=
University of Brasilia

Institute of Exact Sciences
Department of Computer Science

Using Al for Forecasting and Trading in Markets: a
Study of Deep Learning and Deep Reinforcement
Learning in Finance

Joao Paulo Costa e Souza

Dissertation presented as a partial requirement for

conclusion of the Master’s Degree in Informatics

Advisor
Prof. Dr. Geraldo Pereira Rocha Filho

Brasilia
2025

=
University of Brasilia

Institute of Exact Sciences
Department of Computer Science

Using AI for Forecasting and Trading in Markets: a
Study of Deep Learning and Deep Reinforcement
Learning in Finance

Jodo Paulo Costa e Souza

Dissertation presented as a partial requirement for the

conclusion of the Master’s Degree in Informatics

Prof. Dr. Geraldo Pereira Rocha Filho (Advisor)
DCET/UESB - CiC/UnB

Prof. Dr. Francisco Airton Silva Prof. Dr. Edna Dias Canedo

Federal University of Piaui University of Brasilia

Prof. Dr. Rodrigo Bonifacio Almeida

Coordinator of the Postgraduate Program in Informatics

Brasilia, February 28, 2025

Dedication

I dedicate this work primarily to God who never let giving up settle in my heart. I
dedicate it to my family, whose unconditional support was the structuring factor in my
achievements. I also dedicate it to my friends, who have always supported me, and

believed in my potential.

1ii

Acknowledgements

I express my deep gratitude to the Department of Computer Science (CIC/UnB) for
the continuous support and opportunities that significantly contributed to my academic
training. Furthermore, I am immensely grateful to my advisor, Prof. Dr. Geraldo Pereira
Rocha Filho, for his dedication, guidance, and invaluable support throughout the master’s
degree.

This work was carried out with the support of Coordenacio de Aperfeicoamento de
Pessoal de Nivel Superior (CAPES) - Brazil, through Access to the Periodicals Portal.

iv

Resumo

No contexto de negociagao financeira, a identificacao de tendéncias e estratégias de tomada
de decisao sao componentes cruciais para atingir lucratividade consistente e minimizar
riscos. Dada a importancia desses dois desafios, este projeto propde uma solucao que
combina varias técnicas avancadas para aprimorar a precisao preditiva e o desempenho
de negociacao. A abordagem proposta incorpora Autoencoders para engenharia de recur-
sos, permitindo reducao efetiva de dimensionalidade e extragdo de padroes significativos
de indicadores técnicos. Para identificacao de tendéncias, o modelo alavanca uma combi-
nacao de Redes Neurais Convolucionais (CNNs) e Redes de Memoria de Longo e Curto
Prazo Bidirecionais (BiLSTMs), juntamente com rotulagem baseada em regressao linear
para definir tendéncias de mercado com maior precisdo. Na fase de tomada de decisao,
o sistema emprega o algoritmo Rainbow DQN, aprimorado com um buffer de meméria,
para otimizar estratégias de negociacao e maximizar a lucratividade no mercado de crip-
tomoedas. Para avaliar rigorosamente a eficicia da estrutura proposta, o desempenho
de identificagdo de tendéncias é avaliado usando as métricas precision, recall e acura-
cia, enquanto o desempenho de negociacao ¢ medido por meio do retorno, sua média e
desvio padrao. Os resultados experimentais demonstram que o modelo supera supera
a perspectiva aleatoria na previsao de tendéncias, validando a eficicia dos componentes
de engenharia de caracteristicas e aprendizado profundo. Além disso, apesar de exper-
imentar flutuacoes significativas nos retornos de negociacao, o agente obteve um lucro
médio positivo, destacando o potencial da abordagem proposta no desenvolvimento de

uma estratégia de negociacao adaptavel e orientada a dados.

Palavras-chave: Rainbow DQN, Aprendizagem por Refor¢o, Aprendizagem por reforgo

profundo, Predicao de precos, Criptomoedas, Financas

Resumo Expandido

Usando TA para Previsao e Negociagcdo em Mercados: um Estudo de
Aprendizagem Profunda e Aprendizagem por Reforco Profundo em

Financas.

Introducao

A teoria dos mercados eficientes, proposta por Eugene Fama em 1970, defende que todas as
informacgoes disponiveis ja estao refletidas nos pregos dos ativos, impossibilitando ganhos
consistentes por meio da especulacao. No entanto, diversos estudos questionam essa
hipétese, apresentando evidéncias de ineficiéncias de mercado e comportamento irracional
dos investidores, como o efeito disposicao, que os leva a vender ganhos cedo demais e
manter perdas por muito tempo.

Diante da possibilidade de prever tendéncias de mercado e lucrar com elas, o projeto
propoe o uso de técnicas de aprendizado de maquina para identificar tendéncias de alta
e baixa. Especificamente, sao utilizadas redes neurais profundas como LSTM e CNN,
que lidam bem com dados sequenciais e séries temporais ruidosas. A segunda parte do
problema abordado ¢ como agir com essa informagao de tendéncia. Para isso, é proposto
o uso do algoritmo Rainbow DQN, uma versao avancada do Deep Q-Learning, adaptada

com camadas recorrentes para melhor desempenho em séries temporais.

Fundamentacao Teérica

Redes Neurais Artificiais (ANNs) sdo modelos computacionais inspirados no funciona-
mento do cérebro humano. Elas sdo compostas por camadas de neurdnios interconecta-
dos que processam informagoes e aprendem padroes a partir de dados. Sao amplamente
utilizadas em tarefas como classificacao, regressao e previsao.

Redes Neurais Convolucionais (CNNs) sao especializadas no processamento de dados
com estrutura espacial, como imagens e séries temporais. Utilizam camadas convolu-
cionais para extrair automaticamente caracteristicas relevantes dos dados, sendo eficazes

na remocao de ruidos e na identificagdo de padroes locais.

vi

Redes Neurais Recorrentes (RNNs) sao voltadas para dados sequenciais, onde a ordem
das informagoes é relevante. Elas possuem conexoes que permitem "memoria" ao longo do
tempo. Uma varia¢do popular, o LSTM (Long Short-Term Memory), resolve limitagoes
das RNNs padrao, como o problema do gradiente, sendo eficaz para capturar dependéncias
de curto e longo prazo.

Autoencoders sao redes neurais usadas para compressao e reconstrucao de dados. Eles
aprendem a codificar informagoes de entrada em uma representagdo compacta (codifi-
cacao) e depois decodifica-la para tentar recuperar a entrada original. Sao uteis para
reducao de dimensionalidade e extragao de caracteristicas.

Rainbow DQN é uma versao aprimorada do algoritmo Deep Q-Network (DQN), que
combina varias técnicas de reforco profundo, como Dueling Networks, Prioritized Experi-
ence Replay e Double Q-Learning. Ele ¢é utilizado para tomada de decisdo em ambientes
sequenciais e é especialmente eficaz em tarefas de negociacao automaética, onde o agente
aprende estratégias de compra e venda visando o maior retorno possivel.

Embora muitas dessas variaveis tenham sido propostas na literatura, apenas uma pe-
quena parte é realmente informativa, e o excesso pode introduzir ruido e redundéancia.
Métodos de selecao de variaveis ajudam a lidar com esse problema e se dividem em trés
categorias principais: filters, wrappers e embedded. Os métodos filter sao estatisticos
e eficientes, mas ignoram relagoes entre variaveis; wrappers avaliam o desempenho das
variaveis em modelos de aprendizado, mas sao mais custosos; e embedded integram a
selecao ao treinamento do modelo, equilibrando custo e performance. Diversos trabal-
hos aplicaram essas técnicas no mercado financeiro com diferentes conjuntos de dados
e indicadores técnicos, como fechamento, volume e volatilidade, usando desde métodos
estatisticos e algoritmos bioinspirados até redes neurais e autoencoders com LSTM. Os
resultados mostram que, embora métodos automaticos e hibridos otimizem a escolha de
variaveis, o conjunto final de features ainda pode ser grande, exigindo estratégias adi-

cionais para lidar com a complexidade computacional.

Trabalhos Relacionados

Trabalhos relacionados a engenharia de caracteristicas: Embora muitas dessas variaveis
tenham sido propostas na literatura, apenas uma pequena parte é realmente informativa,
e 0 excesso pode introduzir ruido e redundancia. Métodos de sele¢ao de variaveis ajudam
a lidar com esse problema e se dividem em trés categorias principais: filters, wrappers
e embedded. Os métodos filter sao estatisticos e eficientes, mas ignoram relagdes entre
variaveis; wrappers avaliam o desempenho das varidaveis em modelos de aprendizado, mas
sao mais custosos; e embedded integram a sele¢ao ao treinamento do modelo, equilibrando

custo e performance. Diversos trabalhos aplicaram essas técnicas no mercado financeiro

vii

com diferentes conjuntos de dados e indicadores técnicos, como fechamento, volume e
volatilidade, usando desde métodos estatisticos e algoritmos bioinspirados até redes neu-
rais e autoencoders com LSTM. Os resultados mostram que, embora métodos automaticos
e hibridos otimizem a escolha de variaveis, o conjunto final de features ainda pode ser
grande, exigindo estratégias adicionais para lidar com a complexidade computacional.

A tarefa de previsao de precos é desafiadora, exigindo selecao criteriosa de variaveis e
escolha adequada de arquiteturas de aprendizado de maquina. Modelos podem se dividir
entre previsao de tendéncia (classificagdo) e previsao nominal de pregos (regressao). Di-
versos trabalhos abordam essa tarefa com diferentes abordagens: Patel et al. [1] utilizam
uma abordagem em duas etapas com SVR, ANN e Random Forest, enquanto Lin et al.
[2] combinam padroes graficos, trigramas taoistas e indicadores técnicos com um sistema
ensemble. Selvin et al. [3] mostram que CNN supera RNN e LSTM na previsao de curto
prazo, devido & sua habilidade em detectar mudancgas sibitas. He et al. [4] e Livieris
et al. [5] combinam CNN com LSTM e mecanismos de atencao, enquanto Liang et al.
[6] melhoram a previsdo decompondo os dados com ICEEMDAN antes de aplicar redes
neurais. Siami-Namini et al. [7] demonstram que BiLSTM supera LSTM em acurécia,
apesar de sua complexidade. Zhang et al. [8] propoem uma arquitetura hibrida com GRU,
autoatencao e médulos de convolugao para capturar dependéncias entre criptomoedas, ob-
tendo desempenho superior. Por fim, Samarasekara et al. [9] inovam ao utilizar previsoes
de preco e tendéncia para otimizar a colocagao de stop-loss, reduzindo significativamente
as perdas em comparacao com métodos tradicionais.

A aplicacao de aprendizado por reforco no mercado financeiro envolve desafios signi-
ficativos de modelagem, como a defini¢ao clara do problema, a escolha da arquitetura do
agente, o design das recompensas e punigoes, a engenharia das a¢oes e o equilibrio entre
exploragao e exploragao. Diversos trabalhos propoem solugoes inovadoras, como o uso de
redes GRU para previsao de pregos aliadas ao agente de reforgo [10], estratégias baseadas
em DQN e DDPG com extracao de informagoes financeiras [11], e integragdo com andlise
de sentimentos por meio de CNNs e LSTM [12]. Outras abordagens envolvem a trans-
formagdo de dados numéricos em imagens para aproveitamento por CNNs [13], além de
técnicas para reduzir ruidos e expandir o espago de agoes [14]. Em geral, os resulta-
dos apontam ganhos expressivos em rentabilidade e precisao, reforcando o potencial do

aprendizado por refor¢o profundo no contexto de operagoes financeiras automatizadas.

Projeto de Pesquisa

O médulo de Feature Engineering é responsavel por processar os dados brutos do mer-
cado e transforma-los em informagoes relevantes para treinar redes neurais nos médulos

de previsao e negociacao. Para isso, utiliza indicadores técnicos classicos, como médias

viil

moveis, osciladores e medidores de volume, volatilidade e ciclos, totalizando 21 entradas ao
modelo. Os dados sao pré-processados por meio de padronizag¢ao (Z-score) e remogao de
outliers, visando facilitar o aprendizado e melhorar a convergéncia das redes neurais. Para
lidar com a alta dimensionalidade e reduzir o ruido, aplica-se um autoencoder baseado em
células BiLSTM, que comprime os dados mantendo suas principais informagoes, tornando
o treinamento mais eficiente.

O modulo de predicao é responsavel por processar os dados de entrada e gerar estima-
tivas sobre os precgos futuros, sendo essencial para decisoes de compra e venda. Com base
em estudos prévios, como os de Selvin et al. e Zhanhong He et al., foram propostas duas
arquiteturas: uma para classificar a tendéncia do mercado (alta ou baixa) e outra para
prever a inclinagdo dessa tendéncia. O Market Trend Predictor utiliza uma combinagao
de camadas convolucionais e BiLSTM para extrair caracteristicas relevantes e capturar
dependéncias temporais, finalizando com uma camada densa com dropout. A rotulagem
é feita com base na inclinagdo da regressao linear aplicada a um conjunto de candles.
J& o Trend Slope Regressor tem como objetivo estimar numericamente essa inclinagao,
utilizando primeiro camadas BiLSTM e, posteriormente, camadas convolucionais e de
pooling para refinar a informacao. Ambos os modelos sao treinados com aprendizado
supervisionado, utilizando fungoes de custo adequadas a seus respectivos problemas (clas-
sificagao e regressao).

O moédulo de negociagdao tem como objetivo utilizar informagcoes de indicadores téc-
nicos e preditores para tomar decisoes otimizadas de compra e venda de ativos. Para
isso, é adotado o aprendizado por refor¢o com redes neurais, utilizando especificamente o
algoritmo Rainbow DQN. O agente de negociagao é treinado para analisar o mercado com
base em precgos atuais, tendéncias previstas e indicadores comprimidos, tomando decisoes
em um espaco de agoes composto por sete possibilidades — que variam entre diferentes
intensidades de compra, venda e inagdo. As recompensas sao definidas em funcao do
lucro obtido com as operagoes. Inicialmente, a rede neural do agente é composta por
trés camadas densamente conectadas, cada uma com 64 neurénios. Posteriormente, sao
introduzidas camadas BiLSTM, representando uma "memoria" que visa melhorar o de-
sempenho do agente ao permitir o aprendizado de padroes temporais mais profundos.

A avaliagdo dos modelos propostos é realizada por meio de métricas especificas para
cada tipo de problema. O Market Trend Predictor, sendo um classificador, é avaliado
com as métricas de acurécia, precisao e recall, que medem, respectivamente, a taxa geral
de acertos, a qualidade das previsoes positivas e a capacidade de identificar corretamente
tendéncias positivas. Ja o Trend Slope Regressor, por tratar-se de um modelo de regressao,
é avaliado pelas métricas RMSE, MAE e MAPE, que quantificam o erro das previsoes

em diferentes perspectivas. O desempenho do médulo de negociacao é medido pelo lucro

iX

obtido, refletindo diretamente a efetividade da estratégia. Para validar os modelos, seus
resultados sdo comparados com arquiteturas mais simples, como LSTM ou CNN isoladas.
Além disso, os modelos sao testados em diferentes cenarios envolvendo criptomoedas pop-
ulares (Bitcoin, Ethereum, Ripple e Cardano), incluindo periodos marcados por eventos
geopoliticos criticos, como a proibi¢ao das criptomoedas na China, de modo a avaliar a

robustez e a adaptabilidade das solugoes em situagoes reais e adversas.

Experimentos e Resultados

O médulo de engenharia de caracteristicas comecou com a selecao tedrica de indicadores
técnicos que fornecessem informagoes relevantes e nao redundantes ao modelo. Apos essa
etapa, foi analisada a aplicacao de diferenciacao para tornar a série temporal estacionaria,
mas essa abordagem foi descartada devido a perda significativa de informacao. Em vez
disso, optou-se pela padronizacao dos dados, que nao compromete a estrutura da série.
Em seguida, utilizou-se um autoencoder com células LSTM e BiLSTM para redugao
de dimensionalidade e remocao de ruido. Foram avaliadas diferentes arquiteturas de
autoencoder variando o tamanho do vetor de contexto, o niimero de camadas e a janela
temporal. Os resultados mostraram que modelos BiLSTM superaram os LSTM em todas
as métricas e que um vetor de contexto de 10 dimensoes, quatro a oito camadas e janelas
temporais curtas (especialmente 6 time steps) produzem melhores resultados, indicando
uma curta dependéncia temporal nos dados.

Os experimentos sobre o médulo de predicao apresentaram resultados interessantes.
O experimento que variou a amplitude da Classe de Mercado Lateral revelou uma queda
em todas as métricas de avaliacao. Especificamente, ndo apenas a acuracia diminuiu, mas
também a precisao e o recall. Isso sugere que o modelo apresentou seu melhor desempenho
quando a Classe de Mercado Lateral foi completamente desconsiderada. O experimento
seguinte, que consistiu no aumento do limiar do Argmax, trouxe melhorias notaveis nas
métricas de avaliacdo. No entanto, esse ajuste resultou em uma reducgao significativa no
numero de amostras classificadas. Por fim, o experimento que variou o ativo teve impacto
minimo nos resultados, indicando que o modelo ¢é robusto em relacao a diferentes ativos.

Os experimentos realizados mostraram que o uso exclusivo de indicadores técnicos
como entrada para o Rainbow DQN nao gerou desempenho significativamente superior
ao de uma abordagem aleatéria, indicando que tais indicadores, sozinhos, nao fornecem
informagoes estruturadas suficientes para decisoes eficazes. No entanto, ao combinar esses
dados com previsoes geradas por um modulo preditivo baseado em deep learning, o desem-
penho do modelo melhorou substancialmente, permitindo identificar padroes de mercado
com mais precisao e converté-los em operagoes lucrativas. Além disso, a introducao de

um mecanismo de memoéria nas camadas iniciais da rede neural, considerando o ambiente

como um POMDP, mostrou-se promissora ao permitir o uso de informagoes historicas e
decisbes mais informadas. Apesar de ainda apresentar instabilidades na curva de retorno,
o modelo foi capaz de, ao menos parcialmente, formular uma estratégia de negociagao

lucrativa baseada na identificacdo de tendéncias de mercado.

Conclusao

Este trabalho abordou os desafios de operar no mercado de criptomoedas por meio de uma
arquitetura composta por trés modulos: engenharia de atributos, previsao de tendéncias
e execucao de operagoes com aprendizado por reforco. Inicialmente, foram identifica-
dos dois principais problemas: extrair informagoes relevantes para prever tendéncias de
mercado e converter essas previsoes em estratégias de negociacao lucrativas. Apos a re-
visao da literatura relacionada, foram apresentadas as bases tedricas que sustentam o
projeto, incluindo redes neurais densas, convolucionais, recorrentes, autoencoders, indi-
cadores técnicos e o algoritmo Rainbow DQN. A arquitetura proposta foi detalhada no
quarto capitulo, demonstrando a integragao entre os médulos e suas respectivas metodolo-
gias. Nos experimentos, o médulo de engenharia de atributos obteve sucesso na reducgao de
dimensionalidade sem perda significativa de informacao, enquanto o médulo de previsao
apresentou desempenho significativamente superior ao acaso na identificacado de tendén-
cias. Por fim, o modulo de negociagao mostrou que o modelo, apesar da volatilidade dos
retornos, conseguiu obter lucros médios positivos, especialmente quando utilizou previsoes
e memoria, demonstrando o potencial da abordagem proposta para tomada de decisoes

no mercado financeiro.

Palavras-chave: Rainbow DQN, Aprendizagem por Refor¢o, Aprendizagem por reforgo

profundo, Predicao de precos, Criptomoedas, Finangas

X1

Abstract

In the context of financial trading, trend identification and decision-making strategies are
crucial components for achieving consistent profitability and minimizing risk. Given the
importance of these two challenges, this project proposes a solution that combines multiple
advanced techniques to enhance both predictive accuracy and trading performance. The
proposed approach incorporates Autoencoders for feature engineering, enabling effective
dimensionality reduction and the extraction of meaningful patterns from technical indica-
tors. For trend identification, the model leverages a combination of Convolutional Neural
Networks (CNNs) and Bidirectional Long Short-Term Memory Networks (BiLSTMs),
alongside linear regression-based labeling to define market trends with greater precision.
In the decision-making phase, the system employs the Rainbow DQN algorithm, enhanced
with a memory buffer, to optimize trading strategies and maximize profitability in the
cryptocurrency market. To rigorously evaluate the effectiveness of the proposed frame-
work, trend identification performance is assessed using accuracy, precision, and recall,
while trading performance is measured through return, its mean, and standard deviation.
The experimental results demonstrate that the model outperforms a random baseline in
trend prediction, validating the effectiveness of the feature engineering and deep learning
components. Additionally, despite experiencing significant fluctuations in trading returns,
the agent achieved a positive average profit, highlighting the potential of the proposed

approach in developing an adaptive and data-driven trading strategy.

Keywords: Rainbow DQN, Reinforcement Learning, Deep reinforcement learning, Price

Forecasting, Cryptocurrencies, Finance

xii

Contents

1 Introduction

1.1
1.2
1.3

2.1
2.2
2.3
2.4

3.1
3.2

3.3

3.4

3.5

Contextualization and Problem
Objetives e

Document structure

Related Works

Work related to feature selection
Work related to price prediction L.
Work related to the use of reinforcement learning

Innovations and relationships of this project with other works

Theoretical Foundation

From biological to artificial neuron
Artificial Neural Networks
3.2.1 The Dense Layer
3.2.2 The stochastic gradient descent method
3.2.3 The Backpropagation algorithm
3.2.4 The Softmax function
3.2.5 The Dropout Layer
Convolutional Neural Networks
3.3.1 Convolution
3.3.2 Convolutional Layers
3.3.3 Max Pooling Layers
Recurrent neural networkso L
3.4.1 The Vanishing Gradient Problem
3.4.2 Long Short Term Memory
Bidirectional Neural Networks
3.5.1 Forward Propagation L.
3.5.2 BILSTM Networks

xiil

11
14
17

3.6 Autoencoders 37
3.6.1 Encoder 37
3.6.2 Decoder 38

3.7 Reinforcement Learning L 38
3.7.1 Marcov Decision Process L. 39
3.7.2 The Bellman Equation 41
3.7.3 Deep Q-Networks 43
3.7.4 Rainbow DQN 46

3.8 Technical Indicators and Mathematical Formulas 51
3.8.1 TheCandle 51
3.8.2 Weighted Moving Average (WMA) 52
3.8.3 Moving Average Convergence / Divergence (MACD) 53
3.8.4 Percentage Price Oscillator (PPO) 54
3.8.5 Rate of Change (ROC) 55
3.8.6 Momentum (MOM) 55
3.8.7 True Range (TR) 56
3.8.8 Average Directional Index (ADX) 57
3.8.9 Stochasticd% and k% 58
3.8.10 Detrended Price Oscillator (DPO) 59
3.8.11 Commodity Channel Index (CCI) 59
3.8.12 Normalized Average True Range (NATR) 60
3.8.13 On Balance Volume (OBV) 61

4 Research Project 62

4.1 The Total Model 62

4.2 Feature Engineering Moduleo 62
4.2.1 Feature Selecion 63
4.2.2 Data pre-processingo 67
4.2.3 Dimensionality Reduction 68

4.3 Prediction Moduleo 68
4.3.1 Market Trend Prediction 69
4.3.2 Trend Slope Regressor 71

4.4 Trading Module 72
4.4.1 'Trading by Reinforcement Learning 73
4.4.2 Rainbow DQN with Memory Buffer 74

4.5 Evaluationo 75
4.5.1 Evaluation metrics oL 75
4.5.2 Evaluation comparisons 76

Xiv

4.5.3 Evaluation Scenarios

5 Experiments and Results

5.1 Feature Engineering Module00
5.1.1 Preprocessing
5.1.2 Choosing the Autoencoder architecture
5.2 Prediction Module
5.2.1 Market Trend Classifier.
5.2.2 Trend Slope Regressor,
5.3 Trading Module
5.3.1 Simple Rainbow DQNo
5.3.2 Rainbow DQN with memory

5.3.3 Discussion

6 Conclusion

References

XV

79
79
80
30
88
88
92
95
96
97
100

105

108

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

List of Figures

Rosenblatt’s perceptron for binary classification, a schematic idea conceived
from the article The perceptron: a probabilistic model for information stor-
age and organization in the brain. by Rosenblatt [15],1958.
Multilayer perceptron, a schematic idea conceived from the article Learning
representations by back-propagating errors, by Rumelhart et. al. [16], 1986,
with an input layer, a hidden layer, and an output layer.
Standard RNN, on the left, and time-unfolded RNN, on the right, a schematic
idea conceived from the article Backpropagation through time: what it does
and how to do it by Werbos et. al. [17],1990.
LSTM cell, schematic idea conceived from the article Long short-term mem-
ory. Neural computation by Hochreiter and Schmidhuber [18],1997.

Architecture of a BILSTM network, a schematic idea conceived from the

article Bidirectional recurrent neural networks by Schuster et. al. [19], 1997.

Reinforcement learning control loop, a schematic idea conceived from the
article Reinforcement Learning: A survey, by Leslie Pack et. al.[20]; from
1996 . . . L
Bullish candle, on the left and bearish candle, on the right, invented by

Munehisa Honma.

Structure and information flow of the three modules that make up the
proposed system: the feature engineering module, the price and trend pre-
diction module, and the trading module.
Structure of the encoder, on the left, and the decoder, on the right, both
using BILSTM cells
Structure of the Market Trend Classifier, starting from the input layer, con-
volutional layer, activation layer, Max Pooling layer, two BiLSTM layers,
and dense layer with dropout factor.
Trend Slope Regressor structure, starting from the input layer, two Bil-
STM layer, convolutional layer, activation layer, Max Pooling layer, and

dense layer with dropout factor.

xvi

33

37

69

4.5

5.1

5.2

2.3

5.4

2.5

5.6

5.7

2.8

5.9

Structure of the trading instrument and risk management instrument and

the flow of information received, representing the states.

Closing price of gold given in dollars per ounce with 7000 samples, on the
left. The closing price of gold applied to differentiation, on the right, also
with 7000 samples.
Closing price of gold given in dollars per ounce with 7000 samples, on the
left. The closing price of gold minus the mean, and divided by the standard
deviation, on the right, also with 7000 samples.
Proposed scheme for the autoencoder with three layers for dimensionality
reduction in both the encoder and decoder.
Comparison of the evolution of the losses of the LSTM and BiLSTM models
calculated over the training epochs. The figure on the right shows the
evolution of the losses for four possible dimensions of the context vector
for the autoencoder-BiLSTM. The figure on the left shows the evolution of
the losses for the Autoencoder-LSTM.
Comparison of the evolution of the model loss with context vector of di-
mensionality equal to 1, 5, 10, and 15, computed over the training epochs
for LSTM and BiLSTM Autoencoders. Top left image: context vector of
dimensionality equal to 1. Top right image: context vector of dimensional-
ity equal to 5. Bottom left image: context vector of dimensionality equal
to 10. Bottom right image: context vector of dimensionality equal to 15.. .
Comparison of the loss evolution as the number of layers in the encoder
and decoder increases; for 2, 4, 6, and 8 layers. The figure on the right
shows the model where the layers used are BiLSTM cells. The figure on
the left shows the model where the layers used are LSTM cells..
Comparison of loss evolution between LSTM and BiLLSTM autoencoders.
The top left figure shows the models using 2 layers. The top right figure
shows 4 layers. The bottom left figure shows 6 layers, and the bottom right
figure shows 8 layers..
Comparison of the loss evolution for different time windows, for time win-
dows of 6, 60, 350, and 1050 time steps. The left figure shows the model
where the layers are LSTM cells, and the right figure shows the model
where the layers are BILSTM cells..
Loss evolution comparison between LSTM and BiLSTM autoencoders. The
top left figure shows the models using 6 time steps. The top right figure
shows 60 time steps. The bottom left figure shows 350 time steps, and the
bottom right figure shows 1050 time steps..

xvii

83

5.10

5.11

0.12

5.13

5.14

Trend slope over time, for the trend slope predictor built with (a) 2 candles,
(b) 4 candles, (c) 6 candles, (d) 8 candles, (e) 10 candles, and (f) 12 candles.
The curves in purple show the true values of the slope, whereas the curves
in blue show the predicted values. The slopes are shown for train and test
samples
The curves of Score and Balance for an agent with no use of the prediction
module. The red curve shows the moving average of 100 periods of both
score and balanceo
The curves of Score and Balance for an agent with the use of the prediction
module. The red curve shows the moving average of 100 periods of both
score and balanceo Lo Lo
The curves of Score and Balance for an agent with memory but no use of
the prediction module. The red curve shows the moving average of 100
periods of both score and balance
The curves of Score and Balance for an agent with memory and use of the
prediction module. The red curve shows the moving average of 100 periods

of both score and balance

xviii

2.1

2.2

2.3
2.4

2.5

2.6

4.1
4.2
4.3
4.4

0.1

5.2

5.3

5.4

2.5

List of Tables

Distribution of the number of times each technical indicator was selected
by the feature selection methods across seven markets; work by Peng
Number of times each technical indicator commonly used in the literature
appears in the feature selection; work by Peng.
The most selected indicators by the methods proposed by Anwar Ul Haq .
Technical indicators most selected by the two-stage method proposed by
Gang Ji
Technical indicators selected by qualified personnel, according to the work
of Fagner A. de Oliveira

Comparison of this work with related works

Selected Trend Following Technical Indicators
Selected oscillator indicatorso L
Indicators chosen from volume, volatility and cycle

All indicators presented at the model input

Performance of LSTM and BiLSTM autoencoders according to different
dimensions for the context vector and according to different metrics
Performance of LSTM and BiLSTM autoencoders according to different
numbers of layers used in the encoder and decoder
Performance of LSTM and BiLSTM autoencoders according to different
numbers of layers used in encoder and decoder
Metrics, considering a sideways market class with a length of 0% of the
standard deviation. Variation from 2 to 10 candles for the linear regression
set. (Test Samples) L
Evaluation metrics, considering a sideways market class with a length of
5% of the standard deviation. Variation from 2 to 10 candles for the linear

regression set. (Test Samples) L

Xix

2.6

2.7

5.8

2.9

5.10

5.11

5.12

0.13

5.14

5.15

5.16

5.17

5.18

5.19

0.20

5.21

5.22

Evaluation metrics, considering a sideways market class with a length of
10% of the standard deviation. Variation from 2 to 10 candles for the linear
regression set. (Test Samples) L L
Evalutaion metrics, considering a sideways market class with a length of
15% of the standard deviation. Variation from 2 to 10 candles for the linear
regression set. (Test Samples) L oL
Evaluation metrics, considering a sideways market class with a length of
20% of the standard deviation. Variation from 2 to 10 candles for the linear
regression set. (Test Samples) L oL
Evaluation metrics, considering a sideways market class with a length of
25% of the standard deviation. Variation from 2 to 10 candles for the linear
regression set. (Test Samples) oL
Evaluation Metrics, considering a threshold of 0.5 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)
Evaluation Metrics, considering a threshold of 0.55 in Argmax, from 2 to
14 candles taken for linear regression. (Test samples)
Evaluation Metrics, considering a threshold of 0.60 in Argmax, from 2 to
14 candles taken for linear regression. (Test samples)
Evaluation Metrics, considering a threshold of 0.65 in Argmax, from 2 to
14 candles taken for linear regression. (Test samples)
Evaluation Metrics, considering a threshold of 0.70 in Argmax, from 2 to
14 candles taken for linear regression. (Test samples)
Evaluation Metrics, considering a threshold of 0.75 in Argmax, from 2 to
14 candles taken for linear regression. (Test samples)v.
Evaluation Metrics, of Bitcoin, from 2 to 14 candles. (Test samples)
Evaluation Metrics, of Ethereum, from 2 to 14 candles. (Test samples)
Evaluation Metrics, of Ripple, from 2 to 14 candles. (Test samples)
Evaluation Metrics, of Cardano, from 2 to 14 candles. (Test samples)
Evaluation Metrics, of the Trend Slope Regressor, from 2 to 10 candles.
(Test samples)o
Evaluation of score, for different Rainbow configurations: mean of the last
100 periods, mean of the last 1000 periods, standard deviation of the last
100 periods, and standard deviation of the last 1000 periods
Evaluation of balance, for different Rainbow configurations: mean of the
last 100 periods, mean of the last 1000 periods, standard deviation of the
last 100 periods, and standard deviation of the last 1000 periods

XX

100

. 100

Acronyms

A3C Asynchronous Advantage Actor-Critic.
ADX Average Directional Movement.
ANN Artificial Neural Network.

ATR Average True Range.

CCI Commodity Channel Index.

CNN Convolutional Neural Network.

DPO Detrended Price Oscillator.

DQN Deep Q-Network.

GAN Generative Adversdrial Networks.

GRU Gated Recurrent Unit.
LSTM Long Short-Term Memory.

MACD Moving Average Convergence Divergence.
MAE Mean Absolute Error.

MAPE Mean Absolute Percentage Error.

MOM Momentum.

MSE Mean Squared Error.
NATR Normalized Average True Range.

OBYV On Balance Volume.

poel

PPO Percentage Price Oscillator.

RMSE Root Mean Squared Error.
RNN Recurrent Neural Network.
ROC Rate of Change.

RSI Relative Strength Index.

Stoch Stochastic.

SVR Support Vector Regression.
TR True Range.

VAR Variance.

WMA Weighted Moving Averages.

xxii

Chapter 1

Introduction

1.1 Contextualization and Problem

In 1970, Eugene Fama enunciated the theory of efficient markets [21], according to which
all available information about a given asset is already included in the price of that asset.
The inevitable conclusion that leads to this theory lies in the impossibility of the investor
obtaining significant gains since he will never have access to more information than that
already contained in the asset’s current price. Any speculation about the future price
is completely irrational and even useless. In its mathematical formulation, the theory
of efficient markets assumes that market prices have the form of a random walk [22], a
stochastic process that has an unpredictable nature and is independent of the sequence of
states it assumed in the past; thus, even observing its entire history, it is not possible to
say anything about the possibilities that the process will take in the future. The efficient
markets hypothesis has had such cultural traction in finance circles that Michael Jensen, a
professor at the University of Chicago, was able to write in 1978 that "the efficient markets
hypothesis is the best established empirically supported fact in all of economics' [23]. He
says: "It has evolved from a mere curiosity, taken seriously by only a few scientists, to the
dominant paradigm in finance."

However, there is a wealth of studies in the financial literature aimed at analyzing
potential or even common market inefficiencies and statistically refuting the hypothesis
of efficient markets. For example, in the studies by Andrew Lo and A. Craig MacKinlay
[24], using variance estimators, evidence is shown that the random walk is not a consistent
model with stock prices, since when taking certain time intervals and evaluating the price
variance in these intervals, there will be a discrepancy about what is expected from a
random walk. The work of Shleifer and Summers [25] proposes an alternative to the
theory of efficient markets that says that investors are not entirely rational and that their

demands for risky assets are affected by their beliefs or feelings that are not fully justified

by the news fundamental. These studies highlight the theoretical plausibility of financial
speculation and the possibility of consistent prediction of asset prices, together with the
theoretical feasibility of building a predictor since the market is not always efficient. Even
so, the prediction task is still acutely difficult, and several predictor models or simple
strategies have been tested and retested under this task, mainly to find valuable market
inefficiencies. In particular, this is still a widely studied and debated topic.

A common mistake in efficient market theory is to neglect that markets are made up of
people, and people are not always completely rational, fully understanding the information
contained in asset prices, or never assuming incorrect information. On the contrary,
sometimes people follow emotions brought about by the essential market volatility much
more than they follow previously established rational assumptions and strategies. One of
the best-known phenomena in financial psychology is the disposition effect [26]. Named
after Hersh Shefrin and Meir Statman, it states that investors tend to sell an asset that
is making a profit too quickly, failing to take advantage of its full potential profit, and,
in addition, they also tend to hold on to an asset that is making a loss too long, in the
hope that it will reverse its price and become profitable, leading to losses increasingly
and continuously. Thus, it can be said that investors hate losses much more than they
love profits, which undermines the theory of efficient markets because if a good portion
of investors who embody the market have such a pattern of behavior, it shows a blatant
inefficiency of the market. The causes of this type of psychological phenomenon can be
many and were well studied by Shefrin and Statman [26]. They proposed that losses are
much more emotionally charged than profits. This is because they can affect deep feelings
that are even rooted in the investor’s life history, while profits affect more superficial
feelings. The depression of losing money can hurt a search for personal self-affirmation
in the markets, lead to an intolerance to regret, and cause a sometimes inescapable lack
of self-control, while profit always leads to a feeling of euphoria, which is much more
superficial and does not touch on so many critical points of the investor’s personality,
psyche, and personal history.

Assuming that markets are not entirely efficient, it becomes possible to generate prof-
its through trading. This possibility arises because inefficiencies create opportunities for
traders to exploit price discrepancies, capitalize on trends, or identify undervalued or over-
valued assets. Researchers have proposed various market rules to guide investors in their
decisions, using historical price movements and trading volume in the form of technical
analysis. This analysis helps forecast the continuation or reversion of market trends by
identifying patterns in past price data. Nevertheless, manual trading remains difficult due
to market uncertainty, emotional influences on traders [26], and the infinitude of indicators

and other financial data [27]. Algorithmic trading, incorporating machine learning tech-

niques, offers a solution. By automating the decision-making process, machine learning
algorithms can analyze vast amounts of historical and real-time data to identify actionable
patterns and trends with greater accuracy and speed than human traders. Techniques
such as classification, regression, and clustering allow models to predict market directions,
classify market states, and detect anomalies.

This is the first problem addressed in this work: based on the theoretical possibility of
market inefficiency, accurately identify their trends, which can be bullish if it is an uptrend
or bearish if it is a downtrend. This is done via Machine Learning, with techniques such as
classification and regression, which allow models to predict market directions, and classify
market trends. Deep learning techniques, particularly Convolutional Neural Networks
(CNN) and long short-term memory (LSTM) layers, have proven effective for financial
forecasting in the cryptocurrency market. LSTM layers efficiently capture sequential
patterns in both long- and short-term dependencies, whereas convolutional layers serve
to eliminate noise from intricate time-series datasets and extract valuable patterns [5].

The second problem addressed in this work is about what to do with the information
given by the identification of trends, specifically: How to trade and make a profit with
this information. To solve this problem the Rainbow DQN algorithm is suggested, as it
is one of the best deep reinforcement learning algorithms available, even more: a little
change is implemented to make the algorithm better suited to time series, which uses
recurrent layers at the beginning of the neural network.

The literature presents a variety of models aimed at predicting the dynamics of finan-
cial markets, often achieving impressive results in price prediction. For instance, Selvin
et al. compare classical econometric methods with cutting-edge deep learning techniques,
concluding that the latter are superior [3]. Similarly, Zhanhong He et al. study differ-
ent architectures for predicting gold prices, identifying a combination of CNN, LSTM,
and attention mechanisms as the most effective [4]. Zhuorui Zhang et al. develop a ro-
bust price prediction regressor using memory and convolutional layers that consider the
interrelations between cryptocurrencies [8]. In another study, loannis E. Livieris et al.
create a CNN-LSTM-based neural network to predict gold prices, which shows promising
results in regression but falls short in trend classification, with accuracy close to random-
ness [5]. Livieris et al. also propose a non-sequential CNN-LSTM neural network for price
regression and trend classification, again finding trend classification results near random-
ness [28]. Yanhui Liang et al. take a different approach by decomposing gold prices into
various frequencies before feeding them into a CNN-LSTM structure, though they do not
test the model in trend classification [6]. Sima Siami-Namini et al. compare Bidirec-
tional Long Short Term Memory (BiLSTM) and LSTM for price prediction, showing that

BiLSTM achieves lower errors, but they do not test the model in trend classification [7].

Iromie K. Samarasekara et al. focus on risk management rather than trading, developing
a dynamic Stop-Loss tool that uses a CNN-LSTM trend classifier to feed a price regressor,
the study showed good results compared to other tools of risk management [9]. Faraz et
al. enhance an LSTM price regressor with an LSTM autoencoder, achieving good results
in price prediction but not testing it in trend classification [29]. Despite these successes
in price prediction, trend prediction often yields poor results. To address this gap, the
current study proposes a novel trend classification method using a robust BILSTM-CNN
model and suggests linear regression for better sample labeling in trend slope regression
and classification tasks.

Yasmeen Ansari et al. [10] propose leveraging deep reinforcement learning for finan-
cial market analysis. Their approach utilizes a neural network that processes market
data, indicators, and future price estimates. To generate these estimates, a secondary
neural network predicts the next price values. The predictive model demonstrated strong
performance in terms of root mean square error and mean absolute error, while the rein-
forcement learning agent achieved significant profitability. Xing Wu et al. [11] explore two
machine learning-based trading strategies: the Gated Deep Q-Learning Trading Strategy
and the Gated Deterministic Policy Gradient Trading Strategy. Their results indicate that
these strategies generate more buy and sell signals compared to traditional approaches
and outperform other state-of-the-art reinforcement learning strategies in profitability.
Similarly, Akhil Raj Azhikodan et al. [12] integrate a trend prediction module based on
sentiment analysis with reinforcement learning. The trend predictor employs a recurrent
neural network to analyze financial news, while the reinforcement learning module uses
the Deep Deterministic Policy Gradient algorithm. The results showed a test accuracy of
approximately 96.88%, confirming the feasibility of predicting trends based on financial
news. Salvatore Carta et al. [13] take a novel approach by converting numerical market
data into image representations, which are then processed by a deep reinforcement learn-
ing agent for trading decisions. Their results demonstrate that this method significantly
outperforms the traditional Buy and Hold strategy.

This project integrates the ideas of Ansari and He with others, proposing a system
based on three modules: the feature engineering module, the price and trend prediction
module, and the trading module. The first will be responsible for selecting the input
variables, preprocessing them, and compressing them using an autoencoder; the second
will be responsible for estimating market trends; and the third will use the information on
market trends and perform purchases and sales using reinforcement learning, specifically
using the Rainbow DQN algorithm.

1.2 Objetives

This work is founded and developed on the potential for prediction, the challenge of
recognizing market trends, and the buying and selling of assets based on knowledge of
these trends. Thus, a solution is proposed for identifying trends through deep learning
linear regression and the purchase and sale of assets based on deep reinforcement learning,

with an improvement in memory in its neural network.

1.3 Document structure

The remainder of this document is organized as follows: Chapter 2 presents a summary of
related work, aiming to present the most recent technologies proposed related to the topic
and which in some way influenced this work. It also highlights gaps in some key works
and how this work intends to fill these gaps. Chapter 3 presents a theoretical review,
aiming to review the neural network architectures and machine learning algorithms used
in this project. Chapter 4 presents the methodology proposed for this research project,

Chapter 5 presents the experiments and results, and Chapter 6 presents a conclusion.

Chapter 2

Related Works

This chapter presents a consistent overview of works related to the problems discussed in
the first chapter, aiming to provide an adequate conception of the most recent technologies
and discussions on machine learning applied to finance. In this sense, we seek to identify
possible gaps that may have been neglected by other researchers, situate the present work
in the general context of the subject addressed, and form a solid understanding of the

contributions already made.

2.1 Work related to feature selection

One of the most typical problems in financial analysis is the number of features that exist.
features are the various data that will serve as input to the system, serving, in the specific
context of finance, as sensors that will form the perception of the market, distinguishing
and identifying the main signals and patterns relevant to buying and selling. These
features may or may not provide useful information for the analysis. Numerous features
have been proposed, studied, and tested in the financial literature over the years. The
number of factors (or features) indicated in the literature is so large that it led Cochrane
[30] to coin the term factor zoo. This zoo of factors includes a whole range of variables
that provide information about a given asset. If the asset is a company’s share, then
examples of factors to be analyzed include the company’s size, its profitability, the share’s
momentum, and its volatility, among others.

But despite the large number of factors, only a small subset of them will be truly
informative. Taking a very large set of factors will inevitably result in redundant infor-
mation and unnecessary noise in the study. An example is the study by Kozak, Nagel,
and Santosh [31] who applied dimensionality reduction techniques to 130 different finan-
cial factors and showed that a very small number of principal components was able to

represent almost all the information in the set.

Selecting a subset of the total set of features that is truly informative can be a com-
putationally expensive task. Assuming that the total set of features has cardinality n,
performing an exhaustive search to find the best subset implies analyzing 2" subsets,
which makes an exhaustive search completely impractical, even for moderate values of n.

Of the variable selection algorithms, some find the optimal subset and some find
a suboptimal subset; there are those that are deterministic and always find the same
subset, and there are those that are stochastic and can find a different subset in each
round [32]. Of all the divisions and possible taxonomies, variable selection methods are
usually divided into three broad groups: those based on filters, those based on wrappers,
and those embedded . [33].

Filter-based algorithms focus on the statistical properties of features. Such algorithms
assume that certain statistical properties make the feature more informative to the ma-
chine learning model. For example, a common metric to evaluate the informativeness of
a feature is its variance, assuming that features with higher variance should be included
in the selected subset, while those with lower variance should be disregarded. Another
common metric is the correlation between the specific feature and the output, where those
with a higher correlation would be more informative and would therefore be selected by
the filter-based algorithm. The advantage of these algorithms is that their computational
cost is relatively low since it is enough to only measure the statistical components and
rank these variables according to these components. Furthermore, these methods usu-
ally avoid overfitting [33]. The disadvantage is that these algorithms disregard intrinsic
relationships that may exist between the different inputs, which can be quite informative.

Wrapper-based methods evaluate features according to their performance in a given
machine-learning model. A subset of features is initially formed, and at each iteration of
the wrapper-based method, this subset of features will be modified, adding or subtracting
features. However, for each iteration of the wrapper based method, the machine learning
algorithm must be retrained. This is why these methods are generally computationally
very expensive, and this is their main disadvantage. However, since these methods evalu-
ate features together, wrapper-based methods can capture intrinsic relationships between
features, which is an advantage over filter-based methods. [33]

Embedded methods make feature selection an integral part of the training process.
Therefore, the selection of the optimal training set occurs concurrently with model train-
ing. [33] This approach makes embedded methods less computationally expensive than
wrapper-based methods, and they can also evaluate the intrinsic relationships present
in the features. Thus, such methods have significant advantages over filter-based and
wrapper-based methods.

The work of Tong Niu et. al. [34] performed a two-stage feature selection; in the

first, a filter-based selection was performed, and in the second a wrapper-based selection
was performed. For the feature to pass to the second stage, it was first necessary to pass
through the first. Thus, the first stage already significantly reduces the number of features
and the second reduces it even further. The technique used in the first stage is called
RReliefF-based feature selection. The technique used in the second stage is known as
multiobjective binary grey wolf optimizer with Cukoo search. To use the feature selection
techniques, 16 features and three datasets were used: the Shangzheng Composite Index,
the Shangzheng Fung Index, and the Dow Jones Industrial Average. The results showed
that the most informative indicator was the closing price, followed by the indicator change
(which is the difference between the closing price of the day and the closing price of the
previous day), high (which is the maximum price of the day), and opening (which is the
opening price of the day); it is noted that the volume indicator only ranked well when
the Shangzheng Fund Index was used, and the Circulation Market Value indicator only
appeared well in the rankings when the Shangzheng Composite Index was used.

Yaohao Peng et. al. [35] analyze 120 technical market indicators using two wrap-
per-based methods and one embedded method. Namely: Sequential Forward Floating
Selection Algorithm (SFFS), Tournament (TS) Screening Algorithm, and Least Absolute
Shrinkage and Selection Operator (LASSO). The data were collected from firms that com-
posed financial indices of seven markets, namely: the United States (S&P 100 Index), the
United Kingdom (FTSE 100 Index), France (CAC 40 Index), Germany (DAX-30 Index),
Japan (Top 50 assets from the NIKKEY 225 Index), China (Top 50 assets from SSE 180
Index), and Brazil (Bovespa Index). The 24 indicators most selected by these methods are
shown in Table 2.1. Since there are seven markets and three feature selection methods,
each of the indicators can be selected a maximum of 21 times.

Furthermore, Peng’s work seeks to select from the 51 most widely used and discussed
technical indicators in the literature. These same indicators are used in the same seven
data sets indicated above. Below, in table 2.2, are the results for these best-known
indicators:

The work of Anwar Ul Haq et. al. [36] performs feature selection using three feature
selection algorithms: L1-LR-feature ranking, SVM-based feature ranking, Random Forest
feature ranking, and multi-filter feature selection. The total feature set consists of 44
technical market indicators calculated from the data of 88 stocks. After selecting the best
subset of features, all these variables are fed into a deep generative model. The result
was that the model obtained an accuracy of 59.44%; the twenty most selected features
are shown in Table 2.3.

The work of Gang Ji et. al. [37] performs a pre-processing of the technical indicators

using the wavelet transform, thus reducing the noise present in these indicators, which,

Table 2.1: Distribution of the number of times each technical indicator was selected by
the feature selection methods across seven markets; work by Peng

Indicator’s name Times selected
DPO - Detrended price Oscilator 21
HULL — HULL Moving Average 16
MFM — Money Flow Multiplier 16
ADO — Acumulation Distribution Oscilator 15
APO —Absolute Price Oscilator 15
BIAS —Bias 15
DEMA — Double Exponencial Moving Average, 15
VOLAT - Volatility 15
MOM — Momentum 14
NVTI — Negative Volume index 14
RVI - Relative Vigor Index 14
VOLR - Volume Ratio 14
ADX — Average Directional Index 13
BB BW - Bollinger Bands Width 13
DMI — Directional Movement Indicator 13
DSS — Double Smoothed Stochastic 13
STRSI — Stocastic RSI 13
FORCE — Force Index 13
ADL — Accumulation Distribution Line 12
ATRP — Average True Range Percent 12
DIU — Directional Indicator Up 12
MASS — Mass index 12
NATR — Normalized Average True Range 12
ULTOSC — Ultimate Oscilator 12

after undergoing a two-stage feature selection procedure, used to feed a random forest
model. The feature selection method was based on wrapper, and the optimal subsets
were formed by elimination. The result was that the wavelet transform improved the
accuracy, precision, recall, and F1 by about 30% each. The indicators most selected by
the algorithms are shown in table 2.4

The work of Fagner A. de Oliveira et. al. [38] differs in that it selects variables
manually without resorting to selection algorithms; instead, it uses the opinions of finan-
cial analysts and investors with knowledge and experience in the area. In the work, a
multiple-choice questionnaire was made available to 50 investors, and they were asked
to choose which indicators, between fundamentalist and technical, were most efficient.
The profile of the investors was as follows: 50% have more than 3 years of experience in
the market, and 80% operate in the short and medium term; in addition, 100% of the
investors claim to use technical indicators. These indicators, once selected, will feed a

simple artificial neural network model, composed of an input layer, a hidden layer, and

Table 2.2: Number of times each technical indicator commonly used in the literature
appears in the feature selection; work by Peng.

Indicator’s Name Times selected
ADO — Acumulation distribution oscilator 16
BIAS — Bias 14
DIU — Directional Indicator UP 14
MACD - Moving Average Conv/Div 14
VOLR — Volume Ratio 14
VOLUME - Volume 14
CCI — Commodity Channel Index 13
DID- Directional Indicator Down 13
LPR — Lowest Price Ratio 13
NVI —Negative Volume Index 13
STOCH K - Stochastic K% 13
WILL R - William’s R% 12
REX — Rex Oscilator 12
VARR - Variance Ratio 12
ARATIO — A ratio 11
DISP — Disparity 11
DMI — Directional Movement Indicator 11
STOCH D - Stochastic D% 11
HPR — Highest Price Ratio 10
MPP —~Moving Price level Percentage 10
PPO — Percent Price Oscilator 10
PSY — Psychological Line 10
ROC — Rate of Change 10
WMA — Weighted Moving Average 10
MOM - Momentum 09
VOLAT — Volatility 09

an output layer. From a group of 46 variables, only 15 were selected, 11 of which were
composed of technical indicators. The indicators used are shown in Table 2.5. The re-
sults presented showed an average absolute percentage error of approximately 5.5% for
the predictor system composed of the neural network.

However, even with variable selection carried out methodically and scientifically, the
number of input variables is still reasonably large, which results in longer training times,
which, depending on the machine being used, may take an unfeasible amount of time.

The work of Faraz et. al. [29] uses an autoencoder to perform the work of compressing
the information from technical indicators. To do this, both the encoder and the decoder
use LSTM cells. After the information has been encoded and the dimensionality of the
input set has been reduced, the data is fed into a neural network composed of LSTM cells,

which in turn predicts prices. The results were compared with the Generative Adversarial

10

Table 2.3: The most selected indicators by the methods proposed by Anwar Ul Haq

Indicator’s name Times Selected
PLUS-DI - Plus directional indicator
PPO - Percentage Price Oscillator
TRANGE - True Range

AD - Chaikin A/D Line

MOM - Momentum

CP - Close Price

MACD - Moving Average Conv/Div
MACDH - MACD Histogram
MACDS - MACD signal

ROC - Rate of change

ADX - Average DX

ADXR - ADX Rating

DX - Directional Movement Index
WMA - weighted MA

NATR - Normalized ATR

OP - Opening Price

SD - Slow Stochastic D%

e

NN DNDNDNDNDDNDDNDNDND WWER & &

Networks (GAN) model and were shown to have a lower error.

2.2 Work related to price prediction

The task of price prediction is usually difficult, as it requires an appropriate selection of
variables that will feed the model, in addition to a very appropriate choice of machine
learning architecture that will be necessary to understand price patterns. Generally, the
prediction task can be of two types: simpler: the model simply predicts whether the value
of future prices will be higher or lower than the current one, using a classification model,
which is commonly called trend prediction; or more complex: if the model predicts the
nominal value of future prices, and uses a regression model, which is better known as
price prediction itself.

The work of Jigar Patel et. al. [1] performs a price prediction based on two stages.
The first stage uses Support Vector Regression (SVR) to predict the future behavior of
ten technical indicators, and the second stage takes as input the estimates from the first
stage and applies them to a second SVR Artificial Neural Network (ANN) and a random
Forest. The prediction result was better for the model using SVR+ANN. In this work,
the chosen features are determined experimentally, and the author suggests that a feature

selection technique could improve the model’s performance. The author also suggests that

11

Table 2.4: Technical indicators most selected by the two-stage method proposed by Gang
Ji

Indicator’s name

WR — Willians %R

ULTISC — Ultimate Oscilator
CCI — Commodity Chanel Index
ROC — Rate of Change

FASTK - Stochastic fast K%
VAR — Variance

PRICE C — Price Change

RSI — Relative Strength Index

the model be fed with an attribute that informs the model of news values, according to
the labels: good, great, bad, and very bad.

Yaohu Lin et. al. [2] implement a prediction model using as inputs thirteen candlestick
patterns and eight patterns based on the Chinese Taoist trigram that reflect the day’s
fluctuations, in addition to twenty-one technical indicators. All these inputs go through an
ensemble machine learning framework that includes logistic regression, support vector ma-
chine, K-nearest neighbor, gradient-boosting decision tree, and long-short-term memory.
Thus, the machine learning model that best predicts the direction of future candlesticks
is selected. The accuracy of the proposed model is over 60% and far surpasses the buy
and hold technique, thus highlighting the relevance and originality of using trigrams as
input variables.

Sreelekshmy Selvin et. al. [3] compare the performance of three types of machine
learning: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and
Convolutional Neural Network (CNN). The model is based on a sliding window. The
window size is 100 minutes, and 90 minutes of information is used to predict 10 minutes
ahead. The results show that CNN performs better than RNN and LSTM. The author
argues that due to the dynamic nature of the market, it CNN performs better than RNN
and LSTM since it relies only on current information, not giving as much importance to
patterns learned in the past that may not always be realized. Furthermore, the author
notes that it CNN can identify sudden changes in trends.

In the work of Zhanhong He et. al. [4] a deep learning model based on the combination
of LSTM and convolutional neural networks with an attention mechanism to predict gold
prices is proposed and developed. The results showed that using the LSTM layer first and
then the CNN layer yields better results than using the CNN layer first and then LSTM.
Furthermore, using an attention mechanism after the LSTM layer and before the CNN
layer further improves the results. The author concludes that using CNN first causes a

loss of information in the features—information that would be useful to the LSTM layer.

12

Table 2.5: Technical indicators selected by qualified personnel, according to the work of
Fagner A. de Oliveira

Indicator’s name

Opening Price

Closing Price

Maximum price

Minimum Price

Volume

Bovespa Index Percent Variation
NYSE dow Jones index
Ibovespa Volume

US ending stocks

MACD

Relative Strength Index
Stochastic index

OBYV index

Moving Averages

Bollinger Bands

Momentum

Williams Percent Range (%R)

The author also suggests that the use of BiILSTM could provide even better results.

loannis E. Livieris et al. [5] also work under the aegis of CNN and LSTM neural
networks for gold price and movement prediction. The proposed model exploits the ability
of CNN networks to extract important information and learn the internal representation
of time series, as well as the ability of LSTM networks to learn long-term and short-term
dependencies. In this work, although the results for price prediction were very good, with
errors very close to zero, the results for trend prediction were average.

Yanhui Liang et. al. [6] also focus their efforts on the gold price prediction. To do
so, gold prices are first decomposed into components of different frequencies according
to the improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) algorithm, then each of these components passes through layers of neural
networks such as CNN and LSTM, and finally, the price is estimated. The authors found
that decomposing the price into multiple frequencies can increase the prediction accuracy,
and the prediction effect is better than other decomposition methods.

Sima Siami-Namini et. al. compare the performance of a LSTM and BiLSTM in the
price prediction task [7]. The author argues that BiLSTM is expected to perform better
than simple LSTM in tasks such as guessing the next word in a sentence, however, it was
not clear whether BiLSTM could perform better for the task of predicting time series.
The results showed that the accuracy when using BiLSTM in this type of task was 37.78%

13

higher than when using LSTM. However, training BiLSTM is much more laborious than
simple LSTM. The advantage of using BIiLSTM on financial data is that the model will
be trained in both directions (from input to output and from output to input).

The work of Zhuorui Zhang et. al. [8] innovates by focusing its price prediction work
on volatility and strong correlations between cryptocurrencies. A prediction system based
on three modules is proposed: the attentive memory module, based on a Gated Recurrent
Unit (GRU) layer and a self-attention mechanism; the channel-weighting module; and the
convolution and pooling module. The attentive memory module captures short- and long-
term dependencies through Gated Recurrent Unit (GRU), however, this same component
has difficulty in measuring the real importance of instances delayed in time. The self-
attention mechanism, in turn, makes it possible to select important information in several
time intervals. The channel-weighting module explicitly models the interdependencies
between channels, which is important in the case of cryptocurrencies since the price of
some is generally linked to the price of others. The convolutional module identifies the
form that the features can take. The mean absolute percentage error, accuracy, and other
validation measures were calculated, and it was found that the model proposed by these
three modules outperformed all other known models, such as CNN, LSTM, or GRU, in
all metrics.

The work of Iromie K. Samarasekara et. al. [9] focuses on the dynamics of stop-loss.
While most research focuses on building a price prediction system to assist in purchases
and sales, this work focuses on its predictor system to assist in placing Stop-Loss. To this
end, the author uses CNN and LSTM networks to estimate the future trend, using this
result as input for the future price prediction system. After that, both the future trend
predictor and the price predictor will serve as input to a regression neural network, also
based on CNN and LSTM, responsible for placing the Stop-Loss. This neural network was
trained according to an algorithm. The results showed that the losses using the proposed
strategy were much smaller than the losses of the usual strategies with the fixed stop-loss

and the trailing stop.

2.3 Work related to the use of reinforcement learning

The approach of applying reinforcement learning to robots that operate in financial mar-
kets is particularly laborious since it involves several complicated design aspects. The
first aspect is clearly defining the problem to be solved and what objectives should be
achieved. Next, it is necessary to choose the architecture that will make up the agent. If
it is composed of an artificial neural network, it is necessary to identify which types of

neural networks are most suitable for solving the problem in question. It is also imperative

14

to define what rewards and punishments will be provided by the environment and that
will teach the agent what to do. Another aspect is the engineering of the actions to be
performed: in the financial environment, they can be just buying, selling, and doing noth-
ing. However, the actions defined in this way do not take into account the probabilities of
success of each action based on the conditions displayed by the market; for example, there
are times when it is better to buy a lot since the probability of success is high, and there
are times when it is better to buy a little if the probability of success is more uncertain.
Another aspect is the engineering of exploration vs exploitation, which will define whether
the agent should explore more unknown possibilities in the environment or whether it
should act more in the field of already known possibilities; acting in the known field will
make the agent an expert in that specific part of the environment, but staying only in
what is known denies possibilities that could be very promising for the agent’s objectives.
Finally, there is the computational aspect, since training the agent is a time-consuming
process that involves high computational processing costs.

The work of Yasmeen Ansari et. al. [10] proposes the approach of using deep rein-
forcement learning. To do so, a neural network is fed with both past market data and
indicators, as well as future data and indicators. To estimate future data and feed the
deep neural network responsible for reinforcement learning, another neural network is
used to predict prices. More specifically, for each time step, the predictor module es-
timates the future candles related to that state. The neural network used to build the
predictive module was a GRU with hyperbolic tangent as the activation function because
it is less complex and faster than Long Short-Term Memory (LSTM). The architecture
of the reinforcement learning module consists of a densely connected neural network with
three hidden layers, each with 24, 12, and 8 neurons, followed by a dropout layer, which
in turn is followed by a last layer with three neurons, representing the action space: buy,
sell, and hold. The agent’s reward is the total profit that the agent can extract from the
market itself. The predictive model achieved good results for the root mean square error
and mean absolute error. In addition, the agent based on reinforcement learning also
achieved good profit results.

The work of Xing Wu et. al. [11] uses two machine learning methods as market trading
strategies: gated deep Q-learning trading strateqy and gated deterministic policy gradient
trading Strategy. To this end, both strategies use Gated Recurrent Unit (GRU) a module
for extracting financial information. The first consists of only one critic module, using two
neural networks, one for) and the other for Q'9¢. The second uses an actor module
and a critic module, this time using four neural networks, two for each module. The
results showed that the two proposed strategies generate more buy and sell signals than

common strategies, in addition to being more profitable than even other state-of-the-art

15

reinforcement learning strategies. It is also important to say that the strategies capture
more opportunities in the market to achieve more stable returns under more acceptable
risk.

The work of Akhil Raj Azhikodan et. al. [12] builds a trend prediction module based
on sentiment analysis to work in conjunction with the reinforcement learning module.
This prediction module is based on a recurrent neural network that uses financial news
data. The reinforcement learning module uses the Deep Deterministic Policy Gradient
algorithm, which is an algorithm that uses stochastic behavior for good exploration of the
environment, but seeks a deterministic policy; it is an algorithm that fits into the actor-
critic category. The neural network responsible for sentiment analysis uses convolutional
neural networks LSTM because a simple RNN would fail to identify discriminative phrases
for sentiment analysis. With a convolutional layer, this type of phrase is more easily
identified. In addition, the convolutional layer can better capture the semantics of the
text when compared to a RNN. The results showed a test accuracy of around 96.88%,
which proves that trends can be predicted based on the news.

The work by Salvatore Carta et. al. [13] proposes transforming numeric data into
image data and then feeding it to an agent based on deep reinforcement learning to
perform financial purchase and sale operations. The transformation of numerical market
data into two-dimensional data occurs through CNNs since CNNs can clarify details about
these images that would be much less noticeable in numerical format. To this end, about
a hundred CNNs are generated with different initialization parameters. Then, each of
these CNN will provide a different image as output; these outputs, in turn, will undergo
a selection process based on reinforcement learning; the best outputs will then be used to
feed a set of agents based on deep reinforcement learning and these, in turn, will perform
the buying and selling actions. The results showed that the proposal far outperforms
the Buy and Hold strategy. The agent was able to increase an initial investment of USD
200,000.00 in the S&P market by USD 45,050.00, representing a return of almost 50%
Over seven years.

Yang Li et. al. [14] suggest in their work some techniques to filter some types of
noise that notably affect the performance of automated trading based on agents trained
by reinforcement learning. First: market trends are influenced by news released in the
media, and an agent based on reinforcement learning usually has raw market data and
technical indicators as input variables; the author suggests that the agent only starts
trading at a time when the immediate effect of the news has already passed. Second, the
market with low volatility is being traded by individual and non-institutional investors,
which generates noise that is disadvantageous for the agents. The work also innovates

by proposing a more complete state of actions: instead of assigning the agent only three

16

actions (buy, sell, and hold), a set of actions is assigned. Going from —n to n, thus varying
the volume of assets that are being bought and sold. Two architectures are proposed for
the agent: an extended version of DQN, which uses an LSTM layer as the output layer;
and an A3C architecture that also uses LSTM layers as output layers. The results showed
that both the DQN-extended and A3C-extended cases obtained better performance than
the original agent models. The results also show that the A3C-extended model performs
better than DQN-extended, the author explains that this is because the models are too
complex to learn the Q-value function, and the advantage of A3C is that it is based on

both the policy and the Q-value function.

2.4 Innovations and relationships of this project with

other works

This project has three distinct modules: the feature engineering module, the trend pre-
diction module, and the trading module. The first module is related to work related to
variable selection and noise and dimensionality reduction. The second module is related
to work related to trend prediction, and the third module is related to work related to
reinforcement learning.

The input variables for this project were selected based on the best-selected variables
chosen from the works of Peng et. al. [35], Haq et. al. [36], Gang Ji et. al. [37] and
De Oliveira et. al. [38]. These variables were chosen to cover information from different
types of technical indicators, namely: trend followers, oscillators, volume indicators, and
cycle indicators. In this way, all families of indicators are covered.

Once the set of variables has been selected and useful information has been ensured
in this set, the information passes through a process of filtering the market noisy and
dimensionality reduction, for this aim, an autoendcoder is proposed and differently of the
work of Faraz et al. [29], The proposed architecture is made with BiLSTM; furthermore,
his work dos not present a trading module and a sophisticated architecture for trend
prediction like this one. So the project is responsible for structuring the architecture of
the price and trend prediction tools. To this end, the works of Samarasekara et. al. [9],
Siami-Namini et. al. [7], Zhanhong He et. al. [4] served as inspiration, but unlike their
work, this one applies market noise reduction and it has a trading prediction module.
Samarasekara’s work builds a trend predictor and a price predictor, where the output of
the first serves as input to the second. The trend predictor is built with a convolutional
neural network followed by an LSTM network, while the price predictor is built with the
LSTM network before the convolutional network. The work of Samarasekara et. al. is

inspired by the work of Zhanhong He et. al, where the author builds a price predictor

17

in the same way as Samarasekara to predict the price of Gold. However, one of the
differences between the other is that the first uses technical indicators as inputs for the
neural network, which is not included in Zhanhong He’s work. However, an important
consideration appears at the end of his work: the use of BiLSTM networks can improve
the performance of the predictor. Siami-Namini’s work builds a price predictor using the
BiLSTM neural network and compares it with the LSTM network; the results show that
the BiLSTM network achieved an error about 37% lower than the LSTM network, which
shows that the approach of using this type of neural network proved to be effective, despite
the increase in training time. The proposal of this project consists of using a predictor
composed of 2 types of layers: BiLSTM layers and convolutional layers, and the use of
linear regression to label the data.

Once properly trained, the predictor modules will then provide their estimates as
useful information for the last module, the negotiator module. Here the probability of
success of the trading instruments should be significantly increased with the use of the
future price estimates given by the predictor module. This perspective is inspired by the
work of Yasmeen Ansari et. al. [10], where the predictor modules were built using GRU
technology. However, this work brings two novelties: the use of Rainbow-DQN technology,
which currently consists of one of the best reinforcement learning algorithms, in addition
to a specific improvement in the algorithm that is an adaptation for time series, which is
the memory buffer.

Thus, the total set of proposed structures, formed by the trading and risk manage-
ment instruments fed by the future price estimates of the predictors and coded technical
indicators, is believed to be innovative and has a good chance of generating good results.

Table 2.6 provides a comparative summary between some related works cited in this

chapter and the proposals of this work.

18

Table 2.6: Comparison of this work with related works

‘Works _§ .5 EO) ;q‘;g ; ':i: E ”E Q%
AE |6 |2 |BE |35 |28 &
Ansari [10] v V/
Iromie [9] V V
Faraz [29] N v
Namini [7] NAY,
Zhanhong He [4] NARY
Selvin [3] NV
Liang [6] NV
Livieris [5] NARY
Zhang [8] NARY
This work v I VIV YV v v |V

19

Chapter 3
Theoretical Foundation

This chapter presents a theoretical review of the basic concepts related to the main com-
ponents used in this work. It addresses the essence of the theory about neural networks

and reinforcement learning.

3.1 From biological to artificial neuron

In the animal kingdom, neurons act as small information-processing units. Information
is captured from the environment by the senses of perception and transformed by these
nerve cells into useful information for survival. For example, a sensation of heat generated
by fire in contact with the skin is converted into reflex movement of our body through
them.

Nerve cells have a communication system between them called synapses. These
synapses are gaps at the ends of neurons, precisely between the axon of one and the
dendrite of another. Synapses establish communication between two neurons in sequence
using neurotransmitters. When the action potential of the presynaptic neuron reaches the
axon terminal, excess calcium in the region causes vesicles loaded with neurotransmitters
to release these neurotransmitters into the synaptic cleft, thus altering the electrical con-
figuration of that region and activating the sodium and potassium pumps of the next
neuron, generating small electrical signals in the membrane of the postsynaptic neuron.
Synapses can be excitatory or inhibitory. When excitatory, they facilitate the forma-
tion of an action potential in the postsynaptic neuron. When inhibitory, they hinder the
formation of this action potential.

The various synapses that reach the neuron form a set of electrical signals. These
signals usually add up or subtract on the cell surface of the dendrites and the cell body

of the neuron, depending on the excitatory or inhibitory nature of these synapses.

20

Finally, it is in the implantation cone that the action potential will form or not. The
implantation cone is the initial region of the axon. The action potential is what the
neural signal itself is called. The implantation cone therefore establishes the decision as
to whether or not to continue the propagation of the neural signal. Usually, if the set
of signals that reach the neuron, added together, manage to reach the threshold of -55
mV, then the signal will propagate through the axon; if not, it will attenuate until it
completely disappears.

Neurons adjust synapses through a process called synaptic plasticity. Synaptic plas-
ticity refers to the ability of synapses to modify themselves in response to neural activity
and is one of the biological bases for learning. There are two main mechanisms of synaptic
adjustment: synaptic strengthening (potentiation) and synaptic weakening (depotentia-
tion). These processes are related to the electrical and chemical activity that occurs in
synapses.

Synaptic potentiation occurs when a presynaptic (sending) neuron is persistently ac-
tivated, thus strengthening the corresponding synapse. This occurs due to biochemical
changes that lead to an increase in the efficiency of neurotransmitter transmission. In
this process, for example, the biochemical receptors on the cell surface of dendrites in-
crease. In synaptic depotentiation, on the other hand, presynaptic activity is reduced or
ceased, and the corresponding synapse may suffer a weakening, leading to a decrease in
the number of receptors in the dendrites or even to the phagocytosis of the dendrites by
glial cells.

In 1943, neurophysiologist Warren McCulloch and logician Walter Pitts, realizing the
complex dynamics of neurons, proposed one of the first models of an artificial neuron
[39], based on binary logic. To this end, some hypotheses have been established. The
first concerns the all-or-nothing logic of the neuron, which states that it either fires the
action potential with full force or does not fire at all. The second states that it is a sum of
synapses that enables the firing of the action potential. Other hypotheses from the work
of McCulloch and Pitts concern the inhibitory nature of certain synapses.

In 1957, Rosenblatt described the perceptron as a single-layer neural network model
capable of learning and recognizing patterns [15]. The perceptron is a type of artificial
neuron that receives multiple weighted inputs and produces a binary output, based on
an activation function. Rosenblatt demonstrated that when the synaptic weights of the
perceptron are adjusted correctly, it can learn to correctly classify linearly separable pat-
terns. This made the perceptron one of the first machine learning algorithms capable of
performing pattern recognition tasks.

In Rosenblatt perceptron, synapses, both excitatory and inhibitory, are modeled ac-

cording to a weight w, the cell body, responsible for integrating the various signals coming

21

from the synapses, is modeled by a summation, while the all-or-nothing law, which says
that a neuron always fires with full force or does not fire at all, is modeled by an activation
function ¢(+), which in the specific case of Rosemblatt’s perceptron is a step function, that

is: the function returns 1 if its argument is greater than 0, and 0 if its argument is less.

Inputs

wl-x1l

w2'x2

m /\ Outputs

x w3-x3 > Z > (p(c) >
U W1 X1+W2-X2+.. +W5X5 U P(W1X1+...+W5X5)

wé-x4

w5-x5

@ O

Figure 3.1: Rosenblatt’s perceptron for binary classification, a schematic idea conceived
from the article The perceptron: a probabilistic model for information storage and orga-
nization in the brain. by Rosenblatt [15],1958.

However, due to its inability to solve non-linearly separable problems, such as the
famous XOR problem, Rosemblatt’s perceptron was severely criticized by Misnky and
Papert with the publication of their book: Perceptrons: introduction to computational
geometry [40]. Even so, Rosenblatt’s perceptron represents a crucial milestone in the
history of artificial intelligence, as it introduced a neural network model capable of learning
and recognizing patterns. Its contribution was fundamental to the later development of
machine learning algorithms. The perceptron demonstrated that a single-layer neural
network, with appropriate adjustment of synaptic weights, could achieve linear pattern
separation. Although the perceptron is a simple model, its importance lies in the fact that
it was the basis for the development of more complex and sophisticated neural networks.
Through Rosenblatt’s work, the field of artificial intelligence gained a powerful concept

that allowed the field to expand and paved the way for research and application of machine

22

learning algorithms in a wide variety of areas, from computer vision to natural language

processing.

3.2 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models inspired by and developed
from the Rosemblatt Perceptron and are often referred to as multilayer perceptrons. They
are composed of artificial neurons, which are their basic processing units; they are inter-
connected by weighted synapses. These synapses are responsible for transmitting signals
between neurons and have numerical values associated with them, called synaptic weights.

An ANN is organized into layers, with the input layer being the first layer, followed
by one or more hidden layers, and, finally, the output layer. Each layer is composed
of several interconnected neurons. The input layer receives the input data, which is
propagated through the network to the output layer, where a response or prediction is
generated. Figure 3.2 shows an example of a neural network with three neurons in the
input layer, a hidden layer of four neurons, and two outputs.

The activation of an artificial neuron is calculated by an activation function. A com-

monly used function is the sigmoid function, represented by:

B 1
Cl4e®

This function compresses the input value into a range between 0 and 1, allowing

o(x) (3.1)

the representation of probabilities. In addition to the sigmoid function, other activation
functions such as the ReLU (Rectified Linear Unit) function and TANH (Hyperbolic
Tangent) are widely used in modern neural networks. These functions are represented by

the equations 3.2 and 3.3.

x,sex >0

ReLU(z) = (3.2)
0,se x <0
et —e”
tanh(z) = ——— :
anh(x) p— (3.3)

3.2.1 The Dense Layer

Signal propagation in an ANN occurs from the input layer to the output layer. Each
neuron in the input layer is connected to a neuron in the hidden layer through weighted
synapses; these connect to neurons in the next hidden layer, until reaching the output

layer. The activation value of each neuron in the hidden layer is calculated as the weighted

23

Hidden
Layer

Figure 3.2: Multilayer perceptron, a schematic idea conceived from the article Learning
representations by back-propagating errors, by Rumelhart et. al. [16], 1986, with an input
layer, a hidden layer, and an output layer.

sum of the inputs, followed by the application of the activation function, as illustrated by

the equation 3.5.

zj= (g Wy; - x@> (3.4)

Where z; is the activation of the neuron in the hidden layer, wj; is the synaptic weight
between the input neuron ¢ and the hidden neuron j, and x; is the activation of the input
neuron 4.

It is common to add a term known as a bias to the inputs adjusted by the synaptic

24

weights. Bias is an additional parameter in each neuron that allows the neuron’s acti-
vation point to be adjusted. While synaptic weights control the contribution of inputs
to a neuron’s output, bias adjusts the neuron’s activation threshold, allowing the neural
network to make fine adjustments to the neuron’s response, regardless of the inputs. With

the addition of the bias term, the equation 3.4 becomes:

Zj = (Zn: Wi - @ + bj) (3.5)

i=1
In matrix terms:
z=¢(W-x+Db) (3.6)

Learning in an ANN occurs through the adjustment of synaptic weights and bias.
The goal is to find the weights that minimize a cost function, which measures the error
between the outputs predicted by the network and the correct values.

A commonly used algorithm for adjusting weights is Gradient Descent. It uses the
derivative of the cost function with respect to the weights to update the values of these
weights, moving in the direction of the greatest decrease. The process of adjusting the
weights is repeated iteratively until the neural network reaches a satisfactory level of

accuracy.

3.2.2 The stochastic gradient descent method

The learning of a neural network consists of finding the synaptic weights w that most
closely approximate its output to our objectives. To do this, the error between the ex-
pected output y and the output that the neural network produces ¢ is generally used. A
cost function FE is generally used to calculate and mathematically define the error. The
neural network is then said to learn as soon as the weights w that minimize the cost
function £ (w) are found.

The most common method for minimizing the function F(w) is the stochastic gradient

descent method.

OE(w)
ow

The equation 3.7 guarantees us that for a sufficiently small and a sufficiently large

(3.7)

Wpt1 = Wy — 1)

number n of iterations, the cost function E at point w will be minimal. The main
idea of the gradient descent method is to update the parameters w in the direction of the
negative partial derivative of the loss function. The partial derivative of F(w) indicates the

direction of greatest growth of the function, therefore, by following the negative gradient,

25

one moves in the direction of greatest decrease and, therefore, gets closer and closer to

the minimum.

3.2.3 The Backpropagation algorithm

The backpropagation algorithm or backpropagation is the most widely used algorithm in
training artificial neural networks (ANNs) to adjust synaptic weights. It was introduced
in the paper by Rumelhart, et. al., Learning Representations by Backpropagating Errors
[16], from 1986. This algorithm uses the calculation of the gradient of the cost function
with respect to the weights to update the values of the weights iteratively.

The first step of the algorithm consists of assigning random values, usually between
minus one and one, to all of the parameters w of the neural network, and then calculating
the output of the neural network based on these values and later comparing this calculated
output with the expected output using a cost function £. Some common cost functions
are listed below:

The Cross-Entropy:
N
B(w) = =) yiln(g:(w)) (3.8)
i=1
Mean Squared Error:

1Y N
E(w) = 3 > (v — gi(w))? (3.9)
i=1
Where N is the number of samples, y is the expected response, and ¢ is the response
calculated by the neural network. The next step consists of solving the derivative of the

equation 3.7:

OE(w)
ow

For this, the chain rule is used:

OE(w) _ 0E() 9h(w)
ow dyg Oow

26

For the cross-entropy function we have:

9E(9)
Ok

a N
= — Z‘lO AZ'
9 ;y 9(9:)

= agk(—yllOQ(@l) - ZUZZOQ@Q) — = yklog@k) - ynZOQ(@n)

0
—_ log (1
95" 0g(9r.)
Yk
U
It can then be said that:

9E(9
9y

Where (@) is the Hadamard division. For the Squared error function we have:

)~ oy (3.10)

OBE(G) 0 1Y o
~ - ang ;(yz yzk)
1

~

= —((y1 —9)° + (2 —)+ + (e —)+ + (Yo — ¥n)?)

In matrix terms:

=y—y (3.11)

3.2.4 The Softmax function

The softmax function is commonly used in neural networks as an activation function in

the output layer, especially in multi-class classification problems. It converts a vector of

real numbers into a probability distribution, assigning probability values to each class.
Given an input x = (x1, 29, ..., 2,), the softmax function calculates the probabilities

p = (p1,p2,---,Dn) using the formula:

et

pi = , parai=1,2,...,n (3.12)

n €T
j=1¢"

Here, e is the base of the natural logarithm (Euler’s number), and the sum in the denom-
inator is performed over all elements of the vector x. The softmax function ensures that

the resulting probabilities are non-negative and sum to 1. In vector form, the function

27

becomes:

b1
0s(x) = softmax(x) = p:2 (3.13)

DPn

The softmax function is called o, because it is a generalization of the sigmoid function.
The interpretation of the softmax function is that it provides a measure of confidence
or probability for each class, based on the input values. Larger values of x result in
higher probabilities after applying the softmax function, increasing the confidence in that
particular class.

The softmax function is widely used in multiclass classification problems, along with
the cross-entropy loss function (cross-entropy loss), to train neural networks. It allows
the network to assign probabilities to each class, making it easier to select the likely class

or classify based on a threshold value.

3.2.5 The Dropout Layer

The dropout layer is a technique commonly used in deep neural networks to mitigate the
problem of overfitting. Overfitting occurs when a neural network becomes too specialized
on the training data and consequently performs poorly on previously unseen data.

Dropout is implemented as an additional layer in a neural network, usually between
densely connected layers. The main idea is to randomly turn off a set of neurons dur-
ing training. This means that these units do not contribute to the computation of the
gradients during the backpropagation process.

Formally, during training, each output unit of a dropout layer is multiplied by a random
binary variable r, which is equal to 1 with a probability p and 0 with a probability 1 — p.
This probability p is a hyperparameter that determines the dropout rate, that is, the
proportion of units that are turned off.

The effect of dropout is similar to training a set of smaller, independent neural networks
in parallel. This technique prevents units from becoming too dependent on each other
and helps reduce overfitting since the neural network cannot rely too heavily on a specific
subset of units to make predictions.

The dropout layer is a valuable tool for training deep neural networks. It helps im-
prove the generalization ability of the model, making it more robust and less sensitive to
variations in the input data. In addition, dropout can also reduce training time since it
forces the neural network to learn more efficient representations that are shared across

units.

28

3.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks that are widely
used for data that have spatial patterns, such as images. However, in addition to images,
they can be very useful in finding patterns in time series.

The main idea behind CNNs is to apply convolution filters to different regions of an
image or signal. These filters are small matrices that are slid over the input to calculate
local dot products. This convolution operation allows the network to identify important
features, such as edges, textures, and patterns, at different scales and positions in the

image.

3.3.1 Convolution

The convolution operation is the main building block of CNNs. It involves applying
convolutional filters to an input to extract relevant features. Convolution is defined as
superimposing a sliding window (filter or kernel) over the input, multiplying the window
values by the corresponding values in the input, and summing the results.

For a two-dimensional input (such as a grayscale image), convolution can be repre-
sented mathematically as follows:

Given two functions f(z) and g(z), the one-dimensional convolution between them is
defined as:

oo
(fg)@) = [f(r)gla—r)dr (3.14)
—o0
Where * denotes the convolution operation and 7 is the integration variable. This equation
expresses that for each value of z, the convolution is obtained by integrating the product
of the two shifted functions.
A more common way to express convolution is in terms of discrete summation, where

the integral is replaced by a summation:

Frga)= 3 FR)gle— k) (3.15)

k=—0oc0
Here, the variable k£ assumes integer values, and the convolution is calculated by

summing the products of the samples of the shifted functions f and g.

3.3.2 Convolutional Layers

A convolutional layer in a CNN is composed of several convolutional filters. Fach filter

is responsible for extracting a specific feature from the input. Each convolutional filter is

29

applied to the input, resulting in a feature map.

As in densely connected neural networks, the first step in learning the network in
CNNss is the propagation step. During the propagation step, the activations in each layer
of the network are calculated.

Let y be the output of the convolutional layer, k be the vector with the kernels (or
weights) to be learned, x be the input vector and b be the bias. We will have the following

equation for forward propagation.

y=k*x+b (3.16)

It is important to note that if x has NV elements and k has M elements, y will have a
number of elements () such that Q = N — M + 1
Abrindo a equacao 3.16:

Yo $0]€T + 1’1/{771 + -+ .TTko bo
y‘1 _ Tk, + 22k, 1 .+ s 4 Ty ko . b} (3.17)
Yq gjn—'rk'r + gjn—T+1kT—1 + xnkO bn—T

In the equation 3.17 n is the index of the last element of x, 7 is the index of the last
element of k and ¢ is the index of the last element of y, where it can be inferred that:

q=n-—r.

3.3.3 Max Pooling Layers

A camada Max Pooling é uma técnica comumente associada as redes neurais convolu-
cionais (CNNs) para reduzir a dimensionalidade dos mapas de caracteristicas gerados por
essas camadas. Ela ajuda a extrair caracteristicas importantes e a tornar a representacao
mais robusta e invariante a pequenas variagoes de posicao.

The Max Pooling operation is applied to each feature map individually. For each
pooling region, the maximum value is selected and used as the representation of that
region. This is done by moving a window (usually of size 2x2) with a stride defined by the
CNN architecture. The window slides across the feature map and the maximum value in
each region is retained.

The main advantage of Max Pooling is the reduction of the dimensionality of the data,
which helps to reduce the number of parameters in the network and avoid overfitting.
In addition, the pooling operation helps to capture features that are invariant to small

translations. For example, if an object appears in different positions in different images,

30

Mazx Pooling will select the same representation, as long as the relative position of the
object is preserved.

The Maz Pooling layer also helps to make the representation more robust to noise
and distortion. Because the maximum value in each region is retained, small variations
in the original feature values have less impact. This helps smooth out noise and reduce

sensitivity to small disturbances.

3.4 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of neural network architecture widely used
in a variety of fields, such as natural language processing, speech recognition, machine
translation, and other tasks involving sequential data. Unlike traditional neural networks,
RNNs have feedback connections, i.e., layers at the output or closest to the output con-
nected to layers at the input or closest to the input. This feature allows them to process
sequential information.

An important feature of RNNs is their ability to handle inputs of varying lengths.
This means that the networks can receive sequences of different sizes and process them
efficiently. Each element of the sequence is processed in order, and the output generated
in one time step is used as input for the next time step. In this way, RNNs can capture
temporal and contextual dependencies in sequences.

The main characteristic of RNNs is that they process data in several time steps in
the same way and using the same parameters. This means that the data undergoes the
same processing a certain number of times. The figure below exemplifies the unfolding of

a recurrent neural network in time.

o T
a2 lles

Figure 3.3: Standard RNN, on the left, and time-unfolded RNN, on the right, a schematic
idea conceived from the article Backpropagation through time: what it does and how to
do it by Werbos et. al. [17],1990.

x |>§—b T | <

31

The diagram, both on the left and the right, exemplifies the following mathematical

relationship:

Y = Q(V : Ht)

Hy = f(W-x¢+U-H¢_1)

W is a weight associated with the inputs of the network, U is a weight associated with
the previous hidden state of the network, and V' is a weight associated with the current
hidden state of the network. The problem is that to obtain the output of the neural

network it is necessary to compute the values for each desired time step. So:

ys = g(V- f(W-x3+U-Hy))

It is important to realize that the weights W, U, and V' do not change as the time step

progresses.

3.4.1 The Vanishing Gradient Problem

The vanishing gradient problem is a common problem in recurrent neural networks (RNNs)
and is an important limitation to consider in both the propagation and backpropagation
phases of these architectures. In RNNs, the vanishing gradient occurs when the weights
computed during backpropagation multiply, causing the gradients to become close to zero
as they propagate through the network’s time steps, making learning long-term depen-
dencies difficult.

This problem in RNNs often arises due to the feedback nature of these networks. In
RNNs, the output at a given time step is used as input to the next time step, allowing
information to propagate down the sequence.

This problem can be particularly damaging when data sequences have very long-term
dependencies, where information from much earlier time steps is meaningful for future
time steps. For example, in text generation, dependencies between distant words can be
crucial to maintaining coherence and cohesion. If the gradients tend to zero, the RNN
will have difficulty learning these long-term temporal relationships.

To mitigate the problem of vanishing gradients in RNNs, several techniques have been

developed. One of the most important advances is gated memory cells, such as Long

32

Short Term Memories (LSTMs) and Gated Recurrent Units (GRUs). These architectures
incorporate information flow control mechanisms through gates, which help regulate the

flow of information across time steps and reduce the vanishing gradient.

3.4.2 Long Short Term Memory

Long Short-Term Memory (LSTM) networks are a special type of recurrent neural network
designed to handle long-term dependency in data sequences. They were developed to
overcome the vanishing gradient problem in traditional recurrent neural networks. Figure
3.4 shows an example of an LSTM Cell.

Long

Memory z | Memory
Mod 1 Mcd 2 - Mod 3_ Mod 4_ Mod 54‘
B [1 1

Long

Short New Short
Memory . Memory
Imput

SR

Figure 3.4: LSTM cell, schematic idea conceived from the article Long short-term memory.
Neural computation by Hochreiter and Schmidhuber [18],1997.

The most important part of an LSTM cell consists of the long memory channel, repre-
sented at the top of the cell. In this channel, information can only be forgotten or added.
It is important to note that the channel does not have any weights to be learned, and this
is precisely what makes the LSTM cell resistant to the vanishing gradient problem. In
Figure 3.4, the long memory channel receives, right at the cell input, the long memory of
the previous time step, and at the end of the cell the long memory is modified according
to the current time step.

The first process to change the cell’s long memory is forgetting. The forgetting mecha-
nism is represented by module 1 (Mod 1) in Figure 3.4. The short memory of the previous
time step is modified by a weight and added to the input of the current time step, also
modified by a weight. The result is passed to a sigmoid activation function, which will

have a value between 0 and 1. This value, between 0 and 1, multiplied by the current

33

value of the long memory will be responsible for erasing it, partially erasing it, or leaving

it intact. This is why module 1, represented in figure 3.4 is known as the forget gate.

fi =0(W¢-x¢+ Ug-hyg_1 + by) (3.18)

The equation 3.18 represents the operations performed by the forget gate. Where f;
represents the output of the forget gate, x; represents the input of the LSTM network for
the current time step, h;_; represents the short-term memory of the previous time step,
W; represents the forget weights related to the input, Uy represents the forget weights
related to the short-term memory of the previous time step, and by represents the forget
bias. It is precisely f; that will be multiplied by the values of the long-term memory and
will make those values forgotten, kept, or kept in part.

The second process to alter the long-term memory is represented by module 2 and
module 3 in Figure 3.4. Module 3 linearly combines the current input and short-term
memory to create a potential memory, while module 2 determines what percentage of this
potential memory should be stored, also using a linear combination between the input
and short-term memory. Module 2, which controls the percentage of new information to

be stored, is known as the input gate, while module 3 is the new information itself.

it = U(Wi - Xt + Ui : ht,1 -+ bl) (319)

¢ = tanh(W¢ - x¢ + U, - hy_1 + be) (3.20)

The equations 3.20 and 3.19 represent respectively the new information to be added
and the input gate, responsible for determining what percentage of the new information
should be remembered; 4; represents the output of the input gate and ¢; is the new
information. The terms with index ; represent the input weights and the terms with
index . represent the weights related to the new information to be added to the cell.

Finally, the new long-term memory of the cell is formed. With forgetting having been
governed by the forgetting gate, and the new information added, by the input gate. The

new long-term memory of the cell is then:

Ct =Ct_1 ©® ft + it ® C_t (321)

Where ¢;_; is the old long-term memory, also known as the previous state of the cell; and
¢; is the current long-term memory, or the current state of the cell.
The last process that occurs in the LSTM cell is the formation of the current short-term

memory, which is the output of the cell. Modules 4 and 5 govern this process. Module 5

34

consists of the formation of the short-term memory itself, where the values from the long-
term memory are passed, without multiplication by weights, to the short-term memory.
Module 4 governs the percentage of this long-term memory that should be passed, this
percentage is controlled by the current input and the previous short-term memory. The

output of module 4 is known as the output gate of the LSTM network.

Or = O'(WO - Xt + UO . ht,]_ -+ bo) (322)

hy = oy ® tanh(cy) (3.23)

3.5 Bidirectional Neural Networks

Bidirectional neural networks were introduced by Schuster and Paliwal in 1997, in the
article Bidirectional Recurrent Neural Networks [19]. In this article, the authors suggest a
recurrent neural network for the direction that goes from the past to the future, combined
with one that goes from the future to the past. The outputs are then influenced by both
layers that memorize information from the past and by layers that memorize information
from the future.

The bidirectional neural network proposes to take into account that intrinsic relation-
ships between sequential data in the direction from the future to the past may contain
relevant information. There may be long-term dependencies between the current state of
the system and a future state.

Taking into account both types of paths, both the one that goes from the past to
the future and the one that goes from the future to the past establishes two independent
processing units that can then be combined to obtain a final representation.

In the context of financial time series, for example, future context can be particularly

important in determining important information in predicting future prices.

3.5.1 Forward Propagation

In a simple recurrent neural network, the output of the network at the current time step
is always determined by the hidden state of the previous time step and the current input.
The output of the next time step will be determined by the future input, the current

hidden state, and so on. This relationship can be described as follows:

yr = g(hi, V') (3.24)

35

he = f (20 her, W) (3.25)

Where V' is a weight that operates on h; and W is a weight that operates on x; and h;_;.

For a bidirectional neural network, the current output is determined by two different
hidden states. The first hidden state goes from the past to the future and the second
goes from the future to the past. It is important to note that, by the very definition of a
bidirectional neural network, the two hidden states are independent of each other. These

relationships can be represented as follows:

—>
v = g(ht, e, V) (3.26)
— — =
ht = fp(xtv ht—l; W) (327)

B = fol@e hgs, W) (3.28)

Where E) is the hidden state of the recurrent network that goes from the past to
the future, which will be called the positive-sense network; E is the hidden state of the
network that goes from the future to the past, which will be called the negative-sense
network. f, represents the set of operations that the positive-sense network performs and
fn represents the operations of the negative-sense network.

Then the propagation step consists of three steps. The first consists of computing the
hidden state of the last time step in the positive-sense network. The second consists of
computing the hidden state of the first time step in the negative-sense network. The third

consists of computing the outputs for each time step.

3.5.2 BiLSTM Networks

BiLSTM networks are similar to LSTM networks. What sets them apart is that they can
use information contained in the direction that goes from the future to the past. This
type of information can be particularly relevant when analyzing temporal data, since there
may be long-term and short-term dependencies in both directions.

The architecture of a BiLSTM network consists of two LSTM architectures that are
completely independent of each other. Figure 3.5 shows an example of a BiLSTM archi-
tecture implementation. If there is a need to analyze data in three time steps, t1, t5 and %3,
our BiLSTM network will consist of one normal cell and one inverted cell for each of the
three steps, in the figure, indicated by LSTM-p, in the positive direction, and LSTM-n,
in the negative direction, totaling six cells; and these cells will connect their hidden state,

indicated in the figure by H to three outputs v, y», and ys.

36

A A A
H1-n H2-n H3-n
. Hin [LSTM-n | L l LSTM- | L e LSTM-p
H1 t—l HZ-p t—2 H3 -p t—3
P
A A A
LSTM-p) LSTM-p] LSTM-p] _
=1 fla— t=2 H2p t=3 H3p————>
x1 X2 X3

Figure 3.5: Architecture of a BiLSTM network, a schematic idea conceived from the
article Bidirectional recurrent neural networks by Schuster et. al. [19], 1997.

Another advantage of using BILSTM networks is that they are resistant to the gradient
fading problem, so these networks can store long-term information without compromising

their training.

3.6 Autoencoders

Autoencoders are a class of neural networks designed to learn efficient, compact repre-
sentations of data, typically in an unsupervised manner. They accomplish this by recon-
structing the input data from a lower-dimensional, compressed representation known as
the bottleneck or latent space. The goal is not just to copy the input to the output but

to learn meaningful patterns and features during the compression process.

3.6.1 Encoder

The encoder is the first component of an autoencoder, responsible for compressing high-
dimensional input data into a lower-dimensional representation. The goal of the encoder
is to extract the most relevant and meaningful features of the input while discarding
redundant or irrelevant information.

Mathematically, the encoder can be described as a function:

£ = fencoder(x; 06) (329)

37

x € R is the input data (e.g., an image, a time series, or any other type of high-dimensional
data).z € R"™ is the compressed latent representation, with m < n, and fencoger is the
transformation applied by the encoder, parameterized by 6. (the weights and biases of
the network).

3.6.2 Decoder

The decoder is the second component of an autoencoder, responsible for reconstructing
the original input data from the compressed representation produced by the encoder. Its
primary goal is to map the low-dimensional latent space representation back to the high-
dimensional input space, ensuring the output closely matches the original input. The
quality of the decoder’s reconstruction determines how well the autoencoder has learned
meaningful representations.

Mathematically, the decoder can be expressed as:

= fdecoder(z; Hd) (330)

Where & € R" is the reconstructed input, n is the dimensionality of the original input x,
faecoder 18 the function implemented by the decoder, parameterized by 6.

During training, the encoder-decoder pair learns to map the data x to a compressed
latent space z and back to a reconstruction . The latent space z captures the most salient
features of the input data, discarding redundancies and noise.

The objective is to minimize the loss function:
L(z, %) = [l — 2] (3.31)

Where ||z — || measures the difference between the input and its reconstruction.

3.7 Reinforcement Learning

The field of reinforcement learning dates back to theories related to the learning process
in animals through trial and error developed by the behavioral psychologist Burrhus Fred-
eric Skinner, and to the problem of optimal control using the resolution of the Bellman
equation and dynamic programming [41]. In the case of dynamic control, the agent needs
to make sequential decisions to improve its performance, doing so through an optimal
policy that maximizes the rewards accumulated along a trajectory. Skinner made his con-

tributions to reinforcement learning with his method of operant conditioning, according

38

to which the individual is influenced by the environment and by the consequences that
occur after their actions, whether reinforcing or punishing.

The main objective of reinforcement learning is to solve problems where decisions are
made in sequence. Generally, when solving these problems there is always a goal, and
the decisions made are evaluated based on how close this goal was reached. Sometimes,
to get there it is necessary to take several actions sequentially and each of these actions
will modify the environment in some way; It is necessary to observe small changes in
the environment and note whether the actions taken contributed to moving closer to or
further away from the goal. The information, especially errors, about the environment
are analyzed and will be used to correct the actions taken. Over time, strategies are
developed that maximize rewards, which allows the completion of increasingly complex
tasks that optimize performance. Reinforcement learning has proven to be a very efficient
machine learning paradigm, especially when there are not enough cases that can drive a

supervised learning system.

3.7.1 Marcov Decision Process

In the standard reinforcement learning model, the agent is connected to the environment
by a system of actions, states, and rewards. The agent receives from the environment a
set of data that contains information about the environment, such as a set of perceptions;
the environment, in turn, receives an action from the agent, which will modify the envi-
ronment, which in turn will modify the set of perceptions and may generate some kind of

reward or punishment for the agent.

——— Agent
State s
Action
Reward r
Environment |a—

Figure 3.6: Reinforcement learning control loop, a schematic idea conceived from the
article Reinforcement Learning: A survey, by Leslie Pack et. al.[20]; from 1996 .

39

Figure 3.6 shows the control scheme that governs reinforcement learning. The agent
perceives the environment as state s;, so it takes an action a;. The environment is slightly
modified, causing the agent to receive a reward r; and now perceive the environment as

a new state s;.1. Formally:

sy € S é um estado, onde S é o espacgo de estados
a; € Aé uma agao, onde A é o espago de Agoes

r = R(sy, ay, $411)é uma recompensa, onde R é a fungao de recompensas

The state space is the set of all possible states in the environment. The action space is
the set of all possible actions that the agent can take. The function R(s;, a, S¢41) assigns
a scalar value to each transition (s, as, $441) that can be positive, negative or zero.

To formally model the transition from state s; to state s;;1, the concept of a transition
function is necessary. Assuming that the future state depends solely on the present
state and action, we incur the elementary property typical of Markovian processes, where
past and future states are completely independent of each other. Assuming the Marcov
property implies greater simplicity for the model. The transition function is then given
by:

P(s¢11|8¢, St—1,+ , S0) = P(S41]5t) (3.32)

Where P is the transition function that assigns a value, 0 < p < 1, to the probability of
the environment leaving state s; and going to state s;;1. Finally, the concept of objective
must be defined, which the agent must maximize as it learns about the environment. To

do this, the concept of trajectory must first be defined:

T = {(807 Qo, TO)? (817 ai, Tl),) (ST7 CLT,TT)}

A trajectory is a set of experiences (s¢, at, 7¢) in a time interval that goes from 0 to 7.
When the last state of the trajectory is terminal, we call this trajectory an episode.
Let G(7) be the sum of the discounted rewards in a trajectory 7, where the discount

rate is given by ~:

T
G(r)=ro+yr +’ra+--+9lrp = ZVtTt (3.33)
t=0

40

G is known as the return on a given trajectory. The objective .J is said to be the expec-

tation of G(7) over N number of trajectories.
J = B[G(m)]iL

The discount rate y € [0, 1] is an important variable that determines how future rewards
should be evaluated. The lower the value of v, the less importance the agent will give to
future rewards, and the higher the value, the more these rewards should be observed by
the agent.

With the above definitions, it becomes possible to define the Markov decision process
as a b-tuple: (S5, A, P, R,), defined by the state space S, the action space A, the transition

function P(-), the reward function R(-) and the discount rate .

3.7.2 The Bellman Equation

A large part of reinforcement learning algorithms work based on value functions. These
functions express how good or advantageous it is for the agent to be in a certain state, or
how good or advantageous it is to perform a certain action while in a certain state. These
value functions are defined for a policy. The policy consists of a function that defines the
general strategy of what action to take from a given state. This is the function that tells

the agent what it should do in any given state. The policy function is defined as follows:

T:S = A

(s)=a

For the stochastic case, where the action to take in a given state is uncertain, the

policy should be defined as:

Where p expresses the probability of action a being executed given a state s. That said,

the definition of the value functions for a given policy 7 follows as:

V() = Ex | A rinir | 80 =5 (3.34)
k=0

41

Q" (s,a) = E, Z Tl ST | st =s,as=a (3.35)
k=0

Where E, expresses the expected value if the agent follows policy 7. V is known as the
value function and assigns a scalar value to evaluate how good a given state is, and @ is
known as the quality value function (from Quality value) that evaluates how good a given
action a taken in a given state s is.

An important property of the equations 3.34 and 3.35 is that they obey a recursive

relationship. To show this relationship, we will proceed to develop the equation 3.34:

V7™(st) = Er [Z Voreprr | se = 3]
k=0

=L [Tt+1 + Yrise + Y T+ | st = S}

Let Gy = ryp1 + Yrepo + ¥*rips + - -+, then it is possible to write V(s) as:

V7 (st) w [T + G | 50 = 5]

=F
= Ex[rega | st = 8] + vEx [Giya | 50 = 8]

The law of total expectation states that E[Y|X =z] = E[E[Y|X = 2,7 = z]| X = z], so

it is possible to write V7 (s) as:
V7(st) = Ex [rep1 | 86 = 8]+ vEr[Ex [Gesn | Se1 =][50 = 8]
Like V™(s111) = Ex[Gii1|st+1 = §']. Assures us that:
Vi(st) = Ex [reea | se = s] + v Ex[V™ (s151)]|s¢e = 5]

Using the linearity property of expectation, we arrive at the Bellman equation:

V7(st) = Ex[repn + 9V (st41)|se = 8]
This equation has many forms. One of the best known, for the function Q, is:

Q"(s,a) =r(s,a) + ymax(Q"(s',a’)) (3.36)

In this equation, Q(s, a) represents the Q-value of taking action a in state s and this
value is determined by the reward of the current state r(s,a) plus the highest Q-value of

the next state s’ discounted by the rate . This equation shows that the action in a state

42

is always determined by the next state and its proximity to future rewards. Thus, the
Q-function helps to decide which action to take from a given state. Thus, the action that
has the highest Q-value for that state should be taken.

Thus, it is also possible to define an optimal policy in terms of the Q-function, where

the agent’s performance is maximized:

7" (s) = argmax(Q(s, a)) (3.37)

3.7.3 Deep Q-Networks

Deep @Q-Networks (DQN) is a reinforcement learning method based on the @Q-learning
algorithm. The difference between the two is that the first uses a neural network to
estimate the Q function, which, as already seen, assigns a value to each action in a given
state. The @) Learning method is generally useful when the number of states is small, and
therefore the agent can explore all states; in this way, it is possible to build a table that
maps all Q values for each action in each state. However, when the number of states is
very large, the most appropriate methodology is to use a neural network to estimate the
Q function, since building the table becomes infeasible.

Both the @-Learning and Deep Q)-Networks methods learn the greedy policy, in which
the agent always selects the action that seems to be the best at the current moment,
disregarding actions that better explore the environment. In other words, in this type of
policy, the agent is always guided to follow the action that results in an immediate reward,
neglecting that there may be actions that maximize the reward in the long term. This
type of policy has the disadvantage of being able to lead to suboptimal decisions, tending
to trap the agent in local optima. However, due to its simplicity and easy implementation,
it has good computational efficiency, since it does not take into account a more in-depth
analysis of the exploration of all possible states or actions.

Below is the algorithm for the @) Learning method:

First, several important definitions are performed for the algorithm to work. All the
values of Q(s,a) are initialized, the states and actions are defined, then the final state,
the probability of taking an arbitrary action, and the discount rate are defined. Then the
policy is defined as a function that receives a state s and returns an action a; which with
probability € will return an arbitrary action, and with probability 1 — ¢ will return the
action whose value of the Q function is maximum.

A seguir é mostrado o algoritmo para Deep ()-Networks

43

Algorithm 1 Q Learning

NN NN N H e e e e s e e
=y 2o © 00 g W o

Initialize the table Q(s,a) with arbitrary values
Set E as the number of episodes
Set S = {s¢, - ,sn}
Set S as the terminal state and Q(Sye,a) =0
Set A= {ag, - ,ar}
Set € as the probability of arbitrary action
Set v as the discount rate
function PoLiCY(s)
p < arbitrary value between 0 and 1
if p < € then
return a < arbitrary element of A
else
return a < argmax,(Q(s,a))
end if

: end function
: fori+ 1 até E do

S < So
while s # s, do
a < POLICY(s)
Execute a and observe reward r and successor state s
Q(s,a) < r+ ymax,(Q(s',a"))
s s
end while

/

: end for

44

Algorithm 2 Deep Q-Network

Initialize a regression neural network architecture where the output is Q(s, a)
Initialize the network parameters 6
Set E as the number of episodes
Set the states s as the network input
Set A ={ag, - ,ar}
Set € as the arbitrary action probability
Set v as the discount rate
function PoLiCY(s)
p < arbitrary value between 0 and 1
if p < e then
return a < arbitrary element of A
else
return a < argmax,(Q(s,a))
end if
: end function
: for i+ 1 até E do
S < 8o
for t <+ 0 até T do
a; < POLICY ()
Execute a; and observe the reward r; and the successor state s’ = s;41
Calculate Q(¢', a),
Y < r+ymax,(Q(s',d))
Calculate VgL where L = (y — Q(s,a))?
Update network parameters 6 <— 6 — nVyL
s+ ¢
26: end for
27: end for

NN NN DN DN o e e e e e e e
TESESNS S0 P E e ®N T2

45

Experience Replay

It is possible that due to the temporal correlations between several consecutive experiences
in time, there may be instability and convergence problems in the training of a DQN-
type network, and for this reason, the experience replay technique was created. In this
technique, several experiences (tuples of the type (s,a,r,s’)) are stored in a memory.
Thus, instead of training the network with consecutive experiences, experiences are chosen
randomly from the memory, so that they do not have a temporal correlation. In this
algorithm, the agent first produces a series of experiences due to their relationships with
the environment. A fixed number of these experiences are then collected. After that,
a batch of experiences is randomly selected and the agent is trained for each of the
experiences in this batch. This technique has some advantages, among them: greater
stability in learning, since the temporal dependencies between the experiences have been
reduced and the oscillations are attenuated; there is greater efficiency in the use of data

since the stored experiences are reused several times.

Target networks

Target networks are a fundamental technique for stabilizing training and improving agent
convergence. They help mitigate the problem of instability and oscillation that occurs
when training a neural network to approximate the function Q(s, a). Due to updates to the
parameters 0, the function (s, a) is constantly changing, so the network "overestimates"
the values Q(s,a), since the same network is used to calculate both the current value
and the target value max,(Q(s,a)). To solve this problem, DQN introduces a target
network (s, a; @) that is a copy of the main network Q(s, a;6). This network is used to
calculate the target values during training and is kept fixed for a period of time before
being updated. This reduces oscillations because the target value changes in a more stable
and predictable way.

The Algorithm 3 shows the implementation of DQN with replay experience memory

and target networks.

3.7.4 Rainbow DQN

The Rainbow DQN algorithm is an advanced reinforcement learning method that in-
tegrates several enhancements to the original Deep Q-Network (DQN) to improve its
performance and stability. It combines six key techniques: Double Q-learning, to
mitigate overestimation bias in Q-value predictions by decoupling action selection and
Q-value; Prioritized Experience Replay, which samples transitions more effectively

by focusing on those with higher learning potential by giving priority to experiences with

46

Algorithm 3 DQN with Experience Replay and Target Network

W W W W W W W N NDNIDLNDIDNDIDNDIDNDDNDNDN R = = = = = = = = =
SO ANl S A oul s e B A > e B e B U AR ol > el e

Initialize the policy neural network Q(s,a,0)

Initialize the target neural network Q(s,a;6’)

Initialize the policy network parameters 0

Initialize the target network parameters ¢’

Set the states s as the states of environment

Set A ={ag, - ,ar}

Set E as the number of episodes

Set € as the arbitrary action probability

Set ~ as the discount rate

Set 1 as the number of steps required to update the target network

: Set R as the Experience Replay
: function PoOLICY(s)

p < arbitrary value between 0 and 1
if p < e then

return a < arbitrary element of A
else

return a < argmax,(Q(s,a))
end if

: end function
: fori«+ 1 até E do

S < S
for t <+ 0 até T do
a; < POLICY ()
Execute a; and get the reward r; and the successor state s, = s,
Store the experience (s, as, 74, 5;) in R
Sample a random batch B of experiences from R
Calculate Q(s', a) for the batch B
Y < r+ymax,(Q(s',d))
Calculate VoL where L = (y — Q(s,a))?
Update policy network parameters 6 <— 6 — nVyL
if ¢ mod p =0 then
Update target network parameters ¢’ < 6
end if
St < S
end for

. end for

47

higher temporal-difference errors; Dueling Network Architectures, which separate
the state values and action advantage functions to better generalize state values; Multi-
step Learning, which incorporates multiple future rewards rather than just single-step
rewards for faster learning and capture longer-term dependencies in the environment.;
Noisy Networks, which replace e-greedy exploration with parameterized noise linear
layers in the neural network for better exploration of the state space; and Distribu-
tional RL, which models the full distribution of returns instead of just the expected
value, providing the agent with richer information about the uncertainty and variabil-
ity of outcomes. By unifying these innovations, Rainbow DQN achieves state-of-the-art
performance across various benchmark environments, demonstrating significant improve-

ments in sample efficiency and learning stability [42].

Double DQN

designed to address the issue of overestimation bias in Q-value predictions. In the original

DQN, the target for the Q-value update is computed as:

y =r+ymax(Q(s',a’;0)) (3.38)

Where the same Q-network is used to select the action and to estimate its value. This
can lead to overestimation because the action selection and value estimation rely on the
same set of parameters, causing super estimation of Q-value updates.

Double DQN solves this by decoupling the action selection from the value estimation.
Specifically, it uses the main network to select the action and the target network to

evaluate it. The updated target becomes:
y =71 +7Q(s', argmax Q(s, a;0);0') (3.39)

where 6 represents the parameters of the main network, and 6’ represents the param-

eters of the target network. This separation reduces de bias due to superestimation.

Prioritized Experience Replay

This improvement assigns a priority to each transition based on the temporal difference
(TD) error, which measures the discrepancy between the predicted Q-value and the target

Q-value:
5= Ir + 7 max(Q(s!, a2) — Qs,a:6)] (3.40)

48

Transitions with larger TD errors are considered more surprising or important because
they indicate areas where the model is making larger mistakes. These transitions are
sampled more frequently during training.

The probability of sampling a transition ¢ is defined as:

‘ 23
P(z) B >k Di
k

(3.41)

Where p; = |0;| + € is the priority of transition ¢, € > 0 grants that all transitions have a
non-zero probability of being sampled, a € [0, 1] controls the level of prioritization (o = 0
is a uniform probability sample)

Prioritized sampling introduces a bias because it over-samples certain transitions. To

counteract this, PER uses importance sampling (IS) weights to adjust the updates:

1 B
w; = (W) (3.42)

Where N is the size of the replay buffer, and g € [0, 1] gradually increases during

training to fully correct the bias as the model converges.

Dueling Network Architectures

In a standard DQN, the network outputs Q-values directly for all possible actions. In con-
trast, a dueling network introduces two separate streams within the neural architecture,
which are the value stream that estimates the value of being in a given state, represented
as V' (s), which captures how good it is to be in the state independent of the actions taken.
The advantage stream which estimates the advantage of each action in a given state, is
denoted as A(s, a), which reflects how much better or worse an action is compared to the
average action in that state.

These streams are then combined to produce the Q-values for all actions using the

following formula:

Q(s,a) =V(s)+ A(s,a) — &Z{A(s, a’) (3.43)

Where N is the number of actions. The subtraction of the mean advantage ensures

that V (s) represents the true state value, disentangled from the action-specific advantages.

Multi-step Learning

Multi-step learning is a reinforcement learning technique that extends the idea of single-

step temporal-difference (TD) updates by incorporating rewards and transitions over mul-

49

tiple steps into the value updates. It provides a balance between the short-term focus of
single-step updates and the long-term view of Monte Carlo methods, making it a power-
ful tool for improving the learning efficiency of agents. In multi-step learning, the target
incorporates multiple rewards over n steps, providing a more comprehensive view of the
agent’s future trajectory. The n-step target is defined as:

n—1
Yn—step = Z f)/krt-i-k + 'yk mE}X(Q(S/a CLI; 9/)) (344)
k=0 “

Noisy Networks

In a standard neural network, the weights W and biases b are deterministic. Noisy
Networks introduce stochasticity by adding noise to these parameters during training.

Specifically, the weights and biases are modified as follows:

B=pug+og®e (3.46)

Where p is the mean, o is the standard deviation, and € is a noise variable sampled from a

standard distribution, often Gaussian. The final operation is the same as the dense layer:
y=W-.-x+ B (3.47)

This formulation allows the network to adapt the amount and direction of exploration by
learning the parameters p and o. During training, the noise € is sampled at each forward

pass, injecting randomness into the action-selection process.

Distributional Reinforcement Learning

In traditional RL, the action-value function Q(s, a) represents the expected return:

o0

Q(s,a) =E Y Y'rw | se=s,a,=a (3.48)
k=0

Where G; is the return. Distributional RL, however, models the full distribution of

returns, denoted as Z(s, a), where:

Z(s,a) ~ Distribution of G; | sy = s,a; = a (3.49)

Instead of predicting a single scalar value, the agent learns the distribution of possible
outcomes, which includes both the expected value and information about the spread

(variance), skewness, and other statistical properties of the returns.

50

3.8 Technical Indicators and Mathematical Formulas

Indicadores técnicos desempenham um papel crucial na analise de mercados financeiros,
sendo amplamente utilizados por negociadores profissionais e investidores individuais.
Essas ferramentas se baseiam em férmulas mateméaticas aplicadas aos dados de precos e
volumes de um ativo financeiro, com o intuito de fornecer informagoes sobre a direcao
futura dos pregos, identificar tendéncias, pontos de entrada e saida, e gerar sinais de

compra ou venda.

3.8.1 The Candle

Technical analysis data consists of only two pieces of information: price and volume. Even
S0, since asset prices vary almost every moment, traditionally only the price is analyzed
separated by defined time intervals, known as timeframes. In this way, the information
begins to stratify. Now there is information about the price at which this time interval
begins, known as the opening price, the price at which this time interval ends, known as
the closing price, and its maximum and minimum in this same interval.

With these four pieces of information about the price in mind, the candlestick chart,
commonly known as candles, is created. And it works as follows: each candle represents
a time interval. If the closing price is higher than the opening price, then the body of
the candle is white or green and it is known as a bullish candle, and if the closing price
is lower than the opening price, the candlestick chart is red or black and it is known as
a bearish candle. The upper shadow or line of the candle indicates the maximum price
reached in that time interval and the lower shadow or line indicates the minimum price
reached. The base of the bullish candle indicates the opening price and its top, the closing
price. The base of the bearish candle indicates the closing price and its top indicates the
opening price. Figure 3.7 shows examples of bullish and bearish candles.

Chart patterns and candlestick patterns are contained in the four basic pieces of in-
formation about candlesticks. Thus, any information available in these patterns can be
correctly represented by price sequences of the candlesticks’ closing, high, and low. Tech-
nical analysis signals come in many different forms. For example, there are chart patterns
that consist of some figures that the price chart ends up forming, and from these figures,
it is possible to get an idea of the continuation or reversal of the trend.

With the emergence of candlestick charts, several other types of information related
to the shapes of the charts also emerged. In this way, the geometric shape of the chart

itself becomes a potential source of information for understanding market fluctuations.

o1

Highest Price Highest Price

Closing Opening
Price Price

Bullish

Opening

Closing
Price - Price

Lowest Price Lowest Price

Figure 3.7: Bullish candle, on the left and bearish candle, on the right, invented by
Munehisa Honma.

3.8.2 Weighted Moving Average (WMA)

The Weighted Moving Average (WMA) indicator is a technical indicator used in financial
market analysis to smooth out price volatility and identify trends more accurately. It
assigns different weights to recent prices, making them more influential in calculating the
average.

Calculating the WMA indicator involves assigning weights to prices in a given time
window and calculating the weighted average. The formula for calculating the WMA is

as follows:

w1P1+w2P2++wnPn
U}1+w2+—|—wn

WMA =

(3.50)

Where W M A is the value of the indicator at the current time, P; is the price in period
1, and w; is the weight assigned to the price in period 1.

The weights assigned to the prices are usually calculated in decreasing order, assigning
more weight to the most recent prices. There are several ways to assign weights, such as
Arithmetic Progression, Geometric Progression, or using a specific formula. A commonly

used formula for assigning weights is:

w;=n—1i+1 (3.51)

52

Where n is the total number of periods in the time window and ¢ is the current period

number. Alternatively, one can write:

n—

1 1
7 1=0

=1

WMAt —

The WMA indicator is commonly used for trend following and confirmation. It is often
used in conjunction with other technical indicators to confirm or refute trading signals.
When the price is above the WMA, it can be interpreted as an uptrend, while when the
price is below the WMA | it can be interpreted as a downtrend.

3.8.3 Moving Average Convergence / Divergence (M ACD)

The Moving Average Convergence Divergence (MACD) indicator is a technical indicator
widely used in financial market analysis to identify possible entry and exit points in an
asset. It consists of two lines, the MACD line, and the signal line, and is based on the
difference between short-term and long-term exponential moving averages.

The calculation of the MACD indicator involves three main components: the expo-
nential moving average (EMA), the MACD line, and the signal line. The formula for
calculating the MACD is as follows:

MACD = EMAshort—term - EMAlong—term (353)

Where EM Agport-term is the short-term exponential moving average and EM Ajong-term
is the long-term exponential moving average.

The signal line, often represented by a 9-period exponential moving average of the
MACD, is calculated as follows:

Signal Line = EMAQ—period MACD (354)

The MACD indicator is primarily used to identify the strength and direction of a
trend in an asset. The MACD line crosses above the signal line when there is an uptrend,
indicating a buy signal. Similarly, when the MACD line crosses below the signal line, it
indicates a downtrend, suggesting a sell signal.

In addition, MACD crossovers of the zero line are also considered important. When
the MACD crosses above zero, it indicates a trend change from bearish to bullish, while

when the MACD crosses below zero, it indicates a trend change from bullish to bearish.

33

3.8.4 Percentage Price Oscillator (PPO)

The Percentage Price Oscillator (PPO) indicator is a technical indicator used in financial
market analysis to identify possible trend reversals and generate buy or sell signals. It
is a variation of the Moving Average Convergence Divergence (MACD) indicator and is
calculated based on the percentage difference between two exponential moving averages
(EMA).

The calculation of the PPO indicator involves two main steps: the PPO line, which
consists of calculating the percentage difference between two EMAs, and the signal line.

The formula for calculating the PPO line is as follows:

(3.55)

PPO _ (EMAshort—term - EMAlong—term> % 100

EMAlong—term

Where FM Agnort-term 18 the short-term exponential moving average with 12 periods,
and EM Ajopg-term is the long-term exponential moving average with 26 periods. The

signal line is calculated as an exponential moving average of the PPO line as follows:

Signal Line = EM Ag_period PPO (3.56)

A very common signal generated by the Percentage Price Oscillator (PPO) indicator
is the Signal Line Crossover. It is important to note that the signal line is calculated
as a moving average of the PPO line, making it a secondary indicator. Therefore, the
signal line always lags behind the PPO line. However, when the PPO line crosses above
or below the signal line, it can indicate a potentially strong move.

The strength of this move is what determines the duration of the Signal Line Crossover.
Analyzing and understanding the strength of the move, as well as recognizing false signals,
is a skill that is acquired with experience.

Two types of Signal Line Crossovers should be looked for. The first is the Bullish
Signal Line Crossover, which occurs when the PPO line crosses above the signal line.
The second is the Bearish Signal Line Crossover, which occurs when the PPO line crosses
below the signal line.

Another signal generated by the PPO is divergence. Simply put, divergence occurs
when the PPO and the actual price are not aligned.

For example, Bullish Divergence occurs when the price makes a lower low, but the PPO
makes a higher low. Price action can provide information about the current trend, but
changes in momentum, as indicated by the PPO, can sometimes foreshadow a significant
reversal.

Bearish Divergence is the opposite. It occurs when the price makes a higher high while
the PPO makes a lower high.

o4

The Percentage Price Oscillator (PPO) indicator is a very useful tool. Like the Moving
Average Convergence Divergence (MACD), it uses two lagging indicators and incorporates
the momentum aspect, making it more predictive. It is important to highlight the simi-
larities between MACD and PPO, as they are virtually identical. The only difference is
that PPO is presented as a percentage.

3.8.5 Rate of Change (ROC)

The Rate of Change (ROC) indicator is a technical indicator used to measure the percent-
age change in the price of an asset over a given period. It is often used in trend analysis
and in identifying reversal points.

ROC is calculated as the percentage change in the price of an asset relative to its price
in a previous period, as described by the formula below:

ROC, = <Pt_Pt_n> x 100 (3.57)
By,

The number of periods is determined by the user, however, a commonly used value is
9 periods.

ROC is closely linked to price. When prices are rising or advancing, ROC values
remain above the Zero Line (positive) and when prices are falling or decreasing, they
remain below the Zero Line (negative).

Additionally, while ROC is an oscillator, it is not limited to a set range. The reason
for this is that there is no limit to how far a security can move, but there is of course
a limit to how far it can fall. If the price drops to $0, it obviously won't go any lower.
Because of this, ROC can sometimes appear unbalanced.

The Rate of Change (ROC) indicator can be a good tool for identifying the overall
long-term trend of a financial instrument. It may not lead to a signal on its own, but it
can help confirm other signal-generating conditions.

As mentioned earlier, ROC is not range-bound like many other oscillators. Because of
this, identifying overbought and oversold conditions can be a little less straightforward.
Knowing where to place the overbought and oversold boundaries can be tricky. The best

way to do this is by using historical research and analysis.

3.8.6 Momentum (MOM)

The Momentum (MOM) indicator is a technical indicator used to measure the speed of
price change of a financial asset. It is often used to identify moments of strength or

weakness in a trend.

95

The MOM is calculated as the difference between the current price (FP;) and the price
in a previous period (P;_,), where n is the number of periods considered. The steps to
describe the calculation of the MOM are described below:

The MOM is calculated as the value of the difference between the current price and

the previous price:

MOMt — Pt - Pt,n (358)

Where M OM, is the value of the MOM at time ¢.

The MOM is an indicator that measures the speed of price change. Positive values
indicate that the current price is higher than the previous price, indicating a bullish
momentum and a buy signal. Negative values indicate that the current price is lower

than the previous price, indicating bearish momentum and a sell signal.

3.8.7 True Range (TR)

The True Range (TR) indicator is a technical indicator used to measure the price volatility
of a financial asset. It is often used in technical analysis to assess the risk of a position
or to set stop-loss and take-profit levels.

TR is calculated as the difference between the largest absolute value of the following
three options: the difference between the maximum price and the minimum price of a
period (H; — L), the difference between the maximum price and the previous closing
price (H; — C;_1), and the difference between the minimum price and the previous closing
price (L, — Cy_1). The steps for calculating the TR indicator are described below:

First, the three possible differences are calculated:

Al - Ht - Lt (359)
AQ - Ht - thl (360)
Ag - Lt - thl (361)

Then, the TR is calculated as the largest absolute value among the three differences:

TR, = max(|A;, | A, | As]) (3.62)

Where T'R; is the TR value at time ¢.

56

TR is an indicator that measures the volatility of an asset’s prices. The higher the
TR value, the higher the volatility. TR is used to define stop-loss and take-profit levels,
where a higher TR level may justify a more distant stop-loss order to accommodate the

asset’s volatility.

3.8.8 Average Directional Index (ADX)

The ADX (Average Directional Index) indicator is a technical indicator used to measure
the strength of a trend in a financial market. It provides an estimate of the strength of
the trend, regardless of whether it is bullish or bearish.

ADX is calculated in three main steps: calculation of the Positive Directional (+DI)
and Negative Directional (-DI) indicators, calculation of the Average Directional Index
(DMI), and calculation of the ADX itself. The steps for the calculation are described
below:

First, the DI indicators are calculated for each period. The +DI measures the strength
of the bullish trend and the -DI measures the strength of the bearish trend. The formulas

for the calculation are as follows:

DM H,— H;_;, se (Ht — Htfl) > (Ltfl - Lt) (3 63)
t+ = .
0, otherwise

Ly y— Ly, se (Lyy—Ly) > (H — Hy
DM, — t—1 t (Lt t) > (H, 1) (3.64)
0, otherwise

SMA (DM, , 14
+DI. = SATRH)
t

% 100 (3.65)

SMA(DM;_, 14)
ATR;
Where H; and L; are the highest and lowest prices in period ¢, DM,;, and DM,_ are

the positive and negative directional components of period ¢, SMA(-,14) is the simple

DI, = % 100 (3.66)

moving average with period 14, and ATR, is the average true range of period t.
Then, DX is calculated as the average of the absolute values of the differences between
the DI indicators:

_ |+DIL —-DIL,|
|+DI, + -DI|

where DX, is the value of DX at time ¢.
Finally, the ADX is calculated as the exponential moving average of the DMI:

DX, x 100 (3.67)

o7

ADX, = SMA(DX,, 14) (3.68)

Where ADX; is the ADX value at time ¢ and m is the period for the exponential
moving average.

The ADX is an indicator that ranges from 0 to 100. Low ADX values, usually below
20, indicate a weak trend or no trend. High ADX values, usually above 40, indicate a
strong trend. The ADX can also be used to identify the strength of the current trend and
the possibility of a reversal.

The ADX indicator is a useful tool for measuring the strength of a trend in a financial
market. The mathematics behind the ADX involves calculating the DI indicators, the
DMI, and the ADX itself. With this information, investors and technical analysts can

assess the strength of a trend and make more informed trading decisions.

3.8.9 Stochastic d% and k%

The Stochastic %D and K% indicator is a technical indicator used to identify overbought
and oversold conditions in a financial market. It compares the current closing price with
a range of previous prices to determine buying or selling pressure.

The Stochastic %D is calculated in three main steps: calculating %K, smoothing %K,
and calculating %D. The steps for calculating the Stochastic %D indicator are outlined
below:

First, %K is calculated, which represents the current position of the closing price
relative to a range of previous prices. The formula for the calculation is as follows:

C-1L,
WK = oL x 100 (3.69)

Where C'is the current closing price, H,, is the highest price in the last n periods, and
L, is the lowest price in the last n periods.

Then, %K is smoothed to obtain %D. Smoothing is usually done using a simple moving

average (SMA) of the last m periods of %K. The formula for the calculation is as follows:

%D = SMA(%K, m) (3.70)

Where %D is the value of Stochastic %D at the current time and m is the number of
periods for the moving average.

The Stochastic %D ranges from 0 to 100. Values above 80 generally indicate an
overbought condition, which may suggest that the asset is approaching a reversal point.

Values below 20 generally indicate an oversold condition, which may suggest that the asset

28

is approaching a bullish reversal point. Traders often use %D crossovers with reference

values, such as 80 and 20, to make buy or sell decisions.

3.8.10 Detrended Price Oscillator (DPO)

Detrended Price Oscillator (DPO) is a technical market indicator. It is designed to filter
out long-term price trends and highlight short-term cycles in price data. DPO seeks to
isolate cyclical price fluctuations, allowing investors and analysts to identify short-term
patterns and potential trend reversal points.

The mathematics behind DPO is the difference between the current closing price and

the simple moving average shifted in time by half the chosen period. The formula for
DPO is:

(3.71)

DPO(n) = C — SMA (” il 1)

Where C' is the closing price, SM A(k) is the moving average calculated over k periods,
and n is the chosen period.

The core idea behind DPO is that the time-shifted moving average acts as a baseline,
representing an estimate of the long-term trend. By subtracting the moving average value
from the current closing price, DPO reveals the swings that occur above and below this
baseline. This allows traders to identify short-term patterns that can be difficult to spot
with traditional moving averages.

A distinguishing feature of DPO is that it does not take the long-term trend into
account, focusing exclusively on short-term fluctuations. This makes it particularly useful

for identifying cycles and reversals in markets with more complex trends.

3.8.11 Commodity Channel Index (CCI)

The Commodity Channel Index (CCI) is a technical indicator widely used in financial
market analysis to identify overbought and oversold conditions, as well as possible trend
reversals. It was developed by Donald Lambert and applies to a wide range of financial
assets.

The calculation of the CCI indicator involves three main components: the average
of typical prices, the simple moving average (SMA), and the mean absolute deviation
(MAD). The formula for calculating the CCI is as follows:

Ht+Lt+Ct

; (3.72)

Typical Price, =

29

_ Typical Price — Typical Price SMA
N 0.015 x Typical Price MAD

Where Typical Price MAD is the mean absolute deviation of the Typical Price from
its SMA (Simple Moving Average)

The CCI indicator fluctuates around a center line of 0. Values above 4100 indicate

cCl

(3.73)

that the price is above the average and can be interpreted as an overbought condition.
Values below -100 indicate that the price is below the average and can be interpreted as
an oversold condition. Traders often use CCI crossovers with the centerline and reference

levels, such as +100 and -100, to make buy or sell decisions.

3.8.12 Normalized Average True Range (NATR)

The NATR (Normalized Average True Range) indicator is a widely used tool in technical
analysis to measure market volatility. It provides information about the Average True
Range of an asset relative to its current price.

Calculating the NATR indicator involves two main steps. First, it is necessary to
calculate the average true range (ATR) of the asset. The formula for calculating the ATR

is as follows:

1 n
ATR = ﬁ ZmaX(Ht - Lt; |Ht - Ct—1|7 |Lt - Ct—1|) (374)
i=1

Where n is the number of periods considered and H;, L;, and C; are the high, low,
and close prices for period ¢, respectively.
After calculating the ATR, the next step is to normalize it with respect to the current

price. The formula for calculating NATR is as follows:

ATR
C

Where Close is the current closing price.

NATR = % 100 (3.75)

The NATR indicator is expressed as a percentage and provides a measure of normal-
ized volatility relative to the current price. The higher the NATR value, the higher the
expected volatility.

Investors and analysts use NATR to identify periods of high volatility, which can
indicate the possibility of large price movements. Conversely, a low NATR value suggests

lower volatility and a more stable market.

60

3.8.13 On Balance Volume (OBV)

The On-Balance Volume (OBV) indicator is a widely used tool in technical analysis to
assess the relationship between trading volume and price movements in a financial asset. It
was developed by Joseph Granville in the 1960s and aims to identify divergences between
trading volume and price movements, which can help traders predict trend reversals.
The OBV is based on the premise that trading volume can be an early indicator of
price movements. The central idea is that when volume increases in tandem with a price
movement, it suggests a confirmation of the trend. Conversely, when volume increases
significantly without the price following suit, it can indicate a potential trend reversal.
The calculation of the OBV is simple and is based on adding or subtracting the day’s
trading volume from the previous day’s OBV value, depending on whether the price rose
or fell. So, if the current day’s closing price is higher than the previous day’s closing
price, the current day’s trading volume is added to the previous day’s OBV value. If the
current day’s closing price is lower than the previous day’s closing price, the current day’s
trading volume is subtracted from the previous day’s OBV value. If the current day’s
closing price is equal to the previous day’s closing price, the current day’s trading volume

does not affect the previous day’s OBV value.

OBV(n—1)+V, ifC,>C,,
OBV(n) ={0OBV(n—1)—V, ifC,<Cy (3.76)
OBV (n—1) it C, = C,_y

Where OBV (n) is the current OBV, OBV (n — 1) is the previous period’s OBV, V, is
the current trading volume, and C,, is the current closing price.

The OBV is then plotted on a chart, usually below the price chart, as a solid line.
The OBV is watched for divergences: when the price is rising but the OBV is falling, this

could indicate a possible bullish reversal, and vice versa.

61

Chapter 4
Research Project

This chapter details the main aspects and components of the research project. It discusses
each part, its purpose, the choice of structure, and its function in the overall body of the
project. The chapter is divided into five sections. The first section introduces a general
outline of the project, and the following three sections present each of the modules that
comprise it. The fifth section proposes metrics to evaluate the performance of each of the

three modules.

4.1 The Total Model

The model consists of three modules. The first is the feature engineering module, re-
sponsible for inputs and information compression that will feed the other two modules
with information from the chosen technical indicators. The second is the price and trend
prediction module, which is responsible for making predictions about future prices and
trends and the strength of such trends. The third is the trading module, which is re-
sponsible for buying and selling a given asset. Figure 4.1 shows the proposed system’s

structure, highlighting the information flow between the three modules.

4.2 Feature Engineering Module

This is the module responsible for feeding information to the two subsequent modules.
The main challenges that this module has to solve are the following: processing the raw
market data according to the form of technical indicators, presenting the model with a
set of information that is truly informative and capable of efficiently training the neural
networks of the other two modules; and once this set of characteristics is given, verifying

the possibilities of dimensionality reduction, to make the training more efficient, removing

62

|- Compressed 5| Prediction Module
Data

f::::ti:; Feature Fut.ure
— ~ Data —™| Engineering — Price —
lenon nd Module Estimates

OLHC data

Trading Module Actions —p

| Compressed
Data

Figure 4.1: Structure and information flow of the three modules that make up the pro-
posed system: the feature engineering module, the price and trend prediction module,
and the trading module.

as much noise as possible since this is the main factor that worsens the overall performance

of the system.

4.2.1 Feature Selecion

The set of information related to the training of neural networks that predict prices or
market trends can have several different natures. One could opt for a set of information
related to fundamental analysis, for example. In this case, the assets to be analyzed would
almost necessarily be company shares, and the nature of the data would be related to
the information disclosed by these companies, such as balance sheets, profits, debt, and
growth prospects. Another perspective would be to use sentiment analysis, extracting
data from social networks and news to feed the neural networks. This perspective would
be quite useful since investors are subject to the disposition effect discussed in Chapter 1.
Yet another perspective would be data related to volume flow, an approach known as Tape
Reading; this would provide information about the largest open and closed operations in
the market. These operations allow us to know the nature of the largest investors who
are operating.

However, the set of information used will be traditional technical analysis data. It was
chosen to use it because it is easy to obtain and simple to process. This data uses only
information already contained in the asset’s price history and the volume of purchases
and sales made. However, this information is slightly different from the data from Tape

reading, since in that case the information is more individualized and analyzes investor

63

orders on a case-by-case basis, while the volume used in technical analysis is always
analyzed in a general and non-personalized way.

The first four technical analysis signals to be used in the feature engineering module
are those related to candles: the opening price, the minimum price, the maximum price,
and the closing price.

However, the technical analysis signals known to be the most informative are the
technical indicators, and it is also on these signals that this work is based on building
the model inputs. There are several types of technical indicators. There are trend
following indicators, which are those that provide confirmation information of a trend,
usually information that usually comes late, providing good signals of when to enter and
exit the market. However, these indicators are often not effective in identifying sideways
markets and thus provide many false signals. There are momentum indicators, which
are those that help measure the strength of the trend, in this way they show the "speed"
at which prices are moving in a direction. However, they can also provide false signals in
the face of a sideways trend. There are volume indicators, which are also confirmation
indicators, based on one of the principles of Dow theory, according to which, volume
follows the trend, that is, if the trend is up, then there should be an increase in the
volume of purchases and if the trend is down, there should be an increase in the volume
of sales. In this way, these indicators also serve to indicate the strength of trends, and the
lack of confirmation can warn of a reversal. There are volatility indicators, which are
designed to measure the strength of price fluctuations. These can provide information that
is particularly useful for identifying sideways trends. There are also cycle indicators,
which, instead of identifying trend information, identify short-term cycles, which makes
them useful for verifying repetitive patterns in price movements.

In this work, representatives of these classes of indicators were chosen. Many were
chosen based on the attribute selection work presented in Chapter 2. However, the in-
dicators were chosen to represent the maximum amount of useful information for neural
networks. It is important to emphasize that all the indicators were chosen theoretically,
with the work related to variable selection presented in Chapter 2 assisting the process.

Of the trend followers, three representatives were chosen: Weighted Moving Aver-
ages (WMA), Average Directional Movement (ADX), and True Range (TR). The WMA
indicator was one of the most selected in the work of Peng et. al.[35], and in the work
of Haq et. al. [36], it consists of weighted moving averages where the most recent prices
have a greater weight than the past prices. The ADX indicator was selected in the work
of Peng et. al., and the work of Haq et. al., It is very good at providing information about
the strength of the trend, and can help to identify whether the market is in a sideways
trend; it has three signal lines, the ADX itself, the +DI and the -DI. The TR indicator

64

was selected in the work of Haq et. al. It measures the amplitude of price variations over
the analyzed period and is especially useful for identifying daily or intraday movements

of the asset. Table 4.1 shows a summary of the chosen trend indicators.

Table 4.1: Selected Trend Following Technical Indicators

Name selected from: | Importance
WMA [35], [36] * Reports trend continuation
* Gives importance to recent prices

ADX [35], [36] * Trend strength
+DI, -DI * Identifies sideways movement
TR 36] * Price range

* Asset volatility

Of the momentum indicators, six representatives were chosen: Average True Range
(ATR), Rate of Change (ROC), Moving Average Convergence Divergence (MACD), Stochas-
tic (Stoch), Commodity Channel Index (CCI), and Relative Strength Index (RSI). The
ATR indicator or its normalized form Normalized Average True Range (NATR) was one
of the most selected in the work of Peng et. al. and the work of Haq et. al. It is an
indicator that measures the volatility of the asset about the last closing price, so it is
very sensitive to changes in current volatility, that is, it consists of a smoothing of the
TR indicator. The ROC indicator was selected in the work of Peng et. al.; in the work
of Haq et. al., and the work of Ji et. al. [37]. It measures the rate of change is useful in
identifying the strength and direction of the current trend, and is indicated for capturing
overbought and oversold signals. The MACD indicator is one of the most popular techni-
cal indicators, and it was selected in the work of Peng et. al., in the work of Haq et. al.,
and the work of De Oliveira et. al., and consists of subtracting a twelve-period moving
average from a twenty-six-period moving average. It is useful for signaling market entries
and exits and identifying divergences. The Stoch indicator was selected in the work of
Peng et. al. and De Oliveira et. al. in its two versions, %K and %D, while in the works
of Haq et. al. and Ji et. al., it appears in modified versions. This indicator provides
good overbought and oversold signals, but its importance lies in its efficiency in sideways
markets. The William’s Percent Range (%R) indicator consists of an unsmoothed version
of the stochastic, and with an inverted sign, it was selected in the work of Peng et. al.
and the work of De Oliveira et. al. The CCI indicator was selected in the work of Peng
et. al. and the work of Ji et. al. It measures the variation between the current price of
an asset and its average price over a given period. It is useful for identifying overbought

and oversold signals and identifying divergences. Finally, the RSI indicator measures the

65

magnitude of recent price changes to identify overbought and oversold conditions; this
indicator was selected in the work of Gang Ji et. al. and de Oliveira et. al. Table 4.2

shows a summary of the chosen oscillator indicators.

Table 4.2: Selected oscillator indicators

Name | selected from: Importance
ATR [35], [36] * volatility sensitivity
MOM | [35], [38] * overbought and oversold

* trend reversal

ROC [35], [37] * Trend strength and direction
* Overbought and oversold

RSI [37], [38] * Trend strength and direction
* Overbought and oversold

MACD | [35], [36],[38] * Market entry and exit

* Divergence identification

Stoch [35], [38] * Sideways market efficiency
modified in [36], [37]

Will R | [35], [38] * Sideways market efficiency

CCI [35], [37] * Overbought and oversold
* divergence identification

Among the volume indicators, volatility indicators, and cycle indicators, three
representatives were chosen. The On Balance Volume (OBV), the Detrended Price Oscil-
lator (DPO), and the Variance (VAR). The OBV was selected in the work of De Oliveira
et. al. It is designed to measure the flow of positive and negative volume on a given asset.
Therefore, measuring the health of a trend. A price increase followed by an increase in
OBV means a healthy uptrend, while a price increase followed by a decrease in OBV
would be an uptrend with a strong possibility of reversal. The DPO was the best-selected
indicator in the work of Peng et. al. It consists of an indicator designed to neutralize
any information about the trend and highlight information about short-term cycles that
occur in prices. It was chosen, among other things, because it is the best-selected indica-
tor in Peng’s work, in addition to the nature of its underlying information, which differs

from that of the other indicators. Table 4.3 shows a summary of the indicators chosen

66

among those of volume, volatility, and cycle. VAR consists of a moving variance, where
the variance is calculated over a sliding window of candles, and is an indicator that gives
an idea of market volatility. It was selected in the work of Peng et. al. E and Gang Ji et.

al.

Table 4.3: Indicators chosen from volume, volatility and cycle

Name | selected from: | Importance

OBV [38] * Variation in volume flow
VAR [35], [37] * Market volatility

DPO [35] * Small short-term cycles

The set of all inputs presented to the model is shown in the table 4.4. It can be
seen that there are a total of twenty-one inputs, although only seventeen indicators were
selected. This is because some indicators have more than one signal, as is the case with

the ADX indicator, which has three signals, or the stochastic indicator, which has two.

4.2.2 Data pre-processing

Financial data has some characteristics that make it difficult for artificial neural networks
to process. To make it more suitable for this processing, it is necessary to pre-process it,
attenuate certain characteristics, and highlight others.

The transformation to be performed on the data is standardization. This transfor-
mation is particularly important in artificial neural networks since it greatly improves
training since data with very different scales can lead to much slower convergence. In
addition, due to the activation functions, which are often sigmoid or hyperbolic tangents,
normalizing the data places it on the same scale as the neural network. If the data is not
normalized within the scale of the activation functions, it becomes more difficult for the
neural network to produce good results. To normalize the data, the transformation Z is

performed:

Xy —
o

Zt:

(4.1)

Where 7 is the transformed data, p is the mean of the data, and o is the variance of the
data.

67

The last treatment consists of removing the outliers or atypical values. To do this, all

points Z; where Z; < —30 or Z; > 30 are removed.

4.2.3 Dimensionality Reduction

Once the set of inputs has been selected and it is guaranteed by technical analysis that
this set contains useful information, it is necessary to reduce its dimensionality to preserve
the information and, at the same time, reduce the computational costs of training the
neural networks related to this set.

A technique that introduces aspects of non-linear modeling required by the market is
the autoencoder. The autoencoder consists of a neural network trained from its inputs,
which is why it is said that the autoencoder is a self-supervised technique. The tapering of
the autoencoder is responsible for reducing the dimensionality of a given input. Thus, from
an input with several features, the encoder produces an output with the same information
and with few features, but it is as if this information were compressed into a code. The
decoder, on the other hand, is responsible for translating this code into familiar values,
decompressing the code, and having an output with the same dimension as the encoder
input. Of course, the loss of some degree of information is inevitable, as is typical of data
compression.

The BiLSTM cell was chosen to build the autoencoder architecture. The choice of this
architecture is justified by the existence of an abundance of noise and non-linearity in the
data, which can be correctly handled by the BiLSTM cell. In addition, this cell has the
property of memory, which correlates previous data with subsequent data.

The idea of using the Autoencoder is to reduce the number of input features to facilitate
the training of the neural networks responsible for the Prediction Module and the Trading
Module. Figure 4.2 shows the structure of the encoder and decoder, each using a total
of three BiLSTM cells; the encoder significantly reduces the number of inputs and the

decoder reestablishes the number of inputs.

4.3 Prediction Module

The structure of the prediction instruments is something very important to consider since
these are the instruments that will process the chosen input data and provide useful
estimates about future prices that will be used to make purchase and sale decisions. The
engineering of this structure is the main factor responsible for the type of processing to
be used. It is at this stage that it should be chosen whether the processing will take
into account internal correlations, spatial characteristics, temporal dependencies, or other

types of information about the given data set.

68

Encoder Decoder

A\

Y

Yy v 9
\ B B

BiLSTM BiLSTM BiLSTM BiLSTM

Y Y VY VY QO

Yy Y Vv 9V
y Y v

Yy vy

BiLSTM ll - BiLSTM

Y
Y

Y
Y
Y

Yy v 9

Figure 4.2: Structure of the encoder, on the left, and the decoder, on the right, both using
BiLSTM cells .

The work of Selvin et. al. [3] compares some neural network architectures for price
prediction. The performance of the RNN network, the LSTM network and the CNN
network in predicting the behavior of the shares of the companies Infosys, TCS, and
Cipla are compared. The results showed that there were some chunks that the RNN
and LSTM networks were unable to predict. In addition, the results showed that the
CNN networks were the ones that obtained the best results. The author attributes the
superiority of CNN’s performance to the fact that it does not use prior information for
prediction and that CNN is also capable of capturing patterns and dynamic changes that
occur in the price.

However, the work of Zhanhong He et. al. [4] compares the performance of CNN
networks with hybrid networks composed of an LSTM layer followed by a CNN layer,
and the results showed that the latter has a better performance for price prediction. The
performance of both types of networks was evaluated in predicting the behavior of the
gold price.

It is based on these results that the architectures of Market Trend Prediction and

Trend slope Regressor are proposed.

4.3.1 Market Trend Prediction

Market trend prediction is done by trying to determine whether the market is bullish
or bearish. In this problem, since what needs to be determined is not a continuous

numerical value but rather a binary value that oscillates between these two possibilities,

69

it is a classification problem, where there will be just two classes. The function of the
trend predictor is to determine which of these two classes the market is placed in.

The proposed structure for the trend predictor is composed of three layers and a final
dense layer. The first layer will be composed of convolutional and mazx pooling networks.
The first layer was chosen to be convolutional to be able to extract, from the beginning,
the most important characteristics of the price. By selecting the maximum values, the
max pooling layer will extract the most salient features of the data, which will be most
representative for determining the trend.

The second and third layers of the trend predictor will consist of a BiLSTM neural
network to capture temporal dependencies between time steps already selected by the
previous convolutional layers. It is important to remember that due to the convolution
operations performed by these layers, the number of time steps sent to the third layer
becomes significantly reduced; it follows that only the most informative time steps will
be taken into account for estimating the trend.

The last layer of the trend predictor instrument consists of a densely connected layer
with a dropout factor. The use of dropout is justified to mitigate the possibility of over-
fitting since this layer will randomly "turn off' some neurons, forcing the neural network
not to rely on a select group of neurons for good prediction.

The methodology for training the trend predictor neural network is supervised learn-
ing. Where the future values of the price series themselves will serve as labels to train a
set of past data. The cost function to be used is the binary cross-correlation since it is
the usual cost function used in two-class classification problems. Figure Figura 4.3 shows
the structure of the Market Trend Classifier.

Labeling

To label the market and train the neural network, a specific process involving linear
regression is used. A set of candles is selected from the market data, and from this set
of candles, the closing prices are extracted and used to compute the linear regression of
the entire set. Linear regression is applied to determine the overall trend of the market
within the selected window of candles. The slope of the linear regression line serves as
the key indicator of the market’s trend direction. If the slope of the linear regression
line is positive, this indicates an upward trend, and the market is classified as bullish.
Conversely, if the slope of the linear regression line is negative, this signifies a downward
trend, and the market is classified as bearish.

Once the market has been labeled, this data is used to train the neural network. The
labeled data provides the neural network with clear examples of market behavior, enabling

it to learn the patterns and relationships necessary for accurate market predictions in

70

future scenarios. Through this methodology, the neural network is trained to recognize
the trends.

Input » Conv | Act Ma'x L+ BiLsTM ! BiLsT™ || Dense+ -
Pooling Dropout

Figure 4.3: Structure of the Market Trend Classifier, starting from the input layer, con-
volutional layer, activation layer, Max Pooling layer, two BiLSTM layers, and dense layer
with dropout factor.

4.3.2 Trend Slope Regressor

Price prediction is done by trying to estimate the slope of the linear regression since its
direction is already determined by the trend predictor. In this problem, what needs to be
determined is precisely a numerical value, which characterizes a regression problem.

The proposed structure for the price predictor consists of three layers of neural net-
works plus a dense layer. The first and second layers will be composed of a BILSTM neural
network. This network’s purpose is to map long-term dependencies between prices. The
choice of the BILSTM network is justified by the fact that this type of network captures
both dependencies between past and current prices and between future and current prices.
In a typical LSTM network, the network’s current values are influenced only by the past,
while in BiLSTM networks, the current values are influenced by both the past and the
future. Here, the structure of the price predictor differs from that of the trend predictor,
since in the latter the first layers are convolutional to capture more elementary informa-
tion, while in the trend slope regressor, the first layers are intended to capture complex
temporal dependencies.

The last layer will be composed of a simple convolutional network and maxz Pooling.
The choice of this type of layer to be the last lies in the fact that placing the convolutional
layer or the maz pooling layer in the first place would result in a loss of information that
could be valuable for determining the slope. Unlike what happens in the trend predictor,

it is not interesting to refine the information too much right at the beginning; on the

71

contrary, this information needs to be worked on and processed by the BiLSTM layers at
the beginning, to be refined only at the end by the convolutional and maz pooling layers.

The training methodology for the trend slope regressor is the same as that used for
the market trend classifier and it uses supervised learning. The cost function used will
be the mean squared error, as is classic in regression problems. Figure Figura 4.4 shows
the structure of the trend slope regressor. Highlighting its information flow that passes
through the two BiLSTM, Convolutional, Activation, Max Pooling, and dense layer with
dropout factor.

The same way the occurs in the market trend classifier, a set of candles is selected,
half of this set is made of past candles, and half of then is made of future candles, then
the linear regression slope is calculated, and the value of this slope is calculated. This

predictor is useful to determine the strength of the trend.

; | Rpi > Max Dense+
BiLSTM BiLSTM Conv || Act > > >
Input Pooling Dropout

Y

Figure 4.4: Trend Slope Regressor structure, starting from the input layer, two Bil-
STM layer, convolutional layer, activation layer, Max Pooling layer, and dense layer with
dropout factor.

4.4 Trading Module

The objective of this module is to use information from technical indicators and predictors
to make the best decisions to buy and sell the asset. There can be many decision-making
methods. The method chosen for this project is reinforcement learning using neural

networks, more specifically Rainbow DQN

72

4.4.1 Trading by Reinforcement Learning

The trading module consists of a neural network capable of making buying and selling
decisions in a given financial market. This module must be able to analyze the best times
to buy and sell and perform operations accordingly.

To model the trading instrument in an agent guided by reinforcement learning, it is
necessary to systematically and efficiently plan its states, actions, and rewards, as these
aspects constitute the whole responsible for the agent’s performance.

The agent’s states are modeled according to the agent’s perception of the market. To
form this perception, the agent must have access to current prices, trends estimated by
trend predictors, as well as information from a set of technical indicators, compressed as
much as possible, to improve the agent’s performance in its training. Since what matters
to the agent is information regarding the best times to buy and sell, information about
the estimate of future prices should be the most considered. To this end, the predictor
module must produce good trend estimates, whether upward or downward.

The agent’s actions are, in principle, very simple: buy, sell, or hold the asset. When
there is a moment of overbuying in the market, the agent, noticing this overbought, starts
to sell the asset, and when there is a moment of oversold, the agent starts to buy. If
the agent’s actions are limited to buying, selling, and holding, this limits the agent’s
probabilistic perceptions, so that if he perceives that one operation is very likely to be
profitable and another is only slightly profitable, the agent invests in both equally. A
more interesting approach consists of investing more money in situations with a higher
probability of profit and investing less money in situations with a lower probability of
profit. Therefore, the engineering of the agent’s actions must consider a space of actions
with more elements. The probability of profit of the operation should be considered in
three levels: probable profit, more or less probable profit, and unlikely profit. Thus, the
buying action is subdivided into three, and the selling action into three. This guarantees

a seven-element action space, which will be modeled as follows:
A={-3,-2,-1,0,1,2,3} (4.2)

Where negative numbers represent sales and positive numbers represent purchases, and
the variation from 1 to 3 represents how much the agent should invest in each operation;
whether it should invest a lot, more or less, or a little, the number is proportional to the
probability of success of the operation.

Finally, the engineering of the agent’s rewards must be established, and it is only
necessary that this reward be proportional to the profit that the agent can extract from

a market operation.

73

4.4.2 Rainbow DQN with Memory Buffer

The algorithm established in the reinforcement learning will be Rainbow DQN. The struc-
ture of the neural network responsible for this trading instrument will initially consist of
three densely connected layers, each with approximately 64 neurons. Later, BiILSTM
layers will be used instead of the densely connected layers, since it is considered that the
agent’s performance should improve as memory is added to the Rainbow DQN algorithm.
This BiLSTM layers are the Memory Buffer. A densely connected neural network was
initially chosen for its simplicity and low computational resources for its training. After

experiments will be performed with the memory buffer.

Trading
Module

-
| s _

Trend Current Technical
Estimates Prices Indicators

Figure 4.5: Structure of the trading instrument and risk management instrument and the
flow of information received, representing the states.

4

4.5 Evaluation

4.5.1 Evaluation metrics

Evaluation metrics are needed to measure the performance of machine learning models so
that it is possible to understand how well the model is making predictions concerning real
data. Metrics provide an objective way to quantify the quality of predictions and help to
make informed decisions about model selection and tuning.

Since the Market Trend Predictor engages in classification problems, its evaluation
metric must be consistent. Thus, its performance is evaluated according to the following

metrics: precision, recall, and accuracy.

Precision
p=_1 (4.3)
Pu + Pr
Recall
- (4.4)
p'u + nf
Accuracy
pU + n’U (45)

N Do+ P+ ny +ny

Where p, are true positives, p; are false positives, n, are true negatives, and ny are false

negatives. Precision measures the proportion of correctly predicted positive instances

concerning the total number of instances predicted as positive. Recall measures the

proportion of correctly predicted positive instances in relation to the total number of

true positive instances. Accuracy measures the proportion of correct predictions about

the total number of predictions; it is a general metric that provides an initial idea of the
quality of the predictions.

The Trend Slope Regressor, on the other hand, is inserted in regression problems, so

its evaluation metric must be different. Its performance should be evaluated according to

three metrics:

Root Mean Squared Error (RMSE)

1 n
RMSE = \J - > (Y — 9i)? (4.6)
i=1
Mean Absolute Error (MAE)
1 n
i=1

5

Mean Absolute Percentage Error (MAPE)

MAPE=1%

n;3

Yi — Ui

x 100 48
" (4.8)

The Root Mean Squared Error (RMSE) calculates the standard deviation of the errors.
In the formula above, y; represents the real values and ¢; represents the predicted values, n
is the total number of samples. The MAE calculates the absolute value of the errors. Then
Mean Absolute Percentage Error (MAPE) calculates the average error as a percentage of
the real values. It is useful when it is necessary to evaluate the relative error about the
size of the real values. In the formula above.

Finally, the performance of trading is given by the engineering of their reward func-
tions. Since the reward function for both instruments is the percentage profit obtained,

their performance will also be evaluated as a function of the profit.

4.5.2 Evaluation comparisons

The idea is that to validate the proposed model, its results, through evaluation metrics,
are compared with other simpler models. Trend predictors should be evaluated based on
classification problem metrics, that is, accuracy, precision, and recall, where the proposed
predictors should have these metrics compared with simpler predictors, for example, those
composed only of an LSTM layer and a CNN layer. Just as price predictors should
be evaluated based on regression problem metrics: RMSE and MAPE), they should be
evaluated according to their comparison with less complex price predictors, such as those
built only from LSTM and CNN.

In addition, trading instruments should also be evaluated. The metric to evaluate
them will be simple profit. That is: the performance of these instruments will be measured

based on the profit they can make.

4.5.3 Evaluation Scenarios

Evaluating a system in different scenarios is essential to gain a full understanding of its
performance, adaptability, and limitations. Different scenarios represent different situ-
ations that the system might face in reality, allowing for a more robust and realistic
evaluation. Evaluating a system in a variety of scenarios helps ensure that it can gen-
eralize well to different situations; this is especially important in the case of predictive
systems. Evaluation in different scenarios tests the robustness of the system in the face of
variation in the data. A system that only works under ideal conditions may not be very

useful. Testing in different scenarios helps ensure that the system is resilient to change.

76

Evaluating in different scenarios allows the system to be continuously adapted to ensure
that it remains relevant and effective.

The scenarios proposed for this work consist of different types of assets at specific
time intervals. The assets chosen are cryptocurrencies: Bitcoin, Ethereum, Ripple, and
Cardano. All of these assets were chosen based on their popularity, with Bitcoin being
the most popular cryptocurrency.

Cryptocurrency prediction is generally considered one of the most difficult prediction
problems in terms of time series due to the high number of unpredictable factors involved
and high volatility. Cryptocurrencies are time series close to random walks, from which it
can be deduced that the prediction problem for this type of series is usually too difficult
[28].

One point to be made is regarding the time interval for the three assets in which the
model will be tested. As for Bitcoin and cryptos in general, the period in which China,
until then one of the world’s leading cryptocurrency markets, banned mining and declared
cryptocurrency transactions illegal in the country should be included. These periods are
being highlighted to test the model’s performance in the face of major geopolitical events,

thus providing a better idea of the model’s robustness.

7

Table 4.4: All indicators presented at the model input

Acronym Name
1 | WMA Weighted Moving Averages (WMA)
2 | TR True Range (TR)
3 | ADX Average Directional Movement (ADX)
4 | DI+ Directional Index Positive
5 | DI- Directional Index Negative
6 | ATR Average True Range (ATR)
7 | MACD Moving Average Convergence Divergence (MACD)
8 | MACD - signal | Moving Average Convergence Divergence (MACD) - signal line
9 | RSI Relative Strength Index (RSI)
10 | ROC Rate of Change (ROC)
11 | Stoch % K Stochastic (Stoch) %K
12 | Stoch % D Stochastic (Stoch) %D
13 | Will % R William’s Percent Range
14 | CCI Commodity Channel Index (CCI)
15 | OBV On Balance Volume (OBV)
16 | DPO Detrended Price Oscillator (DPO)
17 | VAR Variance (VAR)
18 | Close Close price
19 | High High price
20 | Low Low price
21 | Volume Volume

78

Chapter 5
Experiments and Results

This chapter will present the experiments related to the three modules that make up the
model, revealing the main studies concerning the aspects and details that make up the
model. The first section will investigate the best architectures for efficient compression of
financial data using autoencoders and some of the main parameters that make up these
architectures. In the second section, the best ways to extract useful estimates about the
financial market using price and trend predictors will be investigated. The performance
of the proposed architectures will also be investigated, as well as some of their main
parameters. The third section will investigate the general performance of the trading

module, about purchases and sales.

5.1 Feature Engineering Module

The first stage of the construction of the feature engineering module consisted of selecting
the inputs that would feed the model. The selection of these inputs was done theoretically,
with the variable selection work being used as an aid for this choice. All selection was made
according to the requirement that each indicator provide useful information to the model.
Some technical indicators, because they have waveforms that are completely identical to
those of indicators already selected, were overlooked during the selection process, such as
the Momentum (MOM) indicator, which has the same waveform as the Rate of Change
(ROC) indicator, or the Percentage Price Oscillator (PPO) indicator, which also has the
same waveform as the Moving Average Convergence Divergence (MACD) indicator.

The premise that the chosen technical indicators could provide the model with con-
flicting information was taken into consideration, as well as the amount of noise that
would be added. This is one of the problems to be solved, or at least mitigated, by the

feature engineering module.

79

5.1.1 Preprocessing

An experiment was conducted on the need for data differentiation as a pre-processing
step. Differentiation is characterized by trying to transform a non-stationary time series
into a stationary series. This transformation ensures that the statistical aspects of the
series, such as the mean and variance, are more constant throughout the series. Figure
5.1 shows the data without this pre-processing and the data to which differentiation was
applied. We can see, through this figure, the loss of original information inherent to
differentiation; the original waveform was completely compromised. For this reason, it

was decided not to apply differentiation to the data.

40 4

2100+
30 1

2050
20 4

2000 +
10 4

1950 -

o
.

1900 -

[+] 1000 2000 3000 4000 5000 6000 7000 [+] 1000 2000 3000 4000 5000 6000 7000

Figure 5.1: Closing price of gold given in dollars per ounce with 7000 samples, on the left.
The closing price of gold applied to differentiation, on the right, also with 7000 samples.

However, for the correct introduction of data into artificial neural networks, the data
must have a zero mean and a unitary standard deviation. This transformation is known as
standardization. Standardization is important because it places the data on the same scale
as the neural network activation functions. Figure Figura 5.2 shows the non-normalized
and normalized data side by side. It can be seen that this transformation does not result
in a severe loss or alteration of information. Therefore, normalization was applied to the
data.

The next step consists of performing a dimensionality reduction itself to compress the
information that will feed the rest of the model, filtering out some of the noise. For this

purpose, the autoencoder was chosen.

5.1.2 Choosing the Autoencoder architecture

To choose the best architecture for the autoencoder, several models built from LSTM

and BiLSTM cells were proposed. The models were proposed to analyze the performance

80

0.4 4
2100

0.2 4
2050 A

0.0

2000

1950 4

1900

T T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Figure 5.2: Closing price of gold given in dollars per ounce with 7000 samples, on the left.
The closing price of gold minus the mean, and divided by the standard deviation, on the
right, also with 7000 samples.

of the autoencoder according to the size of the information compression, given by the
dimension of the context vector; according to the time window that feeds the LSTM and
BiLSTM cells; and according to the number of layers that make up both the encoder and
the decoder.

Performance according to the dimension of the context vector

To evaluate the performance of the autoencoder according to the compression of the
information, or more specifically, according to the dimension of its context vector, a three-
layer model was proposed, both for the encoder and for the decoder. In this model, each
layer is composed of either LSTM cells or BILSTM cells. The number of epochs chosen to
train the models was 700, the minibatch size was 100 samples, and the learning rate was
1073, The time window size in all models was 60 time steps. The loss function chosen
to train the model was the mean squared error. The dimensionality of the model input
corresponds to twenty-one attributes. Furthermore, the optimization method chosen was
ADAM.

Figure 5.4 shows the performance of the autoencoders for a context vector with dimen-
sionality equal to 1, 5, 10, and 15. It is noteworthy that in both models, the performance
worsens as more information compression is required, with the case with the highest loss
being the one whose context vector has dimensionality equal to 1, and the one with the
lowest loss being the one with a context vector with dimensionality equal to 15. However,
we can see that the loss does not increase in the same proportion as the dimension of the

context vector increases. The loss decreases slightly between the case where the context

81

Encoder Decoder

>}
73 BiLSTM BiLSTM E> BILSTM
>

BILSTM BiLSTM

Yy vyyvey

Figure 5.3: Proposed scheme for the autoencoder with three layers for dimensionality
reduction in both the encoder and decoder.

LSTM BILSTM
0.0307 —-= 1.Dim — 1Dim
—-= 5Dim 0.025 A —— 5Dim
0.025 - —_- lD—D!m —_— lD—D!m
—-= 15-Dim — 15-Dim
0.020
0.020 \
0.0004 1 \\ 0.0004 \
. \ , 00151 \
§ 00157) \ f 0.0002 \\
| 0.010 — \
0.010 0.0000 : ‘\
680 690 700 \
~_ \\
0.005 - 0.005 7 \
p \\
\
S Y
0.000 0.000
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs

Figure 5.4: Comparison of the evolution of the losses of the LSTM and BiLSTM models
calculated over the training epochs. The figure on the right shows the evolution of the
losses for four possible dimensions of the context vector for the autoencoder-BiLSTM.
The figure on the left shows the evolution of the losses for the Autoencoder-LSTM.

vector has dimensionality equal to 10 and the case where it has dimensionality equal to
15, but the same difference cannot be noted between the losses of the cases with dimen-
sionality equal to 1 and 5. Furthermore, the difference in performance is even smaller in
the model that uses BiLSTM cells. Figure Figura 5.5 further highlights the performance
superiority of BiLSTM autoencoder over LSTM, and it is also possible to note that the
BiLSTM model converges faster.

The total sample set was divided into training data and test data in a proportion of 80
and 20 percent respectively. To evaluate the performance of the autoencoder against the

training data, three metrics were considered: Mean Squared Error (MSE), Mean Absolute

82

1-Dim 5-Dim
0.030 4 0.025 |
| —-- LSTM —-- LSTM
0.025 - —— BILSTM 0.020 4 —— BILSTM
0020 | 0.00050
. . 00034 " 00154 | e — . \
& 0.015 1 0.002 - \\ g 0-00025 1 \
\ 0.010 - N\
0.010 | 0.001 +—— . 0.00000 +=—— N\
660 680_ 700 \ 680 690 700 N\
~_ 0.005 A — N\
00059 N ~r—m._ . ~— \
__________ ST 0.000 = —
0'000 - T T T T T T T T : T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs
10-Dim 15-Dim
0,025 1 | —-- LSTM 0.025 4 | —-- LSTM
— BILSTM | — BILSTM
0.020 0.00050 \ 0.020 0.00050
N\
i@ 0.015 4 0.00025 4 \ i@ 0.015 0.00025 N\
I I e \ - I ettt N \
0.010 | 0.00000 I——— N\ 0.010 0.00000 F—— N\
680 690 700 N\ 680 690 700 N\
0.005 - ~—_ N 0.005 ~—— \
—_\ —_\
0.000 — 0.000 = —=
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs

Figure 5.5: Comparison of the evolution of the model loss with context vector of dimen-
sionality equal to 1, 5, 10, and 15, computed over the training epochs for LSTM and
BiLSTM Autoencoders. Top left image: context vector of dimensionality equal to 1. Top
right image: context vector of dimensionality equal to 5. Bottom left image: context vec-
tor of dimensionality equal to 10. Bottom right image: context vector of dimensionality
equal to 15..

Error (MAE), and Mean Absolute Percentage Error (MAPE). Table 5.1 shows the result
of each of these metrics for the four dimensionality values of the context vector. It is

possible to observe the decrease in errors as the dimensionality is increased.

Performance according to the number of layers

To evaluate the performance of the autoencoder according to the number of layers, four
architectures were proposed: the first with an encoder and a decoder with two layers; the
second with four layers each; the third with six layers and the fourth with eight layers.
These layers were tested for both the LSTM cell and the BiLSTM cell. The number of
epochs used was 700, the learning rate was 1072, and the time window size was 60 time
steps. The loss function chosen for the error calculation was the mean squared error.

The dimensionality chosen for the context vector was 3 and the optimization method was
ADAM.

83

Table 5.1: Performance of LSTM and BiLSTM autoencoders according to different di-

mensions for the context vector and according to different metrics

Context Vector LSTM BiLSTM
Dimension MSE MAE MAPE MSE MAE MAPE
1 0.0278 0.1254 186.1556 0.0214 0.1017 223.9342
5 0.0089 0.0659 153.5034 0.0052 0.0539 135.4673
10 0.0055 0.0518 130.4784 0.0024 0.0348 96.4087
15 0.0039 0.0428 108.2602 0.0019 0.0306 77.4144
LSTM BILSTM
0.030 —-= 2 Layers 0.025 4 — 2 Layers
—-- 4 Layers — 4 Layers
—-- 6 Layers —— 6 Layers
0.025 A | —-- 8 Layers 0.020 4 —— 8 Layers
Y \ 0.00100
0.020 i 0.002 — \.\\ tos. 0.00075 1
p ! [BN s 0.00050 ~emate sy
S 0.015 A 0.001 o _ \ g
\ 0010 0.00025
0.010 1 % 0.000 1— \ 0.00000

0.005 A

0.000 -

T T
300 400
Epochs

T T T
0 100 200

T
500

0.005 ~

0.000

T
0

T T T T
200 300 400 500

Epochs

T
100

T
600

700

Figure 5.6: Comparison of the loss evolution as the number of layers in the encoder and
decoder increases; for 2, 4, 6, and 8 layers. The figure on the right shows the model where
the layers used are BiLSTM cells. The figure on the left shows the model where the layers
used are LSTM cells..

Figure 5.6 shows that for the LSTM case, the case with the lowest error was four layers,
and the worst case was two layers; the cases with six and eight layers were intermediate.
The case where BiLSTM cells were used to compose the layers showed that the cases
with four, six, and eight layers all had very similar errors, and the worst case was where
only two layers were used. Figure 5.7 shows the superior performance of the BiLSTM
autoencoder over the LSTM since in all cases we can see that the error of the former was
lower.

Table 5.2 shows the performance of the LSTM and BiLSTM autoencoders for testing
data. The data were divided between training and testing in a ratio of 20 and 80 respec-
tively. It can be seen that the autoencoder with four layers has the lowest MSE and MAE
values when using the LSTM cell. When using the BiLSTM cell, we notice that the lowest
MSE and MAE values occur when using eight layers. The lowest MAPE values always

84

2 Layers 4 Layers
0.030]

| —-- LSTM | —-- LSTM
00251 | —— BILSTM i — BILSTM
00251 |
0.020 A
\, 0.020 \
0.002 A N\ 0.002 4 \
AY \
., 00151 \ @ 0015 \
a0y e ——e \ 2 0.015 4 \
0.001 0.001 -
El \ 3 [N\
0.010 \ \
: 0.000 +——— ; \ 0.010 4 0.000 +—— : : \
680 630 700 710 \ 680 685690 695 700 \
S~ N\ S N\
— \ \
0.005 - 0.005 - \
\
J_\]
0.000 - o000l 0 Tems——————— 1
T T T " " " T " T T T T " T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs
6 Layers 8 Layers
00301 —-- LSTM 00304 | —-- LSTM
— BILSTM i — BILSTM
0.025 + ooz54 b
0.020 A 0.020 4 ooz 4 — === \\
\\
N\
4 0.015 1 a | \
z \ g 0015 0.001 - \\
‘\\ \\
\ N\
0.010 N\ 0.010 0.000 +——— T T \
\ 680 685 690 695 700 AN
\ \
\ — \
0.005 1 \ 0.005 - \
\ ~——————— . -~ \
———— e)
e o
0.000 A = 0.000 =
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs

Figure 5.7: Comparison of loss evolution between LSTM and BiLSTM autoencoders. The
top left figure shows the models using 2 layers. The top right figure shows 4 layers. The
bottom left figure shows 6 layers, and the bottom right figure shows 8 layers..

occur when using eight layers, whether LSTM or BiLSTM. Furthermore, we notice that

the architecture that uses BiLSTM has a lower error than LSTM in almost all cases.

Performance according to different time windows

Since the autoencoder is built using layers of recurrent neural networks, it is necessary to
evaluate the performance of the autoencoders according to the size of the time window
used. Thus, the performance of the autoencoder was evaluated in four time window sizes:
6, 60, 350, and 1050. The model used three layers and the dimension of the context
vector was equal to 10. The number of epochs used was equal to 700; the learning rate
was 10”—3 and the size of the minibatch was 100 samples. In addition, the mean square
error was chosen to calculate the error and the optimization method was ADAM.
Figures 5.8 and 5.9 show that there is little difference between the evolution of losses

for the various time windows considered. Still, it is clear that autoencoders built according

85

Table 5.2: Performance of LSTM and BiLSTM autoencoders according to different num-
bers of layers used in the encoder and decoder

Number of LSTM BiLSTM
Layers MSE MAE MAPE MSE MAE MAPE
2 0.0187 0.0986 195.809 0.0086 0.0706 165.9187
4 0.0184 0.0924 173.4737 0.0079 0.068 167.0501
6 0.0188 0.0924 183.7128 0.0083 0.0656 172.7861
8 0.0317 0.1303 135.9925 0.0077 0.0642 150.6123

LSTM BILSTM
00304 1 == 6 time-steps — 6 time-steps
i —-- B0 time-steps 0.025 —— 60 time-steps
—-- 350 time-steps —— 350 time-steps
—-=- 1050 time-steps —— 1050 time-steps
0.025 4
0.020
0.0005 3 0.00025
0.020 A 0.0004] — vt oo 0.00020
0.0003 - 0.015 1 0.00015 -
2 A b
§ 0015 0.0002 sy oo st o 4 0.00010
“\
0.0001 - \ 0.00005 A==
0.010 1
0.010 J 0.0000 : 0.00000 4— ‘
f 680 . 690 700 \ 680~ 690 700
\ S A\ “\._\
\ . ~.
~ \ 0.005 -
00054 1\ . .
\ ~ .
~ \ ~
s S\ ~
e L ., \ ™
0.000 - = 0.000 - -
. : T , : T T T T T : . T , : T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs

Figure 5.8: Comparison of the loss evolution for different time windows, for time windows
of 6, 60, 350, and 1050 time steps. The left figure shows the model where the layers are
LSTM cells, and the right figure shows the model where the layers are BiLSTM cells..

to BiLSTM cells always guarantee smaller errors than those built according to LSTM cells.
However, it should be taken into account that this difference in performance is only valid
when considering only the training data.

Table 5.3 shows that, for the test data, the smaller the time window considered, the
smaller the errors. When the time window considered was 6 time-steps, the smallest error
values were obtained, regardless of the metric considered. These errors say more about
the nature of the data used than about the architecture of the autoencoder; they say that

the temporal dependence of the data is short.

Discussion

First, the performance of the autoencoders about the compression size was tested; this

evaluation was carried out based on the dimensionality of the context vector. Regarding

86

6 time-steps

60 time-steps

0.0304 | —-- LSTM | —-- LSTM
i —— BILSTM 00254 1 —— BILSTM
|
0.025 A
0.020 4
\ \
0.020 - 0.0004 4. o e \ 0.0004 - \
\
\ \
\ A\
" \ . 0.015 4 \
g 0.015 1 0.0002 - \ g 0.0002 \
\ \\
N\
0.010 \
0.010 A 0.0000 T \
680 ~~_ 690 700 \
N\
\
. \
0.005 - 0.005 1 ™~ \
\ T~ \
. \ \
0.000 - 0000 «—TEee—— =
0 100 200 300 400 S00 600 700 0 100 200 300 400 500 600 700
Epochs Epochs
350 time-steps 1050 time-steps
1 —-- LSTM I —-- LSTM
00257 — BILSTM 00254 1 — BILSTM
! i
0.020 A
0.020 4
\\ \\
0.0004 - \ 0.0004 \
\
i A \\
, 0015 \ ., 0.015 1 \
" \ u \\
g 0.0002_ _ . _._. N k] 0.0002 4omer e ——————h \
_____ \ \
\ A
0.010 A \ 0.010 \
0.0000 +=— T \ 0.0000 = T \
680 . 69 700 \ 680 - 690 700 \
Y \ Y
0.005 A ~— \ 0.005 4 . \
! ~— \\ . ! \ ‘\
\) \ \ T~ \
"« \ \ N \ \\\
——— ., A\ e ~
0.000 | = = 0.000 4 L——
0 100 200 300 400 500 600 700 100 200 300 400 500 600 700
Epochs Epochs

Figure 5.9: Loss evolution comparison between LSTM and BiLSTM autoencoders. The
top left figure shows the models using 6 time steps. The top right figure shows 60 time

steps. The bottom left figure shows 350 time steps, and the bottom right figure shows
1050 time steps..

the training data, it was observed that the performance of the autoencoder worsens as
more compression is required; however, the relationship between error and compression
is not linear. Therefore, it is necessary to choose an optimal amount of compression so
as not to compromise the quality of the data too much. It was observed that there was
little difference in error between the compression with a context vector of 10 and the
compression with a context vector of 15.

Then, the performance of the autoencoders about the number of layers present in

their architecture was tested. The results for the test and training data were different.

87

Table 5.3: Performance of LSTM and BiLLSTM autoencoders according to different num-
bers of layers used in encoder and decoder

Time LSTM BiLSTM
Steps MSE MAE MAPE MSE MAE MAPE
6 0.0040 0.0440 107.6606 0.0016 0.0286 96.4087
60 0.0055 0.0518 130.4784 0.0024 0.0348 96.4087
350 0.0089 0.0666 137.4917 0.0034 0.0394 111.2179
1050 0.0037 0.0439 146.695 0.0053 0.0539 143.6422

For the training data, it was found that the autoencoders of 4, 6, and 8 layers have similar
performance.

As for the test data, the best case was 8 layers composed of BILSTM cells. However,
a chaotic relationship between the number of layers and the error is observed in LSTM
data, so it is not possible to say whether the error increases or decreases as the number
of layers increases.

Finally, the performance of the autoencoders was tested about the size of the time
window. The training data showed little difference in error between the chosen time
windows. However, when we analyzed the test data, we noticed that as we increased the
size of the time window, we also increased the error. Thus, we realized that the best

values for the time window are of 6 time steps.

5.2 Prediction Module

As discussed in the previous chapter, the prediction module is the tool responsible for
identifying and predicting the strength of the current market trend. It has two tools, the
Market Trend Classifier to identify the current trend, and the Trend Slope Regressor to
estimate the strength of that trend. This tool is extremely important because it provides

useful information to the Trading Module.

5.2.1 Market Trend Classifier

The Market Trend Classifier was defined with a two-layer BiLSTM architecture followed
by a CNN layer. A time window of 6 time steps was defined, with a total of 150 epochs
for training.

Determining a Sideways Market Class

This instrument was initially developed to classify the market into three categories:

bullish, bearish, and sideways. The classification is based on the slope of the calcu-

88

lated linear regression. If the slope value is within a certain limit, the market is classified
as sideways; if it exceeds this limit upwards, it is classified as bullish; and if it exceeds it
downwards, it is classified as bearish. The size of this limit is defined as a percentage of
the standard deviation of the samples, ranging from 0% to 25% of the standard deviation,
which controls the amplitude of the sideways market class. Furthermore, the experiments
for this variation were only carried out using the Bitcoin data. Tables 5.4 to 5.9 show
the results of the variation of the amplitude of the Sideways Market class. What was
observed was that, as this amplitude increased, there was a decrease in accuracy, average
precision, and average recall. We can see that the best values for this metric occur when
there is simply no Sideways Market class (or the value of the standard deviation range
of the samples is 0%). Therefore, in the experiments that followed, the Sideways Market

class was disregarded.

Table 5.4: Metrics, considering a sideways market class with a length of 0% of the standard
deviation. Variation from 2 to 10 candles for the linear regression set. (Test Samples)

Metrics 2C 4C 6C 8C 10C
Accuracy 0.5903 0.6953 0.6833 0.7317 0.7057
Precision Bull 0.6124 0.7095 0.7677 0.7430 0.7693
Precision Sideways 0 0 0 0 0
Precision Bear 0.5509 0.6757 0.6173 0.7150 0.6452
Precision Mean 0.58165 0.6926 0.6925 0.7290 0.70725
Recall Bull 0.7077 0.7518 0.6109 0.7932 0.6731
Recall Sideways 0 0 0 0 0
Recall Bear 0.4447 0.6268 0.7725 0.6541 0.7466
Recall Mean 0.5762 0.4596 0.4611 0.4824 0.4732

Table 5.5: Evaluation metrics, considering a sideways market class with a length of 5% of
the standard deviation. Variation from 2 to 10 candles for the linear regression set. (Test
Samples)

Metrics 2C 4C 6C 8C 10C
Accuracy 0.5452 0.6687 0.667 0.6807 0.6833
Precision Bull 0.5732 0.673 0.6693 0.7257 0.7512
Precision Sideways 0 0 0 0 0
Precision Bear 0.4841 0.6618 0.663 0.6282 0.6177
Precision Mean 0.3525 0.4449 0.4441 0.4513 0.4563
Recall Bull 0.7518 0.7909 0.8044 0.7385 0.6964
Recall Sideways 0 0 0 0 0
Recall Bear 0.3745 0.6003 0.5798 0.6988 0.7494
Recall Mean 0.3754 0.4637 0.4614 0.4791 0.4819

89

Table 5.6: Evaluation metrics, considering a sideways market class with a length of 10%
of the standard deviation. Variation from 2 to 10 candles for the linear regression set.
(Test Samples)

Metrics 2C 4C 6C 8C 10C

Accuracy 0.5348 0.64 0.653 0.6617 0.6667
Precision Bull 0.5524 0.6387 0.6452 0.6806 0.7

Precision Sideways 0 0 1 0 0.2048
Precision Bear 0.4925 0.6424 0.667 0.6343 0.6516
Precision Mean 0.3483 0.427 0.7707 0.4383 0.5188
Recall Bull 0.79 0.8291 0.8385 0.807 0.7896
Recall Sideways 0 0 0.0031 0 0.0563
Recall Bear 0.373 0.5729 0.5951 0.6647 0.6658
Recall Mean 0.3907 0.4673 0.4789 0.4918 0.5039

Table 5.7: Evalutaion metrics, considering a sideways market class with a length of 15%
of the standard deviation. Variation from 2 to 10 candles for the linear regression set.
(Test Samples)

Metrics 2C 4C 6C 8C 10C

Accuracy 0.5022 0.5993 0.6147 0.6143 0.594
Precision Bull 0.5395 0.6263 0.6514 0.6555 0.6351
Precision Sideways 0.6923 0.3478 0.4211 0.304 0.3919
Precision Bear 0.4399 0.5763 0.5712 0.6558 0.5556
Precision Mean 0.5572 0.5168 0.5479 0.5384 0.5275
Recall Bull 0.7194 0.7638 0.7723 0.7964 0.7184
Recall Sideways 0.0324 0.0488 0.0159 0.214 0.0643
Recall Bear 0.4706 0.6368 0.688 0.5656 0.6493
Recall Mean 0.4075 0.4831 0.4921 0.5253 0.4773

Varying the Argmax Threshold

The Softmax function produces values between 0 and 1, which represent the probability
that a sample belongs to a given class. In a binary classification problem, the final decision
is usually made based on a default threshold of 0.5: if the Softmax value for a class is
greater than 0.5, the sample is assigned to that class; otherwise, it does not belong to
the class. This threshold is known as the Argmax threshold. To improve the accuracy,
precision, and recall metrics, this threshold was adjusted, allowing for more stringent or
flexible classification as needed. The experiments were conducted using Bitcoin data, and
the Argmax threshold was varied from 0.5 to 0.75, and the impact of these changes on
the model performance was analyzed. Tables 5.10 through 5.15 show the results of the

evaluation metrics.

90

Table 5.8: Evaluation metrics, considering a sideways market class with a length of 20%
of the standard deviation. Variation from 2 to 10 candles for the linear regression set.
(Test Samples)

Metrics 2C 4C 6C 8C 10C

Accuracy 0.5025 0.5473 0.5607 0.586 0.5557
Precision Bull 0.5446 0.5339 0.55 0.6648 0.7317
Precision Sideways 0.4023 0.3627 0.4624 0.4029 0.4101
Precision Bear 0.4749 0.6135 0.6121 0.5272 0.4928
Precision Mean 0.474 0.5034 0.5415 0.5316 0.5448
Recall Bull 0.7508 0.8895 0.8707 0.7091 0.503
Recall Sideways 0.283 0.0551 0.1207 0.0866 0.2362
Recall Bear 0.355 0.4351 0.4505 0.7415 0.8093
Recall Mean 0.4629 0.4599 0.4806 0.5124 0.5162

Table 5.9: Evaluation metrics, considering a sideways market class with a length of 25%
of the standard deviation. Variation from 2 to 10 candles for the linear regression set.
(Test Samples)

Metrics 2C 4C 6C 8C 10C

Accuracy 0.4415 0.5513 0.5763 0.5513 0.5480
Precision Bull 0.4291 0.6451 0.6633 0.6982 0.7214
Precision Sideways 0.5021 0.4324 0.4449 0.4441 0.3945
Precision Bear 0.4398 0.5362 0.5350 0.4978 0.5708
Precision Mean 0.4570 0.5379 0.5477 0.5467 0.5622
Recall Bull 0.8705 0.6088 0.6953 0.5433 0.5492
Recall Sideways 0.2708 0.4093 0.2662 0.3639 0.6031
Recall Bear 0.0775 0.5998 0.6828 0.7103 0.5026
Recall Mean 0.4063 0.5393 0.5481 0.5392 0.5516

Varying the Asset

Finally, the assets on which the Market Trend Classifiers were trained were varied. The
assets used were Bitcoin, Ethereum, Ripple, and Cardano. The assets were trained with
only two classes: bull and bear market, and with an Argmax function threshold of 0.5.

Tables 5.16 to 5.19 show the evaluation metrics for the assets chosen.

Discussion

The experiments yielded intriguing results. The experiment involving the variation of the
amplitude of the Sideways Market Class revealed a decrease across all evaluation metrics.
Specifically, not only did accuracy drop, but precision and recall also diminished. This
suggests that the model performed best when the Sideways Market Class was entirely
disregarded. The next experiment, which involved increasing the Argmax threshold, pro-

duced notable improvements in the evaluation metrics. However, this adjustment came

91

Table 5.10: Evaluation Metrics, considering a threshold of 0.5 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.512 0.642 0.655 0.677 0.670 0.677 0.684
Precision Bull ~ 0.537 0.671 0.680 0.695 0.757 0.763 0.700
Precision Bear 0.503 0.616 0.632 0.658 0.617 0.622 0.666
Precision Mean 0.520 0.644 0.656 0.676 0.687 0.692 0.683
Recall Bull 0.298 0.594 0.632 0.678 0.550 0.564 0.716
Recall Bear 0.734 0.692 0.680 0.675 0.803 0.803 0.647
Recall Mean 0.516 0.643 0.656 0.677 0.677 0.684 0.682
Samples ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5.11: Evaluation Metrics, considering a threshold of 0.55 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.538 0.664 0.682 0.708 0.696 0.697 0.710
Precision Bull ~ 0.566 0.691 0.705 0.725 0.790 0.788 0.720
Precision Bear 0.532 0.642 0.661 0.689 0.642 0.642 0.697
Precision Mean 0.549 0.667 0.683 0.707 0.716 0.715 0.709
Recall Bull 0.084 0.481 0.548 0.588 0.466 0.505 0.632
Recall Bear 0.377 0.591 0.604 0.591 0.732 0.757 0.568
Recall Mean 0.231 0.536 0.576 0.590 0.599 0.631 0.600
Samples ratio 0.424 0.805 0.843 0.833 0.851 0.895 0.848

at the cost of a significant reduction in the number of classified samples. Finally, the
experiment that varied the asset had minimal impact on the results, indicating that the

model is robust across different assets.

5.2.2 Trend Slope Regressor

The training and testing results for the trend slope regressor are presented in Table 5.20
and Figure 5.10. Visually, the graphs demonstrate a similar pattern to that of the market
trend classifier: as the number of candles used in linear regression increases, the true and
predicted value curves tend to align more closely. This can be attributed to the increased
volatility of linear regression when calculated with fewer candles. However, Table 5.20
indicates that error values are larger as the number of candles rises. The lowest error values
occur when only 2 candles are used for linear regression, which is the worst scenario in the
graphical representations. This happens because the model may become trapped in local
minima during the gradient descent phase of training, resulting in small error values, but

failing to match the overall trend of the actual curve.

92

Trend Slope

Trend Slope

Trend Slope

Train Results

0.6

0.4

0.29

0.0

-0.24

— true
—— predicted

111001115011200

0 5060

10600 15600 20600 25600

Time Span[in 30 min steps]

Test Results

0.6

0.4

0.2

Trend Slope

0.0

-0.21

— true
—— predicted

1550 1575 1600

15‘00 20‘00

(a) 2 candles

Train Results

0.6

0.41

0.2

0.0

-0.21

~0.4 1

) 3\
predicted 1901115011200

0 5060

10600 15600 20600 25600
Time Span[in 30 min steps]

25‘00 3600

(b) 4 candles

Train Results

0.4

o
)
N

o
o
L

-0.24

~0.4 1

—— predicted

111001115011200

10600 15600 20000 25000
Time Span[in 30 min steps]

0 5060

0 500 1000
Time Span[in 30 min steps]
Test Results
0.6
— true
—— predicted
0.4+
2 02
o
wn
o
c
o
T
.035 4
-0.2 1 0.040 1
-0.035 .
1550 1575 1600
0 500 1000 1500 2000 2500 3000
Time Spanl[in 30 min steps]
Test Results
0.5 — true
—— predicted
0.4+
0.34
2 0219
o
0
2 014
[
=
0.01
-0.14
-0.24
_0.3 ‘ 1550 1575 1600

1050 15‘00 20‘00
Time Spanl[in 30 min steps]

0 560

(c) 6 candles

93

25‘00 3600

Train Results

Test Results

0.5

0.6 — true — true
—— predicted —— predicted
predi 0.4 predi
0.44
2 02 g
o o
0 0
el T
] 1]
= 0.09 =
“l* i lulmulwﬂ
'“ 41l 2N
02 i u)]
0300 L i |
WA
—0{02 +0.025 |
—0.41 111001115011200 1550 1575 1600
0 5000 10000 15000 20000 25000 0 500 1000 1500 2000 2500 3000
Time Spanl[in 30 min steps] Time Span[in 30 min steps]
(d) 8 candles
Train Results Test Results
0.6
— true 044 — true
—— predicted : —— predicted
0.44 0.31
0.29
o 0.24 [
Q Q
° ° 0.14
wn wn
o o
13 13
£ 0.0] 2 0.0
A'i . |“
“ [l ' ~0.11
0kb
-0.24
0300 - -0.24
—0J02
~0.4 1 111001115011200 -031
0 5000 10000 15000 20000 25000 0 500 1000 1500 2000 2500 3000
Time Spanlin 30 min steps] Time Span[in 30 min steps]
(e) 10 candles
Train Results Test Results
0.6 — true 061 — true
—— predicted —— predicted
0.4 1 0.4
o 0.2 o
3 S 024
7})
° °
5 5
= 0.04 | =
i 4
‘l Lily “Hw 0.0
I L
-0.21 iy ” : ‘
0jo00 ”‘ _02 0.
—0402 0.025 .
—0.41 111001115011200 1550 1575 1600
0 5000 10000 15000 20000 25000 0 500 1000 1500 2000 2500 3000

Time Spanlin 30 min steps]

Time Spanlin 30 min steps]

(f) 12 candles

Figure 5.10: Trend slope over time, for the trend slope predictor built with (a) 2 candles,
(b) 4 candles, (c) 6 candles, (d) 8 candles, (e) 10 candles, and (f) 12 candles. The curves
in purple show the true values of the slope, whereas the curves in blue show the predicted
values. The slopes are shown for train and test samples

94

Table 5.12: Evaluation Metrics, considering a threshold of 0.60 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.532 0.692 0.709 0.738 0.728 0.720 0.733
Precision Bull ~ 0.609 0.718 0.734 0.755 0.823 0.809 0.739
Precision Bear 0.522 0.673 0.687 0.719 0.676 0.668 0.725
Precision Mean 0.566 0.695 0.710 0.737 0.750 0.738 0.732
Recall Bull 0.009 0.378 0.468 0.503 0.388 0.442 0.538
Recall Bear 0.064 0.485 0.507 0.493 0.650 0.697 0.488
Recall Mean 0.036 0.431 0.487 0.498 0.519 0.569 0.513
Samples ratio 0.068 0.621 0.686 0.675 0.703 0.780 0.703

Table 5.13: Evaluation Metrics, considering a threshold of 0.65 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.000 0.726 0.742 0.769 0.762 0.743 0.761
Precision Bull ~ 0.000 0.756 0.766 0.786 0.849 0.829 0.761
Precision Bear 0.000 0.703 0.719 0.751 0.716 0.694 0.762
Precision Mean 0.000 0.730 0.743 0.768 0.782 0.761 0.761
Recall Bull 0.000 0.278 0.382 0.414 0.311 0.386 0.443
Recall Bear 0.000 0.376 0.411 0.387 0.549 0.623 0.417
Recall Mean 0.000 0.327 0.396 0.400 0.430 0.505 0.430
Samples ratio 0.000 0.449 0.533 0.521 0.556 0.670 0.566

5.3 Trading Module

The trading module executes buy and sell orders to maximize the agent’s profit. In each
training episode, the agent starts at a random point within the historical price series and
must make decisions based on the characteristics extracted from the data (features). Its
possible actions include buying, selling, or maintaining the position in the asset. The
episode has a predefined duration, which in this specific case was set at 700 candles. The
agent has a set of seven possible actions: it can buy 2%, 4%, or 6% of the available
balance; maintain its position without making transactions; or sell 2%, 4%, or 6% of
the current position. The reward function is directly proportional to the percentage of
profit obtained with the action. For example, if the agent starts with a capital of $10,000
and, at the end of the episode, its balance totals $12,000, the profit is 20%. Therefore,
the reward attributed to the agent will be proportional to this percentage of gain. The
Rainbow DQN algorithm used in the experiment has several parameters that influence
its performance and behavior. The parameter responsible for controlling the agent’s
exploration, ¢ (sigma), was set to 0.5, which regulates the intensity of noise addition in

the network layers to encourage the exploration of new strategies.

95

Table 5.14: Evaluation Metrics, considering a threshold of 0.70 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.000 0.764 0.769 0.799 0.793 0.773 0.797
Precision Bull ~ 0.000 0.798 0.792 0.819 0.875 0.851 0.789
Precision Bear 0.000 0.740 0.748 0.776 0.752 0.727 0.806
Precision Mean 0.000 0.769 0.770 0.798 0.813 0.789 0.797
Recall Bull 0.000 0.194 0.282 0.321 0.234 0.326 0.345
Recall Bear 0.000 0.270 0.312 0.293 0.440 0.535 0.344
Recall Mean 0.000 0.232 0.297 0.307 0.337 0.430 0.344
Samples ratio 0.000 0.302 0.386 0.385 0.418 0.549 0.433

Table 5.15: Evaluation Metrics, considering a threshold of 0.75 in Argmax, from 2 to 14
candles taken for linear regression. (Test samples)v

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.000 0.795 0.806 0.837 0.830 0.804 0.822
Precision Bull ~ 0.000 0.834 0.813 0.855 0.896 0.879 0.804
Precision Bear 0.000 0.770 0.800 0.815 0.797 0.761 0.842
Precision Mean 0.000 0.802 0.806 0.835 0.847 0.820 0.823
Recall Bull 0.000 0.123 0.192 0.231 0.168 0.266 0.251
Recall Bear 0.000 0.182 0.229 0.207 0.329 0.446 0.267
Recall Mean 0.000 0.152 0.210 0.219 0.249 0.356 0.259
Samples ratio 0.000 0.190 0.260 0.263 0.295 0.436 0.315

The modeling of the distribution of returns follows the C51 approach, where the min-
imum and maximum values of the expected return, represented by V,,;, and V.., were
set to -30 and 430, respectively. These limits define the interval within which the discrete
distribution of the) function will be constructed.

To improve training efficiency, the network is updated every 4 time steps, which ensures
a balance between stability and learning speed.

The representation of the probability distribution of the) function is made using 71
atoms, allowing for greater granularity in the prediction of returns and better use of the
categorical distribution method.

Training episodes are started randomly in one of the four assets considered in the study:
Bitcoin, Ethereum, Ripple, and Cardano, ensuring diversity in the market conditions faced

by the agent.

5.3.1 Simple Rainbow DQN

The first experiment was made with a dense neural network as the "brain" of the agente

in Rainbow DQN. The agent was trained in 10,000 episodes. The training took a total of

96

Table 5.16: Evaluation Metrics, of Bitcoin, from 2 to 14 candles. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.512 0.642 0.655 0.677 0.670 0.677 0.684
Precision Bull ~ 0.537 0.671 0.680 0.695 0.757 0.763 0.700
Precision Bear 0.503 0.616 0.632 0.658 0.617 0.622 0.666
Precision Mean 0.520 0.644 0.656 0.676 0.687 0.692 0.683
Recall Bull 0.298 0.594 0.632 0.678 0.550 0.564 0.716
Recall Bear 0.734 0.692 0.680 0.675 0.803 0.803 0.647
Recall Mean 0.516 0.643 0.656 0.677 0.677 0.684 0.682

Table 5.17: Evaluation Metrics, of Ethereum, from 2 to 14 candles. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.525 0.651 0.668 0.688 0.692 0.700 0.702
Precision Bull 0.540 0.645 0.670 0.711 0.735 0.687 0.745
Precision Bear 0.513 0.660 0.665 0.666 0.656 0.719 0.667
Precision Mean 0.527 0.652 0.668 0.689 0.696 0.703 0.706
Recall Bull 0.462 0.729 0.699 0.664 0.636 0.777 0.649
Recall Bear 0.590 0.567 0.635 0.713 0.752 0.617 0.760
Recall Mean 0.526 0.648 0.667 0.689 0.694 0.697 0.704

10 hours to train.

Figure 5.11 illustrates the balance and score curves for the Rainbow DQN agent trained
without incorporating forecast results from the prediction module and without utilizing
a memory buffer. The plot reveals a high standard deviation, as reflected by pronounced
fluctuations around the moving average curve. These oscillations indicate unstable learn-
ing dynamics, where the agent struggles to maintain consistent performance over time.

In contrast, Figure 5.12 displays the balance and score curves for the Rainbow DQN
agent trained with the forecasted results from the prediction module. The observed
standard deviation is significantly lower, with reduced oscillations around the moving
average curve. This suggests that integrating predictive estimations enhances stability
and improves the agent’s ability to generalize across episodes. Furthermore, Tables 5.21
and 5.22 present a comparative analysis of the mean performance over the last 100 and
1000 episodes. The results demonstrate a substantial increase in both balance and score
metrics, confirming that leveraging the prediction module leads to a more robust and

efficient learning process.

5.3.2 Rainbow DQN with memory

The second experiment was made with a recurrent neural network as the first layer of

the neural network of the agent in Rainbow DQN. The agent was also trained in 10,000

97

—— 5Score
30 4 —— Score MA(100)
20 1
E 10 =
[=]
A
0 .
_10, i
_20 _
T T T T T T
0 2000 4000 6000 8000 10000
Episode
(a) Score
——— Balance
16000 -
14000 -
T
()
=
o
& 12000 A
10000 -
8000 A
6000 L T T T T T T
0 2000 4000 6000 8000 10000
Episode

(b) balance

Figure 5.11: The curves of Score and Balance for an agent with no use of the prediction
module. The red curve shows the moving average of 100 periods of both score and balance

98

— 5core

207 —— Score MA([100)

15 4

10 4

Score

_10 .

_15]

T T T T T
0 2000 4000 6000 8000 10000
Episode

(a) Score

15000 4
——— Balance

14000 - — Balance MA(100)

13000 ~

12000 ~

11000 ~

Balance

10000 ~

9000 -

8000 ~

7000 -

T T T T T
0 2000 4000 6000 8000 10000
Episode

(b) balance

99
Figure 5.12: The curves of Score and Balance for an agent with the use of the prediction
module. The red curve shows the moving average of 100 periods of both score and balance

Table 5.18: Evaluation Metrics, of Ripple, from 2 to 14 candles. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.519 0.642 0.667 0.681 0.693 0.699 0.684
Precision Bull 0.514 0.622 0.657 0.648 0.670 0.736 0.747
Precision Bear 0.523 0.677 0.680 0.743 0.726 0.671 0.643
Precision Mean 0.519 0.649 0.669 0.696 0.698 0.703 0.695
Recall Bull 0.548 0.770 0.737 0.828 0.782 0.633 0.575
Recall Bear 0.489 0.507 0.592 0.526 0.601 0.767 0.797
Recall Mean 0.519 0.638 0.665 0.677 0.691 0.700 0.686

Table 5.19: Evaluation Metrics, of Cardano, from 2 to 14 candles. (Test samples)

Metrics 2C 4C 6C 8C 10C 12C 14C
Accuracy 0.525 0.649 0.675 0.687 0.701 0.704 0.695
Position Bull 0.520 0.645 0.670 0.663 0.692 0.692 0.661
Position Bear 0.528 0.653 0.679 0.719 0.710 0.716 0.739
Precision Mean 0.524 0.649 0.675 0.691 0.701 0.704 0.700
Recall Bull 0.381 0.653 0.683 0.756 0.710 0.717 0.767
Recall Bear 0.663 0.645 0.667 0.619 0.692 0.691 0.626
Recall Mean 0.522 0.649 0.675 0.687 0.701 0.704 0.697

episodes. The training took a total of 3 days to train, and it used a "memory" of 6 time
steps.

Figure 5.13 presents the score and balance curves for the Rainbow DQN algorithm
trained with a memory buffer but without incorporating forecast data. The plot reveals
increased oscillations in both metrics, resulting in a higher standard deviation compared
to the model without memory. However, despite the greater variability, the use of memory
improves the overall mean performance of the model. This is further supported by Tables
5.22 and 5.21, which show a notable increase in the mean balance and score over the last
100 and 1000 episodes, demonstrating that memory enhances performance.

Figure 5.14 displays the score and balance curves for the Rainbow DQN agent trained
with both the memory buffer and the forecast data from the prediction module. While
the inclusion of memory continues to introduce more oscillations, the overall mean per-
formance further improves. The results indicate that the combination of memory and
predictive estimations leads to the best performance among the tested configurations.

This is evidenced by the highest mean values observed in Tables 5.22 and 5.21.

5.3.3 Discussion

The experiments performed demonstrated that the exclusive use of technical indicators as

input to the Rainbow DQN algorithm did not result in significantly better performance

100

20 - —— 5core
—— Score MA(100)
15 -

10 4

Score
L=]
1

_10 -

_15 -

=20

T T T T T
0 2000 4000 6000 8000 10000
Episode

(a) Score

15000 1
——— Balance

14000 — Balance MA(100)

13000 -

12000 A

11000 -

Balance

10000 -

9000

8000 -

7000 -

T T T T T
0 2000 4000 6000 8000 10000
Episode

(b) balance

Figure 5.13: The curves of Score and Balance for an agent with memory but no use of
the prediction module. The red curve shows the moving average of 100 periods of both
score and balance

101

— 5Score
30 - —— Score MA(100)
20+
E 10 =
o
A
n -
_10 -
_20 -
T T T T T T
0 2000 4000 6000 8000 10000
Episode
(a) Score
—— Balance
18000 4 —— Balance MA[IOD}
16000 -
14000 A
]
L
=
i
& 12000 -
10000 4
8000 -
EDDU L T T T T T T
0} 2000 4000 6000 8000 10000
Episode

(b) balance

Figure 5.14: The curves of Score and Balance for an agent with memory and use of the
prediction module. The red curve shows the moving average of 100 periods of both score
and balance

Table 5.20: Evaluation Metrics, of the Trend Slope Regressor, from 2 to 10 candles. (Test
samples)

Metrics 2C 4C 6C 8C 10C
MSE 0.0021 0.0021 0.0026 0.0033 0.0045
MSE 0.0189 0.0311 0.0360 0.0406 0.0453
MAPE 390 344 628 591 454

Table 5.21: Evaluation of score, for different Rainbow configurations: mean of the last
100 periods, mean of the last 1000 periods, standard deviation of the last 100 periods,
and standard deviation of the last 1000 periods

Score mean(100) mean(1000) std(100) std(1000)
Rainbow -0.0163 -0.1248 1.8390 2.9068
Rainbow w/ Forecast 1.2680 0.6024 2.5056 2.4488
Rainbow w/ Memory 0.3012 0.2987 3.1303 2.2185
Rainbow w/ Memory and Forecast 1.1342 1.9519 4.6745 3.8715

than a purely random approach. This result suggests that technical indicators alone are
not sufficient to provide structured information that allows the model to learn effective
decision-making policies in the financial market.

However, when the data extracted from technical indicators was combined with the
estimates generated by the prediction module, the model performed substantially better
than random. This integration allowed the agent not only to identify market patterns with
greater accuracy but also to convert this information into profitable trades over time. The
results indicate that incorporating deep learning-based predictions improves the Rainbow
DQN’s ability to make strategic decisions, increasing its effectiveness in identifying buying
and selling opportunities.

In addition, considering that financial market behavior can be modeled as a Partially
Observable Markovian Decision Process (POMDP), the introduction of a memory mech-
anism in the initial layers of the Rainbow DQN neural network proved to be a promising
approach. The use of this structure allowed the model to store and process historical
information, reducing its exclusive dependence on instantaneous observations and en-
abling more informed decisions. The results indicate that this modification contributed
to improving the agent’s performance, despite the high variability in financial returns.

Finally, these experiments demonstrated that, although the model still presents in-
stabilities in its return curve, it was able to solve, at least partially, the second problem
outlined in the first chapter of this project, that is, the formulation of a profitable trading

strategy based on the identification of market trends.

103

Table 5.22: Evaluation of balance, for different Rainbow configurations: mean of the last
100 periods, mean of the last 1000 periods, standard deviation of the last 100 periods,

and standard deviation of the last 1000 periods

Balance mean(100) mean(1000) std(100) std(1000)
Rainbow 9969.4 9918.1 362.77 584.49
Rainbow w/ Forecast 10236 10101 513.95 494.30
Rainbow w/ Memory 10015 10064 630.06 443.36
10639 839.16 762.52

Rainbow w/ Memory and Forecast 10442

104

Chapter 6
Conclusion

The first chapter introduced the problems that this work aims to solve, outlining the
challenges faced in analyzing and operating the cryptocurrency market. The first chal-
lenge consists of effectively extracting relevant information from market data, to correctly
identify bullish and bearish trends in asset prices. The second problem addressed in this
work concerns the application of this trend identification in the execution of profitable
operations in the financial market. In other words, in addition to correctly recognizing
market movements, it is essential to establish operational strategies that maximize profits
and minimize risks, considering the volatility characteristic of cryptocurrencies.

The second chapter presented a review of the main works related to this project, with
an emphasis on those that offer theoretical and methodological bases that complement the
approach developed here. Among the studies analyzed, those focused on price prediction
and the application of reinforcement learning in operations in the financial market stand
out. Specifically, this project complements the research of Zhanhong He [4] and Sama-
razekara [9] on price modeling and forecasting in the financial market, expanding their
approaches with improved methodologies adapted to the context of cryptocurrencies. Fur-
thermore, regarding decision-making for automated financial operations, this study builds
on and expands on the work of Yasmeen Ankari [10], who uses reinforcement learning to
optimize trading strategies. In this way, this project positions itself as an evolution of
these previous contributions, unifying and improving forecasting and decision techniques
to improve performance in the cryptocurrency market.

The third chapter presented a comprehensive overview of the main neural network
architectures used in this project, detailing their mathematical formulations and applica-
bility in the context of time series analysis and reinforcement learning. Initially, dense,
convolutional, and recurrent neural networks were introduced, highlighting their respec-
tive structures, activation functions, and learning mechanisms. For each of these archi-

tectures, the main equations that govern their operation were discussed. In addition, an

105

introduction to autoencoders was provided, addressing their role in extracting relevant
features and reducing dimensionality, essential aspects for optimizing data processing in
model training. The chapter also included an explanation of the fundamentals of rein-
forcement learning, with an emphasis on Rainbow DQN and its six main improvements,
which include Double DQN, Dueling Networks, Prioritized Experience Replay, Noisy Net-
works, Multi-Step Learning, and Distributional RL. Finally, the theoretical basis of the
technical indicators that will be used throughout the project was presented, explaining the
mathematical formulation behind each of them and their relevance for identifying market
patterns. This theoretical basis is essential for building a solid and well-founded model,
ensuring that investment decisions are based on quantitative and statistically relevant
metrics.

The fourth chapter presented a detailed description of the architecture of each of the
three modules that make up the project, highlighting their functionalities, methodologies,
and how they are integrated to build a robust system for analysis and decision-making in
the financial market. Initially, the feature engineering module was introduced, responsi-
ble for extracting and selecting the main technical indicators that will serve as input for
subsequent models. This module plays an essential role in building an optimized dataset,
filtering relevant variables, and removing redundant or uninformative information. In
addition, a solution for dimensionality reduction was presented, ensuring that the model
can operate with greater computational efficiency and a lower risk of overfitting, preserv-
ing the data representativeness as much as possible. Next, the prediction module was
detailed, whose central function is the accurate identification of upward and downward
market trends. For this purpose, advanced neural network architectures were employed,
combining convolutional networks (CNNs) for automatic extraction of spatial patterns in
financial data and BiLSTM recurrent networks to capture temporal and contextual de-
pendencies in historical series. Finally, the trading module was presented, responsible for
transforming trend predictions into profitable operational strategies. This module uses
the Rainbow DQN algorithm to optimize decision-making in dynamic and highly volatile
environments, such as the financial market. Through reinforcement learning, the model
learns trading policies that maximize financial returns, identifying the most opportune
moments to execute buy and sell operations based on the predictions generated by the
previous module. In this way, the chapter provided a comprehensive and structured view
of the internal functioning of the project, detailing the interaction between the modules
and the theoretical and practical foundations that support its implementation.

Finally, the fifth chapter presented a detailed analysis of the results obtained in the
experiments carried out throughout this project, evaluating the performance of each of

the three modules that make up the proposed architecture. Initially, the results of the

106

experiments related to the feature engineering module were discussed, the objective of
which was to identify the most efficient configuration for dimensionality reduction. The
tests performed with autoencoders allowed us to determine the ideal hyperparameters
for information compression without significant loss of relevance, ensuring that the data
provided to subsequent modules preserved the essential patterns for market analysis.
This step was essential to optimize data representation and reduce the computational
complexity of the model. Next, the experiments conducted in the prediction module
demonstrated significantly superior performance compared to the random framework in
the task of identifying uptrends and downtrends in the financial market. The convolutional
and BiLSTM architectures employed allowed us to capture both local patterns in historical
data and broader temporal relationships, resulting in considerably higher accuracy and
performance metrics. These results confirm the effectiveness of the proposed model in
extracting reliable insights from market data. Finally, the experiments performed in the
trading module analyzed the model’s ability to convert the predictions generated by the
previous module into profitable trades in the financial market. The results indicated that,
although there was a significant oscillation between periods of profit and loss, the model,
on average, was able to obtain positive returns. This behavior was especially evident
when predictions from the prediction module were incorporated and the memory buffer
was utilized, allowing the Rainbow DQN algorithm to make more informed and efficient

decisions over time.

107

1]

[5]

References

Patel, Jigar, Sahil Shah, Priyank Thakkar, and Ketan Kotecha: Predicting stock
market index using fusion of machine learning techniques. Expert Systems with
Applications, 42(4):2162-2172, 2015. wviii, 11

Lin, Yaohu, Shancun Liu, Haijun Yang, and Harris Wu: Stock trend prediction using
candlestick charting and ensemble machine learning techniques with a novelty feature
engineering scheme. IEEE Access, 9:101433-101446, 2021. viii, 12

Selvin, Sreelekshmy, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna Menon,
and KP Soman: Stock price prediction using lstm, rnn and cnn-sliding window model.
In 2017 international conference on advances in computing, communications and
informatics (icacci), pages 1643-1647. IEEE, 2017. viii, 3, 12, 19, 69

He, Zhanhong, Junhao Zhou, Hong Ning Dai, and Hao Wang: Gold price forecast
based on Ilstm-cnn model. In 2019 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 1046-1053. IEEE, 2019. viii, 3, 12,
17, 19, 69, 105

Livieris, Ioannis E, Emmanuel Pintelas, and Panagiotis Pintelas: A cnn—Istm model
for gold price time-series forecasting. Neural computing and applications, 32:17351—
17360, 2020. viii, 3, 13, 19

Liang, Yanhui, Yu Lin, and Qin Lu: Forecasting gold price using a novel hybrid model
with iceemdan and lstm-cnn-cbam. Expert Systems with Applications, 206:117847,
2022. viii, 3, 13, 19

Siami-Namini, Sima, Neda Tavakoli, and Akbar Siami Namin: The performance of

Istm and bilstm in forecasting time series. In 2019 IEEE International Conference
on Big Data (Big Data), pages 3285-3292. IEEE, 2019. viii, 3, 13, 17, 19

Zhang, Zhuorui, Hong Ning Dai, Junhao Zhou, Subrota Kumar Mondal, Miguel
Martinez Garcia, and Hao Wang: Forecasting cryptocurrency price using convolu-
tional neural networks with weighted and attentive memory channels. Expert Systems
with Applications, 183:115378, 2021. viii, 3, 14, 19

Samarasekara, Iromie K, Oshan K Mendis, Sapumal Ahangama, and Ajantha S
Atukorale: Dynamic stop-loss approach for short term trades using deep learning.

108

[10]

[13]

[18]

[19]

[20]

In 2022 IEEE International Conference on Big Data (Big Data), pages 3537-3546.
IEEE, 2022. viii, 4, 14, 17, 19, 105

Ansari, Yasmeen, Sadaf Yasmin, Sheneela Naz, Hira Zaffar, Zeeshan Ali, Jihoon
Moon, and Seungmin Rho: A deep reinforcement learning-based decision support sys-
tem for automated stock market trading. IEEE Access, 10:127469-127501, 2022. viii,
4,15, 18, 19, 105

Wu, Xing, Haolei Chen, Jianjia Wang, Luigi Troiano, Vincenzo Loia, and Hamido
Fujita: Adaptive stock trading strategies with deep reinforcement learning methods.
Information Sciences, 538:142-158, 2020. viii, 4, 15

Azhikodan, Akhil Raj, Anvitha GK Bhat, and Mamatha V Jadhav: Stock trading
bot using deep reinforcement learning. In Innovations in Computer Science and En-
gineering: Proceedings of the Fifth ICICSE 2017, pages 41-49. Springer, 2019. viii,
4, 16

Carta, Salvatore, Andrea Corriga, Anselmo Ferreira, Alessandro Sebastian Podda,
and Diego Reforgiato Recupero: A multi-layer and multi-ensemble stock trader using
deep learning and deep reinforcement learning. Applied Intelligence, 51:889-905,
2021. viii, 4, 16

Li, Yang, Wanshan Zheng, and Zibin Zheng: Deep robust reinforcement learning for
practical algorithmic trading. IEEE Access, 7:108014-108022, 2019. viii, 16

Rosenblatt, Frank: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958. xvi, 21, 22

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams: Learning represen-
tations by back-propagating errors. nature, 323(6088):533-536, 1986. xvi, 24, 26

Werbos, Paul J: Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550-1560, 1990. xvi, 31

Hochreiter, Sepp and Jiirgen Schmidhuber: Long short-term memory. Neural com-
putation, 9(8):1735-1780, 1997. xvi, 33

Schuster, Mike and Kuldip K Paliwal: Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673-2681, 1997. xvi, 35, 37

Kaelbling, Leslie Pack, Michael L Littman, and Andrew W Moore: Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237-285, 1996. xvi,
39

Fama, Eugene F: Efficient capital markets: A review of theory and empirical work.
The journal of Finance, 25(2):383-417, 1970. 1

Kendall, Maurice George and A Bradford Hill: The analysis of economic time-series-
part i: Prices. Journal of the Royal Statistical Society. Series A (General), 116(1):11—
34, 1953. 1

109

23]

[24]

[30]

[31]

[32]

[36]

Jensen, Michael C: Some anomalous evidence regarding market efficiency. Journal of
financial economics, 6(2/3):95-101, 1978. 1

Lo, Andrew W and A Craig MacKinlay: Stock market prices do not follow random
walks: FEvidence from a simple specification test. The review of financial studies,
1(1):41-66, 1988. 1

Shleifer, Andrei and Lawrence H Summers: The noise trader approach to finance.
Journal of Economic perspectives, 4(2):19-33, 1990. 1

Shefrin, Hersh and Meir Statman: The disposition to sell winners too early and ride
losers too long: Theory and evidence. The Journal of finance, 40(3):777-790, 1985. 2

Derbentsev, Vasily, Andriy Matviychuk, and Vladimir N Soloviev: Forecasting of
cryptocurrency prices using machine learning. Advanced studies of financial tech-
nologies and cryptocurrency markets, pages 211-231, 2020. 2

Livieris, Ioannis E, Niki Kiriakidou, Stavros Stavroyiannis, and Panagiotis Pintelas:
An advanced cnn-lstm model for cryptocurrency forecasting. Electronics, 10(3):287,
2021. 3, 77

Faraz, Mehrnaz, Hamid Khaloozadeh, and Milad Abbasi: Stock market prediction-
by-prediction based on autoencoder long short-term memory networks. In 2020 28th

Iranian conference on electrical engineering (ICEE), pages 1-5. IEEE, 2020. 4, 10,
17,19

Cochrane, John H: Presidential address: Discount rates. The Journal of finance,
66(4):1047-1108, 2011. 6

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh: Shrinking the cross-section. Jour-
nal of Financial Economics, 135(2):271-292, 2020. 6

Jain, Anil and Douglas Zongker: Feature selection: Evaluation, application, and small
sample performance. IEEE transactions on pattern analysis and machine intelligence,
19(2):153-158, 1997. 7

Chandrashekar, Girish and Ferat Sahin: A survey on feature selection methods. Com-
puters & Electrical Engineering, 40(1):16-28, 2014. 7

Niu, Tong, Jianzhou Wang, Haiyan Lu, Wendong Yang, and Pei Du: Developing a
deep learning framework with two-stage feature selection for multivariate financial
time series forecasting. Expert Systems with Applications, 148:113237, 2020. 7

Peng, Yaohao, Pedro Henrique Melo Albuquerque, Herbert Kimura, and Cayan
Atreio Portela Barcena Saavedra: Feature selection and deep neural networks for stock
price direction forecasting using technical analysis indicators. Machine Learning with
Applications, 5:100060, 2021. 8, 17, 64, 65, 66, 67

Haq, Anwar Ul, Adnan Zeb, Zhenfeng Lei, and Defu Zhang: Forecasting daily stock
trend using multi-filter feature selection and deep learning. Expert Systems with
Applications, 168:114444, 2021. 8, 17, 64, 65, 66

110

[37]

Ji, Gang, Jingmin Yu, Kai Hu, Jie Xie, and Xunsheng Ji: An adaptive feature selection
schema wusing improved technical indicators for predicting stock price movements.
Expert Systems with Applications, 200:116941, 2022. 8, 17, 65, 66, 67

De Oliveira, Fagner A, Cristiane N Nobre, and Luis E Zarate: Applying artificial
neural networks to prediction of stock price and improvement of the directional pre-
diction index—case study of petr4, petrobras, brazil. Expert systems with applications,
40(18):7596-7606, 2013. 9, 17, 66, 67

McCulloch, Warren S and Walter Pitts: A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5:115-133, 1943. 21

Minsky, Marvin and Seymour Papert: An introduction to computational geometry.
Cambridge tiass., HIT, 479:480, 1969. 22

Sutton, Richard S and Andrew G Barto: Reinforcement learning: An introduction.
MIT press, 2018. 38

Hessel, Matteo, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver: Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018. 48

111

	Dedication
	Acknowledgements
	Resumo
	Resumo
	Abstract
	Introduction
	Contextualization and Problem
	Objetives
	Document structure

	Related Works
	Work related to feature selection
	Work related to price prediction
	Work related to the use of reinforcement learning
	Innovations and relationships of this project with other works

	Theoretical Foundation
	From biological to artificial neuron
	Artificial Neural Networks
	The Dense Layer
	The stochastic gradient descent method
	The Backpropagation algorithm
	The Softmax function
	The Dropout Layer

	Convolutional Neural Networks
	Convolution
	Convolutional Layers
	Max Pooling Layers

	Recurrent neural networks
	The Vanishing Gradient Problem
	Long Short Term Memory

	Bidirectional Neural Networks
	Forward Propagation
	BiLSTM Networks

	Autoencoders
	Encoder
	Decoder

	Reinforcement Learning
	Marcov Decision Process
	The Bellman Equation
	Deep Q-Networks
	Rainbow DQN

	Technical Indicators and Mathematical Formulas
	The Candle
	Weighted Moving Average (WMA)
	Moving Average Convergence / Divergence (MACD)
	Percentage Price Oscillator (PPO)
	Rate of Change (ROC)
	Momentum (MOM)
	True Range (TR)
	Average Directional Index (ADX)
	Stochastic d% and k%
	Detrended Price Oscillator (DPO)
	Commodity Channel Index (CCI)
	Normalized Average True Range (NATR)
	OBV

	Research Project
	The Total Model
	Feature Engineering Module
	Feature Selecion
	Data pre-processing
	Dimensionality Reduction

	Prediction Module
	Market Trend Prediction
	Trend Slope Regressor

	Trading Module
	Trading by Reinforcement Learning
	Rainbow DQN with Memory Buffer

	Evaluation
	Evaluation metrics
	Evaluation comparisons
	Evaluation Scenarios

	Experiments and Results
	Feature Engineering Module
	Preprocessing
	Choosing the Autoencoder architecture

	Prediction Module
	Market Trend Classifier
	Trend Slope Regressor

	Trading Module
	Simple Rainbow DQN
	Rainbow DQN with memory
	Discussion

	Conclusion
	References

