

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS HUMANAS DEPARTAMENTO DE GEOGRAFIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOGRAFIA

ALUNO: CRISTINA CHAVES-HIDALGO

EVENTOS PLUVIALES EXTREMOS EN LA CUENCA DEL RÍO TEMPISQUE, COSTA RICA, 2005 A 2020: RIESGOS E IMPACTOS

DISSERTAÇÃO DE MESTRADO

NOME DO ORIENTADOR:

DR. RAFAEL RODRIGUES DE FRANCA

BRASILIA 2024

DEDICATORIA

A mi hija, por impulsarme a ser mejor cada día.

A mis padres y hermano, por ser un constante ejemplo.

A mi esposo, por compartir su experiencia conmigo.

A mis amigos, profesores y colegas, por creer en mi 😊

A todos, gracias por tanto apoyo.

AGRADECIMIENTOS

Ha sido un proceso reflexivo, a veces un poco solitario, pero sintiendo el apoyo y cariño de muchas personas desde muchos lugares. La distancia no ha sido obstáculo para sentir tantas energías positivas acompañándome en este proceso.

A mi hija, a mi esposo y a mi familia por todo el apoyo a la distancia, por el sacrificio y esfuerzo que representó para todos el tiempo separados físicamente, pero conectados virtualmente. Gracias Diana por ser un motor para avanzar y ser el ejemplo de que los sueños se pueden cumplir si uno lucha por ellos.

Agradezco a mi tutor, Rafael Rodrigues de Franca por su apoyo y consejos, por ser parte de este enorme proceso, por todo el conocimiento y experiencia compartidos conmigo.

A Angelica García y su familia, por recibirme y orientarme durante mi llegada en Brasil, por ser una voz amiga y consejera y guiarme en su país.

Al personal de la UnB y al personal del Postgrado en Geografía por todo el apoyo administrativo brindado durante este proceso.

A los profesores y colegas que creyeron en mis capacidades y que no se cansaron de apoyarme en todo momento. A las Geochicas, al CAP, a mi tribu, gracias por todo el cariño y crecimiento, gracias por las visitas, las videollamadas, por cuidarnos y amarnos.

Al Instituto Meteorológico Nacional y la Comisión Nacional de Emergencias por la amplia disponibilidad de datos concedidos para esta investigación.

Finalmente, agradezco al Gobierno de Costa Rica por el permiso laboral concedido para realizar mis estudios de maestría, y al Gobierno Federal de Brasil y a la Organización de Estudios Americanos por el financiamiento de este programa de estudios y por la beca otorgada.

RESUMEN

Los eventos pluviales extremos son episodios lluviosos de gran intensidad que pueden tener un fuerte impacto ambiental y social. Los mismos son estudiados desde diferentes perspectivas para comprender la vulnerabilidad de las comunidades más expuestas.

En este estudio, se analizaron los eventos pluviales extremos que afectaron la cuenca del río Tempisque desde el 2005 hasta el 2020, a través de los análisis climatológicos de datos de precipitación de cuatro estaciones meteorológicas, pertenecientes al Instituto Meteorológico Nacional.

Para el examen de los eventos pluviales extremos se realizó un tratamiento estadístico de los datos, así como el análisis espacial de los mismos, determinando el comportamiento de la precipitación en la cuenca y el impacto de los ciclones tropicales en algunas comunidades de cuenca.

Los datos obtenidos a través de esta investigación suponen un importante aporte para mejorar la gestión del riesgo en la cuenca del Río Tempisque, lo que abre las puertas a futuros trabajos sobre el impacto de los fenómenos pluviales extremos en Costa Rica.

Palabras clave: análisis rítmico, climatología, eventos pluviales extremos, precipitación, riesgo, impactos, desastres naturales, vulnerabilidad

ABSTRACT

Extreme rainfall events are highly intense rainy episodes that can have a strong environmental and social impact. They are studied from different perspectives to understand the vulnerability of the most exposed communities.

In this study, the extreme rainfall events that affected the Tempisque River basin were analyzed from 2005 to 2020, through climatological analyzes of precipitation data from four meteorological stations, belonging to the National Meteorological Institute.

To examine extreme rainfall events, a statistical treatment of the data was carried out, as well as their spatial analysis, determining the behavior of precipitation in the basin and the impact of tropical cyclones in some basin communities.

The data obtained through this research represent an important contribution to improving risk management in the Tempisque River basin, which opens the doors to future work on the impact of extreme rainfall phenomena in Costa Rica.

Key words: rhythmic analysis, climatology, extreme pluvial events, precipitation, hazard, impacts, natural disaster, vulnerability

RESUMO ESTENDIDO EM PORTUGUÊS

Eventos Pluviais Extremos na Bacia do Rio Tempisque, Costa Rica (2005-2020): Riscos e Impactos

Introdução e Objetivo do Estudo

Este estudo concentra-se na análise de eventos pluviais extremos ocorridos na bacia do rio Tempisque, Costa Rica, durante o período de 2005 a 2020. São investigados os padrões de precipitação, os fatores climáticos que influenciam sua variabilidade e os impactos socioeconômicos e ambientais gerados. O principal objetivo da pesquisa é avaliar como esses eventos têm mudado ao longo do tempo e sua relação com fenômenos atmosféricos globais, como o El Niño-Oscilação Sul (ENOS) e os ciclones tropicais, a fim de propor estratégias de mitigação e gestão de riscos.

Descrição da Bacia do Rio Tempisque

A bacia do rio Tempisque é uma das mais importantes da Costa Rica, com uma extensão de 3.405 km², localizada na região de Guanacaste. Apresenta uma geografia diversificada, com uma bacia alta coberta por florestas, uma bacia média com atividade agrícola e uma bacia baixa caracterizada por planícies suscetíveis a inundações. Seu clima é predominantemente tropical seco, com uma marcada sazonalidade entre períodos de chuvas e secas, o que a torna uma área vulnerável a eventos climáticos extremos.

Metodologia

O estudo baseia-se na análise de dados climáticos obtidos em quatro estações meteorológicas do Instituto Meteorológico Nacional (IMN) da Costa Rica. Foram aplicados métodos estatísticos e análises espaciais para avaliar a tendência da precipitação e sua relação com eventos hidrometeorológicos extremos. Além disso, foram analisados registros históricos de ciclones tropicais e seus impactos na bacia.

Resultados e Descobertas

A análise mostrou um aumento na frequência e intensidade dos eventos pluviais extremos nos últimos 15 anos. Entre os fenômenos mais significativos que afetaram a região estão os ciclones tropicais Alma (2008), Ida (2009), Otto (2016), Nate (2017) e os furações Eta e lota (2020). Esses eventos provocaram inundações severas, danos em infraestruturas, perdas humanas e impactos em atividades econômicas, como a agricultura e o turismo.

Foi identificado que os anos com maiores volumes acumulados de precipitação estão fortemente influenciados por fenômenos de teleconexão climática, como El Niño e La Niña, que alteram a distribuição das chuvas na região. Além disso, a pesquisa revela que a combinação da topografia plana da bacia baixa com as modificações no uso do solo tem exacerbado a vulnerabilidade das comunidades locais a inundações recorrentes.

Impactos Sociais e Ambientais

As inundações resultantes de eventos pluviais extremos causaram perdas econômicas significativas, afetando residências, estradas e sistemas de produção agrícola. Em particular, as plantações de arroz, cana-de-açúcar e melão sofreram danos recorrentes, impactando a segurança alimentar e a economia da região. No aspecto social, o estudo documenta o deslocamento de famílias e o aumento de doenças transmitidas pela água em áreas afetadas.

Do ponto de vista ambiental, observou-se um desgaste nos ecossistemas da bacia, com impactos em áreas úmidas e reservas naturais, como o Parque Nacional Palo Verde. A erosão do solo e a sedimentação dos rios alteraram os padrões de drenagem, aumentando o risco de transbordamentos.

Conclusões e Recomendações

Os resultados evidenciam que a bacia do rio Tempisque enfrenta uma crescente vulnerabilidade a eventos climáticos extremos. Recomenda-se a implementação de estratégias de mitigação, como a restauração de áreas úmidas, o fortalecimento dos sistemas de alerta precoce e o planejamento urbano baseado em estudos de risco. Além

disso, sugere-se aprimorar a coleta de dados climáticos e promover a educação ambiental para preparar as comunidades para futuras ameaças.

Este estudo representa uma base para futuras pesquisas sobre o impacto das mudanças climáticas na Costa Rica e a necessidade de políticas públicas voltadas para a gestão do risco hídrico.

Palavras-chave: análise rítmica, climatologia, eventos extremos de chuva, precipitação, risco, impactos, desastres naturais, vulnerabilidade

ÍNDICE DE FIGURAS

Figura 1. Mapa de ubicación de Costa Rica
Figura 2. Mapa de provincias y cantones de Costa Rica
Figura 3. Mapa de división cantonal y regiones de planificación socioeconómica de Costa
Rica10
Figura 4. Elementos estructurales de Costa Rica12
Figura 5. Mapa de cuencas hidrográficas de Costa Rica16
Figura 6. Mapa de regiones climáticas de Costa Rica18
Figura 7. Áreas silvestres protegidas de Costa Rica, 202319
Figura 8. Mapa de áreas de conservación de Costa Rica y oficinas regionales y
subregionales del SINAC
Figura 9. Demanda laboral por establecimientos según actividad económica, Costa Rica
2023
Figura 10. Tasa de desempleo por sexo, Costa Rica, 2005-2020
Figura 11. PIB nominal per cápita en dólares para Costa Rica, 2005-202024
Figura 12. Distribución altitudinal de la cuenca del río Tempisque
Figura 13. Geología de la cuenca del río Tempisque2
Figura 14. Geología estructural de la cuenca del río Tempisque
Figura 15. Mapa de acuíferos de la cuenca del río Tempisque29
Figura 16. Tipos de suelos de la cuenca del río Tempisque
Figura 17. Zonas de vida de la cuenca del río Tempisque
Figura 18. Áreas silvestres protegidas dentro de la cuenca del río Tempisque 37
Figura 19. Condiciones atípicas de la atmósfera en el Océano Pacífico, fenómeno de E
Niño43
Figura 20. Anomalía de precipitaciones, Costa Rica, mayo 2015 44
Figura 21. Condiciones atípicas de la atmósfera en el Océano Pacífico, fenómeno de La
Niña 44

Figura 22. Diagrama de Wheeler-Hendon para localizar la oscilación de Madden-Ju	lian
según las 8 fases de la MJO	. 46
Figura 23. Patrones asociados a la fase positiva de la Oscilación Multidecadal	del
Atlántico.	. 47
Figura 24. Corriente de chorro polar y subtropical.	. 48
Figura 25. Fases positivas y negativas de la Oscilación Artica	. 49
Figura 26. ZCIT en julio y (rojo) y enero (azul).	. 50
Figura 27. Regiones de formación de ciclones tropicales.	. 52
Figura 28. Esquema de investigación	. 53
Figura 29. Visualización de datos de la estación meteorológica 74051	. 56
Figura 30. Visualización de datos de la estación meteorológica 74053	. 57
Figura 31. Ubicación de las estaciones meteorologías seleccionadas para el estudio	. 57
Figura 32. Precipitación mensual por año. Estación 74008, 2005-2020	. 62
Figura 33. Precipitación mensual por año. Estación 74037, 2005-2020	. 63
Figura 34. Precipitación mensual por año. Estación 74051, 2005-2020	. 64
Figura 35. Precipitación mensual por año. Estación 74053, 2005-2020	. 66
Figura 36. Climograma de la precipitación en la cuenca del río Tempisque, 2005-20	020
	. 67
Figura 37. Precipitación promedio anual, cuenca del río Tempisque, 2005-2020	. 69
Figura 38. Variabilidad interanual de la precipitación, cuenca del río Tempisque, 20)05-
2020	. 70
Figura 39. Ciclones tropicales desarrollados en la Cuenca Atlántica, 2005-2020	. 71
Figura 40. Clasificación de los ciclones tropicales registrados en Costa Rica, 2005-20	020
	. 72
Figura 41. Clasificación de los ciclones tropicales que afectaron la cuenca del	río
Tempisque, 2005-2020	. 79
Figura 42. Eventos asociados a ciclones tropicales, cuenca del río Tempisque, 20)05-
2020	. 80
Figura 43. Fallecimientos asociados a ciclones tropicales, cuenca del río Tempiso	γue,
2005-2020	21

Figura 44. Influencia típica de El Niño en el Pacífico y Atlántico durante la temporada de
huracanes
Figura 45. Influencia típica de La Niña en el Pacífico y Atlántico durante la temporada de
huracanes 84
Figura 46. Condiciones climáticas que favorecen la temporada de huracanes 85
Figura 47. Mapa de precipitación asociada a los huracanes Stan y Wilma, Costa Rica
2005
Figura 48. Tormenta tropical Noel (TT) y circulaciones atmosféricas asociadas: una
extensa vaguada con su eje en color azul y baja presión atmosférica (B) sobre el país
87
Figura 49. Análisis meteorológico a nivel de la superficie del mar del 27 de mayo 2008 a
las 9 a.m. hora local. La baja presión atmosférica que dio origen a la Tormenta Tropica
Alma está identificada por la letra L. La Zona de Convergencia Intertropical se simboliza
por medio de la línea doble color rojo que está sobre el Pacífico costarricense 88
Figura 50. Líneas de corriente generadas por el modelo GFS para en el nivel de superficie
(d), 850mb (c), 500 mb (b) y 250 mb (a) para el jueves 4 de septiembre, 6:00 am, Huracár
Hanna, 2008
Figura 51. Tormenta tropical Ida, América Central, 5 de noviembre de 2009 89
Figura 52. Fuerte actividad convectiva asociada a la Tormenta Tropical Nicole, Costa
Rica, 28-29 setiembre 2010
Figura 53. Huracán Thomas, América Central, 3 de noviembre 2010 90
Figura 54. Tormenta tropical Isaac antes de intensificarse a huracán, América Central
24 de agosto de 2012. GOES 16
Figura 55. Tormenta tropical Sandy, América Central, 24 de octubre de 2012. GOES 16
91
Figura 56. imagen satelital del ciclón tropical Nate, América Central, 4 de octubre 92
Figura 57. Ciclón tropical Amanda-Cristóbal, América Central, 31 de mayo y 2 de junio
de 2020. GOES 16
Figura 58. Eventos pluviales extremos y exposición a enfermedades
Figura 59. Área de amenazas de inundación, cuenca del río Tempisque

Figura	60.	Representación	esquemática	de	las	interacciones	en	la	cuenca	del	río
Tempis	que.									<i>'</i>	101

LISTA DE TABLAS

Tabla 1. Puntos extremos segun latitud y longitud de Costa Rica
Tabla 2. Organización político-administrativa de Costa Rica
Tabla 3. Regiones socioeconómicas de Costa Rica10
Tabla 4. Esquema geomorfológico de Costa Rica13
Tabla 5. Relieve de Costa Rica13
Tabla 6. Áreas Silvestres Protegidas de Costa Rica20
Tabla 7. Porcentaje de población de 5 años o más por nivel de instrucción, Costa Rica
2023
Tabla 8. Distribución territorial de la región Pacífico Norte25
Tabla 9. Dimensiones geográficas de la cuenca30
Tabla 10. Características de la región geográfico-climática Pacífico Norte32
Tabla 11. Resumen de variables climáticas, cuenca del río Tempisque3
Tabla 12. Zonas de vida de la cuenca del río Tempisque34
Tabla 13. Proyección histórica de la población de la Región Pacífico Norte38
Tabla 14. Centros educativos Dirección Regional Santa Cruz39
Tabla 15. Clasificación de los ciclones tropicales según escala de Saffir-Simpson 52
Tabla 16. Listado de estaciones meteorológicas en la cuenca del río Tempisque 55
Tabla 17. Resumen de variables estadísticas de precipitación anual. Estación 74008
2005-202062
Tabla 18. Resumen de variables estadísticas de precipitación anual. Estación 74037
2005-202063
Tabla 19. Resumen de variables estadísticas de precipitación anual. Estación 74051
2005-202065
Tabla 20. Resumen de variables estadísticas de precipitación anual. Estación 74053
2005-202066
Tabla 21. Años padrón habituales y extremos, cuenca del río Tempisque, 2005-2020 68
Tabla 22. Principales impactos de los eventos pluviales extremos por ciclones tropicales
Costa Rica, 2005-202073

Tabla 23. Tendencia	a, eventos	extremos y	y teleconexiones,	cuenca	del río	Tempisque
2005-2020						92

LISTA DE ABREVIATURAS E SIGLAS

°C: grados Celsius

AMO: Oscilación Multidecadal del Atlántico (por sus siglas en inglés)

BCCR: Banco Central de Costa Rica

CFIA: Colegio Federado de Ingenieros y Arquitectos

CNE: Comisión Nacional de Prevención de Riesgos y Atención de Emergencias

CVC: Corriente en Chorro Centroamericana

EBAIS: Equipos Básicos de Atención Integral de Salud

EM-DAT: Emergency Events Database

ENOS: El Niño Oscilación Sur

ha: Hectáreas

IMN: Instituto Meteorológico Nacional

INEC: Instituto Nacional de Estadística y Censos

k/h: kilómetros por hora

M.A.: Millones de años

MEP: Ministerio de Educación Pública

MIDEPLAN: Ministerio de Planificación

MINAE: Ministerio de Ambiente y Energía

mm: milímetros

m.s.n.m.: metros sobre nivel del mar

SINAC: Sistema Nacional de Áreas de Conservación

OA: Oscilación Artica

OACI: Organización Internacional de Aviación Civil

OMM: Organización Meteorológica Mundial

ZCIT: Zona de Convergencia Intertropical

ÍNDICE

Dedi	cato	oria		ii
Agra	dec	imientos		iii
Resu	ıme	n		iv
Abst	ract			V
Resu	ımo	estendic	do em português	vi
Índic	e de	e figuras.		ix
Lista	de	tablas		xiii
Lista	de	abreviatu	uras e siglas	xv
1.	NT	RODUC	CIÓN	1
1.1		Problem	na de investigación	3
1.2	2	Hipotesi	is	3
1.3	3	Objetivo	general	3
1.4	ļ	Objetivo	os específicos	4
2.	DES	SCRIPCI	ON DEL ÁREA DE ESTUDIO	5
2.1		Caracte	rización general del país	5
2	2.1.	1 Asp	pectos territoriales	6
	2.	1.1.1	División territorial administrativa	6
	2.	1.1.2	División unidades socioeconómicas	9
2	2.1.	2 Asp	pectos geofísicos y ambientales	11
	2.	1.2.1	Relieve y geología	11
	2.	1.2.2	Hidrografía	15
	2.	1.2.3	Clima	16

	2.1.2.1	Áreas protegidas	19
	2.1.3	Aspectos socioeconómicos	22
	2.1.3.1	Aspectos demográficos	22
	2.1.3.2	Aspectos económicos	24
	2.2 Cara	acterización del área de estudio: cuenca del río Tempisque	25
	2.2.1	Aspectos geofísicos y ambientales	25
	2.2.1.1	Relieve y geología	25
	2.2.1.2	Hidrografía	29
	2.2.1.3	Suelo	30
	2.2.1.4	Clima	31
	2.2.1.5	Zonas de vida	33
	2.2.1.1	Áreas protegidas	36
	2.2.2	Aspectos socioeconómicos	37
	2.2.2.1	Actividades socioproductivas	38
	2.2.2.2	Infraestructura	38
3.	REVISIĆ	N DE LITERATURA	40
,	3.1 Eve	ntos pluviales extremos	40
,	3.2 Tele	conexiones atmosféricas	42
	3.2.1	Fenómeno El Niño - Oscilación del Sur	42
	3.2.2	Oscilación Madden-Julian (MJO)	45
	3.2.3	Oscilación Multidecadal del Atlántico (AMO)	46
	3.2.4	Corriente en Chorro Centroamericana (CVC)	47
	3.2.5	Oscilación ártica (OA)	49
	3.2.6	Zona de Convergencia Intertropical (ZCIT)	49
	3.3 Ciclo	ones tropicales	51

4.	ΜÉ	TOD	OS	53
2	l.1	Obt	ención de datos meteorológicos	54
2	1.2	Def	inición de años padrón habituales y extremos	58
2	1.3	Est	udio de variabilidad de tendencia	59
2	1.4	Aná	álisis de teleconexiones atmosféricas	60
4	1.5	Aná	álisis de eventos pluviales extremos	60
5.	RES	SUL	TADOS	61
5	5.1	Car	acterización de los datos meterologicos seleccionados	61
5	5.2	Año	os padrón habituales y extremos	67
5	5.3	Var	iabilidad de tendencia	69
5	5.4	Tele	econexiones atmosféricas	70
5	5.5	Aná	álisis de eventos pluviales extremos	71
	5.5.	1	Eventos pluviales extremos: eventos asociados e impacto	72
6.	DIS	CUS	SIÓN	82
6	6.1	Influ	uencia del ENOS en los ciclones tropicales	82
6	5.2	Rel 85	ación entre tendencia de precipitación, eventos extremos y teleconexio	nes
6	6.3	Imp	acto de los eventos pluviales extremos	95
6	6.4	Inui	ndaciones en la cuenca del río Tempisque	98
	6.4.	1	Distribución espacial de las inundaciones	98
	6.4.	2	Relación entre uso del suelo y vulnerabilidad a eventos extremos	99
	6.4.	3	Impacto espacial de los ciclones tropicales	100
6	6.5	Est	rategias de mitigación	100
7.	COI	NCL	USIONES	104
Ω	DEC	~~!\	IENDACIONES	108

Eventos pluviales extremos en la cuenca del río Tempisque	٠,
Costa Rica, 2005 a 2020: riesgos e impactos	3

REFERENCIAS......109

1. INTRODUCCIÓN

En Costa Rica en los últimos 15 años se ha observado un crecimiento exponencial en la afectación directa por eventos pluviales extremos; siendo los más significativos los ciclones tropicales Alma (2008), Ida (2009), Tomas (2010), Patricia (2015), Otto (2016), Nate (2017), Eta e lota (2020), los cuales tuvieron consecuencias sociales, económicas, y biofísicas, afectando los patrones naturales de escorrentía e infiltración, causando grandes pérdidas humanas y económicas, desplazamiento de la población daño en infraestructura y afectación de actividades productivas.

Las inundaciones son consideradas como uno de los peligros más mortales relacionados con el clima la mayoría por ahogamiento o por deslizamientos. Los ciclones tropicales son los fenómenos naturales que más daño causan en Costa Rica, ya sea por inundaciones severas, marejadas, deslizamientos o cabezas de agua (*flash floods*). Si bien los ciclones tropicales se forman en el océano Atlántico, su mayor afectación se da en el Pacífico del país (Guanacaste, Puntarenas y San José), esto debido a la circulación de los vientos y al desplazamiento de la Zona de Convergencia Intertropical (ZCIT), lo cual lleva al aumento de la precipitación, la distribución de las lluvias y la intensidad del viento, lo que aunado a la topografía del país, las características de los suelos y al incremento de la población en las zonas costeras, genera un mayor riesgo ante amenazas hidrometeorológicas.

Actualmente, el pronóstico asociado a eventos hidrometeorológicos extremos, se focaliza en variables meteorológicas, como viento, precipitación y saturación de cuencas, así como posibles trayectorias, sin embargo, en los últimos años se han desarrollado nuevos enfoques, los cuales proponen la realización de predicción meteorológica basada en impactos, donde se analizan variables meteorológicas, geológicas y edafológicas, para generar mapas de posibles impactos, los cuales son más fáciles de comprender para la población y pueden ser aprovechados mejor por las autoridades locales y de emergencia.

Escenarios futuros indican que con el aumento de la temperatura del océano Atlántico, habrá un aumento en la intensidad de ciclones tropicales, por lo que es fundamental espacializar y comparar estos fenómenos, generando datos que permitan mejorar la capacidad del IMN para liderar el pronóstico y el manejo del impacto generado por los ciclones tropicales.

Durante esta investigación se identificaran y caracterizaran los principales ciclones tropicales que han afectado la cuenca del río Tempisque en los últimos 15 años, se identificaran los impactos para cada evento hidrometeorológico, se determinaran las áreas históricamente impactadas, se determinara el riesgo ante eventos hidrometeorológicos extremos en estas áreas, y se realizara una comparación entre las variables meteorológicas y los impactos generados por los eventos, lo que permitirá clasificar el tipo de amenaza y sus consecuencias.

Esta investigación apunta a ser novedosa, ya que no se han realizado estudios con un abordaje similar, además, incluye fenómenos muy recientes como los huracanes Eta e lota, y se cuenta con datos confiables, así como imágenes satelitales y modelos actualizados, al mismo tiempo se dispone de cartografía oficial a limitada resolución.

Justificación

La cuenca del río Tempisque es la segunda más grande del país 3.405 km² cuyas aguas drenan en la planicie Guanacasteca, junto con río Bebedero cubre un área de 5.455 km², lo que representa el 11% del territorio nacional. Se extiende por 138 km de los cuales 36 son navegables. Recibe aportes de los bosques adyacentes. Forma parte del distrito de riego de Moracia, un importante proyecto agrícola. El área que drena es comparativamente pobre en precipitación. (Flores Silva, 2001)

La cuenca del río Tempisque históricamente ha presentado inundaciones que "han sido un problema común en la zona, incluso desde la época colonial, debido a lo llano del terreno y a que los ríos se desbordan durante el periodo lluvioso" (Mendez, 2022), por otra parte, "el cambio climático antropogénico ha potenciado el daño generado por las crecidas del río Tempisque mediante episodios prolongados de abundantes precipitaciones que dejan su huella en las comunidades más vulnerables" (Mendez, 2022), incrementándose la incidencia de los ciclones tropicales sobre el país los cuales generan eventos extremos de lluvia que han tenido consecuencias económicas y sociales significativas, afectando las comunidades inmersas en la cuenca.

1.1 PROBLEMA DE INVESTIGACIÓN

- ¿El comportamiento de las lluvias en la cuenca del río Tempisque se ha modificado?
- ¿Cuáles son las causas de inundaciones en la cuenca?
- ¿Cuáles son los principales riesgos e impactos asociados a las inundaciones en la cuenca del río Tempisque?

1.2 HIPOTESIS

El comportamiento de la precipitación en la cuenca del río Tempisque ha experimentado cambios significativos que se desvían del patrón climático histórico de la región, lo que indica una creciente vulnerabilidad del país ante los impactos del cambio climático.

1.3 OBJETIVO GENERAL

Analizar los cambios en el comportamiento de la precipitación en la cuenca del río Tempisque y su relación con los patrones climáticos históricos de la región, con el fin de evaluar la intensificación de la vulnerabilidad del país ante eventos hidrometeorológicos extremos como los ciclones tropicales.

1.4 OBJETIVOS ESPECÍFICOS

- Caracterizar el área de estudio desde perspectivas geofísicas, biológicas y socioeconómicas.
- Analizar la variabilidad y tendencias de la precipitación en la cuenca del río Tempisque con relación a eventos hidrometeorológicos extremos como los ciclones tropicales, identificando los patrones de precipitación anuales habituales y extremos relacionando la configuración atmosférica responsable de los mismos.
- Investigar los principales riesgos e impactos socioambientales asociados a las inundaciones en la cuenca del río Tempisque.

2. DESCRIPCION DEL ÁREA DE ESTUDIO

2.1 Caracterización general del país

Costa Rica es un país del istmo centroamericano, que se ubica entre los trópicos de Cáncer y Capricornio, cuenta con una posición privilegiada interoceánica, entre el Océano Pacífico y el Mar Caribe, e intercontinental, entre Norte y Sur América, lo que convierte al país en un puente biológico y cultural.

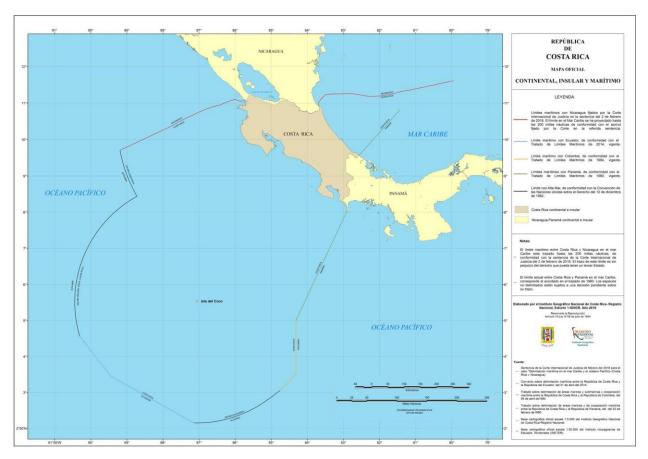


Figura 1. Mapa de ubicación de Costa Rica.

Tomado de: Ministerio de Relaciones Exteriores y Culto, 2018

Costa Rica tiene una superficie de 51.100 km² de territorio continental, 500.000 km² de territorio marítimo y 343,9 km² de territorio insular. El ancho máximo del país oscila entre 57 y 540 km. (Vargas, 2006)

Tabla 1. Puntos extremos según latitud y longitud de Costa Rica

	Latitud	Longitud	Puntos extremos
Norte	11 13'12"		Confluencia rio Sapoá en Nicaragua
Cur	08 02'26"		Punta Burica
Sur	05 30'06"		Cabo Dampier Isla del Coco
Este		82 33'48"	Boca del río Sixaola
Oeste		85 57'57"	Cabo Santa Elena
Oesie		87 06'13"	Islote Dos Amigos Isla del Coco

Adaptado de: (Vargas, 2006)

De acuerdo con el artículo 5 de la Constitución Política de Costa Rica, los límites del territorio nacional son al norte con la República de Nicaragua (tratado de límites Cañas - Jerez de 1858), al sur con la República de Panamá (Tratado de límites Echandi Montero - Fernández Jaén de 1941), al este con el Mar Caribe y al oeste con el Océano Pacífico (Gobierno de Costa Rica, 2015).

2.1.1 Aspectos territoriales

2.1.1.1 División territorial administrativa

La Constitución Política dispone una división administrativa del país en cuatro ordenes: territorio nacional, provincias, cantones y distritos (Gobierno de Costa Rica, 2015). Según la Ley 4366, la administración pública del territorio de Costa Rica recae en el Comisión Nacional de División Territorial Administrativa.

Cada provincia es una división administrativa de primer orden, que facilita el registro de los habitantes y cuenta con representación en la Asamblea Legislativa a través de los diputados, quienes son designados por elección popular en las elecciones nacionales (Fernánez, 2019).

Tabla 2. Organización político-administrativa de Costa Rica

Número	Provincia	Cantones	Distritos	Extensión (km²)
1	San José	20	123	4.959,64
2	Alajuela	16	116	9.753,23
3	Cartago	8	51	3.124,67
4	Heredia	10	47	2.656,27
5	Guanacaste	11	61	10.140.71
6	Puntarenas	13	60	11.276,97
7	Limón	6	30	9.188,52
To	otal	84	488	51.100

Adaptado de: (Vargas, 2006)

Los cantones son divisiones administrativas de segundo orden, equivalentes a ayuntamientos. El artículo 169 de la Constitución Política establece que "la administración de los intereses y servicios locales en cada cantón estará a cargo del Gobierno Municipal, formado de un cuerpo deliberante, integrado por regidores municipales de elección popular, y de un funcionario ejecutivo que designará la ley" (Gobierno de Costa Rica, 2015).

Los distritos son divisiones administrativas de tercer orden, claramente delimitadas y que cuentan con un Concejo de Distrito designado por elección popular en las elecciones municipales que se celebran cada cuatro años.

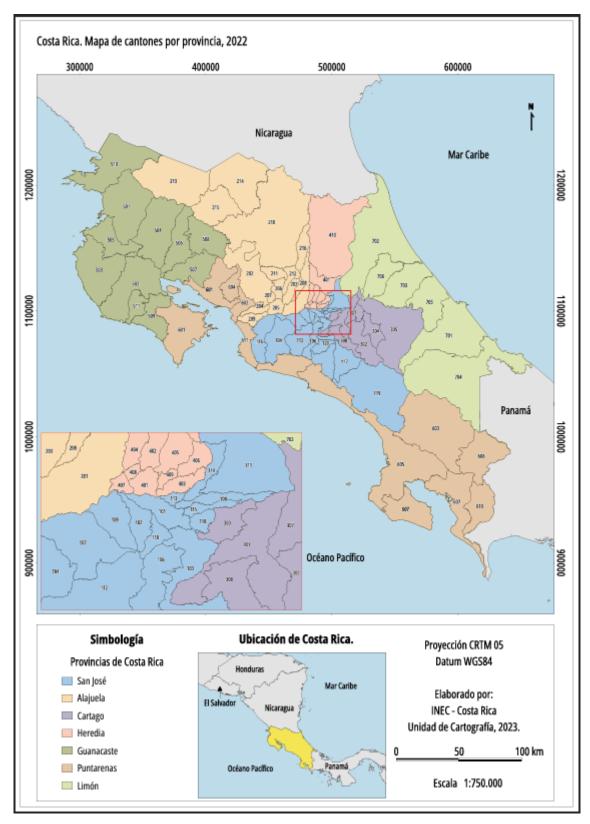


Figura 2. Mapa de provincias y cantones de Costa Rica.

Tomado de: INEC, 2023

2.1.1.2 División unidades socioeconómicas

A través de la Ley 5525 en 1979, se estableció para efectos de planificación, administración, investigación y desarrollo, la regionalización del territorio costarricense en seis regiones socioeconómicas. "Una región es el producto de un conjunto de relaciones sociales, históricas, económicas y administrativas que adquieren características particulares en un determinado espacio geográfico" (Alvarado R., 2003), siendo las regiones el resultado del desarrollo, las relaciones y los procesos históricos de grupos sociales sobre un territorio determinado.

En 1985, se reestructuran las regiones en cinco: Central, Chorotega, Pacífico Central, Brunca, Huetar Atlántica y Huetar Norte (Gobierno de Costa Rica, 1985), las mismas son administradas por el Ministerio de Planificación Nacional y Política Económica (MIDEPLAN).

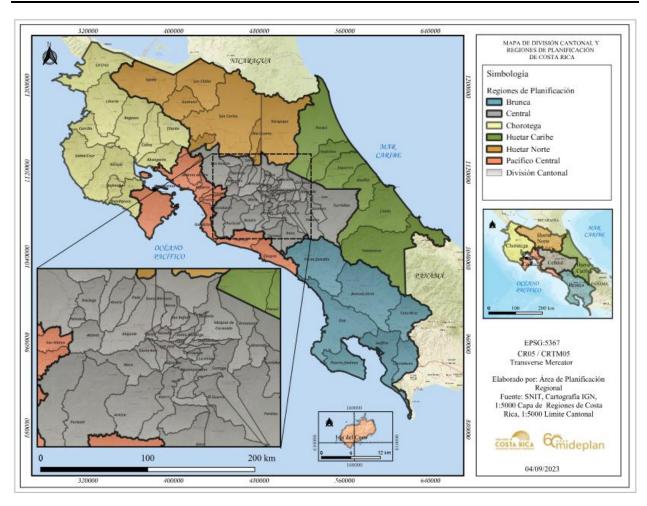


Figura 3. Mapa de división cantonal y regiones de planificación socioeconómica de Costa Rica Tomado de MIDEPLAN, 2023

En la Tabla 3 se muestran algunas características de las regiones socioeconómicas de Costa Rica.

Tabla 3. Regiones socioeconómicas de Costa Rica

Región	Relieve	Clima	Tipo de suelo	Actividades productivas	Principales ciudades	Población	Extensión territorial (km²)
Central	Valle Central. Montañas al sur del Valle Central. Zona de los Santos con parte de la Cordillera de Talamanca. Valle de Orosí y Turrialba. Parte oriental de la Sierra de Tilarán	Temperatura promedio: 20°C Precipitación oscila entre 1.500-3.000m Período seco: noviembre a abril Período lluvioso: mayo-noviembre	-Inceptisoles -Ultisoles -Entisoles	-Cultivo de café, papa, hortalizas -Ganadería de leche -Industria terciaria	San José Alajuela Cartago Heredia	2.446.028	8.528,40
Chorotega	Faldas occidentales de la Cordillera de Guanacaste.	Cordillera Clima templado	-Inceptisoles -Entisoles	-Ganadería de carne.	Liberia Cañas	264.238	10.140,71

	Llanuras del Rio Tempisque y sector oriental del Golfo de Nicoya. Región montañosa de Nicoya. Costas y área insular.	Lluvias abundantes Llanuras Temperatura promedio: 35°C Península Clima de influencia marina Precipitación: 1.200mm	-Vertisoles	-Cultivo de arroz, frijoles, maíz y caña. -Turismo	Nicoya Santa Cruz Tilarán		
Pacífico Central	Franja angosta de tierra a lo largo del Océano Pacífico. Reborde montañoso y planicie en el sector oceánico	Pacífico Norte: semiárido Pacífico Sur: hiperhúmedo	Inceptisoles Ultisoles Entisoles	Ganadería de carne Cultivo de frutales Turismo	Puntarenas Esparza Aguirre Orotina	201.352	2.835,63
Brunca	Cordillera de Talamanca Valle del General Fila Costeña Planicie Costera	La altitud influye sobre el clima, desde el pie de monte hasta el páramo. Los vientos húmedos del Pacífico provocan abundantes lluvias.	Inceptisoles Ultisoles Histosoles Entisoles Mollisoles	Agricultura intensiva de banano, palma africana, granos, café y caña de azúcar.	Pérez Zeledón Buenos Aires Coto Brus Corredores	299.366	9.528,44
Huetar Atlántica	Parte de Cordillera de Talamanca y Cordillera Volcánica Central. Llanura desde el nivel del mar hacia el oeste y sur.	Clima caliente y húmedo. Abundante precipitación aportada por alisios.	Ultisoles Inceptisoles Entisoles	Agricultura intensiva de banano, caña de azúcar, arroz, palma africana.	Limón Guácimo Pococí	339.295	9.188,52
Huetar Norte	Planicie dilatada y extensa, suavemente ondulada. Llanura de los Guatusos. Llanura de San Carlos	Precipitación: 2.500- 5.000mm Temperaturas altas en las bajuras y frescas en las faldas de las cordilleras	Inceptisoles Histosoles Entisoles Utisoles	Ganadería Agricultura intensiva de pastos y hortalizas	San Carlos Sarapiquí Upala	259.900	9.803,37

Adaptado de: (Alvarado R., 2003) y (Flores Silva, 2001)

2.1.2 Aspectos geofísicos y ambientales

2.1.2.1 Relieve y geología

Geológicamente Costa Rica pertenece a América Central ístmica un territorio en transformación continua producto de la acción conjunta de las placas Cocos y Caribe, lo cual ocasiona una intensa actividad sísmica y volcánica, que origino la formación de tres estructuras bien definidas: al norte extensas montañas de altitud media que coexisten con llanuras sedimentarias, al centro la "Depresión de Nicaragua" y finalmente el "Orógeno Sur Centroamericano" formado por tres arcos -montañoso, donde se localizan las tierras más antiguas; magmático compuesto por los sistemas montañosos centrales

de Costa Rica y Panamá; y el retroarco, formado por áreas de sedimentación de la región Atlántica-. (González, 1998)

De acuerdo con (González, 1998), la historia geológica de Costa Rica data de hace unos 200 M.A., su formación corresponde al Orógeno Sur Centroamericano. Estructuralmente esta área ha sido clasificada en tres unidades paralelas:

- Arco externo: se caracterizó por la formación de dorsales que más tarde dibujaron arcos de islas cóncavos, se encuentran las rocas más antiguas del área que afloran en las penínsulas de Nicoya, Herradura Osa y Burica;
- Arco interno: permitió el levantamiento del territorio nacional, incluye las cordilleras de Guanacaste, Volcánica Central, y de Talamanca;
- Cuenca del Caribe: se dio la formación de cuencas de sedimentación marina, se distinguen las cuencas de Limón y San Carlos.

En la Figura 4 se muestra en color verde el Arco Externo, también llamado Arco Pacífico, en rojo el Arco Interno, también llamado arco volcánico, y en blanco las cuencas de sedimentación de Limón, San Carlos, Tempisque y Térraba.

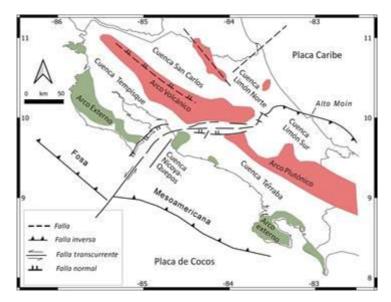


Figura 4. Elementos estructurales de Costa Rica

Tomado de: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0256-70242021000200001

Costa Rica es un territorio geológicamente joven ya que la mayoría de sus materiales son del Cuaternario, especialmente los depósitos aluviales y materiales volcánicos como coladas de lava, cenizas e ignimbritas, los cuales han moldeado el territorio nacional (Flores Silva, 2001). La siguiente tabla describe los principales fenómenos geológicos y las formas de relieve que se originaron en cada edad geológica.

Tabla 4. Esquema geomorfológico de Costa Rica

Edad	Eventos geológicos más significativos	Formas de relieve		
Cuaternario	Predominio de fenómenos de erosión y sedimentación: depósitos aluviales. Intensificación de procesos de pedogénesis. Vulcanismo actual.	Formación de valles, llanuras, terrazas fluviales y marinas, y de conos aluviales piemontanos. Acción de glaciares de altura.		
Terciario	Fase orogénica con eventos tectónicos ligados a la Fosa de Nicaragua. Vulcanismo intrusivo y extrusivo. Solevantamiento tectónico del fondo submarino, surgimiento del territorio de Costa Rica y Panamá.	Formación del Valle Central y sierras volcánicas actuales: Guanacaste, Central y Talamanca (Arco Interno).		
Secundario	Ciclos de sedimentación continental y marina basal y pelágica. Territorio de Costa Rica y Panamá estaba ocupado por canal marino que conectaba el Caribe con el Pacifico.	Formación de penínsulas de Santa Elena, Nicoya y Osa, y las islas del Golfo de Nicoya (Arco Externo).		
Primario	Formación de islotes emergentes de origen oceánico.	Áreas de rocas más antiguas del país, especialmente en la Península de Santa Elena.		

Adaptado de: (Flores Silva, 2001)

El relieve de Costa Rica está compuesto por cordilleras, valles y costas, a continuación, se describen los principales accidentes geográficos.

Tabla 5. Relieve de Costa Rica

Relieve	Estructuras	Características
Cordilleras	Volcánica de Guanacaste	Fila de conos volcánicos. Rumbo NW-SE. Volcanes: Orosi 1.487 msnm Cacao 1.659 msnm Rincón de la Vieja 1.806 msnm Miravalles 2.028 msnm Santa María 1.926 msnm Tenorio 1.916 msnm Arenal 1.638 msnm Separa las planicies del Pacífico y el Caribe.
	Tilarán	Elevaciones alrededor de 1.500 msnm. Cerros: Aguacate, Abangares, San Antonio, Tilarán.

	T			
	Volcánica Central	Fila de conos volcánicos con pasos que favorecen el intercambio de viento y el aporte de humedad desde el Caribe. Volcanes: Poás: 2.722 msnm Barva: Irazú: Turrialba:		
	Talamanca	Formado por rocas sedimentarias marinas y vulcanitas del terciario. Rumbo NW-SE. Elevaciones entre 2.400-3.819 msnm • Cerro de la Muerte: 3.491 msnm • Kámuk: 3.554 msnm • Chirripó: 3.819 msnm Separa los Valles del Sur del Caribe.		
	Fila Costera	Cordón secundario que corre paralelo a la cordillera de Talamanca muy cerca de la costa. Elevaciones entre 770-1707 msnm.		
Valles	Central	Rumbo: EW-NS. Extensión 50 por 20km. Se divide en varias subcuencas. Se encuentran las ciudades más importantes del país. Elevaciones entre 800-1.400 msnm. Ríos: Tiribi Grande de Tárcoles Grande de Orosi Pejibaye Reventazón		
	Del General	Rumbo: SE-NW. Extensión: 110 por 25 km. Ríos: Grande de Térraba Coto Brus Pirris		
Llanuras	Cuenca sinclinal del Eoceno. Desciende de la Cordillera Volcánica Central ha el Mar Caribe. Secciones: Guatusos San Carlos Caribe Norte			

Pacífico	Planicie que se extiende entre el océano Pacífico y las cordilleras. Secciones: Tempisque Parrita Sierpe Ríos: Tempisque Parrita Grande de Térraba Sierpe
----------	--

Adaptado de: (Flores Silva, 2001)

2.1.2.2 Hidrografía

A diferencia de los países andinos, los ríos de Cosa Rica son de origen pluvial, es decir, dependen del aporte de la precipitación líquida, por lo que están influenciados directamente por clima, mostrando variaciones significativas en función de la estacionalidad, a esto se le conoce como régimen. Se pueden identificar dos regímenes: simple pluvial que es regular con caudales abundantes y constantes; e irregular con insuficiencia de aguas durante la estación seca y llenas temporales durante la estación lluviosa (Flores Silva, 2001).

El país está conformado por 100 cuencas hidrográficas, pero debido a que drenan territorios muy pequeños, se reducen a 34 cuencas hidrográficas, que son de vital importancia para planificación del uso del agua y del suelo (Flores Silva, 2001). Las cuencas más estudiadas son: río Grande de Tárcoles debido a que concentra el 60% de la población del país, río Reventazón donde se desarrollan importantes proyectos hidroeléctricos y cuenta con su propia legislación, y río Tempisque que cuenta con el distrito de riego más extenso del país y abarca más de 40.000 hectáreas dedicadas a cultivos intensivos como caña de azúcar, arroz y melón (Instituto Meteorológico Nacional, 2011).

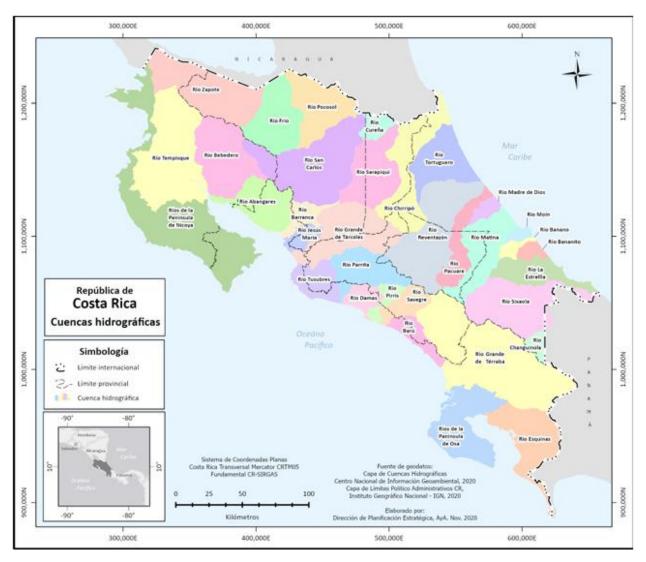


Figura 5. Mapa de cuencas hidrográficas de Costa Rica Tomado de: AyA, 2020

2.1.2.3 Clima

La clasificación climática de Costa Rica se basa en el trabajo desarrollado por Coen (1967), en el cual se determinan 13 tipos de clima, de los cuales nueve son aplicables al país. Para definir estos climas se utilizaron tres aspectos (Solano & Villalobos, Aspectos fisiograficos aplicados a un bosquejo de regionalización geografico climático de Costa Rica, 2001):

- a. Provincias térmicas: se basa en la temperatura media anual.
 - Microtermal: temperatura inferior a 10 °C, elevación media superior a los 2.000 msnm.

- Mesotermal: temperatura entre 10 y 22 °C, elevación entre 800 y 2.000 msnm.
- Megatermal: temperatura superior a los 22 °C, elevación de 800 msnm.

b. Provincias pluviométricas:

- Regiones moderadamente lluviosas: precipitación entre 1.000 y 2.000 mm.
- Regiones Iluviosas: precipitación entre 2.000 y 4.000 mm.
- Regiones excesivamente lluviosas: precipitación superior a 4.000 mm.

c. Régimen de lluvia anual:

- Excesivo en Iluvias del Caribe: presenta precipitación anual excede los 4.000 mm.
- II. Excesivo en Iluvias del Pacífico: similar al del Caribe, presenta disminución de las Iluvias entre febrero y abril.
- III. Lluvioso o Caribe: se encuentra en alturas inferiores a los 600 msnm, presenta disminución de las lluvias entre marzo y abril.
- IV. Lluvioso con influencia monzónica: lluvias bien distribuidas a lo largo del año, presenta disminución entre enero y abril.
- V. De seguía: se encuentra desde el nivel del mar hasta los 800 msnm.
- VI. Faltas de la cordillera de cara al Caribe: se encuentra desde los 600 hasta los 1.600 msnm, presenta una distribución uniforme de las lluvias a lo largo del año.
- VII. Faldas de la cordillera de cara al Pacífico: presenta temperaturas moderadas y periodos secos entre enero y marzo.
- VIII. Meseta Central: presenta temperaturas frescas y lluvias moderadas.
- IX. De altura lluvioso y seco: se encuentra en alturas superiores a los 1.600 msnm, la temperatura es un factor importante.

Adicional a los aspectos supra mencionados, se utilizaron las zonas de vida de Holdridge (1979) para distinguir los tipos de vegetación en función de su franja altitudinal.

La topografía de Costa Rica es muy variada ya que cuenta con valles, llanuras y un eje montañoso que divide al país en tres regiones fisiografías, norte, central y sur, las cuales sumadas al sistema de vientos predominantes (alisios), permiten la clasificación del país en siete regiones climáticas con dos estaciones bien definidas, seca y húmeda (Solano & Villalobos, Regiones y subregiones climáticas de Costa Rica, s.f.):

- Región Tropical del Pacífico:
 - Región Pacífico Norte
 - Región Pacífico Central
 - Región Pacífico Sur
- Región Central Intermontana:
 - Montañosa Sur
 - Región Valle Central
- Región Tropical Húmeda del Caribe:
 - Región Norte
 - Región Atlántica

Figura 6. Mapa de regiones climáticas de Costa Rica

Tomado de: IMN, 2022

2.1.2.1 Áreas protegidas

Costa Rica cuenta con 151 áreas silvestres protegidas (INEC, 2023), las cuales son administradas por el Ministerio de Ambiente y Energía (MINAE) a través del Sistema Nacional de Áreas de Conservación (SINAC) y protegen el 25% del territorio nacional en nueve categorías de manejo que representan 13.017 km² a nivel terrestre y 14.830 km² marinos (Chacón, 2019).

Figura 7. Áreas silvestres protegidas de Costa Rica, 2023 Tomado de: INEC, 2023

Estas áreas protegidas están definidas por la Ley de Biodiversidad de 1998 y son espacios geográficos designados con una categoría de manejo en virtud de su importancia natural, cultural y/o socioeconómica, para cumplir con determinados objetivos de conservación y de gestión.

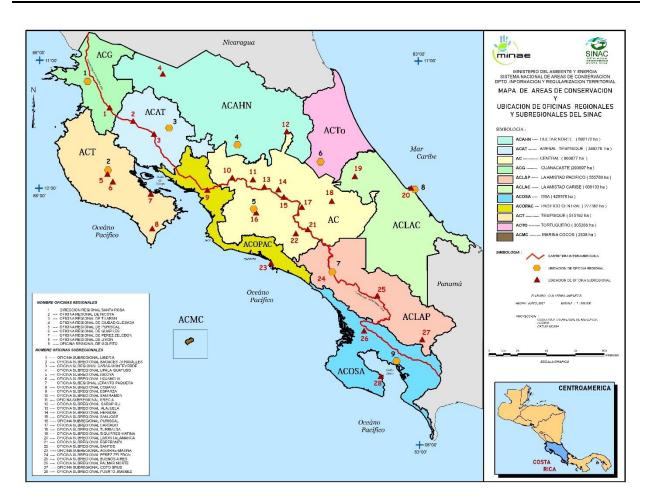


Figura 8. Mapa de áreas de conservación de Costa Rica y oficinas regionales y subregionales del SINAC Tomado de: SINAC, 2020

En la tabla a continuación se detallan las áreas silvestres protegidas pertenecientes a cada área de conservación del SINAC.

Tabla 6. Áreas Silvestres Protegidas de Costa Rica¹

Área de conservación	Recursos sobresalientes	Áreas silvestres protegidas	
		Parque Nacional Juan Castro	
	Posque búmedo	Blanco	
	Bosque húmedo Bosque pluvial montano	Parque Nacional Volcán Arenal	
Arenal Huetar Norte (ACAHN)	Humedades Recurso hídrico	Refugio Nacional de Vida	
		Silvestre Corredor Fronterizo	
	Necarso manco	Refugio Nacional de Vida	
		Silvestre Caño Negro	
Arenal Tempisque (ACAT)	Humedales Parque Nacional Palo		

¹ Se omiten zonas protectoras, humedales, áreas marinas de manejo, refugios de vida silvestre mixtos y privados.

	Bosque tropical seco	Parque Nacional Volcán
	Bosque pluvial montano bajo	Miravalles
	Generación energía	Parque Nacional Volcán Tenorio
	hidroeléctrica	Reserva Biológica Lomas de
	Producción de energía eólica y	Barbudal
	geotérmica	Refugio Nacional de Vida
	-	Silvestre Cipanci
		Reserva Forestal Taboga
		Monumento Nacional Guayabo
		Parque Nacional Braulio Carrillo
		Parque Nacional La Cangreja
		Parque Nacional Los Quetzales
	Volcanes	Parque Nacional Tapantí
	Recurso hídrico	Macizo de la Muerte
Central (ACC)	Paramo	Parque Nacional Volcán Irazú
,	Bosque nuboso	Parque Nacional Volcán Poás
	Patrimonio arqueológico	Parque Nacional Volcán
		Turrialba
		Reserva Biológica Alberto
		Brenes
		Reserva Forestal Grecia
		Parque Nacional Rincón de la
		. Vieja
		Parque Nacional San Rosa
	Ecosistemas marino-costeros	Parque Nacional Guanacaste
Cuanagasta (ACC)	Bosque tropical seco	Refugio de Vida Silvestre
Guanacaste (ACG)	Bosque tropical lluvioso	Junquillal
	Bosque tropical nuboso	Refugio de Vida Silvestre
		Corredor Fronterizo
		Refugio de Vida Silvestre
		Iguanita
		Parque Internacional La
		Amistad
		Parque Nacional Barbilla
	Territorios indígenas	Parque Nacional Cahuita
La Amistad Caribe (ACLAC)	Arrecifes coralinos	Reserva Biológica Hitoy Cerere
2a /otda	Bosque tropical Iluvioso	Refugio Nacional de Vida
		Silvestre Gandoca-Manzanillo
		Reserva Forestal Pacuare-
		Matina
		Reserva Forestal Pacuare
	Territorios indígenas	Parque Internacional La
	Lagos de origen glaciar	Amistad
La Amiatad Basífica (ACLAB)	Sabanas de altura	Parque Nacional Chirripo
La Amistad Pacífico (ACLAP)	Paramos subalpinos Bosque nuboso	Reserva Biológica Pájaro
	Robledales	Campana
	Humedales de altura (turberas)	Reserva Forestal Los Santos
	Arrecifes coralinos	
Marina Cocos (ACMC)	Bosque Iluvioso	Parque Nacional Isla del Coco
	Patrimonio arqueológico	Parque Nacional Corcovado
	Bosque tropical húmedo	Parque Nacional Marino Ballena
Osa (ACOSA)	Bosque tropical muy húmedo	Parque Nacional Piedras
	Bosque Iluvioso	Blancas
		Dianodo

	Arrecifes coralinos	Reserva Biológica Isla del Caño
Humedales		Reserva forestal Golfo Dulce
		Refugio de vida silvestre
		Pejeperro
	Bosques secos	Parque Nacional Marino Las
	Bosque húmedo	Baulas
Tempisque	Tacotales	Parque Nacional Barra Honda
rempisque	Pastizales	Parque Nacional Diría
	Lagunas	Refugio de Vida Silvestre Playa
	Manglares	Conchal
	Bosque húmedo tropical	Parque Nacional Tortuguero
Tortuguero (ACOTo)	Canales	Refugio de Vida Silvestre Barra
Tortuguero (ACOTO)	Manglares	del Colorado
	Playas para desove de tortugas	dei Colorado

Adaptado de: SINAC, 2024

2.1.3 Aspectos socioeconómicos

2.1.3.1 Aspectos demográficos

De acuerdo con datos del (INEC, 2023), la población total de Costa Rica al 2023 era de 5.262.237 habitantes, con un total de 2.648.531 hombres y 2.613.705 mujeres. La tasa bruta de natalidad es de 9,54 por cada mil habitantes, mientras que la tasa de mortalidad es de 5,55 por cada mil habitantes.

Tabla 7. Porcentaje de población de 5 años o más por nivel de instrucción, Costa Rica, 2023

		Nivel de escolaridad (%)					
Población		Sin				Educación superior	
PUDI	acion	escolarización	Primaria	Secundaria	Técnica	Pregrado y grado	Posgrado
Urbana	Hombres	47	46	47	45	43	47
Ulbalia	Mujeres	53	54	53	55	57	53
Dural	Hombres	53	50	50	49	43	51
Rural	Mujeres	49	49	49	51	57	50

Adaptado de: INEC, 2023

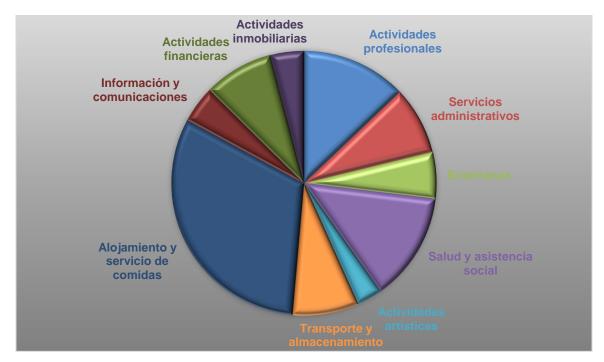


Figura 9. Demanda laboral por establecimientos según actividad económica, Costa Rica, 2023 Adaptado de: INEC, 2023

La tasa de desempleo de acuerdo con (INEC, 2023) es de 8,0% para hombres y 12,1% para mujeres, mientras que la tasa de ocupación es de 63,9% para hombres y 38,4% para mujeres. En la Figura 10 se observa el comportamiento anual de la tasa de desempleo del periodo de estudio.

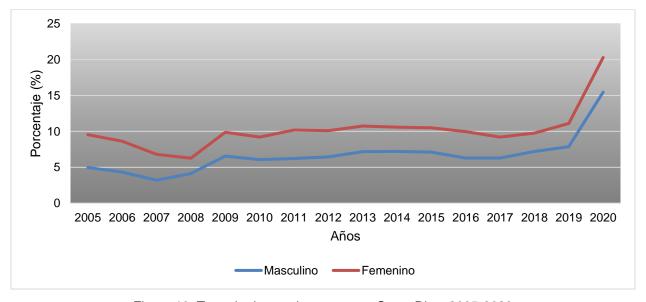


Figura 10. Tasa de desempleo por sexo, Costa Rica, 2005-2020

Adaptado de: INEC, 2023

2.1.3.2 Aspectos económicos

Costa Rica posee una economía estable y una inflación moderada que el actual Gobierno ha logrado reducir. Para el 2022, la producción costarricense creció un 4,3%, concentrado en la productividad de las zonas francas, evidenciando que son el principal motor de la económica del país. (Programa Estado de la Nación, 2023). Durante el 2024 la economía costarricense creció un 5,1% gracias al aporte de los sectores de manufactura y las actividades científicas, técnicas y administrativas. (Córdoba & Robalino, 2023)

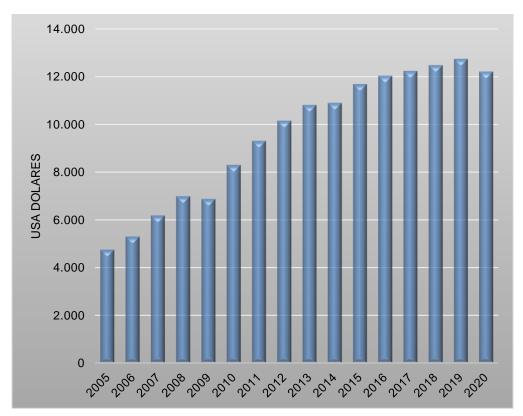


Figura 11. PIB nominal per cápita en dólares para Costa Rica, 2005-2020 Adaptado de: Estado de la Nación, 2023, con datos del BCCR

2.2 Caracterización del área de estudio: cuenca del río Tempisque

La cuenca del río Tempisque se encuentra en la provincia de Guanacaste y forma parte de la región socioeconómica Chorotega. Desde hace muchos años, esta cuenca ha sufrido muchas transformaciones biofísicas, productivas y sociales.

2.2.1 Aspectos geofísicos y ambientales

"El río Tempisque es el cuerpo de agua superficial más grande e importante de la Provincia de Guanacaste en Costa Rica" (Mendez, 2022), pertenece a la vertiente del océano Pacifico y recorre gran parte del territorio.

Esta cuenca "está dividida en tres secciones: la parte superior cubierta de bosques localizada en la cordillera volcánica de Guanacaste; la parte media con terrenos ondulados dedicados a la agricultura y localizados en la meseta de Santa Rosa, entre Liberia y Cañas, y la parte inferior compuesta de llanuras y marismas sujeta a inundaciones en muchas áreas, conocida como la Bajura del Tempisque" (Asamblea Legislatvia, 2016).

Tabla 8. Distribución territorial de la región Pacífico Norte

Cuenca	Cantón	Área (km²)	Perímetro (km)
	La Cruz	63,32	65,96
	Upala	0,18	15,09
	Liberia	1.337,65	192,09
Tempisque	Bagaces	381,03	184,65
	Cañas	4,53	15,92
	Carrillo	509,08	18,70
	Santa Cruz	650,84	144,92

Adaptado de: Instituto Meteorológico Nacional, 2011

2.2.1.1 Relieve y geología

En la cuenca del río Tempisque la altitud máxima se alcanza en las estribaciones del Volcán Rincón de la Vieja con elevaciones entre los 844 y 1.900 msnm, la cuenca media se sitúa entre 211 y 844 msnm, mientras que la cuenca baja que representa el 90%, se sitúa entre 0 y 211 msnm (Instituto Meteorológico Nacional, 2011).

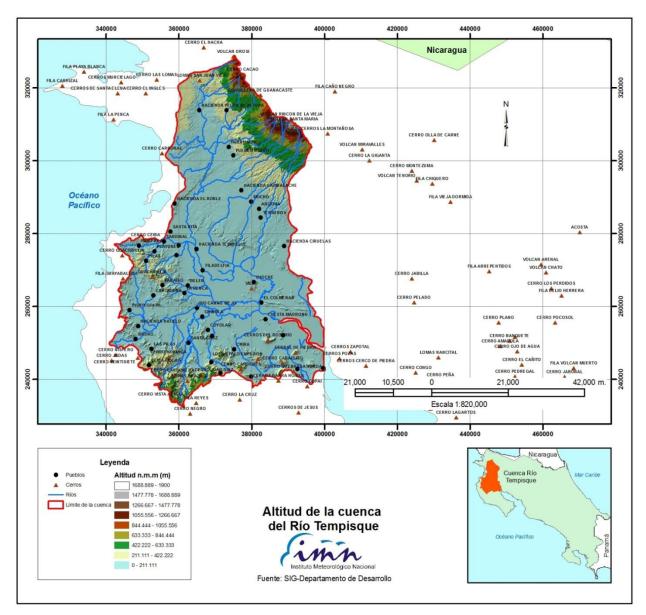


Figura 12. Distribución altitudinal de la cuenca del río Tempisque Tomado de: (Instituto Meteorológico Nacional, 2011)

El origen geológico de esta cuenca es volcánico del Plio-Pleistoceno y Mioceno hacia el norte, con predominancia de rocas volcánicas y piroclásticas, mientras que el sector medio está formado por rocas sedimentarias continentales, de transición y marino someros del Holoceno con ígneas submarinas, intrusivas y sedimentarias profundas del Cretácico, plataforma (Paleoceno) y marino someras (Plio-Pleistoceno) (Instituto Meteorológico Nacional, 2011).

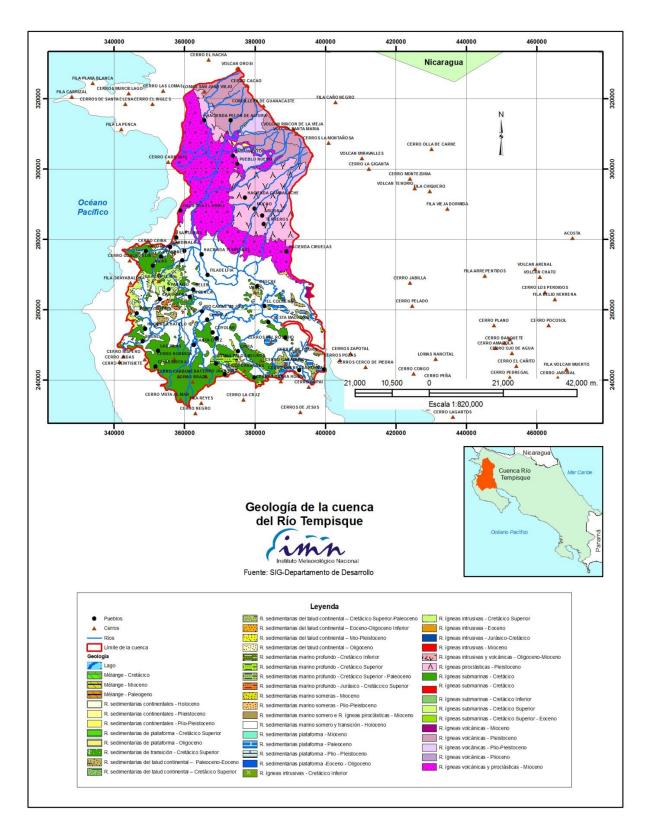


Figura 13. Geología de la cuenca del río Tempisque

Tomado de: (Instituto Meteorológico Nacional, 2011)

En el sector norte, la cuenca muestra un colapso estructural, así como fallas con rumbo NW-SE y NE-SW, además de un eje de depresión tectónica con rumbo NW-SE. En el sector sur y suroeste presenta fallas y pliegues NW-SE y NE-SW (Instituto Meteorológico Nacional, 2011).

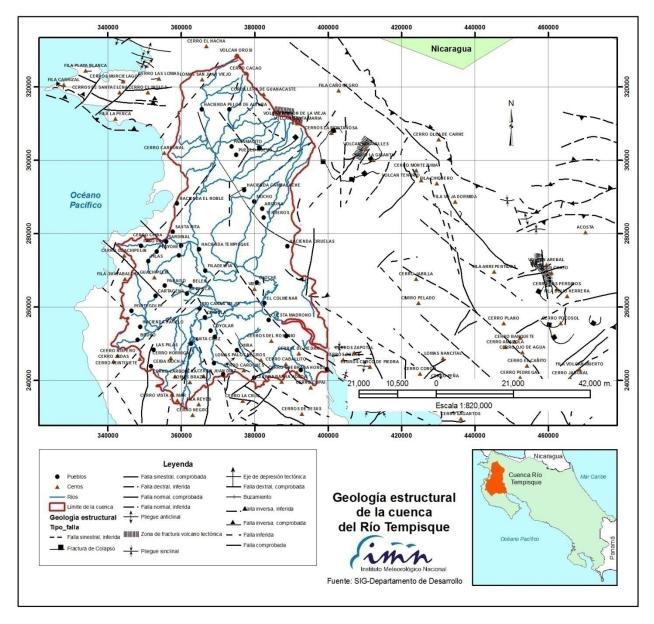


Figura 14. Geología estructural de la cuenca del río Tempisque Tomado de: (Instituto Meteorológico Nacional, 2011)

2.2.1.2 Hidrografía

El río Tempisque tiene un área de 3.354,83km² lo que representa el 6,56% de la superficie nacional, está formada por la confluencia de los ríos Tempisquito y Ahogados, sus principales afluentes son los ríos Bebedero, Salto, Piedras, Colorado y Bolsón (Instituto Meteorológico Nacional, 2011), la mayor parte de los afluentes se encuentran en el lado derecho de la cuenca, en la parte alta de la misma.

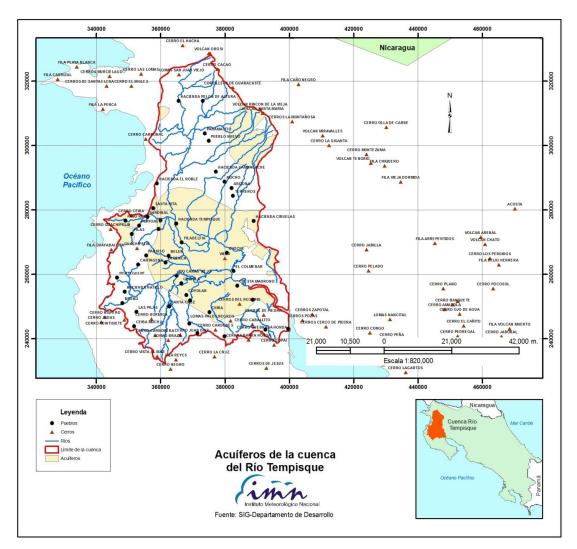


Figura 15. Mapa de acuíferos de la cuenca del río Tempisque Tomado de: (Instituto Meteorológico Nacional, 2011)

"Dentro de la cuenca se encuentra el acuífero Tempisque (caudal promedio 20-100 L/s, espesor 30 m) y parte de los acuíferos Brasilito (caudal promedio 0,5 L/s, espesor 10 m)

y El Coco (caudal promedio 1-5 l/s, espesor 20 m)" (Instituto Meteorológico Nacional, 2011).

Tabla 9. Dimensiones geográficas de la cuenca

	Cuenca del Río Tempisque
Área	3.382,07 km ²
Perímetro	365,41 km
Índice de compacidad	1,76
Factor de forma	0,56
Altitud máxima	1.900 msnm
Altitud mínima	0,00 msnm
Altitud media	169,40 msnm
Longitud del cauce	142,19 km
Pendiente media del cauce	3,87%
Pendiente media de la cuenca	10,29%

Adaptado de: (Instituto Meteorológico Nacional, 2011)

2.2.1.3 Suelo

Esta cuenca está compuesta por una gran variedad de suelos, destacan los alfisoles, Inceptisoles, vertisoles, entisoles y molisoles (Instituto Meteorológico Nacional, 2011).

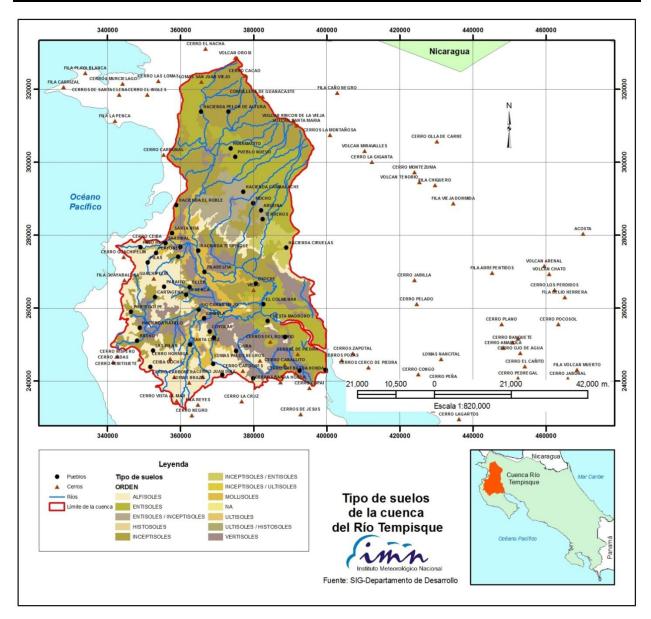


Figura 16. Tipos de suelos de la cuenca del río Tempisque Tomado de: (Instituto Meteorológico Nacional, 2011)

2.2.1.4 Clima

El área de estudio está enmarcada en la región climática Pacífico Norte que comprende las provincias de Guanacaste, Puntarenas (cantones Esparza y Montes de Oro) y Alajuela (cantones Orotina y San Mateo). Pertenece al régimen de precipitación del Pacífico, presenta un período seco y otro lluvioso bien definido. Se caracteriza por la severidad del clima en la planicie Guanacasteca, donde se presentan prolongados

períodos secos. Es una de las regiones más extensas y con gran diversidad climática, razón por la cual ha sido dividido en cuatro subregiones:

- PN1: Occidental de la Península de Nicoya,
- PN2: Central del Pacífico Norte,
- PN3: Base y faldas de las cordilleras de Guanacaste y Tilarán, y
- PN4: Cuenca baja de los ríos Barranca y Tárcoles.

Tabla 10. Características de la región geográfico-climática Pacífico Norte

Subregión	Tipo de clima	Ubicación geográfica	Tipo de vegetación	Ubicación geográfica
PN1	Lluvioso con influencia monzónica	Parte costera de Península de Nicoya.	 Bosque seco tropical: Precipitación (mm): 1.100 a 1.500. Biotemperatura (°C): 24.,0 a 24,5. La mayoría de las especies son deciduas, con fustes cortos, gruesos y poco densos. Las epífitas son escasas. 	En toda la subregión
	De sequia	Sobre la Península de Nicoya y el resto de la subregión.	Bosque seco tropical	
PN2	De sequia	En toda la subregión	Bosque seco tropical	En toda la subregión
			Bosque seco tropical	En franja estrecha en la pendiente de la cordillera de Guanacaste del lado Pacífico
PN3	Lluvioso con influencia monzónica	En toda la subregión	 Bosque húmedo subtropical: Precipitación (mm): 1.000 a 2.000. Biotemperatura (°C): 17,0 a 24,5. El bosque es semideciduo y poco denso. Las epífitas son abundantes. 	En el resto de la subregión
PN4	Lluvioso con influencia monzónica	En toda la subregión	Bosque seco tropical	En toda la subregión

Adaptado de: (Solano & Villalobos, Aspectos fisiograficos aplicados a un bosquejo de regionalización geografico climático de Costa Rica, 2001) y (Solano & Villalobos, Regiones y subregiones climáticas de Costa Rica, s.f.)

Existe poca variabilidad en cuanto a la temperatura media, por lo cual se clasifica como isotermal, siendo la temperatura media anual de 27,4 °C; las temperaturas más altas oscilan entre 27,1 y 30,2 °C y se registran en la cuenca media baja durante el mes de abril; las temperaturas más bajas oscilan entre 24,6 y 27 °C y varían entre setiembre y diciembre. Se observa una marcada oscilación entre la temperatura mínima y máxima diaria, variando hasta en 8,5 y 12 °C. (Mateo, 2021)

La cuenca del río Tempisque puede clasificarse como "un clima de tropical cálido con una estación de lluvias a partir de mayo hasta octubre y una estación seca y de transición en los demás meses del año. En el clima de Köppen-Geiger las regiones se clasifican como Aw (clima tropical de sabana)" (Climate Service Center Germany & Instituto Meteorológico Nacional, 2020).

Tabla 11. Resumen de variables climáticas, cuenca del río Tempisque

	Variable	Temperatura media anual (°C)	Precipitación (mm/año)	Evapotranspiración (mm/año)	Brillo solar (h/día)
	Cuenca alta	22-24	1.500-3.000	1.200-1.300	3 a 4
	Cuenca media	26-28	1.500-2.000	1.900-2.000	6 a 7
Ī	Cuenca baja	Alrededor de 28 °C	1.500-3.000	1.600-1.900	6 a 7

Adaptado de: (Climate Service Center Germany & Instituto Meteorológico Nacional, 2020)

En la cuenca del río Tempisque pueden producirse graves inundaciones, con mayor frecuencia alrededor de octubre. La mayoría de las inundaciones se presentan en la parte central de Guanacaste, en la cuenca baja del río Tempisque. "En el Pacífico Norte, las inundaciones pueden durar de 3 a 4 días en promedio y hasta 10 días en casos extremos. En esos períodos, las precipitaciones se acumulan hasta un promedio de entre 100 a 300 mm. Durante algunos temporales se han registrado acumulados de 400 a 700 mm. En los períodos de tormenta el acumulado máximo de lluvia está entre 250 y 380 mm." (Climate Service Center Germany & Instituto Meteorológico Nacional, 2020)

2.2.1.5 **Zonas de vida**

Las zonas de vida son áreas terrestres definidas por parámetros de precipitación (isoyetas), elevación (curvas de nivel) y temperatura (isotermas); permiten definir

ecosistemas y crear mapas ecológicos para clasificar un área determinada. (Instituto Nacional de Aprendizaje, s.f.)

Debido a las variaciones altitudinales en la cuenca del río Tempisque se encuentran ocho zonas de vida, en las estribaciones del volcán Rincón de la Vieja encontramos bosque pluvial montano bajo y conforme disminuye la elevación pasamos a bosque pluvial premontano y una franja de bosque húmedo tropical transición a premontano. En la cuenca media tenemos bosque húmedo tropical, y en la cuenca baja un 75% es bosque húmedo premontano transición a basal y un 25% es bosque tropical seco, bosque húmedo tropical transición a seco, y bosque húmedo premontano transición a basal (Instituto Meteorológico Nacional, 2011).

Tabla 12. Zonas de vida de la cuenca del río Tempisque

Cuenca	Zona de	Altitud	Precipitación	Temperatura	Características	Especies
	vida	(msnm)	(mm)	(°C)	Na svista sasiada	relevantes
	Bosque pluvial montano bajo	1.600-2.600	2.200-4.500	6-12	-No existe periodo seco. -Presenta limitaciones para las actividades agropecuarias y forestales.	Quercus sp. Copey Cedrillo Yos
Alta	Bosque pluvial premontano	600-1.600	Superior a 4.000	17-24	-No existe periodo secoPresenta limitaciones para las actividades agropecuarias y forestales.	Ulmus mexicana Quercus sp. Familias Myrtaceae, Melastomataceae, Rosaceae, Lauraceae
	Bosque húmedo tropical transición a premontano	1500-2000	2.000-4.000	24-30	-Alta pluviosidadConfluencia de grupos de especiesMarcados periodos climáticos húmedos y menos húmedos.	Fabaceae Enterolobium sp. Handroanthus sp
Media	Bosque húmedo tropical	0-4000	1.950-3.000	24-25	-Período seco muy variable.	Cordia alliodora Carapa guianensis Terminalia amazonia Virola koschnyi Brosimum alicastrum
Baja	Bosque húmedo	500-1000	2.000-4.000	18-24	-Abundante precitación.	Cordia Carapa.

premontano				-Período seco de	Terminalia
transición a				febrero a marzo.	
basal				-Estructura vertical	
				de 3 a 4 estratos.	
				-Muy diversos	
				-Tienen una época	Acacia collinsii
Posque				seca bien definida.	Bursera Simaruba
Bosque	0.4000	1 000 2 000	24-30	-Suelos secos por	Tabebula Ochracea
tropical	0-1000	1.000-2.000	24-30	más de 90 días.	Enterolobium
seco				-Período seco de	cyclocarpum
				6 meses.	Hymenaea courbaril
				-Periodo seco	-
Bosque				definido con	A i
húmedo				mayor	Acacia sp
tropical	0-500	2.000-4.000	24-30	precipitación.	Guazuma sp.
transición a				-Mayor presencia	Handroanthus sp
seco				de especies	Fabaceae
				perennes.	
Bosque				Dariada assa da	
húmedo				-Periodo seco de	Familias Lauraceae,
premontano	0-500	1.200-2.200	24-30	3 a 5 meses.	Sapindaceae,
transición a				-Suelos volcánicos	Myrtaceae
basal				y fértiles.	, ,

Adaptado de: (Holdridge, 1967)

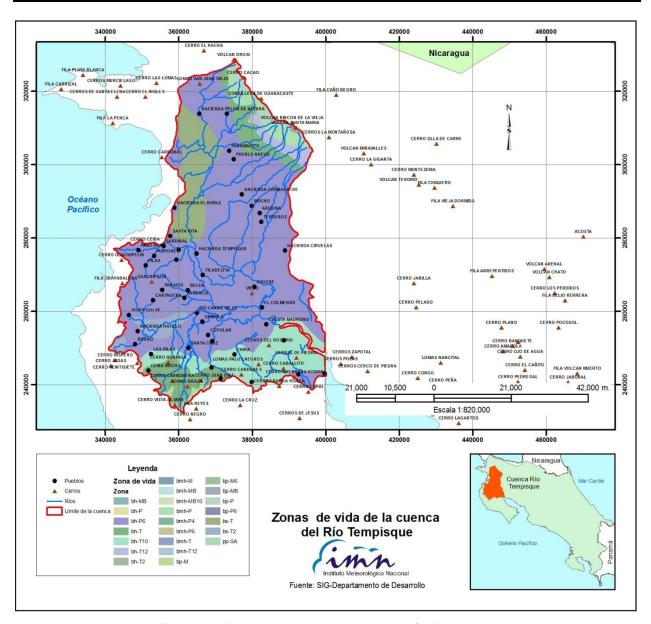


Figura 17. Zonas de vida de la cuenca del río Tempisque Tomado de: (Instituto Meteorológico Nacional, 2011)

2.2.1.1 Áreas protegidas

Dentro de la cuenta del río Tempisque convergen las áreas de conservación Tempisque ubicada en la cuenca baja, Arenal-Tempisque en la cuenca media y Guanacaste en la parte alta de la cuenca (Asamblea Legislatvia, 2016), siendo su mayor objetivo la protección y conservación de la biodiversidad y los ecosistemas naturales de la región.

Encontramos las siguientes áreas protegidas: Parque Nacional Rincón de la Vieja, Parque Nacional Guanacaste, Parque Nacional Santa Rosa, Parque Nacional Palo Verde, Parque Nacional Diría, Parque Nacional Palo Verde, Reserva Biológica Lomas de Barbudal, Refugio Nacional de Vida Silvestre Cipanci, Refugio de Vida Silvestre Hacienda El Viejo, Refugio de Vida Silvestre Mata Redonda, Zona Protectora Guanacaste, Humedal Lacustrino Río Cañas, y el Humedal Palustrino Corral de Piedra (SINAC, 2019).

Figura 18. Áreas silvestres protegidas dentro de la cuenca del río Tempisque Tomado de: (Asamblea Legislatvia, 2016)

2.2.2 Aspectos socioeconómicos

A continuación, se describen los principales aspectos socioeconómicos de la cuenca del río Tempisque.

2.2.2.1 Aspectos demográficos

La población en la cuenca del río Tempisque ha experimentado un aumento en los últimos 30 años producto del auge de las actividades turísticas y productivas en la zona.

Tabla 13. Proyección histórica de la población de la Región Pacífico Norte

Año	Cuenca Río Tempisque
1995	103.942
2000	114.867
2010	122.121
2020	124.493
2030	130.602

Adaptado de: (Instituto Meteorológico Nacional, 2011)

Según datos de la Municipalidad de Santa Cruz la población del cantón es de 45.000 habitantes (Municipalidad Santa Cruz, 2024), lo que representa el 36% de la cuenca. Con un total de 16.645 viviendas ocupadas y una densidad de población de aproximadamente 42 habitantes por kilómetro cuadrado.

2.2.2.1 Actividades socioproductivas

"La cuenca Tempisque-Bebedero es la más importante de Costa Rica a nivel agropecuario, pues aporta el 75% del agua disponible para este aspecto a nivel nacional" (Asamblea Legislatvia, 2016).

"Las principales actividades productivas y económicas de la zona corresponden al cultivo de caña de azúcar, arroz, pasto, melón y sandía, estos dos últimos para exportación" (Instituto Meteorológico Nacional, 2011), además el turismo con sus espectaculares playas y la ganadería extensiva de carne, son actividades muy importantes.

2.2.2.2 Infraestructura

De acuerdo con datos del CFIA, Guanacaste es la provincia que refleja mayor creciente en infraestructura, siendo el sector urbanístico el que aporta la mayor cantidad de metros cuadrados de construcción. "Santa Cruz encabeza la lista nacional, como el de mayor cantidad de metros cuadrados registrados, 598.400 m², con una variación de 100.5%, en el período 2022-2023" (CFIA, 2024). Lo que evidencia el significativo desarrollo en la parte baja de la cuenca del río Tempisque, ya que, en las últimas décadas, la proliferación de megaproyectos turísticos ha producido impactos en los sistemas naturales de la

región, que, junto a las inundaciones y la sequía, limitan el desarrollo productivo tradicional.

En la cuenca del río Tempisque se encuentra el Hospital Nacional La Anexión, varias clínicas regionales y EBAIS, los cuales brindan una atención en salud primaria a la población del área. También han proliferado centros médicos privados que cuentan con servicios básicos y especializados.

A nivel educativo se cuenta con centros educativos públicos y privados para todos los niveles de instrucción, siendo la mayor cantidad de tipo público y estando bajo la administración del Ministerio de Educación Pública (MEP), cabe destacar que estos centros educativos son utilizados como refugios en caso de emergencias como inundaciones.

Tabla 14. Centros educativos Dirección Regional Santa Cruz

Tipo	Público	Privado	Subvencionado
Preescolar	2	0	0
Primaria	61	5	1
Secundaria	11	6	0
Educación superior	2	2	0

Fuente: Elaboración propia a partir de datos del MEP 2025 y búsqueda web.

3. REVISIÓN DE LITERATURA

Para analizar los cambios en el comportamiento de la precipitación en la cuenca del río Tempisque y su relación con patrones climáticos históricos, es necesario entender tanto las variaciones climáticas naturales como los efectos del cambio climático inducido por el ser humano. Estos cambios se han intensificado en las últimas décadas, afectando la disponibilidad de agua y aumentando los riesgos de sequías e inundaciones.

3.1 EVENTOS PLUVIALES EXTREMOS

Los eventos pluviales extremos son precipitaciones que superan significativamente los niveles normales esperados en un área específica durante un periodo determinado. Según Carvalho (2002) un evento extremo es cuando el 20% o más de la precipitación climática total de una localidad caen en un día. Estos eventos pueden tener graves consecuencias para la infraestructura, la agricultura y la vida humana, y su frecuencia e intensidad ha aumentado en muchas regiones debido al cambio climático.

Según Haylock y Nicholls (2000), citados por (Ávila, 2012), existen tres índices de Iluvia extrema: el número de eventos por encima de un extremo umbral (frecuencia extrema); la intensidad promedio de precipitaciones de eventos extremos (extrema intensidad), y la proporción de precipitación total de eventos extremos (extrema por ciento).

Los eventos pluviales eventos pueden clasificarse según su impacto como:

- Lluvias intensas: Caída de grandes cantidades de agua en un corto periodo.
- Inundaciones: Desbordamiento de ríos o cuerpos de agua debido a lluvias excesivas. Son generadas por lluvias extremas que superan la capacidad de drenaje de una zona.

 Deslizamientos de tierra: Sucesos ocasionados por el exceso de humedad en el suelo, que puede llevar a la pérdida de estabilidad.

Otras clasificaciones se basan en su intensidad, duración, frecuencia y contexto climático, algunas de las clasificaciones más comunes son:

Por intensidad

- Lluvias Ligeras: Precipitaciones menores a 5 mm/hora.
- Lluvias Moderadas: Entre 5 y 15 mm/hora.
- Lluvias Fuertes: Entre 15 y 30 mm/hora.
- Lluvias Muy Fuertes: Más de 30 mm/hora.

Por duración

- o Eventos de Corto Plazo: Lluvias que ocurren en menos de 24 horas.
- Eventos de Largo Plazo: Lluvias que se extienden por varios días o semanas.

Por frecuencia

- Eventos Raros: Ocurren una vez cada varios años (por ejemplo, lluvia de 100 años).
- Eventos Frecuentes: Ocurren con más regularidad, como en temporadas de lluvias.

Por impacto

- Inundaciones:
- Deslizamientos de Tierra: Ocurren en áreas montañosas con suelos saturados.

Por Contexto Climático

 Eventos Asociados al Cambio Climático: Incrementos en la frecuencia e intensidad de Iluvias debido a variaciones climáticas, por ejemplo, tormentas convectivas y frentes fríos.

Estas clasificaciones ayudan en la gestión de riesgos y en la planificación para mitigar los efectos de estos eventos.

En Costa Rica, las precipitaciones extremas están influenciadas por diversas teleconexiones atmosféricas que afectan los patrones climáticos en la región. A continuación, se detallan las principales teleconexiones y su incidencia en las precipitaciones extremas en el país.

3.2 TELECONEXIONES ATMOSFÉRICAS

3.2.1 Fenómeno El Niño - Oscilación del Sur

El Niño Oscilación del Sur (ENOS) debe conceptualizarse como un fenómeno periódico y recurrente, que forma parte de la variabilidad climática, con una frecuencia de ocurrencia que va entre dos a cuatro años, además, siempre se presentará la interacción de manera dinámica entre el océano y la atmósfera. En ocasiones suceden consecutivamente las fases cálidas y frías del ENOS.

El Fenómeno El Niño es la fase cálida del ENOS se asocia con una reducción de las precipitaciones en la vertiente del Pacífico durante la temporada lluviosa (mayo-octubre). Esto se debe a un debilitamiento de los vientos alisios y a la disminución de la convergencia de humedad. (Instituto Meteorológico Nacional, 2023)

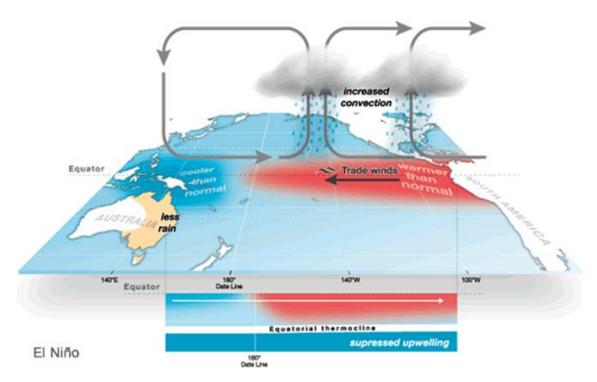


Figura 19. Condiciones atípicas de la atmósfera en el Océano Pacífico, fenómeno de El Niño.

Fuente: (Instituto Meteorológico Nacional, 2023)

Cuando la intensidad de la fase cálida del ENOS (El Niño) es fuerte, los valores acumulados de lluvia en la vertiente del Pacífico tienden a ser mucho menores que lo normal, tal y como sucedió en mayo del 2015, cuando se presentó un incremento en los vientos alisios lo que desplazó la ZCIT y retrasó el inicio de la época lluviosa en la cuenca del río Tempisque.

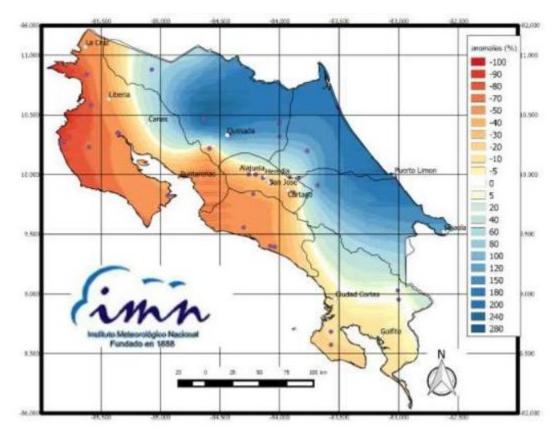


Figura 20. Anomalía de precipitaciones, Costa Rica, mayo 2015 Fuente: (Instituto Meteorológico Nacional, 2023)

El Fenómeno La Niña es la fase fría del ENOS se forma debido a que la Circulación Walker se intensifica con una mayor convección sobre el Pacífico occidental y vientos alisios más fuertes. Se relaciona con un aumento en las precipitaciones, particularmente en la vertiente del Caribe, lo que puede resultar en eventos extremos como inundaciones. (Instituto Meteorológico Nacional, 2023)

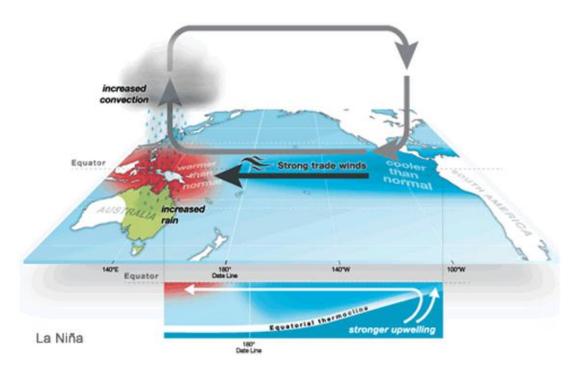


Figura 21. Condiciones atípicas de la atmósfera en el Océano Pacífico, fenómeno de La Niña.

Fuente: (Instituto Meteorológico Nacional, 2023)

3.2.2 Oscilación Madden-Julian (MJO)

La MJO es un patrón climático de oscilación intraestacional (30-60 días) que puede amplificar o disminuir la actividad convectiva en Costa Rica. Cuando la MJO se encuentra en fases que favorecen la convección en América Central (1, 2 y 8), puede intensificar las lluvias, generando eventos extremos. "Esta oscilación modula, entre otras cosas, la temporada de huracanes en la cuenca del Atlántico Norte y en otra región es según Klotzbach (2010), el fenómeno de El Niño/Oscilación del Sur (ENOS) y la actividad lluviosa convectiva en los trópicos." (Poleo, León, & Stolz, La Oscilación atmosférica Madden-Julian (MJO) y las lluvias en Costa Rica, 2014)

Barlow y Salstein (2006), mostraron como la MJO juega un papel de suma importancia en la modulación de las lluvias sobre México y América Central, observando superávits de hasta 100% ante el efecto de dicha oscilación en algunas estaciones analizadas. (Solano León, 2015)

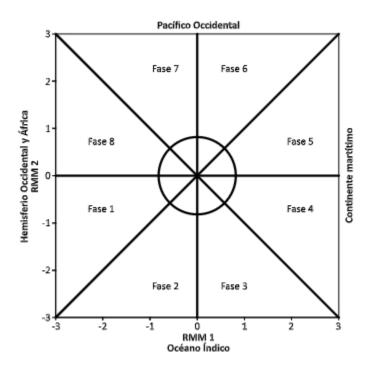


Figura 22. Diagrama de Wheeler-Hendon para localizar la oscilación de Madden-Julian según las 8 fases de la MJO.

Fuente: (Poleo, León, & Stolz, La Oscilación atmosférica Madden-Julian (MJO) y las lluvias en Costa Rica, 2014)

La detección de las señales asociadas con la MJO es de suma importancia desde el punto de vista de la predictibilidad del comportamiento de las lluvias. El aumento de las lluvias podría favorecer la generación de eventos de precipitación extremos sobre lo normal en el país. (Poleo, León, & Stolz, La Oscilación atmosférica Madden-Julian (MJO) y las lluvias en Costa Rica, 2014)

Según Poleo, León & Stolz, 2014, el aumento en las precipitaciones en la vertiente del Pacífico durante las fases 1 y 2 de la MJO, podría deberse a diversos factores entre los que se encuentran la intensificación de la ZCIT y su posicionamiento más al norte de lo habitual.

3.2.3 Oscilación Multidecadal del Atlántico (AMO)

La AMO "es un modo de variabilidad que ocurre en el océano Atlántico Norte (entre 0°N y 70°N) y que se observa en los cambios en la temperatura de la superficie del mar

(TSM), con amplitudes alrededor de 0.7°C y períodos que van de 50 a 70 años, Knight et al. (2006)." (Poleo, Impact of atmospheric oscillations of low (AMO, PDO, ENSO) and high frequency (MJO) in the rain in Mesoamerica, in the fishing of shrimp, bean and rice crops in Costa Rica., 2017)

En su fase cálida, la AMO puede incrementar la actividad ciclónica en el Atlántico, aumentando el riesgo de tormentas tropicales y huracanes que afectan las precipitaciones extremas en el Caribe costarricense. En su fase fría, se reduce esta actividad ciclónica.

Figura 23. Patrones asociados a la fase positiva de la Oscilación Multidecadal del Atlántico. Fuente: (Iza, 2020)

3.2.4 Corriente en Chorro Centroamericana (CVC)

Las corrientes en chorro son corrientes de aire que circulan rápidamente sobre la Tierra a nivel de la tropopausa, a unos 8 o 10 km por encima de la superficie terrestre; se forman cuando el aire frío y el aire caliente se encuentran. Sus vientos soplan de oeste a este a

velocidades que oscilan entre 129 y 225 kilómetros por hora, pero pueden alcanzar más de 443 kilómetros por hora. (Nunez, 2024)

La intensidad y posición de esta corriente en chorro pueden influir directamente en la distribución de las lluvias. Un fortalecimiento del CVC suele estar asociado con precipitaciones intensas en la vertiente del Pacífico.

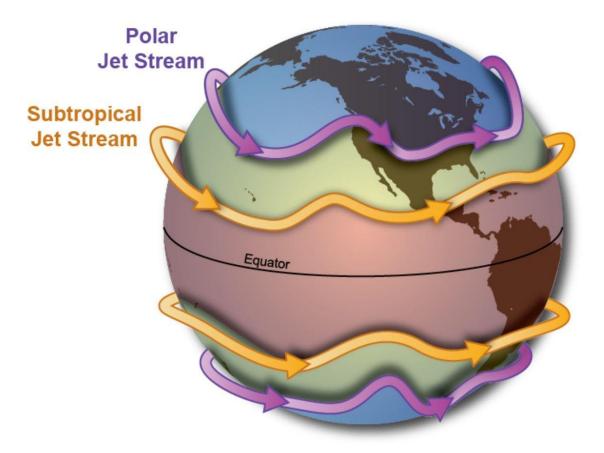


Figura 24. Corriente de chorro polar y subtropical.

Fuente: https://www.tiempo.com/noticias/ciencia/que-es-la-corriente-en-chorro-o-jet-stream.html

Se prevé un aumento potencial de fenómenos meteorológicos mortales a medida que la corriente en chorro se vea cada vez más alterada. "Un estudio de 2022 sugiere que la corriente se debilitará y se estancará a medida que el planeta se caliente, lo que permitirá que fenómenos como las lluvias extremas se "asienten" sobre una región y provoquen peligrosas inundaciones." (Nunez, 2024)

3.2.5 Oscilación ártica (OA)

La Oscilación Ártica, "es un patrón del clima que influye en el tiempo del invierno en el Hemisferio Norte. Y que particularmente logra afectar a México, América Central y El Caribe." (Juárez, 2014)

Se define por "la diferencia de presión entre el aire en las latitudes medias (alrededor 45 grados norte, sobre la latitud de Montreal, de Canadá o de Burdeos, Francia) y el aire sobre el Ártico." (AEMET, 2022)

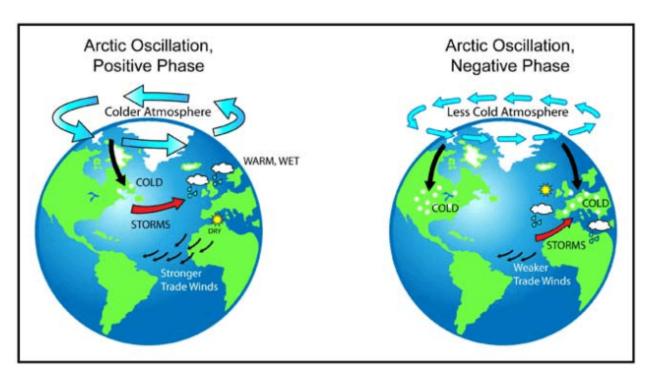


Figura 25. Fases positivas y negativas de la Oscilación Artica.

Fuente: (AEMET, 2022)

3.2.6 Zona de Convergencia Intertropical (ZCIT)

La ZCIT es una región de bajas presiones, nubes y tormentas que rodean la región tropical que se ubica alrededor del ecuador, en la cual confluyen los vientos alisios del Noreste con los vientos alisios del Sureste. (Mena, 2012)

Se caracteriza por ser una franja o cinturón de baja presión constituido por corrientes de aire ascendente, donde convergen grandes masas de aire cálido y húmedo provenientes del norte y del sur de la zona intertropical. A su vez, esta zona de convergencia intertropical, caracterizada por el ascenso de masas de aire que vienen de ambos hemisferios cuando llegan al ecuador terrestre, se van separando cuando llegan a cierta altura dando origen así a una divergencia en altura que hace regresar a la masa de aire que ascendió a su respectivo hemisferio.

Debido a la acción de los vientos alisios, la ZCIT se desplaza, produciendo estaciones secas y lluviosas en lugar de estaciones frías y cálidas. Durante los meses de abril a noviembre esta particularmente cerca al territorio nacional, generando la estación lluviosa en Costa Rica; a partir de diciembre y hasta marzo, se mueve hacia el Sur y se ubica principalmente sobre Colombia, favoreciendo que las lluvias disminuyan en Costa Rica y el resto de América Central. Su intensificación puede generar lluvias extremas en ambas vertientes.

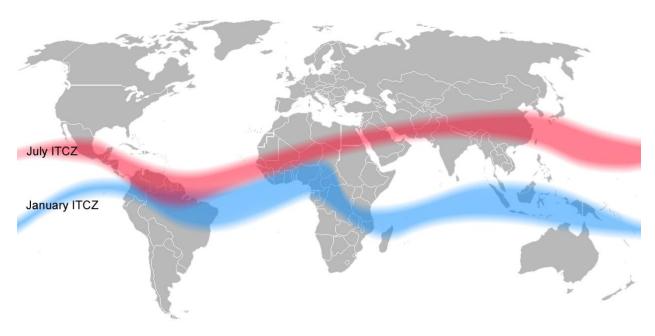


Figura 26. ZCIT en julio y (rojo) y enero (azul).

Fuente: https://es.wikipedia.org/wiki/Zona_de_convergencia_intertropical#/media/Archivo:ITCZ_january-july.png

3.3 CICLONES TROPICALES

Los ciclones tropicales son unos de los fenómenos más poderosos y destructivos en la naturaleza. Son grandes sistemas organizados de nubes y tormentas que se forman en las aguas cálidas de los trópicos, girando alrededor de un sistema de baja presión. Se forman entre los 5° y 30° grados de latitud norte típicamente se mueven hacia el oeste. Algunas veces los vientos en las capas medias y altas de la atmósfera cambian y giran el ciclón hacia el noroeste y norte. Cuando los ciclones tropicales alcanzan las latitudes cerca de 30° grados Norte, muchas veces se mueven hacia el noreste. (NOAA, 2013)

Las temporadas de huracanes para cada cuenca y sus temporadas picos son las siguientes:

- Atlántico y Caribe: del 1ero de junio hasta 30 noviembre con la temporada pico entre mediados de agosto hasta finales de octubre.
- Pacífico Central (Hawai): del 1ero de junio hasta 30 noviembre con la temporada pico desde julio hasta septiembre.
- Pacífico Este: del 15 mayo hasta 30 noviembre.
- Pacífico Noroeste: pueden formarse durante todo el año.

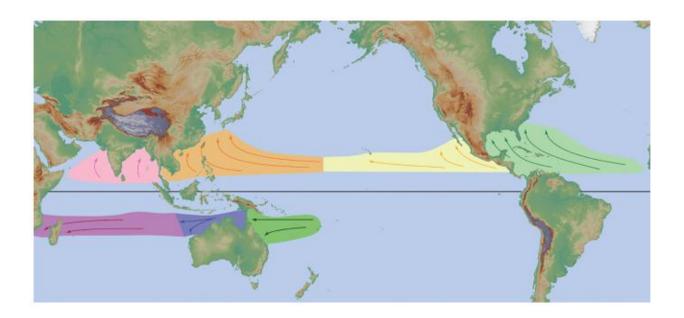


Figura 27. Regiones de formación de ciclones tropicales.

Fuente: (NOAA, 2013)

Actualmente, los ciclones tropicales se clasifican según la intensidad del viento, sin embargo, dada la intensidad de los más recientes eventos, se ha propuesto una clasificación a partir de la presión atmosférica.

Tabla 15. Clasificación de los ciclones tropicales según escala de Saffir-Simpson

Tipo		Velocidad (km/h)	Presión central (hPa)	Daños potenciales
Depresión tropical		0-62	>980	-Lluvias que pueden llegar a causar graves daños e incluso inundaciones.
Tormenta tropical		63–118	>980	-Lluvias abundantes que pueden provocar inundaciones devastadorasVientos fuertes que pueden generar tornados.
Huracán	Categoría 1	119–153	980–994	-Sin daños en las estructuras de los edificiosDaños básicamente en casas flotantes no amarradas, arbustos y árbolesInundaciones en zonas costeras y daños de poco alcance en puertos.
	Categoría 2	154–177	965–979	-Daños en tejados, puertas y ventanas. Importantes daños en la vegetación, casas móviles, etcInundaciones en puertos, así como ruptura de pequeños amarres.
Huracán intenso	Categoría 3	178–209	945–964	-Daños estructurales en edificios pequeñosDestrucción de casas móvilesDestrucción de edificaciones pequeñas en zonas costeras y objetos a la deriva pueden causar daños en edificios mayoresPosibilidad de inundaciones tierra adentro.
	Categoría 4	210–250	920–944	-Daños generalizados en estructuras protectoras, desplome de tejados en edificios pequeños. -Alta erosión de bancales y playas. -Inundaciones en terrenos interiores.
	Categoría 5	>251-400	<920	-Destrucción de tejados completa en algunos edificios. -Inundaciones pueden llegar a las plantas bajas de los edificios cercanos a la costa. -Puede ser requerida la evacuación masiva de áreas residenciales. -Los vientos de 300 km/h pueden arrancar árboles y hasta casas de sus cimientos, huracán muy poderoso.

Fuente: Elaboración propia a partir de datos del IMN y NOAA.

Los huracanes son los fenómenos atmosféricos que más daño causan a Costa Rica, ya sea por medio de inundaciones severas, derrumbes o deslizamientos.

4. MÉTODOS

Este trabajo presenta dos abordajes paralelos y complementarios, uno de naturaleza climatológica que analiza las precipitaciones en la cuenca del río Tempisque en su temporalidad y espacialidad, analizando estadísticamente datos pluviométricos de cuatro estaciones meteorológicas a través del análisis climático y las teleconexiones atmosféricas que acrecientan los eventos pluviales extremos.

Por otra parte, se investigaron los impactos asociados a los eventos pluviales extremos, a través del análisis de bases de datos internaciones, informes del MIDEPLAN y la CNE, y boletines del IMN.

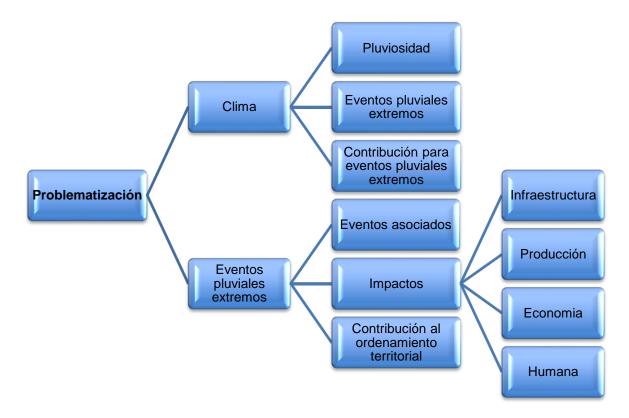


Figura 28. Esquema de investigación

A continuación, se detalla la metodología seguida para el desarrollo de esta investigación.

4.1 OBTENCIÓN DE DATOS METEOROLÓGICOS

La cuenca del río Tempisque cuenta con dieciséis estaciones meteorológicas operadas por el IMN quien es responsable de la instalación y mantenimiento de estas. Los datos recopilados fueron solicitados al Departamento de Información de dicha institución y pasaron por un proceso de validación y control de calidad por parte de profesionales en estadística y meteorología del Departamento de Red y Procesamiento de Datos según los estándares de la OMM.

4.1.1 Descripción de las estaciones meteorológicas

La cuenca del río Tempisque cuenta con una densa red de estaciones meteorológicas, la mayoría de las cuales son manejadas por el IMN, sin embargo, debido al poco tiempo de instalación, no pudieron ser consideradas para este estudio, por lo que fueron seleccionadas cuatro estaciones meteorológicas, dos mecánicas y dos automáticas, las cuales presentaban datos horarios para el periodo de interés, permitiendo trabajar con 15 años de registros de precipitación que fueron analizados con los programas Excel e InfoStat en intervalos mensuales y anuales, en el caso de valores faltantes estos fueron estimados promediando el valor anterior y posterior lo que permitió completar todos los datos.

A continuación, se describen el total de las estaciones meteorológicas de la cuenca del río Tempisque, se destacan las utilizadas para la presente investigación.

Tabla 16. Listado de estaciones meteorológicas en la cuenca del río Tempisque

Número	Nombre		enadas	Altitud	Fecha	Modelo
74000	Dalán da la Dairre		Longitud Oeste		instalación	DV.
74008	Pelón de la Bajura	10° 29' 8"	85° 24' 42"	40	01/06/1968	PV
74037	Finca Las Huacas	10° 34' 39"	85° 23' 83"	140	10/09/1986	PV
74051	Aerop. Internacional Daniel Oduber Oeste 07	10°35'20,4"	85°33'7,7"	70	04/11/1998	CR1000
74053	UCR, Santa Cruz	10°17'7"	85°35'30"	40	09/03/1995	CR800
74059	Aerop. Internacional Daniel Oduber Este 25	10°35'36,1"	85°32'16,4"	94	02/11/2013	CR800
74061	El Corral, Palo Verde Cc	10°20'51"	85°21'4"	10	01/03/2012	CR1000
74063	Mangarica, Llano La Cruz, Liberia	10°36'20,7"	85°27'9"	135	07/03/2012	CR800
74067	Miel, La Guinea	10°25'9,8"	85°28'24,37"	87	04/04/2013	CR800
74069	El Corral, Palo Verde Cc. Respaldo	10°20'51"	85°21'4"	10	01/03/2012	CR1000
74071	Estación Biológica Maritza, Volcán Orosi	10°57'32,03"	85°29'44,99"	555	29/06/2016	CR800
74073	Cerro Huacalito, Carrillo Guanacaste	10°23'35,8"	85°24'46"	63	18/05/2017	CR800
74075	Sitio La Cruz, Bagaces Guanacaste	10°28'59,3"	85°24'51,9"	19	27/07/2017	CR800
74077	Puesto Negritos Parque Nacional Palo Verde, Guanacaste	10°23'42,2"	85°19'28,4"	15	18/05/2017	CR800
74081	Asada Artola Sardinal	10°30'24,36"	85°41'45,72"	65	21/04/2017	CR800
74083	Finca Las Huacas, Liberia Guanacaste	10°34'29,6"	85°23'48,4"	128	27/09/2017	CR3000

Las estaciones meteorológicas 74008 y 74037 consisten en un pluviómetro que registra la precipitación manualmente a través de la toma de datos dos veces al día, normalmente a las 6am y las 6pm. Dichas estaciones se encuentran colocadas en fincas arroceras.

La estación meteorológica 74051 es de tipo CR1000 y consiste en un *data logger* de la Marca Campbell Scientific, al cual son conectados una serie de sensores para la medición de diversas variables meteorológicas (Campbell Scientific, 2024), permitiendo obtener datos de precipitación, temperatura, humedad, presión atmosférica, radiación solar y viento, con gran fiabilidad de acuerdo con los estándares de la Organización Meteorológica Mundial (OMM), y dado que está en un aeropuerto, con los criterios de la Organización Internacional de Aviación Civil (OACI).

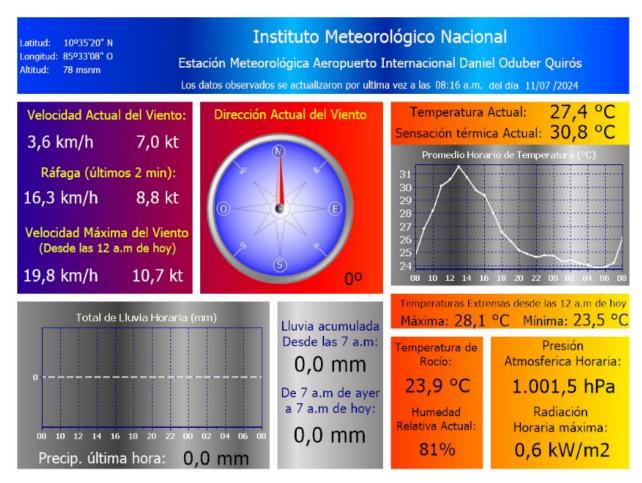


Figura 29. Visualización de datos de la estación meteorológica 74051.

La estación meteorológica 74053 es de tipo CR800 y consiste en un *data logger* un poco más pequeño, al cual es posible conectar una serie de sensores para la medición de diversas variables meteorológicas.

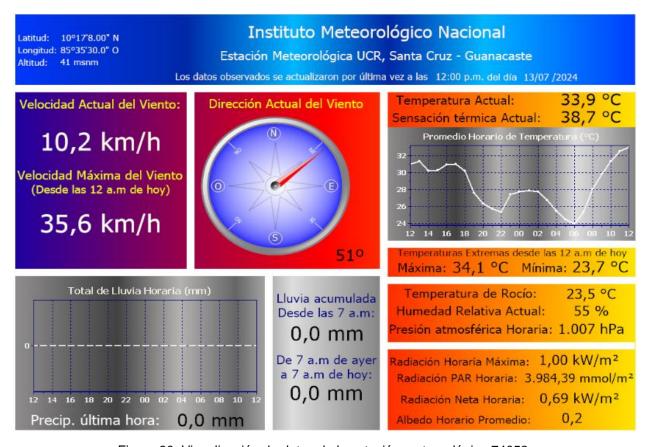


Figura 30. Visualización de datos de la estación meteorológica 74053.

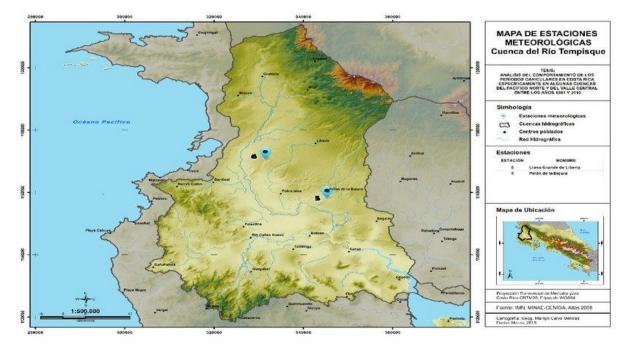


Figura 31. Ubicación de las estaciones meteorologías seleccionadas para el estudio

La primera etapa del análisis de datos inició con la definición del total de lluvia para cada año del periodo de estudio; este valor fue obtenido a través de la sumatoria de los valores mensuales.

Los datos de precipitación obtenidos de las estaciones meteorológicas fueron tabulados y analizados estadísticamente utilizando el software InfoStat versión 2008, obteniendo las medidas de resumen, según (Balzarini, y otros, 2008) se definen como:

- número de observaciones (n): corresponde al número de casos activos,
- media: se refiere a la media aritmética,
- desviación estándar (D.E.): permite cuantificar la dispersión de un conjunto de datos numéricos, corresponde a la raíz cuadrada de la varianza muestral;
- varianza (Var(n)): es la medida de dispersión, corresponde al cuadrado de la desviación estándar;
- error estándar: corresponde al desvío estándar dividido por la raíz de n,
- valor mínimo: corresponde al menor valor registrado, y
- valor máximo: corresponde al mayor valor registrado.

4.2 DEFINICIÓN DE AÑOS PADRÓN HABITUALES Y EXTREMOS

Para la segunda etapa del análisis, se aplicaron las medias estadísticas para un período de 15 años lo que permitió determinar el comportamiento climático mensual y anual de las lluvias para la cuenca. Los resultados de estos análisis permitieron establecer los períodos de comportamiento de las estaciones secas y lluviosas para la región, que fueron tomados como referencia para análisis temporales.

La identificación y selección de los años patrón habituales y extremos (secos y lluviosos) para el comportamiento de la lluvia en la cuenca del río Tempisque se realizó a través de la metodología propuesta por Monteiro y se basó en el cálculo del coeficiente de variación anual de pluviosidad (CVa), el cual es calculado a partir de la diferencia entre

el total de precipitación anual (Pa) y el total anual medio (Pm), transformado en porcentaje mediante la ecuación:

$$CVa = \frac{(Pa - Pm)}{Pm} *100$$

De acuerdo con lo propuesto por Monteiro la definición de años normales y extremos secos y lluviosos es la siguiente:

- año normal (N) representa un coeficiente de variación de pluviosidad entre -15%
 y +15%,
- año normal con tendencia seco (NS) representa un coeficiente de variación entre
 -30% y -15%,
- año normal con tendencia lluvioso (NC) representa un coeficiente de variación entre +15 y +30%,
- año seco (S) representa un coeficiente de variación igual o superior a -30%, y
- año lluvioso (C) representa desvíos iguales o mayores a +30%.

4.3 ESTUDIO DE VARIABILIDAD DE TENDENCIA

El análisis temporal de los datos incluye la representación en gráficos lineales de los totales de lluvia anuales y temporales para el período 2005 a 2020. El grado de variabilidad de los datos a lo largo del tiempo es dado a partir del cálculo del desvío padrón y del coeficiente de variación en porcentaje para este período. Cuanto mayor es la dispersión de los datos en su conjunto más amplio es su desvío padrón o coeficiente de variación (Rodrigues, 2015).

También han sido incluidos gráficos de tendencia lineal simple con sus respectivas ecuaciones y coeficientes de determinación según lo descrito por Viera, 2012.

$$Y = a + bX$$

Donde Y es la variable dependiente, a es el coeficiente lineal, b es el coeficiente angular, y X la variable independiente.

El coeficiente de determinación (r²) muestra la relación lineal entre la variable lluvia y el tiempo lo cual permite observar la tendencia de su comportamiento a lo largo de la serie. Este coeficiente varía entre 0 y 1 y es interpretado como una proporción de variación de una variable qué explica la variación de otra variable (Viera, 2012 en (Rodrigues, 2015). Entre más próximo sea el valor a 1 más perfecta la relación.

4.4 ANÁLISIS DE TELECONEXIONES ATMOSFÉRICAS

Se utilizaron los datos de índices de fenómenos sinópticos de mesoescala, entre estos la NAO, el ENOS, la ZCIT, la OA y la MJO, para identificar la influencia de las teleconexiones sobre el comportamiento de las lluvias en Costa Rica para el periodo 2005 a 2020; estos datos fueron obtenidos de los reportes meteorológicos del IMN y del sitio web Earth System Research Laboratory (ESRL) del National Oceanic and Atmospheric Administration (NOAA), los mismos fueron tabulados en Excel y recibieron un análisis estadístico.

4.5 ANÁLISIS DE EVENTOS PLUVIALES EXTREMOS

Se analizó la base de datos Emergency Events Database (EM-DAT) del Centre for Research on the Epidemiology of Disasters (CRED), de la University of Louvain (UCLouvain) (disponible en https://www.emdat.be/), informes del MIDEPLAN y la CNE, y boletines del IMN, así como reportes realizados al sistema de emergencias 911 y noticias publicadas en medios de comunicación como "La voz de Guanacaste" (disponible en https://vozdeguanacaste.com/) y "La Nación", lo que permitió identificar las principales vulnerabilidades de Santa Cruz frente a eventos hidrometeorológicos extremos.

5. RESULTADOS

5.1 CARACTERIZACIÓN DE LOS DATOS METEROLOGICOS SELECCIONADOS

A continuación, se presentan los datos de precipitación para cada una de las estaciones meteorológicas seleccionadas, también se presentan las variables estadísticas de estos datos.

En la Figura 32 se puede observar el comportamiento de la precipitación de la estación 74008, la misma muestra cuatro picos de lluvias en los años 2007, 2008, 2010 y 2020, siento mayo, setiembre y octubre los meses más lluviosos.

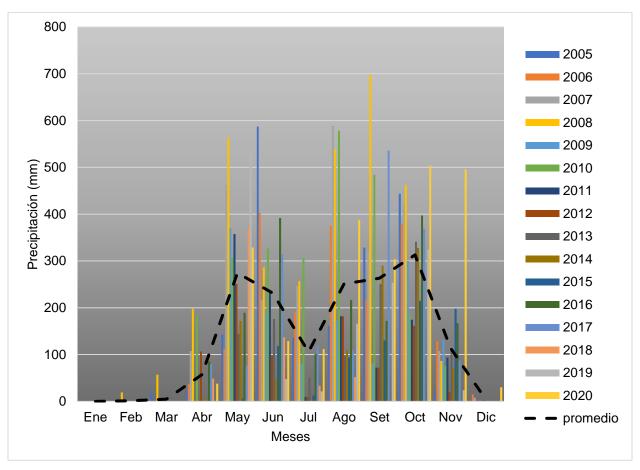


Figura 32. Precipitación mensual por año. Estación 74008, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024.

Tabla 17. Resumen de variables estadísticas de precipitación anual. Estación 74008, 2005-2020

Año	Variable	n	Media	D.E.	Var(n-1)	Var(n)	E.E.	CV	Mín	Máx	Suma
2005	mm	12	155,58	196,74	38.704,72	35.479,32	56,79	126,45	0,00	587,30	1.867,00
2006	mm	12	154,82	157,64	24.851,87	22.780,88	45,51	101,83	0,00	402,25	1.857,80
2007	mm	12	206,86	204,48	41.813,12	38.328,69	59,03	98,85	0,00	589,10	2.482,30
2008	mm	12	264,08	247,34	61.179,42	56.081,13	71,40	93,66	0,00	698,70	3.169,00
2009	mm	12	110,52	126,64	16.036,74	14.700,34	36,56	114,59	0,00	370,00	1.326,20
2010	mm	12	203,90	199,55	39.819,89	36.501,56	57,60	97,87	0,00	578,00	2.446,75
2011	mm	12	93,50	118,33	14.002,37	12.835,50	34,16	126,56	0,00	357,50	1.121,98
2012	mm	12	75,36	85,80	7.362,20	6.748,69	24,77	113,86	0,00	251,40	904,30
2013	mm	12	97,69	113,27	12.830,04	11.760,87	32,70	115,95	0,00	341,20	1.172,30
2014	mm	12	85,70	117,79	13.874,06	12.717,89	34,00	137,44	0,00	328,00	1.028,40
2015	mm	12	64,48	82,83	6.861,62	6.289,82	23,91	128,48	0,00	215,10	773,70
2016	mm	12	143,41	142,17	20.211,94	18.527,61	41,04	99,14	0,00	397,30	1.720,90
2017	mm	12	140,97	173,21	30.001,85	27.501,69	50,00	122,87	0,00	536,20	1.691,60
2018	mm	12	53,53	107,93	11.647,86	10.677,21	31,16	201,60	0,00	370,80	642,40

2019	mm	12	114,58	173,66	30.159,35	27.646,07	50,13	151,56	0,00	537,40	1.375,00
2020	mm	12	194,07	197,76	39.108,83	35.849,76	57,09	101,90	0,00	503,70	2.328,80

En la Figura 33 se puede observar el comportamiento de la precipitación de la estación 74037, la misma muestra tres picos de lluvias en los años 2008, 2010, 2016 y 2017, siento agosto, setiembre y octubre los meses más lluviosos.

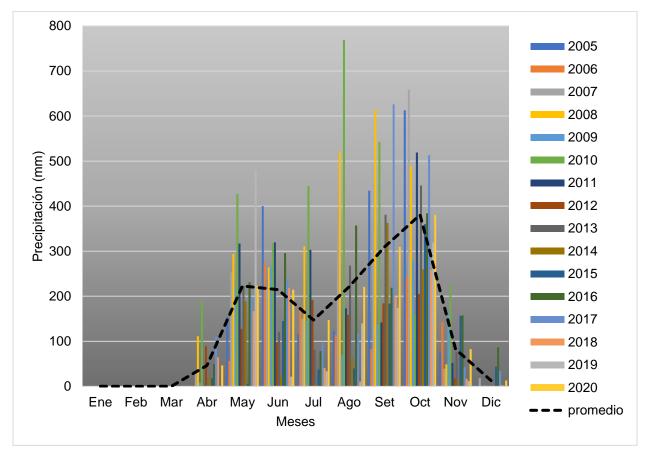


Figura 33. Precipitación mensual por año. Estación 74037, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024.

Tabla 18. Resumen de variables estadísticas de precipitación anual. Estación 74037, 2005-2020

Año	Variable	n	Media	D.E.	Var(n-1)	Var(n)	E.E.	CV	Mín	Máx	Suma
2005	mm	12	160,42	207,54	43.072,69	39.483,30	59,91	129,38	0,00	613,00	1.925,00
2006	mm	12	90,88	100,00	9.999,35	9.166,07	28,87	110,04	0,00	274,00	1.090,50
2007	mm	12	176,24	208,27	43.375,52	39.760,90	60,12	118,17	0,00	658,60	2.114,90
2008	mm	12	221,20	227,43	51.725,94	47.415,44	65,65	102,82	0,00	614,70	2.654,40
2009	mm	12	107,25	108,50	11.772,79	10.791,73	31,32	101,17	0,00	278,70	1.287,00

2040		40	050.40	250.02	60.044.60	F7 F00 00	70.05	07.74	0.00	700.00	2.077.00
2010	mm	12	256,42	250,63	62.814,63	57.580,08	72,35	97,74	0,00	769,00	3.077,00
2011	mm	12	152,17	175,55	30.818,15	28.249,97	50,68	115,37	0,00	519,00	1.826,00
2012	mm	12	89,42	83,26	6.932,45	6.354,74	24,04	93,12	0,00	205,00	1.073,00
2013	mm	12	133,00	159,64	25.485,45	23.361,67	46,08	120,03	0,00	446,00	1.596,00
2014	mm	12	78,08	123,18	15.172,81	13.908,41	35,56	157,75	0,00	363,00	937,00
2015	mm	12	82,40	109,77	12.049,75	11.045,61	31,69	133,22	0,00	359,90	988,80
2016	mm	12	155,13	140,22	19.661,87	18.023,39	40,48	90,39	0,00	384,10	1.861,50
2017	mm	12	164,78	205,31	42.150,88	38.638,31	59,27	124,59	0,00	626,00	1.977,40
2018	mm	12	81,77	99,25	9.850,49	9.029,61	28,65	121,38	0,00	258,70	981,20
2019	mm	12	98,38	155,68	24.235,90	22.216,24	44,94	158,24	0,00	478,20	1.180,60
2020	mm	12	136,50	132,26	17.491,88	16.034,22	38,18	96,89	0,00	380,64	1.638,02

En la Figura 34 se puede observar el comportamiento de la precipitación de la estación 74051, la misma muestra tres picos de lluvias en los años 2005, 2008, 2017 y 2020, siento agosto, setiembre y octubre los meses más lluviosos.

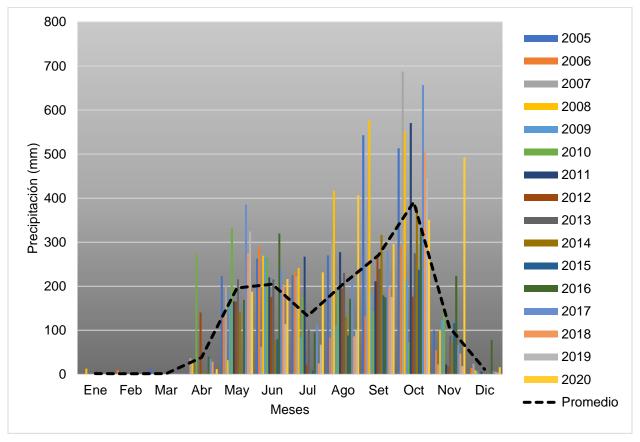


Figura 34. Precipitación mensual por año. Estación 74051, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024.

Tabla 19. Resumen de variables estadísticas de precipitación anual. Estación 74051, 2005-2020

Año	Variable	n	Media	D.E.	Var(n-1)	Var(n)	E.E.	CV	Mín	Máx	Suma
2005	mm	12	179,78	196,12	38.463,47	35.258,18	56,62	109,09	0,00	542,90	2.157,30
2006	mm	12	103,44	112,92	12.750,92	11.688,34	32,60	109,16	0,00	291,20	1.241,30
2007	mm	12	163,60	213,27	45.484,49	41.694,11	61,57	130,36	0,00	687,60	1.963,20
2008	mm	12	187,80	220,05	48.420,76	44.385,70	63,52	117,17	1,90	577,30	2.253,60
2009	mm	12	98,61	97,27	9.461,53	8.673,07	28,08	98,64	0,20	266,20	1.183,30
2010	mm	12	133,71	118,98	14.155,38	12.975,77	34,35	88,98	0,00	331,90	1.604,50
2011	mm	12	145,32	176,23	31.058,36	28.470,16	50,87	121,28	0,00	570,60	1.743,80
2012	mm	12	96,67	98,51	9.703,38	8.894,77	28,44	101,90	0,00	266,60	1.160,00
2013	mm	12	114,53	112,64	12.688,50	11.631,12	32,52	98,36	0,00	275,00	1.374,30
2014	mm	12	94,24	130,08	16.920,33	15.510,31	37,55	138,03	0,00	379,70	1.130,90
2015	mm	12	59,58	81,84	6.698,39	6.140,19	23,63	137,38	0,00	237,50	714,90
2016	mm	12	133,73	117,62	13.833,58	12.680,79	33,95	87,95	0,00	330,60	1.604,70
2017	mm	12	167,33	201,63	40.655,93	37.267,94	58,21	120,50	0,00	656,80	2.007,90
2018	mm	12	114,58	154,60	23.900,09	21.908,42	44,63	134,92	0,00	502,60	1.375,00
2019	mm	12	104,50	145,27	21.103,84	19.345,19	41,94	139,02	0,00	445,80	1.254,00
2020	mm	12	184,63	177,31	31.439,85	28.819,87	51,19	96,04	0,00	492,60	2.215,60

En la Figura 35 se puede observar el comportamiento de la precipitación de la estación 74053, la misma muestra tres picos de lluvias en los años 2005, 2007, 2008, 2010, 2017 y 2020, siento mayo, setiembre y octubre los meses más lluviosos.

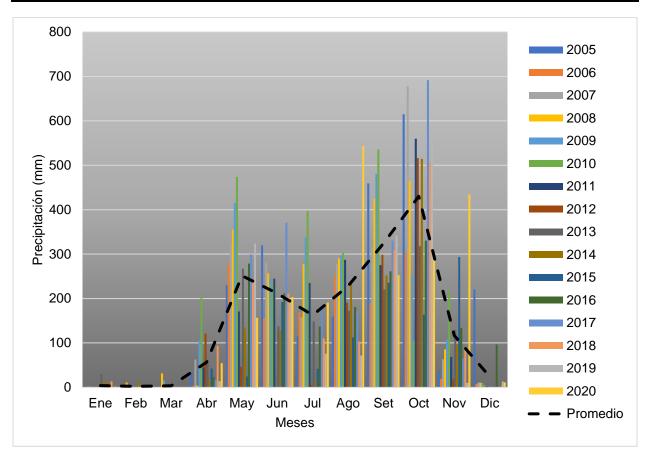


Figura 35. Precipitación mensual por año. Estación 74053, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024.

Tabla 20. Resumen de variables estadísticas de precipitación anual. Estación 74053, 2005-2020

Año	Variable	n	Media	D.E.	Var(n-1)	Var(n)	E.E.	CV	Mín	Máx	Suma
2005	mm	12	182,60	198,58	39.435,15	36.148,89	57,33	108,75	0,00	614,80	2.191,20
2006	mm	12	115,75	121,54	14.772,56	13.541,51	35,09	105,01	1,10	303,90	1.388,95
2007	mm	12	181,25	204,38	41.772,26	38.291,24	59,00	112,76	0,20	677,70	2.175,00
2008	mm	12	184,45	178,61	31.900,39	29.242,02	51,56	96,83	0,10	465,05	2.213,45
2009	mm	12	189,24	170,99	29.237,60	26.801,14	49,36	90,36	0,10	480,38	2.270,85
2010	mm	12	206,49	191,85	36.806,27	33.739,08	55,38	92,91	0,00	535,70	2.477,90
2011	mm	12	157,49	171,78	29.507,30	27.048,36	49,59	109,07	0,00	559,80	1.889,90
2012	mm	12	99,65	162,28	26.335,30	24.140,69	46,85	162,85	0,00	516,00	1.195,80
2013	mm	12	124,21	107,75	11.610,10	10.642,59	31,10	86,75	0,00	317,80	1.490,50
2014	mm	12	118,28	153,51	23.566,18	21.602,33	44,32	129,79	0,20	514,20	1.419,30
2015	mm	12	92,20	104,54	10.928,55	10.017,84	30,18	113,38	0,00	293,70	1.106,40
2016	mm	12	137,84	117,12	13.716,73	12.573,67	33,81	84,97	0,00	330,20	1.654,10
2017	mm	12	177,93	214,07	45.826,09	42.007,25	61,80	120,31	0,00	691,70	2.135,10
2018	mm	12	139,68	153,45	23.545,66	21.583,52	44,30	109,85	0,10	505,70	1.676,20
2019	mm	12	133,98	184,19	33.925,88	31.098,72	53,17	137,48	0,00	564,30	1.607,70

2020	mm	12	179,18	180,40	32.543,68	29.831,70	52,08	100,68	0,00	543,40	2.150,20
	E contra Elaboratión a contra a contra la latina del IMAN 0004										

Los análisis climatológicos de precipitación para la cuenca del río Tempisque para el periodo 2005-2020 indican un acumulado promedio anual de 1.607 mm el cual se concentra en los meses mayo y junio, con una leve disminución en julio que coincide con el periodo canicular, aumentando en agosto, setiembre y octubre, coincidiendo con la estación lluviosa para el Pacífico de Costa Rica, mientras que los meses diciembre, enero, febrero y marzo evidencian una estación seca bien definida. En la Figura 36 se muestra la precipitación mensual promedio para la cuenca del río Tempisque en el periodo 2005-2020.

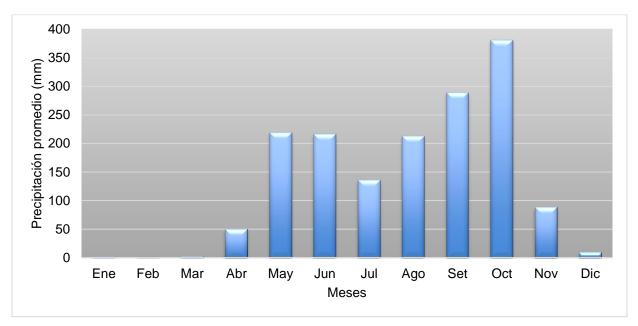


Figura 36. Climograma de la precipitación en la cuenca del río Tempisque, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024.

5.2 AÑOS PADRÓN HABITUALES Y EXTREMOS

Para el periodo de estudio se determinó que la media anual de la precipitación en la cuenca del río Tempisque es de 1680,4 mm, aplicando la metodología propuesta por

Monteiro, se estableció que los años normales tienen una precipitación promedio anual entre 1.647 mm y 1775 mm, mientras que los años secos oscilan entre 885 mm y 1.039 mm, con tendencia seca entre 1.128 mm y 1.408 mm, los años con tendencia lluviosa varían entre 1.960 mm y 1.988 mm, y los años lluviosos entre 2.194 mm y 2.522 mm.

Tabla 21. Años padrón habituales y extremos, cuenca del río Tempisque, 2005-2020

Año	Total anual (mm)	Desviación estándar	Coeficiente varianza	Tipo de año
2005	1.988,56	192,61	23,70	Tendencia Iluviosa
2006	1.296,73	106,33	-19,34	Tendencia seca
2007	2.194,24	204,14	36,49	Lluvioso
2008	2.522,03	203,02	56,89	Lluvioso
2009	1.164,89	103,94	-27,54	Tendencia seca
2010	2.476,19	181,15	54,03	Lluvioso
2011	1.775,43	158,48	10,44	Normal
2012	1.039,18	95,00	-35,36	Seco
2013	1.408,28	119,21	-12,40	Tendencia seca
2014	1.128,90	126,72	-29,78	Tendencia seca
2015	885,24	90,34	-44,93	Seco
2016	1.710,30	123,93	6,39	Normal
2017	1.960,94	186,22	21,98	Tendencia Iluviosa
2018	1.168,70	111,19	-27,30	Tendencia seca
2019	1.354,01	157,59	-15,77	Tendencia seca
2020	1.647,42	129,98	2,48	Normal
Media anual		1.6	680,4 mm	

Fuente: Elaboración propia a partir de datos del IMN, 2024

En la tabla anterior se observa que no hay una regularidad entre años normales y años lluviosos o secos, sino que varían dependiendo de fenómenos locales y de mesoescala como se evidenciará más adelante con el análisis de las teleconexiones.

En la siguiente figura, se muestra la tendencia mensual de precipitación a lo largo de la cuenca, coincidiendo con la estacionalidad típica del Pacífico Norte de Costa Rica, con dos periodos de lluvias iniciando en abril y disminuyendo en junio, y otro de julio a finales de octubre, época de mayor afectación por eventos pluviales extremos. Se observa una disminución significativa de las precipitaciones en mayo 2009 y 2015, lo que obedece a un inicio tardío de la estación lluviosa debido a la influencia del ENOS.

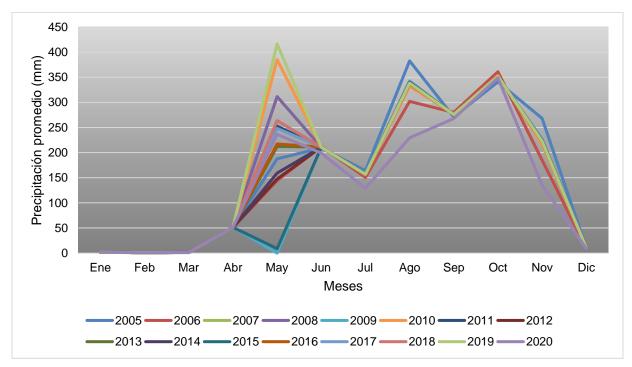


Figura 37. Precipitación promedio anual, cuenca del río Tempisque, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024

5.3 VARIABILIDAD DE TENDENCIA

El análisis del comportamiento temporal de la precipitación en la cuenca del río Tempisque para el periodo 2005-2020 evidencia un patrón irregular, con alternancias anuales y bianuales en función de eventos de mesoescala climática. Los datos obtenidos muestran que los años 2006, 2012, 2013, 2014, 2015, 2018 y 2019 fueron particularmente secos, estando por debajo de dicha media; mientras que el 2005, 2007, 2008, 2010, 2017 y 2020 fueron años con registros por encima de la media de precipitación; dichos datos coinciden con lo mostrado en la Tabla 21 que muestra los años patrón, y los extremos secos y lluviosos.

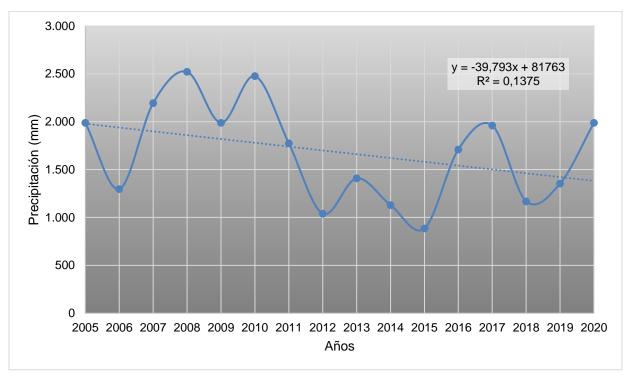


Figura 38. Variabilidad interanual de la precipitación, cuenca del río Tempisque, 2005-2020 Fuente: Elaboración propia a partir de datos del IMN, 2024

En el grafico anterior se puede observar que no hay una correlación directa entre la variable lluvia y el tiempo (años) con respecto a los datos, ya que se presentan eventos extremos tanto secos (2006, 2012, 2014 y 2015) como húmedos (2008 y 2010) sin seguir un patrón, siendo la correlación de datos muy baja debido a que el coeficiente de determinación (r^2) es inferior a 1, donde $r^2 = 0,1375$.

5.4 TELECONEXIONES ATMOSFÉRICAS

Las teleconexiones interactúan de manera compleja y su impacto puede variar dependiendo de las condiciones climáticas globales y locales. Los sistemas meteorológicos asociados a estos patrones también están influenciados por el cambio climático, lo que podría amplificar la frecuencia e intensidad de los eventos de precipitación extrema en el futuro.

5.5 ANÁLISIS DE EVENTOS PLUVIALES EXTREMOS

En la cuenca del Atlántico entre el 2005 y el 2020 se registraron 386 ciclones tropicales, de los cuales 263 alcanzaron la categoría de tormentas tropicales y subtropicales, 123 de huracanes (categorías 1,2 3, 4 y 5 en la escala Saffir-Simpson) y 54 de huracanes mayores (categorías 3, 4 y 5 en la escala Saffir-Simpson). En la Figura 39 se detalla el total de eventos por año y por tipo.

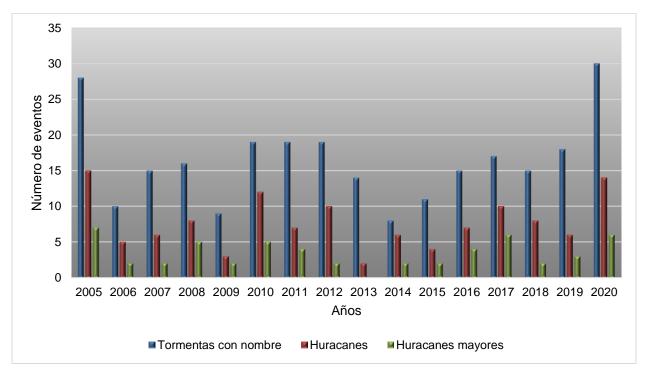


Figura 39. Ciclones tropicales desarrollados en la Cuenca Atlántica, 2005-2020 Adaptado de: https://www.aoml.noaa.gov/es/hrd-faq/#atlantic-tcs-by-year-satellite

Para Costa Rica durante el periodo de estudio se registraron un total de 31 ciclones tropicales, de los cuales 20 alcanzaron la categoría de huracanes, nueve de tormentas tropicales y dos de depresiones tropicales. Ver Figura 40

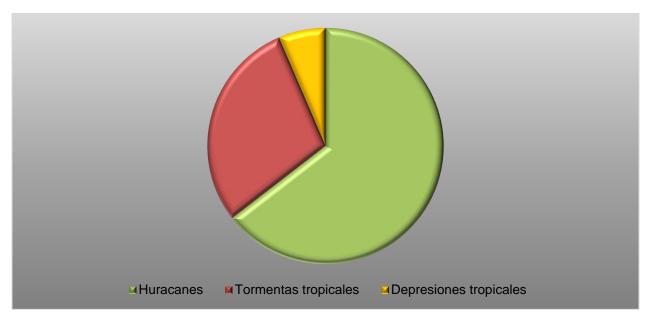


Figura 40. Clasificación de los ciclones tropicales registrados en Costa Rica, 2005-2020 Adaptado de: IMN, 2024

5.5.1 Eventos pluviales extremos: eventos asociados e impacto

A continuación, se detallan los ciclones tropicales que afectaron Costa Rica entre el 2005 y el 2020, así como los eventos asociados a cada uno y el impacto en infraestructura, actividades productivas, pérdidas económicas y afectación humana. Ver Tabla 22, se resaltan los ciclones tropicales que afectaron la cuenca del río Tempisque.

Tabla 22. Principales impactos de los eventos pluviales extremos por ciclones tropicales, Costa Rica, 2005-2020²

				Eventos asociados		Impactos				
Año	Fecha	Ciclón tropical	Precipitaciones	Inundaciones	Deslizamientos	En infraestructura	En actividades productivas	Económicos (USA \$)	Humanos	
	15 al 17 Julio	Huracán Emily	-Lluvias en el Valle Central -Lluvias ligeras a moderadas en algunas regiones del Caribe y la Zona Norte	No se reportaron	No se reportaron	No se reportaron	No se reportaron	No se reportaron	No se reportaron	
	8 julio	Huracán Denis	-Lluvias en el Valle Central -Lluvias ligeras a moderadas en algunas regiones del Caribe y la Zona Norte	No se reportaron	No se reportaron	No se reportaron	-Afectación temporal de actividades pesqueras	No se reportaron	No se reportaron	
	1 al 3 octubre	Huracán Stan	Severos aguaceros en Sarchí e Ingenio Taboga el 2 de octubre	No se reportaron	No se reportaron	No se reportaron	No se reportaron	Daños estimados \$20 millones	-1 persona fallecida	
2005	14 al 25 octubre	Huracán Wilma	-Severos aguaceros el 21 en San Ramón y el 19 en Sarchí -Lluvias torrenciales en el Pacífico Norte (Guanacaste), el Pacífico Central y la Zona Norte	-Desbordamiento de los ríos Tempisque y Bebedero, y en la Zona Norte	-Deslizamientos en el Valle Central y Zona Norte	Carreteras, puentes y caminos rurales sufrieron daños debido a la acumulación de agua y derrumbes	-Pérdida de cultivos de arroz y caña de azúcar	Daños estimados \$108 millones	-Evacuación de familias en zonas afectadas	
	26 al 31 de octubre	Huracán Beta	-Lluvias torrenciales en el Caribe costarricense y la Zona Norte -Lluvias en el Pacífico y Valle Central -Precipitaciones máximas de 500 mm en 24h	-Inundaciones en el Caribe y en la Zona Norte	-Deslizamientos en Turrialba y Cordillera de Talamanca	-Afectación de vías rurales y carreteras -Afectación de viviendas	-Pérdida de cultivos de piña, banano, yuca, frijol y maíz	Dato no disponible	-Evacuación de familias en zonas afectadas	
2006				No se reportan ever	ntos pluviales extremos asoci	ados a ciclones tropicales				
2007	28 de octubre al 02 de noviembre	Tormenta tropical Noel	-Lluvias prolongadas y torrenciales, especialmente en el Pacífico Norte, Pacífico Central y la Zona Norte	-Desbordamiento de los ríos Tempisque, Bebedero y Térraba	-Deslizamientos en la Zona Norte y Valle Central	-Daños en carreteras y puentes -Caminos rurales intransitables	-Pérdida de cultivos de arroz, caña de azúcar y frijol. -Afectación de pastizales para el ganado	Dato no disponible	-200 personas evacuadas -Habilitación de albergues	
2008	23 al 30 de mayo	Tormenta tropical Alma	-Lluvias significativas en la Zona Norte y el Pacífico. -Luvias intensas en Guanacaste, Puntarenas, y el Valle Central	-Inundaciones severas en Guanacaste y Puntarenas -Desbordamiento del río Tempisque	-Deslizamientos en la Zona Norte	-42.000 personas sin electricidad -Daños en viviendas y carreteras	-Pérdidas de cultivos de arroz, frijoles, maíz y caña de azúcar -Afectación de actividades pesqueras	Daños estimados \$35 millones	-2 personas fallecidas -250 personas evacuadas	

² Se destacan los eventos que afectaron la cuenca del río Tempisque.

	17 al 18 agosto	Tormenta tropical Fay	-Lluvias ligeras a moderadas en el Caribe, Zona Norte y Valle Central	No se reportaron	No se reportaron	No se reportaron	-Afectación temporal de actividades pesqueras	No se reportaron	No se reportaron
	28 al 29 agosto	Huracán Gustav	-Lluvias intensas en el Caribe, la Zona Norte y algunas áreas del Pacífico -Precipitaciones máximas entre 150-200 mm en 24h	-Inundaciones menores en el Caribe y la Zona Norte	-Deslizamientos en la Zona Norte y Talamanca	-Interrupciones temporales en el tráfico y la conectividad entre comunidades	-Pérdida de cultivos de arroz, caña de azúcar, frijoles y maíz -Afectación de pastizales para el ganado -Afectación temporal de actividades pesqueras	Dato no disponible	-Evacuaciones preventivas
	2 al 5 de setiembre	Huracán Hanna	-Lluvias intensas en el Caribe, la Zona Norte y algunas áreas del Pacífico -Precipitaciones máximas de 200 mm en 24h	-Inundaciones en áreas bajas cercanas a los ríos Tempisque, Pacuare y Reventazón	-Deslizamientos en Caribe, la Zona Norte y Talamanca	-Daños en infraestructura vial -Daños en viviendas	-Pérdidas de cultivos de arroz, frijoles, maíz y banano	-Daños estimados \$15 millones	-Evacuaciones preventivas
	7 al 9 de setiembre	Huracán Ike	-Lluvias ligeras y moderadas en Caribe y Zona Norte -Intensos aguaceros con fuertes ráfagas en San José, Alajuela y Cartago	No se reportaron inundaciones	No se reportaron deslizamientos	No se reportaron	No se reportaron	No se reportaron	No se reportaron
2009	2 al 5 de noviembre	Huracán Ida	-Lluvias fuertes y prolongadas en el Pacífico Norte (Guanacaste), la Zona Norte, y algunas partes del Valle Central.	-Desbordamiento de los ríos Tempisque y Bebedero	-Deslizamientos en la Zona Norte y la Cordillera de Guanacaste	-Daños en carreteras y puentes en el Pacífico Norte y la Zona Norte -Comunidades temporalmente incomunicadas	-Pérdida de cultivos de frijoles, caña, arroz y pastizales	Dato no disponible	-Decenas de personas evacuadas -Habilitación de albergues
	28 al 30 de setiembre	Tormenta tropical Nicole	-Lluvias intensas y prolongadas Caribe, la Zona Norte y las regiones montañosas -Lluvias fuertes en Guanacaste	-Desbordamiento de los ríos Tempisque, Bebedero, Pacuare y Reventazón	-Deslizamientos en la Zona Norte, Valle Central, Talamanca y Guanacaste	-Daños en carreteras principales y secundarias -Puentes fueron arrastrados o dañados	-Pérdida de cultivos de arroz, banano, piña, cacao, frijoles y maíz	-Daños estimados \$17 millones	-1.000 personas evacuadas
2010	21 de octubre	Huracán Richard	-Lluvias moderadas y fuertes en el Pacífico Norte, la Zona Norte y el Valle Central -Precipitaciones máximas entre 50-100 mm en 24h	-Desbordamiento de los ríos Tempisque y Bebedero	-Deslizamientos en Tilarán y la Zona Norte	-Afectaciones menores en la infraestructura vial	-Pérdida de cultivos de arroz, caña de azúcar, frijoles y maíz -Afectación temporal de actividades pesqueras	Dato no disponible	-Evacuaciones preventivas
	1 al 5 de noviembre	Huracán Tomas	-Lluvias torrenciales en la Zona Norte, el Pacífico Norte y el Caribe -Precipitaciones máximas de 400 mm en 72h	-Inundaciones generalizadas, especialmente en zonas bajas de las provincias de Guanacaste, Limón y Alajuela -Desbordamiento de los ríos Tempisque,	-Deslizamientos en las regiones montañosas, en la Zona de los Santos, Tilarán, la Zona Norte y San Antonio de Escazú	-Bloqueo de carreteras principales y rurales -Carreteras y puentes resultaron dañados o destruidos -Afectación de sistemas de agua potable y electricidad	-Pérdidas de cultivos de arroz, frijoles, maíz, banano y hortalizas	-Daños estimados \$354 millones	-23 personas fallecidas -5.000 personas evacuadas

				Sarapiquí y Reventazón					
	19 de agosto	Tormenta tropical Harvey	-Lluvias en la Zona Norte, el Pacífico Norte y algunas partes del Valle Central -Precipitaciones máximas entre 50-100 mm en 24h	-Inundaciones menores en la Zona Norte y el Pacífico Norte -Desbordamiento del río Tempisque	-Deslizamientos en la Zona de los Santos y partes de Alajuela	-Afectación de carreteras secundarias que dificultaron el acceso a algunas comunidades rurales	-Pérdidas de cultivos de arroz, caña de azúcar y hortalizas -Afectación temporal de actividades pesqueras	Dato no disponible	-Evacuaciones preventivas
2011	10 al 15 de octubre	Depresión Tropical 12-E	-Lluvias extremas en Pacífico Norte, el Pacífico Central, el Pacífico Sur, y la Zona Norte -Precipitaciones máximas de 500mm en 24h	-Inundaciones generalizadas en Guanacaste, Puntarenas, Alajuela, y partes del Valle Central -Desbordamiento de los ríos Tempisque, Térraba, Sarapiqui y Grande de Tárcoles	-Deslizamientos en zonas montañosas, especialmente en la Zona de los Santos, el Pacífico Central, y el Valle Central	-Infraestructura vial severamente afectada, con carreteras dañadas, puentes colapsados y caminos rurales destruidos.	-Pérdidas masivas en cultivos arroz, caña de azúcar, frijoles y maíz -Pérdida de pastizales y animales	-Daños estimados \$85 millones	-5 personas fallecidas -5.000 personas evacuadas
	24 al 26 de agosto	Huracán Isaac	-Lluvias intensas en el Pacífico Norte, el Valle Central, y algunas partes de la Zona Norte -Precipitaciones máximas entre 50-150 mm en 24h	-Inundaciones en comunidades de Guanacaste y el Pacífico Central -Desbordamiento de los ríos Tempisque y Térraba	-Deslizamientos pequeños en la Zona de los Santos y Tilarán	-Bloqueo temporal del acceso a comunidades rurales -Cortes temporales en el suministro eléctrico y de agua potable	-Pérdidas de cultivos de arroz, caña de azúcar y maíz	Dato no disponible	-Evacuaciones preventivas
2012	21 al 25 de octubre	Tormenta tropical Sandy	-Lluvias fuertes en la Zona Norte, el Pacífico Norte y el Valle Central -Lluvias moderadas en Caribe -Precipitaciones máximas entre 50-150 mm en 24h	-Inundaciones en comunidades cercanas a ríos en Guanacaste, particularmente en los distritos de Carrillo, Santa Cruz, y Nicoya -Desbordamiento de los ríos Sarapiquí y San Carlos	-Deslizamientos en el Valle Central y la Zona de los Santos	-Anegamientos en carreteras y puentes -Erosión y deterioro de caminos rurales -Bloqueo de caminos secundarios	-Pérdidas de cultivos arroz, frijoles y hortalizas -Pérdida de pastizales	Dato no disponible	-Evacuaciones preventivas
2013				No se reportan ever	ntos pluviales extremos asoci	ados a ciclones tropicales			
2014				No se reportan ever	ntos pluviales extremos asoci	ados a ciclones tropicales			
2015	19 de octubre	Huracán Patricia	-Lluvias en el Pacífico Norte, el Pacífico Central, y partes del Valle Central -Precipitaciones máximas de 100 mm en 24h	-Inundaciones menores en áreas del Pacífico Norte, especialmente en Guanacaste, y en comunidades cercanas al río Tempisque	-Deslizamientos en zonas montañosas del Valle Central y el Pacífico Sur	-Afectación de caminos secundarios -Comunidades parcialmente aisladas -10 viviendas inundadas	-Pérdidas de cultivos arroz y caña de azúcar -Pérdida de pastizales	Dato no disponible	-Evacuaciones preventivas
2016	3 al 4 de agosto	Huracán Earl	-Lluvias moderadas a fuertes, especialmente en la Zona Norte, el Caribe, y algunas partes del Valle Central	-Inundaciones menores en la Zona Norte, en comunidades cercanas a los ríos Sarapiquí y San Carlos	-Deslizamientos menores en zonas montañosas del Caribe Sur y la Zona de los Santos	No se reportaron	-Pérdidas de cultivos de banano y piña	No se reportaron	No se reportaron

			-Precipitaciones máximas entre 50 y 120 mm en 24h						
	30 de setiembre al 6 de octubre	Huracán Matthew	-Lluvias moderadas a fuertes en el Pacífico Sur, el Pacífico Central, y en menor medida en el Valle Central y el Caribe -Precipitaciones máximas entre 50-100 mm en 24h	-Inundaciones menores en comunidades del Pacífico Central, como Parrita y Quepos	-Deslizamientos en la Zona de los Santos, Talamanca, y partes del Valle Central	-Daños menores en caminos rurales	-Pérdidas de cultivos de arroz, caña de azúcar y banano	No se reportaron	-Evacuaciones preventivas
	16 al 25 de noviembre	Huracán Otto	-Lluvias intensas en Pacífico, Zona Norte y el Caribe -Precipitaciones máximas de 200 mm en 24h	-Inundaciones graves en Upala, Guatuso, Los Chiles -Desbordamiento de ríos San Carlos, Sarapiquí, y el Zapote	-Deslizamientos en Talamanca	-Daños a infraestructura vial y obstrucción de rutas importantes -Puentes colapsados y carreteras destruidas en la Zona Norte y el Caribe -Daños a instalaciones públicas como escuelas y centros de salud -Viviendas inundadas -Daños en 14 acueductos -Cortes temporales en el suministro eléctrico y de agua potable	-Pérdidas de cultivos arroz, frijoles, caña de azúcar y banano -Pérdida de pastizales	Daños por \$358 millones	-10 personas fallecidas -7.800 personas evacuadas -3.370 personas damnificados
2017	4 al 6 de octubre	Huracán Nate	-Lluvias extremas en la Zona Norte, el Pacífico Central, el Pacífico Sur y el Caribe -Precipitaciones máximas de 400 mm en 24h	-Inundaciones generalizadas en áreas cercanas a los ríos Sarapiquí, San Carlos, Upala, y Tempisque	-Deslizamientos en áreas montañosas del Pacífico Central y el Valle Central, Talamanca, Upala, Zarcero y Río Claro	-Puentes y carreteras fueron destruidos o dañados, especialmente en el Pacífico Central y el Caribe -Daños en viviendas y establecimientos comerciales	-Pérdidas de cultivos arroz, frijoles, caña de azúcar y banano	Daños por \$562 millones	-14 personas fallecidas -30.000 personas evacuadas -11.300 damnificados
2018	Octubre 2018	Tormenta Tropical Michael	-Lluvias intensas en todo el país -Precipitaciones máximas de 200 mm en 24h	-Inundaciones localizadas en áreas del Pacífico Central y el Caribe	-Deslizamientos en zonas montañosas de la Zona de los Santos, Talamanca y algunas áreas rurales del Valle Central	-Colapso de partes de caminos rurales y obstrucciones en las rutas de acceso a comunidades -Daños menores a vivienda -Afectaciones en distribución eléctrica	-Pérdidas de cultivos arroz, caña de azúcar y banano	No se reportaron	-Evacuaciones preventivas
2019	No se reportan eventos pluviales extremos asociados a ciclones tropicales								
2020	28 de mayo al	Tormenta tropical Amanda- Cristóbal	-Lluvias intensas en el Pacífico Sur, Valle Central, Zona Norte y Caribe	-Inundaciones en Limón y Puerto Viejo	-Deslizamientos en la Zona de los Santos	-Daños significativos a la infraestructura,	-Pérdidas de cultivos arroz, frijoles, caña de azúcar y banano	Daños por \$50 millones	-5 personas fallecidas

05 de		-Precipitaciones máximas	-Desbordamiento de	Talamanca, Cartago y	especialmente en			-7.000 personas
junio		de 300 mm en 24h	ríos San Carlos, Sarapiquí, y el Tempisque	Puntarenas	carreteras y puentes -Daños en viviendas -Interrupciones en el suministro de energía eléctrica y agua potable			evacuadas
20 al 25 de agosto	Depresión tropical Marco	-Lluvias fuertes en el Pacífico Norte, Pacífico Sur, el Caribe y el Valle Central -Precipitaciones máximas de 400 mm en 24h	-Inundaciones localizadas en Limón, Guápiles, Parrita, Quepos y partes del Pacífico Sur -Inundaciones en Santa Cruz	-Deslizamientos en la Zona Norte y el Valle Central	-Daños menores a la infraestructura en algunas regiones, incluyendo carreteras y puentes -Daño de caminos rurales -Interrupciones en el suministro de energía eléctrica y agua potable	-Pérdidas de cultivos arroz, frijoles, caña de azúcar y banano	No se reportaron	-Evacuaciones preventivas
3 de octubre	Tormenta tropical Gamma	-Lluvias intensas y constantes en el Caribe y el Pacífico Sur -Precipitaciones máximas de 200 mm en 24h	-Inundaciones significativas, en Limón, Guápiles, y comunidades cercanas a los ríos San Juan, Sarapiquí, y Tempisque	-Deslizamientos en Talamanca, Zona Norte y el Valle Central	-Afectación de carreteras y puentes -Interrupciones en el suministro de energía eléctrica	-Pérdidas de cultivos arroz, frijoles, caña de azúcar y banano	Daños por \$40 millones	-5 personas fallecidas -1.000 personas evacuadas
6 al 8 de octubre	Huracán Delta	-Lluvias intensas en todo el país -Precipitaciones máximas de 200 mm en 24h	-Inundaciones en el Caribe, el Valle Central y el Pacífico Sur -Desbordamiento de ríos en Limón, Guápiles y la Zona Norte	-Deslizamientos en zonas montañosas y rurales	-Daños menores a la infraestructura, incluidos puentes, carreteras y sistemas de drenaje -Interrupciones en el suministro de energía eléctrica	-Pérdidas de cultivos arroz, caña de azúcar y banano	Daños por \$10 millones	-1.000 personas evacuadas
1 al 6 noviembre	Huracán Eta	-Lluvias torrenciales en todo el país -Precipitaciones máximas de 500 mm en 24h	-Inundaciones severas en Guápiles, Siquirres y Talamanca -Desbordamiento de ríos en Valle Central y Pacífico Sur	-Deslizamientos en zonas montañosas y rurales	-Puentes fueron dañados o destruidos por las inundaciones y los deslizamientos -Comunidades incomunicadas -Interrupciones en el suministro de energía eléctrica e Internet	-Pérdidas de cultivos arroz, caña de azúcar, frijoles, café y banano -Pérdidas en sector agroindustrial	Daños por \$1.200 millones	-23 personas fallecidas -30.000 personas evacuadas
16 de noviembre	Huracán lota	-Lluvias torrenciales en todo el país -Precipitaciones máximas de 500 mm en 24h	-Inundaciones severas en Limón, Guápiles, Siquirres, Talamanca y San Carlos Desbordamiento del río Reventazón	-Deslizamientos en zonas montañosas y rurales	-Daños severos en puentes y carreteras destruidas o dañadas por las inundaciones y deslizamientos -Comunidades incomunicadas	-Pérdidas de cultivos arroz, caña de azúcar y banano	Daños por \$1.000 millones	-17 personas fallecidas -40.000 personas evacuadas

Eventos pluviales extremos	en la	cuenca	del río	Tempisque,
Costa Rica,	2005	a 2020:	riesgos	e impactos

			-Interrupciones en el suministro de energía		
			eléctrica e Internet		
			-Interrupciones en los		
			servicios de salud		<u> </u>

Fuente: Elaboración propia a partir de datos de IMN, 2024; Emergency Events Database EM-DAT, 2024; MIDEPLAN, 2019.

En la siguiente figura se muestra que, durante el periodo de estudio, la cuenca del río Tempisque fue afectada por ocho huracanes, siete tormentas tropicales, y dos depresiones tropicales, siguiendo la tendencia nacional en cuanto a la incidencia de estos fenómenos meteorológicos.

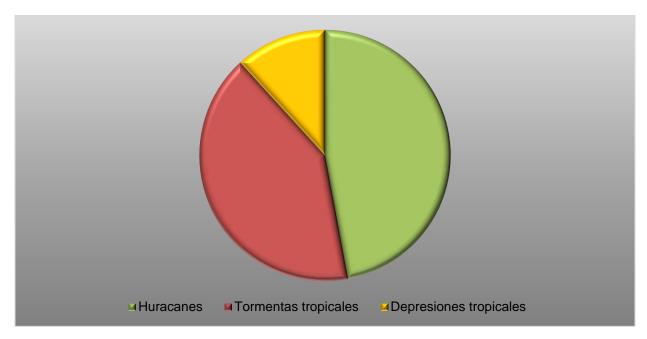


Figura 41. Clasificación de los ciclones tropicales que afectaron la cuenca del río Tempisque, 2005-2020 Adaptado de: IMN, 2024

Si bien las precipitaciones extremas son el principal impacto de los ciclones tropicales, también se dan con frecuencia inundaciones y deslizamientos. Sin embargo, "la susceptibilidad de deslizamiento de la cuenca en su mayoría es muy baja, con zonas bajas a moderadas al norte y suroeste de la cuenca" (Instituto Meteorológico Nacional, 2011). En la siguiente figura se muestra la cantidad de eventos reportados.

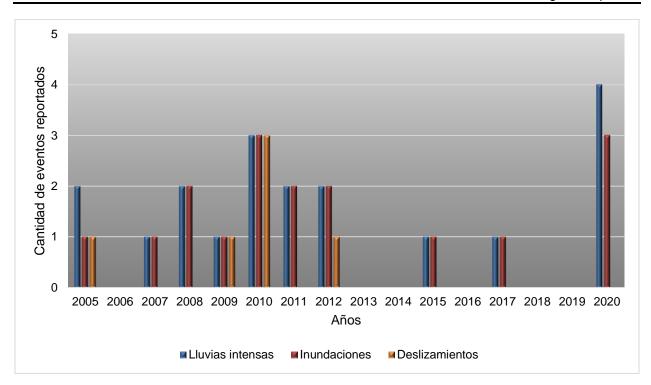


Figura 42. Eventos asociados a ciclones tropicales, cuenca del río Tempisque, 2005-2020 Fuente: Elaboración propia a partir de datos de IMN, 2024; Emergency Events Database EM-DAT, 2024.

Por otra parte, los eventos pluviales extremos han cobrado la vida de 58 personas, en su mayoría por ahogamiento o atrapados por deslizamientos, siendo los más mortíferos los huracanes Thomas (2010) y Nate (2017).

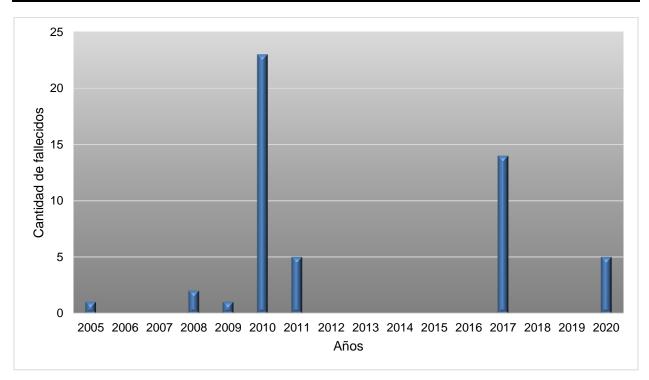


Figura 43. Fallecimientos asociados a ciclones tropicales, cuenca del río Tempisque, 2005-2020 Fuente: Elaboración propia a partir de datos de IMN, 2024; Emergency Events Database EM-DAT, 2024.

6. DISCUSIÓN

La marcada estacionalidad de la cuenca del río Tempisque está determinada por la influencia de los vientos ecuatoriales y alisios. Los vientos ecuatoriales vienen del suroeste y este por la costa del Océano Pacífico, y marcan el inicio de la época lluviosa debido a su alta carga de humedad la cual descargan provocando ocasionalmente inundaciones en la parte media y baja de la cuenca. Por otra parte, los vientos alisios marcan el inicio de la época seca y la canícula que corresponde a una reducción de la precipitación a medio año, debido a que la mayor parte de la humedad descarga a barlovento de las cordilleras de Tilarán y Guanacaste, al llegar a la cuenca del río Tempisque bajan secos, lo que puede ocasionar sequías. Estos vientos alisios pueden acelerarse llegando a alcanzar velocidades promedio de 51 km/h con ráfagas de hasta 100 km/h entre diciembre y marzo. (Mateo, 2021)

6.1 INFLUENCIA DEL ENOS EN LOS CICLONES TROPICALES

Una variable que está muy influenciada por ENOS es la cantidad de huracanes en la cuenca del Atlántico, particularmente en el Mar Caribe.

Cuando El Niño es de fuerte intensidad, la probabilidad de formación de ciclones tropicales es muy baja en el mar Caribe, debido a las cortantes verticales de vientos fuertes y una mayor estabilidad atmosférica; sin embargo, aumenta en el Pacífico debido a las cortantes verticales de viento menos intensas.

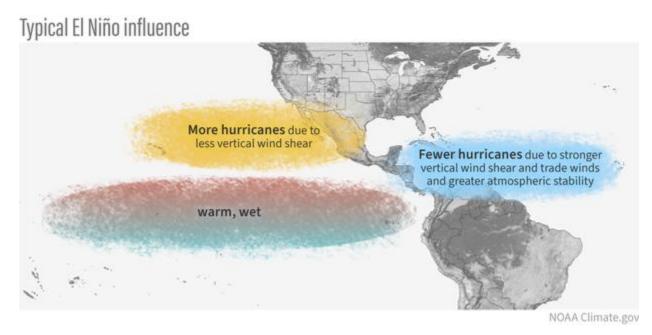


Figura 44. Influencia típica de El Niño en el Pacífico y Atlántico durante la temporada de huracanes.

Fuente: NOAA Climate.gov, basado en los originales de Gerry Bell

Cuando el fenómeno de La Niña está activo o en condiciones normales, la probabilidad de un temporal en la vertiente del Pacífico costarricense en mucho menor debido al fortalecimiento de las cortantes verticales de viento, sin embargo, este fenómeno contribuye al aumento de la cantidad de sistemas tropicales en la cuenca del Atlántico, donde la cortante de vertical de viento es más fuerte y hay menor estabilidad atmosférica.

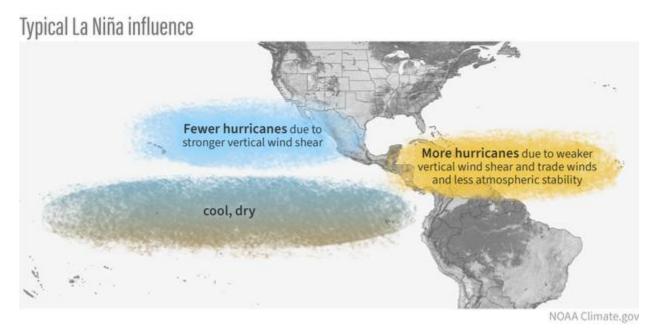


Figura 45. Influencia típica de La Niña en el Pacífico y Atlántico durante la temporada de huracanes.

Fuente: NOAA Climate.gov, basado en los originales de Gerry Bell

La ausencia o disminución de temporales, así como el aumento en la cantidad de días secos, hacen que al finalizar un año la cantidad de lluvia acumulada sea menor que la cantidad promedio.

Por otra parte, cuando el Monzón Africano es fuerte y húmedo, y el Océano Atlántico esta más tibio y las cortantes de viento se reducen, aumenta la probabilidad de que se desarrolle la Corriente de Jet de África del Este, que genera corrientes de este a oeste en niveles altos, favoreciendo la convergencia de las masas de aire oceánico y continental.

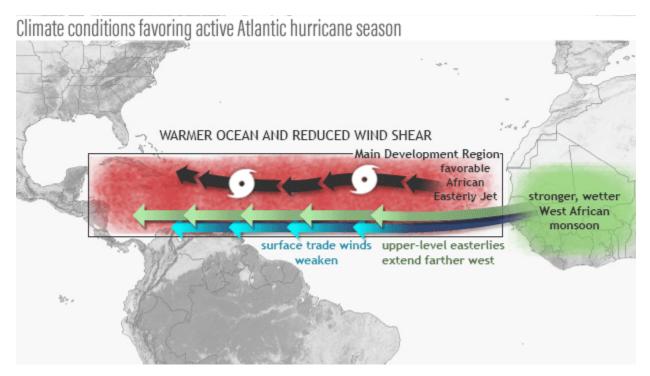


Figura 46. Condiciones climáticas que favorecen la temporada de huracanes.

Fuente: NOAA Climate.gov, basado en los originales de Gerry Bell

6.2 RELACIÓN ENTRE TENDENCIA DE PRECIPITACIÓN, EVENTOS EXTREMOS Y TELECONEXIONES

En el 2005 las intensas y prolongadas precipitaciones en la cuenca del río Tempisque estuvieron asociadas a los efectos indirectos de los huracanes Stan (1-3 de octubre) y Wilma (14-25 de octubre), el cual se vio incrementado por la ZCIT.

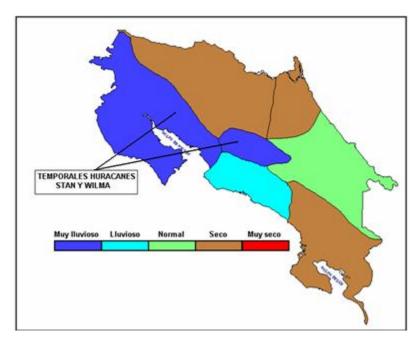


Figura 47. Mapa de precipitación asociada a los huracanes Stan y Wilma, Costa Rica, 2005 Fuente: (Alvarado, 2005)

Desde el punto de vista estadístico, la actividad ciclónica del 2007 fue una de las más inactivas desde 1994 ya que, regularmente, se deben formar dos tormentas tropicales y un huracán en octubre. Sin embargo, la tormenta tropical Noel, se formó el 28 de octubre en el noreste del Mar Caribe causando un severo efecto indirecto sobre el país, el cual se vio incrementado por una extensa vaguada en altura y una baja presión.

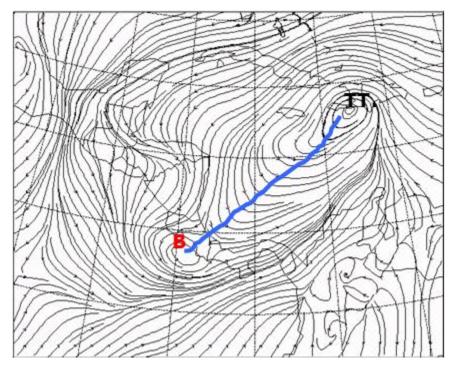


Figura 48. Tormenta tropical Noel (TT) y circulaciones atmosféricas asociadas: una extensa vaguada con su eje en color azul y baja presión atmosférica (B) sobre el país.

Fuente: (Stolz, Boletín Meteorológico Octubre 2007, 2007)

La Tormenta Tropical Alma fue el primer sistema ciclónico de la temporada 2008 en el Pacífico Oriental. Se originó a partir de una región de baja presión atmosférica.

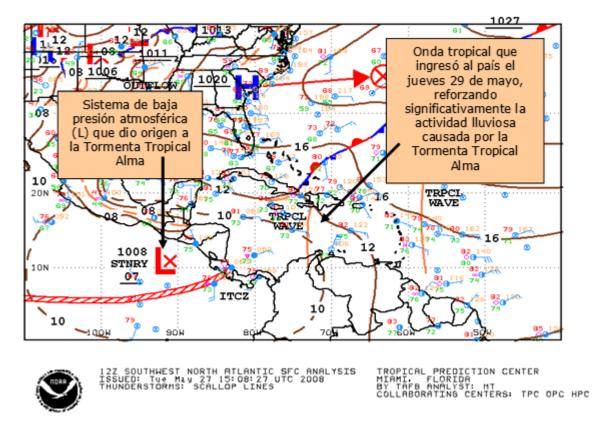


Figura 49. Análisis meteorológico a nivel de la superficie del mar del 27 de mayo 2008 a las 9 a.m. hora local. La baja presión atmosférica que dio origen a la Tormenta Tropical Alma está identificada por la letra L. La Zona de Convergencia Intertropical se simboliza por medio de la línea doble color rojo que está sobre el Pacífico costarricense.

Fuente: (Stolz, Boletín Meteorológico Mayo 2008, 2008)

En setiembre de 2008 el Huracán Hanna indujo un flujo constante de vientos oestes sobre la costa pacífica costarricense del 2 al 5 de septiembre, en la siguiente figura se muestra este abundante flujo de oestes en los niveles de 850 y 500 mb para el día 4 se septiembre.

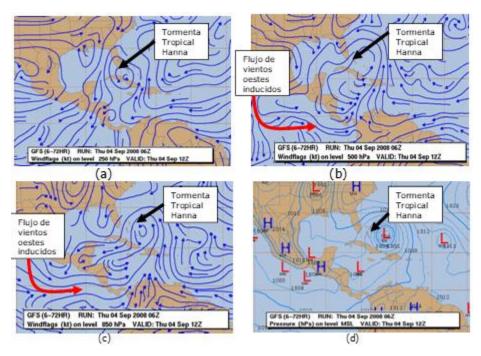


Figura 50. Líneas de corriente generadas por el modelo GFS para en el nivel de superficie (d), 850mb (c), 500 mb (b) y 250 mb (a) para el jueves 4 de septiembre, 6:00 am, Huracán Hanna, 2008 Fuente: (Stolz, Boletín Meteorológico Setiembre 2008, 2008)

En 2009 se generó el Huracán Ida a partir de un sistema de baja presión de la ZCIT, el cual estuvo estacionario frente al Caribe costarricense en los primeros días de noviembre.

Figura 51. Tormenta tropical Ida, América Central, 5 de noviembre de 2009. Fuente: (Chinchilla, 2009)

En 2010 la Tormenta Tropical Nicole se formó por el reforzamiento de una baja presión.

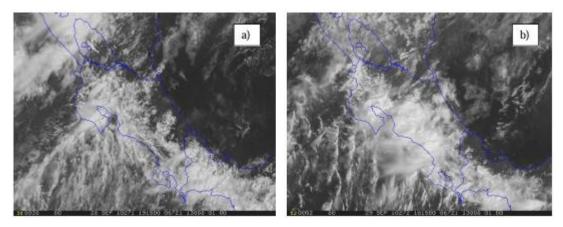


Figura 52. Fuerte actividad convectiva asociada a la Tormenta Tropical Nicole, Costa Rica, 28-29 setiembre 2010.

Fuente: (Departamento de Meteorología Sinóptica y Aeronáutica, 2010)

Del 1 al 5 de noviembre de 2010 se presentó el evento hidrometeorológico extremo más intenso sufrido Costa Rica en ese año. La interacción de la ZCIT con el ciclón tropical Thomas, causó cantidades de lluvia que superaron varios récords.

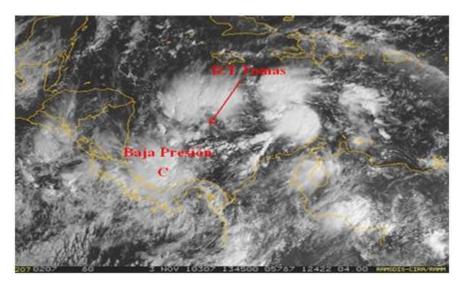
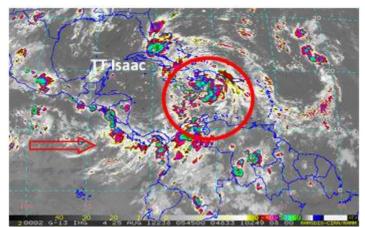



Figura 53. Huracán Thomas, América Central, 3 de noviembre 2010 Fuente: (Chinchilla & Naranjo, Boletín Meteorológico Noviembre 2010, 2010)

lujo de viento hacia el país

Figura 54. Tormenta tropical Isaac antes de intensificarse a huracán, América Central, 24 de agosto de 2012. GOES 16

Fuente: (Poleo & Stolz, 2012)

La Tormenta Tropical Sandy 2012 se intensificó producto de su lento desplazamiento por las aguas cálidas del Caribe.

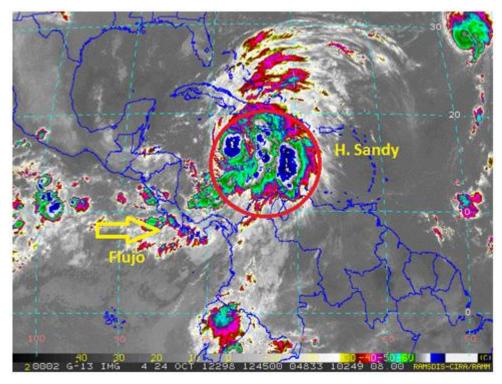


Figura 55. Tormenta tropical Sandy, América Central, 24 de octubre de 2012. GOES 16 Fuente: (Naranjo & Poleo, 2012)

En 2017 el ciclón tropical Nate junto con la presencia de la ZCIT sobre América Central, fueron los fenómenos sinópticos más importantes que modularon el tiempo en Costa Rica, dejando abundantes precipitaciones y ocasionando un fuerte temporal a lo largo de la Vertiente del Pacífico y el Valle Central. Los daños ocasionados por este sistema lo convierten en uno de los más dañinos que se han registrado en Costa Rica en la última década, incluso por encima del huracán Otto en noviembre de 2016.



Figura 56. imagen satelital del ciclón tropical Nate, América Central, 4 de octubre. Fuente: (Naranjo, Boletín Meteorológico Octubre 2017, 2017)

El ciclón tropical Amanda 2020, fue el primero de la temporada de huracanes del Pacífico, se formó a partir de una amplia área de baja presión asociada con una onda tropical, posteriormente se fortaleció con el Giro Centroamericano, un sistema de bajas presiones vinculado a la ZCIT.



Figura 57. Ciclón tropical Amanda-Cristóbal, América Central, 31 de mayo y 2 de junio de 2020. GOES 16

Fuente: (Poleo, Boletín Meteorológico Mayo 2020, 2020)

En la siguiente tabla, se observa que las teleconexiones que más incidieron sobre los ciclones tropicales que afectaron la cuenca del río Tempisque fueron la ZCIT, seguido de la MJO, el ENOS La Niña y los sistemas de baja presión, los cuales pueden intensificarse por la influencia de la ZCIT y formar el Giro Centroamericano. Otros fenómenos de mesoescala que incrementaron el impacto de los ciclones tropicales fueron el ENOS El Niño, vientos monzónicos y vaguadas en altura.

Tabla 23. Tendencia, eventos extremos y teleconexiones, cuenca del río Tempisque, 2005-2020

Año	Tendencia	Eventos extremos asociados a ciclones tropicales	Teleconexiones
2005	Tendencia Iluviosa	Huracán Stan	ND
		Huracán Wilma	-Vientos monzónicos -ZCIT
2006	Tendencia seca	No se reportan en CR	NA
2007	Lluvioso	Tormenta tropical Noel	-Vaguada en altura -Sistema de baja presión
2008	Lluvioso	Tormenta tropical Alma	-Sistema de baja presión -ZCIT -ENOS La Niña
		Huracán Hanna	-ZCIT
2009	Tendencia seca	Huracán Ida	-ZCIT
2010	Lluvioso	Tormenta tropical Nicole	-ENOS La Niña -ZCIT -Sistema de baja presión
		Huracán Richard	-MJO -ENOS La Niña
		Huracán Tomas	-ZCIT -Sistemas de baja presión
2011	Normal	Tormenta tropical Harvey	-Canícula
		Depresión Tropical 12-E	-ZCIT -MJO
2012	Seco	Huracán Isaac	-ZCIT -MJO
		Tormenta tropical Sandy	-MJO -ENOS EI Niño
2013	Tendencia seca	No se reportan en CR	NA
2014	Tendencia seca	No se reportan en CR	NA
2015	Seco	Huracán Patricia	-ENOS EI Niño
2016	Normal	No se reportan en la cuenca	NA
2017	Tendencia Iluviosa	Huracán Nate	-ZCIT
2018	Tendencia seca	No se reportan en la cuenca	NA
2019	Tendencia seca	No se reportan en CR	NA
2020	Normal	Tormenta tropical Amanda- Cristóbal	-MJO -ZCIT -Giro Centroamericano -Onda Kelvin divergente
		Depresión tropical Marco	-MJO -ZCIT -Onda Kelvin divergente
		Tormenta tropical Gamma	-ZCIT -ENOS La Niña

Fuente: Elaboración propia a partir de los boletines meteorológicos de IMN.

Cabe destacar que se evidencia una coincidencia entre los años con tendencia lluviosa o lluviosos y la presencia del ENOS La Niña, el cual genera un aumento de la

precipitación en el Pacífico. Por otra parte, los años bajo efecto del ENOS El Niño tienden a ser más secos.

6.3 IMPACTO DE LOS EVENTOS PLUVIALES EXTREMOS

De acuerdo con el histórico de desastres en Costa Rica, los fenómenos de origen hidrometeorológicos son los responsables de más de 70% de las emergencias atendidas por los entes gubernamentales en América Central (CNE, 2012), además, la región tiene una vulnerabilidad muy alta ante eventos meteorológicos extremos como sequías e inundaciones. (Poleo, Impact of atmospheric oscillations of low (AMO, PDO, ENSO) and high frequency (MJO) in the rain in Mesoamerica, in the fishing of shrimp, bean and rice crops in Costa Rica., 2017)

Los principales impactos de los eventos pluviales extremos en la cuenca del río Tempisque son:

1. Inundaciones

- Zonas agrícolas afectadas: El río Tempisque atraviesa áreas con plantaciones de arroz, caña de azúcar y ganadería, las cuales sufren grandes pérdidas económicas debido a la anegación de los cultivos y la erosión del suelo.
- Daños en infraestructura: Las Iluvias extremas causan desbordamientos que afectan puentes, carreteras, sistemas de drenaje y viviendas, especialmente en comunidades rurales.
- Asentamientos vulnerables: Comunidades cercanas al río experimentan inundaciones recurrentes, lo que genera desplazamientos temporales y riesgos para la salud.

2. Erosión y sedimentación

- Erosión de suelos: La fuerza del agua arrastra el suelo de las áreas más altas hacia las partes bajas, reduciendo la fertilidad y aumentando la desertificación en ciertas zonas.
- Sedimentación del río: El arrastre de sedimentos eleva el nivel del lecho del río, reduciendo su capacidad de conducción y exacerbando el riesgo de desbordamientos.

3. Pérdida de biodiversidad

- Humedales alterados: La cuenca incluye importantes humedales como Palo Verde, que dependen de ciclos naturales de agua. Las lluvias extremas alteran estos ciclos, afectando el hábitat de aves y otras especies.
- Afectación de ecosistemas acuáticos: Las precipitaciones arrastran contaminantes y residuos hacia el río, alterando la calidad del agua y afectando peces, anfibios y otras formas de vida acuática.

4. Contaminación del agua

- Arrastre de agroquímicos: La agricultura intensiva en la cuenca del Tempisque utiliza fertilizantes y pesticidas, que son arrastrados hacia el río durante lluvias extremas, contaminando el agua.
- Aumento de enfermedades: La calidad del agua disminuye, lo que incrementa la incidencia de enfermedades relacionadas con el agua, como diarrea y dengue, entre las poblaciones humanas.

Figura 58. Eventos pluviales extremos y exposición a enfermedades.

Fuente: https://gidahatari.com/nh-es/fuertes-lluvias-e-inundaciones

5. Impactos socioeconómicos

- Pérdidas económicas: Las inundaciones causan daños a los cultivos, el ganado,
 y las viviendas, afectando la economía local y nacional.
- Desplazamiento de personas: Las inundaciones recurrentes obligan a evacuar comunidades y generan costos asociados a la atención de emergencias.
- Interrupción de servicios: Las Iluvias extremas interrumpen el transporte, la electricidad y el acceso a servicios básicos, dificultando la recuperación de las comunidades afectadas.

6. Cambios en la gestión hídrica

 Escasez en temporadas secas: Las lluvias extremas pueden dificultar la retención de agua en reservorios para la temporada seca, afectando el riego y el suministro de agua potable. Incremento de la demanda de obras hidráulicas: Se hace necesario construir diques, canales de desagüe y mejorar las infraestructuras para mitigar los impactos de las lluvias extremas.

6.4 INUNDACIONES EN LA CUENCA DEL RÍO TEMPISQUE

La parte baja y media de la cuenca del río Tempisque está compuesta por unas 100.000 ha expuestas a inundaciones debido a la naturaleza altamente dinámica del río y sus límites cambiantes (Jiménez & González, 2021), siendo uno de los principales problemas de la cuenca el manejo del recurso hídrico ante eventos pluviales extremos y sequías. Estos episodios de inundaciones recurrentes se deben en parte a problemas de drenaje relacionados con el tipo de suelo arcilloso e impermeable (vertisoles) y la topografía plana-concava de la región. (Mateo, 2021) en (Jiménez & González, 2021)

La cuenca del río Tempisque, presenta una serie de características geográficas que favorecen la incidencia y la intensidad de eventos pluviales extremos. Su ubicación en la vertiente del Pacífico de Costa Rica la hace particularmente vulnerable a las influencias de la Zona de Convergencia Intertropical (ZCIT), así como a los efectos indirectos de los ciclones tropicales que se forman en el Caribe y en el Pacífico Oriental. Además, su topografía plana en la región baja y media, combinada con la presencia de suelos arcillosos de baja infiltración, incrementa la susceptibilidad a inundaciones severas.

6.4.1 Distribución espacial de las inundaciones

Históricamente, la parte baja de la cuenca del río Tempisque ha sido la más afectada por eventos de inundación. Municipios como Nicoya y Santa Cruz han experimentado daños recurrentes debido a la acumulación de escorrentía superficial y la reducida pendiente del terreno, lo que dificulta el drenaje natural. Por el contrario, la parte alta de la cuenca, caracterizada por una topografía más accidentada, sufre un mayor impacto de

deslizamientos y erosiones, especialmente en los sectores montañosos de la Cordillera de Guanacaste.

6.4.2 Relación entre uso del suelo y vulnerabilidad a eventos extremos

El cambio en el uso del suelo ha exacerbado la vulnerabilidad de la cuenca ante eventos pluviales extremos. La expansión de actividades agropecuarias en las últimas décadas ha reducido la cobertura boscosa, disminuyendo la capacidad de retención hídrica del suelo y aumentando la escorrentía superficial. En particular, la deforestación en las partes medias y altas de la cuenca ha incrementado la carga de sedimentos transportados hacia el cauce del río Tempisque, elevando su lecho y reduciendo su capacidad de desagüe.

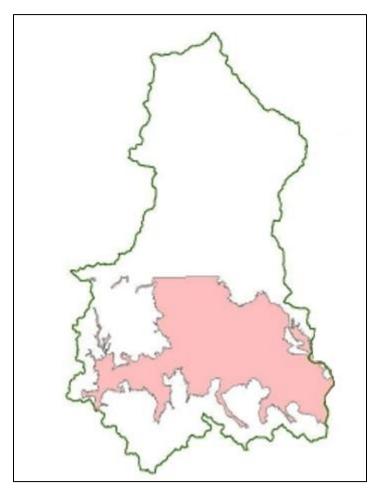


Figura 59. Área de amenazas de inundación, cuenca del río Tempisque.

Dado que las principales actividades productivas de la cuenca son de tipo agropecuario, las inundaciones tienen un fuerte impacto debido a la perdida de cultivos de arroz, frijoles, maíz y caña, y la degradación de tierras cultivables debido a la erosión.

Por otra parte, el turismo se ve perjudicado por los daños en infraestructura vial (puentes y carreteras), y disminución la visitación a playas y áreas silvestres protegidas.

6.4.3 Impacto espacial de los ciclones tropicales

Desde 2005 hasta 2020, se han registrado impactos significativos de ciclones tropicales en diferentes partes de la cuenca. Mientras que eventos como el huracán Nate (2017) y el huracán lota (2020) afectaron principalmente la parte baja del Tempisque con inundaciones severas, tormentas tropicales como Alma (2008) y Tomas (2010) generaron deslizamientos en las áreas montañosas y una alteración en los patrones de drenaje. La variabilidad geográfica de estos impactos resalta la necesidad de estrategias diferenciadas de mitigación y adaptación según la región.

6.5 ESTRATEGIAS DE MITIGACIÓN

Para minimizar los impactos de los eventos pluviales extremos, se han implementado proyectos de reforestación y conservación de los bosques ribereños para dar protección y estabilidad en áreas inundables y de alta escorrentía superficial, planificación de uso de suelos y fortalecimiento de los sistemas de alerta temprana, aunque se necesita un esfuerzo continuo para adaptarse al cambio climático que intensifica estas precipitaciones.

En la siguiente ilustración se muestra un esquema de la interacción de la cuenca del río Tempisque con diversos tipos de bosques, actividades productivas y estructuras geológicas, lo que respalda que una mejor gestión del suelo disminuiría el impacto de los eventos pluviales extremos.

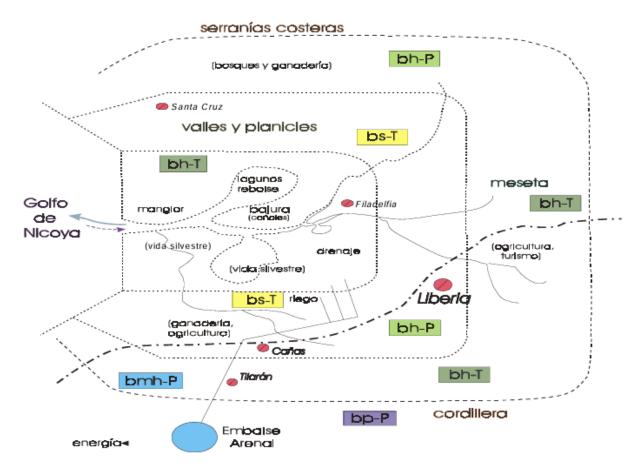


Figura 60. Representación esquemática de las interacciones en la cuenca del río Tempisque.³
Fuente: Alfonso Mata, en (Jiménez & González, 2021)

Debe considerarse la importancia de la articulación de diversos sectores públicos, privados y de la sociedad civil para el desarrollo integral de la cuenca, donde los diferentes actores participen en la toma de decisiones.

Otras estrategias para mitigar el impacto de los eventos pluviales extremos son:

³ Siglas utilizadas en el esquema:

bs-T: Bosque seco tropical

bh-T: Bosque húmedo tropical

bp-T: Bosque pluvial tropical

bmh-P: Bosque muy húmedo premontano

- Construcción de diques y presas: Se han edificado estructuras para el control
 de inundaciones en la cuenca baja del río Tempisque, con el objetivo de sostener
 una economía próspera, prevenir la pérdida de vidas y preservar el medio
 ambiente.
- Planes de acción locales: El cantón de Cañas ha desarrollado un Plan de Acción para la Adaptación Climática 2023-2030, que incluye medidas específicas para enfrentar las inundaciones y otros efectos del cambio climático. La Municipalidad de Santa Cruz podría tomar como referencia este plan.
- Proyectos de desarrollo regional: Se han propuesto proyectos integrales en la cuenca del río Tempisque que contemplan el control de inundaciones, la gestión de recursos hídricos y el desarrollo sostenible de la región.
- Investigaciones académicas: La academia ha contribuido al mejoramiento de la gestión local mediante la implementación de modelos de gestión integral con las poblaciones de los humedales de la cuenca baja del río Tempisque, enfocándose en la adaptación al cambio climático y la gestión del riesgo.
- Análisis de medidas de adaptación: Se han evaluado escenarios para el manejo de inundaciones, como el aumento de la altura de los diques y la apertura anticipada de desembocaduras, con el fin de reducir el impacto de las inundaciones en la región.

Estas estrategias reflejan un enfoque multidisciplinario y colaborativo para abordar las inundaciones en la cuenca del río Tempisque, integrando infraestructura, planificación local, investigación y adaptación al cambio climático.

Por otra parte, para reducir los impactos de los eventos pluviales extremos en la cuenca del río Tempisque, es esencial adoptar medidas con un fuerte enfoque geográfico, tales como:

- Zonificación del riesgo: Implementación de mapas de vulnerabilidad hídrica que identifiquen áreas críticas y guíen decisiones de uso del suelo.
- Reforestación y restauración ecológica: Protección de bosques ribereños y promoción de coberturas vegetales en áreas propensas a la erosión.

- Infraestructura resiliente: Construcción de diques, drenajes mejorados y canales de desviación en las zonas de mayor riesgo.
- Monitoreo meteorológico y sistemas de alerta temprana: Expansión de estaciones hidrometeorológicas para prever eventos extremos y emitir alertas oportunas en comunidades vulnerables.

7. CONCLUSIONES

La ocurrencia de eventos hidrometeorológicos extremos se caracteriza por la presencia de riesgos socioambientales que impactan la sociedad y la economía en Costa Rica.

La geografía de la cuenca del río Tempisque juega un papel crucial en la manifestación y el impacto de los eventos pluviales extremos. La interacción entre la topografía, el uso del suelo y los patrones climáticos determina las zonas más afectadas y las estrategias más adecuadas de mitigación. Comprender estos factores geográficos es clave para desarrollar políticas públicas y estrategias de adaptación que reduzcan la vulnerabilidad de la región ante futuros eventos hidrometeorológicos extremos.

El análisis de la precipitación y patrones climáticos en la cuenca del río Tempisque es clave para entender cómo el cambio climático podría intensificar la vulnerabilidad del país, afectando tanto el suministro de agua como el riesgo de desastres naturales. Este estudio contribuye a una mejor toma de decisiones en la gestión de recursos hídricos y en el diseño de estrategias de adaptación climática.

Costa Rica, al estar al sur de las principales trayectorias de los huracanes en el Caribe, tiende a experimentar los efectos indirectos de los ciclones tropicales. Sin embargo, las lluvias intensas generaron inundaciones, deslizamientos, daños a la infraestructura y actividades productivas, y pérdidas humanas, por lo que destaca la necesidad de medidas de mitigación en un contexto de cambio climático que intensifica los fenómenos meteorológicos extremos.

Debido a su aislamiento y menor capacidad adquisitiva, las zonas rurales son más vulnerables a los impactos de los eventos pluviales extremos, por lo que la respuesta gubernamental y comunitaria es crucial para atender a las personas desplazadas y mitigar mayores consecuencias del evento. Por otra parte, la experiencia adquirida en

manejo de desastres asociados a estos eventos ha permitido la recuperación paulatina de las zonas más vulnerables.

Los daños asociados a eventos pluviales extremos son mucho más costosos que las medidas de prevención para evitarlos, tales como análisis de caudal ecológico, diseño y construcción de infraestructura resiliente (puentes, carreteras, diques) y adaptada a cambios bruscos de caudal, actualización de los planes de ordenamiento territorial, y construcción de viviendas elevadas.

Otras formas para prevenir el riesgo ante desastres por inundaciones son:

- respetar del uso del suelo,
- evitar los asentamientos humanos cerca de ríos y áreas de inundación natural,
- promover la reforestación para favorecer la captación del agua de lluvia,
- informar sobre los riesgos a través del pronóstico basado en impactos,
- acatamiento de las indicaciones de las entidades oficiales (IMN, CNE, Municipalidad),
- implementación de sistemas de alerta temprana mediante celulares, que permitan
 a la población informarse en tiempo real de eventos extremos que puedan generar
 inundaciones y crecidas en áreas cercanas, alertando de precipitaciones intensas
 en las partes altas, media y baja de la cuenca.

¿Qué podemos hacer para prevenir las consecuencias de la intensificación de los eventos climáticos?

- Descarbonizar el sector energético.
- Reducir la demanda de energía.
- Mejorar la eficiencia energética.
- Desarrollar las energías renovables.
- Transporte sostenible.
- Reducir la deforestación.
- Utilizar combustibles bajos en carbono y abandonar los fósiles.
- Promover la economía verde.

8. RECOMENDACIONES

Algunas limitaciones de este estudio estuvieron relacionadas con el uso de Sistemas de Información Geográfica, donde se correlacionarán pendientes, tipos de suelo y áreas de inundación, a través del uso de imágenes satelitales y la aplicación de modelos de inundación de cuencas.

Dado el impacto de los eventos pluviales extremos en la cuenca del río Tempisque, futuras investigaciones podrían enfocarse en:

- **Modelado hidrológico avanzado**: Integrar herramientas de simulación espacial para predecir escenarios futuros de inundación.
- Impacto del cambio climático: Evaluar cómo los cambios en la temperatura y precipitación afectarán la dinámica de la cuenca en las próximas décadas.
- Relación entre uso del suelo y mitigación de riesgos: Analizar la efectividad de prácticas de conservación del suelo en la reducción de la escorrentía y sedimentación.
- Percepción comunitaria del riesgo: Realizar estudios sociogeográficos sobre la percepción de la población respecto a las amenazas hídricas y la efectividad de las estrategias de mitigación.

REFERENCIAS

- AEMET. (11 de Diciembre de 2022). Teleconexiones climáticas (I): Explicando la Oscilación del Atlántico Norte (NAO) y la Oscilación Ártica. Obtenido de https://aemetblog.es/2022/12/11/teleconexiones-climaticas-i-explicando-la-oscilacion-del-atlantico-norte-nao-y-la-oscilacion-artica/
- Alvarado, L. (2005). *Boletín Meteorológico Octubre 2005.* San José: Instituto Meteorológico Nacional.
- Alvarado, R. (2003). *Dirección de Gestión Municipal: Sección de investigación y desarrollo*. Obtenido de Regiones y cantones de Costa Rica: https://ccp.ucr.ac.cr/bvp/pdf/proye/regiones-cantones.pdf
- Asamblea Legislatvia. (2016). Ley de ordenamiento y manejo integral de la cuenca del río Tempisque. San José: Gobierno de Costa Rica.
- Ávila, K. (2012). Análisis del comportamiento de eventos extremos de precipitación en la zona centro y sur de Chile continental. Barcelona: Universitat de Barcelona.
- Balzarini, M., Gonzalez, L., Tablada, E., Casanoves, F., Di Rienzo, J., & Robledo, C. (2008). Manual del usuario: InfoStat. Córdoba, Argentina: Brujas.
- Campbell Scientific. (13 de Julio de 2024). *Campbell Scientific*. Obtenido de https://www.campbellsci.com/cr1000
- CFIA. (17 de Julio de 2024). Revista del CFIA. Obtenido de https://revista.cfia.or.cr/guanacaste-es-la-provincia-que-registra-mayor-intencion-de-metros-cuadrados-de-construccion-2/
- Chacón, D. (20 de Agosto de 2019). *Universidad de Costa Rica*. Obtenido de https://www.ucr.ac.cr/noticias/2019/08/20/conoce-usted-cuales-son-los-tipos-deareas-silvestres-protegidas-del-pais.html
- Chinchilla, G. (2009). *Boletín Meteorológico Noviembre 2009.* San José: Instituto Meteorológico Nacional.
- Chinchilla, G., & Naranjo, J. (2010). *Boletín Meteorológico Noviembre 2010.* San José: Instituto Meteorológico Nacional.

- Climate Service Center Germany & Instituto Meteorológico Nacional. (2020). Ficha Informativa Climática Regional: Cuenca Alta del Río Tempisque. San José: Instituto Meteorológico Nacional.
- Córdoba, D., & Robalino, J. (2023). *Análisis trimestral de la economía IV trimestre 2023*y proyección para el 2024. Obtenido de Instituto de Investigaciones en Ciencias

 Económicas: https://iice.ucr.ac.cr/tag/inflacion/
- Departamento de Meteorología Sinóptica y Aeronáutica. (2010). *Boletín Meteorológico Setiembre 2010.* San José: Instituto Meteorológico Nacional.
- Fernánez, H. (2019). Elección de autoridades municipales en Costa Rica. *Revista Derecho Electoral*, 47-73.
- Flores Silva, E. (2001). Geografía de Costa Rica. San José: EUNED.
- Gobierno de Costa Rica. (15 de febrero de 1985). Reforma División Regional del Territorio de Costa Rica. Obtenido de Sistema Costarricense de Información Jurídica:
 - http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=59724&nValor3=66813&strTipM=TC
- Gobierno de Costa Rica. (24 de agosto de 2015). Constitución Política de la República de Costa Rica. Obtenido de Sistema Costarricense de Información Juridica: https://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?nValor1=1&nValor2=871
- González, C. (1998). Geografía física de Costa Rica: Antología. San José: EUNED.
- Holdridge, L. (1967). *Ecologia basada en las zonas de vida.* San José: Instituto Interamericano de Cooperación para la Agricultura.
- INEC. (2023). Costa Rica en cifras. San José: INEC.
- INEC. (2023). Estadísticas demográficas: Indicadores demográficos (datos preliminares).

 San José.
- Instituto Meteorológico Nacional. (2011). Estudio de las Cuencas Hidrográficas de Costa Rica: Análisis biofisico, climatológico y socioeconómico. Obtenido de Instituto Meteorológico Nacional: http://cglobal.imn.ac.cr/index.php/publications/estudio-de-las-cuencas-hidrograficas-de-costa-rica/
- Instituto Meteorológico Nacional. (2023). ENOS. Obtenido de https://www.imn.ac.cr/enos

- Instituto Nacional de Aprendizaje. (s.f.). Capítulo 4: Vegetación de Costa Rica. Obtenido de https://www.ina-pidte.ac.cr/pluginfile.php/19801/mod_resource/content/1/Vegetacion%20de%20 Costa%20Rica%20%28v-asec%29.pdf
- Iza, M. (30 de Noviembre de 2020). ¿Ha impactado La Niña en la hiperactiva temporada de huracanes? Obtenido de https://www.eltiempo.es/noticias/ha-impactado-la-nina-en-la-hiperactiva-temporada-de-huracanes
- Jiménez, J., & González, E. (2021). La cuenca del río Tempisque: Perspectivas para un manejo integrado. 2021: Organización de Estudios Tropicales.
- Juárez, J. (14 de Noviembre de 2014). Qué es la oscilación ártica y como influye en la temporada de frentes fríos? Obtenido de https://climaya.com/2014/11/que-es-la-oscilacion-artica-y-como-influye-en-la-temporada-de-frentes-frios/
- Mateo, J. (2021). Características generales de la cuenca del Río Tempisque. En A. Jiménez, *La cuenca del Río Tempisque: Perspectivas para un manejo integrado.*San José: Organización de Estudios Tropicales.
- Mena, M. (19 de 10 de 2012). ¿Qué es la Zona de Convergencia Intertropical y cómo afecta Costa Rica? *El Observador*.
- Mendez, S. (2022). Interacción de fenómenos naturales y actividades antropogénicas en la Cuenca del Río Tempisque en la Provincia de Guanacaste, Costa Rica. Brazilian Journal of Animal and Environmental Research, 54-74.
- Municipalidad Santa Cruz. (07 de Julio de 2024). *Municipalidad Santa Cruz*. Obtenido de https://www.santacruz.go.cr/
- Naranjo, D. (2017). *Boletín Meteorológico Octubre 2017.* San José: Instituto Meteorológico Nacional.
- Naranjo, D., & Poleo, D. (2012). *Boletín Meteorológico Octubre 2012.* San José: Instituto Meteorológico Nacional.
- NOAA. (Mayo de 2013). *Ciclones tropicales*. Obtenido de https://www.weather.gov/media/owlie/ciclones_tropicales11.pdf
- Nunez, C. (30 de Enero de 2024). ¿Qué es la corriente en chorro y cómo influye en el clima? Obtenido de https://www.nationalgeographicla.com/medio-ambiente/2024/01/que-es-la-corriente-en-chorro-y-como-influye-en-el-clima

- Poleo, D. (2017). Impact of atmospheric oscillations of low (AMO, PDO, ENSO) and high frequency (MJO) in the rain in Mesoamerica, in the fishing of shrimp, bean and rice crops in Costa Rica. San José: Universidad de Costa Rica.
- Poleo, D. (2020). *Boletín Meteorológico Mayo 2020.* San José: Instituto Meteorológico Nacional.
- Poleo, D., & Stolz, W. (2012). *Boletín Meteorológico Agosto 2012.* San José: Instituto Meteorológico Nacional.
- Poleo, D., León, E., & Stolz, W. (2014). La Oscilación atmosférica Madden-Julian (MJO) y las lluvias en Costa Rica. *Tópicos Meteorológicos y Oceanográficos*, 55-78.
- Programa Estado de la Nación. (2023). *Informe Estado de la Nación 2023.* San José: Programa Estado de la Nación.
- Rodrigues, R. (2015). Eventos pluviales extremos na Amazonia Meridional: Riscos e impactos em Rondonia. Curitiba: Universidade Federal do Paraná.
- SINAC. (2019). Áreas de Conservación. Obtenido de https://www.snitcr.go.cr/Metadatos/full_metadata2?k=Y2FwYTo6U0lOQUM6Om FyZWFzX2NvbnNlcnZhY2lvbg==.
- Solano León, E. (22 de Junio de 2015). Análisis del comportamiento de los períodos caniculares en Costa Rica en algunas cuencas del Pacífico Norte y del Valle Central entre los años 1981 y 2010. San José: Universidad de Costa Rica.
- Solano, J., & Villalobos, R. (2001). Aspectos fisiograficos aplicados a un bosquejo de regionalización geografico climático de Costa Rica. *Tópicos Meteorologicos y Oceanograficos*, 26-39.
- Solano, J., & Villalobos, R. (s.f.). Regiones y subregiones climáticas de Costa Rica.

 Obtenido de Instituto Meteorológico Nacional:

 https://www.imn.ac.cr/documents/10179/20909/Regionalizaci%C3%B3n+clim%C
 3%A1tica+de+Costa+Rica
- Stolz, W. (2007). *Boletín Meteorológico Octubre 2007.* San José: Instituto Meteorológico Nacional.
- Stolz, W. (2008). *Boletín Meteorológico Mayo 2008.* San José: Instituto Meteorológico Nacional.

Stolz, W. (2008). *Boletín Meteorológico Setiembre 2008.* San José: Instituto Meteorológico Nacional.

Vargas, G. (2006). Geografía de Costa Rica. San José: EUNED.