MUTERO, W., MBOW, C., ANYAMBA, A. 2010. Improving the SMAC atmospheric correction code by analysis of Meteosat Second Generation NDVI and surface reflectance data. **Remote Sensing of Environment**, 114, 1687–1698.

REATTO, A., MARTINS, É.S., FARIAS, M.F.R., SILVA, A.V., CARVALHO JUNIOR, O.A.C. 2004. Mapa pedológico digital – SIG Atualizado do Distrito Federal. Escala 1:100.000 e uma síntese do texto explicativo. **Documentos**, nº120, EMBRAPA CERRADOS, Junho, Planaltina – DF.

REZENDE, G. C. 2002. "Ocupação agrícola e estrutura agrária no cerrado: o papel dos recursos naturais e da tecnologia". **Trabalho preparado para apresentação no XL Congresso da Sociedade Brasileira de Economia e Sociologia Rural, Passo Fundo** (RS), 28 a 31.7.02.

SANO, S.M., ALMEIDA, S.P. Ed. Cerrado: Ambiente e Flora. Planaltina: EMBRAPA-CPAC, 1998. Xii + 556p.

SANTANA, D.P. 1984. Soil formation in a toposequence of oxisols from Patos de Minas regions, Minas Gerais State, Brazil. West Lafayette: Purdue University, 129p. **PhD Thesis**.

SANTOS, M.A., BARBIERI, A.F., CARVALHO, J.A.M., MACHADO, C.J. 2010. O cerrado brasileiro: notas para estudo. **Texto para discussão n° 387**. CEDEPLAR/FACE/UFMG. Belo horizonte.

SARMENTO, E.C., FLORES, C.A., WEBER, E., HASENACK, H., PÖTTER, R.O. 2008. Sistema De Informação Geográfica Como Apoio Ao Levantamento Detalhado De Solos Do Vale Dos Vinhedos. **R. Bras. Ci. Solo**, 32:2795-2803, Número Especial.

SCHEFFER, F., E. WELTE, AND F. LUDWIEG. 1958. Zur Frage der Eisenoxidhydrate im Boden. (In German.) **Chem. Erde** 19:51–64.

SILVA, L.L. 2000. O papel do estado no processo de ocupação das áreas de Cerrado entre as décadas de 60 e 80. **Caminhos de Geografia** 1(2)24-36, Dez.

SOBRINO, J.A., COLL, C., CASELLES, V. 1991. Atmospheric Correction for Land Surface Temperature Using NOAA-11 AVHRR Channels 4 and 5. **REMOTE SENS. ENVIRON**. 38:19-34.

SONG, C., WOODCOCK, C.E., SETO, K.C., LENNEY, M.P., MACOMBER, S.A. 2001. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? **REMOTE SENS. ENVIRON**. 75:230–244.

SOUZA, D.M.G., LOBATO, E. Cerrado: correção do solo e adubação. 2. Ed. – Brasília – DF: EMBRAPA Informação Tecnológica, 2004. 416p.

SOUSA JUNIOR, J.G.A., DEMATTÊ, J.A.M. 2008. Modelo Digital De Elevação Na Caracterização De Solos Desenvolvidos De Basalto E Material Arenítico. R. Bras. Ci. Solo, 32:449-456.

TERAMOTO, E.R., LEPSCH, I.F., VIDAL-TORRADO, P. 2001. Relações Solo, Superfície Geomórfica E Substrato Geológico Na Microbacia Do Ribeirão Marins (Piracicaba - SP). *Scientia Agricola*, v.58, n.2, p.361-371, abr./jun.

TREMOCOLDI, W.A. 2003. Mineralogia dos silicatos e dos óxidos de ferro da fração argila de solos desenvolvidos de rochas básicas no estado de São Paulo. **Rev. biociênc.**,Taubaté, v.9, n.1, p.15-22, jan-mar.

TORRENT, J. and BARRON, V. 1993. Laboratory Measurement of Soil Solor: Theory and Practice. **Soil Science Society of America**, 677 S. SSSA Special Publication n^o 31.

TSAI, F., LIN, S., RAU, J., CHEN, L., LIU, G. 2005. Desriping Hyperion Imagery Using Spline Interpolation. **Proc. ACRS 2005, 26th Asian Conference on Remote Sensing**, 7 - 11 Nov, Hanoi, Vietnam.

TSAI, F., CHEN, W.W. 2008. Striping Noise Detection and Correction of Remote Sensing Images. **IEEE Transactions On Geoscience And Remote Sensing**, VOL. 46, NO. 12, DECEMBER.

U.S. Department of Agriculture – USDA. 1993. SOIL SURVEY MANUAL. Washington, D.C. (National soil handbook).

VANE, G., GOETZ, A.F.H. 1993. Terrestrial Imaging Spectrometry: Current Status, Future Trends. **Remote Sens. Environ**. 44:117-126

VANE, G., GREEN, R.O., CHRIEN, T.G., ENMARK, HARRY T., HANSEN, E.G., PORTER, W.M. 1993. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). **Remote Sens. Environ**. 44:127-143.

WANG, J., HE, T., LV, C., CHEN, Y., JIAN, WU. 2010. Mapping soil organic matter based on land degradation spectral response units using Hyperion images. **International Journal of Applied Earth Observation and Geoinformation**, 12S, S171–S180.
8– ANEXOS

8.1 – TABELA DE COORDENADAS GEOGRÁFICAS E DADOS DO ÍNDICE RHGt CALCULADOS.

	TRANSECTO A												
Amostra	Sul	Leste	Altitude	Cor	Valor	Croma	M *	FV(S)	RHG(S)	RHGt (QUAC)	RHGt (FLAASH)		
A0001	8317223	23 L 226816	1162 m	10R 3/6	3	6	10	12,00	1,020	0,61	0,539		
A0002	8317209	23 L 226795	1162 m	2,5YR 3/6	3	6	7,5	9,50	0,720	0,61	0,539		
A0003	8317195	23 L 226772	1162 m	5YR 4/6	4	6	5	6,50	0,360	0,615	0,5227		
A0004	8317181	23 L 226749	1162 m	10R 3/6	3	6	10	12,00	1,020	0,631	0,5346		
A0005	8317167	23 L 226728	1160 m	10R 4/6	4	6	10	11,50	0,960	0,582	0,5617		
A0006	8317152	23 L 226708	1159 m	10YR 4/6	4	6	0	1,50	-0,240	0,627	0,5706		
A0007	8317138	23 L 226689	1160 m	7,5YR 3/4	3	4	2,5	3,83	0,040	0,608	0,5441		
A0008	8317123	23 L 226666	1159 m	7,5YR 3/4	3	4	2,5	3,83	0,040	0,611	0,5498		
A0009	8317109	23 L 226645	1157 m	10R 3/4	3	4	10	11,33	0,940	0,578	0,5572		
A0010	8317095	23 L 226621	1156 m	10R 3/6	3	6	10	12,00	1,020	0,563	0,5556		
A0011	8317083	23 L 226599	1155 m	10YR 3/6	3	6	0	2,00	-0,180	0,563	0,5556		
A0012	8317071	23 L 226578	1154 m	7,5YR 4/6	4	6	2,5	4,00	0,060	0,545	0,5207		
A0013	8317058	23 L 226559	1154 m	10R 3/3	3	3	10	11,00	0,900	0,563	0,5664		
A0014	8317058	23 L 226559	1154 m	10YR 3/6	3	6	0	2,00	-0,180	0,563	0,5507		
A0015	8317045	23 L 226534	1154 m	7,5YR 4/6	4	6	2,5	4,00	0,060	0,499	0,5507		
A0016	8317031	23 L 226514	1153 m	10R 3/3	3	3	10	11,00	0,900	0,484	0,491		
A0017	8317019	23 L 226491	1152 m	10R 3/4	3	4	10	11,33	0,940	0,464	0,4795		
A0018	8317006	23 L 226469	1152 m	10YR 4/4	4	4	0	1,00	-0,300	0,489	0,4938		
A0019	8316991	23 L 226447	1151 m	5YR 4/6	4	6	5	6,50	0,360	0,489	0,4938		
A0020	8316979	23 L 226425	1152 m	10R 3/3	3	3	10	11,00	0,900	0,426	0,5823		
A0021	8316964	23 L 226403	1153 m	10R 3/4	3	4	10	11,33	0,940	0,448	0,556		

A0022	8316951	23 L 226382	1152 m	10R 3/3	3	3	10	11,00	0,900	0,452	0,5457
A0023	8316938	23 L 226362	1151 m	10R 3/4	3	4	10	11,33	0,940	0,452	0,5457
A0024	8316922	23 L 226340	1151 m	2,5YR 4/6	4	6	7,5	9,00	0,660	0,455	0,5734
A0025	8316907	23 L 226319	1151 m	10YR 3/6	3	6	0	2,00	-0,180	0,451	0,5221
A0026	8316896	23 L 226298	1150 m	5YR 4/6	4	6	5	6,50	0,360	0,458	0,5291
A0027	8316883	23 L 226277	1148 m	10R 3/3	3	3	10	11,00	0,900	0,458	0,5616
A0028	8316870	23 L 226255	1148 m	10R 3/4	3	4	10	11,33	0,940	0,46	0,5633
A0029	8316856	23 L 226235	1148 m	10R 3/6	3	6	10	12,00	1,020	0,467	0,5299
A0030	8316843	23 L 226214	1148 m	7,5YR 6/4	6	4	2,5	3,17	-0,040	0,48	0,563
A0032	8316828	23 L 226193	1148 m	5YR 4/6	4	6	5	6,50	0,360	0,474	0,5654
A0033	8316800	23 L 226151	1149 m	10YR 4/6	4	6	0	1,50	-0,240	0,483	0,6031
A0034	8316787	23 L 226129	1148 m	10R 3/4	3	4	10	11,33	0,940	0,506	0,5672
A0035	8316773	23 L 226107	1147 m	7,5YR 4/4	4	4	2,5	3,50	0,000	0,491	0,6051
A0036	8316761	23 L 226084	1147 m	10R 3/6	3	6	10	12,00	1,020	0,48	0,6057
A0037	8316747	23 L 226063	1147 m	2,5YR 3/6	3	6	7,5	9,50	0,720	0,486	0,541
A0038	8316736	23 L 226043	1146 m	10R 3/6	3	6	10	12,00	1,020	0,483	0,5888
A0039	8316722	23 L 226018	1147 m	10R 3/6	3	6	10	12,00	1,020	0,473	0,5853
A0040	8316709	23 L 225998	1147 m	5YR 4/3	4	3	5	5,75	0,270	0,475	0,5706
A0041	8316696	23 L 225976	1147 m	5YR 4/6	4	6	5	6,50	0,360	0,499	0,5774
A0042	8316684	23 L 225954	1146 m	10R 3/6	3	6	10	12,00	1,020	0,535	0,5582
A0043	8316671	23 L 225933	1145 m	5YR 4/6	4	6	5	6,50	0,360	0,529	0,5582
A0044	8316659	23 L 225913	1144 m	2,5YR 4/6	4	6	7,5	9,00	0,660	0,529	0,5405
A0045	8316645	23 L 225891	1145 m	10R 3/6	3	6	10	12,00	1,020	0,537	0,5398
A0046	8316633	23 L 225868	1147 m	5YR 4/6	4	6	5	6,50	0,360	0,537	0,5333
A0047	8316619	23 L 225847	1147 m	10R 3/4	3	4	10	11,33	0,940	0,579	0,5333
A0048	8316606	23 L 225828	1148 m	7,5YR 3/6	3	6	2,5	4,50	0,120	0,616	0,5567

	TRANSECTO B													
Amostra	Sul	Leste	Altitude	Cor	Valor	Croma	M*	FV(S)	RHGt (S)	RHGt (QUAC)	RHGt (FLAASH)			
B0001	8316571	23 L 226945	1185 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,564	0,5421			
B0002	8316573	23 L 226971	1189 m	5YR 4/6	4	6	5	6,50	0,3601	0,59	0,59			
B0003	8316574	23 L 226994	1188 m	10R 3/6	3	6	10	12,00	1,0204	0,59	0,59			
B0004	8316577	23 L 227019	1188 m	10R 3/3	3	3	10	11,00	0,9004	0,635	0,5545			
B0005	8316577	23 L 227045	1189 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,633	0,561			
B0006	8316578	23 L 227070	1191 m	2,5YR 4/6	4	6	7,5	9,00	0,6603	0,567	0,561			
B0007	8316579	23 L 227118	1193 m	10R 3/3	3	3	10	11,00	0,9004	0,562	0,5819			
B0008	8316583	23 L 227145	1194 m	10R 3/3	3	3	10	11,00	0,9004	0,558	0,5898			
B0009	8316583	23 L 227167	1196 m	10R 3/4	3	4	10	11,33	0,9404	0,548	0,5455			
B0010	8316583	23 L 227196	1197 m	10R 3/6	3	6	10	12,00	1,0204	0,548	0,5581			
B0011	8316584	23 L 227220	1199 m	10R 4/6	4	6	10	11,50	0,9604	0,548	0,5581			
B0012	8316585	23 L 227245	1200 m	10R 3/6	3	6	10	12,00	1,0204	0,548	0,532			
B0013	8316587	23 L 227269	1203 m	10R3/6	3	6	10	12,00	1,0204	0,544	0,5226			
B0015	8316589	23 L 227321	1206 m	10R 3/2	3	2	10	10,67	0,8603	0,543	0,5181			
B0016	8316590	23 L 227346	1207 m	10R 4/6	4	6	10	11,50	0,9604	0,527	0,5412			
B0017	8316592	23 L 227369	1211 m	10R 4/4	4	4	10	11,00	0,9004	0,513	0,5943			
B0018	8316593	23 L 227394	1214 m	2,5YR 3/6	3	6	7,5	9,50	0,7203	0,505	0,594			
B0019	8316594	23 L 227417	1214 m	10R 3/3	3	3	10	11,00	0,9004	0,505	0,5513			
B0020	8316594	23 L 227444	1217 m	10R 4/4	4	4	10	11,00	0,9004	0,505	0,5513			
B0021	8316595	23 L 227466	1218 m	10R 4/6	4	6	10	11,50	0,9604	0,543	0,5699			
B0022	8316596	23 L 227492	1217 m	10R 3/4	3	4	10	11,33	0,9404	0,53	0,5705			
B0023	8316596	23 L 227518	1219 m	5YR 4/6	4	6	5	6,50	0,3601	0,536	0,5508			
B0024	8316599	23 L 227543	1222 m	10R 3/6	3	6	10	12,00	1,0204	0,449	0,5589			
B0025	8316603	23 L 227569	1221 m	10R 3/4	3	4	10	11,33	0,9404	0,449	0,5766			
B0026	8316606	23 L 227593	1223 m	10R 3/6	3	6	10	12,00	1,0204	0,46	0,5512			

B0028	8316606	23 L 227643	1223 m	10R 4/3	4	3	10	10,75	0,8703	0,452	0,5768
B0029	8316608	23 L 227667	1224 m	5YR 4/6	4	6	5	6,50	0,3601	0,453	0,5635
B0030	8316607	23 L 227693	1226 m	7,5YR 3/6	3	6	2,5	4,50	0,1200	0,452	0,5571
B0031	8316606	23 L 227719	1227 m	10R 3/6	3	6	10	12,00	1,0204	0,45	0,5571
B0032	8316608	23 L 227744	1229 m	10R 4/6	4	6	10	11,50	0,9604	0,477	0,582
B0033	8316611	23 L 227768	1238 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,473	0,5477
B0035	8316611	23 L 227818	1240 m	10R 3/4	3	4	10	11,33	0,9404	0,448	0,5825
B0036	8316606	23 L 227847	1242 m	10R 3/6	3	6	10	12,00	1,0204	0,453	0,5439
B0037	8316607	23 L 227872	1244 m	10R 3/3	3	3	10	11,00	0,9004	0,45	0,5571
B0038	8316608	23 L 227897	1244 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,45	0,5799
B0039	8316612	23 L 227921	1243 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,457	0,5499
B0040	8316618	23 L 227947	1243 m	10R 4/4	4	4	10	11,00	0,9004	0,449	0,5693
B0041	8316620	23 L 227973	1246 m	7,5YR 4/6	4	6	2,5	4,00	0,0600	0,447	0,5653
B0042	8316622	23 L 227996	1247 m	10R 3/4	3	4	10	11,33	0,9404	0,453	0,5787
B0043	8316622	23 L 228020	1248 m	10R 3/6	3	6	10	12,00	1,0204	0,449	0,5746
B0044	8316622	23 L 228047	1249 m	10R 3/4	3	4	10	11,33	0,9404	0,449	0,5746
B0045	8316627	23 L 228074	1250 m	10R 3/4	3	4	10	11,33	0,9404	0,452	0,5746
B0047	8316636	23 L 228118	1249 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,453	0,5129
B0048	8316639	23 L 228142	1250 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,455	0,5685
B0049	8316645	23 L 228168	1250 m	10YR 5/8	5	8	0	1,60	-0,2281	0,45	0,5554
B0050	8316648	23 L 228193	1250 m	10R 3/2	3	2	10	10,67	0,8603	0,45	0,559
B0051	8316650	23 L 228217	1249 m	10R 3/6	3	6	10	12,00	1,0204	0,45	0,5346
B0053	8316658	23 L 228265	1251 m	10R 5/6	5	6	10	11,20	0,9244	0,475	0,5409
B0054	8316661	23 L 228290	1251 m	10R 4/8	4	8	10	12,00	1,0204	0,482	0,5939
B0055	8316661	23 L 228315	1245 m	2,5YR 4/8	4	8	7,5	9,50	0,7203	0,539	0,61
B0056	8316664	23 L 228339	1247 m	5YR 4/6	4	6	5	6,50	0,3601	0,558	0,5332
B0057	8316668	23 L 228366	1247 m	10R 4/6	4	6	10	11,50	0,9604	0,566	0,5743
B0058	8316675	23 L 228390	1246 m	7,5YR 3/4	3	4	7,5	8,83	0,6403	0,568	0,548

B0059	8316681	23 L 228414	1241 m	10R 3/6	3	6	10	12,00	1,0204	0,568	0,548
B0060	8316682	23 L 228439	1238 m	10R 3/4	3	4	10	11,33	0,9404	0,574	0,5794
B0061	8316683	23 L 228464	1239 m	10R 3/6	3	6	10	12,00	1,0204	0,578	0,5796
B0062	8316687	23 L 228491	1239 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,578	0,5395
B0063	8316688	23 L 228514	1239 m	10R 3/6	3	6	10	12,00	1,0204	0,578	0,5047
B0064	8316693	23 L 228540	1239 m	5YR 3/4	3	4	5	6,33	0,3401	0,58	0,5047
B0065	8316694	23 L 228564	1239 m	10R 4/6	4	6	10	11,50	0,9604	0,567	0,5158
B0066	8316693	23 L 228590	1239 m	2,5YR 3/4	3	4	7,5	8,83	0,6403	0,54	0,5443
B0067	8316696	23 L 228617	1239 m	10R 3/6	3	6	10	12,00	1,0204	0,54	0,5443
B0068	8316695	23 L 228640	1239 m	5YR 3/4	3	4	5	6,33	0,3401	0,556	0,5538
B0072	8316696	23 L 228743	1239 m	10R 3/4	3	4	10	11,33	0,9404	0,559	0,5773
B0073	8316697	23 L 228768	1238 m	10R 3/6	3	6	10	12,00	1,0204	0,485	0,5199
B0074	8316696	23 L 228794	1238 m	10R 3/3	3	3	10	11,00	0,9004	0,52	0,5516
B0075	8316697	23 L 228820	1237 m	10R 3/6	3	6	10	12,00	1,0204	0,488	0,5097
B0076	8316699	23 L 228845	1237 m	10R 3/3	3	3	10	11,00	0,9004	0,486	0,5204
B0077	8316697	23 L 228866	1237 m	10R 4/6	4	6	10	11,50	0,9604	0,486	0,5204
B0078	8316695	23 L 228894	1237 m	5YR 3/4	3	4	5	6,33	0,3401	0,491	0,5062
B0079	8316698	23 L 228921	1238 m	10R 5/6	5	6	10	11,20	0,9244	0,481	0,5062
B0080	8316700	23 L 228946	1241 m	10R 3/6	3	6	10	12,00	1,0204	0,481	0,5557
B0081	8316703	23 L 228972	1241 m	5YR 4/6	4	6	5	6,50	0,3601	0,49	0,5414
B0082	8316705	23 L 228996	1242 m	2,5YR 4/4	4	4	7,5	8,50	0,6002	0,497	0,516
B0083	8316707	23 L 229023	1241 m	10R 4/6	4	6	10	11,50	0,9604	0,537	0,5545
B0084	8316709	23 L 229047	1239 m	5YR 4/6	4	6	5	6,50	0,3601	0,517	0,5603
B0085	8316710	23 L 229073	1239 m	10R 4/6	4	6	10	11,50	0,9604	0,464	0,5129
B0086	8316711	23 L 229098	1238 m	10R 3/6	3	6	10	12,00	1,0204	0,468	0,5129
B0088	8316713	23 L 229148	1236 m	10R 3/4	3	4	10	11,33	0,9404	0,46	0,5402
B0089	8316715	23 L 229174	1235 m	10R 3/4	3	4	10	11,33	0,9404	0,462	0,5402
B0090	8316719	23 L 229200	1233 m	10R 3/4	3	4	10	11,33	0,9404	0,462	0,5511

B0091	8316723	23 L 229225	1232 m	10R 3/6	3	6	10	12,00	1,0204	0,464	0,5593
B0092	8316724	23 L 229251	1232 m	10R 4/8	4	8	10	12,00	1,0204	0,463	0,5559
B0093	8316725	23 L 229277	1236 m	10R 3/6	3	6	10	12,00	1,0204	0,461	0,5234
B0094	8316727	23 L 229302	1236 m	5YR 3/4	3	4	5	6,33	0,3401	0,457	0,5349
B0095	8316734	23 L 229353	1236 m	2,5YR 4/6	4	6	7,5	9,00	0,6603	0,456	0,5349
B0096	8316739	23 L 229377	1236 m	5YR 4/6	4	6	5	6,50	0,3601	0,448	0,5734
B0097	8316747	23 L 229454	1236 m	10R 3/6	3	6	10	12,00	1,0204	0,45	0,5662
B0100	8316751	23 L 229477	1235 m	7,5YR 3/4	3	4	2,5	3,83	0,0400	0,446	0,5462
B0101	8316754	23 L 229503	1234 m	10R 4/8	4	8	10	12,00	1,0204	0,446	0,5525
B0102	8316759	23 L 229530	1234 m	5YR 4/6	4	6	5	6,50	0,3601	0,449	0,5596
B0103	8316764	23 L 229555	1233 m	10R 3/6	3	6	10	12,00	1,0204	0,453	0,5077
B0104	8316769	23 L 229580	1231 m	2,5YR 3/6	3	6	7,5	9,50	0,7203	0,453	0,5077
B0105	8316772	23 L 229607	1230 m	10R 3/4	3	4	10	11,33	0,9404	0,457	0,5396
B0106	8316777	23 L 229631	1229 m	2,5YR 3/6	3	6	7,5	9,50	0,7203	0,498	0,5624
B0107	8316782	23 L 229654	1228 m	5YR 4/6	4	6	5	6,50	0,3601	0,471	0,5683
B0108	8316782	23 L 229654	1228 m	5YR 3/4	3	4	5	6,33	0,3401	0,456	0,5704

GRADE REGULAR													
Amostra	Sul	Leste	Altitude	Cor	Valor	Croma	M*	FV(S)	RHG(S)	RHGt (QUAC)	RHGt (FLAASH)		
GA001	8317212	23 L 226821	1164 m	5YR 4/6	4	6	5	6,50	0,360	0,61	0,539		
GA002	8317148	23 L 226740	1162 m	10R 3/6	3	6	10	12,00	1,020	0,6	0,5617		
GA003	8317072	23 L 226674	1162 m	10YR 4/6	4	6	0	1,50	-0,240	0,57	0,5441		
GA004	8317017	23 L 226584	1160 m	10R 4/4	4	4	10	11,00	0,900	0,497	0,5369		
GA005	8316967	23 L 226501	1159 m	10R 3/6	3	6	10	12,00	1,020	0,476	0,5273		
GA006	8316872	23 L 226446	1160 m	10R 3/4	3	4	10	11,33	0,940	0,484	0,4834		
GA007	8316819	23 L 226362	1159 m	10YR 3/6	3	6	0	2,00	-0,180	0,453	0,5372		
GA009	8316707	23 L 226193	1160 m	7,5YR 4/6	4	6	2,5	4,00	0,060	0,501	0,5551		
GA010	8316657	23 L 226104	1159 m	10R 3/4	3	4	10	11,33	0,940	0,492	0,5594		
GA011	8316597	23 L 226017	1152 m	10R 3/6	3	6	10	12,00	1,020	0,509	0,5401		
GA012	8316556	23 L 225922	1149 m	10R 3/4	3	4	10	11,33	0,940	0,517	0,5887		
GB001	8317169	23 L 226726	1161 m	10R 3/6	3	6	10	12,00	1,020	0,599	0,5578		
GB002	8317112	23 L 226644	1160 m	10YR 4/4	4	4	0	1,00	-0,300	0,575	0,5572		
GB003	8317060	23 L 226558	1158 m	10R 4/6	4	6	10	11,50	0,960	0,563	0,5664		
GB004	8317008	23 L 226468	1157 m	10R 3/6	3	6	10	12,00	1,020	0,464	0,4795		
GB005	8316952	23 L 226383	1157 m	10R 3/4	3	4	10	11,33	0,940	0,448	0,556		
GB006	8316900	23 L 226298	1156 m	7,5YR 3/4	3	4	2,5	3,83	0,040	0,451	0,5734		
GB007	8316844	23 L 226213	1158 m	10R 3/4	3	4	10	11,33	0,940	0,467	0,5299		
GB009	8316784	23 L 226131	1159 m	10R 4/6	4	6	10	11,50	0,960	0,506	0,6031		
GB010	8316742	23 L 226040	1158 m	5YR 4/6	4	6	5	6,50	0,360	0,479	0,5791		
GB011	8316683	23 L 225955	1152 m	10R 3/4	3	4	10	11,33	0,940	0,535	0,5774		
GB012	8316618	23 L 225848	1150 m	10R 3/6	3	6	10	12,00	1,020	0,579	0,5333		
GC001	8317190	23 L 226713	1160 m	10YR 4/6	4	6	0	1,50	-0,240	0,599	0,5578		
GC002	8317147	23 L 226610	1159 m	7,5YR 3/4	3	4	2,5	3,83	0,040	0,57	0,5219		
GC003	8317094	23 L 226523	1159 m	10R 3/4	3	4	10	11,33	0,940	0,488	0,5907		

GC004	8317044 23 L 226438	1157 m	10R 3/6	3	6	10	12,00	1,020	0,472	0,5109
GC005	8317031 23 L 226323	1155 m	7,5YR 3/6	3	6	2,5	4,50	0,120	0,488	0,5634
GC006	8316983 23 L 226239	1155 m	10R 3/6	3	6	10	12,00	1,020	0,446	0,5164
GC007	8316929 23 L 226155	1156 m	7,5YR 3/4	3	4	2,5	3,83	0,040	0,475	0,5595
GC008	8316867 23 L 226076	1158 m	5YR 4/4	4	4	5	6,00	0,300	0,48	0,5586
GC009	8316816 23 L 225981	1155 m	10R 3/6	3	6	10	12,00	1,020	0,503	0,5994
GC010	8316755 23 L 225903	1152 m	10YR 3/6	3	6	0	2,00	-0,180	0,588	0,5412
GC011	8316699 23 L 225790	1150 m	10R 3/6	3	6	10	12,00	1,020	0,588	0,5528
GD001	8317087 23 L 226412	1157 m	10R 3/6	3	6	10	12,00	1,020	0,465	0,5371
GD002	8317117 23 L 226271	1153 m	10R 3/6	3	6	10	12,00	1,020	0,456	0,5561
GD003	8317065 23 L 226191	1154 m	10R 3/4	3	4	10	11,33	0,940	0,465	0,5624
GD004	8317013 23 L 226105	1154 m	5YR 4/6	4	6	5	6,50	0,360	0,468	0,5202
GD005	8316957 23 L 226019	1154 m	10R 4/6	4	6	10	11,50	0,960	0,478	0,5316
GD006	8316900 23 L 225930	1153 m	10YR 3/6	3	6	0	2,00	-0,180	0,471	0,5355
GD007	8316840 23 L 225843	1154 m	10R 3/3	3	3	10	11,00	0,900	0,486	0,5485
GD008	8316775 23 L 225742	1153 m	10R 3/3	3	3	10	11,00	0,900	0,579	0,5618