
Quality of Service control in IP Networks using Fuzzy Logic for
Policy Condition Evaluation

Raulison A. Resende1, Nadia A. Nassif1, Marcos A. de Siqueira1,
Ademilson E. da Silva1, Mamede Lima-Marques2

1CPqD Telecomunications R&D Center
Rodovia Campinas Mogi-Mirim, km 118,5 - 13086-902 Campinas - SP- Brazil

{raulison, nadia, siqueira, ademilson}@cpqd.com.br

2University of Brasilia - UnB

mamede@unb.br

Abstract- This paper presents the architecture of a policy-
based network management system designed specifically for
Quality of Service management, where high level business
policies are modeled as ECA (Event-Condition-Action) rules.
Specifically, the system is mainly based on the policy architecture
being proposed by the IETF (Internet Engineering Task Force),
DMTF (Distributed Management Task Force), and TMF
(TeleManagement Forum) standardization bodies. This work
proposes a novel approach for policy condition evaluation using
fuzzy logic. The fuzzy controller has the ability to examine policy
conditions differently from default condition analyzers that
employ simple conditions formed by a set of (IFs, ANDs and
ORs), allowing the consideration and correlation of several input
variables before taking decisions for the execution of policy
actions. The system have been implemented and evaluated over a
test bed network formed by Cisco® routers.

Key-words: Policy-Based Network Management, Quality of
Service, Fuzzy Logic.

I. INTRODUCTION

Over the last decade, academia and industry have expended
considerable effort researching QoS mechanisms for IP networks.
Several solutions have been developed, and some of which are
currently implemented in ISPs (Internet Service Providers) and
corporate networks. Within this context, remarkable
technologies can be listed, including traffic queuing strategies
such as CBQ (Class-based Queuing), WFQ (Weighted Fair
Queuing), PQ (Priority Queuing) and others; QoS architectures
such as IntServ (Integrated Services Architecture) [1] and
DiffServ [2]; congestion avoidance strategies such as RED
(Random Early Discard) and traffic engineering using MPLS
(Multiprotocol Label Switching) [3].

The heterogeneity of the technological options for QoS
deployment has lead to an extremely complex scenario for the
interoperation and customization of QoS. As a result, in practice,
only few mechanisms cited above have been deployed in IP
networks.

Meanwhile, the demand for implementing QoS mechanisms
continues to grow. The increased transport of real time and
mission critical applications over IP-based networks, added to the
explosion of P2P (Peer to Peer) traffic, and provision of new
services such as BGP/MPLS based VPNs (Virtual Private
Networks) [4], require the implementation of control mechanisms
for differentiated traffic forwarding priorities in routers and
switches. MPLS based VPNs service, nowadays offered by most
of the ISPs (Internet Service Providers), as a low cost alternative
to traditional layer 2 VPNs such as Frame Relay and ATM.
Applying QoS mechanisms as DiffServ with MPLS based VPNs,

it is possible to differentiate traffic within an LSP (Label
Switching Path) , thus allowing clients to determine, for instance,
that VoIP (Voice over IP) traffic should have increased priority
over the rest of the traffic on the ISP backbone.

QoS mechanisms currently implemented in real networks, such
as classifiers, schedulers and markers, are normally configured
statically in network devices. Therefore, there is no ability for
these mechanisms to respond to changes in traffic and the
network state. Furthermore, mapping enterprise policies into the
appropriate configuration parameters for QoS mechanisms is
generally performed manually by the network administrator.

On the other hand, at the network management area, a new
architecture called PBNM (Policy-Based Network Management)
have emerged allowing high-level business policies to be
translated into appropriate configuration of network devices by
the management systems, thus reducing the complexity of the
network operation, independent of the type, model, vendor and
operating system used. This architecture has emerged allowing
some degree of automated operation of networks and the
adaptation of the configuration of network devices to provide
suitable QoS (Quality of Service) for different traffic flows or
classes of service

This paper briefly describes the design and implementation of
a PBNM system that performs the complete cycle of policy
creation, validation, enforcement and monitoring. Network
events are monitored and a policy-based automatic re-
configuration of network devices is performed. The re-
configuration is performed based on the result of a condition
analysis. The duties of the network administrator are related
solely to the creation of business policies using a Policy Editor.
The PBNM system is responsible to map high-level business
policies into device specific configurations in order to enforce the
company goals.

Specifically, this paper is focused on the module responsible for
the condition analysis. A Fuzzy-based policy condition analyzer
is implemented through the association of network state
information, policy events and conditions with Fuzzyfied curves.
This strategy allows policy decision to be performed based on
Fuzzy policies, including the analysis of several conditions at the
same time.

The paper is organized as follows. Section II describes the
policy events, conditions and actions for QoS management,
Section III presents the overall system architecture; Section IV
details the Fuzzy condition analyzer module implementation; and
finally, Section V presents the validation of the Fuzzy-based

0-7803-9158-6/05/$20.00 © 2005 IEEE. The 2005 IEEE International Conference on Fuzzy Systems448

policy condition analyzer over a real test bed network composed
by Cisco® routers.

II. QOS POLICIES

One of the biggest challenges in a PBNM system is the
creation of new types of policies at runtime, without changing
hard coded structures and functions. In most of the PBNM
systems available today, a limited number of different types of
policies can be instantiated. Our system was designed such that
the network administrator would be able to create customized
policies through the selection of a set of events, conditions and
actions. As such, a small number of types of events, conditions
and actions can be combined to create a large number of different
policies.

For this first version of the system, we focused on managing
DiffServ mechanisms for corporate routers. In this scenario, the
possible events, conditions and actions for creating the QoS
policies are presented below:

Policy Events
• Specific Trap: this event is generated when the

management system receives a specific SNMP TRAP
(Simple Network Management Protocol) from a given
network element;

• Scheduled event: this event is generated by a scheduler.
The specific time, or time interval for event generation are
configurable attributes of the event;

• Threshold: this event is generated by a monitor to notify
that a predefined QoS performance threshold has been
reached. The monitor should be installed in accordance
with a given policy activation.

Event filters and event monitors should be installed in
accordance with specific policy events and should be auto
configurable so as to receive only the events that are relevant to
the current active policies. The system should be designed in
such a way that new kinds of events can only be added to the
system by inserting the relevant XML (eXtensible Markup
Language) files describing the event information model into the
policy repository.

Simple Policy Conditions
Simple policy conditions are represented in the DEN-ng policy
model [6] as an aggregation of a set of PolicyStatements. Their
evaluation consists of a set of ANDs of ORs, or vice versa,
comparing PolicyVariables with PolicyValues using the
PolicyOperators
The simple policy conditions to be implemented in our system
are listed below:

• Is the network congested?
• Is it necessary to add a congestion prevention mechanism?
• Is the current set of classes overloaded?
• Is the current set of classes under-loaded?

In our system there is a monitor responsible for collecting
relevant information about network performance. The
information collected is stored in a data base and is used when
the system need to take a decision as a result of a condition
analysis.

Fuzzy Policy Conditions
The fuzzy conditions are capable of correlating several

parameters such as link occupation, packet loss, delay, jitter and

the time of day to give a numerical output of bandwidth to be
reserved for a given traffic class. The fuzzy logic-based
condition analysis is better described in section IV.

Similarly to the simple conditions, there is a monitor responsible
for collecting QoS performance parameters from the network.
These parameters are used as an input for the fuzzy logic-based
condition analysis.

Policy Actions
Specific policy actions shall be executed after policy condition

evaluation. For instance, action "A" would be executed if the
analysis condition result were TRUE, action "B" if the analysis
condition result were FALSE or action "C" as a result from
Fuzzy condition analysis. The association of which actions may
be executed and the occurrence of an event and a condition
analysis result is performed by the network administrator at the
policy editor.

Below are listed the policy actions for configuring DiffServ
parameters.

• Classifier configuration;
• Marker configuration;
• Traffic Shaping or Policing configuration;
• Dropper configuration;
• Queue scheduler configuration;

We adopted the strategy of using an object-oriented information
model for representing the events, conditions, actions and their
relationships. In order to contextualize the FCA (Fuzzy
Condition Analyzer) module, the next section briefly presents the
system implementation architecture, described with details by
Siqueira et al. [7].

III. QOSM IMPLEMENTATION ARCHITECTURE

This section presents the implementation architecture for the
QoS Policy Manager (QoSM). The system is composed of
internal elements responsible for policy edition, compilation,
conflict detection and resolution, and policy evaluation. There
are interfaces to external elements such as the policy repository,
network configuration and monitoring proxies.

The work of standardization bodies, such as the IETF and
DMTF, in relation to PBNM, has mostly focused on the
architecture of policy-based systems, information models and
protocols. Conversely, DEN-ng policy model is one step forward
in this respect, specifying the policy life cycle, some internal
components such as a policy state machine, and it also presents
some use cases for policy evaluation.

Based on the DEN-ng approach, we propose the PDP
implementation architecture that is illustrated in Fig. 1.

QoSM Interfaces:
• I-PMT (Interface to the Policy Management Tool):

provides web-based access for network administrators to
insert, edit and delete policies;

• I-PR (Interface to the Policy Repository): provides access
to the policies (events, conditions, actions and their
relationships) stored in the policy repository. The Policy
Repository stores the network policies that will be analyzed
by the QoSM in order to make decisions and translate them
into network configuration modifications. In our system,
the Policy Repository was modeled as an extension of the
DEN-ng policy model for managing QoS mechanisms;

The 2005 IEEE International Conference on Fuzzy Systems449

• I-PSMR (Interface to the Policy State Machine
Repository): provides access to the policies state
repository. The Policy State Machine repository maintains
the execution state of all active policies. Valid states are:
event not occurred; event occurred; conditions satisfied;
conditions not satisfied; action executed (sent to the
device); successful action execution at the device; and
some other combinations of different states;

• I-NELC (Interface to the Network Element Layer
Configuration Proxy): provides access to the proxies
responsible for the configuration of the network devices.
This interface may receive policy actions modeled in XML
from the AG module (described below) and translate them
into specific commands for the devices being managed.
This project contemplates the implementation of a proxy
that supports CLI (Command Line Interface) configuration;

• I-NELM (Interface to the Network Element Layer
Monitoring Proxy): provides access to the monitoring
proxies. The proxies may access devices via SNMP to
monitor network and traffic states.

QoSM internal modules:
• PE (Policy Editor): implements the server side presentation

logic of the user web-based policy editor. The policy
editor presents a set of events, conditions and actions to the
user. The policy is created through the association of a set
of events, conditions and actions. Furthermore, the PE
enables the configuration of specific attributes of each
policy component, such as threshold values for events,
limits for condition variables and configuration parameters
for policy actions;

• PC (Policy Compiler): translates the policies from the
business view to the Policy Information Model format.
Specifically in this project, the policies to be stored at the
policy repository are translated into object-orientated
objects according to the DEN-ng model;

• CD (Conflict Detector): enables the detection of conflicts,
both intra policy and inter policy;

• EG (Event Generator): this module generates specific pre-
configured events, mostly obtained via the I-NELM
interface and subsequently used to trigger the analysis of
the set of conditions of the policies associated with the
given event;

• CA (Condition Analyzer): provides a simple condition
analysis (using the operators IF, AND and OR);

• FCA (Fuzzy Condition Analyzer): provides an advanced
condition analysis, as further described in Section IV;

• AG (Action Generator): sends specific actions to the I-
NELC interface by means of the condition evaluation of
TRUE or FALSE;

• SMC (State Machine Controller): communicates with the
EG, CA and AG modules. It updates the policy state data,
enabling the system to avoid policy evaluation errors and
assisting the network administrator to monitor the levels of
QoS levels applied through the policies.

Fig. 1 - QoS Manager internal architecture.

IV. FUZZY CONDITION ANALYZER (FCA) ARCHITECTURE

Much work has been done on Policy Management.
Nevertheless, there are some issues still open for research, such
as policy conflict detection, policy evaluation strategies, high
level policy representation and translation, policy representation
language, and others.

Little attention has been dedicated to policy condition
evaluation strategies. Most of the implementations use a set of
(ANDs of ORs) or a set of (ORs of ANDs) for policy condition
evaluation.

This scheme leads to a very predicable decision strategy. We
propose in this work a different approach for policy condition
evaluation using Fuzzy logic. The FCA module is formed by a
Fuzzy controller able to take several variables from the network,
compare them using fuzzyfied curves and give a result for the
condition.

Following we describe how the FCA was implemented in Java,
J2SE v1.4 with Postgres Database.

A. Fuzzy Controller

Fuzzy Logic is also being used to control large engineering
plants such as power stations, effluent treatment systems and
even to maintain a steady flight path for pilot less reconnaissance
aircraft. By defining a method that allows a mathematical
description of vague, imprecise and possibly conflicting
information, sophisticated systems may be devised to
significantly improve system performance. Fuzzy controllers are
conceptually very simple. They consist of an input stage
(fuzzyfication), a processing stage (inference), and an output
stage (defuzzification). The input stage maps sensor or other
inputs, such as switches, thumbwheels, and so on, to the
appropriate membership functions and truth-values. The
processing stage invokes each appropriate rule and generates a
result for each, then combines the results of the rules. Finally, the
output stage converts the combined result back into a specific
control output value. Fuzzy logic provides a simple and powerful
method of decision-making that facilitates a link between basic
logic and practical applications. It has been shown that a fuzzy
logic controller can provide algorithms which convert the
linguistic control strategies based on intuition, heuristic learning
and expert knowledge into an automatic control strategy for
bandwidth management purposes [10] [11] and [14]. A fuzzy
inference system is usually rule based and has the inherent
capability to perform inference and derive results with imprecise
models and quantities. The block diagram of a general fuzzy
controller is illustrated in Fig. 2.

The 2005 IEEE International Conference on Fuzzy Systems450

Crisp
Input

Expert IP
Networks

Crisp
Output

Bandwidth
x

Input
Fuzzy Sets

Output
Fuzzy Sets

Fuzzification
Center-of-Maximum

Defuzzification

Mamdani Fuzzy

Inference

Policy
DataBase
(Postgres)

Linguistic Rules
Editor
(FCA)

Crisp
Input

Expert IP
Networks

Crisp
Output

Bandwidth
x

Input
Fuzzy Sets

Output
Fuzzy Sets

Fuzzification
Center-of-Maximum

Defuzzification

Mamdani Fuzzy

Inference

Policy
DataBase
(Postgres)

Linguistic Rules
Editor
(FCA)

Fig. 2 - Block diagram of a fuzzy inference system

1) Membership Functions to the Fuzzy Controller

The fuzzy membership function used in the solution of our
problem is continuo function: triangular trimf(x; a, b, c), as
described in the equation below(1).

(]

[)
≥

∈
−
−

∈
−
−

≤

=

,,0

,,

,,

,0

),,;(

cxif

cbxif
bc

xc

baxif
ab

ax

axif

cbaxtrimf

 (1)

where b is modal value, and a and c denote the lower and upper
bounds, respectively, for nonzero values of trimf(x). The
membership values were obtained by mapping the values
obtained from the experiment developed in TIPHON
(Telecommunications and Internet Protocol Harmonization Over
Networks) project for Voice over IP (VoIP) quality [12].

B. Controller Variable

We have adopted the link occupation, end-to-end packet loss,
end-to-end peak jitter, period of day and end-to-end delay as
entry variables in our system, which give us a rate available in
the system to assure quality of service.

The range of all possible values for an end-to-end link metric
is as follows: “Link Occupation” presented in Table I, “End-to-
End Packet loss” shown in Table II, “Peak Jitter” shown in Table
III, “Period of Day” shown in Table IV, “End-to-End Delay”
shown in Table V. The “Fuzzy Controller Bandwidth” can be
seen in Table VI. The graphical representation of the
membership functions for each one of the variables is presented
in the Figures 3, 4, 5, 6 and 7 respectively.

TABLE I
FUZZY MEMBERSHIP FOR FUZZY INPUTS

“LINK OCCUPATION” - LO

Linguistic
Variable

Type
Function

Parameters
Function (a,b,c) Values

LOW trimf (x; La, Lb, Lc) (x;0,32,96)
MEDIUM trimf (x; Ma, Mb, Mc) (x; 64,128,192)
HIGH trimf (x; Ha, Hb, Hc) (x;160,224,256)

LOW MEDIUM HIGH

1

0
La Lb LcMa Mb Ha Mc Hb Hc

μ(LO)

LO

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

LOW MEDIUM HIGH

1

0
La Lb LcMa Mb Ha Mc Hb Hc

μ(LO)

LO

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

Fig. 3 - Membership functions of the linguistic variable
(input) “Link Occupation” - LO

TABLE II
FUZZY MEMBERSHIP FOR FUZZY INPUTS

“END-TO-END PACKET LOSS RATIO %” - PL

Linguistic
Variable

Type
Function

Parameters
Function (a,b,c) Values

GOOD trimf (x; Ga, Gb, Gc) (x; 2, 6, 10)
MEDIUM trimf (x; Ma, Mb, Mc) (x; 7, 14, 21)
POOR trimf (x; Pa, Pb, Pc) (x; 17, 25, 33)

GOOD MEDIUM POOR

1

0
Ga Gb GcMa Mb Pa Mc Pb Pc

μ(PL)

PL

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

GOOD MEDIUM POOR

1

0
Ga Gb GcMa Mb Pa Mc Pb Pc

μ(PL)

PL

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

Fig. 4 – Membership functions of the linguistic variable
(input) “End-to-End Packet loss ratio %” - PL

TABLE III
FUZZY MEMBERSHIP FOR FUZZY INPUTS

“END-TO-END PEAK JITTER (DELAY VARIATION)” - PJ

Linguistic
Variable

Type
Function

Parameters
Function (a,b,c) Values

GOOD trimf (x; Ga, Gb, Gc) (x; 50, 75, 100)
MEDIUM trimf (x; Ma, Mb, Mc) (x; 84, 125, 166)
POOR trimf (x; Pa, Pb, Pc) (x; 151, 225, 299)

GOOD MEDIUM POOR

1

0
Ga Gb GcMa Mb Pa Mc Pb Pc

μ(PJ)

PJ

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

GOOD MEDIUM POOR

1

0
Ga Gb GcMa Mb Pa Mc Pb Pc

μ(PJ)

PJ

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

Fig. 5 – Membership functions of the linguistic variable
(input) “End-to-End Peak Jitter” - PJ

The 2005 IEEE International Conference on Fuzzy Systems451

TABLE IV
FUZZY MEMBERSHIP FOR FUZZY INPUTS

“PERIOD OF DAY” - PD

Linguistic
Variable

Type
Function

Parameters
Function (a,b,c) Values

DAWN trimf (x; Da, Db, Dc) (x; 0, 3, 6)
MORNING trimf (x; Ma, Mb, Mc) (x; 5, 9, 12)
AFTERNOON trimf (x; Aa, Ab, Ac) (x; 11, 15, 18)
NIGHT trimf (x; Na, Nb, Nc) (x; 17, 21, 24)

DAWN MORNING AFTERNOON

1

0
Da Db DcMa Mb Aa Mc Ab Ac

μ(PD)

PD

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

NIGHT

Na Nb Nc

DAWN MORNING AFTERNOON

1

0
Da Db DcMa Mb Aa Mc Ab Ac

μ(PD)

PD

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

NIGHT

Na Nb Nc

Fig. 6 – Membership functions of the linguistic variable
(input) “Period of Day” - PD

TABLE V
FUZZY MEMBERSHIP FOR FUZZY INPUTS

“END-TO-END DELAY (TRANSFER DELAY)” - TD

Linguistic
Variable

Type
Function

Parameters
Function (a,b,c) Values

BEST trimf (x; Ba, Bb, Bc) (x; 101, 150, 200)
HIGH trimf (x; Ha, Hb, Hc) (x; 168, 250, 333)
MEDIUM trimf (x; Ma, Mb, Mc) (x; 235, 350, 466)
LOW trimf (x; La, Lb, Lc) (x; 302, 450 599)

Fig. 7 – Membership functions of the linguistic variable
(input) “End-to-End Delay (Transfer Delay)” - TD

TABLE VI
FUZZY MEMBERSHIP FOR FUZZY OUTPUT

“FUZZY CONTROLLER BANDWIDTH” - CB

Linguistic Variable Type
Function

Parameters
Function (a,b,c)

Values

Low positive trimf (x; La, Lb, Lc) (x;2,5,8)
Medium positive trimf (x; Ma, Mb, Mc) (x;6,9,12)
High positive trimf (x; Ha, Hb, Hc) (x,10,13,16;)
Low negative trimf (x; Lna, Lnb, Lnc) (x;-2,-5,-8)
Medium negative trimf (x; Mna, Mnb, Mnc) (x;-6,-9,-12)
High negative trimf (x; Hna, Hnb, Hnc) (x; -10,-13,-16)

LOW
(+)

MEDIUM
(+)

HIGH
(+)

1

0 La Lb LcMa Mb Ha Mc Hb Hc

μ(CB)

CB

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

MEDIUM
(-)

HIGH
(-)

Hnb HncMna Mnb Lna Mnc LnbHna Lnc

LOW
(-)

LOW
(+)

MEDIUM
(+)

HIGH
(+)

1

0 La Lb LcMa Mb Ha Mc Hb Hc

μ(CB)

CB

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

MEDIUM
(-)

HIGH
(-)

Hnb HncMna Mnb Lna Mnc LnbHna Lnc

LOW
(-)

Fig. 8 – Membership functions of the linguistic variable
(output) “Fuzzy Controller Bandwidth” - CB

C. Basic Fuzzy Rules

The acknowledgment that relates the several variables and
their respective values was summarized in table IV, which
originates the basic fuzzy rules with the If-then format. The
inference process used in the simulation is known as Mamdani,
proposed in 1976 by Ebrain Mamdani [9]. The output variable
Bandwidth has six terms and uses Center-of-Maximum (CoM)
defuzzification. Thus, we can define some inference rules based
in the table VII. For instance:
1. If (Link Occupation is LOW) And (End-to-End Delay is

MEDIUM) And (Period of Day is AFTERNOON) And (End-
to-End Peak Jitter is MEDIUM) And (End-to-End Packet loss
is POOR) Then (Fuzzy Controller Bandwidth is LOW
Positive)

As already described, fuzzy policy conditions were deployed
taking as input Link occupation, end-to-end delay, period of day,
end-to-end packet loss and current controller bandwidth. The
FCA module gives as output the differential bandwidth that
should be configured for a given link. Fig. 9 shows a screenshot
of the fuzzy condition editor where the network administrator can
create fuzzy conditions

Fig. 9 – FCA policy condition editor

V. VALIDATION

Fig. 10 shows the testbed network where the QoS policy
management system was applied. The network is formed by a
Juniper M10 router (P1), three Cisco 3620 router (PE1, P2, and
PE2) and a Cisco 7200 router (P3). A network tester (Agilent
RouterTester) was used for traffic generation and measurement.

BEST HIGH MEDIUM

1

0
Ba Bb BcHa Hb Ma Hc Mb Mc

μ(TD)

TD

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

LOW

La Lb Lc

BEST HIGH MEDIUM

1

0
Ba Bb BcHa Hb Ma Hc Mb Mc

μ(TD)

TD

D
eg

re
e

of
 M

em
be

rs
hi

p
α

-c
ut

LOW

La Lb Lc

The 2005 IEEE International Conference on Fuzzy Systems452

PE1 P2
PE2

P1

P3 sw

2Mbps
2Mbps

2Mbps

8Mbps

8M
bp

s

8Mbps128Kbps

NETWORK TESTER

sw

100Mbps100Mbps

10
0M

b p
s

10
0M

bp
s

PE1 P2
PE2

P1

P3 sw

2Mbps
2Mbps

2Mbps

8Mbps

8M
bp

s

8Mbps128Kbps

NETWORK TESTER

sw

100Mbps100Mbps

10
0M

b p
s

10
0M

bp
s

Fig. 10 – Testbed network

For a given set of rules configured at the FCA interface
(shown in Fig. 9), based on the result of the execution of the
fuzzy condition analyzer, some actions related to the policy were
executed. The QoSM system (QoS Manager) generated the
following configuration at the routers with the bandwidth
percentage needed to be reserved for each class of service:

class-map match-all classe7
 match ip dscp 7
class-map match-all classe6
 match ip dscp 6
class-map match-all classe5
 match ip dscp 5
policy-map TesteQoS
 class classe7
 bandwidth percent 30
 class classe6
 bandwidth percent 25
 class classe5
 bandwidth percent 15
 class class-default
 bandwidth percent 5
Interface x/x
Service-policy TesteQoS

As can be inferred, the interfaces were configured with the
CB-WFQ (Class-based Weighted Fair Queueing) scheduling
algorithm, class 0 received 30% of bandwidth, class 1 received
25%, class 2 received 15% and class 3 received 5%. Fig. 11
shows the results for the RouterTester Over-Subscription-QoS
test executed over the network configured automatically by the
QoSM system.

Fig. 11 – Test results

The left curves are for 16Mbps total throughput and the right
curves are for 10Mbps. The traffic for each class is generated
evenly. The network support at most 8Mbps.

As can be seen, the total throughput for each class is in
accordance with the reserved values for each class.

VI. CONCLUSION

In this paper we have described the implementation
architecture of a PBNM system designed specifically for
managing QoS mechanisms in IP networks. The major
contributions of our work are the introduction of new concepts
into the architecture, such as a flexible policy editor that allows
the composition of new types of policies, a fuzzy condition
analyzer that has the ability to compare policy conditions
differently from the default condition analyzers that use a set of
IFs, a distributed event and configuration proxy scheme for
collecting network events and configuring different types of
network elements, the specialization of the CIM event model for
QoS events, and the proposal of an implementation architecture
for the PDP.

VII. REFERENCES

[1] R. Brader, D. Clark and S. Shenker, Integrated Services in the
Internet: an overview, IETF RFC 1633, June 1994.

[2] S. Blake, E D. Black, M. Carlson, E. Davies, Z. Wang and W.
Weiss, An Architecture for Diffetentiated Services, IETF RFC
2475, December 1998.

[3] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, J. McManus,
Requirements for Traffic Engineering Over MPLS, RFC 2702,
September 1999.

[4] E. C. Rosen and Y. Rekhter, BGP/MPLS VPNs (RFC2547bis),
IETF internet draft (work in progress), September 2003.

[5] Moore, B., Ellesson, E., Strassner, J. and A. Westerinen, "Policy
Core Information Model -- Version 1 Specification", IETF RFC
3060, Fevereiro 2001

[6] J. Strassner, Policy-Based Network Management, Solutions for
the Next Generation, Morgan Kaufmann, 2003.

[7] M. A. Siqueira, N. A. Nassif, R. A. Resende, A. E. da Silva, M.
L. Marques, Policy-Based Architecture for QoS Management in
Enterprise IP Networks, IEEE IM 2005.

[8] W. Pedrycz and F. Gomide, “An Introduction to Fuzzy Sets:
Analysis and Design” MIT Press, pp. 8–10, 1998.

[9] E. H. Mamdani and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller,” International Journal of
Man Machine Studies, Vol. 7, No. 1, pp. 1-13, 1975.

[10] P. Siripongwutikorn, S. Banerjee, Tipper, D., “Adaptive
bandwidth control for efficient aggregate QoS provisioning”,
GLOBECOM 2002 - Global Telecommunications Conference,
Vol. 3, pp. 2435 – 2439, Nov./2002.

[11] Bin Qiu, “Intelligent algorithms for QoS management in
modern communication networks”, ICT 2003 - 10th
International Conference on Telecommunications, Vol. 2, pp.
1489 – 1493, Feb./March 2003.

[12] TR 101 329: Telecommunications and Internet Protocol
Harmonization Over Networks (TIPHON); General aspects of
Quality of Service (QoS), V1.2.5 (1998-10).

[13] M. P. Fernandez, et al., QoS provisioning across a DiffServ
domain using policy-based management, IEEE GLOBECOM
'01,Volume: 4, pp. 2220 – 2224, 25-29 Nov. 2001.

[14] R. A. Resende, A.Yamakami, S. M. Rossi, L. H. Bonani e E.
Maschim, “Traffic Engineering with MPLS Using Fuzzy Logic
for Application in IP Networks”, FUZZ-IEEE 2003, St. Louis,
MO - USA, May 25-28, 2003.

The 2005 IEEE International Conference on Fuzzy Systems453

