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The design space of FPGA-based processor systems is huge, because many parameters can be modified at design- and runtime to
achieve an efficient system solution in terms of performance, power and energy consumption. Such parameters are, for example,
the number of processors and their configurations, the clock frequencies at design time, the use of dynamic frequency scaling at
runtime, the application task distribution, and the FPGA type and size. The major contribution of this paper is the exploration of
all these parameters and their impact on performance, power dissipation, and energy consumption for four different application
scenarios. The goal is to introduce a first approach for a developer’s guideline, supporting the choice of an optimized and specific
system parameterization for a target application on FPGA-based multiprocessor systems-on-chip. The FPGAs used for these
explorations were Xilinx Virtex-4 and Xilinx Virtex-5. The performance results were measured on the FPGA while the power
consumption was estimated using the Xilinx XPower Analyzer tool. Finally, a novel runtime adaptive multiprocessor architecture
for dynamic clock frequency scaling is introduced and used for the performance, power and energy consumption evaluations.

1. Introduction

Parameterizable function blocks used in FPGA-based system
development, open a huge design space, which can only
hardly be managed by the user. Examples for this are
arithmetic blocks like divider, adder, and soft IP-multiplier,
which are adjustable in terms of bit width and parallelism.
Additional to arithmetic blocks, soft-IP processor cores
provide a variety of parameters, which can be adapted to the
requirements of the application to be realized with the sys-
tem. Especially, Xilinx offers, with the MicroBlaze Soft-IP 32-
bit RISC processor [1], a variety of options for characterizing
the core individually. These options are, amongst others, the
use and size of cache memory, the arithmetic unit, a memory
management unit, and the number of pipeline stages.
Furthermore, the tools offer to deploy semiautomatically
up to two processor cores as multiprocessor on one FPGA.
Certainly more cores are available for the system design by

performing the custom tool chain. Every option as described
above can be adjusted to find an optimized parameterization
of the single processor core in relation to the target appli-
cation. For example, a specific cache size can speed up the
application tremendously, but also the optimal partition of
functions onto the two cores has a strong impact on the speed
and power consumption of the system. These examples show
the huge design space, even if only one parameter is used.
It is obvious that the deployment of multiple parameters for
system adjustment leads to a multidimensional optimization
problem, which is not, or at least very hardly, manageable
by the designer. In order to gain experience regarding the
impact of processor parameterization in relation to a specific
application scenario, it is beneficial to evaluate, for example,
the performance and power consumption of an FPGA-based
system and compare the results to a standard design with a
default set of parameter. The result of such an investigation
is a first step for developing standard guidelines for designers
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and an approach for an abstraction of the design space
in FPGA-based system design. This paper presents first
results of a parameterizable multiprocessor system on a
Xilinx Virtex-4 FPGA, where the parameterization of the
processor is evaluated in respect to power consumption
and performance. Moreover, the varying partition of the
different application scenarios is evaluated in terms of power
consumption for a fixed performance. For this purpose, a
tool flow for analyzing the power consumption through
generating the switching activity interchange format (SAIF)
file or the value change dump (VCD) file from the postplace
and route simulation will be introduced. The presented flow
enables to generate the most accurate power and energy
consumption estimation from this level of abstraction. A
further output of the presented work is an overview of
the impact of parameterization to the performance, power
and energy consumption for Xilinx Virtex-4 and Virtex-
5 FPGAs. The results can be used as a basic guideline for
designers who want to optimize their system performance
and the power and/or energy consumption. This basic
guideline can be a starting point for the analysis of wider
application scenarios that can produce a more complete
guideline for the definition of task escalation strategies
and for the parameterization of FPGA-based MPSoCs. The
paper is organized as follows. In Section 2, related work
is presented. Section 3 describes the power estimation tool
flow used for the presented approach. The novel system
architecture deployed for analyzing the performance and the
power consumption of the different applications is presented
in Section 4. The application scenarios are described in
Section 5. In Section 6, the application integration and
the results of the performance and power consumption
evaluation are provided. Finally, the paper is closed by
presenting the conclusions and future work in Section 7.

2. Related Work

Reduction of the dynamic and static power consumption
is very important especially for embedded systems, because
they often use batteries as a power source.

Therefore, many researchers, for example, Meintanis and
Papaefstathiou [2], explored the power consumption of
Xilinx Virtex-II Pro, Xilinx Spartan-3, and Altera Cyclone-
II FPGAs. They estimated the power consumption at design
time using the commercial tools provided by Xilinx and
Altera. They further explored the differences between the
measured and estimated power consumption for these
FPGAs. Becker et al. [3] explored the difference between
measured and estimated power consumption for the Xil-
inx Virtex-2000E FPGA. Furthermore, they explored the
behavior of the power consumption, when using dynamic
reconfiguration to exchange the FPGA-system at runtime.

Other works focus on the development of own tools
and models for efficient power estimation at design time for
FPGA-based systems. Poon et al. [4] present a power model
to estimate the dynamic, short circuit, and leakage power of
island-style FPGA architectures. This power model has been
integrated into the VPR CAD flow. It uses the transition
density signal model [5] to determine signal activities

within the FPGA. Weiss et al. [6] present an approach
for design time power estimation for the Xilinx Virtex
FPGA. This estimation method works well for control-flow-
oriented applications but not so well for combinatorial logic.
Degalahal and Tuan [7] present a methodology to estimate
dynamic power consumption for FPGA-based system. They
applied this methodology to explore the power consumption
of the Xilinx Spartan-3 device and to compare the estimated
results with the measured power consumption.

All these approaches focus either on the proposal of a new
estimation model or tool for estimating the power consump-
tion at design time, or they compare their own or commercial
estimation models and tools with the real measured power
consumption. The focus of the investigations presented in
this paper is to show the impact of parameterization of IP
cores, specifically the MicroBlaze soft processor, which differs
from the approaches mentioned above where the topic is
more on tool development for power estimation.

The novelty of our approach is to focus on the require-
ments of the target application and to propose a design
guideline for system developers of processor-based FPGA
systems. This means providing guidance in how to design
a system to achieve a good tradeoff between performance
and power and energy consumption for a target application.
To develop such a guideline, the impact of the frequency,
different processor configurations, and the task distribution
in a processor-based design are investigated in this paper for
different application scenarios.

3. Tool Flow for Power Measurement

Xilinx provides two types of tools for power consumption
estimation: Xilinx Power Estimator (XPE) [8] and Xilinx
Power Analyzer (XPower) [9].

The XPE tool is based on an excel spreadsheet. It
receives information about the number and types of utilized
resources via the report generated by the mapping process
(MAP) of the Xilinx tool flow. Alternatively, the user can
manually set the values for the number and type of used
resources. The frequencies performed within the design have
to be manually set by the user. The advantage of this method
is that results are obtained very fast. The disadvantage is that
the results are not very accurate, especially for the dynamic
power consumption. This is because the different toggling
rates of the signals are not taken into account. A further
reason the results are not too accurate, is that they are
based on the MAP report, and not on the postplace and
route (PAR) report, which resembles the system used for
generating the bitstream.

The XPower tool, the alternative to Xilinx Power Esti-
mator, estimates the dynamic and static power consumption
for submodules, different subcategories, and the whole
system based on the results of a postplace and route (PAR)
simulation. This makes the estimation results much more
accurate compared to the XPE tool, because the physical
place and route, as well as the utilized resources of the system,
are taken into account for the power estimation. But even
more important, due to the simulation of the PAR system
with real input data, the toggling rates of the signals can
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be extracted and used within the power estimation. For
estimating the power consumption with the XPower tool, the
following input files are required:

(i) native circuit description (NCD) file, which specifies
the design resources,

(ii) physical constraint file (PCF), which specifies the
design constraints,

(iii) switching activity interchange format (SAIF) or value
change dump (VCD) file, which specify the simulated
activity rates of the signals.

The NCD and the PCF files are obtained after the PAR
phase of the Xilinx implementation tool flow. Both files
provide the information needed for an accurate estimation
of the total quiescent power of the device. To achieve a good
estimation of the dynamic power consumption, an SAIF
or VCD file is required, because they contain information
about the toggling rates of all signals within the hardware
realization on FPGA. Both files can be obtained after
simulation of the PAR design with real input data using, for
example, the ModelSim simulator. The XPower tool can also
be used without an SAIF or VCD file. Then, default toggle
rates are used to estimate the dynamic power of the design,
which is not as accurate as using an SAIF or VCD file.

By choosing the specific tool, the user has to decide on
a tradeoff between accuracy and design time. For a high
accuracy, a longer design time is needed, by using XPower
with the results from PAR and PAR simulation. If a rough
estimation is sufficient, both the XPE tool and XPower, using
only the PAR results, but no SAIF or VCD file, can be used.

Due to the higher accuracy, the XPower tool using
PAR and PAR simulation results was used for the approach
presented in this paper. As we wanted to estimate the
power consumption for systems with one or two MicroBlaze
processors, the hardware and the software executables of the
different system were designed within the Xilinx Platform
Studio (XPS) [10]. Figure 1 shows the flow diagram for doing
power estimation with XPower for an XPS system.

After the hardware has been designed and implemented
within the XPS environment, the SimGen [10] tool is used
to generate the post-PAR timing simulation model of the
system. This simulation model is used to do a post-PAR
timing simulation of the design. Within this work, we used
the newest Xilinx tool version 12.2. Here, two possible
simulators exist: Xilinx ISIM and ModelSim simulator. Both
can be used without any restrictions to generate the SAIF
or VCD files. In this work, ISIM was used to generate the
SAIF files for all the uniprocessor designs. ModelSim was
used to generate the VCD files for the two processors design.
In the last step, XPower is required to load the SAIF/VCD,
the NCD, and the PCF files of the design and to estimate
the dynamic and static power consumption. Care has to
be taken, because, in a normal Xilinx implementation flow,
the software executables are integrated into the memories of
the processors after the bitstream has been generated. When
using XPower and the post-PAR simulation, the memories
of the processor have to be initialized in an earlier step.
This means, into the post-PAR simulation model, otherwise

Power estimation in XPower

Synthesis (using XST) and implementation (translate, map,
PAR) in the EDK XPS GUI environment

System design in Xilinx platform studio (XPS)

Timing simulation and generation of SAIF-or VCD file
(Xilinx ISIM or ModelSim)

Post-PAR timing simulation model generation (SimGen)

Figure 1: Diagram of the EDK XPower Flow.

the simulated system behavior and the VCD file would
not be accurate. Using the Xilinx 12.2 tools, this memory
initialization is done automatically by the tools, when the
target devices are a Virtex-4 and Virtex-5 FPGA.

4. Novel System Architecture

For evaluating the impact of the different design parameters
onto the overall system performance, power, and energy
consumption, three different processor designs have been
built.

The first design is a uniprocessor, which is used to
evaluate the impact of the clock frequency and the processor
configurations onto the performance, power and energy
consumption for two different Xilinx FPGAs: Virtex-4 and
Virtex-5. Therefore, this system has been designed as shown
in Figure 2. The number of I/O interfaces has been chosen in
such a way that the same system can be used without changes
for both FPGA boards. The only required changes are the
physical I/O pin locations for the UART, clock, and reset pins.
The system components remain unchanged, to allow a fair
comparison between the two FPGAs. The input data for the
applications is statically stored in the local on-chip memory
of the processor, because an equal interface, for example PCI,
was not present for both boards.

The system structure of the dual-processor system is
shown in Figure 3. This system is used to evaluate the impact
of different application partitions onto the overall perfor-
mance, power dissipation, and energy consumption. This
evaluation has been done on the Virtex-4 board only, because
a PCI connection was needed to receive the input data for
the applications from the host PC. Also, the differences
between the power and energy consumption of the different
FPGA families have been already done with the uniprocessor
design, and, therefore, no differences are expected for the
dual-processor design. Three new components have been
designed and implemented: the virtual-IO, the bridge, and
the reconfigurable clock unit. All three components have
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Figure 2: Uniprocessor system.

been integrated into a library for the XPS tool. Therefore,
they can be inserted and parameterized using the graphical
user interface (GUI) of the XPS tool, which makes them
easily reusable within other XPS designs.

The virtual-IO receives data from the host PC and sends
the results back to the host PC via the PCI bus. The virtual-
IO communicates via the fast simplex links (FSLs) [11] with
two MicroBlaze processors (µB0 and µB1). µB0 communi-
cates with the user via the UART interface. It has a timer,
which is used to measure the performance of the overall
system. The two processors communicate with each other
via FSLs over the bridge component. Depending on the fill
level of the FIFOs within the bridge, reconfiguration signals
are sent to the reconfigurable clock unit. The reconfigurable
clock unit reconfigures the clocks of the two processors
based on the reconfiguration signals issued by the bridge.
The power and energy consumption of this dual-processor
system is compared against the evaluation results of the
uniprocessor system shown in Figure 4. This uniprocessor
system uses also the virtual-IO component to receive the
input data required for the applications. The bridge and the
reconfigurable clock unit have been removed.

The following subsections explain the new components
and their features more in detail.

4.1. Virtual-IO. The virtual-IO component [12] was
designed to communicate with the host PC via the PCI
bus. It provides an input and an output port to the PCI bus
and one input and one output port for each MicroBlaze
processor. It consists of two FIFOs, one for the incoming
and one for the outgoing data of the PCI bus. Each FIFO is
controlled via a finite state machine (FSM), as it is shown in
Figure 5.

The virtual-IO is a wrapper around 6 different modules.
The modules, their symbols, and functionalities are sum-
marized in Table 1. The first module is virtual-IO 1, which
sends data first to µB0 and then to µB1. It then receives the
calculated results in the same order. The second module is
virtual-IO 2, which sends data only to µB0. Results are only

Table 1: Different modules of the virtual-IO component together
with their symbol and basic functionality.

Virtual-IO module Symbol Function

Virtual-IO 1
1

Sends data first to µB0 then
to µB1. Receives data in the
same order

Virtual-IO 2 2
Sends data only to µB0.
Receives data only from
µB1

Virtual-IO 3
3

Sends data first to µB0, then
to both and finally only to
µB1. Receives data first
from µB0, then from µB1

Virtual-IO 4 4

Sends data only to µB0.
Receives data only from
µB0. Used for uniprocessor
designs

Virtual-IO 5
5

Sends same data to both
processors. Receives results
only from µB0

Virtual-IO 6
6

Sends same data to both
processors. Receives results
only from µB1

received over µB1. Therefore, µB0 sends its results to µB1,
which then sends the results of µB0 together with its own
results back to the virtual-IO 2. The third module is virtual-
IO 3, which sends first data to µB0. Afterwards, it sends
in parallel to both processors µB0 and µB1 the same data.
Finally, it sends some data only to µB1. After the execution of
the processors, first µB0 and then µB1 send their results back
to the virtual-IO 3. The fourth module is virtual-IO 4, which
is only connected to one of the processors, for example, µB0.
Due to this, this module is used in all uniprocessor designs.
For a dual-processor design it sends data to µB0, which then
forwards parts of the data to µB1. After execution, µB1 sends
its results back to µB0, which forwards the results of the
execution of the two processors to the virtual-IO 4. The fifth
module is virtual-IO 5, which sends the same data to both
processors in parallel, but receives the results only via µB0.
The sixth module is virtual-IO 6. It is very similar to virtual-
IO 5. The only difference is that it receives the calculation
results from µB1 instead of µB0.

The modules can be selected in the XPS GUI via the
parameters of the virtual-IO component. Other parameters
that can be set by the user are the number of input and
output words for each processor separately, the number of
common input words, and the size of the image (only for
image processing applications).

4.2. Bridge. The bridge module [12] is used for the inter-
processor communication. It consists of two asynchronous
FIFOs controlled by FSMs, to support a communication via
the two different clock domains of the processors, as shown
in Figure 6. This bridge component controls the fill level of
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Figure 3: Dual-processor design with three new components: virtual-IO, bridge, and reconfigurable clock unit.
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Timer

UART
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FSL: fast simplex link
PLB: processor local bus

UART: universal asynchronous receiver transmitter

µB: microblaze
PCI: peripheral component interconnect

Figure 4: Uniprocessor system with the new virtual-IO component
to enable a fair comparison with the dual-processor system.

the two FIFOs. If one FIFO tends to be utilized with 75%, it
is assumed that the processor, which reads from this FIFO,
is too slow. As a result, a reconfiguration signal to increase
the clock rate of this processor is sent to the reconfiguration
clock unit.

4.3. Reconfigurable Clock Unit. Two different designs for
the reconfigurable clock unit have been implemented and
will be presented in the following subsections. The first

PCI bus controller

Input FIFO Output FIFO

Input FSM Output FSM

FSL FSLFSLFSL

µB0 µB1

PCI bus

FSL: fast simplex link
FSM: finite state machine
µB: microblaze

Figure 5: Virtual-IO component.

implementation uses hardware reconfiguration to modify the
frequency of clock signals. The advantage is that a variety
of different clock signals can be provided at runtime. The
disadvantage is that the reconfiguration requires a time
period of 200 ms, which can be too long, depending on the
application.
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µB0 FSM µB1 FSM

Clock reconfiguration
signal for µB1 clock

Clock reconfiguration
signal for µB0 clock

Figure 6: Internal structure of the bridge.

The second implementation exploits the use of the
multiple ports provided by the digital clock manager (DCM)
[13] component of the Xilinx FPGAs. Here, clock buffer
multiplexer primitives (BUFGMUXes) [14] are used to allow
a faster switch between different clocks. The advantage is a
faster switching time of few clock cycles between different
frequencies. The drawback is that not as many different
clocks are possible, as when dynamic reconfiguration is used.
The number of the different possible clocks depends on the
number of available DCMs and BUFGMUXes on the chosen
FPGA device.

4.3.1. Reconfigurable Clock Unit Using Reconfiguration [12].
The internal structure of the reconfigurable clock unit is
shown in Figure 7. It consists of two DCMs, two BUFG-
MUXes, and the logic component, which controls the
reconfiguration of the DCMs.

The logic component shown in Figure 7 receives the
reconfiguration signals from the bridge component. It then
starts the reconfiguration of the DCM primitive for the
slower processor. For the reconfiguration purposes, the
specific ports provided by Xilinx for dynamic reconfigu-
ration of the Virtex-4 DCM primitive are used. During
the reconfiguration process, the DCM has to be kept in
a reset state for a minimum of 200 ms. During this time
interval, the outputs of this DCM are not stable and cannot
be used. Instead of stalling the corresponding processor,
the BUFGMUX primitive is used to provide CLK IN, the
original input clock of the two DCM, to the processor,
whose DCM is under reconfiguration. The BUFGMUX is
a special clock multiplexer primitive, which assures that no
glitches occur when switching to a different clock. After the
configuration of the DCM is finished, the BUFGMUX is used

Logic

DCM

DCM

Reconfiguration
signals

Clock 0
to µB0

Clock 1
to µB1

CLK IN

DCM: digital clock manager
µB: microblaze

Figure 7: Internal structure of the reconfigurable clock unit.

to switch back to the DCM clock. An alternative would be
to stall the processor, while its clock is being reconfigured.
Because 200 ms are quite a long time, especially for image
processing applications where each 40 ms a new input frame
is received from a camera, this would result in a loss of input
data.

To prevent an oscillation caused by the frequency scaling
mechanism, the controller logic will stop increasing the
clock frequency, if 125 MHz for this MicroBlaze have been
reached, which is the maximum frequency supported by
the MicroBlaze and its peripherals, or if its clock frequency
has been increased for three consecutive times. If the
reconfiguration signal is furthermore asserted, meaning the
processor is still too slow, then the DCM of the faster
processor is reconfigured to provide a slower clock to the
faster processor.

The internal structure of the logic block is shown in
Figure 8. Its function is to supply the reset signal for the
correct time span (at least 200 ms) required for correct
dynamic reconfiguration (reset controller block) and to also
provide the partial reconfiguration data to the corresponding
DCM (reconfiguration monitor). The reconfiguration mon-
itor block also monitors the LOCKED signals of the DCMs
to know when the partial reconfiguration of a DCM is com-
plete. The clock switcher block has the duty of providing the
switching signal to the clock buffer multiplexer at the right
time. Besides other minor functions, the logic component
also implements the prevention of any race conditions that
could result by both bridge component FIFOs having their
respective clock reconfiguration signals active at the same
time (it would not make sense to reconfigure both DCMs
at the same time). For this purpose, the Logic component
uses the XOR block on both reconfiguration signals coming
from the bridge component, such that only one DCM can be
partially reconfigured at one time. For its own synchronous
activities, the logic component uses the input clock to the
reconfigurable clock unit, which is also the input clock
to the DCMs. The logic component also makes sure that
the maximum clock frequency supported by the system
(125 MHz) is not exceeded (reconfiguration counter block).
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Figure 8: Internal structure of the logic block of the reconfigurable
clock unit.

Therefore, the reconfiguration counter block keeps account
of the number of times a DCM has been reconfigured such
that no DCM can be configured more than 4 times. After
3 consecutive reconfiguration signals from the same bridge
FIFO, the logic component actually slows down the originally
faster processor by reconfiguring its clock to a lower value.

4.3.2. Reconfigurable Clock Unit Using Clock Buffer Multiplex-
ers. Alternatively, instead of dynamically reconfiguring the
DCM, different output ports of a DCM could be used to
generate different clocks as shown in Figure 9. Using several
BUFGMUXes, the different clocks could be selected.

Figure 10 shows the internal structure of the
DCM wrapper, consisting of two DCMs and several
BUFGMUXes to allow fast switching between different
clocks.

5. Application Scenarios

Four different applications scenarios were selected to explore
the impact of the processor configurations, the task dis-
tribution, and the dynamic clock frequency scaling on the
power consumption of FPGA-based processor systems. The
four different algorithms are described in detail in the next
subsections. The first algorithm is the well-known sorting
algorithm called Quicksort [15]. It includes a number of
branches and comparisons. The second algorithm is an
image processing algorithm called normalized squared corre-
lation (NCC), which consists of many arithmetic operations,
for example, multiply and divide. The third algorithm is
a variation of a bioinformatics algorithm called DIALIGN
[16], which contains many comparisons and additions and
subtractions. The fourth application is a character recog-
nition algorithm using artificial neural networks (ANNs)
[17], which consists of many floating point arithmetic
operations. These algorithms with their different algorithm
requirements, for example, branches, comparators, multiply
and divide, add and subtract, and floating point, were
used to provide a user guideline of designing a system
with a good performance per power tradeoff for a specific
application. By comparing the algorithm requirements of
new applications with the four example algorithms, the

system configurations of the most similar example algorithm
is chosen as a starting system. Such a guideline to limit the
design space is very important to save time and achieve
a higher time-to-market, because the simulation and the
power estimation with XPower are very time consuming.
Also, the bitstream generation to measure the performance
of the application on the target hardware architecture is time
consuming. These long design times can be shortened by
starting with an appropriate design, for example, the right
processor configurations, a good task distribution, and a
well-selected execution frequency.

5.1. Sorting Algorithm: Quicksort. Quicksort [15] is a well-
known sorting algorithm with a divide and conquer strategy.
It sorts a list by recursively partitioning the list around a
pivot and sorting the resulting sublists. It has an average
complexity of O (n logn).

5.2. Image Processing Algorithm: Normalized Squared Corre-
lation. 2-D squared normalized correlation (NCC) is often
used to identify an object within an image. The evaluated
expression is shown:

C
(
p
)

=
(∑n

i=0

∑m
j=0

(
Ap
(
i, j
)− Ap

)
×
(
T
(
i, j
)− T

))2

(
∑n

i=0

∑m
j=0

(
Ap
(
i, j
)−Ap

)2)×
(
∑n

i=0

∑m
j=0

(
T
(
i, j
)−T

)2) ,

(1)

where T : template image with n rows and m columns, Ap:
subwindow of the search region with n rows and m columns,
T : mean of T , Ap: mean of Ap.

This algorithm uses a template T of the object to be
searched for and moves this template over the search region
A of the image. Ap, the subwindow of the search region at
point p with the same size as T , is then correlated with T .
The result of this expression is stored at point p in the result
image C. The more similar Ap and T are, the higher is the
result of the correlation. If they are equal, the result is 1. The
object is then detected at the location with the highest value.

5.3. Bioinformatic Algorithm: DIALIGN. DIALIGN [16] is an
algorithm from bioinformatics domain, which is used for
comparison of the alignment of two genomic sequences. It
produces the alignment with the highest number of similar
elements and, therefore, the highest score as shown in
Figure 11.

5.4. Character Recognition Using Artificial Neural Networks
(ANN). The character recognition algorithm was imple-
mented as a multilayer perceptron (MLP) artificial neural
network (ANN) to detect the numbers 0 to 9 and the
characters “<” and “>”. This example was extracted from
a project that searches for connected pixels in images,
preprocesses the connected pixels and performs the character
recognition. This implementation was done according to
[17]. For this work, only the preprocessed character set was
employed. The network was trained using the preprocessed
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Figure 10: Internal structure of the DCM wrapper component.

characters depicted in Figure 12. Two-thirds of the images
were used for training and one-third for verification.

The trained ANN had 45 neurons in the hidden layer and
12 neurons in the output layer. The input layer contains 91
input elements, so each neuron in the hidden layer has 91
inputs. The output of these hidden neurons is given by (2),
where i is the neuron index, j is the input number of the
neuron,wij is the weight applied to the input j in that neuron
(i), and bi is a bias constant value for the neuron i

yi = 1

1 + e(−bi−
∑91

J=1 wijxi j )
. (2)

The output of each of the 12 neurons in the output
layer is given by (3), where bk is the bias constant for the
output neuron k, yi is the output of the ith neuron from the
previous layer, and wki is the weight applied to that value. The
recognized character is determined by the wining neuron,
that is, the neuron for which the output is the nearest to 1;

yk = −bk −
12∑

i=1

wki yi. (3)

The characters were stored in MicroBlaze’s main memory
as bytes. During execution, they were expanded to arrays



International Journal of Reconfigurable Computing 9

A T G A G C A G
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-Sequence a:

Sequence b:

DIALIGN

Figure 11: Alignment of two sequences a and b with DIALIGN.

Figure 12: Character set used for training the network.

where each position contained the value of one pixel of the
character image (1 or 0). A total number of 100 characters
were presented during the experiments.

6. Integration and Results

Power consumption estimation and performance measure-
ment were done for a Xilinx Virtex-4 (V4FX100) FPGA and a
Xilinx Virtex-5 (V5LX110T) FPGA. The performance for the
Virtex-4 FPGA was measured on the corresponding FPGA
board from Alpha-Data [18] and the performance for the
Virtex-5 FPGA was measured on the corresponding Xilinx
XUP board. As measuring the exact power consumption of
the FPGA on both boards is not possible, it was estimated
at design time using the XPower tool flow as described in
Section 3. The impact of the clock frequency, the configu-
ration of the processor, and the task distribution onto the
power consumption and the performance of the system has
been explored, and the results are presented in the following
subsections. For each exploration, some parameters had to
be kept fixed to assure a fair comparison as shown in Table 2.

For the exploration of the impact of the clock frequency,
the algorithm (NCC) and the processor configuration
(default: 5-stage pipeline, no arithmetic unit (AU), no
floating point unit (FPU)) have been kept fixed. For the
exploration of the impact of the processor parameters,
(default, AU, reduced pipeline (RP), AU + RP) ± FPU, the
clock frequency was kept fixed at 100 MHz.

Finally, for the exploration of the task distribution, the
processor configuration and the performance were kept
fixed to lower the overall system power consumption, while
maintaining the performance similar to the performance
achieved with a reference uniprocessor design running at
100 MHz, which is a standard frequency for both Virtex-4-
and Virtex-5-based MicroBlaze systems.

6.1. Impact of the Clock Frequency. In the following two sub-
sections, the impact of the variation of the clock frequency to
the power consumption of a Virtex-4 and a Virtex-5 FPGA
was explored using a uniprocessor system, which executes
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Figure 13: Impact of the clock frequency to the static power
consumption of a uniprocessor design on a V4FX100.
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Figure 14: Impact of the clock frequency to the dynamic power
consumption of a uniprocessor design on a V4FX100.

the NCC algorithm on one MicroBlaze. The MicroBlaze
was configured to have a 5-stage pipeline and no arithmetic
unit. No AU means that the MicroBlaze has no integer
multiplier/divider, no pattern comparator, and no barrel
shifter. For the power consumption estimation, the results
for quiescent, dynamic, and overall power consumption are
given. The quiescent power consumption is also called static
power consumption in the following, because it represents
the power consumption of the user-configured FPGA with-
out any switching activity. Furthermore, the execution time
and the resulting energy consumption are presented. For
each selected clock frequency, the processor system has been
recompiled with the appropriate clock constraints.

6.1.1. Virtex-4 FX 100 FPGA. The results for the dynamic,
the quiescent, and the total power consumption for the
Virtex-4 FPGA are presented in Table 3 together with the
execution time and the overall energy consumption.

The impact of the clock frequency onto the static and
the dynamic power consumption for the Virtex-4 FPGA
is presented in Figures 13 and 14, respectively. As can be
seen, the static power consumption increases by around
0.16 mW/MHz while the dynamic power consumption
increases by around 3.06 mW/MHz.
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Table 2: Fixed parameters for the exploration of the impact of the clock frequency, the processor configuration, and the task distribution on
the performance, power dissipation, and energy consumption.

Impact of Fixed parameters Variable parameters

Clock frequency
(i) Algorithm: NCC (i) Clock frequency: 40–100 MHz

(ii) Processor configuration: default (5-stage
pipeline, no AU, no FPU) (ii) FPGA: Virtex-4, Virtex-5

(iii) # of processors: 1

Processor configuration
(i) Clock frequency: 100 MHz

(i) Processor configurations: (default, AU, RP, RP
+ AU) ± FPU

(ii) No. of processors: 1
(ii) Algorithm: NCC, Quicksort, DIALIGN, ANN

(iii) FPGA: Virtex-4, Virtex-5

Task distribution

(i) Execution time = execution time of a
uniprocessor design at 100 MHz

(i) Application partitioning

(ii) Processor configuration: 5-stage pipeline,
integer multiplier, pattern comparator

(ii) Algorithm: NCC, Quicksort, DIALIGN
(iii) No. of processors: 2

(iv) FPGA: Virtex-4

Table 3: Impact of the variation of the clock frequency to the power
consumption for V4FX100.

Clk Freq. PDynamic PQuiescent PTotal PTotal Texe Energy

(MHz) (mW) (mW) (mW) (%) (ms) (mJ)

40 254 939 1192 −14,1 791,11 943,00

50 288 941 1229 −11,4 632,89 777,82

60 318 942 1260 −9,2 527,41 664,53

70 348 944 1292 −6,8 452,06 584,06

80 376 946 1322 −4,7 395,55 522,92

90 408 947 1355 −2,3 351,60 476,42

100 438 949 1387 NA 316,44 438,91
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Figure 15: Impact of the clock frequency to the total power
consumption of a uniprocessor on a V4FX100.

Out of this results the impact onto the total power
consumption, which is around 3.25 mW/MHz. The impact
on the total power consumption is shown in Figure 15.

The impact on the execution time is shown in Figure 16.
The impact onto the overall energy consumption, which

is around 8.42 mJ/MHz is shown in Figure 17.

6.1.2. Virtex-5 LX110T FPGA. The results for the dynamic,
the quiescent, and the total power consumption together
with the execution time and the overall energy consumption
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Figure 16: Impact of the clock frequency to the execution time of a
uniprocessor design on a V4FX100.
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Figure 17: Impact of the clock frequency to the energy consump-
tion of a uniprocessor design on a V4FX100.

for the Virtex-5 FPGA are given in Table 4. As can be seen, the
static power consumption is higher while the dynamic power
consumption is lower compared to the Virtex-4 FPGA. This
can be derived from the different CMOS processes: Virtex-5
has a 65 nm process while Virtex-4 has a 90 nm process.

The impact of the clock frequency onto the static and
the dynamic power consumption for the Virtex-5 FPGA
is presented in Figures 18 and 19, respectively. Here, a
different behavior, compared to the Virtex-4 FPGA, can be
seen. Due to the new Virtex-5 architecture, the static power
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Table 4: Impact of the variation of the clock frequency onto the
power consumption for V5LX110T.

Clk Freq. PDynamic PQuiescent PTotal PTotal Texe Energy

(MHz) (mW) (mW) (mW) (%) (ms) (mJ)

40 215 1230 1444 −5,87 791,11 1142,36

50 229 1230 1459 −4,89 632,89 923,38

60 223 1230 1453 −5,28 527,41 766,32

70 258 1231 1489 −2,93 452,06 673,12

80 254 1231 1485 −3,19 395,55 587,40

90 238 1230 1468 −4,30 351,60 516,16

100 302 1232 1534 NA 316,44 485,42
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Figure 18: Impact of the clock frequency to the static power
consumption of a uniprocessor design on a V5LX110T.

consumption is nearly constant for all clock frequencies.
Minor variations occur to different placements of the
design. The dynamic power consumption shows an unsteady
behavior, when varying the clock frequency. A reason for this
unsteady behavior could lie in the PAR process for Virtex-5
FPGAs, where different resources have been chosen for the
different clock frequencies of the designs.

The total power consumption results from adding the
dynamic and the static power consumption. As the static
power consumption is nearly constant, the total power
consumption shows the same behaviour over different clock
frequencies than the dynamic power consumption. In total,
the power consumption of the Virtex-5LX110T is around
200 mW higher than the one of the Virtex-4FX100 FPGA.
The impact on the total power consumption is shown in
Figure 20.

The impact on the execution time is equal for both
FPGAs and is shown in Figure 21.

The overall energy consumption for the different clock
frequencies is shown in Figure 22.

6.2. Impact of the Processor Configurations. For exploration
purposes, a uniprocessor design consisting of a single
MicroBlaze running at 100 MHz was used. The results were
compared against a reference configuration, which was a
MicroBlaze with a 5-stage pipeline and no arithmetic unit,
which means no integer multiplier, no integer divider, no
barrel shifter, and no pattern comparator. The following
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Figure 19: Impact of the clock frequency to the dynamic power
consumption of a uniprocessor design on a V5LX110T.
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Figure 20: Impact of the clock frequency to the total power
consumption of a uniprocessor design on a V5LX110T.

configurations were explored for the NCC, Quicksort and
DIALIGN:

(i) default,

(ii) adding an arithmetic unit (AU),

(iii) reduction of the pipeline to 3 stages (RP),

(iv) combination of (i) and (iii) (AU + RP).

For the ANN, the configurations differ, as an additional
parameter, the FPU, was added:

(i) default + FPU,

(ii) adding an arithmetic unit (AU + FPU),

(iii) reduction of the pipeline to 3 stages (RP + FPU),

(iv) combination of (i) and (iii) (AU + RP + FPU),

(v) arithmetic unit without FPU (AU).

The impact to the power consumption, the performance,
and the energy consumption was explored for all four
algorithms and is presented in the following subsections
for Virtex-4 and Virtex-5, respectively. The impact is very
different between the selected applications, due to the
different algorithm requirements, as mentioned in Section 5
and its subsections.

6.2.1. Virtex-4 FX 100 FPGA. Figure 23 and Table 5 show
the impact of the different configurations for the Quicksort
algorithm. The combination of a reduction of the pipeline
stages and the addition of the arithmetic unit provides the
best solution in terms of performance, power and energy
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Figure 21: Impact of the clock frequency to the execution time of a
uniprocessor design executing the NCC algorithm on a V5LX110T.
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Figure 22: Impact of the clock frequency onto the overall
energy consumption of a uniprocessor design executing the NCC
algorithm on a V5LX110T.

Table 5: Impact of the MicroBlaze configurations (µB param) for
the Quicksort algorithm at 100 MHz for V4FX100.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default 243 938 1181 NA 3,02 3,57

AU 336 943 1280 8,38 2,74 3,51

RP 222 937 1159 −1,86 3,09 3,58

RP + AU 215 937 1152 −2,46 2,86 3,29

consumption. The reasons for this are, on the one hand,
the multiple branches in the algorithm, which benefit from
a reduction of the pipeline stages and, on the other hand,
the multiple comparators, which benefit from the pattern
comparator within the arithmetic unit. Therefore, the RP +
AU system would be chosen. Using these systems, further
performance and power evaluations could be done by adding
or removing the different internal configurations of the
arithmetic unit, as probably some, for example the integer
divider, are not needed by the Quicksort algorithm, and,
therefore, consume power but do not improve the overall
performance.

Figure 24 and Table 6 show the impact of the different
configurations for the NCC algorithm. As this algorithm
requires many arithmetic operations, the addition of an AU
improves the overall execution time very strongly (over 80%)
while the reduction of the pipeline stages results in a slight
degradation. This degradation is due to the reason that the
execution of arithmetic operations takes more clock cycles,
if the pipeline is reduced. Therefore, for this and similar
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Figure 23: Impact of the MicroBlaze configurations for the
Quicksort algorithm.
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Figure 24: Impact of the MicroBlaze configurations for the NCC
algorithm.

Table 6: Impact of the MicroBlaze configurations for the NCC
algorithm at 100 MHz for V4FX100.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default 438 949 1387 NA 316,4 438,85

AU 506 953 1458 5,12 55,2 80,48

RP 405 947 1353 −2,45 335,5 453,93

RP + AU 354 944 1298 −6,42 91,5 118,77

algorithms, a system with an AU and a 5-stage pipeline would
be optimal from a performance and energy consumption
perspective. If the power consumption needs to be reduced
and some performance degradation is acceptable, then the
AU + RP system would be a good choice.

In Figure 25 and Table 7, the impact to the performance
and power consumption of the three different processor con-
figurations compared to the reference system are presented
for the DIALIGN algorithm. Adding an AU improves the
execution time by 5% while increasing the overall power
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Figure 25: Impact of the MicroBlaze configurations for the
DIALIGN algorithm.

Table 7: Impact of the MicroBlaze configurations for the DIALIGN
algorithm at 100 MHz for V4FX100.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default 428 948 1376 NA 829,8 1141,80

AU 558 956 1514 10,03 786 1190,00

RP 371 945 1316 −4,36 1042,4 1371,80

RP + AU 367 945 1312 −4,65 1003,3 1316,33

Table 8: Impact of the MicroBlaze configurations for the ANN
algorithm at 100 MHz for V4FX100.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default + FPU 365,85 944,95 1311 NA 2328 3052

AU + FPU 327,9 942,81 1271 −3,06 816 1037

RP + FPU 305,94 941,58 1248 −4,83 2491 3108

RP + AU + FPU 271,37 939,65 1211 −7,61 1009 1222

AU + no FPU 287,52 940,55 1228 −6,31 2775 3408

and energy consumption compared to the reference design
by 10% and 4%. The reduction of the pipeline to 3 stages
improves the total power consumption by 4%, but worsening
the execution time by 25% and the energy consumption by
20%. The combination of AU + RP shows nearly the same
impact as the RP system. Therefore, the reference system is
the best choice.

In Figure 26 and Table 8, the impact to the performance
and power consumption of the four different processor con-
figurations compared to the reference system are presented
for the ANN algorithm.

Adding an AU improves the execution time by 65%
and reduces the overall power and energy consumption
compared to the reference design by 3% and 66%. The
reduction of the pipeline to 3 stages slightly improves
the total power consumption by 4%, but worsening the
execution time by 7%. The combination of AU + RP shows

AU + FPU RP + FPU RP + AU +
FPU

AU + no
FPU
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Figure 26: Impact of the MicroBlaze configurations for the ANN
algorithm.

Table 9: Impact of the MicroBlaze configurations for the Quicksort
algorithm at 100 MHz for V5LX110T.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default 211 1230 1441 NA 3,02 4,35

AU 289 1231 1520 5,48 2,74 4,16

RP 261 1231 1492 3,54 3,09 4,61

RP + AU 265 1231 1496 3,82 2,86 4,28

nearly the same impact as the AU system. Finally, the system
with AU and without an FPU shows a slight improvement
of the power consumption by 6% while the execution time
is increased by 19%, and, also, the energy consumption is
increased by over 11%. The reason for the longer execution
time and, therefore, the higher energy consumption for
the non-FPU system is due to the fact that the ANN uses
floating point operations, which require much more clock
cycles, if no FPU is provided. Therefore, the AU + FPU
system is the best choice in terms of performance and energy
consumption. If the power consumption is more important,
then the RP + AU + FPU system would be the best choice for
this algorithm.

6.2.2. Virtex-5 LX110T FPGA. Figure 27 and Table 9 show
the impact of the different configurations for the Quicksort
algorithm. Due to the multiple comparators and the multiple
branches in the algorithm, the combination of an arithmetic
unit and a reduction of the pipeline stages is very beneficial
in terms of execution time and energy consumption, but
results in increased power consumption. If the power
consumption is the critical factor, then the default system
would be the best choice.

Figure 28 and Table 10 show the impact of the different
configurations for the NCC algorithm. As this algorithm
requires many arithmetic operations, the addition of an
AU improves the overall execution time and the energy
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Figure 27: Impact of the MicroBlaze configurations for the
Quicksort algorithm.
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Figure 28: Impact of the MicroBlaze configurations for the NCC
algorithm.

consumption by over 80% while the reduction of the pipeline
stages results in a slight degradation. This degradation is due
to the reason that the execution of arithmetic operations
takes more clock cycles, if the pipeline is reduced. Therefore,
for this and similar algorithms, a system with an AU and a
5-stage pipeline would be optimal from a performance and
energy perspective. If the power consumption needs to be
reduced and some performance degradation is acceptable,
then the AU + RP system would be a good choice.

In Figure 29 and Table 11, the impact onto the per-
formance and power consumption of the three different
processor configurations compared to the reference system
is presented for the DIALIGN algorithm.

Adding an AU improves the execution time and the
energy consumption a little bit while slightly increasing
the overall power consumption compared to the reference
design. The reduction of the pipeline to 3 stages improves
the total power consumption slightly, but worsening

Table 10: Impact of the MicroBlaze configurations for the NCC
algorithm at 100 MHz for V5LX110T.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default 302 1232 1534 NA 316,4 485,36

AU 293 1232 1525 −0,59 55,2 84,18

RP 287 1231 1519 −0,98 335,5 509,62

RP + AU 265 1231 1496 −2,48 91,5 136,884
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Figure 29: Impact of the MicroBlaze configurations for the
DIALIGN algorithm.

Table 11: Impact of the MicroBlaze configurations for the
DIALIGN algorithm at 100 MHz for V5LX110T.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default 299 1232 1530 NA 829,8 1270

AU 319 1232 1551 1,37 786 1219

RP 276 1231 1507 −1,50 1042,4 1571

RP + AU 286 1231 1517 −0,85 1003,3 1522

the execution time by 25% and, therefore, the energy
consumption by over 23%. The combination of AU + RP
shows nearly the same impact as the RP system. Therefore,
the AU system is the best choice for these kinds of algorithms.

Figure 30 and Table 12 show the impact onto the perfor-
mance and power consumption of the four different pro-
cessor configurations compared to the reference system are
presented for the ANN algorithm. Adding an AU improves
the execution time by 65% and reduces the overall energy
consumption compared to the reference design by 64% while
the power consumption is increased slightly by 2%. The
reduction of the pipeline to 3 stages improves the total power
consumption by 8% and the energy consumption by 1.69%,
but worsening the execution time by 7%. The combination
of AU + RP shows nearly the same impact as the AU system.
Finally, the system with AU and without an FPU shows a
slight increase of the power consumption by 0.23% while
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Figure 30: Impact of the MicroBlaze configurations for the ANN
algorithm.

Table 12: Impact of the MicroBlaze configurations for the ANN
algorithm at 100 MHz for V5LX110T.

µB param
PDynamic PQuiescent PTotal PTotal Texe Energy

(mW) (mW) (mW) (%) (ms) (mJ)

Default + FPU 341,75 1232,59 1574,34 NA 2328 3665

AU + FPU 377,18 1233,33 1610,51 2,30 816 1314

RP + FPU 216,3 1229,98 1446,28 −8,13 2491 3603

RP + AU + FPU 327,21 1232,29 1559,49 −0,94 1009 1574

AU + no FPU 345,34 1232,67 1578,01 0,23 2775 4379

Table 13: Quicksort power and energy consumption.

Uniprocessor Dual 2 Dual 5

(100 MHz) (80/50 MHz) (95 MHz)

Execution time-ms 18,42 18,80 19,27

Total power-mW 1576,93 1475,56 1570,79

Total power % NA −6,43 −0,39

Total energy-mJ 29,05 27,74 30,27

Total energy % NA −4,51 +4,20

the execution time and the energy consumption are both
increased by 19%. The reason for the longer execution time
and the higher energy consumption for the non-FPU system
is that the ANN uses floating point operations, which require
much more clock cycles, if no FPU is provided. Therefore, the
AU + FPU system is the best choice in terms of performance
and energy consumption. If the power consumption is more
important, then the RP + AU + FPU system would be the best
choice for this algorithm.

6.3. Impact of the Task Distribution and the Frequency
Scaling. To measure the impact onto the power and energy
consumption, the algorithms were partitioned onto two
MicroBlaze processors on the Virtex-4 FPGA. The frequency
for the two processors was chosen in such a way that the

Table 14: NCC power and energy consumption.

Uniprocessor Dual 3 Dual 2

(100 MHz) (54 MHz) (87.5/50 MHz)

Execution time-ms 67,74 67,28 67,62

Total power-mW 1472,78 1477,20 1504,02

Total power % NA +0,30 +2,12

Total energy-mJ 99,77 99,39 101,70

Total energy % NA −0,38 +1,93

Table 15: DIALIGN power and energy consumption.

Uniprocessor Dual 5 Dual 6

(100 MHz) (50 MHz) (50 MHz)

Execution time-ms 30,21 30,16 30,16

Total power-mW 1569,69 1631,62 1536,44

Total power % NA +3,95 −2,12

Total energy-mJ 47,42 49,21 46,34

Total energy % NA +3,77 −2,28

execution time of the dual-processor design was as similar
as possible to the reference system consisting of a single
MicroBlaze running at 100 MHz. For all systems, the config-
urations of the processors were fixed to a 5-stage pipeline,
an integer multiplier, and the pattern comparator. For the
reconfigurable clock, the first version using reconfiguration
was chosen.

Table 13 shows the results for distributing the Quicksort
algorithm on two processors instead of one. Two partitions
were done. The first one is called Dual 2 (80/50 MHz), which
means that the virtual-IO 2 was used, and µB0 was running
at 80 MHz while µB1 was running at 50 MHz. The algorithm
was so partitioned that µB0 receives the whole data to be
sorted. It then divides the data into two parts and sends
the second part to µB1. Both then sort their partition. µB0
forwards its sorted part of the list to µB1, which sends the
final combined sorted list via the virtual-IO 2 to the host PC.
With this partition, the overall power consumption could be
reduced by 6.43% and the energy consumption by 4.51%
compared to the single processor reference system.

The second partition, called Dual 5 (95 MHz), uses the
virtual-IO 5 to send incoming data to both processors
running at 95 MHz. µB0 searches the list for elements smaller
than and µB1 searches the list for elements bigger than, the
pivot. When one has found an element the position of this
element is sent to the other processor. Both processor then
update their lists by swapping the own-found element with
the one the other processor has found. At the end, both
processors have, as a result, a searched list. µB0 then sends
its resulting list back to the host PC via the virtual-IO 5.
The power consumption of this version is nearly the same
as the reference system while the total execution time and,
therefore, the energy consumption increase.

Table 14 shows the result for the partitioning of the NCC
algorithm onto two processors. The first partitioning uses
the virtual-IO 3 to partition the incoming image into two
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Table 16: First approach for a developers guideline.

Algorithm classifiers Example algorithm Processor configuration Task distribution

(i) Comparators
Quicksort RP + AU Dual 2 (80/50 MHz)

(ii) Branch and bound

(i) Complex arithmetic NCC AU Uniprocessor (100 MHz)

(i) Comparators
DIALIGN Default (V4), AU (V5) Dual 6 (50 MHz)

(ii) Basic arithmetic

(i) Floating point
ANN AU + FPU Needs to be explored

(ii) Complex arithmetic

overlapping tiles, one for each processor. The overlapping
part is sent to both processors simultaneously. As the NCC
is a window-based image processing algorithm, the boarder
pixels between the two tiles are needed by both processors.
Each of the processors runs at 54 MHz, which results in a
similar execution time, and also in a similar total power and
energy consumption as the reference design.

The second partition, called Dual 2 (87,5/50 MHz), uses
virtual-IO 2 to send the whole image to µB0. µB0 runs at
87.5 MHz and calculates the complete numerator and the
denominator. Then, it forwards both to µB1, which does the
division and sends the results back to the virtual-IO 2. µB1
runs at 50 MHz. While the execution time is nearly the same,
the overall power consumption is increased slightly by 2.12%
and the energy consumption by 1.93%.

Table 15 shows the result for executing the DIALIGN
algorithm with two processors. Two partitions were done.
The first one is called Dual 5 (50 MHz) and uses virtual-
IO 5 to send the incoming sequences to both processors
running at 50 MHz. Each processor calculates half of the
resulting score matrix. µB0 calculates on a row-based fashion
all values above the main diagonal. µB1 calculates in a
column-based fashion all values below the main diagonal.
The scores on the main diagonal are calculated by both
processors. After µB0 has finished calculating one row and
µB1 one column respectively, they exchange the first score
nearest to the main diagonal, as this score is needed by both
processors for calculating the next row/column, respectively.
While the execution time is nearly the same, the overall
power consumption is increased by 3.95% and the energy
consumption by 3.77%.

The second partition is called Dual 6 (50 MHz). It uses
the virtual-IO 6 to send the sequences to the processors,
which run both at 50 MHz. Here, a systolic array approach
is used for executing the DIALIGN algorithm. µB1 then
sends the final alignment and the score back to the host PC.
With this partition, the overall power consumption could be
reduced by 2.12% and the energy consumption by 2.28%
compared to the single processor reference system.

6.4. First Approach for a Developers Guideline. Table 16 is
a first approach for a developer’s guideline based on the
exploration results done so far.

This guideline will be extended, by exploring more types
of algorithms, more different FPGA families, and more
detailed explorations for the processor configurations.

7. Conclusions and Outlook

This paper reports the research and evaluation of different
microprocessor parameterization, application, and data par-
titioning on FPGA-based processor systems. Two different
FPGA families are explored: Xilinx Virtex-4 and Virtex-5
FPGAs. The results of the experiments show the impact of
the different parameterization on the power dissipation and
energy consumption as well as performance in relation to a
set of selected applications. Depending on the application
type, it can be seen that different parameter configura-
tions, for example configuration of the processors and
their frequencies, but also a good application partitioning,
are essential for achieving an efficient tradeoff between
performance and power constraints. The results can be
used to guide developers which parameter set suits to a
certain application scenario, as was shown in Table 16.
One important aspect studied in this work is the energy
consumption of the different designs. In the experiments
performed, it is noticed that the correct choice of the
microprocessor configuration can lead to an economy of
up to 90% of the energy consumption. This is significant
especially regarding embedded applications, which normally
depend on batteries to the power supply. Furthermore, the
results show that for the selected FPGAs, DFS without any
scheme to reduce the voltage is poorly interesting in terms of
energy consumption. Under this condition for reducing the
energy consumption, the policy should be compute as fast
as possible and with the appropriate processor configuration
and then to shut the power down.

The vision is that more application scenarios will be
analyzed in order to provide a broad overview of the
parameter impact. It is envisioned to extend existing
hardware benchmarks from different application domains in
terms of a parameterization guideline also for further FPGA
series from Xilinx.

In addition, the paper provides a tutorial for the
estimation of the power consumption on a high level of
abstraction, but with a high accuracy through postplace and
route simulation. Therefore, other research in this area can
be done and exchanged in the community.
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