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“All models are wrong, but some are useful.”
(George E. P. Box)



RESUMO

Este trabalho compreende trés artigos em Economia utilizando conjuntos de dados em rede
e aprendizado de maquina. No primeiro artigo, conduzimos uma revisao de aplicagoes de
aprendizado de maquina para resolver problemas complexos de rede. Cobrimos conceitos
de aprendizado de maquina, incluindo aprendizado supervisionado, aprendizado nao
supervisionado e aprendizado por reforgo, juntamente com métodos como clustering,
incorporagao e PCA. Além disso, exploramos conceitos de construgao de rede e centralidade,
abrangendo previsao de nés e links. O artigo também discute abordagens de linguagem
natural, incorporando teorias do Processamento de Linguagem Natural (PNL). O segundo
artigo investiga o conceito de risco sistémico no dominio financeiro, investigando o seu
potencial para desencadear contagio indireto. Um aspecto fundamental da pesquisa envolve
a aplicacao de um modelo utilizando uma rede de similaridade de noticias para prever
probabilidades estacionarias como proxy da centralidade na rede e nas relagdes entre
empresas, estabelecendo uma relagao entre elas e identificando caminhos de contagio
indireto. Ao examinar as interacoes e a propagacao do contagio entre empresas com base
em artigos de noticias, o estudo visa descobrir insights sobre a interconectividade e os
efeitos em cascata no sistema financeiro e se existe impacto em outros setores. O artigo
conclui com uma discussao sobre as aplicagoes potenciais da [A e do ML na compreensao e
previsao do risco sistémico no cenario financeiro. O terceiro artigo é um exercicio empirico
sobre Modelagem de Gémeos Digitais aplicada ao Mercado de Carbono Europeu (EU ETS).
Utilizamos as transagoes de EU-ETS para discernir padroes de interconexao entre paises.
Para atingir isso, construimos redes complexas para delinear relacionamentos entre nagoes,
representando os caminhos de contagio, simulamos com Gémeos Digitais a entrada e saida
de novos agentes e o estabelecimento de novas conexoes baseadas em analise preditiva

utilizando modelos de Aprendizado de Maquina.

Palavras-chave: redes complexas, aprendizado de maquina, inteligéncia artificial, gémeos

digitais, risco sistémico, contagio indireto, centralidade, EU ETS.



ABSTRACT

This work comprises three articles in Economics that utilize network data sets and machine
learning. In the first article, we conduct a review of machine learning applications to solve
complex network problems. We cover concepts of machine learning, including supervised
learning, unsupervised learning, and reinforcement learning, along with methods such as
clustering, embedding, and PCA (Principal Component Analysis). Additionally, we explore
network construction and centrality concepts, addressing node and link prediction. The
article also discusses natural language approaches, incorporating theories from Natural
Language Processing (NLP). The second article investigates the concept of systemic risk in
the financial domain, exploring its potential to trigger indirect contagion. A fundamental
part of the research involves applying a model that uses a news similarity network to
predict stationary probabilities as a proxy for network centrality and relationships between
companies. The study establishes connections among companies, identifying pathways
of indirect contagion. By analyzing interactions and the spread of contagion between
companies based on news articles, the study seeks to uncover insights into interconnectivity
and cascading effects within the financial system, as well as potential impacts on other
sectors. The article concludes with a discussion of the potential applications of AI and ML
in understanding and predicting systemic risk in the financial landscape. The third article
presents an empirical exercise on Digital Twin Modeling applied to the EU Emissions
Trading System (EU ETS). We use EU ETS transaction data to identify patterns of
interconnection between countries. To achieve this, we build complex networks to outline
relationships among nations, representing contagion pathways. Using Digital Twins, we
simulate the entry and exit of new agents and the formation of new connections based on

predictive analysis through machine learning models.

Keywords: complex networks, machine learning, artificial intelligence, digital twins,

systemic risk, indirect contagion, centrality, EU ETS. .
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1 INTRODUTION

This work comprises three articles in Economics that utilize network data sets and

machine learning.

Chapter 2 presents the first article, "Machine Learning for Solving Problems in
Complex Networks: A Network Scientist’s Perspective." This study reviews the applications
of machine learning in addressing challenges within complex networks. It explores funda-
mental machine learning concepts, including supervised, unsupervised, semi-supervised,
and reinforcement learning, along with key methodologies such as clustering, embedding,
and Principal Component Analysis (PCA). The discussion extends to network construction,
centrality measures, and predictive tasks such as node and link prediction. Additionally,
the article integrates natural language approaches by incorporating theories from Natural
Language Processing (NLP) and Deep Learning. While machine learning enhances scala-
bility and interpretability, challenges persist in areas such as fine-tuning models, handling
sparsity, and ensuring robustness. Future research can focus on improving generalization,
reducing computational complexity, and integrating multiple techniques for more effective
network analysis. Applying machine learning to complex networks strengthens the ability
to analyze real-world systems, enabling data-driven decision-making across diverse domains,
including fraud detection, economics, recommendation systems, biological interactions,

ecological networks, infrastructure, and security.

Chapter 3 introduces the second article, "Indirect Contagion and Systemic Risk:
A News Similarity Network Approach." This study develops a method for measuring
systemic risk by constructing a network of firms based on news similarity, following the
model proposed by Cajueiro et al. (2021). Using financial news articles from major media
sources such as The New York Times, Reuters, Fox News, Financial Times, The Guardian,
and CNN, the study examines how firms connect through media coverage. The dataset
includes S&P 500 firms from 2020 to 2022 and employs NLP techniques to assess textual
similarity between companies. A key aspect of the analysis involves leveraging network
structures to estimate stationary probabilities as a proxy for firm centrality, allowing
for the identification of indirect contagion pathways. The findings indicate that firms in
the Financials sector with high centrality in the news similarity network exhibit greater
exposure to financial shocks, reinforcing the role of public perception in systemic risk
transmission. Moreover, firms with strong media-based connections do not always belong
to the same sector, suggesting that financial contagion extends beyond traditional industry
classifications. These insights highlight the value of tracking media-driven firm relationships

as a tool for regulators and investors to assess systemic risk.
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Chapter 4 presents the third article, "Digital Twins and Network Resilience in
the EU ETS: Analyzing Structural Shifts in Carbon Trading." This study examines the
structural evolution of the European Union Emissions Trading System (EU ETS), the
world’s largest carbon market and a cornerstone of EU climate policy. Using transaction
and account data from the European Union Transaction Log (EUTL), which records all
emissions allowance transfers, the study applies Digital Twins, complex network analysis,
and machine learning to model emissions trading as a dynamic system. The results suggest
that ongoing market fragmentation could disrupt price formation and reduce market
integration, potentially impacting liquidity and compliance costs. Predictive modeling
indicates that emerging trading barriers may hinder market efficiency, emphasizing the need
for policymakers to evaluate whether existing mechanisms effectively sustain competition

and emissions reduction targets.

In Chapter 5 we discuss our findings e perspectives.
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2 MACHINE LEARNING FOR SOLVING
PROBLEMS OF COMPLEX NETWORKS:
A NETWORK SCIENTIST PERSPECTIVE

This chapter explores machine learning techniques for network analysis, focusing
on building network structures, measuring node importance, and predicting structural
changes. It examines centrality approximation methods that reduce computational costs
while preserving ranking accuracy, embedding techniques that capture network structure
for improved clustering and classification, and clustering algorithms that allow flexible
community detection. The study also discusses link prediction methods that combine
network topology with past interactions, reinforcement learning approaches that adapt
community detection to evolving networks, and visualization techniques that simplify
complex structures using dimensionality reduction. These methods apply to fraud detection,
economics, recommendation systems, biological interactions, infrastructure, and security.
While machine learning improves scalability and interpretability, challenges remain in
fine-tuning, handling sparsity, and ensuring robustness. Future research can enhance
generalization, reduce computational complexity, and integrate multiple techniques for

more effective network analysis.
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2.1 Introduction

Our work reviews how machine learning (ML) can be used to solve problems
in complex networks. Complex network theory is well established, however, traditional
algorithms and techniques can be computationally costly and inefficient, especially when
dealing with big data. In this work, we offer a guide of ML techniques that can optimize
and improve network-based data analysis, which addresses the main problems, tasks, and
applications in the area: network construction, centrality, influence, node classification,
community detection with modularity, node and link prediction, and visualization. The

application of ML and complex networks improves these solutions.

Solving problems with complex networks and machine learning enhances the ability
to understand real-world systems, making analysis more robust and enabling data-driven
decision making across various domains. This set of techniques facilitates the modeling,
analysis, and prediction of phenomena involving dynamic interactions and non-trivial
structures. This framework provides a powerful approach to representing interconnected
systems, such as social networks, supply chains, financial systems, biological networks, and

urban infrastructure, as we will explore next.

Zanin et al. (2016) conceptualizes a complex network as a system represented
by graph theory, encompassing boundaries, constituent parts, and relationships. The
structure created by these interactions is referred to as the network topology. Describing
the system, i.e., its collective behavior, becomes impossible when examining its isolated
components. For this reason, researchers refer to them as complex networks. The authors
explores the combination of complex network theory and data mining. By integrating
the analytical techniques of data mining with the concepts from complex network theory,
their methodology seeks to explore and extract valuable insights from intricate and

interconnected datasets.

In our paper, there appears to be a resemblance to the topic covered in mentioned
book, but in reality, our focus is distinctly different. In that work, the study revolves
around the node relationships in a graph with physics statistics, dynamic models, and data
mining tools from computer sciences. In contrast, here, we establish a connection between
complex networks and machine learning. Our objective is to delve into the concepts of
machine learning and demonstrate the application of these tools in constructing and
interpreting complex networks, providing a comprehensive panorama and guide from a
network scientist’s perspective , utilizing more recently developed tools. Data Mining
focuses on pattern discovery, while Machine Learning focuses on prediction and automation

based on those patterns.

Silva & Zhao (2016) present in their book a comprehensive description of network-

based machine learning. It’s a comparable topic but a very distinct presentation, they offer
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a panoramic and introductory vision of methods of supervised learning, semi-supervised
learning and unsupervised learning. Nonetheless, the natural evolution after 2016 does
not appear. We incorporate more recent advances in models, integrating graph neural
networks (GNNs), deep learning, and graph-embedding learning, which were not widely

explored, and also describe how to use ML in the tasks present in the first paragraph.

Over the years, Network Representation Learning (NRL) has evolved significantly,
incorporating various approaches to capture the structure and properties of complex
networks efficiently. The domain of NRL progresses from basic dimensionality reduction
to sophisticated deep learning architectures that dynamically adapt to changing graph
structures. Initial efforts focus on dimensionality reduction techniques, such as factorization
methods, Laplacian eigenmaps, and locally linear embedding (LLE), which lack scalability
(Hamilton, Ying & Leskovec, 2017b; Goyal & Ferrara, 2018). Scalable embedding methods
emerge with random walks, including LINE and DeepWalk, introducing more efficient
network encoding techniques (Zhang et al., 2018). Graph neural networks (GNNs) and
attention-based models revolutionize representation learning by incorporating end-to-end
learning mechanisms, making it possible to dynamically update embeddings in evolving
biological networks (Muzio, O’Bray & Borgwardt, 2021). Deep learning models (GCN,
GAT) achieve the highest classification accuracy due to their ability to leverage node
features and graph structures (Chen et al., 2020). Approaches such as DeepWalk and
Node2Vec generate embeddings through simulation-truncated random walks, enabling the
representations to capture both structural and contextual information. Other methods
build on deep learning to enhance these embeddings by learning more expressive features.
(Luo et al., 2022).

In the wake of this development, network embeddings emerge to improve the repre-
sentations of nodes in a network, proposing methods that automatically learn and preserve
certain properties of the graph. Embeddings include incorporation of characteristics from
original networks, such as orientation and dynamics in the network, local neighborhood,
and walking network, node attributes, group labels, and supervision labels (Wang et al.,
2018). Additionally, Dalmia & Gupta (2018) asserts that network embedding (or represen-
tation) models are useful for applications such as node classification, link prediction, and
recommendation. The authors suggest interpreting these node representations with the
aim of understanding why a particular embedding model works better for certain graph
mining tasks. The unsupervised node representation learning models considered in this
study are DeepWalk, LINE and Node2Vec.

The field of evolutionary network analysis gain attention since networks frequently
evolve, altering their characteristics over time. Aggarwal & Subbian (2014) provides an
overview of the vast literature on graph evolution analysis and the numerous applications

that arise in the web, social networks, communication networks, road networks, recommen-



Chapter 2. Machine learning for solving problems of complex networks:

a network scientist perspective 19

dations, news networks, bibliographic networks and biological networks. Graphs evolve
over time through the continuous addition of new edges and the removal of existing ones.
Evolutionary network analysis comprises two main categories: maintenance methods and
analytical evolution analysis. Maintenance methods aim to continuously and incrementally
preserve the results of the data mining process over time. In contrast, analytical evolu-
tion methods focus on directly quantifying and understanding the changes that occur in
the underlying network, emphasizing the modeling of such changes. Many networks are
dynamic rather than static, evolving over time. A dynamic graph emerges from changes
in vertices (or nodes) and edges (or links). Research in this area primarily focuses on
evolution models, graph similarity measures, anomaly detection in large network-based
data, and clustering similar graphs (Bilgin & Yener, 2006). Spiliopoulou (2011) examine
volatility in social networks by observing how these networks evolve over time. They define
evolution as the changes that occur within the network across temporal intervals. For
example, tracking community formation and dissolution helps researchers understand and
anticipate social, economic, and behavioral patterns. Studying network dynamics is crucial
because it addresses key questions such as: "Why do communities emerge or vanish?",
"Why do they merge or split?', "When do these events occur?", and "What are the initial

movements that indicate this trend?".

Another important area of application is recommender systems, which play a crucial
role in predicting the preferences of users from large pools of potential items, thereby
helping to mitigate information overload. A common challenge in this domain is data
sparsity, for which embedding techniques offer an effective solution. Several recommendation
models address this issue by relying on graph embeddings, including bipartite graph
embeddings, general graph embeddings, and knowledge graph embeddings. Bipartite graph
embedding captures direct interactions between users and items by representing them in
a user-item bipartite graph. Techniques such as matrix factorization, Bayesian analysis,
and deep learning extract meaningful relationships within these graphs. General graph
embedding expands beyond direct user-item interactions by incorporating additional
information, such as social networks, item-item relationships, and other contextual data.
These embedding techniques capture complex relationships and higher-order proximities,
leading to more refined recommendations. Knowledge graph embedding integrates external
knowledge bases into the recommendation process. By embedding entities and relations
from knowledge graphs, the system leverages rich semantic relationships between users,
items, and attributes, enhancing recommendation quality. Despite these advancements,
conventional recommendation models remain widely adopted. Interestingly, traditional
models demonstrate superior performance in predicting implicit user-item interactions,
highlighting a comparative weakness in graph embedding-based recommendation models
for such tasks (Deng, 2022).

In software development, NetworkX stands out as a well-known Python library that
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provides a powerful framework for Complex Network theory. It implements a wide range
of classical algorithms and includes some routines that can be considered machine learning
methods (Hagberg, Swart & Chult, 2008). A newer library, sknet (Toledo, 2021), is a
Python package designed for machine learning tasks in complex networks. It is compatible
with scikit-learn (Buitinck et al., 2013) and NetworkX, but unlike NetworkX, it focuses
on integrating Complex Networks and Machine Learning. sknet provides structures for
unsupervised, supervised, and semi-supervised learning, a constructor for transforming
data into complex network representations, and a set of utility functions to support other

packages.

In the following, we review the main machine learning methods that tackle the
problems involving complex networks, as we outline in the first paragraph of this introduc-

tion.

2.2 Machine learning

Machine learning (ML) is a subfield of artificial intelligence that focuses on devel-
oping algorithms capable of identifying patterns and making predictions based on data.
Instead of relying on explicit programming, these algorithms adjust their behavior through
experience, allowing them to adapt to new information. In the context of complex networks,
ML methods offer computationally efficient alternatives to traditional approaches, which
often struggle with large-scale data. ML algorithms are commonly referred to as models, as
they transform data, extract structure, and generate predictions. Their growing importance
stems from advancements in computational power and the increasing availability of large
datasets from various sources, including social networks, biological systems, and financial

markets.

Machine learning techniques can be broadly categorized based on how they process
and learn from data (Domingos, 2015; Mitchell, 2019). This section is organized into five
parts, each covering a distinct learning paradigm: supervised learning (2.2.1), unsuper-
vised learning (2.2.2), semi-supervised learning (2.2.3), reinforcement learning (2.2.4) and

embedding aproaches (2.2.5).

2.2.1 Supervised Learning

Supervised learning relies on labeled data, where each example is associated with a
known outcome. The objective is to find a function g(¢, X') that approximates y = f(X),
where y is the target variable, X represents the input data, and 6 denotes the model

parameters.

Supervised learning encompasses two primary tasks: regression and classification.

Regression applies when y is continuous, while classification is used when y belongs to a
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finite set of categories. Classification models are further divided into binary classification,
where there are only two possible classes, and multinomial classification, which involves

multiple categories.

The goal of supervised learning models is to learn patterns from labeled data and
use these patterns to make predictions on new, unseen data. This process typically involves

solving an optimization problem to determine the best parameter set 6.

In regression models, the training process often minimizes a loss function such as

the mean squared error (MSE), given by

n
minZ(?Ji —g(l‘z‘,@))Qa (2.1)
0e0 —
where y; is the observed outcome, and x; = [z, ..., z;k] is the feature vector for observa-

tion 7 in a dataset of size n. Alternative loss functions, such as the mean absolute error

(MAE), can also be used depending on the problem.

For classification problems, the cross-entropy loss function is commonly employed,
particularly when the model outputs probability estimates. In the binary case, if g(z;,6)

represents the predicted probability of a positive outcome, the optimization objective is

n

min = [yilog g(w:, 0) + (1 — yi) log(1 — g(w:,6))], (2.2)

i=1

where y; € {0,1} is the observed class label for the i-th instance.

Several approaches exist for implementing supervised learning models. Linear
models, such as linear regression and logistic regression, assume a direct relationship
between input features and the target variable. Tree-based methods, including decision
trees (Breiman et al., 1984; Quinlan, 1986), random forests (Breiman, 2001), and gradient
boosting (Friedman, 2001; Friedman, 2002; Chen & Guestrin, 2016), allow for more flexible,
non-linear decision boundaries. Support vector machines (SVMs) (Cortes & Vapnik, 1995)
seek to identify an optimal separating hyperplane, particularly useful for classification
tasks. Neural networks, ranging from simple feedforward architectures to deep learning
models, capture complex patterns in high-dimensional data. The history of neural networks
is rich and has evolved over the decades. The beginnings of neural networks introduced the
Perceptron, the first computational model inspired by the human brain (Rosenblatt, 1958).
Then came Backpropagation, making the training of multilayer neural networks feasible
and popularizing their application (Rumelhart, Hinton & Williams, 1986). Convolutional
Neural Networks (CNNs) emerge, laying the foundations for Deep Learning (LeCun
et al., 1989). The Long Short-Term Memory (LSTM) architecture solves the gradient
vanishing problem in Recurrent Neural Networks (RNNs). LSTMs are widely used in tasks
such as NLP, time series analysis, and speech recognition (Hochreiter & Schmidhuber,

1997). Afterward, deep networks efficiently train using unsupervised learning in successive
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layers, leading to the explosion of interest in Deep Learning (Hinton, Osindero & Teh,
2006). Finally, the Transformer replace recurrent networks with attention mechanisms,
revolutionizing Natural Language Processing (NLP) and leading to models like BERT,
GPT, and T5 (Vaswani et al., 2017).

Each of these methods can be adapted for both regression and classification

problems, depending on their formulation and intended application.

2.2.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning operates without labeled data,
meaning only the input features X are available without predefined outcomes. The objec-
tive is to uncover patterns, relationships, or structures within the dataset without relying
on explicit supervision. Unsupervised learning is widely applied in various analytical tasks.
One of its most common applications is cluster analysis, which organizes unlabeled obser-
vations into groups based on shared characteristics. These methods help identify natural
divisions within data, facilitating tasks such as market segmentation, anomaly detection,
and community detection in networks. Another significant approach is dimensionality
reduction, which aims to represent the data using fewer variables while retaining essential
information. This is achieved by eliminating redundant features, transforming the data
into a lower-dimensional space, or selecting representative observations. Reducing dimen-
sionality improves computational efficiency and enhances interpretability while preserving
meaningful structures in the dataset. A third category within unsupervised learning in-
volves association rule learning, which identifies meaningful relationships between variables.
This technique is commonly used in transactional datasets to determine how the presence
of certain items correlates with others. Applications include recommendation systems,
inventory optimization, and behavior analysis, where understanding item co-occurrence
patterns can inform decision-making. Each of these methods contributes to extracting
valuable structure from unlabeled data, making unsupervised learning essential for tasks

where predefined labels are unavailable or costly to obtain.
2.2.2.1 Clustering
2.2.2.1.1 K-means
K-means clustering partitions a dataset of n observations into K clusters by
assigning each data point to the nearest cluster center (MacQueen, 1967; Lloyd, 1982;

Gnanadesikan, 2011). The algorithm iteratively updates the cluster assignments and

centroids, as outlined in Figure 1:
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procedure LLOYDS
Choose K points as initial cluster centers
while C changes do
for all x € X do

Assign x to the closest cluster center ¢j using a distance metric
end for

for all Clusters (', do

Update ¢ as the mean of all points in C},
end for
end while
end procedure

Figure 1 — Lloyd’s algorithm for K-means clustering.

Although K-means does not explicitly assume any probabilistic structure, it tends
to work best when clusters exhibit similar spherical covariance structures. Selecting the
appropriate number of clusters, K, is a crucial step in applying K-means. The Silhouette
score (Izenman, 2008) is a widely used metric to assess clustering quality. Given a clustering

Ck, the Silhouette score for the i-th data point is computed as
by
SiK = m,
where q; is the mean intra-cluster distance, and b; is the mean nearest-cluster distance.
The score ranges from —1 to 1, with values near 1 indicating well-separated clusters, and

values approaching —1 suggesting poor assignment.

2.2.2.1.2 Gaussian Mixture Models

Given a dataset X = {z1,...,xy} with N observations of a D-dimensional variable,
the Gaussian Mixture Model (GMM) assumes that each data point z,, is generated from a

mixture of K Gaussian components. The distribution of each observation is expressed as:

p(zn) = ZMP(%WMZU, (2.3)

where 7 represents the mixing proportions, and p(x,|ux, X) is the Gaussian

density function defined as:

P(@nl e, X)) =
1 1 Ty —1
@m) |, P =5 (@0 = ) B (@0 — ). (2.4)

Here, u; denotes the mean vector, ¥ the covariance matrix, and |3;| the determi-

nant of 3. The model is estimated using the Expectation-Maximization (EM) algorithm,
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which introduces a latent variable d,, indicating the cluster assignment for each observation
(Dempster, Laird & Rubin, 1977).

The EM algorithm alternates between two steps: the E-step computes the expected
values of d,, using Bayes’ rule, while the M-step updates the parameters p, Xk, and
by maximizing the likelihood function. An observation is assigned to the cluster with the

highest posterior probability.

The covariance matrix > defines the shape and orientation of clusters. Several
constraints can be imposed to adjust its complexity (Banfield & Raftery, 1993; Celeux &
Govaert, 1995; Gan, Ma & Wu, 2020): full covariance allows distinct ellipsoidal clusters,
tied covariance enforces a common shape across clusters, diagonal covariance restricts
orientation to coordinate axes, and spherical covariance assumes uniform variance in all

directions.

2.2.2.1.3 Fuzzy C-Means (FCM)

Fuzzy C-Means (FCM) is a clustering method where each data point has a mem-
bership degree to multiple clusters rather than belonging to a single group (Bezdek et al.,
1982; Bezdek, Ehrlich & Full, 1984). The objective is to minimize the function:

uillz; — o1, (2.5)
1

Tm =2

c
i=1j=

where u;; represents the membership degree of data point z; in cluster j, ¢; is
the cluster center, and m is the fuzziness parameter controlling the degree of overlap
between clusters. The algorithm iteratively updates memberships and cluster centers until
convergence, allowing for more flexible cluster assignments compared to traditional hard

clustering techniques.

2.2.2.1.4 Single-Linkage (SL) Clustering

Single-Linkage (SL) clustering iteratively merges the two closest groups based on a
similarity metric (Sibson, 1973). The process starts with each data point as an individual
cluster, represented as a vertex in a disconnected graph. At each iteration, the algorithm
determines the most similar clusters, denoted as G; and G,, and merges them if their
distance satisfies the threshold:

diny = v - max(dy, da), (2.6)

where d; and dy are the average dissimilarities within GG; and Gg, and v > 0 is

a parameter controlling the threshold strictness. The algorithm continues this merging
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process until all points form a single cluster or another stopping condition is met. By
using pairwise distances, SL clustering builds a hierarchy of nested clusters that can be
visualized in a dendrogram, offering an alternative approach to grouping data compared

to centroid-based methods.

2.2.2.1.5 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) reduces high-dimensional data by projecting
it onto a lower-dimensional space while retaining as much variance as possible (Pearson,
1901; Hotelling, 1933; Shlens, 2014). This transformation relies on identifying orthogonal
axes, known as principal components, that capture the most significant variations in the
dataset.

The original data matrix X € R™*" is decomposed into two matrices: the principal

component matrix W € R™** and the projection matrix H € R¥*" where k < min(m,n):
X ~WH. (2.7)

PCA applies Singular Value Decomposition (SVD) to factorize X:
X =Uxv", (2.8)

where U contains the principal components, ¥ is a diagonal matrix of singular values
representing variance, and V7 is the projection of the data. The top k& components

approximate the original dataset, capturing the dominant patterns.

The process involves standardizing the data, computing the covariance matrix C,

extracting eigenvectors, and projecting the data onto the principal components:
1
C=-XXx" H=WwW"X. (2.9)
n
2.2.2.1.6 Non-Negative Matrix Factorization (NMF)

Non-Negative Matrix Factorization (NMF) approximates a non-negative data

matrix X as a product of two lower-rank non-negative matrices (Lee & Seung, 1999):
X ~WH, (2.10)

where W contains basis components, and H represents the weight of each component.
NMEF solves:
IMI}I}II |X — WH||%, subject to W, H > 0. (2.11)

The non-negativity constraint improves interpretability, making NMF suitable for applica-

tions like text analysis, image decomposition, and bioinformatics.
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2.2.2.2 Natural Language Approaches

2.2.2.2.1 Vector Space Models

The vector space model represents sentences as numerical vectors, allowing for the
measurement of semantic similarity and relevance. Each document in a collection of Ng
sentences is encoded as a vector of dimension Ny, where Ny corresponds to the number of
unique terms in the vocabulary. The purpose of this model is to extract and rank the most
relevant sentences within a document. To formally define this model, we introduce the
sentence-term matrix Myger, an Ng X Ny matrix that establishes relationships between

terms and sentences:

wq Wa WN

Vv
S1 W11 W12 ot W1 Ny

Migst = 52 Wa,1 W22 ot Wany (2.12)
SNs WNg,1 WNg2 " WNg,Ny

where each row represents a sentence, each column represents a term, and w;; quantifies

the relevance of term ¢ in sentence j.

The weight w;; depends on three components. The local factor captures the term
frequency within a sentence. The global factor measures the term’s importance across
the entire document. The normalization component adjusts for sentence length, ensuring
comparability. The weight is computed as:

&}‘771

’ norm;’
where

tf; 5 we(sty) if tf; ;>0
e = { Fur(thi ) % fue(sEy) if o5 > -

In Eq. (2.13), norm; normalizes sentence length. In Eq. (2.14), fis(tf; ;) represents term
frequency weighting, and fis(sf;) captures sentence frequency weighting. Table 1 lists

common choices for fir, fisr, and norm;, adapted from Baeza-Yates & Ribeiro-Neto (2008),
Schiitze, Manning & Raghavan (2008), and Dumais (1991).
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22222 LDA

Term frequency

Joe(tfs )

Binary

min {tfi7j, 1}

Natural (raw frequency) tf; ;

Augmented 0.5+0. 57
max; tfy ;

Logarithm 1 + log, (tf; ;)

Log average

1+ log2 (tfi,j)

1+ IOgQ (a’vg’wi/Edj tfl,,])

Sentence frequency

fist(df;)

None

Inverse frequency

1

Ng
log, o

lo

Entropy Z pzi‘; g ( gNiz d

Dij =
Normalization norm;
None 1

Ny
Cosine Z @22 j
i

Ny

Word count Z tf

Table 1 — Common TF-ISF weighting variants.

Latent Dirichlet Allocation (LDA) (Blei, Ng & Jordan, 2003; Blei, 2012) is a

generative probabilistic model designed to uncover hidden thematic structures within a
corpus. It assumes that each document is generated from a mixture of topics, where each
topic is defined by a probability distribution over words. The model takes the vocabulary
size w and the number of topics z as hyperparameters, with documents modeled as Dirichlet

distributions over topics and topics represented as Dirichlet distributions over words.

The generative process follows three steps. First, a Dirichlet distribution « defines
the document’s topic distribution. For each word in a document, a topic is chosen from a
multinomial distribution defined by €. Once the topic is selected, the word itself is drawn
from the topic-specific word distribution 3. This iterative process allows the model to infer

the underlying structure of the text, grouping words into semantically coherent topics.



Chapter 2. Machine learning for solving problems of complex networks:

a network scientist perspective 28

s O
(o ) b

« 0 z w
) N

Figure 2 — LDA model: 7 represents the Dirichlet distribution of topics over the vocabulary,
k denotes the topics, [ corresponds to the multinomial distributions of words,
« is the Dirichlet distribution of documents over topics, M is the corpus, N
represents the documents, 6 is the multinomial distribution of topics, z is the
list of topics drawn from €, and w consists of the words forming a generated
document.

M

2.2.3 Semi-Supervised Learning

Semi-supervised learning (SSL) is a machine learning approach that integrates a
small set of labeled data with a much larger set of unlabeled data. Initially, a model is
trained on the labeled data, then used to predict labels for the unlabeled set. The model
is retrained using only the high-confidence predictions, reinforcing stability against small
input perturbations such as noise and transformations. Graph Neural Networks (GNNs)
are commonly employed in SSL to propagate labels through a graph, where nodes represent
data points and edges encode relationships. By leveraging both labeled and unlabeled

data, deep learning models can enhance their predictive performance.

Deep learning and SSL are central to modern machine learning, particularly in
cases where labeled data is scarce but a large volume of unlabeled data is available.
Deep learning models, especially neural networks with multiple layers, learn hierarchical
representations from raw data, automatically extracting relevant features. These models
are widely used in applications such as image recognition, natural language processing
(NLP), and graph-based learning. GNNs, introduced by Scarselli et al. (2008), Li et al.
(2015), have led to more advanced architectures, including Graph Convolutional Networks
(GCNs), Graph Sample and Aggregate (GraphSAGE), Graph Attention Networks (GAT),
and Graph Isomorphism Networks (GIN).

A seminal study on semi-supervised classification using GCNs was presented by
Kipf & Welling (2016). GCNs effectively capture both local and global graph structures,
improving classification accuracy, particularly in scenarios with limited labeled data.
These models encode graph structure and node features in a way that is well-suited for
semi-supervised classification. Based on stochastic gradient descent (SGD), GCNs employ

graph convolution operations to aggregate features from neighboring nodes, learning node
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embeddings through spectral graph convolutions. This smoothing process ensures that

nodes in the same community share more similar representations.

The forward propagation rule for a GCN at layer [ is defined as:
HO = o (D=4 AD~S HOWO) (2.15)

where H®) represents the node feature matrix at layer [, and W is the trainable weight
matrix for that layer. The matrix A = A + I is the adjacency matrix with added self-loops,
while D is its corresponding diagonal degree matrix. The function o applies a non-linearity,
such as ReLU.

This formulation normalizes feature aggregation using the symmetric normalized
Laplacian D_%flf)_%, ensuring stable training and improved convergence. By propagating
information across multiple layers, the GCN model enables each node to incorporate multi-

hop neighborhood features, capturing both local and higher-order structural information.

Graph Sample and Aggregate (GraphSAGE) (Hamilton, Ying & Leskovec, 2017a)
is a graph neural network (GNN) model designed for inductive learning on large-scale
graphs. Unlike traditional GNNs, such as Graph Convolutional Networks (GCNs), which
require the entire graph for training, GraphSAGE generalizes to unseen nodes, making
it efficient for dynamic and evolving graphs. At each layer [, GraphSAGE updates node

embeddings using the following rule:

h = o (W - AGGREGATE({h{ ™" : u € N(v)})) (2.16)

where hz(f) represents the node embedding at layer [, and N (v) is the set of neigh-
bors of node v. The AGGREGATE function can use different neighborhood aggregation

strategies:

Aggregation Type Formula

Mean Wlw D _ueN (v) h{=v

LSTM LSTM({r{=Y - u € N(v)})
Max-Pooling max ({a(Wpoolhgf*U) Tu € N(v)})

Table 2 — GraphSAGE Aggregation Methods

The weight matrix W is trainable, and o represents a non-linear activation function
such as ReLU. GraphSAGE generates node embeddings by iteratively applying this

aggregation process across multiple layers.

Graph Attention Networks (GAT) (Velickovic et al., 2017) introduce attention
mechanisms into GNNs. Unlike GCNs, which treat all neighbors equally, GAT assigns dif-

ferent importance weights to neighbors through self-attention. This improves performance
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in heterogeneous graphs, where connections vary in significance. The update rule for the

node representation at layer [ 4 1 is:

PO+ — 0( 3 aWWhgp) (2.17)

ueN (v)

where W is a learnable weight matrix, and «,, is an attention coefficient computed

as:

exp (LeakyReLU(aT [Wh||[W h,] ))
Y jen(w) exp (LeakyReLU (a” [Wh,|[Why]))

Qyy = (2.18)
where a is a learnable attention vector, and [-||-] denotes concatenation. The softmax
function normalizes attention scores. Multi-head attention extends this mechanism by

averaging K independent attention mechanisms:

h<l+1>—a( Z Z k>h§j>) (2.19)

k=1ueN (v

This enhances model stability and expressiveness, capturing multiple perspectives

from neighboring nodes.

Graph Isomorphism Network (GIN) (Xu et al., 2018) is designed to match the
expressiveness of the Weisfeiler-Lehman (WL) graph isomorphism test. Unlike GCNs
and GraphSAGE, which rely on mean or max aggregation, GIN uses sum aggregation to
distinguish different graph structures. The update rule for node representation at layer
[+ 1is:

h{I*D = MLP ((1 +e) b+ 3 A ) (2.20)

ueN (v)
where € is a learnable parameter that adjusts the influence of a node’s own features.
The function MLP(-) is a multi-layer perceptron applied to the aggregated representation.
Sum aggregation ensures that GIN retains the same discriminative power as the WL test,
making it robust for graph-level tasks such as molecular property prediction and social

network analysis.

Training large-scale Graph Convolutional Networks (GCNs) poses challenges due
to high computational costs and memory constraints. Cluster-GCN (Chiang et al., 2019)
mitigates this by leveraging graph clustering. Instead of computing convolutions over the
entire graph, Cluster-GCN partitions the graph into smaller clusters and trains on these
subgraphs. Given a partitioned graph G = {C}, Cy, ..., Ck }, where each C; is a cluster, the
GCN update for a node v in cluster C; at layer [ + 1 is:
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~_1 . ~ 1
O+ _ < Dot Ac, Dy Ha)W(w) (2.21)

where flci represents the adjacency matrix of cluster C, Dci is its diagonal degree
matrix, and W® is the trainable weight matrix. The function ¢ applies a non-linearity
such as ReLU.

By restricting computations to clustered subgraphs, Cluster-GCN reduces com-
plexity and memory usage while preserving connectivity. This enables large-scale graph
learning using stochastic gradient descent (SGD) while maintaining strong performance in

deep graph networks.

2.2.4 Reinforcement Learning

Reinforcement learning (RL) focuses on mapping states or situations to actions to
maximize cumulative rewards over time. This approach enables an agent to interact with
an environment, take actions, and receive feedback in the form of rewards or penalties.
According to Sutton & Barto (2018), a reinforcement learning system consists of four main
elements beyond the agent and the environment: a policy, a reward signal, a value function,
and, optionally, a model of the environment. A policy determines the agent’s behavior by
mapping observed states to actions. The reward signal provides immediate feedback on the
desirability of an action, while the value function estimates the expected long-term reward
from a given state. Rewards serve as the primary feedback, whereas value functions predict
the cumulative reward to guide decision-making. A model of the environment, if available,
enables the agent to simulate state transitions and plan future actions. Model-based
methods use this information to optimize decisions, whereas model-free approaches rely

on trial-and-error learning.

A trajectory in reinforcement learning is a sequence of states, actions, and rewards:
T = (807 A07 R07 Sla A17 Rla s )7

where S; represents the state at time t, A; is the action taken, and R; is the reward obtained
after executing A, in state S;. The initial state, Sy, follows a probability distribution py,

defining the starting conditions:

So ~ po(*)-

State transitions can be deterministic or stochastic. In a deterministic setting, the
next state Sy, is given by:
Ser1 = f(Se, Ar),

whereas in a stochastic process, the next state follows a probability distribution:

St+1 ~ P(Stﬂ ’ StaAt)-



Chapter 2. Machine learning for solving problems of complex networks:

a network scientist perspective 32

The reward function provides immediate feedback after an action A; in state .S;, leading
to St+1:
Ry = (S, Ay, Spy1)-

Reinforcement learning problems are often modeled as Markov Decision Processes
(MDPs), which facilitate dynamic programming techniques (Otterlo & Wiering, 2012).
In an MDP, the probability of transitioning to the next state S;;; depends only on the
current state .S;:

P(Si41 | St) = P(Seq1 | S0, 51,82, ..., 5¢),

and is defined by:
p(s' | s) = p(Ser1 = 5" | Sp = 5). (2.22)

Several reinforcement learning algorithms have been developed over time. Monte
Carlo methods estimate value functions and optimal policies by sampling entire episodes
(Kalos & Whitlock, 2008). Temporal-Difference (TD) learning combines ideas from Monte
Carlo methods and dynamic programming by adjusting estimates incrementally before
an episode ends (Sutton, 1988). Q-learning is a widely used model-free algorithm that
learns action-value functions without requiring a model of the environment (Watkins,
1989; Watkins & Dayan, 1992). SARSA (State-Action-Reward—State-Action) is another
model-free approach, introduced by Rummery & Niranjan (1994), which refines Q-learning

by incorporating policy updates based on the agent’s current action selection.

Deep Q-Networks (DQN) extend Q-learning by using deep neural networks to
approximate value functions (Mnih et al., 2015). Deep Deterministic Policy Gradient
(DDPG) is an actor-critic method that extends Deterministic Policy Gradient (DPG) algo-
rithms (Silver et al., 2014; Lillicrap et al., 2015). Actor-Critic methods, such as Advantage
Actor-Critic (A2C) (Mnih et al., 2016), optimize policies by combining value-based and
policy-based methods. The Asynchronous Advantage Actor-Critic (A3C) framework (Mnih
et al., 2016) parallelizes policy updates, improving sample efficiency and stability.

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017) refine policy gradient methods by
improving training stability through constrained optimization. Twin Delayed Deep De-
terministic Policy Gradient (TD3) enhances DDPG by mitigating overestimation bias
using clipped double Q-learning (Fujimoto, Hoof & Meger, 2018). Soft Actor-Critic (SAC)
further improves exploration-exploitation balance by maximizing expected rewards and
policy entropy (Haarnoja et al., 2018). Distributional Soft Actor-Critic (DSAC) refines
SAC by modeling reward distributions instead of expected values, improving robustness in

complex environments (Duan et al., 2021; Ren et al., 2020; Duan et al., 2023).

Unlike supervised and unsupervised learning, reinforcement learning involves active

decision-making where an agent interacts with an environment rather than relying on
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predefined training datasets. Instead of passively observing data, the agent continuously
refines its strategy based on feedback, making reinforcement learning particularly well-
suited for dynamic, uncertain environments where optimal actions must be discovered

through experience.

2.2.5 Embedding Approaches

Embedding methods in machine learning map high-dimensional, categorical, or
complex data into continuous, lower-dimensional vector spaces. This transformation enables
algorithms to efficiently process and analyze data by converting sparse, high-dimensional
representations into dense, compact forms. Such data may include images, text, sound,

music, and other unstructured information.

In complex networks, graph embedding focuses on encoding structural information
into a lower-dimensional space (Wandelt, Shi & Sun, 2020). Network embedding techniques
vary based on their approach to preserving structural patterns, including random walks,

traditional factorization, and neighborhood aggregation.

2.25.1 Random Walks

Random walks are not considered machine learning methods. However, a discussion
of random walks is provided by Sarkar & Moore (2011), highlighting their applications in
fields such as social network analysis, computer vision, personalized graph search, database
keyword search, and spam detection. Random walks provide a versatile framework for
integrating information from multiple paths between nodes, making them particularly
useful for graph-based learning. However, developments in Machine Learning emerge from

random walks such as Deepwalk and node2vec.

2.25.1.1 DeepWalk

DeepWalk (Perozzi, Al-Rfou & Skiena, 2014) is a method for learning latent
representations of nodes in a network. These representations encode social relationships
in a continuous vector space, which can be utilized by statistical models. The algorithm
consists of two main components: a random walk generator and an update procedure.
First, the generator samples a random vertex from the graph as the root of a random
walk. Then, for each vertex, a random walk is generated, and the obtained sequences are
used to update the node embeddings. The SkipGram algorithm (Mikolov et al., 2013)
optimizes these embeddings by maximizing the likelihood of neighboring nodes appearing
in the same sequence. Experimental results demonstrated that DeepWalk outperformed
methods such as Spectral Clustering, Modularity, EdgeCluster, Weighted-Vote Relational
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Neighbor, and Majority across datasets from social networks, including YouTube, Flickr,

and BlogCatalog.

2.25.1.2 node2vec

The node2vec framework (Grover & Leskovec, 2016) provides a flexible and scalable
approach to learning continuous feature representations for network nodes. By adjusting
the parameters of biased random walks, it balances local (BFS-like) and global (DFS-like)
graph structural properties. Inspired by techniques from natural language processing,
node2vec optimizes embeddings while preserving both community structure and structural
equivalence. The method follows three main steps: computing transition probabilities,
simulating random walks, and optimizing embeddings using Stochastic Gradient Descent
(SGD). The authors validated the effectiveness of node2vec on datasets from Facebook,
Protein-Protein Interactions, and arXiv ASTRO-PH, showing improvements in capturing

complex graph structures.

2.25.1.3 TemporalNode2Vec

TemporalNode2vec (Haddad et al., 2020) extends node2vec to dynamic graphs,
addressing the limitation of traditional embeddings that ignore temporal evolution. Many
real-world networks evolve over time, with nodes and edges appearing or disappearing.
TemporalNode2vec incorporates time-dependent features to capture evolving network
structures, ensuring that embeddings reflect dynamic proximities between nodes. The
method accounts for short-term interactions and long-term relationships, improving tasks

such as node classification, link prediction, and community detection.

The framework follows a structured process in steps. First, it preprocesses tem-
poral graph data by tracking nodes and edges that change over time, representing the
dynamic network as a sequence of snapshots or continuous updates. Second, it converts
the graph into a format suitable for embedding, using adjacency lists, edge lists, or matrix
representations while applying windowing techniques for time-series analysis. Third, it
extracts temporal features such as timestamps and edge weights, applies temporal random
walks to capture evolving structures, and defines transition probabilities that incorporate
time dependencies. Fourth, node embeddings are generated using adapted algorithms,
such as TemporalNode2vec, trained with optimization techniques like SGD or negative
sampling to ensure they capture both structural and temporal dynamics. Finally, the
learned embeddings are evaluated on tasks such as link prediction, node classification, or
community detection, validating their ability to represent temporal changes in network

structures.
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2.2.5.2 Traditional Factorization

Traditional factorization methods are discussed in Section 2.2.2. In the context
of advanced embedding techniques, several approaches have been developed to capture

network structures effectively.

2.25.2.1 Locally-Linear Embedding (LLE)

Unlike traditional factorization, LLE preserves local neighborhood structures by
assuming that each data point and its neighbors lie on a locally linear patch of the
manifold. It constructs a weighted graph representing these local neighborhoods and

computes low-dimensional embeddings that best maintain these relationships (Roweis &

Saul, 2000).

2.2.5.2.2 Laplacian Eigenmaps

Laplacian Eigenmaps use the graph Laplacian matrix to obtain low-dimensional
representations. The method constructs a graph where nodes represent data points, and
edges capture similarities. The embedding is derived by solving the eigenvalue problem of
the graph Laplacian (Belkin & Niyogi, 2001).

2.2.5.2.3 Graph Factorization

This approach decomposes a graph’s adjacency or Laplacian matrix into lower-
dimensional representations, preserving the inner-product structure of the graph. It is

similar to traditional matrix factorization but specifically designed for graph structures
(Ahmed et al., 2013).

2.25.2.4 Large-scale Information Network Embedding (LINE)

LINE preserves both first-order (local) and second-order (global) proximities in the
network by optimizing separate objective functions for each and combining them. Unlike
traditional factorization, LINE directly optimizes embeddings to retain specific types of

proximities (Tang et al., 2015).
2.25.25 HOPE

HOPE captures high-order proximities in directed and undirected graphs by de-
composing similarity matrices, such as Katz similarity or Rooted PageRank. It extends
beyond first and second-order proximities, capturing more complex relationships (Ou et
al., 2016).
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2.25.2.6 NetSMF

NetSMF factorizes a matrix that approximates the random walk transition matrix,
preserving the global network structure while scaling efficiently for large networks. It
leverages sparse matrix factorization to handle large-scale networks effectively, unlike

traditional factorization methods, which may struggle with scalability (Qiu et al., 2019).

Not all embedding methods, such as SVD, node2vec, and traditional factorization
techniques, effectively capture the structural properties of real-world complex networks.
Many low-dimensional representations fail to retain critical features such as node degree
and link structure, missing essential network characteristics (Seshadhri et al., 2020). The
primary finding of authors is that low-rank representations (specifically those based on dot
products) cannot effectively model graphs with strong clustering and triangle structures,

particularly for low-degree nodes.

An alternative approach is proposed by Gao et al. (2019), introducing the edge2vec
model, which incorporates edge semantics into graph representations. Unlike traditional
node embedding models that primarily focus on nodes, edge2vec explicitly integrates
edge types into the embedding process, making it suitable for heterogeneous graphs
where edges represent different types of relationships. The model constructs an edge-type
transition matrix that captures transition probabilities between nodes via specific edge
types. This matrix is optimized using an Expectation-Maximization (EM) approach to
refine transition probabilities. Stochastic Gradient Descent (SGD) is then applied to learn
node embeddings, ensuring that the resulting representations capture both node properties
and edge semantics. Edge2vec has been validated on biomedical datasets, demonstrating
superior performance in tasks such as biomedical entity classification, compound-gene

bioactivity prediction, and information retrieval.

2.2.5.3 Neighborhood Aggregation

Neighborhood aggregation aggregates features from a node’s neighbors to learn
a new representation for the node. This method updates node features based on neigh-
boring node attributes. Core techniques include Graph Convolutional Networks (GCN),
GraphSAGE, and Graph Attention Networks (GAT), discussed in Section 2.2.3.

In graph embedding and semi-supervised learning, neighborhood aggregation is the
fundamental operation in GCNs. Applications include user classification in social networks
based on interactions and profile attributes, research paper classification using citation
links and content features, and time-aware recommendation systems in e-commerce and

social media.

GCN applies convolutions on graph data, aggregating information from neighboring

nodes and updating feature representations. This is achieved by transforming neighboring



Chapter 2. Machine learning for solving problems of complex networks:

a network scientist perspective 37

feature vectors and applying non-linear activations. GraphSAGE is an inductive model
that learns node embeddings by aggregating features from sampled subsets of neighbors,
making it efficient for large-scale graphs and adaptable to unseen nodes. GAT introduces
attention mechanisms to weigh the importance of each neighbor when aggregating features,
allowing the model to prioritize more relevant neighbors. This enables GAT to capture

heterogeneous relationships more effectively compared to uniform aggregation methods.

2.3 Network construction

To construct a network, it is essential to address two fundamental questions
(Newman, 2018). First, who are the nodes? These represent the key actors within the
network. Second, what are the edges? These are the connections and relationships between
these actors. We typically align the selection of nodes and edges with the research problem
under investigation. When the system naturally lends itself to a network representation,
such as airline routes, the choices are straightforward (Sallan & Lordan, 2019). In this case,
the nodes are airports, and the edges are the paths connecting them through at least one
airline. However, when working with vector-based datasets, we may choose to represent the
system as a network to model local relationships among data points and uncover global
structures derived from these local interactions. By representing vector-based datasets as
networks, we can also use network-based learning methods to extract deeper insights from
the data.

Vector-based datasets usually consist of a set of features associated with each
individual entity. From these features, we can build a network that connects the entities
in a meaningful way. ML techniques, in particular, provide powerful tools for constructing
complex networks, enabling us to model intricate relationships within the data. In general,
the basic idea is to collect the similar items or items that belong to the same group given

a given metric or model and to connect these entities in order to build a network.

In the remainder of this section, we describe techniques for measuring similarity
from data. We may categorize these techniques into three main groups: similarity-based

techniques, clustering-based techniques and dimension reduction techniques.

2.3.1 Similarity

We may define the similarity between two entities in a dataset as a scalar value
that indicates how closely these entities are based on a specific criterion (Comin et al.,

2020).

To use similarity to represent a network, we must first identify the actors (nodes)
and establish a similarity relationship that will form the edges. However, a key question is

to determine how similar two nodes (data points) are within a network. For continuous
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data, it is relatively straightforward to find similarity measures based on correlation, node
distance, and their variations. However, for categorical data, similarity may not be as
obvious. Textual data, for instance, are categorical and are widely available today in social
networks, magazines, newspapers, and documents in general. The choice of similarity
measure, which is formed by relationships between words, tokens, or even similar phrases -
basically, content - can create different networks depending on the criteria and features
used in the construction of the network. In practice, selecting the right attributes to

characterize the content is far from trivial.

It is also important to note that the selection of the appropriate similarity measure
depends on three key factors: the type of data, the dimensionality of the feature space,
and the significance of magnitude versus direction in the data. The type of data, whether
continuous or categorical, influences the choice of similarity measure. For example, distance
measures are better suited for continuous data, while overlap measures are more appropriate
for categorical data'. Another important factor is the dimensionality of the data. In high-
dimensional spaces, data points tend to become more dispersed, and the concept of
“distance” between points loses its relevance due to the “curse of dimensionality”. In such
cases, cosine-based measures may be more effective. Cosine measures are particularly useful
in several important situations. They work well when the relative composition of features
is more significant than their absolute values, or when we have preprocessed the data with
scaling or normalization techniques, as they focus on direction rather than magnitude.
Additionally, cosine measures are advantageous in sparse datasets, where most entries in
the feature vectors are zeros. In such cases, cosine similarity is effective because the large
number of zero-valued features does not affect its measure. The characteristics common in
text data make cosine measures particularly appropriate. It’s important to remember that
in many text data models, the features of a text are the words that compose it, resulting
in high-dimensional data. The focus is on the relative proportion of the words used rather
than their absolute counts. Additionally, text data is usually sparse because, in a collection

of texts, many words that appear in one group may not appear in another.

We typically classify similarity measures into three categories: distance measures,
cosine measures, and overlap measures. It is important to note that although distance
measures are not inherently measures of similarity but rather the inverse, we may determine
how similar two items are based on the distance between them. To do this, we may set a

threshold and consider two items similar if the distance between them is smaller than this
threshold.

For example, using similarity (distance) measures, we can convert our vector-based

dataset into a network. By setting a threshold, we may construct a network where a

L Although overlap measures are originally more suitable for dealing with categorical data, it is worth

noting that there are now extensions of these measures for the continuous case (Costa, 2021b).
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connection exists between two entities if the similarity (distance) measure is greater
(smaller) than the threshold (Chi, Liu & Lau, 2010). A critical decision in this process is
choosing the threshold that will determine whether to accept or reject connections between

entities. The chosen threshold value can lead to either denser or sparser networks.

Although the concept of similarity spans multiple disciplines, it plays a central
role in machine learning (ML), where models assess and quantify the degree of similarity
or dissimilarity between pairs of data instances. This capability supports a wide range
of applications, including recommendation systems (Singh et al., 2020; Liu et al., 2014),
image recognition (Rahman, Bhattacharya & Desai, 2007; Deepak & Ameer, 2020), and
anomaly detection (Schneider, Ertel & Ramos, 2016), where understanding inter-instance
relationships is critical. Similarity-based network models convert non-relational datasets
into relational structures by linking data points based on similarity, thus enabling the
construction of networks that reflect the strength of these relationships. Whereas super-
vised learning predicts labels from individual data instances and unsupervised learning
reveals latent structures in unlabeled data, similarity-based learning focuses on modeling
relationships between pairs of instances. This approach always requires a reference pair to
define similarity or difference. It offers distinct advantages by enabling tasks such as metric
learning, ranking, and identity verification, which extend beyond the scope of standard
supervised or unsupervised methods. By emphasizing pairwise relationships, similarity-
based models capture local patterns and subtle distinctions that traditional methods often
overlook—particularly those that ignore network topology or structural dependencies in
data. In this paper, we present a comprehensive overview of similarity-based learning and
its contributions to relational modeling and network-based representation. For further
details on similarity measures and methodologies, we refer readers to Zadeh & Goel (2013),
Aggarwal et al. (2015), Silva & Zhao (2016), Vijaymeena & Kavitha (2016), Shvydun
(2023), Boriah, Chandola & Kumar (2008).

2.3.1.1 Distance measures

The most common way to define the distance between two vectors @ and y is to

use the L,-norm as in

dp(x, y) = (fﬁ i — y#”) 1/p, (2.23)

i=1
where K is the number of features of the set of vectors (Kolmogorov & Fomin, 1975).
There are two special cases. When p = 2, we get the Euclidean distance, and when p =1

we get the the Manhattan distance.

Another popular measure of distance is the Mahalanobis distance. Supposing, as

before, that we use K features to characterize an entity. We may define > as the K x K
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covariance matrix of the data set. In this case, the (i, j)th entry of the covariance matrix
is equal to the covariance between the dimensions ¢ and j. Then, we may evaluate the

Mahalanobis distance as

du(z.y) = \/(z —y). S L(z - y)T. (2.24)

The Mahalanobis distance is similar to the Euclidean distance, except that it normalizes

the data on the basis of the inter-attribute covariances.

2.3.1.2 Cosine measures

The Cosine similarity computes the cosine of the angle between two vectors,
capturing their orientation rather than their magnitude (Salton, Wong & Yang, 1975;
Schiitze, Manning & Raghavan, 2008). We may define it as

(2,y) = 2
Y Tyl

As previously mentioned at the start of this section, cosine similarity is a commonly
used measure in text analysis. A typical application of this measure is in texts represented
by space vector models, as discussed in Section 2.2.2.2. For example, Cajueiro et al. (2021)
introduce a network based on news similarities to model indirect contagion. In their study,
they use news articles about companies to measure similarities between them, employing

cosine similarity as the measure.

Another important measure of similarity in this context is the correlation coefficient
(Pearson, 1896), which is equivalent to cosine similarity for mean-centered vectors. To
evaluate the correlation between two vectors & and y, we calculate the cosine similarity
between the vectors after subtracting their means. We may find a well-known application
of the correlation measure to build networks in Mantegna (1999). In this study, the authors
derive a graph from the matrix of correlation coefficients computed between all pairs of
stocks in the portfolio by considering the synchronous time evolution of the differences in

the logarithm of daily stock prices.

2.3.1.3 Overlap measures

Focusing on vectors with qualitative information, the most simple overlap measure
is to count the number of times two features arise in two vectors. Thus, we may evaluate

the Overall similarity between two vectors as

K

S(x,y) =D b(xi, y:),

i=1

where K is the number of features and



Chapter 2. Machine learning for solving problems of complex networks:

a network scientist perspective 41

b<xi7yi) = {

0, otherwise.

We may generalize the overall similarity by normalizing it in different ways.

The Inverse occurrence frequency generalizes it by replacing b by introducing a
weighting mechanism that makes similarity more informative when dealing with categorical
data of varying frequency distributions (Boriah, Chandola & Kumar, 2008). The logarithm
function helps to penalize common categories more, reducing their contribution to similarity,

with k atributtes.

1, if z; = y;
f[(l‘iayi) =

1
1+log fi(x;) xlog fi (i)’

otherwise

The Goodall measure assigns a high similarity if the corresponding values are rare,
regardless of the frequencies of other values. Let pg(x) be the fraction of records in which

the kth attribute takes on the value of x in the data set. This measure replaces b by

fG<Ii,yi) — { 1 —pi(%), if xi =y

0, otherwise.

The Jaccard Index (Jaccard similarity coefficient) measures the similarity between
two vectors by comparing the number of their common features to the total number of
features that arise in the two vectors (Jaccard, 1901). We may define it for two vectors x

and y as

Kob(x, ys
J(w,y) —_ Zz:l ( Z7y1>,
nr
where nr is the total unique coordinate-category pairs in both vectors. The Jaccard Index
ranges from 0 to 1, where 0 means no overlap and 1 means complete overlap. A higher

value indicates more similarity.

The Sorensen-Dice Coefficient is similar to the Jaccard Index but gives more weight
to the elements that overlap between the two vectors (Sorensen, 1948). We may define it

for two vectors x and y as

K
D(a:,y) _ > ie1 ba(lxi, yz)

Like the Jaccard Index, the Sgrensen-Dice Coefficient ranges from 0 to 1. Thus, a higher

value indicates more similarity.

As mentioned earlier, to maintain consistency with our goal of creating networks
based on the similarity of vectors representing entities, we have explicitly defined the

Jaccard Index and the Sorensen-Dice Coefficient by comparing the categorical coordinates
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of the vectors. Typically, these similarity measures are defined differently, usually based
on the sizes of sets of features and their unions and intersections. For more details, see
Aggarwal et al. (2015). Tt is also worth noting that we can use the Jaccard Index in
its more conventional form to generate networks. For example, Wachs & Kertész (2019)
applies the Jaccard Index to weight the connections of firms based on the similarity of
their co-bidding behavior, which is part of a method to detect cartels in public auction

markets.

2.3.2 Clustering

We may also employ clustering approaches to create networks from vector-based
datasets. The construction involves using these techniques to transform a vector-based
dataset into a network where each node represents an item, and edges constitutes rela-
tionships or similarities between these items. In order to avoid that the resulting network
become disconnected, consisting of isolated clusters with no interconnections, the clus-
tering technique should allow items to belong to multiple clusters simultaneously. The
process begins with data preparation, where you start with a vector-based dataset in which
each item is represented by a feature vector. This numerical representation captures the
attributes of each item, making it suitable for clustering algorithms. The next step is to
apply overlapping clustering. Choose an appropriate overlapping clustering method based
on the specific characteristics of your data and the objectives of your analysis. By applying
the selected method, you obtain cluster membership degrees or probabilities for each item,
indicating the extent to which each item belongs to different clusters. After clustering,
you define the network nodes by designating each item in the dataset as a node in the
network. This establishes a one-to-one correspondence between data items and network
nodes, forming the foundation of your network structure. To establish edges between the
nodes, you have two options. The first option is to create an edge between two nodes if
they share any common cluster. This means that if two items are both members of at least
one cluster, they are directly connected in the network. The second option is to weight
the edges based on the similarity of their cluster membership degrees, such as using cosine
similarity measures. This approach not only connects nodes that share clusters but also
quantifies the strength of their connection based on how similar their cluster memberships
are. The resulting network is a more connected and intricate structure where items are

linked based on shared characteristics.

There are several techniques for clustering that allow the items to belong to more
than a group. The most common are the Gaussian Mixture Model and the Fuzzy C-Means
discussed in Section 2.2.2.1. If we may characterize the items only based on textual data,
another option is to use the LDA discussed in Section 2.2.2.2.2. Other clustering methods

that we can use are hierarchical clustering and spectral clustering. Furthermore, Cupertino,
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Huertas & Zhao (2013) propose the use of an aglomerative clustering algorithm known as
the Single-Linkage (SL) clustering heuristic (Sibson, 1973), discussed in Section 2.2.2.1,

defending that the formed network is sparse and connected.

2.3.3 Dimension reduction techniques

In an approach similar to the construction of networks using similarity, dimension
reduction techniques have a previous step: instead of applying the similarity directly in
vector, we proceed with dimension reduction, and then apply the techniques in Section
2.3.1. Dimension reduction approaches are also useful to create networks from vector-based
datasets. The idea is very similar to the one considered in the clustering approach to

construct networks discussed in the Section 2.3.2.

Implementing dimension reduction for network construction involves several key
steps that transform high-dimensional data into meaningful network representations. The
process begins with data preparation, where you start with a high-dimensional vector-
based dataset in which each item is represented by a feature vector. This numerical
representation captures the essential attributes of each item, making it suitable for analysis
and subsequent dimension reduction. The next step is to apply dimension reduction. We
may choose an appropriate dimension reduction technique based on the nature of the data
and the analysis objectives. We present some of these methods such as PCA and NMF in
Section 2.2.2.1. Other methods are t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Maaten & Hinton, 2008), Uniform Manifold Approximation and Projection (UMAP)
(McInnes, Healy & Melville, 2018), Isomap (Balasubramanian & Schwartz, 2002), and
Diffusion Maps (Coifman et al., 2005).

After reducing the dimensionality, we proceed to construct the network. Each item
in the dataset becomes a node in the network, establishing the fundamental elements of your
network structure. To establish edges between the nodes, a common approach is to calculate
the correlation or similarity between items’ reduced representations, using measures such as
cosine similarity or Euclidean distance, and connect nodes that exceed a certain similarity
threshold. This approach allows to quantify the strength of the relationship between items
and connect those that are sufficiently similar. The resulting network is one where items
are connected based on their proximity or similarity in the reduced-dimensional space,

effectively capturing complex relationships in the data.

2.4 Centrality

One of the key attributes of a node within a complex network is its centrality, which
allows us to identify some special nodes. For instance, in banking networks, our focus is on

identifying highly interconnected nodes, often referred to as "too connected to fail" (Gabrieli,
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2012; Yun, Jeong & Park, 2019). In transportation networks, our interest lies in pinpointing
central locations, critical for efficient network functioning (Sabzekar, Malakshah & Amini,
2023; Stamos, 2023). In electrical power networks, we aim to identify the critical stations
to prevent widespread blackouts (Shuvro et al., 2019; Sami & Naeini, 2024). In ecological
food chains, our concern is identifying the species whose extinction could have cascading
effects on others, exploring strategies to minimize species extinction within these chains
(Tang, Wang & Zhou, 2024; McDonald-Madden et al., 2016). In biological networks, such
as molecular systems, the interconnectedness of molecular components typically involve
the joint interaction of multiple molecules rather than individual factors (Wang, Wang &
Zheng, 2022). The central or key node within a network holds significant importance as it
influences other nodes and offers insights into the behavior, communication patterns and

dynamics of the system structure (Rodrigues, 2018).

The centrality measures determine more important and relevant elements. By
identifying central nodes, one can gain a better understanding of the dynamics of the
network, its flow of information, and the pathways through which interactions occur. These
central nodes serve as crucial hubs, have the role of connecting communities, and play a

pivotal role to understand the network’s connectivity.

In network science, various traditional methods are available for evaluating central-
ity, including local centrality measures like degree centrality (Shaw, 1954),Nieminen (1974)
and Freeman et al. (2002) , and global centrality measures such as eigenvector centrality
(Negre et al., 2018), pagerank centrality (Page et al., 1999), Katz centrality (Katz, 1953) ,
distance-based measures (betweenness (Shaw, 1954; Freeman et al., 2002) and closeness
centralities (Sabidussi, 1966) ), path-based and walk-based measures (Freeman, 1977;
Newman, 2005), vitality (Restrepo, Ott & Hunt, 2006), and general feedback centrality
(Koschiitzki et al., 2005), but often rely on predefined mathematical formulations and algo-
rithms with high and complex computation, with large time to processing. With the rise of
machine learning (ML), new data-driven approaches have emerged to enhance and extend
centrality analysis in various networked systems. This section provides an overview of key
ML techniques for centrality prediction and optimization, discusses their benefits over
traditional methods. Alternatively, are employed approaches include supervised methods,

unsupervised methods, reinforcement learning techniques and embedding aproaches.

2.4.1 Supervised methods

Supervised methods for calculating centrality often rely on approximation tech-
niques, especially for massive networks containing millions or billions of vertices and

edges.

In general, traditional centrality algorithms of weighted graphs operate in polyno-

mial time. However, as networks grow to encompass millions or even billions of vertices,
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the processing time for these measures increases dramatically. Research indicates that
computing the exact betweenness and closeness centrality in massive networks could take
days, months, or even years (Bader et al., 2007; Wang, 2006; Cohen et al., 2014).

The supervised methods has four steps: the collection of the necessary training
data, the application of a training algorithm such as one of those presented in Section
2.2.1, the analysis using an accuracy model, and the evaluation of the centralities using
these best-fit regression model. A significant challenge when using supervised methods
is the need for labeled data— specifically, training data that includes network centrality
information. In these models as discussed in Section 2.2.1, we have the input features
linked to the target variable, which must incorporate centrality labels from historical data
to estimate the centrality of news vertices. However, obtaining such labels is often difficult,
which is why applications of this approach are relatively rare. Proxy variables can capture

the centrality in network and serve as target variables in the model.

In particular, Kumar, Mehrotra & Mohan (2015) propose the use of a feedforward
neural network with error backpropagation training to estimate vertex centrality in social
networks. The main objective is to predict the relative order of centrality between nodes,
and not necessarily the absolute values. To this purpose, they build a simple architecture
with four inputs, a hidden layer with two neurons and a single output. For input, they use
features such as the number of nodes, number of edges, node degree, and the count of nodes
within a two-hop reach. These attributes are chosen because they are easily computable
and because they capture both the global size of the network and the local structure of
the vertex. The choice of a 4-2-1 architecture aims to keep the model simple and avoid
overfitting. During training, the authors use traditional algorithms like Power Iteration
to calculate the exact eigenvector centrality (or PageRank) as supervised output, and
evaluate the network’s performance using the Pearson correlation between the predicted
and actual values. The neural network can achieve correlations greater than 0.9 with
the actual centrality values, while drastically reducing the calculation time compared to
conventional methods. The Power Iteration method can be very slow, as the number of
iterations required to converge depends on the network’s structure. For large-scale networks,
traditional centrality algorithms can become computationally infeasible due to their high
time complexity. By using neural networks, the authors find these models are much faster
in estimating the ordering of nodes based on centrality values, offer significant advantages
in terms of speed, scalability, and computational efficiency, especially for large-scale social

networks, making it a more practical solution for real-world applications.

Grando & Lamb (2015) propose neural networks and decision trees models to
approximate complex centrality values efficiently training with input features of low com-
plexity centrality measures (such as Betweenness, Closeness, Degree, and Eccentricity) to

estimate target variable from high complexity centrality measures (Eigenvector Centrality,
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Information Centrality, Subgraph Centrality and Walk-based Betweenness). The data
comes from the simulation of several complex networks modeled to reflect the charac-
teristics of real-world social networks and other types of complex networks. The final
dataset contains 5,765 networks, totaling 1,446,643 vertices and 39,655,102 edges. Similarly,
Grando & Lamb (2016) use, in the training phase, degree and eigenvector centralities as
input features, as they are easier to compute and provide relevant structural information
about the network. The more complex centrality measures, Betweenness and Closeness, are
target variables. The objective of the machine learning models was to approximate these
time-consuming centralities based on the simpler input features. The authors generated
2,700 synthetic networks using the Block Two-Level Erdds and Rényi (BTER) model, which
produces networks that closely resemble real-world networks. Also, regression models like
neural networks (GNN) for approximating huge networks using the Block Two-Level Erdds
and Rényi (BTER) model demonstrate superior performance and reduce computational
costs compared to traditional approaches such as Linear Regression, Regression Trees,
Support Vector Machines (SVM) (Grando, Granville & Lamb, 2018).

Hajarathaiah et al. (2024) also apply supervised learning models to estimate node
importance in complex networks based on centrality measures. They use several real-world
datasets, including U.S. airport connectivity, neural connections in a nematode worm,
co-authorship networks in the field of network science, and a political blog network from
the 2004 U.S. presidential election, which includes 643 blogs and 2,280 hyperlinks. The
input features for the nodes in the networks include traditional centrality measures like
Degree, Clustering Coefficient, Katz Centrality, and novel centrality measures like Local
Relative change in Average Degree, Local Relative change in Average Clustering Coefficient
and Local Relative change in Average Katz. Additionally, the model includes infection
rate as an important feature to capture the node’s ability to propagate information or
infections across the network.This study defines the target variable as node significance,
using simulation from epidemic models to determine it, specifically the SIR (Susceptible-
Infected-Recovered) and Independent Cascade (IC). These models simulate the infection
process and evaluate the true spreadability of a node. The labels for the nodes reflect the
extent of their contribution to the epidemic spread. They use final scale of an outbreak
associated with each node to assign labels and employ them to train the machine learning
models. The paper concludes that machine learning techniques could effectively improve
node significance identification, especially in propagation-based scenarios, by considering

both local and global structural information and infection rates.

2.4.2  Unsupervised methods

Unsupervised methods in network centrality do not rely on labeled centrality

scores, unlike supervised learning. This offers an advantage in cases where computational
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constraints, as discussed at the beginning of the Section 2.4.1, prevent the calculation
of traditional measures in large-scale networks. Instead, it discovers patterns, structures,
and hidden representations of nodes that can be used to infer centrality measures. The
modeling process involves feature extraction, dimensionality reduction, clustering, and

graph embedding.

Unsupervised methods encompass a broad range of models and tools, as discussed
in Section 2.2.2. These approaches reduce computational costs and remove the need for
labeled data, which makes them especially suitable for large and dynamic networks. To
build an unsupervised model, one typically follows these steps: define the centrality type
to estimate; prepare the graph data, including the adjacency matrix and, if available, node
features; select an embedding method to project nodes into a low-dimensional space; train
the model using the techniques outlined in Section 2.2.2; evaluate the resulting centrality
estimates; optionally fine-tune the model to improve performance; and finally, apply the

model to new graphs or unseen nodes for scalable centrality prediction.

For instance, Rakaraddi & Pratama (2021) propose Centrality using Unsupervised
Learning (CUL), a method that ranks nodes by centrality without relying on labeled
data—an advantage in settings where such information is unavailable or expensive to
obtain. They design an encoder-decoder architecture that classifies nodes based on their
structural relevance. The encoder, implemented as a Graph Neural Network (GNN), takes
as input the graph structure (through the adjacency matrix) and node-level features
(such as degree) to produce low-dimensional embeddings that reflect each node’s position
and structural role within the network. The decoder, a Multi-layer Perceptron (MLP),
maps these embeddings to centrality scores. The authors compare CUL to a supervised
baseline—Centrality with Supervised Learning (CSL)—which uses synthetic graphs labeled
with Eigenvector Centrality (EC) values. Results show that CUL outperforms CSL in
identifying high-centrality nodes and computes faster than conventional EC estimation

methods.

Coppola & Elgazzar (2020) use a YouTube dataset of user interactions to detect
communities, identify central users (influencers), and find maximal cliques. They first apply
unsupervised clustering methods (Spectral Clustering and Louvain Modularity) to partition
the network into communities. Then, they compute degree centrality, clique centrality,
and a combined measure called “average rank” centrality, which balances a node’s direct
connectivity with its participation in densely connected groups. By comparing centrality
scores within and across communities, they identify the most influential users both locally
and globally. This combined use of community detection and centrality enables a more
nuanced understanding of user roles in the network and proves useful in applications such

as pinpointing niche influencers for marketing strategies.



Chapter 2. Machine learning for solving problems of complex networks:

a network scientist perspective 48

2.4.3 Reinforcement learning

The idea of applying reinforcement learning to assess the centrality of nodes in
complex networks comes from methods that model network characteristics using walkers
within these networks. A walker is a conceptual entity that moves through the nodes of a
network according to specific rules. Specifically, we may identify three different types of
walkers: Random Walkers (RWs) (Noh & Rieger, 2004; Costa & Travieso, 2007; Xia et
al., 2019), Directed Walkers (DWs) and Travelling Walkers (TWs). A RW is a walker that
moves from node to node in a network by selecting one of the neighboring nodes at random
in each step. They are useful in scenarios where we want to understand the overall structure
of the network without a specific target. But, they are inefficient for reaching specific
targets or optimizing travel paths due to the lack of direction?. A DW, on the other hand,
uses additional information to navigate through the network more efficiently compared
to random walkers (Tadi¢, Thurner & Rodgers, 2004; Liu et al., 2007). This additional
information can come from local information (like node degree or edge weight) or global
information (like shortest path or centrality measures). It is more efficient for targeted
navigation, optimization, and scenarios where reaching a specific node or optimizing a
path is important. But, DW requires additional information and computational resources
to determine the best direction to move. A TW travels with an optimization goal, such
as minimizing costs, distance, or time (Danila et al., 2007). This approach considers the

overall network structure and uses sophisticated strategies to achieve efficient navigation.

The use of reinforcement learning to explore node centrality in complex networks
typically focuses on variations of TW that minimize costs. In particular, Cajueiro (2009)
extends traditional network centrality concepts, such as minimal access information, which
evaluates the ease of accessing all other nodes from a specific node, and hide, which
assesses how difficult we can locate a node from another random node within the network
(Sneppen, Trusina & Rosvall, 2005; Rosvall et al., 2005). This adaptation depends on how
he defines the costs for traveling a specific path. Moreover, Cajueiro (2010) applies the
methods from Cajueiro (2009) to evaluate the centrality of two complex networks: the
Boston subway network and the London rapid transit rail system. He also compares the
centrality derived from the reinforcement learning paradigm with traditional centrality
measures such as degree, closeness centrality, graph centrality, and betweenness centrality.
Additionally, Cajueiro & Andrade (2009) presents a comprehensive framework using a
first-visit Monte Carlo algorithm to identify and quantify progress in the learning paths
process by the walker, exploring the difficulty of learning paths in complex networks. They
show that this difficulty relates closely to the network’s topology. He tests the method on

random networks, scale-free networks, Apollonian networks, and four real-world networks.

2 Tt is worth mentioning that there are more efficient variations of random walkers such as the ones that

do not return to the node it situated at the previous step, that try to avoid walking in loops or tries to
avoid revisiting the node that it has ever visited in a run of search (Yang, 2005).
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2.4.4 Embedding approaches

Embedding methods for centrality tasks map nodes or edges into a low-dimensional
vector space that preserves the network’s structural properties. These representations
simplify tasks such as centrality estimation, node ranking, and influence detection, espe-
cially in large and complex networks. Traditional centrality measures—such as degree,
betweenness, or closeness—often rely on manual feature design and specific assumptions
about network structure. In contrast, embedding approaches capture structural patterns

automatically, offering scalable and more flexible alternatives.

Puzis et al. (2018) introduce Embedding Centrality (EmbC), a fully unsupervised
method that estimates centrality based on node embeddings. Using a Word2Vec-style
model (CBOW or skip-gram), they apply random walks to learn vector representations of
nodes. The centrality score of a node corresponds to the dot product between its embedding
and the center of mass of all embeddings in the network. This score reflects a node’s
overall affinity with the graph. The method produces results that fall between traditional
measures like betweenness, closeness, and eigenvector centrality, while remaining adaptable

across different types of networks.

Most embedding models only preserve first- or second-order proximities, which may
fail to capture broader notions of importance tied to centrality. To address this, Chen et al.
(2019) propose GraphCSC, a model that incorporates centrality information directly into
a graph convolutional network. They modify neighbor sampling by prioritizing nodes with
higher centrality (based on measures such as degree, betweenness, closeness, or PageRank).
For each type of centrality, they construct separate embeddings and combine them using
an attention mechanism that weights each view according to its relevance. This approach

produces embeddings that integrate both local proximity and global importance.

Wandelt, Shi & Sun (2020) also explore how deep learning can approximate complex
centrality measures. They apply a neighborhood aggregation model with Gated Recurrent
Units (GRUs) to generate node embeddings, then estimate centrality scores using a neural
network trained with a pairwise ranking loss. Rather than predicting exact centrality
values, the model learns to preserve the relative ranking of nodes. This unsupervised
approach allows fast approximation of centrality metrics—such as betweenness, closeness,
eigenvector, and Katz—without computing them directly, which makes it suitable for

large-scale networks.

Zou, Li & Luo (2024) propose the CNCA-IGE model (Complex Network Centrality
Approximation using Inductive Graph Embedding) to efficiently approximate closeness
and betweenness centrality rankings in large-scale networks. Rather than computing
these metrics directly—which remains computationally expensive even with traditional

approximation techniques—the authors reframe the problem as a learning task. CNCA-IGE
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combines inductive graph neural networks with an encoder-decoder architecture to predict
centrality rankings. The encoder learns node embeddings from structural information,
while the decoder maps these embeddings to centrality scores. For betweenness centrality,
the model integrates an MLP-Mixer decoder to improve robustness and predictive capacity.
The model trains on diverse synthetic and real-world networks using known centrality
values and achieves strong performance while drastically reducing computation time. By
learning to approximate complex rankings from network structure alone, CNCA-IGE

provides a scalable alternative for centrality estimation in large or dynamic graphs.

2.5 Influence

In complex networks, influence refers to a node’s ability to trigger and sustain
diffusion processes—such as the spread of information, behaviors, or contagion—throughout
the system. While centrality measures often identify prominent nodes, they fail to capture
the influence of less central ones that can nonetheless initiate broad cascades (Lawyer,
2015). At the local level, influence reflects the directional effect from one node to another
and depends on edge strength. Globally, network structure can assign disproportionate

influence to certain nodes, regardless of their degree or centrality (Sun & Tang, 2011).

Influential nodes are not always central. In many networks, especially covert or
strategic ones like terrorist organizations, centrality can mislead. Leaders may avoid
central positions to conceal their role, maintaining influence through indirect control or
coordination. Influence, in these cases, depends on access to resources, ability to mobilize
others, or initiate actions, not on structural visibility (Xuan, Yu & Wang, 2014). Centrality-
based methods often fail in such settings, as they prioritize highly connected nodes and

overlook others with disproportionate impact (Zhu, Zhan & Li, 2023).

Traditional influence models—such as Information Diffusion (Matsubara et al.,
2012), Influence Maximization (Kempe, Kleinberg & Tardos, 2003), and propagation-
based models like Linear Threshold (LT) and Independent Cascade (IC) (Granovetter,
1978)—rely on manual feature design. These features vary by domain and often lack
generalizability. A metric that performs well for retweet prediction on Twitter, for instance,
may fail when applied to citation networks, where behaviors and structures differ. As a

result, traditional approaches require costly redesign when applied to new contexts.

Machine learning offers an alternative by automatically learning influence patterns
from data. These models adapt to varying network structures without manual intervention.
Qiu et al. (2018) introduce Deeplnf, a deep learning framework that predicts whether
a user will adopt a behavior—such as retweeting or citing—based on the behavior of
nearby nodes and the structure of their local network. The model receives a fixed-size

subgraph centered on the user, including neighbor activity status and node-level features.
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A pre-trained embedding layer converts each node into a vector. DeepInf then applies
a Graph Neural Network (GNN) — either a Graph Convolutional Network (GCN) or a
Graph Attention Network (GAT)— to capture influence patterns. GAT improves upon
GCN by assigning attention weights, emphasizing more influential neighbors. The model
outputs a binary prediction: whether the user will perform the action within a time
window. Trained on real-world data from Twitter, Weibo, and Digg, Deeplnf learns directly
from network dynamics and outperforms traditional models like Logistic Regression (LR),
Support Vector Machine (SVM), and PSCN. DeepInf-GAT, in particular, achieves the

best results.

While Deeplnf exploits local structure and attention mechanisms to improve
prediction, it still assumes that the influence exerted by each neighbor is independent. This
simplification overlooks important correlations in behavioral adoption across networks.
Many existing models assume that influence probabilities across neighbors are independent.
Luceri, Braun & Giordano (2018) challenge this assumption and develop a model that
explicitly captures interdependencies among peers. Their framework recognizes that a
user’s behavior depends not only on which neighbors have adopted an action but also
on the connections between those active neighbors. They formulate the problem as a
supervised classification task and implement a deep neural network (DNN) to model these
influence dynamics. The input comprises a one-hot vector representing the target user
and a binary vector indicating which of their friends have adopted the behavior. These
vectors pass through fully connected layers: lower layers identify local influence patterns,
while upper layers learn global structural relationships. The model is trained on data
from Plancast, an event-based social network that records both online interest and offline
participation. Each observation corresponds to a user-event pair labeled according to
actual attendance. By incorporating both positive and negative examples and learning
from the underlying dependency structure, the model outperforms classical approaches
such as Independent Cascade (IC) and Linear Threshold (LT), which rely on independence

assumptions.

2.6 Node classification

In node classification, each node in the network belongs to one (or more) categories
or classes. Given some nodes with known labels and the structure of the network, the
goal is to predict the labels of the remaining nodes. This includes leveraging the network
topology and node attributes to predict and understand the roles, behaviors, or character-
istics of nodes within the network. Some applications are: to identify influential users or
detect communities in social networks, to classify proteins based on interaction networks
in biological networks, and to identify topic-specific authorities or detect anomalies in

information networks. The classification involves methods algorithms such as Supervised
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Learning, and Transfer Learning.

2.6.1 Supervised learning

In supervised learning, the goal is to train a classifier based on the examples
of nodes that are labeled so we can apply it to the unlabeled nodes to predict labels
for them. These methods use features and structures from the network, such as node
attributes, graph topology, and centrality measures, to train classifiers that can predict
node labels. However, a major challenge lies in the complexity of the graph structure itself,
which encodes rich relational data that traditional classifiers often struggle to process.
Furthermore, supervised models typically require a substantial amount of labeled data,
which can be costly and time-consuming to obtain. These models may also fail to generalize
to new graphs or to unobserved regions of the network in the absence of structurally
similar instances. There is a rich literature on node classification, available in Zhao, Zhang
& Wang (2021), Tang, Aggarwal & Liu (2016), Maurya, Liu & Murata (2022), Rong et al.
(2019), Wang et al. (2020), Luan et al. (2021).

A foundational survey by Bhagat, Cormode & Muthukrishnan (2011) offers a
comprehensive overview to existing approaches to node classification in social networks.
The authors elucidate that traditional machine learning classifiers often rely on node
features such as profile variables (e.g., age, location) to train models for label prediction.
However, the authors discuss an approach that actively incorporates structural features from
the graph to improve the accuracy of node classification. These structural features, such as
proximity, degree, similarity, and paths between nodes, neighborhood label distributions,
and connectivity patterns provide a richer context for classification tasks. The paper
emphasizes the utility of incorporating properties of nearby nodes, suggesting that the
labels of a node’s neighbors can form a canonical structure that is predictive of the node’s
own label. This idea exploits the homophily principle, where nodes that are close or
similar tend to share similar labels, as well as co-citation regularity, which holds when
similar individuals tend to refer to or connect with the same entities. The study compares
several methods for node classification. Feature-based methods rely on straightforward,
interpretable features such as degree, neighborhood size, and shortest path distances to
train classifiers like Naive Bayes or Decision Trees, though these may not capture the
complex patterns inherent in network data. Alternatively, random walk-based methods
propagate labels across the graph by simulating random walks; the model infers a node’s
label by iteratively propagating existing labels through the network and computing the
resulting label distribution among its neighbors. It uses a transition matrix (like a Markov
chain), where each entry p;; represents the probability of going from node ¢ to node j in
one step. Over several iterations (or in the limit, when the process converges), we obtain

a probability distribution over which labels are most likely for each node. For instance,
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in Label Propagation, at each step, each unlabeled node takes the set of distributions
of its neighbors from step t — 1 and takes their mean as its label distribution for step t.
Furthermore, the authors design an iterative classification method that constructs node
features by combining a node’s own attributes with the labels of its neighbors and, if
needed, those of more distant nodes in the graph. The iterative classification algorithm
repeatedly updates feature vectors and applies a classifier to predict labels for unlabeled
nodes, allowing the classifier to dynamically propagate and refine information through
the network. Similarly, random walks for label propagation adjust labels over multiple
iterations, enabling the labels to spread from labeled nodes to unlabeled nodes based on
their proximity, thereby capturing indirect relationships and influence flows within the
network. Overall, the work provides a comprehensive comparison of these approaches,
demonstrating that incorporating structural and contextual information from the network
can significantly enhance node classification performance compared to traditional feature-
based methods.

The previous paper supports a hybrid approach that integrates node attributes
and structural features, highlighting the value of both local information and network
topology in node classification. In contrast, in a more recent development, Li & Pi (2019)
introduce DNNNC (Deep Neural Network for Node Classification), a supervised learning
model for node classification in complex networks. This model is attractive because it
relies solely on the network structure and does not incorporate additional node features.
This is, in fact, one of the central contributions of the article: demonstrating that it is
possible to achieve superior performance in supervised classification tasks even without
access to node attributes, using only the network topology. Unlike traditional approaches
that separate the representation learning and classification stages, typically using network
embeddings followed by classifiers such as SVM, DNNNC unifies these stages into a single
end-to-end trainable architecture, thus avoiding suboptimal solutions. The methodology
begins by constructing the Positive Pointwise Mutual Information (PPMI) matrix from
the network adjacency matrix. This matrix captures co-occurrence patterns among nodes
using a random surfing strategy inspired by the PageRank model, and it serves as input
to a deep neural network composed of two stacked sparse autoencoders and a softmax
layer. The model first employs unsupervised pre-training of the autoencoders to learn
compressed, nonlinear structural representations of nodes. It then uses the softmax layer
to train on the available node labels, completing a supervised learning process. Finally, it
fine-tunes the entire architecture via backpropagation to jointly optimize feature extraction
and classification. The authors evaluate DNNNC on three widely real-world datasets:
BlogCatalog, Flickr, and Cora. Across all settings and metrics, including Macro-F1, Micro-
F'1, and accuracy, DNNNC consistently outperforms benchmark methods such as DeepWalk,
Node2Vec, LINE, SDNE, DNGR, and several graph neural network models including
GCN, GNNCheby, and SemiGCN. The model demonstrates stable convergence behavior,
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robustness to changes in key parameters, and competitive efficiency, especially on larger
networks. The new model achieves its superior performance by leveraging the expressive
power of deep neural networks to capture high-level nonlinear structural patterns. It also
differentiates itself by not requiring node features, which is advantageous in scenarios

where only topological information is available.

Also, in review, Bhagat, Cormode & Muthukrishnan comment that in some con-
texts, homophily does not hold, such as when there is intentional dissimilarity (for example,
oppositely positioned videos being co-viewed on YouTube). Advances in the architectural
design of neural networks have led to the maturation of new tools by Wu et al. (2022), such
as NodeFormer, a Transformer-based scalable model for graph node classification, designed
to overcome key limitations of traditional Graph Neural Networks (GNNs), like heterophily,
where connected nodes often belong to different classes, long-range dependencies, incom-
plete or missing graph structures. The model operates in a supervised setting, taking node
attribute matrices as input and optionally the adjacency matrix. It learns layer-wise latent
graph structures with linear computational complexity, enabling all-pairs message passing
even in large-scale graphs. The core innovation lies in the kernelized Gumbel-Softmax
operator, which enables differentiable sampling of discrete graph structures while avoiding
the quadratic cost of standard Transformers. The architecture combines message passing,
relational bias, and edge regularization. Training minimizes a supervised classification
loss in conjunction with a structure-aware regularization term. The paper evaluates the
NodeFormer model using datasets from various domains. For node classification on real-
world graphs, it uses Cora, Citeseer, Deezer, and Actor datasets. To test scalability on
large-scale graphs, it employs OGB-Proteins and Amazon2M, which contain over 100K and
2 million nodes, respectively. In scenarios without explicit graph structures, the model uses
Mini-ImageNet and 20News-Groups datasets to image and text classification tasks, where
graphs are artificially constructed via k-NN based on node attributes. Empirical results
demonstrate that NodeFormer outperforms both classical GNNs and state-of-the-art struc-
ture learning methods in accuracy, memory, and runtime efficiency and remains effective
even without explicit input graphs. A Bayesian interpretation supports the model’s ability
to approximate optimal latent structures for the downstream task. Overall, NodeFormer
represents a significant advance in graph learning, offering a robust, scalable, and accurate

solution for node-level prediction.

2.6.2 Transfer learning

Transfer learning leverages knowledge from pre-trained models to boost performance
on new tasks, particularly when data and computational resources are limited. In the realm
of node classification, transfer learning and deep learning offer powerful strategies that

exploit the inherent structure of graphs. Recent breakthroughs in graph-based machine
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learning and graph neural networks (GNNs) have transformed node classification by
directly using the graph structure to learn meaningful representations. A key motivation
for employing transfer learning in GNNs is to reuse knowledge acquired from a source
task to improve performance on a target task—especially when labeled data for the target
task are scarce. This concept already thrives in areas like image classification, where
researchers fine-tune pre-trained models (such as those trained on ImageNet) for new
challenges. Researchers explore how to extend these ideas to graph-based learning. In node
classification tasks, transfer learning allows us to transfer knowledge from one graph (the
source) to another (the target) with similar domains. An interesting application is on a
social network like Facebook, and you can train a model to classify users based on their
interests (sports, politics, music, etc.) using information like their profile, connections, and
interactions. This model, by capturing general patterns of social behavior and community
formation, can use the learning to apply it to another network like X, where connections
and interactions have similar characteristics. With a small amount of labeled data from
X, the previously model from Facebook can be fine-tuned to identify interests of users
in the new graph. The other example refers to the context of citation networks, such as
the Cora and PubMed datasets, each node represents an article, and the edges represent
citations. Even though the topics in the articles may differ (e.g., computer science vs.
medicine), the network structure and the way articles cluster into topic communities can
be similar. A model can train to classify articles in Cora can classify articles in PubMed
by transferring knowledge about how citation communities form. This approach adapts to
new graphs with limited labeled data, which proves particularly valuable in real-world
applications where obtaining labels is expensive or impractical. Successful transfer depends
on proper fine-tuning and alignment of embeddings, especially when source and target
graphs differ in structure or feature distribution. In summary, if you have plenty of labeled

data, supervised learning may be sufficient. If not, Transfer Learning could be the solution.

Kooverjee, James & Zyl (2022) present a study on node classification using graph
neural networks (GNNs) and a methodology to evaluate the performance of the model.
Furthermore, they provide a procedure for generating synthetic datasets using a new
synthetic graph classification method, called DANcer, with controlled community structure
and attributes. Also, they use real data from Open Graph Benchmark (OGB) datasets, such
as Arxiv and MAG (Microsoft Academic Graph) to apply the methodology. Furthermore,
the authors introduced 'damaged’ versions of the data, replacing the node attributes with
Gaussian noise, to investigate whether the models could perform a transfer based solely
on the graph structure, regardless of the attributes. GNNs can learn node embeddings
that capture both node features and their relational context in the network, making them
effective for node classification tasks in complex networks. The transferability of knowledge
in GNNs depends on the similarity between the source and target tasks, particularly in

terms of the community structure of the graphs. They test three GNNs: Graph Convolution
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Networks (GCN), GraphSAGE, and Graph Isomorphism Networks (GIN), all of which

demonstrated the ability to transfer knowledge effectively across training on the target task.

The transfer learning framework using GNNs proves effective across both synthetic and real-
world datasets in the context of node classification. On real-world data, GCN, GraphSAGE,
and GIN successfully transfer knowledge between graphs with different structures and
label distributions. Notably, even when node attributes are damaged, models like GIN and
GCN maintain positive transfer, indicating that structural information alone can drive
generalization. On synthetic data, the results show that transfer is particularly successful
when the source graph exhibits strong modularity. GraphSAGE demonstrates the ability to
exploit both structural and attribute-based properties, while GIN predominantly benefits
from structural modularity. These findings confirm that the model generalizes well to both
synthetic and real-world graph scenarios, and the interplay between network topology and

node features influence its effectiveness.

2.7 Community detection

Community detection focuses on identifying groups of nodes that are more densely
connected to each other than to the rest of the network. These groups, or communities,
can provide insights into the network’s structure and the functions of its components.
Examples include social network analysis with discovery of communities into friends,
recommendations for new friendships, identifying groups around topics, hashtags, biology
with protein-protein interaction networks, recommendation systems in e-commerce, analysis

to crisis management, etc.

The conventional ways to detect communities in complex networks are described
on Fortunato (2010). Graph Partitioning divides the network into a predefined number
of communities by optimizing a global criterion like minimizing the number of edges
between communities using methods as Kernigham-Lin algorithm (Kernighan & Lin,
1970), spectral bisection (Barnes, 1982), and a range of algorithms as level-structure
partitioning, geometric algorithm, and multilevel algorithms (Pothen, 1997). Hierarchical
Clustering builds a hierarchy of clusters either by agglomerative (bottom-up) or divisive
(top-down) approaches (Hastie et al., 2009). Modularity Optimization maximizes the
modularity score, which measures the density of links inside communities compared to
links between communities (Girvan & Newman, 2002; Newman & Girvan, 2004). Girvan-
Newman have high complexity and do not scale well to networks with millions of nodes
and edges. Many classical algorithms assume specific topologies (e.g., sparse or scale-free

graphs) and may not generalize well to dynamic or heterogeneous networks.

An interesting concept associated with community detection is modularity. Mod-

ularity quantifies the strength of the community structure in a network by comparing
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the density of links inside communities versus between them. It serves as an optimization
criterion for community detection algorithms, where higher modularity values indicate
well-defined community structures. We define traditional modularity measures in Ta-
ble 3. A higher modularity score indicates well-defined trading clusters. In modularity
measure, () represents the modularity score, which measures the difference between the
actual density of links inside communities and the expected density in a random network.
Higher values of ) indicate stronger community structure, meaning that nodes within
the same group are more interconnected than expected by chance. The Louvain and
Leiden methods iteratively merge nodes into communities to maximize modularity ¢). The
Leiden algorithm improves upon Louvain by ensuring better partition stability and faster
convergence. Spectral clustering uses the eigenvectors of the Laplacian matrix to identify
communities. The eigenvectors corresponding to the smallest nonzero eigenvalues capture
key structural properties of the network, enabling clustering based on node proximity in
the spectral space. This method effectively partitions graphs by projecting nodes into a
lower-dimensional space and applying traditional clustering algorithms such as k-means.
While spectral clustering is highly effective for small to medium-sized networks, it becomes

computationally expensive for large-scale graphs due to the eigen decomposition step.

Measure Formula
Modularity @ Q=5-% (Aij - %) 0(circj) ®

Greedy Optimization
(Louvain & Leiden) — AQ = ;- [Zm (Aij - k;:j) — Yot (Aij — %)} 4
Spectral Clustering L =D — A, Lyym = D"Y?LD71/25

Table 3 — Mathematical Formulas for Traditional Modularity Methods

Machine Learning significantly improves modularity-based analysis, especially

in large, heterogeneous, or dynamic networks. Traditional methods like Louvain and

3 In Modularity: @ is modularity score, A; ; is the adjacency matrix between nodes ¢ and j, k; and k;
are the degree of these nodes, m represents the total number of edges in the network, and d(c;, ¢;)
equals 1 if nodes ¢ and j belong to the same community and 0 otherwise.

In Greedy Optimization (Louvain & Leiden): AQ is the change in modularity when merging two
communities, m is the otal number of edges in the network. A;; is the adjacency matrix between nodes
i and j. k;, k; are the degree of node 7 and j , representing the number of edges connected to it. ) .
is summation over edges that are inside a community and ), . is summation over all edges connected
to nodes in the community.

In Spectral Clustering: where L represents the unnormalized graph Laplacian and Ly, is the
normalized Laplacian. The degree matrix D is a diagonal matrix where each element D;; corresponds
to the degree k; of node i, representing the total number of edges connected to it. The adjacency
matrix A is a square matrix where A;; = 1 if there is an edge between nodes ¢ and j, otherwise 0. The
normalized Laplacian Lyomm is computed by rescaling L with the inverse square root of the degree
matrix, which ensures that node importance is balanced across different graph structures.
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Spectral Clustering remain useful for small-scale applications, but ML models like GNNs,
Node2Vec, and Reinforcement Learning improve scalability, accuracy, and adaptability.
Advances and evolution in community detection are present in Lancichinetti & Fortunato
(2009), Fortunato & Hric (2016), Zhang, Cui & Zhu (2020). Choosing between traditional
and ML approaches depends on network size, structure, and the need for real-time
adaptability. ML can contribute with models that help in understanding the structure
and function in complex networks, and can incorporate multiply attributes like topology,
centrality, textdata, metadata, evolution in time into community detection with Clustering,

Embeddings techniques and Reinforcement Learning.

2.7.1 Clustering

Clustering plays a central role in community detection by identifying groups of
nodes that interact more intensely with each other than with the rest of the network
(Agrawal & Patel, 2020). This approach helps uncover the modular structure underlying
many complex systems, where communities often correspond to functional units, interest
groups, or regions of coordinated behavior. Clustering relies on principles of similarity or
structural connectivity to group nodes, offering a way to simplify and interpret large-scale
networks. While some clustering techniques originate from general unsupervised learning
frameworks, others are specifically designed to detect communities in networked data,

where structural dependencies and topological features are essential.

Several taxonomies have been proposed to classify clustering methods for community
detection. One useful distinction lies between the direct application of general-purpose
clustering algorithms, such as K-means or spectral clustering, and those explicitly designed
to address structural characteristics of networks. Another important dimension separates
methods that rely solely on topological information from those that incorporate additional

attributes, such as node content, interaction metadata, or temporal patterns.

(Classical clustering methods, though not originally designed for networks, have been
widely adapted for community detection tasks. The Kernighan—Lin algorithm minimizes
edge cuts while preserving balance across partitions, whereas hierarchical methods, such as
agglomerative clustering and the Girvan-Newman algorithm, iteratively divide the graph
based on edge betweenness. Spectral clustering embeds nodes using eigenvectors of graph
Laplacians and applies traditional clustering in the embedded space. To improve scalability,
multi-level approaches like Metis and Graclus perform graph coarsening and refinement,
while MLR-MCL (Multi-level Regularized Markov Clustering) incorporates regularization
to capture hierarchical structures more effectively. As network data have evolved to include
rich node attributes, several models integrate structural and content-based information.
The Group-Topic model combines link structure with textual features in a Bayesian

framework to identify topic-coherent communities. The Community-User-Topic (CUT)
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model, in two variants, models either topics conditioned on users and communities (CUT1)
or assumes that communities generate topics, which then shape user behavior (CUT2). The
Community-Author-Recipient-Topic (CART) model applies this logic to email networks,
jointly modeling senders, recipients, topics, and latent communities. In heterogeneous or
multi-relational settings, methods such as NetClus and RankClus extend this generative
approach. NetClus estimates posterior probabilities across multiple entity types, such
as authors, conferences, and topics, in star-schema networks, while RankClus alternates
between ranking inference and clustering in bi-typed networks. These methods, along
with their extensions, represent a broad spectrum of clustering strategies that address
the structural, semantic, and relational complexity of real-world networks (Parthasarathy,
Ruan & Satuluri, 2011).

Temporal dynamics introduce further complexity into community detection. FacetNet
addresses this challenge by allowing soft community membership and tracking how nodes
shift between communities over time. The model balances two objectives: snapshot quality
(the accuracy of community assignments at each time point) and temporal smoothness (con-
sistency across consecutive snapshots). It achieves this by minimizing a Kullback—Leibler
divergence-based objective function, enabling it to capture evolving community structures

in dynamic networks.

Other approaches adapt traditional clustering techniques to networked contexts.
Silva et al. (2016) apply the K-means algorithm to analyze the public transportation
system of Curitiba, Brazil. They cluster bus stations based on geographic location and
construct a complex network to examine regional accessibility. This integration of spatial
clustering and network analysis highlights the potential for hybrid methods to reveal

patterns of connectivity and mobility in urban systems.

Building on the limitations of K-means, particularly its sensitivity to initial
center selection, Cai et al. (2019) introduce the DDJKM algorithm (Density-Degree
centrality—Jaccard—K-means). This method selects initial cluster centers using a combined
score of node degree and local density, promoting balanced and well-distributed seed points.
To further improve separation, it applies the Jaccard similarity to prevent cluster centers
from clustering too closely in the network. Empirical results show that DDJKM improves
upon standard K-means by producing more accurate and stable community assignments

in large-scale network datasets.

Oliveira et al. (2008) propose an angle-based clustering algorithm that defines
similarity in terms of angular alignment between nodes. The algorithm groups nodes by
minimizing angles within clusters and maximizing angular differences between clusters,
particularly for nodes with few shared neighbors. This method identifies communities
of varying density and shape, and supports multi-resolution exploration through flexible

refinement. Comparative evaluations demonstrate its robustness and adaptability relative
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to baseline methods such as Single Linkage, Average Linkage, and K-means.

In the context of multiplex networks, where nodes interact through multiple types of
relations, Amelio & Tagarelli (2018) adapt the silhouette coefficient to evaluate community
structure. They introduce a multiplex version of the metric that considers both geodesic
distance and homophily-based affinity. To address the computational cost of traditional
silhouette calculations, their method selects a representative node for each community and
computes distances only between this representative and other nodes. This adaptation
reduces complexity while preserving the ability to assess intra- and inter-community

cohesion effectively.

Chameleon, introduced by Karypis, Han & Kumar (1999), represents an early effort
to combine inter-cluster connectivity and intra-cluster closeness in a hierarchical clustering
framework. Unlike methods that rely exclusively on either density or distance, Chameleon
uses a dynamic modeling strategy to evaluate the relative closeness and connectivity
of candidate clusters. The algorithm builds a k-nearest neighbor graph and recursively
merges clusters based on adaptive criteria, yielding flexible and structure-aware community

assignments.

These clustering approaches reflect the diversity of techniques available for com-
munity detection, each grounded in different assumptions about network structure, node
similarity, and data availability. General-purpose algorithms such as K-means and spectral
clustering offer scalability and interpretability but often struggle to capture the complex
topological dependencies inherent in networked systems. In contrast, network-specific meth-
ods, particularly those incorporating probabilistic modeling, node attributes, or temporal
dynamics, provide more flexible and accurate representations of community structure,
especially in heterogeneous or evolving networks. Choosing the appropriate clustering
strategy depends on the network’s characteristics, the availability of auxiliary data, and

the specific goals of the analysis, whether descriptive, predictive, or explanatory.

2.7.2 Embedding-based community detection

Figure 3 illustrates a common pipeline for embedding-based community detection.
The process begins with a graph, which is then transformed into a low-dimensional
vector space through an embedding technique. In this space, node similarity reflects
network structure, enabling the application of conventional clustering algorithms to
identify communities. Embedding simplifies the original graph by preserving key properties
such as proximity, homophily, and structural equivalence, while reducing dimensionality

and allowing for efficient computation.
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Figure 3 — Community Detection with Embedding Pipeline

The main advantage of embedding is that it captures network structure in a dense
and continuous form, allowing machine learning models to operate directly on vectorized
node representations. This improves the scalability of clustering, classification, and pattern

recognition tasks by avoiding direct computations over sparse adjacency matrices.

Rozemberczki & Sarkar (2018) propose Diff2Vec (D2V), a sequence-based em-
bedding method that constructs node embeddings from diffusion graphs. The algorithm
generates node sequences via Fuler walks, which preserve all adjacency relations in the
subgraph in an efficient linear sequence. These sequences serve as input to a neural network
that learns low-dimensional node representations. To detect communities, the authors
apply k-means clustering in the embedding space and evaluate the results using modularity.
D2V outperforms Node2Vec (N2V) in both efficiency and quality, particularly in preserv-
ing local proximity features. This work demonstrates that sequence-based embeddings
rooted in diffusion processes yield better community detection performance than random
walk—based methods.

Murata & Afzal (2018) propose a structurally supervised embedding method
that combines graph convolutional networks (GCNs) with a modularity optimization
objective. The model uses either standard GCNs or Chebyshev polynomials (ChebNet)
to encode node representations from the adjacency and attribute matrices, aggregating
neighborhood information at varying depths. To promote community-awareness in the
learned embeddings, the authors incorporate modularity in two ways: as a regularization
term in the output layer and as an auxiliary loss function in a separate layer. The network

is trained using gradient descent to jointly optimize the classification loss (via cross-entropy
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on labeled nodes) and the modularity objective. This combination improves the quality
of embeddings in semi-supervised settings, especially when labeled data are sparse, by

encouraging the network to align with high-level community structure.

Zhu et al. (2021) present SENMF (Structural Equivalence Non-Negative Matrix
Factorization), a similarity factorization approach that integrates node homophily and
structural equivalence into a unified embedding framework. The method first constructs
a similarity matrix that combines first- and second-order proximities, Dice coeflicients,
and role similarity measures. It then applies non-negative matrix factorization (NMF) to
obtain low-dimensional node embeddings and soft community assignments. A modularity
maximization term is included in the objective function to ensure that the resulting
embeddings reflect cohesive community structure. The model uses alternating optimization
to refine the embeddings iteratively, and final community labels are assigned using k-means.

SENMF captures both local and global network patterns and outperforms several baseline
models, including DeepWalk, Node2Vec, Walklets, GEMSEC, and M-NMF.

These models represent distinct families of embedding-based community detection
techniques. Diff2Vec belongs to the category of sequence-based embeddings using diffusion
processes. The GCN-based approach exemplifies structurally supervised embeddings that
integrate modularity into the learning objective. SENMF is a similarity factorization
method that combines homophily and structural equivalence into a low-dimensional
representation. In each case, embeddings enable standard clustering algorithms to detect

communities from geometrically meaningful patterns embedded in continuous space.

2.7.3 Reinforcement Learning

Reinforcement Learning (RL) offers a promising framework for optimizing commu-
nity detection in dynamic networks. Unlike static approaches that apply a fixed algorithm
to the entire network, RL allows an agent to interact with the network over time, learning
to select the most effective detection strategies based on feedback from previous decisions.
In each time step, the agent observes the current state of the network (e.g., its structure
or changes in connectivity), chooses an action (e.g., a community detection method or
parameter setting), receives a reward based on the quality of the resulting partition, and
updates its policy accordingly. This feedback loop enables the agent to adapt its behavior

as the network evolves.

In dynamic environments, RL provides two key advantages. First, it avoids recalcu-
lating the entire community structure from scratch by updating only the affected substruc-
tures, which improves scalability. Second, it allows the use of reward functions—such as
density-aware modularity—that mitigate known issues in traditional modularity measures,
including the resolution limit. While some earlier studies explored RL in static settings by

combining modularity-based objectives with traditional community detection algorithms
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(Paim, Bazzan & Chira, 2020; Martins & Zhao, 2020), their adaptability remains limited

when applied to evolving networks.

Costa (2021a) propose a reinforcement learning approach that dynamically selects
and combines community detection algorithms to maximize modularity over time. Their
method formulates the problem as a Markov Decision Process and applies Q-Learning
with SARSA (State-Action-Reward-State-Action) to guide the learning process. At each
time step, the agent observes a state s, selects an action (i.e., a candidate community
partition), and evaluates it based on a modularity-derived reward. The agent then updates

its Q-function to favor community structures that improve the quality of the partition.

To manage changes in the network, the method updates only those parts of the
community structure that are affected by new nodes or edges. It maintains an ensemble
of candidate partitions and applies an extremal update mechanism: if a newly generated
partition achieves higher modularity than the worst in the ensemble, it replaces the latter.
This iterative process continues until no further modularity gains are observed. The final

community structure is selected from the ensemble based on the highest modularity score.

Overall, reinforcement learning improves community detection by introducing
adaptiveness, strategic decision-making, and modularity-aware optimization into the
process. This makes RL-based approaches particularly well-suited for large-scale, dynamic

networks where traditional static algorithms are insufficient.

The section below started with an interesting style of presenting methods for link
prediction. How can we organize the methods and use them as examples? Do the ideas
overlap much from one method to another? I think this can be a good guide for the

discussion of the following section:

2.8 Node and link prediction

Node and link prediction play central roles in the analysis of networked systems.
Link prediction estimates the likelihood that a connection between two nodes will form
or has been omitted from the observed data (Getoor & Diehl, 2005; Li & Zhou, 2011;
Wang et al., 2014; Martinez, Berzal & Cubero, 2016; Daud et al., 2020). Researchers
have applied this technique in several domains, including friend recommendation in social
networks (Zhao & Zhao, 2024), personalized suggestions in e-commerce (Su et al., 2020),
scientific collaboration forecasting (Resce, Zinilli & Cerulli, 2022), biological interaction
mapping (Musawi, Roy & Ghosh, 2023), genetic risk prediction (Breit et al., 2020), web
hyperlink creation (Adafre & Rijke, 2005; Han, Sun & Zhao, 2011), and record linkage in
data integration tasks (Hasan & Zaki, 2011).

We can distinguish two broad categories of link prediction: static and temporal.
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Static link prediction focuses on identifying missing links in a single network snapshot.
Temporal link prediction, by contrast, uses time-stamped interaction data to forecast
future connections. This distinction proves especially useful in dynamic environments,
such as bipartite graphs in recommendation systems, where interactions between users

and products evolve over time.

Node prediction refers to the task of identifying new entities that may join the
network in the future. For instance, researchers may predict which users are likely to join
a social platform or which proteins will appear in a biological interaction network (Sharan,
Ulitsky & Shamir, 2007; Haslbeck & Waldorp, 2018; Rezaei et al., 2023). Although less
frequently explored, node prediction often relies on the same methodological foundations

as link prediction, especially when using graph-based learning approaches.

Earlier research often relied on heuristic scores such as common neighbors, Jaccard
similarity, or the Katz index. These metrics evaluate topological proximity between node
pairs but struggle to incorporate complex patterns or heterogeneous data. Supervised
machine learning approaches offer a more flexible alternative. These methods frame the
prediction task as a binary classification problem: given a pair of nodes, predict whether a
link exists or will form. This setup requires researchers to label node pairs, extract relevant
features, train a classifier, and evaluate its performance using metrics such as accuracy,

precision, recall, F-measure, or ROC-AUC.

Several studies have proposed frameworks that improve different stages of this
pipeline. Pecli, Cavalcanti & Goldschmidt (2018) investigate how automated feature
selection can strengthen classification performance. They compare forward selection,
backward elimination, and evolutionary strategies across six classifiers, including support
vector machines (SVM), k-nearest neighbors (KNN), naive Bayes, random forests, and
multilayer perceptrons. Their results show that forward and evolutionary strategies lead to
more accurate and compact models by removing redundant or irrelevant variables, which

also reduces computational costs.

Building on the role of feature design, Hasan et al. (2006) construct a detailed
framework for predicting co-authorship links. They develop three categories of features:
proximity-based (e.g., keyword overlap), author-level (e.g., publication counts and number
of coauthors), and structural (e.g., shortest path distance and clustering coefficient).
By combining textual, statistical, and topological information, they improve prediction
accuracy. Their experiments show that SVM with an RBF kernel performs best, and they

use feature ranking to identify which variables contribute most to predictive success.

Lichtenwalter, Lussier & Chawla (2010) address a different challenge: class imbalance
in large, sparse networks. They construct training datasets by labeling node pairs based
on temporal windows and extract a rich set of degree- and path-based features. To reduce

the bias toward negative samples, they implement neighborhood-based stratification
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and undersampling, training separate classifiers for different distance intervals. Their
ensemble classifiers, especially random forests, consistently outperform traditional heuristics.
They also introduce PropFlow, a localized random walk metric used as an unsupervised

benchmark, and demonstrate that supervised models improve AUC scores by over 30%.

Ahmed, ElKorany & Bahgat (2016) extend this supervised learning framework
to social media by incorporating behavioral and content-based features. Using Twitter
data, they define a link as positive if a follow relationship appears within a future window
and negative otherwise. They extract four categories of features: structural proximity
(e.g., common neighbors), community similarity (based on modularity-based clustering),
interaction intensity (mentions and replies), and trust (retweet patterns). They train
several classifiers, including decision trees, SVM, logistic regression, and ensemble methods,
and use random undersampling to balance the dataset. By focusing on user pairs within
two-hop neighborhoods, they capture the most likely link formation areas. Their ensemble

methods, especially RotationForest and Bagging, yield the best results.

These studies illustrate how supervised learning enables accurate and generalizable
link prediction. Rather than relying on hand-crafted heuristics, these methods learn
from labeled data, systematically combine multiple types of features, and adjust to
structural and behavioral variation across domains. Feature selection, class rebalancing,
and ensemble learning all contribute to their success. Together, these strategies provide a

robust foundation for both link and node prediction tasks in complex networks.

2.8.1 Embedding-based link prediction

Node embeddings offer a compact and information-rich representation of network
structure, enabling significant advances in link and node prediction tasks. By encoding both
local and global topological patterns, such as community structure, structural equivalence,
and role similarity, embeddings allow machine learning models to predict links more
accurately than traditional heuristics like Common Neighbors or the Adamic-Adar index.
Embedding methods avoid the need for manually designed proximity scores, instead
transforming nodes into vectors that capture relational information. These low-dimensional

vectors make classification more scalable, robust, and adaptable to sparsity and noise.

The typical embedding-based link prediction pipeline includes five steps. First,
researchers prepare network snapshots, particularly in dynamic settings. Second, an
embedding model generates vector representations of nodes. Third, a supervised classifier,
often drawn from the techniques discussed in Sections 2.2.1, 2.2.2, or 2.2.3, learns to
distinguish linked from unlinked node pairs. Fourth, the model undergoes evaluation using
metrics such as ROC-AUC, precision, recall, or Fl-score. Finally, the trained classifier

predicts the likelihood of future or missing links based on the learned embeddings.
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Hisano (2018) propose a semi-supervised embedding model that improves link
prediction in dynamic networks by jointly modeling past link dynamics and current graph
structure. Their framework combines a supervised component, which encodes past link
formation and dissolution, with an unsupervised component based on random walks over
the current network. The process begins by representing the dynamic network as a sequence
of adjacency matrices across discrete time steps. The model constructs two past graphs:
one for newly formed links and another for dissolved links. A complex-valued bilinear
model maps these link dynamics to a latent space, assigning similar vectors to nodes
with similar link histories. This supervised component uses a Hermitian inner product to

capture both symmetric and asymmetric relationships.

To incorporate current network structure, the authors apply an unsupervised skip-
gram model using DeepWalk. This component generates node sequences through random
walks and learns embeddings that preserve contextual proximity. The final model optimizes
a joint loss function that balances supervised prediction accuracy and unsupervised
structural coherence. During training, stochastic gradient descent (SGD) simultaneously
updates both components. The resulting embeddings predict future links using a sigmoid-
transformed inner product. The model handles link formation and dissolution separately
but also introduces a hybrid formulation to capture rewiring patterns, where nodes that
frequently gain links also tend to dissolve older ones. Experimental results on four real-
world datasets show that this semi-supervised approach outperforms purely supervised

and unsupervised models, particularly in predicting link dissolution.

While Hisano (2018) focus on modeling historical dynamics and combining un-
supervised embeddings with supervised training, Mallick et al. (2019) introduce a novel
embedding method — Topo2Vec — designed specifically for link prediction in scale-free
networks. Traditional embedding models often rely on random walk-based sampling, which
may fail to capture key structural dependencies in social networks. Topo2Vec replaces
random walks with a goal-oriented greedy sampling strategy, which more effectively ex-
plores edge relationships. This sampling process improves the training of neural embedding

models, leading to more informative vector representations.

To perform link prediction, the authors develop an efficient pairwise feature gen-
eration technique that avoids computationally expensive pairwise kernels and supports
scalable classification using Random Forests. They also explore clustering methods for em-
bedding post-processing. Their evaluation across multiple datasets, including PPI networks,
YouTube, Homo Sapiens, and BlogCatalog, shows that Topo2Vec consistently outperforms
established methods such as LINE, node2vec, and GraphRep. Their findings highlight the
benefits of guided sampling and efficient pairwise modeling for link prediction tasks in

complex, heterogeneous networks.

Together, these studies demonstrate the versatility of embedding-based methods for
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link prediction. Whether through hybrid supervision or topological innovation, embeddings
serve as a powerful abstraction of graph structure. They reduce the prediction task to a
well-posed learning problem in vector space, allowing researchers to integrate temporal

dynamics, structural roles, and domain-specific signals into scalable models.

2.9 Visualization

While visualizing small networks is relatively straightforward, larger and more
complex networks present significant challenges. A high number of nodes and edges often
leads to cluttered plots with substantial overlap, making interpretation difficult. To address
this, network visualization techniques aim to uncover hidden structures, relationships, and
clusters within complex datasets. These techniques are especially valuable in domains such
as social networks, text analysis, and biological systems. The general approach involves
reducing the dimensionality of the data. Common dimensionality reduction methods
include Principal Component Analysis (PCA), Non-negative Matrix Factorization (NMF),
and t-Distributed Stochastic Neighbor Embedding (t-SNE).

PCA, NMF, and t-SNE each offer distinct approaches to managing the complexity
of large networks. PCA is a linear technique that projects data onto orthogonal axes
capturing the greatest variance, thereby enabling the visualization of global network
structure. However, it struggles with non-linear patterns. NMF, also a linear method,
decomposes a matrix into non-negative factors, providing an additive and interpretable
representation of network data. This makes it particularly useful for identifying hierarchical
clusters and semantically meaningful latent relationships. In contrast, t-SNE is a non-linear
technique that excels at preserving local relationships and revealing subtle structural
patterns. However, it may distort global distances and is sensitive to hyperparameter

configurations. The choice of technique depends on the type of structure one aims to

highlight.

PCA simplifies network visualization by reducing data to its most significant
components. In practice, network nodes and edges exist in high-dimensional space, which
PCA reduces to two or three dimensions for visualization. This method is computationally
efficient, making it suitable for large-scale networks (Borgatti & Halgin, 2011; Newman,
2003; Witten & Tibshirani, 2009; Albert & Barabasi, 2002). Brandes & Wagner (2004)
introduce Visione, a tool for visualizing social networks. Visione represents nodes as
actors and edges as relationships, applying PCA to project high-dimensional graphs into
two dimensions. For large graphs, Visione uses sampling and a heuristic for the k-center
problem to reduce computational load. It adapts this method for directed edges by reserving
embedding dimensions to represent directionality and factoring edge lengths into distance

computations. These refinements increase the visual clarity of substructures, enabling more
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accurate and interpretable network representations. Although PCA offers computational
advantages, it may yield components that lack intuitive interpretation and fails to capture

complex non-linear structures.

NMF decomposes high-dimensional network data into two lower-dimensional, non-
negative matrices W and H such that V' ~ W H. This ensures interpretability and sparsity,
facilitating effective network embedding and clustering. NMF-derived embeddings can
be visualized in two or three dimensions and are also suitable for other network analysis
tasks. Dias et al. (2017) combine NMF with graph matching to generate a hierarchical
network representation. The method groups similar nodes using the topics derived from
the NMF decomposition and defines a similarity metric to cluster nodes accordingly. The
hierarchical clustering generated by this method outperforms traditional NMF and other
classical clustering approaches. One limitation of NMF is its sensitivity to initialization,

which may cause optimization to converge to local, suboptimal solutions.

The method t-SNE (Maaten & Hinton, 2008) maps high-dimensional similarities
into joint probabilities and minimizes the divergence between these in both high and
low dimensions. This preserves local neighborhood structures and captures non-linear
relationships. Although computationally intensive and parameter-sensitive, t-SNE remains
popular for generating interpretable network visualizations. Perplexity, a key parameter,
balances local versus global structure: lower perplexity values emphasize local relationships,
while higher values highlight broader patterns. However, t-SNE does not inherently
incorporate graph structure. To address this, Kruiger et al. (2017) propose tsNET, a
variant of t-SNE tailored to networks. tsNET integrates network-specific features such as
edge weights into the dimensionality reduction process. It also improves computational
efficiency, enabling visualization of larger networks without fine-tuning. By modifying the
objective function, tsNET improves the representation of both global and local network

structures.

Xiao, Hong & Huang (2023) examine perplexity optimization in t-SNE. They
extend the algorithm to accept underestimated perplexity values and assess the impact on
layout quality. They propose an estimation method for selecting optimal perplexity values
and adapt their approach for use with the Barnes-Hut implementation (Maaten, 2014),
achieving scalable visualization of large graph datasets. Leow, Laurent & Bresson (2019)
further strengthen t-SNE through GraphTSNE, which incorporates both graph structure
and node features. Using a Graph Convolutional Network (GCN), GraphTSNE learns a
non-linear mapping from high-dimensional data to low-dimensional space. It employs a
modified t-SNE loss that combines a graph clustering component and a feature clustering
component. This allows for better balance between preserving local detail and global
structure. Although computationally intensive, GraphTSNE provides a flexible solution

for complex network visualization where both topological and feature-based similarities
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are important.

In summary, PCA offers a fast linear approach ideal for identifying broad trends;
NMF emphasizes interpretability and latent semantic structure; and t-SNE and its variants,
including tsNET and GraphTSNE, excel at revealing fine-grained patterns and network

communities, especially in the presence of non-linearities and high dimensionality.

2.10 Final Remarks

This chapter has explored key methods for constructing networks, assessing node
importance, and predicting structural changes, emphasizing the role of machine learning in
advancing these tasks. Learning-based approximations of centrality measures, for instance,
allow researchers to analyze large-scale networks by significantly reducing computational
costs while preserving ranking accuracy. Embedding techniques, such as node2vec and
GraphSAGE, encode local and global structural information into compact representa-
tions. These embeddings improve performance in clustering, node classification, and link

prediction tasks by providing feature-rich inputs to downstream models.

Clustering algorithms — including Gaussian Mixture Models, hierarchical clustering,
and community detection methods — group structurally or functionally similar nodes, often
enabling overlapping memberships that better reflect the complexity of real-world networks.
In link prediction, models that combine network topology with historical interactions
successfully anticipate future connections, proving useful in diverse applications such as

fraud detection, recommendation systems, and social influence modeling.

Reinforcement learning extends these approaches to dynamic settings, where algo-
rithms adapt to changes in network structure and optimize partitioning strategies over
time. Similarly, advances in visualization, through techniques like PCA, NMF, and t-SNE,
enable interpretable representations of complex graphs by projecting high-dimensional
structures into low-dimensional spaces. Extensions such as tsNET and GraphTSNE further
improve layout quality by incorporating edge structure and node attributes, balancing

local and global preservation.

These methods provide widespread application in economics, infrastructure sys-
tems, biology, cybersecurity, and digital platforms. While machine learning contributes
to scalability, adaptability, and interpretability, challenges remain. Fine-tuning model
parameters, addressing sparsity in real-world networks, and ensuring robustness across
domains are persistent obstacles. Future research should may benefit from hybrid frame-
works that integrate multiple techniques to reduce computational complexity and improve

generalization to support more reliable and flexible network analysis.
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3 INDIRECT CONTAGION AND SYSTEMIC
RISK: A NEWS SIMILARITY NETWORK
APPROACH

This chapter presents a novel approach to systemic risk analysis by constructing
a network of firms based on news similarity. Using financial news articles from major
media sources, including The New York Times, Reuters, Fox News, Financial Times, The
Guardian, CNN, and S&P 500 reports, we examine firm connections and risk transmission
pathways from 2020 to 2022. Applying natural language processing techniques, we assess
how media coverage influences firm relationships and financial contagion. Firms with
high centrality in the news similarity network show greater exposure to financial shocks,
reinforcing the role of public perception in risk propagation. Community detection reveals
clusters that do not always align with traditional sector classifications, highlighting cross-
industry dependencies. Regression analysis further suggests that firm size and stock
price volatility influence network centrality, indicating an interaction between financial
characteristics and media-driven contagion. By incorporating textual data into systemic
risk assessments, this study complements traditional models and offers a new perspective

for regulators and investors monitoring financial stability.
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3.1 Introduction

The stability of the global financial system depends not only on the strength of
individual firms but also on their interconnections (Acharya, 2009; Crockett, 2000). The
increasing complexity of financial markets has made systemic risk a pressing concern for
regulators and investors (Acharya et al., 2017). Systemic risk arises when disruptions
affecting a single institution or a small group propagate through financial linkages, trig-
gering widespread instability. While banks and other financial entities manage risk by
diversifying investments, the widespread adoption of similar strategies can create hidden
vulnerabilities (Beale et al., 2011). A crisis in one part of the system can quickly spread,

overwhelming safeguards designed for individual institutions.

This paper introduces a method for measuring systemic risk by constructing a
network of firms based on news similarity. Using financial news articles from major
media sources, including The New York Times, Reuters, Fox News, Financial Times,
The Guardian, and CNN, we examine how firms are connected through media coverage.
The dataset, which covers S&P 500 firms from 2020 to 2022, is processed using natural
language processing (NLP) techniques to assess textual similarity between companies.
In this framework, firms serve as nodes, while links represent the degree of similarity in
news coverage. To ensure statistical robustness, we apply a token permutation algorithm
and an entropy-based filtering model (Cajueiro et al., 2021). Unlike traditional financial
indicators such as stock returns or balance sheet data, this approach captures how firms are
associated in public discourse, providing a media-driven perspective on interconnectedness.
A key component of this analysis involves using network structures to estimate stationary
probabilities as a proxy for firm centrality, allowing us to map relationships and identify

indirect contagion pathways.

Our study contributes to the literature on systemic risk by incorporating textual
data into contagion analysis, extending previous research on the role of media in financial
uncertainty. Baker, Bloom & Davis (2016) construct an economic policy uncertainty index
by tracking the frequency of newspaper articles containing specific keywords related to
economic and political uncertainty. Using a similar approach, Ma et al. (2024) develop an
uncertainty measure for China. Other studies explore the relationship between textual
data and economic conditions (Bybee et al., 2020). Instead of building an index, we
employ network analysis to assess news similarity and identify firm relationships. This
approach builds on the idea that network structures shape how financial market participants
communicate and react to information (Tedeschi, lori & Gallegati, 2009; Tedeschi, Iori &
Gallegati, 2012).

This research also connects to the literature on indirect contagion. The 2007-2009
global financial crisis demonstrated how financial instability spreads beyond direct expo-

sures such as interbank lending, extending to market perceptions, asset price movements,
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and investor sentiment (Haldane & May, 2011). Recognizing this, researchers have ap-
plied network science to financial systems to examine firm-level interactions and measure
contagion pathways (Summer, 2013; Petrone & Latora, 2018). Previous studies construct
financial networks using principal component analysis (PCA) and Granger-causality mod-
els applied to return data (Billio et al., 2012), balance sheets of European banks (Cont
& Schaanning, 2019), and interbank loan structures (Roncoroni et al., 2021). These ap-
proaches primarily focus on financial correlations and risk transmission through market
data.

However, financial contagion extends beyond balance sheets and asset prices. Public
perception and information flows also shape systemic risk. The increasing availability
of textual data has enabled new approaches to financial risk analysis. Media coverage
influences investor expectations and contributes to market reactions (Tetlock, 2007; Ka-
planski & Levy, 2010). Advances in NLP have allowed researchers to extract information
from financial news, social media, and corporate reports (Nadkarni, Ohno-Machado &
Chapman, 2011; Gentzkow, Kelly & Taddy, 2019; Liu et al., 2023; Cajueiro et al., 2023).
These techniques provide an alternative perspective on firm relationships, capturing risk

dynamics that traditional financial metrics may not fully reflect.

Our results show that firms with strong media-based connections do not always
belong to the same sector, suggesting that financial contagion can extend beyond con-
ventional industry classifications. In the Financials sector, firms with high centrality in
the news similarity network exhibit greater exposure to financial shocks, reinforcing the
role of public perception in systemic risk transmission. Community detection identifies
clusters of firms that reflect patterns of shared media coverage rather than strictly financial
relationships. For instance, Citigroup appears more interconnected with firms outside
the financial sector, while other major banks form a distinct group. Regression analysis
further indicates that company size and stock price volatility influence network centrality,
highlighting the role of market perception in shaping systemic vulnerabilities. These
findings suggest that tracking media-driven firm relationships can provide regulators and

investors with an additional tool for assessing systemic risk.

Our paper proceeds as follows. Section 3.2 outlines the methodological framework for
analyzing news-based similarities between firms and their role in systemic risk. Section 3.3
describes the dataset and preprocessing techniques. Section 3.4 presents and interprets the
findings. Section 3.5 discusses their broader implications. Finally, Section 3.6 summarizes

the study and suggests directions for future research.
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3.2 Methodology

In this section we outline the methodological framework we explore to analyze news-
based similarities between companies and evaluate their implications within a networked
structure. Section 3.2.1 and Section 3.2.2 apply Cajueiro et al. (2021). In Section 3.2.1,
we evaluate the similarities between companies by analyzing their associated news stories
using NLP techniques. This step constructs a similarity network, where nodes represent
companies, and edges reflect the strength of relationships based on textual content. The
approach incorporates a token permutation algorithm to filter out random word overlaps
and an entropy-based similarity measure to quantify meaningful connections. Section 3.2.2
introduces the concept of infection probabilities within the network. Using a nonlinear
system of equations, this framework models the likelihood of a company influencing or being
influenced by its neighbors. The perception matrix, derived from the similarity network,
underpins this contagion analysis, enabling us to identify how associations propagate

across the network.

In Section 3.2.3, we apply community detection to identify clusters of companies
based on shared news-based similarities, offering insights into indirect contagion within
the network. Using the Louvain method based on Blondel et al. (2008), we partition
companies into groups that either align with predefined sectors or span multiple industries.
The method maximizes modularity, ensuring strong intra-community connections while
keeping inter-community links sparse. Examining these clustering patterns clarifies how
information propagates among companies and across industries. In Section 3.2.4, we
examine the relationship between company centrality within the network and financial
attributes. Centrality reflects a company’s importance or influence, and regression analysis
helps uncover the underlying factors that drive these dynamics. By integrating robust

estimation techniques, we ensure the reliability and interpretability of the results.

Together, these components provide a comprehensive framework for understanding
the relationships and interactions between companies through the lens of their associated
news stories. This methodology not only quantifies similarities but also uncovers the

mechanisms of influence and the factors contributing to network dynamics.

3.2.1 Evaluating News-Based Similarities Between Companies

This framework evaluates similarities between companies by analyzing news associ-
ated with them. The methodology from Cajueiro et al. (2021) employs NLP techniques to

construct a similarity network.

Define w; as a word referred to as a term, uniquely indexed by i. The set of all
distinct terms from the stories forms the vocabulary, denoted as V = {wy,ws, ..., wn,, },

where Ny is the total number of terms. The index set for all terms is Iy, = {1,2,..., Ny}.
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Each story s; contains a sequence of L; non-unique terms:
Sj = [wil,wh,...,w%} , 1 SLJ SN\;, N EIV, (31)

where L; is the number of terms in story s;, and Iy, denotes the set of term indices. The
vocabulary of story s;, V%, includes all unique terms in s;. We represent the set of all

stories as S = {s1, S2,...,Sns}, Where Ng indicates the total number of stories.

Let C denote the set of all companies, C = {1,2,..., N¢}, where N¢ is the total
number of companies. Each story s; € S associates with a specific company k € C. For

each company k, define s* as the concatenation of all its stories. The concatenated stories

form the set S¢ = {s',s2,..., 5™},

The term-story matriz, M, quantifies the relationship between terms and companies.
The matrix dimensions are Ny X Ng, where rows correspond to terms, and columns

correspond to concatenated stories of each company. The matrix is structured as:

ni1 T12 e NinNe
N2t iy . UDI

M= . | (3.2)
nNy1 Nny2 .- MNyNe

where n;, counts the frequency of term w; in the concatenated stories of company k.

We model the interactions between companies as a network. Nodes represent
companies, and edges connect companies k and [ based on the probability of associating a
story about k with [. Define the set of neighbors of k as N, where [ € N, if a link exists

between k£ and (.

The similarity measure g, quantifies the relationship between companies & and (:

S fE (w;) f(w;)
TN 1A T

where 0y, is the angle between the frequency vectors f* and f'. The function f*(w;)

Q. = cos(Or1) = (3.3)

calculates the importance of term w; for company k using the Entropy Model:

fk(wz) = wlocal(ia k) : wglobal(i)v (34)
with:
wlocal<i7 k) = logQ(nik + 1)7 (35)
‘ S0C, pik 1og, pin
oba =1 3.6
Welobal (1) + 1+ log, N, (3.6)
and:
n;
Pik = —y— (3.7)

N .
Zl:C1 i



Chapter 3. Indirect Contagion and Systemic Risk: A News Similarity Network Approach 75

The local weight wiyea(i, k) evaluates the importance of term w; in company
k’s stories, while the global weight wgiobai(i) adjusts for the term’s relevance across all
companies. Words that frequently appear in one company but rarely in others receive
higher importance. The probability my; measures the perception of association between
companies k and [:

my = aqy, (3.8)

where a € (0, 1] scales all connections, and 5 € [1,00) emphasizes stronger connections.
Larger 8 values reinforce similarities with ¢ close to 1, strengthening the connection

between highly similar companies.

3.2.2 Evaluating Infection Probabilities

This section presents the stationary probabilities of infection within the network of
companies. Using the perception matrix M = [my,] we may define a dynamical nonlinear

system of equations with stationary probabilities 7, for each company k € C given by
T = 1—H(1—mkl7rl), (39)
k#l

where ;, represents the probability that company & becomes infected. ! 2

The contagion process here uses m, as proxies for measuring the likelihood of a
positive or negative association in the stories of neighboring companies. The term mym

quantifies the probability that company [ infects company k.3

Equation (3.9) provides a mathematical foundation for evaluating the spread of
contagion between companies. By interpreting the perception matrix M and its influence
on 7, we can quantify how neighboring companies impact each other through shared

associations in their stories.

3.2.3 Detecting Communities

Detecting how companies form clusters in the network provides valuable insights

into indirect contagion. Community detection allows us to identify whether companies

! The product term [, 21 (1—myym;) calculates the joint probability that no company [ in the neighborhood

of k infects k. Consequently, Eq. (3.9) gives the complement, which represents the probability of at
least one neighbor [ infecting k.
This system relates to the stationary solution of a Susceptible-Infected-Susceptible (SIS) model on
networks, often used in epidemiological models, under a mean-field approximation (Pastor-Satorras &
Vespignani, 2001; Meloni, Arenas & Moreno, 2009).
To solve Eq. (3.9), we apply fixed-point iteration. This method iteratively updates 7y until the system
converges to a stable solution. For convergence to hold, the Jacobian matrix of the system must satisfy
a max-norm condition:

IT]loo <1, (3.10)

where ||J||oo is the max-norm of the Jacobian evaluated near the solution 7. Condition (3.10) ensures
that the iterative process converges to a unique solution for the stationary probabilities.See Heath
(1998) for details.
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cluster within their sectors, form cross-sectorial groups, or act as bridges between different

communities (Wan et al., 2021).

We use the Louvain method (Blondel et al., 2008) to detect communities in our
news-based network, which we construct using the similarity measure defined in Eq.
(3.3). The Louvain method optimizes the modularity score ), a measure of how well the
network divides into communities. Modularity evaluates the density of connections within
communities compared to what a random network model would predict. We calculate )

using:
K. K,
kml>(5(ck,cl), (3.11)

1
= — A —
Q m%( Y

where Ay ; represents the weight of the edge between companies £ and [, derived from the
similarity measure. The terms K} and K; sum the edge weights connected to nodes k£ and
[, m represents the total edge weight in the network, ¢, and ¢; are the communities of k&
and [, and d(ck, ¢) equals 1 if k£ and [ belong to the same community and 0 otherwise.
A high modularity score indicates that nodes within the same community are densely

connected, while links between different communities remain sparse.

The Louvain method is well-suited for undirected, weighted networks, making
it an appropriate choice for our news-based similarity network. This method efficiently
partitions companies into communities by maximizing modularity, ensuring stronger
internal connections while keeping inter-community links weaker. Although widely used,
its application here stems from the fact that our network satisfies the conditions for which
it was designed. The algorithm follows three steps. First, each node starts in its own
community. Then, nodes iteratively move between communities to maximize modularity.
Finally, the method aggregates communities into single nodes and repeats the process
until modularity stabilizes. This approach reveals clustering patterns based on shared news
stories, showing whether companies remain within their predefined sectors or form cross-
sector communities. Identifying firms that connect different sectors highlights their role in
indirect contagion, offering insights into how news-based associations shape inter-company

relationships.

3.2.4 Centrality and Regression Analysis

Understanding the factors that influence a company’s centrality within a network is
critical for interpreting contagion dynamics. Centrality captures how essential a company
is to the network, and analyzing its relationship with financial attributes provides insight
into the underlying drivers of influence. To investigate these relationships, we use linear
regression models. The response variable y, representing centrality, is a linear function of
the explanatory variables in X:

y=XB+c¢, (3.12)
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where y is an n x 1 vector of centrality measures, X is an n X p matrix of financial attributes,
B is a p x 1 vector of coefficients, and ¢ represents errors. Ordinary Least Squares (OLS)

estimation identifies the coefficients (3 that minimize the sum of squared residuals (SSR):

n

b=arg mBin SSR(B) = > (v — X}3)?, (3.13)

=1

where SSR quantifies the discrepancy between observed and predicted values.*

3.3 Data

The dataset for this study focuses on news articles about American banks listed
in the S&P 500 index.> We collect these articles from six major media outlets: the New
York Times, Reuters, Fox News, Financial Times, The Guardian, and CNN. This database
spans from 1st January 2020 to 31st December 2022 and contains 14,057 articles.

To ensure representativeness, we excluded companies with fewer than 15 articles
over the entire period. After filtering, the dataset includes stories about 48 companies.
This refinement step ensures that each company has sufficient coverage for meaningful
analysis. We pre-process the news data in four essential steps: (i) tokenization, (ii) removal
of stopwords, (iii) stemming, and (iv) filtering of rare words. In step (i), we break the text
into individual components, or tokens, by removing punctuation (e.g., commas, periods, and
hyphens), converting all words to lowercase, and splitting the text into words. Tokenization
organizes the data into manageable units for analysis, resulting in 3,618,322 tokens. In step
(ii), we eliminate all gramatical words such as prepositions and conjunctions, which do
not provide meaningful information about the companies and and keep all content words.
Since no universal stopword list exists, we carefully select terms to exclude irrelevant
content while retaining relevance. Step (iii) reduces words to their root forms, consolidating
variations (e.g., “running” and “ran”) into a single representation, minimizing redundancy,
and improving analytical clarity. Finally, step (iv) removes words that appear fewer than
five times in a single article or in fewer than ten articles. This step focuses the analysis on

relevant terms and reduces noise, such as uncommon proper nouns.

In addition to news articles, we integrate financial data for the 48 companies. This
financial information complements the textual data, allowing us to analyze the relationship
between company characteristics and network centrality measures. From this point forward,

we define the vocabulary V), as the set of tokens that remain after pre-processing. Each

4 OLS remains a popular choice for its simplicity, but violations of homoscedasticity can lead to

inefficient estimates and unreliable hypothesis tests. To address this, we use the HC3 estimator, which
adjusts for heteroscedasticity and performs well in small samples. We also apply the White test to
detect heteroscedasticity and validate the assumption of constant error variance, ensuring reliable and
interpretable regression results.

> S&P 500 index. Available at url: https://www.spglobal.com
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token w; € V,, represents a stemmed term that excludes stopwords and rare words. The

full dictionary is available in Table 9 of the Appendix A.1.

3.4 Results

This section presents the main findings of our analysis, examining how news
similarity networks capture firm interconnections and systemic risk propagation. Section
3.4.1 describes the structural properties of the network, focusing on connectivity patterns
and sectorial clustering. Section 3.4.2 applies community detection techniques to identify
clusters of firms and determine whether news-based linkages correspond to traditional
sector classifications. Section 3.4.3 examines the relationship between firms’ centrality
in the network and their financial characteristics, explaining the factors that influence
media-driven contagion. Section 3.4.4 builds on these results, discussing their implications

for systemic risk assessment and market stability.

3.4.1 Evaluation of Similarities

Using Eq. (3.3), we calculate the strength of connections between pairs of companies
based on the text of their stories. A major challenge in this process involves distinguishing
meaningful links from those formed by uninformative words (e.g., generic terms common
across multiple companies). To address this, we run a token permutation algorithm
that generates a randomized baseline for comparison. This approach identifies genuine

similarities while filtering out noise caused by random overlaps in word usage.

The algorithm simulates “random stories” by permuting tokens between compa-
nies, preserving token frequency distributions. Some companies rely on a small, focused
vocabulary to describe their core business, while others use broader language. By main-
taining these distributions, the algorithm prevents misinterpretation of random overlaps

as meaningful connections. This procedure follows Cajueiro et al. (2021).

The steps of the algorithm are as follows:

1. Random Selection of Frequency: Select a token frequency n at random.
2. Company Pair Selection: Randomly choose two companies, k and .

3. Token Identification: Identify tokens with frequency n in the stories of both companies.
Then, randomly choose one token with frequency n from each company, namely wy,

and wy;

4. Token Fxchange: Swap wy and w; if wy does not appear in company [’s stories, and

w; does not appear in company k’s stories.
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This procedure preserves the frequency distribution of tokens as defined in Eq.
(3.2), ensuring that the randomized stories retain the statistical properties of the original

ones, except for token assignments.

Figure 4 compares the link strength distributions in the original network (blue line)
and the randomized network (red dashed line). The measure g, calculated using Eq. (3.3),
evaluates the similarity between companies. The randomized network establishes a baseline
for understanding whether observed similarities are meaningful. Under the null hypothesis,
similarities result from random overlaps in word usage. The red curve represents this
null distribution, illustrating the expected range of similarities by chance. The blue curve
represents the original network, capturing the actual observed similarities. Furthermore,
the vertical black line shows the 5% significance level for the null hypothesis, that sits
around q = 0.7095. This level is used as threshold for separating links in the original
network that can be attributed to random similarities, located left from the significance

threshold, from those presenting evidence for strong relation between companies news.
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Figure 4 — Distributions of link strengths for the original network (blue line) , the random-

ized network (red dashed line) and vertical black dashed line for 5% significant
threshold.

To determine whether the distributions of link strengths differ significantly, we
use the Kolmogorov-Smirnov (KS) test. The test statistic is 0.19889, with a p-value <
0.0001. These results strongly reject the null hypothesis that the two distributions arise
from the same process. The significant difference between the two distributions indicates

that the original network reflects meaningful connections. Companies with higher ¢ values
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likely share genuine characteristics, such as similar business models, markets, or strategies.
In other words, the KS test confirms that differences in Figure 4 are not due to random
variation. Links on the extreme right of the original distribution represent the strongest
evidence for meaningful connections. These connections suggest shared market dynamics,
overlapping supply chains, or similar strategic approaches.® This analysis provides a
systematic way to identify meaningful patterns within the network. By isolating these

connections, we gain insights into the relationships and interactions between companies.
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Figure 5 — The Fully Connected Network.

Figure 5 illustrates the fully connected network, highlighting densely connected
clusters within specific sectors after filtering for the random connections. For example, the

Financials sector exhibits strong intra-sector connections, suggesting that companies in

6 In Appendix A.1 we illustrate the shapeless patterns of the randomized network in Figure 26.
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this group share significant similarities, possibly driven by shared market dynamics or
collaborative activities. Health Care and Consumer Discretionary sectors display notable
interconnections with other sectors, reflecting their broad influence and dependencies across
industries. Within Information Technology, Microsoft (MSFT) emerges as a hub, linking
companies within the sector and bridging connections to other industries. I'T companies
demonstrate dense connectivity, underscoring their pervasive role across sectors due to
the widespread adoption of digital transformation and technology-driven services. In the
Financials sector, key players like JPMorgan (JPM) and Bank of America (BAC) act as
pivotal nodes, reinforcing the sector’s cohesion. Some sectors feature prominent hubs that
bridge multiple industries. For instance, Information Technology frequently interacts with

Consumer Discretionary, highlighting the growing importance of digital platforms in retail
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Figure 6 — The Financials Network.

Examining patterns across sectors reveals distinct structural differences. Financials
and Information Technology form larger, cohesive subgroups, that can reflect strong
intra-sector relationships. In contrast, sectors such as Consumer Discretionary and Energy
display more fragmented structures, with companies often acting as intermediaries or
connectors. This fragmentation apparently arises from the diverse nature of these industries

and their reliance on inputs and partnerships across various sectors.”

7 Table 10 in Appendix A.1 provides an overview of the networks, companies, and their respective labels.
Panel (a) lists the companies that form the largest network, which includes all nodes. However, as
shown in Figure 27, the companies Cisco, Comcast, MSCI, and Qualcomm have irrelevant links. We
consider a link as relevant if the similarity between two companies exceeds the threshold derived
from the null distribution of similarities. Hence, we exclude these companies from the fully connected
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Figure 6 provides a detailed view of the Financials sector, showing how firms are
connected. Panel (a) includes all relationships, forming a dense web of links. Panel (b)
filters out weaker connections using the algoritm presented in Section 3.4.1, keeping only
the strongest ties. In this refined network, Wells Fargo (WFC) and Bank of America
(BAC) have one of the closest relationships, while JPMorgan (JPM) acts as a hub, linking
multiple institutions. Some firms, such as BlackRock (BLK) and PNC Financial Services
(PNC), remain connected but have fewer direct links, reflecting their specialized roles in

the financial market.

Applying a threshold to remove weaker links reveals differences in how sectors
are structured. The Financials sector remains the most connected, with strong internal
relationships between major firms. Outside of Financials, the only significant intra-sector

link is between Disney and Netflix, highlighting their competitive but interdependent roles.

This network analysis shows that while some industries maintain dense internal
connections, others rely on external partnerships. Financial institutions form a closely
connected system, most likely due to shared market dependencies. In contrast, companies
in sectors such as Industrials and Consumer Discretionary tend to have fewer direct links,

reflecting the more diverse nature of their business activities.

3.4.2 Community Detection

We apply the Louvain method to detect communities in the network, uncovering
clusters of companies with stronger internal connections based on shared relationships
or similarities. This analysis reveals distinct patterns of intra- and inter-community

interactions, shedding light on how companies relate within and across sectors.

Figure 7 shows the communities in the network. Node colors indicate community
affiliation, with blue representing Community 1, beige representing Community 2, and cyan
representing Community 3. Intra-community edges use colors matching their respective

communities, while light gray highlights inter-community edges.

Community 1 features a concentrated in banks, JPMorgan Chase (JPM), Bank of
America (BAC), Wells Fargo (WFC), Goldman Sachs (GS) and Morgan Stanley (MS),
which dominate the fully connected financial network in Figure 6(b), the exception is
Citigroup (C) that stays in Community 2. This isolated cluster suggests a high level
of intra-sector dependency, with these firms primarily engaging with each other rather
than external communities. The lighter-weight connections extending toward other groups
indicate limited but existing inter-sector interactions, reinforcing the idea that these
financial institutions operate within a more self-contained framework. Community 2 is a

mix of companies from various sectors, including discretionary consumer, communication

network depicted in Figure 5. Panel (b) of Table 10 lists the companies and their respective labels
included in this fully connected network.
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services, financials, health care, and industrials. Instead, it features a dense web of internal
connections, indicating strong intra-community relationships. Companies such as Amazon
(AMZN), Microsoft (MSFT), and Netflix (NFLX) show significant integration within
this cluster, suggesting their strategic roles in maintaining sector-wide interactions. The
presence of financial firms such as Citigroup (C) , Capital One (COF), and Berkshire
Hataway (BRK.B) within this community highlights a potential overlap between finance
and consumer-driven businesses, likely due to market dependencies. Community 3 forms a
well-integrated and highly interconnected structure, primarily consisting of companies from
technology, consumer staples, and industrials. Firms such as Nvidia (NVDA), Intel(INTC),
Mastercard (MA), and PepsiCo (PEP) exhibit dense intra-community linkages, highlighting
strong sectoral relationships. The circular layout of this community suggests equal-weighted
connectivity among its members, indicative of balanced collaboration or shared market
influences. Although it includes several I'T companies, they do not exhibit strong intra-

sector connections, as noted in Section 3.4.1.

Cross-sector dynamics are also evident in the Consumer Discretionary and Com-
munication Services sectors, which display dispersed connectivity. Companies like Amazon
(AMZN) and Netflix (NFLX), maintain links within Community 2 but also connect to
sectors such as Financials and Technology. This dispersion indicates that these companies
engage in broader inter-sector interactions, reflecting their multi-industry business models
and market reach. This community analysis provides insights into how companies form
tightly knit groups while maintaining cross-sector relationships. Table 11 in the Appendix
compares companies by sector and community, further illustrating these dynamics. The
clear clustering of Financials, specifically in banks, in Community 1 and the diversified com-
position of Community 2 and Community 3 underscore the varying degrees of connectivity

and interdependence across industries.
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Figure 7 — Communities identified in the network using the Louvain method.

3.4.3 Centrality and Contagion Pathways

Centrality within a network represents the influence of nodes and the potential
pathways of contagion among them. In the context of financial networks, centrality identifies
companies that have a disproportionate impact on others, embodying the concept of “too

big to fail.” These firms play a pivotal role in propagating shocks across the network.

To measure centrality, we solve Eq. (3.9), which evaluates each company’s stationary
probability 7 associated with the dynamical system where 7 serves as a proxy for centrality,
capturing the likelihood that a company becomes "infected" through its connections in
the network. As in works like Cajueiro et al. (2019), Cajueiro et al. (2021), this approach
enables a structured evaluation of contagion dynamics and the identification of influential
companies. ® The function f(x) = az?, which determines the perception parameter m;, is
strictly increasing. Consequently, the values of o and 8 influence the magnitude of m;

but do not alter the relative ranking of the probabilities 7.

8 The computation of 7 requires verifying that the Jacobian matrix associated with the system of equations

satisfies the convergence condition—specifically, that its norm is smaller than 1 in a neighborhood of
the solution. This ensures the stability and uniqueness of the probabilities derived from Eq. (3.9).
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Figure 8 — The Financials Industry network.

To ensure consistent and interpretable results, we adopt parameter values of o = 1
and 3 = 4.68.7 This configuration allows us to analyze the pathways of contagion effectively,
shedding light on how shocks propagate through the network and which firms are most

central to its structure.

Figure 8, in conjunction with the dagger (1) superscripts in Panel (C) of Table
10, represents the financial industry network, which clearly divides into two distinct
sub-networks. The first sub-network, marked by asterisks (x) in Panel (C) of Table 10,
primarily comprises large, diversified banks. At its center is Bank of America (BAC), which
forms strong connections with major financial institutions such as Citigroup (C), Wells
Fargo (WFC), and Morgan Stanley (MS). Additional links to JPMorgan Chase (JPM) and
Goldman Sachs (GS) underscore Bank of America’s pivotal role in this tightly connected

cluster of influential banking entities.

The second sub-network, identified by double-dagger () superscripts in Panel (C)
of Table 10, highlights PNC Financial Services (PNC) as its central node. This network

9

This satisfy the convergence criteria and align with the findings of Cajueiro et al. (2021).
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includes regional banks like Truist (TFC) and data providers such as FactSet (FDS),
emphasizing PNC’s role in bridging regional banking activities with financial information
services. This configuration highlights the specialized nature of this sub-network, with
PNC Financial Services serving as a critical intermediary connecting diverse elements of

the regional financial landscape.

3.4.4 Explaining Network Centrality

We analyze the centrality of banking companies within the network using financial
data. For this purpose, we employ an Ordinary Least Squares (OLS) regression model, where
the dependent variable (y) represents the centrality of companies, and the explanatory
variables to help us explain a company’s role in the network include logemployees,
changepercent, and dividendYield. As indicated by the correlation matrix in Table 4,

these variables exhibit minimal correlation.

centrality changepercent logemployees dividendYield
centrality 1.00

changepercent -0.01 1.00
logemployeess 0.7 -0.4 1.00
dividendYield 0.3 -0.2 -0.1 1.00

Table 4 — Correlation Matrix

The OLS model, adjusted with the HC3 robust covariance estimator to account for

heteroscedasticity, takes the following form:

y = —0.4833 + 0.0412 x logemployees + 2.8766 x ChangePercent
+1.6116 x dividendYield, (3.14)

where logemployees is the logarithm of the number of employees, a proxy for firm size.
Normalizing employee counts in this way ensures comparability across firms of varying
sizes. Changepercent measures the percentage change in stock prices from the previous
trading day, capturing market perceptions and stock price dynamics. DividendYield

represents the income-generating potential of a stock relative to its price, calculated as:

(3.15)

o ) ttmDividendRate
dividendYield = - - x 100.
Previous Day Close Price

The regression results summarized in Table 5 provide valuable insights into the
factors influencing centrality within the network. The model achieves a high explanatory
power, with an R? value of 0.700, indicating that 70% of the variation in centrality is

explained by the selected variables: logemployees, ChangePercent, and dividendYield.
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The variable logemployees is highly statistically significant (p < 0.0001) with a
positive coefficient (8 = 0.0412). The result suggests that larger firms, as measured by the
logarithm of the number of employees, tend to hold more central positions in the network.
The positive association emphasizes the critical role of firm size as a driver of influence

and operational capacity within the network.

Reflecting the percentage change in stock prices, ChangePercent demonstrates
strong significance (p = 0.002) and a large positive coefficient (S = 2.8767). This indicates
that firms with higher stock price volatility or positive price trends are perceived as central
players in the network. Such firms likely attract more attention and connections, reflecting

their dynamic roles in financial markets.

Although less statistically significant (p = 0.086), dividendYield has a positive
coefficient (5 = 1.6117). The result suggests that companies offering higher dividend yields
may occupy slightly more central positions. Dividend-paying firms are often seen as stable

and reliable, which could enhance their perceived importance.!”

Dependent Variable: centrality R-squared: 0.7000
Method: OLS Adj. R-squared: 0.6310
No. Observations: 17 F-statistics: 13.1300
Df. Residuals: 13 Log-Likelihood: 0.0003
Df. Model: 3 AlIC: -55.94
Covariance Type: HC3 BIC: -52.61

Coef Std. Err. z P > |z [0.025 0.975]
constant -0.4833 0.090 -5.382 <0.0001 -0.659 -0.307
changePercent 2.8767 0.936 3.073 0.002 1.042 4.711
logemployees 0.0412 0.009 4.717 <0.0001 0.024 0.058
dividendYield 1.6117 0.939 1.716 0.086 -0.229 3.452
Omnibus 2.308 Durbin-Watson 2.332
Prob(Omnibus) 0.315 Jarque-Bera (JB) 1.840
Skew -0.717 Prob (JB) 0.398
Kurtosis 2.262

Table 5 — OLS results with robust covariance estimator HC3.

The fit between OLS predictions and actual values is illustrated in Figure 9. The
scatterplot reveals a strong alignment along the 45-degree line, confirming the predictive
accuracy of the model. Firms with lower predicted centrality values align closely with
the diagonal, demonstrating that the model performs particularly well for less central

firms. A few data points deviate from the diagonal, suggesting that certain companies

centrality may be influenced by non-financial factors, such as media coverage, reputation, or

10 The HC3 robust covariance estimator accounts for potential heteroscedasticity in the data, ensuring
the reliability of the coefficients. White’s test results (Panel (a) of Table 12) confirm the presence of
heteroscedasticity, justifying the use of heteroscedasticity-consistent standard errors.
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strategic alliances. The linear trend reinforces the robustness of the model, while deviations
highlight opportunities for incorporating additional variables, such as sentiment analysis

or sector-specific metrics.!!
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Figure 9 — OLS Predictions with HC3 Robust Covariance.

The low error values indicate that the model predictions are closely aligned with the
observed centrality values. These metrics reinforce the suitability of the selected financial
variables (logemployees, ChangePercent, and dividendYield) in explaining network

centrality.

While financial variables explain a significant portion of centrality, they do not
capture the full picture. Other factors, such as market sentiment and socio-political
dynamics, likely influence centrality. These unobserved components, embedded in textual

patterns and qualitative aspects of news data, remain areas for future exploration. This

11 The error metrics we present in Panel (b) of Table 12 quantify the performance of the regression model
in predicting centrality. The (MAE) of 0.0319 is relatively low and suggests strong predictive accuracy.
The MSE of 0.0013, further reflects the model’s ability to minimize large errors. The RMSE of 0.0369,
aligns with the low MSE and confirming the robustness of the model.
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emphasizes the multidimensional nature of centrality, where financial, textual, and social

indicators interact to shape the structure of the network.

3.5 Discussion

This study demonstrates how a news similarity network can reveal relationships
between firms beyond traditional sector classifications. By applying natural language
processing (NLP) techniques to financial news, we extract structured information from
unstructured textual data. Constructing a network based on news similarity enables the
identification of firms that are perceived as interconnected, even when they do not share
direct financial ties. Companies across sectors can use this approach to assess indirect
competition and understand how they are positioned relative to others in the market.
Additionally, tracking media coverage patterns may help anticipate price movements or

sector-wide instability:.

The news similarity network also allows for estimating stationary probabilities as a
proxy for network centrality, which helps identify firms most exposed to indirect contagion.
Within the Financials sector, firms with high centrality in the network experience greater
exposure to financial shocks, suggesting that public perception influences systemic risk
transmission. These findings underscore the importance of managing reputational risk and
maintaining a diversified public image. The relationship between centrality and volatility
in the network could also assist regulators in prioritizing firms for audits or financial
stability assessments. In our Financials network, the most connected firms include Bank of
America, Citigroup, Goldman Sachs, JPMorgan Chase, Morgan Stanley, and Wells Fargo.
Additionally, regression results confirm that company size and reputation contribute to
systemic risk, reinforcing the role of transparency and the diversity of information sources

in preventing risk clusters driven by concentrated narratives.

Community detection using the Louvain method further illustrates how firm rela-
tionships extend beyond standard industry classifications. A single community includes
five of the most central banks—Bank of America, Goldman Sachs, JPMorgan Chase,
Morgan Stanley, and Wells Fargo—while Citigroup appears more integrated with firms
in other sectors. Identifying such communities suggests that regulators could refine their
supervisory frameworks by incorporating information-based linkages and public perception
into risk assessments. This network-driven approach offers regulators a tool to detect
systemic vulnerabilities that may not be apparent from financial data alone, capturing

market sentiment, corporate reputation, and socio-political influences.

The results support policies aimed at maintaining balanced information dissemina-
tion and mitigating the feedback loops between media coverage, market volatility, and

systemic risk. Monitoring how opinion leaders shape market narratives is essential, as these
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narratives can amplify financial instability. Additionally, networks formed by interlocking
corporate boards influence strategic decision-making, leading firms to coordinate actions
that can have sector-wide consequences (Davis & Greve, 1997; Battiston, Weisbuch &
Bonabeau, 2003). Regulators could monitor these networks through news analysis and
financial data to reduce systemic risks. This study expands the analytical tools available for
financial risk assessment by integrating market perception through news, complementing

traditional approaches based on financial statements and quantitative models.

Beyond financial stability applications, this framework may assist in crisis prediction,
mapping inter-firm connections based on media narratives, and informing corporate strategy.
Understanding how firms are linked through public perception provides regulators and

market participants with additional insights into risk transmission and market behavior.

3.6 Conclusion

This chapter applies an approach to systemic risk analysis by constructing a
network of American firms based on news similarity of six big media news outlets: The
New York Times, Reuters, Fox News, Financial Times, The Guardian, CNN. Unlike
traditional methods that rely on financial statements and asset prices, this framework
captures indirect contagion by analyzing how firms are connected through media coverage.
By applying natural language processing techniques, we identify firm relationships that

influence risk transmission but may not be evident in balance-sheet data.

The results demonstrate that firms with high centrality in the news similarity
network are more exposed to the propagation of financial shocks, reinforcing the role of
public perception in systemic risk. Community detection reveals clusters of firms that
extend beyond conventional sector classifications, highlighting the influence of cross-sector
information flows. Additionally, regression analysis shows that firm size and stock price
volatility contribute to network centrality, suggesting that financial characteristics interact

with media-driven contagion.

These findings offer practical insights for regulators and investors seeking to monitor
financial risks from a broader perspective. By incorporating textual data into systemic risk
assessment, this approach complements traditional quantitative models and enhances the
ability to detect emerging vulnerabilities. Future research could refine this methodology by
integrating machine learning techniques to predict contagion events based on the temporal
evolution of news networks. Expanding the analysis to different markets and time periods
would further validate the effectiveness of news-based networks in assessing systemic risk.
Another approach could explore how news-reported events influence strategic decisions in
companies interconnected through shared board memberships, providing valuable insights

into the dynamics of information flow and corporate governance.
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4 DIGITAL TWINS AND NETWORK RE-
SILIENCE IN THE EU ETS: ANALYZ-
ING STRUCTURAL SHIFTS IN CARBON
TRADING

The European Union Emissions Trading System (EU ETS) has transitioned from a
centralized, hub-dominated network to a more fragmented structure, raising concerns about
market efficiency, price stability, and allowance distribution. Regulatory adjustments and
shifting trade relationships have altered market connectivity, with some countries forming
stable trading clusters while others face increasing isolation. This study examines these
structural changes using Digital Twins, complex network analysis, and machine learning
to model emissions trading as a dynamic system. The findings suggest that continued
fragmentation may disrupt price formation and reduce market integration, potentially
affecting liquidity and compliance costs. Predictive modeling reveals that emerging trading
barriers could hinder market efficiency, underscoring the need for policymakers to assess

whether existing mechanisms sustain competition and emissions reduction targets.
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4.1 Introduction

The European Union Emissions Trading System (EU ETS) is the world’s largest
carbon market and a central component of the EU’s climate strategy. As the EU pursues
its carbon neutrality goal for 2050, the EU ETS must allocate allowances efficiently and
cost-effectively to support this transition (Bouckaert et al., 2021). While most analyses
emphasize carbon prices, the structure of trading relationships also plays a critical role in
market performance. Firms rely on the trading network to reallocate allowances across
sectors, and this structure affects liquidity, access, and the market’s ability to respond to
shocks. A robust and resilient trading network helps avoid circulation bottlenecks, supports

consistent market functioning, and sustains progress toward broader sustainability targets.

In this paper, we use EU ETS transaction data to analyze how the network of
trading relationships evolves over time. To address this question, we integrate Digital
Twin modeling with machine learning to simulate the entry of new participants and
predict future trading links. This forward-looking approach allows us to assess the system’s
structural resilience under changing regulatory and market conditions. We implement
Graph Neural Networks (GNNs) (Zhang & Chen, 2018; Chen & Chen, 2021) and Logistic
Regression (Jr, Lemeshow & Sturdivant, 2013; He et al., 2019) to predict the formation of
new links in the trading network. To capture shifts in influence and network topology, we
compute centrality measures and apply modularity-based community detection (Girvan &
Newman, 2002; Blondel et al., 2008). We also use preferential attachment models (Gracious
et al., 2021) to understand how new entrants establish relationships within the market.
Together, these methods allow us to evaluate whether the structure of trading connections
continues to support the core objectives of the cap-and-trade system — namely, efficient

and flexible allowance reallocation.

This analysis may help policymakers assess whether the current market structure
maintains liquidity, supports efficiency, and sustains emissions reductions as trade volumes
grow and regulations change. Structural features of the trading network shape not only
economic outcomes but also the system’s capacity to achieve climate goals. Hierarchical
and asymmetric trading networks can reduce market liquidity and increase transaction
costs by limiting access to counterparties and distorting price discovery — for example,
by making it harder to match buyers and sellers at competitive prices (Karpf, Mandel &
Battiston, 2018). These features not only raise the cost of compliance but may also impair
the flexibility needed for effective allowance reallocation. Understanding the structure of
trading relationships is therefore essential for anticipating frictions that could undermine

both economic and environmental performance within the cap-and-trade framework.

Our study contributes to a growing literature that applies network-based methods to
understand the structure and dynamics of the EU Emissions Trading System. Some studies

have analyzed the architecture of the carbon market by modeling trading relationships
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as complex networks. For example, Borghesi & Flori (2018) use centrality measures to
identify which countries played key roles in Phases I and II of the EU ETS. They show
that a few national registries (e.g., France, Germany, the UK) emerged as structural
hubs and that person holding accounts (PHAs) significantly influenced the network’s
configuration, particularly through strategic account placement. Similarly, Liu, Gao & Guo
(2018) examine the growth, structure, and scale-free properties of the EU ETS trading
network. They document how the network has evolved over time and demonstrate that
firm-level trading activity follows a broken power law, indicating persistent heterogeneity

in network connectivity.

Our work also builds on research that links network structure to market efficiency
and price dynamics. Karpf, Mandel & Battiston (2018) show that hierarchical trading
patterns and asymmetries in the EU ETS transaction network contributed to inefficiencies
such as inflated bid-ask spreads and informational frictions. These patterns allowed central
actors to extract advantages at the expense of peripheral participants, raising concerns
about equity and system-wide effectiveness. While they emphasize static inefficiencies, we

extend this line of inquiry by studying the evolution of such structural features over time.

Our work is also related to another strand of the literature that uses network
representations to improve carbon price forecasting. Xu et al. (2020) propose a hybrid
method that combines complex network features with an extreme learning machine
(ELM), showing that the inclusion of network topology improves both level and directional
prediction accuracy. Building on this, Xu & Wang (2021) apply visibility graph algorithms
to extract topological structures from carbon price time series, further improving the
predictive power of various benchmark models. These studies highlight the importance of
incorporating network characteristics into empirical models but focus primarily on price

trends, not on the underlying trading relationships.

Our methodology extends previous work by integrating Graph Neural Networks
and Digital Twin modeling to simulate structural transitions in the market and predict
the entry of new connections and participants. This adds a forward-looking and structural
dimension to the existing literature, connecting network theory not only to historical

analysis but also to the design and resilience of future carbon markets.

Our findings reveal that the EU ETS has shifted from a hub-dominated structure
to a more decentralized and fragmented network. While some clusters of trading partners
remain stable, others dissolve or reconfigure in response to regulatory shifts and firm-level
adjustments. These changes reshape how allowances circulate through the system and
directly affect market structure and connectivity. Increased fragmentation raises the risk
of localized shortages, higher transaction costs, and reduced access to counterparties —
factors that can impair the efficient reallocation of permits. While our analysis focuses on

structural dynamics rather than direct environmental or economic outcomes, the patterns
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we observe may have broader implications. In a cap-and-trade system with price bounds, a
fragmented network can reduce the system’s ability to self-correct through trade, raising the
likelihood of hitting price floors or ceilings. In turn, this may reduce cost-effectiveness and
weaken the flexibility needed to support decarbonization. Economic analysis suggests that
inefficient allowance allocation can hinder compliance and delay investment in low-carbon
technologies (Mattauch et al., 2022; Flori, Borghesi & Marin, 2024). These factors are
critical for long-term sustainability. Therefore, our results underscore the importance of
monitoring not only price signals but also the underlying structure of trading relationships

to preserve the EU ETS’s effectiveness and long-term resilience.

The rest of this paper is organized as follows. Section 4.2 provides an overview
of the EU ETS. Section 4.3 describes the methodological framework, including network
analysis, machine learning techniques, and Digital Twin modeling. Section 4.4 presents
the dataset. Section 4.5 discusses the results in three subsections: Statistical Analysis,
Complex Network Analysis, and Digital Twin Applications. Section 4.6 outlines the policy

implications of our findings.

4.2 European Union Emissions Trading System

Covering around 40% of the EU’s total greenhouse gas emissions, the European
Union Emissions Trading System (EU ETS) stands as the largest and first multinational
carbon market (Jenkins, 2014). It applies to around 10,000 power stations, industrial
facilities, and intra-EU flights, making it the primary policy tool for reducing emissions
in the region (Ellerman, Convery & Perthuis, 2010). The EU ETS operates under a
cap-and-trade mechanism, which places a strict upper limit (cap) on total emissions from
covered sectors. Within this framework, entities receive or purchase emission allowances,
each granting the right to emit one tonne of carbon dioxide equivalent (Juhasz & Lane,
2024). Since the total number of allowances decreases over time, the system creates a
financial incentive for firms to reduce emissions while enabling flexibility in compliance
through market-based trading (Baudry, Faure & Quemin, 2021).

The EU ETS originates from the 1997 Kyoto Protocol, the first international treaty
to establish legally binding emission reduction targets for industrialized nations. To meet
these obligations, the European Commission initiated discussions on emissions trading as
a cost-effective policy tool. In March 2000, the Green Paper on Greenhouse Gas Emissions
Trading laid the groundwork for the system, identifying fundamental design elements
and inviting stakeholder input (Convery, 2009). This consultation process shaped the
final regulatory framework, balancing economic efficiency with environmental effectiveness
(Hepburn et al., 2016). The EU formally launched the ETS in 2005, structuring it into
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distinct compliance periods, or phases, to allow for progressive refinement of the market.!

The first phase (2005-2007) served as a pilot period, establishing an initial carbon
price, facilitating emissions trading across the EU, and developing the necessary monitoring,
reporting, and verification (MRV) infrastructure. Due to limited historical emissions data,
allocation caps were based on estimates, leading to an oversupply of allowances. This
surplus caused carbon prices to collapse to zero by 2007, as unused allowances could not be
carried over to the second phase (Ellerman & Buchner, 2007). Despite these shortcomings,

Phase I provided essential lessons for improving future phases.

Phase II (2008-2012) introduced stricter emissions limits, reducing the cap by
approximately 6.5% below 2005 levels. Three additional countries — Iceland, Liechtenstein,
and Norway — joined the system, and nitrous oxide (N,O) emissions from nitric acid
production were included. Free allocation of allowances declined slightly to around 90%,
with some countries introducing auctions. Regulators set a penalty of €100 per excess
tonne of COy emissions to enforce compliance. Firms could also offset emissions by
purchasing international credits, totaling approximately 1.4 billion tonnes of CO5 emissions.
A major structural change was the transition to a centralized Union Registry, replacing
national registries for allowance tracking, alongside the introduction of the European
Union Transaction Log (EUTL) to monitor compliance (Borghesi, 2011). The aviation
sector joined the ETS in 2012, though authorities temporarily suspended enforcement for
flights to and from non-European countries. While Phase II benefited from more accurate
emissions data, the 2008 financial crisis unexpectedly reduced industrial activity, leading

to a surplus of allowances and a prolonged period of low carbon prices (Koch et al., 2016).

Recognizing the inefficiencies of previous phases, Phase 11T (2013-2020) introduced
significant reforms to improve market stability and effectiveness. National emission caps
were replaced with a single EU-wide cap, ensuring uniformity across member states. The
allocation of allowances shifted from predominantly free allocation to auctioning as the
default method, reducing market distortions. The ETS adopted harmonized rules for
the remaining free allocations, giving priority to sectors vulnerable to carbon leakage.
Additional sectors and greenhouse gases were brought under regulation, while a reserve of
300 million allowances (NER 300) was set aside to finance renewable energy innovation and
carbon capture and storage (CCS) projects. These adjustments increased price stability and
encouraged investment in low-carbon technologies (Kollenberg & Taschini, 2019). Studies
suggest that these reforms reduced emissions without negatively impacting economic

competitiveness (Dechezleprétre, Nachtigall & Venmans, 2023).
Phase IV (2021-2035) aligns with the EU’s broader climate strategy under the

European Green Deal and the Fit for 55 legislative package. The overarching objective is to

achieve climate neutrality by 2050, with an intermediate goal of reducing net greenhouse gas

1 See Sato et al. (2022) for a critical review of the EU ETS evolution during Phases I-TV.
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emissions by at least 55% by 2030. This phase implements several structural adjustments,
including a steeper annual reduction of the emissions cap to accelerate decarbonization,
a revised allocation system ensuring a gradual transition from free allocation to full
auctioning, and an expansion of the Market Stability Reserve (MSR) to address allowance
surplus and improve price resilience (Dubois, Sahuc & Vermandel, 2025). Additionally,
Phase IV introduces carbon pricing mechanisms for previously uncovered sectors, such
as shipping and road transport. Transaction costs remain an ongoing concern, as they
may impact liquidity and market efficiency in future phases (Baudry, Faure & Quemin,
2021). By integrating these reforms, the EU ETS aims to improve market efficiency while

providing a robust framework for achieving long-term emissions reductions.

4.3 Methodology

This section outlines the methodological framework we use to analyze the structure,
stability, and evolution of the EU ETS trading network. In Section 4.3.1, we describe how we
intend to represent the EU ETS as a complex network. Section 4.3.2 introduces the Digital
Twin framework, which allows us to simulate the system’s evolution by incorporating
historical trading data and modeling structural changes under different regulatory scenarios.
In Section 4.3.3, we extend this approach by integrating machine learning techniques into

the Digital Twin framework to improve the prediction of future trading relationships.

4.3.1 Complex Network Representation of the EU ETS

We intend to model the European Union Emissions Trading System (EU ETS)
as a complex network to analyze its structural characteristics and trading relationships.
In this framework, grounded in graph theory, nodes represent countries, and directed
edges capture the flow of emissions allowances between them (Zanin et al., 2016). We
assign weights to the edges based on the volume of allowances transferred, enabling a
quantitative evaluation of trading intensity and patterns. This network-based approach
goes beyond the analysis of isolated transactions by capturing the broader structure of
allowance exchanges. Countries with high connectivity occupy central positions in the
network, shaping liquidity and potentially influencing price dynamics. By examining the
network across different phases of the ETS, we track structural shifts driven by regulatory

reforms or external shocks.

To identify which countries are more central and how these roles change over time,
we introduce centrality and network density measures indicators in Section 4.3.1.1 and
4.3.1.2, respectively. These metrics also help assess the degree of market integration. In
Section 4.3.1.3, we present the Louvain method for community detection, a widely used

algorithm to identify trading clusters. This approach allows us to evaluate how trading
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relationships evolve and whether cohesive subgroups emerge or dissolve throughout the

system’s development.

4.3.1.1 Centrality Measures

Centrality measures quantify the relative importance of nodes, revealing influential
players and their roles in the emissions market. Degree centrality evaluates how well-
connected a country is within the trading network, distinguishing between sources and

recipients of allowances.

The degree centrality Cp(v) of a node v is defined as:

k,
CD(U) = n— 17

(4.1)

where k, represents the number of edges connected to node v, and n is the total number of
nodes. A country’s degree centrality indicates its participation level in allowance trading.
The in-degree measures the number of distinct counterparties transferring allowances to a

country, while the out-degree represents destinations for outgoing transactions.

The degree distribution P(k) describes the probability that a randomly selected

node has degree k:

Number of nodes with degree k
P(k) = . 4.2
(%) Total number of nodes (42)

Analyzing this distribution determines whether a few countries dominate trading activity
or if participation is more evenly spread. A skewed degree distribution suggests market

concentration, while a flatter distribution implies broader participation.

4.3.1.2 Network Density

Network density measures how interconnected the system is by comparing the
observed number of edges to the total possible connections. For a directed network, density
D is calculated as:

m
D= m, (4.3)
where m is the number of edges and n is the number of nodes. A higher density indicates
a more active trading environment with greater market integration. Tracking density
changes across EU ETS phases identifies whether trading relationships have become more

concentrated or diversified over time.

4.3.1.3 Community Detection via the Louvain Method

Identifying groups of countries that frequently trade allowances provides insights
into market segmentation and trading clusters. We apply the Louvain method (Blondel

et al., 2008) for community detection, which partitions the network into groups of nodes
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with stronger internal connections than external links. The modularity score () measures
the effectiveness of this partitioning:
1 KK,
Q=5-2. (Ai,j v
m 2m

) d(ciycy), (4.4)

where A, ; is the weight of the edge between nodes ¢ and j, K; and K, are the total
edge weights of these nodes, m represents the total edge weight in the network, and
d(ci, ¢;) equals 1 if nodes i and j belong to the same community and 0 otherwise. A higher

modularity score indicates well-defined trading clusters.

The Louvain method follows an iterative process: it first assigns each node to its
own community, then reassigns nodes to maximize modularity gains, and finally aggregates
communities into meta-nodes before repeating the process. This method efficiently detects
trading blocs within the EU ETS network. Applying community detection across multiple
ETS phases determines whether trading clusters remain stable or shift due to regulatory
or economic factors. Persistent clusters suggest long-term trading alliances, while frequent

reconfigurations indicate market adjustments to policy interventions or external shocks.

4.3.2 Digital Twins

We employ Digital Twins to simulate the evolution of the EU ETS network
during Phase IV, which began in July 2021. Digital Twins are virtual representations of
physical systems that integrate real-world data with simulation models to track changes,
predict future states, and support decision-making (Grieves, 2014; Batty, 2018). Originally
developed for engineering and industrial applications, they have gained prominence in
network science for analyzing dynamic systems, including communication networks, social
structures, and power grids. In the context of the EU ETS, Digital Twins offer a framework
for evaluating structural evolution, stability, and resilience by incorporating historical

trading data and modeling network dynamics (Gupta, Iyer & Kumar, 2025).

We use three dynamic mechanisms to simulate the structural evolution of the
EU ETS network within the Digital Twin framework. These mechanisms are designed to
capture how the trading network adapts as new participants enter, existing relationships
shift, and communities reorganize. The first mechanism models node entry and link
formation based on preferential attachment: new participants are more likely to connect
with well-established, highly connected nodes, reflecting real-world trading behavior. The
second mechanism introduces edge rewiring, selectively replacing a portion of existing links
to account for changing partnerships and evolving trade preferences. The third mechanism
enables community reorganization, whereby closely interconnected clusters merge if the
density of inter-community links exceeds a predefined threshold — simulating market

integration or consolidation.
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We initialize the Digital Twin using transaction data from Phases [-1V, assigning
node attributes such as centrality measures and community memberships, and encoding
edge properties including weight, direction, and transaction frequency. These mechanisms
together allow the model to simulate the transition into Phase IV and capture anticipated
changes in trading relationships (Topirceanu, Udrescu & Marculescu, 2018; Papachristou
& Yuan, 2024).

The preferential attachment model, introduced by Barabasi & Albert (1999),
describes how new nodes tend to connect to those that already have high connectivity,
following a “rich-get-richer” mechanism. In our model, the probability of a new edge

forming between a new node and an existing node ¢ is given by:

>k

where k; represents the degree centrality of node ¢, and the denominator sums the degree

P(i) (4.5)

centralities of all nodes in the system. This mechanism reflects real-world market behavior,
where well-established participants are more likely to attract new trading partners. In
addition to new node connections, we model edge formation based on combined degree
centrality, ensuring that high-degree nodes continue to shape network structure. The

probability of forming an edge between two nodes ¢ and j is:

_ . Degree(i) + Degree(j)
Pl =)= > k1 (Degree(k) + Degree(l)) (4.6)

By incorporating preferential attachment into the Digital Twin framework, we
generate a more realistic evolution of trading relationships, where highly connected nodes
remain influential while still allowing new links to emerge dynamically (Albert & Barabdsi,
2002; Jeong, Néda & Barabasi, 2003).

The edge rewiring mechanism modifies existing trade relationships by selectively
replacing connections. The algorithm evaluates each edge and, with a 20% probability,
removes and replaces it with a new connection. The reassignment process ensures that
new edges do not create duplicate links or self-loops. This mechanism captures shifts in
trading relationships, reflecting how some participants disengage from prior connections

and establish new ones.

The community reorganization mechanism adjusts the network structure based on
internal edge density. First, the Louvain method detects initial communities. The algorithm
then measures the density of inter-community connections and identifies clusters with
strong cross-links. When the density exceeds a predefined threshold, the model merges the
communities, simulating commercial integration as previously distinct groups consolidate

through intensified trading relationships.
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Beyond structural modeling, Digital Twins enable scenario analysis by simulating
network responses to policy changes, economic shifts, and regulatory adjustments. Policy-
makers can test alternative allocation schemes, assess the impact of adding new industrial
sectors, or evaluate how interventions affect trading relationships. For example, restricting
transactions involving major hubs could expose vulnerabilities in network connectivity and
help identify potential systemic risks (Holt & Shobe, 2013; Horn, 2015; Coalition, 2020).

Market participants can also use Digital Twins to refine trading strategies, anticipate
price fluctuations, and detect anomalies in transaction patterns. By synchronizing with
real-time data, the Digital Twin enhances transparency, supports risk mitigation, and

strengthens informed decision-making (Kaewunruen et al., 2021; Hezam et al., 2024).

Ultimately, integrating Digital Twins with complex network analysis improves our
ability to forecast developments in the EU ETS. This framework provides a structured tool
for anticipating new trading relationships, ensuring regulatory compliance, and designing

more adaptive and effective climate policies (Abayadeera & Ganegoda, 2024).

4.3.3 Combining Digital Twins with Machine Learning

Machine Learning (ML) extends the predictive capabilities of Digital Twins, allowing
for more precise simulations of network evolution and improving the ability to anticipate
structural changes. By learning patterns from past EU ETS phases, ML models identify
essential factors influencing edge formation and evolving connectivity dynamics. This
integration strengthens the capacity to forecast new trading relationships and detect shifts

in the emissions trading system.

The modeling process consists of multiple stages. First, historical data from Phases
[-1V serve as both training and validation sets, incorporating key features such as node
degree centrality, edge weights, directional flows, and community properties, including
modularity and node density. These features capture structural and behavioral aspects of
the EU ETS network, providing a foundation for predicting future link formations. The
core objective is to model and predict new edge formations using supervised learning,
reflecting how economic, regulatory, and network-driven forces shape the evolution of

trading relationships.

To achieve this, we implement two predictive approaches: Graph Neural Networks
(GNNs) and Logistic Regression. GNNs capture complex dependencies between nodes
through iterative message passing, enabling a more refined representation of network
structure and link probabilities. Logistic Regression, in contrast, offers a simpler yet effective
approach, using node-pair embeddings to estimate the probability of edge formation based
on predefined structural features. The combination of these methods ensures a balance

between interpretability and predictive performance.
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Integrating Digital Twins with ML-based predictive modeling allows us to identify
emerging trading relationships and anticipate structural adjustments in the EU ETS
network. This approach applies network science principles to empirical data, providing a

clearer view of market evolution in Phase IV.

4.3.3.1 Graph Neural Network

Graph Neural Networks (GNNs) model graph-structured data by learning node
representations through iterative message passing. This approach allows each node to
incorporate information from its neighbors, gradually expanding its receptive field across
multiple layers (Gkarmpounis et al., 2024; Wu et al., 2020). The node embedding at layer
[ is updated as:

pHD) = & (W(l) A0 4 Z LW(Z) . hg)) , (4.7)
uEN(’U) Cou

where h{") represents the embedding of node (country) v at layer I, and A (v) denotes its
set of neighboring countries. The normalization term c,, is typically set as the number of
neighbors or adjusted based on edge weights. The trainable weight matrix W is updated
during training, and o is the activation function. ReLLU is used within the GCN layers,

while a Sigmoid function generates link existence probabilities between nodes.

GNNs operate through three main steps: message aggregation, node state updates,

and final prediction. The aggregation step collects information from neighboring nodes:

m{) = 3 MSG (h{),h), (4.8)
ueN (v)

where MSG(+) is a function that processes neighbor information. The node state update

follows:

Kt = UPD (h),m), (4.9)

where UPD(-) incorporates new information. After multiple layers, final embeddings serve

as inputs for classification tasks such as edge prediction:

P(y = 1]X) = Sigmoid (W h{M) . (4.10)

Variants such as Graph Convolutional Networks (GCNs), Graph Attention Networks
(GATs) (Velickovié et al., 2017), and GraphSAGE (Hamilton, Ying & Leskovec, 2017a)

provide alternative approaches for capturing different network properties.
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4.3.3.2 Logistic Regression

Logistic Regression serves as a complementary predictive method, offering a sim-
pler yet effective approach for classifying new link formations. The model estimates the
probability that an edge exists between two nodes based on structural features such as
degree centrality, common neighbors, and preferential attachment. The probability of edge

formation follows:

1
1+ 6—(50-0-2?:1 Bixi)’

where 1 represents node degree, x5 captures the number of shared neighbors, and 3

Py =1|X) = (4.11)

models the preferential attachment mechanism. Positive examples are derived from existing
edges, while negative examples are randomly sampled non-edges. Negative sampling ensures
the model learns to distinguish real connections from randomly generated node pairs. To
optimize model performance, we split the dataset into 80% training and 20% testing, using
cross-validation to prevent overfitting. The final model classifies node pairs based on a

probability threshold, typically set at 0.5:

1 if P(y=1/X) > 0.5,
§ = (4.12)
0 if P(y = 1|X) < 0.5.

4.3.3.3 Evaluation Metrics

To assess the predictive accuracy of our models, we employ several widely used
classification metrics (James et al., 2013). Given that our objective is to predict the
formation of new trading relationships in the EU ETS, it is essential to evaluate how well
the model distinguishes between actual and predicted edges. One of the primary tools for
model evaluation is the Receiver Operating Characteristic (ROC) curve, which illustrates
the tradeoff between the true positive rate (sensitivity) and the false positive rate at
different classification thresholds. The Area Under the Curve (AUC) quantifies the model’s
ability to differentiate between edges (existing or future links) and non-edges (absence of
a trading relationship). A higher AUC indicates a stronger predictive capability, as the

model effectively ranks true edges higher than false ones.

Since the dataset is inherently imbalanced — new edges are relatively rare compared
to non-edges — standard accuracy alone is not a reliable measure of performance. Instead,
we employ precision, recall, and F1-score to provide a more nuanced evaluation. Precision
measures the proportion of predicted edges that are actual edges. A high precision value
indicates that the model makes fewer false positive predictions, meaning it does not
mistakenly classify non-existent links as valid trading relationships. This is particularly

important in regulatory and market analyses, where incorrectly predicting a link could
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lead to misleading conclusions about emerging trading structures. Recall (or sensitivity)
measures the proportion of actual edges that the model correctly identifies. A high recall
ensures that most existing or emerging trading relationships are captured, even if it
means allowing some false positives. This metric is indispensable when the priority is
to identify as many potential link formations as possible, even at the risk of occasional
misclassification. F1-score is the harmonic mean of precision and recall, balancing both
concerns. It provides a single measure of model performance when there is a tradeoff
between precision and recall. This is particularly relevant in our context, as overlooking a
potential trading relationship (false negative) and incorrectly predicting an edge (false

positive) have different implications for market analysis.

Given the complexity of emissions trading networks, an ideal model should achieve a
balance between high precision and high recall, ensuring that predicted trading relationships
are both accurate and comprehensive. We report these metrics to evaluate the robustness

of our predictions.

4.4 Data

We use transaction and account data from the European Union Transaction Log
(EUTL), which records all transfers of emissions allowances within the EU ETS.? The
dataset contains 1,997,165 records, including details on transaction IDs, transaction
dates, transferring and acquiring account IDs, and the volume of allowances exchanged.
Additionally, account-level data provide information on the account holder, account type,
and the country where the account is registered. We present a detailed dictionary of these
variables in Tables 13, and 14 (Appendix B.1).

The EUTL dataset distinguishes between the registry administering an account
and the country where it operates. An entity can register an account in a different country
due to factors such as regulatory requirements, fiscal advantages, or the need to access
specific exchange platforms that mandate registry compliance (Borghesi & Flori, 2018).
However, according to Annex XIV(4) of Regulation 389/2013, transaction records in the
EUTL are only made public on May 1 of the third year following the transaction date.

3This delayed disclosure affects the timeliness of market analysis.

A fundamental limitation of this dataset is its focus on transfers rather than direct
market trades, leaving out critical transaction details such as trade execution prices. This
issue occurs because allowance transactions often take place in futures markets, where
agreements settle at a later date, and the final transferred amount may not reflect intra-day

price variations. Without observed trading prices, assessing supply and demand dynamics

2 The routines to extract the data sources are available at https://github.com/jabrell/eutl scraper

3 See the Commission Regulation (EU) No389/2013 for further details.


https://ec.europa.eu/clima/ets/welcome.do?languageCode=en
https://github.com/jabrell/eutl_scraper
https://eur-lex.europa.eu/eli/reg/2013/389/oj
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at specific points in time becomes difficult, limiting the ability to evaluate market efficiency

and price formation mechanisms.

Another challenge is the loss of direct counterparty information. Because interme-
diaries, such as clearinghouses, clear many transactions, the dataset does not reveal the
original buyer-seller relationships. This complicates network analysis, as the actual trading
structure cannot be fully reconstructed. The settlement process effectively obscures trading
relationships, preventing the identification of major market participants, their influence,

and the emergence of trading clusters.

The dataset also reveals a recurring spike in transaction volume every December,
reflecting regulatory deadlines and the settlement of futures contracts. These annual
surges underscore the discrepancy between observed transfers and actual market trades,
reinforcing the need for more granular data, such as real-time trade records and transaction

prices, to improve market analysis.

In the absence of complete transaction-level data, network modeling offers an
alternative approach to infer interactions between market participants. Historical patterns
can help reconstruct missing relationships, allowing for a more detailed examination of
market structure and dynamics. However, the dataset’s limitations underscore the need

for access to more detailed records to fully capture trading behavior within the EU ETS.

4.5 Results

In this section, we examine the evolution of emissions trading in the EU ETS. Section
4.5.1 summarizes transaction patterns, showing a concentrated trading structure where a
few installations dominate activity. Trading is unevenly distributed, with industrialized
regions serving as key hubs. Section 4.5.2 analyzes the EU ETS network across Phases
[-1V, revealing a shift from centralized to fragmented structures. Community detection
captures trading cluster dynamics, while centrality measures track the changing influence of
participants. Section 4.3.3 employs Digital Twins to simulate network evolution, modeling
node additions, edge rewiring, and structural shifts. These simulations identify emerging
trading relationships and market participants. Finally, Section 4.5.4 integrates machine
learning models — Graph Neural Networks (GNNs) and Logistic Regression — within
the Digital Twin framework to predict future network configurations. While Logistic
Regression reinforces established hubs, GNNs capture emerging connections, enhancing

our understanding of market structure and regulatory impacts.

4.5.1 Descriptive Statistics

This subsection explores transaction patterns and installation activity within the

EU ETS. By summarizing the data, we identify relevant trends in trading frequency, in-
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stallation participation, and transaction volumes. Figure 10 shows the spatial distribution
of installations and transaction densities across Europe. Trading activity is highly concen-
trated in industrialized regions, with notable clusters in the United Kingdom, Germany,
France, and the Benelux area. Major urban and economic centers — such as London, Paris,

and Berlin — exhibit significant transaction volumes.

Transaction in Europe 2005-2023
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Figure 10 — Map of installations with the number of transactions between 2005 and 2023.

In contrast, trading density diminishes in Northern and Eastern Europe, with
sparser activity in rural regions and along the system’s geographic periphery. The observed
distribution shed lights on the central role of industrial hubs in emissions trading. While
the EU ETS covers a broad geographic range, transactions are unevenly distributed,
reflecting economic activity and regulatory engagement. Installations appear more fre-
quently in regions with established industrial bases, reinforcing the network’s core trading

relationships.

Obs Mean Std. Dev. Min 25% 50% 75%
Transactions per installation 16,898 235.79 218.51 1 925 185 305.5

Max
1840

Table 6 — Descriptive statistics of the number of transactions per installation.

Table 6 summarizes the descriptive statistics of installation participation. Across

16,898 installations, the average installation engaged in 236 transactions, with a median of
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185. The interquartile range (IQR) spans from 92 to 305 transactions, indicating moderate
variability. However, extreme outliers — visible in the middle panel — illustrate installations
that participate disproportionately. Any installation with over 625 transactions qualifies
as an outlier, underscoring the imbalance between highly active participants and those

engaging sporadically.
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Figure 11 — Top: distribution of transactions per installation. Middle: boxplot of trans-
action count per installation. Bottom: volume of Allowances (ton).

Figure 11 provides a closer look at transaction frequency across installations. The
top panel reveals that most installations engage in relatively few transactions, with a
long right-skewed tail indicating the presence of highly active participants. While some
installations appear only once, the most active installation recorded 1,840 transactions.
The panel at the bottom of Figure 11 illustrates the distribution of transaction volumes in
tonnes of allowances. The histogram confirms a highly skewed distribution, where most
transactions involve relatively small quantities, while a small number of trades account
for exceptionally large volumes. This pattern suggests that a few installations play a
dominant role in market activity, either due to their regulatory obligations or strategic

trading behavior.
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Largest installations according number of transactions
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Figure 12 — Largest installations by number of transactions in the EU ETS (2005-2023).
GB refers to Great Britain, NO to Norway, PL to Poland, DE to Germany,
HU to Hungary.

Figure 12 further emphasizes market concentration, displaying the installations with
the highest transaction counts. Three installations in Great Britain (GB_ 321, GB_ 381,
and GB__154) top the list, reinforcing the country’s prominent role in emissions trading,.
Poland (PL) follows closely, with multiple installations ranking among the most active.
Germany (DE), Norway (NO), and Hungary (HU) also feature prominently. The treemap®
reveals a concentrated trading structure, where a small number of installations drive a
significant portion of the market’s activity. A minor segment labeled “other” represents
installations with much lower transaction counts, illustrating a stark contrast between

frequent and infrequent participants.

4 FEach rectangle in the treemap represents an installation, with size proportional to its number of

transactions in the EU ETS from 2005 to 2023. Labels follow the format CC_ID, where CC is the
ISO country code and ID is an anonymized identifier. The “other” category aggregates all remaining
installations with low transaction volume.
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Figure 13 — Trading volume of allowances by phase in the EU ETS (2005-2023).

Figure 13 presents trading volumes across the four phases of the EU ETS. Phase I
(2005-2007) exhibits a steady but modest increase in trading activity, serving as a test
period for market mechanisms. Phase IT (2008-2012) sees a significant jump in volume,
peaking in 2008 as regulatory frameworks stabilize. Volumes remain high but fluctuate,
reflecting economic conditions and market adjustments. Phase III (2013-2020) records the
highest trading volumes, particularly in 2015 and 2016, when regulatory changes and policy
shifts likely influenced trading behavior. After 2016, a gradual decline occurs, possibly
due to market saturation, regulatory constraints, or allowance supply adjustments. Phase
IV (2021-2023) introduces structural reforms that lead to a sharp reduction in trading
volumes. Stricter emissions caps and adjustments in allocation mechanisms contribute to

this decline, reflecting the evolving nature of the EU ETS.

The descriptive analysis reveals clear patterns in transaction frequency, volume, and
market structure. While the EU ETS spans thousands of installations, a subset of highly
active participants drives the bulk of transactions. The skewed distribution of transaction
counts and allowance volumes underscores the presence of dominant market players.
A complex network approach offers deeper insights beyond these summary statistics.
By modeling the EU ETS as a network of trading relationships, we can capture how
installations interact, detect structural shifts, and anticipate evolving trading patterns.
The next section applies network science techniques to map trading relationships and

assess market dynamics.
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4.5.2 Structural Evolution of the EU ETS Network

We construct networks for Phases I-IV to represent emissions allowance transactions
over each period. Figures 14, 15, 16, and 17 visualize the evolving network structure,
highlighting communities and centrality. Communities are detected using the Louvain
method, while node sizes reflect degree centrality, indicating the relative importance of
each country. Different colors distinguish distinct trading communities, allowing for a

clearer understanding of network segmentation.
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Figure 14 — Phase I - 2005-2007 - Network: Separated Communities and Degree Centrality

Self-links in network representations indicate transactions where the source and
target accounts belong to the same country. This occurs because emissions trading within
the EU ETS involves allowance transfers between different accounts, which may be
administered under the same national registry. For example, installations within the same
country frequently engage in internal trades, either due to corporate ownership structures,
compliance adjustments, or strategic trading decisions. These self-loops capture domestic
trading activity, distinguishing it from cross-border transactions and providing insights

into how emissions allowances circulate within national markets.

In Phase I (Figure 14), the network is relatively dense, consisting of 25 nodes and
292 edges, yielding a network density of 0.487. The average degree is 23.36, meaning each

country is, on average, linked to over 23 others. A few central nodes dominate connectivity,
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creating a moderately centralized structure. The six detected communities vary in size,
with the largest including five countries. The United Kingdom (GB) and France (FR) are
central within their communities, while other important hubs include the Netherlands
(NL), Spain (ES), and Denmark (DK). Germany (DE) and Austria (AT) compete for
centrality in their cluster. Notably, Malta (MTO0) appears as a completely isolated entity,

indicating its detachment from broader market interactions.

Phase II (Figure 15) shows substantial expansion, with the network growing to 42
nodes and 727 edges. Despite this, network density declines slightly to 0.422, indicating
a broader but somewhat less interconnected market. The average degree increases to
34.61, suggesting higher interaction frequency. Degree centrality becomes more distributed,
indicating the emergence of additional hubs. The number of communities rises to eight,
reflecting structural diversification. Some previously distinct groups merge, reducing
modularity and increasing inter-community connections. New entrants such as Bulgaria
(BG), Switzerland (CH), Iceland (IS), Liechtenstein (LI), Norway (NO), Romania (RO),
and Ukraine (UA) expand the network, further increasing complexity. Germany (DE) and
the Netherlands (NL) solidify their bridging roles. Additional isolated nodes emerge, such
as Cyprus (CY0) and Croatia (HR), suggesting that certain countries remained outside

the primary trading clusters.
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Figure 15 — Phase II - 2008-2012 - Network: Separated Communities and Degree Centrality
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In Phase III (Figure 16), the network becomes denser, comprising 40 nodes and
810 edges. The network density increases to 0.519, with the average degree rising to 40.5.
The number of communities reduces to five, indicating a trend toward consolidation. The
largest community consists of 11 nodes, reflecting tighter integration among certain groups.
The overall structure becomes more interconnected, with prominent subgroups forming
within communities. Intra-community connections strengthen, suggesting that emissions
trading relationships solidify over time. While inter-community edges remain selective,
preferential attachment mechanisms drive new links toward already well-connected nodes.
Countries like France (FR), the United Kingdom (GB), and Germany (DE) maintain their
centrality, reinforcing their influence. Smaller clusters persist, reflecting localized trading

patterns, potentially influenced by regional regulations or strategic agreements.
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Figure 16 — Phase III - 2013-2020 - Network: Separated Communities and Degree Centrality

Phase IV (Figure 17) presents a stark structural shift. The number of nodes declines
to 29, while the number of edges drops dramatically to 58, resulting in a sparse network
density of 0.071. The average degree plummets to 4.0, signaling a fragmented system.
The network disintegrates into 21 communities, with most containing only one or two
nodes, reflecting a significant loss of interconnectivity. Notably, the “EU” node emerges
as a dominant entity, indicating that many participants now consolidate transactions

under a single European registry. This shift likely stems from regulatory adjustments
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and centralized compliance mechanisms. The drastic fragmentation suggests reduced
cohesion, possibly driven by structural changes in allowance allocation and the impact of

the COVID-19 pandemic on emissions trading.
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Figure 17 — Phase IV - 2021-2023 - Network: Separated Communities and Degree Centrality

Overall, network analysis reveals a progression from a fragmented system in Phase I
to a more interconnected market in Phases II and III, followed by substantial disintegration
in Phase IV. This evolution underscores the changing dynamics of the EU ETS, emphasizing

the effects of regulatory reforms and external disruptions on market structure.

Table 15 (Appendix B.1) presents the community transitions of countries across
Phases I to IV. Each country is assigned a community ID for each phase, allowing us
to track structural changes in the network over time. Some countries, such as Lithuania
(LI) and Slovenia (SI), remained within the same communities across multiple phases,
indicating stable roles in the emissions trading network. Conversely, countries like France
(FR), the United Kingdom (GB), and Germany (DE) shifted across different communities,
reflecting dynamic participation and evolving market interactions. Some countries, such
as Cyprus (CY0) and Malta (MT0), appeared in earlier phases but became disconnected
in later ones. The entry of new participants, such as Croatia (HR) in Phase II, points
out the network’s expansion. Community evolution also reveals the role of influential

participants. Larger communities, such as those including Germany (DE), the United
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Kingdom (GB), and France (FR), suggest their bridging function in the market. Smaller,
isolated communities, such as Malta (MT0), indicate limited interaction with the broader
network. Over time, the network exhibits both fragmentation and consolidation, with some
communities merging into larger structures, such as Poland (PL) and Bulgaria (BG) in
Phase IV, while others split into new clusters. These shifts likely result from regulatory
changes, economic factors, and market adaptations within the EU Emissions Trading

System.

Table 16 (Appendix B.1) ranks the top influencers based on degree centrality across
all phases. This ranking helps identify countries that maintained strong connectivity or lost
influence over time. Early phases reveal a centralized network, where a few nodes dominate
connectivity. As the system evolves, decentralization and fragmentation emerge. In Phases
I and II, countries such as France (FR), the Netherlands (NL), and the United Kingdom
(GB) exhibit high degree centrality, acting as dominant hubs. However, in later phases,
their influence declines, and new hubs emerge. Observing these trends, early phases exhibit
concentrated influence, whereas later phases show more distributed connectivity. The
merging and splitting of communities reflect shifting relationships and market priorities.
Established hubs retain influence, but their dominance diminishes as decentralization takes

hold.

Figure 18 illustrates the evolution of degree centrality trends across phases. In this
figure, we track the degree centrality of five top influencers over time to reveal structural
shifts in the network. A degree centrality close to 2 suggests that a country maintains
direct trading relationships with nearly every other country in the network, highlighting its
role as a highly connected participant. This level of centrality reflects a position of strong
market integration, where the country either facilitates transactions between others or
dominates trading activity. The early phases (I-1I) show a centralized system, while later
phases (III-IV) indicate increasing fragmentation and decentralization. Countries such as
the United Kingdom (GB) display a steady rise in centrality, peaking in Phase III before
a sharp decline in Phase IV. The Netherlands (NL) and Germany (DE) follow similar
patterns, maintaining stable centrality in early phases before experiencing a drop in Phase
IV. France (FR) starts with high degree centrality in Phase I but declines steadily across
all phases, with a pronounced drop in Phase IV. Denmark (DK) consistently ranks lower
than the other top nodes, with a gradual decline culminating in Phase IV’s sharp drop.
The decline in degree centrality in Phase IV suggests a structural transformation in the
network. The redistribution of influence, reduced connectivity, and increased fragmentation
all indicate systemic changes. The emergence of the EU-wide account (“EU”) in Phase
IV further contributes to the network’s decentralization, as many transactions become

consolidated under a single entity rather than distributed among individual countries.
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Figure 18 — Top Influencers’ Degree Centrality Trends Across Phases - 2005-2023

The observed trends provide valuable insights into the network’s evolution. Early
phases exhibit high connectivity among a few dominant nodes, forming a relatively
centralized structure. As the system matures, decentralization occurs, with more balanced
connectivity and new participants emerging. By Phase IV, fragmentation becomes evident,
likely influenced by external shocks such as regulatory changes or economic disruptions.
The decline of previously dominant hubs suggests a redistribution of influence, reinforcing
the shifting dynamics of the EU ETS trading system. Overall, these findings demonstrate
the structural transformation of the emissions trading network, moving from concentrated

power centers toward a more fragmented and decentralized system.

4.5.3 Simulating Structural Change with Digital Twins

To analyze the potential structural evolution of the EU ETS network, we construct
a Digital Twin for Phase IV and simulate dynamic changes in node and edge configurations.
Figure 19 presents the initial state of the Digital Twin, replicating the existing Phase
IV network while introducing five new nodes, labeled Twin.Node_ i, where i € {1, ..., s}.
These nodes represent hypothetical new participants entering the emissions trading system,
which could correspond to new countries joining the market or installations from a specific
sector being integrated. The network consists of 34 nodes, including the five additions,
and 68 edges, resulting in an average degree of 4.0. This metric indicates that each node,

on average, maintains the same level of connectivity observed in Phase IV.

The next step simulates network evolution by applying the three dynamic mecha-



Chapter 4. Digital Twins and Network Resilience in the EU ETS: Analyzing Structural Shifts in Carbon
Trading 115

nisms introduced in Section 4.3.2: (i) preferential attachment, where new nodes are more
likely to connect to highly connected participants; (ii) edge rewiring, which randomly
reassigns a subset of existing connections to reflect changes in trading relationships; and (iii)
community reorganization, where the algorithm merges clusters with high inter-community
density to simulate commercial integration. These mechanisms collectively drive the struc-
tural transformation of the network, capturing both incremental adjustments and more

substantial shifts in trading behavior.

Following these modifications, the updated Digital Twin (Figure 19) displays
increased network complexity. The simulation introduces new dynamic nodes, labeled
Dyn.Node_j {i+1}, which represent temporary states of nodes that evolve over multiple
iterations. These nodes adjust based on trading activity, regulatory influences, or network
constraints, mirroring the gradual adaptation of real-world market participants. The
refined network expands to 40 nodes, including newly incorporated participants, and 80
edges, reflecting the evolution of trade relationships. Community structures also undergo
significant changes, increasing to eight distinct trading clusters, with an average of 5.71
nodes per community. This suggests a tendency toward fragmentation or specialization

within the emissions trading system.
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Figure 19 — Dynamic Digital Twin after Node and Edge Evolution

Figure 20 illustrates the final stage of network evolution, highlighting long-term
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transformations in node roles and structural configurations. In addition to Twin.Node_ 1
and Dyn.Node j {i+ 1}, the model introduces Evol.Node_ {i + 1}, representing nodes
that have undergone cumulative adaptations over successive iterations. These nodes track
gradual shifts in connectivity and influence, reflecting how certain participants transition
from peripheral to central positions in the trading network. For instance, an installation or
country with increasing trade volume may emerge as a dominant hub over time. The final
network state comprises 43 nodes, incorporating three additional participants projected
for Phase V. The number of edges increases to 86 due to newly formed and rewired
connections, reflecting the dynamic nature of emissions trading. Despite minor shifts in
community structure, the network stabilizes into eight communities, with an average of
7.17 nodes per cluster. This suggests a tendency toward consolidation, where previously

fragmented trading groups merge into larger, more integrated clusters.
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Figure 20 — Dynamic Digital Twin after Node and Edge Evolution

These results show how the EU ETS trading network can change as the market
grows and regulations evolve. By using a Digital Twin to simulate these dynamics, we
are able to explore how new connections form, how trading relationships shift, and how
communities reorganize over time. This approach helps us identify patterns that may
shape the future of the carbon market — an issue we take up in the next section, where

we integrate machine learning to improve predictions about these structural changes.
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4.5.4 The Future of the European Carbon Market

In this section, we use machine learning models integrated with Digital Twins to
generate predictions about the future structure and behavior of the European carbon
market. This integration increases the model’s ability to simulate structural changes, track
network evolution, and optimize connectivity. By leveraging machine learning techniques,
we improve the accuracy of predictions related to edge formation and trading dynamics
within the EU ETS. We explore Graph Neural Networks (GNNs) for link prediction,
alongside classical machine learning models such as Logistic Regression. These models
perform well when edge prediction features are carefully engineered to capture both

structural and transactional characteristics.

We construct the input graph using data from Phases I-1V, incorporating nodes,
edges, and relevant attributes, such as the volume of traded allowances between countries.
The GNN model is trained on this dataset to predict new connections expected to form
in Phase IV. The process involves defining node embeddings, training the model, and
evaluating its predictive performance. To train and evaluate the machine learning model,
we split the dataset into training and testing subsets.® The training set comprises 80%
of the data, while the remaining 20% is reserved for testing. Specifically, we apply this
to the edge index, ensuring a balanced distribution of edges across training and test sets.
This approach allows the model to learn structural patterns from the training data while
evaluating its generalization on unseen edges. By maintaining an 80/20 split, we strike a
balance between providing sufficient data for training and preserving enough examples for

robust performance assessment.

Epoch Train Loss Test Loss Test AUC

0 0.6982 0.7146 0.5357
10 0.6164 0.6599 0.6214
20 0.5017 0.6749 0.7357
30 0.4178 0.6940 0.7071
40 0.3888 0.7094 0.7286
20 0.3687 0.6787 0.7357

Table 7 — Evaluation of GNN model performance for edge prediction.

Table 7 presents the evaluation results of the GNN model across multiple training
epochs. Initially, both train and test losses are high, and the test AUC is close to 0.5,
indicating performance close to random guessing. As training progresses, the test AUC
stabilizes between 0.71 and 0.74, showing that the model effectively generalizes to unseen
data. The decreasing training loss suggests improved learning of structural and transactional

patterns within the network.

5 We use the train_test_split() function from Scikit-Learn.


https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/
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Figure 21 visualizes the predicted edges in Phase IV, with highlighted new con-
nections identified by the GNN model. The EU node remains the dominant hub, with
several newly predicted links directed toward or emerging from it. The model also forecasts
connections involving peripheral nodes, such as Spain (ES), Portugal (PT), and Denmark
(DK), suggesting an expected expansion in trading activity beyond the core participants.
The ability of GNNs to leverage relational and structural properties allows them to detect
edges that might not be immediately apparent with simpler models. For instance, connec-
tions between less central nodes, such as Croatia (HR) and Lithuania (LT), indicate that
the model captures deeper network dependencies beyond direct trading relationships. This
predictive capability offers insights into the future evolution of the network, pointing out

potential shifts in trading behavior.

Figure 21 — Phase IV Network with highlighted predicted edges by GNN Model.

Figure 22 extends the analysis by incorporating the Digital Twin framework, where
predicted edges are evaluated within an evolving network structure. The simulation intro-
duces new entities, such as Twin.Nodes and Dyn.Nodes, representing potential participants
in the system. The model predicts increased connectivity involving the EU node, reinforcing
its role as the central trading hub. Additionally, the simulation reveals that Slovakia (SK)
and Poland (PL) are gaining new connections, possibly reflecting their growing influence
in the emissions trading market. The inclusion of dynamically generated nodes suggests

that the GNN model can generalize beyond existing structures, forecasting interactions
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even for newly introduced participants. By integrating Digital Twins with ML-based link
prediction, we obtain a more dynamic and adaptive representation of the EU ETS. The
model not only predicts structural changes but also emphasizes emerging patterns that

may influence regulatory decisions and market behavior in future trading phases.

Figure 22 — Phase IV Digital Twin network with highlighted predicted edges by GNN
Model.

Table 8 presents the evaluation metrics for the Logistic Regression model in predict-
ing new edges. The model achieves an AUC score of 0.95, indicating strong classification
performance. The precision of 0.9333 means that 93.33% of predicted edges correspond
to actual edges, demonstrating a high level of reliability. With a recall of 1.0, the model
successfully identifies all relevant edges, ensuring no potential connections are overlooked.

The F1-score of 0.9655 reflects a well-balanced trade-off between precision and recall.

AUC Score Precision Recall F1-Score
0.9500 0.9333 1.0000 0.9655

Table 8 — Evaluation metrics for edge prediction using Logistic Regression.

The ROC curve in Figure 23 visualizes the model’s classification performance. The
AUC of 0.95 confirms that the Logistic Regression model effectively distinguishes between
existing and non-existing edges. The curve remains close to the top-left corner, reinforcing

the model’s high sensitivity and specificity.
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Figure 23 — ROC curve for Logistic Regression.

Figure 24 illustrates the predicted edges in Phase IV. The red lines highlight new
connections forecasted by the model. Most predicted edges cluster around Bulgaria (BG),
Czech Republic (CZ), Hungary (HU), and Germany (DE), indicating emerging trading
links between these regions. Additional connections, such as those between Ireland (IE)
and Slovakia (SK), suggest evolving market relationships. The EU node remains central,

reinforcing its dominant position in the network.



Chapter 4. Digital Twins and Network Resilience in the EU ETS: Analyzing Structural Shifts in Carbon
Trading 121

GB MT

Fi
Sl ES

PL
RO BG

DK

GR K (e
SE . HR
NL

BE
AT

FR

EE

Figure 24 — Phase IV network with predicted edges highlighted by the Logistic Regression
model.

Figure 25 extends this analysis to the Digital Twin framework, incorporating
dynamic entities such as Twin.Nodes, Dyn.Nodes, and Evol.Nodes. These additional nodes
represent forecasted participants and structural changes in the market. The red edges
indicate predicted connections, with a notable concentration around the EU node. This
suggests the EU’s continued role as a trading hub while new nodes integrate into the
network. The predicted connections reveal expanding trading relationships, particularly
involving countries like Cyprus (CY), Sweden (SE), Denmark (DK), and Finland (FI).
The Logistic Regression model emphasizes connections between already well-established
nodes, reinforcing existing trading hubs. In contrast, the GNN model predicts a broader
distribution of edges, identifying connections between peripheral nodes. This difference
suggests that while Logistic Regression effectively captures strong trading relationships,
GNNs may offer insights into emerging market structures. Overall, the Logistic Regression
model delivers high accuracy and recall, making it reliable for predicting structural changes
within the EU ETS network. However, its tendency to reinforce central hubs rather
than explore new link formations highlights the complementary role of GNNs in network

evolution analysis.
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Figure 25 — Phase IV with Digital Twin network and highlighted predicted edges by the
Logistic Regression model.

4.6 Conclusion

This paper applies Digital Twin modeling, complex network analysis, and machine
learning to study the structural evolution of trading relationships in the European Union
Emissions Trading System (EU ETS). Using detailed transaction data, we document a
shift from a hub-dominated network to a more decentralized and fragmented structure.
Our results show that while some trading clusters persist, others dissolve or reconfigure in

response to regulatory adjustments and firm behavior.

By integrating predictive models such as Graph Neural Networks and logistic
regression with Digital Twin simulations, we forecast future link formation and evaluate
whether the network can absorb increased market activity. Our findings reveal growing
fragmentation in the trading network, which may create structural bottlenecks, reduce lig-
uidity, and limit the ability of firms to reallocate allowances efficiently. These patterns have
direct implications for market efficiency: when firms face reduced access to counterparties
or incur higher transaction costs, the allowance allocation mechanism may become less
cost-effective. Over time, this can increase the likelihood of triggering price floors or ceilings,
reducing the flexibility that cap-and-trade systems are designed to provide. The structural

weaknesses we identify may indirectly affect sustainability. A fragmented or inefficient
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network could undermine firms’ ability to meet emissions targets or adapt to policy changes,
potentially reducing the overall effectiveness of the EU ETS in supporting decarbonization
(Mattauch et al., 2022; Flori, Borghesi & Marin, 2024). Therefore, addressing structural
vulnerabilities in the trading network is crucial for sustaining environmental performance

and ensuring the market remains aligned with long-term sustainability objectives.

Incorporating sustainability metrics and explicitly modeling environmental out-
comes alongside economic performance would strengthen the predictive power of these
analyses, supporting policymakers in designing robust market structures that reliably
promote environmental sustainability. Building on this framework, future research could
extend Digital Twin simulations by incorporating firm-level behavioral assumptions, such
as compliance strategies or risk preferences, to better capture the microfoundations of
trading dynamics. Additional work could also integrate environmental and economic per-
formance metrics more explicitly into the modeling environment. Finally, applying this
approach to other emissions trading systems or to emerging cross-border carbon markets
could offer comparative insights into the structural resilience and efficiency of different
market designs. These results suggest that regulatory oversight should extend beyond
price monitoring to include the structure of trading relationships. Incorporating network
diagnostics into market surveillance could help identify early signs of fragmentation and
inform targeted interventions to sustain a well-functioning and environmentally effective
carbon market. Ultimately, reinforcing market structure resilience contributes directly to
the broader goal of achieving sustainable emissions reductions and maintaining momentum

towards Europe’s ambitious climate neutrality targets.
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5 CONCLUSION

We explore methods for constructing networks, measuring node importance, and
predicting structural changes using Machine Learning. Machine learning enhances cen-
trality approximations, reducing computational costs while preserving ranking accuracy.
Embedding techniques like node2vec and GraphSAGE encode structural properties into
compact representations, improving clustering, classification, and link prediction. Cluster-
ing methods, such as Gaussian Mixture Models and hierarchical approaches, group similar
nodes while allowing overlapping memberships, making them effective for community

detection.

Link prediction leverages network structure and past interactions to anticipate
future connections, benefiting applications like fraud detection and recommendation
systems. Reinforcement learning optimizes community detection in dynamic networks by
refining partitioning strategies and enhancing modularity. Visualization techniques like
PCA, NMF, and t-SNE simplify complex structures, while extensions such as tsNET and

GraphTSNE improve layout representation by incorporating connectivity patterns.

These techniques apply to fields such as fraud detection, economics, recommendation
systems, biological interactions, infrastructure, and security. Although machine learning
improves scalability and interpretability, challenges persist in model fine-tuning, handling
sparsity, and ensuring robustness. Future research should focus on reducing computational
complexity, improving generalization, and integrating multiple methods for more precise

network analysis.

The second paper apply a approach to systemic risk analysis by constructing
a network of U.S. firms based on news similarity from major media outlets, including
The New York Times, Reuters, Fox News, Financial Times, The Guardian, and CNN.
Unlike traditional methods relying on financial statements and asset prices, this framework
captures indirect contagion by examining how firms connect through media coverage.
By applying NLP techniques, the study uncovers firm relationships that influence risk

transmission but remain invisible in balance-sheet data.

The results indicate that firms with high centrality in the news similarity network
face greater exposure to financial shocks, highlighting the role of public perception in
systemic risk propagation. Community detection reveals that firms form clusters extending
beyond conventional sector classifications, emphasizing the importance of cross-sector
information flows. Regression analysis shows that firm size and stock price volatility
contribute to network centrality, suggesting an interaction between financial characteristics

and media-driven contagion.
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These insights provide regulators and investors with a broader perspective on finan-
cial risk monitoring. Incorporating textual data into systemic risk assessments complements
traditional quantitative models and enhances the ability to detect emerging vulnerabilities.
Future research could refine this method by integrating machine learning to predict conta-
gion events based on the temporal evolution of news networks. Expanding the analysis
across different markets and time periods would further validate news-based networks
in systemic risk assessment. Another approach could explore how news-reported events
influence strategic decisions in firms interconnected through shared board memberships,

offering insights into corporate governance and information flow dynamics.

The third paper examines the structural evolution of the European Union Emissions
Trading System (EU ETS) and its implications for market efficiency, price stability, and
regulatory effectiveness. As the trading network shifts from a centralized, hub-dominated
structure to a more fragmented system, new challenges emerge. Decentralization and
declining interconnectivity may weaken market integration, disrupt price formation, and
reduce liquidity. Community detection reveals that some countries form persistent trading
clusters, while others face growing isolation, raising concerns about trade barriers and
uneven allowance distribution. Policymakers must determine whether existing mechanisms
adequately sustain competition and emissions reduction targets or require adjustments to

prevent inefficiencies in market structure.

Regulatory interventions impact not only price stability but also trading relation-
ships, altering network resilience over time. The findings suggest that further fragmentation
may reduce emissions trading flexibility, limiting firms’ ability to adjust efficiently to carbon
pricing signals. Predictive modeling indicates that emerging trading barriers could lead
to long-term inefficiencies, emphasizing the need for regulatory strategies that preserve

connectivity while balancing market stability and emissions reduction goals.

This study introduces a framework that integrates Digital Twins, complex network
analysis, and machine learning to model emissions trading as a dynamic system. By
treating the EU ETS as an evolving network, the study identifies structural shifts, monitors
changing market power, and predicts future trading relationships. Graph Neural Networks
(GNNs) and Logistic Regression forecast link formation, with GNNs detecting emerging
relationships beyond direct neighbors and Logistic Regression reinforcing existing hubs.
Combining classical network metrics with Digital Twin simulations improves forecasting

and interpretation of emissions trading network evolution.

Beyond empirical findings, this study demonstrates how network science and predic-
tive modeling can inform environmental policy. Future research could extend this approach
by incorporating stress-testing scenarios, simulating policy adjustments before implemen-
tation, or developing Digital Twin frameworks with real-time transaction data. A deeper

understanding of emissions trading network evolution will help regulators anticipate market
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shifts, ensuring that cap-and-trade systems remain effective in balancing environmental

goals with economic efficiency.

We use a variety of methods and techniques to model network data-driven, observing
patterns in both numerical and textual data. We demonstrated how to use various
techniques to model complex networks and predict possible future behaviors like NLP, ML,
and Digital Twins. Thus, we conclude that Complex Networks combined with machine

learning and digital twins greatly assist in analyzing economic data.
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APPENDIX A - INDIRECT CONTAGION
AND SYSTEMIC RISK:
A NEWS SIMILARITY NETWORK
APPROACH

A.1 Additional Figures and Tables

This appendix presents supplementary figures and tables that support the main
analysis. Figure 26 visualizes the randomized network of firms, providing a baseline
comparison against the actual news similarity network. Figure 27 displays the largest
connected component of the network, showing how firms are linked based on media coverage.
These additional materials complement the main text by offering further evidence on the
network structure, firm interconnections, and the statistical validity of the findings. Table
9 provides a dictionary of variables, detailing the financial and market indicators used in
the study. Table 10 categorizes companies based on their sector and network membership,
distinguishing between the largest connected network, the fully connected network, and
the Financials sector network. Table 11 compares firm groupings by GICS sector and the
detected communities, illustrating how news similarity networks capture relationships
beyond conventional classifications. Table 12 reports White’s test results and error metrics

to assess the robustness of our regression models.
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Variable
EBITDA*

avgl0Volume*
avg30Volume*
beta*

companyName*
currentDebt*
day200MovingAvg*
day30ChangePercent*
day50MovingAvg*
day5ChangePercent*
debtToEquity™*
dividendYield*

employees*
enterpriseValue*

enterpriseValueToRevenue*
exDividendDate*

float

forwardPERatio*
grossProfit*
marketcap*
maxChangePercent*
monthlChangePercent*
month3ChangePercent*
month6ChangePercent*
nextDividendDate*
nextEarningsDate*
peHigh*

peLow™

peRatio*

pegRatio*

priceToBook*
priceToSales*
profitMargin*
putCallRatio*
revenue*
revenuePerEmployee*
revenuePerShare*

Description

Earnings before interest, taxes, depreciation, and amortization from the most recent
quarterly financial report.

Average trading volume over the last 10 calendar days.

Average trading volume over the last 30 calendar days.

A measure of the asset or portfolio’s volatility relative to the overall market.

Levered beta calculated using 1 year of historical data compared to SPY.

Name of the company associated with the security.

Total current debt reported by the company.

200-day moving average based on calendar days.

Percentage change over the last 30 calendar days.

50-day moving average based on calendar days.

Percentage change over the last 5 calendar days.

Debt-to-equity ratio, calculated as total liabilities divided by shareholder equity.

Trailing twelve-month dividend yield, calculated as the ratio of dividend rate to the

previous day’s closing price, expressed as a percentage.

Total number of employees in the company.

Enterprise value (EV), representing the total value of the company, often viewed as an
alternative to equity market capitalization.

Enterprise value-to-revenue (EV/R), comparing the company’s enterprise value to its revenue.
Date of the last ex-dividend.

Value is ‘null‘ as of December 1, 2020.

Forward price-to-earnings ratio, using forecasted earnings for the calculation.

Gross profit, defined as revenue minus the cost of goods or services sold.

Market capitalization, calculated as shares outstanding multiplied by the previous day’s close.
Maximum percentage change over calendar days.

Percentage change over the last 1 month (calendar days).

Percentage change over the last 3 months (calendar days).

Percentage change over the last 6 months (calendar days).

Expected ex-dividend date of the next dividend payment.

Announced date of the next earnings report.

52-week high of the price-to-earnings ratio.

52-week low of the price-to-earnings ratio.

Price-to-earnings (P/E) ratio.

Price-to-earnings-to-growth (PEG) ratio, calculated as the P/E ratio divided by the trailing
twelve-month earnings growth rate.

Price-to-book ratio (P/B), comparing the current market price to the book value of the company.
Price-to-sales ratio (P/S), calculated as market capitalization divided by annual revenue.
Net profit margin, expressed as a percentage of revenue.

Total put option volume divided by total call option volume for all available option contracts.
Total revenue generated from the company’s primary operations over the last twelve months.
Revenue per employee, calculated as total revenue divided by the number of employees.
Revenue per share, calculated as total revenue divided by outstanding shares.
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Figure 26 — Companies in the randomized network.
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Variable

sharesOutstanding™*
totalCash*
totalRevenue*

ttmDividendRate*

ttmEPS*

week52change*

weekb2high*
week52highDate*
weekb2highDateSplitAdjustOnly*
week52highSplitAdjustOnly™*
weekb2low™*

week52lowDate*
weekb2lowDateSplitAdjustOnly*
week52lowSplitAdjustOnly™*
yearlChangePercent*
year2ChangePercent*
year5ChangePercent*
ytdChangePercent*

close

high

low

open

symbol

volume

changeOverTime
marketChangeOverTime

uOpen
uClose
uHigh
uLow
uVolume
fOpen
fClose
fHigh
fLow
fVolume
label
change
changePercent

Description

Total shares outstanding, calculated as issued shares minus treasury shares.
Total cash available to the company.

Revenue generated from the sale of goods or services through primary operations over
the last twelve months.

Trailing twelve-month dividend rate per share.

Trailing twelve-month earnings per share.

Percentage change based on the last 52 calendar weeks.

Highest adjusted price during trading hours in the last 52 calendar weeks.
Date corresponding to the 52-week high.

Date corresponding to the 52-week high, adjusted for stock splits only.
Highest split-adjusted price observed during the last 52 calendar weeks.
Lowest adjusted price during trading hours in the last 52 calendar weeks.
Date corresponding to the 52-week low.

Date corresponding to the 52-week low, adjusted for stock splits only.
Lowest split-adjusted price observed during the last 52 calendar weeks.
Percentage change over the last year based on calendar days.

Percentage change over the last 2 years based on calendar days.
Percentage change over the last 5 years based on calendar days.
Year-to-date percentage change based on calendar days.

Adjusted closing price for historical dates, split-adjusted only.

Adjusted high price for historical dates, split-adjusted only.

Adjusted low price for historical dates, split-adjusted only.

Adjusted opening price for historical dates, split-adjusted only.

Stock ticker symbol.

Adjusted trading volume for historical dates, split-adjusted only.
Percentage change of each interval relative to the first value, useful for stock comparisons.
Percentage change of each interval relative to the first value, based on 15-minute delayed
consolidated data.

Unadjusted opening price for historical dates.

Unadjusted closing price for historical dates.

Unadjusted high price for historical dates.

Unadjusted low price for historical dates.

Unadjusted trading volume for historical dates.

Fully adjusted opening price for historical dates.

Fully adjusted closing price for historical dates.

Fully adjusted high price for historical dates.

Fully adjusted low price for historical dates.

Fully adjusted trading volume for historical dates.

Human-readable date format, depending on the data range.

Daily change from the previous trading day.

Daily percentage change from the previous trading day.

Table 9 — Dictionary of Variables
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Panel (a) The Largest Network Panel (b) The Fully Connected Network Panel (c) The Financials Network
3M MMM 3M MMM Bank of America* BAC
ADP ADP ADP ADP Berkshire Hathaway BBK.B
Abbot ABT Abbot ABT BlackRock BLK
Amazon AMZN Amazon AMZN Capital One COF
Bank of America BAC Bank of America BAK Citigroup* C
Berkshire Hataway BBK.B Berkshire Hataway BBK.B FactSet * FDS
BlackRock BLK BlackRock BLK Goldman Sachs™ 1 GS
Boeing BA Boeing BA Invesco vz
Capital One COF Capital One COF JP Morgan Chase* JPM
Carnival CCL Carnival CCL MSCI MSCI
Cisco CSCO Citigroup C Morgan Stanley* MS
Citigroup C Clorox CLX Nasdaq NDAQ
Clorox CLX Costco COST PNC Financial Services™* PNC
Comcast CMCSA Disney DIS Prudential Financial PRU
Costco COST ExxonMobil XOM Raymond James RIJF
Disney DIS FactSet FDS Truist* TFC
ExxonMobil XOM General Electric GE Wells Fargo® WFC
FactSet FDS Goldman Sachs GS
General Electric GE IBM IBM Panel (d) The Fully Connected Financial Network
Goldman Sachs GS Intel INTC
IBM IBM Invesco vz Bank of America BAC
Intel INTC JP Morgan Chase JPM Citigroup C
Invesco vz Kroger KR Goldman Sachs GS
JP Morgan Chase JPM Mastercard MA JP Morgan Chase JPM
Kroger KR Microsoft MSFT Morgan Stanley MS
MSCI MSCI Moderna MRNA Wells Fargo WFC
Mastercard MA Morgan Stanley MS FactSet FDS
Microsoft MSFT Nasdaq NDAQ PNC Financial Services PNC
Moderna MRNA Netflix NFLX Truist TFC
Morgan Stanley MS Nvidia NVDA
Nasdaq NDAQ PNC Financial Services PNC
Netflix NFLX PayPal PYPL
Nvidia NVDA PepsiCo PEP
PNC Financial Services PNC Pfizer PFE
PayPal PYPL Prudential Financial PRU
PepsiCo PEP Raymond James RJF
Pfizer PFE Salesforce CRM
Prudential Financial PRU Starbucks SBUX
Qualcomm QCOM Truist TFC
Raymond James RIJF Verison \
Salesforce CRM Walmart WMT
Starbucks SBUX Wells Gargo WEFC
Truist TFC eBay EBAY
Verison VZ
Walmart WMT
Wells Gargo WFC
eBay EBAY

Table 10 — Overview of Networks and Company Labels. We categorize companies into
different networks based on their sector of activity. An asterisk (x) indicates
that a company is part of the Financials Industry Network. A dagger (7)
denotes membership in the Banking Industry Network. A double dagger (I)
signifies inclusion in the Other Financials Services Industry Network.
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Symbol Company GICS Sector Community
BAC Bank of America Financials Community 1
GS Goldman Sachs Financials Community 1
JPM JPMorgan Chase Financials Community 1
MS Morgan Stanley Financials Community 1
WFC Wells Fargo Financials Community 1
DIS Disney Communication Services Community 2
NFLX Netflix Communication Services Community 2
AMZN  Amazon Consumer Discretionary ~ Community 2
SBUX Starbucks Consumer Discretionary  Community 2
WMT Walmart Consumer Staples Community 2
BLK BlackRock Financials Community 2
BRK.B  Berkshire Hathaway Financials Community 2
C Citigroup Financials Community 2
COF Capital One Financials Community 2
NDAQ Nasdaq Financials Community 2
PNC PNC Financial Services Financials Community 2
PRU Prudential Financial Financials Community 2
ABT Abbott Health Care Community 2
MRNA  Moderna Health Care Community 2
PFE Pfizer Health Care Community 2
BA Boeing Industrials Community 2
GE General Electric Industrials Community 2
MSFET Microsoft Information Technology =~ Community 2
V7 Verizon Communication Services Community 3
CCL Carnival Consumer Discretionary ~ Community 3
EBAY eBay Consumer Discretionary ~ Community 3
CLX Clorox Consumer Staples Community 3
COST Costco Consumer Staples Community 3
KR Kroger Consumer Staples Community 3
PEP PepsiCo Consumer Staples Community 3
XOM ExxonMobil Energy Community 3
FDS FactSet Financials Community 3
1IVZ Invesco Financials Community 3
RJF Raymond James Financials Community 3
TFC Truist Financials Community 3
MMM 3M Industrials Community 3
ADP ADP Information Technology =~ Community 3
CRM Salesforce Information Technology =~ Community 3
IBM IBM Information Technology =~ Community 3
INTC Intel Information Technology =~ Community 3
MA Mastercard Information Technology =~ Community 3
NVDA  Nvidia Information Technology =~ Community 3
PYPL PayPal Information Technology =~ Community 3

Table 11 — Comparision of Companies by GICS Sector and Community .

Panel (a) White’s Test Panel (b) Error Metrics

Test Statistics 14.1377 Mean Absolute Error (MAE) 0.0319
Test Statistics p-value 0.1175 Mean Squared Error (MSE) 0.0013
F-Statistics 3.8417 Root Mean Squared Error (RMSE) 0.0369
F-Statistics p-value 0.04487

Table 12 — Panel (a): White’s Test. Panel (b): Error Metrics.
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Figure 27 — The Largest Network.
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APPENDIX B - DIGITAL TWINS AND
NETWORK RESILIENCE IN THE EU ETS:
ANALYZING STRUCTURAL SHIFTS IN
CARBON TRADING

B.1 Additional Tables

The tables in this appendix provide useful reference data for the analysis. Table
13 define the variables in the transaction and account datasets, clarifying how trading
relationships are recorded. Table 14 lists country codes, ensuring consistency in the
interpretation of registry identifiers. Table 15 tracks how countries transition between
trading communities across Phases [-1V, illustrating network reconfigurations. Finally,
Table 16 ranks countries by degree centrality in each phase, revealing shifts in market
influence over time. These tables support the empirical results by documenting fundamental
structural elements of the EU ETS network.

Variable Description

Transaction variables

transactionlD ID of the transaction in which the transaction block took place
transferringAccount id Identifier of account that transferred the permits
acquiringAccount id Identifier of the account that acquired permits

amount Number of units transferred

Account variables

id Unique account identifier

name Name of account

registry id 2-letter ISO code for registry

Table 13 — Dictionary of Variables for Transaction and Account Data. The registry_id
codes correspond to those presented in Table 14.
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Carbon Trading
Code Description Code Description
AT Austria AU Australia
BE Belgium BG Bulgaria
CDM Clean Development Mechanism CH Switzerland
CY (CY0) Cyprus CZ Czech Republic
DE Germany DK Denmark
EC European Commission EE Estonia
ES Spain EU European Union
FI Finland FR France
GB United Kingdom GR Greece
HR Croatia HU Hungary
IE Ireland IS Iceland
IT Italy JP Japan
LI Liechtenstein LT Lithuania
LU Luxembourg LV Latvia
MT (MT0) Malta NL Netherlands
NO Norway NZ New Zealand
PL Poland PT Portugal
RO Romania RU Russian Federation
SE Sweden SI Slovenia
SK Slovakia UA Ukraine
XI Northern Ireland

Table 14 — Country Codes and Descriptions
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Community
Country Phase I Phase II Phase III Phase IV
AT 5 2 4 3
AU - 5 2 -
BE 2 4 5 8
BG - 3 3 21
CDM - 4 5 -
CH 2 4 -
CY - 5 3 7
CYO0 1 6 - -
CZ 2 3 2 21
DE 5 1 5 21
DK 4 3 1 16
EE 4 2 4 20
ES 3 4 3 2
EU - 5 3 20
FI 4 2 4 17
FR 1 1 2 19
GB 1 5 2 20
GR 1 1 3 15
HR - 8 1 18
HU 2 3 2 21
IE 5 5 4 10
IS - 5 1 -
IT 3 5 1 14
JP - 3 2 -
LI - 2 5 -
LT 4 1 4 4
LU 1 4 5 1
LV 4 2 4 11
MT - 5 3 21
MTO 6 7 - -
NL 2 1 2 6
NO - 4 4 -
NZ - 1 2 -
PL 2 2 4 13
PT 3 5 3 9
RO - 2 3 12
RU - 1 5 -
SE 5 4 4 20
SI 5 1 1 5
SK 2 2 2 10
UA - 4 4 -
XI - 5 2 -

Table 15 — Community Transitions of Countries across Phases I - IV
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Country Phase I Country Phase II Country Phase III Country Phase IV

FR 1.88 GB 1.78 GB 1.95 EU 1.00
NL 1.88 DE 1.59 DE 1.90 DE 0.21
GB 1.79 FR 1.59 NL 1.90 BG 0.18
DK 1.71 NL 1.59 IT 1.74 SK 0.14
DE 1.58 DK 1.54 ES 1.69 IE 0.14
AT 1.46 IT 1.39 EU 1.69 HU 0.14
ES 1.25 CH 1.34 FR 1.69 CZ 0.14
CZ 1.17 PL 1.32 CH 1.44 SI 0.11
FI 1.17 ES 1.27 PL 1.41 RO 0.11
IT 1.08 AT 1.22 CZ 1.33 PT 0.11
BE 1.04 BE 1.22 BE 1.31 PL 0.11
PL 0.88 CZ 1.20 BG 1.31 NL 0.11
SE 0.88 SE 1.20 NO 1.28 LV 0.11
SK 0.83 SK 1.17 AT 1.26 LU 0.11
HU 0.79 FI 1.10 SE 1.26 LT 0.11
IE 0.79 LI 1.10 SI 1.23 IT 0.11
LT 0.79 NO 1.07 DK 1.13 HR 0.11
EE 0.75 RO 1.07 FI 1.13 GR 0.11
LV 0.71 EE 1.05 IE 1.08 FR 0.11
PT 0.63 BG 0.98 MT 1.05 FI 0.11
GR 0.42 HU 0.93 RO 1.05 ES 0.11
SI 0.38 IE 0.93 SK 1.03 EE 0.11
LU 0.25 SI 0.90 EE 0.90 DK 0.11
CY0 0.17 EU 0.80 HU 0.90 CY 0.11
MTO 0.08 PT 0.78 LT 0.85 BE 0.11
- - LV 0.76 PT 0.85 AT 0.11
- - GR 0.73 GR 0.79 MT 0.07
- - LT 0.73 LU 0.77 SE 0.04
- - JP 0.68 LV 0.77 GB 0.04
- - LU 0.66 JP 0.64 - -
- - CDM 0.39 CY 0.59 - -
- - NZ 0.34 HR 0.59 - -
- - UA 0.24 IS 0.59 - -
- - CY 0.17 CDM 0.44 - -
- - XI 0.15 NZ 0.38 - -
- - RU 0.12 XI 0.38 - -
- - IS 0.10 AU 0.36 - -
- - MT 0.10 RU 0.36 - -
- - AU 0.05 LI 0.28 - -
- - CYO0 0.05 UA 0.26 - -
- - HR 0.05 - - - -
- - MTO 0.05 - - - -

Table 16 — Ranking of Centrality
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