

Programa Multiinstitucional e Inter-Regional de Pós-Graduação em Ciências Contábeis

RODRIGO FONTENELLE DE ARAÚJO MIRANDA

RELAÇÃO ENTRE INCONFORMIDADES NOS GASTOS PÚBLICOS DO PROGRAMA BOLSA FAMÍLIA E INDICADORES SOCIAIS DOS MUNICÍPIOS: Uma análise a partir das ações de controle realizadas pela CGU

Orientadora: Professora Dra. Fátima de Souza Freire

BRASÍLIA 2011

UNIVERSIDADE DE BRASÍLIA - UnB

Reitor:

Professor Doutor José Geraldo de Sousa Júnior

Vice-Reitor:

Professor Doutor João Batista de Sousa

Decana de Pesquisa e Pós-Graduação:

Professora Doutora Denise Bomtempo Birche de Carvalho

Diretor da Faculdade de Economia, Administração e Contabilidade:

Professor Doutor Tomás de Aquino Guimarães

Chefe do Departamento de Ciências Contábeis e Atuariais:

Professor Mestre Wagner Rodrigues dos Santos

Coordenador Geral do Programa Multiinstitucional e Inter-regional de Pós Graduação em Ciências Contábeis da UnB, UFPB e UFRN

Professora Doutora Fátima de Souza Freire

Programa Multiinstitucional e Inter-Regional de Pós-Graduação em Ciências Contábeis

RODRIGO FONTENELLE DE ARAÚJO MIRANDA

RELAÇÃO ENTRE INCONFORMIDADES NOS GASTOS PÚBLICOS DO PROGRAMA BOLSA FAMÍLIA E INDICADORES SOCIAIS DOS MUNICÍPIOS: Uma análise a partir das ações de controle realizadas pela CGU

Dissertação apresentada como requisito parcial à obtenção do título de Mestre em Ciências Contábeis do Programa Multiinstitucional e Inter-Regional de Pós-Graduação em Ciências Contábeis da Universidade de Brasília, da Universidade Federal da Paraíba e da Universidade Federal do Rio Grande do Norte.

Linha de Pesquisa: Impactos da Contabilidade

na Sociedade

Grupo de Pesquisa: Políticas Públicas

Orientadora: Prof.ª Dra. Fátima de Souza Freire

BRASÍLIA 2011 Miranda, Rodrigo Fontenelle de Araújo

Relação Entre Inconformidades Nos Gastos Públicos Do Programa Bolsa Família E Indicadores Sociais Dos Municípios: Uma Análise A Partir Das Ações De Controle Realizadas Pela CGU / Rodrigo Fontenelle de Araújo Miranda – Brasília, DF, 2011. 163 f.

Orientadora: Prof.ª Dra. Fátima de Souza Freire

Dissertação (mestrado) — Universidade de Brasília. Faculdade de Economia, Administração e Ciências Contábeis e Atuariais — FACE. Programa Multiinstitucional e Inter-Regional de Pós-Graduação em Ciências Contábeis (UnB/UFPB/UFRN).

1. PROGRAMA BOLSA FAMÍLIA. 2. CGU. 3. GASTOS SOCIAIS. 4. CORRUPÇÃO. 5. CONTROLE INTERNO. I. FREIRE, Fátima de Souza. II. Universidade de Brasília. III. Universidade Federal da Paraíba. IV. Universidade Federal do Rio Grande do Norte. V. Título.

RODRIGO FONTENELLE DE ARAÚJO MIRANDA

RELAÇÃO ENTRE INCONFORMIDADES NOS GASTOS PÚBLICOS DO PROGRAMA BOLSA FAMÍLIA E INDICADORES SOCIAIS DOS MUNICÍPIOS: Uma análise a partir das ações de controle realizadas pela CGU

Dissertação apresentada ao Programa Multiinstitucional e Inter-Regional de Pós-Graduação em Ciências Contábeis da Universidade de Brasília, Universidade Federal da Paraíba e Universidade Federal do Rio Grande do Norte como requisito para a obtenção do título de Mestre em Ciências Contábeis

Professora Doutora Fátima de Souza Freire
Programa Multiinstitucional e Inter-regional de Pós-Graduação em Ciências Contábeis da UnB/UFPB/ UFRN (Presidente da Banca)

Professor Doutor José Matias Pereira

Programa Multiinstitucional e Inter-regional de Pós-Graduação em Ciências Contábeis da UnB/UFPB/ UFRN (Membro Examinador Interno)

Professor Doutor João Baptista da Costa Carvalho

Programa de Pós-Graduação em Administração da Universidade de Brasília (Membro Examinador Externo)

Brasília, 10 de novembro de 2011.

Aos meus pais, pelo exemplo e por me darem todas as condições para minha formação e à Letícia, pelo amor, paciência e apoio constante.

AGRADECIMENTOS

À Deus, por nos momentos em que mais precisei, me "carregar no colo".

Ao meu pai, por me ensinar que quando se quer uma coisa, tem que lutar pra conseguir, à minha querida mãe (*in memoriam*), por mesmo de longe me mostrar todos os caminhos que deveria seguir e à Tetê, pelo carinho comigo e companheirismo com meu pai.

Ao Vô Zezé (*in memoriam*), pelas conversas na fazenda, momentos de grande aprendizado (que falta isso faz!), ao Vô Mundo (*in memoriam*), pelo otimismo e por me ensinar que devemos aproveitar cada momento da vida, à minha Vó Lú, exemplo de força e à Vó Lourdes (*in memoriam*), pelo carinho.

À minha irmã, Beta, pela cumplicidade e por estar sempre comigo (Agora é nós dois, lembra?!?!), e aos meus lindos sobrinhos Mateus e Cauã.

À minha tchuca Letícia, por não desistir e por me apoiar sempre.

Agradeço à minha orientadora, Prof.^a Dr.^a Fátima de Souza Freire, por acreditar no trabalho e dar força naqueles momentos em que o "gás" estava acabando, e ao Prof. Dr. César Augusto Tibúrcio Silva, pela imensa contribuição, quando, mesmo que "sem obrigação", confiou no trabalho e deu opiniões fundamentais para sua realização.

À Renilda e ao Samuel, da CGU, pelo apoio durante todo o mestrado e, principalmente, no início, com palavras de incentivo que não me deixaram desistir.

À Lud, pela imensa contribuição com a parte econométrica e por todas as conversas, e à Bel, por ter tornado a vida de nós mestrandos muito menos difícil, com suas dicas, apoio e amizade.

Ao Pacelli, companheiro de luta no mestrado e na CGU, pelo exemplo de dedicação e disciplina, e aos meus amigos e colegas da 19ª Turma: LF, Flavinha, Lú, Glauber, Ed, Clésio, Odair e Michele.

A todos os professores do curso que de alguma forma contribuíram para o meu aprendizado, em especial ao Prof. Dr. Paulo Roberto Barbosa Lustosa e ao Prof. Dr. César Augusto Tibúrcio Silva.

7

Aos meus grandes amigos André e Marquinhos, por meio dos quais agradeço a todos os outros que

de alguma forma participaram das angústias e batalhas que se vive ao fazer um mestrado.

À equipe do 34° Sorteio de Municípios da CGU: Taís, Betão, Max, Thiago, Rafa, Francisco e Jorge,

pelos incríveis momentos vividos no interior da Amazônia, o que me possibilitou ter outra visão do

Programa Bolsa Família.

A todos os funcionários da Faculdade de Economia, Administração e Contabilidade (FACE) e ao

pessoal da Secretaria de Pós-graduação.

Àqueles que eu tenha me esquecido de citar, porém foram de suma importância para a conclusão de

mais essa etapa.

O MAIS SINCERO OBRIGADO!!!

"Para ser grande, sê inteiro: nada Teu exagera ou exclui.

Sê todo em cada coisa. Põe quanto és No mínimo que fazes.

> Assim em cada lago a lua toda Brilha, porque alta vive."

> > Fernando Pessoa

"Se você quer ser bem sucedido, precisa ter dedicação total, buscar seu último limite e dar o melhor de si mesmo."

Ayrton Senna

RESUMO

A corrupção é um fenômeno que atinge uma escala mundial, principalmente a partir da intensificação das relações internacionais. Analogamente, a pobreza e a desigualdade também são problemas multidimensionais e complexos, sendo reconhecidamente agravados por fraudes, desvios, irregularidades e inconformidades na aplicação de recursos públicos. A extinção da pobreza tem sido um desafio para a humanidade e a miséria um impeditivo para o desenvolvimento. Diversas alternativas têm sido implementadas em busca de uma solução para solucioná-la, como os Programas de Transferência de Renda Condicionada - PTC, que no Brasil foi denominado Programa Bolsa Família - PBF. Dentre os vários controles exercidos na execução das despesas públicas do País está o realizado pela Controladoria-Geral da União -CGU, Órgão Central do Sistema de Controle Interno do Poder Executivo Federal. Nesse sentido, a partir de 780 relatórios emitidos pelos analistas dessa Controladoria, quando da fiscalização de municípios por meio de Sorteios Públicos nos anos de 2006 a 2010, objetivou-se verificar a relação entre os indicadores sociais e geoeconômicos das localidades fiscalizadas e o número de irregularidades encontradas na gestão do Programa Bolsa Família. Para isso, essas inconformidades foram qualificadas como falhas graves ou falhas médias. Como resultado foi verificado que há uma forte correlação positiva entre o número de falhas (tanto graves, quanto médias) detectadas e o Índice de Gini, o que demonstra que aqueles municípios com maiores desigualdades sociais tendem a apresentar mais inconformidades. Observou-se também que as cidades maiores, em geral, possuem menos falhas do que as menores. Em relação ao volume de recursos recebidos pelo município e fiscalizado pela CGU, encontrou-se relação positiva entre essa variável e as falhas graves, não sendo observado o mesmo, entretanto, quando a comparação foi realizada com as falhas médias. Ressalta-se que não foi verificada relação entre o número de irregularidades encontradas nos municípios na gestão do PBF e seu Produto Interno Bruto. Esses resultados permitem a focalização, tanto da execução das políticas públicas quanto do controle nelas exercido, naqueles municípios que apresentam maior probabilidade de serem verificadas falhas, devido a seus indicadores sociais.

Palavras-chave: Programa Bolsa Família. CGU. Gastos Sociais. Corrupção. Controle Interno.

ABSTRACT

Corruption became a worldwide phenomenon, mainly from the strengthening of international relations. Similarly, poverty and inequality are also multidimensional and complex problems, admittedly compounded by fraud, embezzlement, irregularities and lack of conformity in the application of public resources. The extinction of poverty has been a challenge for humanity and an obstacle to development. Among the various alternatives that have been implemented in search of a solution to solve it are the programs of conditional cash transfer - CCT, which was named in Brazil as Bolsa Família Program - PBF. Among the various controls exercised in the execution of public expenditure in the country is the one held by the General Controllers Office - CGU, the internal control organ of the federal executive. From 780 reports issued by analysts of CGUs, collected from the Sample-Random Oversight Program in the years 2006 to 2010, this work aimed to investigate the relationship between social and geoeconomic indicators of municipalities audited and the number of irregularities found in the Bolsa Família management. To this end, qualified non-conformities in serious and medium failures. As a result it was found that there is a strong positive correlation between the number of failures (serious and medium) detected and the Gini coefficient, which shows that those municipalities with greater social inequalities tend to have more non-conformities. It was also noted that larger cities generally have fewer crashes than smaller ones. Regarding the amount of funding received by the municipality and supervised by the CGU, found a positive relationship between this variable and the serious flaws. However, when the comparison was done with the failures averages, this relationship was not found. It is noteworthy that no relationship was found between the number of irregularities found in the municipalities in the management of the PBF and its Gross Domestic Product - GDP. These results allow the focus of both carrying out public policies and the control exercised on them, in those municipalities that are more likely to be observed failures, due to its social indicators.

Keywords: Bolsa Família Program. CGU. Social Spending. Corruption. Internal Control.

LISTA DE FIGURAS

Figura 1 - Famílias Beneficiadas pelo PBF – Comparativo 2004-2010	35
Figura 2 - Supervisão e controle no PBF	43
Figura 3 - Evolução do Recurso Investido no Bolsa Família	44
Figura 4 - Evolução das famílias do Bolsa Família	45
Figura 5 - Organograma da CGU	47
Figura 6 - Interação das Competências da CGU	48
Figura 7 - Percentual de municípios constantes na amostra por regiões do País	53
Figura 8 - Histograma	67
Figura 9 – Principais falhas encontradas nos municípios	68

LISTA DE QUADROS

Quadro 1 - Benefícios financeiros concedidos	38
Quadro 2 - Grupo de funções da despesa a serem objeto de fiscalização	50

LISTA DE TABELAS

Tabela 1 - Estatística Descritiva	66
Tabela 2 - Correlação – falhas graves	69
Tabela 3 - Correlação - falhas médias	70
Tabela 4 - Resultado da estimação da equação (1)	71
Tabela 5 - Resultado da estimação da equação (3)	72
Tabela 6 - Resultado da estimação da equação (4)	74
Tabela 7 - Resultado da estimação das equações (3) e (4) para a Região Norte	74
Tabela 8 - Resultado da estimação das equações (3) e (4) para a Região Nordeste	76
Tabela 9 - Resultado da estimação das equações (3) e (4) para a Região Centro-Oeste	77
Tabela 10 - Resultado da estimação das equações (3) e (4) para a Região Sudeste	78
Tabela 11 - Resultado da estimação das equações (3) e (4) para a Região Sul	79

LISTA DE ABREVIATURAS E SIGLAS

BVJ Benefício Variável Vinculado ao Adolescente

CEF Caixa Econômica Federal

CEPAL Comissão Econômica para América Latina e Caribe

CF Constituição Federal

CGU Controladoria-Geral da União

CNIS Cadastro Nacional de Informações Sociais

FFE Food for Education

FMI Fundo Monetário Internacional

IBGE Instituto Brasileiro de Geografia e Estatística

ICS Instância de Controle Social

IDH Índice de Desenvolvimento Humano

IFAC Federação Internacional de Contadores

IGD Índice de Gestão Descentralizada

INEP Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira

INTOSAI Organização Internacional das Entidades Superiores de Fiscalização

IPC Índice de Percepção da Corrupção

IPEA Instituto de Pesquisa Econômica Aplicada

LOA Lei Orçamentária Anual

MDS Ministério do Desenvolvimento Social e Combate à Fome

MP Ministério Público

NIS Número de Identificação Social

OECD Organização para Cooperação e Desenvolvimento Econômico

ONU Organização das Nações Unidas

PBF Programa Bolsa Família

PETI Programa de Erradicação do Trabalho Infantil

PIB Produto Interno Bruto

PNAA Programa Nacional de Acesso à Alimentação
PNAD Pesquisa Nacional por Amostra de Domicílios

PNUD Programa das Nações Unidas para o Desenvolvimento

PPA Plano Plurianual

PTC Programa de Transferência de Renda Condicionada

RAIS Relação Anual de Informações Sociais

SFC Secretaria Federal de Controle Interno

SIC Sistema de Controle Interno

SPSS Statistical Package for the Social Sciences

TCU Tribunal de Contas da UniãoTI Transparência Internacional

VIF Fator de Inflação da Variância

SUMÁRIO

LISTA DE FIGURAS	11
LISTA DE QUADROS	12
LISTA DE TABELAS	13
LISTA DE ABREVIATURAS E SIGLAS	14
1 INTRODUÇÃO	18
1.1 Contextualização	18
1.2 Objetivos da pesquisa	21
1.2.1 Objetivo Geral	21
1.2.2 Objetivos Específicos	21
1.3 Hipóteses.	21
1.4 Justificativa e Relevância	22
1.5 Delimitação da pesquisa	23
1.6 Organização do trabalho	24
2 REFERENCIAL TEÓRICO	25
2.1 Corrupção e Gestão Pública	25
2.2 Pobreza e Gastos Sociais	29
2.2.1 Programas de Transferência de Renda Condicionada no Mun	do31
2.2.2 O Programa Bolsa Família	33
2.3 O Sistema de Controle Interno do Poder Executivo Federal	45
2.3.1 Programa de Fiscalização por Sorteios Públicos realizados	
pela CGU	49
3 METODOLOGIA	51
3.1 Seleção da Amostra	51
3.2 Classificação das Irregularidades Encontradas	53
3.2.1 Distinção entre Falhas Graves e Médias	54
3.2.1.1 Falhas Graves	54
3.2.1.2 Falhas Médias	57
3.3 Análise de Conteúdo	60
3.4 Análise Empírica	61
3.4.1 Definição das Variáveis Dependentes	61
3.4.2 Definição das Variáveis Independentes	62
3.4.3 Modelos Econométricos.	64

4 RESULTAI	OOS E ANÁLISES	66
4.1 Esta	tística Descritiva	66
4.2 Com	relações	68
4.3 Infe	rência Estatística	70
4	4.3.1 Brasil	71
4	1.3.2 Regiões	74
5 CONSIDER	AÇÕES FINAIS	80
REFERÊNCIA	S	84
ANEXOS		92
APÊNDICE		126

1 INTRODUÇÃO

1.1 Contextualização

A partir da segunda metade do século XX, diferentes abordagens e conjunturas têm sido desenvolvidas por economistas e cientistas políticos a cerca dos motivos que levam os agentes públicos a desviarem recursos para fins privados, tais como Nye (1967), Rose-Ackerman (1999), entre outros. Nessas agendas, as causas quase sempre são atribuídas à questões culturais e históricas, ao nível de desenvolvimento econômico ou às características das instituições públicas de cada país.

Pesquisas empíricas como as de Mauro (1995) e Treisman (2000), entre outras realizadas nas duas últimas décadas demonstraram que cidadãos e empresários têm uma percepção de que países que apresentam alto desenvolvimento econômico, longo período de democracia e de abertura ao comércio internacional, liberdade de imprensa e elevado percentual de mulheres no governo tendem a ser menos corruptos. Analogamente, atribuem um alto grau de corrupção àqueles países que dependem de exportações de combustível, que apresentam histórico de inflação elevada e que possuem regulamentos empresariais intrusivos.

Everett et al (2007) argumentam que nas últimas décadas diversos atores institucionais como Banco Mundial, Fundo Monetário Internacional - FMI, Organização para Cooperação e Desenvolvimento Econômico - OECD, além de organizações não governamentais como a Transparência Internacional - TI, entre outros, têm se envolvido ativamente no combate à corrupção. Os autores destacam, entretanto, que a contabilidade e seus atores parecem estar dispostos, também, a se engajar nessa batalha. "Contadores devem estar na vanguarda da luta contra a corrupção doméstica e internacional" (ICAEW, 2002 apud EVERETT et al, 2007). Na mesma linha, Borge (1999) argumenta que os auditores e seus trabalhos de auditoria são elementos significativos para a redução da fraude e da corrupção.

Portanto, a contabilidade tem o potencial de fornecer uma forma alternativa de accountability econômico de um modo mais sintonizado com as necessidades das reais vítimas da corrupção (EVERETT et al, 2007). Nesse sentido, os autores reconhecem que haveria diversos problemas para que entidades como a Organização Internacional das Entidades Superiores de Fiscalização - INTOSAI e a Federação Internacional de Contadores - IFAC desenvolvessem e implementassem iniciativas que atendessem com mais efetividade as necessidades das vítimas da corrupção. No entanto, alertam que esses problemas não serão

resolvidos se não houver um primeiro reconhecimento e consciência do fato de que a visão atual do campo da contabilidade é limitante.

A corrupção é considerada como a principal causa da pobreza e também como uma barreira para superá-la. Objetivando solucionar, ou pelo menos amenizar as necessidades primárias das famílias nessas condições, diversas iniciativas têm sido implementadas, tais como os Programas de Transferência de Renda Condicionada - PTC. Segundo o *International Policy Centre for Inclusive Growth* (2011), atualmente esse tipo de programa está presente em mais de 50 países, incluindo Ásia, África, América Latina e Caribe. Entretanto, como qualquer política pública, faz-se necessário não apenas um bom planejamento e delimitação desse tipo de programa, mas também um controle rígido dos gastos despendidos pelo poder público.

No Brasil, o tema *controle* tornou-se mais relevante a partir da promulgação da Constituição Federal – CF, em 1988. Em diversos artigos ao longo da CF (1988) pode-se observar a importância dada pelo constituinte aos controles internos e externos que devem ser realizados na busca da eficiência, eficácia e economicidade dos programas e ações públicas. A título de exemplo, o artigo 70 da CF (1988) determina que a fiscalização contábil, financeira, orçamentária, operacional e patrimonial da União e das entidades da administração direta e indireta, será exercida pelo Congresso Nacional, mediante controle externo, e pelo sistema de controle interno de cada Poder (CF, 1988).

Em relação ao poder executivo, a Lei nº 10.180 (2001) organizou e disciplinou o Sistema de Controle Interno do Poder Executivo Federal. Dentre suas diversas finalidades estão a avaliação do cumprimento das metas estabelecidas no plano plurianual, da execução dos programas de governo e dos orçamentos da União, entre outras. Em relação à organização, a supracitada lei estabeleceu a Secretaria Federal de Controle Interno como sendo o Órgão Central desse sistema. Essa atribuição passou a ser da Controladoria-Geral da União - CGU, a partir da incorporação dessa Secretaria pela Controladoria, em 2002.

A CGU é responsável por assistir direta e imediatamente ao Presidente da República quanto aos assuntos que, no âmbito do Poder Executivo, sejam relativos à defesa do patrimônio público e ao incremento da transparência da gestão, por meio das atividades de controle interno, auditoria pública, correição, prevenção e combate à corrupção e ouvidoria (BRASIL, 2011).

Dentre as diversas ações de controle realizadas pelo órgão objetivando o cumprimento de suas responsabilidades está o Programa de Fiscalização a partir de Sorteios Públicos, instituído em 2003, e que objetiva verificar, periodicamente e de forma aleatória, a execução dos gastos públicos federais repassados a Estados e Municípios da federação.

Com o objetivo de ser o elo entre o instrumento de planejamento governamental de médio prazo, o Plano Plurianual - PPA, e a Lei que fixa as despesas e estima as receitas para cada exercício, a Lei Orçamentária Anual - LOA, criou-se o Programa, definido como sendo "o instrumento de organização da atuação governamental que articula um conjunto de ações que concorrem para a concretização de um objetivo comum preestabelecido (...)" (SOF, 2010).

Assim, segundo Miranda et al (2010), o PPA organiza a atuação governamental em Programas, que possuem metas físicas e financeiras para uma perspectiva de quatro anos, e a LOA, anual, detalha tal organização, pormenorizando os elementos necessários para possibilitar a alocação de recursos de forma transparente e responsável, com vistas ao alcance dos objetivos e resultados pretendidos.

Um dos programas que são objeto de verificação por parte da CGU, desde sua criação, em 2004, é o Programa Bolsa Família – PBF. Esse programa, criado pela Lei n.º 10.836 (2004), unificou diversas ações preexistentes de transferência de renda no Governo Federal e, dada sua relevância, materialidade e capilaridade, se tornou o principal programa social finalístico do governo federal. Em 2010, o PBF beneficiou mais de 12 milhões de famílias e o orçamento da União para 2011 prevê quase 14 bilhões de reais para a execução do programa. Esse valor corresponde a quase 88% de todo o orçamento federal destinado a programas sociais finalísticos para o exercício de 2011.

Nesse sentido, o presente estudo objetiva analisar, utilizando-se dos relatórios de fiscalização emitidos a partir de ações de controle realizadas pela Controladoria-Geral da União, quando da verificação da execução dos gastos do Programa Bolsa Família nos municípios brasileiros, as principais inconformidades encontradas naquelas localidades, confrontando o quantitativo e o qualitativo dessas constatações com os principais indicadores sociais e geoeconômicos de cada município.

Deve-se ressaltar, no entanto, que nem todas as irregularidades encontradas devem ser tratadas como corrupção propriamente dita, ou seja, como atos deliberados de fraude ou desvio de recursos (SODRÉ; ALVES, 2010). Contudo, as irregularidades apontam falta de controle adequado da administração dos recursos municipais e esse descaso ou ineficiência na gestão acoberta a corrupção, dificulta a *accountability* e facilita a ação de agentes corruptores.

Pelo exposto, tem-se a seguinte questão de pesquisa: qual a relação existente entre os indicadores sociais e geoeconômicos dos municípios brasileiros e o número de irregularidades encontradas pelos analistas da Controladoria-Geral da União, nessas localidades, na gestão do Programa Bolsa Família?

1.2 Objetivos da Pesquisa

1.2.1 Objetivo Geral

A partir dos problemas de pesquisa levantados, o objetivo geral do estudo é verificar a relação existente entre os indicadores sociais e geoeconômicos dos municípios brasileiros e o número de irregularidades encontradas pelos analistas da CGU, nessas localidades, na gestão do Programa Bolsa Família.

1.2.2 Objetivos Específicos

Para se atingir o objetivo geral do estudo é necessário o cumprimento dos seguintes objetivos específicos:

- a) verificar a relação entre o volume de recursos recebidos referentes ao PBF e o nível de irregularidades encontradas nos municípios;
- b) verificar, por regiões do País, a relação entre os indicadores sociais e geoeconômicos e as irregularidades encontradas nos municípios.

1.3 Hipóteses

Segundo Smith (2003), hipóteses são supostos relacionamentos, possivelmente causais, entre duas ou mais variáveis ou conceitos, que podem ser testados. Nesse sentido, o presente estudo propõe que sejam testadas as seguintes hipóteses:

- I. Municípios que possuem um maior Índice de Desenvolvimento Humano IDH¹ apresentam menos inconformidades (falhas graves e médias) nas fiscalizações realizadas pelos analistas da CGU.
- II. Municípios que possuem um **maior** Índice de Gini ² apresentam **mais** inconformidades.

¹ Medida de riqueza, alfabetização, educação, natalidade e longevidade, entre outros fatores, utilizada pelo PNUD como forma de comparação dos diversos países do mundo. O IDH vai de 0 (nenhum desenvolvimento humano) a 1 (desenvolvimento humano total). Quanto mais próximo de 1, mais desenvolvido é o país.

² Mede o grau de desigualdade existente na distribuição de indivíduos segundo a renda domiciliar per capita. Seu valor varia de 0, quando não há desigualdade (a renda de todos os indivíduos tem o mesmo valor), a 1, quando a desigualdade é máxima (apenas um indivíduo detém toda a renda da sociedade e a renda de todos os outros indivíduos é nula).

- III. Municípios que possuem um maior Produto Interno Bruto PIB apresentam menos inconformidades.
- IV. Municípios com população maior apresentam menos inconformidades.
- V. Municípios que recebem **mais** recursos federais apresentam **mais** inconformidades.

Os conceitos de falhas graves e médias, bem como os indicadores sociais e geoeconômicos utilizados no estudo são explicados na metodologia de pesquisa. A verificação dessas hipóteses é realizada para uma amostra aleatória de municípios de todo o Brasil e também uma amostra estatística específica para cada uma das cinco regiões do País.

1.4 Justificativa e Relevância

A relevância deste trabalho está na busca pela descoberta de indicadores sociais e geoeconômicos que influenciem no aumento da corrupção existente em cada município, aqui medida a partir das irregularidades encontradas pelos analistas da CGU quando da fiscalização nessas localidades. A confirmação das hipóteses elencadas no item 1.3 possibilitará, entre outros ganhos, auxiliar na política pública desempenhada pelo PBF, permitindo ao Ministério do Desenvolvimento Social e Combate à Fome – MDS, responsável pelo Programa, o aprimoramento do controle primário exercido naqueles municípios onde há maior probabilidade de serem encontradas inconformidades. Analogamente, permitirá à CGU focar suas ações sistemáticas³ de controle nas localidades onde estatisticamente as irregularidades tendem a ser maiores, aumentando a eficiência de suas auditorias.

Para a OECD (2005), a corrupção se tornou uma questão de grande e importante significado político e econômico e a necessidade de se tomar medidas contra ela tornou-se evidente. A Transparência Internacional (2005) considera a corrupção como a principal causa da pobreza assim como uma barreira para superá-la.

Segundo a Comissão Econômica para América Latina e Caribe - CEPAL (2010), o Programa Bolsa Família é um dos maiores programas nacionais já implementados no mundo, cujo êxito surpreende pela abrangência do número de indivíduos assistidos.

O sorteio de fiscalização de municípios realizados pela CGU, da mesma forma, tem sido reconhecido como uma ação extremamente eficaz no controle dos gastos públicos, por sua

³ Segundo o Manual de Controle Interno da Controladoria-Geral da União (BRASIL, 2007b), uma das ações de controle regulares conduzidas pela CGU é o acompanhamento sistemático dos programas de governo e a atuação dos órgãos responsáveis, trabalhos que além de possuírem forte caráter de prevenção, atendem ao propósito de auxiliar os gestores federais na identificação das fragilidades existentes nas ações governamentais, ampliando as possibilidades de correção e revisão de rumos.

aleatoriedade, abrangência e capacidade de incentivar o controle social, sendo uma das armas mais eficientes do combate à corrupção no País.

Conforme será verificado no referencial teórico, diversos estudos já tiveram como objeto o PBF mas, em sua maioria, procuraram verificar a efetividade dos gastos públicos desse programa. Há também alguns trabalhos que utilizaram o número de irregularidades encontradas pela CGU como medida de corrupção, embora não tenham o PBF como foco. Dessa forma, até o momento, nenhum estudo procurou identificar uma relação entre inconformidades levantadas pelos analistas da Controladoria e os indicadores sociais e geoeconômicos dos municípios fiscalizados, o que demonstra a relevância e contribuição deste trabalho.

1.5 Delimitação da Pesquisa

A fonte primária dos dados coletados para o desenvolvimento da pesquisa foram os relatórios de fiscalização de municípios emitidos pela CGU quando da realização do Programa de Fiscalização a partir de Sorteios Públicos daquela Controladoria. Para a amostra inicial, conforme é demonstrado ao longo da dissertação, foram utilizados os relatórios do 20° ao 32° sorteio. Esses relatórios, além de fornecerem a matéria-prima para uma análise qualitativa e quantitativa das irregularidades encontradas em cada localidade, também evidenciou o volume de recursos transferidos e fiscalizados em cada município.

Ressalta-se que o foco da análise dos relatórios supracitados foi o PBF, sendo contabilizadas apenas as irregularidades referentes a esse programa. Destaca-se também que, para o presente estudo considerou-se as palavras *irregularidade*, *inconformidade* e *constatação* como sendo sinônimas, sendo utilizadas as divisões *falha grave* e *falha média* para diferenciar a gravidade dessas inconformidades.

Já os indicadores sociais e geoeconômicos usados na pesquisa foram retirados do Atlas de Desenvolvimento Humano no Brasil⁴ (PNUD, 2010) e do sítio do Instituto Brasileiro de Geografia e Estatística – IBGE (2010). Quando disponíveis, as bases de dados utilizadas foram as de 2008, por ser o ano que representava a mediana do período dos relatórios dos sorteios da CGU, que datam de 2006 a 2010. Em relação ao IDH e Índice de Gini dos municípios, foram utilizadas as últimas informações disponíveis até o encerramento da coleta de dados, que se referem ao ano 2000.

.

⁴ Projeto elaborado pela Fundação João Pinheiro – FJP, em parceria com Programa das Nações Unidas para o Desenvolvimento – PNUD e o Instituto de Pesquisas Econômicas Aplicadas – IPEA.

1.6 Organização do Trabalho

Após a apresentação desta introdução, o estudo é dividido em outras quatro seções, além dos anexos e apêndice. Na Seção 2 é apresentado o referencial teórico, que contempla estudos realizados nas áreas de corrupção, gastos sociais, programas de transferência de renda condicionada e controle interno, assim como trabalhos referentes ao PBF. A Seção 3 demonstra a metodologia utilizada no trabalho, apresentando os procedimentos realizados para a coleta de dados, eleição da amostra, justificativas para os critérios qualitativos utilizados na classificação das irregularidades encontradas nos municípios e explicação das variáveis escolhidas para a estimação dos modelos econométricos. Por fim, na Seção 4 são apresentados os resultados e as análises das regressões estimadas e na Seção 5 são feitas as considerações finais da pesquisa.

2 REFERENCIAL TEÓRICO

2.1 Corrupção e Gestão Pública

Pensar uma teoria política significa não apenas construir conceitos que permitam interpretar determinada realidade empírica, segundo Filgueiras (2008), mas também apontar um caminho para o qual a política deve seguir. Nesse sentido, na tradição do pensamento político ocidental não há consenso a respeito do que vem a ser corrupção e, por esse motivo, não se pode falar em uma teoria política da corrupção, mas de diferentes abordagens deste problema de acordo com fins normativos especificados em conceitos e categorias.

Pode-se dizer que a partir da segunda metade do século XX as pesquisas sobre corrupção estão organizadas em duas agendas. A primeira está relacionada à teoria da modernização, que nasceu logo após a Segunda Guerra Mundial, e a segunda, baseada na teoria da escolha racional, que prevaleceu a partir da queda do Muro de Berlim (FILGUEIRAS, 2008).

A teoria da modernização relaciona o fenômeno corrupção aos processos de mudança social e representaria momentos de desfuncionalidade das instituições políticas. Essa teoria também analisa a relação custo/benefício da corrupção que, conforme destaca Nye (1967), pode ser benéfica ao desenvolvimento político se utilizada para superação de barreiras burocráticas, formação de capital privado e integração das elites políticas, entre outros.

Já a abordagem baseada na teoria da escolha racional está relacionada a uma nova agenda na qual são importantes os elementos para se pensar a reforma da política e economia a partir das orientações emanadas da democracia e do mercado. Essa abordagem contou, a partir da década de 1990, com o apoio de instituições como Banco Mundial e Fundo Monetário Internacional (FILGUEIRAS, 2008). Segundo Rose-Ackerman (1999), precursora dessa nova agenda, a corrupção está relacionada ao comportamento *rent-seeking* dos agentes políticos, os quais buscam maximizar sua renda privada, dentro ou fora das regras de conduta admitidas.

Independente do tipo de abordagem que se utiliza para explicar esse fenômeno, o fato é que a corrupção é um problema que atingiu uma escala mundial, principalmente a partir da intensificação das relações internacionais. Deixou de ser verificada apenas em determinadas regiões isoladas e passou a ser um problema que afeta a economia e a sociedade global. Dessa forma, uma vez que o problema identificado tornou-se de todos, fez-se necessária uma interação internacional no intuito de se buscar soluções conjuntas para prevenir e combater a corrupção. Conforme destacam Silva, Garcia e Bandeira (2001), esse fenômeno anda de mãos

dadas com ineficientes estruturas institucionais, que sufocam a eficácia do investimento público e privado.

Segundo Boll (2010), a corrupção é um fenômeno intrínseco às relações sociais e sua origem data dos primórdios da humanidade. Ela tende a produzir ineficiência e injustiça, contribuindo para o aumento das desigualdades e a perda de legitimidade dos governantes (PNUD, 2004). Nesse sentido, preocupados com as ameaças decorrentes da corrupção para a estabilidade e a segurança das sociedades, na medida em que enfraquece as instituições e os valores da democracia, da ética e da justiça e compromete o desenvolvimento sustentável e o Estado de Direito, os Estados Partes da Organização das Nações Unidas (ONU) assinaram, em dezembro de 2003, a Convenção das Nações Unidas contra a Corrupção (ONU, 2003).

O conceito de corrupção é tão amplo que, para não correr o risco de restringi-lo, a ONU, na mencionada Convenção contra a Corrupção, preferiu apresentar uma relação exemplificativa de diversos atos de corrupção, ao invés de defini-la. Pode-se dizer que há corrupção quando são utilizados bens públicos para fins privados (POWER; GONZÁLEZ, 2003), ou ainda quando há uma violação de padrões ou expectativas associadas à administração pública (JOHNSTON, 2005).

Em relação à como se dá esse fenômeno, Tanzi (1998) argumenta que a promoção da corrupção é verificada a partir de fatores diretos e indiretos. Fatores diretos incluem autorizações, tributação, decisões de gastos, a prestação de bens e serviços a preços abaixo do mercado e financiamento de partidos políticos. Já os indiretos seriam a qualidade da burocracia, o nível de salários dos funcionários públicos, as penalidades do sistema, os controles institucionais e a transparência das regras, leis e processos, entre outros.

Filgueiras (2009) afirma que a discussão acerca da temática da corrupção é recente, não havendo uma teoria da corrupção no Brasil, no plano dos pensamentos social e político brasileiros. Não há uma abordagem da corrupção no âmbito da política, da economia, da sociedade e da cultura de forma abrangente. Em geral, estudos sobre corrupção no Brasil são recentes, sem a pretensão de uma teoria geral, de cunho interpretativo e realizados a partir de abordagens comparativas e institucionalistas. Nesse sentido, é comum se referir ao problema do patrimonialismo para descrever corrupção, uma vez que se supõe que a tradição política brasileira não distingue o público do privado.

Entretanto, apesar de recente, a preocupação com a corrupção é crescente, o que pode ser comprovada por meio da criação de vários índices que objetivam medir e comparar dados correlacionados à corrupção em diferentes países. Ko e Samajdar (2010) encontraram evidências que a confiabilidade desses índices vem aumentando ao longo dos anos. Os autores

analisaram a metodologia de construção de indicadores como o Índice de Percepção da Corrupção - IPC, elaborado pela Transparência Internacional e o Índice de Controle da Corrupção, do Banco Mundial, entre outros, e verificaram que deficiências como o risco de seleção tendenciosa e erros de mensuração são comumente observados na elaboração desses índices, apesar da crescente melhora.

O IPC é o índice mais conhecido e utilizado nos estudos sobre corrupção, e compara o nível de corrupção percebida em cerca de 130 países. Entretanto, é subjetivo e elaborado a partir de opiniões expressas em questionários que são aplicados nos diversos países. (BOLL, 2010). Essa metodologia tem sido criticada por instituições públicas e privadas no Brasil, que atuam no combate à corrupção, justamente por se tratar de corrupção "percebida". A alegação é de que, quanto mais se combater a corrupção, maior será a exposição desse tema na mídia, levando a população a uma percepção de que ela está aumentando.

Segundo a abordagem funcionalista, predominante a partir da década de 1960 e baseada na teoria da modernização, conforme visto anteriormente, ao relacionar o desenvolvimento político e econômico com o tema corrupção, procura-se entender o modo como ela pode influenciar no desenvolvimento de sociedades tradicionais e subdesenvolvidas. A corrupção poderia cumprir uma função no desenvolvimento. Se mantida sob controle, poderia ser uma forma alternativa, encontrada pelos agentes políticos, de articular seus interesses junto à esfera pública. Ainda por essa abordagem, a corrupção seria típica de sociedade subdesenvolvidas, que seria aceita devido à baixa institucionalização política (FILGUEIRAS, 2009).

Entretanto, essa visão tem sido enterrada, como ressalta Morris (2004), por diversas pesquisas empíricas que demonstram que a corrupção mina não apenas o crescimento econômico, mas também as políticas que buscam o bem estar social.

Power e González (2003), na mesma linha, entendem que práticas corruptas estão geralmente mais enraizadas em países em desenvolvimento do que nos industrializados, o que dá origem a algumas questões. A primeira delas seria que a corrupção pode ser mais endêmica nos países pobres, não democráticos ou politicamente voláteis. Outra questão seria se, de fato, atributos culturais poderiam explicar o nível de corrupção apresentado por diversas regiões mundiais. Por fim, essa generalização leva à especulação da relação entre corrupção e fatores sociais, econômicos e políticos, que podem ou não estarem ligados à cultura.

Já Johnston (2005) entende que a corrupção pode ser encontrada em democracias de mercado afluente assim como em sociedades que apresentam mudanças mais rápidas. De fato,

⁵ Na última pesquisa realizada pela Transparência Internacional, em 2010, o Brasil era o 69º no Índice de Percepção da Corrupção.

alguns dos problemas de corrupção dos países mais pobres e menos democráticos se originam nas partes mais desenvolvidas do mundo.

Apesar das contradições em relação à origem e aos principais focos de corrupção mundiais, o estudo empírico de Mauro (1995) verificou que, independentemente das características objetivas do sistema político e social de um país, as avaliações subjetivas de corrupção parecem influenciar as decisões de investimento, crescimento e do comportamento político dos cidadãos.

Silva, Garcia e Bandeira (2001), em estudo que procurou analisar e medir o impacto da corrupção na renda per capita de 81 países, encontrou evidências de que a corrupção afeta negativamente a riqueza de uma nação a partir da redução da produtividade do capital, ou pelo menos de sua efetividade.

Na busca pela identificação do impacto que a corrupção causa no crescimento econômico de um país, Mauro (1997) concluiu que a corrupção gera, entre outros malefícios, uma redução nos incentivos ao investimento por parte dos empresários, além de perdas na arrecadação de tributos, seja por meio de evasão fiscal ou até mesmo pela concessão de isenções tributárias indevidas.

Conforme ressalta Morris et al (2004), medir corrupção sempre foi uma tarefa difícil e ainda é, apesar de alguns avanços alcançados, principalmente a partir dos índices de percepção de corrupção criados, conforme já mencionado neste estudo. Entretanto, alguns autores tem procurado outras fontes para essa mensuração.

Carraro (2003) utilizou um modelo de equilíbrio geral com corrupção endógena, e concluiu que o volume de recursos envolvidos com corrupção no Brasil gira em torno de 12% do PIB. A simulação do modelo para política comercial e fiscal, entretanto, não permite concluir que a corrupção, necessariamente, resulte em menor crescimento econômico.

Dada a relevância do tema, nos últimos anos estudos que relacionam corrupção e indicadores sociais têm se tornado mais frequentes. Nessa linha, Akçay (2006), em uma amostra de 63 países, entre eles o Brasil, procurou testar o impacto da corrupção no desenvolvimento humano. Os resultados demonstraram que há uma relação estatística significativa e negativa entre os indicadores de corrupção e o IDH, o que faz com que países mais corruptos apresentem menos níveis de desenvolvimento humano.

No Brasil, Cláudio Ferraz foi pioneiro em abordar a corrupção por meio de indicadores extraídos dos relatórios de fiscalização da CGU e, dessa forma, tentar mensurá-la. Ferraz e Finan (2005), em estudo que procurou testar se a possibilidade de reeleição afeta de forma significativa o nível de corrupção de um município, utilizou as irregularidades encontradas

pelos auditores da CGU como indicador de corrupção, dividindo-as em diversas categorias. Nesse estudo, surpreendentemente, segundo os autores, não se encontrou relação entre corrupção e PIB per capita.

Na mesma linha, Zamboni (2007), em estudo que buscou comparar municípios similares que utilizam ou não o orçamento participativo, no intuito de verificar se há uma diferença na gestão dessas localidades, também utilizou o número de irregularidades encontradas pela CGU nas fiscalizações por sorteios de municípios como uma medida objetiva de governança, já que captura diversas dimensões de desempenho do governo local, como a obediência às normas administrativas e a qualidade dos serviços.

Weber (2006), por sua vez, utilizou os relatórios de fiscalização da CGU para mensurar corrupção e verificar a existência de uma relação entre esse indicador e a densidade associativa dos municípios fiscalizados, tendo sido encontrada uma moderada relação.

Conforme destaca a Transparência Internacional (2005), a corrupção tem sido identificada como a principal causa da pobreza assim como uma barreira para superá-la. Nesse sentido, e objetivando introduzir o tema *Bolsa Família*, objeto de estudo do presente trabalho, são apresentados no item 2.2 a seguir estudos realizados sobre pobreza, gastos sociais e programas de transferência de renda condicionada no Brasil e no mundo.

2.2 Pobreza e Gastos Sociais

Conforme ressalta Bichir (2010), pobreza e desigualdade são fenômenos complexos e multidimensionais, que persistem ao longo da história do país e, portanto, não se pode ter uma visão simplista ou ingênua das políticas desenvolvidas para combatê-las. Dessa forma, para aqueles responsáveis pela gestão pública, a elaboração de políticas para superar a escassez de recursos e a desigualdade existente no Brasil se tornou um grande desafio.

Nesse sentido, e procurando aumentar e melhorar os gastos sociais despendidos pelo País, foi criado, em janeiro de 2004, o Ministério de Desenvolvimento Social e Combate à Fome (MDS) e, desde então, observou-se um aumento significativo dos investimentos em políticas de assistência social, a partir de transferência de renda, segurança alimentar e nutricional, assistência social e inclusão produtiva.

O Programa das Nações Unidas para o Desenvolvimento - PNUD (2004) atribui à estabilização trazida pelo Plano Real como fator primordial para a redução da pobreza observada no Brasil na década de 1990, que caiu de 44,2% para 34,9% em dez anos. Entretanto, o PNUD (2004) ressalta que as políticas sociais implementadas naquela oportunidade também

foram importantes nesse cenário, impedindo que crises econômicas e mudanças no mercado de trabalho levassem ao aumento no número de pobres e na desigualdade social no País.

Segundo Rocha (2003), o conceito de pobreza mais utilizado no Brasil é o de pobreza absoluta, dividindo-se em: a) linha de indigência ou pobreza extrema, quando se trata somente das necessidades mínimas nutricionais e b) linha de pobreza, quando se amplia esse conjunto de necessidades. Seguindo essa linha, o PBF dividiu seus beneficiários em condições de pobreza e de extrema pobreza, dividindo-os por renda *per capita* recebida, conforme verificado adiante.

Hoffmann (1998) elucida um procedimento usual para determinação da linha de pobreza. Segundo o autor, primeiramente deve-se obter o valor de uma cesta de alimentos que atenda às necessidades nutricionais das famílias, considerando os alimentos usuais de famílias de baixa renda. Em seguida, multiplica-se esse valor por um coeficiente, observando as despesas necessárias com moradia, vestuário, transporte, saúde, educação, entre outros.

Barros et al (2006), fazendo uma análise dos anos mais recentes, estimaram que a renda do trabalho foi responsável por cerca de 47% da redução da desigualdade de renda *per capita* no período 2001 a 2004, enquanto aquela não proveniente do trabalho por adulto foi responsável por 36% desse decréscimo. Os autores concluíram que a recente redução na desigualdade foi proporcionada por fatores vinculados ao mercado de trabalho e ao desenvolvimento de redes efetivas de proteção social.

Já Costa, Salvato e Diniz (2008), em trabalho que teve como objetivo verificar o impacto do Programa Bolsa Família para o Brasil no período 2004-2006, concluíram que o programa de transferência de renda bolsa família afeta a pobreza e desigualdade, resultando em reduções de 20% e 2.04% respectivamente.

Alberini (2010) observou que, no PBF, a inclusão de famílias moradoras em áreas de favela, escopo de sua pesquisa, não é suficiente para promover mudanças significativas nos padrões de vida dessas pessoas, embora o benefício recebido atenda às suas primeiras necessidades. Além disso, em relação à redução da pobreza e do desenvolvimento humano, a autora verificou que o PBF atende apenas parcialmente tais objetivos.

Nesse sentido, e contrapondo-se à progressão sistemática e expressiva do gasto social focalizado em transferência de renda, Lavinas (2007) alerta no sentido de que a redução da pobreza e da desigualdade de renda, registrada no Brasil em período recente, graças à elevação dos rendimentos do trabalho e à expansão do valor médio e do número de benefícios assistenciais, não tem sido acompanhada de uma expansão do gasto em investimento social indispensável ao enfrentamento de dimensões crônicas de nossa desigualdade.

2.2.1 Programas de Transferência de Renda Condicionada no Mundo

A extinção da pobreza tem sido um desafio para a humanidade e um impeditivo para o desenvolvimento. Nesse sentido, diversas iniciativas e políticas têm sido implementadas em busca de uma solução para esse problema. Dentre as várias alternativas já experimentadas estão os Programas de Transferência de Renda Condicionada - PTC, considerados, atualmente, uma das mais poderosas ferramentas para o alcance desse objetivo. Entretanto, como ressalta Santos (2010), esse tipo de programa é uma poderosa ferramenta, mas não a solução para todos os problemas relacionados à pobreza.

Alguns países da Europa introduziram o sistema de transferência de renda condicionada a partir da Segunda Guerra Mundial, objetivando responder às deficiências de recursos provenientes das atividades profissionais ou mesmo do processo de exclusão. Em 1948 o Reino Unido introduziu o *National Assistance Act*, programa de renda mínima em dinheiro, garantida sem limite de tempo a famílias em um nível para manutenção da subsistência, complementando o sistema de seguridade social (VAN PARIJS, 2006 apud PINTO, 2010). Dentre esses países, vários estabeleceram certas condições aos beneficiários, tais como testes para aferir se realmente possuíam renda insuficiente, verificação da situação familiar do indivíduo, se estava apto ao trabalho, entre outros. (VAN PARIJS, 2001 apud PINTO, 2010).

Após os programas implementados a partir do fim da Segunda Guerra Mundial, conforme enfatiza Ferro e Nicollela (2007), um dos primeiros programas de transferência de renda condicionada foi o Programa *Food for Education (FFE)*, implementado em 1994 em Bangladesh. O governo fornecia alimentos mensalmente para famílias rurais pobres em uma base mensal. Em contrapartida, as famílias tinham que enviar seus filhos à escola. Elas podiam negociar livremente os alimentos recebidos através do programa por outros bens. Ravallion e Wodon (2000) avaliaram o impacto do FFE sobre o trabalho infantil e escolaridade, encontrando um efeito positivo sobre a frequência escolar e um efeito negativo sobre o trabalho infantil. No entanto, eles observaram que a diminuição do tempo de trabalho correspondia a uma pequena parte do aumento do tempo de escolaridade, indicando que o tempo dedicado à escola foi subtraído, principalmente do lazer e não do tempo de trabalho.

Na América Latina, segundo Kerstenetzky (2006), os PTC tiveram início na década de 1990 e, de forma geral, estabelecem contrapartidas nas áreas da saúde, educação e alimentação. O foco na população pobre busca restituir a esse grupo social o acesso efetivo a direitos universais anteriormente negados e tais programas servem para complementar as políticas públicas universais, como a saúde e a educação básica.

Dentre os diversos PTC implementados na América Latina estão: *Plan Oportunidades*, (México); Programa Bolsa Família (Brasil); *Familias en Acción* (Colômbia); *Bono de Desarrollo Humano* (Equador), *Chile Solidario* (Chile), *Ingreso Ciudadano* (Uruguai), *Juntos* (Peru) e *Jefes de Hogares* (Argentina).

Kerstenetzky (2006) acrescenta que, no México, o *Progresa (Programa de Educación, Salud y Alimentación*) começou em 1997 e atualmente é denominado de *Plan Oportunidades*. Naquele programa, famílias pobres recebem transferências de dinheiro todo mês e são obrigadas a ter seus filhos matriculados e frequentando a escola, além de visitarem instalações de saúde para tratar e/ou prevenir doenças. O *Chile Solidario*, criado em maio de 2002, é um programa de proteção social com foco nas 225 mil famílias extremamente pobres que se estimava existirem naquele país. O programa é baseado no apoio à família por parte de um assistente social, em diversos subsídios monetários e no acesso prioritário a outros programas de proteção social. (SOARES et al; 2007).

Soares et al (2007) analisaram o impacto dos PTC sobre a desigualdade de renda no Brasil, México e Chile, medida pelo Coeficiente de Gini, verificando que nos dois primeiros países esses programas foram responsáveis por 21% da queda de 2,7 pontos no Índice.

Segundo a CEPAL (2010), em estudo que verifica os PTC na América Latina, esses programas são um importante mecanismo dentro das políticas sociais para combater a pobreza. Trata-se de iniciativas não contributivas que procuram aumentar os níveis de consumo das famílias a partir de transferências monetárias e, dessa forma, reduzir a pobreza no curto prazo, além de fortalecer o desenvolvimento humano dos beneficiados.

Essa mesma Comissão verificou que, nessa região, os programas com maior número de beneficiários em termos absolutos são o Bolsa Família, do Brasil (52 milhões de pessoas), *Plan Oportunidades*, do México (27 milhões) e *Familias en Acción*, da Colômbia (12 milhões). O *Bono de Desarrollo Humano*, do Equador, por sua vez, é o PTC que cobre a maior porcentagem de população em um país (44%).

Ferro e Nicollela (2007) destacam que os PTC se tornaram comuns nos países em desenvolvimento e subdesenvolvidos, como forma de aliviar a pobreza atual e proporcionar investimentos em capital humano que pode levar as famílias a melhores condições de vida no longo prazo. O primeiro objetivo é alcançado quando, mensalmente, as famílias pobres recebem dinheiro dos governos, como uma fonte de renda complementar. Já o segundo objetivo é atingido ao condicionar a transferência de renda a certos comportamentos, como frequência escolar e acompanhamento da saúde.

Rawlings e Rubio (2003) avaliaram os resultados alcançados pelos PTC da Colômbia, Honduras, Jamaica, México, Nicarágua e Turquia e verificaram o sucesso desses programas em solucionar diversos problemas de assistência social daqueles países, tais como frequência escolar, acesso a programas de saúde preventivos e aumento do consumo doméstico.

Handa e Davis (2006) compararam seis PTC na América Latina e Caribe: PBF (Brasil), Oportunidades (México), Programa de Asignación Familiar II (Honduras), Red de Protección Social (Nicarágua), Programme for Advancement Through Health and Education (Jamaica) e Familias en Acción (Colômbia). Os autores concluíram que não está claro se esse tipo de programa é a solução que apresenta a melhor relação custo/benefício para os países da região e nem se é uma solução sustentável para países de baixa renda. Além disso, apesar da reformulação do paradigma de proteção social na América Latina, o futuro político desses programas nos países onde estão sendo implementados não está assegurado, segundo os autores.

Por fim, Gadelha (2010) ressalta que, em relação ao PBF, deve-se lembrar da conjuntura dentro da qual o Programa foi abraçado pelo governo do Brasil, que priorizou em sua agenda programas sociais focados na transferência de renda e adaptados às necessidades específicas do País. Nesse sentido, em busca de se resolver o problema da efetividade do gasto social, operacionalizou-se o PBF a partir de uma articulação intersetorial em cooperação com os três níveis de governança, uma vez que isoladamente os PTC reduzem a capacidade de mobilidade e transformação social, principais objetivos das políticas sociais (FONSECA; VIANA, 2006).

2.2.2 O Programa Bolsa Família

O Programa Bolsa Família (PBF) foi criado em janeiro de 2004, por meio da Lei n.º 10.836/04, e unificou as ações de transferência de renda já existentes no Governo Federal, quais sejam: o Programa Nacional de Renda Mínima vinculado à Educação, conhecido com Bolsa Escola, o Programa Nacional de Acesso à Alimentação – PNAA, o Programa Nacional de Renda Mínima vinculada à Saúde – Bolsa Alimentação, o Programa Auxílio-Gás e o Cadastramento Único do Governo Federal. Cabe ressaltar que, no Brasil, esse tipo de programa teve sua origem na Prefeitura de Campinas, em 1994, e Distrito Federal, 1995, antes de ser implementado pelo Governo Federal.

Conforme se verifica em MDS (BRASIL, 2010d), cada um desses programas estava sob a responsabilidade de um órgão específico, o que dificultava ou mesmo inviabilizava a coordenação de ações de caráter intersetorial para o combate à pobreza. A unificação dos

programas sociais de transferência de renda buscou reduzir os custos gerenciais e as duplicidades de pagamentos, além de possibilitar melhorias na gestão.

Uma das características principais do PBF é a relação desenvolvida entre o Governo Federal e os demais entes da Federação. O programa se baseia na premissa constitucional de que a descentralização facilita a universalização dos serviços sociais mas, ao mesmo tempo, leva à necessidade de uma complexa articulação entre cada esfera de governo. (ZYLBERBERG, 2008). Apesar da descentralização do programa, entretanto, sua operação é bastante centralizada no governo executivo federal, já que é nessa esfera que são definidos os beneficiários.

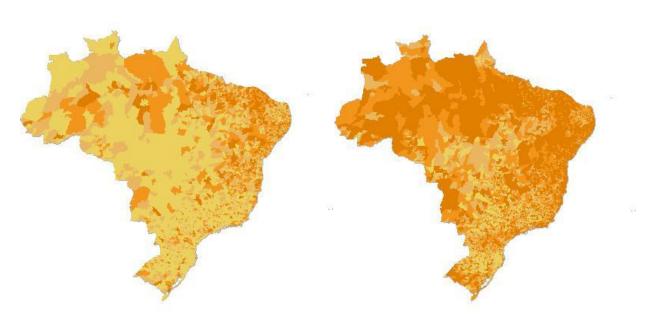
O PBF, coordenado pelo MDS, tem como objetivos básicos, em relação aos seus beneficiários (DECRETO N.º 5.209, 2004):

- promover o acesso à rede de serviços públicos, em especial, de saúde, educação e assistência social;
- combater a fome e promover a segurança alimentar e nutricional;
- estimular a emancipação sustentada das famílias que vivem em situação de pobreza e extrema pobreza;
- combater a pobreza;
- promover a intersetorialidade, a complementaridade e a sinergia das ações sociais do Poder Público.

Esses objetivos são articulados a partir da definição de três dimensões essenciais, quais sejam: a) alívio imediato da pobreza, promovido pela transferência de renda; b) reforço ao exercício de direitos sociais na área de educação e saúde, alcançado pela aplicação das condicionalidades e; c) coordenação de programas complementares, buscando o desenvolvimento das famílias e a superação de suas vulnerabilidades.

Segundo definição constante no sítio do MDS (BRASIL, 2010d), o Programa Bolsa Família é "um programa de transferência de renda com condicionalidades, que beneficia famílias em situação de pobreza (com renda mensal por pessoa de R\$ 70 a R\$ 140) e extrema pobreza (renda mensal por pessoa de até R\$ 70), de acordo com a Lei n.º 10.836/04 e o Decreto n.º 5.209/04." Cabe ressaltar que, tanto esses valores quanto os relacionados ao pagamento de benefícios têm sido alterados desde 2004, no intuito de se manter preservados seus valores reais.

A definição supra deixa claro que o PBF não pode ser encarado como um benefício social incondicional da população carente. Além de estabelecer condições para que a transferência de renda seja realizada, devido à escassez de recursos, para cada município é


estimado um número de famílias pobres que entram na meta de atendimento do programa. Conforme ressalta Ferraz (2008), essa estimativa é calculada com base numa metodologia desenvolvida com apoio do Instituto de Pesquisa Econômica Aplicada (IPEA) e tem como referência os dados do Censo e da Pesquisa Nacional por Amostra de Domicílios (PNAD), ambos do IBGE.

As condicionalidades impostas aos beneficiários e a estimação do número de necessitados por parte dos órgãos responsáveis foram consideradas limitações para Zimmerman (2006, p.155), conforme trecho a seguir:

En otras palabras, el *Bolsa Familia* no garantiza el acceso irrestricto al beneficio, ya que existe una limitación de la cantidad de familias que han de ser contempladas en cada municipio. Esta limitación existe, como ya se ha dicho, porque se designa a cada municipio la cantidad máxima de familias que pueden acceder al beneficio. (ZIMMERMAN, 2006).

A partir da figura 1 a seguir, verifica-se o aumento do número de famílias beneficiadas pelo PBF desde sua implementação. Percebe-se, também, que a maioria dos beneficiários do programa estão concentrados nas regiões Norte e Nordeste do país, uma vez que são essas regiões que apresentam as maiores taxas de pobreza e extrema pobreza do país.

Figura 1 - Famílias Beneficiadas pelo PBF – Comparativo 2004-2010
2004
2010

- Municípios com mais de 2228 famílias beneficiadas
- Municípios com famílias beneficiadas entre 978 e 2228
- Municípios com famílias beneficiadas entre 412 e 978
- Municípios com menos de 412 famílias beneficiadas

Fonte: Matriz de Informação Social - Ministério do Desenvolvimento Social e Combate à Fome

A seguir são destacados os principais pontos do PBF que servem de base para o planejamento, a execução e a fiscalização do programa.

O Cadastro Único

De acordo com Lindert et al (2007), alguns fatores de risco para um programa de transferência de renda condicionada como o PBF são: a interferência de viés político na alocação geográfica das quotas do programa, o processo de cadastramento dos beneficiários, a execução do pagamento e o acompanhamento do cumprimento das condicionalidades pelas famílias. Dessas etapas, os mesmos autores afirmam que o risco maior está no processo de cadastramento.

Objetivando reduzir esse risco foi criado o Cadastro Único para Programas Sociais do Governo Federal (CadÚnico), regulamentado pelo Decreto n.º 6.135 (2007), que é o instrumento de identificação e caracterização socioeconômica das famílias brasileiras de baixa renda (meio salário mínimo por pessoa ou três salários mínimos no total), devendo ser obrigatoriamente utilizado para seleção de beneficiários do PBF.

O CadÚnico é constituído pelas seguintes informações: a) identificação da família e das pessoas que a compõem; b) características familiares; c) identificação da residência e de suas características; d) renda da família; e) gastos da família; e f) informações sobre propriedades e participação em programas sociais, dentre outras. (BRASIL, 2010c)

Após a coleta de dados, feita preferencialmente por meio de visitas às famílias cadastradas, o MDS verifica a consistência das informações por meio de cruzamento de dados com outros registros administrativos, tais quais: Relação Anual de Informações Sociais (RAIS), gerida pelo Ministério do Trabalho e Emprego; base do Tribunal Superior Eleitoral (TSE); Cadastro Nacional de Informações Sociais (CNIS), de responsabilidade do Ministério da Previdência Social e o Sistema Informatizado de Controle de Óbitos (Sisobi), entre outros registros.

Em trabalho desenvolvido a pedido do MDS, Brière e Lindert (2005) avaliaram o CadÚnico com o objetivo de apresentarem recomendações que pudessem melhorar a efetividade do PBF. Segundo as autoras, um ingrediente chave para o sucesso da redução da pobreza a partir desse tipo de programa é sua capacidade de efetivamente canalizar recursos para os pobres. O programa também oferece uma oportunidade para o Governo renovar o seu cadastro em uma ferramenta mais moderna, eficaz e precisa. Dentre as diversas recomendações dadas pelas autoras está a implementação de um sistema de auditoria regular, com cruzamento de dados e controle de qualidade.

As mesmas autoras também avaliaram o custo do CadÚnico e o compararam com o de outros países que também possuem PTC. O custo por família registrada no cadastro brasileiro era, em 2003, de US\$ 3,9, superior ao da Colômbia (US\$ 2,3), mas inferior ao do México (US\$ 5,6), Costa Rica (US\$ 7,0) e Chile (US\$ 8,4). Entretanto, o percentual do custo de família registrada pela quantidade de renda transferida era, no Brasil, o maior entre os cinco países comparados (1,6%).

Concessão dos benefícios

Conforme verificado na legislação do PBF, a concessão dos benefícios do programa tem caráter temporário e não gera direito adquirido, devendo a elegibilidade das famílias, no que tange ao recebimento de tais benefícios, ser obrigatoriamente revista a cada dois anos.

Os benefícios financeiros do programa são divididos em básico e variável e são pagos de acordo com a situação social do beneficiário, conforme verificado no Quadro 1. O benefício básico, cujo valor mensal é de R\$ 70,00, é destinado apenas àquelas famílias em situação de extrema pobreza. Já os benefícios variáveis são destinados também às unidades familiares que se encontram em situação de pobreza. Dessa forma, todos os beneficiários do PBF recebem um benefício variável de R\$ 32,00 por beneficiário, até o limite de R\$ 96,00 por família, desde que sejam compostas por: gestantes, nutrizes, crianças entre zero e doze anos ou adolescentes até quinze anos. Além disso, há ainda um Benefício Variável Vinculado ao Adolescente (BVJ), de R\$ 38,00 mensais por beneficiário, até o limite de R\$ 76,00 por família, desde que o(s) adolescente (s) esteja(m) matriculado(s) em estabelecimento de ensino.

Cada beneficiário do programa é identificado pelo Cartão Social Bolsa Família, que é entregue preferencialmente à mulher responsável pela família e pode ser utilizado em toda a rede da Caixa Econômica Federal, agente operador do PBF.

Perfil / Tipo da Benefício		Benefício Variável	Benefício Variável Vinculado ao		
Família*	Básico**	(crianças e adolescentes	Adolescente (BVJ) (adolescentes de		
		de 0 a 15 anos)**	16 e 17 anos)**		
Família com renda por pessoa de até R\$ 70,00 por mês	R\$ 70,00	R\$ 32,00 a R\$ 96,00 (máximo de 5 benefícios variáveis por família)	R\$ 38,00 a R\$ 76,00 (máximo de 2 BVJ por família)		
Família com renda por pessoa de R\$ 70,01 até R\$ 140,00 por mês	-	R\$ 32,00 a R\$ 96,00 (máximo de 3 benefícios variáveis por família)	R\$ 38,00 a R\$ 76,00 (máximo de 2 BVJ por família)		

Quadro 1 - Benefícios financeiros concedidos

Fonte: MDS (BRASIL, 2009b), adaptado pelo autor

Em um trabalho que buscou identificar as possibilidades de o PBF atender às necessidades sociais básicas da população beneficiada, Mesquita (2007) verificou que os benefícios financeiros supracitados asseguram às famílias extremamente pobres proteção básica necessária ao desenvolvimento de uma autonomia de ação.

Condicionalidades do PBF

As condicionalidades do PBF representam as contrapartidas que devem ser cumpridas pelas famílias beneficiárias do programa para a manutenção dos benefícios recebidos, possuindo um caráter social que busca estimular o exercício do direito de acesso às políticas públicas de saúde, educação e assistência social, levando a uma melhoria das condições de vida da população e identificando vulnerabilidades sociais que dificultam o acesso dessas famílias aos serviços públicos a que têm direito.

A Portaria DM/MDS n.º 321, de 29 de setembro de 2008, que regulamenta a gestão das condicionalidades do PBF, divide essas exigências em:

- a) Educação: crianças e adolescentes entre 6 e 15 anos e adolescentes de 16 e 17 anos de idade devem apresentar frequência mínima de 85% e 75%, respectivamente, da carga horária escolar mensal.
- b) Saúde: gestantes e nutrizes, quando couber, devem comparecer às consultas de pré-natal e participar de atividades educativas acerca de aleitamento materno e cuidados gerais com a alimentação e saúde da criança. Além disso, crianças menores

^{*}Valores alterados conforme Decreto nº. 6.917 de 30 de julho de 2009.

^{**} Valores alterados conforme Decreto nº. 7.447 de 1º de março de 2011 e Decreto nº. 7494 de 02 de junho de 2011.

- de 7 anos devem cumprir o calendário de vacinação e o acompanhamento do crescimento e desenvolvimento infantil.
- c) Em relação à assistência social, crianças e adolescentes de até 15 anos, em risco ou retiradas do trabalho infantil, devem apresentar frequência mínima de 85% da carga horária relativa aos serviços socioeducativos e de convivência.

Ferro e Nicollela (2007) objetivaram medir o impacto do PBF nas horas trabalhadas dos beneficiários e de seus filhos e encontraram evidências de que os programas de transferência de renda condicionada reduzem a probabilidade de trabalho para as crianças, mas não o seu tempo gasto no mercado de trabalho, e que o programa é mais eficiente para as meninas que para meninos. Por outro lado, a participação dos pais no mercado de trabalho não é afetada, mas seu horário de trabalho muda devido ao programa.

Já Morris et al (2004) avaliaram o impacto do PBF em quatro cidades do Nordeste, no que diz respeito às condições de nutrição de crianças com idade inferior a 7 anos, uma vez que existe associação entre nutrição e pobreza, não encontrando relação entre o recebimento do benefício e ganho de peso incremental dessas crianças, se comparadas às que não recebem a transferência de renda.

Janvry et al (2006) procuraram verificar se crianças que participam de programas de transferência de renda condicionada que possuem como uma de suas condicionalidades a frequência escolar estão protegidas contra quedas inesperadas nas rendas dos seus pais. Os resultados demonstraram que, apesar desse tipo de programa ajudar na matrícula dos alunos, ele não impede que os pais induzam os filhos a trabalharem quando há uma queda na renda familiar.

Glewwe e Kassouf (2008) procuraram analisar o impacto do Programa Bolsa Família no rendimento escolar das crianças no Brasil e verificaram que o PBF aumentou em 5,5% as matrículas em escolas de 1ª a 4ª série e em 6,5% em escolas de 5ª a 8ª série. Observaram também que as taxas de abandono também diminuíram (0,5 ponto percentual na primeira escola e 0,4 na segunda) e as de aprovação aumentaram (0,9 pontos percentuais na primeira e 0,3 na segunda).

Programas complementares

Conforme verificado anteriormente, o PBF não é apenas um programa de transferência de renda. Ele está embasado em alguns eixos de atuação, entre eles a articulação de ações que auxiliem as famílias beneficiárias na superação da pobreza de forma sustentável. Um desses

eixos são os chamados programas complementares. Esses programas fazem parte, conforme sugere Lindert et al (2007), da integração horizontal da política social implementada pelo PBF.

Os programas complementares são compostos de ações que fortaleçam a cidadania das famílias a partir do próprio trabalho dos beneficiados. Por meio de parcerias com órgãos de diferentes setores, podem ser estabelecidas ações voltadas para o aumento da escolaridade, para a qualificação profissional, para a geração de trabalho e renda, bem como para a melhoria das condições de moradia.

Esses programas são planejados em três etapas. No diagnóstico são levantados dados socioeconômicos da população a ser atendida, objetivando identificar, em linhas gerais, situações de vulnerabilidade dessas famílias. Na fase de planejamento, verifica-se o perfil dos beneficiários, além de ações e serviços já em desenvolvimento. Por fim, na etapa de acompanhamento dos resultados, procura-se identificar os pontos fortes e fracos, desenvolvendo e aprimorando métodos de trabalho. (BRASIL, 2010d)

Gestão descentralizada

Por se tratar de um programa descentralizado e de enorme capilaridade, é fundamental o alinhamento estratégico entre União, Estados e Municípios para que o PBF alcance resultados eficientes e efetivos. Nesse sentido, e para estimular os municípios a investir na melhora da qualidade da gestão do programa, o MDS criou, em 2006, por meio da Portaria n.º 148/06, o Índice de Gestão Descentralizada (IGD). A Lei n.º 12.058, de 13 de outubro de 2009, institucionalizou o índice no âmbito estadual, distrital e municipal.

O IGD-M é um índice que mede o desempenho dos municípios na gestão do programa e do CadÚnico, considerando a qualidade dos registros cadastrais das famílias e o acompanhamento das condicionalidades de saúde e educação. Com base nos resultados apurados pelo índice, que varia de 0 a 1, os municípios que apresentam bom desempenho recebem mensalmente recursos para investirem em atividades ligadas ao PBF. (BRASIL, 2009c).

O repasse dos recursos se dá diretamente do Fundo Nacional de Assistência Social para o Fundo Municipal de Assistência Social, não podendo exceder a 3% do total previsto no Orçamento Federal para o PBF. Os recursos do IGD-M devem ser incluídos no orçamento municipal nas categorias econômicas de custeio e/ou investimento, em conformidade com as atividades típicas da gestão do Programa Bolsa Família e do planejamento efetuado, não podendo ser consignados no grupo de despesas de pessoal. (BRASIL, 2010c)

Para o cálculo do IGD-M, utiliza-se quatro variáveis com informações específicas de cada município, quais sejam: taxa de cobertura de cadastros, taxa de atualização de cadastros, taxa de crianças com informações de frequência escolar e taxa de famílias com acompanhamento das condicionalidades de saúde. Essas mesmas variáveis são utilizadas para a determinação do IGD-E, regulamentado pelas Portarias GM/MDS n.º 256 e 368/10 e criado para apoiar a gestão do PBF e do CadÚnico pelos Estados.

Controle Social

O Decreto n.º 5.209/04 determina que o controle e participação social do PBF deve ser realizado, em âmbito local, por instância de controle social formalmente constituída pelo Município ou Distrito Federal, podendo ser realizado por conselho ou instância anteriormente existente.

O objetivo deste tipo de controle é estabelecer uma relação entre Estado e sociedade, compartilhando responsabilidades e gerando um maior grau de transparência às ações do poder público. Essa interação faz com que o cidadão tenha capacidade de intervir nas políticas públicas implementadas pelo Estado e, com isso, garantir seus direitos. Conforme salienta Spinelli (2008), as instâncias de controle devem executar, basicamente, ações de monitoramento das atividades inerentes à gestão do programa e de incremento da participação cidadã na sua execução.

No PBF, as Instâncias de Controle Social (ICS) atuam em todas as fases (planejamento, execução, avaliação e fiscalização) e componentes (CadÚnico, gestão de benefícios, condicionalidades, etc.) do programa. Segundo o sítio do MDS (BRASIL, 2010d), "a ICS do PBF é um conselho constituído de forma paritária, ou seja, com metade dos membros da sociedade civil e a outra metade do governo. É importante ressaltar que no PBF, a ICS não pode ter mais membros do Governo que da sociedade".

Por terem mais acesso à população local e, dessa forma, poderem acompanhar de perto a gestão do PBF, as ICS são consideradas peças fundamentais para o controle e fiscalização do PBF, devendo atuar de forma conjunta com o município, subsidiando a fiscalização em todas as fases do Programa e, principalmente, na articulação de oportunidades de desenvolvimento das famílias.

Entretanto, Ribeiro (2009) destaca, em dissertação que procurou verificar o sistema de controle dos gastos públicos do governo federal com ênfase no PBF, que de todos os controles

exercidos no programa, o controle social é o menos efetivo, funcionando muito mais como homologação do que fiscalização.

Controle e Fiscalização

Apesar de todos os instrumentos de gestão criados para um melhor gerenciamento e controle do programa, um certo grau de heterogeneidade na qualidade da execução do PBF é inevitável, devido a sua capilaridade. Conforme destaca Lindert et al (2007), a ferramenta de monitoramento por meio do Índice de Gestão Descentralizada (IGD) abrange apenas determinados aspectos da execução do PBF (registro e informações de monitoramento das condicionalidades) e se baseia em dados administrativos e não em avaliações realizadas *in loco*. Dessa forma, ferramentas adicionais são necessárias para funções de supervisão da qualidade de execução descentralizada. Estas incluem amostras aleatórias de auditorias operacionais e avaliações da execução, tais como as implementadas pela CGU e Tribunal de Contas da União - TCU.

Nesse sentido, e buscando garantir a eficiência, eficácia, efetividade e transparência do programa, foi criada, em 2005, a Rede Pública de Fiscalização do PBF, que consolidou parcerias com os Ministérios Públicos Federal e Estaduais, CGU e o TCU. Segundo o MDS, o trabalho conjunto destas instituições, integrado ao próprio Ministério, fortalece o monitoramento e o controle das ações voltadas à execução do PBF sem que isso represente qualquer interferência na autonomia e competência de cada uma das instituições. As atribuições de cada instituição são resumidamente apresentadas na Figura 2 a seguir.

Supervisão e Controle no PBF Promover ações conjuntas para apuração Fornecer ao MDS informações Realizar diligências com de irregularidades no CadÚnico e na documentos decorrentes de fiscalização informações e dados disponibilizados pelo realizada no PBF e no CadÚnico; possíveis MDS. execução do PBF; para investigar irregularidades no cadastro de famílias beneficiárias e no cumprimento das Solicitar informações e remeter ao MDS Disponibilizar ao MDS técnicas condicionalidades do Programa; instrumentos que permitam a construção e aperfeiçoamento das estratégias de os relatórios de fiscalização resultantes de sorteios públicos: nonitoramento do PBF; * Oferecer ao MDS vagas em cursos e treinamentos promovidos pelo TCU, inclusive à distância, acerca das metodologias de Realizar palestras, seminários Propor ações penais, cíveis administrativas, e apoiar a identificação e o acesso ao PBF das famílias que cumprem treinamentos para troca de experiências: os critérios de elegibilidade do Programa. fiscalização, monitoramento, avaliação e controle: Colaborar com a divulgação do Programa ações penais, cíveis administrativas, e apoiar a identificação e o junto aos beneficiários, aos gestores locais, acesso ao PBF das famílias que cumprem os aos conselhos de controle social e às critérios de elegibilidade do Programa. nstituições de controle interno e externo. MDS * Disponibilizaro acesso às bases de dados e informações relacionados ao PBF, aos Programas Remanescentes de transferência de renda e ao CadÚnico; * Oferecer oportunidade para participação na formulação e execução de planos e diretrizes de proteção aos bens, valores e direitos do Fornecer informações de que tenha conhecimento quando constatado indício de cometimento de ilícito criminal ou de improbidade na execução do PBF. **MUNICÍPIOS** Instâncias de Controle Social (ICS); Recebimento de denúncias por parte da população local.

Figura 2 - Supervisão e controle no PBF

Fonte: Lindert et al (2007), adaptado pelo autor

Conforme destaca Miranda et al (2010), nesse contexto estabeleceu-se como responsabilidade da CGU: solicitar informações e remeter ao MDS os relatórios de fiscalização a partir de sorteios públicos; realizar palestras, seminários e treinamentos para troca de experiências; promover ações conjuntas para apuração de irregularidades no Cadastro Único e nos benefícios do Programa Bolsa Família e; colaborar com a divulgação do programa junto aos beneficiários, aos gestores locais, aos conselhos de controle social e às instituições de controle interno e externo.

O PBF em números

Desde sua implementação, em 2004, o PBF se tornou o principal programa social do governo, o que pode ser comprovado pela evolução da destinação de recursos orçamentários a

esse programa. Conforme se verifica na Figura 3, em oito anos os recursos passaram de 5,7 bilhões de reais para quase 14 bilhões de reais. Esse aumento significativo, de quase 150%, se deve, principalmente, à importância deste tipo de programa e dos resultados obtidos no atingimento do principal objetivo do PBF, qual seja, a redução do percentual de famílias em situação de pobreza ou extrema pobreza.

Evolução do Valor Total do Programa Bolsa Família

2004
2005
2006
2007
2008
2009
2010

3 Bilhões 6 Bilhões 9 Bilhões 12 Bilhões 15 Bilhões
Valor Total

Figura 3 - Evolução do Recurso Investido no Bolsa Família

Fonte: MDS (BRASIL, 2010d), adaptado pelo autor

Analogamente, o número de famílias atendidas pelo programa também cresceu desde sua implementação, conforme verificado no gráfico a seguir (Figura 4). Em 2004, pouco mais de 6,5 milhões de famílias foram beneficiadas pelo PBF. Em 2010, esse número quase dobrou, chegando a 12,682 milhões, o que corresponde, se utilizarmos a média de 3,34 pessoas por domicílio apurada pelo Censo do IBGE (2010), à 42,359 milhões de pessoas atendidas pelo programa.

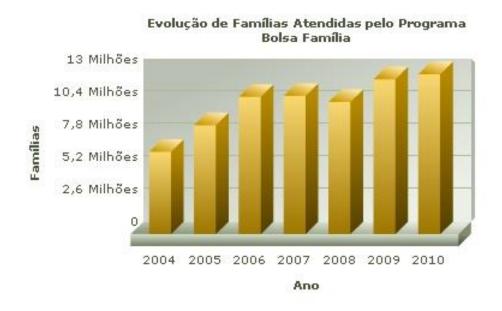


Figura 4 - Evolução das famílias do Bolsa Família

Fonte: MDS (BRASIL, 2010d), adaptado pelo autor

2.3 O Sistema de Controle Interno do Poder Executivo Federal

Embora a preocupação com o controle e verificação das contas públicas possa ser observada desde o império, com a outorga da Constituição Brasileira de 1824, que previa a criação de um orçamento anual e uma regulação do Tesouro Nacional sobre a Administração, e também no início da República, com a criação do Tribunal de Contas da União, em 1891, pode-se dizer que a perspectiva do controle interno que é verificada nos dias atuais começou a partir da edição da Lei n.º 4.320/64, que definiu normas gerais de direito financeiro para elaboração e controle dos orçamentos da União, Estados, Municípios e Distrito Federal.

A mencionada lei previa o controle da execução orçamentária, que compreendia, conforme depreende-se do artigo 75: a legalidade dos atos de que resultassem a arrecadação da receita ou a realização da despesa, o nascimento ou a extinção de direitos e obrigações; a fidelidade funcional dos agentes da administração, responsáveis por bens e valores públicos; e o cumprimento do programa de trabalho expresso em termos monetários e em termos de realização de obras e prestação de serviços.

Segundo Castro (2009), toda organização deve encontrar formas para atingir seus objetivos, melhorar seus resultados e preservar sua existência. O fortalecimento do setor contábil, incluindo registro e controle do orçamento e manutenção de mecanismos eficientes de

controle administrativo de suas ações e dos custos dos seus produtos é condição necessária para que se atinjam essas metas. Se essa é uma realidade para as empresas, torna-se ainda mais importante para o setor público, que deve prestar contas do recurso que administra.

Apesar de diversas legislações, desde a independência do Brasil até a década de 1980, abordarem o controle e suas diversas formas, foi apenas em 1986, com o Decreto n.º 93.874/86, que começou a se falar em um Sistema de Controle Interno – SIC, conforme verifica-se no artigo 1º daquela norma: "o Sistema de Administração Financeira, Contabilidade a Auditoria (...) e o Sistema de Programação Financeira (...) compõem o **Sistema de Controle Interno do Poder Executivo**, com as finalidades, organização, composição e competências estabelecidas neste Decreto." (Grifo nosso)

Em 1988, com a promulgação da nova Constituição Federal, o Sistema de Controle Interno passou a desempenhar um novo papel, sendo tratado, a partir de então, apenas como auditoria. O artigo 74 da CF/88 estabeleceu as finalidades do SIC, quais sejam:

- avaliar o cumprimento das metas previstas no plano plurianual, a execução dos programas de governo e dos orçamentos da União;
- comprovar a legalidade e avaliar os resultados, quanto à eficácia e eficiência, da gestão orçamentária, financeira e patrimonial nos órgãos e entidades da administração federal, bem como da aplicação de recursos públicos por entidades de direito privado;
- exercer o controle das operações de crédito, avais e garantias, bem como dos direitos e haveres da União;
- apoiar o controle externo no exercício de sua missão institucional.

Em abril de 1994 foi editada a Medida Provisória n.º 480, que tinha como objetivo organizar e disciplinar os sistemas de controle interno e de planejamento e de orçamento do poder executivo. Essa MP foi reeditada 67 vezes, até julho de 1999, quando, por meio da MP n.º 1.893, foram criados os Sistemas de Administração Financeira Federal, de Contabilidade Federal e de Controle Interno do Poder Executivo Federal. As mudanças ocorridas desde a CF (1988) foram consolidadas quando da edição da Lei n.º 10.180 (2001), que consolidou a Secretaria Federal de Controle Interno – SFC como o Órgão Central do SCI do Poder Executivo Federal, Secretaria essa que foi transferida para a Casa Civil da Presidência da República em 2002, com a edição do Decreto n.º 4.113 (2002).

Em pouco menos de dois meses, a SFC voltou a ser transferida, dessa vez para a Corregedoria-Geral da União, a partir da publicação do Decreto n.º 4.177 (2002). Em 2003, a Lei n.º 10.683 (2003), alterou a denominação do órgão para Controladoria-Geral da União, assim como a de seu titular para Ministro de Estado do Controle e da Transparência, sendo este

elevado ao *status* de Ministro de Governo. Desde então, o SCI do Poder Executivo Federal passou a ter a CGU como órgão central, responsável pela orientação normativa e a supervisão dos órgãos que compõem o Sistema. Já a SFC ficou responsável pelas funções operacionais de competência do órgão central.

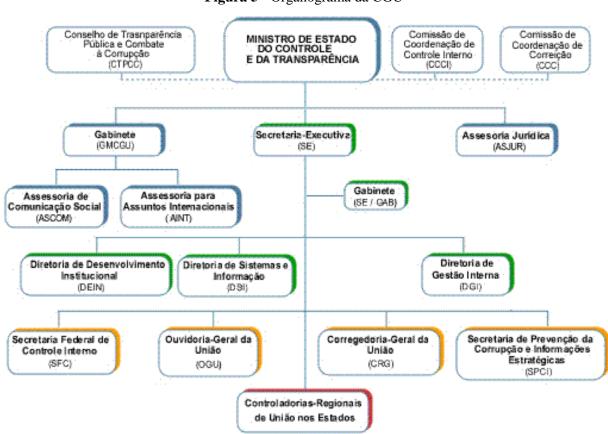


Figura 5 - Organograma da CGU

Fonte: Sítio da Controladoria-Geral da União (www.cgu.gov.br)

Por fim, o Decreto n.º 5.683 (2006) alterou a estrutura da CGU, criando a Secretaria de Prevenção da Corrupção e Informações Estratégicas (SPCI), responsável por desenvolver mecanismos de prevenção à corrupção e consolidando as funções de controle, correição, prevenção da corrupção e ouvidoria numa única estrutura funcional. Após todas as mudanças supracitadas, a Figura 5 ilustra o atual organograma da CGU.

A partir dessa nova estrutura, as competências da CGU podem ser resumidas em quatro áreas de ação: auditoria e fiscalização (controle), ouvidoria, correição e prevenção da corrupção, conforme ilustrado na Figura 6.

Em relação às atribuições como órgão central do SCI, podemos destacar, conforme previsto na própria CF (1988), a avaliação das metas previstas no plano plurianual, a execução

dos programas de governo e dos orçamentos da União. Para o cumprimento desse objetivo, a CGU planeja e executa suas ações por meio de duas técnicas de controle: Auditoria e Fiscalização.

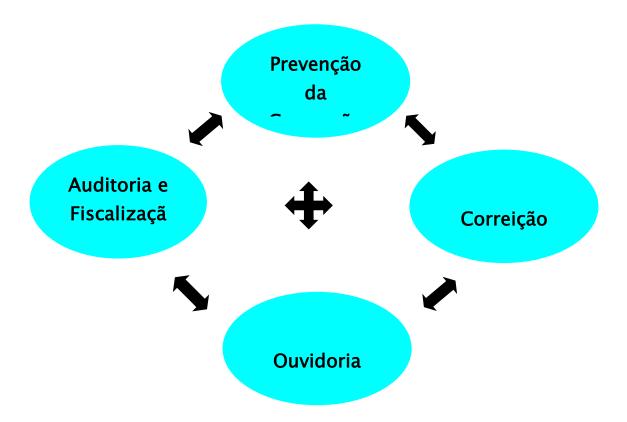


Figura 6 - Interação das Competências da CGU

Fonte: Manual de Planejamento da CGU, adaptado pelo autor.

Segundo o Manual do Sistema de Controle Interno do Poder Executivo Federal, aprovado pela Instrução Normativa nº 01 (2001) do Ministério da Fazenda, a Auditoria teria como objetivo primordial "(...) garantir resultados operacionais na gerência da coisa pública. Essa auditoria é exercida nos meandros da máquina pública em todas as unidades e entidades públicas federais, observando os aspectos relevantes relacionados à avaliação dos programas de governo e da gestão pública".

O mesmo normativo define Fiscalização como sendo uma técnica de controle que visa comprovar a existência do objeto dos programas de governo, sua correspondência às especificações estabelecidas, o atendimento às necessidades para as quais foi definido e se guarda coerência com as condições e características pretendidas e se os mecanismos de controle administrativo são eficientes.

Essas duas ações de controle – auditoria e fiscalização - no âmbito da CGU, podem ser resultantes de diversas linhas de atuação, tais como: acompanhamento sistemático de programas e ações de governo, necessidade de atendimento a demandas externas apresentadas àquela Controladoria, operacionalização do Programa de Sorteios Públicos, entre outras. Por ser objeto do presente estudo, no item a seguir será detalhada essa última ação.

2.3.1 Programa de Fiscalização por Sorteios Públicos realizados pela CGU

O mecanismo do sorteio público para definição das unidades municipais que serão objeto de fiscalização por parte da CGU foi instituído pela Portaria n.º 247 (2003), que não estabelecia um quantitativo definido de municípios. A partir do 10° sorteio, em 2004, definiu-se que esse número seria de 60 cidades a serem fiscalizadas em cada sorteio.

Leite (2008) afirma que, antes da criação do programa de sorteios, a fiscalização dos municípios voltava-se apenas para a produção de informações gerenciais, visando a avaliação dos programas governamentais. Com a nova metodologia de fiscalização, a gestão dos recursos federais de cada município passou a ser observada com base no conjunto dos programas federais por ele executados, proporcionando uma maior transparência à gestão governamental, assegurando a correta aplicação dos recursos públicos, inibindo e combatendo a corrupção e fomentando o controle social.

Segundo o sítio institucional da CGU (2011), os sorteios são realizados pela Caixa Econômica Federal, que utiliza a mesma tecnologia empregada em suas loterias. Esses eventos são públicos, sendo convidados representantes da imprensa escrita, da televisão e do rádio, dos partidos políticos e de entidades da sociedade civil para acompanhá-los e atestar a aleatoriedade e a imparcialidade na definição das regiões a serem fiscalizadas.

Do universo de 5.565 municípios brasileiros, são excluídas dos sorteios as capitais de cada Estado da federação e as localidades com mais de 500.000 habitantes, uma vez que já são objeto de fiscalização permanente por parte da Controladoria desde 2007 (BRASIL, 2011). Além disso, em cada sorteio também são retirados os municípios sorteados nos últimos três eventos, sendo esse, atualmente (jun/2011), o período de carência para que a localidade volte a constar no universo possível de ser sorteado.

Naqueles municípios sorteados, são objeto de fiscalização por parte dos analistas da CGU a aplicação dos recursos públicos federais sob a responsabilidade de órgãos federais, estaduais, municipais, ou de entidades legalmente habilitadas. Dessa forma, antes de se deslocarem ao município sorteado, os analistas levantam todas as informações referentes a

repasses de verbas federais à localidade, assim como informações sobre convênios firmados e possíveis denúncias recebidas em relação àquele município.

De acordo com Santana (2008), os dados coletados pelos técnicos da CGU apontam tendências acerca da execução dos programas de governo nos municípios. Isso permite uma análise da forma como são gastos os recursos e também onde estão localizados os maiores problemas.

Cabe ressaltar que, para localidades com até 20.000 habitantes, todos os recursos federais recebidos no período definido para fiscalização são verificados. Para cidades cuja população seja superior a esse número, são sorteados um grupo com funções da despesa a serem objeto de fiscalização, conforme Quadro 2. Além desse grupo sorteado, para municípios entre 20.000 e 100.000 habitantes, são adicionados programas/ações das funções *Assistência Social, Educação e Saúde* e para localidades com mais de 100.000 habitantes, adiciona-se uma dessas funções.

Quadro 2 - Grupo de funções da despesa a serem objeto de fiscalização

GRUPO	FUNÇÕES A SEREM FISCALIZADAS
01	Comércio e Serviços, Agricultura e Cultura
02	Organização Agrária, Energia e Gestão Ambiental
03	Segurança Pública, Indústria e Ciência e Tecnologia
04	Habitação, Saneamento e Urbanismo
05	Comunicações, Previdência, Trabalho, Desporto e Lazer

Fonte: Portaria nº 1.421, de 20 de julho de 2010.

3 METODOLOGIA

Neste item são apresentados os métodos utilizados e os procedimentos realizados para obtenção dos resultados da pesquisa. Inicialmente, o presente estudo se utilizou da técnica de pesquisa documental e bibliográfica, a partir de uma análise sistematizada de normativos legais e infra legais e de relatórios de fiscalização emitidos pela CGU cujos objetos de auditoria eram o PBF. Além disso, foram verificadas publicações de artigos, teses e dissertações acerca, principalmente, de temas relacionados à corrupção, pobreza, programas de transferência de renda condicionada, controle na administração pública e atividades de auditoria e fiscalização governamentais.

Na pesquisa descritiva se almeja verificar a existência de correlação entre as variáveis e determinar a natureza da relação entre elas. (MARTINS; THEÓPHILO, 2009). Nesse sentido, utilizou-se desse tipo de pesquisa, objetivando, por meio dos métodos estatísticos aplicados, descrever a relação entre duas ou mais variáveis, quais sejam:

- a) a quantidade de irregularidades graves e médias encontradas no PBF quando da fiscalização de municípios por sorteios públicos;
- b) os indicadores sociais e geoeconômicos apresentados por essas localidades, além do montante de recursos financeiros recebidos por elas e auditados pela CGU.

Martins e Theóphilo (2009) argumentam que, do ponto de vista dos procedimentos técnicos, utiliza-se a pesquisa experimental quando se determina um objeto de estudo, selecionam-se as variáveis capazes de influenciá-lo e são definidas as formas de controle e de observação dos efeitos que a variável produz no objeto.

3.1 Seleção da Amostra

Para seleção da amostra foram coletados⁶, primeiramente, no sítio da CGU, os relatórios de fiscalização de municípios emitidos a partir das fiscalizações por sorteios públicos realizadas por aquela Controladoria-Geral, no período entre 2006 e 2010, que compreende do 20° ao 32° sorteio.

A escolha do período inicial (exercício de 2006) se deve ao fato de que os recursos fiscalizados, quando dos sorteios de municípios, referirem-se, na maioria das vezes, aos dois

⁶ Os dados foram coletados do sítio do IBGE e do Atlas de Desenvolvimento Humano no Brasil, elaborado pelo PNUD.

últimos exercícios anteriores ao ano dos trabalhos de fiscalização. Considerando que o PBF foi criado no início de 2004, as fiscalizações realizadas a partir de 2006 já são referentes a este programa e não aos programas sociais que foram unificados por ele. Além disso, os relatórios anteriores ao 20° sorteio continham metodologia diferente da utilizada a partir deste, o que poderia influenciar a análise das constatações elucidadas nos relatórios e que são objeto do presente estudo. Sodré e Alves (2010), em pesquisa que objetivou verificar a relação entre emendas parlamentares e corrupção mundial no Brasil, também descartaram os relatórios anteriores ao 20° sorteio, pelo mesmo motivo.

Cabe ressaltar que, conforme verificado anteriormente, em cada sorteio são selecionados 60 municípios para fiscalização. Dessa forma, considerando que foram realizados 13 sorteios no período, a amostra inicial foi de 780 relatórios. Entretanto, desse total, foram retirados da amostra:

- a) <u>Municípios em que o PBF não foi objeto de fiscalização (treze):</u>
 Aparecida de Goiânia (GO), Cabo Frio (RJ), Itaituba (PA), Itapevi (SP), Marabá (PA), Maricá (RJ), Maringá (PR), Mossoró (RN), Pedra Branca do Amapari (AP), Pouso Alegre (MG), Santarém (PA), São José de Ribamar (MA) e Viamão (RS).
- b) <u>Municípios em que os recursos fiscalizados do PBF não foram discriminados nos</u>

 <u>Relatórios (vinte e dois):</u>
 - Água Nova (RN), CanaBrava do Norte (MT), Coronel José Dias (PI), Ferreira Gomes (AP), Floresta do Araguaia (PA), Itacolomi (PR), Itaitinga (CE), Jaciara (MT), Jericó (PB), Jurema (PE), Lunardelli (PR), Marituba (PA), Nova Guarita (MT), Paraíba do Sul (RJ), Paraíso do Sul (RS), Paranaíba (MS), Pedra Bonita (MG), Santa Luzia (MA), São João do Urtiga (RS), São Miguel do Tocantins (TO), Sítio Novo (RN) e Tacaratu (PE).
- c) <u>Municípios que foram sorteados mais de uma vez. Neste caso, foi considerado o</u> sorteio/relatório mais recente (vinte e cinco):
 - Água Doce do Maranhão (MA), Alegrete do Piauí (PI), Altos (PI), Arcoverde (PE), Bonito (MS), Caldas Brandão (PB), Casimiro de Abreu (RJ), Cerro Grande do Sul (RS), Cocos (BA), Cruz das Almas (BA), Fátima (BA), Fonte Boa (AM), Gentio do Ouro (BA), Girau do Ponciano (AL), Itapicuru (BA), Matias Barbosa (MG), Matupá (MT), Mucambo (CE), Pedro Canário (ES), Pirapora do Bom Jesus (SP), Piratuba (SC), Potiraguá (BA), São Sebastião da Boa Vista (PA), Timbaúba (PE) e Wagner (BA).

d) <u>Municípios que não possuíam algum dos indicadores sociais utilizados como</u> variáveis independentes (três):

Bom Jesus do Araguaia (MT), Jequiá da Praia (AL), Rondolândia (MT)

Após a exclusão desses municípios, 717 localidades compuseram a amostra final de relatórios selecionada para o estudo, que estão divididos, em relação às regiões do país, da seguinte forma:

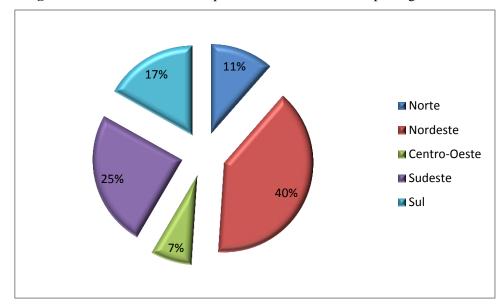


Figura 7 - Percentual de municípios constantes na amostra por regiões do País

Fonte: CGU, elaborado pelo próprio autor.

3.2 Classificação das irregularidades encontradas

Após a realização dos trabalhos de fiscalização, os analistas da CGU, a partir das evidências levantadas no trabalho de campo, classificam as constatações em (BRASIL, 2006b):

- a) <u>Falhas graves</u>: aquelas que impactam significativamente o desempenho do programa e decorrem de situações como omissão no dever de prestar contas, prática de ato ilegal, ilegítimo ou antieconômico, desvio ou desfalque de bens ou valores públicos, entre outras ações que acarretem dano ao erário.
- b) <u>Falhas médias</u>: são situações indesejáveis que, apesar de impactarem o desempenho do programa, não se enquadram nas ocorrências da falha grave. São decorrentes de atos ou de omissões em desacordo com os parâmetros de legalidade, eficiência, economicidade, efetividade ou qualidade.

c) <u>Falhas formais</u>: aquelas que não impactam na gestão do programa, que são pontuais e que apresentam baixa materialidade e relevância.

As falhas graves e médias, pela importância, são levadas aos relatórios de fiscalização. Deve-se ressaltar que, apesar da conceituação apresentada para cada falha, há um grau de subjetividade na classificação por parte do analista, subjetividade essa que também é verificada no processo de análise de conteúdo proposto neste estudo, conforme explicado no item 3.3, uma vez que a distinção entre esses dois tipos de falha não é identificada nos relatórios. No entanto, essa limitação tende a ser de importância marginal uma vez que a classificação de irregularidades é a mesma para problemas semelhantes em diferentes municípios.

Em relação ao PBF, segundo a CGU (2010), as fiscalizações objetivam, principalmente, verificar: se os dados cadastrais dos beneficiários estão atualizados; se a renda per capita das famílias estão em conformidade com a estabelecida na legislação do Programa; o cumprimento das condicionalidades das áreas da educação e saúde; e se foram instituídos programas/ações municipais complementares ao Bolsa Família.

3.2.1 Distinção entre falhas graves e médias

Objetivando uma melhor identificação e divisão das constatações elucidadas nos relatórios, optou-se por dividi-las em 24 possíveis inconformidades encontradas pelos analistas, da forma discriminada a seguir. Salienta-se que, uma vez que esta divisão foi feita de forma subjetiva, resultados distintos poderiam ter sido encontrados caso tivesse sido realizada outra separação, sendo esta uma limitação da pesquisa.

3.2.1.1 Falhas Graves (13 tipos):

Optou-se por considerar como falhas graves não apenas aquelas constatações que evidenciam dano ao erário mas também aquelas que demonstram deficiências de controle que facilitam a ocorrência de desvios de recursos e de finalidade do PBF, tais como:

a) Recursos utilizados indevidamente:

Os recursos repassados pela União aos municípios têm como finalidade, entre outras, a gestão das condicionalidades do PBF, implementação de programas complementares, cadastramento de novas famílias, etc. Dessa forma, qualquer utilização indevida dos recursos repassados foi considerada como irregularidade grave.

b) <u>Ausência de implementação de procedimento para bloqueio por multiplicidade</u> cadastral:

A implementação de procedimentos operacionais para tratamento de bloqueios por multiplicidade cadastral minimiza as chances de pagamentos em duplicidade. Optou-se por considerar o não cumprimento dessa operacionalização como falha grave, pois facilita o pagamento indevido de recursos públicos.

c) <u>Não acompanhamento das condicionalidades:</u>

O não acompanhamento das exigências estabelecidas no programa, pelos técnicos responsáveis designados pela Prefeitura para realizar essa função foi considerada uma falha grave, já que o cumprimento das condicionalidades é condição essencial para o pagamento aos beneficiários do PBF.

d) Beneficiários não localizados:

A não localização do beneficiário deve ser entendida como falha grave, uma vez que pode se tratar de pagamento a famílias "fantasmas", acarretando dano ao erário.

e) Beneficio pago indevidamente:

Foram agrupados neste item constatações dos analistas da CGU que não discriminaram a razão pela qual o benefício foi pago indevidamente. Considerou-se como uma falha grave devido ao prejuízo às contas públicas.

f) <u>Beneficiários com indícios/evidências de renda per capita superior à estabelecida na</u> legislação do programa:

Embora haja uma diferença entre evidência e indício, para este estudo essas constatações foram consolidadas em uma única irregularidade. Podem ser consideradas como evidências de situação financeira incompatível com a legislação do programa (renda per capita superior à estabelecida pelo programa): cópias de contracheques, folhas de pagamento, extratos bancários, prestações quitadas de veículos, de casas ou de outros bens; comprovantes de despesas de energia elétrica quitada, entre outros. Em relação a indícios, são exemplos: informações obtidas verbalmente, padrão da residência, existência de veículos, de outras propriedades, de comércio etc..

g) <u>Cartões retidos em estabelecimentos comerciais ou em posse dos gestores / Saques efetuados por terceiros:</u>

O cartão utilizado para recebimento do PBF é pessoal e intransferível. Dessa forma, a verificação de cartões em posse de pessoas que não são os beneficiários do programa foi considerada, no estudo, uma falha grave, uma vez que os recursos não estão atendendo aos reais detentores dos direitos estabelecidos pelo programa.

h) Descumprimento da condicionalidade da área da saúde:

Uma das condicionalidades impostas pela legislação aplicável ao PBF é que, para o recebimento dos recursos do programa, os beneficiários deverão cumprir diversos requisitos relacionados a ações da saúde, tais como acompanhamento do crescimento e desenvolvimento infantil, assistência ao pré-natal, além da vacinação infantil. Dessa forma, o descumprimento dos requisitos supracitados relacionados à saúde e o não cancelamento dos benefícios dessas famílias foram consideradas falhas graves, já que os recursos foram pagos para beneficiários que não atendiam às condições pré-estabelecidas pelo PBF.

i) Alunos beneficiários do PBF não localizados:

Da mesma forma como explicado na letra d, a não localização de alunos beneficiários implica em possível pagamento irregular de benefícios a famílias que não possuem filhos e/ou possuem um número menor do que o informado no cadastro.

j) Alunos beneficiários com frequência escolar inferior à estipulada pelo Programa (85%):

Além das condicionalidades em relação à saúde, as crianças das famílias beneficiárias também tem que cumprir requisitos em relação à educação, como apresentar frequência escolar igual ou superior a 85%,. O descumprimento dessa condicionalidade, da mesma forma como apresentado na letra h, foi considerado falha grave.

k) <u>Falhas no fluxo de alimentação do Sistema Projeto Presença:</u>

Sistema Projeto Presença ou Sistema de Acompanhamento da Frequência Escolar do Programa Bolsa Família é um sistema informatizado gerido pelo MEC que tem por finalidade auxiliar a secretaria de educação, ou órgão equivalente, na apuração da frequência dos alunos nos respectivos estabelecimentos de ensino, público ou

privado, bem como no planejamento, ao longo do bimestre, da recepção, consolidação e transmissão das informações. (BRASIL, 2004c).

l) <u>Irregularidades nos gastos oriundos dos recursos do IGD relacionadas às licitações:</u>

Neste item foram agrupadas irregularidades na execução das licitações com recursos do IGD, tais como: falta de documentação comprobatória dos gastos realizados, superfaturamento, direcionamento, fracionamento, entre outros.

m) Falhas na aplicação dos recursos do IGD / Recursos não aplicados:

Quaisquer outras irregularidades na aplicação dos recursos do IDG que não se refiram aos procedimentos licitatórios e que acarretem dano ao erário foram agrupadas neste item.

3.2.1.2 Falhas Médias (11 tipos):

As constatações que não foram consideradas graves foram classificadas como falhas médias. Este tipo de irregularidade, apesar de atrapalhar a gestão do PBF, não acarreta, a princípio, dano ao erário, e estão relacionadas a seguir.

a) Ausência da divulgação de beneficiários:

Com o intuito de dar uma maior transparência ao PBF e facilitar o controle social do programa, o gestor municipal deve publicar e/ou afixar em locais públicos as listas dos beneficiários do PBF naquele município. Cabe ressaltar que o Decreto n.º 6.135/07 estabelece que a lista de beneficiários deve ser feita com a utilização do nome e do Número de Identificação Social - NIS do responsável pela unidade familiar, sendo indevida a divulgação de endereço, renda familiar, condições de moradia, nível de escolaridade, situação no mercado de trabalho, dentre outras, a fim de preservar a privacidade do cidadão. Entende-se que esta constatação, embora atrapalhe a gestão do programa, não acarreta dano ao erário, devendo ser classificada como falha média.

b) <u>Cadastro Único desatualizado e/ou fragilidade na utilização do CadÚnico:</u>

Considera-se como atualizado aquele cadastro que, num prazo não superior a 24 meses da data de sua inclusão ou última alteração, ou confirmação de que não houve alteração, contém alteração de: endereço, renda, inclusão e exclusão de membro ou

alteração de responsável pela unidade familiar. Essa inconformidade atrapalha a gestão do programa e pode levar a dano ao erário, como por exemplo a não localização de alunos nas escolas e/ou de famílias beneficiárias. Entretanto, tais constatações foram discriminadas nos relatórios e consideradas como falhas graves, conforme visto anteriormente. Dessa forma, a simples desatualização do CadÚnico foi considerada como falha média.

c) Falta de constituição e/ou não atuação da Coordenação Municipal do Programa:

Cabe aos municípios constituir, por meio de portaria, coordenação composta por representantes das áreas de saúde, educação, assistência social e segurança alimentar, quando existentes, responsável pelas ações do programa no âmbito municipal. (BRASIL, 2004b). A não constituição e/ou atuação da Coordenação Municipal dificulta o acompanhamento do PBF, mas não acarreta prejuízo aos cofres públicos.

d) Falhas no preenchimento do código - aluno do INEP:

O gestor municipal deve promover a atualização das informações necessárias ao acompanhamento da frequência escolar, principalmente no que se refere ao código de identificação da escola estabelecido pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira - INEP e a série ou o ciclo escolar dos alunos. (BRASIL, 2004c).

e) Ausência de composição paritária e intersetorial do Órgão de Controle Social:

Segundo a Instrução Normativa n.º 01/05 (BRASIL, 2005), os membros da instância de controle social poderão ser representantes de entidades ou organizações da sociedade civil, líderes comunitários, bem como beneficiários do PBF, os quais deverão compor pelo menos a metade do total de membros da referida instância. Além disso, os representantes da sociedade devem ser escolhidos com autonomia em relação aos governantes e ao governo. Dessa forma, caso a composição da ICS-PBF não tenha sido constituída de forma paritária, ou seja, metade pertencente à sociedade civil e metade ao governo, considera-se uma falha média.

f) Ausência/deficiência na atuação do Órgão de Controle Social:

O controle e a participação social do Programa Bolsa Família devem ser realizados por instância anteriormente existente ou formalmente constituída pelo

município. A não criação e/ou deficiência de atuação do órgão de controle social pode levar ao não acompanhamento das condicionalidades impostas pelo Programa e, dessa forma, facilita o aparecimento de irregularidades na gestão do PBF.

g) Ausência de estrutura adequada do Órgão de Controle Social:

O governo municipal deve assegurar os meios necessários ao exercício das atribuições do controle social, disponibilizando computadores, espaço físico, meios de transporte, internet, telefone, funcionários, etc., assim como disponibilizar, periodicamente, as informações necessárias ao cumprimento das atribuições da ICS, tais como a base atualizada do CadÚnico, a relação de famílias que descumpriram as condicionalidades, dentre outras. (BRASIL, 2005). A ausência dessa estrutura facilita o aparecimento de irregularidades na gestão do PBF.

h) Condições impostas ao beneficiário para abertura de conta bancária:

É vedada, por parte do agente operador (Caixa Econômica Federal - CEF), impor qualquer condição na abertura de conta bancária que tenha como objetivo o recebimento do benefício do PBF.

i) Dirigentes das escolas visitadas não exercem suas atribuições conforme legislação:

A Portaria MDS/MEC n.º 3.789/04 (BRASIL, 2004c) determina que o dirigente do estabelecimento de ensino deverá avaliar a obtenção, pelos alunos, de índices mensais de frequência escolar inferiores a 85%, objetivando a comunicação aos pais ou responsáveis, no sentido de restabelecer a frequência mínima exigida pelo programa e, caso seja necessário, informar também ao Conselho Tutelar para medidas cabíveis.

j) <u>Cartões não entregues pela CEF / Ausência de comunicações por parte da CEF/ Cartões não entregues e/ou não ativados / Deficiências no dimensionamento, bem como inoperância dos canais de pagamentos:</u>

A entrega dos cartões aos beneficiários deve ser realizada pelos Correios. Entretanto, caso o destinatário não seja localizado, os mesmos são remetidos para a CEF. Neste caso, é de responsabilidade da agência bancária promover ações para a entrega dos cartões. Além disso, a CEF deve disponibilizar um terminal de saque para cada três mil beneficiários e manter os canais de pagamento em operação.

k) <u>Recursos do IGD não incorporados ao orçamento municipal / Ausência de rubrica própria</u> no orçamento municipal para os recursos transferidos por meio do IGD:

O município deve fazer a previsão dos recursos do IGD e inserir na proposta orçamentária ou em projeto de lei de créditos suplementares ou especiais, conforme o caso, de acordo com as categorias econômicas (custeio ou capital), e encaminhar para a câmara de vereadores para aprovação. O valor a ser recebido deverá constar em rubrica específica (não necessariamente com a denominação inerente ao Programa Bolsa Família). (BRASIL, 2006b).

3.3 Análise de Conteúdo

Para orientação da análise da pesquisa, mais especificamente a seleção evidenciada no item anterior, utilizou-se da *análise de conteúdo*, definida por Bardin (2002, p.38) como sendo "um conjunto de técnicas de análise das comunicações que utiliza procedimentos sistemáticos e objetivos de descrição do conteúdo das mensagens". Alguns dos pilares deste tipo de análise, segundo a mesma autora, são a fase da preparação e descrição do material, a inferência ou dedução e a interpretação.

Já Moraes (1999, p.8) define esse tipo de análise como sendo uma "metodologia de pesquisa usada para descrever e interpretar o conteúdo de toda classe de documentos e textos". Segundo o autor, embora a análise de conteúdo tenha tido origem no final do século XIX, apenas na segunda metade do século passado suas características e diferentes abordagens foram desenvolvidas. Na mesma linha, Vergara (2006) afirma que a análise de conteúdo presta-se tanto para fins exploratórios quanto para fins de verificação, confirmando ou não hipóteses preestabelecidas.

Martins e Theóphilo (2009) argumentam que a análise de conteúdo busca a essência de um texto nos detalhes das informações, dados e evidências disponíveis. Segundo os autores, essa técnica é utilizada, dentre outros objetivos, para auditar conteúdos de comunicações e compará-los com determinados objetivos.

Nesse sentido, a matéria-prima utilizada na análise de conteúdo a que se refere este estudo são os relatórios emitidos pela CGU quando da fiscalização dos municípios. Embora as equipes de analistas tenham um questionário comum e apliquem procedimentos padronizados nas fiscalizações, a observação da realidade e das irregularidades de cada município apresenta um elevado grau de subjetividade, que se reflete nas constatações evidenciadas nos relatórios e nas diversas formas de escrita de cada analista. Assim, por meio de uma análise de conteúdo,

procurou-se identificar e agrupar constatações idênticas, mas que tivessem sido escritas de formas distintas pelos diversos analistas responsáveis pela confecção dos relatórios.

Essa mesma metodologia foi utilizada por Sousa (2009), ao analisar a consistência teórica do PBF e das perspectivas dos beneficiários de saída autossustentada do programa, por Revorêdo (2006), ao avaliar o papel do tribunal de contas na promoção da efetividade de hospitais públicos e por Gasparoni (2007), que fez uma análise do Programa de Erradicação do Trabalho Infantil - PETI, entre diversos outros estudos.

3.4 Análise Empírica

Após a seleção dos relatórios e quantificadas as falhas graves e médias relacionadas ao PBF encontradas em cada município, foram coletados indicadores sociais e geoeconômicos das localidades constantes da amostra, que foram utilizados como variáveis independentes dos modelos econométricos construídos. Além desses indicadores, também foi incluído como uma variável explicativa o montante de recursos fiscalizado em cada município. A razão pela inserção de cada variável no modelo será explicada a seguir.

3.4.1 - Definição das variáveis dependentes

Para a construção dos modelos foram utilizadas como variáveis explicadas as *falhas graves* e *médias* discriminadas nos relatórios de fiscalização da CGU. Conforme demonstrado na Seção 3.2, as diversas constatações encontradas na fiscalização dos programas são divididas em formais, médias e graves. Dentre essas, as formais não compõem o relatório não sendo, portanto, contempladas pela análise do presente estudo. Em relação às falhas médias e graves, que são apresentadas nos relatórios, objetivou-se qualificá-las e quantificá-las, obtendo-se, dessa forma, a variável dependente de cada um dos modelos construídos. Essas variáveis também foram utilizadas por Ferraz e Finan (2005); Zamboni (2007); e Sodré e Alves (2010), conforme verificado no referencial teórico.

Da mesma forma, Ferraz, Finan e Moreira (2009) utilizaram a quantidade de irregularidades detectadas pela CGU para quantificar a corrupção existente nas transferências de recursos realizadas pela União para os municípios e mensurar seu impacto no nível de aprendizado dos alunos nas 365 localidades que foram objeto da amostra.

Santana (2008), em estudo que comparou os resultados obtidos na primeira e segunda fiscalização realizada pela CGU em 39 municípios, utilizou o número de constatações

encontradas pelos auditores para medir a eficiência administrativa dos municípios, não havendo a preocupação quanto à qualificação dessas irregularidades.

3.4.2 - Definição das variáveis independentes

O Instituto Brasileiro de Geografia e Estatística – IBGE apresenta, anualmente, um consolidado dos indicadores sociais de cada região do país. Uma vez que o objetivo deste trabalho é verificar a relação existente entre os indicadores sociais de determinados municípios e o nível de irregularidades apresentadas por eles na execução do PBF, para a definição das variáveis explicativas do modelo, buscou-se selecionar indicadores que refletissem a renda, a desigualdade social e a pobreza dos municípios fiscalizados.

Além dessas variáveis, inseriu-se como variáveis explicativas: i) a população, buscando verificar se o tamanho do município tem influência no quantitativo e qualitativo das irregularidades encontradas na fiscalização do Programa, e ii) o montante de recursos auditados pela CGU, objetivando analisar se há uma relação entre o volume de recursos recebidos pela localidade e o nível de inconformidades relatadas pela mesma.

a) Renda:

Como indicador de renda foi utilizado o PIB Municipal, coletado pelo IBGE e apresentado no Atlas de Desenvolvimento Humano no Brasil (PNUD, 2010) e também usado por Power e González (2003) e Sodré e Alves (2010), entre outros pesquisadores. Optou-se por não utilizar *a renda familiar per capita* do município porquê esse indicador já compõe o IDH-M, que também será utilizado na regressão. Ressalta-se que se foram utilizados os dados do ano de 2008 para esse indicador, devido a esse ano ser a mediana dos anos objeto da amostra (2006 a 2010).

Hipótese: Quanto maior o PIB Municipal menor o número de falhas encontradas. Espera-se, portanto, que esta variável apresente um coeficiente negativo.

b) <u>Desigualdade Social:</u>

Para se medir a desigualdade social apresentada por cada município optou-se por utilizar o Índice de Gini, dada sua facilidade de compreensão, recorrência na literatura e diversidade de utilização em trabalhos acadêmicos anteriores. Esse índice é utilizado pela ONU para comparar a distribuição de renda entre países e também foi utilizado por Sodré e Alves (2010), Soares et al (2007), Ferraz (2008), Ferraz, Finan e Moreira (2009), Matos (2005),

Spinelli (2008) e Acosta (2008), entre outros autores, em pesquisas que o consideraram como medida de desigualdade social. Os dados foram retirados do Atlas de Desenvolvimento Humano no Brasil (PNUD, 2010), e referem-se ao ano 2000 (publicação mais recente até a conclusão deste trabalho).

Hipótese: Quanto maior o Índice de Gini, ou seja, a desigualdade, maior o número de falhas encontradas. Espera-se, dessa forma, um coeficiente positivo para essa variável.

c) Pobreza:

Como indicador de pobreza utilizou-se o Índice de Desenvolvimento Humano – IDH, que serve de comparação entre países, com objetivo de medir o grau de desenvolvimento econômico e a qualidade de vida oferecida à população. Este índice, criado pela ONU no início da década de 1990, é calculado com base em dados econômicos e sociais, sendo também usado para apurar o desenvolvimento de cidades, estados e regiões.

O IDH-M (de municípios) utilizado nesse estudo foi o calculado pela ONU em 2000 e divulgado pelo IBGE naquele mesmo ano. Cabe ressaltar que, da mesma forma como ocorreu com o Índice de Gini, o IDH-M referente ao Censo realizado no País em 2010 ainda não havia sido divulgado até a conclusão da etapa de coleta de dados do presente estudo. Alberini (2010), entre outros autores, também utilizou o IDH-M como medida de pobreza. Conforme ressalta Pinto (2010), esse índice permite uma comparação internacional apesar de não levar em conta a desigualdade que determina a enorme concentração de renda em determinados países. Essa deficiência, entretanto, foi minimizada pela inserção, no modelo, do Índice de Gini, conforme verificado anteriormente. Por fim, Akçay (2006) encontrou relação negativa entre corrupção e IDH.

Hipótese: Quanto maior for o IDH-M, menor o número de irregularidades existentes. Portanto, é esperado que esta variável apresente um coeficiente negativo.

d) População:

Como variável geográfica optou-se por utilizar a estimativa de contagem populacional de cada município realizada pelo IBGE em 2008, pelas mesmas razões apresentadas na letra a desta Seção. A inserção dessa variável justifica-se para a verificação de possível correlação e/ou causalidade entre o tamanho da população da localidade fiscalizada e o número de irregularidades encontradas.

Hipótese: Quanto maior a população da cidade, menor o número de falhas encontradas. Dessa forma, espera-se que esta variável apresente um coeficiente negativo.

e) Recursos transferidos e fiscalizados:

Os recursos transferidos aos municípios, referentes ao PBF, e que são objeto de fiscalização da CGU, estão discriminados nos relatórios de fiscalização emitidos. Dessa forma, foram a fonte para obtenção dos dados referentes a esta variável.

Hipótese: Quanto maior a quantidade de recursos transferidos, maior o número de falhas encontradas. Portanto, espera-se um coeficiente positivo desta variável.

3.4.3 - Modelos econométricos

Objetivando verificar as possíveis relações de causalidade entre as variáveis analisadas, foram estimadas as seguintes regressões, utilizando-se do total da amostra selecionada (717 municípios):

$$GRAVES = \beta_1 IDH + \beta_2 GINI + \beta_3 PIB + \beta_4 POP + \beta_5 REC + \varepsilon$$
 (1)

$$MEDIAS = \beta_1 \, IDH + \beta_2 \, GINI + \beta_3 PIB + \beta_4 \, POP + \beta_5 \, REC + \varepsilon \qquad (2)$$

Onde:

GRAVES = Número de falhas graves encontradas no município

MEDIAS = Número de falhas médias encontradas no município

 β_n = Coeficientes da variável n

IDHM = Índice de Desenvolvimento Humano Municipal

GINI = Índice de Gini

PIB = Produto Interno Bruto Municipal

POP = População do município

REC = Recursos transferidos e fiscalizados

 $\varepsilon = Erro$

Ressalta-se que foi utilizada, em um primeiro momento, uma constante para a estimação das equações. A partir dos resultados pouco expressivos obtidos para esse termo, optou-se pelas equações apresentadas em (1) e (2), chamadas de regressões pela origem. Segundo Theil (1971, p. 176 apud Eisenhauer, 2003, p. 76), "do ponto de vista econômico, um termo constante

geralmente tem pouco ou nenhum poder explicativo." Eisenhauer (2003) destaca que, apesar de a afirmação anterior ser um pouco exagerada, há diversos casos em que a constante pode ser retirada. Um desses casos é quando Y = 0 se as variáveis X forem iguais a 0. No modelo desenvolvido neste estudo, se POP for zero, não existe o município, logo, as outras variáveis independentes também serão zero e, consequentemente, as falhas graves e médias também.

Após a estimação dessas duas regressões, os municípios da amostra foram divididos de acordo com as cinco regiões geográficas do País, no intuito de verificar se as relações existentes entre as variáveis diferem quando as localidades são segmentadas. Dessa forma, foram estimadas novamente as duas regressões, para cada região. A amostra da região Sul apresentou 121 municípios, o Sudeste, 177, a região Centro-Oeste, 53, o Nordeste, 284 e o Norte, 82.

A estimação dos modelos anteriores foi realizada a partir do *software* estatístico SPSS 18.0. Para a seleção das variáveis pertencentes aos modelos analisados, optou-se pelo método *Backward* que, segundo Hair et al (2009, p. 151), "é um método de seleção de variáveis para inclusão no modelo de regressão que começa incluindo todas as variáveis independentes no modelo para então eliminar as que não oferecem uma contribuição significativa para previsão".

Por fim, utilizando-se ainda do SPSS, foram realizados alguns testes com o objetivo de verificar a robustez dos modelos testados, tais como: testes de significância t, análise do Fator de Inflação da Variância (VIF⁸), análise dos coeficientes *Beta* padronizados e da estatística F⁹.

-

⁷ "From an economic point of view, a constant term usually has little or no explanatory virtues" (THEIL, 1971, p. 176 apud EISENHAUER, 2003, p.76)

⁸ Indicador do efeito que as outras variáveis independentes têm sobre o erro padrão de um coeficiente de regressão. Valores VIF altos indicam um alto grau de colinearidade ou multicolinearidade entre as variáveis independentes (HAIR ET AL, 2009).

⁹ O valor F fornece a contribuição adicional de cada variável acima de todas as outras na equação (HAIR ET AL, 2009)

4 RESULTADOS E ANÁLISES

Nessa seção serão apresentados os resultados obtidos na pesquisa a partir dos dados coletados e das regressões identificadas na seção anterior. Com o intuito de facilitar o entendimento, optou-se por dividi-lo em três partes: Estatística Descritiva, Correlações e Inferências Estatísticas. Nesta última serão apresentados os resultados para a amostra completa e também os segmentados por regiões do País.

4.1 Estatística descritiva

Segundo Gujarati (2002), Estatística Descritiva é a parte da Estatística que procura somente avaliar e descrever certo grupo, sem fazer inferências ou tirar conclusões sobre um grupo maior. Nesse sentido, em um primeiro momento foram analisados os dados apresentados anteriormente utilizando-se esse tipo de estatística. Dessa forma, conforme se verifica na Tabela 1, a análise apresentou as seguintes medidas de tendência central (mediana e média) e medidas de dispersão (desvio-padrão).

Tabela 1 - Estatística Descritiva

Estatística Descritiva							
	Média	Mediana	Desvio-Padrão	Mínimo	Máximo		
Relatórios de Fiscalização							
Falhas Graves	2,95	3,00	1,75	0,00	8,00		
Falhas Médias	2,46	2,00	1,59	0,00	8,00		
Recursos Auditados (em R\$)	2.348.072,65	1.264.442,00	3.365.032,18	2.015,00	29.675.794,00		
Variáveis							
Sociodemográficas							
IDH-M	0,68	0,69	0,08	0,48	0,85		
Índice de Gini	0,57	0,56	0,06	0,40	0,79		
PIB Municipal (em R\$)	263.312,42	67.046,30	773.246,31	6.823,11	8.033.460,98		
População	25.125	11.847	50.849	834	536.785		

Fonte: SPSS, a partir de planilha elaborada pelo autor

A tabela anterior demonstra que, na média, cada município apresentou 5 irregularidades na execução do PBF. Além disso, resta evidenciada a diversidade existente entre as localidades que foram objeto das fiscalizações. Foram auditados municípios que apresentam, desde um Produto Interno Bruto de pouco mais de R\$ 6 mil até localidades que possuem um PIB superior

a R\$ 8 milhões. Da mesma forma, essa variação é comprovada no número de habitantes dos municípios, que variou entre pouco mais de 800 indivíduos até localidades com mais de meio milhão de habitantes, além da quantidade de recursos recebidos, sendo auditados pouco mais de R\$ 2 mil em alguns municípios e valores superiores a R\$ 29 milhões em outros.

A figura a seguir apresenta o histograma referente às falhas graves e médias. Observa-se que 539 municípios (75,17%) apresentaram entre 0 e 3 falhas médias, 171 (23,85%) entre 4 e 6 e apenas 7 (0,98%) incorreram em 7 ou mais falhas médias. Da mesma forma, a maioria das localidades (465 ou 64,85%) apresentaram entre 0 e 3 falhas graves, 227 (31,66%) entre 4 e 6 e 25 municípios apresentaram 7 ou mais falhas graves.

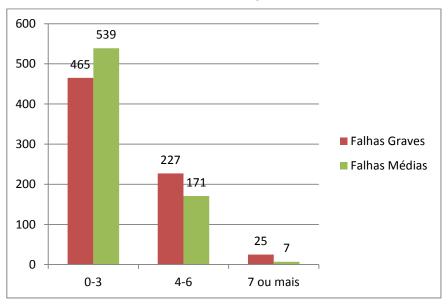


Figura 8 - Histograma

Fonte: próprio autor.

Ainda em relação a análise descritiva, observou-se que, dos 717 municípios verificados, 665 (92,75%) apresentaram ao menos uma falha grave, 646 (90,10%) pelo menos uma falha média e apenas 23 (3,2%) não apresentaram falhas graves nem médias. Esses altos índices de inconformidades corroboram com as estatísticas divulgadas pela CGU, quando da apresentação dos resultados do 30° sorteio, que detectou irregularidades em 57 dos 60 municípios fiscalizados (95%). (BRASIL, 2010b). Kadri (2009), em estudo que abrangeu a verificação de 850 relatórios de fiscalizações realizadas pela CGU entre 2004 e 2007, encontrou resultados semelhantes, com a evidenciação de pelo menos uma inconformidade em 90,71% dos municípios auditados.

Por fim, na Figura 9 a seguir são apresentadas as falhas que mais se repetiram nos municípios. Observa-se que mais da metade das localidades fiscalizadas apresentaram desatualização cadastral (falha média) e beneficiários com renda per capita superior à estabelecida no PBF.

Irregularidades nos gastos oriundos dos recursos 29,71% do IGD Freqüência escolar inferior à estipulada pelo PBF 31,52% Ausência / Deficiência na atuação da Órgão de 41,84% **Controle Social** Não divulgação dos beneficiários 41,84% Alunos beneficiários não localizados 45,61% Renda per capita superior à estabelecida na 58,02% legislação do PBF Cadastro Único desatualizado 72,38%

Figura 9 – Principais falhas encontradas nos municípios

Fonte: próprio autor.

4.2 Correlações

Após a análise dos dados realizada a partir da estatística descritiva, objetivou-se verificar a correlação entre as diversas variáveis das duas regressões. Conforme explica Barbetta (2006), correlação não implica causa e efeito. Dessa forma, mesmo que se encontre uma correlação positiva entre alguma dessas variáveis, isso não significa que a variável independente é a causa da variável dependente. Nesse trabalho, a partir do *software* SPSS 18.0, utilizou-se o coeficiente de correlação de *Pearson*, que mede a correlação linear entre duas variáveis.

4.2.1 Correlações existentes entre as falhas graves e as variáveis independentes da equação (1)

A tabela a seguir demonstra a forte correlação existente entre o Índice de Gini e a quantidade de falhas graves (0,857). Observa-se que o IDH dos municípios também é fortemente correlacionado à variável dependente (0,852). A quantidade de recursos fiscalizados (0,524), o tamanho da população do município (0,358) e o PIB (0,245) apresentam menores correlações em relação às falhas graves.

Tabela 2 - Correlação – falhas graves

		Graves	Gini	POP	Recursos	IDH	PIB
Std.	Graves	1,000	,857	,358	,524	,852	,245
Cross-product	Gini	,857	1,000	,449	,592	,983	,324
	POP	,358	,449	1,000	,711	,464	,882
	Recursos	,524	,592	,711	1,000	,552	,494
	IDH	,852	,983	,464	,552	1,000	,359
	PIB	,245	,324	,882	,494	,359	1,000
Sig. (1-tailed)	Graves	•	,000	,000	,000	,000	,000
	Gini	,000		,000	,000	,000	,000
	POP	,000	,000		,000	,000	,000
	Recursos	,000	,000	,000		,000	,000
	IDH	,000	,000	,000	,000		,000
	PIB	,000	,000	,000	,000	,000	
N	Graves	717	717	717	717	717	717
	Gini	717	717	717	717	717	717
	POP	717	717	717	717	717	717
	Recursos	717	717	717	717	717	717
	IDH	717	717	717	717	717	717
	PIB	717	717	717	717	717	717

Fonte: SPSS, a partir de planilha elaborada pelo autor.

Além da correlação entre as variáveis independentes e a dependente, a partir da tabela anterior verifica-se também a forte colinearidade entre o IDH e o Índice de Gini (0,983). Essa relação fez com que, como será verificado na Seção 4.3, o modelo apresentasse alta multicolinearidade, fazendo com que ações corretivas tivessem que ser tomadas.

4.2.2 Correlações existentes entre as falhas médias e as variáveis independentes da equação (2)

A substituição da variável dependente *falhas graves* por *falhas médias* provocou pouca alteração nas correlações observadas. O IDH (0,835) e o Índice de Gini (0,834) continuaram

apresentando forte correlação em relação às falhas encontradas nas fiscalizações e os recursos auditados (0,461), a população da localidade (0,335) e o PIB municipal (0,245) apresentaram uma menor colinearidade com a variável dependente. Uma vez que as variáveis independentes utilizadas na equação (2) são as mesmas da equação (1), as correlações entre essas variáveis são idênticas às apresentadas na Tabela 2.

Tabela 3 - Correlação - falhas médias

	-	Medias	Gini	POP	Recursos	IDH	PIB
Std.	Medias	1,000	,834	,335	,461	,835	,245
Cross-product	Gini	,834	1,000	,449	,592	,983	,324
	POP	,335	,449	1,000	,711	,464	,882
	Recursos	,461	,592	,711	1,000	,552	,494
	IDH	,835	,983	,464	,552	1,000	,359
	PIB	,245	,324	,882	,494	,359	1,000
Sig. (1-tailed)	Medias		,000	,000	,000	,000	,000
	Gini	,000		,000	,000	,000	,000
	POP	,000	,000		,000	,000	,000
	Recursos	,000	,000	,000		,000	,000
	IDH	,000	,000	,000	,000		,000
	PIB	,000	,000	,000	,000	,000	
N	Medias	717	717	717	717	717	717
	Gini	717	717	717	717	717	717
	POP	717	717	717	717	717	717
	Recursos	717	717	717	717	717	717
	IDH	717	717	717	717	717	717
	PIB	717	717	717	717	717	717

Fonte: SPSS, a partir de planilha elaborada pelo autor.

Verificadas as correlações existentes e, buscando poder inferir acerca da causalidade entre as variáveis, foram estimadas as seguintes regressões, analisadas na Seção 4.3 a seguir.

4.3 Inferência Estatística

Após a apresentação das estatísticas descritivas e da realização dos testes de correlação, nesta seção serão apresentados os resultados das regressões estimadas para a amostra completa (717 municípios) e também aqueles alcançados nas amostras regionais. As tabelas completas dos dados estatísticos obtidos a partir do *software* estatístico *Statistical Package for the Social Sciences* - SPSS encontram-se no Apêndice.

Brooks (2008, p. 164) afirma que "para tamanhos amostrais suficientemente grandes, a violação da premissa de normalidade é praticamente irrelevante". Independente disso, no Apêndice são apresentados os gráficos de normalidade das equações estimadas. Além disso, são demonstrados também os histogramas dos resíduos, comprovando a linearidade, homoscedasticidade e independência dos termos de erro das regressões do presente estudo.

4.3.1 Brasil:

Conforme descrito na metodologia, para os dados completos da amostra foram estimadas duas regressões. A primeira objetivou verificar as relações entre os indicadores sociais e geoeconômicos e as falhas graves encontradas pelos analistas da CGU e a segunda as relações entre esses mesmos indicadores e as falhas médias constantes nos relatórios de fiscalizações. A seguir são apresentados e discutidos os resultados encontrados.

4.3.1.1 Relação entre falhas graves e indicadores sociais e geoeconômicos

A estimação da equação (1), discriminada na metodologia desta pesquisa, apresentou os resultados constantes na Tabela 4. Das variáveis explicativas, apenas o PIB não retornou como significativa (significância do teste t foi maior que 0,05). Entretanto, ao se verificar a multicolinearidade das variáveis, o IDH e o Índice de Gini apresentaram um Fator de Inflação da Variância superior¹¹ a 10, o que indica alta presença de multicolinearidade.

Tabela 4 - Resultado da estimação da equação (1)

Variáveis Explicativas	β Padronizado	Teste t	VIF	
IDH	0,484	4,38*	33,933	
GINI	0,358	3,157*	35,858	
PIB	-0,018	-0,406	5,473	
POP	-0,118	-4,131*	2,278	
REC	0,129	4,01*	2,858	
R ² ajustado		0,742		
Estatística F		517,55**		
Número de observaçõe	es	717		

^{*} Significante a 5% ** Significante a 1%

"For sample sizes that are sufficiently large, violation of the normality assumption is virtually inconsequential."

Segundo Hair et al (2009), uma referência de corte comum é um valor VIF de 10. Já segundo Field (2000), há divergência entre o número limite de aceitação do VIF para indicação ou não de multicolinearidade.

Hair et al (2009) e Heij et al (2004) indicam que, para corrigir o problema detectado, pode-se excluir uma variável do modelo, devendo essa exclusão ser realizada aleatoriamente. Optou-se, então, por retirar a variável IDH, por sua composição abranger alguns elementos que já são captados por outras variáveis do modelo, como renda, por exemplo. Dessa forma, estimou-se a seguinte equação:

$$GRAVES = \beta_1 GINI + \beta_2 PIB + \beta_3 POP + \beta_4 REC + \varepsilon$$
 (3)

A regressão (3) a partir do método de eliminação *backward* apresentou os resultados constantes na Tabela 5. O modelo apresentou um poder explicativo (R² ajustado) de 0,736, o que significa que as variáveis independentes explicam em 73,6% a variável dependente *falha grave*. Optou-se por utilizar o coeficiente de determinação (R²) ajustado pois, segundo Hair et al (2009), ele realiza um ajuste com base no número de variáveis independentes incluídas na equação de regressão e o tamanho da amostra.

Tabela 5 - Resultado da estimação da equação (3)

Variáveis Explicativas	β Padronizado	Teste t	VIF
GINI	0,845	35,427*	1,543
PIB	0,006	0,139	5,388
POP	-0,077	-2,800*	2,026
REC	0,078	2,579*	2,489
R ² ajustado		0,736	
Estatística F	666,694**		
Número de observações	717		

^{*} Significante a 5% ** Significante a 1%

A verificação da significância estatística de cada variável independente se deu a partir do teste t que, segundo Brooks (2008), testa hipóteses individuais. Observa-se que apenas a variável PIB não apresentou significância estatística (sig. t > 5%). As outras três variáveis, GINI (0,000), POP (0,005) e REC (0,010), são estatisticamente significantes e continuaram no modelo. Essas três variáveis apresentaram VIF inferior a 10, o que elimina a preocupação com alta multicolinearidade do modelo.

Observa-se, na análise dos coeficientes de regressão, que a variável REC apresentou coeficiente positivo e a POP, negativo. Esses sinais também corroboram com as hipóteses

levantadas na pesquisa e significam que quanto maior o volume de recursos auditados e quanto menor a população do município, mais falhas graves são encontradas.

Analisadas as significâncias individuais das variáveis independentes, o teste F permite realizar a verificação da significância do modelo geral e, ainda segundo o supracitado autor, deve ser aplicado para regressões com mais de um coeficiente. A regressão apresentou um valor F de 666,69 e significância de 0,000, o que indica que os coeficientes utilizados no modelo são considerados conjuntamente significantes.

Por fim, a utilização do Beta (β) padronizado como coeficiente de regressão ocorreu devido ao fato desta padronização permitir a comparação direta entre dois ou mais coeficientes, conforme ressalta Hair et al (2009). Dessa forma, observa-se que o Índice de Gini apresentou um β positivo de 0,84, sendo que, comparado às outras variáveis, é a que mais impacta a variável dependente. O coeficiente positivo da variável GINI já era esperado, conforme visto na Seção 3.4.2, e significa que quanto maior é a desigualdade social presente no município, mais falhas graves ele apresenta.

4.3.1.2 Relação entre falhas médias e indicadores sociais e geoeconômicos

A partir dos problemas apresentados para estimação da equação (1), foi estimada a regressão (2) descrita na seção anterior, que apresentou as mesmas inconsistências (alta multicolinearidade). Dessa forma, estimou-se a seguinte equação para verificar a relação entre as variáveis sociais e geoeconômicas e as falhas médias encontradas nos municípios fiscalizados pela CGU:

$$MEDIAS = \beta_1 GINI + \beta_2 PIB + \beta_3 POP + \beta_4 REC + \varepsilon$$
 (4)

Os resultados obtidos a partir dessa regressão são apresentados na Tabela 6 a seguir. Assim como no modelo anterior, o Índice de Gini (0,000) e a População (0,032) se mostraram estatisticamente significativas e o PIB não apresentou essa significância (0,211). Entretanto, o volume de recursos fiscalizados, ao contrário do que ocorreu na estimação da equação (3), não retornou como significativo (0,708).

Tabela 6 -	Resultado	da estimac	cão da c	eguação ((4)

Variáveis Explicativas	β Padronizado	Teste t	VIF
GINI	0,856	37,171*	1,253
PIB	-0,050	1,251	4,655
POP	-0,101	-2,154*	1,253
REC	-0,013	-0,375	2,881
R ² ajustado		0,696	
Estatística F		823,222*	*
Número de obse	rvações	717	

^{*} Significante a 5% ** Significante a 1%

O modelo apresentou um bom poder explicativo (R^2 ajustado = 0,696) e uma baixa multicolinearidade (VIF = 1,253) Além disso, o valor F encontrado foi de 823,222, com 0,000 de significância, o que comprova a significância conjunta das variáveis independentes do modelo.

Em relação aos coeficientes de regressão, conforme esperado e ratificando o que foi encontrado no modelo estimado para *falhas graves*, GINI apresentou coeficiente positivo e POP negativo. Novamente, o Índice de Gini foi o que mais impacta a variável dependente (β = 0,856).

4.3.2 Regiões:

Objetivando verificar se os resultados encontrados para o Brasil são verificados também quando são segmentados os municípios por regiões geográficas, foram estimadas as equações (3) e (4) para as cinco regiões do País, sendo encontrados os seguintes resultados.

a) Norte:

Tabela 7 - Resultado da estimação das equações (3) e (4) para a Região Norte

Variáveis Explicativas	β Padronizado	Teste t	VIF
Variável Explicada: Falhas Graves			
GINI	0,953	16,141*	1,382
PIB	0,334	1,459	21,069
POP	-0,127	-2,145*	1,382
REC	0,071	0,994	1,998

 R^2 ajustado 0,793

Estatística F	158,063**
Número de observações	82

Variável Explicada: Falhas Médias			
GINI	0,839	13,905*	1,000
PIB	0,139	0,624	13,296
POP	-0,031	-0,430	1,382
REC	0,030	0,279	3,166
R ² ajustado	0,701		
Estatística F	193,338**		
Número de observações	82		

^{*} Significante a 5% ** Significante a 1%

Observa-se, a partir da Tabela 7, que tanto o modelo estimado para falhas graves quanto o para falhas médias apresentaram um bom poder explicativo (R² ajustado = 0,793 e 0,701, respectivamente). Entretanto, para a regressão (3), em relação à Região Norte, apenas GINI (0,000) e POP (0,035) retornaram como variáveis significativas estatisticamente. Já para a equação (4), restou apenas o Índice de Gini (0,000). Dessa forma, conclui-se, que as variáveis GINI e POP explicam quase 80% das falhas graves apresentadas pelos municípios do Norte e a variável GINI explica em 70,1% as falhas médias encontradas nessas mesmas localidades.

Os valores de F também foram significativos para ambas as equações (158,063 e 193,338, respectivamente), com significância de 0,000, comprovando que não há relação espúria entre as variáveis do modelo. Além disso, apresentaram um VIF de 1,382 e 1,000, respectivamente, afastando a hipótese de multicolinearidade entre as variáveis independentes.

Os coeficientes de regressão das equações foram os esperados (GINI positivo e POP negativo), sendo mais uma vez o índice de Gini a variável que mais impacta nas falhas graves e médias (β padronizado = 0,953 e 0,839, respectivamente).

A partir dos resultados apresentados para a Região Norte, conclui-se que GINI e POP, da mesma forma como verificado nas regressões estimadas para todo o Brasil, são significantes em relação às falhas graves. Entretanto, o volume de recursos auditados, ao contrário do que acontece na regressão com os dados nacionais, não é significante estatisticamente.

Já em relação às falhas médias, observou-se que apenas GINI retornou como significante na Região Norte, sendo que, no caso do Brasil, a população também foi considerada estatisticamente significante em relação a essa variável dependente.

b) Nordeste:

A Região Nordeste foi a que apresentou um maior número de variáveis independentes estatisticamente significantes em relação às falhas graves, juntamente com a Região Sul. Os resultados encontrados (Tabela 8) são bastante parecidos com os obtidos na análise completa (nacional).

Tabela 8 - Resultado da estimação das equações (3) e (4) para a Região Nordeste

Variáveis Explicativas	β Padronizado	Teste t	VIF
•	/ariável Explicada	a: Falhas Graves	
GINI	0,778	17,454*	2,005
PIB	0,147	1,002	21,801
POP	-0,151	-2,537*	3,601
REC	0,205	2,851*	5,208
R ² ajustado		0,719	
Estatística F		242,972**	
Número de observaçõ	ŏes –	284	
7	/ariável Explicada	a: Falhas Médias	
GINI	0,850	21,604*	1,313
PIB	0,049	0,307	21,801
POP	-0,073	-1,859	1,313
REC	0,011	0,136	5,208
R ² ajustado		0,665	
Estatística F		282,982**	
Número de observaçõ	šes –	284	

^{*} Significante a 5% ** Significante a 1%

O modelo apresentou um alto poder explicativo (R^2 ajustado = 0,719), baixa multicolinearidade (VIF menor que 10) e variáveis estatisticamente significantes em seu conjunto (F = 242,972 e significância 0,000).

Os coeficientes de regressão obtidos também foram ao encontro dos observados na regressão completa, com GINI e REC sendo positivamente correlacionados com as falhas graves e POP apresentando correlação negativa. Mais uma vez, observou-se um maior impacto do Índice de Gini na variável dependente (β padronizado = 0,778)

Já o modelo que utilizou as falhas médias como variável explicada apresentou resultados parecidos com os obtidos pela Região Norte, com apenas GINI retornando como estatisticamente significante (0,000). O modelo apresentou um R² ajustado de 0,665, o que

significa dizer que o Índice de Gini explica em 66,5% as falhas médias que ocorrem no Programa Bolsa Família naquela região. Da mesma forma como as outras equações apresentadas até aqui, o modelo apresentou baixo VIF (1,313), valor F de 282,982 (significância = 0,000) e um β padronizado positivo de 0,850, demonstrando a alto impacto de uma variação no GINI no aumento das falhas médias.

c) Centro-Oeste:

Na amostra da Região Centro-Oeste, tanto para as falhas graves quanto para as falhas médias, apenas a variável GINI retornou como estatisticamente significativa nos modelos propostos (0,000 em ambos).

Tabela 9 - Resultado da estimação das equações (3) e (4) para a Região Centro-Oeste

Variáveis Explicativas	3 Padronizado	Teste t	VIF
Va	ariável Explicada	: Falhas Graves	
GINI	0,898	14,727*	1,000
PIB	0,152	0,719	11,651
POP	-0,030	-0,414	1,387
REC	0,214	0,934	13,850
R ² ajustado		0,803	
Estatística F		216,799**	
Número de observações 53			
Variável Explicada: Falhas Médias			
GINI	0,882	13,521*	1,000
PIB	0,143	0,811	7,369
POP	-0,106	-1,339	1,387
REC	0,442	1,474	21,897
R ² ajustado		0,774	
Estatística F		182,805**	
Número de observações	S	53	

^{*} Significante a 5% ** Significante a 1%

Os modelos apresentaram um bom poder explicativo (R^2 ajustado = 0,803 e 0,774, respectivamente) e, uma vez que apenas uma variável (GINI) permaneceu no modelo, não houve presença de multicolinearidade (VIF = 1,000). Da mesma forma, o valor F apresentou significância de 0,000 e os coeficientes β padronizados apresentaram correlação positiva com as variáveis dependentes dos dois modelos (0,898 e 0,882, respectivamente).

d) Sudeste:

Os dados obtidos nos dois modelos estimados para a Região Sudeste foram análogos aos apresentados na Região Centro-Oeste. Apenas o Índice de Gini foi considerado estatisticamente significante no modelo, apresentando as regressões um poder explicativo de 84,9% (falhas graves) e 72,1% (falhas médias).

Conforme verificado na Tabela 10, as duas regressões apresentaram um alto valor de F (452,479 e 457,933, respectivamente), com significância de 0,000 e VIF igual a 1,000, como esperado para modelos com apenas uma variável independente. Além disso, nas duas equações foram ratificados os sinais esperados na variável GINI, demonstrando que esta está positivamente correlacionada com as falhas graves e médias encontradas pelos analistas da CGU.

Tabela 10 - Resultado da estimação das equações (3) e (4) para a Região Sudeste

Variáveis Explicativas	β Padronizado	Teste t	VIF	
	ariável Explicac	la: Falhas Graves		
GINI	0,849	21,272*	1,000	
PIB	-0,038	-0,871	1,182	
POP	0,017	0,198	4,524	
REC	0,070	1,329	1,746	
R ² ajustado		0,849		
Estatística F		452,479**		
Número de observações		177		
Variável Explicada: Falhas Médias				
GINI	0,850	21,399*	1,000	
PIB	0,010	0,145	3,234	
POP	-0,048	-1,074	1,245	
REC	0,060	1,000	2,319	
R ² ajustado		0,721		
Estatística F		457,933**		
Número de observações		177		

^{*} Significante a 5% ** Significante a 1%

e) <u>Sul</u>:

Esta região, juntamente com a Nordeste, foi a que apresentou um maior número de variáveis independentes estatisticamente significantes no modelo estimado para falhas graves.

Conforme observado na Tabela 11, a equação apresentou um bom poder explicativo (R² ajustado = 0,744), um valor F de 118,007 com significância 0,000, o que indica que as relações não são espúrias entre as variáveis independentes, e um VIF menor que 10 para todas as variáveis.

Os coeficientes β padronizados de GINI (0,823), POP (-0,331) e REC (0,391) apresentaram os sinais esperados e idênticos aos obtidos nas outras amostras, demonstrando, mais uma vez, que quanto maior a desigualdade e o volume de recursos auditados, mais falhas graves são encontradas. Já em relação à população, há uma relação inversa entre esta e as falhas graves, o que indica que quanto maior for o município, menor a quantidade desse tipo de falha ele apresenta.

Tabela 11 - Resultado da estimação das equações (3) e (4) para a Região Sul

Tabela 11 - Resultado da estimação das equações (3) e (4) para a Região Sul				
Variáveis Explicativas	β Padronizado	Teste t	VIF	
V	ariável Explicada: F	alhas Graves		
GINI	0,823	14,647*	1,491	
PIB	0,255	1,353	16,852	
POP	-0,331	-2,483*	8,371	
REC	0,391	2,231*	9,667	
R ² ajustado	0,744			
Estatística F	118,0	118,007**		
Número de observações	121			
Variável Explicada: Falhas Médias				
GINI	0,839	16,900*	1,000	
PIB	0,111	0,542	16,852	
POP	-0,041	-0,749	1,182	
REC	0,067	0,431	9,667	
R ² ajustado	0,702			
Estatística F	285,6	285,618**		
Número de observações	121			

^{*} Significante a 5% ** Significante a 1%

Em relação ao modelo que teve como variável explicada as falhas médias, apenas GINI retornou como significante estatisticamente, ratificando todos os resultados encontrados nas outras regiões do País. O poder explicativo (R^2 ajustado = 0,702), a não presença de multicolinearidade (VIF = 1,000) e o coeficiente β padronizado (0,839) também seguiram o padrão encontrado e apresentado nas análises anteriores.

Em resumo, em relação aos modelos estimados que tiveram como objetivo a verificação das variáveis que influenciam no comportamento da quantidade de *falhas médias* encontradas nos municípios fiscalizados, observou-se que em **todas as cinco macrorregiões do País**, apenas o *Índice de Gini* retornou como estatisticamente significante, sempre apresentando alto poder explicativo e positivamente correlacionado com a variável dependente. Já no modelo estimado para os 717 municípios da **amostra completa**, observou-se que, além desse Índice, também a variável *População* é significante estatisticamente, sendo negativamente correlacionada às falhas médias. Isso quer dizer que quanto maior for a desigualdade e menor for a população, mais chances de serem encontradas falhas médias no município.

A estimação dos modelos que buscaram verificar a relação entre as *falhas graves* encontradas pelos auditores da CGU e os indicadores sociais e geoeconômicos dos municípios apresentou resultados mais robustos. Para o amostra completa, observou-se que o *Índice de Gini*, o volume de *recursos* recebidos e a *População* foram considerados estatisticamente significantes, sendo que os dois primeiros apresentaram correlação positiva e o último, negativa, em relação à variável explicada. Esse mesmo resultado foi encontrado na amostra das regiões Nordeste e Sul. Já as regiões Centro-Oeste e Sudeste apresentaram apenas o *Índice de Gini* como variável estatisticamente significante e, na região Norte, além desse índice, também foi observada uma significância estatística da variável *População*.

CONSIDERAÇÕES FINAIS

A corrupção se tornou uma questão de grande e importante significado político e econômico, principalmente a partir da internacionalização dos países, aprofundada a partir da segunda metade do século XX, deixando de ser um problema focalizado em determinadas regiões para se tornar um fenômeno mundial. Com isso, tornou-se evidente a necessidade de se tomar medidas contra ela.

A maioria das teorias identificam questões culturais e históricas, nível de desenvolvimento econômico e/ou características das instituições públicas de cada país como fatores determinantes para um maior ou menor nível de corrupção. Entretanto, embora para a origem da corrupção ainda não haja consenso, em relação às consequências, diversos estudos indicam que esse fenômeno contribui para a redução de investimentos, menor crescimento econômico, além de, segundo a Transparência Internacional, ser a principal causa da pobreza mundial, assim como uma barreira para superá-la.

A extinção da pobreza tem sido um desafio para a humanidade e um impeditivo para o desenvolvimento. Diversas iniciativas e políticas têm sido implementadas em busca de uma solução para esse problema, como os Programas de Transferência de Renda Condicionada - PTC, considerados, atualmente, uma das mais poderosas ferramentas para o alcance desse objetivo.

Pobreza e desigualdade são temas complexos que persistem ao longo da história do País. Objetivando minimizar esses problemas, e aproveitando de experiências internacionais e até mesmo de prefeituras municipais em PTC, o Governo Federal unificou, em janeiro de 2004, diversos programas de assistência social já existentes, criando o Programa Bolsa Família, que a partir da transferência de renda com condicionalidades, se tornou, segundo a CEPAL, um dos maiores programas nacionais já implementados no mundo, cujo êxito surpreende pela abrangência do número de indivíduos assistidos.

Diversos estudos já tiveram como objeto o PBF mas, em sua maioria, procuraram verificar a efetividade dos gastos públicos desse programa. Há também alguns trabalhos que utilizaram o número de irregularidades encontradas pela CGU como medida de corrupção, embora não tenham o PBF como foco. Entretanto, até o momento, nenhum estudo procurou verificar a relação existente entre as inconformidades levantadas pelos analistas da Controladoria e os indicadores sociais e geoeconômicos dos municípios fiscalizados.

Nesse sentido, o presente trabalho objetivou verificar, utilizando-se dos relatórios de fiscalização emitidos no Programa de Fiscalização a partir de Sorteios Públicos, realizado pela

Controladoria-Geral da União - CGU, a relação existente entre as principais inconformidades encontradas naquelas localidades na execução do PBF, confrontando o quantitativo e o qualitativo dessas constatações com os principais indicadores sociais e geoeconômicos de cada município.

Para se atingir tal objetivo, primeiramente foi definida uma amostra inicial com todos os municípios fiscalizados nos sorteios realizados de 2006 a 2010 (13 sorteios / 780 relatórios). Em um segundo momento, realizou-se a leitura desses documentos, identificando, classificando e qualificando todas as inconformidades relatadas pelos analistas da CGU referentes ao PBF. Optou-se por dividi-las em falhas graves, médias e formais, conforme estabelecido pela normatização daquela Controladoria. Após o tratamento dos dados a amostra final contou com 717 relatórios, uma vez que foram excluídos os municípios que: a) não tiveram como objeto de fiscalização o PBF; b) aqueles em que os recursos fiscalizados não foram discriminados nos relatórios; c) os que foram sorteados mais de uma vez, permanecendo na amostra o sorteio mais recente; e d) localidades que não possuíam algum dos indicadores sociais utilizados como variáveis independentes.

De posse dos dados quantitativos dos municípios foram coletados indicadores sociais que refletissem a pobreza (IDH-M), desigualdade (Índice de Gini) e renda (PIB Municipal), além da população e dos recursos fiscalizados pela CGU em cada município. Esses indicadores foram as variáveis independentes de duas regressões estimadas. A primeira teve como variável dependente o número de *falhas graves* de cada município e a segunda o número de *falhas médias*. Após os testes realizados, devido ao problema de multicolinearidade entre as variáveis IDH-M e Índice de Gini, optou-se por retirar a primeira do modelo.

Em relação às *falhas graves*, observou-se que há significância estatística entre tais inconformidades e as variáveis *Índice de Gini*, *Recursos Fiscalizados* e *População*, sendo os dois primeiros positivamente correlacionados com a variável dependente e o terceiro apresentado uma relação negativa. Isso indica que, quanto maior for a desigualdade social e o volume de recursos transferidos ao município, e quanto menor for a localidade, maior a probabilidade de serem identificadas irregularidades na gestão dos recursos do PBF.

No modelo que estimou a regressão para *falhas médias* retornaram como significantes as variáveis *Índice de Gini* e *População*, apresentando a mesma correlação verificada no modelo anterior. Ressalta-se que, para ambas regressões o PIB não apresentou relação estatística significante com as falhas graves e médias, resultado esse que se assemelha ao de Ferraz e Finan (2005), que não encontraram relação entre Corrupção e Produto Interno Bruto.

Esses mesmos modelos foram estimados para as cinco macrorregiões do Brasil, no intuito de se verificar se os resultados seriam semelhantes aos encontrados na análise da amostra de todo o País. Em relação às *falhas graves*, o mesmo resultado foi encontrado na amostra das regiões Nordeste e Sul. Já as regiões Centro-Oeste e Sudeste apresentaram apenas o *Índice de Gini* como variável estatisticamente significante e, na região Norte, além desse índice, também foi observada uma significância estatística da variável *População*.

Os resultados alcançados ratificam, com exceção da variável PIB, todas as hipóteses elencadas no começo deste trabalho e, dessa forma, demonstram a relevância do trabalho no sentido de ter identificado indicadores sociais e geoeconômicos que guardam relação e influenciam no aumento da corrupção existente em cada município, aqui medida a partir das irregularidades encontradas pelos analistas da CGU quando da fiscalização nessas localidades.

Acredita-se que as conclusões aqui apresentadas podem contribuir para a discussão sobre o controle das políticas públicas exercido não apenas pela CGU, mas também pelo MDS, ensejando em pelo menos três ações específicas que podem ser implementadas, quais sejam:

- a) Auxiliar o Ministério do Desenvolvimento Social e Combate à Fome MDS, responsável pelo Programa Bolsa Família, no aprimoramento da política pública desempenhada pelo Programa, aperfeiçoando o controle primário exercido naqueles municípios onde há maior probabilidade de serem encontradas inconformidades, além de se investir na formação dos agentes públicos responsáveis pela execução do PBF nos municípios, uma vez que muitas vezes as inconformidades encontradas se devem por despreparo e desconhecimento da legislação pertinente.
- b) Permitir à CGU focar suas ações sistemáticas de controle nas localidades onde estatisticamente as irregularidades tendem a ser maiores, aumentando a eficiência de suas auditorias. Como exemplo, observou-se no presente estudo que há forte correlação entre o *Índice de Gini* e o número de irregularidades apresentadas pelos municípios. Dessa forma, dada a escassez de recursos para se fiscalizar todos as localidades do País, pode-se priorizar ações naquelas cidades que apresentam uma maior desigualdade social.
- c) Possibilitar que novos estudos sejam realizados utilizando-se da metodologia aqui demonstrada, permitindo que outros programas de governos sejam avaliados dessa maneira e, a partir de então, verificar se os resultados aqui encontrados se repetem em programas geridos por outros Ministérios.

Finalmente, deve-se ter cautela na extrapolação das conclusões aqui obtidas, uma vez que, conforme demonstrado ao longo desse trabalho, há limitações na metodologia

desenvolvida, dada a subjetividade da classificação realizada a partir das inconformidades encontradas no PBF. Entretanto, entende-se que ficou demonstrada a importância do tema para a melhora nos controles e na execução do Programa, o que auxiliará no combate à corrupção e na melhora da estrutura administrativa dos municípios, possibilitando a implementação desse tipo de política pública de forma mais eficiente e efetiva.

REFERÊNCIAS

ACOSTA, Lisiane Morelia Weide. **O mapa de Porto Alegre e a Tuberculose:** distribuição espacial e determinantes sociais. Dissertação (mestrado) — Universidade Federal do Rio Grande do Sul. Faculdade de Medicina. Programa de Pós-Graduação em Epidemiologia. Porto Alegre, BR-RS, 2008.

AKÇAI, Selçuk. Corruption and Human Development. Cato Journal, v.26, n.1, p.29-48, 2006.

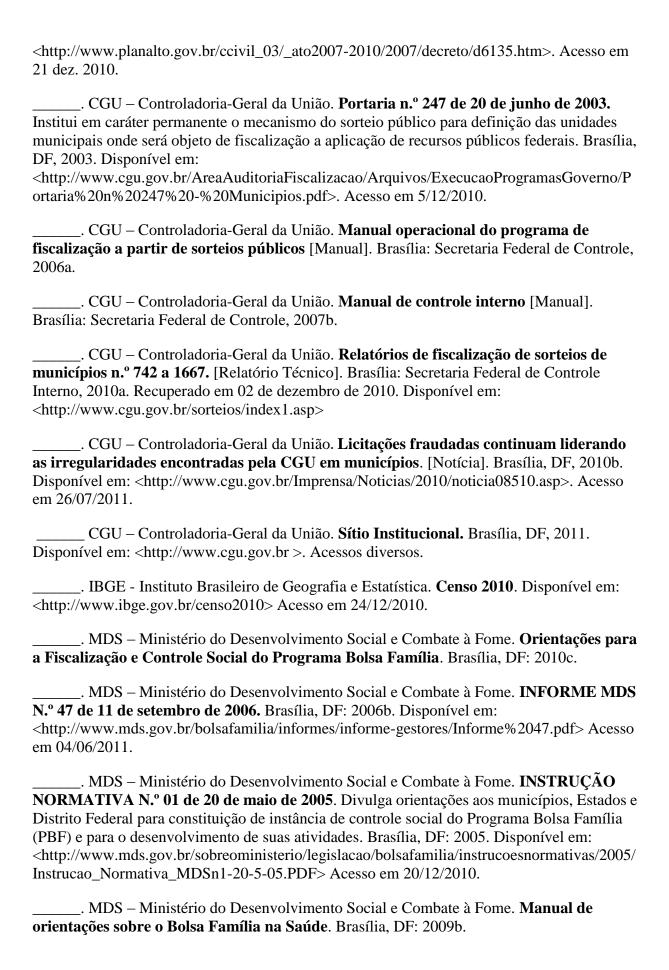
ALBERINI, Marilene. **Nos limites do viver e do sobreviver:** o programa Bolsa Família, modos de vida e desenvolvimento social no contexto urbano. Dissertação (mestrado). São Paulo: Faculdade de Saúde Pública da Universidade de São Paulo, 2010.

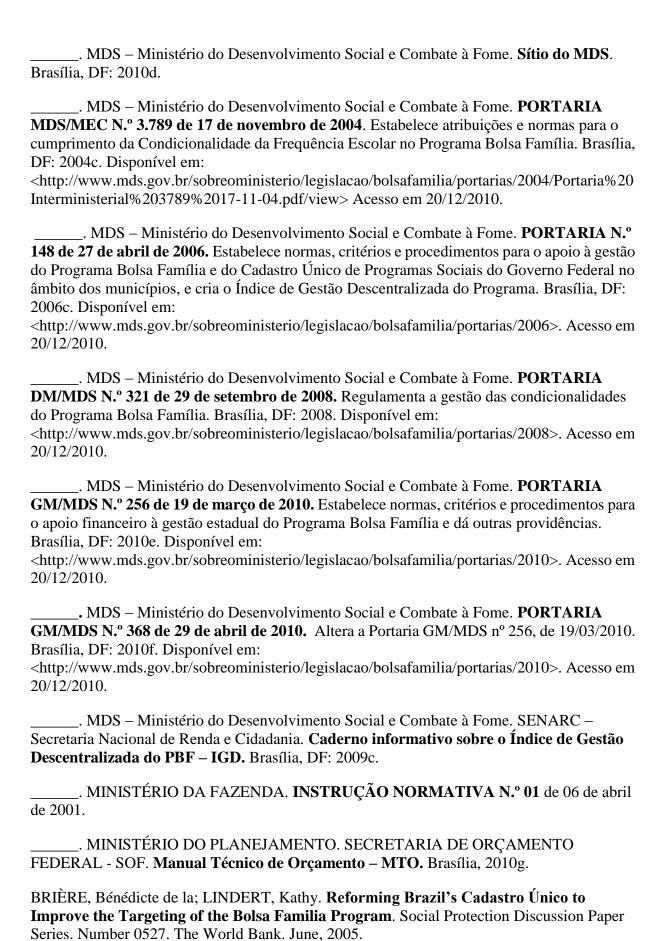
BARBETTA, Pedro Alberto. **Estatística Aplicada às Ciências Sociais**. 6. ed. Santa Catarina:UFSC, 2006.

BARDIN, Laurence. **Análise de conteúdo.** Trad. Luís Antero Reto e Augusto Pinheiro. Lisboa: Edições 70, 2002.

BARROS, Ricardo Paes de; CARVALHO, Mirela de; FRANCO, Samuel; MENDONÇA, Rosane. **Uma análise das principais causas da queda recente na desigualdade de renda brasileira.** Rio de Janeiro: IPEA, 2006.

BICHIR, Renata Mirandola. O Bolsa Família na Berlinda? **Revista Novos Estudos** n° 87, p. 115/129, jul. 2010.


BOLL, José Luis Serafini. **A corrupção governamental no Brasil:** construção de indicadores e análise da sua incidência relativa nos estados brasileiros. Dissertação (mestrado). Porto Alegre: FACE-PUC/RS, 2010.


BORGE, Magnus. The role of Supreme Audit Institutions (SAIs) in Combating Corruption. 9th International Anti-Corruption Conference, p. 10-15 out. 1999.

BRASIL. **LEI N.º 10.836 de 09 de janeiro de 2004**. Cria o Programa Bolsa Família e dá outras providências. Brasília, DF: 2004a. Disponível em: <<u>https://www.planalto.gov.br</u>>. Acesso em 20 dez. 2010.

LEI N.º 12.058 de 13 de outubro de 2009. Institui o Índice de Gestão Descentralizada
do Programa Bolsa Família - IGD, para utilização em âmbito estadual, distrital e municipal.
Brasília, DF: 2009. Disponível em:
http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/L12058.htm . Acesso em 21
dez. 2010.
DECRETO N.º 5.209 de 17 de setembro de 2004 . Regulamenta a Lei n. 10.836, de 09/01/2004, que cria o Programa Bolsa Família. Brasília, DF: 2004b. Disponível em: https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2004/Decreto/D5209.htm . Acesso em 20 dez. 2010.

_____ **DECRETO N.º 6.135 de 26 de junho de 2007.** Dispõe sobre o Cadastro Único para Programas Sociais do Governo Federal e dá outras providências. Brasília, DF: 2007a. Disponível em:

BROOKS, C. **Introductory econometrics for finance.** 2. ed. Cambridge: Cambridge University Press, 2008.

CARRARO, André. Um Modelo de Equilíbrio Geral Computável com Corrupção para o Brasil. Tese (Doutorado em Economia). Universidade Federal do Rio Grande do Sul, UFRGS, Brasil, 2003.

CASTRO, Domingos Poubel de. **Auditoria e controle interno na administração pública:** evolução do controle interno no Brasil: do Código de Contabilidade de 1922 até a criação da CGU em 2003: guia para atuação das auditorias e organização dos controles internos nos Estados, municípios e ONGs. 2. Ed. São Paulo: Atlas, 2009.

CEPAL – Comissão Econômica para América Latina e Caribe. **Panorama Social de América Latina. 2010**. Santiago, Chile: Nações Unidas, 2010.

COSTA, Alan André Borges da; SALVATO, Márcio Antônio; DINIZ, Sibelle Cornelio. **Análise do programa de transferência de renda bolsa família para o período 2004-2006:** impactos sobre pobreza, desigualdade e focalização. Biblioteca Virtual do Bolsa Família, 2008. Disponível em: http://www.ipc-undp.org/publications/mds/41P.pdf>. Acesso em 15/06/2011.

EISENHAUER, Joseph G. Regression through the Origin. **Teaching Statistics**. Volume 25, Number 3, p. 76-80, Autumn, 2003.

EVERETT, Jev; NEU, Dean; RAHAMAN, Abu Shiraz. Accounting and the global fight against corruption. **Accounting, Organizations and Society** 32 (2007), p. 513–542, 2007.

FERRAZ, Claudio; FINAN, Frederico. **Reelection incentives and political corruption:** evidence from Brazilian audit reports. University of California at Berkeley: January, 2005.

FERRAZ, Cláudio; FINAN, Frederico; MOREIRA, Diana B. Corrupting Learning: Evidence from Missing Federal Education Funds in Brazil. September, 2009.

FERRAZ, Lúcio Flávio. **Programa Bolsa Família:** Impactos na distribuição da renda. 2008, 46f. Monografia (Especialização latu sensu em Orçamento Público) apresentada ao Instituto Serzedello Corrêa – ISC. Brasília, DF, 2008.

FERRO, A. R.; NICOLELLA, A. C. . The impact of conditional cash transfer programs on household work decisions in Brazil. In: Population Association of America Annual Meeting, 2007, Nova Iorque. http://www.popassoc.org/meetings. html, 2007.

FIELD, Andy. **Discovering Statistics using SPSS**. London: SAGE Publications, 2000.

FILGUEIRAS, Fernando. Marcos teóricos da corrupção. In: AVRITZER, Leonardo [et al]. (Org.). **Corrupção:** ensaios e críticas. Belo Horizonte: Editora UFMG, 2008.

FIGUEIRAS, Fernando. A tolerância à corrupção no Brasil: uma antinomia entre normas morais e prática social. **Opinião Pública**, Campinas, vol. 15, nº 2, p.386-421, novembro, 2009.

FONSECA, Ana Maria Medeiros; VIANA, Ana Luiza d'Ávila. **Tensões e avanços na descentralização das políticas sociais:** o caso do Bolsa Família. In: FLEURY, Sonia.

Democracia, Descentralização e Desenvolvimento: Brasil & Espanha. Rio de Janeiro: FGV, p. 443-81, 2006.

GADELHA, Nair d'Aquino Fonseca. **O cavalo de Tróia das políticas sociais Brasil e Argentina:** um estudo comparado das políticas públicas. São Paulo: FFLCH-USP, 2010. [Tese de Doutorado. Orientador: Prof. Dr. Sedi Hirano]

GASPARONI, Meirelaine Marques. **Família, redes sociais e empoderamento:** uma análise do programa de erradicação do trabalho infantil – Ubá/MG. Dissertação de Mestrado. Viçosa, MG: 2007.

GLEWWE, Paul; KASSOUF, Ana Lúcia. **O Impacto do Programa Bolsa Família no total de matrículas do ensino fundamental, taxas de abandono e aprovação**, São Paulo, 2008. Disponível em: http://www.cepea.esalq.usp.br/pdf /Cepea_ImpactoBolsa Familia_Premio.pdf>. Acesso em 18/05/2011.

GUJARATI, Damodar M. Econometria Básica. 4a ed., São Paulo: Makron Books, 2002.

HAGE, Jorge. **O governo Lula e o combate a corrupção**. São Paulo: Editora Fundação Perseu Abramo, 2010.

HAIR, Jr., J. F.; ANDERSON, R.E.; TATHAM, R. L.; BLACK, W. C.. **Análise multivariada de dados**. 6 ed. São Paulo: Bookman, 2009.

HANDA, Sudhanshu; DAVIS, Benjamin. The experience of conditional cash transfer in Latin America and the Caribbean. **Development Policy Review**, v. 24, n. 5, p. 513-536, 2006.

HEIJ, C.; DE BOER, P.; FRANSES, P. H.; KLOEK, T.; VAN DIJK, H. K. **Econometric methods with applications in business and economics**. Reino Unido: Oxford University Press, 2004.

HOFFMANN, Rodolfo. **Distribuição de Renda – Medidas de Desigualdade e Pobreza.** Edusp: São Paulo, 1998.

INTERNATIONAL POLICY CENTRE FOR INCLUSIVE GROWTH. **Cash transfers and social protection**. 2011. Disponível em: http://www.ipc-undp.org/cct.do. Acesso em: 15 mai. 2011.

JANVRY, Alain de; FINAN, Frederico; SADOULET, Elisabeth; VAKIS, Renos. Can conditional cash transfer programs serve as safety nets in keeping children at school and from working when exposed to shocks? **Journal of Development Economics** 79 (2006) p. 349–373, January, 2006

JOHNSTON, M. **Syndromes of corruption. Wealth, power, and democracy.** Cambridge: Cambridge University Press, 2005.

KADRI, Nabil Moura. A contribuição dos órgãos de controle na implantação de políticas públicas descentralizadas: programa bolsa família. II Congresso Consad de Gestão Pública, 2009.

KERSTENETZKY, C. Políticas sociais: focalização ou universalização? **Revista de Economia Política**, 26 (4), p. 564-574, 2006.

KO, Kilkon; SAMAJDAR, Ananya. Evaluation of international corruption indexes: Should we believe them or not? **The Social Science Journal**, 47, p.508–540, 2010.

LAVINAS, Lena. Gasto social no Brasil: programas de transferência de renda versus investimento social. **Ciência e Saúde Coletiva**, v. 12, n. 6, dez., p. 1463-1476, 2007.

LEITE, Adailton Amaral Barbosa. Controle interno nos municípios: constrangimentos e consequências. **Revista da CGU**, Ano III, nº 5, p. 10-21. Brasília, DF, 2008.

LINDERT, Kathy; LINDER, Anja; HOBBS, Jason; DE LA BRIÈRE, Bénédicte. **The Nuts and Bolts of Brazil's Bolsa Familia Program:** Implementing Condicional Cash Transfers in a Descentralized Context. 2007. Disponível em:

http://siteresources.worldbank.org/INTLACREGTOPLABSOCPRO/Resources/BRBolsaFamiliaDiscussionPaper.pdf>. Acesso em: 22 dez. 2010.

MARTINS, Gilberto de Andrade; THEÓPHILO, Carlos Renato. Metodologia da investigação científica para ciências sociais aplicadas. 2. ed. – São Paulo: Atlas, 2009.

MAURO, Paolo. "Corruption and Growth," **Quarterly Journal of Economics**, v.110, p. 681-712, ago. 1995.

_____. Os Efeitos da Corrupção Sobre Crescimento, Investimentos e Gastos do Governo: uma Análise de Países Representativos. In: ELLIOTT, Kimberly Ann (org.) (1997). A corrupção e a economia global. 1 ed. Brasília: Universidade de Brasília, 2002. 354p.

MESQUITA, Camile Sahb. **O programa bolsa família:** uma análise de seu impacto e significado social. Dissertação de Mestrado. Programa de Pós Graduação em Política Social. Universidade de Brasília, 2007.

MIRANDA, Rodrigo F. A.; FREIRE, Fátima de S; COSTA, Giovanni P. C. L da; SALES, Isabel C. H. . Sorteio público: verificação da qualidade (?) dos gastos no programa bolsa família. In: XVII Congresso Brasileiro de Custos, 2010, Belo Horizonte. **Anais...** XVII Congresso Brasileiro de Custos, 2010.

MORAES, Roque. Análise de conteúdo. **Revista Educação**, Porto Alegre, v. 22, n. 37, p. 7-32, 1999.

MORRIS, S.D. Corruption in Latin America: An empirical overview. **SECOLAS Annals**, 36, 74-92. 2004.

MORRIS, S. S.; OLINTO, P.; FLORES, R.; NILSON, E. A. F.; FIGUEIRÓ, A. A. Conditional Cash Transfers are associated with a small reduction in the rate of weight gain of preschool children in Northeast Brazil. J. Nutr. 134:2336-2341, 2004.

NYE, Joseph. Corruption and political development: a cost-benefit analysis. **American Political Sciense Review**, v. 61, n. 4, 1967.

OECD - ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. **Corruption**. 2005. Retrieved, from:

http://www.oecd.org/topic/0,2686,en_2649_37447_1_1_1_1_37447,00.html.

ONU – Organização das Nações Unidas. **Convenção das Nações Unidas contra a corrupção**. Mérida, México: Escritório Contra Drogas e Crimes, 2003.

PINTO, Isabella Vitral. **Considerações acerca da pobreza:** o debato sobre o Programa Bolsa Família e a diminuição da desigualdade no Brasil. Biblioteca Virtual do Bolsa Família, 2010. Disponível em: http://www.ipc-undp.org/publications/mds/31P.pdf> Diversos acessos.

PNUD - Programa das Nações Unidas para o Desenvolvimento. Rede de laboratórios acadêmicos para acompanhamento dos objetivos do milênio. **Pobreza e fome, objetivo 1**: erradicar a extrema pobreza e a fome. Belo Horizonte: Instituto de Desenvolvimento Humano Sustentável – IDHS, 2004.

_____. **Atlas do desenvolvimento humano no Brasil.** Brasília, DF: 2010. Disponível em: http://www.pnud.org.br/atlas. Diversos acessos.

POWER, Timothy J.; GONZÁLEZ, Júlio. Cultura política, capital social e percepções sobre corrupção: uma investigação quantitativa em nível mundial. **Revista de Sociologia e Política** N° 21: p 51-69, novembro/2003.

RAWLINGS, Laura B.; RUBIO, Gloria M. Evaluating the Impact of Conditional Cash Transfer Programs. World Bank Policy Research Working Paper 3119, August 2003.

REVORÊDO, Wirla Cavalcanti. **O papel do tribunal de contas na promoção da efetividade dos hospitais públicos do estado de Pernambuco:** um estudo baseado na visão dos stakeholders. Dissertação de mestrado (mestrado em contabilidade) — Programa multiinstitucional e inter-regional de pós-graduação em ciências contábeis da Universidade de Brasília, da Universidade Federal de Pernambuco, da Universidade Federal da Paraíba e da Universidade Federal do Rio Grande do Norte, 2006.

RIBEIRO, Daniel Cerqueira. **Sistema de controle dos gastos públicos do governo federal:** uma ênfase no Programa Bolsa Família. Dissertação de mestrado (mestrado em contabilidade) — Universidade de São Paulo, 2009.

ROCHA, Sônia. **Pobreza no Brasil. Afinal, de que se trata?** Rio de Janeiro: Editora FGV, 2003.

ROSE-ACKERMAN, Susan. **Corruption and government:** Causes, consequences, and reform. New York: Cambridge University Press, 1999.

SANTANA, Victor Leal. O impacto das auditorias da CGU sobre o desempenho administrativo local. **Revista da CGU**. Ano III, nº 5, Brasília: Dezembro, 2008.

SANTOS, Luiz Marcelo Vídero Vieira. Bolsa Familia Programme: Economic and Social Impacts under the Perspective Of the Capabilities Approach. **13° Bien Congress 2010.** University of London, 2010.

SMITH, Malcolm. Research Methods in Accounting. SAGE Publications: London, 2003.

SOARES, Sergei; OSÓRIO, Rafael Guerreiro; SOARES, Fábio Veras; MEDEIROS, Marcelo; ZEPEDA, Eduardo. **Programas de transferência condicionada de renda no Brasil, Chile e México:** impactos sobre a desigualdade. Texto para discussão nº 1293. Brasília: IPEA, 2007.

SODRÉ, Antônio Carlos de Azevedo; ALVES, Maria Fernanda Colaço. Relação entre Emendas Parlamentares e Corrupção Municipal no Brasil: Estudo dos Relatórios do Programa de Fiscalização da Controladoria-Geral da União. **RAC**, Curitiba, v. 14, n. 3, art. 2, pp. 414-433, Mai./Jun. 2010.

SOUSA, Juliane Martins Carneiro de. **A superação da pobreza através da distribuição justa das riquezas sociais:** uma análise da consistência teórica do Programa Bolsa Família e das perspectivas dos beneficiários de saída autosustentada do Programa. Dissertação de Mestrado (Mestrado em Administração Pública) — Fundação Getúlio Vargas, Escola Brasileira de Administração Pública e de Empresas, 2009.

SPINELLI, Mário Vinícius Claussen. **Participação, accountability e desempenho institucional:** o caso dos conselhos de controle social do programa bolsa família nos pequenos municípios brasileiros. Dissertação de Mestrado (Mestrado em Administração Pública) – Fundação João Pinheiro. Belo Horizonte, 2008.

TANZI, V. Corruption around the World: A. **IMF Working Paper** No 63. Washington, International Monetary Fund. 1998.

TRANSPARENCY INTERNATIONAL (2005). Corruption Perceptions Index, 2005.

TREISMAN, Daniel. The causes of corruption: a cross-national study. **Journal of Public Economics** 76, pp. 399–457. 2000.

_____ What Have We Learned About the Causes of Corruption from Ten Years of Cross-National Empirical Research? **Annual Review of Political Science**. Vol. 10: p. 211-244, 2007.

VAN PARIJS, P. What's wrong with a free lunch? Boston: Beacon Press, 2001.

VAN PARIJS, P. **Renda Básica de Cidadania – argumentos éticos e econômicos**. Rio de Janeiro: Editora Civilização Brasileira, 2006.

VERGARA, Sylvia. **Projetos e relatórios de pesquisa em administração**. 8. ed. São Paulo: Atlas, 2007.

WEBER, Luiz Alberto. **Capital social e corrupção política nos municípios brasileiros**. (O poder do associativismo). Dissertação de Mestrado. Instituto de Ciência Política — Universidade de Brasília, 2006

ZAMBONI, Yves. **Participatory Budgeting and Local Governance:** An Evidence-Based Evaluation of Participatory Budgeting Experiences in Brazil. Disponível em: http://siteresources.worldbank.org/INTRANETSOCIALDEVELOPMENT/Resources/Zamboni.pdf. 2007

ZIMMMERMAN, Clovis Roberto. Los programas sociales desde la óptica de los derechos humanos: el caso del Bolsa Familia del Gobierno Lula en Brasil. **SUR Revista International de Derechos Humanos**, v. 3, n. 4: São Paulo, 2006. Disponível em:http://www.surjournal.org.

ZYLBERBERG, Raphael Simas. **Transferência de renda, estrutura produtiva e desigualdade:** uma análise inter-regional para o Brasil. Dissertação de Mestrado. Universidade de São Paulo, 2008.

ANEXO A

20º Sorteio Público de Municípios realizado em 23/03/2006

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 23/03/2006, no auditório da Caixa Econômica Federal, em Brasília.

1° - São Luíz do Norte - GO	31° - Medina - MG
2° - Itajá - GO	32° - Indianópolis - MG
3° - Cristianópolis - GO	33° - Itumirim - MG
4° - Capivari de Baixo - SC	34° - Macapá - AP
5° - Içara - SC	35° - Candeias do Jamari - RO
6° - Bom Retiro - SC	36° - Autazes - AM
7° - Foz do Jordão - PR	37° - Paracambi - RJ
8° - Maringá - PR	38° - Belford Roxo - RJ
9° - Ivaté - PR	39° - São Miguel do Aleixo - SE
10° - Prado Ferreira - PR	40° - Bonito - MS
11° - Quixabeira - BA	41° - São Mateus - ES
12° - Mutuípe - BA	42° - Chã Preta - AL
13° - Nazaré - BA	43° - Jaciara - MT
14° - Morpará - BA	44° - Nova Canaã do Norte - MT
15° - Ipupiara - BA	45° - Novo Repartimento - PA
16° - Eugênio de Castro - RS	46° - Mãe do Rio - PA
17° - Paraíso do Sul - RS	47° - Formoso do Araguaia - TO
18° - Osório - RS	48° - Aliança do Tocantins - TO
19° - Arroio do Sal - RS	49° - São Bento do Norte - RN
20° - Braga - RS	50° - São Rafael - RN
21° - Salto - SP	51° - Marco - CE
22° - Borá - SP	52° - Chaval - CE
23° - Taubaté - SP	53° - Brejinho - PE
24° - Serrana - SP	54° - Timbaúba - PE
25° - Nova Odessa - SP	55° - Vargem Grande - MA
26° - Elias Fausto - SP	56° - Coroatá - MA
27° - Piedade dos Gerais - MG	57° - Santo Antônio dos Milagres - PI
28° - Pirapetinga - MG	58° - Sebastião Leal - PI
29° - Virgem da Lapa - MG	59° - Pedra Branca - PB
30° - Rio Espera - MG	60° - Caldas Brandão - PB

21º Sorteio Público de Municípios realizado em 02/06/2006

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 02/06/2006, no auditório da Caixa Econômica Federal, em Brasília.

10 F	210 G . D . 1 G . 37G				
1° - Formosa - GO	31° - Santa Rosa da Serra - MG				
2° - Iaciara - GO	32° - Pequi - MG				
3° - Jaupaci - GO	33° - Itaúna - MG				
4° - Xavantina - SC	34° - Pedra Branca do Amaparí - AP				
5° - Curitibanos - SC	35° - Novo Horizonte do Oeste - RO				
6° - Bocaina do Sul - SC	36° - Canutama - AM				
7° - Campo Largo - PR	37° - Pinhão - SE				
8° - Novo Itacolomi - PR	38° - Bom Jardim - RJ				
9° - Borrazópolis - PR	39° - Italva - RJ				
10° - Londrina - PR	40° - Novo Horizonte do Sul - MS				
11° - Andaraí - BA	41° - Pedro Canário - ES				
12° - Governador Mangabeira - BA	42° - Teotônio Vilela - AL				
13° - Gentio do Ouro - BA	43° - Bom Jesus do Araguaia - MT				
14° - Wagner - BA	44° - Nova Marilândia - MT				
15° - Palmeiras - BA	45° - Angico - TO				
16° - Santo Antônio do Palma - RS	46° - São Valério da Natividade - TO				
17º - Boa Vista do Buricá - RS	47° - Floresta do Araguaia - PA				
18° - Nicolau Vergueiro - RS	48° - Ourém - PA				
19° - São José do Herval - RS	49° - Pau dos Ferros - RN				
20° - Saldanha Marinho - RS	50° - Água Nova - RN				
21° - Álvares Machado - SP	51° - Tacaratu - PE				
22° - Cruzália - SP	52° - Gameleira - PE				
23° - Ituverava - SP	53° - Pacatuba - CE				
24° - Santana da Ponte Pensa - SP	54° - Milhã - CE				
25° - Turmalina - SP	55° - Água Doce do Maranhão - MA				
26° - Quadra - SP	56° - Feira Nova do Maranhão - MA				
27° - Braúnas - MG	57° - Padre Marcos - PI				
28° - Pompéu - MG	58° - Domingos Mourão - PI				
29° - Serrania - MG	59° - Caiçara - PB				
30° - Mesquita - MG	60° - Cajazeiras - PB				
20 1.109quim 1.10	oo cajazonao 12				

22º Sorteio Público de Municípios realizado em 19/07/2006

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 19/07/2006, no auditório da Caixa Econômica Federal, em Brasília.

1° - Panamá - GO 2° - Sítio d'Abadia - GO	31° - Cruzeiro da Fortaleza - MG 32° - Ipaba - MG				
3° - Inaciolândia - GO	33° - Antônio Dias - MG				
4° - Passos Maia - SC	34° - Vitória do Jari - AP				
5° - Belmonte - SC	35° - Buritis - RO				
6° - Santa Rosa de Lima - SC	36° - Fonte Boa - AM				
7° - Pitangueiras - PR	37° - Aracaju - SE				
8° - Iporã - PR	38° - Casimiro de Abreu - RJ				
9° - Pato Branco - PR	39° - Paraíba do Sul - RJ				
10° - Lunardelli - PR	40° - Paranaíba - MS				
11° - Bonito - BA	41° - Conceição da Barra - ES				
12° - Potiraguá - BA	42° - Olho d'Água do Casado - AL				
13° - Sítio do Mato - BA	43° - Canabrava do Norte - MT				
14° - Cruz das Almas - BA	44° - Nova Guarita - MT				
15° - Utinga - BA	45° - São Miguel do Tocantins - TO				
16° - Novo Hamburgo - RS	46° - Palmeirante - TO				
17° - Chuvisca - RS	47° - Brejo Grande do Araguaia - PA				
18° - Itatiba do Sul - RS	48° - Marituba - PA				
19° - São João da Urtiga - RS	49° - Sítio Novo - RN				
20° - Benjamin Constant do Sul - RS	50° - Olho-d'Água do Borges - RN				
21° - Iaras - SP	51° - Jurema - PE				
22° - Maracaí - SP	52° - Iati - PE				
23° - Guatapará - SP	53° - Salitre - CE				
24° - Novais - SP	54° - Itaitinga - CE				
25° - Itapuí - SP	55° - Turilândia - MA				
26° - Pirapora do Bom Jesus - SP	56° - Santa Luzia - MA				
27° - Divino das Laranjeiras - MG	57° - Alto Longá - PI				
28° - Ninheira - MG	58° - Sussuapara - PI				
29° - Laranjal - MG	59° - Jericó - PB				
30° - Pedra Bonita - MG	60° - Santana de Mangueira - PB				

23º Sorteio Público de Municípios realizado em 09/05/2007

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 09/05/2007, no auditório da Caixa Econômica Federal, em Brasília.

1° - Teresina de Goiás (GO) 2° - Campos Belos (GO) 3° - Antônio Carlos (SC) 4° - Meleiro (SC) 5° - Quatro Barras (PR) 6° - Santa Tereza do Oeste (PR) 7° - Fazenda Rio Grande (PR) 8° - Valença (BA) 9° - Itapicuru (BA) 10° - Ichu (BA) 11° - Ituberá (BA) 12° - Banzaê (BA) 13° - Cachoeirinha (RS) 14° - Sentinela do Sul (RS) 15° - Porto Xavier (RS) 16° - Vista Alegre (RS)	31° - Manicoré (AM) 32° - Riachuelo (SE) 33° - Itatiaia (RJ) 34° - Amambaí (MS) 35° - Conceição do Castelo (ES) 36° - Messias (AL) 37° - Japaratinga (AL) 38° - Alto Boa Vista (MT) 39° - Ponte Alta do Tocantins (TO) 40° - Ourilândia do Norte (PA) 41° - Oriximiná (PA) 42° - Igarapé-Açu (PA) 43° - Brejinho (RN) 44° - Viçosa (RN) 45° - Jardim dos Angicos (RN)			
19° - Paulínia (SP) 20° - Cananéia (SP) 21° - Nova Canaã Paulista (SP)	49° - Catarina (CE) 50° - Quiterianópolis (CE) 51° - Frecheirinha (CE)			
22° - Salinas (MG) 23° - Martins Soares (MG) 24° - Carmópolis de Minas (MG) 25° - Guarará (MG) 26° - Engenheiro Navarro (MG) 27° - Divisa Nova (MG) 28° - Teófilo Otoni (MG) 29° - Oiapoque (AP)	52° - Dom Pedro (MA) 53° - Alto Alegre do Pindaré (MA) 54° - Jenipapo dos Vieiras (MA) 55° - Barro Duro (PI) 56° - Amarante (PI) 57° - Jatobá do Piauí (PI) 58° - Ouro Velho (PB) 59° - Gurinhém (PB)			
30° - Parecis (RO)	60° - Catingueira (PB)			

24º Sorteio Público de Municípios realizado em 24/07/2007

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 24/07/2007, no auditório da Caixa Econômica Federal, em Brasília.

1° - São Luiz (RR)	31° - Bom Sucesso (PB)				
2° - Nova União (RO)	32° - Pirpirituba (PB)				
3° - Careiro (AM)	33° - Montividiu (GO)				
4º - Riachão do Dantas (SE)	34° - Araçu (GO)				
5º - Barra do Piraí (RJ)	35° - Rio Fortuna (SC)				
6° - Paranhos (MS)	36° - Treze Tílias (SC)				
7° - Ecoporanga (ES)	37° - Bandeirantes (PR)				
8° - Campo Alegre (AL)	38° - Colombo (PR)				
9° - Jequiá da Praia (AL)	39° - Farol (PR)				
10° - Mateiros (TO)	40° - Fátima (BA)				
11º - São Francisco do Pará (PA)	41° - Curaçá (BA)				
12º - Oeiras do Pará (PA)	42° - Cocos (BA)				
13° - Paragominas (PA)	43° - Capim Grosso (BA)				
14° - Nova Bandeirantes (MT)	44° - Ibitiara (BA)				
15° - Montanhas (RN)	45° - Guaíba (RS)				
16° - Riachuelo (RN)	46° - Cerro Grande do Sul (RS)				
17° - Martins (RN)	47° - Taquari (RS)				
18º - Santa Maria da Boa Vista (PE)	48° - Herveiras (RS)				
19° - Sirinhaém (PE)	49° - Pirangi (SP)				
20° - Cachoeirinha (PE)	50° - Caraguatatuba (SP)				
21° - Acopiara (CE)	51° - Arujá (SP)				
22° - Acaraú (CE)	52° - Santana de Parnaíba (SP)				
23° - Lavras da Mangabeira (CE)	53° - Flora Rica (SP)				
24° - Nina Rodrigues (MA)	54° - Oliveira (MG)				
25° - Icatu (MA)	55° - Guarani (MG)				
26° - Cedral (MA)	56° - Caranaíba (MG)				
27° - Coronel José Dias (PI)	57° - Piedade de Ponte Nova (MG)				
28° - Patos do Piauí (PI)	58° - Mirabela (MG)				
29° - São Lourenço do Piauí (PI)	59° - Divinésia (MG)				
30° - Aparecida (PB)	60° - Fama (MG)				

25º Sorteio Público de Municípios realizado em 09/10/2007

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 09/10/2007, no auditório da Caixa Econômica Federal, em Brasília.

1º Xapuri (AC) 31° Itabaiana (PB) 2º Teixeirópolis (RO) 32º Brejo do Cruz (PB) 33° Cromínia (GO) 3º Carreiro da Várzea (AM) 34° Araguapaz (GO) 4º Santana do São Francisco (SE) 5° Areal (RJ) 35° Descanso (SC) 6º Água Clara (MS) 36° Piratuba (SC) 7° Colatina (ES) 37º Boa Esperança do Iguaçu (PR) 38º Primeiro de Maio (PR) 8º Pindoba (AL) 9º Coqueiro Seco (AL) 39º Santa Cecília do Pavão (PR) 10° Porto Alegre do Tocantins (TO) 40º Érico Cardoso (BA) 11º São Geraldo do Araguaia (PA) 41° Lagoa Real (BA) 42° Camamu (BA) 12° Marabá (PA) 13° São Félix do Xingu (PA) 43° Tanque Novo (BA) 14° Matupá (MT) 44° Iraquara (BA) 15° São Fernando (RN) 45° São Jerônimo (RS) 16º Baía Formosa (RN) 46° Centenário (RS) 17º Presidente Juscelino (RN) 47° Manoel Viana (RS) 18º São Caetano (PE) 48° Candelária (RS) 19° Sairé (PE) 49° Ribeira (SP) 20° Capoeiras (PE) 50° Aramina (SP) 21° Amontada (CE) 51° Cunha (SP) 22° Nova Russas (CE) 52° Parisi (SP) 23° Barroquinha (CE) 53° Jardinópolis (SP) 54° Raposos (MG) 24° Primeira Cruz (MA) 25° Carutapera (MA) 55° Chapada Gaúcha (MG) 26° Imperatriz (MA) 56° Machado (MG) 27° Angical do Piauí (PI) 57° Alagoa (MG) 28° Campo Largo do Piauí (PI) 58° Pouso Alegre (MG) 29° Canavieira (PI) 59° Nova Lima (MG) 30° Araruna (PB) 60° Heliodora (MG)

26º Sorteio Público de Municípios realizado em 30/04/2008

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 30/04/2008, no auditório da Caixa Econômica Federal, em Brasília.

1º - Buriti de Goiás - GO	31° - Tapauá - AM				
2° - Itaguaru - GO	32° - Malhador - SE				
3º - Concórdia - SC	33° - Iconha - ES				
4° - Corupá - SC	34° - Eldorado - MS				
5° - Nova Santa Bárbara - PR	35° - Maricá - RJ				
6° - Marechal Cândido Rondon - PR	36° - Roteiro - AL				
7° - Moreira Sales - PR	37° - Girau do Ponciano - AL				
8° - Campo Formoso - BA	38° - Pacajá - PA				
9° - Nova Viçosa - BA	39° - Bannach - PA				
10° - Ibirataia - BA	40° - São Sebastião da Boa Vista - PA				
11° - Conceição do Coité - BA	41° - São Salvador do Tocantins - TO				
12° - Aramari - BA	42° - Porto Estrela - MT				
13° - São Nicolau - RS	43° - São Vicente - RN				
14° - Entre-Ijuís - RS	44° - Paraú - RN				
15° - São Domingos do Sul - RS	45° - Jardim de Piranhas - RN				
16° - Santo Antônio da Patrulha - RS	46° - Pesqueira - PE				
17° - Martinópolis - SP	47° - Ipubi - PE				
18° - Nipoã - SP	48° - Sanharó - PE				
19° - Itapevi - SP	49° - Mucambo - CE				
20° - Rincão - SP	50° - Uruoca - CE				
21° - Adolfo - SP	51° - Itarema - CE				
22° - Bandeira do Sul - MG	52° - Apicum-Açu - MA				
23° - Matias Barbosa - MG	53° - São José de Ribamar - MA				
24° - Carmo do Cajuru - MG	54° - Duque Bacelar - MA				
25° - Coronel Murta - MG	55° - Alegrete do Piauí - PI				
26° - São José do Jacuri - MG	56° - Murici dos Portelas - PI				
27° - Conselheiro Pena - MG	57° - Altos - PI				
28° - Ipiaçu - MG	58° - São Sebastião do Umbuzeiro - PB				
29° - Jordão - AC	59° - Poço de José de Moura - PB				
30° - Rolim de Moura - RO	60° - Pitimbu - PB				

27º Sorteio Público de Municípios realizado em 29/10/2008

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 29/10/2008, no auditório da Caixa Econômica Federal, em Brasília.

1° - Guapó - GO	31° - Ibitirama - ES				
2º - Palmeiras de Goiás - GO	32° - Itaporã - MS				
3° - Arvoredo - SC	33° - Três Lagoas - MS				
4° - Mafra - SC	34° - Barra Mansa - RJ				
5° - Vera Cruz do Oeste - PR	35° - São Luís do Quitunde - AL				
6° - Leópolis - PR	36° - Tanque d'Arca - AL				
7° - Saudade do Iguaçu - PR	37° - Ulianópolis - PA				
8° - Buerarema - BA	38° - Cachoeira do Piriá - PA				
9° - Guaratinga - BA	39° - Peixe-Boi - PA				
10° - Ituaçu - BA	40° - Pindorama do Tocantins - TO				
11° - Gandu - BA	41° - Rio Branco - MT				
12° - Glória - BA	42° - Juruena - MT				
13° - Charqueadas - RS	43° - Francisco Dantas - RN				
14° - Nova Palma - RS	44° - Açu - RN				
15° - Três Arroios - RS	45° - Fernando Pedroza - RN				
16° - Santa Cecília do Sul - RS	46° - Água Preta - PE				
17° - Sud Mennucci - SP	47° - São José do Egito - PE				
18° - Queiroz - SP	48° - Santa Cruz - PE				
19° - Engenheiro Coelho - SP	49° - Quixeramobim - CE				
20° - Rio Grande da Serra - SP	50° - Cariús - CE				
21° - Pirapozinho - SP	51° - Tamboril - CE				
22° - Alvinópolis - MG	52° - Presidente Sarney - MA				
23° - Vargem Alegre - MG	53° - Afonso Cunha - MA				
24° - Ijaci - MG	54° - São João Batista - MA				
25° - Itabirito - MG	55° - Jacobina do Piauí - PI				
26° - Plácido de Castro - AC	56° - Francinópolis - PI				
27° - Cabixi - RO	57° - Caldeirão Grande do Piauí - PI				
28° - Maués - AM	58° - Diamante - PB				
29° - Divina Pastora - SE	59° - Santa Teresinha - PB				
30° - Gracho Cardoso - SE	60° - Carrapateira - PB				

28º Sorteio Público de Municípios realizado em 12/05/2009

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 12/05/2009, no auditório da Caixa Econômica Federal, em Brasília.

1° - Aparecida de Goiânia - GO	
2° - Arenópolis - GO	
3° - Laguna - SC	
4° - Ituporanga - SC	

5° - Rancho Alegre - PR 6° - Maringá - PR 7º - Porto Vitória - PR

8º - Presidente Tancredo Neves - BA

9° - Ibirapuã - BA 10° - Santo Amaro - BA 11° - Itapicuru - BA 12° - Cocos - BA

13° - Vespasiano Correa - RS

14° - Caiçara - RS 15° - Tapes - RS 16° - Viamão - RS 17° - Caconde - SP 18° - Socorro - SP 19º - Fernão - SP 20° - Planalto - SP 21° - Lindóia - SP

22° - Capitão Enéas - MG 23° - Gonçalves - MG 24° - Volta Grande - MG 25° - Felício dos Santos - MG 26° - São Gonçalo do Abaeté - MG

27° - Francisco Dumont - MG

28° - Itaipé - MG

29° - Ferreira Gomes - AP 30° - Machadinho D'Oeste - RO 31° - Borba - AM

32° - Ilha das Flores - SE 33° - Alto Rio Novo - ES 34° - Coronel Sapucaia - MS 35° - Casimiro de Abreu - RJ 36° - Limoeiro de Anadia - AL

37° - Porto Calvo - AL

38° - Afuá - PA

39° - Palestina do Pará - PA 40° - Santa Luzia do Pará - PA

41° - Tupiratins - TO 42° - Tangará da Serra - MT

43° - Espírito Santo - RN

44° - São Miguel do Gostoso - RN

45° - Itaú - RN

46° - Carnaubeira da Penha - PE

47° - Itapissuma - PE 48° - Arcoverde - PE 49° - Pires Ferreira - CE 50° - Morrinhos - CE 51° - Camocim - CE

52° - Olho d'Água das Cunhãs - MA

53° - Presidente Vargas - MA

54° - São Bento - MA

55° - Campinas do Piauí - PI 56° - Lagoa do Piauí - PI 57° - Sebastião Barros - PI 58° - Cuité de Mamanguape - PB

59° - Caturité - PB

60° - Mamanguape - PB

29º Sorteio Público de Municípios realizado em 17/08/2009

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 17/08/2009, no auditório da Caixa Econômica Federal, em Brasília.

2° - Balsa Nova - PR	
3° - Jardim Olinda - PR	
4º - Antônio Gonçalves - BA	
5° - Itabuna - BA	
6° - Potiraguá - BA	
7° - Igrapiúna - BA	
00 Eátimo DA	

7° - Igrapiúna - BA 8° - Fátima - BA 9° - Igrejinha - RS 10° - Ronda Alta - RS 11° - Não-Me-Toque - RS

12° - São Francisco de Assis - RS 13° - Mogi das Cruzes - SP

14° - Itápolis - SP 15° - Registro - SP

1º - Ivaí - PR

16° - Presidente Epitácio - SP17° - Santo Antônio da Alegria - SP

17 - Santo Antonio da Alegra 18° - Urucânia - MG 19° - Montes Claros - MG 20° - Águas Vermelhas - MG 21° - Argirita - MG

22° - Catuti - MG 23° - Palmópolis - MG 24° - Araújos - MG 25° - Porto Grande - AP

26° - Ouro Preto do Oeste - RO

27° - Fonte Boa - AM

28° - Itaporanga d'Ajuda - SE

29° - Alegre - ES

30° - Nova Andradina - MS

31° - Olho d'Água Grande - AL

32° - Ibateguara - AL 33° - Miguel Pereira - RJ 34° - Augusto Corrêa - PA 35° - Ponta de Pedras - PA

36° - Nova Esperança do Piriá - PA

37° - Novo Alegre - TO 38° - Matupá - MT 39° - Ipanguaçu - RN 40° - Água Nova - RN 41° - Jaçanã - RN 42° - Orobó - PE 43° - São João - PE 44° - Petrolina - PE

45° - Senador Pompeu - CE

46° - Ubajara - CE 47° - Saboeiro - CE 48° - Pirapemas - MA 49° - Maracaçumé - MA 50° - Coelho Neto - MA 51° - Dom Inocêncio - PI 52° - Matias Olímpio - PI 53° - Belém do Piauí - PI 54° - Duas Estradas - PB 55° - Itaporanga - PB

56° - Mato Grosso - PB 57° - Ouro Verde de Goiás - GO

58° - Ouvidor - GO 59° - Imaruí - SC 60° - Chapecó - SC

30º Sorteio Público de Municípios realizado em 05/10/2009

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 05/10/2009, no auditório da Caixa Econômica Federal, em Brasília.

1º - Nova Santa Rosa - PR 2º - Bocaiúva do Sul - PR 3° - Diamante do Norte - PR

4° - Boa Nova - BA 5° - Cruz das Almas - BA 6° - Gentio do Ouro - BA 7° - Wagner - BA

8º - Serra do Ramalho - BA 9° - Cerro Grande do Sul - RS

10° - Gaurama - RS 11° - Itaqui - RS 12° - Tucunduva - RS 13º - Pompéia - SP 14° - Tanabi - SP 15° - Batatais - SP

16° - Pirapora do Bom Jesus - SP 17º - Cerqueira César - SP 18° - Chapada do Norte - MG 19° - Cachoeira de Minas - MG 20° - Imbé de Minas - MG

21° - Casa Grande - MG 22° - José Gonçalves de Minas - MG 23° - Capitão Andrade - MG 24° - Estrela do Indaiá - MG 25° - Rorainópolis - RR 26° - Pimenta Bueno - RO 27° - Alvarães - AM 28° - Lagarto - SE 29° - João Neiva - ES

30° - Santa Rita do Pardo - MS

31° - Campestre - AL

32° - Olho d'Água das Flores - AL

33° - Rio Bonito - RJ 34° - Pau D'Arco - PA 35° - Santarém - PA 36° - Viseu - PA

37° - Marianópolis do Tocantins - TO

38° - Rondolândia - MT 39° - Sítio Novo - RN 40° - Severiano Melo - RN 41° - Mossoró - RN 42° - Tamandaré - PE 43° - Belém de Maria - PE 44° - Venturosa - PE 45° - Penaforte - CE

46° - Acarape - CE 47° - Itatira - CE 48° - São João do Paraíso - MA 49° - Urbano Santos - MA 50° - Buritirana - MA

51° - Caridade do Piauí - PI 52° - Barra D'Alcântara - PI

53° - Altos - PI 54° - Cacimbas - PB 55° - Serra Grande - PB 56° - Quixabá - PB 57° - Inhumas - GO 58° - Padre Bernardo - GO 59° - Calmon - SC

60° - Cordilheira Alta - SC

31º Sorteio Público de Municípios realizado em 01/03/2010

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 01/03/2010, no auditório da Caixa Econômica Federal, em Brasília.

1° - Mauá da Serra - PR
2° - Wenceslau Braz - PR
3° - Guaporema - PR
4° - São Gabriel - BA
5° - Itaparica - BA
6° - Palmas de Monte Alto - BA
7° - Pojuca - BA
8° - Cachoeira - BA
9° - Arroio do Meio - RS
10° - Doutor Ricardo - RS
11° - Pouso Novo - RS
12º - Pedro Osório - RS
13° - Jeriquara - SP
14° - Ipuã - SP
15° - Viradouro - SP
16° - Dracena - SP
17° - Poloni - SP

- 18° Coronel Xavier Chaves MG
- 19° Capim Branco MG
- 20° São João da Lagoa MG
- 21° Carvalhos MG
- 22º Santo Antônio do Monte MG
- 23° Matias Barbosa MG
- 24° Frei Inocêncio MG
- 25° Amajari RR
- 26° Primavera de Rondônia RO
- 27° Tefé AM
- 28° Frei Paulo SE
- 29° Venda Nova do Imigrante ES
- 30° Bonito MS

- 33° Cabo Frio RJ 31° - Taquarana - AL
- 32° Girau do Ponciano AL
- 34° Inhangapi PA
- 35° São Sebastião da Boa Vista PA
- 36° Itaituba PA 38° - Cocalinho - MT
- 37° Santa Rosa do Tocantins TO
- 39° Jardim do Seridó RN 40° - Luís Gomes - RN
- 41° Lucrécia RN 45° - Granja - CE
- 46° Jucás CE
- 47° Mucambo CE 42° - Timbaúba - PE
- 43° Lagoa do Carro PE
- 44° Camutanga PE
- 48° Arari MA
- 49° Água Doce do Maranhão MA
- 50° Mata Roma MA 51° - Paes Landim - PI
- 52° Dom Expedito Lopes PI
- 53° Flores do Piauí PI
- 54° Passagem PB
- 55° Natuba PB
- 56° Caldas Brandrão PB
- 57° Carmo do Rio Verde GO
- 58° Novo Gama GO
- 59° Piratuba SC
- 60° Caçador SC

32º Sorteio Público de Municípios realizado em 10/05/2010

Lista de áreas municipais que receberão fiscalização especial da Controladoria-Geral da União (CGU), definidas em sorteio público realizado em 10/05/2010, no auditório da Caixa Econômica Federal, em Brasília.

- 1º Normandia RR
- 2° Douradina MS
- 3º São Félix do Araguaia MT
- 4º Xambioá TO
- 5° Nossa Senhora das Dores SE
- 6° Cerejeiras RO
- 7º Cardoso Moreira RJ
- 8º Anajás PA
- 9° Santa Filomena PE
- 10° Pedro Velho RN
- 11° Umirim CE
- 12° Luziânia GO
- 13° Senador La Rocque MA
- 14° Imaculada PB
- 15º São João da Serra PI
- 16° Peritiba SC
- 17° Doutor Pedrinho SC
- 18º Santo Inácio PR
- 19° Inajá PR
- 20° Heliópolis BA
- 21° Iuiú BA
- 22° Erval Seco RS
- 23° Caseiros RS
- 24° Votorantim SP
- 25° Ribeirão Branco SP
- 26° Bariri SP
- 27° Planura MG
- 28° Caxambu MG
- 29° Senador Cortes MG
- 30° Campestre MG

- 31° Pedra Branca do Amapari AP
- 32° Maracaju MS
- 33° Tabatinga AM
- 34° Curralinho PA
- 35° Nova Maringá MT
- 36° São Bento do Tocantins TO
- 37° Pedro Canário ES
- 38° Pendências RN
- 39° Branquinha AL
- 40° Independência CE
- 41° Surubim PE
- 42° Penalva MA
- 43° Alegrete do Piauí PI
- 44° Riacho dos Cavalos PB
- 45° Americano do Brasil GO
- 46° Capinzal SC
- 47° Bom Jardim da Serra SC
- 48° Congonhinhas PR
- 49° Pinhalão PR
- 50° Uibaí BA
- 51° Arataca BA
- 52° Toropi RS
- 53° Alto Alegre RS
- 54° Pedregulho SP
- 55° Vargem SP
- 56° São João de Iracema SP
- 57º São Sebastião do Rio Verde MG
- 58° Abadia dos Dourados MG
- 59° Felisburgo MG
- 60° Itamogi MG

ANEXO B

	Número	Número					Doggeog
Município	de Falhas Graves	de Falhas Médias	IDH-M	Índice de Gini	PIB (em R\$)	População	Recursos Auditados (em R\$)
Abadia dos Dourados (MG)	4	5	0,76	0,52	70.680,81	6.777	580.335,00
Acarape (CE)	6	2	0,623	0,51	50.468,49	15.388	3.035.805,00
Acaraú (CE)	5	2	0,617	0,65	217.822,53	54.257	9.504.554,50
Acopiara (CE)	1	2	0,597	0,72	155.931,86	50.485	8.880.889,00
Açu (RN)	2	4	0,677	0,6	312.542,40	52.824	7.442.706,00
Adolfo (SP)	3	1	0,795	0,45	70.534,13	3.711	118.784,00
Afonso Cunha (MA)	3	8	0,558	0,53	18.594,76	5.834	1.331.032,00
Afuá (PA)	5	2	0,612	0,48	89.687,36	32.368	3.447.852,00
Água Clara (MS)	6	4	0,758	0,58	276.058,44	13.623	746.541,50
Água Doce do Maranhão (MA)	5	1	0,529	0,58	33.688,76	12.213	3.991.623,00
Água Nova (RN)	1	0	0,587	0,63	12.206,45	2.929	625.807,00
Água Preta (PE)	4	5	0,597	0,6	105.173,25	30.606	6.895.268,00
Águas Vermelhas (MG)	3	3	0,628	0,61	48.840,54	13.179	2.180.452,00
Alagoa (MG)	0	0	0,726	0,55	22.593,01	2.917	293.253,00
Alegre (ES)	2	3	0,739	0,58	217.642,02	31.222	3.608.823,00
Alegrete do Piauí (PI)	0	2	0,793	0,6	24.013,08	4.610	1.019.199,00
Aliança do Tocantins (TO)	1	1	0,717	0,57	40.329,49	5.860	370.272,00
Alto Alegre (RS)	5	3	0,797	0,52	29.304,12	1.965	120.491,00
Alto Alegre do Pindaré (MA)	2	2	0,542	0,56	134.070,61	32.955	4.482.507,50
Alto Boa Vista (MT)	2	2	0,708	0,58	54.187,83	5.269	272.811,00
Alto Longá (PI)	0	1	0,58	0,57	34.229,48	14.004	5.264,00
Alto Rio Novo (ES)	4	1	0,679	0,55	48.500,75	6.251	735.776,00
Altos (PI)	3	0	0,618	0,55	132.169,77	39.430	8.764.723,00
Alvarães (AM)	4	2	0,647	0,58	49.708,06	13.445	1.803.225,00
Álvares Machado (SP)	1	0	0,772	0,55	179.006,47	23.694	1.111.463,00
Alvinópolis (MG)	3	5	0,727	0,55	122.977,47	15.682	1.764.711,00
Amajari (RR)	4	1	0,654	0,64	60.732,80	7.980	1.889.058,00
Amambai (MS)	1	3	0,759	0,63	333.844,39	34.501	1.264.442,00
Amarante (PI)	1	2	0,63	0,57	55.946,32	17.813	2.211.470,50
Americano do Brasil (GO)	3	2	0,732	0,63	60.057,63	4.811	384.523,00
Amontada (CE)	5	3	0,616	0,72	174.253,29	39.497	7.296.369,00
Anajás (PA)	3	4	0,595	0,56	55.931,26	26.563	4.333.126,00
Andaraí (BA)	1	1	0,569	0,67	41.603,25	14.554	1.949.434,00

Angical do Piauí (PI)	4	1	0,648	0,55	23.115,74	6.798	1.468.271,00
Angico (TO)	2	1	0,668	0,59	16.672,37	3.264	315.317,00
Antônio Carlos (SC)	1	3	0,827	0,45	212.131,03	7.375	88.600,00
Antônio Dias (MG)	2	2	0,661	0,54	59.517,81	9.647	1.020.008,00
Antônio Gonçalves (BA)	6	1	0,62	0,56	29.741,64	11.107	2.291.000,00
Aparecida (PB)	3	1	0,628	0,59	26.528,60	7.523	1.308.686,00
Apicum-Açu (MA)	4	3	0,565	0,56	33.392,16	13.641	2.311.936,00
Aracaju (SE)	1	0	0,794	0,64	6.946.347,87	536.785	23.253.677,00
Araçu (GO)	2	2	0,733	0,5	25.471,33	3.966	363.905,00
Araguapaz (GO)	7	5	0,729	0,62	56.442,50	7.742	473.344,00
Aramari (BA)	3	3	0,588	0,61	29.483,59	9.858	1.393.063,00
Aramina (SP)	5	2	0,794	0,5	71.476,73	5.262	222.210,00
Arari (MA)	3	5	0,617	0,62	89.089,20	28.585	8.123.545,00
Araruna (PB)	2	0	0,546	0,55	75.712,99	19.708	3.321.084,00
Arataca (BA)	2	1	0,578	0,51	54.785,66	10.986	2.815.741,00
Araújos (MG)	1	4	0,755	0,47	60.156,10	7.560	61.914,00
=						67.458	
Arcoverde (PE)	2	1	0,708	0,61	329.175,40		8.940.008,00
Areal (RJ)	4	4	0,765	0,53	160.881,09	11.797	584.566,00
Arenópolis (GO)	3	2	0,739	0,51	31.090,67	3.532	345.872,00
Argirita (MG)	1	2	0,735	0,54	22.886,82	3.065	317.069,00
Arroio do Meio (RS)	5	3	0,837	0,47	460.150,85	18.878	445.997,00
Arroio do Sal (RS)	3	3	0,813	0,52	74.671,64	7.109	142.911,00
Arujá (SP)	1	3	0,788	0,58	1.501.587,39	78.960	2.584.871,00
Arvoredo (SC)	4	3	0,751	0,55	32.528,44	2.249	110.602,00
Augusto Corrêa (PA)	2	2	0,618	0,49	105.149,69	38.760	21.353.324,02
Autazes (AM)	1	2	0,661	0,66	112.762,81	31.107	2.304.173,00
Baía Formosa (RN)	4	5	0,643	0,57	99.727,30	8.726	1.256.686,50
Balsa Nova (PR)	3	1	0,781	0,49	243.498,67	11.118	700.803,00
Bandeira do Sul (MG)	2	6	0,774	0,47	30.815,79	5.294	1.518.598,00
Bandeirantes (PR)	2	0	0,756	0,53	281.223,56	33.089	2.011.329,00
Bannach (PA)	6	6	0,7	0,61	32.502,40	3.935	357.421,00
Banzaê (BA)	1	0	0,592	0,5	33.165,70	11.166	1.831.522,00
Bariri (SP)	4	3	0,802	0,51	365.425,47	32.824	512.655,00
Barra d'Alcântara (PI)	3	3	0,588	0,59	13.757,95	3.882	1.237.445,00
Barra do Piraí (RJ)	2	2	0,781	0,53	1.061.885,05	102.487	2.045.907,50
Barra Mansa (RJ)	2	2	0,806	0,55	2.462.828,32	176.469	5.922.755,00
Barro Duro (PI)	2	2	0,624	0,53	27.133,86	6.852	936.752,00
Barroquinha (CE)	4	4	0,551	0,54	52.366,16	15.418	3.206.038,00
Batatais (SP)	1	0	0,825	0,52	782.518,26	56.022	2.351.704,00

Belém de Maria (PE)	6	1	0,59	0,57	33.350,47	9.797	3.058.849,00
Belém do Piauí (PI)	1	1	0,548	0,55	10.306,79	2.869	840.515,00
Belford Roxo (RJ)	2	0	0,742	0,49	3.539.441,56	495.694	39.768,00
Belmonte (SC)	5	6	0,759	0,52	27.644,89	2.774	156.534,00
Benjamin Constant do Sul (RS)	5	2	0,666	0,58	18.154,70	2.240	172.962,00
Boa Esperança do Iguaçu (PR)	6	6	0,741	0,53	35.993,29	2.919	330.557,00
Boa Nova (BA)	5	1	0,564	0,61	44.974,85	15.916	5.028.334,00
Boa Vista do Buricá (RS)	4	1	0,833	0,51	88.975,64	6.655	120.854,00
Bocaina do Sul (SC)	2	1	0,716	0,54	39.556,41	3.131	85.011,00
Bocaiúva do Sul (PR)	2	1	0,719	0,55	71.141,26	9.910	92.040,00
Bom Jardim (RJ)	2	1	0,733	0,54	271.924,65	26.207	1.207.567,00
Bom Jardim da Serra (SC)	6	2	0,758	0,64	49.846,01	4.359	329.809,00
Bom Retiro (SC)	1	0	0,732	0,54	103.604,77	8.543	2.165,00
Bom Sucesso (PB)	2	4	0,635	0,54	20.324,48	5.299	1.210.585,00
Bonito (BA)	3	2	0,591	0,44	119.390,45	14.205	1.931.445,00
Bonito (MS)	5	3	0,767	0,6	194.303,77	17.786	1.973.148,00
Borá (SP)	1	1	0,794	0,49	21.597,51	834	21.754,00
Borba (AM)	3	1	0,599	0,67	109.182,62	32.160	4.408.518,00
Borrazópolis (PR)	0	2	0,727	0,49	96.180,62	8.355	266.872,00
Braga (RS)	4	1	0,703	0,55	38.584,71	3.878	208.870,00
Branquinha (AL)	3	1	0,513	0,58	37.094,22	12.142	2.214.889,00
Braúnas (MG)	1	2	0,665	0,59	65.558,23	5.344	494.567,00
Brejinho (PE)	2	2	0,586	0,61	48.053,97	11.476	836.613,00
Brejinho (RN)	3	2	0,625	0,57	24.786,51	7.366	1.321.948,50
Brejo do Cruz (PB)	0	1	0,635	0,54	43.927,09	12.770	2.069.286,50
Brejo Grande do Araguaia (PA)	1	2	0,68	0,58	33.088,84	7.673	934.295,00
Buerarema (BA)	6	6	0,631	0,55	82.510,12	20.687	2.996.922,00
Buriti de Goiás (GO)	6	2	0,731	0,49	17.116,62	2.248	178.679,00
Buritirama (MA)	3	2	0,547	0,52	40.013,17	15.027	4.010.777,00
Buritis (RO)	4	2	0,694	0,67	299.346,23	33.879	1.031.519,00
Cabixi (RO)	2	3	0,705	0,56	85.381,07	6.777	800.657,00
Caçador (SC)	5	1	0,793	0,53	1.241.191,78	70.088	2.693.496,00
Cachoeira (BA)	1	0	0,681	0,6	173.989,73	33.495	7.586.409,00
Cachoeira de Minas (MG)	6	2	0,768	0,49	106.498,46	11.194	800.172,00
Cachoeira do Piriá (PA)	4	3	0,551	0,56	44.193,34	18.481	3.332.291,00

Cachoeirinha (PE)	6	4	0,642	0,55	77.072,83	18.037	3.306.392,50
Cachoeirinha (RS)	2	5	0,813	0,49	2.839.759,41	117.203	3.203.354,00
Cacimbas (PB)	3	1	0,494	0,63	21.879,68	6.975	2.184.490,00
Caconde (SP)	2	2	0,782	0,59	222.761,04	19.233	872.380,00
Caiçara (PB)	3	2	0,762	0,55	29.460,26	7.522	1.146.709,00
		4			57.044,45		
Caiçara (RS)	5		0,794	0,56	*	5.276	263.974,00
Cajazeiras (PB)	0	0	0,685	0,62	399.760,44	57.627	5.519.024,00
Caldas Brandão (PB)	0	2	0,548	0,51	24.904,20	5.513	1.842.868,00
Caldeirão Grande do Piauí (PI)	2	2	0,557	0,68	21.682,38	5.784	1.420.060,00
Calmon (SC)	1	3	0,7	0,53	38.422,98	4.194	366.840,00
Camamu (BA)	7	2	0,624	0,62	129.304,01	32.981	6.466.565,00
Camacim (CE)	5	2	0,629	0,66	238.819,96	60.784	8.530.513,00
Campestre (AL)	5	1	0,582	0,54	21.993,32	6.187	1.043.292,00
Campestre (MG)	5	6	0,759	0,5	235.974,17	20.843	1.583.506,00
Campinas do Piauí (PI)	5	3	0,588	0,62	17.415,77	5.759	1.126.958,00
Campo Alegre (AL)	7	2	0,595	0,52	154.813,71	46.671	5.332.036,00
Campo Formoso (BA)	4	1	0,613	0,66	314.915,51	67.582	10.881.351,00
Campo Largo (PR)	4	3	0,774	0,5	1.192.071,07	110.796	3.450.111,00
Campo Largo do Piauí (PI)	5	4	0,51	0,53	17.172,72	6.920	1.348.454,50
Campos Belos (GO)	1	2	0,708	0,61	100.812,73	18.984	1.871.653,00
Camutanga (PE)	3	6	0,632	0,56	96.439,14	8.186	2.208.908,00
Cananéia (SP)	3	2	0,775	0,59	92.182,43	12.377	731.746,00
Canavieira (PI)	3	0	0,601	0,57	12.278,51	4.098	896.028,00
Candelária (RS)	5	3	0,756	0,55	348.307,21	30.369	2.525.900,50
Canutama (AM)					46.336,21	11.844	
Canutama (AM)	1	0	0,546	0,73	40.330,21	11.644	503.150,00
Capim Branco (MG)	2	5	0,751	0,48	44.909,99	9.155	678.766,00
Capim Grosso (BA)	1	0	0,607	0,58	106.759,14	26.877	5.201.813,00
Capinzal (SC)	3	7	0,813	0,5	582.811,88	18.994	456.457,00
Capitão Andrade (MG)	2	1	0,676	0,51	24.081,68	5.018	627.224,00
Capitão Enéas (MG)	4	2	0,667	0,58	162.741,07	14.682	1.772.267,00
Capivari de Baixo (SC)	7	4	0,812	0,43	188.351,31	20.843	481.904,00
Capoeiras (PE)	7	3	0,593	0,51	70.664,72	19.916	3.922.330,00
Caraguatatuba (SP)	5	2	0,802	0,56	919.085,82	94.598	4.130.959,00
Caranaíba (MG)	1	3	0,706	0,53	16.337,81	3.549	403.586,00
Cardoso Moreira (RJ)	5	2	0,706	0,52	125.389,83	12.502	1.158.028,00
Careiro (AM)	1	2	0,63	0,66	110.363,76	32.190	1.275.732,50

Cariús (CE) 5 2 0,63 0,65 52.2	17,82 4.715 1.310.321,00 36,63 19.270 4.925.380,00
	36.63 10.270 4.025.380.00
Carmo do Caiuru (MC) 5 6 0.774 0.45 160 1	30,03 19.270 4.923.360,00
Carmo do Cajuru (1910) 3 0 0,774 0,43 108.1	45,09 19.779 874.571,00
(GO)	41,12 9.333 1.585.384,00
(MG)	78,43 16.425 902.297,00
Carnaubeira da Penha (PE) 6 0 0,537 0,6 38.0	43,72 12.270 2.391.246,00
Carrapateira (PB) 3 4 0,602 0,57 9.8	51,06 2.345 485.157,00
Careiro da Várzea (AM) 1 1 0,658 0,56 101.2	46,81 24.030 1.725.808,50
Carutapera (MA) 3 3 0,571 0,53 59.1	83,13 20.905 4.105.189,50
Carvalhos (MG) 3 4 0,718 0,51 24.8	97,46 4.739 513.133,00
Casa Grande (MG) 3 3 0,711 0,5 16.2	25,38 2.143 212.972,00
	25,17 3.109 225.142,00
Casimiro de Abreu (RJ) 0 0 0,781 0,52 1.435.5	88,33 29.811 1.054.324,00
	76,20 17.794 1.871.468,00
	41,95 4.986 646.367,00
Caturité (PB) 2 0 0,617 0,48 34.0	13,60 4.591 676.776,00
Catuti (MG) 4 4 0,605 0,54 20.3	63,43 5.465 1.219.282,00
	67,51 21.514 1.523.813,00
	60,76 10.127 1.904.185,00
	18,27 3.105 1.130.560,08
Cerejeiras (RO) 5 0 0,751 0,6 213.3	62,22 16.784 1.516.175,00
Cerqueira César (SP) 4 1 0,764 0,51 245.5	38,58 17.147 956.366,00
Cerro Grande do Sul (RS) 3 1 0,734 0,52 91.1	82,18 9.714 1.086.168,00
Chã Preta (AL) 1 2 0,559 0,59 26.1	81,36 7.143 700.114,00
Chapada do Norte 7 4 0,641 0,46 46.5 (MG)	11,23 15.963 2.529.269,00
Chapada Gaúcha (MG) 2 2 0,683 0,7 59.7	69,69 10.995 1.189.373,00
Chapecó (SC) 5 3 0,848 0,57 4.295.1	72,52 171.789 5.297.593,00
Charqueadas (RS) 5 2 0,806 0,47 920.7	17,22 35.507 1.209.879,00
Chaval (CE) 2 3 0,579 0,64 40.3	63,68 12.609 1.481.333,00
Chuvisca (RS) 2 3 0,776 0,5 58.5	05,51 5.102 140.968,00
Cocalinho (MT) 1 0 0,727 0,59 82.0	64,54 6.039 660.629,00
Cocos (BA) 1 0 0,615 0,63 128.4	91,94 17.908 3.043.975,00
Coelho Neto (MA) 1 1 0,588 0,56 138.0	73,28 45.343 9.840.820,00
Colatina (ES) 4 3 0,773 0,57 1.552.5	02,73 110.713 6.775.093,50
Colombo (PR) 2 2 0,764 0,47 1.630.3	44,31 241.505 8.296.599,50
Conceição da Barra (ES) 4 3 0,688 0,61 310.3	51,12 27.029 2.018.952,00

Conceição do Castelo (ES)	1	4	0,709	0,52	94.005,95	11.773	729.948,00
Conceição do Coité (BA)	2	2	0,611	0,57	250.324,30	63.318	10.637.755,00
Concórdia (SC)	2	0	0,849	0,55	1.640.551,64	69.766	1.446.403,00
Congonhinhas (PR)	3	2	0,692	0,52	89.626,34	8.931	936.909,00
Conselheiro Pena (MG)	5	3	0,734	0,62	165.473,05	22.482	1.862.294,00
Coqueiro Seco (AL)	3	6	0,631	0,6	17.897,73	5.493	990.286,00
Cordilheira Alta (SC)	3	4	0,826	0,54	143.860,34	3.493	101.808,00
Coroatá (MA)	3	3	0,556	0,63	170.690,66	62.442	7.124.855,00
Coronel Murta (MG)	1	0	0,673	0,56	35.429,08	9.404	1.166.421,00
Coronel Sapucaia (MS)	4	3	0,713	0,56	84.539,85	14.416	1.218.415,00
Coronel Xavier Chaves (MG)	2	3	0,731	0,48	25.235,83	3.295	191.554,00
Corupá (SC)	4	6	0,818	0,45	185.745,22	13.248	192.342,00
Cristianópolis (GO)	3	5	0,771	0,54	24.473,36	3.153	70.966,00
Cromínia (GO)	6	4	0,769	0,54	32.224,34	3.725	349.667,00
Cruz das Almas (BA)	1	1	0,723	0,59	338.526,06	56.766	7.771.825,00
Cruzália (SP)	0	0	0,786	0,55	56.995,25	2.382	34.322,00
Cruzeiro da Fortaleza (MG)	3	1	0,795	0,54	41.966,12	3.884	189.068,00
Cuité de Mamanguape (PB)	4	3	0,544	0,57	32.847,17	6.685	1.436.041,00
Cunha (SP)	3	5	0,733	0,55	112.222,38	23.694	3.018.993,00
Curaçá (BA)	8	3	0,626	0,59	122.529,41	33.929	5.044.256,50
Curitibanos (SC)	7	6	0,769	0,57	499.361,47	38.799	1.519.870,00
Curralinho (PA)	4	5	0,596	0,55	51.039,67	26.864	4.455.311,00
Descanso (SC)	2	4	0,796	0,5	129.183,90	8.927	458.821,00
Diamante (PB)	0	1	0,574	0,59	24.796,54	6.772	1.778.145,00
Diamante do Norte (PR)	1	1	0,738	0,54	38.047,44	5.713	523.176,00
Divina Pastora (SE)	2	4	0,655	0,48	146.165,80	4.341	621.314,00
Divinésia (MG)	3	4	0,724	0,53	19.439,24	3.391	266.121,00
Divino das Laranjeiras (MG)	1	4	0,703	0,62	27.740,33	5.084	468.692,00
Divisa Nova (MG)	4	5	0,735	0,5	46.466,22	5.806	336.479,00
Dom Inocêncio (PI)	1	2	0,596	0,53	23.413,20	10.628	2.332.102,00
Dom Pedro (MA)	2	3	0,634	0,58	78.140,03	22.092	3.111.961,50
Domingos Mourão (PI)	1	0	0,546	0,59	12.957,04	4.435	741.724,00

Douradina (MS)	4	2	0,713	0,63	174.497,81	6.794	337.094,00
Doutor Pedrinho (SC)	3	2	0,802	0,43	30.082,37	3.402	44.459,00
Doutor rearmino (BC)	3	2	0,002	0,43	30.002,37	3.402	44.437,00
Doutor Ricardo (RS)	3	2	0,785	0,47	26.502,38	2.105	88.620,00
Dracena (SP)	5	3	0,8	0,6	496.763,98	43.989	2.997.506,00
Duas Estradas (PB)	3	0	0,569	0,55	18.626,36	3.855	1.097.550,00
Duque Bacelar (MA)	1	2	0,54	0,56	25.794,70	10.704	1.625.081,00
Ecoporanga (ES)	4	4	0,695	0,61	220.446,95	23.919	3.042.419,00
Eldorado (MS)	4	3	0,708	0,54	134.648,12	12.304	852.792,00
Elias Fausto (SP)	1	3	0,768	0,49	422.318,24	15.192	441.933,00
Engenheiro Coelho (SP)	4	4	0,792	0,52	214.691,30	13.914	552.109,00
Engenheiro Navarro (MG)	3	2	0,686	0,48	33.783,86	7.299	375.429,00
Entre-Ijuís (RS)	3	2	0,767	0,53	134.587,80	9.312	692.425,00
Érico Cardoso (BA)	4	2	0,592	0,61	28.683,15	10.809	2.427.332,00
Erval Seco (RS)	6	4	0,74	0,57	93.879,69	8.294	1.224.937,00
Espírito Santo (RN)	6	3	0,581	0,61	32.551,16	10.414	1.412.675,00
Estrela do Indaiá (MG)	5	5	0,738	0,53	36.862,74	3.772	353.416,00
Eugênio de Castro (RS)	4	1	0,765	0,57	80.438,35	3.107	199.516,00
Expedito Lopes (PI)	3	2	0,635	0,65	25.972,98	6.721	1.812.481,00
Fama (MG)	2	2	0,786	0,55	27.055,05	2.270	182.653,00
Farol (PR)	4	1	0,701	0,6	72.520,73	3.413	255.746,00
Fátima (BA)	5	2	0,554	0,55	56.997,51	19.588	4.209.804,00
Fazenda Rio Grande (PR)	1	2	0,763	0,45	426.675,77	79.255	2.431.603,00
Feira Nova do Maranhão (MA)	2	4	0,569	0,62	29.987,18	7.872	721.242,00
Felício dos Santos (MG)	7	4	0,657	0,58	22.945,85	5.857	839.280,00
Felisburgo (MG)	5	4	0,642	0,58	27.728,34	6.957	1.333.928,00
Fernando Pedroza (RN)	1	1	0,625	0,59	11.533,79	2.964	613.751,00
Fernão (SP)	2	1	0,748	0,53	17.820,89	1.514	100.538,00
Flora Rica (SP)	3	1	0,747	0,51	29.194,28	2.044	117.638,00
Flores do Piauí (PI)	3	4	0,59	0,54	13.000,36	4.596	1.548.613,00
Fonte Boa (AM)	5	3	0,532	0,64	104.512,84	19.783	4.396.318,00
Formosa (GO)	0	1	0,75	0,63	655.336,01	94.717	5.699.960,00
Formoso do Araguaia (TO)	2	1	0,71	0,62	214.138,13	18.743	1.408.624,00
Foz do Jordão (PR)	0	1	0,689	0,63	41.133,09	5.932	514.006,00

Francinópolis (PI)	2	0	0,549	0,62	15.265,36	5.443	1.563.496,00
Francisco Dantas (RN)	4	5	0,622	0,58	13.956,43	3.011	775.405,00
Francisco Dumont (MG)	3	3	0,656	0,61	26.190,38	4.945	634.449,00
Frecheirinha (CE)	1	4	0,605	0,61	45.742,77	13.389	1.728.222,00
Frei Inocêncio (MG)	3	4	0,703	0,57	50.689,97	9.246	1.418.512,00
Frei Paulo (SE)	4	1	0,646	0,63	164.619,25	12.969	3.064.654,00
Gameleira (PE)	2	2	0,59	0,53	86.282,60	27.489	3.014.942,00
Gandu (BA)	3	1	0,674	0,68	133.443,59	31.410	5.001.653,00
Gaurama (RS)	7	3	0,814	0,52	109.993,27	6.252	268.432,00
Gentio do Ouro (BA)	2	2	0,575	0,62	29.809,35	11.829	2.956.224,00
Girau do Ponciano (AL)	4	4	0,535	0,63	105.952,80	36.250	11.434.697,00
Glória (BA)	2	5	0,641	0,64	39.763,58	14.223	3.661.078,00
Gonçalves (MG)	6	4	0,759	0,53	22.795,95	4.423	167.435,00
	Ü	•	0,757	0,23	22.775,75	23	107.133,00
Governador Mangabeira (BA)	7	6	0,676	0,58	83.827,90	20.539	1.672.430,00
Gracho Cardoso (SE)	4	1	0,594	0,55	29.659,02	5.716	1.218.447,00
Granja (CE)	5	1	0,554	0,59	144.979,39	53.486	16.037.821,00
Guaíba (RS)	5	2	0,815	0,52	1.744.502,21	96.467	3.662.766,00
Guapó (GO)	2	1	0,729	0,51	70.277,20	13.974	1.743.945,00
Guaporema (PR)	2	2	0,725	0,49	24.156,22	2.251	133.749,00
Guarani (MG)	1	1	0,759	0,53	81.150,26	9.915	544.330,50
Guarará (MG)	0	4	0,75	0,54	24.285,75	4.123	235.077,00
Guaratinga (BA)	2	3	0,593	0,54	85.572,06	23.105	5.282.233,00
Guatapará (SP)	2	2	0,776	0,51	74.751,92	6.386	197.031,00
Gurinhém (PB)	2	2	0,545	0,53	48.583,56	13.987	1.908.388,00
Heliodora (MG)	5	4	0,733	0,57	56.586,27	6.241	428.937,00
Heliópolis (BA)	6	4	0,58	0,48	41.498,71	14.575	2.825.164,00
Herveiras (RS)	3	1	0,76	0,53	28.430,60	2.891	188.357,00
Iaciara (GO)	2	0	0,704	0,64	76.736,02	12.672	302.530,00
Iaras (SP)	2	3	0,742	0,53	60.203,66	5.420	156.235,00
Iati (PE)	1	3	0,526	0,6	62.321,50	18.304	3.587.514,00
Ibateguara (AL)	1	2	0,58	0,55	52.061,32	15.805	3.818.249,00
Ibirapuã (BA)	6	3	0,673	0,55	53.950,79	7.825	884.394,00
Ibirataia (BA)	4	7	0,642	0,63	94.764,20	24.582	3.715.646,00
Ibitiara (BA)	2	1	0,656	0,55	42.459,51	16.471	2.928.366,00
Ibitirama (ES)	4	4	0,69	0,58	66.052,69	9.243	794.941,00
Içara (SC)	3	2	0,78	0,43	822.803,62	56.360	995.763,00
Icatu (MA)	4	2	0,572	0,62	66.832,82	25.198	4.965.417,50
Ichu (BA)	1	1	0,675	0,53	16.971,08	6.101	747.093,00
Iconha (ES)	2	1	0,79	0,68	152.060,80	11.872	567.986,00
Igarapé-Açu (PA)	2	2	0,67	0,53	97.341,91	35.005	4.200.631,00
Igrapiúna (BA)	3	2	0,601	0,56	103.475,70	13.436	3.265.736,00
Igrejinha (RS)	2	3	0,822	0,51	563.007,06	32.945	847.313,00
Ijaci (MG)	3	5	0,738	0,5	194.810,87	5.950	443.504,00

Ilha das Flores (SE)	4	1	0,584	0,61	38.440,76	8.855	1.314.378,00
Imaculada (PB)	3	2	0,542	0,6	35.863,96	11.770	2.320.237,00
Imaruí (SC)	2	4	0,742	0,58	109.072,87	11.847	1.178.370,00
Imbé de Minas (MG)	7	6	0,673	0,57	37.962,48	6.578	1.207.790,00
Imperatriz (MA)	3	3	0,722	0,61	1.740.930,59	236.311	21.803.490,50
Inaciolândia (GO)	1	1	0,717	0,57	64.164,21	5.887	245.886,00
Inajá (PR)	2	3	0,722	0,49	57.120,01	14.605	213.300,00
Independência (CE)	5	4	0,657	0,58	100.328,82	26.240	5.578.544,00
Indianópolis (MG)	0	0	0,764	0,57	337.921,53	6.556	269.615,00
Inhangapi (PA)	6	4	0,678	0,59	30.271,07	10.134	1.750.490,00
Inhumas (GO)	3	3	0,765	0,57	396.811,69	46.555	3.854.103,00
Ipaba (MG)	3	0	0,702	0,49	56.739,06	15.351	1.298.175,00
Ipanguaçu (RN)	2	2	0,613	0,56	56.385,74	13.868	2.398.498,00
Ipiaçu (MG)	3	4	0,764	0,58	51.767,09	4.345	335.860,00
Iporã (PR)	0	2	0,75	0,55	147.758,29	15.353	1.088.723,00
Ipuã (SP)	1	1	0,78	0,53	157.819,90	15.522	472.343,00
Ipubi (PE)	3	4	0,6	0,68	94.778,45	26.973	4.071.852,00
Ipupiara (BA)	0	0	0,67	0,63	28.849,53	9.259	609.102,00
Iraquara (BA)	7	5	0,605	0,61	108.655,65	23.867	3.780.238,00
_	8	2	0,612			25.460	
Itabaiana (PB)		5		0,52	104.802,31		5.056.771,50
Itabirito (MG)	4		0,786	0,48	1.070.387,83	43.314	1.675.974,00
Itabuna (BA)	4	1	0,748	0,64	1.945.413,90	212.245	29.675.794,00
Itaguaru (GO)	3	5	0,746	0,59	39.339,61	5.605	472.247,00
Itaipé (MG)	4	2	0,633	0,67	48.120,41	11.958	1.593.761,00
Itajá (GO)	3	1	0,747	0,54	61.815,80	5.544	197.059,00
Italva (RJ)	2	0	0,724	0,53	114.386,24	14.496	478.323,00
Itamogi (MG)	2	1	0,764	0,52	118.511,31	11.181	664.788,00
Itaparica (BA)	8	5	0,712	0,58	87.022,85	20.641	4.760.128,00
Itapicuru (BA)	6	2	0,521	0,55	101.681,79	32.100	5.425.423,00
Itapissuma (PE)	4	2	0,695	0,58	474.393,27	24.026	2.820.194,00
Itápolis (SP)	3	2	0,785	0,54	599.203,92	40.196	1.377.979,00
Itaporã (MS)	4	3	0,712	0,58	226.825,68	19.187	1.048.532,00
Itaporanga (PB)	0	2	0,624	0,57	98.635,74	23.047	4.114.828,00
Itaporanga d'Ajuda (SE)	1	2	0,638	0,52	455.934,25	29.010	4.395.279,00
Itapuí (SP)	3	2	0,774	0,46	171.664,61	12.344	334.639,00
Itaqui (RS)	5	3	0,801	0,6	690.055,25	36.889	4.132.479,00
Itararé (SP)	2	3	0,732	0,63	522.344,71	51.000	3.300.583,00
Itarema (CE)	5	4	0,601	0,6	171.793,48	35.988	5.404.673,00
Itatiaia (RJ)	3	1	0,8	0,55	488.191,04	34.595	867.251,00
Itatiba do Sul (RS)	3	1	0,775	0,52	46.648,73	4.593	307.693,00
Itatira (CE)	5	2	0,569	0,67	73.676,26	18.579	5.098.606,00
Itaú (RN)	5	5	0,675	0,55	23.147,21	5.936	1.041.284,00
Itaúna (MG)	2	2	0,823	0,56	1.368.373,63	85.070	2.223.265,00
Ituaçu (BA)	2	1	0,619	0,62	62.687,61	18.621	3.300.663,00
Ituberá (BA)	5	4	0,62	0,59	117.862,49	24.185	1.940.182,00
Itumirim (MG)	1	2	0,02	0,54	36.359,98	6.647	292.484,00
Ituninini (MG) Ituporanga (SC)	4	2	0,76	0,34	383.921,60		393.686,00
ruporanga (SC)	4	2	0,023	0,4/	303.941,00	21.327	272.000,00

Ituverava (SP)	1	1	0,789	0,59	442.332,24	40.485	1.022.187,00
Iuiú (BA)	3	4	0,611	0,58	48.301,76	11.954	2.111.573,00
Ivaí (PR)	0	2	0,701	0,55	120.122,53	13.392	1.160.819,00
Ivaté (PR)	0	0	0,752	0,48	93.122,36	8.173	288.413,00
Jaçanã (RN)	3	4	0,631	0,6	26.970,11	8.017	1.779.222,00
Jacobina do Piauí (PI)	3	4	0,57	0,58	18.193,28	5.774	1.531.164,00
Jamari (RO)	2	0	0,702	0,64	186.627,67	17.147	180.702,00
Japaratinga (AL)	3	4	0,613	0,6	26.990,40	7.686	903.746,00
Jardim de Angicos (RN)	3	6	0,628	0,52	11.567,26	2.607	421.225,00
Jardim de Piranhas (RN)	7	4	0,675	0,51	59.079,89	14.139	1.143.075,00
Jardim do Seridó (RN)	3	3	0,722	0,54	58.646,31	12.362	2.854.848,00
Jardim Olinda (PR)	0	0	0,724	0,56	14.437,40	1.498	168.668,00
Jardinópolis (SP)	6	6	0,808	0,51	397.943,29	36.872	1.181.337,00
Jatobá do Piauí (PI)	2	2	0,587	0,49	17.233,93	4.653	735.669,00
Jaupaci (GO)	3	1	0,71	0,53	21.555,96	3.070	204.035,00
Jenipapo dos Vieiras (MA)	3	2	0,516	0,57	47.840,03	15.270	1.876.665,00
Jeriquara (SP)	2	5	0,748	0,49	68.334,43	3.225	241.431,00
João Neiva (ES)	3	4	0,766	0,51	178.766,95	14.697	794.023,00
Jordão (AC)	4	5	0,475	0,69	53.367,29	6.333	793.684,00
José Gonçalves de Minas (MG)	3	2	0,646	0,48	18.687,55	4.669	984.927,00
Jucás (CE)	5	2	0,597	0,61	70.272,29	23.654	7.330.472,00
Juruena (MT)	1	2	0,751	0,55	75.611,71	9.182	385.367,00
Lagarto (SE)	3	1	0,614	0,56	584.195,05	91.696	18.858.054,00
Lagoa do Carro (PE)	4	3	0,654	0,5	50.885,33	15.044	3.269.658,00
Lagoa do Piauí (PI)	3	3	0,599	0,52	19.710,46	3.790	609.397,00
Lagoa Real (BA)	5	1	0,605	0,54	37.602,10	14.359	2.432.903,00
Laguna (SC)	3	4	0,793	0,53	409.697,04	51.282	1.987.134,00
Laranjal (MG)	1	2	0,769	0,53	39.856,46	6.532	289.606,00
Lavras da Mangabeira (CE)	1	3	0,636	0,62	95.925,50	30.612	6.898.885,00
Leópolis (PR)	1	3	0,742	0,54	64.266,38	4.331	317.997,00
Limoeiro de Anadia (AL)	3	5	0,569	0,59	64.617,36	26.236	4.718.401,00
Lindóia (SP)	4	1	0,82	0,5	60.985,29	5.924	109.672,00
Londrina (PR)	0	0	0,824	0,58	8.033.460,98	505.184	12.589.570,00
Lucrécia (RN)	1	2	0,66	0,58	15.192,80	3.522	877.390,00
Luís Gomes (RN)	2	4	0,644	0,62	35.410,38	10.060	2.815.870,00
Luziânia (GO)	4	1	0,756	0,57	1.805.535,17	203.800	12.352.590,00
Macapá (AP)	1	3	0,772	0,62	4.294.913,60	359.020	7.029.066,00

Machadinho d'Oeste (RO)	3	2	0,691	0,65	297.918,15	32.214	1.679.545,00
Machado (MG)	1	2	0,789	0,58	620.310,50	39.109	1.681.111,00
Mãe do Rio (PA)	0	0	0,697	0,6	135.161,12	28.762	2.517.543,00
Mafra (SC)	5	3	0,788	0,5	866.332,08	52.697	2.482.785,00
Malhador (SE)	1	0	0,618	0,52	51.038,85	12.074	870.174,00
Mamanguape (PB)	0	1	0,581	0,55	223.962,64	41.406	5.976.806,00
Manicoré (AM)	1	0	0,621	0,61	215.296,86	45.996	3.129.101,00
Manoel Viana (RS)	5	3	0,754	0,59	102.115,90	6.963	540.962,00
Maracaçumé (MA)	4	4	0,613	0,66	60.896,05	18.098	3.436.053,00
Maracaí (SP)	0	1	0,773	0,47	365.408,68	13.655	481.743,00
Maracaju (MS)	2	3	0,781	0,59	700.371,55	31.933	2.009.877,00
Marco (CE)	4	3	0,616	0,61	96.187,55	24.250	2.126.085,00
Marechal Cândido Rondon (PR)	0	2	0,829	0,57	891.961,45	46.523	1.112.667,00
Marianópolis do Tocantins (TO)	3	2	0,695	0,61	36.873,77	4.616	618.662,00
Maringá (PR)	0	2	0,841	0,56	6.150.568,80	331.412	4.705.981,00
Martinópolis (SP)	4	3	0,75	0,55	224.449,12	25.256	713.395,00
Martins (RN)	6	3	0,694	0,63	29.901,38	8.331	1.434.215,00
Martins Soares (MG)	1	4	0,707	0,49	69.172,19	6.625	309.586,00
Mata Danie (MA)	2	1	0.567	0.62	62.062.40	14.252	5.012.255.00
Mata Roma (MA)	2	1	0,567	0,63	63.962,48	14.252	5.012.355,00
Mateiros (TO)	4	3	0,584	0,72	80.804,96	1.788	294.045,00
Matias Barbosa (MG)	5	4	0,782	0,5	476.103,41	13.738	996.347,00
Matias Olímpio (PI)	2	3	0,544	0,59	25.290,20	10.766	2.426.310,00
Mato Grosso (PB)	2	4	0,553	0,52	10.473,23	2.673	552.236,00
Matupá (MT)	3	0	0,753	0,64	210.861,03	14.821	1.045.665,00
Mauá da Serra (PR)	2	1	0,719	0,57	114.198,67	8.268	763.097,00
Maués (AM)	0	0	0,689	0,67	210.820,94	48.808	6.813.934,00
Medina (MG)	1	3	0,645	0,59	96.052,71	21.181	381.973,00
Meleiro (SC)	1	0	0,793	0,62	130.427,61	7.070	11.479,50
Mesquita (MG)	4	3	0,677	0,58	28.333,58	6.659	530.657,00
Messias (AL)	2	6	0,598	0,55	51.962,53	15.547	1.682.509,00
Miguel Pereira (RJ)	0	2	0,777	0,64	253.533,59	25.704	1.296.019,00
Milhã (CE)	4	3	0,632	0,55	53.615,17	14.691	75.800,00
Mirabela (MG)	2	1	0,658	0,59	52.218,77	13.198	1.854.207,50
Mirandiba (PE)	4	5	0,636	0,55	47.672,97	13.757	2.468.854,00
Moji das Cruzes (SP)	2	3	0,801	0,58	6.708.697,79	371.372	18.831.340,00
Montanhas (RN)	4	1	0,586	0,53	42.747,40	12.762	2.155.177,50

Montes Claros (MG)	4	3	0,783	0,62	3.462.739,13	358.271	28.915.747,00
Montividiu (GO)	4	2	0,794	0,61	260.089,75	9.766	456.809,50
Moreira Sales (PR)	3	4	0,703	0,55	143.424,85	13.263	1.181.975,00
Morpará (BA)	0	0	0,64	0,69	26.535,96	8.853	711.044,00
Morrinhos (CE)	3	1	0,608	0,67	60.214,13	22.269	3.491.149,00
Mucambo (CE)	1	2	0,629	0,61	42.828,88	14.481	4.003.685,00
Murici dos Portelas (PI)	2	1	0,494	0,64	23.013,80	7.877	1.124.480,00
Mutuípe (BA)	0	0	0,657	0,72	81.908,26	21.935	1.296.883,00
Não-Me-Toque (RS)	4	3	0,833	0,57	462.674,27	15.876	648.126,00
Natuba (PB)	3	2	0,513	0,54	43.273,99	10.510	2.840.120,00
Nazaré (BA)	2	1	0,676	0,58	117.328,41	27.350	871.219,00
Nicolau Vergueiro	4	3	0,796	0,48	48.326,68	1.805	60.651,00
(RS)							
Nina Rodrigues (MA)	3	1	0,55	0,56	34.361,57	10.326	1.565.837,00
Ninheira (MG)	3	5	0,604	0,52	38.630,08	10.884	464.117,00
Nipoã (SP)	3	4	0,775	0,48	37.849,48	4.029	69.921,00
Normandia (RR)	5	2	0,6	0,79	77.525,37	7.403	1.602.326,00
Nossa Senhora das Dores (SE)	2	2	0,637	0,59	117.777,20	24.529	4.543.841,00
Nova Andradina (MS)	4	1	0,786	0,56	597.429,49	44.971	2.280.601,00
Nova Bandeirantes (MT)	0	2	0,702	0,63	101.608,50	13.425	755.503,00
Nova Canaã do Norte (MT)	4	4	0,702	0,61	140.336,67	13.087	520.328,00
Nova Canaã Paulista (SP)	1	1	0,726	0,49	27.923,52	2.203	119.961,00
Nova Esperança do Piriá (PA)	2	1	0,598	0,64	53.193,67	23.599	3.586.208,00
Nova Lima (MG)	2	4	0,821	0,64	2.496.605,73	75.530	2.190.439,50
Nova Marilândia (MT)	3	2	0,701	0,49	35.426,23	2.369	175.640,00
Nova Maringá (MT)	3	2	0,74	0,58	195.880,82	5.803	204.518,00
Name Odana (CD)	1	1	0.926	0.46	1 102 200 60	49 170	(17.752.00
Nova Odessa (SP)	1	1	0,826	0,46	1.102.289,69	48.170	616.752,00
Nova Palma (RS)	2	3	0,803	0,52	127.182,35	6.663	334.416,00
Nova Russas (CE)	3	6	0,64	0,63	118.813,52	31.770	6.246.253,00
Nova Santa Bárbara (PR)	2	3	0,701	0,59	31.921,54	3.952	369.346,00
Nova Santa Rosa (PR)	1	1	0,806	0,51	130.569,90	7.893	364.951,00
Nova União (RO)	5	2	0,7	0,57	66.293,81	7.978	671.613,00
Nova Viçosa (BA)	0	0	0,658	0,63	223.995,71	36.032	3.363.071,00

Novais (SP)	0	0	0,759	0,48	26.808,82	3.908	137.694,00
Novo Alegre (TO)	3	2	0,694	0,6	12.704,80	1.848	362.134,00
Novo Gama (GO)	4	2	0,742	0,53	315.148,97	87.558	9.035.776,00
Novo Hamburgo (RS)	5	2	0,809	0,55	4.418.162,31	255.945	6.770.808,00
Novo Horizonte do Oeste (RO)	2	1	0,707	0,65	103.261,50	9.966	438.550,00
Novo Horizonte do Sul (MS)	3	4	0,71	0,54	48.541,43	5.074	445.372,00
Novo Repartimento (PA)	0	1	0,626	0,66	207.977,87	54.506	3.348.111,00
Oeiras do Pará (PA)	2	2	0,652	0,53	73.312,24	26.487	3.764.507,00
Oiapoque (AP)	3	4	0,738	0,67	215.911,68	20.226	830.396,00
Olho d'Água das Cunhãs (MA)	5	6	0,571	0,58	66.037,19	17.868	3.474.388,00
Olho d'Água das Flores (AL)	3	3	0,606	0,64	76.211,11	20.465	5.254.904,00
Olho d'Água do Borges (RN)	2	2	0,631	0,54	25.290,89	8.388	615.372,00
Olho d'Água do Casado (AL)	5	5	0,542	0,66	15.269,48	4.956	1.477.207,00
Olho d'Água Grande (AL)	1	4	0,544	0,69	17.319,24	4.570	1.247.266,00
Oliveira (MG)	1	4	0,77	0,55	315.890,87	39.063	2.136.998,50
Oriximiná (PA)	2	2	0,717	0,62	980.970,14	57.765	4.788.049,50
Orobó (PE)	3	2	0,612	0,61	80.981,45	22.244	5.618.710,00
Osório (RS)	4	3	0,839	0,53	533.867,01	41.161	1.042.950,00
Ourém (PA)	6	1	0,669	0,6	44.238,96	15.719	2.077.472,00
Ourilândia do Norte (PA)	4	5	0,699	0,64	235.977,23	21.171	1.323.399,00
Ouro Preto do Oeste (RO)	4	2	0,727	0,6	381.340,82	37.142	3.471.078,00
Ouro Velho (PB)	6	5	0,633	0,53	13.522,90	3.057	314.139,00
Ouro Verde de Goiás (GO)	4	3	0,719	0,55	30.905,57	4.580	481.230,00
Ouvidor (GO)	3	2	0,785	0,52	145.609,29	4.952	151.805,00
Pacajá (PA)	3	7	0,661	0,76	148.860,89	40.768	4.193.943,00
Pacatuba (CE)	4	3	0,717	0,49	456.327,37	70.018	5.834.026,00
Padre Bernardo (GO)	5	3	0,705	0,64	147.805,61	27.429	2.870.837,00
Padre Marcos (PI)	1	0	0,539	0,58	24.382,43	7.551	2.055.175,00
Paes Landim (PI)	4	1	0,603	0,6	12.530,66	4.517	1.300.823,00
Palestina do Pará (PA)	4	5	0,652	0,62	27.741,61	7.329	1.180.802,00
Palmas de Monte Alto (BA)	5	2	0,641	0,74	64.741,41	21.896	5.781.536,00

Palmeirante (TO)	2	2	0,616	0,64	66.239,79	4.837	367.756,00
Palmeiras (BA)	2	0	0,679	0,61	32.737,93	8.358	655.689,00
Palmeiras de Goiás (GO)	2	3	0,76	0,53	359.001,50	22.353	1.393.278,00
Palmópolis (MG)	2	3	0,615	0,63	25.687,86	7.010	1.327.163,00
Panamá (GO)	5	2	0,734	0,52	43.531,02	2.678	136.190,00
Paracambi (RJ)	2	2	0,771	0,5	344.957,84	44.629	1.177.353,00
Paragominas (PA)	0	0	0,69	0,61	851.943,28	95.479	11.088.520,50
Paranhos (MS)	2	0	0,676	0,55	68.608,79	11.437	1.508.392,00
Paraú (RN)	1	1	0,612	0,6	14.492,91	3.988	666.402,00
Parecis (RO)	7	6	0,666	0,61	56.381,34	4.696	304.587,00
Parisi (SP)	5	3	0,756	0,47	30.583,17	2.132	82.068,00
Passagem (PB)	1	4	0,628	0,53	10.446,54	2.183	792.836,00
Passos Maia (SC)	2	2	0,732	0,58	53.802,86	4.578	2.015,00
Pato Branco (PR)	3	2	0,849	0,57	1.217.151,03	69.478	2.407.001,00
Patos do Piauí (PI)	1	1	0,579	0,64	23.982,29	6.349	1.344.050,00
Pau d'Arco (PA)	3	2	0,664	0,59	34.355,98	6.583	1.517.671,00
Pau dos Ferros (RN)	2	0	0,725	0,56	161.315,72	27.547	2.432.481,00
Paulínia (SP)	1	1	0,847	0,58	6.734.450,22	81.544	628.703,00
Pedra Branca (PB)	2	2	0,615	0,55	14.411,70	3.849	1.878.313,32
Pedra Branca do	1	1	0,625	0,65	94.111,63	7.800	1.030.659,00
Amapari (AP) Pedregulho (SP)	2	2	0,794	0,53	231.162,66	15.717	914.500,00
Pedro Canário (ES)	5	1	0,673	0,55	172.064,91	24.196	3.158.705,00
rearo canario (LIS)	J	-	0,075	0,23	172.00 1,51	270	3.130.703,00
Pedro Osório (RS)	3	3	0,769	0,62	69.703,85	8.286	1.226.189,00
Pedro Velho (RN)	3	2	0,626	0,65	50.715,28	14.073	2.921.172,00
Peixe-Boi (PA)	2	2	0,64	0,58	20.468,52	7.908	1.873.027,00
Penaforte (CE)	5	2	0,687	0,56	32.706,26	8.067	1.963.948,00
Penalva (MA)	3	3	0,584	0,53	102.809,05	34.505	8.051.696,00
Pendências (RN)	4	3	0,631	0,5	135.043,00	12.893	1.910.644,00
Pequi (MG)	0	2	0,77	0,57	42.485,04	4.434	238.028,00
Peritiba (SC)	3	4	0,81	0,48	49.720,17	3.003	82.373,00
Pesqueira (PE)	4	0	0,636	0,59	271.559,92	63.878	9.663.302,00
Petrolina (PE)	3	1	0,747	0,64	2.375.491,94	276.174	29.602.029,00
Piedade de Ponte Nova (MG)	3	5	0,674	0,6	28.945,03	4.254	458.263,00
Piedade dos Gerais (MG)	4	2	0,694	0,48	26.414,92	4.721	211.336,00
Pimenta Bueno (RO)	5	2	0,754	0,6	387.508,17	33.803	2.772.126,00
Pindoba (AL)	0	1	0,561	0,55	12.512,68	3.218	674.649,00

Pindorama do Tocantins (TO)	3	3	0,658	0,52	25.087,02	4.521	808.060,00
Pinhalão (PR)	4	2	0,707	0,55	57.858,17	6.030	567.944,00
Pinhão (SE)	3	3	0,707	0,55	32.016,73	5.761	497.086,00
, ,							
Pirangi (SP)	2	3	0,779	0,45	114.505,50	10.744	240.131,00
Pirapemas (MA)	4	2	0,572	0,54	83.737,61	15.477	4.437.069,00
Pirapetinga (MG)	2	2	0,759	0,55	180.636,04	10.588	414.197,00
Pirapora do Bom Jesus (SP)	4	2	0,767	0,55	148.772,83	15.410	1.113.185,00
Pirapozinho (SP)	2	2	0,783	0,55	386.289,26	24.964	1.346.076,00
Piratuba (SC)	3	1	0,806	0,51	72.553,05	4.577	271.943,00
Pires Ferreira (CE)	1	0	0,606	0,57	30.760,56	9.812	1.712.090,00
Pirpirituba (PB)	4	2	0,612	0,58	36.458,77	10.522	2.055.239,50
Pitangueiras (PR)	0	0	0,754	0,48	38.084,72	2.786	93.924,00
Pitimbu (PB)	2	7	0,594	0,54	82.794,15	16.574	2.311.008,00
Plácido de Castro (AC)	4	6	0,683	0,55	179.697,04	17.921	3.047.066,00
Planalto (SP)	5	2	0,744	0,57	54.886,71	4.247	338.438,00
Planura (MG)	3	3	0,779	0,51	413.080,77	10.882	457.690,00
Poço de José de Moura (PB)	0	1	0,574	0,6	14.775,10	4.066	739.971,00
Pojuca (BA)	5	4	0,708	0,53	994.602,64	31.687	4.930.712,00
Poloni (SP)	2	1	0,787	0,52	56.156,79	5.074	340.481,00
Pompéia (SP)	0	2	0,816	0,52	429.178,35	19.998	234.150,00
Pompéu (MG)	1	4	0,745	0,64	423.119,15	29.595	1.486.613,00
•							
Ponta de Pedras (PA)	3	3	0,652	0,58	67.046,30	25.743	4.086.976,00
Ponte Alta do Tocantins (TO)	3	3	0,675	0,69	39.597,42	6.763	630.882,00
Porto Alegre do Tocantins (TO)	5	3	0,654	0,61	15.195,38	2.917	409.816,00
Porto Calvo (AL)	2	4	0,599	0,56	116.550,89	25.870	4.128.427,00
Porto Estrela (MT)	3	3	0,654	0,52	34.324,65	4.093	441.165,00
Porto Grande (AP)	2	4	0,719	0,62	155.705,39	14.598	2.071.241,00
Porto Vitória (PR)	2	2	0,732	0,54	34.295,08	3.856	204.471,00
Porto Xavier (RS)	2	3	0,762	0,63	235.593,57	11.145	787.442,00
Potiraguá (BA)	0	0	0,605	0,46	36.738,30	10.123	1.956.990,00
Pouso Novo (RS)	2	1	0,771	0,57	31.672,82	2.018	254.813,00
Prado Ferreira (PR)	3	2	0,756	0,5	37.754,72	3.480	165.428,50
Pratânia (SP)	1	2	0,745	0,55	47.356,16	4.555	660.690,31
Presidente Epitácio (SP)	3	2	0,766	0,58	361.370,62	40.775	2.929.652,00
Presidente Sarney (MA)	7	5	0,555	0,5	49.697,76	16.095	4.130.889,00

Presidente Tancredo Neves (BA)	7	6	0,605	0,54	90.457,18	23.817	3.438.281,00
Presidente Vargas (MA)	5	2	0,543	0,58	36.746,59	10.096	2.390.003,00
Primavera de Rondônia (RO)	5	3	0,691	0,53	40.941,78	3.819	844.834,00
Primeira Cruz (MA)	2	2	0,557	0,5	27.712,16	12.366	2.410.713,00
Primeiro de Maio (PR)	4	1	0,747	0,54	116.382,69	11.098	727.829,00
Quadra (SP)	1	1	0,755	0,49	37.162,99	2.779	124.395,00
Quatro Barras (PR)	1	2	0,774	0,54	438.078,24	19.002	489.758,00
Queiroz (SP)	3	5	0,73	0,47	101.027,25	2.811	184.067,00
Quiterianópolis (CE)	3	4	0,625	0,53	61.703,08	20.979	3.071.261,00
Quixaba (PB)	0	2	0,599	0,5	23.405,67	7.097	1.194.624,00
Quixabá (PE)	0	2	0,581	0,68	7.794,18	1.472	427.824,00
Quixabeira (BA)	3	2	0,606	0,58	25.715,82	9.624	1.318.227,00
Quixeramobim (CE)	3	3	0,64	0,61	324.553,39	72.951	16.163.431,00
Rancho Alegre (PR)	5	2	0,738	0,49	41.302,97	4.097	288.985,00
Raposos (MG)	1	3	0,758	0,44	56.213,16	15.418	1.004.464,00
Registro (SP)	0	1	0,777	0,65	486.074,85	55.081	4.329.770,00
Riachão do Dantas (SE)	1	0	0,556	0,49	85.003,74	19.567	3.835.961,00
Riacho dos Cavalos (PB)	2	0	0,583	0,47	26.037,65	8.285	1.885.755,00
Riachuelo (SE)	2	4	0,671	0,53	26.852,17	7.045	1.045.319,00
Riachuelo (RN)	1	2	0,656	0,65	110.495,31	9.369	837.062,00
Ribeira (SP)	3	3	0,678	0,59	19.786,86	3.544	599.675,00
Ribeirão Branco (SP)	4	3	0,649	0,59	157.679,33	18.867	2.977.260,00
Rincão (SP)	1	0	0,777	0,48	83.472,94	10.807	525.138,00
Rio Bonito (RJ)	6	1	0,772	0,57	726.977,50	54.596	3.900.999,00
Rio Branco (MT)	2	2	0,698	0,56	56.251,26	5.201	591.549,00
Rio Espera (MG)	3	3	0,673	0,55	28.420,38	6.753	371.934,00
Rio Fortuna (SC)	2	2	0,822	0,47	64.802,59	4.621	80.250,00
Rio Grande da Serra (SP)	3	3	0,764	0,47	351.817,07	41.215	2.939.251,00
Rolim de Moura (RO)	2	3	0,753	0,58	529.691,38	50.249	2.412.336,00
Ronda Alta (RS)	3	2	0,78	0,58	140.129,72	9.891	935.193,00
Rorainópolis (RR)	5	3	0,676	0,7	195.488,18	25.714	4.476.348,00
Roteiro (AL)	5	4	0,522	0,57	37.106,01	6.881	1.236.660,00
Saboeiro (CE)	4	2	0,56	0,7	42.855,11	16.806	4.459.376,00
Sairé (PE)	4	5	0,598	0,5	56.126,03	14.155	2.917.827,00
Saldanha Marinho (RS)	2	1	0,818	0,49	68.262,54	3.038	145.801,00

Salinas (MG)	1	1	0,699	0,6	216.417,42	38.628	3.110.196,50
Salitre (CE)	4	2	0,558	0,55	81.290,98	16.586	1.331.925,00
Salto (SP)	3	2 5	0,809	0,51	2.014.286,82	108.471	1.281.952,00
Sanharó (PE) Santa Cecília do Pavão	3	3	0,618	0,64	72.078,31	18.473	3.142.836,00
(PR)	3	1	0,712	0,52	47.446,09	3.732	350.262,00
Santa Cecília do Sul (RS)	6	6	0,788	0,4	32.905,43	1.771	33.204,00
Santa Cruz (PE)	6	4	0,579	0,75	47.729,23	14.466	3.117.927,00
Santa Filomena (PE)	3	4	0,582	0,65	40.184,56	14.465	3.478.170,00
Santa Luzia do Pará (PA)	3	2	0,594	0,59	54.702,95	18.523	3.585.912,00
Santa Maria da Boa Vista (PE)	1	3	0,669	0,64	279.785,78	41.329	6.661.285,00
Santa Rita do Pardo (MS)	4	2	0,722	0,51	139.368,30	7.384	565.299,00
Santa Rosa da Serra (MG)	1	0	0,745	0,49	33.868,56	3.383	160.700,00
Santa Rosa de Lima (SC)	1	1	0,795	0,49	28.680,64	2.096	54.387,00
Santa Rosa do Tocantins (TO)	4	2	0,652	0,65	37.486,97	4.545	1.135.785,00
Santa Teresinha (PB)	5	2	0,586	0,51	19.510,11	4.777	1.045.908,00
Santa Tereza do Oeste (PR)	3	3	0,735	0,46	120.139,30	9.462	533.520,00
Santana da Ponte Pensa (SP)	0	0	0,753	0,49	17.929,22	1.643	65.700,00
Santana de Mangueira (PB)	4	4	0,557	0,53	21.826,86	5.770	978.763,00
Santana de Parnaíba (SP)	2	3	0,853	0,73	3.068.714,48	110.730	3.367.738,50
Santana do São Francisco (SE)	1	0	0,579	0,55	27.141,25	6.799	1.295.930,00
Santo Amaro (BA)	3	3	0,684	0,54	257.235,29	57.675	7.905.456,00
Santo Antônio da Alegria (SP)	3	2	0,77	0,52	73.874,03	6.296	251.991,00
Santo Antônio da Patrulha (RS)	5	6	0,77	0,47	461.758,17	39.302	2.069.673,00
Santo Antônio do Monte (MG)	3	2	0,779	0,49	222.422,50	25.694	1.648.828,00
Santo Antônio do Palma (RS)	2	2	0,793	0,51	36.301,69	2.289	54.917,00
Santo Antônio dos Milagres (PI)	1	1	0,565	0,53	6.823,11	2.019	2.286,00
Santo Inácio (PR)	3	2	0,738	0,52	115.190,80	4.982	303.548,00
São Bento (MA)	2	1	0,592	0,54	88.675,86	38.645	6.513.412,00
São Bento do Norte (RN)	3	0	0,643	0,56	22.241,35	3.635	581.880,00

São Bento do Tocantins (TO)	4	5	0,612	0,61	19.514,76	4.583	815.859,00
São Caitano (PE)	2	2	0,58	0,6	114.434,90	36.094	5.534.627,00
São Domingos do Sul (RS)	4	1	0,812	0,46	34.404,82	2.951	17.913,00
São Félix do Araguaia (MT)	5	4	0,726	0,63	140.822,98	11.097	1.061.479,00
São Félix do Xingu (PA)	3	3	0,709	0,75	357.197,92	64.223	2.772.010,00
São Fernando (RN)	4	6	0,664	0,48	27.896,69	3.483	590.687,00
São Francisco de Assis (RS)	4	1	0,774	0,57	190.949,17	19.909	2.407.606,00
São Francisco do Pará (PA)	4	7	0,69	0,57	44.574,36	11.986	1.747.635,50
São Gabriel (BA)	6	2	0,619	0,74	67.060,81	19.050	5.665.577,00
São Geraldo do Araguaia (PA)	4	5	0,691	0,63	125.639,30	25.291	2.861.638,50
São Gonçalo do Abaeté (MG)	4	3	0,739	0,56	94.612,59	6.447	527.904,00
São Jerônimo (RS)	7	3	0,79	0,62	276.577,92	21.212	1.808.064,00
São João (PE)	0	0	0,593	0,57	74.069,43	21.886	5.170.906,00
São João Batista (MA)	2	1	0,592	0,56	51.781,84	18.617	5.458.637,00
São João da Lagoa (MG)	4	4	0,673	0,61	23.343,37	4.921	1.064.601,00
São João da Serra (PI)	4	2	0,549	0,55	21.076,81	6.863	1.669.015,00
São João de Iracema (SP)	4	4	0,761	0,56	27.943,20	1.798	73.766,00
São João do Paraíso (MA)	6	2	0,654	0,61	57.757,42	11.611	2.345.594,00
São José do Egito (PE)	3	4	0,657	0,59	131.567,49	31.601	7.591.810,00
São José do Herval (RS)	5	3	0,742	0,58	22.948,49	2.550	179.436,00
São José do Jacuri (MG)	8	4	0,669	0,54	29.546,46	7.199	728.828,00
São Lourenço do Piauí (PI)	3	2	0,621	0,51	11.869,11	5.041	1.071.333,00
São Luis do Norte (GO)	3	3	0,71	0,54	51.390,07	4.426	64.964,00
São Luís do Quitunde (AL)	1	2	0,582	0,53	182.785,85	32.588	5.696.590,00
São Luiz (RR)	3	1	0,704	0,66	46.945,23	5.922	789.748,00
São Mateus (ES)	2	2	0,73	0,62	899.880,46	100.655	5.023.384,00
São Miguel do Aleixo (SE)	0	0	0,608	0,55	22.064,31	3.782	534.091,00
São Miguel do Gostoso (RN)	4	1	0,558	0,58	39.332,79	9.093	1.349.824,00

São Nicolau (RS)	3	2	0,713	0,59	56.542,20	6.006	519.547,00
São Rafael (RN)	1	0	0,638	0,57	35.502,21	8.350	1.328.705,10
São Salvador do Tocantins (TO)	5	5	0,628	0,58	103.700,82	3.102	400.468,00
São Sebastião da Boa Vista (PA)	3	2	0,666	0,5	48.929,42	21.499	5.524.390,00
São Sebastião do Rio Verde (MG)	4	5	0,771	0,59	14.019,46	2.264	157.160,00
São Sebastião do Umbuzeiro (PB)	4	2	0,574	0,52	13.272,61	3.147	624.909,00
São Valério da Natividade (TO)	2	1	0,674	0,63	41.645,41	5.024	355.659,00
São Vicente (RN)	1	2	0,639	0,58	22.944,61	5.992	980.293,00
Saudade do Iguaçu (PR)	2	1	0,781	0,65	39.448,59	5.137	380.948,00
Sebastião Barros (PI)	3	2	0,566	0,51	13.643,58	4.297	843.308,00
Sebastião Leal (PI)	3	1	0,607	0,48	48.040,71	4.198	336.858,00
Senador Cortes (MG)	3	2	0,731	0,51	14.009,06	2.076	215.799,00
Senador La Rocque (MA)	3	5	0,588	0,53	79.455,62	19.328	4.276.681,00
Senador Pompeu (CE)	2	0	0,618	0,6	108.182,96	25.069	6.242.735,00
Sentinela do Sul (RS)	2	3	0,777	0,52	41.865,44	5.536	223.119,00
Serra Caiada (RN)	2	2	0,605	0,73	32.121,01	8.552	1.831.404,00
Serra do Ramalho (BA)	8	4	0,598	0,65	131.080,28	31.909	8.423.759,00
Serra Grande (PB)	2	2	0,59	0,59	11.828,94	3.122	674.118,00
Serrana (SP)	2	1	0,775	0,45	596.996,50	38.956	620.367,00
Serrania (MG)	4	6	0,745	0,49	72.642,69	7.582	271.861,00
Severiano Melo (RN)	3	1	0,631	0,54	25.660,01	5.728	2.352.780,00
Sirinhaém (PE)	2	4	0,633	0,57	183.646,80	38.122	4.102.358,50
Sítio d'Abadia (GO)	2	3	0,643	0,61	28.288,74	3.436	164.799,00
Sítio do Mato (BA)	3	1	0,6	0,63	55.759,67	13.064	1.957.362,00
Sítio Novo (RN) Socorro (SP)	2 3	1 1	0,605 0,812	0,62 0,5	19.847,02 333.831,77	5.380 34.312	1.277.802,00 1.042.395,00
Sud Mennucci (SP)	3	1	0,779	0,52	117.246,61	8.075	236.877,00
Surubim (PE)	5	3	0,641	0,59	237.099,08	56.238	10.132.081,00
Sussuapara (PI)	1	0	0,595	0,55	23.067,07	5.696	997.270,00
Tabatinga (AM)	5	2	0,699	0,64	178.597,35	47.051	6.338.272,00

Tamandaré (PE)	8	4	0,596	0,63	99.398,38	18.854	4.196.497,00
Tamboril (CE)	5	4	0,62	0,57	89.319,44	26.650	6.987.687,00
Tanabi (SP)	6	3	0,792	0,54	268.272,75	24.424	1.887.612,00
Tangará da Serra (MT)	4	1	0,78	0,61	1.122.938,32	79.870	2.679.851,00
Tanque d'Arca (AL)	2	5	0,586	0,65	17.353,58	5.848	1.637.776,00
Tanque Novo (BA)	3	3	0,613	0,64	60.367,79	16.338	3.425.040,50
To a control (AM)	2	4	0.400	0.64	02.740.10	10.066	1 044 207 00
Tapauá (AM)	3	4	0,498	0,64	82.749,19	19.966	1.844.207,00
Tapes (RS)	4	2	0,78	0,6	177.743,88	17.143	992.535,00
Taquarana (AL)	1	1	0,583	0,63	63.345,91	18.695	5.544.023,00
Taquari (RS)	3	4	0,794	0,49	371.660,44	26.579	1.014.402,00
Taubaté (SP)	4	4	0,837	0,57	6.887.550,48	270.918	3.367.653,00
Tefé (AM)	4	4	0,663	0,59	270.933,82	64.703	10.523.752,00
Teixeirópolis (RO)	6	4	0,685	0,55	50.481,93	5.070	536.620,00
reixenopons (RO)	O	7	0,003	0,55	30.401,73	3.070	330.020,00
Taáfila Otani (MC)	2	2	0,742	0.61	1.044.091,10	130.521	11 707 295 50
Teófilo Otoni (MG)	2	2	0,742	0,61	1.044.091,10	130.321	11.797.285,50
TD (A ' T7'1 1 (AT)	1	2	0.567	0.65	162 502 26	41 400	4 405 260 00
Teotônio Vilela (AL)	1	2	0,567	0,65	162.502,26	41.498	4.495.368,00
Teresina de Goiás							
(GO)	4	4	0,672	0,66	13.006,17	2.887	203.091,00
Timbaúba (PE)	3	3	0,649	0,61	338.361,98	52.291	14.075.856,00
Toropi (RS)	3	4	0,732	0,48	31.050,59	3.146	172.933,00
Totopi (No)	3	7	0,732	0,40	31.030,37	3.140	172.933,00
Três Arroios (RS)	1	4	0,794	0,46	39.612,45	3.088	72.869,00
Três Lagoas (MS)	2	4	0,784	0,57	1.518.087,11	88.592	5.085.015,00
T TA: (0.0)	2	2	0.012	0.55	210.006.40	5 000	121 001 00
Treze Tílias (SC)	3	3	0,813	0,55	310.086,40	5.900	131.801,00
Tucunduva (RS)	4	2	0,828	0,5	104.990,73	6.022	306.068,00
Tupiratins (TO)	4	5	0,639	0,61	29.826,80	2.072	167.804,00
Turilândia (MA)	2	2	0,527	0,58	64.659,36	20.758	3.188.080,00
Turmalina (SP)	0	0	0,782	0,48	28.352,76	1.998	53.640,00
Ubajara (CE)	3	3	0,657	0,57	153.104,47	30.885	6.147.299,00
Uibaí (BA)	7	4	0,615	0,56	37.315,90	14.160	2.866.167,00
III: and an alia (DA)	4	4	0.600	0.75	16472200	24.405	2.684.321,00
Ulianópolis (PA)	4	4	0,688	0,75	164.722,08	34.485	2.084.321,00
Umirim (CE)	4	2	0,578	0,61	59.488,23	18.901	3.929.769,00
	_	_					
Urbano Santos (MA)	2	3	0,556	0,73	59.812,37	22.459	7.231.459,00
Urucânia (MG)	3	6	0,693	0,54	84.119,40	10.499	929.809,00
Uruoca (CE)	3	1	0,587	0,61	37.569,07	13.613	2.241.305,00
Utinga (BA)	1	1	0,596	0,55	72.287,14	20.132	3.160.210,00
Valença (BA)	2	3	0,672	0,61	472.710,57	88.542	8.097.139,50
Varença (BA) Vargem (SP)	3	2	0,782	0,49	50.582,18	7.092	524.897,00
vargem (SF)	3	2	0,782	0,49	30.362,16	1.092	324.697,00
Vargem Alegre (MG)	4	5	0,698	0,52	32.942,41	6.808	1.269.980,00
Vargem Grande (MA)	0	0	0,544	0,51	149.651,04	44.648	2.668.254,00
·			*	,	,		, -
Venceslau Braz (PR)	0	2	0,727	0,62	186.726,33	19.149	2.369.969,00
	J	-	٠,, ٠, ٠	5,52	150.720,55	17.117	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Venda Nova do	4	1	0,778	0,58	225.595,80	19.684	1.418.833,00
Imigrante (ES)	7	1	0,770	0,50	223.373,00	17.00	1.110.033,00

Venturosa (PE)	5	4	0,633	0,58	69.633,54	16.417	3.782.862,00
Vera Cruz do Oeste (PR)	2	3	0,737	0,61	108.087,90	9.301	839.710,00
Vespasiano Correa (RS)	0	2	0,807	0,44	41.506,72	1.992	21.998,00
Viçosa (RN)	1	1	0,653	0,52	8.935,06	1.826	257.517,00
Viradouro (SP)	2	3	0,798	0,5	135.292,40	17.924	726.285,00
Virgem da Lapa (MG)	0	1	0,664	0,61	49.507,20	14.602	1.398.245,00
Viseu (PA)	7	2	0,605	0,6	142.014,38	55.144	13.744.760,00
Vista Alegre (RS)	2	0	0,764	0,51	37.090,47	2.940	137.586,50
Vitória do Jari (AP)	3	2	0,659	0,62	81.648,47	11.253	525.526,00
Volta Grande (MG)	3	4	0,732	0,57	50.705,44	5.362	423.216,00
Votorantim (SP)	5	4	0,814	0,48	1.526.637,48	104.413	3.983.662,00
Wagner (BA)	5	3	0,61	0,62	36.267,38	8.830	2.019.627,00
Xambioá (TO)	3	3	0,653	0,59	94.877,86	11.160	1.675.828,00
Xapuri (AC)	3	2	0,669	0,56	129.949,45	14.848	1.715.085,00
Xavantina (SC)	2	1	0,769	0,46	90.807,17	4.328	95.671,00

APÊNDICE: Tabelas das regressões estimadas na pesquisa

I. Resultados da equação (1) para a amostra completa:

Descriptive Statistics

	Mean	Root Mean Square	N
Graves	2,9526	3,43113	717
Gini	,5654	,56856	717
POP	25124,5551	56685,52448	717
Recursos	2348072,6504	4101352,69580	717
IDH	,6842	,68938	717
PIB	263312,4195	816339,01430	717

Correlations

		Graves	Gini	POP	Recursos	IDH	PIB
Std.	Graves	1,000	,857	,358	,524	,852	,245
Cross-product	Gini	,857	1,000	,449	,592	,983	,324
	POP	,358	,449	1,000	,711	,464	,882
	Recursos	,524	,592	,711	1,000	,552	,494
	IDH	,852	,983	,464	,552	1,000	,359
	PIB	,245	,324	,882	,494	,359	1,000
Sig. (1-tailed)	Graves	•	,000	,000	,000	,000	,000
	Gini	,000	•	,000	,000	,000	,000
	POP	,000	,000		,000	,000	,000
	Recursos	,000	,000	,000		,000	,000
	IDH	,000	,000	,000	,000		,000
	PIB	,000	,000	,000	,000	,000	
N	Graves	717	717	717	717	717	717
	Gini	717	717	717	717	717	717
	POP	717	717	717	717	717	717
	Recursos	717	717	717	717	717	717
	IDH	717	717	717	717	717	717
	PIB	717	717	717	717	717	717

Model		Variables	
	Variables Entered	Removed	Method
1	PIB, Gini, Recursos, POP,	٠	Enter
	IDH		
2		PIB	Backward (criterion:
			Probability of F-to-remove >=
			,100).

Model Summary

Model						Change				
			Adjuste		R					
		R	d R	Std. Error of	Square	F			Sig. F	
	R	Square	Square	the Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,862	,744	,742	1,74253	,744	413,588	5	712	,000	
2	,862	,744	,742	1,74151	,000	,165	1	712	,685	1,775

ANOVA

	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6279,086	5	1255,817	413,588	,000
	Residual	2161,914	712	3,036		
	Total	8441,000	717			
2	Regression	6278,585	4	1569,646	517,550	,000
	Residual	2162,415	713	3,033		
	Total	8441,000	717			

				7		icicitis					
	Model										
		Unstandardized Coefficients		Standardized Coefficients			Correlations		Collinearity Statistics		
			Std.	_			Zero-orde				
		В	Error	Beta	t	Sig.	r	Partial	Part	Tolerance	VIF
1	Gini	2,128	,690	,353	3,082	,002	,857	,115	,058	,027	36,394
	POP	,000	,000	-,099	-1,820	,069	,358	-,068	-,035	,121	8,274
	Recursos	,000	,000	,124	3,682	,000	,524	,137	,070	,316	3,166
	IDH	2,435	,554	,489	4,394	,000	,852	,162	,083	,029	34,466
	PIB	,000	,000	-,018	-,406	,685	,245	-,015	-,008	,183	5,473
2	Gini	2,162	,685	,358	3,157	,002	,857	,117	,060	,028	35,858
	POP	,000	,000	-,118	-4,131	,000	,358	-,153	-,078	,439	2,278
	Recursos	,000	,000	,129	4,010	,000	,524	,149	,076	,350	2,858
	IDH	2,407	,550	,484	4,380	,000	,852	,162	,083	,029	33,933

Normal P-P Plot of Regression Standardized Residual

II. Resultados da equação (2) para a amostra completa:

Descriptive Statistics

	Mean	Root Mean Square	N
Medias	2,4589	2,92705	717
Gini	,5654	,56856	717
POP	25124,5551	56685,52448	717
Recursos	2348072,6504	4101352,69580	717
IDH	,6842	,68938	717
PIB	263312,4195	816339,01430	717

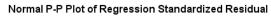
Correlations

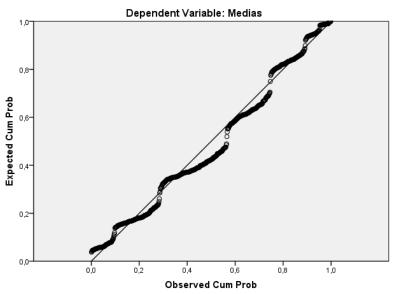
		Medias	Gini	POP	Recursos	IDH	PIB
Std.	Medias	1,000	,834	,335	,461	,835	,245
Cross-product	Gini	,834	1,000	,449	,592	,983	,324
	POP	,335	,449	1,000	,711	,464	,882
	Recursos	,461	,592	,711	1,000	,552	,494
	IDH	,835	,983	,464	,552	1,000	,359
	PIB	,245	,324	,882	,494	,359	1,000
Sig. (1-tailed)	Medias		,000	,000	,000	,000	,000
	Gini	,000		,000	,000	,000	,000
	POP	,000	,000	•	,000	,000	,000
	Recursos	,000	,000	,000	•	,000	,000
	IDH	,000	,000	,000	,000		,000
	PIB	,000	,000	,000	,000	,000	

N	Medias	717	717	717	717	717	717
	Gini	717	717	717	717	717	717
	POP	717	717	717	717	717	717
	Recursos	717	717	717	717	717	717
	IDH	717	717	717	717	717	717
	PIB	717	717	717	717	717	717

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	PIB, Gini, Recursos, POP, IDH		Enter
2		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
3	·	Recursos	Backward (criterion: Probability of F-to-remove >= ,100).


Model Summary


Ī	Model				Std.	Change Statistics					
				Adjusted	Error of	R					
			R	R	the	Square	F			Sig. F	
		R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
Ī	1	,840	,705	,703	1,59408	,705	341,094	5	712	,000	
	2	,840	,705	,704	1,59324	,000	,247	1	712	,619	
	3	,840	,705	,704	1,59284	,000	,646	1	713	,422	2,048

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	4333,746	5	866,749	341,094	,000
	Residual	1809,254	712	2,541		
	Total	6143,000	717			
2	Regression	4333,118	4	1083,279	426,756	,000
	Residual	1809,882	713	2,538		
	Total	6143,000	717			
3	Regression	4331,479	3	1443,826	569,075	,000
	Residual	1811,521	714	2,537		
	Total	6143,000	717			

N	Iodel										
		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	1,815	,632	,353	2,873	,004	,834	,107	,058	,027	36,394
	POP	,000	,000	-,104	-1,782	,075	,335	-,067	-,036	,121	8,274
R	ecursos	,000	,000	,033	,918	,359	,461	,034	,019	,316	3,166
	IDH	2,164	,507	,510	4,268	,000	,835	,158	,087	,029	34,466
	PIB	,000	,000	,024	,497	,619	,245	,019	,010	,183	5,473
2	Gini	1,777	,627	,345	2,835	,005	,834	,106	,058	,028	35,858
	POP	,000	,000	-,079	-2,591	,010	,335	-,097	-,053	,439	2,278
R	ecursos	,000	,000	,028	,803	,422	,461	,030	,016	,350	2,858
	IDH	2,195	,503	,517	4,366	,000	,835	,161	,089	,029	33,933
3	Gini	1,996	,564	,388	3,539	,000	,834	,131	,072	,034	29,063
	POP	,000	,000	-,063	-2,751	,006	,335	-,102	-,056	,784	1,276
	IDH	2,050	,469	,483	4,370	,000	,835	,161	,089	,034	29,556

III. Resultados da equação (3) para a amostra completa:

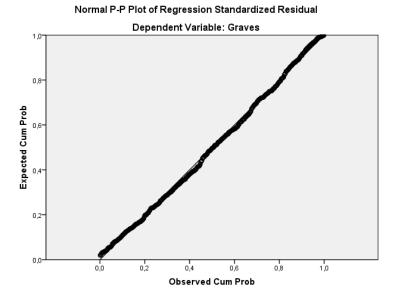
Descriptive Statistics

	Mean	Root Mean Square	N
Graves	2,9526	3,43113	717
Gini	,5654	,56856	717
PIB	263312,4195	816339,01430	717
POP	25124,5551	56685,52448	717
Recursos	2348072,6504	4101352,69580	717

Correlations

		Graves	Gini	PIB	POP	Recursos
Std.	Graves	1,000	,857	,245	,358	,524
Cross-product	Gini	,857	1,000	,324	,449	,592
	PIB	,245	,324	1,000	,882	,494
	POP	,358	,449	,882	1,000	,711
	Recursos	,524	,592	,494	,711	1,000
Sig. (1-tailed)	Graves		,000	,000	,000	,000
	Gini	,000	٠	,000	,000	,000
	PIB	,000	,000	٠	,000	,000
	POP	,000	,000	,000	•	,000
	Recursos	,000	,000	,000	,000	
N	Graves	717	717	717	717	717
	Gini	717	717	717	717	717
	PIB	717	717	717	717	717
	POP	717	717	717	717	717
	Recursos	717	717	717	717	717

Model	Variables Entered	Variables Removed	Method
1	Recursos, PIB, Gini, POP		Enter
2	·	PIB	Backward (criterion: Probability of F-to-remove >= ,100).


Model Summary

Model				Std.						
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,858	,737	,735	1,76475	,737	499,339	4	713	,000	
2	,858	,737	,736	1,76354	,000	,019	1	713	,889	1,791

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	6220,466	4	1555,117	499,339	,000
	Residual	2220,534	713	3,114		
	Total	8441,000	717			
2	Regression	6220,406	3	2073,469	666,694	,000
	Residual	2220,594	714	3,110		
	Total	8441,000	717			

	Model										
		Unstandardized Coefficients		Standardized Coefficients			Correlations		Collinearity Statistics		
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	5,097	,144	,845	35,403	,000	,857	,798	,680	,648	1,543
	PIB	,000	,000	,006	,139	,889	,245	,005	,003	,186	5,388
	POP	,000	,000	-,083	-1,509	,132	,358	-,056	-,029	,121	8,237
	Recursos	,000	,000	,080,	2,447	,015	,524	,091	,047	,347	2,881
2	Gini	5,097	,144	,845	35,427	,000	,857	,798	,680	,648	1,543
	POP	,000	,000	-,077	-2,800	,005	,358	-,104	-,054	,494	2,026
	Recursos	,000	,000	,078	2,579	,010	,524	,096	,050	,402	2,489

IV. Resultados da equação (4) para a amostra completa:

Descriptive Statistics

	Mean	Root Mean Square	N
Medias	2,4589	2,92705	717
Gini	,5654	,56856	717
PIB	263312,4195	816339,01430	717
POP	25124,5551	56685,52448	717
Recursos	2348072,6504	4101352,69580	717

Correlations

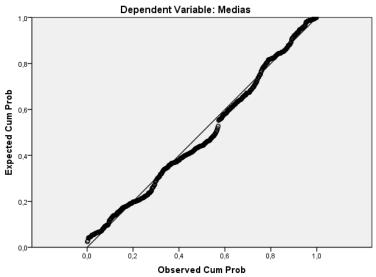
		Medias	Gini	PIB	POP	Recursos
Std.	Medias	1,000	,834	,245	,335	,461
Cross-product	Gini	,834	1,000	,324	,449	,592
	PIB	,245	,324	1,000	,882	,494
	POP	,335	,449	,882	1,000	,711
	Recursos	,461	,592	,494	,711	1,000
Sig. (1-tailed)	Medias		,000	,000	,000	,000
	Gini	,000	٠	,000	,000	,000
	PIB	,000	,000		,000	,000
	POP	,000	,000	,000		,000
	Recursos	,000	,000	,000	,000	
N	Medias	717	717	717	717	717
	Gini	717	717	717	717	717
	PIB	717	717	717	717	717

POP	717	717	717	717	717
Recursos	717	717	717	717	717

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Recursos, PIB, Gini, POP	•	Enter
2		Recursos	Backward (criterion: Probability of F-to-remove >= ,100).
3	·	PIB	Backward (criterion: Probability of F-to-remove >= ,100).


Model Summary


Model				Std.		Cha				
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,835	,698	,696	1,61321	,698	411,866	4	713	,000	
2	,835	,698	,697	1,61224	,000	,140	1	713	,708	
3	,835	,697	,696	1,61288	-,001	1,565	1	714	,211	2,071

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	4287,450	4	1071,862	411,866	,000
	Residual	1855,550	713	2,602		
	Total	6143,000	717			
2	Regression	4287,084	3	1429,028	549,770	,000
	Residual	1855,916	714	2,599		
	Total	6143,000	717			
3	Regression	4283,017	2	2141,509	823,222	,000
	Residual	1859,983	715	2,601		
	Total	6143,000	717			

	Model										
			Unstandardized Solution Coefficients				Со	rrelation	s	Colline Statist	•
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	4,453	,132	,865	33,836	,000	,834	,785	,696	,648	1,543
	PIB	,000	,000	,049	1,024	,306	,245	,038	,021	,186	5,388
	POP	,000	,000	-,087	-1,481	,139	,335	-,055	-,030	,121	8,237
	Recursos	,000	,000	-,013	-,375	,708	,461	-,014	-,008	,347	2,881
2	Gini	4,433	,120	,861	36,842	,000	,834	,810	,758	,774	1,291
	PIB	,000	,000	,056	1,251	,211	,245	,047	,026	,215	4,655
	POP	,000	,000	-,101	-2,146	,032	,335	-,080	-,044	,192	5,221
3	Gini	4,407	,119	,856	37,171	,000	,834	,812	,765	,798	1,253
	POP	,000	,000	-,050	-2,154	,032	,335	-,080	-,044	,798	1,253

V. Resultados da equação (3) para a amostra da Região Norte:

Descriptive Statistics

		Root Mean	
	Mean	Square	N
Graves	3,1585	3,52863	82
Gini	,6134	,61646	82
PIB	183953,3506	517161,86615	82
POP	25310,4512	48372,26493	82
Recursos	2681375,9149	4186462,87656	82

Correlations

		Graves	Gini	PIB	POP	Recursos
Std.	Graves	1,000	,887	,230	,375	,553
Cross-product	Gini	,887	1,000	,359	,526	,624
	PIB	,230	,359	1,000	,948	,403
	POP	,375	,526	,948	1,000	,611
	Recursos	,553	,624	,403	,611	1,000
Sig. (1-tailed)	Graves		,000	,019	,000	,000
	Gini	,000	٠	,000	,000	,000
	PIB	,019	,000		,000	,000
	POP	,000	,000	,000	•	,000
	Recursos	,000	,000	,000	,000	
N	Graves	82	82	82	82	82
	Gini	82	82	82	82	82
	PIB	82	82	82	82	82
	POP	82	82	82	82	82
	Recursos	82	82	82	82	82

Model	Variables Entered	Variables Removed	Method
1	Recursos, PIB, Gini, POP	·	Enter
2		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
3	·	Recursos	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary

Model				Std.		Chai	nge Statis	stics		
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,898	,806	,796	1,59421	,806	80,932	4	78	,000	
2	,895	,801	,793	1,60557	-,005	2,130	1	78	,148	
3	,893	,798	,793	1,60545	-,002	,988	1	79	,323	2,125

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	822,761	4	205,690	80,932	,000
	Residual	198,239	78	2,542		
	Total	1021,000	82			
2	Regression	817,349	3	272,450	105,688	,000
	Residual	203,651	79	2,578		
	Total	1021,000	82			
3	Regression	814,803	2	407,401	158,063	,000
	Residual	206,197	80	2,577		
	Total	1021,000	82			

	Model										
		Unstandardized Coefficients		Standardized Coefficients			Corr	elations		Collinea Statist	-
		B Std.		Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	5,468	,395	,955	13,829	,000	,887	,843	,690	,522	1,917
	PIB	,000	,000	,334	1,459	,148	,230	,163	,073	,047	21,069
	POP	,000	,000	-,536	-1,990	,050	,375	-,220	-,099	,034	29,105
	Recurso	,000	,000	,149	1,682	,097	,553	,187	,084	,316	3,166
	S										
2	Gini	5,289	,378	,924	13,973	,000	,887	,844	,702	,577	1,732
	POP	,000	,000	-,154	-2,364	,021	,375	-,257	-,119	,593	1,687
	Recurso	,000	,000	,071	,994	,323	,553	,111	,050	,500	1,998
	S										
3	Gini	5,458	,338	,953	16,141	,000	,887	,875	,811	,724	1,382
	POP	,000	,000	-,127	-2,145	,035	,375	-,233	-,108	,724	1,382

Observed Cum Prob

VI. Resultados da equação (4) para a amostra da Região Norte:

Descriptive Statistics

	Mean	Root Mean Square	N
Medias	2,5610	3,03235	82
Gini	,6134	,61646	82
PIB	183953,3506	517161,86615	82
POP	25310,4512	48372,26493	82
Recursos	2681375,9149	4186462,87656	82

Correlations

		Medias	Gini	PIB	POP	Recursos
Std.	Medias	1,000	,839	,289	,419	,508
Cross-product	Gini	,839	1,000	,359	,526	,624
	PIB	,289	,359	,359 1,000		,403
	POP	,419	,526	,948	1,000	,611
	Recursos	,508	,624	,403	,611	1,000
Sig. (1-tailed)	Medias		,000	,004	,000	,000
	Gini	,000	•	,000	,000	,000
	PIB	,004	,000	•	,000	,000
	POP	,000	,000	,000		,000
	Recursos	,000	,000	,000	,000	
N	Medias	82	82	82	82	82
	Gini	82	82	82	82	82

PIB	82	82	82	82	82	l
POP	82	82	82	82	82	
Recursos	82	82	82	82	82	

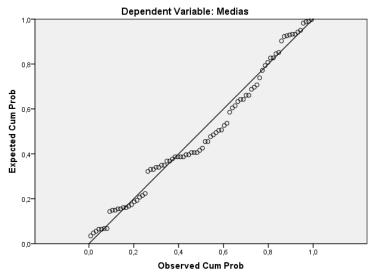
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Recursos, PIB, Gini, POP		Enter
2		Recursos	Backward (criterion: Probability of F-to-remove >= ,100).
3		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
4		POP	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary

Model				Std.		Change				
				Error of	R					
		R	Adjusted	the	Square	F			Sig. F	
	R	Square	R Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,841	,707	,692	1,68249	,707	47,089	4	78	,000	
2	,841	,707	,696	1,67264	,000	,078	1	78	,781	
3	,840	,705	,698	1,66625	-,001	,390	1	79	,534	
4	,839	,705	,701	1,65784	-,001	,185	1	80	,669	1,849

ANOVA


	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	533,199	4	133,300	47,089	,000
	Residual	220,801	78	2,831		
	Total	754,000	82			
2	Regression	532,979	3	177,660	63,501	,000
	Residual	221,021	79	2,798		
	Total	754,000	82			
3	Regression	531,889	2	265,944	95,788	,000
	Residual	222,111	80	2,776		
	Total	754,000	82			

4	Regression	531,377	1	531,377	193,338	,000
	Residual	222,623	81	2,748		
	Total	754,000	82			

Coefficients

	Model										
		Unstanda Coeffic		Standardized Coefficients			Corr	relations		Collinearity Statistics	
		В	Std. Error	Beta	t	Sig.	Zero-order Partial Part		Part	Tolerance	VIF
1	Gini	4,322	,417	,879	10,358	,000	,839	,761	,635	,522	1,917
	PIB	,000	,000	,186	,662	,510	,289	,075	,041	,047	21,069
	POP	,000	,000	-,238	-,720	,474	,419	-,081	-,044	,034	29,105
	Recursos	,000	,000	,030	,279	,781	,508	,032	,017	,316	3,166
2	Gini	4,340	,410	,882	10,582	,000	,839	,766	,645	,534	1,873
	PIB	,000	,000	,139	,624	,534	,289	,070	,038	,075	13,296
	POP	,000	,000	-,176	-,722	,472	,419	-,081	-,044	,062	16,006
3	Gini	4,209	,351	,856	11,993	,000	,839	,802	,728	,724	1,382
	POP	,000	,000	-,031	-,430	,669	,419	-,048	-,026	,724	1,382
4	Gini	4,129	,297	,839	13,905	,000	,839	,839	,839	1,000	1,000

Normal P-P Plot of Regression Standardized Residual

VII. Resultados da equação (3) para a amostra da Região Nordeste:

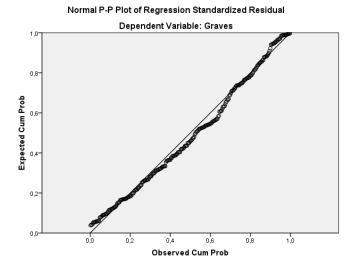
Descriptive Statistics

	Mean	Root Mean Square	N
Graves	3,0000	3,53753	284
Gini	,5808	,58337	284
PIB	126689,7938	480602,35993	284
POP	22441,0070	47048,16794	284
Recurso	3583722,5173	5315034,91477	284

Correlations

		Graves	Gini	PIB	POP	Recurso
Std. Cross-product	Graves	1,000	,845	,205	,401	,613
	Gini	,845	1,000	,272	,488	,688
	PIB	,205	,272	1,000	,931	,624
	POP	,401	,488	,931	1,000	,841
	Recurso	,613	,688	,624	,841	1,000
Sig. (1-tailed)	Graves		,000	,000	,000	,000
	Gini	,000	•	,000	,000	,000
	PIB	,000	,000	٠	,000	,000
	POP	,000	,000	,000		,000
	Recurso	,000	,000	,000	,000	
N	Graves	284	284	284	284	284
	Gini	284	284	284	284	284
	PIB	284	284	284	284	284
	POP	284	284	284	284	284
	Recurso	284	284	284	284	284

Model	Variables Entered	Variables Removed	Method
1	Recurso, PIB, Gini, POP		Enter
2		PIB	Backward (criterion: Probability of F-to-remove >= ,100).


Model Summary

Model				Std.		Char	nge Statis	tics		
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,850	,723	,719	1,87591	,723	182,483	4	280	,000	
2	,850	,722	,719	1,87593	-,001	1,005	1	280	,317	1,996

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	2568,668	4	642,167	182,483	,000
	Residual	985,332	280	3,519		
	Total	3554,000	284			
2	Regression	2565,132	3	855,044	242,972	,000
	Residual	988,868	281	3,519		
	Total	3554,000	284			

Model										
	Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
	В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1 Gini	4,775	,276	,787	17,272	,000	,845	,718	,543	,476	2,099
PIB	,000	,000	,147	1,002	,317	,205	,060	,032	,046	21,801
POP	,000	,000	-,352	-1,685	,093	,401	-,100	-,053	,023	44,211
Recurso	,000	,000	,275	2,739	,007	,613	,162	,086	,098	10,193
2 Gini	4,716	,270	,778	17,454	,000	,845	,721	,549	,499	2,005
POP	,000	,000	-,151	-2,537	,012	,401	-,150	-,080	,278	3,601
Recurso	,000	,000	,205	2,851	,005	,613	,168	,090	,192	5,208

VIII. Resultados da equação (4) para a amostra da Região Nordeste:

Descriptive Statistics

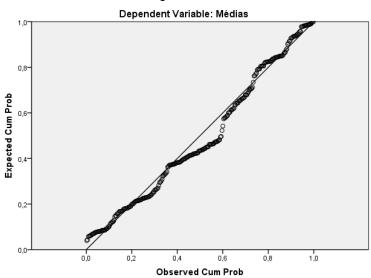
	Mean	Root Mean Square	N
	Wican	Square	11
Médias	2,4085	2,93953	284
Gini	,5808	,58337	284
PIB	126689,7938	480602,35993	284
POP	22441,0070	47048,16794	284
Recurso	3583722,5173	5315034,91477	284

		Médias	Gini	PIB	POP	Recurso
Std. Cross-product	Médias	1,000	,814	,164	,342	,526
	Gini	,814	1,000	,272	,488	,688
	PIB	,164	,272	1,000	,931	,624
	POP	,342	,488	,931	1,000	,841
	Recurso	,526	,688	,624	,841	1,000
Sig. (1-tailed)	Médias		,000	,003	,000	,000
	Gini	,000		,000	,000	,000
	PIB	,003	,000		,000	,000
	POP	,000	,000	,000	•	,000
	Recurso	,000	,000	,000	,000	
N	Médias	284	284	284	284	284
	Gini	284	284	284	284	284
	PIB	284	284	284	284	284
	POP	284	284	284	284	284
	Recurso	284	284	284	284	284

Model	Variables Entered	Variables Removed	Method
	Recurso, PIB, Gini, POP		Enter
		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
		Recurso	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary

Model				Std.		Chan	ge Statis	stics		
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,817	,668	,663	1,70689	,668	140,572	4	280	,000	
2	,817	,667	,664	1,70414	,000	,094	1	280	,759	
3	,817	,667	,665	1,70117	,000	,018	1	281	,892	2,058


ANOVA

M	odel			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	1638,223	4	409,556	140,572	,000
	Residual	815,777	280	2,913		
	Total	2454,000	284			
2	Regression	1637,948	3	545,983	188,004	,000
	Residual	816,052	281	2,904		
	Total	2454,000	284			
3	Regression	1637,895	2	818,947	282,982	,000
	Residual	816,105	282	2,894		
	Total	2454,000	284			

l M	Iodel										
		XX . 1	1. 1	G. 1 11 1						G 111	
		Unstanda	ardized	Standardized						Colline	arity
		Coefficients		Coefficients			Corr	relations		Statist	ics
			Std.								
		В	Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	4,281	,252	,850	17,018	,000	,814	,713	,586	,476	2,099

	PIB	,000	,000	,049	,307	,759	,164	,018	,011	,046	21,801
	POP	,000	,000	-,148	-,645	,520	,342	-,038	-,022	,023	44,211
	Recurso	,000	,000	,034	,312	,756	,526	,019	,011	,098	10,193
2	Gini	4,264	,245	,846	17,373	,000	,814	,720	,598	,499	2,005
	POP	,000	,000	-,080	-1,229	,220	,342	-,073	-,042	,278	3,601
	Recurso	,000	,000	,011	,136	,892	,526	,008	,005	,192	5,208
3	Gini	4,284	,198	,850	21,604	,000	,814	,790	,742	,761	1,313
	POP	,000	,000	-,073	-1,859	,064	,342	-,110	-,064	,761	1,313

Normal P-P Plot of Regression Standardized Residual

IX. Resultados da equação (3) para a amostra da Região Centro-Oeste:

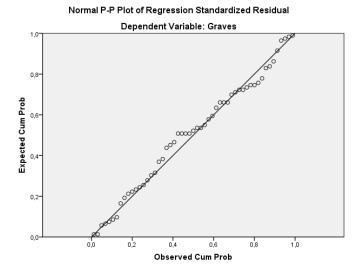
Descriptive Statistics

	Mean	Root Mean Square	N
Graves	3,1698	3,50740	53
Gini	,5711	,57288	53
PIB	222109,7721	415897,42729	53
POP	20710,2075	39740,11773	53
Recurso	1392172,6981	2611638,59701	53

		Graves	Gini	PIB	POP	Recurso
Std.	Graves	1,000	,898	,468	,453	,476
Cross-product	Gini	,898	1,000	,542	,528	,536
	PIB	,468	,542	1,000	,928	,835
	POP	,453	,528	,928	1,000	,963

	Recurso	,476	,536	,835	,963	1,000
Sig. (1-tailed)	Graves	•	,000	,000	,000	,000
	Gini	,000	•	,000	,000	,000
	PIB	,000	,000	•	,000	,000
	POP	,000	,000	,000	•	,000
	Recurso	,000	,000	,000	,000	
N	Graves	53	53	53	53	53
	Gini	53	53	53	53	53
	PIB	53	53	53	53	53
	POP	53	53	53	53	53
	Recurso	53	53	53	53	53

Model	Variables Entered	Variables Removed	Method
1	Recurso, Gini, PIB, POP	•	Enter
2		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
3		Recurso	Backward (criterion: Probability of F-to-remove >= ,100).
4		POP	Backward (criterion: Probability of F-to-remove >= ,100).


Model Summary

Model				Std.	Change Statistics					
			Adjusted	Error of	R					
			R	the	Square	F			Sig. F	
	R	R Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,901	,812	,797	1,57963	,812	53,074	4	49	,000	
2	,900	,810	,799	1,57198	-,002	,517	1	49	,476	
3	,898	,807	,800	1,57000	-,003	,872	1	50	,355	
4	,898	,807	,803	1,55744	-,001	,171	1	51	,681	2,191

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	529,733	4	132,433	53,074	,000
	Residual	122,267	49	2,495		
	Total	652,000	53			
2	Regression	528,444	3	176,148	71,283	,000
	Residual	123,556	50	2,471		
	Total	652,000	53			
3	Regression	526,290	2	263,145	106,757	,000
	Residual	125,710	51	2,465		
	Total	652,000	53			
4	Regression	525,869	1	525,869	216,799	,000
	Residual	126,131	52	2,426		
	Total	652,000	53			

	Model										
		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	5,450	,469	,890	11,627	,000	,898	,857	,719	,653	1,531
	PIB	,000	,000	,152	,719	,476	,468	,102	,044	,086	11,651
	POP	,000	,000	-,486	-1,153	,254	,453	-,163	-,071	,022	46,309
	Recurso	,000	,000	,340	1,175	,246	,476	,165	,073	,046	21,897
2	Gini	5,546	,447	,906	12,407	,000	,898	,869	,764	,711	1,406
	POP	,000	,000	-,232	-1,016	,314	,453	-,142	-,063	,073	13,698
	Recurso	,000	,000	,214	,934	,355	,476	,131	,057	,072	13,850
3	Gini	5,595	,443	,914	12,622	,000	,898	,870	,776	,721	1,387
	POP	,000	,000	-,030	-,414	,681	,453	-,058	-,025	,721	1,387
4	Gini	5,498	,373	,898	14,724	,000	,898	,898	,898	1,000	1,000

X. Resultados da equação (4) para a amostra da Região Centro-Oeste:

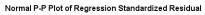
Descriptive Statistics

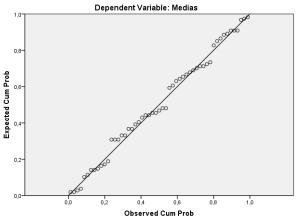
	Mean	Root Mean Square	N
Medias	2,4151	2,73344	53
Gini	,5711	,57288	53
PIB	222109,7721	415897,42729	53
POP	20710,2075	39740,11773	53
Recurso	1392172,6981	2611638,59701	53

		Medias	Gini	PIB	POP	Recurso
Std.	Medias	1,000	,882	,429	,389	,412
Cross-product	Gini	,882	1,000	,542	,528	,536
	PIB	,429	,542	1,000	,928	,835
	POP	,389	,528	,928	1,000	,963
	Recurso	,412	,536	,835	,963	1,000
Sig. (1-tailed)	Medias		,000	,001	,002	,001
	Gini	,000	•	,000	,000	,000
	PIB	,001	,000		,000	,000
	POP	,002	,000	,000		,000
	Recurso	,001	,000	,000	,000	
N	Medias	53	53	53	53	53
	Gini	53	53	53	53	53
	PIB	53	53	53	53	53
	POP	53	53	53	53	53
	Recurso	53	53	53	53	53

Model	Variables Entered	Variables Removed	Method
1	Recurso, Gini, PIB, POP		Enter
2	·	Recurso	Backward (criterion: Probability of F-to-remove >= ,100).
3		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
4	·	POP	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary


Model				Std.	td. Change Statistics					
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,894	,798	,782	1,27639	,798	48,517	4	49	,000	
2	,889	,789	,777	1,29126	-,009	2,172	1	49	,147	
3	,887	,787	,778	1,28691	-,003	,657	1	50	,421	
4	,882	,779	,774	1,29865	-,008	1,953	1	51	,168	1,933


ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	316,171	4	79,043	48,517	,000
	Residual	79,829	49	1,629		
	Total	396,000	53			
2	Regression	312,632	3	104,211	62,501	,000
	Residual	83,368	50	1,667		
	Total	396,000	53			
3	Regression	311,537	2	155,768	94,055	,000
	Residual	84,463	51	1,656		
	Total	396,000	53			
4	Regression	308,302	1	308,302	182,805	,000
	Residual	87,698	52	1,687		
	Total	396,000	53			

Coefficients

	Model										
		Unstandardized Coefficients		Standardized Coefficients			Corr	relations		Collinearity Statistics	
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	4,282	,379	,897	11,306	,000	,882	,850	,725	,653	1,531
	PIB	,000	,000	,338	1,546	,129	,429	,216	,099	,086	11,65 1
	POP	,000	,000	-,824	-1,889	,065	,389	-,261	-,121	,022	46,30 9
	Recurso	,000	,000	,442	1,474	,147	,412	,206	,095	,046	21,89
2	Gini	4,429	,370	,928	11,982	,000	,882	,861	,778	,702	1,425
	PIB	,000	,000	,143	,811	,421	,429	,114	,053	,136	7,369
	POP	,000	,000	-,233	-1,339	,187	,389	-,186	-,087	,139	7,217
3	Gini	4,478	,363	,939	12,324	,000	,882	,865	,797	,721	1,387
	POP	,000	,000	-,106	-1,398	,168	,389	-,192	-,090	,721	1,387
4	Gini	4,210	,311	,882	13,521	,000	,882	,882	,882	1,000	1,000

XI. Resultados da equação (3) para a amostra da Região Sudeste:

Descriptive Statistics

	Mean	Root Mean Square	N
Graves	2,7062	3,17209	177
Gini	,5421	,54458	177
PIB	415143,0388	1095687,79868	177
POP	29036,6441	67044,84792	177
Recurso	1418929,1006	3162906,00796	177

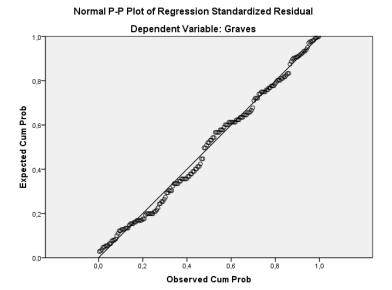
Correlations

		Graves	Gini	PIB	POP	Recurso
Std.	Graves	1,000	,849	,301	,369	,424
Cross-product	Gini	,849	1,000	,392	,443	,471
	PIB	,301	,392	1,000	,830	,602
	POP	,369	,443	,830	1,000	,737
	Recurso	,424	,471	,602	,737	1,000
Sig. (1-tailed)	Graves		,000	,000	,000	,000
	Gini	,000	٠	,000	,000	,000
	PIB	,000	,000	•	,000	,000
	POP	,000	,000	,000	٠	,000
	Recurso	,000	,000	,000	,000	
N	Graves	177	177	177	177	177
	Gini	177	177	177	177	177
	PIB	177	177	177	177	177
	POP	177	177	177	177	177
	Recurso	177	177	177	177	177

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Recurso, Gini, PIB, POP		Enter
2		POP	Backward (criterion: Probability of F-to-remove >= ,100).
3		Recurso	Backward (criterion: Probability of F-to-remove >= ,100).
4		PIB	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary


N	Model				Std.						
				Adjusted	Error of	R					
			R	R	the	Square	F			Sig. F	
		R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
	1	,851	,724	,718	1,68553	,724	113,471	4	173	,000	
	2	,851	,724	,719	1,68087	,000	,039	1	173	,843	

3	,849	,721	,718	1,68455	-,003	1,767	1	174	,186		
4	,849	,720	,718	1,68340	-,001	,759	1	175	,385	2,087	

ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	1289,502	4	322,376	113,471	,000
	Residual	491,498	173	2,841		
	Total	1781,000	177			
2	Regression	1289,391	3	429,797	152,122	,000
	Residual	491,609	174	2,825		
	Total	1781,000	177			
3	Regression	1284,400	2	642,200	226,309	,000
	Residual	496,600	175	2,838		
	Total	1781,000	177			
4	Regression	1282,247	1	1282,247	452,479	,000
	Residual	498,753	176	2,834		
	Total	1781,000	177			

					Cocii						
Mo	odel										
		Unstandardized Coefficients					Cor	relations		Collinearity Statistics	
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	4,912	,268	,843	18,352	,000	,849	,813	,733	,756	1,324
	PIB	,000	,000	-,082	-1,147	,253	,301	-,087	-,046	,309	3,234
	POP	,000	,000	,017	,198	,843	,369	,015	,008	,221	4,524
Re	ecurso	,000	,000	,064	1,050	,295	,424	,080,	,042	,431	2,323
2	Gini	4,916	,266	,844	18,468	,000	,849	,814	,736	,760	1,316
	PIB	,000	,000	-,072	-1,432	,154	,301	-,108	-,057	,623	1,606
Re	ecurso	,000	,000	,070	1,329	,186	,424	,100	,053	,573	1,746
3	Gini	5,029	,253	,863	19,895	,000	,849	,833	,794	,846	1,182
	PIB	,000	,000	-,038	-,871	,385	,301	-,066	-,035	,846	1,182
4	Gini	4,942	,232	,849	21,272	,000	,849	,849	,849	1,000	1,000

XII. Resultados da equação (4) para a amostra da Região Sudeste:

Descriptive Statistics

	Mean	Root Mean Square	N
Médias	2,5763	3,01971	177
Gini	,5421	,54458	177
PIB	415143,0388	1095687,79868	177
POP	29036,6441	67044,84792	177
Recurso	1418929,1006	3162906,00796	177

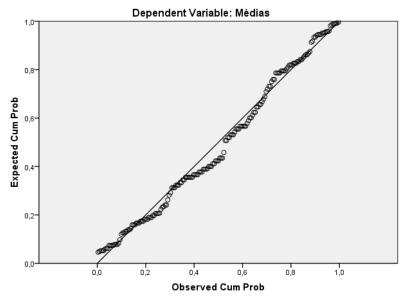
		Médias	Gini	PIB	POP	Recurso
Std.	Médias	1,000	,850	,305	,339	,401
Cross-product	Gini	,850	1,000	,392	,443	,471
	PIB	,305	,392	1,000	,830	,602
	POP	,339	,443	,830	1,000	,737
	Recurso	,401	,471	,602	,737	1,000
Sig. (1-tailed)	Médias		,000	,000	,000	,000
	Gini	,000	٠	,000	,000	,000
	PIB	,000	,000	٠	,000	,000
	POP	,000	,000	,000		,000
	Recurso	,000	,000	,000	,000	
N	Médias	177	177	177	177	177
	Gini	177	177	177	177	177
	PIB	177	177	177	177	177
	POP	177	177	177	177	177

Recurso	177	177	177	177	177	Ī
---------	-----	-----	-----	-----	-----	---

	variables E		- · · · · ·
Model	Variables Entered	Variables Removed	Method
1	Recurso, Gini, PIB, POP		Enter
2		PIB	Backward (criterion: Probability of F-to-remove >= ,100).
3		Recurso	Backward (criterion: Probability of F-to-remove >= ,100).
4		POP	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary

Model						~	~ .			
Wiodei				Std.		Chai	nge Statis	tics		
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,852	,726	,719	1,59944	,726	114,478	4	173	,000	
2	,852	,726	,721	1,59493	,000	,021	1	173	,885	
3	,851	,724	,721	1,59493	-,002	,999	1	174	,319	
4	,850	,722	,721	1,59562	-,002	1,153	1	175	,284	1,984


ANOVA

	Model			Mean		
		Sum of Squares	df	Square	F	Sig.
1	Regression	1171,432	4	292,858	114,478	,000
	Residual	442,568	173	2,558		
	Total	1614,000	177			
2	Regression	1171,378	3	390,459	153,494	,000
	Residual	442,622	174	2,544		
	Total	1614,000	177			
3	Regression	1168,836	2	584,418	229,743	,000
	Residual	445,164	175	2,544		

	Total	1614,000	177			
4	Regression	1165,902	1	1165,902	457,933	,000
	Residual	448,098	176	2,546		
	Total	1614,000	177			

	Model										
		Unstanda Coeffici		Standardized Coefficients			Cor	relations		Colline Statist	
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	4,768	,254	,860	18,772	,000	,850	,819	,747	,756	1,324
	PIB	,000	,000	,010	,145	,885	,305	,011	,006	,309	3,234
	POP	,000	,000	-,096	-1,133	,259	,339	-,086	-,045	,221	4,524
	Recurso	,000	,000	,061	1,002	,318	,401	,076	,040	,431	2,323
2	Gini	4,770	,253	,860	18,863	,000	,850	,820	,749	,758	1,319
	POP	,000	,000	-,087	-1,467	,144	,339	-,111	-,058	,445	2,246
	Recurso	,000	,000	,060	1,000	,319	,401	,076	,040	,431	2,319
3	Gini	4,830	,246	,871	19,666	,000	,850	,830	,781	,803	1,245
	POP	,000	,000	-,048	-1,074	,284	,339	-,081	-,043	,803	1,245
4	Gini	4,713	,220	,850	21,399	,000	,850	,850	,850	1,000	1,000

XIII. Resultados da equação (3) para a amostra da Região Sul:

Descriptive Statistics

	3.5	Root Mean	
	Mean	Square	N
Graves	2,9669	3,44136	121
Gini	,5283	,53068	121
PIB	433709,0314	1180504,89757	121
POP	27508,0661	70656,20327	121
Recurso	999855,0957	1967651,91731	121

Correlations

		Graves	Gini	PIB	POP	Recurso
Std.	Graves	1,000	,858	,281	,290	,437
Cross-product	Gini	,858	1,000	,374	,393	,517
	PIB	,281	,374	1,000	,966	,870
	POP	,290	,393	,966	1,000	,933
	Recurso	,437	,517	,870	,933	1,000
Sig. (1-tailed)	Graves	٠	,000	,001	,001	,000
	Gini	,000		,000	,000	,000
	PIB	,001	,000		,000	,000
	POP	,001	,000	,000		,000
	Recurso	,000	,000	,000	,000	
N	Graves	121	121	121	121	121
	Gini	121	121	121	121	121
	PIB	121	121	121	121	121
	POP	121	121	121	121	121
	Recurso	121	121	121	121	121

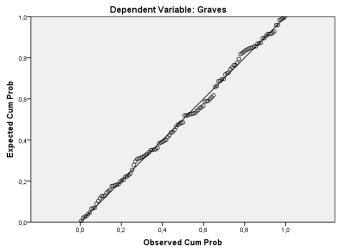
Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	Recurso, Gini, PIB, POP		Enter
2	•	PIB	Backward (criterion: Probability of F-to-remove >= ,100).

Model Summary

	Model				Std.	Std. Change Statistics					
				Adjusted	Error of	R					
			R	R	the	Square	F			Sig. F	
L		R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
	1	,868	,754	,745	1,73627	,754	89,587	4	117	,000	

1	2	,866	,750	,744	1,74238	-,004	1,831	1	117	,179	1,782	l
	_	,,,,,	,	,,	-,	,	-,	_		,	-,	L


ANOVA

	Model			Mean		
		Sum of Squares df		Square	F	Sig.
1	Regression	1080,287	4	270,072	89,587	,000
	Residual	352,713	117	3,015		
	Total	1433,000	121			
2	Regression	1074,767	3	358,256	118,007	,000
	Residual	358,233	118	3,036		
	Total	1433,000	121			

Coefficients

Model										
	Unstandardized Coefficients		Standardized Coefficients			Correlations		Collinearity Statistics		
	В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1 Gini	5,265	,367	,812	14,339	,000	,858	,798	,658	,656	1,524
PIB	,000	,000	,255	1,353	,179	,281	,124	,062	,059	16,852
POP	,000	,000	-,640	-2,422	,017	,290	-,219	-,111	,030	33,141
Recurso	,000	,000	,391	2,571	,011	,437	,231	,118	,091	11,020
2 Gini	5,338	,364	,823	14,647	,000	,858	,803	,674	,671	1,491
POP	,000	,000	-,331	-2,483	,014	,290	-,223	-,114	,119	8,371
Recurso	,000	,000	,319	2,231	,028	,437	,201	,103	,103	9,667

Normal P-P Plot of Regression Standardized Residual

XIV. Resultados da equação (4) para a amostra da Região Sul:

Descriptive Statistics

	Mean	Root Mean Square	N
Médias	2,3554	2,76489	121
	,	ŕ	
Gini	,5283	,53068	121
PIB	433709,0314	1180504,89757	121
POP	27508,0661	70656,20327	121
Recurso	999855,0957	1967651,91731	121

Correlations

		Médias	Gini	PIB	POP	Recurso
Std.	Médias	1,000	,839	,285	,295	,411
Cross-product	Gini	,839	1,000	,374	,393	,517
	PIB	,285	,374	1,000	,966	,870
	POP	,295	,393	,966	1,000	,933
	Recurso	,411	,517	,870	,933	1,000
Sig. (1-tailed)	Médias		,000	,001	,001	,000
	Gini	,000	•	,000	,000	,000
	PIB	,001	,000		,000	,000
	POP	,001	,000	,000	•	,000
	Recurso	,000	,000	,000	,000	
N	Médias	121	121	121	121	121
	Gini	121	121	121	121	121
	PIB	121	121	121	121	121
	POP	121	121	121	121	121
	Recurso	121	121	121	121	121

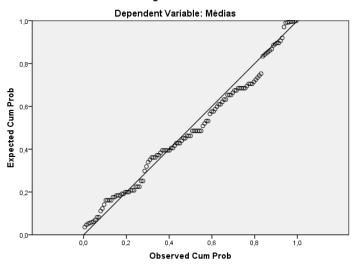
Variables Entered/Removed

Model	Variables	Variables	Mathad
	Entered	Removed	Method
1	Recurso, Gini,		Enter
	PIB, POP		
2	·	PIB	Backward (criterion: Probability of F-to-remove >= ,100).
3		Recurso	Backward (criterion: Probability of F-to-remove >= ,100).

4 .	POP	Backward (criterion: Probability	
		of F-to-remove \geq ,100).	l

Model Summary

Model				Std.	Change Statistics					
			Adjusted	Error of	R					
		R	R	the	Square	F			Sig. F	
	R	Square	Square	Estimate	Change	Change	df1	df2	Change	Durbin-Watson
1	,841	,707	,697	1,52266	,707	70,492	4	117	,000	
2	,840	,706	,699	1,51810	-,001	,294	1	117	,589	
3	,840	,706	,701	1,51290	,000	,186	1	118	,667	
4	,839	,704	,702	1,51012	-,001	,561	1	119	,455	1,666


ANOVA

Model					Mean		
			Sum of Squares	df	Square	F	Sig.
1		Regression	653,737	4	163,434	70,492	,000
		Residual	271,263	117	2,318		
		Total	925,000	121			
	2	Regression	653,055	3	217,685	94,456	,000
	Residual		271,945	118	2,305		
		Total	925,000	121			
3 Regression		Regression	652,626	2	326,313	142,566	,000
	Residual Total		272,374	119	2,289		
			925,000	121			
4 Regression		Regression	651,343	1	651,343	285,618	,000
		Residual	273,657	120	2,280		
		Total	925,000	121			

	Model										
		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	Gini	4,367	,322	,838	13,562	,000	,839	,782	,679	,656	1,524
	PIB	,000	,000	,111	,542	,589	,285	,050	,027	,059	16,852
	POP	,000	,000	-,233	-,810	,420	,295	-,075	-,041	,030	33,141
	Recurso	,000	,000	,099	,593	,554	,411	,055	,030	,091	11,020
2	Gini	4,393	,318	,843	13,833	,000	,839	,786	,690	,671	1,491
	POP	,000	,000	-,098	-,680	,498	,295	-,062	-,034	,119	8,371
	Recurso	,000	,000	,067	,431	,667	,411	,040	,022	,103	9,667
3	Gini	4,455	,282	,855	15,808	,000	,839	,823	,786	,846	1,182

POP	,000	,000	-,041	-,749	,455	,295	-,068	-,037	,846	1,182	1
4 Gini	4,372	,259	,839	16,900	,000	,839	,839	,839	1,000	1,000	

Normal P-P Plot of Regression Standardized Residual

