UNIVERSIDADE DE BRASÍLIA Instituto de Física

Tese de Doutorado

Estudo Teórico de Reações Envolvidas no Mecanismo de Dissociação do $\mathrm{NF}_3.$

Simone Souza Ramalho

Orientador: Prof. Dr. Ricardo Gargano Co-orientadora: Dra Patrícia Regina Pereira Barreto

Brasília - DF, agosto de 2007

À minha mãe Ana e meu saudoso pai Alfredo Ramalho. Ao meu precioso marido Jorge Antônio.

Agradecimentos

A Deus, por ter me guiado nos momentos de escuridão.

Aos meus queridos pais, cujas vidas giraram em torno da minha formação.

Ao meu marido, Prof. Jorge Antônio de Souza, um dos homens mais nobres que conheço.

Ao meu orientador, Prof. Dr. Ricardo Gargano, pela dedicação, bom humor e irrestrita amizade durante todo o desenvolvimento deste trabalho.

A minha co-orientadora, Dra Patrícia Regina Pereira Barreto, pelo acompanhamento e competência que sempre marcaram sua orientação.

À minha querida amiga e colega, Prof^{a} Dra Alessandra Vilela, pela colaboração, discussões e incentivo sempre que se fizeram necessários.

A todos os colegas do Instituto de Física, especialmente, Wiliam, Lucas, Rildo, Cássia e Sandra (Instituto de Química) pela colaboração em momentos em que a coisa estava feia. Aos demais colegas, cujos nomes são muitos, pelas horas de estudos juntos e o espírito de camaradagem sempre presentes.

Aos professores e funcionários do Instituto de Física por terem contribuído em minha formação.

Ao CNPq e FINATEC pelo apoio financeiro.

Ao CENAPAD-SP, pelo aparato computacional disponibilizado.

Resumo

Nesta tese é apresentado um mecanismo para explicar a decomposição do trifluoreto de nitrogênio (NF_3) , composto por 14 reações e também pela reação BF_2+NF . Estas 15 reações fazem parte de um mecanismo maior, escrito para simular as condições de crescimento de filmes finos de nitreto de boro, via processo CVD. O NF₃ possui várias aplicações na indústria eletrônica, em sistemas de excimer laser, na fabricação de semicondutores, entre outras.

Foram realizados cálculos de estrutura eletrônica para a determinação das energias, freqüências e geometrias de todas as espécies que compõem os reagentes e produtos das reações do mecanismo.

As taxas de reação dos arranjos unimoleculares, abstração e troca dos sistemas NF_xF e NF_xN foram determinadas, usando para tal o nível de cálculo MP4/cc-pVTZ. Para a reação do sistema BF_3N as taxas foram determinadas em MP2/6 - 311 + +g(2df, 2pd). Das 14 reações estudadas, 3 delas foram comparadas com dados experimentais, estando em bom acordo com os mesmos.

Curvas de energia potencial foram determinadas para os diátomos e pseudodiátomos $(BF_2)F$, NF, $(BF_2)N$, $(NF_2)F$, (NF)F e F_2 e as respectivas constantes espectroscópicas rovibracionais. O resultados obtidos também foram comparados com dados de referências e as diferenças encontradas ficaram dentro da precisão química aceitável.

Abstract

A Nitrogen trifluoride (NF₃) decomposition mechanism composed by 14 reactions and also by $BF_2 + NF$ is presented. These 15 reactions belong to a greater mechanism, wrote to simulate the growth of boron nitride thin films, via CVD process. The NF₃ has several applications in the eletronic industry, excimer laser systems, semiconductor fabrication and others.

Electronic structure calculations were performed to detemine the potencial energies, frequencies and geometries of all species that compose the reactions reactants and products of the mechanism.

The unimolecular, abstraction and exchange rate constants of the NF_xF and NF_xN systems were determined at MP4/cc-pVTZ basis set. The BF_3N rate constants were determined at MP2/6-311++g(2df,2pd) one. From 14 reactions studied, three were compared with experimental data and are in good agreement.

Potencial energies curves and the rovibrational spectroscopy constants were determined to $(BF_2)F$, NF, $(BF_2)N$, $(NF_2)F$, (NF)F and F_2 diatomic and pseudodiatomic systems. From comparison among the obtained results and the experimental data can be verified that they match.

Conteúdo

Re	Resumo			
Al	ostra	\mathbf{ct}	\mathbf{iv}	
1	Intr 1.1 1.2	odução A Molécula de NF ₃	1 1 3	
2	0 P	roblema Molecular	9	
	2.1 2.2 2.3 2.4 2.5	IntroduçãoIntroduçãoFormulação BásicaFormulação BásicaAproximação de Born-OppenheimerAproximação de Born-OppenheimerAproximação de Hartree-FockAproximações PerturbativasO Método de Interações de Configurações e Aproximações Perturbativas2.5.1Configurações Adaptadas de Spin2.5.2Interação de Configurações2.5.3A Energia de Correlação Exata2.5.4Zeoria de Perturbação de Møller-Plesset2.5.5Método Coupled Cluster2.5.5	$9 \\ 10 \\ 11 \\ 14 \\ 22 \\ 25 \\ 29 \\ 33 \\ 35 \\ 39$	
3	Teo	ria das Reações Bimoleculares e Unimoleculares	43	
	3.1	Introdução	43	
	3.2	Teoria de Colisões	44	
	3.3 2.4	Teoria das Estruturas de Transição	40 59	
	0.4		90	
4	Res	ultados Parte I	62	
	4.14.24.3	Geometrias, Freqüências, Energias dos Reagentes e Produtos dos Sistemas $NF_xF e NF_xN$, com $x = 1, 2 e 3, \dots, \dots, \dots, \dots, \dots$ Determinação das TS's dos Sistemas $NF_xF e NF_xN \dots, \dots, \dots$ Energias, Entalpias, Taxas de Reação e Caminhos de Mínima Energia 4.3.1 Reação $NF = N + F$	63 70 77 81	
	4.4	Reações do sistema NFF :	84 84 86 88	
	4.5	Reações do sistema NF_2F :	90 90 93	

		$4.5.3 NF_2 + F = NF_2 + F \dots \dots$	95
	4.6	Reações do sistema NF_3F :	97
		4.6.1 $NF_3 + F = NF_2 + F_2$	97
		$4.6.2 NF_3 + F = NF_3 + F \dots \dots$	99
	4.7	Reações do sistema NFN :	102
		4.7.1 $N_2F = N_2 + F$	102
		4.7.2 $NF + N = N_2 + F$	104
	4.8	Reação do sistema NF_2N :	106
		$4.8.1 NF_2 + N = NF + NF \dots $	106
	4.9	Reações do sistema NF_3N	108
		$4.9.1 N_2F_3 = NF_2 + NF \dots $	108
		$4.9.2 NF_3 + N = NF_2 + NF \dots \dots \dots \dots \dots \dots \dots \dots \dots $	110
	4.10	Resumo dos Resultados obtidos para as Reações dos Sistemas NF_xF e NF_xN	112
	4.11	Sistema BF_3N	115
		4.11.1 Reação bimolecular com mecanismo complexo	115
		4.11.2 Caminho de Mínima Energia e Taxa de Reação	119
5	Sup	erfície de Energia Potencial	123
5	Sup 5.1	erfície de Energia Potencial Introdução	123 123
5	Sup 5.1 5.2	erfície de Energia Potencial Introdução	123 123 125
5	Sup 5.1 5.2 5.3	erfície de Energia Potencial Introdução	123 123 125 126
5	Sup 5.1 5.2 5.3	erfície de Energia Potencial Introdução	123 123 125 126 127
5	Sup 5.1 5.2 5.3	erfície de Energia Potencial Introdução	123 123 125 126 127 128
5	Sup 5.1 5.2 5.3 Res	erfície de Energia Potencial Introdução	 123 125 126 127 128 131
5	Sup 5.1 5.2 5.3 Rest 6.1	erfície de Energia Potencial Introdução	123 123 125 126 127 128 131 131
5	Sup 5.1 5.2 5.3 Rest 6.1 6.2	erfície de Energia Potencial Introdução	 123 123 125 126 127 128 131 136
5 6 7	Sup 5.1 5.2 5.3 Res 6.1 6.2 Con	erfície de Energia Potencial Introdução	 123 125 126 127 128 131 136 143
5 6 7 A	Sup 5.1 5.2 5.3 Rest 6.1 6.2 Con Âng	erfície de Energia Potencial Introdução	 123 123 125 126 127 128 131 136 143 147

Lista de Tabelas

1.1	Propriedades do diamante e dos nitretos de boro cúbico e hexagonal	6
$3.1 \\ 3.2$	Graus de liberdade para os reagentes/produtos e TS	51 52
4.1	Parâmetros geométricos para reagentes e produtos dos sistemas $NF_xF \in NF_xN$, com $x = 1, 2, 3$, calculadas em MP2/cc-pVDZ e 6-31G(d) (distâncias inter- atômica em Å o ângulos de ligração em grave)	65
4.2	atomica em A e angulos de ligação em graus). $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Freqüências vibracionais (cm ⁻¹) para os reagentes e produtos dos sistemas	00
4.3	NF_xF e NF_xN , com $x = 1, 2 \in S$ Energias eletrônicas (hartree), calor de formação experimental (kcal/mol) para reagentes, produtos), incluindo a correção da ZPE para os reagentes e	07
4.4	produtos NF, NF ₂ , NF ₃ , N ₂ F, N ₂ F ₃	68
4.5	tos F, F ₂ , N, N ₂	69
4.6	$x = 1, 2 \in 3$ Distâncias (Å) e ângulos interatômicos (°), para as TS's dos sistemas NF_xF	70
4.7	e NF_xN , com $x = 1$, 2 e 3 calculadas em MP2/ cc-pVDZ e 6-31G(d) Freqüências vibracionais (cm ⁻¹) e correção da ZPE (cm ⁻¹) para as TS's dos	71
4.8	sistemas $NF_xF \in NF_xN$, com $x = 1, 2 \in 3$	73
4.9	para reagentes, produtos, 1S, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF=NF+F Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes produtos TS barreiras de potencial e entalpia de reação	82
4.10	(kcal/mol), incluindo a correção da ZPE para a reação $NF_2 = NF+F$ Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes produtos TS barreiras de potencial e entalpia de reação	85
4.11	(kcal/mol), incluindo a correção da ZPE para a reação NF+F=N+F ₂ Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol)	87
4 19	para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF+F=NF+F Energias aletrôvicos totois (hertros) e caler de formação emerginental (leasl/mol)	89
4.12	para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_3=NF_2+F.$	91

- 4.13 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF₂ + $F = NF + F_2$. 94
- 4.14 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF₂ + $F = NF_2$ +F. 96
- 4.15 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF₃+F=NF₂+F₂. 98
- 4.16 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_3+F=NF_3+F$. . . 100
- 4.17 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $N_2F=N_2+F.$ 103
- 4.18 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF+N=N₂+F. . . . 105
- 4.19 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_2+N=NF+NF$. 107
- 4.20 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $N_2F_3=NF_2+NF.$. . 109

4.21 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação N F_3 +N=N F_2 +NF. . 111

4.25 Parâmetros geométricos para reagentes, produtos, TS e RC calculadas em MP2/ 6-311G(d) para o sistema BF₃N, distâncias interatômicas em Å e ângulos de ligação em graus.
4.26 Freqüências vibracionais (cm⁻¹) para os reagentes, produtos e Ts do sistemas

<sup>BF₃N, calculadas em MP2/6-311G(d).
4.27 Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS e RC, barreiras de potencial e entalpia de reação</sup>

6.3	Constantes espectroscópicas rovibracionais, via método de Dunham, obtidas	
	para o sistema BF_3N em Bond Order e Rydberg	138
6.4	Constantes vibracionais para o sistema NF_3F em Bond Order e Rydberg	139
6.5	Constantes espectroscópicas rovibracionais, obtidas via equação (6.6) , para o	
	sistema BF_3N	140
6.6	Constantes espectroscópicas rovibracionais, obtidas via equação (6.6) , para o	
	sistema NF_3F	141
6.7	Espectros vibracionais, em $\rm cm^{-1}$, para os diátomos e pseudodiátomos do sis-	
	tema BF_3N , usando tanto os ajustes BO como de Rydberg	142
6.8	Espectros vibracionais, em $\rm cm^{-1}$, para os diátomos e pseudodiátomos do sis-	
	tema NF_3F , usando tanto os ajustes BO como de Rydberg	142

Lista de Figuras

1.1	Estrutura cristalina do nitreto de boro: (a) nitreto de boro hexagonal-h-BN; (b) nitreto de boro cúbico; (c) nitreto de boro wurzítico-w-BN, onde (\bullet) representa os átomos de boro e (\circ) representa os átomos de nitrogênio	5
2.1	Representação pictórica dos spins orbitais ocupados $(\chi_{1}\chi_N)$ e dos virtuais	
2.2	$(\chi_{N+1}\chi_{2k})$	$\begin{array}{c} 21 \\ 26 \end{array}$
3.1	Representação esquemática do volume onde ocorrem colisões entre as molécu-	
	las A e as moléculas estacioárias B, na teoria de colisões	45
3.2	SEP para uma reação colinear da forma $A + BC = AB + C.$	47
3.3	Orientações gerais de uma reação A+BC.	48
3.4	Representação esquemática das regiões envolvidas em uma reação A+BC em	40
	função da coordenada de reação	49
4.1	Geometrias dos reagentes e produtos pertencentes aos sistemas $NF_xF \in NF_xN$,	
	$\operatorname{com} x = 1, 2 e 3. \ldots$	66
4.2	Representação geométrica das TS's dos sistemas NF_xF e NF_xN	72
4.3	IRC da reação $NF = N + F$	74
4.4	(a)IRC da reação $NF_2 = N + F_2$. (b)IRC da reação $NF + F = NF + F$.	75
4.5	(a) IRC da reação $NF_3 = NF_2 + F$ (b) IRC da reação $NF_2 + F = NF + F_2$	70
4.0	(c) IRC da reação $NF_2 + F = NF_2 + F$	76
4.0	(a) IRC da reação $NF_3 + F = NF_2 + F_2$ (b) IRC da reação $NF_3 + F = NF_3 + F$. (a) IRC da reação $NF = N + F$ (b) IRC da reação $NF + N = N + F$	11 78
4.7	(a) INC da reação $N_2 r = N_2 + r$ (b) INC da reação $N r + N = N_2 + r$ IBC da reação NE ₂ + N - NE + NE	10 70
4.0 4.9	(a) IBC da reação $N_2F_2 = NF_2 + NF$ (b) $NF_2 + N = NF_2 + NF$	80
4.10	(a) MEP da reação $NF = N + F$ (b) Taxa da reação $NF = N + F$.	83
4.11	(a) MEP da reação $NF_2 = NF + F$ (b) Taxa da reação $NF_2 = NF + F$.	86
4.12	(a) MEP da reação $NF + F = N + F_2$ (b) Taxa da reação $NF + F = N + F_2$.	88
4.13	(a) MEP da reação $NF + F = NF + F$ (b) Taxa da reação $NF + F = NF + F$.	90
4.14	Razão entre as taxas das reações $NF + F = N + F_2$ e $NF + F = NF + F$.	92
4.15	a) MEP da reação $NF_3 = NF_2 + F$ (b) Taxa da reação $NF_3 = NF_2 + F_2$.	93
4.16	(a) MEP da reação $NF_2 + F = NF + F_2$ (b) Taxa da reação $NF_2 + F = NF + F_2$.	95
4.17	(a) MEP da reação $NF_2 + F = NF_2 + F$ (b) Taxa da reação $NF_2 + F = NF_2 + F$	05
1 10	$NF_2 + F$	95
4.18	Razao entre as taxas das reações $NF_2 + F = NF + F_2 e NF_2 + F = NF_2 + F$. (a) MEP da romão NE + E-NE + E. (b) Tava da romão NE + E-NE + E	97
4.19	(a) with the reaction $\operatorname{NF}_3 + \operatorname{F}_1 - \operatorname{NF}_2 + \operatorname{F}_2$ (b) take the reaction $\operatorname{NF}_3 + \operatorname{F}_2 = \operatorname{NF}_2 + \operatorname{F}_2$ e dados experimentais	90
4.20	(a) MEP da reação $NF_2 + F = NF_2 + F$ (b) Taxa da reação $NF_2 + F = NF_2 + F$	101
4.21	Razão entre as taxas das reações $NF_3 + F = NF_2 + F_2$ e $NF_3 + F = NF_3 + F$.	102

(a) MEP da reação $N_2F = N_2 + F$. (b) Taxa da reação $N_2F = N_2 + F$	104
(a) MEP da reação $NF + N = N_2 + F$ (b) Taxa da reação $NF + N = N_2 + F$	106
a) MEP da reação $NF_2 + N = NF + NF$ (b) Taxa da reação $NF_2 + N =$	
NF + NF	108
(a) MEP da reação $N_2F_3 = NF_2 + NF$ (b) Taxa da reação $N_2F_3 = NF_2 + NF$.	110
(a) MEP da reação $NF_3 + N = NF_2 + NF$ (b) Taxa da reação $NF_3 + N =$	
$NF_2 + NF$	112
Geometrias dos reagentes, produtos, TS e reagente complexo	116
Perfil de energia para a reação $BF_2+NF.$	119
(a) MEP para a reação $BF_2 + NF = BF_3 + N$ (b) Taxa de reação $BF_2 + NF =$	
$BF_3 + N$, com as correções de Wigner e Eckart	121
Representação das configurações nucleares para o sistema BF_3N	131
Energias ajustadas para os diátomos NF, (BF ₂)F e (BF ₂)N, via funções Bond-	
Order e Rydberg	133
Order e Rydberg	133 134
Order e Rydberg	133 134
Order e Rydberg	133 134 136
Order e Rydberg	133 134 136 147
Order e Rydberg	133 134 136 147 148
Order e Rydberg	133 134 136 147 148 149
	(a) MEP da reação $N_2F - N_2 + F$. (b) Taxa da reação $N_2F - N_2 + F$ (a) MEP da reação $NF + N = N_2 + F$ (b) Taxa da reação $NF + N = N_2 + F$. a) MEP da reação $NF_2 + N = NF + NF$ (b) Taxa da reação $NF_2 + N = NF + NF$

Capítulo 1 Introdução

1.1 A Molécula de NF₃

O trifluoreto de nitrogênio, NF_3 , sintetizado inicialmente por volta dos anos 28 [1], é um gás extensivamente usado na indústria eletrônica e em sistemas de excimer laser [2]. Na fabricação de semicondutores, o NF_3 é normalmente utilizado na limpeza de reatores de deposição a partir da fase vapor, CVD(do inglês Chemical Vapour Deposition) e funciona, também, como um reagente seletivo para a corrosão de dióxido de silicone [3, 4, 5]. Comparado a outros gases fluorados tradicionais, tais como CF_4 , C_2F , o NF_3 apresenta a vantagem de evitar a contaminação de resíduos por carbono, o que estimula a demanda industrial do NF_3 e, conseqüentemente, aumenta sua produção [6]. Compostos perfluorados (PFCs) são altamente emitidos em processos de limpeza de câmaras de plasma, bem como, na manufatura de semicondutores, entretanto, o NF_3 tem aumentado o processo de escolha do gás para eliminar as emissões dos PFCs. Existem também alguns estudos relacionados com a influência do NF_3 na atmosfera [7]. Em função do grande número de aplicações tecnológicas do NF_3 , o entendimento dos processos químicos envolvidos no mecanismo de decomposição do NF_3 em outras espécies químicas é altamente recomendado e desejável.

O principal objetivo da pesquisa com NF_{3} , nesse trabalho, é investigar a dissociação desta molécula em espécies de nitrogênio e flúor. Estudos de equilíbrio termodinâmico [8] sugerem que esta molécula se dissocia em dois possíveis produtos de acordo com as reações globais

$$NF_3 = 1/2N_2 + 3F \tag{1.1}$$

ou

$$NF_3 = 1/2N_2 + 3/2F_2. (1.2)$$

Para entender e determinar o caminho real de dissociação do NF_3 foi proposto um mecanismo cinético simples, composto por uma série de reações elementares, onde muitas delas precisam ter suas taxas de reação determinadas via Teoria das Estruturas de Transição (TST do inglês *Transition State Theory*). Dentre essas reações aparecem reações do tipo unimolecular, abstração e troca. Nesse trabalho foram estudadas 14 reações elementares do tipo $NF_x + F$ e $NF_x + N \text{ com } x = 1, 2 \text{ e } 3$, sendo estas:

$$NF = N + F,$$

$$NF_2 = NF + F,$$

$$NF_2 = NF + F,$$

$$NF + F = N + F_2,$$

$$NF + F = NF + F,$$

$$NF_3 = NF_2 + F,$$

$$NF_2 + F = NF + F_2,$$

$$NF_2 + F = NF_2 + F,$$

$$NF_3 + F = NF_2 + F,$$

$$NF_3 + F = NF_3 + F,$$

$$NF_3 + F = N_2 + F,$$

$$NF + N = N_2 + F,$$

$$NF_2 + N = NF + NF,$$

$$NF_2 + N = NF + NF,$$

$$NF_3 + N = NF_2 + NF.$$

Além destas reações, também foi estudada uma reação que não faz parte do conjunto de reações para o NF_3 , e que apresenta um comportamento peculiar, ocorrendo em duas etapas, ou seja, a reação

$$BF_2 + NF = BF_3 + N_2$$

A utilização de mecanismos cinéticos para simular condições de crescimento e corrosão de filmes finos CVD, fenômenos de combustão e poluição, efeito estufa e etc, tem crescido ao longo dos anos. O estudo destes mecanismos é extremamente complexo, pois envolve várias etapas, desde a definição do conjunto de espécies que devem compor os mesmos, reações importantes com suas respectivas taxas até a validação destes, o que pode levar anos de pesquisa, dependendo do sistema de interesse e das informações disponíveis na literatura. O mecanismo de dissociação do NF_3 faz parte de um mecanismo maior que foi desenvolvido para simular o crescimento de filmes finos de BN via processos CVD [9], onde pouquíssimas informações estão disponíveis na literatura e o entendimento dos processos físicos e/ou químicos que ocorrem na fase gasosa e superficial e que conduzem à formação da fase cúbica e/ou hexagonal é praticamente inexistente. Estes filmes têm uma gama de aplicações tecnológicas muito grande, porém é imprescindível a identificação dos precurssores de crescimento e da(s) espécie(s) capaz(e)s de remover a fase hexagonal e promover/estabilizar a fase cúbica, além de descobrir como crescer filmes com altas taxas de fase cúbica, sem estresse interno e com elevadas taxas de crescimento, dado que sem isto a produção destes filmes, visando aplicações tecnológicas, é impraticável.

1.2 O Nitreto de Boro

Um dos objetivos principais da ciência de materiais nos dias atuais é a obtenção de materiais com propriedades elétricas, térmicas e/ou mecânicas dentro de um padrão de excelência desejável para aplicações tecnológicas. O nitreto de boro (BN), bem como o diamante, carbeto de boro, nitreto de carbono, $B_x C_y N_z$, entre outros, é um destes materiais, por causa do conjunto de propriedades físicas e/ou químicas que ele apresenta, tornando-o atrativo para aplicações tecnológicas em diversas áreas, tais como, diodos planares, trocador de calor para circuito integrado, isoladores em diodos na forma metal-isolante-semicondutor, filmes isolantes de alta qualidade, camadas protetoras de alta dureza para aplicações diversas, etc. Desta forma, pesquisas, em diferentes áreas de conhecimento, vêm sendo conduzidas para o aprimoramento das técnicas de crescimento e caracterização de filmes finos de nitreto de boro.

O BN, como o carbono, possui diferentes formas alotrópicas: a forma hexagonal (hBN) similar ao grafite, a forma cúbica (cBN) que corresponde ao diamante e uma forma mais rara, o nitreto de boro wurtzítico (wBN) análogo ao "lonsdaleite"[10]. O BN em sua fase cúbica ou "zincblende " é também conhecido como nitreto de boro esfarelite sendo denominado por zBN, cBN ou β BN, apresentando parâmetros de rede e propriedades físicas tais como: dureza, gap de energia e condutividade térmica muito próximas às do diamante.

O h-BN é formado por planos atômicos ligados entre si formando anéis hexagonais com átomos de B e N, alternando-se nos vértices, num arranjo planar do tipo colméia (ver Figura 1.1(a)). Os átomos nos planos são ligados a três vizinhos próximos de espécies diferentes através de ligação covalente forte de orbitais hibridizados sp^2 , com ligação entre camadas de Van der Walls) formada como resultado de uma superposição entre dois planos externos de orbitais π , conforme mostra a Figura 1.1(a). O cBN, como já mencionado anteriormente, tem uma estrutura cristalina "zincblend", consistindo de duas redes cristalinas cúbicas de face centrada interpenetrantes, uma composta de átomos de boro e a outra de átomos de nitrogênio, estrutura esta, semelhante à do diamante. No cBN, os átomos são ligados a quatro vizinhos próximos de espécies alternadas através de ligações tetraédricas σ ligando orbitais hibridizados sp^3 como mostrado na Figura 1.1(b) [11]. A estrutura wurtzítica, wBN, pode ser vista como uma distorção da fase cúbica [12] como mostrado na Figura 1.1(c). As fases de coordenação tetraédrica cúbica e wurtzita apresentam uma densidade maior enquanto que a fase grafítica é menos densa. O BN apresenta, também, outras fases menos comuns, tais como, romboédrica (rBN) e turboestrática (tBN) que derivam de diferentes alinhamentos dos anéis hexagonais nos planos. Estudos teóricos sugerem também a existência de uma fase "rocksalt" (face não centrada) para o BN [13].

Figura 1.1: Estrutura cristalina do nitreto de boro: (a) nitreto de boro hexagonal-h-BN; (b) nitreto de boro cúbico; (c) nitreto de boro wurzítico-w-BN, onde (\bullet) representa os átomos de boro e (\circ) representa os átomos de nitrogênio.

Na Tabela 1.1 comparamos algumas características do cBN, hBN com às do diamante[14].

O BN apresenta resistência à oxidação maior que o diamante. Uma propriedade marcante do cBN é sua dureza, que pode ser medida mesmo em cristais de tamanho reduzido. À pressão atmosférica, o cBN é estável até temperaturas de 1600 K [15, 16] e por não reagir com materiais ferrosos, se torna muito atrativo como ferramenta de corte para estes materiais e

Propriedades	diamante	c-BN	h-BN
estrutura	cúbica	cúbica	hexagonal
parâmetro de rede (Å)	3.657	3.615	6.661/2.504
distância interatômica (Å)	1.54	1.57	-
dureza $(\mathrm{kg}\mathrm{m}^{-2})$	1×10^{10}	7×10^9	—
principais dopantes	B, N	B, S, Si, Al, P, Be	—
condutividade térmica ($Wm^{-1}K^{-1}$)	2000	200 - 1300	45
coeficiente de expansão térmica $(\times 10^6 \mathrm{K^{-1}})$	4.5	4.2	$0.43(\perp) \ e4.4(\parallel)$
estabilidade a oxidação (°C)	600	1200	—
ponto de fusão (K)	4100	3246	3000
índice de refração (em $589.3\mathrm{nm}$)	2.417	1.5 - 2.117	1.65
"gap" de energia (eV)	5.47	6.1 - 6.6	5.2
constante dielétrica	5.58	5.6 - 8.0	4.0 - 4.3
resistividade elétrica (Ωm)	10^{14}	$10^8 - 10^{14}$	10^{5}
tensão de ruptura dielétrica (Vm^{-1})	10^{9}	$3 \times 10^8 - 1.5 \times 10^9$	_

Tabela 1.1: Propriedades do diamante e dos nitretos de boro cúbico e hexagonal.

para compostos de níquel e cobalto que degradam as ferramentas de corte muito rapidamente [15]. Apresenta *gap* de energia superior ao diamante e além de aceitar tanto dopagem do tipo "p"quanto "n", tornando-se atrativo como semicondutor.

As mesmas técnicas de crescimento têm sido empregadas para produzir tanto o c-BN como o diamante, dentre elas podemos citar: técnicas HPHT (alta pressão – alta temperatura, $P > 4.0 \times 10^9 \text{ Pa} - T > 1800 \text{ K}$) [14], técnicas CVD e técnicas PVD (deposição física a patir da fase vapor, do inglês, *Physical Vapour Deposition*). O BN na fase cúbica foi sintetizado pela primeira vez por Wentorf em 1957 [17] e desde então com o uso de novas técnicas [18], amostras maiores e de maior qualidade têm sido produzidas. O que tem despertado grande interesse na sua síntese devido ao conjunto de propriedades físicas, químicas, elétricas e ópticas. Na literatura, é possível evidenciar trabalhos de caracterização de filmes finos já na década de 70 [15], mas somente a partir de 1987 que os filmes finos de cBN foram caracterizados eficazmente.

Enquanto que o mecanismo de deposição de filmes de diamante é relativamente bem entendido, sabe-se que o hidrogênio exerce um papel fundamental na remoção do grafite e na estabilização das estruturas cúbicas nos filmes [19, 20], nada se sabe sobre os processos que conduzem a formação da fase cúbica e hexagonal do BN [21, 22, 23]. Apesar dos avanços obtidos na sintetização e caracterização dos filmes de BN ainda não é possível produzir filmes de cBN em escala comercial, muita pesquisa ainda é necessária para tentar encontrar uma rota química e/ou térmica para sintetizar este material e, também, identificar o processo que conduz a formação das fases cúbica e/ou hexagonal.

Um mecanismo cinético simplificado, composto por 26 espécies químicas e 67 reações elementares foi desenvolvido por P. R. P. Barreto (INPE) [24] e aplicado para simular o crescimento de filmes finos de BN hexagonal, crescido num reator CVD e por tocha de plasma, com isto foi possível identificar os precursores de crescimento [24]. Este mecanismo precisa ser extendido para incluir reações importantes nos sub-sistemas B/F/H, B/N/F, B/N/H e N/F/H. O novo mecanismo será composto por 35 espécies e 1012 reações, em que 895 reações precisam ter as taxas de reação determinadas, uma vez que não existem dados experimentais nem teóricos disponíveis na literatura. As formas de determinar as propriedades cinéticas de um sistema colisional reativo é via Teoria das Estruturas de Transição (TST) ou via Superfície de Energia Potencial (SEP), sendo a segunda mais dispendiosa computacionalmente, porém mais completa e se constitui em uma das perspectivas futuras dessa tese.

Com o objetivo de desenvolver estudos teóricos necessários para subsidiar os estudos experimentais foi estabelecida uma colaboração entre o grupo de Física Atômica Molecular da UnB e o Laboratório Associado de Plasma do INPE, nas pessoas do Prof. Dr. Ricardo Gargano e da Dra. Patrícia Regina Pereira Barreto, respectivamente, dando origem a vários trabalhos já publicados pelo grupo [25, 26, 27, 28, 29], sendo dois deles frutos dessa tese de doutorado, consistindo em determinar propriedades cinéticas de reações via TST. Inicialmente, foram estudados os sistemas $NF_x + F e NF_x + N$, sendo x = 1-3 e, posteriormente, a reação de associação $BF_2 + NF = BF_3 + N$. Contribuindo, dessa forma para o entendimento dos processos gasosos envolvidos no crescimento de filmes de BN.

Durante o crescimento de filmes de BN o $BF_3/N_2/H_2$ são usados como os reagentes e

pode-se observar a remoção preferencial da fase hBN, ao invés da fase cBN. Sendo assim, para aumentar essa taxa de remoção do hBN e melhorar a estabilização da fase cBN, têm sido realizados experimentos incluindo o NF_3 , na fase gasosa, e estes têm mostrado que a taxa de remoção da fase hBN aumenta com o fluxo do gás NF₃ [29], o que é bastante desejável.

Este estudo foi conduzido por meio de cálculos *ab initios* de estrutura eletrônica, sendo necessário, para tal, cálculos de energias eletrônicas, freqüências e geometrias para a estrutura de transição, reagentes e produtos envolvidos nas reações. No capítulo 2 é feita uma discussão sobre o problema molecular. O capítulo 3 descreve os fundamentos básicos da TST. O capítulo 4 se refere aos resultados obtidos com os cálculos de energias, frequências e geometrias de reagentes, estrutura de transição e produtos, taxas de reação e o caminho de mínima energia (do inglês, Minimal Energy Path – MEP) para as reações que compõem os sistemas $NF_x + F e NF_x + N e$ para o sistema BF_3N . O capítulo 5 se concentra na descrição teórica da SEP, bem como, nos modelos de ajustes para diátomos e SEP, e da técnica MBE (do inglês "Many Body Expansion"), juntamente com as funções analíticas utilizadas no processo de ajuste da SEP. No capítulo 6 é apresentado ainda resultados dos ajustes dos diátomos $(BF_2)F$, $(BF_2)N$, NF, $(NF_2)F$, (NF)F, F_2 , além do cálculo de suas constantes espectroscópicas e dos níveis rovibracionais. No capítulo 7, serão apresentadas as conclusões obtidas para os sistemas estudados, bem como, as perspectivas de trabalhos futuros. No apêndice A é descrito o ángulo de *skew* e no apêndice B estão os artigos publicados.

Capítulo 2 O Problema Molecular

2.1 Introdução

Para se estudar teoricamente, via mecância quântica, sistemas moleculares poliatômicos do tipo

$$A + BC \longleftrightarrow \begin{array}{c} AB + C \\ AC + B \end{array}$$

é necessário resolver a equação de Schrödinger associada a tais sistemas. Sabe-se que é possível resolver de forma exata a equação de Schrödinger para alguns sistemas. Para sistemas poliatômicos, é preciso lançar mão de certas aproximações, a fim de tornar o problema solúvel dentro da formulação de Schrödinger. A primeira simplificação consiste em considerar a equação de Schrödinger independente do tempo, podendo assim, ser separada em dois problemas: um relacionado com a parte eletrônica e outro com a parte nuclear. Essa simplificação é conhecida como aproximação de Born-Oppenheimer (ABO) [30].

A equação nuclear relaciona-se aos fenômenos da dinâmica molecular, entre eles, os movimentos vibracional e rotacional, os estados meta-estáveis, o processo de fotodissociação e os espalhamentos elástico, inelástico e reativo de moléculas. Dessa forma, a interação entre os núcleos é descrita pela SEP que traz informação de um estado eletrônico particular do sistema molecular e da energia de repulsão núcleo-núcleo.

A equação de Schrödinger eletrônica descreve os movimentos dos elétrons para uma dada configuração nuclear. Cada uma dessas configurações gera uma solução da energia no estado eletrônico de interesse. Porém, é sabido que para sistemas de muitos elétrons esta solução é obtida via métodos aproximativos. A maioria destes métodos baseia-se no método desenvolvido por Hartree e Fock(HF) [31]. Porém, nesse método não se leva em consideração a correlação eletrônica. O que impõe a necessidade de se utilizar métodos pós HF, onde a correlação eletrônica não é deixada de lado. Nas próximas seções deste capítulo será apresentada a formulação básica envolvida no problema molecular e discutidos alguns métodos utilizados para cálculos *ab inito* de sistemas colisionais reativos.

2.2 Formulação Básica

Como citado anteriormente, para descrever quanticamente uma molécula poliatômica qualquer, é necessário resolver a equação de Schrödinger independente do tempo não relativística [31]:

$$\widehat{H}\Psi(\overrightarrow{r},\overrightarrow{R}) = E\Psi(\overrightarrow{r},\overrightarrow{R})$$
(2.1)

onde $\Psi(\vec{r}, \vec{R})$ é a função de onda completa, E é a energia total do sistema, $\vec{R} \in \vec{r}$ representam todas as coordenadas dos núcleos e dos elétrons, respectivamente.

O operador hamiltoneano não-relativístico, em unidades atômicas, para uma molécula com N elétrons e M núcleos é dado por:

$$\widehat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} - \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}, \quad (2.2)$$

sendo os índices $i \in j$ referentes aos elétrons e $A \in B$ aos núcleos, M_A é a massa do núcleo A (em unidades de massa do elétron) e Z_A é seu número atômico, R_{AB} , $r_{Ai} \in r_{ij}$ são, respectivamente, as distâncias núcleo-núcleo, núcleo-elétron e elétron-elétron. Os efeitos de spin-órbita estão sendo desconsiderados nesse estudo.

O primeiro termo na equação (2.2) representa o operador de energia cinética dos elétrons; o segundo termo, o operador de energia cinética dos núcleos e os termos restantes representam as interações, elétron-núcleo, núcleo-núcleo e elétron-elétron, respectivamente. Como a interação elétron-núcleo é forte, não pode ser desprezada, isto faz com que tal hamiltoneano seja acoplado, impossibilitando a separação imediata deste numa parte eletrônica e outra nuclear.

Substituindo a equação (2.2) para o hamiltoneano na equação (2.1) temos:

$$\left[-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} - \sum_{A=1}^{M} \sum_{i=1}^{N} \frac{Z_{A}}{r_{Ai}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} \right] \Psi(\vec{r}, \vec{R}) = E \Psi(\vec{r}, \vec{R})$$
(2.3)

2.3 Aproximação de Born-Oppenheimer

O movimento de translação, por definição, ocorre homogeneamente na molécula, ou seja, não modifica as posições relativas das partículas que a constituem. Se os núcleos formassem uma estrutura rígida, tal estrutura poderia girar, ao que se chamaria rotação molecular. Entretanto, as distâncias internucleares e os ângulos entre as ligações vibram, enquanto que a estrutura nuclear, como um todo, gira. Ao movimento resultante desta superposição e interação de movimentos denomina-se rotação-vibração molecular.

O movimento relativo elétrons-núcleos reflete, evidentemente, o fato de ambos se moverem em relação a algum referencial fixo. Entretanto, como as velocidades eletrônicas são pelo menos mil vezes maiores do que as nucleares, é uma aproximação razoável desprezar a rotovibração ao se considerar o movimento dos elétrons em relação aos núcleos (ou dos núcleos em relação aos elétrons). Em outras palavras, é uma aproximação razoável considerar que, a cada momento ao longo do movimento roto-vibracional, a distribuição eletrônica espacial instantaneamente se ajusta às correspondentes posições nucleares, de modo a manter sempre mínima a energia molecular. Esta é a ABO, que permite resolver a equação de Schrödinger, para o movimento eletrônico em relação aos núcleos de uma molécula, considerando estes últimos fixos. Por outro lado, ela permite que a equação de Schrödinger para o movimento nuclear seja resolvida considerando-se a influência eletrônica como um potencial dependente das posições nucleares. Esta aproximação produz uma imensa simplificação matemática no estudo mecânico-quântico das moléculas, ao preço de introduzir nos resultados um erro geralmente desprezível quando comparado com outros, criados por outras aproximações freqüentemente usadas[32].

Em outras palavras, pode-se afirmar que a solução direta da equação (2.3) é inviável e praticamente impossível mesmo numericamente. Em função disso, o uso de aproximações faz-se necessário. Assim, a hipótese básica da ABO é que a razão entre as massas do elétron e do núcleo é suficientemente pequena de forma que os núcleos não acompanham a rápida mudança dos elétrons e podem ser considerados fixos[33]. Desta maneira, podemos parametrizar a dependência do termo de interação elétron-núcleo do hamiltoneano anterior e, assim, propor a seguinte expansão adiabática para a função de onda completa:

$$\Psi(\overrightarrow{r}, \overrightarrow{R}) = \phi(\overrightarrow{r}; \overrightarrow{R})\zeta(\overrightarrow{R})$$
(2.4)

sendo que $\phi(\vec{r}; \vec{R})$ representa a função de onda eletrônica, descreve o movimento dos elétrons e depende explicitamente das coordenadas eletrônicas e parametricamente das coordenadas nucleares, e $\zeta(\vec{R})$ representa a função de onda nuclear.

Substituindo a expressão (2.4) para a função de onda completa na equação (2.3) temos:

$$-\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2}\left[\phi(\overrightarrow{r};\overrightarrow{R})\zeta(\overrightarrow{R})\right] - \sum_{A=1}^{M}\frac{1}{2M_{A}}\nabla_{A}^{2}\left[\phi(\overrightarrow{r};\overrightarrow{R})\zeta(\overrightarrow{R})\right] \\ -\sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}}\phi(\overrightarrow{r};\overrightarrow{R})\zeta(\overrightarrow{R}) + \sum_{A=1}^{M}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}}{R_{AB}} + \sum_{i=1}^{N}\sum_{j>i}^{N}\frac{1}{r_{ij}}\phi(\overrightarrow{r};\overrightarrow{R})\zeta(\overrightarrow{R}) \\ = E\phi(\overrightarrow{r};\overrightarrow{R})\zeta(\overrightarrow{R}).$$

$$(2.5)$$

Como a função $\phi(\vec{r}; \vec{R})$ varia lentamente em (\vec{R}) , a seguinte aproximação pode ser feita:

=

$$\nabla_{A}^{2} \left[\phi(\overrightarrow{r}; \overrightarrow{R}) \zeta(\overrightarrow{R}) \right] = \nabla_{A}^{2} \phi(\overrightarrow{r}; \overrightarrow{R}) + 2 \nabla_{A} \phi(\overrightarrow{r}; \overrightarrow{R}) \cdot \nabla \zeta(\overrightarrow{R}) + \phi(\overrightarrow{r}; \overrightarrow{R}) \left[\nabla_{A}^{2} \zeta(\overrightarrow{R}) \right] \\ \approx \phi(\overrightarrow{r}; \overrightarrow{R}) \left[\nabla_{A}^{2} \zeta(\overrightarrow{R}) \right].$$
(2.6)

Com esta aproximação o acoplamento entre as funções de onda eletrônica e nuclear $(\vec{\nabla}_A \phi \cdot \vec{\nabla} \zeta)$ pode ser desprezado na equação (2.6). Este desacoplamento é conhecido como ABO ou aproximação adiabática.

Desta forma, substituindo a equação (2.6) em (2.5), após alguns cálculos algébricos, tem-se:

$$\left[\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2} + \sum_{A=1}^{M}\sum_{i=1}^{N}\frac{Z_{A}}{r_{Ai}} - \sum_{i=1}^{N}\sum_{j>i}^{N}\frac{1}{r_{ij}}\right]\phi(\overrightarrow{r};\overrightarrow{R}) = -\varepsilon(\overrightarrow{R})\phi(\overrightarrow{r};\overrightarrow{R})$$
(2.7)

que é a chamada equação de Schrödinger eletrônica, onde $\phi(\vec{r}; \vec{R}) \in \varepsilon(\vec{R})$ são, respectivamente, a função de onda eletrônica e sua correspondente energia eletrônica para uma molécula, cujos núcleos encontram-se numa determinada configuração \vec{R} . Tal equação deve ser resolvida para cada configuração nuclear desde a zona de forte interação até a de fraca interação nuclear, fornecendo assim, um conjunto de funções de onda eletrônicas e suas respectivas energias eletrônicas $\varepsilon(\vec{R})$. Entretanto, por questões de praticidade, são utilizados apenas alguns valores para a energia eletrônica e, a partir de uma interpolação destes é gerada a função $\varepsilon(\vec{R})$. Essa função fornece a energia eletrônica para cada configuração nuclear e constitue a SEP do sistema, $[V(\vec{R})]$. Dessa forma, o movimento dos núcleos de uma molécula é regido pela SEP. Esta traz informações sobre o potencial de interação entre os núcleos e sobre a energia eletrônica. A segunda equação, obtida a partir da substituição acima, é conhecida como equação de Schrödinger nuclear independente do tempo, é dada por:

$$\left[-\sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 + V(\vec{R})\right] \zeta(\vec{R}) = E\zeta(\vec{R})$$
(2.8)

onde $V(\overrightarrow{R})$ é a SEP do sistema e é dado por:

$$V(\vec{R}) = \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{R_{AB}} + \varepsilon(\vec{R})$$
(2.9)

A solução da equação (2.8) descreve a vibração, a rotação e a translação da molécula. A equação 2.7 pode ser resolvida por métodos de cálculo distintos, dentre estes podem ser citados os seguintes métodos *ab initio*: Hatree-Fock (HF) [34, 35], *Configuration Interaction* (CI) [31, 33], *Møller Plesset Theory* (MPn) [36], *Coupled Cluster Aproximation* (CCA) [37, 38], *Density functional Theory* (DFT) [39], *Quadratic Configuration Interaction* (QCI) [31], *Complete Active Space Multiconfiguration SCF* (CASSCF) [31, 33], dentre outros, conhecidos como métodos pós HF. Existem ainda os métodos semi-empíricos: AM1 [40], PM3 [41], MNDO [42], dentre outros. Nas seções seguintes serão discutidos os principais métodos *ab initio* empregados nos cálculos realizados nesta tese.

2.4 Aproximação de Hartree-Fock

Resolver a equação de Schrödinger, tanto a parte eletrônica quanto a nuclear, constituise num árduo desafio para físicos e químicos desde o nascimento da mecânica quântica. Excetuando-se alguns casos particulares, em que pode-se resolver analiticamente essa equação, como o de uma partícula aprisionada numa caixa, o oscilador harmônico, o rotor rígido e o átomo de hidrogênio, sistemas multi-eletrônicos oferecem uma dificuldade extrema de solução, em função do acoplamento dos termos de repulsão eletrônica.

Dentre os modelos matemáticos utilizados para representar a estrutura eletrônica de sistemas microscópicos, um dos modelos mais valiosos foi o proposto por D. Hartree e V. Fock, ou simplesmente, modelo HF [34]. Na tentativa de solucionar o problema da separação das interações intereletrônicas, a aproximação de HF tornou-se o método padrão para iniciarse qualquer estudo de representação de estados eletrônicos de átomos, moléculas, etc. Essa aproximação é o primeiro passo rumo a aproximações mais sofisticadas utilizadas em cálculos de estrutura eletrônica molecular, incluindo os efeitos da correlação eletrônica, consistindo basicamente em supor que a interação entre os elétrons de uma molécula ocorre por meio de um campo médio.

Considerando um sistema de N elétrons e desprezando a repulsão elétron-elétron, o hamiltoneano eletrônico total pode ser escrito como a soma de operadores que descrevem a energia cinética e potencial do *i*-ésimo elétron:

$$\widehat{H} = \sum_{i=1}^{N} \widehat{h}(i), \qquad (2.10)$$

onde $\hat{h}(i)$ trata-se do hamiltoneano efetivo a um elétron e inclui na média os efeitos da repulsão elétron-elétron. Dessa forma, o operador $\hat{h}(i)$ é dado por um conjunto de autofunções de spin orbitais $\{\chi_j\}$, na forma: $\hat{h}(i) \chi_j(\mathbf{x}_i) = \varepsilon_j \chi_j(\mathbf{x}_i)$. Como \hat{H} é a soma de todos os N hamiltoneanos a um elétron, isto implica que, uma autofunção para \hat{H} deve ser dada pelo produto das funções de onda de spins orbitais para cada elétron, o que é denominado como Produto de Hartree [31, 33]. Sendo assim, a expressão para a função de onda do produto de Hartree é dada por

$$\phi^{HP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N}\right) = \chi_{i}\left(\mathbf{x}_{1}\right) \chi_{j}\left(\mathbf{x}_{2}\right) \cdots \chi_{k}\left(\mathbf{x}_{N}\right), \qquad (2.11)$$

onde ϕ^{HP} é autofunção de \widehat{H} e é expressa por

$$\widehat{H}\phi^{HP} = E\phi^{HP},\tag{2.12}$$

sendo E o autovalor dado pela soma das energias de cada um dos spin orbitais que aparecem na autofunção ϕ^{HP} , ou seja:

$$E = \varepsilon_i + \varepsilon_j + \dots + \varepsilon_k. \tag{2.13}$$

O produto de Hartree é uma função de onda não correlacionada ou uma função de onda de elétrons independentes, o que gera uma deficiência básica no mesmo. Dessa forma, não é feita a distinção entre os elétrons, mas mesmo assim consegue-se diferenciar o elétron 1 como sendo ocupante do spin orbital χ_i , e o elétron 2 como ocupante do spin orbital χ_j e, assim por diante.

O princípio de anti-simetria ou princípio de exclusão de Pauli [31] não faz distinção entre elétrons idênticos e requer que a função de onda eletrônica seja antisimétrica com relação à troca de coordenadas espaciais e de spin de quaisquer dois elétrons da seguinte forma

$$\phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) = -\phi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right). \tag{2.14}$$

Sendo que nesse formalismo o elétron é descrito não apenas pelas coordenadas espaciais que formam o vertor \mathbf{r} , mas também pela coordenada de spin ω . Assim o vetor \mathbf{x} pode ser escrito como

Como já citado anteriormente, o produto de Hartree não satisfaz o princípio de exclusão de Pauli, portanto é preciso obter uma função de onda correta que obedeça ao princípio de antissimetria. Considerando dois elétrons, com o elétron 1 ocupando o spin orbital $\chi_i(\mathbf{x}_1)$ e o elétron 2 ocupando o spin orbital $\chi_j(\mathbf{x}_2)$,tem-se:

$$\phi_{12}^{HP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) = \chi_{i}\left(\mathbf{x}_{1}\right)\chi_{j}\left(\mathbf{x}_{2}\right).$$

$$(2.16)$$

Mas por outro lado, se o elétron 1 ocupar o spin orbital χ_j e o elétron 2 ocupar o spin orbital $\chi_i,$ tem-se

$$\phi_{21}^{HP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) = \chi_{i}\left(\mathbf{x}_{2}\right)\chi_{j}\left(\mathbf{x}_{1}\right).$$

$$(2.17)$$

Em cada um destes produtos de Hartree é clara a distingüibilidade dos elétrons. Para se levar em conta a indistingüibilidade dos elétrons e, simultaneamente, obedecer ao princípio de anti-simetria, é preciso fazer uma combinação linear apropriada desses dois produtos de Hartree

$$\phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) = 2^{-1/2} \left[\chi_{i}\left(\mathbf{x}_{1}\right) \chi_{j}\left(\mathbf{x}_{2}\right) - \chi_{j}\left(\mathbf{x}_{1}\right) \chi_{i}\left(\mathbf{x}_{2}\right)\right]$$
(2.18)

onde a constante $2^{-1/2}$ é o fator de normalização. O sinal negativo assegura que $\phi(\mathbf{x}_1, \mathbf{x}_2)$ é antisimétrica com respeito à troca das coordenadas de dois elétrons.

A função de onda da equação (2.18) pode ser reescrita como um determinante da seguinte forma,

$$\phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) = 2^{-1/2} \begin{vmatrix} \chi_{i}\left(\mathbf{x}_{1}\right) & \chi_{j}\left(\mathbf{x}_{1}\right) \\ \chi_{i}\left(\mathbf{x}_{2}\right) & \chi_{j}\left(\mathbf{x}_{2}\right) \end{vmatrix}$$
(2.19)

que é conhecido como determinante de Slater.

Para descrever a função de onda de um sistema de *N*-elétrons, podemos generalizar a equação (2.19) como sendo:

$$\phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right) = (N!)^{-1/2} \begin{vmatrix} \chi_{i}\left(\mathbf{x}_{1}\right) & \chi_{j}\left(\mathbf{x}_{1}\right) & \cdots & \chi_{k}\left(\mathbf{x}_{1}\right) \\ \chi_{i}\left(\mathbf{x}_{2}\right) & \chi_{j}\left(\mathbf{x}_{2}\right) & \cdots & \chi_{k}\left(\mathbf{x}_{2}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{i}\left(\mathbf{x}_{N}\right) & \chi_{j}\left(\mathbf{x}_{N}\right) & \cdots & \chi_{k}\left(\mathbf{x}_{N}\right) \end{vmatrix}$$
(2.20)

onde, o fator $(N!)^{-1/2}$ é o fator de normalização. Neste determinante temos N-elétrons que ocupam N spin orbitais sem especificar qual elétron está em que orbital.

Em síntese, a aproximação de HF é a substituição de um problema complexo de Nelétrons por N problemas de um elétron e combina o princípio variacional com a suposição de que a função de onda que descreve o sistema molecular é um determinante de Slater. A vantagem de descrever esta função de onda como um determinante é que este obedece o princípio de exclusão de Pauli. Isto é, a função de onda é antissimétrica em relação à troca das coordenadas de dois elétrons. E trocar as coordenadas de dois elétrons corresponde a trocar duas linhas do determinante de Slater, o que leva à troca do sinal do determinante. Dois elétrons ocupando o mesmo spin orbital, corresponde à duas colunas iguais nesse determinante e faz com que o este seja igual a zero. Desta forma, a conclusão de tudo isto é que mais de um elétron não pode ocupar o mesmo spin orbital (princípio de exclusão de Pauli). Antisimetrizar um produto de Hartree para obter um determinante de Slater introduz efeitos de troca, assim chamados pelo fato de requererem que $|\phi|^2$ seja invariante à troca de suas coordenadas espaciais e de spin de dois elétrons quaisquer. Em particular, um determinante de Slater incorpora a correlação de troca, onde o movimento de dois elétrons com spins paralelos é correlacionado.

Portanto, a função de onda antisimétrica pode ser usada para descrever o estado fundamental de um sistema de *N*-elétrons e também pode ser descrita por um único determinante de Slater, dado pela equação (2.20). Por questões de simplificação será usado a notação

$$|\phi_0\rangle = |\chi_1\chi_2\cdots\chi_a\chi_b\cdots\chi_N\rangle \tag{2.21}$$

para descrever tal determinante. Com isto, o conjunto de spin orbitais moleculares é expresso como

$$\chi(\mathbf{x}) = \begin{cases} \phi(\mathbf{r}) \alpha(\omega) \\ \text{ou} \\ \phi(\mathbf{r}) \beta(\omega) \end{cases}$$
(2.22)

Sendo assim, a teoria é não-relativística devido à introdução de duas funções de spin $\alpha(\omega) \in \beta(\omega)$, que correspondem aos spins $up \in down$, respectivamente; e são funções de uma variável de spin (ω) não específica. A forma de expressar a atuação destas funções é especificar que o conjunto das duas funções de spin é completo e que elas são ortonormais,

$$\int d\omega \alpha^*(\omega) \,\alpha(\omega) = \int d\omega \beta^*(\omega) \,\beta(\omega) = 1$$
(2.23)

e

$$\int d\omega \alpha^*(\omega) \beta(\omega) = \int d\omega \beta^*(\omega) \alpha(\omega) = 0.$$
(2.24)

De acordo com o princípio variacional [31] é dito que, para uma dada função de onda normalizada $|\phi\rangle$ que satisfaça as condições de contorno apropriadas, o valor esperado do hamiltoneano é superior à energia do estado fundamental exata, ou seja, se

$$\langle \phi | \phi \rangle = 1 \tag{2.25}$$

então,

$$\langle \phi | \, \widehat{H} \, | \phi \rangle \ge E_0. \tag{2.26}$$

A igualdade é válida somente quando $|\phi\rangle$ é idêntica à $|\phi_0\rangle$ e \widehat{H} é o hamiltoneano eletrônico total. Com isto, a questão agora é encontrar a "melhor" função de onda, ou os spins orbitais que minimizem a energia eletrônica E_0 , dada por

$$E_{0} = \langle \phi_{0} | \hat{H} | \phi_{0} \rangle$$

=
$$\sum_{a}^{N} \langle \chi_{a} | \hat{h} | \chi_{a} \rangle + \frac{1}{2} \sum_{ab}^{N} \langle \chi_{a} \chi_{b} | | \chi_{a} \chi_{b} \rangle \qquad (2.27)$$

onde,

$$\langle \chi_{a} | \hat{h} | \chi_{a} \rangle \equiv \langle a | h | a \rangle = \int d\mathbf{x}_{1} \chi_{a}^{*} (\mathbf{x}_{1}) \hat{h} (\mathbf{r}_{1}) \chi_{a} (\mathbf{x}_{1})$$

$$\langle \chi_{a} \chi_{b} | | \chi_{a} \chi_{b} \rangle \equiv \langle a b | | a b \rangle = \langle a b | a b \rangle - \langle a b | b a \rangle$$

$$= \int d\mathbf{x}_{1} d\mathbf{x}_{2} \chi_{a}^{*} (\mathbf{x}_{1}) \chi_{b}^{*} (\mathbf{x}_{2}) r_{12}^{-1} (1 - P_{12}) \chi_{a} (\mathbf{x}_{1}) \chi_{b} (\mathbf{x}_{2}) .$$

$$(2.28)$$

 P_{12} é um operador de permutação que troca a coordenada do elétron 1 com a do elétron 2. O termo $\langle ab | ba \rangle$ surge devido à exigência de que as funções de onda sejam antisimétricas. Pode-se variar sistematicamente os spin orbitais $\{\chi_a\}$, de acordo com o princípio variacional, mantendo a condição de vínculo destes serem ortonormais, ou seja,

$$\langle \chi_i | \chi_j \rangle = \delta_{ij}. \tag{2.29}$$

Esta equação, para os melhores spins orbitais é a equação íntegro-diferencial de HF

$$\widehat{h}(1)\chi_{a}(1) + \sum_{b \neq a} \left[\int d\mathbf{x}_{2} |\chi_{b}(2)|^{2} r_{12}^{-1} \right] \chi_{a}(1) - \sum_{b \neq a} \left[\int d\mathbf{x}_{2} \chi_{b}^{*}(2) \chi_{a}(2) r_{12}^{-1} \right] \chi_{b}(1) = \varepsilon_{a} \chi_{a}(1)$$
(2.30)

onde

$$\hat{h}(1) = -\frac{1}{2}\nabla_1^2 - \sum_A \frac{Z_A}{r_{1A}}$$
(2.31)

que é conhecido como operador de uma partícula, como dito anteriormente. A energia do spin orbital χ_a é ε_a .

A equação de HF, equação (2.30), pode ser reescrita como uma equação de autovalores

$$\left[h(1) + \sum_{b \neq a} J_b(1) - \sum_{b \neq a} K_b(1)\right] \chi_a(1) = \varepsilon_a \chi_a(1)$$
(2.32)

onde $J_b(1)$ é o operador de Coulomb e é dado por:

$$J_b(1) = \int d\mathbf{x}_2 \left| \chi_b(2) \right|^2 r_{12}^{-1} \chi_a(1)$$
(2.33)

 $K_b(1)$ sendo o operador de troca e é expresso por:

$$K_b(1) = \int d\mathbf{x}_2 \chi_b^*(2) \,\chi_a(2) \, r_{12}^{-1} \chi_b(1) \,, \qquad (2.34)$$

que só tem sentido quando atua em um spin orbital $\chi_a(1),$ isto é,

$$K_b(1)\chi_a(1) = \left[\int d\mathbf{x}_2 \chi_b^*(2) r_{12}^{-1} \chi_a(2)\right] \chi_a(1).$$
 (2.35)

Para o operador de Coulomb, tem-se:

$$J_b(1)\chi_a(1) = \left[\int d\mathbf{x}_2 \chi_b^*(2) r_{12}^{-1} \chi_a(2)\right] \chi_b(1) \,. \tag{2.36}$$

Os valores esperados dos potenciais de coulomb e de troca J_b e K_b , são obtidos através das integrais:

$$\langle \chi_a(1) | J_b(1) | \chi_a(1) \rangle = \int d\mathbf{x}_1 d\mathbf{x}_2 \chi_a^*(1) \chi_a(1) r_{12}^{-1} \chi_b^*(2) \chi_b(2) , \qquad (2.37)$$

$$\langle \chi_a(1) | K_b(1) | \chi_a(1) \rangle = \int d\mathbf{x}_1 d\mathbf{x}_2 \chi_a^*(1) \chi_b(1) r_{12}^{-1} \chi_b^*(2) \chi_a(2) .$$
 (2.38)

Analisando as duas últimas equações acima, pode se notar que para b = a na equação (2.32), tem-se

$$[J_a(1) - K_a(1)] \chi_a(1) = 0, \qquad (2.39)$$

portanto, restringindo a somatória somente em b e, então, definir o operador de Fock, f, por:

$$f(1) = h(1) + \sum_{b} \left[J_{b}(1) - K_{b}(1) \right].$$
(2.40)

Desta forma, tem-se a equação de HF, na forma canônica, dada por

$$f |\chi_a\rangle = \varepsilon_a |\chi_a\rangle$$
, com $a = 1, 2, ..., N.$ (2.41)

O operador de Fock f(1) é a soma do operador de um elétron h(1) e um operador potencial efetivo de um-elétron, chamado potencial de HF $v^{HF}(1)$, (PHF) definido por:

$$v^{HF}(1) = \sum_{b} \left[J_{b}(1) - K_{b}(1) \right].$$
(2.42)

Este potencial, é o potencial médio sentido pelo elétron 1 devido aos outros N - 1 elétrons. Reescrevendo o operador de Fock, definido pela equação (2.40), este passa a ser expresso por:

$$f(1) = h(1) + v^{HF}(1).$$
(2.43)

As equações de HF formam um conjunto de equações de autovalores com os spin orbitais sendo as autofunções e as energias dos spins orbitais os autovalores. A solução exata para esta equação íntegro-diferencial corresponde aos spin orbitais exatos de HF. O PHF $v^{HF}(i)$ sentido pelo *i*-ésimo elétron depende dos spins orbitais dos outros elétrons, isto é, o operador de Fock depende das autofunções $|\chi_a\rangle$ que se quer determinar. Desta maneira, a equação de HF é não-linear e pode ser resolvida interativamente. Os N spins orbitais com energias inferiores são chamados de spin orbitais ocupados. O determinante de Slater formado por estes orbitais é a função de onda HF do estado fundamental $|\phi_0\rangle$ e é a melhor aproximação variacional para o estado fundamental do sistema, na forma de um único determinante. Os spins orbitais ocupados são designados por a, b, c, ... $(\chi_a, \chi_b, ...)$ e o restante dos membros do conjunto $\{\chi_{2K}\}$ são chamados de spin orbitais virtuais que serão representados por $r, s, t, ... (\chi_r, \chi_s, ...)$. A representação do determinante formado por estes spin orbitais pode ser vista na Figura(2.1).

Figura 2.1: Representação pictórica dos spins orbitais ocupados $(\chi_{1...}\chi_N)$ e dos virtuais $(\chi_{N+1...}\chi_{2k})$.

A priori, eles são um número infinito de soluções para a equação de HF, equação 2.30, e um número infinito de spin orbitais virtuais. Na prática, a equação de HF é resolvida introduzindo um conjunto finito de funções de base espaciais conhecidas $\{\varphi_{\mu}(\mathbf{r}) | \mu = 1, 2, ..., K\}$, que são as equações de HF-Roothaan [31].

Em geral, o conjunto de bases é finito, fazendo com que a solução obtida não seja a solução de HF exata e, sim, uma aproximação SCF (do inglês *self consistent field*). A

solução SCF aproxima-se rapidamente da solução de HF, isto é, os spins orbitais que obtémse, aproximam-se dos spin orbitais exatos de HF. Na maioria dos casos, o método de HF fornece em média 98% da energia total (soma das energias eletrônicas e repulsão nuclear) não-relativística do sistema. A energia restante é a energia de correlação que pode ser calculada utilizando outros métodos, chamados pós HF, como será descrito a seguir.

2.5 O Método de Interações de Configurações e Aproximações Perturbativas

A energia obtida pelo método HF possui, em sua essência, um erro que está relacionado com a correlação eletrônica, ou seja, as interações eletrônicas são tratadas como uma interação média autoconsistente [33]. Este erro é uma característica do método variacional, baseado em um único determinante e a origem desse erro advém do fato que no modelo de partículas independentes, visto anteriormente, é feita a aproximação de que as partículas se movem em um campo médio, gerado por todas as outras partículas, o que implica em desprezar a correlação dos movimentos individuais das mesmas. Então, a energia de correlação pode ser tratada como sendo a diferença entre a energia obtida pelo método HF restrito e a energia exata E_0 , não relativística do sistema, como mostra a equação a seguir:

$$E_{corr} = E_0 - E_{HF}.$$
 (2.44)

Para a obtenção da energia de correlação eletrônica pode-se utilizar de vários métodos teóricos, dentre eles serão descritos CI, MPn e o método CCA.

Antes de se tratar dos métodos teóricos de cálculo utizados para a obtenção da energia de correlação eletrôncia propriamente ditos, faz-se necessário discutir, mais aprofundadamente, o que vem a ser essa energia de correlação eletrônica.

Do modelo apresentado por HF, de partículas independentes, percebe-se que embora seja um método qualitativo que fornece um valor relativamente preciso para a energia, deixa a desejar no que se refere a sua essência, ou seja, não é um modelo suficientemente acurado, porque despreza a energia de correlação entre as partículas. Se o hamiltoneano (2.2) fosse apenas uma soma de operadores a um elétron, seria perfeitamente possível separar as variáveis da equação (2.1) e a função de onda total seria então um produto de n funções (produto Hartree) a uma partícula $|\chi_i(\vec{x}_i)\rangle$, cada uma sendo autofunção do operador a uma partícula correspondente. Contudo, a equação de Schrödinger eletrônica exige a anti-simetria através do Princípio de exclusão de Pauli e um operador antisimetrizador, dado pelo termo

$$\widehat{A} = \frac{1}{N!} \sum_{i}^{N!} (-1)^{p_i} \widehat{\wp}_i \tag{2.45}$$

é introduzido no produto Hartree, originando os determinantes de Slater (como já visto anteriormente, em tratamento equivalente feito na seção (2.4)). Contudo, o hamiltoneano (2.2) contém uma parcela de operadores a duas partículas que é o termo de repulsão elétronelétron, que pode ser denominado e aproximado para a forma

$$\widehat{V}_e = \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \frac{1}{r_{ij}} \rightarrow \sum_{i=1}^N \widehat{\upsilon}^{HF}(\overrightarrow{r}_i)$$
(2.46)

onde \hat{v}^{HF} é o campo médio de HF e é composto pela soma dos operadores de Coulomb e troca ($J \in K$), conforme equação (2.42). Resumindo, pode-se dizer que o método HF fornece as melhores funções a uma partícula $|\chi_i\rangle$, de modo que a função de onda $|\phi_0\rangle$ (determinante de Slater) dê um mínimo para a energia $E_0 = \langle \phi_0 | \hat{H} | \phi_0 \rangle$. Certamente, a função de onda monodeterminantal não fornece uma solução exata para a equação de Schrödinger eletrônica, ou seja, $\hat{H} | \phi_0 \rangle = E_0 | \phi_0 \rangle$. Dessa forma, parte do erro no método HF advém do fato que o operador a duas partículas (2.46) não pode ser reescrito exatamente como uma soma de operadores a uma partícula. Através da densidade de probabilidade é possível descrever os erros gerados pelo uso da função de onda $|\phi_0\rangle$. Primeiro, considere o caso em que dois elétrons com spins diferentes são representados pela função de onda

$$|\phi_0(\vec{x}_1, \vec{x}_2)\rangle = |\varphi_1(\vec{r}_1)\alpha(\omega_1), \varphi_2(\vec{r}_2)\beta(\omega_2)\rangle.$$
(2.47)

A probabilidade de se encontrar o elétron 1 em \overrightarrow{r}_1 e o elétron 2 em \overrightarrow{r}_2 é dado por

$$P(\overrightarrow{r}_{1},\overrightarrow{r}_{2})d\overrightarrow{r}_{1}d\overrightarrow{r}_{2} = d\overrightarrow{r}_{1}d\overrightarrow{r}_{2}\int d\omega_{1}d\omega_{2} \left|\phi_{0}(\overrightarrow{x}_{1},\overrightarrow{x}_{2})\right|^{2}$$

$$= d\overrightarrow{r}_{1}d\overrightarrow{r}_{2}\int d\omega_{1}d\omega_{2} \left|\begin{array}{c}\varphi_{1}(\overrightarrow{r}_{1})\alpha(\omega_{1})\varphi_{2}(\overrightarrow{r}_{2})\beta(\omega_{2})-\\\varphi_{1}(\overrightarrow{r}_{2})\alpha(\omega_{2})\varphi_{2}(\overrightarrow{r}_{1})\beta(\omega_{1})\end{array}\right|^{2}$$

$$= \frac{1}{2}\left[\left|\varphi_{1}(\overrightarrow{r}_{1})\right|^{2}\left|\varphi_{2}(\overrightarrow{r}_{2})\right|^{2}+\left|\varphi_{1}(\overrightarrow{r}_{2})\right|^{2}\left|\varphi_{2}(\overrightarrow{r}_{1})\right|^{2}\right]d\overrightarrow{r}_{1}d\overrightarrow{r}_{2}(2.48)$$

Esta equação mostra que a probabilidade de que dois elementos de volume sejam ocupados simultaneamente por dois elétrons, um com spin α e outro com spin β , é dada apenas pelo produto de cada um dos dois eventos ocorrerem independentemente, ou seja, sem a referência do outro. Desta forma, pode se dizer que não há correlação entre os elétrons de spins opostos. Levando em conta ainda esse caso, mas agora com os dois elétrons no mesmo orbital ($\varphi_1 = \varphi_2$) e $\overrightarrow{r}_1 = \overrightarrow{r}_2 = \overrightarrow{r}$, tem-se

$$P(\overrightarrow{r}, \overrightarrow{r}) = \left|\varphi_1(\overrightarrow{r})\right|^4 \neq 0.$$
(2.49)

Significando que existe uma probabilidade finita de que os dois elétrons estejam no mesmo lugar no espaço. O que não é possível, uma vez que a interação coulombiana entre os elétrons contém uma singularidade para distância nula. Este fato surge da aproximação de campo médio em que os elétrons não são tratados como cargas puntuais.

Para o caso em que os dois elétrons possuem os mesmos spins, por exemplo spins α , a função de onda é

$$|\phi_0(\overrightarrow{x}_1, \overrightarrow{x}_2)\rangle = |\varphi_1(\overrightarrow{r}_1 \alpha(\omega_1))| \varphi_2(\overrightarrow{r}_2 \alpha(\omega_2))\rangle$$
(2.50)

e a probabilidade de se encontrar o elétron 1 em \overrightarrow{r}_1 e o elétron 2 em \overrightarrow{r}_2 é dada por

$$P(\vec{r}_{1}, \vec{r}_{2})d\vec{r}_{1}d\vec{r}_{2} = \frac{1}{2}\{|\varphi_{1}(\vec{r}_{1})|^{2}|\varphi_{2}(\vec{r}_{2})|^{2} + |\varphi_{1}(\vec{r}_{2})|^{2}|\varphi_{2}(\vec{r}_{1})|^{2} -\varphi_{1}^{*}(\vec{r}_{1})\varphi_{2}^{*}(\vec{r}_{2})\varphi_{1}(\vec{r}_{2})\varphi_{2}(\vec{r}_{1}) -\varphi_{1}^{*}(\vec{r}_{2})\varphi_{2}^{*}(\vec{r}_{1})\varphi_{1}(\vec{r}_{2})\varphi_{2}(\vec{r}_{2})\}d\vec{r}_{1}d\vec{r}_{2}.$$
(2.51)

Para o caso especial $\overrightarrow{r}_1 = \overrightarrow{r}_2 = \overrightarrow{r}$ obtém-se $P(\overrightarrow{r}, \overrightarrow{r}) = 0$, ou seja, os dois elétrons com spins iguais não podem ocupar o mesmo espaço. Então, conclui-se com esses casos, que em
relação a função de onda monodeterminantal, os elétrons de mesmo spin são correlacionados, enquanto que para os elétrons de spins contrários, o mesmo não acontece. Desse modo, a correlação no método HF é incompleta.

A energia de correlação é definida por Löwdin [43] como:

"A energia de correlação (E_{corr}) para um estado em questão, com respeito a um hamiltoneano específico, é a diferença entre o autovalor exato (E_0) do hamiltoneano e seu valor esperado (E_{HF}), para o estado em consideração", da forma definida na equação (2.53).

A título de informação, vale a pena ressaltar que o desenvolvimento teórico e computacional de metodologias pós HF, como as citadas acima, teve o envolvimento e a participação assídua de diversos grupos e as pesquisas realizadas, nesse sentido, foram tão bem sucedidas que renderam o prêmio Nobel de Química a J. Pople em 1998.

2.5.1 Configurações Adaptadas de Spin

Como já mencionado anteriormente, a aproximação de HF consiste em utilizar como função de estado um único determinante, na forma

$$|\phi\rangle = |\chi_1\chi_2...\chi_a\chi_b...\chi_N\rangle \tag{2.52}$$

onde os spin-orbitais χ_i são determinados pelo método variacional e são soluções das equações de HF. Para um dado estado, um subconjunto destes spin-orbitais estará ocupado enquanto os restantes estarão desocupados. Como os $\chi'_i s$ formam um conjunto completo de funções de uma partícula é possível construir através deles um conjunto completo de funções de N partículas [44], utilizando de forma sistemática os orbitais, bem como, os determinantes como base do espaço de Hilbert. Se N for o número de elétrons do sistema e 2k > N o número de spin orbitais usados em (2.52) o número de elementos distintos desta base é dado por

$$\binom{2k}{N} = \frac{(2k)!}{N!(2k-N)!}.$$
(2.53)

Os determinantes dessa base são formados considerando como referência o estado fundamental HF $|\phi_0\rangle$ e as excitações possíveis. Um determinante é dito mono-excitado, $|\phi_a^r\rangle$, quando um elétron, então ocupando o spin-orbital χ_a no estado fundamental é promovido para um spin-orbital χ_r , então desocupado, como indica a Figura(2.2).

Figura 2.2: Representação pictórica de uma configuração mono-excitada.

De forma similar, um determinante é duplamente excitado, $|\phi_{ab}^{rs}\rangle$, quando dois elétrons antes ocupando os spin-orbitais χ_a e χ_b são promovidos aos spin-orbitais χ_r e χ_s , respectivamente.

A base dos determinantes, com o número de elementos dado pela equação (2.53), forma um conjunto completo. O método CI baseia-se em construir o auto-estado $|\phi\rangle$ de \hat{H} como combinação linear desses determinantes de Slater, ou seja, propõe-se que

$$|\Phi\rangle = C_0 |\phi_0\rangle + \sum_{a,r} C_a^r |\phi_a^r\rangle + \sum_{\substack{a < r \\ r < s}} C_{ab}^{rs} |\phi_{ab}^{rs}\rangle + \sum_{\substack{a < r < c \\ r < s < t}} C_{abc}^{rst} |\phi_{abc}^{rst}\rangle + \dots$$
(2.54)

onde os C's são os parâmetros a serem determinados usando o princípio variacional e $|\phi_0\rangle$ é o estado HF tomado como referência para construir os determinantes com excitações.

A expansão da equação (2.54) é a função de estado para o CI completo (FCI, originado da sigla *Full-CI*). No caso em que a expansão (2.54) contém um número limitado de excitações, o CI é dito truncado.

A função de onda para o hamiltoneano eletrônico \hat{H} escrita como uma combinação linear de determinantes de Slater é dada por

$$|\phi(\overrightarrow{x}_1, \overrightarrow{x}_2, ..., \overrightarrow{x}_N)\rangle = \sum_i C_i |\phi_i(\overrightarrow{x}_1, \overrightarrow{x}_2, ..., \overrightarrow{x}_N)\rangle.$$
(2.55)

Em mecânica quântica, a situação de N elétrons interagentes submetidos a um campo externo, como o campo dos núcleos atômicos de uma molécula, é um problema de partículas idênticas e indistinguíveis [45]. O espaço de configurações (2.53) em que N elétrons são agrupados em k orbitais espaciais no conjunto de $(2k)^N$ produtos de spin-orbitais $\chi_{i_1}(\vec{x}_1)...\chi_{i_N}(\vec{x}_N)$ pode ser reduzido substancialmente através das seguintes considerações de simetria:

(a) Simetria das permutações: origina-se do tipo de partículas do sistema (os elétrons), que junto com a indistinguibilidade e o spin semi-inteiro determinam a anti-simetria da função de estado $|\phi_0(\vec{x}_1, \vec{x}_2, ..., \vec{x}_N)\rangle$ em toda e qualquer situação que se possa encontrar o sistema, ou seja, os operadores de permutação comutam com o hamiltoneano do sistema;

(b) Simetria espacial (grupo de ponto): origina-se das características de simetria espacial da molécula no espaço euclidiano \mathbb{R}^3 e implica que o operador $\hat{H}(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N)$ que descreve o sistema seja invariante pelas transformações de geometrias, cujo efeito é a troca de coordenadas dos núcleos idênticos;

(c) Simetria de spin: surge em razão do hamiltoneano $\widehat{H}(\overrightarrow{r}_1, \overrightarrow{r}_2, ..., \overrightarrow{r}_N)$ não contertermos de spin, comutando com os operadores de spin total ao quadrado, \widehat{S}^2 , e sua projeção no eixo z, \widehat{S}_z , impondo que as soluções da equação de Schödinger eletrônica

$$\widehat{H}_{total}((\overrightarrow{r},\overrightarrow{R})\left|\phi_{0}(\overrightarrow{x},\overrightarrow{R})\right\rangle = V_{0}(\overrightarrow{R})\left|\phi_{0}(\overrightarrow{x},\overrightarrow{R})\right\rangle$$
(2.56)

sejam singletos, dupletos, tripletos, etc.

O hamiltoneano eletrônico \widehat{H} comuta com os operadores \widehat{S}^2 e $\widehat{S}_z,$

$$\left[\widehat{H},\widehat{S}^2\right] = 0 \tag{2.57}$$

$$\left[\widehat{H}, \widehat{S}_z\right] = 0 \tag{2.58}$$

As autofunções de \widehat{H} também são autofunções desses dois operadores

$$\widehat{S}^2 \left| \phi_0 \right\rangle = S(S+1) \left| \phi_0 \right\rangle \tag{2.59}$$

$$\widehat{S}_z \left| \phi_0 \right\rangle = M_z \left| \phi_0 \right\rangle \tag{2.60}$$

onde $S \in M_z$ são números quânticos que descrevem o spin total e sua projeção z de um estado de N elétrons. Cada spin-orbital $\chi(\vec{x})$ é um produto de um orbital espacial $\varphi(\vec{r})$ e de uma função spin $\alpha(\omega)$ ou $\beta(\omega)$ e de acordo com a propriedade do operador \hat{S}_z

$$\widehat{S}_{z} |\alpha(\omega)\rangle = \frac{1}{2} |\alpha(\omega)\rangle \tag{2.61}$$

$$\widehat{S}_{z} \left| \beta(\omega) \right\rangle = -\frac{1}{2} \left| \beta(\omega) \right\rangle.$$
(2.62)

Qualquer produto de spin-orbitais ou um determinante de Slater é automaticamente autofunção de \hat{S}_z com autovalor igual a $\frac{1}{2}(N^{\alpha} - N^{\beta})$,

$$\widehat{S}_{z}\left|\chi_{i}\chi_{j}...\chi_{k}\right\rangle = \frac{1}{2}(N^{\alpha} - N^{\beta})\left|\chi_{i}\chi_{j}...\chi_{k}\right\rangle$$
(2.63)

sendo N^{α} o número de spin-orbitais com spin α e N^{β} = $N - N^{\alpha}$ o número de spin-orbitais com spin β . O mesmo não ocorre para \hat{S}^2 , por exemplo, usando as propriedades,

$$\widehat{S}^2 = \widehat{S} \cdot \widehat{S} \tag{2.64}$$

$$\widehat{S} = \sum_{i=1}^{N} \widehat{S}(i) \tag{2.65}$$

$$\widehat{S}_{x} |\alpha\rangle = \frac{1}{2} |\beta\rangle; \quad \widehat{S}_{y} |\alpha\rangle = \frac{i}{2} |\beta\rangle; \quad \widehat{S}_{z} |\alpha\rangle = \frac{1}{2} |\alpha\rangle
\widehat{S}_{x} |\beta\rangle = \frac{1}{2} |\alpha\rangle; \quad \widehat{S}_{y} |\beta\rangle = -\frac{i}{2} |\alpha\rangle; \quad \widehat{S}_{z} |\beta\rangle = -\frac{1}{2} |\beta\rangle$$
(2.66)

Concluimos que

$$\widehat{S}^{2} |\varphi_{1}(\overrightarrow{r}_{1})\alpha(\omega_{1})\varphi_{2}(\overrightarrow{r}_{2})\beta(\omega_{2})\rangle = |\varphi_{1}(\overrightarrow{r}_{1})\alpha(\omega_{1})\varphi_{2}(\overrightarrow{r}_{2})\beta(\omega_{2})\rangle + |\varphi_{1}(\overrightarrow{r}_{1})\beta(\omega_{1})\varphi_{2}(\overrightarrow{r}_{2})\alpha(\omega_{2})\rangle$$

$$(2.67)$$

Portanto, os auto-estados de \hat{H} também são auto-estados de \hat{S}_z . A partir do mostrado acima, pode-se verificar que é fácil construir uma função monodeterminante que seja autofunção de \hat{S}_z a partir das funções de uma partícula sendo autofunção de \hat{S}_z . Porém, estas não são necessariamente autofunções de \hat{S}^2 . A função (2.52) deve obedecer às condições (2.61) e (2.62), ou seja, cada um dos determinantes ou uma combinação linear desses em $|\phi_0\rangle$ é construído de tal maneira que se tenha a simetria eletrônica correta. Os elementos dessa nova expansão são denominados de funções de estado configuracionais (CSF's - do inglês *Configuration State Function*) e seu número pode ser estimado incluindo a simetria de spin, mas ignorando a simetria espacial, através da fórmula de Weyl [46]:

$$\eta_{CSF} = \frac{2S+1}{k+1} \begin{pmatrix} k+1\\ \frac{N}{2}-S \end{pmatrix} \begin{pmatrix} k+1\\ \frac{N}{2}+S+1 \end{pmatrix}$$
(2.68)

onde k é o número de spin-orbitais, N é o número de elétrons e S é o número quântico spin total. Estados com $S=0,\frac{1}{2},1,\ldots$ têm multiplicidade ou degenerescência igual a $2S+1=1,2,3,\ldots$, ou seja, $M=S, S-1,\ldots, -S$ e são denominados de singletos, dupletos, tripletos, etc.

2.5.2 Interação de Configurações

O método CI é conceitualmente o mais simples dos métodos pós HF utilizados para resolver a equação de Shorödinger eletrônica independente do tempo, para sistemas com mais de um corpo (elétron), porém é o mais oneroso computacionalmente. Trata-se de um dos procedimentos utilizados para recuperar a parte da energia de correlação não calculada no método HF [47]. A idéia básica desse método, consiste em diagonalizar o hamiltoneano de N elétrons em uma base de funções de N-elétrons (determinantes de Slater). Em outras palavras, é feita a representação da função de onda exata como uma combianação linear de funções teste de N-elétrons e, posteriormente, usa-se o método variacional linear para solucionar o problema. Se a base for completa é possível obter as energias exatas não apenas para o estado fundamental, como também para todos os estados excitados do sistema[31]. A princípio, o CI fornece a solução exata para o problema de muitos elétrons, porém, na prática, é possível lidar apenas com um conjunto finito de funções teste de *N*-elétrons, conseqüentemente, o método CI fornece apenas os limites superiores das energias exatas.

Basicamente, o método CI consiste nas seguintes etapas:

1- Resolução da equação de Roothaan [31] para um conjunto de 2k spin-orbitais $\{|\chi_i\rangle\}$, onde obtém-se a função de onda monodeterminantal do estado fundamental;

2- Construção de um conjunto de CSF's através dos determinantes (2.53), de tal forma que se tenha a simetria eletrônica desejada;

3- As funções de onda dos estados fundamental e excitados são escritas como uma combinação linear de todas as possíveis CSF's com a simetria a ser calculada. Ou seja, escreve-se a função eletrônica do estado fundamental da seguinte forma

$$\left|\phi_{0}(\overrightarrow{x};\overrightarrow{R})\right| = C_{0}\left|\phi_{0}\right\rangle + \sum_{a}^{ocup}\sum_{r}^{virt}C_{a}^{r}\left|\phi_{a}^{r}\right\rangle$$

$$+ \sum_{a < b}^{ocup}\sum_{r < s}^{virt}C_{ab}^{rs}\left|\phi_{ab}^{rs}\right\rangle + \sum_{a < b < c}^{ocup}\sum_{r < s < t}^{virt}C_{abc}^{rst}\left|\phi_{abc}^{rst}\right\rangle$$

$$+ \sum_{a < b < c < d}^{ocup}\sum_{r < s < t < u}^{virt}C_{abcd}^{rstu}\left|\phi_{abcd}^{rstu}\right\rangle + \dots$$

$$(2.69)$$

onde $|\phi_a^r\rangle$ corresponde as CSF's ou a determinantes formados a partir da substituição do spin-orbital ocupado a em $|\phi_0\rangle$ pelo spin-orbital virtual r etc. Sendo $|\phi_0\rangle$ singleto, então todas as CSF's pertencentes a esta função são do tipo singleto. Os C's são coeficientes da função de onda para o CI completo (FCI) e $|\phi_0\rangle$ representa a função exata na base atômica utilizada.

A função de estado acima pode ser reescrita simbolicamente como

$$\left|\phi_{0}(\overrightarrow{x};\overrightarrow{R}\right\rangle = C_{0}\left|\phi_{0}\right\rangle + C_{S}\left|S\right\rangle + C_{D}\left|D\right\rangle + C_{T}\left|T\right\rangle + C_{Q}\left|Q\right\rangle + \dots$$
(2.70)

sendo que $|S\rangle$ representa os termos envolvendo excitações simples, $|D\rangle$ representa os termos

de dupla excitação e, assim por diante.

O método CI envolve a diagonalização de uma matriz de dimensão menor, isso no caso do sistema possuir simetria de spin ou igual a fórmula de Weyl (2.68). A representação matricial do CI requer a observação dos seguintes itens:

1- As regras de Condon-Slater [48] para calcular os elementos

$$\langle \phi_l | \hat{H} | \phi_k \rangle = \langle \dots \chi_a \chi_b \dots | \hat{H} | \dots \chi_r \chi_s \dots \rangle$$
(2.71)

1(a)-Se a = b e r = s, ou seja, $|\phi_l\rangle = |\phi_k\rangle$,

$$\langle \phi_l | \hat{H} | \phi_l \rangle = \sum_{a=1}^N \langle \chi_a | \hat{h} | \chi_a \rangle + \sum_{a=1}^N \sum_{b=1}^N \langle \chi_a \chi_b | | \chi_a \chi_b \rangle$$
(2.72)

 $\operatorname{com} \widehat{h}$ dado pela expressão (2.31) e

$$\langle \chi_a | \, \hat{h} \, | \chi_r \rangle = \int d \, \overrightarrow{x} \, \chi_a^*(\overrightarrow{x}) \hat{h}(\overrightarrow{r}) \chi_r(\overrightarrow{x}) \tag{2.73}$$

$$\langle \chi_a \chi_b | |\chi_r \chi_s \rangle = \langle \chi_a \chi_b | \chi_r \chi_s \rangle - \langle \chi_a \chi_b | \chi_s \chi_r \rangle$$
(2.74)

$$\langle \chi_a \chi_b | | \chi_r \chi_s \rangle = \int d\overrightarrow{x}_1 d\overrightarrow{x}_2 \chi_a^*(\overrightarrow{x}_1) \chi_b^*(\overrightarrow{x}_2) \frac{1}{r_{12}} \chi_r(\overrightarrow{x}_1) \chi_s(\overrightarrow{x}_2)$$
(2.75)

1(b)- $a \neq r$ e b = s, se $|\phi_l\rangle$ diferir de $|\phi_k\rangle$ por um spin-orbital

$$\langle \phi_l | \hat{H} | \phi_k \rangle = \langle \chi_a | \hat{h} | \chi_r \rangle + \sum_{b=1}^N \langle \chi_a \chi_b | | \chi_r \chi_b \rangle$$
(2.76)

1(c)- $a \neq b$ e $r \neq s$, se $|\phi_l\rangle$ e $|\phi_k\rangle$ deferirem por dois spin-orbitais

$$\langle \phi_l | \hat{H} | \phi_k \rangle = \langle \chi_a \chi_b | | \chi_r \chi_s \rangle \tag{2.77}$$

1(d)- Se diferirem por mais de dois spin-orbitais $\left<\phi_l\right| \hat{H} \left|\phi_k\right> = 0$

2-*O Teorema de Brillouin:* de acordo com esse teorema, configurações mono-excitadas $|\phi_a^r\rangle$ não interagem diretamente com a configuração do estado de referência $|\phi_0\rangle$ [33]:

$$\langle \phi_a^r | \, \hat{H} \, | \phi_0 \rangle = 0 \tag{2.78}$$

Portanto, os elementos do bloco
 $\left<\phi_0\right|\hat{H}\left|S\right>$ são nulos [31]. Utilizando apenas excitações simples,

$$|\phi\rangle = |\phi_0\rangle + \sum_{a,r} C_a^r |\phi_a^r\rangle$$
(2.79)

a representação matricial de \overline{H} será:

$$\overline{H} = \begin{bmatrix} \widehat{H} \end{bmatrix} = \begin{bmatrix} \langle \phi_0 | \, \widehat{H} \, | \phi_0 \rangle & 0 \\ 0 & \langle \phi_a^r | \, \widehat{H} \, | \phi_b^s \rangle \end{bmatrix}$$
(2.80)

portanto, a raiz mais baixa do determinante secular será

$$E_0 = \langle \phi_0 | \, \widehat{H} \, | \phi_0 \rangle = E_{HF}. \tag{2.81}$$

3- As excitações simples interagem indiretamente com $|\phi_0\rangle$, pois interagem diretamente com as duplas, as quais interagem com $|\phi_0\rangle$. Assim, correlação eletrônica só será incluída se as excitações duplas o forem. No entanto, as excitações simples são necessárias para a descrição das propriedades do elétron, tais como, o momento de dipolo e a densidade de carga. Dessa forma, as excitações simples possuem um efeito pequeno sobre a energia do estado fundamental, porém não nulo.

A utilização dos itens acima juntamente com a notação da equação (2.70) faz com que a representação matricial de \hat{H} no método CI tenha a forma dada por:

$$\overline{H} = \begin{bmatrix} \widehat{H} \end{bmatrix} = \begin{cases} \langle \phi_0 | \\ \langle S | \\ \langle T | \\ \vdots \end{cases} \begin{vmatrix} |\phi_0 \rangle & |S \rangle & |D \rangle & |T \rangle & \dots \\ \langle \phi_0 | \,\widehat{H} | \phi_0 \rangle & 0 & \langle \phi_0 | \,\widehat{H} | D \rangle & 0 & \dots \\ \langle \phi_0 | \,\widehat{H} | \phi_0 \rangle & 0 & \langle \phi_0 | \,\widehat{H} | D \rangle & \langle S | \,\widehat{H} | T \rangle & \dots \\ 0 & \langle S | \,\widehat{H} | S \rangle & \langle S | \,\widehat{H} | D \rangle & \langle D | \,\widehat{H} | T \rangle & \dots \\ \langle D | \,\widehat{H} | \phi_0 \rangle & \langle D | \,\widehat{H} | S \rangle & \langle D | \,\widehat{H} | D \rangle & \langle D | \,\widehat{H} | T \rangle & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{cases}$$
(2.82)

Esta matriz constitui-se na representação matricial de \widehat{H} em um cálculo CI completo.

Um cálculo CI convencional envolve as seguintes etapas:

- a) especificação do problema: estado eletrônico, base atômica, simetria de grupo;
- b) resolução das equações de HF: obtenção de $|\phi_0\rangle$;
- c) construção das funções de configurações de estado: base da expansão de $|\phi_0\rangle$;

- d) cálculo e armazenamento dos elementos de matriz do hamiltoneano \widehat{H} ;
- e) solução do problema de autovalor para o estado desejado.

É importante ressaltar que, na prática, o uso do FCI é quase sempre impraticável para a solução de problemas envolvendo sistemas atômicos e moleculares, isso devido a exigência de uma enorme capacidade computacional e tempo de CPU. O que se faz, na verdade, é um truncamento da expansão (2.69) para um dado nível de excitação de determinantes, como por exemplo, CISD para um cálculo CI com determinantes de excitação simples e duplas; CISDT para determinantes com simples, duplas e triplas, etc. O procedimento utilizado na resolução destes é o mesmo que para o FCI com uma diferença em relação ao espaço de configurações, que nesses casos é menor [49].

2.5.3 A Energia de Correlação Exata

A partir da função de estado CI

$$\left|\phi_{0}^{CI}\right\rangle = C_{0}\left|\phi_{0}\right\rangle + \sum_{c,t} C_{c}^{t}\left|\phi_{c}^{t}\right\rangle + \sum_{\substack{c(2.83)$$

é possível obter uma expressão em forma fechada da energia de correlação exata para um dado sistema. Como já visto, o determinante de referência de HF é o termo de maior contribuição na expansão (2.69). Desta forma, é conveniente impor que o coeficiente C_0 desta expansão seja igual a um pela normalização intermediária,

$$\left\langle \phi_0 \right| \left. \phi_0^{CI} \right\rangle = 1 \tag{2.84}$$

Assim, a expansão torna-se,

$$\left|\phi_{0}^{CI}(\overrightarrow{x};\overrightarrow{R}\right\rangle = \left|\phi_{0}\right\rangle + \sum_{c}^{ocupados\ virtuais} \sum_{t}^{c} \left|\phi_{c}^{t}\right\rangle + \sum_{c(2.85)$$

e, conseqüentemente, a função de onda $|\phi_0\rangle$ não será normalizada,

$$\left\langle \phi_{0}^{CI} \left| \phi_{0}^{CI} \right\rangle = 1 + \sum_{c}^{ocupados} \sum_{t}^{virtuais} (C_{c}^{t})^{2} + \sum_{c < d}^{ocupados} \sum_{t < u}^{virtuais} (C_{cd}^{tu})^{2} + \dots$$
 (2.86)

sendo os determinantes $|\phi_i\rangle$ ortonormais. Seja a equação de Schrödinger,

$$\widehat{H}\left|\phi_{0}^{CI}\right\rangle = \varepsilon_{0}\left|\phi_{0}^{CI}\right\rangle \tag{2.87}$$

com $|\phi_0^{CI}\rangle$ dada pela expansão (2.85) e ε_0 é a energia exata para a base de funções atômicas, cuja energia $E_0 = \langle \phi_0 | \hat{H} | \phi_0 \rangle$ é o limite HF. Essa equação pode ser reescrita subtraindo em ambos os lados $E_0 | \phi_0 \rangle$, com E_0 sendo o autovalor da equação,

$$E_0 = \langle \phi_0 | \hat{H} | \phi_0 \rangle \tag{2.88}$$

obtida pelo método HF. Assim,

$$\left(\widehat{H} - \widehat{1}E_0 \right) \left| \phi_0^{CI} \right\rangle = (\varepsilon_0 - E_0) \left| \phi_0^{CI} \right\rangle$$

$$= E_{corr} \left| \phi_0^{CI} \right\rangle$$

$$(2.89)$$

onde E_{corr} é a energia de correlação conforme dado por (2.44) multiplicando ambos os lados da equação acima por $|\phi_0\rangle$ obtém-se

$$\left\langle \phi_{0} \right| \widehat{H} - \widehat{1} E_{0} \left| \phi_{0}^{CI} \right\rangle = E_{corr} \left\langle \phi_{0} \right| \phi_{0}^{CI} \right\rangle = E_{corr}$$

$$(2.90)$$

onde foi usado o fato de que $|\phi_0^{CI}\rangle$ é intermediariamente normalizado. Agora trabalhando com o lado esquerdo da equação (2.90) e usando a expansão dada pela equação (2.85) tem-se:

$$E_{corr} = \langle \phi_0^{CI} | \widehat{H} - \widehat{1}E_0 | \phi_0^{CI} \rangle = \langle \phi_0^{CI} | \widehat{H} - \widehat{1}E_0 \left(| \phi_0 \rangle + \sum_c^{ocup \, virt} \sum_t^{virt} C_c^t | \phi_c^t \rangle + \sum_{c < d}^{ocup \, virt} \sum_{t < u}^{virt} C_{cd}^{tu} | \phi_{cd}^{tu} \rangle + \dots \right) \rangle$$

$$= \sum_{c < d}^{ocup \, virt} \sum_{t < u}^{virt} C_{cd}^{tu} \langle \phi_0 | \widehat{H} | \phi_{cd}^{tu} \rangle.$$
(2.91)

Para a obtenção dessa expressão foi usado o teorema de Brillouin $(\langle \phi_0 | \hat{H} | \phi_{ab}^{rs} \rangle = 0)$ e o fato de que excitações triplas e superiores não se misturarem com $|\phi_0\rangle$ por mais de dois spin -orbitais. Esta é a expressão fechada para a energia de correlação eletrônica e daí pode ser observado que a energia de correlação eletrônica, expressa em (2.91), é determinada apenas pelos coeficientes de excitações duplas. Entretanto, estes coeficientes C_{ab}^{rs} devem ser exatos, assim como, o cálculo CI. Isso implica na inclusão de todas as configurações devido às interações indiretas já citadas. Uma forma de se atestar isso é multiplicar a equação (2.89) à esquerda por $\langle \phi_a^r |$, juntamente com a expressão de $|\phi_0\rangle$ para verificar que:

$$E_{corr}C_{a}^{r} = \sum_{c}^{ocup \ virt} \sum_{t}^{virt} C_{c}^{t} \left\langle \phi_{a}^{r} \right| \widehat{H} - \widehat{1}E_{0} \left| \phi_{c}^{t} \right\rangle + \sum_{c < d}^{ocup \ virt} \left\{ C_{cd}^{tu} \left\langle \phi_{a}^{r} \right| \widehat{H} \left| \phi_{cd}^{tu} \right\rangle + C_{acd}^{rtu} \left\langle \phi_{a}^{r} \right| \widehat{H} \left| \phi_{acd}^{rtu} \right\rangle \right\}$$

$$(2.92)$$

E importante salientar que essa equação contém e acopla os coeficientes das excitações simples, duplas e triplas. Esse procedimento pode ser continuado multiplicando a equação (2.89) por $\langle \phi_{ab}^{rs} |$, etc, o que leva a um conjunto de equações hierárquicas, onde a solução simultânea produz a energia de correlação e também os coeficientes $C_a^r, C_{ab}^{rs}, \dots$. Este conjunto de equações acopladas torna-se extremamente grande quando todas as possíveis configurações determinadas são incluídas, o que justifica o grande esforço em se realizar um cálculo FCI.

2.5.4 Teoria de Perturbação de Møller-Plesset

A teoria de perturbação de muitos corpos (MBPT- do inglês *Many Body Perturbation Theory*) trata-se de um método de cálculo extensivo e não variacional, utilizado para a determinação da energia de correlação eletrônica. Normalmente, utiliza a partição de Møller-Plesset e, por isso, é chamada também de Teoria de Perturbação de Møller-Plesset (MPPT- do inglês *Møller-Plesset Perturbation Theory*), a qual se baseia na teoria de perturbação de Rayleigh-Schrödinger [50] e separa o hamiltoneano total do sistema em duas partes:

$$\widehat{H} = \widehat{H}_0 + \widehat{V}. \tag{2.93}$$

A parte de ordem zero \hat{H}_0 , que é um hamiltoneano não perturbado, com suas autofunções e seus autovalores conhecidos e a parte da perturbação \hat{V} . O operador \hat{H}_0 é dado pela soma dos operadores de Fock, na forma

$$\widehat{H}_{0} = \sum_{i=1}^{N} f(i) = \sum_{i=1}^{N} \left[h(i) + v^{HF}(i) \right], \qquad (2.94)$$

e \widehat{V} é dado pela diferença do termo que representa a repulsão eletrônica e o potencial de HF,

ou seja

$$\widehat{V} = \sum_{i < j} r_{ij}^{-1} - \sum_{i} v^{HF}(i).$$
(2.95)

Para se obter a expansão da perturbação para a energia de correlação, é necessário a escolha de um hamiltoneano que pode ser obtido por vários métodos. O hamiltoneano usada neste formalismo é o hamiltoneano de HF \hat{H}_0 , para um sistema de N-elétrons.

O problema agora consiste em resolver uma equação de autovalor do tipo

$$\widehat{H} |\phi_n\rangle = \left(\widehat{H}_0 + \widehat{V}\right) |\phi_n\rangle = E_n |\phi_n\rangle$$
(2.96)

com as autofunções e autovalores de \widehat{H}_0 conhecidos, ou seja

$$\widehat{H}_0 \left| \phi_n^{(0)} \right\rangle = E_n^{(0)} \left| \phi_n^{(0)} \right\rangle.$$
(2.97)

Se a perturbação \hat{V} é muito pequena, espera-se que $|\phi_n\rangle$ e E_n sejam próximos de $|\phi_n^{(0)}\rangle$ e $E_n^{(0)}$, respectivamente. Para melhorar sistematicamente as autofunções e autovalores de $\hat{H}_{0,}$ e também para que eles se tornem cada vez mais próximos das autofunções e dos autovalores do hamiltoneano total, \hat{H} , introduz-se um parâmetro de ordenamento, λ , tal que se possa escrever

$$\widehat{H} = \widehat{H}_0 + \lambda \widehat{V}. \tag{2.98}$$

Expandindo as autofunções e os autovalores em uma série de Taylor de potências de λ , em torno de $\lambda = 0$, tem-se

$$\left|\phi_{n}\right\rangle = \left|\phi_{n}^{(0)}\right\rangle + \lambda \left|\phi_{n}^{(1)}\right\rangle + \lambda^{2} \left|\phi_{n}^{(2)}\right\rangle + \dots$$

$$(2.99)$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$$
(2.100)

onde $E_n^{(k)}$ é conhecido como a correção da energia de k-ésima ordem. O problema agora passa a ser como expressar estas quantidades em termos da energia de ordem-zero e os elementos de matriz da perturbação \hat{V} entre a função de onda não-perturbada, $\langle \phi_i | \hat{V} | \phi_j \rangle$. Isto, supondo que as séries dadas pelas equações (2.99) e (2.100) convergem para $\lambda = 1$ e que, para uma pequena perturbação, onde apenas os primeiros termos da série são considerados, tem-se uma boa aproximação para a verdadeira função de onda e para o autovalor.

Impondo que as funções de onda de \hat{H}_0 sejam normalizadas ($\langle \phi_i | \phi_j \rangle = 1$), faz-se também uma normalização intermediária tal que,

$$\left\langle \phi_n^{(0)} \middle| \phi_n \right\rangle = 1.$$
 (2.101)

Esta normalização pode sempre ser feita a não ser que $\left|\phi_{n}^{(0)}\right\rangle$ e $\left|\phi_{n}\right\rangle$ sejam ortogonais. Portanto, ao se multiplicar a equação (2.99) por $\left\langle\phi_{n}^{0}\right|$ tem-se

$$\left\langle \phi_n^{(0)} \middle| \phi_n \right\rangle = \left\langle \phi_n^{(0)} \middle| \phi_n^{(0)} \right\rangle + \lambda \left\langle \phi_n^{(0)} \middle| \phi_n^{(1)} \right\rangle + \lambda^2 \left\langle \phi_n^{(0)} \middle| \phi_n^{(2)} \right\rangle + \dots = 1.$$
(2.102)

sendo que a equação acima vale para todos valores de λ . Conseqüentemente, os coeficientes de λ^k devem ser iguais e assim tem-se,

$$\left\langle \phi_{n}^{0} \left| \phi_{n}^{(k)} \right\rangle = 0, \quad \text{com} \quad k = 1, \, 2, \, 3, \dots$$
 (2.103)

Substituindo as equações (2.101) e (2.102) na equação (2.96), tem-se

$$\left(\widehat{H}_{0}+\widehat{V}\right)\left(\left|\phi_{n}^{(0)}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right)=$$
$$=\left(E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2}E_{n}^{(2)}+\ldots\right)\left(\left|\phi_{n}^{(0)}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right)$$
(2.104)

Resolvendo o sistema em relação aos coeficientes de $\lambda^k,$ obtém-se:

$$\widehat{H}_{0}\left|\phi_{n}^{(0)}\right\rangle = E_{n}^{(0)}\left|\phi_{n}^{(0)}\right\rangle \qquad \text{para} \qquad n = 0 \qquad (2.105)$$

$$\widehat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle + \widehat{V}\left|\phi_{n}^{(0)}\right\rangle = E_{n}^{(0)}\left|\phi_{n}^{(1)}\right\rangle + E_{n}^{(1)}\left|\phi_{n}^{(0)}\right\rangle \qquad \text{para} \qquad n = 1 \quad (2.106)$$

$$\widehat{H}_{0}\left|\phi_{n}^{(2)}\right\rangle + \widehat{V}\left|\phi_{n}^{(1)}\right\rangle = E_{n}^{(0)}\left|\phi_{n}^{(2)}\right\rangle + E_{n}^{(1)}\left|\phi_{n}^{(1)}\right\rangle + E_{n}^{(2)}\left|\phi_{n}^{(0)}\right\rangle \qquad \text{para} \qquad n = 2 \quad (2.107)$$

e assim por diante.

Multiplicando cada uma destas equações por $\left\langle \phi_n^{(0)} \right|$ e usando a relação de ortogonalidade dada pela equação (2.99), obtém-se as seguintes expressões para as energias de *n*-ésima ordem

$$E_n^{(0)} = \left\langle \phi_n^{(0)} \middle| \widehat{H}_0 \middle| \phi_n^{(0)} \right\rangle \tag{2.108}$$

38

$$E_n^{(1)} = \left\langle \phi_n^{(0)} \middle| \widehat{V} \middle| \phi_n^{(0)} \right\rangle \tag{2.109}$$

$$E_n^{(2)} = \left\langle \phi_n^{(0)} \middle| \widehat{V} \middle| \phi_n^{(1)} \right\rangle.$$
(2.110)

Todas as correções de ordem superior a dois na energia podem ser utilizadas para resolver o conjunto de equações (2.104) para $\left|\phi_{n}^{(k)}\right\rangle$ e então determinar a energia de *k*-ésima ordem.

Reescrevendo a equação (2.106), que determina a função de onda de primeira ordem, $\left|\phi_n^{(1)}\right\rangle$, obtém-se

$$\left(E_n^{(0)} - \widehat{H_0}\right) \left|\phi_n^{(1)}\right\rangle = \left(\widehat{V} - E_n^{(1)}\right) \left|\phi_n^{(0)}\right\rangle = \left(\widehat{V} - \left\langle\phi_n^{(0)}\right| \widehat{V} \left|\phi_n^{(0)}\right\rangle\right) \left|\phi_n^{(0)}\right\rangle.$$
(2.111)

Esta equação é muito parecida com uma equação de autovalor, porém é uma equação diferencial não-homogênea (ou, em geral, íntegro-diferencial). Uma maneira de resolver equações semelhantes é expandir $\left|\phi_{n}^{(1)}\right\rangle$ em termos das autofunções de \hat{H}_{0} , onde se exige que formem um conjunto completo,

$$\left|\phi_{n}^{(1)}\right\rangle = \sum_{j} c_{j}^{(1)} \left|\phi_{j}^{(0)}\right\rangle.$$

$$(2.112)$$

Multiplicando esta equação por $\left\langle \phi_{j}^{(0)} \right|$, tem-se

$$\left\langle \phi_{j}^{(0)} \middle| \phi_{n}^{(1)} \right\rangle = \left\langle \phi_{j}^{(0)} \middle| \sum_{j} c_{j}^{(1)} \phi_{n}^{(1)} \right\rangle = c_{j}^{(1)},$$
 (2.113)

pois as autofunções de \hat{H}_0 são ortonormais. Além disso, da equação (2.103) pode-se verificar que $c_n^{(1)} = 0$, e desse modo

$$\left|\phi_{n}^{(1)}\right\rangle = \sum_{j \neq n} \left|\phi_{j}^{(0)}\right\rangle \left\langle\phi_{j}^{(0)}\right| \phi_{n}^{(1)}\right\rangle.$$
(2.114)

Multiplicando a equação (2.103) por $\left\langle \phi_{j}^{(0)} \right|$ e usando o fato de que as funções de onda de ordem zero são ortogonais, tem-se:

$$\left(E_n^{(0)} - E_j^{(0)}\right) \left\langle\phi_j^{(0)}\right| \phi_n^{(1)}\right\rangle = \left\langle\phi_j^{(0)}\right| V \left|\phi_n^{(0)}\right\rangle.$$
(2.115)

Usando a expansão dada pela equação.(2.114) na expressão da energia de segunda-ordem dada pela equação (2.110), obtém-se

$$E_{n}^{(2)} = \left\langle \phi_{n}^{(0)} \middle| V \middle| \phi_{n}^{(1)} \right\rangle = \sum_{j} \left\langle \phi_{n}^{(0)} \middle| V \middle| \phi_{j}^{(0)} \right\rangle \left\langle \phi_{j}^{(0)} \middle| \phi_{n}^{(1)} \right\rangle.$$
(2.116)

Finalmente, com a equação (2.115), obtém-se

$$E_n^{(2)} = \sum_j \frac{\langle \phi_n^{(0)} | V | \phi_j^{(0)} \rangle \langle \phi_j^{(0)} | V | \phi_n^{(0)} \rangle}{E_n^{(0)} - E_j^{(0)}} = \sum_j \frac{\langle | \langle \phi_n^{(0)} | V | \phi_j^{(0)} \rangle |^2}{E_n^{(0)} - E_j^{(0)}}$$
(2.117)

que é a expressão para a correção de segunda ordem na energia.

A correção de primeira ordem na energia pode ser calculada, pois envolve apenas a integral $\left\langle \phi_n^{(0)} \middle| \hat{V} \middle| \phi_n^{(0)} \right\rangle$. Já para as outras correções na energia, deve-se calcular todos os elementos matriciais da coluna n (para $E_n^{(2)}$) e ainda todos os elementos matriciais da matriz inteira para $\phi_n^{(1)}$ e $\phi_n^{(2)}$. As maiores contribuições para a correção de segunda-ordem na energia, provêm dos níveis próximos ao nível n, como se pode ver na equação (2.117), devido ao fator $\frac{1}{\left(E_n^{(0)}-E_j^{(0)}\right)}$ comum nas correções.

De acordo com o teorema de Brillouin [31], somente as excitações duplas podem interagir diretamente com o determinante de HF. Com isto, a energia $E_n^{(0)} + E_n^{(1)} = E_{HF}$. A primeira correção para a energia HF aparece com a energia de perturbação de segunda ordem. Este termo pode ser representado como uma soma de excitações duplas, que pode ser expresso por

$$E_0^{(2)} = \sum_{\substack{a < b \\ r < s}} \frac{|\langle ab | | rs \rangle|^2}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s}$$
(2.118)

onde, ε_i refere-se à energia do orbital molecular *i*. A soma estende-se sobre todos orbitais moleculares ocupados (a, b, ...) e os virtuais (r, s, ...).

A obtenção de correções para a energia de ordem superiores é possível com o uso de uma álgebra bem mais complexa, então o que normalmente se faz é utilizar a representação diagramática[33] da teoria de perturbação orbital.

2.5.5 Método Coupled Cluster

O método CC é um método não variacional, alternativo a CI e a MBPT, usado no cálculo da energia de correlação de forma bem eficiente. A idéia básica desse método é representar um sistema de muitos elétrons em vários aglomerados (*clusters*) com poucos elétrons [51, 52, 53].

A partir da segunda quantização[50], o determinante duplamente excitado $|\phi_{ij}^{ab}\rangle$ pode ser escrito como

$$\left|\phi_{ij}^{ab}\right\rangle = a_a^{\dagger} a_b^{\dagger} a_i a_j \left|\phi_0\right\rangle \tag{2.119}$$

onde os operadores $a_i e a_j$ removem os spin orbitais ocupados do determinante HF e os operadores $a_a^{\dagger} e a_b^{\dagger}$ criam spin orbitais virtuais.

A função de onda *coupled cluster* é definida como

$$|\phi\rangle = e^T |\phi_0\rangle \tag{2.120}$$

onde T é o operador de *cluster* e é definido como:

$$T = T_1 + T_2 + \dots + T_p. \tag{2.121}$$

Os operadores $T_1, T_2,...$ são definidos como:

$$T_1\phi_0 = \sum_{i,a} C_i^a \phi_i^a,$$
(2.122)

$$T_2\phi_0 = \sum_{ij,ab} C_{ij}^{ab} \phi_{ij}^{ab}.$$
 (2.123)

Assim, as aplicações de $T_1, T_2,...$ geram configurações mono, duplamente excitadas, e assim por diante; e ϕ_i^a é a configuração onde o orbital ocupado χ_i é substituído pelo spin orbital virtual χ_a . Nesta notação, $i \in j$, ... representam orbitais ocupados no determinante de referência e a, b, ... representam spins orbitais desocupados. Os coeficientes C são reais e chamados amplitudes *de cluster*. Basicamente, T_1 é o operador que gera as configurações simplesmente substituídas e, T_2 é o operador que gera as configurações duplamente substituídas, e assim por diante. Dessa maneira, faz-se uma relação com o método de interações de configurações reescrevendo a função de onda como

$$|\phi\rangle = (1 + U_1 + U_2 + U_3 + \dots) |\phi_0\rangle$$
 (2.124)

 com

$$U_{1} = T_{1}$$

$$U_{2} = T_{2} + \frac{1}{2!}T_{1}^{2}$$

$$U_{3} = T_{3} + \frac{1}{3!}T_{1}^{3} + T_{1}T_{2}$$
(2.125)

e assim sucessivamente. U_i representa as substituições que aparecem na expansão da função de onda e pode ser separado em duas partes,

$$U_i = T_i + Q_i \tag{2.126}$$

onde, T_i é o termo conexo e Q_i é o termo desconexo.

As C's devem ser obtidas de forma que a função de onda $|\phi\rangle$ seja uma solução da equação de Schrödinger eletrônica. Dessa forma, tem-se:

$$He^{T} \left| \phi_{0} \right\rangle = Ee^{T} \left| \phi_{0} \right\rangle. \tag{2.127}$$

Multiplicando a equação (2.127) por e^{-T} , tem-se:

$$e^{-T}He^{T} \left| \varphi_{0} \right\rangle = e^{-T}Ee^{T} \left| \varphi_{0} \right\rangle \tag{2.128}$$

que, conseqüentemente, pode ser reescrita como:

$$[H + [H, T] + \frac{1}{2!}[[H, T], T] + \frac{1}{3!}[[[H, T], T], T] + \frac{1}{4!}[[[[H, T], T], T], T], T]] |\phi_0\rangle = E |\phi_0\rangle.$$
(2.129)

Dessa forma, as equações para a energia e para as amplitudes de *cluster* são obtidas a partir da multiplicação da equação (2.128) por $\langle \phi_0 |$ e pelos determinantes substituídos até ordem p, da seguinte forma:

$$E = \frac{\langle \phi_0 | e^{-T} H e^T | \phi_0 \rangle}{\langle \phi_0 | e^{-T} e^T | \phi_0 \rangle}.$$
 (2.130)

Dessa forma, de acordo com o teorema de Brillouin, somente contribuições duplas podem interagir com o determinante HF. Mas, as substituições simples, triplas, etc., contribuem para a energia de correlação através das substituições duplas. O que mostra que as substituições duplas devem ser as mais importantes no método CC. A primeira aproximação desse método inclui somente o termo T_2 no operador de *cluster* e é chamada de aproximação CCD (do inglês *Coupled Cluster Double*). Com esta simplificação a equação de Schrödinger eletrônica passa a ser

$$e^{-T_2}He^{T_2} \left| \varphi_0 \right\rangle = E \left| \varphi_0 \right\rangle. \tag{2.131}$$

Multiplicando a equação (2.131) por $\langle \phi_0 |$ e usando a equação (2.123), a energia eletrônica corrigida através deste método passa a ser escrita como

$$E = E_{SCF} + \sum_{i < j} \sum_{a < b} \langle ij | |ab \rangle C_{ij}^{ab}$$
(2.132)

onde E_{SCF} é a energia HF obtida através do procedimento SCF. A solução das equações para as amplitudes de *cluster* constitui a maior dificuldade do método *coupled cluster*, pois ao se abrir os somatórios, pode-se verificar que todos os coeficientes aparecem em todas as equações, de modo que estas sejam acopladas e tenham que ser resolvidas autoconsistentemente. Este método está um tanto quanto ultrapassado. Existem outros métodos mais convenientes, como CCSD e CCSD(T) que foram empregados neste trabalho.

Capítulo 3

Teoria das Reações Bimoleculares e Unimoleculares

3.1 Introdução

Dentro dos objetivos desta tese, que são basicamente contribuir para o desenvolvimento de mecanismos cinéticos para simular o crescimento de filmes finos de NB (via processos CVD) e, como um subsistema deste, estudar a dissociação do NF₃ em nitrogênio e flúor, o entendimento dos processos químicos envolvidos entre as várias espécies presentes (na fase gasosa), e, conseqüentemente, as taxas nas quais estas acontecem são fundamentais. Estas taxas podem ser escritas na forma de Arrhenius modificada[54]:

$$\mathbf{k}(\mathbf{T}) = AT^n \exp\left(-\frac{E_a}{RT}\right) \tag{3.1}$$

onde A é o fator pré-exponencial, n é o fator de potência para a temperatura, E_a a energia de ativação e R é a constante universal dos gases. Esta expressão é válida para uma faixa finita de temperatura e desta forma é possível visualizar quão rápida ou lenta uma reação ocorre. Estas informações são obtidas, normalmente, via processos experimentais e na ausência desses, precisam ser estimadas teoricamente.

Existem algumas metodologias que podem ser empregadas neste caso, uma delas é a teoria de colisões (TC), que considera as moléculas como esferas duras e sem estrutura. Outra teoria muito utilizada é a TST, que faz um tratamento mais estatístico do que colisional. A terceira forma empregada para se estimar estas taxas é via a construção de SEP, que é mais

detalhista, porém mais complexa e onerosa computacionalmente.

Neste capítulo discutiremos a TC e a TST para o cálculo da taxa de reação. A SEP será discutida num capítulo em separado.

3.2 Teoria de Colisões

Seja a reação bimolecular

$$A + B \underset{k_r}{\overset{k_f}{\rightleftharpoons}} P \tag{3.2}$$

onde A e B representam os reagentes e P simboliza os produtos. Para uma reação reversível, k_f simboliza a taxa no sentido direto e k_r é a taxa no sentido reverso; a relação entre k_f e k_r é dada por:

$$K = \frac{k_f}{k_r} \tag{3.3}$$

onde K é a constante de equilíbrio.

O objetivo aqui é calcular a constante k da equação de velocidade de segunda ordem v = k [A] [B]. Neste caso, as moléculas são tratadas como esferas rígidas e sem estruturas, significando dizer que não existem interações entre elas, a não ser quando estas entram em contato. Outra hipótese é de que estas são impenetráveis, ou seja, mantêm suas formas e tamanhos na colisão, não importando a intensidade da colisão e o fato de que a distância entre seus centros não podem ser menores que a soma algébrica dos seus raios individuais, além de assumir que somente energia translacional está presente.

Em geral, existem dois tipos de colisões: (i) *as colisões não reativas*, onde durante a colisão pode haver troca de energia (translação interna), porém ligações químicas não são formadas ou quebradas e (ii) *colisões reativas*, onde uma ou mais ligações são quebradas e/ou formadas. Esse segundo tipo de colisão é a de interesse neste trabalho.

Considerando a colisão entre duas moléculas A e B de raios $r_A e r_B$ e velocidades $v_A e v_B$. Este problema se simplifica considerando uma das moléculas paradas e a outra se movendo com velocidade relativa v igual a $v_A - v_B$. Neste caso, uma molécula A, viajando com uma velocidade v, passa por N_B moléculas de B contidas numa unidade de volume, e sofrerá uma colisão com B, caso o centro de B esteja dentro de uma área πd^2 da trajetória de A, conforme a Figura 3.1.Então, numa unidade de tempo, uma molécula A passará por um

Figura 3.1: Representação esquemática do volume onde ocorrem colisões entre as moléculas A e as moléculas estacioárias B, na teoria de colisões.

volume de colisão $\pi d^2 v$ e colidirá com $N_B \pi d^2 v$ moléculas de B. Se existirem N_A moléculas de A, por unidade de volume, então o número total de colisões por unidade de volume será $Z' = N_A N_B \pi d^2 v$.

Num gás com temperatura T, as moléculas não têm todas a mesma velocidade, existe porém uma distribuição de velocidades, com uma velocidade média dada por [54]:

$$\overline{v} = \left(\frac{8k_BT}{\pi\mu}\right)^{1/2} \tag{3.4}$$

onde k_B é a constante de Boltzmann e μ é a massa reduzida ($\mu = m_A m_B / (m_A + m_B)$). Então, o número total de colisões será escrito como:

$$Z' = N_A N_B \pi d^2 \left(\frac{8k_B T}{\pi \mu}\right)^{1/2}.$$
(3.5)

Até o momento, foram consideradas somente colisões elásticas, agora é necessário incluir as colisões reativas e inelásticas. Como discutido anteriormente, existe uma energia de interação entre moléculas e, antes que estas estejam próximas o suficiente para reagirem, devem vencer uma barreira de energia ε^0 . Somente aquelas moléculas com energia cinética suficiente para vencer esta barreira ao longo do eixo AB reagirão. De acordo com a distruição de Maxwell, esta fração é $exp(-E^0/RT)$, onde $E^0 = N_{A'}\varepsilon^0$ e $N_{A'}$ é o número de Avogadro. Portanto, a taxa de reação será dada por

$$\rho = N_A N_B \pi d^2 \left(\frac{8k_B T}{\pi \mu}\right)^{1/2} \exp(-E^0/RT)$$
(3.6)

desde que $k = \rho/N_A N_B$, então:

$$k = \pi d^2 \left(\frac{8k_B T}{\pi \mu}\right)^{1/2} \exp(-E^0/RT) = Z \exp(-E^0/RT)$$
(3.7)

onde Z é conhecido como taxa de colisão e é dado por $Z = Z'/N_A N_B$. Desta expressão podese concluir que o coeficiente de reação é composto por duas partes, a primeira, Z, determina com que freqüências os reagentes colidem e a segunda determina que fração das colisões tem energia suficiente para vencer a barreira de energia. Comparando equação (3.7) com a de Arrhenius, equação (3.1), pode se definir o fator A como sendo:

$$A = \pi d^2 \left(\frac{8k_B T}{\pi\mu}\right)^{1/2}.$$
(3.8)

A teoria de colisões é um modelo simples que fornece uma boa visualização inicial das reações bimoleculares. O fator A calculado, segundo a teoria de colisões, infelizmente não reproduz dados experimentais para o coeficiente de reação devido a algumas suposições feitas. Primeiramente, as moléculas foram consideradas como esferas rígidas e sem estruturas; segundo, as moléculas interagem instantaneamente e, na prática, isto ocorre num período de tempo finito. Finalmente, as espécies interagem umas com as outras em distâncias maiores que a soma de seus raios de esferas duras. Isto é, principalmente, válido para reações envolvendo partículas carregadas. Portanto, estes fatores limitam a aplicação da teoria de colisões para estimar as taxas de reação.

3.3 Teoria das Estruturas de Transição

Para tentar solucionar os problemas observados a partir da comparação de dados experimentais com os obtidos via TC, Wigner e Pilzer [55] desenvolveram em meados dos anos 30 a teoria do complexo ativado, que posteriormente, foi extendida por Eyring [56] e hoje é comumente chamada de TST.

A TST faz um tratamento estatístico da reação a partir do equilíbrio, ao contrário do ponto de vista dinâmico e colisional da teoria de colisões [54]. Nesta seção apresentaremos uma síntese da teoria envolvida na descrição da TST e da forma como é feito o cálculo da taxa de reação.

Considerando a reação bimolecular

$$A + BC \Longrightarrow X^{\ddagger} \Longrightarrow AB + C \tag{3.9}$$

onde $A \in BC$ podem ser átomos ou moléculas, podemos definir uma estrutura intermediária (Figura 3.2), não estável, numa condição de "quase equilíbrio" com os reagentes e produtos e de energia mínima entre eles [54, 57], que é normalmente chamada de estrutura de transição (representada por X^{\ddagger} , na equação (3.9)).

Figura 3.2: SEP para uma reação colinear da forma A + BC = AB + C.

A energia potencial, V, de um sistema reativo depende das posições relativas de A, B e C, especificadas pelas distâncias R_{AB} , R_{BC} e θ , de acordo com a Figura (3.3).

Mantendo-se θ constante, isto é, especificando a direção de aproximação de A, é possível obter a energia potencial em função das distâncias R_{AB} e R_{BC} e determinar uma SEP, de acordo com a Figura (3.2). Para caracterizar completamente a dependência angular da energia potencial é necessário ter um conjunto de curvas semelhantes as da Figura (3.2) para diferentes ângulos θ .

Figura 3.3: Orientações gerais de uma reação A+BC.

Para grandes valores de R_{AB} , não há interação entre $A \in BC$, e um corte transversal nesta região corresponde a curva de energia potencial para a molécula BC. À medida, que A vai se aproximando, a energia potencial aumenta, até atingir a região de X^{\ddagger} , a partir da qual a energia decresce conforme C vai se afastando, e novamente, para a região onde R_{BC} é grande, obtém-se uma curva de energia potencial para a molécula AB. A estrutura de transição, X^{\ddagger} , representa o máximo no caminho de mínima energia entre reagentes e produtos, este ponto é conhecido como ponto de sela entre os vales QX^{\ddagger} e $X^{\ddagger}P$. A linha tracejada $QX^{\ddagger}P$ representa o caminho de reação. O movimento ao longo desse caminho significa que conforme A vai se aproximando de BC, a distância A - B diminui e B - C aumenta lentamente, a partir do comprimento de ligação do equilíbrio[54].

O caminho de mínima energia, linha tracejada $QX^{\ddagger}P$, iniciando nos reagentes, passando pela estrutura de transição, até atingir os produtos é mostrado na Figura (3.4).

Uma caracterísica básica da TST é que esta permite a obtenção da taxa de reação a partir de propriedades moleculares dos reagentes e da estrutura de transição, que uma vez

Figura 3.4: Representação esquemática das regiões envolvidas em uma reação A+BC em função da coordenada de reação.

atingida, leva aos produtos. Desse modo, o que se faz é calcular a concentração da estrutura de transição X^{\ddagger} e a taxa com a qual o sistema passa através da configuração da estrutura de transição (denotado por [‡]).

Assumindo que a reação seja unidimensional, ao longo da coordenada de reação, como na Figura (3.4), então a estrutura de transição é o ponto máximo e representa a barreira de energia potencial. A estrutura de transição é caracterizada por ter uma, e somente uma, freqüência negativa que representa a configuração de máximo da curva que liga os reagentes aos produtos. Matematicamente, isto representa o ponto na SEP onde o gradiente de energia, com relação às coordenadas nucleares, é zero e a energia hessiana tem um autovalor negativo. Em termos quantitativos, um ponto de sela é um ponto onde a segunda derivada do potencial é negativa em apenas uma, e somente uma, direção, e em todas as demais direções ortogonais é positiva[58]. Vale ressaltar que a energia hessiana é dada pela segunda derivada da energia potencial com relação às coordenadas nucleares. Em termos de coordenadas internas ρ_i , a segunda derivada do potencial em um ponto estacionário pode ser expresso como uma matriz com elementos

$$V_{ij}^{''} = \frac{\partial^2 V}{\partial \rho_i \partial \rho_j}.$$
(3.10)

Por uma transformação ortogonal dessas coordenadas é possível obter novas coordenadas onde V'' é uma matriz diagonal. Se todos os elementos diagonais são positivos, o ponto é um mínimo na superfície e se um elemento da diagonal é negativo e todos os outros positivos, este é um ponto de sela [58].

A localização de uma estrutura de transição é, muitas vezes, mais difícil do que encontrar um mínimo. Esta estrutura de transição encontrada é um máximo em uma única direção da energia potencial e um mínimo em todas as outras direções (um ponto de sela de ordem 1)[59].

A formação da TS ocorre a partir do equilíbrio com os reagentes e, dessa forma, pode-se definir uma constante de equilíbrio dada por

$$\frac{[X^{\dagger}]}{[A][BC]} = K^{\dagger}.$$
(3.11)

Uma maneira mais precisa de descrever o movimento a partir dos reagentes para a TS e produtos é por meio da chamada coordenada do caminho de reação ou, simplesmente, coordenada de reação, onde é considerado um grau de liberdade em relação a uma molécula dos reagentes e/ou produtos. Uma molécula com N átomos tem 3N graus de liberdade, que são divididos em: translação (3), rotação (2 para moléculas lineares e 3 para moléculas não lineares) e vibração, conforme a Tabela 3.1. No caso das TS's estas têm 3N-1 graus de liberdade, pois a coordenada de reação representa um grau de liberdade a menos.

Tendo o sistema "passado" através da estrutura de transição (um ponto ao longo do caminho de reação) este não retorna, constituindo assim, um dos pressupostos fundamentais dessa teoria. A partir disto a taxa de reação r pode ser escrita como:

$$r = [X^{\dagger}]\nu \tag{3.12}$$

onde ν é a freqüência vibracional associada com a passagem sobre a estrutura de transição

Graus de liberdade	Reagentes/Produtos	X^{\ddagger}
espécies atômicas		
Translação	3	-
Rotação	0	-
Vibração	0	-
moléculas lineares		
Translação	3	3
Rotação	2	2
Vibração	3N-5	3N-6
moléculas não-lineares		
Translação	3	3
Rotação	3	3
Vibração	3N-6	3N-7
Movimento do caminho de reação	1	1
Total	3N	3N

Tabela 3.1: Graus de liberdade para os reagentes/produtos e TS.

da reação. Substituindo a equação 3.11 na equação 3.12, tem-se

$$r = \nu K^{\dagger}[A][BC] \tag{3.13}$$

Portanto, a constante da taxa de reação, k, obtida é

$$k = \nu K^{\dagger}. \tag{3.14}$$

A freqüência de passagem pode ser escrita como:

$$\nu = \frac{\left\langle v^{\dagger} \right\rangle}{\Delta s} \tag{3.15}$$

onde $\langle v^{\dagger} \rangle$ é a velocidade média e Δs é a distância ao longo da coordenada de reação s. A velocidade média no sentido direto é dada por:

$$\left\langle \upsilon^{\dagger} \right\rangle = \sqrt{\frac{k_B T}{2\pi m_{X^{\dagger}}}} \tag{3.16}$$

onde k_B é a constante de Boltzman e $m_{X^{\ddagger}}$ é a massa do complexo relacionada ao movimento do mesmo ao longo da coordenada de reação. A constante de equilíbrio K^{\ddagger} pode ser derivada das funções de partição da forma[60]:

$$K^{\dagger} = \frac{g_{e}^{\dagger} Q_{v}^{\dagger} Q_{r}^{\dagger} Q_{t}^{\dagger} Q_{t}^{\dagger} Q_{t}^{\star}}{g_{e}^{A} Q_{v}^{A} Q_{r}^{A} Q_{t}^{A} g_{e}^{BC} Q_{v}^{BC} Q_{v}^{BC} Q_{t}^{BC}} V \exp(-\Delta E_{0}/k_{B}T)$$
(3.17)

sendo que g_e , Q_v , Q_r , Q_t são, respectivamente, o fator de degenerescência do estado fundamental, função de particão vibracional, rotacional e translacional. O símbolo \ddagger se refere à TS e A e BC são átomos ou moléculas e V é o volume total. Essas funções de partição estão definidas na Tabela 3.2

Tabela 3.2: Funções de Partição Moleculares.

Tipos de Energia	Funções de Partição	
Energia Trans em 1-D	$Q_t = \frac{\sqrt{2\pi m k_B T L}}{h}$	
Energia Trans em 3-D	$\mathbf{Q}_t = \frac{(2\pi m k_B T)^{3/2} V}{h^3}$	
Energia Rot de uma mol não linear com momento de inércia I	$\mathbf{Q}_r = \frac{2Ik_BT}{\sigma\hbar^2}$	
	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	
Energia Rot de uma mol não linear com produtos de inércia $I_a I_b I_c$	$\mathbf{Q}_r = \frac{\sqrt{8\pi I_a I_b I_c (k_B I)^{-\gamma}}}{\sigma \hbar^3}$	
Eugeneia seile de ses house évice veletire à 7DE	0 1	
Energia vib do osc narmonico relativo a ZPE	$\mathbf{Q}_v \equiv \frac{1}{1 - \exp(-\hbar\omega/kT)}$	
Energia vib para s graus de liberdade relativos ZPE	$\Omega_{\rm e} = \Pi_{\rm e} (1 - \exp(-\hbar\omega_{\rm e}/k_{\rm P}T)^{-1})$	
	$\mathfrak{Q}_{v} = \mathfrak{M}_{i}(1 \circ \mathfrak{A}_{v}) (\mathfrak{M}_{i} + \mathfrak{M}_{v})$	
Nível de energia eletrônica (largamente espaçada)	$Q_e = g_e$	
· · · · ·		
- é a mén que la similatria. V é a relume a L é commune sute		

 σ é o número de simetria, V é o volume e L é comprimento

A função de partição para o movimento translacional unidimensional do complexo ao longo do caminho de reação é dado por [60]

$$Q_t^* = \frac{\sqrt{2\pi m_{X^{\ddagger}} k_B T}}{h} \Delta s \tag{3.18}$$

onde * indica que o movimento é ao longo do caminho de reação e h é a constante de Planck. Antes de substituir a expressão (3.18) na equação (3.17) e, posteriormente na equação (3.14), é preciso considerar a escala de energia trabalhada. A energia total do sistema E pode ser particionada entre os vários graus de liberdade:

$$E = E_t + E_r + E_v + E_e. (3.19)$$

Como a função de partição vibracional (dada na Tabela 3.2) é calculada excluindo-se a ZPE,

a expressão para ΔE_0 pode ser escrita como:

$$\Delta E_0 = \frac{1}{2} \sum_{i=1}^{F_{TS}} \hbar \omega_i^{\dagger} + V(s^{\dagger}) - \frac{1}{2} \sum_{i=1}^{F_A} \hbar \omega_i^{A} - \frac{1}{2} \sum_{i=1}^{F_{BC}} \hbar \omega_i^{BC} - V(s = -\infty)$$
(3.20)

onde $F_{TS} = 3N - 7(3N - 6), F_A = 3N_A - 6(3N_A - 5), F_{BC} = 3N_B - 6(3N_{BC} - 5)$ e V(s[‡]), V(s=- ∞) indicam os valores da energia potencial (eletrônica) da TS e dos respectivos reagentes, respectivamente e ω_i é a freqüência. Os números em parênteses nos somatórios se referem a moléculas e TS's lineares.

Finalmente, a expressão para a taxa de reação pode ser escrita como:

$$k_R = \sigma_{symm} \frac{k_B T}{h} \frac{Q^{\ddagger}}{Q_A Q_{BC}} \exp(-\Delta E_0 / k_B T)$$
(3.21)

onde a degenerescência eletrônica g_e foi definida igual a unidade e σ_{symm} é o fator de simetria, ou seja, é igual ao número de caminhos de reação idênticos, ΔE_0 é a diferença de energia entre a TS e os reagentes, levando-se em consideração a energia de ponto zero que representa a barreira de potencial. As funções de partição podem ser expressas como um produto das funções de partição para o movimento translacional e o movimento interno (rotação e vibração), isto é

$$Q^{\ddagger} = Q_t^{\ddagger} V Q_r^{\ddagger} Q_v^{\ddagger}, \qquad (3.22)$$

$$Q_A = Q_t^A Q_r^A Q_v^A$$
(3.23)

е

$$Q_{BC} = Q_t^{BC} Q_r^{BC} Q_v^{BC}.$$

sendo V o volume. As funções de partição de translação, rotação, vibração e eletrônica foram definidas na Tabela 3.2.

Um outro ponto importante sobre a TST é que, como em princípio, a TS não é uma espécie estável, a equação (3.11) pode ser adequadamente chamada de constante de quaseequilíbrio. Essa relação despreza pequenas concentrações relativas de reagentes e produtos. Sendo assim, a taxa de uma reação no sentido direto pode ser vista como a taxa em que o complexo se dissocia em produtos. Duas questões devem ser levadas em consideração ao se tratar desse assunto. Primeiro, que a reação direta geralmente ocorre simultaneamente com a TS, porém os dois processos são não correlacionados e podem ser considerados separadamente. Segundo, que nem todos os sistemas que atingem o topo da barreira movem-se na direção direta e sim em qualquer direção. Muitos voltam ao estado inicial de reagentes. Para tentar corrigir isto, introduz-se um coeficiente de transmissão, κ , definido como a fração de espécies que formam a TS e passam diretamente, de um lado ao outro da reação, para formar os produtos. O valor de κ depende da forma da SEP. Muitas reações têm valores empíricos de κ efetivamente iguais a 1 [61].

A relação entre a taxa de reação e a constante de equilíbrio permite aplicar algumas das propriedades termodinâmicas à cinética e, em particular, descrever a temperatura através da sua dependência da taxa de reação em termos de quantidades termodinâmicas.

Até o ano de 1889, a taxa de reação e o coeficiente da reação dependiam somente da concentração. Mas, através de resultados experimentais, verificou-se que os mesmos eram fortemente dependentes da temperatura[61, 62]. Arrhenius, em 1889, mostrou que uma variedade de reações possuía coeficientes de reação na forma:

$$k = Ae^{\frac{-Ea}{RT}} \tag{3.24}$$

onde A é o fator pré-exponencial e E_a é a energia de ativação da reação. A equação de Arrhenius foi obtida através de observações experimentais, que é válida para uma faixa finita de temperatura, como mencionado anteriormente.

As dificuldades encontradas para usar esta equação, consiste em determinar o fator Ae a energia de ativação, E_a , principalmente na falta de dados experimentais[54, 55]. Estas dificuldades podem ser contornadas usando o formalismo da TST para se determinar a taxa de velocidade das reações que se pretende analisar e foi este o procedimento adotado para as reações dessa tese, onde as taxas de reação serão escritas na forma de Arrhenius modificada, equação (3.1). Resumindo, para uma reação bimolecular do tipo A + BC = AB + C, o coeficiente de reação normalmente é dado por:

$$k_{TST} = \frac{k_B T}{h} \frac{Q_{X^{\ddagger}}}{Q_A Q_{BC}} \exp\left(-\frac{V_a^{G^{\ddagger}}}{RT}\right)$$
(3.25)

onde $Q_A \in Q_{BC} \in Q_{X^{\ddagger}}$ são as funções de partição das espécies $A, BC \in \text{da } TS$, respectivamente, k_B é a constante de Boltzmann, h constante de Planck, T temperatura e R constante universal do gases. $V_a^{G^{\ddagger}}$ é conhecida como a barreira de potencial e é dada por:

$$V_a^{G\ddagger} = V^\ddagger + E_{ZPE} \tag{3.26}$$

Introduzindo o coeficiente de transmissão $\kappa(T)$ na equação (3.25), tem-se o coeficiente de reação, com a correção de tunelamento (CT), dada por:

$$k_{TST}^{CT}(T) = \kappa(T)k_{TST}(T). \tag{3.27}$$

O coeficiente de transmissão está ligado ao efeito de tunelamento da coordenada da reação, caso este exista, pois basicamente tem-se evidenciado que o tunelamento ocorre para átomos leves e à baixas temperaturas e nos casos de interesse no escopo dessa tese, mecanismos cinéticos para crescimentos de filmes CVD, os quais ocorrem a altas temperaturas, normalmente superiores a 1000 K, esses efeitos são minimizados. O ângulo de *skew* [55](ver apêndice A) é uma forma de avaliar a curvatura do caminho da reação, na realidade, ele funciona como um fator limitante dessa curvatura e é dado por

$$\beta = ArcCos \left[\frac{m_A m_C}{(m_A + m_B)(m_B + m_C)} \right]^{\frac{1}{2}}$$
(3.28)

onde m_A , m_B e m_C são as massas das espécies A, B e C, respectivamente, envolvidas na reação. Um valor de β pequeno é um fator que pode caracterizar tunelamento para a curvatura do caminho da reação e para β grande o efeito de tunelamento é pouco provável. Entretanto, foram consideradas duas correções de tunelamento, a de Wigner (k_{TST}^W) [55, 11] e a de Eckart (k_{TST}^E) [63]. A TST Variacional, bem como os métodos semiclássicos, fornecem um valor mais exato da taxa de reação, pois descrevem com maior precisão os efeitos de tunelamento[55], mas nestes casos, são necessárias maiores informações sobre a superfície de energia potencial, porém isso não é o objetivo desta tese. A correção de Wigner para o tunelamento supõe um potencial parabólico para o movimento nuclear, próximo à estrutura de transição e não é a melhor correção a ser feita. O coeficiente de transmissão de Wigner é dado pela seguinte expressão[11, 55] :

$$\kappa(T) = 1 + \frac{1}{24} \left| \frac{\hbar \omega^{\ddagger}}{k_B T} \right|^2 \tag{3.29}$$

onde a freqüência do ponto de sela é o ω^{\ddagger} .

A MEP faz a conexão do ponto de sela com os reagentes e produtos correspondentes. A energia potencial clássica ao longo da MEP, $V_{MEP}(s)$, é dada pela função de Eckart [63]. Função esta cujos parâmetros são calculados através das energias clássicas dos reagentes (R), ponto de sela (X^{\ddagger}) , e produtos (P) e através da freqüência imaginária do ponto de sela, como mostrado por Troung [64] and Pardo [65]. A função para o potencial de Eckart é dada por

$$V_{MEP}(s) = \frac{AY}{1+Y} + \frac{BY}{(1+Y)^2}$$
(3.30)

 com

$$Y = e^{\alpha(s-s_0)} \tag{3.31}$$

$$A = \Delta E_C = V_{MEP}(s = +\infty) \tag{3.32}$$

$$B = (2V^{\dagger} - A) + 2(V^{\dagger}(V^{\dagger} - A))^{\frac{1}{2}}$$
(3.33)

$$S_0 = -\frac{1}{\alpha} \ln\left(\frac{A+B}{B-A}\right) \tag{3.34}$$

$$\alpha^2 = -\frac{\mu(\omega^{\ddagger})^2 B}{2(V^{\ddagger}(V^{\ddagger} - A))}$$
(3.35)

onde ΔE_C é a endoergicidade clássica e μ é a massa reduzida. Convencionalmente, V_{MEP} é considerado como sendo zero para os reagentes[27].

Numa segunda etapa, a curva de potencial vibracionalmente adiabática do estado fundamental, $V_a^G(s)$, é calculada, fazendo uma aproximação por uma função de Eckart, na qual assume-se que esta tem o mesmo parâmetro de alcance (α) e localização do máximo (s = 0) que a V_{MEP} ; os parâmetros restantes são determinados impondo que a função de Eckart passe através das energias corrigidas de ponto zero dos reagentes, ponto de sela e produtos, ou seja:

$$V_a^G(s) = \frac{ay}{1+y} + \frac{by}{(1+y)^2} + c$$
(3.36)

 com

$$y = e^{\alpha(s-s_0)} \tag{3.37}$$

$$a = \Delta H_0^0 = V_a^G (s = +\infty) - V_a^G (s - \infty)$$
(3.38)

$$b = \left(2V^{\ddagger G} - a\right) + 2\left(V_a^{\ddagger G}\left(V_a^{\ddagger G} - a\right)\right)^{\frac{1}{2}}$$
(3.39)

$$c = \epsilon_{int}^G (s = -\infty) \tag{3.40}$$

$$s_0 = -\frac{1}{\alpha} \ln\left(\frac{a+b}{b-a}\right) \tag{3.41}$$

onde $V_a^{\ddagger G}$ é a barreira de energia de ponto zero corrigida no ponto de sela, relativa aos reagentes e $\epsilon_{int}^G(s = -\infty)$ é a soma da energia de ponto zero dos reagentes.

A solução da equação de Schrödinger para a equação de Eckart produz a seguinte probabilidade de transmissão[63, 66, 67]:

$$\Gamma(E) = 1 - \frac{\cosh\left[2\pi(\alpha - \beta)\right] + \cosh\left[2\pi\gamma\right]}{\cosh\left[2\pi(\alpha + \beta)\right] + \cosh\left[2\pi\gamma\right]}$$
(3.42)

 com

$$\alpha = \frac{1}{2} \left(\frac{E}{C}\right)^{1/2} \tag{3.43}$$

$$\beta = \frac{1}{2} \left(\frac{E-a}{C}\right)^{1/2} \tag{3.44}$$

$$\gamma = \frac{1}{2} \left(\frac{b-C}{C} \right)^{1/2} \tag{3.45}$$

$$C = \frac{\left(h\omega^{\dagger}\right)^2 B}{16\Delta V^{\dagger} \left(\Delta V^{\dagger} - A\right)} \tag{3.46}$$

sendo que os parâmetros $a \in b$ já foram definidos anteriormente.

Neste caso, a correção de tunelamento de Eckart, $\kappa(T)$, é obtida como a razão entre o coeficiente de reação quântico e clássico, calculada por meio da integração das respectivas probabilidades de transmissão sobre todas as possíveis energias

$$\kappa(T) = \frac{\exp(\Delta V_c^{\ddagger}/RT)}{RT} \int_0^\infty \exp\left(-\frac{E}{RT}\right) \Gamma(E) dE.$$
(3.47)

Desta forma, a correção de Eckart, é melhor do que a correção de Wigner, em baixas temperaturas, mas não altera consideravelmente o coeficiente de reação em altas temperaturas.

Na seção seguinte será mostrado o formalismo adotado para o cálculo da taxa de reação unimolecular e empregado no programa[26] desenvolvido por nosso grupo para o cálculo da taxa de reação dos sistemas envolvidos nesse estudo.

3.4 Reações Unimoleculares

Por um longo período o mecanismo das reações unimoleculares foi um mistério. A análise dessas reações é um pouco mais complexa, o coeficiente de reação depende fortemente da pressão. A primeira explicação bem sucedida das reações unimoleculares foi dada por Frederick Lindmann, em 1921, e complementada por Cyril Hinshelwood. Neste mecanismo as moléculas do reagente A são excitadas por colisões energéticas com outra molécula M, que pode ser outra molécula do gás ou uma molécula do gás de diluição, para um estado excitado A^* . As moléculas energizadas podem subsequentemente ser desativadas por colisões posteriores ou podem dar origem a uma reação unimolecular para formação de produtos:

$$A \xrightarrow{k_{uni}} produtos$$

$$A + M \underset{k_{-1}}{\overset{k_1}{\longleftrightarrow}} A^* + M \xrightarrow{k_2} produtos$$

A formação da molécula excitada A^* ocorre com uma velocidade k_1 . A^* pode voltar ao seu estado anterior com velocidade k_{-1} , ou se dissociar formando os produtos com velocidade k_2 . A taxa de formação dos produtos é

$$\frac{d[P]}{dt} = k_2[A^*]$$
(3.48)

e a taxa de formação e destruição de A^* é

$$\frac{d[A^*]}{dt} = k_1[A][M] - k_{-1}[A^*][M] - k_2[A^*].$$
(3.49)

Como A^* tem um tempo de vida curto e, ao contrário dos produtos, não é acumulado durante a reação, após um período curto de formação de A^* , o mesmo permanece em uma concentração estacionária, ou seja, é consumido na mesma taxa que é produzido, ou seja, $d[A^*]/dt = 0$. Assim:

$$k_1[A][M] = k_{-1}[A^*][M] + k_2[A^*]$$
(3.50)

$$[A^*] = \frac{k_1[A][M]}{k_{-1}[M] + k_2} \tag{3.51}$$

$$\frac{d[P]}{dt} = k_{uni}[A] \tag{3.52}$$

Comparando a equação (3.48) com a (3.52), tem-se:

$$k_{uni}[A] = k_2[A^*]. ag{3.53}$$

Substituindo (3.51) em (3.53), tem-se:

$$k_{uni} = \frac{k_1 k_2 [M]}{k_{-1} [M] + k_2} \tag{3.54}$$

sendo que k_{uni} é uma função da pressão, e depende da concentração de [M].

Dois limites são observados para k_{uni} , um deles é o limite de alta pressão, $k_{-1}[M] \gg k_2$, ou seja, a desativação é mais rápida do que a reação unimolecular de A^* . K_{uni} se reduz a k_2k_1/k_{-1} , tornando-se *independente da pressão*. À baixa pressão, o passo determinante da taxa é de uma excitação bimolecular. Uma vez que a molécula tenha sido formada esta é mais propensa a reagir do que sofrer desativação, entretanto, $k_{-1}[M] \ll k_2$ e a equação (3.54) se reduz a

$$k_{uni} = k_1[M] \tag{3.55}$$

e, dessa forma, o coeficiente total é dependente da pressão. Em alta pressão é possível escrever $k_{\infty} = k_1 k_2 / k_{-1}$ e o outro limite de baixa pressão, $k_0 = k_1 [M]$.

Após alguma manipulação algébrica é possível escrever a equação (3.54) na seguinte forma

$$k_{uni} = k_{\infty} / \left\{ 1 + \left(k_2 / k_{-1}[M] \right) \right\}.$$
(3.56)

A partir dessa expressão e no limite de alta temperatura, ou seja, para $k_{-1}[M] \gg k_2$, a equação (3.54) se resume a forma

$$k_{uni} = k_{\infty}.$$

No limite de alta pressão, o equilíbrio na distribuição dos reagentes é mantido e essa é a condição necessária para a aplicação da TST convencional, ou seja

$$k_{\infty}(T) = \kappa (k_B T/h) (Q^{\ddagger}/Q) \exp(-E_0/k_B T),$$
(3.57)

onde Q^{\ddagger} é a função de partição para a TS e Q é a função de partição para a molécula reagente.

Já no limite de baixa pressão, esta depende da pressão, não se pode utilizar a TST, pois neste regime se faz necessário recorrer a outros métodos.

A reação unimolecular nada mais é do que uma reação de dissociação do reagente, portanto é dependente da energia, com isto, pode se aplicar novamente o mecanismo de Lindemann, considerando as taxas dependentes da energia, da forma

$$A + M \stackrel{dk_1(E)}{\underset{k_{-1}}{\rightleftharpoons}} M + A^*(E) \stackrel{k_2}{\longrightarrow} produtos$$
(3.58)

onde $dk_1(E)$ é a taxa de ativação para energias na faixa de E(E+dE). A solução para uma condição de equilíbrio, similar a utilizada em (3.50) para cada faixa de energia é dado por:

$$k_{uni} = \int_{E_0}^{\infty} k_2(E)[M] dk_1(E) / \{k_{-1}[M] + k_2(E)\}.$$
(3.59)

Existem alguns modelos para a resolução desta equação, o mais conhecido e amplamente utilizado é o metodo desenvolvido por Rice-Ramsperger-Kassel-Markus (RRKM) [54].
Assim como a teoria de colisões, o mecanismo de Lindemann não leva em consideração a estrutura molecular real das espécies envolvidas no processo reativo e, em função disso, não apresenta uma concordância muito grande com dados experimentais. Em face disso, desenvolvimentos mais recentes dessa teoria são reportados ao método RRKM e, segundo as referências [68, 54], apresenta resultados satisfatórios quando comparados com dados experimentais. É importante salientar que o cálculo de taxas a partir desse método não constitui objetivo desta tese.

Capítulo 4 Resultados Parte I

Nesta parte da tese passaremos para a apresentação e análise dos resultados obtidos na investigação da decomposição do NF₃ em nitrogênio e flúor. Para se entender e determinar o caminho correto de decomposição do NF_3 em N_2 e F_2 como sugerido por Wang e colaboradores [5] ou N_2 , F e F_2 [8], se fez necessário o estudo detalhado de várias reações elementares, como passo intermediário, para o entendimento desse mecanismo de decomposição. Entre as várias reações estudadas foram encontradas uma série de reações unimoleculares, de abstração e troca que tiveram suas propriedades cinéticas determinadas, via TST, e estão aqui apresentadas. Entretanto, para se aplicar a TST é necessário o conhecimento das geometrias, frequências e energias potenciais para reagentes, estruturas de transição e produtos. Estas propriedades foram obtidas para todas as reações estudadas nesse trabalho, a partir de cálculos acurados de estrutura eletrônica, utilizando o código Gaussian98/69. Todas as reações tiveram suas taxas determinadas, num intervalo de temperatura que foi de 200-4000K, usando para tal um código [25, 26], desenvolvido pelo nosso grupo de pesquisa para essa finalidade. Foram calculadas duas correções diferentes para considerar possíveis efeitos de tunelamento (Wigner [11, 55] e Eckart [63, 64]) e foram todas escritas na forma de Arrhenius. A seguir serão apresentados os resultados obtidos para 15 reações estudadas, sendo que uma delas, a reação do sistema BF₃N, foi tratada à parte, pois não pertence ao mecanismo de dissociação do NF_3 e apresenta um comportamento diferente das demais.

4.1 Geometrias, Freqüências, Energias dos Reagentes e Produtos dos Sistemas NF_xF e NF_xN , com x = 1, 2 e 3.

Todas as geometrias de equilíbrio e freqüências harmônicas para reagentes e produtos $(NF, F, NF_2, NF_3, N, N_2F, N_2F_3, F_2, N_2)$ bem como para todas as TS's dos sistemas estudados nesta tese, foram determinadas aplicando a teoria de Møller Plesset, com correção de segunda ordem (MP2), com otimizações realizadas nos conjuntos de funções de bases cc-pVDZ[70] e 6-31G(d)[71, 72], considerando sempre MP2(full).

Esses dois conjuntos de funções de bases possuem funções de polarização por definição e estão bem definidas no Gaussian98 e 03. No caso das bases do tipo cc-pVDZ, cc-pVTZ, ccpVQZ, cc-pV5Z e cc-pV6Z (correlation consistent polarized Valence Double, Triple, Quadruple, Quintuple e Sextuple Zeta) são aplicáveis para os átomos da tabela periódica que vão do He-Kr, B-Ne, Al-Ar.

Para os diversos cálculos realizados neste trabalho, foi feito um amplo estudo para verificar qual melhor nível de cálculo e base a ser adotado para a determinação de todas as propriedades das reações estudadas e estas foram comparadas com dados de referências experimentais e teóricas, quando disponíveis na literatura (como no caso das freqüências e distâncias interatômicas dos reagentes e produtos). Como as reações discutidas nesta tese fazem parte de um mecanismo mais amplo, formado por 1012 reações, resolvemos tratar esse conjunto de 14 reações de forma global, fazendo para tal estudos que, quando indicados, foram gerais para todas as reações, por exemplo o fator de escalonamento das freqüências, erros globais, entre outros, por se tratarem de reações que possuem reagentes e produtos em comum. Detalhes deste procedimento serão mostrados nas seções que se seguem.

As geometrias e freqüências dos reagentes e produtos desses sistemas foram determinadas em MP2/cc-pVDZ e MP2/6-31g(d), como citado anteriormente. As geometrias e freqüências são listadas nas Tabelas 4.1 e 4.2, respectivamente, e são comparadas com dados experimentais e teóricos encontrados na literatura. Foi utilizado um fator de escala para as freqüências de 97,7884 % e 96,2846 % para as bases cc-pVDZ e 6-31G(d), respectivamente. Na Tabela 4.2 também são apresentadas as energias de ponto zero após a correção da freqüência. O escalonamento dessas grandezas é realizado para levar em conta possíveis deficiências inerentes ao nível de cálculo e bases utilizados na determinação das freqüências e energias. As freqüências fornecem o valor da ε_{ZPE} , usada para o cálculo das barreiras de potencial, nas várias regiões do caminho de reação. Abaixo seguem as relações utilizadas para o cálculo da ε_{ZPE} e do fator de escalonamento.

A ε_{ZPE} calculada em kcal/mol é dada pela seguinte relação

$$\epsilon_{ZPE} = (1, 42973 \times 10^{-3}) \sum_{i=1}^{N} \omega_i$$

sendo ω_i as freqüências, dadas em cm^{-1} e N o número total de freqüências. A ε_{ZPE} escalonada é dada por

$$\epsilon_{ZPEesc} = \epsilon_{ZPE} \times F_C$$

onde FC é o fator de correção ou escalonamento das freqüências e é dado por:

$$F_C = \frac{\sum_{i=1}^{N} \frac{\omega_i(\exp)}{\omega_i(abinitio)}}{N}$$

As representações esquemáticas para cada espécie estão mostradas na Figura 4.1.

Da avaliação da Tabela 4.1, pode-se notar que as maiores diferenças entre as geometrias calculadas e os valores experimentais e/ou teóricos foram de 0,193Å para o NF, usando cc-pVDZ (comparado com as Tabelas da JANAF[73]) e 0,234Å (comparado com cálculos realizados por nosso grupo[25, 27]). Para os ângulos interatômicos a maior diferença foi de 0,866° para o NF₃ (comparado com a JANAF). Para as geometrias em 6-31G(d), a maior diferença encontrada foi para o NF (0,18Å). É importante ressaltar que a molécula N₂F não possui dados de referência para comparação.

Da Tabela 4.2 pode-se observar que as maiores diferenças observadas nas freqüências são para N_2 , 183,37cm⁻¹, para a base cc-pVDZ. Após a aplicação do fator de correção essa

espécies	bases	d	istâncias (\hat{A})		ângul	$os (^{\circ})$	
		R_{NF}	\mathbf{R}_{FF}	\mathbf{R}_{NN}	A_{FNF}	A_{NNF}	
F ₂	cc-pVDZ		1,424				
	6-31G(d)		$1,\!421$				
	Ref. Exp.		1,4119[73]				
			1,412[74]				
			1,435 [75]				
	Ref. Teor.		1,421[27]				
N ₂	cc-pVDZ			1,129			
	6-31G(d)			1,130			
	Ref. Exp.			1,094[75]			
				1,0977[74]			
	Ref. Teor.			1,131[27]			
NF	cc-pVDZ	1,317					
	6-31G(d)	1,330					
	Ref.Exp.	1,3173[67]					
		1,317 [74]					
		1,51[73]					
	Ref.Teor.	1,330[27]					
NF ₂	cc-pVDZ	1,349			103,658		
	6-31G(d)	1,359			103,262		
	Ref.Exp.	1,37[73, 76]			104,2[73, 76]		
	Ref.Teor.	1.,359			103,3		
NF3	cc-pVDZ	1,377			102,034		
	6-31G(d)	1,385			101,677		
	Ref.Exp.	$1,\!371[73]$			102,9[73]		
	Ref.Teor.	1,3849[77]			101,661[77]		
		$1,\!380[27]$			101,7[27]		
N ₂ F	cc-pVDZ	1,579		1,3183	$65,\!335$	65,3	
	6-31G(d)	1,578		1,3210		65,2	
N ₂ F ₃	cc-pVDZ	1,3909		1,4279	103,5022	100,5680	
	6-31G(d)	1,3921		1,4239	103,0671	100,1267	
	Ref.Teor.	1,3938[27]		1,4256[27]	103,0297[27]	100,1269[27]	

Tabela 4.1: Parâmetros geométricos para reagentes e produtos dos sistemas NF_xF e NF_xN , com x = 1, 2, 3, calculadas em MP2/cc-pVDZ e 6-31G(d) (distâncias interatômica em Å e ângulos de ligação em graus).

Figura 4.1: Geometrias dos reagentes e produtos pertencentes aos sistemas NF_xF e NF_xN , com x = 1, 2 e 3.

diferença cai para 179,31 cm⁻¹. Para as outras espécies estas diferenças são bem menores.

As energias eletrônicas dos reagentes e produtos dos sistemas NF_xF e NF_xN são apresentados na Tabela 4.3 para o NF, NF_2 , NF_3 , N_2F e N_2F_3 e Tabela 4.4 para F, F_2 , N, N_2 . As energias das Tabelas 4.3 e 4.4 foram determinadas usando as geometrias das TS's otimizadas em MP2/cc-pVDZ e MP2/6-31G(d), respectivamente, conforme o caso. Por limitações computacionais, algumas energias referentes aos sistemas N_2F e N_2F_3 não foram determinadas.

Calor de formação ou entalpia de formação é o nome dado à variação de entalpia associada à formação de um mol de uma substância a partir de seus elementos constituintes, na forma de substâncias simples mais estáveis e no estado padrão [61]. Na Tabela 4.5 encontram-se valores para o calor de formação de reagentes e produtos calculados em G3 [27], a partir do Gassian98 e os valores encontrados podem ser comparados com valores experimentais e teóricos disponíveis, exceto para o N_2F e N_2F_3 que não apresentam dados para comparação.

Percebe-se que em alguns casos ocorre uma variação grande entre os valores teóricos e experimentais mostrados na Tabela 4.5. Este fato nos leva a concluir que comparações da

espécies	bases	ν_1	ν_2	ν_3	ν_4	ν_5	$\varepsilon_{_{ZPE}}$
F_2	cc-pVDZ	933,42					1,305
	$6-31 \mathrm{G}(\mathrm{d})$	1007,75					1,387
	Ref.Exp.	892,0[75, 78]					
		916,6[74]					
	Ref.Teor.	957,0[27]					
N_2	cc- $pVDZ$	2176,23					3,042
	6-31G(d)	2178,74					2,999
	Ref.Exp.	2359,6[78, 75],					
		2358,6 [74]					
	Ref.Teor.	2118,7 [27]					
NF	cc- $pVDZ$	1175,30					$1,\!643$
	6-31G(d)	1192,00					$1,\!641$
	Ref.Exp.	1115,0[73]					
		1141,4 [74, 67]					
	Ref.Teor.	1138,5 [67],					
		1104,6 [27]					
NF_2	cc- $pVDZ$	585,97	982,77	1126,61			
	6-31G(d)	573,89	1026,08	1147,01			3,768
	Ref. Exp.	573[73]	931[73]	1074[73]			3,781
		573,4[76]	930,7[76]	1069,5 [76]			
	Ref. Teor.	569,7[27]	908,1[27]	1078,6 [27]			
NF_3	cc- $pVDZ$	496,77	656,10	915,78	1043,79		
	6-31G(d)	489,34	653,72	959, 93	1062,01		6,326
	Ref. Exp.	492,0[73]	642,0[73]	906, .0[73]	1032, .0[73]		6,351
		497[79]	648 [79]	898[79]	1027 [79]		
	Ref. Teor.	489,3[77]	653,7[77]	959,3[77]	1061, 6[77]		
		484,6[27]	644,2[27]	860,6[27]	1032,8[27]		
N_2F	cc- $pVDZ$	814,6454	939,2608	1382,0188			
	6-31G(d)	861,960	932,5223	1386,7643			
N_2F_3	cc-pVDZ	134,23	318,38	457,97	$547,\!52$	585,52	
	6-31G(d)	140,87	320,17	454,84	$552,\!11$	$584,\!45$	
		ν_6	ν_7	ν_8	ν_9		8,581
N_2F_3	cc-pVDZ	864,30	1012,41	1099,70	1117,83		8,631
	6-31G(d)	895,46	1043,71	1129,9	1148,62		

Tabela 4.2: Freqüências vibracionais (cm⁻¹) para os reagentes e produtos dos sistemas NF_xF e NF_xN , com $x = 1, 2 \in 3$.

Tabela 4.3: Energias eletrônicas (hartree), calor de formação experimental (kcal/mol) para reagentes, produtos), incluindo a correção da ZPE para os reagentes e produtos NF, NF₂, NF₃, N₂F, N₂F₃.

	ND	ND	MD	N D	N F
	NF	NF_2	NF_3	N_2F	N_2F_3
MP2/cc-pVDZ	-154,0839575	-253,6948568	-353,2987438	-208,5517426	-407,8131522
MP2/aug-cc-pVDZ	-154,1186935	-253,7602580	-353,3954102	-208,6027351	-407,9220577
MP2/cc-pVTZ	-154,2450170	-253,9735442	-353,6941147	-208,7792194	-408,2658717
MP2/aug-cc-pVTZ	-154.2589328	-253.9994657	-353,7325534	-208.8020345	-408.3118127
MP4(SDQ)/cc-pVDZ	-154 1002648	-2537102640	-353 3112667	-2085731677	-407 8377204
MP4(SDO)/aug-cc-pVDZ	-154 1355357	-253 7756514	-353 4075940	-208 6236740	-407 9463353
MP4(SDQ)/adg cc p VD2 MP4(SDQ)/ac pVT7	154,1000007	252,0826702	252 6082424	200,0200140	408 2807581
MF4(SDQ)/CC-pV1Z	-104,2090447	-255,9850702	-555,0965454	-200,7942710	-408,2807,381
MP4(SDQ)/aug-cc-pv1Z	-154,2727304	-254,0091741	-353,7301503	-208,8100103	-408,3260040
MP4(SDTQ)/cc-pVDZ	-154,1073840	-253,7244934	-353,3324918	-208,5949819	-407,8632710
MP4(SDTQ)/aug-cc-pVDZ	-154,1456680	-253,7957801	-353,4377842	-208,6508216	-407,9819446
MP4(SDTQ)/cc-pVTZ	-154,2735528	-254,0116742	-353,7399065	-208,8301623	-408,3299772
MP4(SDTQ)/aug-cc-pVTZ	-154,2887297	-254,0400998	-353,7821163	-208,8550659	-408,3801523
QCISD/cc-pVDZ	-154,1032629	-253,7129642	-353,3120745	-208,5743568	-407,8412001
QCISD/aug-cc-pVDZ	-154,1384149	-253,7781011	-353,4083746	-208,6246668	-407,9496318
QCISD/cc-pVTZ	-154.2613789	-253.9852290	-353,6977600	-208,7942690	-408.2824362
OCISD/aug-cc-pVTZ	-154 2750447	$-254\ 0106877$	-353 7356268	,	
OCISD(T)/cc-pVDZ	-154 1086915	-253 7242305	-353 3295773	-208 5915661	-407 8629513
OCISD(T)/aug cc pVDZ	154 1463483	253,7242005	353 4398634	200,0010001	407,0023600
QCISD(T)/aug-cc-pvDZ	154.9740161	-255,7540005	252 7296892	-200,0400400	408 2950429
QCISD(T)/cc-pvIZ	-104,2740101	-254,0089002	-333,7320823	-208,8230303	-406,5250452
QCISD(1)/aug-cc-pv1Z	-154,2888802	-254,0300301	-353,7739993	000 5701050	107 0070000
CCSD/cc-pVDZ	-154,1009595	-253,7098333	-353,3091179	-208,5701258	-407,8370888
CCSD/aug-cc-pVDZ	-154,1357159	-253,7741824	-353,4042488	-208,6198836	-407,9442110
CCSD/cc-pVTZ	-154,2589830	-253,9817822	-353,6941640	-208,7898238	-408,2776550
CCSD/aug-cc-pVTZ	-154,2724989	-254,0069310	-353,7315922		
CCSD(T)/cc-pVDZ	-154,1078257	-253,7229796	-353,3282601	-208,5900516	-407,8612997
CCSD(T)/aug-cc-pVDZ	-154,1453246	-253,7924252	$-353,\!4310574$	-208,6441067	-407,9771636
CCSD(T)/cc-pVTZ	-154,2729146	-254,0072574	-353,7308492	-208,8217596	-408,3227380
CCSD(T)/aug-cc-pVTZ	-154,2877131	-254,0348438	-353,7719512		
MP2/6-31C(d)	-154.0536110	-253 6427880	-353 2267760	-208 5220701	-407 7480747
MP2/6.21 + C(d, p)	154,0500110	253,6746040	353 2710820	200,5225101	407 7872073
MD2/6.211 + C(1-2)	154,0720000	-200,0740940	-555,2710820	-208,5404008	409 0707925
MP2/0-311++G(d,p)	-104,17900179	-200,004000	-555,5227927	-200,0000015	-400,0727033
MP2/0-311++G(dl,pd)	-104,2190178	-200,9244001	-555,0217905	-206,7410035	-400,1079541
MP2/6-311++G(3df,3pd)	-154,2632657	-254,0017485	-353,7326913	-208,8065405	-408,3153063
MP4(SDQ)/6-31G(d)	-154,0745930	-253,6646513	-353,2473958	-208,5514314	-407,7716543
MP4(SDQ)/6-31++G(d,p)	-154,0879173	$-253,\!6887632$	-353,2813002	-208,5667784	-407,8095130
MP4(SDQ)/6-311++G(d,p)	-154,1946750	-253,8678710	-353,5317752	-208,7001614	-408,0937677
MP4(SDQ)/6-311++G(df,pd)	-154,2353009	-253,9395812	$-353,\!6333537$	-208,7611283	-408,2116610
MP4(SDQ)/6-311++G(3df,3pd)	-154,2784965	-254,0135838	-353,7389431	-208,8234894	-408,3329518
MP4(SDTQ)/6-31G(d)	-154,0822558	-253,6800417	-353,2705259	-208,5741141	-407,7992795
MP4(SDTQ)/6-31++G(d,p)	-154,0965938	-253,7062743	-353,3076469	-208,5913021	-407,8406547
MP4(SDTQ)/6-311++G(d,p)	-154,2053147	-253,8890497	-353,5633273	-208,7287835	-408,1309853
MP4(SDTQ)/6-311++G(df.pd)	-154.2472827	-253.9631612	-353.6684276	-208.7925163	-408.2533262
MP4(SDTQ)/6-311++G(3df 3pd)	-154 2940300	$-254\ 0436922$	-353 7837001	-208 8608898	-408 3855320
OCISD/6-31G(d)	-154 0777717	-253 6674272	-353 2480477	-208 5522970	-407 7749701
OCISD/6-31++C(d p)	-154.0008838	-253 6887632	-353 2820881	-208 5675604	-407 8128074
OCISD/6-31++O(d,p)	154,0300030 154,1078220	252 8702554	252 5202211	208,5075004	408.0068004
QCISD/0-311++G(u, p)	-104,1970000	-200,0702004	-555,5525511	-208,7009114	-408,0908904
QCISD/6-311++G(di,pd)	-154,2379215	-253,9410900	-353,0334047	-208,7615345	-408,2141082
QCISD(T)/6 - 3IG(d)	-154,0830479	-253,6789055	-353,2664367	-208,5693075	-407,7974139
QCISD(T)/6-31++G(d,p)	-154,0967398	-253,7039211	-353,3021405	-208,5855687	-407,8373389
QCISD(T)/6-311++G(d,p)	-154,2060157	-253,8874678	-353,5583712	-208,7237157	-408,1286429
QCISD(T)/6-311++G(df,pd)	-154,2479593	-253,9612055	-353,6626112	-208,7869143	-408,2500928
CCSD/6 - 31G(d)	-154,0748586	-253,6634582	-353,2442029	-208,5474124	-407,7697531
CCSD/6-31++G(d,p)	-154,0877004	$-253,\!6867227$	-353,2772227	-208,5622295	-407,8066201
CCSD/6-311++G(d,p)	-154,1947854	-253,8664576	-353,5284148	-208,6961972	-408,0917492
CCSD/6-311++G(df,pd)	-154,2353426	-253,9379464	$-353,\!6295573$	-208,7569164	
CCSD(T)/6 - 31G(d)	-154,0820674	-253,6774610	-353,2648576	-208,5677199	-407,7955025
CCSD(T)/6-31++G(d, p)	-154,0956538	-253,7022342	-353,3002047	-208,5838115	-407,8350418
CCSD(T)/6-311++G(d, p)	-154,2048501	-253.8856816	-353,5563866	-208,7217413	-408,1261946
	154 0400019	952 0504699	252 6606020	000 70 10000	,
1 CCSD(T)/6-311++G(df,pd)	-104,2408013	-200,9094022	-333,0000930	-208,7849909	

Tabela 4.4: Energias eletrônicas (hartree), calor de formação experimental (kcal/mol) para reagentes, produtos), incluindo a correção da ZPE para as reagentes e produtos F, F₂, N, N₂.

	F	F_2	N	N_2
MP2/cc-pVDZ	-99 5177561	-199.0837522	-54 4634378	-109 2671670
MP2/aug-cc-pVDZ	-99 5377403	-100,0001022	-54 4698662	-109 2852732
MP2/cc pVT7	00 6173738	100 2080832	54,5068100	100,2002102
MD2/cc-pV1Z	-99,0115158	100 2177694	-54,5008103	100 2026961
MF2/aug-cc-pv1Z	-99,0245245	-199,5177084	-54,5092007	-109,5950801
MP4(SDQ)/cc-pVDZ	-99,5281917	-199,0924405	-54,4790434	-109,2689201
MP4(SDQ)/aug-cc-pVDZ	-99,5493857	-199,1394190	-54,4866871	-109,2865566
MP4(SDQ)/cc-pVTZ	-99,6283434	-199,3036731	-54,5223322	-109,3806787
MP4(SDQ)/aug-cc-pVTZ	-99,6354254	-199,3220713	-54,5246129	-109,3912008
MP4(SDTQ)/cc-pVDZ	-99,5290407	-199,1011296	-54,4794748	-109,2845045
MP4(SDTQ)/aug-cc-pVDZ	-99.5516903	-199.1529685	-54.4875759	-109.3038912
MP4(SDTO)/cc-pVTZ	-99 6318270	-199 3231850	-54 5240773	-109 4054271
$MP4(SDTQ)/aug_{cc}-pVTZ$	-00 6307286	-100,3440567	-54 5265874	-100,1001211
OCISD/aa pVD7	-33,0331200	100.0027204	54,4702065	100 2682221
QCISD/cc-pvDZ	-99,5285050	-199,0927504	-54,4795005	-109,2062221
QCISD/aug-cc-pVDZ	-99,5500065	-199,1394613	-54,4873059	-109,2858619
QCISD/cc-pVTZ	-99,6286731	-199,3028318	-54,5225292	-109,3792133
QCISD/aug-cc-pVTZ	-99,6358723	-199,3211861	-54,5249240	-109,3898116
QCISD(T)/cc- $pVDZ$	-99,5293514	-199,1016563	-54,4799431	-109,2804890
QCISD(T)/aug-cc-pVDZ	-99,5520783	-199,1517500	-54,4885606	-109,2997821
QCISD(T)/cc-pVTZ	-99,6322668	-199,3208449	-54,5248835	-109,3985095
QCISD(T)/aug-cc-pVTZ	-99.6401931	-199.3410205	-54.5275544	-109,4098579
CCSD/cc-pVDZ	-99 5284216	-199,0922395	-54 4793028	-109 2670582
CCSD/aug cc pVDZ	00,5406017	100,1382627	54 4872302	100,2010002
CCSD/aug-cc-pvDZ	-99,0490017	100 2019275	-54,4012592	100 2777529
CCSD/cc-pV1Z	-99,0285107	-199,3010373	-54,5225050	100 2002050
CCSD/aug-cc-pV1Z	-99,0350109	-199,3199246	-54,5248820	-109,3883850
CCSD(T)/cc-pVDZ	-99,5293218	-199,1015867	-54,4799436	-109,2800208
CCSD(T)/aug-cc-pVDZ	-99,5519432	-199,1514591	-54,4885302	-109,2993664
CCSD(T)/cc-pVTZ	-99,6321923	-199,3204600	-54,5248732	-109,3978632
CCSD(T)/aug-cc-pVTZ	-99,6400749	-199,3405285	-54,5275349	-109,4092300
MP2/6-31G(d)	-99,4890388	-199,0388236	-54,4594501	-109,2615742
MP2/6-31++G(d,p)	-99,5009122	-199,0576909	-54,4618710	-109,2686936
MP2/6-311++G(d,p)	-99,5782648	-199,2033770	-54,4945221	-109,3386442
MP2/6-311++G(df.pd)	-99.5987025	-199.2504004	-54.5029414	-109.3696344
MP2/6-311++G(3df 3pd)	-996249572	-199 3133045	-54 5150089	-109 4005360
MP4(SDO)/6-31G(d)	-99 4983055	-199.0455233	-54 4751023	-109 2628759
MP4(SDQ)/6-31++C(dp)	-00,1000000	-100,0100200	-54 4776755	-100,2020100
MP4(SDQ)/6.211 + C(d,p)	00 5870107	100,2006024	54 5102807	100,2000402
MP4(SDQ)/6.211 + C(4f - 4)	-99,3879107	100 2587052	-54,5102697	100 2606452
MP4(3DQ)/(0-311++G(a1,pa))	-99,0090874	-199,2007902	-04,0101204	-109,5090452
MP4(SDQ)/6-311++G(3d1,3pd)	-99,6365020	-199,3190477	-54,5311801	-109,3995355
MP4(SDTQ)/6-31G(d)	-99,5002729	-199,0546956	-54,4755716	-109,2789238
MP4(SDTQ)/6-31++G(d,p)	-99,5128062	-199,0748141	-54,4782380	-109,2862152
MP4(SDTQ)/6-311++G(d,p)	-99,5899699	-199,2237630	-54,5109874	-109,3592888
MP4(SDTQ)/6-311++G(df,pd)	-99,6121430	-199,2742782	-54,5192389	-109,3917931
MP4(SDTQ)/6-311++G(3df,3pd)	-99,6405296	-199,3399815	-54,5330239	-109,4248178
QCISD/6-31G(d)	-99,4995469	-199,0457926	-54,4754166	-109,2620757
QCISD/6-31++G(d,p)	-99.5118546	-199.0642016	-54,4781387	-109,2686681
QCISD/6-311++G(d,p)	-99.5885319	-199,2095857	-54.5106405	-109.3377195
QCISD/6-311++G(df.pd)	-99.6101735	-199.2584450	-54.5183682	-109.3682156
OCISD(T)/6-31G(d)	-99 5005909	-199.0547508	-54 4761085	-109 2746286
OCISD(T)/6.31 + C(d.p)	00 5131208	100.0737077	54 4780533	100,2140200
QCISD(T)/6.211 + C(d,p)	-55,5151250	100 2225288	54 5116497	100 2521200
QCISD(T)/6-311++G(d,p)	-99,5905251	-199,2223200	-54,5110427	100 2050206
$Q_{OISD(1)}/0-311++G(dI,pd)$	-99,012018/	-199,2728003	-34,3196/98	-109,3032380
CCSD/6-31G(d)	-99,4992684	-199,0546437	-54,4754088	-109,2008718
CCSD/6-31++G(d,p)	-99,5112971	-199,0628254	-54,4781070	-109,2674273
CCSD/6-311++G(d,p)	-99,5882923	-199,2084099	-54,5106157	-109,3362028
CCSD/6-311++G(df,pd)	-99,6099726	-199,2573546	-54,5183473	-109,3667447
CCSD(T)/6-31G(d)	-99,5004929	-199,0546437	-54,4761063	-109,2741495
CCSD(T)/6-31++G(d,p)	-99,5129583	-199,0734200	-54,4789410	-109,2811807
CCSD(T)/6-311++G(d,p)	-99,5904202	-199,2221052	-54,5116332	-109,3524550
CCSD(T)/6-311++G(df,pd)	-99,6125329	-199,2724752	-54,5198730	-109,3845963
$\Delta_f H^0(\exp)[27]$	18,470	0,000	112,530	0.000

Tabela 4.5: Calor de formação de reagentes e produtos dos sistemas NF_xF e NF_xN , com $x = 1, 2 \in 3$.

Espécie	Neste Trabalho	Referência Experimental	Referência Teórica
F		$18,47 \pm 0,07[73],$	
		$18,46 \pm 0,07[80], 18,92[78]$	
N		$112,53 \pm 0,02$ [73], $112,53[80]$	
		$112,97 \pm 0,1[78]$	
F_2	0,403	0[73, 80, 81]	$0,3^a, 0,3^b, 0,688^i, 1,288^j$
			$0,980^c, 0,056^d, 0,686^e$
N_2	1,786	0[73, 80, 81]	$1, 3^b, 2, 004^i, 1, 994^j$
			$-2,027^c, 0,927^d, -2,142^e$
NF	53,757	$55,688 \pm 0,72[80], 55,6 \pm 0,5 [82]$	$54,9^a, 54^f, 53,9^g, 56,18^h$
		$59,501 \pm 7,89[73]$	$46,698^c, 54,635^d, 51,903^e$
NF_2	7,234	$10,7 \pm 1,91[73], 8,8 \pm 1,20[80]$	$6,6^a, 8^f, 8,5^g, 8,67^h$
		$8 \pm 1[78], 8,3 \pm 0,5[82]$	$-3,411^c, 5,845^d, 5,852^e$
NF_3	-31,600	$-30,20 \pm 0,27[73, 80]$	$-33,8^b, -26,5^g, -30,2^f$
			$-41,310^c, -35,271^d, -32,321^e$
N_2F	$146,\!344$		
N_2F_3	39,085		$18,240^c, \ 32,677^d, \ 33,666^e$

^a em G2 [83], ^b em G2 [84], ^c em B3LYP/6-311++(3df,3pd) [27], ^d em G2 [27], ^e em G3 [27], ^f em G3 [85], ^g em BAC-MP4(SDTQ) [86], ^h em CCSD(T) [87], ^{i,j} estimado a partir do $\Delta_f H^0(298)$ em G3 [88, 89]

entalpia de reação com esses valores também podem sofrer variações grandes, ou seja, dependendo do valor para o calor de formação de cada espécie escolhido como referência, a diferença entre a entalpia de reação calculada e o calor de formação experimental é significativa.

4.2 Determinação das TS's dos Sistemas $NF_xF \in NF_xN$

As TS's das 14 reações que compõem os sistemas $NF_xF e NF_xN$ também foram otimizadas em MP2(full)/cc-pVDZ e MP2(full)/6-31G(d). As representações esquemáticas das mesmas são apresentadas na Figura 4.2 e os parâmetros geométricos estão na Tabela 4.6.

Estes parâmetros não possuem dados de referência para comparações, isso pelo fato dos sistemas aqui estudados e apresentados terem suas propriedades cinéticas determinadas pela primeira vez através de nossos cálculos. O tempo para a determinação dessas TS's e dos modos vibracionais variou de acordo com o número de elétrons de cada sistema. Para a reação de abstração do sistema NFN (TS_{11}), por exemplo, o tempo computacional total para a determinação da TS e das freqüências vibracionais foi de 11min25s em MP2/6-31G(d), enquanto a TS da reação de abstração do sistema NF₃N (TS_{14}) levou 5h2min17s para ser determinada, isto em um Pentium 4, processador de 3,2 GHz, 120 Gb de disco rígido e 1 Gb

$v, \operatorname{colli} x = 1, 2$	e o ca	iculauas		2/ cc-pv	D7 6 0-	<u>ma(a) .</u>		
Reações	TS	base	R_{NF}	$R_{NF'}$	$R_{NF''}$	R_{FF}	$R_{N'F'}$	$R_{NN'}$
NF=N+F	TS_1	cc-pVDZ	2,777					
	_	6-31G(d)	2,833					
$NF_2 = NF + F$	TS_2	сс-рVDŹ	1.314	1.639				
		6-31G(d)	1.324	1.663				
$NF+F=N+F_2$	TS ₂	cc-pVDZ	1,507	_,		1.520		
111 + 1 11 + 12	1~3	6-31G(d)	1 476			1,520		
NE E-NE E	TS.	cc pVDZ	1,170	1 553		1,000		
$\mathbf{M} + \mathbf{r} = \mathbf{M} + \mathbf{r}$	1.54	6.31C(d)	1,505	1,505				
NENE-+E	TC	0-51G(0)	1,040	2,543				
MF 3-MF 2+F	1.55	6.21C(d)	1,373	2,595				
	770	0-31G(d)	1,304	2,740		1 114		
$NF_2+F=NF+F_2$	156	cc-pVDZ	1,291	1,913		1,514		
	ma	0-31G(d)	1,310	1,770	1 014	1,518		
$NF_2+F=NF_2+F$	157	cc-pVDZ	1,311	1,639	1,614			
	-	6-31g(d)	1,336	1,703	1,538			
$NF_3+F=NF_2+F_2$	TS ₈	cc-pVDZ	1,347	$2,\!607$		1,586		
		6-31g(d)	1,355	2,353		1,661		
$NF_3+F=NF_3+F$	TS ₉	cc- $pVDZ$	1,338	1,507	1,507			
		6-31G(d)	1,350	$1,\!499$	1,499			
$NF+N=N_2+F$	TS_{10}	cc- $pVDZ$	1,329					1,971
		6-31G(d)	1,3398					1,9831
$N_2F=N_2+F$	TS_{11}	cc- $pVDZ$	1,985				1,440	1,270
		6-31G(d)	2,006				1,437	1,266
$NF_2+N=NF+NF$	TS_{12}	cc- $pVDZ$	1,322	1,366			1,448	
		6-31g(d)	1,332	1,365			1,447	
$N_2F_3 = NF_2 + NF$	TS_{13}	cc-pVDZ	1,361				1,325	1,897
-		6-31G(d)	1,369				1,336	
NF3+N=NF3+NF	TS_{14}	cc-pVDZ	1.322	1.856			1,514	
0.		6-31g(d)	1.354	1.838			1.511	
		0()	,	,			,	
Reacões		bases	A_{FNF}	$A_{FNF'}$	$A_{NE'E''}$	$A_{F''NF'}$	$A_{N'NF}$	$A_{NE'N'}$
$NF_2 = NF + F$	TS_2	сс-рVDZ	118,914	1.1.1.1.	141. 1	1. 1.1.	10 101	101.10
2		6-31G(d)	119.346					
$NF+F=N+F_2$	TS_3	cc-pVDZ	71.194					
2		6-31G(d)	71.561					
NF+F=NF+F	TS₄	cc-pVDZ	175 617					
	1.04	6-31G(d)	175 705					
NF2=NF2+F	TS⊧	cc-pVDZ	102 031	106 195				
1113-1112+1	105	6-31G(d)	102,001 102.043	106,100 106,259				
NFo+F-NF+Fo	TSe	$cc_{\rm pVDZ}$	104.464	100,200	151 153			
$1112 \pm 1 = 111 \pm 12$	1.06	6-31C(A)	103.874		136,100 136,797			
NFa+F-NFa+F	T9-	$cc_{\rm D}VD7$	06 112	167 013	100,121			
$1 \times 1 \times 2 + 1 = 1 \times 1 \times 2 + 1$	1.57	$6_{-31}C(A)$	06 812	168 202				
NFa + F-NFa + F	TSa	$\frac{1}{2}$	102 755	107.091	172 60F			
$1 \times 1^{-3} + 1^{-1} = 1 \times 1^{-3} + 1^{-1}$	1.28	6.21 O(3)	103,700	107,001 101,170	172 605			
NE- E-NE E	TC	0-51G(d)	105,309	101,172	179,095	146 190		
$1N\Gamma 3 + \Gamma = 1N\Gamma 3 + \Gamma$	1.59	cc-pVDZ	105,000	100,133		140,138		
NTE AL MARKE	ma	0-31G(d)	105,314	99,750		147,578		100.040
$NF+N=N_2+F$	1510	cc-pVDZ						100,949
	mc	6-31G(d)					00.000	100,1366
$N_2F = N_2 + F$	TS_{11}	cc-pVDZ					93,983	
	-	6-31G(d)					95,597	
NF2+N=NF+NF	TS_{12}	cc- $pVDZ$	109,910					129,980
		6-31G(d)	$102,\!654$					129,281
$N_2F_3 = NF_2 + NF$	TS_{13}	cc- $pVDZ$	103,410				100,106	
		6-31G(d)	$103,\!078$				99,255	
NF3+N=NF3+NF	TS_{14}	cc- $pVDZ$	$103,\!626$	114,853				85,781
		6-31G(d)	$103,\!047$	$116,\!347$				84,848

Tabela 4.6: Distâncias (Å) e ângulos interatômicos (°), para as TS's dos sistemas NF_xF e NF_xN , com x = 1, 2 e 3 calculadas em MP2/ cc-pVDZ e 6-31G(d) .

Figura 4.2: Representação geométrica das TS's dos sistemas NF_xF e NF_xN . de memória RAM.

Os modos vibracionais relativos às TS's e a ε_{ZPE} das reações dos sistemas NF_xF e NF_xN, para as TS's otimizadas em MP2/cc-pvdz e MP2/6-31G(d) estão relacionadas na Tabela 4.7.

Uma forma de se visualizar qualitativamente como ocorrem as quebras e a formação das ligações numa reação é a partir do estudo do IRC (do inglês *Intrinsec Reaction Coordinate*), ou seja, a partir do gráfico das distâncias interatômicas em função da coordenada de reação. Esse cálculo requer que o caminho de reação seja seguido, isto é, saindo da região dos reagentes, passando pela região da TS e indo até a região dos produtos, tendo assim, uma visão clara de como a reação acontece. Trata-se de um cálculo, relativamente demorado. Para se ter uma noção do tempo gasto nesses cálculos, no caso da reação de troca do sistema NF₃F (TS₉), os tempos de cálculo foram: para MP2/ 6-31G(d): 20min33s para a determinação da TS, considerando ainda o cálculo do IRC, este tempo foi de 9h.

Por uma questão de simplificação, iremos mostrar os gráficos dos IRC's apenas para as

	$x = x^2$	• • • • <i>x</i>	,	~ -; =	· • •						
TS's	base	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	ν_7	ν_8	ν_i	$\varepsilon_{_{ZPE}}$
TS_1	cc-pVDZ									394,16i	0,0000
	6-31G(d)									403,73i	0,0000
TS_2	cc-pVDZ	311,17	$1145,\!52$							806,66i	2,0364
	6-31G(d)	288,31	1167,23							753,13i	2,0035
TS_3	cc-pVDZ	633,89	1046,14							1016,81i	2,3486
	6-31G(d)	626, 59	1027,24							843,55i	$2,\!2764$
TS_4	cc-pVDZ	651,03	1457,81							1654,30i	2,9481
	6-31G(d)	669,40	1386, 98							1601, 10i	$2,\!8305$
TS_5	cc-pVDZ	97,36	181,07	555,84	892,87	1080.19				331,33i	$3,\!9245$
	6-31G(d)	93,70	174,29	548,73	943,18	1104,15				335,57i	3,9423
TS_6	cc-pVDZ	89,25	192,88	335,73	500,85	$1253,\!47$				762,1i	3,3162
	6-31G(d)	90,70	$223,\!50$	335,76	618,21	$1196,\!45$				794,69i	$3,\!3925$
TS_7	cc-pVDZ	307,27	559,44	593,79	1089,74	4446,41				283,16i	9,7810
	6-31G(d)	318,59	$549,\!61$	620,94	1100,79	$5154,\!35$				$422,\!19i$	$10,\!6597$
TS_8	cc-pVDZ	25,42	28,55	55,97	77,76	122,98	587, 89	$987,\!05$	1129,01	570,73i	4,2144
	6-31G(d)	39,91	45,06	80,46	$116,\!18$	170,68	578, 12	1031,38	1148,61	399,00i	4,4190
TS_9	cc-pVDZ	300,40	402,23	$453,\!69$	$580,\!54$	$651,\!05$	738, 13	1037, 16	$1055,\!63$	1441,55i	7,2957
	6-31G(d)	302,32	400,94	452,34	590,03	644,47	773,50	1071,56	1100,62	1309,92i	7,3445
TS_{10}	cc-pVDZ	1166,18	1478,56							509,36i	$3,\!6978$
	6-31G(d)	1174,32	$1493,\!54$							539,34i	$3,\!6722$
TS_{11}	cc-pVDZ	268,85	1116,03							471,45i	1,9360
	6-31G(d)	260,54	1140,73							462,76i	1,9288
TS_{12}	cc-pVDZ	275,01	430,17	720,32	793,31	1111,41				1662,23i	$4,\!6555$
	6-31G(d)	274,74	$435,\!53$	715,40	$816,\!37$	1143,38				1615,91i	$4,\!6599$
TS_{13}	cc-pVDZ	49,080	184,71	340,97	$368,\!89$	571,29	958,89	1060,98	1138,08	615,01i	6,5325
	6-31G(d)	58,38	180,88	339,24	$357,\!05$	$561,\!48$	1004,84	1087,61	$1157,\!63$	591.88i	6,5342
TS_{14}	cc-pVDZ	72,41	207,90	301,56	603, 49	750,46	975,53	1084,95	$1652,\!64$	556,69i	7,8967
	6-31G(d)	91.84	206.5433	304.0469	574.10	753.82	900.5798	1023.03	1117.40	916.62i	7.401

Tabela 4.7: Freqüências vibracionais (cm⁻¹) e correção da ZPE (cm⁻¹) para as TS's dos sistemas NF_xF e NF_xN , com $x = 1, 2 \ge 3$.

reações cujas TS's foram otimizadas em MP2/6-31G(d), ressaltando que o mesmo vale para as reações otimizadas em MP2/cc-pVDZ. Como citado anteriormente, trata-se apenas de uma avaliação qualitativa, sendo assim a avaliação do IRC em MP2/6-31G(d) é análoga à avaliação em MP2/cc-pVDZ.

Da Figura 4.3, observa-se no gráfico da distância interatômica em função da coordenada de reação, que a distância entre o nitrogênio e flúor aumenta a medida que a reação se processa, até a total dissociação das duas espécies, formando o produto da reação, NF=N+F.

Figura 4.3: IRC da reação NF = N + F.

A Figura 4.4(a) ilustra o processo de reação $NF_2=NF+F$. Nesta figura é possível ver que o comprimento da ligação NF' da molécula NF_2 aumenta a medida que vai dos reagentes para o produto, caracterizando assim a reação unimolecular, onde a região dos reagentes tem somente o NF_2 e a região dos produtos tem somente o NF e o F. Na Figura 4.4(b), podemos verificar que ocorre apenas as trocas dos átomos de flúor da reação NF+F=NF+F, originando o que chamamos de reação de troca.

Na Figura 4.5(a) é possível verificar que a ligação NF"aumenta, enquanto as ligações NF e NF' permanecem praticamente inalteradas, o que mostra a dissociação da molécula de

Figura 4.4: (a)IRC da reação $NF_2 = N + F_2$. (b)IRC da reação NF + F = NF + F.

NF₃ e a formação da molécula de NF₂ liberando um átomo de flúor, reação unimolecular NF₃=NF₂+F. Já a Figura 4.5(b) mostra o comprimento da ligação NF' aumentando, ou seja, há o rompimento de uma ligação NF da molécula NF₂, enquanto o comprimento da ligação F'F"diminui, formando a molécula de F₂, originando assim a reação de abstração NF₂+F = NF+F₂.

Na Figura 4.5(c) o que se vê é que a ligação NF' aumenta enquanto que a ligação NF" diminui, caracterizando assim a troca dos átomos de flúor da reação NF₂+F=NF₂+F.

Na Figura 4.6(a), verifica-se a quebra de um átomo de flúor da molécula NF₃ e a formação da molécula F₂, na reação de abstração NF₃+F=NF₂+F₂. Já no caso da reação troca NF₃+F=NF₃+F (Figura 4.6(b)), o que acontece é apenas a troca dos átomos de flúor, como nos casos anteriores.

Para o sistema NFN encontramos a reação unimolecular $N_2F = N_2+F$ e a partir da Figura 4.7(a) vê-se que a quebra da molécula de N_2F se deu pelo aumento no comprimento da ligação NF e a formação do N_2 acontece com a diminuição da ligação NN'. Na Figura 4.7(b) vê que a reação de abstração NF+N=N₂+F acontece com a quebra da ligação NF e a diminuição da ligação NN para formar a molécula de N_2 .

No caso da reação de abstração $NF_2+N = NF+NF$ o que se percebe, pela Figura 4.8, é

Figura 4.5: (a) IRC da reação $NF_3=NF_2+F$ (b) IRC da reação $NF_2+F=NF+F_2$ (c)IRC da reação $NF_2+F=NF_2+F$

que para a formação dos produtos dessa reação teve que haver uma ruptura da ligação NF e a formação de uma ligação NF, como mostrado no gráfico. É possível observar também aumento no comprimento da ligação NF e a diminuição no comprimento da ligação NF', partindo dos reagentes em direção aos produtos.

Para o sistema NF₃N duas reações foram encontradas, sendo que as Figuras 4.9(a) e (b) são representações esquemáticas para a reação unimolecular do N₂F₃ e bimolecular do NF₃+N, respectivamente, ambas gerando o mesmo produto, NF₂+NF. Na Figura 4.9(a) o que se vê é o rompimento da molécula de N₂F₃, por meio do aumento da ligação NN, enquanto que os comprimentos das ligações NF's e NN' permaneceram praticamente inalterados e, assim, formou-se o produto citado, enquanto que na Figura 4.9(b) o que se tem é quebra da

Figura 4.6: (a) IRC da reação $NF_3 + F = NF_2 + F_2$ (b) IRC da reação $NF_3 + F = NF_3 + F$. ligação NF" e a formação da ligação N'F", enquanto que as ligações entre os átomos NF e NF' sofrem alterações insignificantes.

4.3 Energias, Entalpias, Taxas de Reação e Caminhos de Mínima Energia

Nesta seção serão discutidos resultados obtidos de energias para os reagentes, TS's e produtos, barreiras de potencial, entalpias e calor de formação experimental para as reações estudadas dos sistemas NF_xF e NF_xN . Estão relacionados também as taxas de reações calculadas e os respectivos ângulos de *skew* encontrados. Abaixo seguem algumas relações importantes, utilizadas em nossas análises.

A diferença entre a ΔH_{corr} e o calor de formação calculado, a partir do calor de reação de reagentes e produtos *ab initio*, define o erro absoluto no valor da entalpia. Esse é um cálculo importante, pois serve de parâmetro de avaliação para a escolha do melhor nível de cálculo e base a ser adotado, dentre todos os cálculos realizados, para o cálculo da taxa de reação; além dos sinais das barreiras de potencial no sentido direto (V_d) e reverso (V_r) .

Figura 4.7: (a)IRC da reação $N_2F = N_2 + F$ (b)IRC da reação $NF + N = N_2 + F$.

A barreira de potencial no sentido direto é dada por

$$V_d = E_{TS} - E_{reag}$$

e no sentido reverso

$$Vr = E_{TS} - E_{prod}.$$

A entalpia é dada pela diferença entre energia total dos produtos e reagentes

$$\Delta H = E_{prod} - E_{reag}$$

A entalpia corrigida pela diferenca da energia de ponto zero (d_{ZPE}) entre produtos e reagentes é dada por

$$\Delta H_{corr} = \Delta H + d\epsilon_{ZPE}$$

sendo que a $d\epsilon_{ZPE}$ é igual a

$$d\epsilon_{ZPE} = \epsilon_{ZPE(prod)} - \epsilon_{ZPE(reag)}$$

Nas subseções seguintes serão mostrados os resultados relativos às energias, entalpias e MEPs de cada reação. Vale a pena ressaltar que todos esses cálculos também foram realizados

Figura 4.8: IRC da reação $NF_2 + N = NF + NF$.

para a TS otimizada em MP2/6-31G(d). Porém, notamos que melhores resultados referentes às propriedades acima citadas, foram obtidos para as TS's otimizadas em MP2/cc-pVDZ e as taxas de reação foram calculadas em MP4/cc-pVTZ, após realizada uma análise global dos erros absolutos calculados entre ΔH_{corr} e o calor de formação experimental ΔH_f . Este dado é da diferença entre os calores de formação experimentais de reagentes e produtos (na ausência de dados experimentais para as reações, ΔH_f nos serviu de parâmetro de comparação), num total de 11 reações estudadas (lembrando que as reações de troca não entraram na avaliação do erro global, por possuírem ($\Delta H=0$). O erro global absoluto encontrado foi de 1,8435 kcal/mol.

Um procedimento muito adotado na literatura, e adotado nesta tese, é o de se determinar a TS num nível de cálculo inferior (isto em função do custo computacional na determinação da TS e da dificuldade em se determinar a mesma) e, posteriormente, realizar cálculos de energias em métodos/bases superiores, a fim de corrigir as eventuais deficiências no cálculo realizado. Foram realizados dois conjuntos de testes de otimização e cálculos de

Figura 4.9: (a) IRC da reação $N_2F_3 = NF_2 + NF$ (b) $NF_3 + N = NF_2 + NF$.

energia: no primeiro foram considerados somente os elétrons de valência e no segundo, os elétrons de caroço, e observou-se uma diferença de 0,05 hartre em alguns casos. Por isto, optou-se pelos cálculos com os elétrons de caroço. Dois conjuntos de energias foram determinadas, um deles usando a geometria otimizada via MP2/cc-pVDZ para bases superiores, aug-cc-pVDZ, cc-pVTZ, aug-ccpVTZ e métodos superiores, MP4, QCISD(T) e CCSD(T), e o outro foi utilizando a geometria otimizada em MP2/6-31G(d) para bases superiores, 6-31++G(d,p), 6-311++G(d,f), 6-311++G(df,pd), 6-311++G(3df,3pd) e os mesmos métodos citados acima. O cálculo dessas energias é bastante dispendioso computacionalmente e, na medida que o número de elétrons do sistema aumenta, o tempo computacional também é aumenta substancialmente. Esses cálculos podem demorar de minutos a dias, dependendo do nível de cálculo/base empregados e da capacidade do computador utilizado. Exemplificando, para o cálculo da energia da TS_4 (reação de troca do sistema NFF), foram necessários 5min35s, em mp2/cc-pVDZ, enquanto que o cálculo da energia em CCSD(T)/aug-cc-pVDZ levou 7min40s. No entanto, quando alteramos estas bases para a cc-pVTZ estes tempos sobem para 25min8s e para as bases aug-cc-pVTZ os mesmos passam para 12h7min52s e 11h32min30s, respectivamente. Já a reação de troca do sistema NF₃F, cuja TS e é a TS_9 ,

uma das maiores em termos de números de elétrons, gastou 5dias20h19min31s para o cálculo da energia em QCISD(T)/aug-cc-pVDZ. Ressaltando que esses cálculos todos foram realizados na máquina já citada anteriormente, ou seja, um Pentium 4, com um processador de 3,2 GHz e 120 Gb de armazenamento em disco e 1 Gb de memória RAM. Um fator importante a se dizer é que uma limitação nos cálculos de TS e energias é justamente a falta de memória disponível, tanto memória RAM quanto espaço de armazenamento de dados em disco. E é por esta razão que muitas energias em níveis superiores de reagentes, TS's e produtos não puderam ser calculadas, estando algumas Tabelas de energias apenas com as energias onde os cálculos foram completamente concluídos. Além disto, existe uma limitação do Gaussian, em ambiente windows, que limita o tamanho dos arquivos de scratch em 2 Gb, independente do espaço de disco disponível.

4.3.1 Reação NF = N + F

As energias calculadas em níveis e bases superiores para reagentes, TS e produtos dessa reação foram determinadas para um conjunto significativo de métodos/bases, sempre levando em consideração todos os elétrons do sistema, ou seja, para o caso MP2/aug-cc-pVDZ, por exemplo, o cálculo foi feito em MP2(*full*)/aug-cc-pVDZ, o mesmo valendo para todas as demais bases e reações. Na Tabela 4.8 estão as energias eletrônicas totais para reagentes, TS e produtos, além das barreiras no sentido direto e reverso e da entalpia da reação, todas corrigidas pela d_{ZPE}. Desta Tabela pode-se observar que a menor diferença ou "erro"entre o calor de reação calculado, usando as energias *ab initio* e o calor de formação dos reagentes e produtos, é para o nível MP4/aug-cc-pVTZ e vale 0,2272 kcal/mol. Porém, considerando todas as reações dos sistemas NF_xF e NF_xN o melhor nível de cálculo que minimiza o erro global é o MP4/cc-pVTZ, com um erro de 3,2174kcal/mol.

O gráfico da V_{MEP} e da V_a^G , ao longo da MEP, como função da coordenada de reação para esta reação está na Figura 4.10(a). É possível notar nesta figura que a V_a^G é similar à V_{MEP} . De - ∞ a $-10\mu^{1/2}a_0$ as curvas de energia potencial mudam apenas ligeiramente,

Tabela 4.8: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF=NF+F.

	NF	TS_1	N + F	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPF}$	$\Delta H + d\varepsilon_{ZPF}$
MP2/cc-pVDZ	-154 0839575	-153 8116672	-153 9811939	169.2218	106.3796	62 8421
MP2/aug-cc-pVDZ	-154 1186935	-153 8424512	-154 0076065	171 7017	103,6365	68 0651
MP2/cc-pVTZ	-154 2450170	-153 9608751	-154 1241847	176 6587	109,0000 102,4783	$74\ 1804$
MP2/pug cc pVTZ	154 2580328	153 0740586	154 1337010	177 1183	102,4700	76 8847
$MP_4(SDO)/cc pVDZ$	-154,2509520 154,1002648	153 0020660	-154,1557910 154,0079351	199 1633	65 4203	56 7340
MP4(SDQ)/cc-pVDZ MP4(SDQ)/ang cc pVDZ	-154,1002040 154,1355357	153 0240214	-154,0072551 154,0360728	122,1055 130,5105	60,4295	50,7540 60,7700
MP4(SDQ)/aug-cc-pvDZ MP4(SDQ)/cc-pVTZ	-154,1555557 154,2500447	154 0380563	154,0500728	130,3193 137,0203	70 6607	66 3506
MP4(SDQ)/cc-pV1Z MP4(SDQ)/cmr or rVTZ	154,2390447	154,0380303	-154,1500750	137,0293	60,0097	00,3590
MP4(SDQ)/aug-cc-pv1Z MP4(SDTQ)/aa-rVDZ	-104,2727004	-134,0400007	-104,10000000 154,0000100	130,0730	09,7995	60,2070
MP4(SDTQ)/cc-pVDZ MP4(SDTQ)/ang ag pVDZ	-154,1075640 154,1456680	152 0812702	-154,0000100	90,7020	26,2202	65 1951
MP4(SDTQ)/aug-cc-pvDZ MP4(SDTQ)/ac pVTZ	-154,1450000 154,9725598	154 0082707	-154,0592002 154,1550042	101,4554	30,3303 26,0072	00,1201 70,1806
MP4(SDTQ)/cc-pVTZ MP4(SDTQ)/cmr or rVTZ	154,2733328	-154,0985797	-154,1559045 154,1669160	106,2796	30,0972	72,1020
MF4(SDTQ)/aug-cc-pvTZ	-104,2007297	-154,1109400	-154,1005100 154,0078101	100,1525	50,9796 02.0227	10,1120
OCISD/cc-pVDZ	-154,1052029 154,1284140	152 8045702	-154,0078101 154,0272124	151 2662	92,0337	55,2545 61 7008
QCISD/aug-cc-pvDZ	-154,1564149 154,2612780	152 08545792	-154,0575124 154,1512022	151,5002 171,5026	104 0007	67 4020
QCISD/cc-pVIZ	154,2013769	152 0070191	-154,1512025	171,5050	104,0097	70.0400
QCISD/aug-cc-pv IZ QCISD(T)/aug-cVDZ	-154,2750447	-155,9979101	-154,1007905 154,0002045	172,2000	64 2021	70,0490 60 7206
QCISD(T)/cc-pVDZ	-154,1080915	-155,9000792 152.0271091	-154,0092945	120,1210	04,3921 64.0128	64 6007
QCISD(T)/aug-cc-pvDZ	-154,1405465 154,9740161	-100,9071921	-154,0400569 154 1571502	129,0040	04,9150	04,0907
QCISD(T)/cc-pVTZ	-154,2740101	-154,0424550	-154,1571505	145,0705	71,9649	71,0914
CCSD/aa pVDZ	-104,288802	-104,00000000	-104,1077044	140,8354 150,7270	(1,4005	(4,3089 FC 8600
CCSD/cc-pVDZ	-154,1009595	-153,8581202	-154,0077244	150,7372	95,8745	50,8029 C0,4020
CCSD/aug-cc-pVDZ	-154,1557159	-155,8848885	-154,0308409	155,7550	95,3515	60,4020
CCSD/cc-pv1Z	-154,2569650	-155,9764255	-154,1510217	174,4100	100,5070	00,1057
CCSD/aug-cc-p V I Z	-154,2724989	-153,9874070	-154,1604955	1/1,21/2	108,5757	08,0415 C0 2045
CCSD(T)/cc-pVDZ	-154,1078257	-153,9415090	-154,0092054	102,0843	42,4797	60,2045 C4 1591
CCSD(T)/aug-cc-pvDZ	-154,1453240	-155,9898047	-154,0404734	95,9090	31,7374	04,1521
CCSD(1)/cc-pV1Z	-154,2729140	-154,0831804	-154,1570055	117,4132 114,7022	40,3598	71,0534
CCSD(1)/aug-cc-pv1Z	-104,2877131	-154,1022078	-154,1070098	114,7033	41,0404	1 0,7230
$d\varepsilon_{ZPE}$	1,0430	0,0000	0,0000			-1,6430
MP2/6 - 31G(d)	-154,0536110	-153,7830661	-153,9484889	168,1235	103,8043	64,3191
MP2/6-31++G(d, p)	-154,0720055	-153,7974213	-153,9627832	170,6582	103,7661	66,8920
MP2/6-311++G(d, p)	-154,1795314	-153,9043052	-154,0727869	171,0611	105,7238	65,3372
MP2/6-311++G(df,pd)	-154,2190178	-153,9359052	-154,1016439	176,0099	104,0026	72,0073
MP2/6-311++G(3df,3pd)	-154,2632657	-153,9788344	-154,1399661	176,8374	101,1116	75,7257
MP4(SDQ)/6 - 31G(d)	-154,0745930	-153,8717496	-153,9734078	125,6402	63,7915	61,8487
MP4(SDQ)/6-31++G(d, p)	-154,0879173	-153,8821195	-153,9887228	127,4941	66,8946	60,5995
MP4(SDQ)/6-311++G(d, p)	-154,1946750	-153,9848103	-154,0982004	130,0461	71,1533	58,8927
MP4(SDQ)/6-311++G(df,pd)	-154,2353009	-154,0163820	-154,1278138	135,7277	69,9245	65,8032
MP4(SDQ)/6-311++G(3df,3pd)	-154,2784965	-154,0533535	-154,1676881	139,6334	71,7460	67,8873
MP4(SDTQ)/6 - 31G(d)	-154,0822558	-153,9144262	-153,9758445	103,6687	38,5406	65,1281
MP4(SDTQ)/6-31++G(d,p)	-154,0965938	-153,9342946	-153,9910442	100,1983	35,6109	64,5874
MP4(SDTQ)/6-311++G(d, p)	-154,2053147	-154,0419738	-154,1009573	100,8520	37,0127	63,8393
MP4(SDTQ)/6-311++G(df,pd)	-154,2472827	-154,0757810	-154,1313819	105,9730	34,8901	71,0829
MP4(SDTQ)/6-311++G(3dt,3pd)	-154,2940300		-154,1/35535	108,4119	34,4577	(3,9542
QCISD/6 - 3IG(d)	-154,0777717	-153,8339773	-153,9749635	151,3373	88,4702	62,8671
QUISD/0-31++G(d, p)	-154,0908838	-153,8545049	-153,9899933	146,6840	85,0202	61,6638
QCISD/6-311++G(d,p)	-154,1978330	-153,9581018	-154,0991724	148,7876	88,5231	60,2645
QCISD/6-311++G(df,pd)	-154,2379215	-153,9892495	-154,1285417	154,3981	87,4072	66,9909
QCISD(T)/6 - 3IG(d)	-154,0830479	-153,8678153	-153,9766994	133,4145	68,3258	65,0887
QUISD(T)/6-31++G(d, p)	-154,0967398	-153,8902385	-153,9920831	127,9355	63,9084	64,0271
$\begin{array}{c} QUISD(T)/6-311++G(d,p) \\ QUISD(T)/(c,211++G(d,p)) \end{array}$	-154,2060157	-154,0042563	-154,1021678	124,9600	61,4404	63,5196
$\begin{array}{c} QUISD(T)/6-311++G(dt,pd) \\ QCOD/G = 21G(T) \end{array}$	-154,2479593	-154,0390872	-154,1324985	129,4232	58,6165	70,8068
$\bigcup_{\substack{O \in D \\ O \in D}} \int_{C} \frac{1}{21} + O(L)$	-154,0748586	-153,8300278	-153,9746772	151,9877	90,7688	61,2188
$\bigcup (GSD/6-31++G(d,p))$	-154,0877004	-153,8439929	-153,9894041	151,2828	91,2469	60,0359
COSD/6-311++G(d, p)	-154,1947854	-153,9488873	-154,0989080	152,6574	94,1394	58,5180
$\begin{array}{c} \text{UUSD/6-311} + + \text{G}(\text{dt,pd}) \\ \text{GGGD}(\text{TD}) & \text{c} = 21 \text{G}(1) \end{array}$	-154,2353426	-153,9798138	-154,1283199	158,7008	93,1890	65,5118
$\bigcup_{\substack{0 \leq D(T)/0}} \frac{1}{2} $	-154,0820674	-153,9085504	-153,9765992	107,2376	42,7013	64,5363
COSD(T)/6-31++G(d, p)	-154,0956538	-153,9445767	-153,9918993	93,1563	29,6954	63,4609
CCSD(T)/6-311++G(d, p)	-154,2048501	-154,0558265	-154,1020534	91,8677	29,0078	62,8599
$\frac{\text{CUSD}(T)/6-311++\text{G}(\text{dt,pd})}{1}$	-154,2468013	-154,0888367	-154,1324059	97,4783	27,3401	70,1382
$d\varepsilon_{ZPE}$	1,6460	0,0000	0,0000			-1,6460
$\Delta_f H^{\circ}(\exp)[27]$	55,600		131,000			75,400

aumentam gradualmente depois de $-10\mu^{1/2}a_0$ e decrescem rapidamente após passar pela estrutura de transição. A partir da observação da Figura 4.10(a) nota-se que a energia dos produtos é maior que a energia dos reagentes, ($\Delta H = 72, 1826$) tratando-se de uma reação endotérmica.

Figura 4.10: (a) MEP da reação NF = N + F (b) Taxa da reação NF = N + F.

Na Figura 4.10(b) estão representadas as taxas de reação convencional e com as correções de Wigner e Eckart. Nesta figura, percebe-se que a taxa de reação com a correção de Wigner praticamente coincide com a taxa convencional em toda a faixa de temperatura estudada. No entanto, a taxa de reação com a correção de Eckart sugere um tunelamento na região de baixa temperatura. Para altas temperaturas (3000-4000K) as três taxas são praticamente coincidentes. Entretanto, nosso interesse é preferencialmente por taxas calculadas para temperaturas altas que vão de 1000-3000 K , onde o problema de tunelamento é reduzido substancialmente. As expressões, dentro da TST, das taxas de reações convencional, com correção de Wigner e Eckart e escritas na forma de Arrhenius são:

$$k^{TST} = 1,953 \times 10^{16} T^{0,2446} \exp(-10886/RT),$$

$$k^{TST}_{W} = 1,420 \times 10^{16} T^{0,2813} \exp(-10870/RT),$$

$$k^{TST}_{E} = 4,492 \times 10^{18} T^{-0,5679} \exp(-3703/RT).$$

4.4 Reações do sistema NFF:

4.4.1 $NF_2 = NF + F$

As energias eletrônicas para os reagentes, TS e produto da reação unimolecular $NF_2 = NF + F$ foram calculadas nos níveis de cálculo e bases listados na Tabela 4.9, juntamente com as barreiras de potencial no sentido direto e reverso, além da variação da entalpia (com ZPE). Para o modelo MP4/cc-pVTZ o valor da entalpia escalonada pela ZPE é igual a 64,5757 kcal/mol, enquanto o calor de formação "experimental" é de 65,770 Kcal/mol, dando uma diferença de 1,1943 kcal/mol entre os dois valores. Embora, o menor erro encontrado para este sistema seja de 0,4021 kcal/mol para a QCISD(T)/aug-cc-pVTZ. As barreiras de potencial são barreiras positivas, indicando que a reação deverá ter suas taxas determinadas de forma mais direta.

A MEP está representada na Figura 4.11(a). No gráfico da MEP estão representadas a V_{MEP} , que é a representação clássica do caminho de mínima energia da reação, além da V_G^a que é a V_{MEP} somada à ε_{ZPE} em cada região. Esta figura dá uma visão clara do perfil de energia da reação, mostrando que os produtos possuem energias superiores aos reagentes, definindo assim uma reação endotérmica ($\Delta H = 64,5757$ kcal/mol). As taxas convencional, Wigner e Eckart estão representadas na Figura 4.11(b). Nesta Figura está a representação gráfica do logarítmo da taxa de reação pelo inverso da temperatura, sendo que o comportamento das curvas é análogo à reação anterior e o valor para as taxas convencional, Wigner e Eckart são respectivamente iguais a:

$$k^{TST} = 2,027 \times 10^{16} T^{0,2430} \exp(-12045/RT),$$

$$k^{TST}_{W} = 8,685 \times 10^{15} T^{0,3396} \exp(-11998/RT),$$

$$k^{TST}_{E} = 1,3285 E \times 10^{15} T^{0,56119} \exp(-54771/RT)$$

Nesta figura é possível verificar que, para a faixa de temperatura que vai de 1400 a 1900K, a taxa com a correção de Eckart está em concordância com os dados experimentais de Modica

Tabela 4.9: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_2 = NF+F$.

	NF ₂	TS_2	NF + F	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	-253,6948568	-253,4981068	-253,6017136	121,7309	65,4076	56,3232
MP2/aug-cc-pVDZ	-253,7602580	-253,5567879	$-253,\!6564338$	125,9478	62,9221	63,0257
MP2/cc-pVTZ	-253,9735442	-253,7685858	-253,8623908	126,8817	59,2569	$67,\!6248$
MP2/aug-cc-pVTZ	-253,9994657	-253,7928935	-253,8834571	127,8944	57,2229	70,6715
MP4(SDTQ)/cc-pVDZ	-253,7244934	-253,5386344	$-253,\!6364247$	114,8967	61,7577	$53,\!1389$
MP4(SDTQ)/aug-cc-pVDZ	-253,7957801	-253,6044074	-253,6973583	118,3566	58,7209	$59,\!6356$
MP4(SDTQ)/cc-pVTZ	-254,0116742	-253,8181264	-253,9053798	119,7215	$55,\!1457$	64,5757
MP4(SDTQ)/aug-cc-pVTZ	-254,0400998	-253,8451510	-253,9284583	120,6006	$52,\!6695$	67,9311
QCISD(T)/cc- $pVDZ$	-253,7242305	-253,5497103	$-253,\!6380429$	107,7815	55,8229	51,9585
QCISD(T)/aug-cc- $pVDZ$	-253,7940005	$-253,\!6155500$	-253,6984266	110,2478	$52,\!3992$	57,8485
QCISD(T)/cc- $pVTZ$	-254,0089002	-253,8280446	-253,9062829	111,7570	49,4887	62,2683
QCISD(T)/aug-cc- $pVTZ$	-254,0366301	-253,8550837	-253,9290733	112,1905	46,8226	65,3679
CCSD(T)/cc-pVDZ	-253,7229796	-253,5636078	$-253,\!6371475$	98,2757	$46,\!5402$	51,7355
CCSD(T)/aug-cc-pVDZ	-253,7924252	$-253,\!6394360$	-253,6972678	94,2706	$36,\!6834$	57,5872
CCSD(T)/cc-pVTZ	-254,0072574	-253,8451767	-253,9051069	99,9756	38,0002	61,9754
CCSD(T)/aug-cc-pVTZ	-254,0348438	-253,8529711	-253,9277880	112,3952	47,3417	$65,\!0535$
$d\varepsilon_{ZPE}$	3,7680	2,0364	1,6430			-2,1250
MP2/6-31G(d)	-253,6427889	-253,4487442	-253,5426498	119,9838	59,2807	60,7031
MP2/6-31++G(d,p)	-253,6746940	-253,4711346	-253,5729177	125,9544	64,2239	61,7305
MP2/6-311++G(d,p)	-253,8548360	$-253,\!6537712$	-253,7577962	124,3890	$65,\!6307$	58,7583
MP2/6-311++G(df,pd)	-253,9244881	-253,7195964	$-253,\!8177203$	126,7904	61,9277	64,8627
MP2/6-311++G(3df, 3pd)	-254,0017485	-253,7947293	-253,8882229	128, 1255	59,0222	69,1033
MP4(SDTQ)/6-31G(d)	$-253,\!6800417$	-253,4895862	-253,5825287	117,7316	$58,\!6764$	59,0552
MP4(SDTQ)/6-31++G(d,p)	-253,7062743	-253,5141625	$-253,\!6094000$	118,7709	60,1165	$58,\!6544$
MP4(SDTQ)/6-311++G(d,p)	-253,8890497	-253,6982909	-253,7952846	117,9219	61,2185	56,7034
MP4(SDTQ)/6-311++G(df,pd)	-253,9631612	-253,7686325	-253,8594257	120,2876	57,3277	62,9599
MP4(SDTQ)/6-311++G(3df,3pd)	-254,0436922	-253,8481509	-253,9345596	120,9230	$54,\!5763$	66,3466
QCISD(T)/6-31G(d)	-253,6789055	-253,4996548	-253,5836388	110,7005	$53,\!0548$	$57,\!6456$
QCISD(T)/6-31++G(d,p)	-253,7039211	-253,5242638	$-253,\!6098696$	110,9556	54,0725	56,8831
QCISD(T)/6-311++G(d,p)	-253,8874678	-253,7089659	-253,7965408	110,2306	55,3081	54,9224
QCISD(T)/6-311++G(df,pd)	-253,9612055	-253,7788325	-253,8605780	$112,\!6597$	$51,\!6501$	61,0096
CCSD(T)/6-31G(d)	-253,6774610	-253,4980756	-253,5825603	110,7850	53,3690	57,4160
CCSD(T)/6-31++G(d,p)	-253,7022342	-253,5223893	$-253,\!6086121$	111,0733	$54,\!4597$	$56,\!6136$
CCSD(T)/6-311++G(d,p)	-253,8856816	-253,7069274	-253,7952703	110,3889	55,7901	54,5988
CCSD(T)/6-311++G(df,pd)	-253,9594622	-253,7768510	-253,8593342	112,8092	52,1131	60,6962
$d\varepsilon_{ZPE}$	3,7811	2,0001	1,6460			-2,1351
$\Delta_f H^0(\exp)[27]$	8,300		74,070			65,770

e Hornig [90], o mesmo ocorrendo para a comparação da taxa com a correção de Eckart e os dados experimentais de Baulch [91], para a faixa de temperatura que vai de 1500 a 2500K, o que valida nossos cálculos.

Figura 4.11: (a) MEP da reação $NF_2 = NF + F$ (b) Taxa da reação $NF_2 = NF + F$.

4.4.2 $NF + F = N + F_2$

A Tabela 4.10 se refere às energias eletrônicas totais dos reagentes, TS, produtos e barreiras de potencial da reação de abstração $NF + F = N + F_2$, além das entalpias e da ZPE.

Os potenciais V_{MEP} e V_a^G em função da coordenada de reação, ao longo da MEP da reação estão representadas na Figura 4.12(a). Desta figura nota-se que o ΔH desta reação endotérmica é de 36,1312 kcal/mol.

As taxas de reação estão mostradas na Figura 4.12(b). Esta figura apresenta a taxa de reação obtida considerando as correções de Wigner k_W^{TST} e Eckart k_E^{TST} . Não se verifica nenhuma mudança considerável no comportamento da curva da taxa k_W^{TST} para altas temperaturas, enquanto que para baixas temperaturas (200 – 1000K) a taxa k_E^{TST} muda consideravelmente. Porém, como o valor do ângulo de *skew* para essa reação é 62,547° os possíveis efeitos de tunelamento para essa faixa de temperatura não são importantes para

Tabela 4.10: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF+F=N+F₂.

	NF + F	TS_2	$N + F_2$	$V_1 + d\varepsilon_{RDE}$	$V_{\tau} + d\varepsilon_{RDE}$	$\Delta H + d\varepsilon_{RDE}$
MP2/cc-pVDZ	-253 6017136	-253 4731834	-253 5471900	81 2568	47 3808	33 8760
MP2/aug-cc-pVDZ	-253.6564338	-253,5373389	-253.6012592	75,3361	41.0516	34.2845
MP2/cc-pVTZ	-253.8623908	-253.7451784	-253.8057941	74,1548	38,9779	35.1769
MP2/aug-cc-pVTZ	-253,8834571	-253,7716786	-253,8270351	70,7450	35,6777	35.0672
MP4(SDTQ)/cc-pVDZ	-253,6364247	-253,5175585	-253,5806044	75,1926	40,5029	34,6897
MP4(SDTQ)/aug-cc-pVDZ	-253,6973583	-253,5889920	-253,6405444	68,6038	33,2906	35.3132
MP4(SDTQ)/cc-pVTZ	-253,9053798	-253,7985394	-253,8472623	$67,\!6463$	31,5151	36,1312
MP4(SDTQ)/aug-cc-pVTZ	-253,9284583	-253,8280780	-253,8706441	63,5925	$27,\!6516$	35,9409
QCISD(T)/cc- $pVDZ$	-253,6380429	-253,5285610	-253,5815994	69,3038	34,2231	35,0807
QCISD(T)/aug-cc-pVDZ	-253,6984266	-253,5991009	-253,6403106	62,9307	26,8005	36,1302
QCISD(T)/cc- $pVTZ$	-253,9062829	-253,8076304	-253,8457284	62,5083	24,8478	37,6604
QCISD(T)/aug-cc-pVTZ	-253,9290733	-253,8369044	-253,8685749	$58,\!4398$	20,8145	$37,\!6252$
CCSD(T)/cc-pVDZ	-253,6371475	-253,5271712	-253,5815303	$69,\!6141$	35,0518	34,5622
CCSD(T)/aug-cc-pVDZ	-253,6972678	-253,5972929	$-253,\!6399893$	63,3381	27,7334	$35,\!6047$
CCSD(T)/cc-pVTZ	-253,9051069	-253,8056742	-253,8453332	62,9979	25,8274	37,1705
CCSD(T)/aug-cc-pVTZ	-253,9277880	-253,8347147	-253,8680634	59,0073	21,8676	37,1397
$d\varepsilon_{ZPE}$	1,6430	2,2459	1,3049			-0,3381
MP2/6-31G(d)	-253,5426498	-253,4303471	-253,4982737	71,0976	43,5074	27,5901
MP2/6-31++G(d,p)	-253,5729177	-253,4519142	-253,5195619	76,5574	43,3324	33,2250
MP2/6-311++G(d,p)	-253,7577962	-253,6267311	-253,6978991	82,8712	45,5415	37,3297
MP2/6-311++G(df,pd)	-253,8177203	$-253,\!6920549$	-253,7533418	79,4828	39,3410	40,1418
MP2/6-311++G(3df, 3pd)	-253,8882229	-253,7719429	-253,8283134	$73,\!5934$	36,2559	$37,\!3375$
MP4(SDTQ)/6-31G(d)	-253,5825287	-253,4745356	-253,5302672	68,3933	35,8550	32,5383
MP4(SDTQ)/6-31++G(d,p)	-253,6094000	-253,4985916	-253,5530521	70,1599	$35,\!0573$	35,1025
MP4(SDTQ)/6-311++G(d,p)	-253,7952846	-253,6750745	-253,7347504	76,0595	38,3301	37,7295
MP4(SDTQ)/6-311++G(df,pd)	-253,8594257	-253,7448349	-253,7935171	72,5334	31,4314	41,1020
MP4(SDTQ)/6-311++G(3df,3pd)	-253,9345596	-253,8289797	-253,8730054	66,8789	28,5094	38,3695
QCISD(T)/6-31G(d)	-253,5836388	-253,4848189	-253,5308593	$62,\!6370$	29,7736	32,8633
QCISD(T)/6-31++G(d,p)	-253,6098696	-253,5082493	-253,5526610	64,3943	28,7516	$35,\!6426$
QCISD(T)/6-311++G(d,p)	-253,7965408	-253,6857908	-253,7341715	70,1232	31,2422	38,8810
QCISD(T)/6-311++G(df,pd)	-253,8605780	-253,7550766	-253,7927401	66,8297	24,5171	42,3126
CCSD(T)/6-31G(d)	-253,5825603	-253,4833504	-253,5307500	62,8817	30,6266	32,2551
CCSD(T)/6-31++G(d,p)	-253,6086121	-253,5064561	-253,5523610	64,7304	$29,\!6886$	35,0418
CCSD(T)/6-311++G(d,p)	-253,7952703	$-253,\!6837538$	-253,7337384	$70,\!6042$	32,2487	38,3555
CCSD(T)/6-311++G(df,pd)	-253,8593342	-253,7530824	-253,7923482	67,3006	25,5225	41,7780
$d\varepsilon_{ZPE}$	1,6460	2,2725	1,3897			-0,2563
$\Delta_f H^0(\exp)[27]$	74,070		112,530			38,460

Figura 4.12: (a) MEP da reação $NF + F = N + F_2$ (b) Taxa da reação $NF + F = N + F_2$.

nosso estudo. Para essa reação as expressões das taxas são respectivamente iguais a:

$$k_W^{TST} = 9,1457 \times 10^{12} T^{0,44021} \exp(-67238/RT),$$

$$k_W^{TST} = 3,2914 \times 10^{12} T^{0,55574} \exp(-66614/RT),$$

$$k_E^{TST} = 1,4233 \times 10^{10} T^{1,1991} \exp(-28718/RT).$$

4.4.3 NF + F = NF + F

A reação de troca do sistema NFF teve suas energias, barreiras e entalpias determinadas nos vários níveis de cálculo e bases mostradas na Tabela 4.11. Como se trata de uma reação de troca, a energia dos reagentes é igual à energia dos produtos e, assim, a variação da entalpia é nula.

A MEP da reação está apresentada na Figura 4.13(a). E as expressões para as taxas são

$$k_{W}^{TST} = 1,2293 \times 10^{11} T^{0,3238} \exp(-4413/RT),$$

$$k_{W}^{TST} = 4,3386 \times 10^{10} T^{0,43614} \exp(-4315/RT),$$

$$k_{E}^{TST} = 5,9521 \times 10^{-02} T^{4,197} \exp(-3240/RT).$$

e estão representadas na Figura 4.13(b). As três taxas apresentam um comportamento similar da faixa que vai de 400 a 4000 K, variando para a k_E^{TST} de 400 K em diante. Para

Tabela 4.11: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF+F=NF+F.

	NF' + F'	TS_4	NF' + F'	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	-253,6017136	-253,5361279	-253,6017136	42,4607	42,4607	0,0000
MP2/aug-cc-pVDZ	-253,6564338	-253,6151636	$-253,\!6564338$	27,2025	27,2025	0,0000
MP2/cc-pVTZ	-253,8623908	-253,8103240	-253,8623908	33,9775	33,9775	0,0000
MP2/aug-cc-pVTZ	-253,8834571	-253,8412066	-253,8834571	27,8176	27,8176	0,0000
MP4(SDQ)/cc-pVDZ	-253,6284565	-253,5537690	$-253,\!6284565$	48,1722	48,1722	0,0000
MP4(SDQ)/aug-cc-pVDZ	$-253,\!6849214$	$-253,\!6303599$	$-253,\!6849214$	35,5429	$35,\!5429$	0,0000
MP4(SDQ)/cc-pVTZ	-253,8873881	-253,8183362	-253,8873881	44,6358	$44,\!6358$	0,0000
MP4(SDQ)/aug-cc-pVTZ	-253,9081618	-253,8476924	-253,9081618	39,2502	39,2502	0,0000
MP4(SDTQ)/cc-pVDZ	-253,6364247	$-253,\!6086497$	$-253,\!6364247$	18,7341	18,7341	0,0000
MP4(SDTQ)/aug-cc-pVDZ	-253,6973583	-253,6958096	-253,6973583	2,2769	2,2769	0,0000
MP4(SDTQ)/cc-pVTZ	-253,9053798	-253,8910320	-253,9053798	10,3084	10,3084	0,0000
MP4(SDTQ)/aug-cc-pVTZ	-253,9284583	-253,9262107	-253,9284583	2,7154	2,7154	0,0000
QCISD(T)/cc-pVDZ	-253,6380429	-253,5727933	-253,6380429	42,2498	42,2498	0,0000
QCISD(T)/aug-cc-pVDZ	-253,6984266	-253,6512731	-253,6984266	30,8943	30,8943	0,0000
QCISD(T)/cc-pVTZ	-253,9062829	-253,8511171	-253,9062829	35,9221	35,9221	0,0000
QCISD(T)/aug-cc-pVTZ	-253,9290733	-253,8817345	-253,9290733	31,0106	31,0106	0,0000
CCSD(T)/cc-pVDZ	-253,6371475	-253,5710873	-253,6371475	42,7585	42,7584	0,0000
CCSD(T)/aug-cc-pVDZ	-253,6972678	-253,6491673	-253,6972678	31,4886	31,4886	0,0000
CCSD(T)/cc-pVTZ	-253,9051069	-253,8478221	-253,9051069	37,2518	37,2518	0,0000
CCSD(T)/aug-cc-pVTZ	-253.9277880	-253,8784871	-253,9277880	32,2418	32,2418	0,0000
$d\varepsilon_{ZPE}$	1,6430	2,9481	1,6430	,	,	0,0000
MP2/6 - 31G(d)	-253.5426498	-253,4903927	-253.5426498	33.9715	33.9715	0.0000
MP2/6-31++G(d, p)	-253.5729177	-253.5290729	-253.5729177	28.6927	28.6927	0.0000
MP2/6-311++G(d, p)	-253 7577962	-253 7002005	-253,7577962	$37\ 3215$	$37\ 3215$	0,0000
MP2/6-311++G(df.pd)	-253.8177203	-253.7603513	-253.8177203	37,1793	37,1793	0.0000
MP2/6-311++G(3df, 3pd)	-253.8882229	-253.8427761	-253.8882229	29,6980	29,6980	0.0000
MP4(SDQ)/6 - 31G(d)	-253 5728985	-253 5081547	-253 5728985	41 8070	41 8070	0,0000
MP4(SDQ)/6-31++G(d, p)	-253 5989646	-253 5455066	-253 5989646	34 7251	34 7251	0,0000
MP4(SDQ)/6-311++G(d, p)	-253 7825857	-253 7124758	-253 7825857	45 1743	45 1743	0,0000
MP4(SDQ)/6-311++G(dfpd)	-253 8449883	-2537737426	-253 8449883	45 8871	45 8870	0,0000
MP4(SDQ)/6-311++G(3df 3pd)	-253 9149985	-253 8515648	-253 9149985	40,9849	40,9849	0,0000
MP4(SDTQ)/6 - 31G(d)	-253 5825287	-253,5620541	-253 5825287	14 0277	14,0277	0,0000
MP4(SDTQ)/6-31++G(d, p)	-253 6094000	-253,6065612	-253,6094000	2 9611	2 9611	0,0000
MP4(SDTQ)/6-311++G(d, p)	-253 7952846	-253 7807557	-253,7952846	10 2967	10 2967	0,0000
MP4(SDTQ)/6-311++G(dfpd)	-253 8594257	-253 8434853	-253 8594257	11 1824	11 1824	0,0000
MP4(SDTQ)/6-311++G(3df 3pd)	-253 9345596	-253 9282534	-253 9345596	5 1369	5 1369	0,0000
OCISD(T)/6 - 31G(d)	-253 5836388	-253,5231220	-253 5836388	39 1546	39 1546	0,0000
OCISD(T)/6-31++G(d, n)	-253 6098696	-253 5609598	-253 6098696	31 8711	31 8711	0,0000
OCISD(T)/6-311++G(d,p)	-253 7965408	-253 7382842	-253 7965408	37 7363	37 7363	0,0000
OCISD(T)/6-311++C(d, p)	-253 8605780	-253 8022245	-253 8605780	37 7071	37 7071	0,0000
$\begin{bmatrix} CCSD(T)/6 - 31C(d) \end{bmatrix}$	-253 5825603	-253 5231560	-253 5825603	38 4565	38 4564	0,0000
CCSD(T)/6-31++C(d n)	-253 6086121	-253 5570776	-253 6086121	32 0533	32 0533	0,0000
CCSD(T)/6-311++G(d,p)	-253 7952703	-253 7334100	-253 7952703	30 0020	30 9920	0,0000
CCSD(T)/6-311++G(df pd)	-253 8593342	-253 7974388	-253 8593342	40 0196	40 0196	0,0000
dezpe	1 6460	2 8257	1 6460	-10,0130		0,0000
$\frac{\Delta c_{ZFE}}{\Delta t H^0(\exp)[27]}$	74 070	2,0201	74 070			0,000
— J · · (0^P/[2])	11,010		11,010			0,000

a nossa região de interesse (1000-3000 K) as três taxas estão em concordância. O ângulo de skew para esta reação é de 54,852°.

Figura 4.13: (a) MEP da reação NF + F = NF + F (b) Taxa da reação NF + F = NF + F.

A Figura 4.14 representa a razão entre as taxas de abstração e troca para o sistema NFF, onde é possível verificar que para a região de baixas temperaturas (200-250 K) a taxa de abstração com a correção de Eckart é em torno de 9 vezes mais rápida que a reação de troca. Enquanto que para altas temperaturas (4000K) esta reação ainda é da ordem de 3 vezes mais rápida que a reação de troca.

4.5 Reações do sistema NF_2F :

4.5.1 $NF_3 = NF_2 + F$

Para esta reação unimolecular, as energias, barreiras e entalpias, foram também todas corrigidas com a d ε_{ZPE} e estão listadas na Tabela 4.12.

A MEP desta reação está representada na Figura 4.15(a). Os potenciais $V_{MEP} \in V_a^G$ ao longo da MEP têm formas bem semelhantes de - ∞ a $-7.5\mu^{1/2}a_0$ as curvas de energia potencial apresentam uma pequena mudança, aumentando gradativamente a partir de $-7.5\mu^{1/2}a_0$ e decrescendo após passar pela estrutura de transição. A energia dos produtos é bem superior à energia dos reagentes e dessa forma esta reação pode ser classificada como mais uma

Tabela 4.12: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_3=NF_2+F$.

	NF_3	TS_5	$NF_2 + F$	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	$-353\ 2987438$	-353 2003137	$-353\ 2126129$	59 1931	7 7028	51 4904
MP2/sug as pVD7	252 2066541	252 2875005	252 2070082	65 0222	6 5794	50,2400
MI 2/aug-cc-pv DZ	-555,5900541	-555,2875005	-555,2979965	00,9222	0,0724	09,0499
MP2/cc-pV1Z	-353,6941147	-353,5758806	-353,5909180	71,6203	9,4210	62,1993
MP2/aug-cc-pVTZ	-353,7325551	-353,6112292	-353,6239900	73,5605	7,9924	65,5680
MP4(SDQ)/cc-pVDZ	-353.3112667	-353.2290269	-353.2384557	49.0336	5.9016	43.1320
MP4(SDO)/aug-cc-pVDZ	-353 4075940	-353 3203082	-353 3250371	52 2000	2 0523	49 2476
M14(3DQ)/aug-cc-pVDZ	-555,4010540	-555,5205002	-555,5250571	02,2000	10,1005	43,2410
MP4(SDQ)/cc-pV1Z	-353,6983434	-353,5957977	-353,6120136	61,7757	10,1605	51,6152
MP4(SDQ)/aug-cc-pVTZ	-353,7361563		$-353,\!6445995$			54,8952
MP4(SDTQ)/cc-pVDZ	-353.3324918	-353.3025898	-353.2535341	16.1911	-30.7980	46.9891
MP4(SDTO)/aug-cc-pVDZ	-353 4377842	-353 4125345	-353 3474704	13 2717	-40 8434	54 1152
MD4(GDTQ)/aug cc pvDZ	252 72000CF	252 7004024	252 6425010	00,2111	25 7242	57,0270
MF4(SDTQ)/cc-pv1Z	-555,7599005	-555,7004254	-555,0455012	22,2035	-30,7343	57,9570
MP4(SDTQ)/aug-cc-pVTZ	-353,7821163		-353,6798284			$61,\!6290$
QCISD/cc-pVDZ	-353,3120745	-353,2018854	-353,2414678	66,5720	24,8232	41,7488
QCISD/aug-cc-pVDZ	-353 4083746	-353 2947736	-353 3281076	68 7130	209023	47 8107
OCISD/aa pVT7	252 6077600	252 5606104	252 6120021	77 8267	20,0020	50.0640
QCISD/cc-pv IZ	-333,0977000	-555,5090194	-333,0139021	11,0001	21,1121	50,0040
QCISD/aug-cc-pVTZ	-353,7356268		-353,6465600			53,3327
QCISD(T)/cc-pVDZ	-353,3295773	-353,2579777	-353,2535819	42,3567	-2,7735	45,1302
QCISD(T)/aug-cc-pVDZ	-353.4328634	-353.3484514	-353.3460788	50.3966	-1.5039	51.9006
OCISD(T)/cc-pVTZ	-353 7326823	-353 6435006	-353 6411670	53 3339	-1 5350	54 8601
QOIDD(T)/CC-PV1Z	-555,7520025	-000,0400000	-555,0411070	00,0002	-1,0003	59,0031
QUISD(T)/aug-cc-pVTZ	-353,7739993		-353,6768232		a	58,4213
CCSD/cc-pVDZ	-353,3091179	-353,1945912	-353,2382549	69,2939	27,3843	41,9096
CCSD/aug-cc-pVDZ	-353,4042488	-353,2783407	-353,3237841	76,4358	28,5011	47,9348
CCSD/cc-pVTZ	-353 6941640	-353 5565146	-353 6102989	83 8036	33 7350	50 0685
CCSD / our on TVTZ	252 7215000	000,0000110	252 6495410	00,0000	00,1000	E2 2002
CCSD/aug-cc-pv1Z	-555,7515922	050 0505050	-555,0425419	00.4070	10.0014	55,5225
CCSD(T)/cc-pVDZ	-353,3282601	-353,2787653	-353,2523014	28,4858	-16,6214	45,1072
CCSD(T)/aug-cc-pVDZ	-353,4310574	-353,3844375	-353,3443684	26,6817	-25,1588	51,8406
CCSD(T)/cc-pVTZ	-353,7308492	-353,6710096	-353,6394497	34,9772	-19,8192	54,7965
CCSD(T)/aug-cc-pVTZ	-353.7719512		-353.6749187			58.3312
deape	6 3256	3 7529	3 7680			-2 5576
	0,0200	0,1020	0,1000	50,000,1	1 5001	2,0010
MP2/6-31G(d)	-353,2267769	-353,1295270	-353,1318277	58,6094	1,5981	57,0113
MP2/6-31++G(d,p)	-353,2710820	-353,1647710	-353,1756062	64,2953	6,9536	57,3417
MP2/6-311++G(d,p)	-353,5227927	-353,4173428	-353,4331008	63,7550	10,0427	53,7123
MP2/6-311++G(df,pd)	-353,6217905	-353,5058422	-353,5231906	70,3428	11,0407	59.3021
MP2/6-311++G(3df 3pd)	-353 7326913	-353 6123104	-353 6267057	73 1243	9 1876	63 9367
MP4(SDO)/6.21C(d)	252 2472058	252 1502448	252 1620568	52 8008	0,1010	50,4160
M14(3DQ)/0-31G(d)	-555,2475956	-555,1552446	-555,1029508	10,1044	2,4001	40,5050
MP4(SDQ)/6-31++G(d,p)	-353,2813002	-353,2006476	-353,1998105	48,1944	-0,3709	48,5053
MP4(SDQ)/6-311++G(d,p)	-353,5317752	-353,4478689	-353,4557817	50,2362	5,1198	45,1164
MP4(SDQ)/6-311++G(df,pd)	$-353,\!6333537$	-353,5386141	-353,5492686	57,0342	6,8402	50,1940
MP4(SDQ)/6-311++G(3df,3pd)	-353.7389431	-353.6382213	-353.6500858	60.7881	7.5995	53.1886
MP4(SDTO)/6-31G(d)	-353 2705259	-353 2343727	-353 1803146	20 2706	-33 7676	54 0382
MD4(SDTQ)/6.21 + C(1-)	252 2076460	252 0000414	252 0100005	0.7612	42 9447	59,0002
MP4(SD1Q)/0-31++G(d,p)	-555,5070409	-555,2662414	-555,2190805	9,7015	-45,2447	55,0000
MP4(SDTQ)/6-311++G(d,p)	-353,5633273	-353,5449876	-353,4790196	9,0925	-41,2411	50,3336
MP4(SDTQ)/6-311++G(df,pd)	-353,6684276	-353,6404362	-353,5753042	15,1490	-40,7165	55,8656
MP4(SDTQ)/6-311++G(3df,3pd)	-353,7837001	-353,7524842	-353,6842218	17,1724	-42,6809	59,8533
QCISD/6-31G(d)	-353,2480477	-353.1291571	-353.1669741	72.1891	23.8849	48.3042
OCISD/6-31++G(d,p)	-353 2820881	-353 1700068	-353 2006178	67 3515	18 7082	18 5521
OCIED / C 211 + O(1)	252 5202011	252 4102504	252 4507070	CO 4750	10,1000	40,0001
QUISD/0-311++G(d,p)	-353,5323311	-353,4193584	-353,458/8/3	08,4756	24,8964	43,5792
QCISD/6-311++G(df,pd)	-353,6334047	-353,5098129	-353,5518641	75,1392	26,5419	48,5973
QCISD(T)/6-31G(d)	-353,2664367	-353,1843215	-353,1794964	49,1122	-2,8734	51,9856
QCISD(T)/6-31++G(d,p)	-353,3021405	-353,2179919	-353,2170509	50.3882	-0.4361	50.8243
OCISD(T)/6-311++G(d p)	-353 5583712	-353 4805708	-353 4779929	46 4047	-1 4633	47 8679
$OCISD(T)/6.311 + C(4f_{Tr}A)$	353 6696119	353 5750444	353 5728949	50 5220	0.6119	52 1444
$\operatorname{GGRD}(\mathfrak{a})$	-555,0020112	-555,5750444	-555,5756242	52,5552	-0,0113	33,1444
UUSD/0-31G(d)	-353,2442029	-353,1206386	-353,1627266	75,1219	26,5650	48,5569
CCSD/6-31++G(d,p)	-353,2772227	-353,1543857	-353,1980198	74,6656	27,5352	47,1303
CCSD/6-311++G(d,p)	-353,5284148	-353,4054332	-353,4547499	74,7563	31,1011	$43,\!6552$
CCSD/6-311++G(df.pd)	-353,6295573	-353,4952340	-353,5479190	81.8733	33.2147	48.6586
CCSD(T)/6-31G(d)	-353 2648576	-353 2063262	-353 1779530	34 3132	-17 6495	51 9627
CCSD(T)/6.21 + C(4.5)	353 2009047	353 9591100	353 9151095	22 0022	26 7894	50 7757
OOD(1)/0-31++O(0,p)	-303,3002047	-303,2381190	-505,2151925	23,9933	-20,1824	50,7757
CCSD(T)/6-311++G(d,p)	-353,5563866	-353,5156507	-353,4761018	23,1463	-24,6629	47,8092
CCSD(T)/6-311++G(df,pd)	-353,6606930	-353,6092938	-353,5719951	29,8377	-23,2509	53,0885
$d\varepsilon_{ZPE}$	6,3513	3,9355	3,7811			-2,5702
$\Delta_f H^0(\exp)[27]$	-30,203		26,770			56,973

Figura 4.14: Razão entre as taxas das reações $NF + F = N + F_2$ e NF + F = NF + F. reação endotérmica ($\Delta H = 57,9376$ kcal/mol) pertencente ao mecanismo estudado.

As taxas para esta reação, juntamente com dados de taxas de referências experimentais, estão representadas na Figura 4.15(b). Pode-se verificar que a taxa com correção de Eckart ficou bem superestimada em relação à taxa convencional e a de Wigner, entretanto as três taxas apresentam comportamento bem semelhante às anteriores e seus valores são respectivamente iguais a:

$$k^{TST} = 5,244 \times 10^{17} T^{0,3067} \exp(-6311/RT),$$

$$k^{TST}_{W} = 4,137 \times 10^{17} T^{0,3341} \exp(-6300/RT)$$

$$k^{TST}_{E} = 3,945 \times 10^{17} T^{0,3397} \exp(-1136/RT).$$

Desta figura é possível notar que as taxas convencional e com correção de Wigner concordam satisfatoriamente com os dados experimentais de Diesen e colaboradores [92], para a temperatura em torno de 1800 K, enquanto que para os dados experimentais de MacFadden e colaboradores[93], os dados concordam bem para a faixa de temperatura que vai de 1150 a 1390 K. Já para faixa de temperatura que vai de 1330 a 2000K os nossos resultados concordam bem com os dados experimentais de Bird e colaboradores[94].

Figura 4.15: a) MEP da reação $NF_3 = NF_2 + F$ (b) Taxa da reação $NF_3 = NF_2 + F$. 4.5.2 $NF_2 + F = NF + F_2$

Na Tabela 4.13 estão relacionadas as energias obtidas em diferentes níveis de cálculos, bem como as barreiras no sentido direto e reverso e a entalpia da reação. Como em todas as outras reações, na ausência de dados experimentais da entalpia, então a mesma foi calculada considerando o calor de formação dos reagentes e produtos e este valor foi comparado com a entalpia *ab initio*. A partir desta comparação, verificou-se que o menor erro global foi obtido usando o nível MP4/cc-pVTZ para o cálculo da taxa de reação.

A V_{MEP} e a V_a^G , desta reação, estão representadas na Figura 4.16(a). Analisando esta figura, podemos notar que a reação $NF_2 + F = NF + F_2$ é endotérmica ($\Delta H = 28,5244$ kcal/mol), ou seja, a energia do reagente é menor que a energia do produto da reação.

A taxa de reação convencional e usando as correções de tunelamente de Wigner e Eckart, em MP4/cc-pVTZ, estão representadas na Figura 4.16(b). O valor para cada taxa correspondente é:

$$k_W^{TST} = 1,9579 \times 10^9 T^{1,6328} \exp(-76999/RT),$$

$$k_W^{TST} = 8,7971 \times 10^{08} T^{0,1724101} \exp(-76565/RT),$$

$$k_E^{TST} = 2,1604 \times 10^{08} T^{1,8898} \exp(-47568/RT).$$

Tabela 4.13: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF₂ + $F = NF + F_2$.

(Keal/hol), incluindo a correção da 21 E para a reação $(12 + 1 - 101 + 12)$.										
	$NF_2 + F$	TS_6	$NF + F_2$	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$				
MP2/cc-pVDZ	-353,2126129	-353,0787269	-353,1677097	83,4179	56,0608	27,3571				
MP2/aug-cc-pVDZ	-353,2979983	-353,1664130	-353,2500865	81,9742	52,7292	29,2450				
MP2/cc-pVTZ	-353,5909180	-353,4577311	-353,5440002	82,9792	$54,\!3580$	$28,\!6213$				
MP2/aug-cc-pVTZ	-353,6239900	-353,4946092	-353,5767012	80,5909	51,7368	28,8541				
MP4(SDTQ)/cc-pVDZ	-353,2535341	-353,1036502	-353,2085136	93,4568	66,0261	27,4307				
MP4(SDTQ)/aug-cc-pVDZ	-353,3474704	-353,2249412	-353,2986365	76,2914	46,4678	29,8236				
MP4(SDTQ)/cc-pVTZ	$-353,\!6435012$	-353,5199111	-353,5967378	76,9572	48,4328	28,5244				
MP4(SDTQ)/aug-cc-pVTZ	-353,6798284		$-353,\!6327864$			$28,\!6992$				
QCISD(T)/cc- $pVDZ$	-353,2535819	-353, 1523052	-353,2103478	62,9553	$36,\!6456$	26,3097				
QCISD(T)/aug-cc- $pVDZ$	-353,3460788	-353,2519601	-353,2980983	58,4636	$29,\!1754$	29,2881				
QCISD(T)/cc- $pVTZ$	$-353,\!6411670$	-353,5373085	-353,5948610	64,5754	36,3380	28,2374				
QCISD(T)/aug-cc- $pVTZ$	$-353,\!6768232$		-353,6299007			$28,\!6242$				
CCSD(T)/cc-pVDZ	-353,2523014	-353,1221897	-353,2094124	81,0495	54,9564	26,0932				
CCSD(T)/aug-cc-pVDZ	-353,3443684	-353,2142762	-353,2967837	81,0373	51,9975	29,0398				
CCSD(T)/cc-pVTZ	$-353,\!6394497$	-353,5073417	-353,5933746	82,3022	54,2097	28,0925				
CCSD(T)/aug-cc-pVTZ	$-353,\!6749187$		$-353,\!6282416$			28,4702				
$d\varepsilon_{ZPE}$	3,7680	3,1712	2,9479			-0,8201				
MP2/6-31G(d)	-353,1318277	-353,0091986	-353,0924346	76,5623	52,5882	23,9741				
MP2/6-31++G(d,p)	-353,1756062	-353,0424945	-353,1296964	83,1402	55,0768	28,0634				
MP2/6-311++G(d,p)	-353,4331008	-353,2936417	-353,3829084	87,1233	56,3725	30,7508				
MP2/6-311++G(df,pd)	-353,5231906	-353,3825527	-353,4694182	87,8630	54,8657	32,9972				
MP2/6-311++G(3df,3pd)	-353,6267057	-353,4930307	-353,5765702	83,4937	52,7786	30,7151				
MP4(SDTQ)/6-31G(d)	-353,1803146	-353,0562839	-353, 1369514	77,4418	50,9764	26,4654				
MP4(SDTQ)/6-31++G(d,p)	-353,2190805	-353,0929726	-353,1714079	78,7453	49,5757	29,1696				
MP4(SDTQ)/6-311++G(d,p)	-353,4790196	-353,3494847	-353,4290777	80,8957	50,3022	30,5936				
MP4(SDTQ)/6-311++G(df,pd)	-353,5753042	-353,4443518	-353,5215609	81,7852	48,8062	32,9790				
MP4(SDTQ)/6-311++G(3df,3pd)	$-353,\!6842218$	-353,5596370	$-353,\!6340115$	77,7895	47,0275	30,7620				
QCISD(T)/6-31G(d)	-353,1794964	-353,0839016	-353, 1377987	59,5980	34,1777	25,4203				
QCISD(T)/6-31++G(d,p)	-353,2170509	-353,1280970	-353,1704475	55,4308	26,9321	28,4986				
QCISD(T)/6-311++G(d,p)	-353,4779929	-353,3823060	-353,4285445	$59,\!6558$	29,3719	30,2839				
QCISD(T)/6-311++G(df,pd)	-353,5738242	-353,4735415	-353,5208196	62,5397	30,0243	32,5154				
CCSD(T)/6-31G(d)	-353,1779539	-353,0766684	-353, 1367111	63,1690	38,0342	25,1348				
CCSD(T)/6-31++G(d,p)	-353,2151925	-353, 1169967	-353,1690738	61,2302	$33,\!0357$	28,1945				
CCSD(T)/6-311++G(d,p)	-353,4761018	-353,3702284	-353,4269553	66,0479	$35,\!9535$	30,0944				
CCSD(T)/6-311++G(df,pd)	-353,5719951	-353,4625479	-353,5192765	68,2905	35,9545	32,3360				
$d\varepsilon_{ZPE}$	3,7811	3,3925	3,0357			-0,7454				
$\Delta_f H^0(\exp)[27]$	26,770		55,600			28,830				

Figura 4.16: (a) MEP da reação $NF_2+F = NF+F_2$ (b) Taxa da reação $NF_2+F = NF+F_2$. O ângulo de *skew* para essa reação é 49,565°.

4.5.3 $NF_2 + F = NF_2 + F$

A reação de troca $NF_2 + F = NF_2 + F$ tem como energias em níveis e bases superiores, barreiras e entalpias os valores colocados na Tabela 4.14, estando todas as grandezas corrigidas pela ε_{ZPE} . Os potencias V_{MEP} e V_a^G estão representados na Figura 4.17(a).

Figura 4.17: (a) MEP da reação $NF_2 + F = NF_2 + F$ (b) Taxa da reação $NF_2 + F = NF_2 + F$.

As taxas de reação $\mathbf{k}^{TST}, \mathbf{k}^{TST}_W$ para a reação de troca do sistema NF₂F estão representadas

Tabela 4.14: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF₂ + $F = NF_2$ +F.

(Kcal/mol), incluindo a correção da Zr E para a reação $M_2 + T = M_{12} + T$.										
	$NF_2 + F$	TS_7	$NF_2 + F$	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$				
MP2/cc-pVDZ	-353,2126129	-353, 1560205	-353,2126129	41,0975	41,0975	0,0000				
MP2/aug-cc-pVDZ	-353,2979983	-353,2635904	-353,2979983	27,1765	$27,\!1765$	0,0000				
MP2/cc-pVTZ	-353,5909180	-353,5451044	-353,5909180	34,3337	34,3337	0,0000				
MP2/aug-cc-pVTZ	-353,6239900	-353,5885395	-353,6239900	27,8307	$27,\!8307$	0,0000				
MP4(SDQ)/cc-pVDZ	-353,2384557	-353,1681824	-353,2384557	49,6824	$49,\!6823$	0,0000				
MP4(SDQ)/aug-cc-pVDZ	-353, 3250371	-353,2177723	-353, 3250371	72,8949	72,8949	0,0000				
MP4(SDQ)/cc-pVTZ	-353, 6120136	-353,5441900	$-353,\!6120136$	48,1452	48,1451	0,0000				
MP4(SDQ)/aug-cc-pVTZ	$-353,\!6445995$	-353,5856415	$-353,\!6445995$	42,5819	42,5819	0,0000				
MP4(SDTQ)/cc-pVDZ	-353,2535341	-353,2528296	-353,2535341	6,0273	6,0273	0,0000				
MP4(SDTQ)/aug-cc-pVDZ	-353,3474704	-353,3628997	-353,3474704	-4,0968	-4,0968	0,0000				
MP4(SDTQ)/cc-pVTZ	$-353,\!6435012$	$-353,\!6487201$	$-353,\!6435012$	2,3103	2,3103	0,0000				
MP4(SDTQ)/aug-cc-pVTZ	-353,6798284	-353,6960810	-353,6798284	-4,6135	-4,6135	0,0000				
QCISD(T)/cc-pVDZ	-353,2535819	-353, 1867537	-353,2535819	47,5205	47,5205	0,0000				
QCISD(T)/aug-cc-pVDZ	-353,3460788	-353,2975462	-353,3460788	36,0399	36,0399	0,0000				
QCISD(T)/cc- $pVTZ$	-353,6411670	-353,5843686	-353,6411670	41,2267	41,2267	0,0000				
QCISD(T)/aug-cc-pVTZ	-353,6768232	-353,6289879	-353,6768232	35,6023	$35,\!6023$	0,0000				
CCSD(T)/cc-pVDZ	-353,2523014	-353,1878940	-353,2523014	46,0015	46,0014	0,0000				
CCSD(T)/aug-cc-pVDZ	-353,3443684	-353,2971759	-353,3443684	35,1989	$35,\!1989$	0,0000				
CCSD(T)/cc- $pVTZ$	$-353,\!6394497$	-353,5820403	$-353,\!6394497$	41,6101	$41,\!6101$	0,0000				
CCSD(T)/aug-cc-pVTZ	$-353,\!6749187$	$-353,\!6262101$	$-353,\!6749187$	36,1503	$36,\!1503$	0,0000				
$d\varepsilon_{ZPE}$	3,7680	9,3532	3,7680			0,0000				
MP2/6-31G(d)	-353,1318277	-353,0907828	-353,1318277	32,6346	32,6346	0,0000				
MP2/6-31++G(d,p)	-353,1756062	-353, 1362393	-353,1756062	31,5817	$31,\!5817$	0,0000				
MP2/6-311++G(d,p)	-353,4331008	-353,3812254	-353,4331008	39,4309	$39,\!4309$	0,0000				
MP2/6-311++G(df,pd)	-353,5231906	-353,4702399	-353,5231906	40,1056	40,1056	0,0000				
MP2/6-311++G(3df, 3pd)	-353,6267057	-353,5857856	-353,6267057	32,5563	$32,\!5563$	0,0000				
MP4(SDQ)/6-31G(d)	-353,1629568	-353,1060705	-353,1629568	42,5753	42,5753	0,0000				
MP4(SDQ)/6-31++G(d,p)	-353,1998105	-353,1493964	-353,1998105	38,5139	38,5139	0,0000				
MP4(SDQ)/6-311++G(d,p)	-353,4557817	-353,3907601	-353,4557817	47,6802	$47,\!6802$	0,0000				
MP4(SDQ)/6-311++G(df,pd)	-353,5492686	-353,4817012	-353,5492686	49,2778	49,2777	0,0000				
MP4(SDQ)/6-311++G(3df,3pd)	$-353,\!6500858$	-353,5893520	$-353,\!6500858$	44,9896	44,9896	0,0000				
MP4(SDTQ)/6-31G(d)	-353,1803146	-353,1907242	-353,1803146	0,3464	0,3464	0,0000				
MP4(SDTQ)/6-31++G(d,p)	-353,2190805	-353,2351622	-353,2190805	-3,2129	-3,2128	0,0000				
MP4(SDTQ)/6-311++G(d,p)	-353,4790196	-353,4882703	-353,4790196	1,0737	1,0737	0,0000				
MP4(SDTQ)/6-311++G(df,pd)	-353,5753042	-353,5822900	-353,5753042	2,4949	2,4949	0,0000				
MP4(SDTQ)/6-311++G(3df,3pd)	$-353,\!6842218$	-353,6971618	$-353,\!6842218$	-1,2414	-1,2414	0,0000				
QCISD(T)/6-31G(d)	-353,1794964	-353, 1135053	-353,1794964	48,2886	48,2886	0,0000				
QCISD(T)/6-31++G(d,p)	-353,2170509	-353, 1549314	-353,2170509	45,8591	45,8591	0,0000				
QCISD(T)/6-311++G(d,p)	-353,4779929	-353,4137132	-353,4779929	47,2147	47,2147	0,0000				
QCISD(T)/6-311++G(df,pd)	-353,5738242	-353,5082424	-353,5738242	48,0318	48,0318	0,0000				
CCSD(T)/6-31G(d)	-353,1779539	-353,1234319	-353,1779539	41,0916	41,0916	0,0000				
CCSD(T)/6-31++G(d,p)	-353,2151925	-353,1664846	-353,2151925	37,4432	$37,\!4432$	0,0000				
CCSD(T)/6-311++G(d,p)	-353,4761018	-353,4184774	-353,4761018	43,0384	43,0384	0,0000				
CCSD(T)/6-311++G(df,pd)	-353,5719951	-353,5129978	-353,5719951	43,8999	43,8999	0,0000				
$d\varepsilon_{ZPE}$	3,7811	10,6597	3,7811			0,0000				
$\Delta_f H^0(\exp)[27]$	26,770		26,770			0,000				
na Figura 4.17(b). A taxa com correção de Eckart foi superestimada e por isto não será mostrada. Desta figura, pode-se verificar que as duas taxas são coincidentes para toda faixa de temperatura estudada. Este fato revela que o efeito de tunelamento é desprezível, mesmo para baixas temperaturas. Isto era esperado, pois o ângulo de *skew* para esta reação é da ordem de 68,571°. Os valores para as taxas são:

$$k^{TST} = 2,3993 \times 10^{10} T^{0,80246} \exp(-48082/RT),$$

 $k^{TST}_{W} = 2,0053 \times 10^{10} T^{0,82318} \exp(-47998/RT).$

Com relação a velocidade com que as reações de abstração e troca acontecem é possível verificar na Figura 4.18 que a taxa de abstração do sistema NF_2F é da ordem de 1,2 vez mais rápida que a reação de troca, na temperatura de 200 K, e da ordem de 2 vezes mais rápida que a reação de troca para 4000K.

Figura 4.18: Razão entre as taxas das reações $NF_2 + F = NF + F_2 e NF_2 + F = NF_2 + F$.

4.6 Reações do sistema NF_3F :

4.6.1
$$NF_3 + F = NF_2 + F_2$$

A Tabela 4.15 mostra as energias eletrônicas totais de reagentes, TS, produtos e barreiras

de potencial, além da d ε_{ZPE} para a reação $NF_3 + F = NF_2 + F_2$.

Tabela 4.15: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_3+F=NF_2+F_2$.

		-		T T 1	T T 1 1	
	$NF_3 + F$	TS_8	$NF_2 + F_2$	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	-452,8164999	-452,7238979	-452,7786090	55,8130	33,2888	22,5242
MP2/aug-cc-pVDZ	-452,9343944	-452,8313556	-452,8916510	62,3622	36,7930	25,5692
MP2/cc-pVTZ	-453,3114885	-453,2069447	-453,2725274	63,3066	40,1109	23,1958
MP2/aug-cc-pVTZ	-453,3570794	-453,2510599	-453,3172341	64,2326	40,4820	23,7506
MP4(SDTQ)/cc-pVDZ	-452,8615325	-452,7805737	-452,8256230	48,5068	27,2260	21,2809
MP4(SDTQ)/aug-cc-pVDZ	-452,9894745	-452,9006373	-452,9487486	$53,\!4506$	29,1474	24,3032
MP4(SDTQ)/cc-pVTZ	-453,3717335	-453,2792837	-453,3348592	55,7175	$33,\!8312$	21,8863
MP4(SDTQ)/aug-cc-pVTZ	-453,4218449		-453,3841565			22,3971
QCISD(T)/cc- $pVDZ$	-452,8589287	-452,8195527	-452,8258868	22,4132	2,9318	19,4814
QCISD(T)/aug-cc- $pVDZ$	-452,9849417		-452,9457505			23,3402
QCISD(T)/cc- $pVTZ$	-453,3649491		-453,3297451			20,8381
QCISD(T)/aug-cc- $pVTZ$	-453,4141924		-453,3776506			$21,\!6776$
CCSD(T)/cc-pVDZ	-452,8575819	-452,8175282	-452,8245663	22,8385	3,3736	19,4649
CCSD(T)/aug-cc-pVDZ	-452,9830006		-452,9438843			23,2931
CCSD(T)/cc-pVTZ	-453,3630415		-453,3277174			20,9135
CCSD(T)/aug-cc-pVTZ	-453,4120261		-453,3753723			21,7479
$d\varepsilon_{ZPE}$	6,3256	4,0300	5,0729			-1,2527
MP2/6-31G(d)	-452,7158157	-452,6283527	-452,6816125	52,9515	32,6692	20,2823
MP2/6-31++G(d,p)	-452,7719942	-452,6716458	-452,7323849	61,0372	37,3626	23.6746
MP2/6-311++G(d,p)	-453,1010575	-453,0022258	-453,0582130	60,0855	34,3807	25,7048
MP2/6-311++G(df.pd)	-453.2204930	-453.1149061	-453,1748885	64.3244	36.8877	27.4367
MP2/6-311++G(3df, 3pd)	-453.3576485	-453.2499220	-453,3150530	65.6670	40.1185	25.5485
MP4(SDTQ)/6-31G(d)	-452.7707988	-452.6845549	-452,7347373	52.1865	30.7381	21.4484
MP4(SDTQ)/6-31++G(d,p)	-452.8204531	-452.7316474	-452,7810884	53,7941	30.2729	23.5212
MP4(SDTQ)/6-311++G(d,p)	-453.1532972	- ,	-453.1128127)	,	24.2238
MP4(SDTQ)/6-311++G(df.pd)	-453.2805706		-453,2374394			25.8847
MP4(SDTQ)/6-311++G(3df.3pd)	-453.4242297		-453,3836737			24.2687
OCISD(T)/6-31G(d)	-452.7670276		-452,7336563			19.7602
OCISD(T)/6-31++G(d,p)	-452.8152703		-452.7776288			22.4398
QCISD(T)/6-311++G(d,p)	-453,1488963		-453,1099966			23.2294
QCISD(T)/6-311++G(df.pd)	-453.2752299		-453.2340658			24.6503
CCSD(T)/6-31G(d)	-4527653505		-4527321047			19 6815
CCSD(T)/6-31++G(d,p)	-452.8131630		-452.7756542			22.3566
CCSD(T)/6-311++G(d,p)	-453,1468068		-453,1077868			23,3049
CCSD(T)/6-311++G(df,pd)	-453,2732259		-453,2319374			24,7284
$d\varepsilon_{ZPE}$	6,3513	4,4190	5,1708			-1,1806
$\Delta_f H^0(\exp)[27]$	-11,733	,	8,300			20,033

A MEP dessa reação segue o mesmo padrão das anteriores e está representada na Figura 4.19(a). Como as energias dos produtos são maiores que as dos reagentes, esta reação completa o número de reações endotérmicas (21,8863 kcal/mol) do mecansimo estudado.

A taxa de reação convencional e com as correções de Wigner e Eckart, em função do inverso da temperatura, estão representadas na Figura 4.19(b) e são descritas, respectiva-

Figura 4.19: (a) MEP da reação $NF_3+F=NF_2+F_2$ (b) Taxa da reação $NF_3+F=NF_2+F_2$ e dados experimentais.

mente, por

$$\begin{aligned} k^{TST} &= 2,8692 \times 10^{12} T^{1,7636} \exp(-56982/RT), \\ k^{TST}_W &= 1,6373 \times 10^{12} T^{1,8280} \exp(-56699/RT), \\ k^{TST}_E &= 1,0827 \times 10^{12} T^{1,8767} \exp(-34666/RT). \end{aligned}$$

Pode-se verficar desta que para altas temperaturas (3000-4000K) as taxas k^{TST} , k_W^{TST} e k_E^{TST} são praticamente coincidentes. No entanto, na região de baixas temperaturas divergem um pouco, mostrando que os efeitos de tunelamento são pouco significativos. Isto pode ser verificado pelo valor do ângulo de *skew* encontrado para essa reação que foi de 52,760°. Nesta mesma figura é também possível verificar que a taxa com correção de Wigner concorda bem com os dados experimentais de Diesen e colaboradores[95], para temperaturas que vão de 1300 a 1600K.

4.6.2 $NF_3 + F = NF_3 + F$

Energias eletrônicas totais de reagentes, TS, produtos, barreiras de energia potencial e entalpias estão na Tabela 4.16.

A MEP dessa reação de troca está representada na Figura 4.20(a). Uma reação onde

Tabela 4.16: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_3+F=NF_3+F$.

(NE + E		$I_{L} + I_{-}$	
MD2/aa = VDZ	$NF_3 + F$	1 59 452 765 4424	$NF_3 + F$	$V_d + a\varepsilon_{ZPE}$	$V_r + a\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	-452,8104999	-452,7054454	-452,8104999	32,0694	52,0694 96,9790	0,0000
MP2/aug-cc-pVD2	-452,9343944	-452,8935552	-452,9343944	26,2780	26,2780	0,0000
MP2/cc-pV1Z	-453,3114885	-453,2720529	-453,3114885	25,3972	25,3972	0,0000
MP2/aug-cc-pVTZ	-453,3570794	-453,3230592	-453,3570794	21,9990	21,9990	0,0000
MP4(SDTQ)/cc-pVDZ	-452,8615325	-452,8129134	-452,8615325	31,1599	31,1599	0,0000
MP4(SDTQ)/aug-cc-pVDZ	-452,9894745	-452,9531076	-452,9894745	23,4716	23,4716	0,0000
MP4(SDTQ)/cc-pVTZ	-453,3717335	-453,2713335	-453,3717335	63,6530	$63,\!6529$	0,0000
MP4(SDTQ)/aug-cc-pVTZ	-453,4218449		-453,4218449			0,0000
QCISD(T)/cc- $pVDZ$	-452,8589287	-452,8199164	-452,8589287	25,1316	25,1316	0,0000
QCISD(T)/aug-cc-pVDZ	-452,9849417	-452,9575320	-452,9849417	17,8508	17,8508	0,0000
QCISD(T)/cc- $pVTZ$	-453,3649491		-453,3649491			0,0000
QCISD(T)/aug-cc-pVTZ	-453,4141924		-453,4141924			0,0000
CCSD(T)/cc-pVDZ	-452,8575819	-452,8176296	-452,8575819	25,7214	25,7214	0,0000
CCSD(T)/aug-cc-pVDZ	-452,9830006		-452,9830006			0,0000
CCSD(T)/cc-pVTZ	-453,3630415		-453,3630415			0,0000
CCSD(T)/aug-cc-pVTZ	-453,4120261		-453,4120261			0,0000
$d\varepsilon_{ZPE}$	6,3256	6,9766	6,3256			0,0000
MP2/6-31G(d)	-452,7158157	-452,6841477	-452,7158157	20,8651	20,8651	0,0000
MP2/6-31+G(d,p)	-452,7719942	-452,7298857	-452,7719942	27,4166	27,4166	0,0000
MP2/6-311++G(d,p)	-453,1010575	-453,0529974	-453,1010575	31,1513	31,1513	0,0000
MP2/6-311++G(df,pd)	-453,2204930	-453,1769466	-453,2204930	28,3189	28,3189	0,0000
MP2/6-311++G(3df, 3pd)	-453,3576485	-453,3213460	-453,3576485	23,7733	23,7733	0.0000
MP4(SDTQ)/6-31G(d)	-452,7707988	-452,7310447	-452,7707988	25,9392	25,9392	0.0000
MP4(SDTQ)/6-31++G(d,p)	-452,8204531	-452,7808896	-452,8204531	25,8196	25,8196	0.0000
MP4(SDTQ)/6-311++G(d,p)	-453.1532972	-453.1088523	-453.1532972	28.8827	28.8827	0.0000
MP4(SDTQ)/6-311++G(df.pd)	-453.2805706	-453.2408221	-453,2805706	25.9357	25.9357	0.0000
MP4(SDTQ)/6-311++G(3df.3pd)	-453,4242297	,	-453,4242297	-)	-)	0.0000
QCISD(T)/6-31G(d)	-452,7670276	-452,7356302	-452,7670276	20,6953	20,6953	0.0000
OCISD(T)/6-31++G(d,p)	-452.8152703	-452,7841483	-452.8152703	20.5225	20.5225	0.0000
QCISD(T)/6-311++G(d,p)	-453.1488963	-453.1137090	-453.1488963	23.0735	23.0735	0.0000
QCISD(T)/6-311++G(df.pd)	-453.2752299		-453.2752299	,	,	0.0000
CCSD(T)/6-31G(d)	-452.7653505	-452.7330607	-452.7653505	21.2553	21.2553	0.0000
CCSD(T)/6-31++G(d,p)	-452,8131630	-452,7810081	-452,8131630	21,1707	21,1706	0,0000
CCSD(T)/6-311++G(d,p)	-453,1468068	-453,1104789	-453,1468068	23,7892	23,7892	0,0000
CCSD(T)/6-311++G(df,pd)	-453,2732259	,	-453,2732259	-) • -	- , • -	0,0000
$d\varepsilon_{ZPE}$	6,3513	7,3445	6,3513			0,0000
$\Delta_f H^0(\exp)[27]$	-11,733		-11,733			0,000

não há ganho ou perda de energia na forma de calor. Os potenciais V_{MEP} e V_a^G possuem formas similares na região que vai de $-\infty$ a $-2\mu^{1/2}a_0$, crescendo rapidamente até a região da TS e decrescendo também rapidamente a partir dessa região, voltando a serem similares de $2 \mu^{1/2}a_0$ em diante.

Figura 4.20: (a) MEP da reação $NF_3 + F = NF_3 + F$ (b) Taxa da reação $NF_3 + F = NF_3 + F$.

A taxas apresentam comportamento similar na região de temperatura que vai de 4000-800 K e estão representadas na Figura 4.20(b), sofrendo leve variação, no caso da taxa com correção de Wigner e uma variação um pouco maior para a taxa com correção de Eckart, na região de baixas temperaturas, pelos motivos já esplanados anteriormente. O ângulo de *skew* para essa reação vale 74,479°, um ângulo relativamente grande, o que justifica o fato do tunelamento ser pequeno. As taxas valem, respectivamente:

$$k_{W}^{TST} = 1,2187 \times 10^{08} T^{1,4352} \exp(-23893/RT),$$

$$k_{W}^{TST} = 4,0064 \times 10^{07} T^{1,5577} \exp(-23011/RT)$$

$$k_{E}^{TST} = 1,0058 \times 10^{01} T^{3,3505} \exp(-17949/RT).$$

Na Figura 4.21 observa-se que para baixas temperaturas (200K) a reação de troca é cerca de 12 vezes mais rápida que a reação de abstração, enquanto que para altas temperaturas (4000K) a reação de abstração é cerca de 5 vezes mais rápida que a de troca.

Figura 4.21: Razão entre as taxas das reações $NF_3 + F = NF_2 + F_2$ e $NF_3 + F = NF_3 + F$. 4.7 Reações do sistema NFN:

4.7.1 $N_2F = N_2 + F$

As energias eletrônicas totais referentes a reação unimolecular do sistema NFN estão representadas na Tabela 4.17.

A Figura 4.22(a) mostra a representação gráfica da MEP da reação $N_2F=N_2+F$. A partir da figura é possível notar que trata-se de uma reação exotérmica (-131,2943 kcal/mol). Do ponto de vista termoquímico, trata-se de uma reação que possui a energia dos reagentes maior que a dos produtos, logo precisa liberá-la na forma de calor para a vizinhança a fim de que a reação aconteça.

A Figura 4.22(b) representa o gráfico da taxa de reação em função da temperatura recíproca. Para esta reação só será mostrado apenas as taxas de reação convencional e de Wigner, pois a taxa com a correção de Eckart ficou superestimada. Para se corrigir isto teríamos que fazer os cálculos usando TST variacional ou canônica. Porém, isto faz parte das nossas perspectivas futuras com relação a estas reações, e neste momento ficaremos apenas com as duas taxas mostradas. Pode-se perceber da figura que as taxas k^{TST} e

Tabela 4.17: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $N_2F=N_2+F$.

	No F	TS10	$N_0 \pm F$	$V_1 \pm d\varepsilon_{2,D,D}$	$V \pm d\varepsilon_{RDD}$	$\Delta H \pm d\varepsilon_{RDD}$
MP2/cc-pVDZ	-208 5517426	-208 5337965	$-208\ 7849231$	$v_d + u \epsilon_Z p_E$ 10.5746	$v_r + u \epsilon_Z p_E$ 158 2398	$\Delta II + a \epsilon_Z p_E$ -147 6652
MP2/aug-cc-pVDZ	-208 6027351	-208 5835283	-208 8230135	11 3657	150,2000 150,9347	-139 5690
MP2/cc-pVTZ	-208 7792194	-208 7595070	-208 9998415	11,6830	151 4676	-139 7847
MP2/aug-cc-pVTZ	-208 8020345	-208,7827424	-209 0182104	11 4192	148 4139	-136 9947
MP4(SDTO)/cc-pVDZ	-208 5949819	-208 5772704	-208,8135452	10,4274	148 9201	-138 4928
MP4(SDTO)/aug-cc-pVDZ	-208 6508216	-208 6318322	-208 8555815	11,2293	141 0603	-129 8310
MP4(SDTQ)/cc-pVTZ	-208,8301623	-208 8106211	-209,0372541	11 5755	142 8698	$-131\ 2943$
MP4(SDTQ)/aug-cc-pVTZ	-208 8550659	-208 8357632	-209 0565876	11 4259	1392249	-1277990
QCISD(T)/cc-pVDZ	-208,5915661	-208,5843397	-208.8098404	3.8479	142.1593	-138.3114
QCISD(T)/aug-cc-pVDZ	-208.6458403	-208.6375966	-208.8518604	4,4863	135,1080	-130.6218
QCISD(T)/cc-pVTZ	-208.8236503	-208.8153371	-209.0307763	4.5299	135.8456	-131.3158
QCISD(T)/aug-cc-pVTZ		,.	-209,0500510	,		- ,
CCSD(T)/cc-pVDZ	-208,5900516	-208,5829576	-208,8093426	3,7648	142,7142	-138,9494
CCSD(T)/aug-cc-pVDZ	-208,6441067	-208,6359908	-208,8513096	4,4061	135,7701	-131,3640
CCSD(T)/cc-pVTZ	-208,8217596	-208,8135499	-209,0300555	4,4649	136,5148	-132,0499
CCSD(T)/aug-cc-pVTZ			-209,0493049			
$d\varepsilon_{ZPE}$	4,3845	$3,\!6978$	3,0423			-1,3422
MP2/6-31G(d)	-208,5229701	-208,5091477	-208,7506130	7,9671	152,1963	-144,2292
MP2/6-31++G(d,p)	-208,5464668	-208,5273840	-208,7696058	11,2681	152,6710	-141,4030
MP2/6-311++G(d,p)	-208,6808513	-208,6663592	-208,9169090	8,3874	157,8969	-149,5096
MP2/6-311++G(df,pd)	-208,7410055	-208,7244270	-208,9683369	9,6966	153,7303	-144,0338
MP2/6-311++G(3df, 3pd)	-208,8065405	-208,7885230	-209,0254932	10,5996	149,3756	-138,7761
MP4(SDTQ)/6-31G(d)	-208,5741141	-208,5523847	-208,7791967	12,9288	143,0012	-130,0724
MP4(SDTQ)/6-31++G(d,p)	-208,5913021	-208,5720557	-208,7990214	11,3707	143,0977	-131,7270
MP4(SDTQ)/6-311++G(d,p)	-208,7287835	-208,7138889	-208,9492587	8,6399	148,3713	-139,7314
MP4(SDTQ)/6-311++G(df,pd)	-208,7925163	-208,7756336	-209,0039361	9,8875	$143,\!9365$	-134,0491
MP4(SDTQ)/6-311++G(3df,3pd)	-208,8608898	-208,8425388	-209,0653474	10,8089	140,4891	-129,6802
QCISD(T)/6-31G(d)	-208,5693075	-208,5590679	-208,7752195	5,7189	136,3117	-130,5929
QCISD(T)/6-31++G(d,p)	-208,5855687	-208,5780340	-208,7947996	4,0215	$136,\!6970$	-132,6755
QCISD(T)/6-311++G(d,p)	-208,7237157	-208,7206054	-208,9436550	1,2452	$140,\!6403$	-139,3952
QCISD(T)/6-311++G(df,pd)	-208,7869143	-208,7818969	-208,9978573	2,4419	136,1918	-133,7499
CCSD(T)/6-31G(d)	-208,5677199	-208,5575821	-208,7746424	5,6550	136,8820	-131,2270
CCSD(T)/6-31++G(d,p)	-208,5838115	-208,5763930	-208,7941390	3,9486	137,3122	-133,3637
CCSD(T)/6-311++G(d,p)	-208,7217413	-208,7187315	-208,9428752	1,1821	141,3269	-140,1448
CCSD(T)/6-311++G(df,pd)	-208,7849909	-208,7800652	-208,9971292	2,3844	136,8843	-134,5000
$d\varepsilon_{ZPE}$	4,3788	3,6722	2,9976			-1,3812
$\Delta_f \mathrm{H}^0(\mathrm{exp})[27]$	146,344		18,470			-127,874

Figura 4.22: (a) MEP da reação $N_2F = N_2 + F$. (b)Taxa da reação $N_2F = N_2 + F$. k_W^{TST} estão concordantes em praticamente toda a faixa de temperatura estudada, só havendo uma pequena diferença para temperaturas mais baixas. Os valores encontrados para as taxas são

$$k^{TST} = 0,1230 \times 10^{17} T^{0,0551} \exp(-1213/RT),$$

 $k^{TST}_{W} = 0,7638 \times 10^{16} T^{0.1099} \exp(-11895/RT)$

e o ângulo de skew dessa reação vale 83,100°.

4.7.2 $NF + N = N_2 + F$

A Tabela 4.18 a seguir refere-se às energias totais de reagentes, TS e produtos, barreiras de potencial e entalpias corrigidas com a ZPE da reação de abstração do sistema NFN, isto para diversas bases e níveis de cálculo.

Na Figura 4.23(a) estão representadas as barreiras de potencial $V_{MEP} \in V_a^G$ desta reação. Podemos perceber que trata-se de uma reação fortemente exotérmica (-148,9671 kcal/mol), pois as energias dos reagentes são bem superiores às energias dos produtos, apresentando comportamento similar ao da reação unimolecular deste mesmo sistema.

O gráfico do logarítmo da taxa de reação × temperatura recíproca está representado na Figura 4.23(b). Neste gráfico podemos verificar que apenas as taxas \mathbf{k}^{TST} e \mathbf{k}^{TST}_W foram

Tabela 4.18: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação NF+N=N₂+F.

			N + F	$\frac{1}{V + dc}$	V + dc	$\Lambda U + dc$
MD2/co = VD7	$10T \pm 10$ 208 5472052	200 5205202	$112 \pm 1^{\circ}$	$v_d + u \epsilon_{ZPE}$	$v_r + u \epsilon_{ZPE}$	$\Delta \Pi + u \epsilon_Z P_E$
MP2/cc-pVDZ	-200,0470900	-206,0090002	-200,7049231	3,2204	102,0001	-147,0017
MP2/aug-cc-pVD2	-208,3883397	-208,3832404	-208,8230135	3,0272	149,3499	-140,7227
MP2/cc-pV1Z	-208,7518279	-208,7474055	-208,9998415	3,0305	157,2021	-154,2310
MP2/aug-cc-pv1Z	-208,7681995	-208,7000308	-209,0182104	1,2774	100,7023	-105,4849
MP4(SDQ)/cc-pVDZ	-208,5793082	-208,5731020	-208,7971118	4,1875	139,4020	-135,2740
MP4(SDQ)/aug-cc-pVDZ	-208,6222228	-208,6184019	-208,8359423	2,6907	135,4024	-132,7117
MP4(SDQ)/cc-pV1Z	-208,7813769	-208,7782546	-209,0090221	2,2523	143,7025	-141,4503
MP4(SDQ)/aug-cc-pVTZ	-208,7973493	-208,7972766	-209,0266262	0,3386	142,8128	-142,4742
MP4(SDTQ)/cc-pVDZ	-208,5868588	-208,5816755	-208,8135452	3,5456	$144,\!3942$	-140,8486
MP4(SDTQ)/aug-cc-pVDZ	-208,6332439	-208,6308825	-208,8555815	1,7748	139,8945	-138,1197
MP4(SDTQ)/cc-pVTZ	-208,7976301	-208,7962060	-209,0372541	1,1866	150, 1537	-148,9671
MP4(SDTQ)/aug-cc-pVTZ	-208,8153171	-208,8171719	-209,0565876	-0,8709	149,1294	-150,0003
QCISD/cc-pVDZ	-208,5825694	-208,5839682	-208,7967257	-0,5848	132,4011	-132,9858
QCISD/aug-cc-pVDZ	-208,6257208	-208,6298276	-208,8358684	-2,2841	128, 1863	-130,4703
QCISD/cc-pVTZ	-208,7839081	-208,7881518	-209,0078864	-2,3700	136,7793	-139,1492
QCISD/aug-cc-pVTZ	-208,7999687		-209,0256839			-140,2392
QCISD(T)/cc- $pVDZ$	-208,5886346	-208,5947290	-208,8098404	-3,5313	133,8782	-137,4095
QCISD(T)/aug-cc-pVDZ	-208,6349089	-208,6443949	-208,8518604	-5,6596	129,0803	-134,7399
QCISD(T)/cc-pVTZ	-208,7988996	-208,8090522	-209,0307763	-6,0778	138,0277	-144,1056
QCISD(T)/aug-cc-pVTZ	-208,8164346		-209.0500510		,	-145.1972
CCSD/cc-pVDZ	-208,5802623	-208,5816592	-208,7954798	-0.5836	133.0682	-133.6518
CCSD/aug-cc-pVDZ	-208.6229551	-208.6269505	-208.8343841	-2.2141	129.0603	-131.2744
CCSD/cc-pVTZ	-208 7814880	-2087856447	-209 0062699	-2,3154	137 3381	-139 6535
CCSD/aug-cc-pVTZ	-208 7973815	200,1000111	-209 0239959	2,0101	101,0001	-140 8034
CCSD/radg cc pV1Z CCSD(T)/cc-pVDZ	-208 5877693	-208 5936903	-208 8093426	-3 4995	$134 \ 2176$	-137 6401
CCSD(T)/aug-cc-pVDZ	-208 6338548	-208 6430859	-208 8513096	-5 4996	129,2110 129,5561	-135 0557
CCSD(T)/aug-cc-pVDZ	-208,00000000000000000000000000000000000	-208,8076632	-200,03100555	-5,9030	129,0001 138,4470	-144 3500
CCSD(T)/cc-pVTZ	200,1311010	-200,0010052	200,0402040	-0,3003	150,4470	145 4727
denne	1 6420	1.0260	2 0492			1 2002
	1,0430	1,9300	3,0423	1 0 0 7 0		1,3995
MP2/6-31G(d)	-208,5130611	-208,5104723	-208,7506130	1,9073	149,6217	-147,7145
MP2/6-31++G(d,p)	-208,5338765	-208,5267752	-208,7696058	4,7389	151,3097	-146,5708
MP2/6-311++G(d,p)	-208,6740535	-208,6659549	-208,9169090	5,3648	156,4072	-151,0425
MP2/6-311++G(df,pd)	-208,7219592	-208,7156711	-208,9683369	4,2287	157,4813	-153,2527
MP2/6-311++G(3df,3pd)	-208,7782746	-208,7740323	-209,0254932	2,9449	156,7253	-153,7804
MP4(SDQ)/6-31G(d)	-208,5496953	-208,5437603	-208,7611814	4,0071	135,3650	-131,3579
MP4(SDQ)/6-31++G(d,p)	-208,5655928	-208,5601613	-208,7805905	$3,\!6911$	137,2526	-133,5615
MP4(SDQ)/6-311++G(d,p)	-208,7049647	-208,6980240	-208,9269772	4,6382	$142,\!6015$	-137,9633
MP4(SDQ)/6-311++G(df,pd)	-208,7534273	-208,7489807	-208,9793326	3,0731	143,4792	-140,4061
MP4(SDQ)/6-311++G(3df, 3pd)	-208,8096826	-208,8066690	-209,0360375	2,1739	142,8621	-140,6882
MP4(SDTQ)/6-31G(d)	-208,5578274	-208,5529331	-208,7791967	3,3540	140,9137	-137,5597
MP4(SDTQ)/6-31++G(d,p)	-208,5748318	-208,5705964	-208,7990214	2,9406	$142,\!2700$	-139,3295
MP4(SDTQ)/6-311++G(d,p)	-208,7163021	-208,7111632	-208,9492587	3,5075	148,3383	-144,8309
MP4(SDTQ)/6-311++G(df,pd)	-208,7665216	-208,7634858	-209,0039361	2,1878	149,8160	-147,6282
MP4(SDTQ)/6-311++G(3df,3pd)	-208,8270539	-208,8257690	-209,0653474	1,0891	149,2689	-148,1798
QCISD/6-31G(d)	-208,5531883	-208,5543882	-208,7616226	-0,4701	128,9727	-129,4429
QCISD/6-31+G(d,p)	-208,5690225	-208,5709801	-208,7805227	-0,9456	130,4211	-131,3668
QCISD/6-311++G(d,p)	-208,7084735	-208,7086445	-208,9262514	0,1755	135,4816	-135,3061
QCISD/6-311++G(df,pd)	-208,7562897	-208,7589942	-208,9783891	-1,4143	$136,\!6035$	-138,0179
QCISD(T)/6-31G(d)	-208,5591564	-208,5650043	-208,7752195	-3,3868	130,8432	-134,2300
QCISD(T)/6-31++G(d,p)	-208,5756931	-208,5825870	-208,7947996	-4,0432	132,0966	-136,1398
OCISD(T)/6-311++G(d,p)	-208,7176584	-208.7232464	-208,9436550	-3,2237	137,2396	-140,4634
OCISD(T)/6-311++G(df pd)	-208 7678391	-208 7759745	-208,9978573	-4 8222	138 1647	-142,9870
CCSD/6-31G(d)	-208.5502674	-208.5515313	-208.7601402	-0.5103	129.8352	-130,3456
CCSD/6-31++G(d p)	-208.5658074	-208.5677571	-208.7787244	-0.9406	131,3151	-132,2558
CCSD/6-311++C(d,p)	-208 7054011	-208 7059431	-208 9244951	-0.0573	136.0746	-136 1320
CCSD/6-311++C(dfpd)	-208 7536800	-208 7563720	-208 9767173	-1 4002	137 1000	-138 6002
CCSD(T)/6-31G(d)	-208 5581737	-208 5638684	-208 7746494	-3 2002	131 1038	-134 4846
$CCSD(T)/6-31\pm\pm C(d, p)$	-208 5745048	-200,000004	-208 70/1300	-3 9174	139 /070	-136 4145
CCSD(T)/6-311++C(d,p)	-200,0740940	-200,0012003	-200,1341330	-3.0851	132,4970	-140 7115
$CCSD(T)/6.211 + C(df_{T}d)$	200,1104033	200,1210004	200,9420192	-5,0651	138 5669	143 9610
de	1 6460	-200,7740000	-200,9971292	-4,0940	100,0002	-145,2010 1.251 <i>C</i>
$\frac{\mathrm{d}\varepsilon_{ZPE}}{\Lambda_{1}}$	1,0400	1,9288	2,9970			1,0010
$\Delta_f H^{\circ}(\exp)[27]$	168,130		18,470			-149,660

Figura 4.23: (a) MEP da reação $NF + N = N_2 + F$ (b) Taxa da reação $NF + N = N_2 + F$. apresentadas, isto pelo mesmo problema de convergência no cálculo da taxa com a correção de Eckart, ocorrido na reação anterior. Do mesmo modo, para solucionar esse problema há a necessidade de se aplicar TST variacional ou canônica. As taxas calculadas valem, respectivamente:

$$k^{TST} = 2,5698 \times 10^{13} T^{0,49652} \exp(-879,88/RT),$$

 $k^{TST}_{W} = 1,6811 \times 10^{13} T^{0,54536} \exp(-671,94/RT).$

O valor encontrado para o ângulo de *skew* de 57,554° justifica o fato das duas taxas k^{TST} e k_W^{TST} coincidirem praticamente em todo intervalo de temperatura onde esta reação foi estudada.

4.8 Reação do sistema NF_2N :

4.8.1 $NF_2 + N = NF + NF$

A Tabela 4.19 mostra as energias eletrônicas para os reagentes, TS e produtos da reação de abstração do sistema NF_2N , as barreiras de potencial e entalpias corrigidas pela ZPE também são mostradas nesta tabela.

A Figura 4.24(a) mostra a representação gráfica da MEP desta reação. Pelo gráfico é

Tabela 4.19: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_2+N=NF+NF$.

		<u> </u>		$V + I_{-}$	$V + J_{-}$	
MD2/00 - VDZ	$NF_2 + N$	$1 S_{12}$	NF + NF 208 1670150	$V_d + a\varepsilon_{ZPE}$	$V_r + a\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	-506,1562940	-507,9405709	-506,1079150	137,3073	144,0205	-0,5169
MP2/aug-cc-pVD2	-308,2301242	-308,0203318	-308,2373870	132,3343	137,3737	-5,0395
MP2/cc-pV1Z	-308,4803551	-308,2812013	-308,4900340	125,8208	132,3703	-0,000
MP2/aug-cc-pV1Z	-308,5087324	-308,3147851	-308,5178656	122,5913	128,8044	-6,2132
MP4(SDTQ)/cc-pVDZ	-308,2039682	-308,0236641	-308,2147680	114,0301	121,2890	-7,2590
MP4(SDTQ)/aug-cc-pVDZ	-308,2833560	-308,1109402	-308,2913360	109,0801	114,5696	-5,4895
MP4(SDTQ)/cc-pVTZ	-308,5357515	-308,3741276	-308,5471056	102,3081	109,9148	-7,6068
MP4(SDTQ)/aug-cc-pVTZ	-308,5666872		-308,5774594			-7,2417
QCISD(T)/cc-pVDZ	-308,2041736	-308,0688379	-308,2173830	85,8120	94,5830	-8,7710
QCISD(T)/aug-cc-pVDZ	-308,2825611	-308,1591437	-308,2926966	78,3331	$85,\!1752$	-6,8421
QCISD(T)/cc- $pVTZ$	-308,5337837	-308,4290555	-308,5480322	66,6055	76,0285	-9,4231
QCISD(T)/aug-cc-pVTZ	-308,5641845		-308,5777604			-9,0010
CCSD(T)/cc-pVDZ	-308,2029232	-308,1582564	-308,2156514	28,9164	37,3854	-8,4691
CCSD(T)/aug-cc-pVDZ	-308,2809554	-308,2406059	-308,2906492	26,2072	32,7722	-6,5650
CCSD(T)/cc-pVTZ	-308,5321306	-308,4885296	-308,5458292	28,2476	37,3256	-9,0780
CCSD(T)/aug-cc-pVTZ	-308,5623787		-308,5754262			-8,6694
$d\varepsilon_{ZPE}$	3,7680	4,6555	3,2860			-0,4820
MP2/6-31G(d)	-308,1022390	-307,8981543	-308,1072220	128,9439	132,5599	-3,6160
MP2/6-31++G(d,p)	-308, 1365650	-307,9223535	-308,1440110	135,2986	140,4601	-5,1616
MP2/6-311++G(d,p)	-308,3493581	-308, 1326383	-308,3590628	136,8725	143,4514	-6,5789
MP2/6-311++G(df,pd)	-308,4274295	-308,2229305	-308,4380356	129,2039	136,3484	-7,1446
MP2/6-311++G(3df, 3pd)	-308,5167574	-308,3198719	-308,5265314	124,4263	131,0487	-6,6224
MP4(SDTQ)/6-31G(d)	-308,1556133	-307,9821197	-308,1645116	109,7477	115,8205	-6,0729
MP4(SDTQ)/6-31++G(d,p)	-308, 1845123	-308,0077066	-308,1931876	111,8261	117,7590	-5,9330
MP4(SDTQ)/6-311++G(d,p)	-308,4000371	-308,2194512	-308,4106294	114,1982	121,3340	-7,1359
MP4(SDTQ)/6-311++G(df,pd)	-308,4824001	-308,3145946	-308,4945654	106, 1783	114,3013	-8,1230
MP4(SDTQ)/6-311++G(3df,3pd)	-308,5767161	-308,4156059	-308,5880600	101,9770	109,5845	-7,6075
QCISD(T)/6-31G(d)	-308,1550140	-308,0152403	-308,1660958	88,5881	96,0312	-7,4431
QCISD(T)/6-31++G(d,p)	-308,1828744	-308.0492050	-308,1934796	84,7576	91,9016	-7,1440
QCISD(T)/6-311++G(d,p)	-308,3991105	-308,2826567	-308,4120314	73,9547	82,5518	-8,5971
QCISD(T)/6-311++G(df,pd)	-308,4810853	-308,3807893	-308,4959186	63.8155	73,6126	-9,7972
CCSD(T)/6-31G(d)	-308,1535673	-308,1113918	-308,1641348	27,3443	34,4647	-7,1203
CCSD(T)/6-31++G(d,p)	-308,1811752	-308,1412734	-308,1913076	25,9176	32,7649	-6,8473
CCSD(T)/6-311++G(d,p)	-308.3973148	-308,3625400	-308,4097002	22,7003	30,9614	-8,2611
CCSD(T)/6-311++G(df,pd)	-308,4793352	-308,4446918	-308,4936026	22,6179	$32,\!0599$	-9,4421
$d\varepsilon_{ZPE}$	3,7811	4,6599	3,2920			-0,4891
$\Delta_f H^0(\exp)[27]$	120,830	0,000	111,200			-9,630

possível notar que essa reação é classificada como sendo mais uma reação exotérmica do mecanismo, pois a energia dos reagentes é maior que a energia dos produtos.

Figura 4.24: a) MEP da reação $NF_2 + N = NF + NF$ (b) Taxa da reação $NF_2 + N = NF + NF$.

A taxa desta reação está representada na Figura 4.24(b). Para esta reação foram determinadas as três taxas, convencional, Wigner e Eckart, sendo que para baixas temperaturas, novamente a correção de Eckart é superestimada. Porém , para altas temperaturas (4000-1300 K) as três taxas estão em bom acordo. Estes fatos estão de acordo com o ângulo de skew encontrado 58,739°. Os valores para estas taxas são

$$k_W^{TST} = 2,3544 \times 10^{08} T^{1,4532} \exp(-101560/RT),$$

$$k_W^{TST} = 8,3421 \times 10^{07} T^{1,5650} \exp(-100570/RT),$$

$$k_E^{TST} = 1,2136 \times 10^{-9} T^{6,6730} \exp(-78259/RT).$$

4.9 Reações do sistema NF_3N

4.9.1 $N_2F_3 = NF_2 + NF$

Na Tabela 4.20 estão representadas as energias de reagentes, TS, produtos, barreiras direta e reversa, além da entalpia da reação É importante dizer que tentamos calcular as energias desta reação em todos os níveis de cálculo e bases utilizadas para as outras reações,

porém devido a problemas computacionais apenas foi possível calcular para os níveis e bases

mostrados.

Tabela 4.20: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $N_2F_3=NF_2+NF$.

	3	1	5 - 5	=		
	N_2F_3	TS_{13}	$NF_2 + NF$	$V_d + d\varepsilon_{ZPE}$	$V_r + d\varepsilon_{ZPE}$	$\Delta H + d\varepsilon_{ZPE}$
MP2/cc-pVDZ	-407,8131522	-407,7637440	-407,7788143	28,9556	10,5782	18,3774
MP2/aug-cc-pVDZ	-407,9220577	-407,8689524	-407,8789515	31,2756	7,3960	23,8796
MP2/cc-pVTZ	-408,2658717	-408,2079642	-408,2185612	34,2890	7,7712	26,5178
MP2/aug-cc-pVTZ	-408,3118127	-408,2518956	-408,2583985	35,5500	5,2021	30,3479
MP4(SDTQ)/cc-pVDZ	-407,8632710	-407,8192864	-407,8318774	25,5522	9,0225	16,5298
MP4(SDTQ)/aug-cc-pVDZ	-407,9819446	-407,9346216	-407,9414481	27,6471	5,4052	22,2419
MP4(SDTQ)/cc-pVTZ	-408,3299772	-408,2775127	-408,2852270	30,8735	5,9623	24,9112
MP4(SDTQ)/aug-cc-pVTZ	-408,3801523		-408,3288295			29,0355
QCISD(T)/cc- $pVDZ$	-407,8629513		-407,8329220			15,6737
QCISD(T)/aug-cc-pVDZ	-407,9793690		-407,9403488			21,3155
QCISD(T)/cc- $pVTZ$	-408,3250432		-408,2829163			23,2650
QCISD(T)/aug-cc-pVTZ			-408,3255103			
CCSD(T)/cc-pVDZ	-407,8612997		-407,8308053			15,9655
CCSD(T)/aug-cc-pVDZ	-407,9771636		-407,9377498	1		21,5625
CCSD(T)/cc-pVTZ	-408,3227380		-408,2801720			23,5406
CCSD(T)/aug-cc-pVTZ			-408,3225569			
$d\varepsilon_{ZPE}$	8,5810	6,5325	5,4110			-3,1700
MP2/6-31G(d)	-407,7489747	-407,6956762	-407,6963999	31,3637	1,5613	29,8025
MP2/6-31++G(d,p)	-407,7872973	-407,7334054	-407,7466995	31,7361	9,4493	22,2868
MP2/6-311++G(d,p)	-408,0727835	-408,0193354	-408,0343674	31,4576	10,5398	20,9177
MP2/6-311++G(df,pd)	-408,1879341	-408,1305542	-408,1435059	33,9248	9,2344	24,6904
MP2/6-311++G(3df, 3pd)	-408,3153063	-408,2551141	-408,2650142	35,6896	7,3195	28,3701
MP4(SDTQ)/6-31G(d)	-407,7992795	-407,7517066	-407,7622975	27,7709	7,7530	20,0178
MP4(SDTQ)/6-31++G(d,p)	-407,8406547	-407,7925222	-407,8028681	28,1220	7,5993	20,5227
MP4(SDTQ)/6-311++G(d,p)	-408,1309853	-408,0823848	-408,0943644	28,4157	8,6244	19,7912
MP4(SDTQ)/6-311++G(df,pd)	-408,2533262		-408,2104439			23,7203
MP4(SDTQ)/6-311++G(3df,3pd)	-408,3855320		-408,3377222			26,8124
QCISD(T)/6-31G(d)	-407,7974139	-407,7656363	-407,7619534	17,8592	-1,2039	19,0631
QCISD(T)/6-31++G(d,p)	-407,8373389	-407,8055640	-407,8006609	17,8575	-1,9696	19,8271
QCISD(T)/6-311++G(d,p)	-408,1286429		-408,0934835			18,8741
QCISD(T)/6-311++G(df,pd)	-408,2500928		-408,2091648			22,4940
CCSD(T)/6-31G(d)	-407,7955025	-407,7634310	-407,7595284	18,0436	-1,3418	19,3854
CCSD(T)/6-31++G(d,p)	-407,8350418	-407,8029529	-407,7978880	18,0545	-2,0711	20,1256
CCSD(T)/6-311++G(d,p)	-408,1261946		-408,0905317			19,1901
CCSD(T)/6-311++G(df,pd)			-408,2062635			
$d\varepsilon_{ZPE}$	8,6158	6,5342	5,4271			-3,1887
$\Delta_f H^0(\exp)[27]$	39,085		63,900			24,815

A Figura 4.25(a) refere-se à MEP da reação unimolecular do sistema NF_3N . Pelo perfil de energia representado pela MEP percebe-se que esta é uma reação endotérmica, cuja barreira no sentido direto é bem superior à barreira no sentido reverso. Para o modelo MP4/cc-pVTZ essas barreiras valem, respectivamente, 30,875 kcal/mol e 5,96kcal/mol, já corrigidas pela ZPE, como pode ser visto na Tabela 4.20.As taxas de reação k^{TST} , k^{TST} e

Figura 4.25: (a) MEP da reação $N_2F_3 = NF_2 + NF$ (b) Taxa da reação $N_2F_3 = NF_2 + NF$. \mathbf{k}_E^{TST} estão representadas na Figura 4.25(b) e valem, respectivamente

$$k^{TST} = 4,098 \times 10^{16} T^{0,2648} \exp(-3184/RT),$$

$$k^{TST}_{W} = 2,204 \times 10^{16} T^{0,3359} \exp(-3152/RT)$$

$$k^{TST}_{E} = 1,434 \times 10^{16} T^{0,3866} \exp(-6447,4/RT).$$

A taxa com correção de Eckart está superestimada para essa reação, enquanto que a de Wigner está coincidente com a taxa TST convencional em praticamente toda a faixa estudada (200-4000 K).

4.9.2 $NF_3 + N = NF_2 + NF$

Os cálculos realizados para esta reação são anteriores aos cálculos feitos para as demais reações do mecanismo[29]. Em função disso, todas as geometrias de equilíbrio para os reagentes ($NF_3 \in N$), TS e produtos ($NF_2 \in NF$) foram determinadas no nível de cálculo MP2, com o conjunto de bases 6-31G(d), bem como as freqüências harmônicas do sistema. As geometrias dos reagentes, produtos e TS desta reação estão representadas nas Figuras 4.1 e 4.2, respectivamente. Sendo que a TS para esta reação é a TS₁₄. Os parâmetros geométricos para reagentes e produtos estão relacionados na Tabela 4.1 e as freqüências na Tabela 4.2, onde são comparados com dados experimentais e teóricos, enquanto que os parâmetros geométricos e freqüências da TS estão nas Tabelas 4.6 e 4.7, respectivamente.

O erro absoluto das distâncias interatômicas e dos ângulos de ligação para reagentes e produtos, comparados com dados experimentais para o NF₃, são menores que 0,0137 Å e $1,22^{\circ}$, respectivamente. Do mesmo modo, comparando à distância de ligação NF e o ângulo de ligação NF₂ com dados teóricos, verifica-se um erro absoluto para reagentes e produtos menor que 0,0013 Å e 0,0381°, respectivamente.

As freqüências foram escalonadas por um fator de 1,041174, considerando assim as deficiências referentes ao nível de cálculo utilizado.

As energias eletrônicas totais foram calculadas em diferentes níveis de cálculo e bases, para todas as espécies envolvidas nesta reação, usando as geometrias calculadas em MP2/6-31G(d) e estão relacionados na Tabela 4.21, bem como, o calor de formação e as barreiras de potencial no sentido direto e reverso. O calor de reação e as barreiras estão corrigidos pela energia de ponto zero escalonada e, assim como para as demais reações, como não há resultados experimentais para esta reação, foi feita uma comparação do calor de reação *ab initio*[27] e o obtido usando o calor de formação para reagentes e produtos.

Tabela 4.21: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para a reação $NF_3+N=NF_2+NF$.

	Reagentes	TS_{14}	Produtos	Vd	V_r	ΔH
MP2/6-31G(d)	-407,68378	-407,61090	-407,69640	45,735	53,651	-7,916
MP2/6-311++G(d,p)	-407,92369	-407,85362	-407,94081	43,972	54,711	-10,740
MP2/6-311++G(df,pd)	-408,03068	-407,96114	-408,04941	43,636	55,391	-11,755
MP2/6-311++G(3df,3pd)	-408,13504	-408.06839	-408,15238	41,821	52,700	-10,879
MP2/cc-pVTZ	-408,13913	-408,06994	-408,15653	43,416	$54,\!337$	-10,920
MP2/aug-cc-pVTZ	-408,17316	-408,10667	-408,18954	41,727	52,002	-10,275
MP4(SDTQ)/6-311++G(df,pd)	-408,09204	-408,02983	-408,11470	39,034	$53,\!255$	-14,222
QCISD(T)/6-31++G(d,p)	-407,76790	-407,71148	-407,78767	35,400	47,810	-12,410
CCSD(T)/6-31++G(d,p)	-407,76595	-407,70788	-407,78490	36,433	48,326	-11,893
$\Delta_f \mathrm{H}^{0}(\mathrm{Exp})^{[27]}$	82,30[78, 96]		$70,28^{[97]}$			-12,020

As energias calculadas em MP2/cc-pVTZ apresentaram um erro de $0,366 \text{ kcal/mol}^{-1}$ no calor de reação quando comparadas com o calor de formação determinado a partir do calor de formação dos reagentes e produtos, isto após ter aplicado a correção da energia de ponto zero.

O gráfico da V_{MEP} e da V_a^G , ao longo da MEP, como função da coordenada de reação para esta reação está plotado na Figura 4.26(a). É possível notar nesta figura que a V_a^G é similar à V_{MEP} . De - ∞ a $-1.5\mu^{1/2}a_0$ as curvas de energia potencial mudam apenas ligeiramente, aumentam gradualmente depois de $-1.5\mu^{1/2}a_0$ e decrescem rapidamente após passar pela estrutura de transição.

Figura 4.26: (a) MEP da reação $NF_3 + N = NF_2 + NF$ (b) Taxa da reação $NF_3 + N = NF_2 + NF$.

As taxas de reação estão mostradas na Figura 4.26(b), e valem, respectivamente

$$k^{TST} = 1,353 \times 10^9 T^{1,458} \exp(-4364RT),$$

$$k^{TST}_W = 5,235 \times 10^{08} T^{0,3359} \exp(-4308/RT),$$

$$k^{TST}_E = 7,15 \times 10^7 T^{1,970} \exp(-3004/RT).$$

O valor do ângulo de *skew* para esta reação é de 56,119.

4.10 Resumo dos Resultados obtidos para as Reações dos Sistemas $NF_xF \in NF_xN$

No sentido de ter um banco de taxas de reações para os sistemas $NF_xF \in NF_xN$, reunimos

	Taxas de Reação								
TS's	Conve	ncional		W	igner		Eckart		
	А	n	Ea	А	n	Ea	А	n	Ea
TS_1	$0,1953 \times 10^{17}$	0,2446	10886	$0,1420 \times 10^{17}$	0,2813	10870	$0,4492 \times 10^{19}$	-0,5679	3703
TS_2	$0,2027 \times 10^{17}$	0,2430	12045	$0,8685 \times 10^{16}$	0,3396	11998	$1,3285 \times 10^{16}$	0,56119	54771
TS ₃	$0,9146 \times 10^{13}$	0,4402	6724	$0,3291 \times 10^{13}$	0,5557	6661	$0,1423 \times 10^{11}$	1,199	2872
TS ₄	$0,122963 \times 10^{12}$	0,3238	4413	$0,4339 \times 10^{11}$	0,4361	4315	$0,5952 \times 10^{-3}$	4,197	3240
TS_5	$0,5244 \times 10^{18}$	0,3067	6311	$0,4137 \times 10^{18}$	0,3341	6300	$0,3945 \times 10^{18}$	0,3397	1136
TS ₆	$0,1958 \times 10^{10}$	1,633	7610	$0,8797 \times 10^9$	0,17241	7656	$0,2160 \times 10^9$	1,8810	4757
TS7	$0,2399 \times 10^{11}$	0,8025	4808	$0,2005 \times 10^{11}$	0,8232	4710	-	-	-
TS8	$0,2869 \times 10^{13}$	1,764	5698	$0,1637 \times 10^{13}$	1,828	5670	$0,1083 \times 10^{13}$	1,877	3467
TS ₉	$0,1219 \times 10^9$	1,435	2389	$0,4006 \times 10^8$	1,558	2301	$0,1006 \times 10^2$	3,350	1795
TS10	$0,1230 \times 10^{17}$	0,0551	1213	$0,7638 \times 10^{16}$	0.1099	11895	-	-	-
TS ₁₁	$0,2570 \times 10^{14}$	0,4965	879,90	$0,1681 \times 10^{14}$	0,5454	671,9	-	-	-
TS_{12}	$0,2354 \times 10^9$	1,453	10156	$0,8342 \times 10^8$	1,565	10057	$0,1214 \times 10^{-10}$	6,673	7826
TS_{13}	$0,4098 \times 10^{17}$	0,2648	3184	0.2204×10^{17}	0,3359	3152	$0,1434 \times 10^{17}$	0,3866	6447,4
TS ₁₄	$0,1353 \times 10^{10}$	1,458	4364	$0,5235 \times 10^9$	1,566	4308	$0,715 \times 10^8$	1,970	3004

Tabela 4.22: Fator pré-exponencial (A), fator de potência da temperatura (n) e energia de ativação $(E_a)doNF_xF \in NF_xN$, com $x = 1, 2 \in 3$.

Unidades: A (cm³mol⁻¹s⁻¹) para reações bimoleculares e s⁻¹ para reações unimoleculares, n (admensional) e E_a (kcal/mol).

na Tabela 4.22 os parâmetros de Arrhenius para as reações estudadas e apresentadas nas seções anteriores.

Os valores dos ângulos de *skew* para as reações estudadas nesta tese são valores intermediários, como pode ser visto nas seções anteriores e na Tabela 4.23, mostrando que o tunelamento não é um efeito crítico para essas reações. Este ângulo pode variar de 0 a 90°. Estes dados são bastante justificáveis, uma vez que todas as reações estudadas possuem apenas átomos pesados e o interesse de temperatura neste estudo está na faixa de (1000 -3000 K). No entanto, as taxas de reação foram calculadas para um intervalo mais amplo de temperatura (200-4000 K), a fim de fazer uma varredura mais completa de temperatura para possíveis aplicações dessas reações.

Com relação à variação de entalpia, é importante ressaltar que este foi o parâmetro adotado para a seleção do melhor nível de cálculo e base utilizado nos cálculos das taxas de reação. Foi feita uma análise comparativa entre os vários erros calculados e o calor de formação experimental/teórico das várias espécies e a entalpia da reação, isto para cada nível

TS's	Ang. $skew(^{\circ})$
TS_1	78,300
TS_2	83.960
TS_3	62,547
TS_4	54,852
TS_5	85,886
TS_6	49,565
TS_7	68,571
TS_8	52,760
TS_9	74,479
TS_{10}	83,100
TS_{11}	$57,\!554$
TS_{12}	58,739
TS_{13}	85,043
TS_{14}	56,119

Tabela 4.23: Valores dos ângulos de skew calculados para as reaç
dos sistemas NF_xF e NF_xN , com x = 1, 2 e
 3.

Tabela 4.24: Erros globais nas entalpias (kcal/mol) calculadas para os diversos níveis de cálculos e bases dos sistemas NF_xF e NF_xN , com $x = 1, 2 \in 3$.

	Mália	Mália	Mália		Mália	Málio	Málio
Nárol	Media NE E	ME N	rlobal	Nárol	ME E	NE N	rlobal
MD9/ MD7	1NF xF		giobai		5 2002	1 1 1 x 1 v	giobai
MP2/cc-pVDZ	6,0059	7,6847	6,7690	MP2/6-3IG(d)	5,3602	9,6503	7,3102
MP2/aug-cc-pVDZ	3,7638	6,0179	4,7884	MP2/6-31++G(d,p)	3,7599	6,9458	5,2080
MP2/cc-pVTZ	2,4926	5,5411	3,8782	MP2/6-311++G(d,p)	4,8430	8,3856	6,4533
MP2/aug-cc-pVTZ	$3,\!6859$	6,2009	4,8291	MP2/6-311++G(df,pd)	3,3137	$6,\!6834$	4,8453
				MP2/6-311++G(3df, 3pd)	3,1910	8,5210	$5,\!6137$
MP4(SDQ)/cc-pVDZ	9,1389	9,2467	9,1879	MP4(SDQ)/6-31G(d)	$6,\!6874$	14,4059	10,1958
MP4(SDQ)/aug-cc-pVDZ	6,9994	8,0236	7,4649	MP4(SDQ)/6-31++G(d,p)	6,9492	14,0005	$10,\!1544$
MP4(SDQ)/cc-pVTZ	4,4735	5,1589	4,7851	MP4(SDQ)/6-311++G(d,p)	8,5373	14,8383	11,4014
MP4(SDQ)/aug-cc-pVTZ	3,1252	3,7629	3,4151	MP4(SDQ)/6-311++G(df,pd)	6,7965	10,1484	8,3201
				MP4(SDQ)/6-311++G(3df,3pd)	4,7184	8,0255	6,2216
MP4(SDTQ)/cc-pVDZ	7,3391	7,0209	7,1945	MP4(SDTQ)/6-31G(d)	4,9372	9,0582	6,8104
MP4(SDTQ)/aug-cc-pVDZ	4,6130	5,5256	5,0278	MP4(SDTQ)/6-31++G(d,p)	4,8467	8,3564	6,4420
MP4(SDTQ)/cc-pVTZ	1,6440	2,0829	1,8435	MP4(SDTQ)/6-311++G(d,p)	5,6586	8,3540	6,8838
MP4(SDTQ)/aug-cc-pVTZ	2,0097	2,3815	2,1787	MP4(SDTQ)/6-311++G(df,pd)	3,4795	3,1776	3,3423
		·		MP4(SDTQ)/6-311++G(3df,3pd)	1,8602	3,4529	2,5841
QCISD/cc-pVDZ	8,7247	8,8238	8,7698	QCISD/6-31G(d)	6,4604	15,6102	10,6194
QCISD/aug-cc-pVDZ	6,7819	7,7623	7,2275	QCISD/6-31++G(d,p)	7,0666	14,9453	10,6478
QCISD/cc-pVTZ	4,8511	4,9580	4,8997	QCISD/6-311++G(d,p)	8,9609	16,1665	12,2362
QCISD/aug-cc-pVTZ	3,6099	3,7316	$3,\!6505$	QCISD/6-311++G(df,pd)	7,2114	11,5990	9,2058
QCISD(T)/cc- $pVDZ$	7,7960	7,1032	7,4811	QCISD(T)/6-31G(d)	5,4504	11,0449	7,9933
QCISD(T)/aug-cc-pVDZ	4,9664	5,9184	5,3991	QCISD(T)/6-31++G(d,p)	5,3274	10,5003	7,6787
QCISD(T)/cc-pVTZ	1,9186	2,4716	2,1699	QCISD(T)/6-311++G(d,p)	6,1507	10,6343	8,1887
QCISD(T)/aug-cc-pVTZ	0,9278	2,5237	1,4598	QCISD(T)/6-311++G(df,pd)	4,2229	5,7490	4,9166
CCSD/cc-PVDZ	9,3103	9,3945	9,3486	CCSD/6-31G(d)	9,9210	15,7683	12,5789
CCSD/aug-cc-PVDZ	7,2885	8,3469	7,7696	CCSD/6-31++G(d,p)	7,3021	15,3988	10,9824
CCSD/cc-PVTZ	5,0650	5,4179	5,2254	CCSD/6-311++G(d,p)	9,1795	16,2236	12,3814
CCSD/aug-cc-PVTZ	3,8417	4,2797	3,9877	CCSD/6-311++G(df,pd)	7,4275	$13,\!0577$	9,6796
CCSD(T)/cc-PVDZ	8,0498	7,2871	7,7031	CCSD(T)/6-31G(d)	5,7466	11,1027	8,1812
CCSD(T)/aug-cc-PVDZ	5,1481	6,1055	5,5832	CCSD(T)/6-31+G(d,p)	5,6117	10,5594	7,8606
CCSD(T)/cc-PVTZ	2,2042	2,6963	2,4279	CCSD(T)/6-311++G(d,p)	6,2526	10,7517	8,2976
CCSD(T)/aug-cc-PVTZ	$1,\!1911$	2,7274	1,7032	CCSD(T)/6-311++G(df,pd)	4,2899	6,7329	5,2671

de cálculo e base estudados. Nas análises que fizemos para a determinação do erro global isto teve uma influência significativa, o que justifica os valores elevados para os erros individuais e globais encontrados para alguns sistemas. Posteriormente, foi feita uma média entre o número de reações estudadas. Esse número de reações não inclui as reações de troca, pois essas não contribuem no valor efetivo da entalpia. Desta forma, o que se tem é uma média global de erros, como pode ser visto na Tabela 4.24, o que é justificado pelo fato de termos um conjunto de reações e querermos tratá-las como um todo, em um único mecanismo.

4.11 Sistema BF_3N

4.11.1 Reação bimolecular com mecanismo complexo

Reação $BF_2 + NF = BF_3 + N$

O sistema BF_3N , ou seja, a reação $BF_2 + NF$, constitui uma das reações importantes no mecanismo de crescimento de filmes finos de nitreto de boro[28]. É importante ressaltar que, é de grande interesse que o máximo de reações possíveis sejam investigadas para verificar qual a contribuição das mesmas no processo de crescimento. Sendo assim, nos propusemos a estudar essa reação, como um passo inicial no acúmulo de experiência para, posteriormente, continuarmos no estudo das reações de interesse para o desenvolvimento do mecanismo cinético.

Todas as espécies envolvidas nesta reação foram otimizadas atráves de cálculos de estrutura eletrônica utilizando o programa Gaussian98 e/ou Gaussian03 e em diferentes níveis de cálculos. As geometrias otimizadas em MP2/6-311G(d) para os reagentes, produtos, estrutura de transição (TS) e reagente complexo (RC, que será discutido a seguir) são ilustradas na Figura 4.27, e seus parâmetros são comparados com dados de referências na Tabela 4.25. Nesta Tabela são apresentadas as geometrias otimizadas dos reagentes, RC, TS e produtos e destes dados são comparados com dados experimentais e teóricos disponíveis. Os erros absolutos para as distâncias interatômicas e ângulos de ligação são menores que 0,0136 Å

Figura 4.27: Geometrias dos reagentes, produtos, TS e reagente complexo.

e 9,42°, respectivamente. Isto quando comparado com dados experimentais para o BF_2 e 0,0059 Å e 0,32°, respectivamente, quando comparados com dados teóricos.

Tabela 4.25: Parâmetros geométricos para reagentes, produtos, TS e RC calculadas em MP2/6-311G(d) para o sistema BF_3N , distâncias interatômicas em Å e ângulos de ligação em graus

Parameter	BF_2	NF	BF_3	TS	RC
$\mathbf{R}_{\mathbf{BF}}$	1,314		1,316	1,335	1,314
	$(1,30^{[73]})_e$		$(1,307^{[73]},1,324^{[98]})_e$		
	$(1,3195^{[99]})_t$		$(1,.3135^{[100]},1,3218^{[99]},1,3235^{[77]})_t$		
A_{FBF}	$121,\!42$		120,0	$119,\!277$	120,982
	$(112^{[73]})_e$		$(120^{[73]})_e$		
	$(121, 10^{[99]})_t$		$(120^{[99, 77]})_t$		
$R_{NF'}$		1.310		1,936	1,356
		$(1,3173^{[67]},1,317^{[74]})$			
$\mathbf{R}_{BF'}$				1,413	2,285
$\mathbf{A}_{FBF'}$	-			$116,\!031$	150,345
$A_{BF'N}$				$58,\!643$	$38,\!659$

edados experimentais, t dados teóricos

As freqüências calculadas em MP2/6-311G(d) para espécies consideradas nessa reação são apresentadas na Tabela 4.26 e comparadas com dados de referências experimentais e teóricas. Essas freqüências foram utilizadas para o cálculo da ZPE, que por sua vez foi aplicada no cálculo da barreira de potencial dada pela equação 3.26. As freqüências estão escalonadas por um fator de 0,9684 para levar em consideração possíveis deficiências no nível de cálculo adotado e as mesmas foram também escalonadas pela ZPE.

	BF_2	NF	BF_3	TS
ν_1	$530,\!4723$	$1196,\!0536$	484,6746	260,2038
	$(500,0^{[73]}, 523,7^{[101]})_e$	$(1115,0^{[73]}, 1141,4^{[74, 67]})_e$	$(480,7^{[73]}, 480^{[102, 100]})_e$	
	$(552,9^{[99]}, 523,6^{[101]})_t$	$(1138,5^{[67]})_t$	$(484^{[100]}, 507, 9^{[99]},)_t$	
ν_2	1150,.2955		484.6746	348,2314
	$(1080,0^{[73]}, 1151,4^{[101]})_e$		$(480,7^{[73]}, 480^{[102, 100]})_e$	
	$(1239,2^{[99]}, 11514^{[101]})_t$		$(484^{[100]}, 507, 9^{[99]})_t$	
ν_3	1417,.3907		707.6813	433,.3688
	$(1213,0^{[73]}, 1394,0^{[101]})_e$		$(696,7^{[73]}, 691^{[102, 100]})_e$	
	$(507,6^{[99]}, 1393,5^{[101]})_t$		$(697^{[100]}, 737, 7^{[99]})_t$	
ν_4			882.5994	464,3690
			$(888^{[73]}, 888^{[102]})_e$	
			$(942,8^{[99]})_t$	
ν_5			$1463,\!8987$	634,7324
			$(1463,3^{[73]}, 1449^{[102]})_e$	
			$(1575,1^{[99]})_t$	
ν_6			$1463,\!8987$	823,3052
			$(1463,3^{[73]}, 1449^{[102]})_e$	
			$(1575,1^{[99]})_t$	
ν_7				1212,7543
ν_8				1378,2451
ν_9				675,5375i
ZPE	4.289	1.656	7.597	7,690

Tabela 4.26: Freqüências vibracionais (cm⁻¹) para os reagentes, produtos e T
s do sistemas BF_3N , calculadas em MP2/6-311G(d).

e experimental data, t theoretical data

Na Tabela 4.27 estão relacionadas as energias eletrônicas obtidas em diferentes níveis de cálculo, bem como a barreira aparente, barreira efetiva e entalpia da reação. O calor de formação e a entalpia estão corrigidos pela ZPE. Na ausência de dados experimentais para esta reação, foi calculado o calor de reação considerando os calores de formação dos reagentes e produtos e este valor foi comparado com a entalpia da reação calculada, sugerindo que as energias obtidas em QCISD(T)/6-311++G(d,p) apresentam o menor erro, portanto foram os dados utilizados para o cálculo da taxa de reação.

A reação $BF_2 + NF$ é uma reação muito interessante do ponto de vista teórico, pois apresenta um comportamento peculiar. Ocorre em duas etapas elementares, a primeira en-

Tabela 4.27: Energias eletrônicas totais (hartree) e calor de formação experimental (kcal/mol) para reagentes, produtos, TS e RC, barreiras de potencial e entalpia de reação (kcal/mol), incluindo a correção da ZPE para reação BF_2 +NF.

	MP2/6-311G(d)	QCISD(t)/6-311G(d)	QCISD(t)/6-311++G(d,p)	$^{(e)}\Delta H_f$
BF ₂	-224,1435362	-224,1591327	-224,1702706	$-120,20^{[103]}$
NF	-154,1344995	-154,1600308	-154,1681854	$59.6^{[104]}$
BF3	-323,9705849	-323,9882954	-324,0021502	$-271,08^{[103]}$
Ν	-54,4750512	-54,4914202	-54,4931927	$112,53^{[105]}$
TS	-378,3501432	-378,4001576	-378,4171659	
RC	-378,4068765	-378,4464181	-378,4635272	
Vap	-43,50	-49,08	-47,65	
V_f	$37,\!35$	30,78	30,84	
ΔH	-103,71	-99,20	-96,99	$-97,91^{[27]}$

volvendo um rápido pré-equilíbrio entre reagentes e um complexo pré-reativo ou reagente complexo (RC), seguida pela formação da estrutura de transição e, posteriomente, a formação dos produtos. O mecanismo proposto para esta reação é:

$$BF_2 + NF \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} BF_2 \cdots NF$$
 (Passo 1)

$$BF_2 \cdots NF \stackrel{k_2}{=} BF_3 + N.$$
 (Passo 2)

A Figura 4.28 ilustra o perfil de energia para esta reação, calculado para o nível de cálculo QCISD(T)/6-311++G(d,p), indicando quatros pontos críticos na superfície de energia potencial, relativos a energia dos reagentes, para o reagente isolado, RC, TS e produtos isolados. No perfil de energia é possível perceber que a energia da estrutura de transição é menor do que a energia dos reagentes. Uma barreira de energia aparente negativa ($V_{ap} = E_{TS} - \sum E_R$) foi encontrada para essa reação, estando localizada entre o reagente e a estrutura de transição, sendo igual a 47,65 kcal/mol menor do que os reagentes isolados. A existência do reagente complexo, 78,48 kcal/mol mais estável que os reagentes isolados, justifica o sinal da barreira aparente, V_{ap} e conduz a um mecanismo complexo, apresentando um primeiro passo reversível e um segundo passo irreversível, com uma barreira igual a 49,15 kcal/mol. Comportamento similar a este é encontrado no trabalho de Galano e colaboradores [106].

Figura 4.28: Perfil de energia para a reação BF_2+NF .

4.11.2 Caminho de Mínima Energia e Taxa de Reação

Para a reação $BF_2 + NF = BF_3 + N$, pode-se determinar uma taxa de reação global, k, escrita em termos das taxas de reação para as duas etapas descritas anteriormente. Considerando o mecanismo proposto, a taxa de produção de $BF_2 \cdots NF$ é dado por

$$\frac{d[BF_2 \cdots NF]}{dt} = k_1 [BF_2] [NF] - k_{-1} [BF_2 \cdots NF] - k_2 [BF_2 \cdots NF]$$
(4.1)

e a taxa de obtenção dos produtos

$$\frac{d\left[BF_3+N\right]}{dt} = k_2 \left[BF_2 \cdots NF\right] \tag{4.2}$$

onde k_1 e k_{-1} representam as taxas de reação no sentido direto e reverso para o primeiro passo, respectivamente, e k_2 a taxa de reação para o segundo passo. Se esta reação ocorresse numa única etapa, então a taxa de obtenção dos produtos seria

$$\frac{d\left[BF_3+N\right]}{dt} = k\left[BF_2\right]\left[NF\right] \tag{4.3}$$

onde e k é a taxa de reação global. Supondo, ainda, que a produção e perda de $BF_2 \cdots NF$ estejam em equilíbrio, ou seja, $d \left[BF_2 \cdots NF \right] / dt = 0$, é possível, então, escrever a taxa de

$$k = \frac{k_1 k_2}{k_{-1} + k_2} \tag{4.4}$$

como a barreira para k_{-1} é maior do que a barreira para k_2 , pode-se supor que $k_{-1} > k_2$, com isto a equação (4.4) pode ser simplificada para:

$$k = \frac{k_1 k_2}{k_{-1}} = K_{eq} k_2 \tag{4.5}$$

onde K_{eq} é a constante de equilíbrio para a reação do passo 1.

Neste caso, a energia de ativação será dada por

$$V_{ap} = E_2 - E_{-1} = (E_{TS} - E_{RC}) - (E_R - E_{RC}) = E_{TS} - E_R$$
(4.6)

onde E_R , E_{TS} e E_{RC} representam as energias totais para os reagentes, estrutura de transição e reagente complexo, respectivamente.

Utilizando a constante de equilíbrio, escrita em termos da função de partição [57]

$$K_{eq} = \frac{k_1}{k_{-1}} = \frac{Q_{RC}}{Q_R} \exp\left(-\frac{E_{RC} - E_R}{RT}\right)$$
(4.7a)

e a taxa de reação obtida pela teoria das estruturas de transição (equação 3.25) para a reação no segundo passo é:

$$k_2 = \frac{k_B T}{h} \frac{Q_{TS}}{Q_{RC}} \exp\left(-\frac{E_{TS} - E_{RC}}{RT}\right)$$
(4.8)

Substituindo (4.7a) e(4.8) em (4.5):

$$k = K_{eq}k_2 = \frac{k_B T}{h} \frac{Q_{TS}}{Q_R} \exp\left(-\frac{E_{TS} - E_R}{RT}\right).$$

$$(4.9)$$

A taxa de reação, segundo a equação (4.9) foi calculada utilizando um código desenvolvido pelo nosso grupo [26], aplicando ainda as correções de tunelamente de Wigner e Eckart e utilizando as energias em QCISD(T)/6-311++G(d,p). Os valores das taxas na forma de Arrhenius para esta reação são, respectivamente

$$k_W^{TST} = 4,5117 \times 10^4 T^{2,3667} \exp(28761/RT),$$

$$k_E^{TST} = 3,5866 \times 10^4 T^{2,3931} \exp(28869/RT).$$

A energia de ativação negativa (-28761 ou -28869 kcal/mol) explica o fato da taxa de reação aumentar com o inverso da temperatura. Este código também determina a MEP, que está apresentada na Figura 4.29(a), para a barreira com e sem a correção da energia de ponto zero, V_{MEP} e V_a^G , respectivamente. Analisando a Figura 4.29(a), pode-se notar que a reação $BF_2 + NF = BF_3 + N$ é exoérgica, ou seja, a energia do reagente é maior que a energia do produto considerado. Vale lembrar que a MEP, nessa figura, está representada a partir do RC, passando pela TS e chegando até os produtos.

Figura 4.29: (a) MEP para a reação $BF_2 + NF = BF_3 + N$ (b)Taxa de reação $BF_2 + NF = BF_3 + N$, com as correções de Wigner e Eckart.

O ângulo de *skew* para essa reação é de 56.43°, pelas razões já citadas anteriormente, dá a informação de que o efeito de tunelamento para essa reação não é significativo. Embora, não sendo o foco do interesse desse trabalho o cálculo da taxa na faixa de temperatura que vai desde 200K até 4000K, o mesmo foi feito a fim de visualizar tanto altas quanto baixas temperaturas e o gráfico da taxa de reação em função da temperatura recíproca é apresentado na Figura 4.29(b). Também é possível notar desta figura que a inclinação da curva da taxa de reação de um mecanismo complexo muda de sinal em relação ao da taxa de reação para um mecanismo simples. Isto é explicado pelo fato da energia do reagente ser maior que a energia da TS. Com isto, mesmo para baixas temperaturas, a probabilidade da reação acontecer é grande, ao contrário, do mecanismo simples.

Capítulo 5 Superfície de Energia Potencial

5.1 Introdução

A SEP, como já mencionado anteriormente, é uma função que fornece a energia potencial para cada configuração geométrica dos núcleos. Dessa forma, a SEP governa o movimento dos núcleos durante o processo de colisão, tornando-se assim a responsável direta da dinâmica de colisão e da reatividade do sistema.

Busca-se uma maior precisão no estudo das colisões reativas e, para tal, o que se faz é resolver a equação de Schrödinger eletrônica (2.7), para todas as possíveis configurações dos núcleos, durante o processo colisional. No entanto, essa tarefa não é nada fácil e, por assim dizer, é uma medida pouco viável na prática. Uma alternativa para se tentar contornar essa dificuldade consiste, inicialmente, em resolver a equação de Schrödinger (2.7) e obter as energias eletrônicas em um amplo e representativo conjunto de configurações geométricas dos núcleos do sistema e, posteriormente, interpolar e extrapolar tais valores mediante uma função analítica, que cubra todo o espaço de coordenadas interatômicas. Com esse artifício, o que se tem é uma função analítica que descreve todas as interações do sistema.

Embora a resolução da equação eletrônica em cada geometria molecular seja factível, determinar teoricamente as características fundamentais da SEP de um sistema requer um esforço computacional considerável. O dispêndio de tempo para se chegar a essa solução se deve a dois motivos. O primeiro é que para descrever detalhadamente a SEP desde as posições dos reagentes até as posições do produto, é preciso resolver a equação (2.7) em um número grande de pontos do espaço de configurações. O segundo motivo do grande esforço computacional exigido são as diferenças entre as características físicas do sistema nas diferentes disposições atômicas.

Frente a essas dificuldades, o que se faz é recorrer a informações experimentais e procurar realizar cálculos rigorosos para assim determinar as características fundamentais da SEP. Essas informações são basicamente do tipo espectroscópicas e termodinâmicas [74, 75], já que se dispõe de poucas referências na literatura de experimentos para processos colisionais reativos. As informações espectroscópicas podem ser usadas para estabelecer as características dos estados eletrônicos do sistema, tais como suas propriedades de simetria e a separação energética entre eles, e permite ainda determinar que estados eletrônicos devem ser considerados na construção da SEP. Além disso, em alguns casos, os dados espectroscópicos podem proporcionar informações sobre a geometria e a energia do estado de translação ou de possíveis complexos estáveis. As informações espectroscópicas dos fragmentos diatômicos do sistema ajudam a conhecer com precisão as curvas de potencial das moléculas em que se pode dissociar o sistema. Uma forma alternativa, para se determinar as características fundamentais da SEP de um sistema reativo, consiste em encontrar uma função analítica que descreva as interações do sistema e, conseqüentemente, reproduza com a maior exatidão possível as informações abordadas teoricamente mediante cálculos *ab initio* e experimentais. A determinação de uma função que cubra todo o espaço de configurações dos átomos e que ajuste bem os dados do potencial não é muito simples. As formas funcionais que geralmente se utilizam são empíricas com parâmetros ajustáveis. Esses parâmetros são ajustáveis para que a função passe a representar todos os valores da energia potencial.

Para descrever a SEP como uma forma funcional, é necessário utilizar uma função complexa, porém flexível, que também deve ser formada por um grande número de parâmetros ajustáveis, pois a SEP deve representar as características extremamente diferentes nas diversas zonas dessa superfície. Além disso, os parâmetros dessa função são determinados por um conjunto de informações teóricas e experimentais bastante limitados. Por esses motivos, surge um inconveniente matemático para otimizar essa função, o que pode resultar em imprecisões, principalmente nas zonas onde não há dados disponíveis. Na seção abaixo são tratados os métodos e funções analíticas usadas para ajustar uma SEP.

5.2 Métodos de Ajustes de Superfície de Energia Potencial

Existem quatro classes gerais de métodos que são utilizados para fazer esse ajuste: os métodos de interpolação tipo *Spline*, os que empregam potenciais semi-empíricos com parâmetros ajustáveis, usados para reproduzir resultados experimentais e/ou teóricos *ab initio*, os que usam uma série de potências em um sistema de coordenadas apropriada para descrever a superfície e por último, os métodos que utilizam a estratégia de expansão de muitos corpos para construir a SEP. A última etapa seria a obtenção das propriedades cinéticas e dinâmicas, usando tanto a metodologia clássica como a quântica, dos sistemas colisionais reativos, via SEP.

Desta forma, a construção da SEP torna-se imprescindível. Neste trabalho, foram realizados os primeiros estudos para a construção das SEPs dos sistemas $BF_2+NF=BF_3+N$ e $NF_3+F=NF_2+NF$. Estes estudos consistiram nas seguintes etapas:

1 - Cálculo das energias eletrônicas para várias configurações nucleares de todos os diátomos e pseudo-diátomos envolvidos nas duas reações descritas acima. Este cálculo foi realizado a partir de uma criteriosa varredura tanto do nível de cálculo como nas funções de base eletrônicas;

2 - As energias obtidas foram ajustadas para formas analíticas bem estabelecidas na literatura e com desvios quadráticos médios próximos do erro químico aceitável (1kcal/mol);

3 - A acurácia dos ajustes realizados foi testada com o cálculo dos espectros e constantes rovibracionais, resolvendo a equação de Schrödinger nuclear por meio do método DVR (do inglês Discrete Variable Representation) [107, 108, 109] e metodologia perturbativa desenvolvida por Dunham [110, 58].

Com estes primeiros cálculos pode-se, a partir do método MBE, determinar as energias eletrônicas do termo de três corpos para estas reações. Uma vez obtidas estas energias, as mesmas são ajustadas para formas analíticas apropriadas, isto para a completa descrição da SEP. Com as SEPs ajustadas pode-se determinar a taxa de reação estado a estado, via o método das trajetórias [111]. Estas informações são de fundamental importância, pois dão maiores detalhes a respeito das taxas das reações estudadas e permite um maior controle do processo de sintetização de novos materias.

5.3 Modelo MBE

Murrel e colaboradores [112] foram os primeiros a utilizar o método MBE, visando trazer uma simplificação das SEPs de sistemas poliatômicos. Nesse modelo, o potencial de um sistema constituído por N átomos é dado pela soma dos potenciais dos subsistemas que o compõem da seguinte forma:

$$V_{ABCD...N}^{MBE} = \sum V_A^{(1)} + \sum V_{AB}^{(2)}(R_{AB}) + \sum V_{ABC}^{(3)}(R_{AB}, R_{BC}, R_{AC}) + \dots + V_{ABCD...N}^{(N)}(R_i).$$
(5.1)

A expressão $\sum V_A^{(1)}$ representa todos os termos de um corpo ou de cada átomo que compõe o sistema. Estes termos devem ser nulos quando todos os átomos dissociam no seu estado eletrônico fundamental. A expressão $\sum V_{AB}^{(2)}(R_{AB})$ corresponde aos termos de dois corpos e contém $\binom{N}{2}$ termos. Os mesmos devem se anular quando R_{AB} tende para zero. A expressão $\sum V_{ABC}^{(3)}(R_{AB}, R_{BC}, R_{AC})$ representa os termos de três corpos e contém $\binom{N}{3}$ termos. Cada um dos potenciais depende da geometria formada pelos três átomos e deve se anular quando algum dos átomos se separa dos demais. A expressão dada por $V_{ABCD...N}^{(N)}(R_i)$ representa o único termo de N corpos. Sua contribuição para o potencial total depende da posição relativa de todos os átomos. No caso de sistemas com três corpos, do tipo A + BC, onde os átomos dissociados se encontram no estado fundamental, a SEP é formulada da seguinte forma

$$V_{ABC}^{MBE} = V_A^{(1)}(r_A) + V_B^{(1)}(r_B) + V_C^{(1)}(r_C) + V_{AB}^{(2)}(r_{AB}) + V_{BC}^{(2)}(r_{BC}) + V_{AC}^{(2)}(r_{AC}) + V_{AC}^{(3)}(r_{AB}, r_{BC}, r_{AC}).$$
(5.2)

Reforçando, $V_i^{(2)}$, com i = AB, BC e AC, representam os termos de dois corpos, que dependem da distância internuclear do diátomo considerado e se anulam quando a distância internuclear torna-se grande. O termo $V^{(ABC)}$ é o termo de três corpos e depende de todas as três distâncias internucleares. Este termo deve ser nulo quando um dos átomos se afasta dos outros dois. Os parâmetros dos termos de dois corpos são determinados de modo a reproduzir as propriedades espectroscópicas dos fragmentos diatômicos do sistema. O termo de três corpos é obtido subtraindo dos valores *ab initio* os valores dos potenciais diatômicos, ou seja

$$V^{(3)}(r_{AB}, r_{BC}, r_{AC}) = V^{MBE}_{ABC} - V^{(2)}_{AB}(r_{AB}) - V^{(2)}_{BC}(r_{BC}) - V^{(2)}_{AC}(r_{AC}) - V^{(1)}_{A}(r_{A}) - V^{(1)}_{B}(r_{B}) - V^{(1)}_{C}(r_{C}).$$
(5.3)

O problema que resta agora é o de escolher a forma analítica do potencial e várias formas têm sido propostas na literatura. A seguir serão descritas as formas analíticas utilizadas neste trabalho.

5.3.1 Polinômios em coordenadas físicas

Na versão original do modelo MBE, as funções analíticas utilizadas para descrever os termos de dois corpos são obtidas como o produto de um polinômio na distância internuclear interessada e de uma função de amortização que tende a zero quando a distância internuclear torna-se grande. Os termos diatômicos vêm em geral formuladas utilizando as funções do tipo Rydberg generalizada [113]:

$$V_i^{(2)} = -D_e \left(1 + \sum_{j=1}^n c_j \left(r - r_e \right)^j \right) \exp\left(-c_1 \left(r - r_e \right) \right),$$
(5.4)

onde D_e é a energia de dissociação do diátomo, r é a distância interatômica e r_e a distância internuclear de equilíbrio. Os parâmetros c_j , com $c_1 > 0$, D_e e r_e são determinados reproduzindo os dados *ab initio* ou espectroscópicos do fragmento diatômico.

A função que descreve os termos de três corpos é expressa como o produto de um polinômio nas variáveis ρ_i (deslocamento da distância internuclear em torno da geometria de referência) e de três funções de amortização. Estas são dadas como funções da tangente hiperbólica de ρ_i . A forma funcional do termo de três corpos é dada pela seguinte expressão [114]

$$V^{(3)} = V^{\circ} \left(1 + \sum_{i} c_{i}\rho_{i} + \sum_{i} \sum_{j \ge i} c_{ij}\rho_{i}\rho_{j} + \sum_{i} \sum_{j \ge i} \sum_{k \ge j} c_{ijk}\rho_{i}\rho_{j}\rho_{k} \right) \times$$
(5.5)
$$\times \prod_{i=1}^{3} \left(1 - \tanh\left(\frac{\gamma_{i}\rho_{i}}{2}\right) \right) \qquad \rho_{i} = r_{i} - r_{i}^{*}$$

onde os índices $i, j \in k$ se referem aos pares dos átomos. V° é um termo constante, γ_i determina a velocidade com que a função de amortização tende a zero, r_i é a distância internuclear do diátomo $i \in r_i^*$ é seu valor na geometria de referência. Não existe uma regra fixa para determinar tal geometria de referência, e é fortemente dependente do sistema em questão. Os coeficientes $c_i, c_{ij} \in c_{ijk}$ do polinômio são calculados otimizando a reprodução dos valores do termo de três corpos obtidos a partir dos dados *ab initio*. Do ponto de vista numérico é mais conveniente escrever a equação acima como [114]:

$$V^{(3)} = V^{\circ} \sum_{\substack{i,j,k=0\\i+j+k\leq n}} c_{ijk} \rho^{i}_{AB} \rho^{j}_{BC} \rho^{k}_{AC} \times \prod_{i=1}^{3} \left(1 - \tanh\left(\frac{\gamma_{i}\rho_{i}}{2}\right) \right).$$
(5.6)

Um inconveniente que surge do uso desta forma analítica é o aparecimento de estruturas espúrias por utilizar polinômios nas variáveis das distâncias internucleares.

5.3.2 Polinômios no espaço Bond Order

Uma maneira alternativa, introduzida por Laganà e Garcia, para contornar o problema citado acima foi utilizar coordenadas *Bond Order* (BO) ao invés de coordenadas físicas [115, 116]. O conceito de BO foi introduzido por L. Pauling como um parâmetro de classificação da força de ligação [117]. A ordem de ligação entre dois átomos A e B é definido por

$$n_{AB} = \exp\left[-\beta_{AB}\left(r_{AB} - r_{eAB}\right)\right] \tag{5.7}$$

onde r_{AB} é a distância internuclear entre os átomos $A \in B$, r_{eAB} representa a distância de equilíbrio e β_{AB} é um parâmetro ligado a constante de força da ligação A - B que para o potencial na forma de Morse, $V(r) = De(1 - exp(-\beta(r - r_e)))^2$, é dado por

$$\beta_{AB}=\omega\sqrt{\frac{2\pi^2c\mu}{D_eh}}$$

onde ω representa o modo de vibração da molécula , D_e a energia de dissociação, c a velocidade da luz e h a constante de Plank.

Quando a distância internuclear é igual a distância de equilíbrio, a ordem de ligação é igual a 1. Com o crescimento da distância entre os átomos, há uma diminuição da ordem de ligação até que se atinja o valor zero na situação onde a separação entre $A \in B$ é infinita. Com a diminuição das distâncias, a ordem de ligação aumenta até atingir o valor exp ($\beta_{AB}r_{eAB}$). Desta forma, no espaço BO a interação átomo-diátomo é confinada no intervalo entre 0 e exp ($\beta_{AB}r_{eAB}$).

Os termos $V_i^{(2)}$ têm a forma de polinômios de grau N na variável BO, n_i , expressos por

$$V_i^2(r_i) = -D_{ei} \sum_{j=1}^N a_{ij} n_i^j = \sum_{j=1}^N c_{ij} n_i^j$$
(5.8)

com i = AB, $BC \in AC$, D_{ei} a energia de dissociação do diátomo e a_{ij} são os coeficientes do polinômio (nota-se que para $a_{i1} = 2 e a_{i2} = -1$ se obtem o potencial de Morse) [118]. Para um polinômio de até quarta ordem (N = 4) os coeficientes a_{ij} correspondentes a dois átomos podem ser determinados analiticamente resolvendo um sistema de equações que se obtém forçando estes parâmetros a reproduzir as constantes de força espectroscópicas [75]. Para polinômios com grau superior a quatro, os coeficientes a_{ij} são determinados por meio de métodos de otimização, entre os quais, cita-se Mínimos quadrados [119], Generalized Simulated Annealing (GSA) [120] e o método de Powell [121]. O termo de três corpos é definido como um polinômio de grau N nas variáveis BO do tipo

$$V^{(3)}(r_{AB}, r_{BC}, r_{AC}) = \sum_{\substack{i+j+k \neq i \neq j \neq k \\ i+j+k \leq N}}^{N} c_{ijk} n_{AB}^{i} n_{BC}^{j} n_{AC}^{k}.$$
 (5.9)

Os termos da somatória com i + j + k = i, i + j + k = j e i + j + k = k são excluídos, porque representam os termos referentes aos diátomos e que já foram considerados. Os coeficientes c_{ijk} são também determinados usando os mesmos métodos de otimização citados para o caso diatômico. Esta metodologia já foi utilizada para construir várias SEPs [116, 122, 123].

É fundamental destacar que a determinação da SEP de um sistema reativo não finaliza quando se obtém, com um dos métodos acima citados, a função analítica correspondente. É necessário, ainda, refinar as SEPs obtidas. Este refinamento é feito calculando as propriedades reativas do sistema e, em seguida, comparando-as com os resultados experimentais disponíveis. Esta comparação permite sugerir eventuais modificações nas partes mais críticas da SEP. O que se constitui numa das perspectivas de trabalho futuro para a construção da SEP dos sistemas em estudo nessa tese. Vale ressaltar que, os métodos citados aqui são alguns dos exemplos comumente encontrados na literatura, porém existe um número razoável de formas analíticas propostas.

Capítulo 6 Resultados parte II

6.1 Ajuste das SEPs

Uma das perspectivas futuras desta tese consiste em construir as SEPs das reações $BF_2 + NF = BF_3 + N e NF_3 + F = NF_2 + F_2$, contudo nesse processo, até o momento, foi realizado o ajuste dos diátomos envolvidos nas reações e foram calculados os pontos *ab initio* das respectivas SEPs. O cálculo dos pontos *ab initio* da SEP do sistema $BF_2 + NF = BF_3 + N$, que será utilizado para a determinação do termo de três corpos, segundo a metodologia MBE, foi realizado por meio de uma malha regular de pontos que vai de $0, 8 \leq R_{(BF_2)F} \leq 4, 8\text{\AA}, 0, 8 \leq R_{NF} \leq 4, 8\text{\AA}, e espaçamento de 0, 2 Å, ângulos <math>\theta$ entre $R_{(BF_2)F} e R_{NF}$ iguais a 0°, 30°, 60°, 90°, 120°, 150° e 180°, totalizando 2506 configurações nucleares diferentes. A distância interatômica $R_{(BF_2)N}$ foi calculada pela lei dos cossenos, a Figura (6.1) ilustra uma das configurações utilizadas neste processo.

Figura 6.1: Representação das configurações nucleares para o sistema BF_3N .

O cálculo das energias para o termo de três corpos foi feito com a inclusão de correlação eletrônica de segunda ordem MP2, usando o conjunto de funções de base 6 - 31G(d).

Para a obtenção das energias dos diátomos foram usados os seguintes níveis de cálculo e conjuntos de funções de base: QCISD/6 - 311G(d), CASSCF(6,6)MP2/cc - pVTZe QCISD(T)/aug - ccpVDZ para o $(BF_2)F$, NF e $(BF_2)N$, respectivamente. A malha utilizada no cálculo foi de $0.65 \leq R_{(BF_2)F} \leq 5.0$ Å, $0.6 \leq R_{NF} \leq 5.65$ Å e $0.7 \leq R_{(BF_2)N} \leq$ 9.0Å e espaçamento de 0.05Å, em geral. Todas as energias foram calculadas utilizando o programa Gaussian 98 [69]. Uma observação importante a se fazer é que o BF_2 está sendo considerado como um pseudoátomo, isto é, como uma única partícula.

As energias dos diátomos foram ajustadas utilizando o método de Powell [121], considerando as funções analíticas na forma de Rydberg generalizada, e BO, ambas com grau 5. Os coeficientes ajustados para o NF, $(BF_2)F$ e $(BF_2)N$ encontram-se listados na Tabela 6.1.

	BO			Rydberg				
	NF	$(BF_2)F$	$(BF_2)N$	NF	$(BF_2)F$	$(BF_2)N$		
c_1	-0,059771	$0,\!645317$	-0,32687	3,303017	4,299838	2,41461		
c_2	0,434759	-0,478045	1,68244	-1,66358	6,144351	-0,68513		
c_3	-0,294872	$0,\!181783$	-2,03118	0,35280	6,488904	0,49510		
c_4	0,050377	-0,069392	1,14728	-2,65032	4,376536	-1,22300		
c_5	-0,016580	0,006317	-0,31201	1,35032	1,727502	$1,9305 \times 10^{-6}$		
D_e (Hartree)	0,11408	0,28598	0,15966	0,11632	0,27807	0,16277		
E_r (Hartree)	-154,10355	-323,88733	-278,52523	-154,10224	-323,89491	-278,52291		
β (Å ⁻¹)	1,45414	1,75754	0,97516	—	—	—		
R_{eq} (Å)	1,31730	$1,\!30707$	1,42469	1,28060	1,31074	1,44154		
Erro (Hartree)	0,0025	0,0017	0,0005	0,0023	0,0007	0,0004		
$De \ (kcal/mol)$	71,587	$179,\!455$	100,188	72,99010	174,492	102,139		
Erro (kcal/mol)	1,569	1,067	0,314	1,443	0,454	0,251		
Referências	NF		$(BF_2)F$		$(BF_2)N$			
$D_e \; (\mathrm{kcal}/ \mathrm{mol})$	$62,6 - 82,0^{[67]}$		$149,3 - 170,5^{[73]},$		$90,72^{[27]}$			
R_{eq} (Å)	$1,3173^{[67]}$		$1,307^{[73]},$		$1,425^{[27]}$			

Tabela 6.1: Coeficientes dos diátomos ajustados em Bond Order e Rydberg, energias de referência e dissociação e distância de equilíbrio entre os diátomos.
$c_1, c_2, c_3, c_4 \in c_5$ são os coeficientes ajustados em Å⁻ⁿ (com n =1, 2, 3, 4 e 5) para o ajuste em Rydberg e em Hartree para o ajuste em BO. D_e é a energia de dissociação, E_r é a energia de referência e R_{eq} é a distância de equilíbrio entre os átomos. A Figura (6.2) compara as curvas de potencial dos diátomos $NF, (BF_2)F$ e $(BF_2)N$ ajustados, via BO e Rydberg com os pontos *ab initio*.

Figura 6.2: Energias ajustadas para os diátomos NF, $(BF_2)F \in (BF_2)N$, via funções Bond-Order e Rydberg.

Com relação aos ajustes dos diátomos acima citados pode se notar, da Tabela 6.1, que os desvios quadráticos médios obtidos nos ajustes dos diátomos $(BF_2)N \in (BF_2)F$, tanto para a forma funcional de Rydberg quanto para a Bond Order, estão dentro do erro químico aceitável de 1 kcal/mol. Para o diátomo NF o desvio quadrático médio ficou um pouco acima do erro químico aceitável, mas o ajuste é considerado bom, pois os pontos *ab initio* que mais contribuíram para esse erro foram os pontos fora do poço de potencial.

A etapa seguinte consistirá em inserir todos esses dados nas expressões dos termos de dois

corpos, equação(5.3), juntametne com as energias *ab initio* já calculadas (V_{ABC}^{MBE}) . Desta forma, teremos as energias eletrônicas do termo de três corpos que poderiam ser ajustadas, utilizando a equação(5.9). Assim, obtido o ajuste do termo de três corpos teremos a SEP do sistema ajustada. A partir daí será possível extrair as propriedades tanto cinéticas quanto dinâmicas, estado a estado, da reação $BF_2 + NF = BF_3 + N$ via SEP.

No caso da SEP do sistema $NF_3 + F = NF_2 + F_2$ o mesmo procedimento descrito acima foi adotado. Os diátomos $(NF_2)F$, (NF)F e F_2 foram ajustados e as energias *ab initio* da SEP foram determinadas. Para a construção do termo de três corpos também será utilizado o modelo MBE. A malha de pontos construída para esse sistema vai de $0,7 \le R_{(NF_2)F} \le 4,3$ Å, $0,7 \le R_{F_2} \le 4,3$ Å, e espaçamento de 0,2Å, ângulos θ entre $R_{(NF_2)F}$ e R_{F_2} iguais a 0°, 30°, 45°, 60° , 90°, 120°, 150° e 180°, totalizando 2210 configurações nucleares distintas. A distância interatômica $R_{(NF_2)F}$ foi calculada pela lei dos cossenos, como apresentado na Figura (6.3).

Figura 6.3: Representação das configurações nucleares para o sistema NF_3F .

As energias diatômicas foram determinadas nos seguintes níveis de cálculo e conjuntos de funções de base: QCISD/Gen (N em aug-cc-pVDZ e N em Lanl2dz), QCISD(T)/6-31G(d), CASSCF(2,4)MP2/6-31+G(2df) para o $(NF_2)F$, (NF)F e F_2 , respectivamente. A malha utilizada no cálculo foi de $0,6 \le R_{(NF_2)F} \le 7,1$ Å, $0,6 \le R_{(NF)F} \le 5,65$ Å e $0,9 \le R_{(F_2)} \le 6,9$ Å e espaçamento de 0,05 Å para o diátomos $(NF_2)F$ e F_2 e de 1 Å para o (NF)F. Todas as energias também foram calculadas utilizando o programa Gaussian
98. Analogamente ao BF_2 , o NF_2 também foi tratado como um p
seudoátomo neste sistema.

Tabela 6.2: Coeficientes dos diátomos ajustados em Bond Order e Rydberg, energias de referência e dissociação e distância de equilíbrio entre os diátomos do sistema NF_3F .

		BO		Rydberg			
	$(NF_2)F$	(NF)F	F_2	$(NF_2)F$	(NF)F	F_2	
c_1	0,215614	-0,024774	-0,020960	3,303630	6,924901	5,941109	
<i>c</i> ₂	-0,076925	0,327460	0,246930	1,560751	17,522456	9,313684	
c_3	-0,013576	-1,461385	-0,211579	1,403179	20,372464	$6,\!482456$	
c_4	-0,010907	2,482179	0,046404	-0,605803	2,164402	1,234270	
c_5	-0,000261	-1,226463	-0,007407	0,9524189	-11,336906	-0,214277	
D_e (Hartree)	$0,\!113954$	0,097016	0,053388	$0,\!115534$	0,096044	0,054513	
E_r (Hartree)	$-353,\!013237$	-253,577662	-199,110652	-353,013021	-253,577372	-199,110472	
β (Å ⁻¹)	1,733086	0,673540	1,6402332	-	-	-	
R_{eq} (Å)	1,371	1,371385	1,411900	1,4179498	1,381212	1,433173	
Erro (Hartree)	0,000645	0,001469	0,001788	0,000562	0,000555	0,001666	
De (kcal/mol)	71,50727	60,878510	33,501504	72,498740	60,268514	34,207452	
Erro $(kcal/mol)$	0,404743	0,9211812	1,121987	0,352660	0,348268	1,0454166	
Referências	$(NF_2)F$		(NF)F		I	72	
$D_e \; (\rm kcal/mol)$	$56,9-74,0^{[74, 124]}$		$62,2-65,7^{[74, 124]},$		37,83 ^[74]		
R_{eq} (Å)	1,371-1,38	$349^{[73, 77]}$	$1,37^{[73, \ 76]}$		$1,412^{[74]}$		

O método de Powell foi novamente utilizado para ajustar as energias dos diátomos acima citadas, tendo sido utilizadas as funções analíticas Rydberg generalizada e BO de grau 5 para os três diátomos estudados. Os coeficientes ajustados para o $(NF_2)F$, (NF)F e F_2 encontram-se listados na Tabela 6.2.

Como no caso anterior, os coeficientes c_1 , c_2 , c_3 , c_4 e c_5 são os coeficientes ajustados em Å⁻ⁿ (com n = 1 a 5) para o ajuste em Rydberg e em Hartree para o ajuste em BO. De é a energia de dissociação, E_r é a energia de referência e R_{eq} é a distância de equilíbrio entre os átomos. A Figura (6.4) compara as curvas de potencial dos diátomos $(NF_2)F, (NF)F$ e F_2 ajustados, via BO e Rydberg com os pontos *ab initio*.

Dos diátomos listados na Tabela 6.2, podemos notar que os desvios quadráticos médios obtidos nos ajustes dos diátomos $(NF_2)F$ e (NF)F estão apresentando um erro químico

Figura 6.4: Energias ajustadas para os diátomos $(NF_2)F \in (NF)F \in F_2$, via funções Bond-Order e Rydberg.

aceitável para ambas as formas analíticas utilizadas, enquanto que o diátomo F_2 está apresentando um erro químico um pouco acima do recomendado quimicamente, 1,12207 kcal/mol para o ajuste BO e 1,045372 kcal/mol para o ajuste em Rydberg.

A partir desses resultados obtidos e das energias *ab initio* já calculadas, o método MBE será empregado para montagem do termo de três corpos para que o ajuste da SEP deste sistema possa ser realizado. Uma vez tendo a SEP ajustada, a obtenção das propriedades cinéticas e dinâmicas do sistema torna-se possível.

6.2 Cálculo das Energias Rovibracionais dos Diátomos e Pseudodiátomos

Com o objetivo de verificar a qualidadade dos ajustes realizados para os diátomos e pseudodiátomos é interessante e necessário calcular as constantes espectroscópicas rovibracionais $\omega_e, \omega_e x_e, B_e \in \alpha_e$ dos sistemas ajustados. Os valores das energias rovibracionais, em cm⁻¹, para uma molécula diatômica incluindo as correções de anarmonicidade [112] são dados por

$$E(v,J) = \omega_e(v+\frac{1}{2}) - \omega_e x_e(v+\frac{1}{2})^2 + \omega_e y_e(v+\frac{1}{2})^3 + \dots$$

$$+ \left[B_e - \alpha_e(v+\frac{1}{2}) + \dots \right] J(J+1) + \dots$$
(6.1)

sendo B_e dado por $B_e = \frac{h}{8\pi^2 m r_e^2 c}$, v o número quântico vibracional e J o número quântico rotacional.

Para a determinação dessas constantes rovibracionais duas metodologias foram utilizadas. A primeira metodologia adotada é obtida comparando a expansão, em série de Taylor, do potencial V(R) [112]

$$V(R) = V(R_e) + \frac{1}{2!} \left(\frac{d^2 V}{dR^2}\right)_{R_e} (R - R_{eq})^2 + \frac{1}{3!} \left(\frac{d^3 V}{dR^3}\right)_{R_e} (R - R_{eq})^3 + \frac{1}{4!} \left(\frac{d^4 V}{dR^4}\right)_{R_e} (R - R_{eq})^4 + \dots$$
(6.2)

com a equação (6.1). Desta forma, as derivadas de segunda $\left(\frac{d^2V}{dR^2}\right)$, terceira $\left(\frac{d^3V}{dR^3}\right)$ e quarta $\left(\frac{d^4V}{dR^4}\right)$ ordens se relacionam com as constantes espectroscópicas rovibracionais da seguinte forma

$$\left(\frac{d^2V}{dR^2}\right)_{R_e} = 4\pi^2 m\omega_e^2 c^2 \tag{6.3}$$

$$\left(\frac{d^3V}{dR^3}\right)_{R_e} = -\frac{3}{R_e} \left(\frac{d^2V}{dR^2}\right)_{R_e} \left(1 + \frac{\alpha_e \omega_e^2}{6B_e^2}\right) \tag{6.4}$$

$$\left(\frac{d^4V}{dR^4}\right)_{R_e} = \frac{1}{R_e^2} \left(\frac{d^2V}{dR^2}\right)_{R_e} \left[15\left(1 + \frac{\alpha_e\omega_e^2}{6B_e^2}\right)^2 - \frac{8\omega_e x_e}{B_e}\right]$$
(6.5)

Para cada potencial utilizado no ajuste dos diátomos e pseudodiátomos, Rydberg generalizada e BO, foram calculadas as constantes espectrocópicas rovibracionais de acordo com as equações (6.3) até (6.5) e os resultados, comparados com as referências, são apresentados nas Tabelas 6.3 e 6.4.

Ctes	BO			Rydberg			
	NF	$(BF_2)F$	$(BF_2)N$	NF	$(BF_2)F$	$(BF_2)N$	
ω_e	1063,74	986,78	946,97	1232,83	965,297	914,51	
$\omega_e x_e$	17,466	3,642	4,048	12,441	4,733	$5,\!139$	
B_e	1,205	0,707	0,801	1,275	0,717	0,782	
α_e	$2,22 \times 10^{-2}$	$4,71 \times 10^{-3}$	$6,31 \times 10^{-3}$	$1,75 \times 10^{-2}$	$5,67 \times 10^{-3}$	$6,98 \times 10^{-3}$	
			Referência				
	N	F	(BF	$\Gamma_2)F$	$(BF_2)N$		
$\omega_e(\exp)$	1141	$,4^{[74]}$	888	[73]	918	[27]	
$\omega_e x_e(\exp)$	$9,0^{[74]}$						
B_e	$0,923^{[73]}$						
α_e	1,20×1	$1,20 \times 10^{-2[73]}$					

Tabela 6.3: Constantes espectroscópicas rovibracionais, via método de Dunham, obtidas para o sistema BF_3N em Bond Order e Rydberg.

Analisando a Tabela 6.3, notamos que o ajuste obtido para o diátomo $(BF_2)N$, via forma analítica Ryd, é a que fornece a melhor constante espectroscópica ω_e pelo método de Dunham, quando comparada com a referência. A diferença entre o ajuste BO e o experimental é de aproximadamente 3,4858 cm⁻¹ (0,001 kcal/ mol). Para o $(BF_2)F$ a menor diferença entre a constante ω_e calculada e a experimental é de 77,297 cm⁻¹(0,221 kcal/ mol) para o ajuste realizado via função analítica Rydberg. O diátomo NF possui uma maior quantidade de dados listados na literatura para comparação. Desta forma, pode-se verificar da Tabela 6.3 que a menor diferença entre o valor calculado para a constante ω_e do NF e a referência foi a obtida do ajuste via forma analítica BO, dando uma diferença entre o valor de ω_e teórico e experimental de 77,661 cm⁻¹ (0,222 kcal/ mol), já para a constante $\omega_e x_e$ a diferença entre valor ajustado e a referência é de 3,4414 cm⁻¹ (9,8393×10⁻³ kcal/ mol), Para a constante B_e foi de 0,2818 cm⁻¹ (8,057×10⁻⁴ kcal/ mol). Para a constante α_e , a diferença encontrada entre o valor experimental e o teórico foi de 5,5×10⁻³cm⁻¹(1,572×10⁻⁵ kcal/ mol).

Para os diátomos do sistema $(NF_2)F$ é possível notar na Tabela 6.4, que o ajuste obtido para o diátomo F_2 , via forma analítica BO, é a que fornece a melhor constante espectroscópica ω_e , quando comparada com a referência [75]. Com relação a constante $\omega_e x_e$ o

Ctes	BO				Rydberg		
	$(NF_2)F$	(NF)F	F_2	$(NF_2)F$	(NF)F	F_2	
ω_e	794,37	885,15	892,60	691,93	872,30	841,34	
$\omega_e x_e$	5,037	9,476	10,869	4,806	3,926	12,076	
B_e	0,644	0,743	0,890	0,602	0,733	0,864	
α_e	$6,27 \times 10^{-3}$	$9,08 \times 10^{-3}$	$1,32 \times 10^{-2}$	$6,32 \times 10^{-3}$	$3,99 \times 10^{-3}$	$1,39 \times 10^{-2}$	
			Referência				
	$(NF_2)F$			F)F	F	$\overline{7}_2$	
$\omega_e(\exp)$	898[77][79]		573	[73]	$892^{[75]}$		
$\omega_e x_e(\exp)$					11,2	$4^{[74]}$	
B_e					0,890	$2^{[74]}$	
α_e					0,013	$85^{[74]}$	

Tabela 6.4: Constantes vibracionais para o sistema NF_3F em Bond Order e Rydberg.

melhor valor obtido foi para o ajuste BO, dando uma diferença entre valor ajustado e a referência é de 0,3706 cm⁻¹ (1,06×10⁻³ kcal/ mol). A constante B_e concordou integralmente com o resultado da referência para o ajuste em BO. Para a constante α_e o melhor resultado obtido foi para o ajuste via função analítica BO, dando uma diferença de 6,36 × 10⁻³ cm⁻⁴ (1,82×10⁻⁶ kcal/ mol) entre o valor teórico e o experimental. É importante ressaltar que os demais diátomos não apresentam as constantes $\omega_e x_e$, B_e e α_e descritas na literatura para realizar qualquer comparação. Sendo assim, para o (NF_2)F a menor diferença entre a constante ω_e calculada e a experimental é de 38,929 cm⁻¹(0,111 kcal/ mol) para o ajuste realizado via função analítica Rydberg. No caso do diátomo (NF)F a menor diferença encontrada para a constante ω_e foi de 45,8534 cm⁻¹(0,131 kcal/ mol) para o ajuste feito via forma analítica BO.

A segunda metodologia adotada no cálculo das constantes espectroscópicas dos diátomos estudados nesta tese, foi obtida a partir de uma combinação da expansão espectroscópica (6.1) com as energias rovibracionais obtidas da solução, via método DVR (do inglês *Discrete Variable Representation*) [108, 107, 109], da equação de Shrödinger nuclear. Desta forma, as constantes espectroscópicas rovibracionais são obtidas por meio das seguintes expressões:

$$\begin{cases} \omega_e = \frac{1}{24} \left[141(E_{1,0} - E_{0,0}) - 93(E_{2,0} - E_{0,0}) + 23(E_{3,0} - E_{1,0}) \right] \\ \omega_e x_e = \frac{1}{4} \left[13(E_{1,0} - E_{0,0}) - 11(E_{2,0} - E_{0,0}) + 3(E_{3,0} - E_{1,0}) \right] \\ \omega_e y_e = \frac{1}{6} \left[3(E_{1,0} - E_{0,0}) - 3(E_{2,0} - E_{0,0}) + (E_{3,0} - E_{1,0}) \right] \\ \alpha_e = \frac{1}{8} \left[-12(E_{1,1} - E_{0,1}) + 4(E_{2,1} - E_{0,1}) + 4\omega_e - 23\omega_e y_e \right] \\ y_e = \frac{1}{4} \left[-2(E_{1,1} - E_{0,1}) + (E_{2,1} - E_{0,1}) + 2\omega_e x_e - 9\omega_e y_e \right] \end{cases}$$
(6.6)

onde $E_{1,0}$ representa a energia para os níveis rovibracionais $\nu = 1$ e j = 0, $E_{0,0}$ para $\nu = 0$ e j = 0 e, assim por diante.

Pode-se observar que, a partir da Tabela (6.5), o diátomo que apresentou a melhor concordância com os dados experimentais para a constante espectroscópica ω_e foi o $(BF_2)N$, com uma diferença de 26,71cm⁻¹ (0,0776 kcal/mol) para o ajuste com a função analítica Rydberg. Para o $(BF_2)F$, o melhor resultado obtido foi para o ajuste BO, dando uma diferença entre o valor ajustado e a referência de 290,77 cm⁻¹(0,8313 kcal/mol). Para o diátomo NF foram encontradas outras constantes espectroscópicas na literatura, sendo assim para a constante ω_e o melhor valor encontrado foi para o ajuste com a função analítica Rydberg, dando uma diferença de 91,53 cm⁻¹ (0.2617 kcal/mol), para a constante $\omega_e x_e$ esta foi de 3,43cm⁻¹(2,81 × 10⁻³ kcal/mol). Já para a constante α_e a diferença encontrada foi de 0,0505cm⁻¹.

Tabela 6.5: Constantes espectroscópicas rovibracionais, obtidas via equação (6.6), para o sistema BF_3N .

Ctes	BO			Rydberg			
	NF	$(BF_2)F$	$(BF_2)N$	NF	$(BF_2)F$	$(BF_2)N$	
ω_e	1266, 24	1178,77	870,39	1232,93	1192,33	891,29	
$\omega_e x_e$	13,921	$5,\!673$	3,980	12,431	7,218	4,879	
α_e	$-6,46 \times 10^{-2}$	$-3,29 \times 10^{-2}$	$-2,14 \times 10^{-2}$	$6,24 \times 10^{-2}$	$3,\!81{ imes}10^{-2}$	$2,30 \times 10^{-2}$	
			Referência				
	N	F	(BF	$_2)F$	$(BF_2)N$		
$\omega_e(\exp)$	$1141,4^{[74]}$		888	[73]	918	[27]	
$\omega_e x_e(\exp)$	$9,0^{[74]}$						
α_e	1,20×1	$0^{-2[73]}$					

Para o sistema NF_3F , o método usando as equações dadas pela equação (6.6) forneceu a melhor constante ω_e para o diátomo (NF)F, via BO, dando uma diferença de 24,013 cm⁻¹(0,0686 kcal/mol), quando comparado com os dados experimentais, como pode ser verificado na Tabela (6.6) Para o diátomo F_2 a constante ω_e que mais se aproximou dos resultados experimentais foi o ajuste Rydberg, com uma diferença de 50,6 cm⁻¹, quando comparado com o resultado experimental [75, 74]. Para a constante $\omega_e x_e$ e α_e estas diferenças foram de 0,8213 cm⁻¹(2,35 × 10⁻³ kcal/mol) e 0,035886 cm⁻¹(1,026 kcal/mol), respectivamente. O diátomo $(NF_2)F$ que apresentou a menor diferença para ω_e 38,8826 cm⁻¹(0,1112 kcal/mol) foi o ajuste realizado com a função Rydberg.

Tabela 6.6: Constantes espectroscópicas rovibracionais, obtidas via equação (6.6), para o sistema NF_3F .

Ctes	BO				Rydberg		
	$(NF_2)F$	(NF)F	F_2	$(NF_2)F$	(NF)F	F_2	
ω_e	696, 15	$955,\!01$	$817,\!93$	$691,\!88$	$746,\!85$	841,39	
$\omega_e x_e$	$5,\!588$	8,495	12,131	4,803	9,506	12,061	
α_e	$-2,49 \times 10^{-2}$	$-2,94 \times 10^{-2}$	$-5,23 \times 10^{-2}$	$2,26 \times 10^{-2}$	$3,\!48{ imes}10^{-2}$	$4,97 \times 10^{-2}$	
			Referência				
	$(NF_2)F$			$FF = F_2$			
$\omega_e(\exp)$	653	[73]	931	[73]	892[75, 74]		
$\omega_e x_e(\exp)$					11,24	4[74]	
$lpha_e$					0,013	$85^{[74]}$	

Resumindo, as constantes espectroscópicas, via metodologia de Dunham e expansão espectroscópica, mostram que os melhores ajustes foram para o caso das constantes determinadas pelo método de Dunham: NF e $F_2(BO)$, $(BF_2)F$ e $(BF_2)N$ (Ryd) e, enquanto que com a análise das contantes determinadas a partir das energias rovibracionais foram: $(NF_2)F$ (Ryd), (NF)F (BO).

A seguir são dados nas Tabelas (6.7) e (6.8), respectivamente, os espectros das energias vibracionais relativos aos sistemas $BF_3N \in NF_3F$. Estes foram obtidos a partir das diferenças entre as energias vibracionais dos estados com n variando de 1 a 10 e o estado fundamental n = 0.

Níveis	BO			Rydberg		
vibracionais	NF	$(BF_2)F$	$(BF_2)N$	NF	$(BF_2)F$	$(BF_2)N$
$E_{1\rightarrow 0}$	$1238,\!3538$	1167,4422	862,4337	1208,0422	1178,0131	$881,\!5731$
$E_{2\rightarrow 0}$	2448,7495	$2323,\!5939$	1716,9221	2391,1680	2341,9289	$1753,\!5049$
$E_{3\rightarrow 0}$	3631,1136	$3468,\!4885$	2563,4757	3549,3413	3491,9737	$2615,\!8746$
$E_{4\rightarrow 0}$	4785,3657	4602,1569	3402,1021	4682,5090	4628,3690	3468,7584
$E_{5\rightarrow 0}$	$5911,\!4184$	$5724,\!6283$	4232,8067	5790,6012	$5751,\!3314$	4312,2301
$E_{6\rightarrow 0}$	7009,1764	6835,9293	5055,5924	6873,5294	6861,0720	$5146,\!3605$
$E_{7\rightarrow 0}$	$8078,\!5360$	7936,0850	5870,4594	7931,1857	7957,7962	$5971,\!2175$
$E_{8\rightarrow 0}$	9119,3846	9025,1185	6677,4060	8963,4416	9041,7031	$6786,\!8663$
$E_{9\rightarrow 0}$	10131,5993	10103,0513	7476,4279	9970,1461	10112,9856	7593,3690

Tabela 6.7: Espectros vibracionais, em cm⁻¹, para os diátomos e pseudodiátomos do sistema BF_3N , usando tanto os ajustes BO como de Rydberg.

Tabela 6.8: Espectros vibracionais, em cm⁻¹, para os diátomos e pseudodiátomos do sistema NF_3F , usando tanto os ajustes BO como de Rydberg.

Níveis	BO			Rydberg		
vibracionais	$(NF_2)F$	(NF)F	F_2	$(NF_2)F$	(NF)F	F_2
$E_{1\rightarrow 0}$	685,0109	$935{,}6481$	793,5832	$682,\!2739$	727,6971	817,063839
$E_{2\rightarrow 0}$	$1358,\!9588$	$1854,\!1574$	$1562,\!5656$	1354,9417	$1435,\!9829$	$1609,\!427321$
$E_{3\rightarrow 0}$	2021,9196	$2755,\!4038$	2306,7232	2018,00378	2124,5913	2376,705264
$E_{4\rightarrow 0}$	2673,9680	$3639,\!2572$	3025,8189	$2671,\!4584$	2793,2431	3118,491099
$E_{5\rightarrow 0}$	$3315,\!1779$	$4505,\!5812$	3719,6014	3315,3016	$3441,\!6453$	3834,354486
$E_{6 \rightarrow 0}$	$3945,\!6224$	$5354,\!2329$	4387,8028	3949,5271	4069,4889	4523,83853
$E_{7\rightarrow 0}$	4565,3734	$6185,\!0618$	$5030,\!1372$	4574,1268	4676,4481	$5186,\!456533$
$E_{8 \rightarrow 0}$	$5174,\!5020$	6997,9097	$5646,\!2977$	5189,0906	$5262,\!1776$	5821,688162
$E_{9\rightarrow 0}$	5773,0786	7792,6094	6235,9536	5794,4065	5826,3112	6428,974885

Capítulo 7 Conclusões e Perspectivas

Nesta tese, inicialmente, foi feita uma descrição geral dos conceitos básicos para o entendimento das características relativas ao BN e ao mecanismo de decomposição do NF_3 em três arranjos básicos: unimolecular, abstração e troca. Posteriormente, foi descrita a metodologia TST e os métodos mais aceitos para ajustes CEPs e SEPs de sistemas colisionais reativos, bem como cálculos de constantes espectroscópicas de sistemas moleculares diatômicos.

Em seguida, foram determinadas as propriedades cinéticas para as 14 reações do mecanismo proposto, o mesmo sendo feito para a reação do sistema BF_3N . Todas as espécies envolvidas nestas reações foram otimizadas, atráves de cálculos de estrutura eletrônica, em diferentes níveis de cálculo e bases, utilizando o código computacional Gaussian98. As geometrias foram otimizadas em MP2/cc-pVDZ e MP2/6-31G(d), para o caso das reações estudadas, exceto para a reação $BF_2 + NF$, cujas otimizações foram realizadas em MP2/6-311G(d). Foram realizadas cálculos de energias, freqüências, distâncias interatômicas para todos os reagentes, produtos, estrutura de transição (TS) e reagente complexo (RC), quando indicado, e os parâmetros encontrados foram todos comparados com dados teóricos e experimentais disponíveis na literatura, ficando os mesmos dentro da margem de erro quimicamente aceitável.

Foram determinados o calor de formação para as espécies formadoras dos reagentes e produtos das reações do sistemas NF_xF e NF_xN , sendo realizados cálculos em G3, no

144

Gaussian98 e os dados foram comparados com as referências teóricas e experimentais encontradas. Esses dados de calor de formação foram importantes, pois os mesmos serviram como referências na escolha do "melhor" nível de cálculo e base para os cálculos finais das taxas de reação de todos os sistemas deste trabalho. Desta forma, para as reações dos sistemas NF_xF e NF_xN foi escolhido o nível MP4/cc-pVTZ para o cálculo de suas taxas de reação, embora tenham sido calculadas energias em diferentes níveis de cálculo para diversas bases das famílias cc-pVDZ e 6-31G(d). Através das análises realizadas, verificou-se que os cálculos feitos com as bases da família cc-pVDZ foram os que apresentaram menores diferenças nas entalpias de reação, em relação ao calor de formação experimental, com e sem a aplicação da ε_{ZPE} . Através do estudo global das diferenças de entalpias e o calor de reação experimentais, foi escolhido o nível de cálculo e base que apresentou a menor diferença foi para MP4/ccpVTZ, com a seguinte diferença global de 1,8435 kcal/mol. Embora tenhamos encontrado diferenças menores em níveis e bases diferentes, nem todas as energias relativas a estas bases foram possíveis de serem determinadas, o que impossibilitou a escolha das mesmas. Para a família de bases 6-31G(d) a menor diferença global foi para MP4/6-311++G(3df,3pd) com 2,5841 kcal/mol. Nesta análise as reações de troca não entraram na avaliação, por possuírem entalpia nula e os resultados obtidos não contribuem significativamente para o erro global final, na realidade diminuíram o valor do mesmo, mascarando assim o resultado real.

Para as reações do sistemas $NF_xF \in NF_xN$ foram feitos cálculos de IRC, a fim de se fazer uma avaliação qualitativa das quebras e formações das ligações para todas as reações. Desta forma, o sistema NF apresentou-se como um arranjo unimolecular, enquanto que para os sistemas $NFF \in NF_2F$ foram encontrados três arranjos de reações: unimolecular, abstração e troca. Verificamos que no caso do sistema NF_3F este é formado pelos arranjos de reação abstração e troca. Já os sistemas $NFN \in NF_3N$ são compostos pelos arranjos unimolecular e abstração. Enquanto que para o sistema NF_2N encontramos apenas o de abstração.

No estudo da reação $BF_2 + NF$ encontramos uma particularidade interessante, ela não

ocorre numa etapa somente, mas envolve um mecanismo complexo, composto de duas etapas elementares, originando assim, um reagente complexo (RC) mais estável que o reagente isolado. Este mecanismo complexo explica o aparecimento de uma barreira aparente negativa de 29,35 kcal/mol, calculada em MP2/6-311++g(2df,2pd), sendo que comportamento similar foi encontrado na literatura. Cálculos de energias foram realizados em MP2 para diferentes bases e, a partir destas, foram determinadas a barreira aparente, barreira efetiva e entalpia da reação. Como não há dados experimentais para esta reação, calculamos a entalpia da reação considerando o calor de formação dos reagentes e produtos e este valor foi comparado com a entalpia da reação, levando-nos à conclusão de que as energias obtidas em MP2/6-311++G(2df,2pd) foram as que apresentaram uma menor diferença e, portanto foram estas as utilizadas para o cálculo da taxa de reação.

As taxas de reação foram calculadas, utilizando a TST convencional e aplicando as correções de tunelamente de Wigner e Eckart, utilizando um código próprio desenvolvido pelo nosso grupo para este propósito. Os coeficientes de Arrhenius para todas reações estudadas estão listados na Tabela 4.22. Os valores dos ângulos de *skew* encontrados foram valores intermediários para a maioria dos casos, como pode ser verificado na Tabela 4.23. Isto mostra que os efeitos de tunelamento não são críticos para as reações estudadas, pois as reações envolvem somente átomos pesados e, sobretudo, devido à faixa de altas temperaturas de interesse (1000 - 3000 K), embora tenhamos calculado a taxa de reação numa faixa mais ampla de temperatura (200 - 4000 K).

Alguns resultados experimentais foram encontrados para as reações unimoleculares dos sistemas NFF, $(NF_2)F$ e $(NF_3)F$, mostrando que para faixas de temperaturas que variam de 1150 a 2000K as taxas calculadas para estas reações estão em concordância com os dados experimentais.

No caso da reação do sistema BF_3N o ângulo de *skew* encontrado foi de 56.43° e as taxa de reação também foram calculadas e estão relacionadas na seção 4.11. Numa segunda etapa, foram calculadas as energias *ab initio* para as sistemas BF_3N e NF_yF , considerando diferentes configurações nucleares e, assim, foi possível a construção do termo de três corpos para um futuro ajuste da SEP destes sistemas. Em seguida, foram determinadas as energias *ab initio* dos diátomos, $(BF_2)F$, NF, $(BF_2)N$, $(NF_2)F$, (NF)F e F_2 e os respectivos ajustes destes diátomos também foram obtidos, utilizando duas funções analíticas diferentes, Rydberg e BO. A partir destes ajustes calculamos a energia de dissociação e as constantes espectroscópicas, ω_e , $\omega_e x_e$, α_e e B_e , via metodologia de Dunham e equação 6.6, sendo estas também comparadas com dados de referências e as diferenças entre estes valores estão dentro da precisão química aceitável. Gostaríamos de enfatizar, que o $(BF_2)F$, $(BF_2)N, (NF_2)F$ e o (NF)F não são diátomos, mas pseudodiátomos (BF_2)F e $(BF_2)N$ são determinadas a partir dos ajustes. O mesmo procedimento foi realizado para os estiramentos NF dos pseudiátomos $(NF_2)F$ e (NF)F, respectivamente.

Constituem perspectivas futuras para este trabalho, a continuação dos cálculos para o ajuste do termo de três corpos das SEPs das reações $BF_2 + NF$ e $NF_3 + F$, com a finalidade de se fazer a determinação completa das SEPs destes sistemas e, a partir destas, determinar as propriedades cinéticas e dinâmicas das mesmas para comparação com as determinadas via TST. Finalizada esta parte, a idéia é fazer o refinamento destas, a partir do cálculo das propriedades reativas destes sistemas e, em seguida, fazer a comparação destas com resultados experimentais existentes, a fim de sugerir eventuais modificações nas partes mais críticas destas SEPs.

Finalmente, pretendemos realizar cálculos das frações molares [125], a partir das taxas das reações aqui determinadas, visando validar o mecanismo aqui proposto, por meio de cálculos de sensibidade [125].

Apêndice A Ângulo de Skew

Dado um sistema colisional reativo composto de três corpos do tipo:

Figura A.1: Representação de um processo colisional em seus canais α , β , γ .

Na figura A.1, denominamos "arranjo α " o correspondente aos reagentes; o produto superior é denominado "arranjo γ "e o inferior é o "arranjo β ".

A função de onda nuclear de um sistema de três corpos depende dos vetores posição $\vec{\omega_A}$, $\vec{\omega_B} \in \vec{\omega_C}$. A dependência de tal função de onda nuclear no centro de massa (vetor $\vec{R_G}$) é simples quando da ausência de forças externas. Neste caso, os vetores posição $\vec{\omega_A}$, $\vec{\omega_B} \in \vec{\omega_C}$ são trocados por dois vetores (coordenadas de Jacobi) mais um vetor do centro de massa $(\vec{R_G})$.

O tratamento analítico que será dado ao problema pressupõe algumas transformações, considerando o arranjo α acima

Figura A.2: Definição das grandezas vetoriais para o arranjo α .

Primeiramente, define-se vetor do centro de massa do diátomo BC como:

$$\vec{R}_{G'} = \frac{m_B \vec{\omega_B} + m_C \vec{\omega_C}}{m_B + m_C}; \quad \text{Definindo } m_{BC} = m_B + m_C, \text{ vem}$$
$$\vec{R}_{G'} = \frac{m_B \vec{\omega_B} + m_C \vec{\omega_C}}{m_{BC}} \quad (A.1)$$

Em seguida, escreve-se o vetor do centro de massa do sistema "átomo A-diátomo BC" como:

$$\vec{R_G} = \frac{m_{BC}\vec{R_{G'}} + m_A\vec{\omega_A}}{m_A + m_{BC}} = \frac{m_B\vec{\omega_C} + m_C\vec{\omega_A} + m_A\vec{\omega_A}}{m_A + m_B + m_C}$$
(A.2)

Após álgebra vetorial elementar sobre os entes da figura A.2 obtém-se:

$$\vec{R_{A,BC}} \equiv \vec{R_Q} = \vec{\omega_A} - \vec{R_{G'}} = \vec{\omega_A} - \frac{m_B \vec{\omega_B} + m_C \vec{\omega_C}}{m_B + m_C}$$
(A.3)

е

$$\vec{R_{\alpha}} = \omega_{BC}^2 = \omega_{B}^2 - \omega_{C}^2. \tag{A.4}$$

As coordenadas de Jacobi, para o arranjo α , são então dadas pelos vetores de Jacobi:

$$\vec{R_{\alpha}} = \vec{\omega_A} - \frac{m_B}{m_B + m_C} \vec{\omega_B} - \frac{m_C}{m_B + m_C} \vec{\omega_C}$$
(A.5)

e

é:

$$\vec{r_{\alpha}} = \vec{\omega_C} - \vec{\omega_B} \tag{A.6}$$

além do ângulo entre os vetores $\vec{R_{\alpha}} \in \vec{r_{\alpha}}$, explícito na figura A.3, para esse arranjo específico

Figura A.3: Arranjo α .

$$\Theta_{\alpha} = \arccos \frac{\vec{R_{\alpha}} \cdot \vec{r_{\alpha}}}{|\vec{R_{\alpha}}||\vec{r_{\alpha}}|} \tag{A.7}$$

Para o arranjo $\beta,$ representado pela figura A.4:
definem-se as seguintes coordenadas de Jacobi:

$$\vec{R_{\beta}} = \vec{\omega_B} - \frac{m_A}{m_A + m_C} \vec{\omega_A} - \frac{m_C}{m_C + m_A} \vec{\omega_C}$$
(A.8)

$$\vec{r_{\beta}} = \vec{\omega_A} - \vec{\omega_C} \tag{A.9}$$

 \mathbf{e}

$$\Theta_{\beta} = \arccos \frac{\vec{R_{\beta}} \cdot \vec{r_{\beta}}}{|\vec{R_{\beta}}||\vec{r_{\beta}}|}.$$
(A.10)

Pode-se mostrar que as coordenadas de Jacobi para o arranjo γ são obtidas pelo mesmo procedimento (a dedução é direta por considerações de simetria).

Figura A.4: Arranjo β .

Os operadores energia cinética do sistema podem ser escritos, eliminando o movimento do centro de massa do sistema, da seguinte forma:

$$\widehat{T_{\alpha}} \equiv -\frac{\hbar}{2\mu_{A,BC}} \nabla_{R_{\alpha}}^2 - \frac{1}{2\mu_{BC}} \nabla_{\vec{r_{\alpha}}}^2$$
(A.11)

na qual foram utilizadas as massas reduzidas:

$$\mu_{A,BC} = \frac{m_A m_{BC}}{m_A m_{BC}} \quad \text{e} \quad \mu_{BC} = \frac{m_B m_C}{m_B + m_C}$$

Para os demais arranjos também pode se escrever os operadores formalmente, por analogia, da forma:

$$\widehat{T_{\beta}} \equiv -\frac{\hbar}{2\mu_{B,CA}} \nabla_{R_{\beta}}^2 - \frac{1}{2\mu_{CA}} \nabla_{\vec{r_{\beta}}}^2 \tag{A.12}$$

para o arranjo β , e

$$\widehat{T_{\gamma}} \equiv -\frac{\hbar}{2\mu_{C,AB}} \nabla_{R_{\gamma}}^2 - \frac{1}{2\mu_{AB}} \nabla_{\vec{r_{\gamma}}}^2 \tag{A.13}$$

para o arranjo $\gamma.$

Uma vez que surgem seis massas reduzidas diferentes nas equações A.11, A.12 e A.13, o uso dessas expressões se torna inviável em cálculos analíticos. Por esse motivo, geralmente são usadas as coordenadas de Jacobi escalonadas pelas massas. Tais coordenadas são definidas por:

$$\vec{S_{\lambda}} = c_{\lambda} \vec{R_{\lambda}} \tag{A.14}$$

 \mathbf{e}

$$\vec{s_{\lambda}} = \frac{1}{c_{\lambda}} \vec{r_{\lambda}} \tag{A.15}$$

 $\label{eq:lambda} \mathrm{com}\; \lambda = \alpha, \; \beta \, \mathrm{e} \; \gamma.$

Nas expressões A.14 e A.15, c_{λ} é um parâmetro adimensional o qual é escolhido de tal forma que apenas uma das massas reduzidas μ apareça na expressão dos operadores energia cinética para os três arranjos. Assim, obtemos:

$$\widehat{T_{\alpha}} = -\frac{c_{\alpha}^2}{2\mu_{A,BC}} \nabla_{\vec{S_{\alpha}}}^2 - \frac{1}{2c_{\alpha}^2 \mu_{BC}} \nabla_{\vec{s_{\alpha}}}^2 = -\frac{1}{2\mu} \nabla_{\vec{S_{\alpha}}}^2 - \frac{1}{2\mu} \nabla_{\vec{s_{\alpha}}}^2.$$
(A.16)

Identificando os termos multiplicativos de cada laplaciano em ambos os lados da identidade A.16, tem-se

$$\frac{c_{\alpha}^2}{2\mu_{A,BC}} = \frac{1}{2\mu}$$
 e $\frac{1}{2\mu} = \frac{1}{2c_{\alpha}^2\mu_{BC}}$

com isto temos

$$\mu = (\mu_{A,BC}\mu_{BC})^{1/2} \Rightarrow \mu = \left(\frac{m_A m_B m_C}{m_A + m_B + m_C}\right)^{1/2}$$

além de

$$c_{\alpha} = \left(\frac{\mu_{A,BC}}{\mu}\right)^{1/2} = \left(\frac{\mu}{\mu_{BC}}\right)^{1/2} = \left(\frac{\mu_{A,BC}}{\mu_{BC}}\right)^{1/4}$$

Com essas transformações, os vetores de Jacobi escalonados pelas massas são dados por:

$$\vec{S}_{\alpha} = \left(\frac{\mu}{\mu_{BC}}\right)^{1/2} \left(\vec{\omega}_{A} - \frac{m_{B}}{m_{B} + m_{C}}\vec{\omega}_{B} - \frac{m_{C}}{m_{B} + m_{C}}\vec{\omega}_{C}\right)$$
$$\vec{s}_{\alpha} = \left(\frac{\mu_{BC}}{\mu}\right)^{1/2} \left(\vec{\omega}_{C} - \vec{\omega}_{B}\right)$$
(A.17)

para o arranjo α .

Já para o arranjo β , tais coordenadas se escrevem como:

$$\vec{S}_{\beta} = \left(\frac{\mu}{\mu_{AC}}\right)^{1/2} \left(\vec{\omega}_{B} - \frac{m_{A}}{m_{A} + m_{C}}\vec{\omega}_{A} - \frac{m_{C}}{m_{A} + m_{C}}\vec{\omega}_{C}\right)$$
$$\vec{s}_{\beta} = \left(\frac{\mu_{AC}}{\mu}\right)^{1/2} \left(\vec{\omega}_{A} - \vec{\omega}_{C}\right)$$
(A.18)

Combinando as equações A.17 e A.18, pode-se obter a transformação entre os vetores de Jacobi escalonados pelas massas dos arranjos $\alpha \in \beta$, ou seja:

$$\vec{S}_{\beta} = -\left[\frac{m_A m_B}{(m_A + m_C)(m_B + m_C)}\right]^{1/2} \vec{S}_{\alpha} - \left[\frac{m_C(m_A + m_B + m_C)}{(m_A + m_C)(m_B + m_C)}\right]^{1/2} \vec{s}_{\alpha}$$
(A.19)

$$\vec{s}_{\beta} = -\left[\frac{m_C(m_B + m_A + m_C)}{(m_A + m_C)(m_B + m_C)}\right]^{1/2} \vec{S}_{\alpha} - \left[\frac{(m_A m_B)}{(m_A + m_C)(m_B + m_C)}\right]^{1/2} \vec{s}_{\alpha}.$$
 (A.20)

Esta é uma transformação ortogonal que pode ser escrita da seguinte forma:

$$\left(\begin{array}{c}\vec{S_{\beta}}\\\vec{s_{\beta}}\end{array}\right) = \left(\begin{array}{c}\cos\phi_{\alpha\beta} & \sin\phi_{\alpha\beta}\\-\sin\phi_{\alpha\beta} & \cos\phi_{\alpha\beta}\end{array}\right) \left(\begin{array}{c}\vec{S_{\alpha}}\\\vec{s_{\alpha}}\end{array}\right)$$

onde definimos a transformação na forma de uma rotação cinemática canônica na qual os termos $\cos\phi_{\alpha\beta}$ e $\sin\phi_{\alpha\beta}$ são iguais a:

$$\cos\phi_{\alpha\beta} = -\left[\frac{m_A m_B}{(m_A + m_C)(m_B + m_C)}\right]^{1/2} \quad e \quad \sin\phi_{\alpha\beta} = \left[\frac{m_C(m_A + m_B + m_C)}{(m_A + m_C)(m_B + m_C)}\right]^{1/2}$$
(A.21)

Sendo que

$$\tan \phi_{\alpha\beta} = \left[\frac{m_C^2(m_A + m_B + m_C)}{m_A m_B m_C}\right]^{1/2} = \frac{m_C}{\mu}$$

com $\phi_{\alpha\beta} \epsilon [\pi, 3\pi/2].$

A quantidade $\phi_{\alpha\beta}$ é chamada "ângulo de skew". Este ângulo é um importante parâmetro para a dinâmica da reação. Por definição, tal ângulo é pequeno para $m_C \ll m_A, m_B \in \pi/2$ para $m_C \gg m_A, m_B$

Usando as coordenadas de Jacobi $(\vec{S_{\lambda}}, \vec{s_{\lambda}})$, a equação de Schrödinger nuclear adquire a seguinte forma:

$$\left[\frac{-\hbar^2}{2\mu}(\nabla_{\vec{S}_{\lambda}}^2 + \nabla_{\vec{s}_{\lambda}}^2) + V_{\lambda}(\vec{S}_{\lambda}, \vec{s}_{\lambda}) - E\right]\psi(\vec{S}_{\lambda}, \vec{s}_{\lambda}) = 0$$
(A.22)

onde:

$$\mu = \left(\frac{m_A m_B m_C}{m_A + m_B + m_C}\right)^{1/2}.$$

Assim, com o uso das coordenadas de Jacobi, pode-se trocar o movimento relativo das três partículas no espaço pelo movimento de uma única partícula de massa μ no espaço de 6 dimensões.

Apêndice B Artigos Publicados

1-Theoretical rate constants for the reaction $BF_2 + NF = BF_3 + N$ of importance in boron nitride chemistry - Chemical Physyics Letters 413(2005) 151-156;

2- $NF_3 + N = NF_2 + NF$ rate constant calculated using TST with simple tunneling correction- Journal of Molecular Structure: THEOCHEM 769(2006) 201-205.

Bibliografia

- [1] O. Ruff, J. Fisher, and F. Luft. Z. Anorg. Allg. Chem., 172:417, 1928.
- [2] M. J. Shaw and J. D. C. Jones. Appl. Phys., 14:393, 1977.
- [3] J. G. Langan, S. W. Rynders, B. E. Felker, and S. E. Beck. J. Vac. Sci. Technol. A, 16:2108, 1998.
- [4] B. E. E. Kastenmeier. J. Vac. Sci. Technol. A, 18(5):2107, 2000.
- [5] J. J. Wang, E. S. Lambers, S. J. Pearton, M. Ostling, C. M. Zetterling, J. M. Grow, and F. Ren. Solid-State Electron, 42:743, 1998.
- [6] Paula Antoniotti and Felice Grandinetti. Chem. Phys. Lett., 366:676, 2002.
- [7] L. T. Molina and P. J. Molina. *Geophys. Res. lett.*, 22, 1995.
- [8] P. R. P. Barreto. Gas-phase kinetic mechanisms for n/f/h system. In Proceedings of the International Conference Le XXXII^{ne} Congrès Des Chimistes Théoriciens dÈxpression Latine, page CO27, de Cartage, Tunisia, Setembro 2006.
- [9] P. R. P. Barreto. Desenvolvimento de mecanismo cinético para o crescimento de fimes de nitreto de boro. relatório de pesquisa inpe-8701-prp/227. Technical report, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, (available at http://www.plasma.inpe.br/LAP_Publicacoes/Pub2002/LAP2002), 2002.
- [10] C. Frondel and U. B. Marvin. Nature, 214:587, 1967.

- [11] E. Henon and F. Bohr. J. Mol. Struct. (Theochem), 531:283, 2000.
- [12] L. J. Terminello, A. Chaiken, D. A. Lapiano-Smith, G. L. Doll, and T. Sato. J. Vac. Sci Technol. A, 12(4):2462, 1994.
- [13] R. M. Wentzcovitch and M. L. Cohen e P. K. Lam. Phys. Rev. B, 36:6058, 1987.
- [14] L. E. Ramos. Impurezas e Defeitos Nativos em Nitretos do Grupo III Cúbicos. Phd dissertation, IFUSP, Departmento de Física, 2002.
- [15] D. J. Kester, A. S. Ailey, D. J. Lichtenwalner, and R. F. Davis. J. Vac. Sci Technol. A, 12:3074, 1994.
- [16] J. L. Castineira, J. R. Leite, L. M. R. Scolfaro, R. Enderlein, J. L. A. Alves, , and H.W. L. Alves. *Materials Science and Engeneering B*, 51:53, 1998.
- [17] Jr. R. H. Wentorf. The Journal of Chemical Physics, 26(4):956, 1957.
- [18] M. Lu, A. Bousetta, R. Sukach, A. Bensaoula, K. Walters, K. Eipers-Smith, and A. Schultz. Appl. Phys. Lett, 64:1514, 1994.
- [19] D. G. Goodwin and G. G. Gavillet. J. Appl. Phys, 68(12):5803, 1990.
- [20] M. E. Coltrin and D. S. Dandy. Journal of Applied Physics, 74(9):5803, 1993.
- [21] D. H. Berns and M. A. Capelli. Appl. Phys. Letts, 68(19):2711, 1996.
- [22] D. H. Berns and M. A. Capelli. J. Mater. Res., 12(8):2014–2026, 1997.
- [23] W. J. Zhang and S. Matsumoto. *Chemical Physics*, 330:243, 2000.
- [24] P. R. P. Barreto, A. E. Kull, M. A. Capelli, and S. Matsumoto. Kinetic and surface mechanisms to growth of hexagonal boron nitride. Number 750 in FALL MEETING PROCEEDINGS, page Y5.13. Materials Research Society, 2002.

- [25] P. Barreto, A. Vilela, and R. Gargano. Int. J. Quantum Chem., 103:685, 2005.
- [26] P. Barreto, A. Vilela, and R. Gargano. J. Mol. Struct. Theochem, 639:167, 2003.
- [27] P. Barreto, A. Vilela, and R. Gargano. Int. J. Quantum Chem., 103(5):659, 2005.
- [28] S. S. Ramalho, A. F. A. Vilela, P. R. P. Barreto, and R. Gargano. *Chem. Phys. Letts*, 413:151, 2005.
- [29] P. R. P. Barreto, S. S. Ramalho, A. F. A. Vilela, L. Salviano, and R. Gargano. J.Mol. Struct. (Theochem), 769:201, 2006.
- [30] M. Born and J. R. Oppenheimer. Ann. der Physik, 84:457, 1927.
- [31] A. Szabo and N. S. Ostlund, editors. Modern quantum chemistry: introduction to advanced eletronic structure theory. Macmillian publishing Co,inc, New York, 1982.
- [32] Tópicos de química quantica. Technical report, disponível em http://www.chemkeys.com.
- [33] J. D. Vianna, A. Fazzio, and S. Canuto. Teoria Quântica de Moléculas e Sólidos, volume 1. Editora Livraria da Usp, São Paulo, Brasil, first edition, 2004.
- [34] V. Fock. Zeitschrift fuer Physik, 61:126, 1930.
- [35] V. Fock. Zeitschrift fuer Physik, 62:795, 1930.
- [36] Chr. Mø ller and M. S. Plesset. Note on an approximation treatment for many-electron systems. *Phys. Rev.*, 46(7):618–622, Oct 1934.
- [37] J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley. J. Chem. Phys., 98:1358, 1993.
- [38] R. J. Bartlett and G. D. Purvis. Int. J. Quantum. Chem., 14:561, 1978.

- [39] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. *Phys. Rev.*, 140(4A):A1133–A1138, Nov 1965.
- [40] M. J. S. Dewar, E. G Zoebisch, E. F Healy, and J. J. P. J Stewart. Am. Chem. Soc, 107:3902–3909, 1985.
- [41] J. J. P. J. Stewart. Comput. Chem., 10:209–220, 1989.
- [42] M. J. S. Dewar and W. J. Thiel. Am. Chem. Soc., 99:4899–4907, 1977.
- [43] P. O. Lówdin. Adv. Chem. Phys., 2:207, 1959.
- [44] P. O. Lówdin. Phys. Rev., 97:1474, 1955.
- [45] P. A. M. Dirac. The Principles of Quantum Mechanics, volume 1. Claredor Press, 1935.
- [46] H. Weyl. The Classical Groups, Their Invariants and Representations. Princeton university Press, Princeton, 1946.
- [47] Schavitt I. Mol. Phys., 94:3, 1998.
- [48] Condon E. U. Phys. Rev., 36:1, 1978.
- [49] J. A. Pople, M. Head-Gordon, and K. Raghavachari. J. Chem. Phys., 87(10):5968, 1987.
- [50] Eugen Merzbacher. Quantum mechanics, volume 1. Wiley International Edition, New York, EUA, second edition, 1976.
- [51] F. Coster. Nuclear Phys., 7:421, 1958.
- [52] H. Kúmmel, K. H. Lúhrmann, and J. G. Zabolitzki. Phys. Rep., 7:421, 1958.
- [53] J. Cizek. Adv. Chem. Phys., 14:35, 1969.

- [54] M. J. Pilling and P. W. Seakins. *Reaction Kinetic*, volume 4. Oxford Science, Oxford, UK, second edition, 1995.
- [55] D. G. Truhlar, A. D. Isaacson, , and B. C. Garrett. Theory of Chemical Reaction Dynamics, volume 2. CRC Press, Inc., Boca Raton, Florida Oxford Science, Boca Raton, Florida, 1985.
- [56] H. Eyring. J. Chem. Phys, 3:107, 1935.
- [57] D. M. Golden. Evaluation of chemical thermodynamics and rate parameters for use in combustion modeling. In W. Bartok and A. F. Sarofim, editors, *Fossil Fuel Combustion: A Source Book*, chapter 2, pages 49–119. John Wiley and Sons, Inc., New York, 1991.
- [58] J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas. Molecular Potential Energy Functions. John Wiley & Sons Ltda, 1984.
- [59] J. Bertran and I. G. Csizmadia. New Theoretical Concepts for Understanding Organic Reactions, volume 267. NATO ASI Series C: Mathematical and physical Sciences, Kluwer Academic Publishers, Dordrecht, Boston, Londres, 1988.
- [60] Donald A. McQuarrie. Statistical Mechanics. University Science Books, Second Review Edition, 2000.
- [61] P. Atkins and J. Paula. Atkins' Physical Chemistry. Seventh edition, Oxford, 2002.
- [62] R. Stephen Berry, S. A. Rice, and J. Ross. *Physical Chemistry*. Oxford, second edition, 2000.
- [63] C. Eckart. Phys. Rev., 35:1303, 1930.
- [64] T. N. Truong and D. G. Truhlar. J. Chem. Phys., 93:1761, 1990.

- [65] L. Pardo, J. R. Banfelder, and R. Osman. J. Am. Chem. Soc., 114:2382, 1992.
- [66] H. S. Johnston and J. Heicklen. J. Phys. Chem., 66:532, 1962.
- [67] M. Bettendorff and S. D. Peyerimhoff. Chem. Phys, 99:55, 1985.
- [68] David M. Hirst. A Computational Approach to Chemistry, volume 1. Van Nostrand Oeinhold Company, New york, second edition, 1950.
- [69] M. J. Frish et al. Revision A.9. Technical Report, Gaussian, Inc., Pitsburgh, PA, 1998.
- [70] D. E. Woon and T. H. Dunning Jr. Int. J. Quantum. Chem., 14:545, 1978.
- [71] R. Ditchfield and W. J. Hehre J. A. J. Chem. Phys., 54:724, 1971.
- [72] F. Jensen. Introduction to Computational Chemistry, volume 2. John Wiley Sons Ltd, England, 2001.
- [73] Jr. M. W. Chase. J. Phys. Chem. Ref. Data, 1998.
- [74] A. A. Radzig and B.M. Smirnov. Reference Data on Atoms, Molecules and Ions. Springer-Verlag, Berlin, 1985.
- [75] G. Herzberg. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules. Black Well Scientific Publications, 1990.
- [76] M. D. Harmony, R. Myers., L.J. Schoen, D. R. Lide, and D. E. Mann. *j. Chem. Phys.*, 35(3):1129, 1961.
- [77] T.A. Ford and D. SteeleJ. Phys. Chem. J. Phys. Chem., 100:19336, 1996.
- [78] R. C. West, M. J. Astle, and W. H. Beyer(Eds). CRC Handbook of Chemistry and Physics. CRC Press, Inc, Boca Raton, 65th edition, 1985.
- [79] R. Lascola, R. Withnall, and L. Andrews. J. Phys. Chem., 92:2145, 1998.

- [80] L. V. Gurvich, I. V. Veyts, Alcock, and C. B Alcock, editors. Hemisphere Pub. Co., New York, fouth edition edition, 1989.
- [81] S. W. Benson. Thermochemical Kinetics Methods for the Estimation of Thermochemical Data and Rate Parameters. John Wiley & Sons, New York, 1960.
- [82] J. Berkowitz, J. P. Greene, J. Foropoulos, Jr., and O. M. Neskovic. J. Chem. Phys., 81(12):6166, 1984.
- [83] J. Berkowitz, J. P. Greene, J. Foropoulos, Jr., and O. M. Neskovic. J. Phys. Chem. A, 105:8533, 2001.
- [84] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople. J. Chem. Phys., 106(3):1063, 1997.
- [85] M. Aschi and F. Grandinetti. J. Mol. Struct. (THEOCHEM), 497:205, 2000.
- [86] C. F. Melius and P. Ho. J. Chem. Phys., 95:1410, 1991.
- [87] A. Ricca. Chem. Phys. Letters, 294:454, 1998.
- [88] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople. J. Chem. Phys., 109:7764, 1998.
- [89] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople. J. Chem. Phys., 110:4703, 1999.
- [90] A. P. Modica and D. F. Hornig. J. Chem. Phys., 43(8):2739, 1965.
- [91] D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague. Evaluated kinetic data for high temperature reactions. volume 4: Homogeneous gas phase reactions of halogenand cyanide- containing species. J. Phys. Chem. Ref. Data - Suppl., 10(1), 1981.
- [92] R. W. Diesen. J. Chem. Phys., 45:759, 1966.

- [93] K. O. MacFadden and E. Tschuikow-Roux. J. Phys. Chem., 73(12):1475, 1973.
- [94] W. D. Breshears and F. Bird. J. Chem. Phys., 68(6):2996, 1978.
- [95] R. W. Diesen. J. Phys. Chem., 72(1):108, 1968.
- [96] H. B. Schlegel and J. Harris. J. Phys. Chem., 98:1, 11178.
- [97] E. Storms and B. Mueller. J. Phys. Chem., 81:318, 1977.
- [98] L. M. Nxumalo, M. Andrzejak, and T. A. Ford. Vibrat, Spect., 12:221, 1996.
- [99] X. Duan, D.P. Linder, and M. R. Soto. J. Mol. Struct. (Theochem), 465:221, 1999.
- [100] G. L. Gutsev, P. Jena, and R. J. Bartlett. Chem. Phys. Lett, 292:289, 1998.
- [101] M. E. Jacox and W. E. Thompson. J. Chem. Phys., 102:4747, 1995.
- [102] T. Shimamouchi. J. Phys. Chem. Ref. Data, 6:993, 1977.
- [103] K. Hakura and H. Uehara. J. Chem. Phys, 74:5995, 1981.
- [104] J. R. Thomas, B. J. Deleeuw, G. Vacek, T. D. Crawford, Y. Yamaguchi, and H. F. Schaefer III. J. Chem. Phys., 99:403, 1993.
- [105] L. J. Schaad and H. B. Kinser. J. Phys. Chem., 73:1901, 1969.
- [106] A. Galano, J. R. Alvarez-Idaboy, M. E. Ruiz-Santoyo, and A. Vivier-Bunge. J. Phys. Chem. A, 109:169, 2005.
- [107] L. R. Salviano. Geração de Representações da Variável Discreta Otimizadas para a solução de Problemas Unidimensionais. Dissertação de mestrado, Universidade de Brasilia, Departmento de Física, 2004.
- [108] J. C. Light and T. Carrington. J. Phys. Chem., 92:2145, 1988.
- [109] J. J. S. Neto and S. L. Costa. Brasilian Journal of Physics, 28:2145, 1998.

- [110] J. L. Dunham. The energy level of a rotating vibrator. *Physical Review*, 41:721–731, 1932.
- [111] David M. Hirst. A Computational Aproach to Chemistry. Ed. Blackwell Scientific Publications, Oxford London and Edinburg Boston and Melbourn, 1990.
- [112] J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas, editors. Molecular Potential Energy Functions. Wiley, 1984.
- [113] R. Rydberg. Z. Phys, 73:376, 1931.
- [114] E. Herbst. Chem. Phys. Lett, 47:517, 1977.
- [115] E. García. Tese de doutorado, Universidade do País Basco, 1986.
- [116] E. García and A. Laganà. Mol. Phys., 56:621, 1985.
- [117] L. Pauling. J. Am. Chem. Soc., 69:542, 1947.
- [118] P. M. Morse. *Phys. Rev*, 34:57, 1929.
- [119] P. R. Bevington. Data Reduction and Error Analysis for the Physical Sciences. Ed. McGraw-Hill, New York, 1969.
- [120] E. P. G. Areas, P. G. Pascutti, S. Schreier, K. C. Mundim, and P. M. Bish. J. Phys. Chem, 40:14885, 1995.
- [121] W. H Press, S. A. Teukolsky, and W. T. Vetterling. Numerical recipes : the art of scientific computing. Cambridge, University Press, New York, 1985.
- [122] A. Laganà, O. Gervasi, and E. García. Chem. Phys. Lett, 143:174, 1988.
- [123] A. Laganà, J. M. Alvari no, M. L. Hernandez, P. Palmieri, E. García, and T. Martinez. J. Chem. Phys., 106:10222, 1997.

- [124] G. T. Armstrong, Marantz S., and Coyle C. F. J. Am. Chem. Soc., 81:3798, 1959.
- [125] R. J. Kee, F. M. Rupley, M. E. Coltrin J. A. Miller, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, S. F. Miller, P. Ho, , and D. J. Young. Chemkin release 4.0. Technical report, Reaction Design, Inc., San Diego, CA, 2004. chemkin.