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ABSTRACT 

 

PREDICTION OF STRESSES IN RIGID AIRPORT PAVEMENTS CONSIDERING 

SLAB’S TEMPERATURE DIFFERENTIAL USING FINITE ELEMENT AND 

MACHINE LEARNING TECHNIQUES 

 

Author: Erick Douglas de Luna Santos 

Advisor: Francisco Evangelista Júnior 

Postgraduate Program in Structures and Civil Construction 

Brasilia, December of 2024. 

 

This work aims to develop a machine learning model (ML/RF) to predict maximum 

tensile stresses in concrete slabs on airport pavements, considering aircraft loads and the 

linear and nonlinear temperature profile between top and bottom of the concrete slab. From 

the tensile stress data obtained by finite element simulations, using software ILLISLAB, with 

A380 and B747 aircraft landing gears and several positive and negative temperature 

differentials, a dataset was assembled and divided to train and validate the proposed machine 

learning model. The ML/RF used was Random Forest, through the Scikit-learn Python 

Library, which provided accurate predictions for different plate thicknesses, tire pressures, 

load transfer efficiencies between plates, moduli of subgrade reaction, radii of relative 

stiffness and longitudinal passage positions of the aircraft on the slab path under temperature 

differential of the concrete slab. The Mean Squared Error obtained by the Random Forest 

model was equal to 3.60e-4 MPa², a maximum absolute error smaller than 0.25 MPa and the 

majority of the absolute error nearby 0 MPa, all of theses results to the test dataset, showing 

the reliability of the proposed model. 

 

Keywords: concrete pavements, airports, temperature, machine learning. 
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RESUMO 

 

PREVISÃO DE TENSÕES EM PAVIMENTOS RÍGIDOS AEROPORTUÁRIOS 

CONSIDERANDO O DIFERENCIAL DE TEMPERATURA DA PLACA 

UTILIZANDO ELEMENTOS FINITOS E TÉCNICAS DE MACHINE LEARNING 

Autor: Erick Douglas de Luna Santos 

Orientador: Francisco Evangelista Júnior, PhD (UnB) 

Programa de Pós-graduação em Estruturas e Construção Civil 

Brasília, dezembro de 2024. 

 
Este trabalho tem como objetivo desenvolver um modelo de aprendizado de máquina 

(ML/RF) para predição das tensões máximas de tração em placas de concreto de pavimentos 

aeroportuários levando em consideração os carregamentos das aeronaves e o perfil de 

temperatura linear e não linear na espessura da placa. A partir dos dados de tensões obtidos 

pela modelagem de elementos finitos, utilizando o software ILLISLAB, com trens tipo da 

aeronave A380 e B747 e diversos diferenciais térmicos na espessura da placa de concreto, foi 

construído um conjunto de dados utilizado no treinamento e validação do algoritmo. O 

ML/RF utilizado foi o Random Forest, por meio da biblioteca Scikit-learn do Python, que 

forneceu predições acuradas para diferentes espessuras, pressões dos pneus, eficiências de 

transferência de carga entre placas, módulos de reação do subleito, raios de rigidez relativa e 

posições de passagem longitudinal da aeronave na placa sob diversos diferenciais de 

temperatura entre o topo e o fundo da placa de concreto. A Média dos Erros Quadrados obtida 

pelo modelo de Random Forest foi igual a 3.60e-4 MPa², um erro absoluto máximo menor do 

que 0.25 MPa e a maioria dos erros absolutos próximos de 0 MPa, todos os resultados para a 

base de dados de treinamento, mostrando a confiabilidade do modelo proposto. 

 

Palavras-chave: pavimentos de concreto, aeroportos, temperatura, aprendizado de máquina. 

  



ix  

LIST OF FIGURES 

 

 

Figure 2.1 - Curvature of concrete slabs depending on temperature difference: a) Night (Ttop < 

Tbot);  b) Day (Ttop > Tbot) ......................................................................................................... 25 

Figure 2.2– a) Demonstration of parameters used to calculate LTE; b) Representation of rigid 

transversal element that simulate LTE in Finite Element Method ........................................... 27 

Figure 2.3 – Components of the total temperature profile ....................................................... 28 

Figure 2.4 - Structure of the algorithm with decision trees: a) Decision Tree (DT); b) Random 

Forest (RF) ................................................................................................................................ 31 

Figure 2.5 – Representation of algorithms of reduction of bias and variance (Bagging and 

Boosting) .................................................................................................................................. 33 

Figure 3.1 – Flowchart summary of the methodology ............................................................. 36 

Figure 3.2 - Model of concrete pavement slabs in FEM developed by Fonteles (2017): a) set 

of slabs; b) detail of the finite element mesh ............................................................................ 38 

Figure 3.3 - Dimensions of the landing gears used by Fonteles (2017) as loading: a) A380 

(TPC); b) B747 (TPC). Units in meters .................................................................................... 39 

Figure 3.4 - The aircraft's landing gear arrangement on the slabs ............................................ 41 

Figure 3.5 – Demonstration of the ACL 1 to 17 (LP1 to LP17)............................................... 41 

Figure 3.6 – Graph created by Fonteles (2017) gathering the greatest tensile stresses at whole 

slab for each application of loading (ACL or LP) .................................................................... 42 

Figure 3.8 – Demonstration of operation of k-fold cross-validation ........................................ 43 

Figure 4.1 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different 

passing lines (ACL) for A380, h = 0.250m, Top stress: a) LTE = 0%, b) LTE = 85%; Bottom 

stress: c) LTE = 0%, d) LTE = 85% ......................................................................................... 47 

Figure 4.2 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different 

passing lines (ACL) for A380, h = 0.406m, Top stress: a) LTE = 0%, b) LTE = 85%; Bottom 

stress: c) LTE = 0%, d) LTE = 85% ......................................................................................... 48 

Figure 4.3 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different 

passing lines (ACL) for A380, h = 0.508m, Top stress: a) LTE = 0%, b) LTE = 85%; Bottom 

stress: c) LTE = 0%, d) LTE = 85% ......................................................................................... 49 



x  

Figure 4.4 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different 

passing lines (ACL) for B747, h = 0.250m, Top stress: a) LTE = 0%, b) LTE = 85%; Bottom 

stress: c) LTE = 0%, d) LTE = 85% ......................................................................................... 50 

Figure 4.5 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different 

passing lines (ACL) for B747, h = 0.406m, Top stress: a) LTE = 0%, b) LTE = 85%; Bottom 

stress: c) LTE = 0%, d) LTE = 85% ......................................................................................... 51 

Figure 4.6 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different 

passing lines (ACL) for B747, h = 0.508m, Top stress: a) LTE = 0%, b) LTE = 85%; Bottom 

stress: c) LTE = 0%, d) LTE = 85% ......................................................................................... 52 

Figure 4.7 - Maximum tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝐿 ) and predicted with 

ML/RF (𝜎∆𝑇𝐿) for the datasets: a) Training; b) Testing ......................................................... 53 

Figure 4.8 - Histogram of absolute residuals for linear tensile stresses (𝜀𝑎𝑏
𝐿 ) for the dataset: a) 

Training; b) Testing .................................................................................................................. 54 

Figure 4.9 – Linear tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝐿 ) and absolute residuals 

(𝜀𝑎𝑏
𝐿 ) for the database: a) Training; b) Testing ......................................................................... 55 

Figure 4.10 - Probability plots with absolute residuals (𝜀𝑎𝑏
𝐿 ) for the database: a) Training; b) 

Testing ...................................................................................................................................... 56 

Figure 4.11 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different 

passing lines (ACL) for h = 0.250m, LTE = 85% and 𝑁𝑂𝐿𝐴 = -0.808. B747: a) Top stress, b) 

Bottom stress; A380: c) Top stress, d) Bottom stress .............................................................. 57 

Figure 4.12 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different 

passing lines (ACL) for h = 0.406m, LTE = 85% and 𝑁𝑂𝐿𝐴 = -1.312. B747: a) Top stress, b) 

Bottom stress; A380: c) Top stress, d) Bottom stress .............................................................. 58 

Figure 4.13 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different 

passing lines (ACL) for h = 0.508m, LTE = 85% and 𝑁𝑂𝐿𝐴 = -1.641. B747: a) Top stress, b) 

Bottom stress; A380: c) Top stress, d) Bottom stress .............................................................. 59 

Figure 4.14 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different 



xi  

passing lines (ACL) for h = 0.250m, LTE = 85% and 𝑁𝑂𝐿𝐴 = -0.200. B747: a) Top stress, b) 

Bottom stress; A380: c) Top stress, d) Bottom stress .............................................................. 60 

Figure 4.15 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different 

passing lines (ACL) for h = 0.406m, LTE = 85% and 𝑁𝑂𝐿𝐴 = -0.324. B747: a) Top stress, b) 

Bottom stress; A380: c) Top stress, d) Bottom stress .............................................................. 61 

Figure 4.16 - Comparison between proposed machine learning ML/RF (continuous line) and 

ILLISLAB (dashed line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different 

passing lines (ACL) for h = 0.508m, LTE = 85% and 𝑁𝑂𝐿𝐴 = -0.406. B747: a) Top stress, b) 

Bottom stress; A380: c) Top stress, d) Bottom stress .............................................................. 62 

Figure 4.17 - Maximum tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝑇 ) and predicted with 

ML/RF (𝜎̂∆𝑇
𝑇 ) for the datasets: a) Training; b) Testing ............................................................. 63 

Figure 4.18 - Histogram of absolute residuals (𝜀𝑎𝑏
𝑇 ) for the dataset: a) Training; b) Testing .. 64 

Figure 4.19 - Total tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝑇 ) and absolute residuals 

(𝜀𝑎𝑏
𝑇 ) for the database: a) Training; b) Testing ......................................................................... 65 

Figure 4.20 - Probability plots with absolute residuals (𝜀𝑎𝑏
𝑇 ) for the database: a) Training; b) 

Testing ...................................................................................................................................... 66 

Figure 4.21 – Layout of concrete slabs built as experimental track at the Polytechnic School 

of the University of São Paulo .................................................................................................. 67 

Figure 4.22 – Position of the thermal resistors installed at experimental track at Polytechnic 

School of the University of São Paulo...................................................................................... 68 

Figure 4.23 - Temperature profile in a concrete slab for a day with Multiple Inversions. Graph 

constructed using Severi (2002)’s data. a) Profiles during the Day (6:00 to 18:00); b) Profiles 

during the Night (18:00 to 6:00)    ............................................................................................ 69 

Figure 4.24 - Stress graph generated from São Paulo summer temperature data for A380, h = 

0.250m, LTE = 85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress ................ 74 

Figure 4.25 - Stress graph generated from São Paulo summer temperature data for B747, h = 

0.250m, LTE = 85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress ................ 75 

Figure 4.26 – Stress graph generated from all temperature data from São Paulo for A380, h = 

0.250m, LTE = 85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress ................ 76 

Figure 4.27 - Stress graph generated from all temperature data from São Paulo for B747, h = 

0.250m, LTE = 85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress ................ 77 

 



xii  

Figure A.1 – Temperature profiles along the depth of the concrete slab in the city of São 

Paulo: a) Spring 1 – 12/06/2000; b) Spring 2 – 12/07/2000; c) Spring 3 – 08/12/2000; d) 

Primera 4 – 12/09/2000; e) Rainy Day – 12/01/2000; f) Multiple Inversion – 12/10/2000 ..... 84 

Figure A.2 - Temperature profiles along the depth of the concrete slab in the city of São 

Paulo: a) Summer 1 – 10/02/2001; b) Summer 2 – 11/02/2001; c) Summer 3 – 12/02/2001; d) 

Summer 4 – 13/02/2001; e) Hot sunny day – 08/02/2001; f) Typical situation – 11/12/2000 . 85 

Figure A.3 - Temperature profiles along the depth of the concrete slab in the city of São 

Paulo: a) Autumn 1 – 21/03/2000; b) Autumn 2 – 03/22/2000; c) Autumn 3 – 03/23/2000; d) 

Autumn 4 – 03/24/2000; e) Positive thermal differential all day – 10/17/2000; f) Negative 

thermal differential all day – 11/14/2000 ................................................................................. 86 

Figure A.4 - Temperature profiles along the depth of the concrete slab in the city of São 

Paulo: a) Winter 1 – 09/08/2000; b) Winter 2 – 09/09/2000; c) Winter 3 – 10/09/2000; d) 

Winter 4 – 11/09/2000; e) Cloudy Day 1 – 12/09/1999; f) Cloudy Day 2 – 07/03/2000 ........ 87 

 

  



xiii  

LIST OF TABLES 

 

 

Table 3.1 - Constant parameters and properties. ...................................................................... 40 

Table 3.2 - Input variables for predicting the maximum linear stress (𝜎∆𝑇
𝐿 ) in the pavement 

slab. ........................................................................................................................................... 43 

Table 3.3 – Hyperparameters used for predicting the maximum linear stress (𝜎∆𝑇
𝐿 ) and the 

maximum total stress (𝜎∆𝑇
𝑇 ) in the pavement slab..................................................................... 44 

Table 3.4 - Input variables for predicting the maximum total stress (𝜎∆𝑇
𝑇 ) in the pavement slab.

 .................................................................................................................................................. 45 

Table 4.1 - Performance measurements with ML/RF for linear tensile stresses ...................... 54 

Table 4.2 - Performance measurements with ML/RF for total tensile stresses. ....................... 64 

Table 4.3 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) during spring. ................................................................ 70 

Table 4.4 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) during summer. ............................................................. 70 

Table 4.5 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) during autumn. .............................................................. 71 

Table 4.6 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) during winter. ................................................................ 71 

Table 4.7 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) during day (from 6:00 AM to 6:00 PM). ...................... 71 

Table 4.8 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) during night (from 6:00 PM to 6:00 AM). .................... 72 

Table 4.9 - Statistical parameters calculated from temperature measurements in São Paulo 

from data collected by Severi (2002) ....................................................................................... 72 

Table 4.10 – Linear stress for ∆𝑇 = 0 (𝜎∆𝑇 = 0) for each configuration. ............................... 73 

 

 

  



xiv  

LIST OF ABBREVIATIONS 

 

 

CG – Center of Gravity 

DT – Decision Tree 

FAA – Federal Aviation Administration  

FEM – Finite Element Method 

LTE – Load Transfer Efficiency 

MAE – Mean Absolute Error 

ML – Machine Learning 

ML/RF – Machine Learning Random Forest Model 

MSE – Mean Square Error 

NAPTF – National Airport Pavement Test Facility 

OV – Ordered Values 

R² - Coefficient of determination  

RF – Random Forest 

RMSE – Root Mean Square Error 

TPC – Complete Landing Gear 

TQ – Theoretical Quantity 

 

  



xv  

LIST OF SYMBOLS 

 

 

Latin Letters 

A – Regression coefficient based on the temperature profile measured on the slab 

ACL – Passing line 

B – Regression coefficient based on the temperature profile measured on the slab 

𝑐 – Number of different values of a variable 

C – Regression coefficient based on the temperature profile measured on the slab 

𝑐̂𝑏(𝒙) – Classifier generated from a training set with different weights for its elements 

𝑐̂𝑏𝑜𝑜𝑠𝑡(𝒙) – Classifier created using boosting technique  

𝐷 – Number of predictors 

{𝐷} – Resultant nodal displacements for the whole system 

{𝐷}𝑏 – Displacement vector of the bar element 

{𝐷}𝑒 – Displacement vector of the slab element 

{𝐷}𝑠 – Displacement vector of the spring element 

𝐸 – Modulus of elasticity of the concrete 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑖𝑥) – Entropy of a value of an input variable of an input dataset of a decision tree 

algorithm 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌) – Entropy of the output variable of a decision tree algorithm 

𝑓𝑏(𝒙) – Predictor generated from a training set or bootstrap replica 

𝑓𝑏𝑎𝑔(𝒙) – Predictor created using bagging technique 

ℎ – Thickness of the concrete slab 

𝐼𝑄𝑅 – Range between quartiles 

k – Modulus of subgrade reaction 

[𝐾] – The overall structural stiffness matrix 

[𝐾𝐴𝑔𝑔]𝑠 – Stiffness matrix of the spring element 

[𝐾𝑡𝑜𝑝]𝑒 – Stiffness matrix of the top layer 

[𝐾𝑏𝑜𝑡]𝑒 – Stiffness matrix of the bottom layer 

[𝐾𝑑𝑜𝑤𝑒𝑙]𝑏 – Stiffness matrix of the dowel bar 

[𝐾𝑠𝑢𝑏]𝑒 – Stiffness matrix of the subgrade 

𝑙 – Tire length and width 

𝐿 – Free length or width of the slab 

ℓ – Radius of relative stiffness 



xvi  

𝑀 – Moment  

𝑛 – Number of data points 

𝑁𝑂𝐿𝐴 – Nonlinear area 

𝑁𝑂𝐿𝐴𝑄05 – The 5th percentile of nonlinear area 

𝑝 – Number of predictor variables of a training dataset 

𝑝𝑖 – Ratio of the number of times a value appears divided by the total number of values of a 

variable 

𝑃 – Tire load 

𝑃𝑊 – A vertical force 

𝑃𝜃𝑋  – Couple about the X-axis 

𝑃𝜃𝑌  – Couple about de Y-axis 

{𝑃} – Equivalent nodal forces for a uniformly distributed load over a rectangular section of 

the concrete slab 

{𝑃}𝑏 – Force vector of the bar element 

{𝑃}𝑒 – Force vector of the slab element 

{𝑃}𝑠 – Force vector of the spring element 

𝑄05 – 5th percentile 

𝑄25 – 25th percentile 

𝑄75 – 75th percentile 

𝑄95 – 95th percentile 

𝑇 – Temperature  

𝑇(𝑧) – Total temperature profile as a function of depth 

𝑇𝐴 – Axial temperature component  

𝑇𝐵 – Stress position in the slab 

𝑇𝑏𝑜𝑡 – Temperature measured at the bottom of the slab 

𝑇𝐿(𝑧) – Linear temperature component as a function of depth  

𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝑧) – Linear temperature profile on the concrete slab 

𝑇𝑚𝑖𝑑 – Temperature measured at the middle of the slab 

𝑇𝑆𝐸𝑆(𝑧) – Non-linear (self-equilibrating) temperature component as a function of depth 

𝑇𝑡𝑜𝑝 – Temperature measured at the top of the slab 

𝑉𝑎𝑙𝑢𝑒𝑠(𝑋𝑖) = set of different values of an input variable of an input dataset of a decision tree 

algorithm 

𝑊 – A vertical deflection in Z-direction 



xvii  

𝑥 – Value of an input variable of a Decision Tree algorithm  

𝑋𝑖 – Variable of an input dataset of a Decision Tree algorithm 

𝑋𝑖𝑥 – Value of a variable of an input dataset of a Decision Tree algorithm 

|𝑋𝑖𝑥| – Number of times a value appears in a variable of an input dataset of a Decision Tree 

algorithm 

𝑦 – Output value of a Decision Tree algorithm 

𝑌 – Output variable of a decision tree algorithm 

|𝑌| – Number of values in an output variable of a decision tree algorithm 

𝑧 – The vertical coordinate measured from the bottom of the slab  

 

Greek Letters 

𝛼 – Coefficient of thermal expansion of the concrete 

𝛽 – Bradbury coefficient  

𝛽𝑖 – Bradbury coefficient in the direction under investigation 

𝛽𝑗 – Bradbury coefficient in the perpendicular direction under investigation 

𝛾 – Specific weight of the concrete slab 

𝛿𝑢 – Deflection of the slab without loading 

𝛿𝑙 – Deflection of the slab with loading 

∆𝑇 – Linear temperature difference from top to bottom of slab 

∆𝑇𝑄05 – The 5th percentile of linear temperature difference from top to bottom of slab 

∆𝑇𝑄95 – The 95th percentile of linear temperature difference from top to bottom of slab 

𝜀𝑎𝑏 – Absolute residual 

𝜀𝑎𝑏
𝐿  – Absolute residuals for linear stresses predicted by the proposed ML/RF 

𝜀𝑎𝑏
𝑇  – Absolute residuals for total stresses predicted by the propose ML/RF 

𝜃𝑋 – Rotation about the X-axis 

𝜃𝑌 – Rotation about the Y-axis 

𝜆 – Bradbury parameter   

𝜈 – Poisson’s ratio of concrete. 

𝜉 – Aircraft type 

𝜌 – Tire pressure 

𝜎 – Stress  

𝜎∆𝑇 – Maximum tensile stress predicted by ILLISLAB 

𝜎̂∆𝑇 – Maximum tensile stress predicted by the proposed ML/RF 
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𝜎∆𝑇 – Average of 𝜎∆𝑇𝑖 values 

𝜎∆𝑇=0 – Linear stress predicted by the proposed ML/RF to Δ𝑇 = 0 

𝜎𝐴 – Axial stress 

𝜎𝐿 – Tensile stress inside the concrete slab with linear distribution 

𝜎∆𝑇
𝐿  – Linear tensile stress inside the concrete slab predicted by ILLISLAB 

𝜎̂∆𝑇
𝐿  – Linear tensile stress inside the concrete slab predicted by the proposed ML/RF 

𝜎𝑆𝐸𝑆 – Self-equilibrating stress inside the concrete slab 

𝜎𝑇 – Total stress inside the concrete slab 

𝜎∆𝑇
𝑇  – Total tensile stress inside the concrete slab predicted by ILLISLAB 

𝜎̂∆𝑇
𝑇  – Total tensile stress inside the concrete slab predicted by the proposed ML/RF 

𝜎𝑚𝑎𝑥 – Maximum total stress 

𝜎𝑚𝑒𝑎𝑛 – Average of total stresses 

𝜎𝑚𝑖𝑛 – Minimum total stress 

𝜎𝑄95 – The 95th percentile of total stress 

𝜑(𝑏) – Weight given to the classifier 𝑐̂𝑏(𝒙) 
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1. INTRODUCTION 

Rigid airport pavements are commonly used in airport infrastructure, especially on 

runways and aircraft taxing areas. The design of airport pavements is based on the imposition 

of aircraft landing gear loads on concrete slabs, mostly considering static loading. Rigid 

pavement structural analysis has traditionally been based on the maximum flexural stress in 

the bottom fiber of the slab proposed by Westergaard (1926). His proposal was based on 

equations that employed simplified assumptions of geometry, loads, and material properties. 

Over time, several computer programs implemented finite element analyzes trying to make 

Westergaard's hypotheses more flexible (Huang, 1974; Tia et al., 1987; Korovesis, 1990; 

Khazanovich, 1994; FAA, 2016). With the popularization of the Finite Element Method 

(FEM) as a computational tool, programs were developed for the analysis of concrete 

pavements such as ILLISLAB (Tabatabaie, 1980; Koroveses, 1990; Khazanovich, 1994), 

KENSLAB (Huang, 1973), EverFE (Davids et al., 1998) to name a few. The Federal Aviation 

Administration (FAA) has developed a new airport pavement thickness design procedure 

called FAARFIELD that incorporates three-dimensional finite element analysis for rigid 

pavements that calculates the design stress of a concrete slab loaded with trains of standard 

aircraft types (FAA, 2009a). Additionally, the rigid pavement failure model, which relates the 

stress estimated by the finite element program to the expected pavement life, has been 

completely updated based on full-scale tests performed at the National Airport Pavement Test 

Facility (NAPTF) in 2004 (FAA, 2009b; FAA, 1997a; FAA, 1997b). 

The concrete slab exhibits a phenomenon called thermal warping related to climatic 

conditions depending on the time of day and the seasons. Thermal warping causes 

compression and tensile stresses in the slab, causing curvature in the pavement, discomfort to 

the user, and changing in stress distribution (Huang, 2003; Balbo, 2009). Experimental and 

analytical studies have reported the influence of temperature differential on concrete 

pavement analysis (Huang, 2003; Khazanovich, 1994). Therefore, the critical stresses in these 

pavements result in combinations of the temperature induced stresses on top and bottom of 

the concrete slab and superimposed traffic loads.  As the slab warps, the simple superposition 

of mechanical loads and environmental temperature often does not correspond to their 

simultaneous effect and responses (Khazanovich and Ioannides 1994; Thompson and 

Barenberg 1992). Especially in realistic conditions, in which the loss of contact between the 
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concrete slab and the foundation, due to the thermal warping, generates a distribution that 

induces non-linearity of responses, making the superposition between mechanical and 

environmental loads (thermal differentials) inadequate. This complexity demands the 

development and use of sophisticated finite element modeling in order to account this 

nonlinear effect during slab warping. 

Investigations into the effect of temperature distribution on pavements have been 

carried out over the years, particularly for rigid road pavements with Severi (2002), Balbo and 

Severi (2002), Hiller and Roesler (2002) Rufino and Roesler (2005), Fonteles (2017) among 

the most comprehensive ones. Severi (2002) and Balbo and Severi (2002) monitored the 

temperature of 15 instrumented concrete pavement slabs in São Paulo, Brazil, for more than a 

year, and analyzed the influence of climatic conditions such as daily temperature and 

humidity and seasonal variations of temperature differentials across plate depth with 

temperature differentials above 15 °C observed. Non-linear temperature distributions along 

the thickness of the plates were also monitored. Hiller and Roesler (2002) used finite element 

analysis to compare critical tensile stresses for typical concrete pavements in California, 

United States. A parametric study was conducted investigating the influence of wheel 

passage, subgrade reaction modulus, concrete slab geometry, temperature differential and type 

of road axis. Rufino and Roesler (2005) also analyzed the effect of temperature curling on the 

measured strain and deflection responses for a several aircraft and load locations. More 

recently, Fonteles (2017) developed a computational model composed of 16 concrete plates 

and analyzed the acting stresses using the ILLISLAB finite element program. The stresses 

were analyzed considering the linear and non-linear thermal differential and their effect on the 

stresses at the bottom and top of the plate, based on the temperatures of São Paulo, Brazil, and 

Sacramento, United States, using the work of Severi (2002) and Hiller and Roesler (2002), 

respectively. Despite being efficient, finite element models still require relevant 

computational modeling costs, especially when using specialized models for stress prediction 

considering more realistic hypotheses of mechanical loading coupled with temperature 

distribution and loss of contact between the concrete slab and its foundation. 

Recent literature presents some work using Machine Learning (ML) techniques to 

predict several variables in rigid pavements, such as the surface roughness index of the 

concrete slab (Suliman et al., 2024); transverse cracks (Pasupunuri, Thom and Li, 2023); 

surface pathologies (Jung et al., 2024); bending stresses inside the concrete slabs from stress 
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and temperature data measured on 4 taxiways at John F. Kennedy International Airport 

(Gungor and Al-Qadi, 2018). The literature does not present any work that uses machine 

learning techniques for prediction, and consequent replacement of finite element models. 

Based on the above context, this thesis aims to develop a Random Forest (RF) 

machine learning model for predicting maximum tensile stresses in concrete slabs of airport 

pavements considering the loads of A380 and B747 aircraft and the temperature profile in the 

slab thickness. From the stress data obtained by finite element modeling, the prediction model 

was built considering different plate thicknesses, tire pressures, load transfer efficiencies 

between the plates, subgrade reaction moduli, relative stiffness radii and positions of 

longitudinal passage of the aircraft on the plate under various temperature differentials 

between the top and bottom of the concrete plate. The results show that the achieved model 

achieved good accuracy in predicting tensile stresses, making it capable of replacing finite 

element modeling with the conditions of the variables considered. 

1.1. OBJECTIVES 

1.1.1. General Objectives 

This work has the general objective of predicting maximum linear, self-equilibrating 

and total stresses in rigid airport pavements, considering the temperature profile and design 

variables involved, through the application of Machine learning techniques developed from a 

database of data formed with results generated by scientific productions. 

1.1.2. Specific Objectives 

• Extract and analyze tensile stresses and temperatures data on concrete 

pavements produced by scientific work; 

• Apply Random Forest (ML/RF) to predict linear, self-balancing and total 

stresses generated as a function of the temperatures profile; 

• Apply Random Forest model and verify his capacity of generating satisfactory 

outputs substituting the use of finite element method; 

• Verify the capacity of the ML/RF model to predict stresses on rigid airport 

pavements in several different conditions and variables, such as aircraft model 

(A380 or B747), tire pressure, degree of non-linearity, temperature, among 

other variables. 
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1.2. THESIS ORGANIZATION 

This thesis was structured into five chapters including this one: introduction (the first), 

theoretical background (the second), methodology (the third), results and discussions (chapter 

four), and conclusion (chapter five). 

The first chapter contains the contextualization of the problem studied, a general 

overview of existing solutions, their importance, in addition to showing the objectives to be 

achieved. 

In the second chapter, the theoretical background regarding stresses in concrete slabs, 

temperature profile and Machine Learning is explained. 

In the third chapter, the methodology used to develop the Random Forest is shown, 

highlighting the steps involved to achieve the proposed objectives. 

In the chapter four, the results that validate the RF in its three outputs and the 

measurements obtained from the analysis of São Paulo's temperature data are discussed. 

In chapter five, the conclusion and suggestions for future work are presented. 

2. THEORETICAL BACKGROUND  

Next, some concepts relevant to understanding the topic will be presented, aiming to 

clarify aspects that impact the prediction of stresses in rigid airport pavements. To this end, 

this section was divided into three parts: the first focused on the presentation of important 

concepts related to stress on rigid pavements, the second focused on the nonlinear temperature 

profile and the third focused on the algorithm of machine learning used for predictions of 

maximum stresses. 

2.1. PREDICTION OF STRESSES ON RIGID PAVEMENT 

Thermal warping is caused by the incidence of heat and radiation from the sun on the 

surface of concrete slabs. This phenomenon occurs because concrete is not a good conductor 

of heat, so there is a thermal differential throughout its thickness, generating a curvature in the 

pavement that varies along the day (Huang, 2003). During the day, the temperature at the top 

of the slab is higher than at the bottom, generating a downward curvature. And during the 

night, the process reverses, the temperature at the bottom of the slab is higher than at the top, 

generating an upward curvature as can be seen in Figure 2.1. 
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Figure 2.1 - Curvature of concrete slabs depending on temperature difference: a) Night (Ttop < Tbot);  

b) Day (Ttop > Tbot) 

 
Source: Author. 

 

One of the main foundation models used to model the behavior of rigid pavements is 

the Winkler foundation, also known as dense liquid foundation. This type constitutes a classic 

model used for slabs on the ground that can be represented by a set of imaginary individual 

springs. These springs are characterized by a stiffness parameter k, called the modulus of 

subgrade reaction, which represents the elasticity of the subgrade soil, and it is assumed that 

they act independently of each other and deform due to the loads arising from the self-weight 

of the concrete plate as can be seen in Figure 2.1. 

The pioneering equations for predicting stresses due to thermal differentials were 

developed by Westergaard (1927) to characterize the tensile stress inside the concrete slab 

with linear distribution (𝜎𝐿) and infinite size (Equation (2.1)): 

𝜎𝐿 =
𝐸𝛼𝛥𝑇

2(1 − 𝜈)
 (2.1) 

where 𝐸 = modulus of elasticity of the concrete (MPa); 𝛼 = coefficient of thermal 

expansion of the concrete (1/°C); ∆𝑇 = linear temperature difference from top to bottom of 

slab (°C); and 𝜈 = Poisson’s ratio of concrete. 

However, Bradbury (1938) improved the Equation (2.1) by adding a parameter that 

corrects the formulation for a slab of finite size, according to the Equation (2.2): 

𝜎𝐿 =
𝐸𝛼𝛥𝑇

2(1 − 𝜈)
(𝛽𝑖 + 𝜈𝛽𝑗) (2.2) 

where 𝛽𝑖  = Bradbury coefficient in the direction under investigation; and 𝛽𝑗 = 

Bradbury coefficient in the perpendicular direction under investigation. 

a) 𝑇𝑡𝑜𝑝 < 𝑇𝑏𝑜𝑡  b) 𝑇𝑡𝑜𝑝 > 𝑇𝑏𝑜𝑡 
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where 𝛽 can be written as Equation (2.3): 

𝛽 = 1 −
2 cos(𝜆) cosh(𝜆) (tan(𝜆) + tanh⁡(𝜆))

𝑠𝑒𝑛(2𝜆) + 𝑠𝑒𝑛ℎ(2𝜆)
 (2.3) 

  where 𝜆 is defined by the Equation (2.4): 

𝜆 =
𝐿

ℓ√8
 (2.4) 

where 𝐿 = free length or width of the slab; and ℓ radius of relative stiffness. 

The radius of relative stiffness is then defined by Equation (2.5): 

ℓ = √
𝐸ℎ3

12(1 − 𝜈2)𝑘

4

 (2.5) 

where ℎ = depth of the concrete slab; and 𝑘 = modulus of subgrade reaction. 

One of the ways to determine the transfer of loads between slabs is defined through 

the deflections generated in neighboring slabs through a load applied to the edge of one of 

them, Load Transfer Efficiency (LTE), and is expressed through the Equation (2.6) and can be 

better understood through the Figure 2.2, showing the parameters used and the representation 

in the Finite Element Method: 

𝐿𝑇𝐸 =⁡
𝛿𝑢
𝛿𝑙
100% (2.6) 

where 𝛿𝑢 = deflection of the slab without loading; and 𝛿𝑙 = deflection of the slab with 

loading. 
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Figure 2.2– a) Demonstration of parameters used to calculate LTE; b) Representation of rigid transversal 

element that simulate LTE in Finite Element Method 

 

a) 

 

b) 

Source: Fonteles (2017) 

2.2. NONLINEAR TEMPERATURE PROFILE 

Thomlinson (1940) divided the total temperature profile as a function of depth (𝑇(𝑧)) 

into three parts: axial temperature component (𝑇𝐴) that causes axial displacement (expansion 

or contraction), linear temperature component as a function of depth (𝑇𝐿(𝑧)) that causes the 

bending and non-linear (self-equilibrating) temperature component as a function of depth 

(𝑇𝑆𝐸𝑆(𝑧)) as shown in Figure 2.3 and Equation (2.7), with the total stress being the resultant 

generated from the sum of these three components: 
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Figure 2.3 – Components of the total temperature profile 

 

 
Source: Author. 

 

𝑇(𝑧) = 𝑇𝐴 + 𝑇𝐿(𝑧) + 𝑇𝑆𝐸𝑆(𝑧) (2.7) 

 

In which 𝑇𝐴 is generated from a uniform change in temperature, it causes an expansion 

or retraction of the plate and generates a constant stress when it comes into contact with 

another and due to contact with underlying layers, however, the stress generated is usually 

treated as negligible because this restraint in generally assumed to be minimal or unrestrained, 

due to the loss and subsequent partial recovery of full contact between the slab and the 

subgrade, and therefore this axial strain would not result in significant slab stresses and is 

generally ignored, however, at early concrete ages this assumption is not valid (Hiller and 

Roesler, 2002; Hiller, 2007; Ioannides and Khazanovich, 1998), 𝑇𝐿(𝑧) is the equivalent linear 

bending strain derived from the nonlinear temperature profile assuming either of the 

following two conditions: the plate must be fully restrained or have a significant self-weight 

(Hiller, 2007) and 𝑇𝑆𝐸𝑆(𝑧) is the non-linear self-equilibrating internal strains such that all 

forces and bending moments due to this component of the non-linear temperature profile are 

self-balancing (Hiller, 2007), it affects the compressive and tensile strains in the slab at 

different depths, however does not affect the deflection profile (Ioannides and Khazanovich, 

1998). The division of the temperature profile into these three components is based on the 

assumption used in classical plate-bending theory that the cross section of a plate remains 

plane after bending (Choubane and Tia, 1992). 

Choubane and Tia (1992) performed a comparative study of existing models for real 

temperature distributions and an analysis of temperature data and demonstrated that a 

quadratic polynomial can be used to represent the distribution across the depth of the slab. 

This polynomial function can be represented by the Equation (2.8): 

𝑇(𝑧) = 𝐴 + 𝐵𝑧 + 𝐶𝑧2 (2.8) 

z 

𝑇(𝑧) 𝑇𝐴 𝑇𝐿(𝑧) 𝑇𝑆𝐸𝑆(𝑧) 
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where 𝐴, 𝐵 and 𝐶 are regression coefficients based on the temperature profile 

measured on the slab and 𝑧 is the vertical coordinate measured from the bottom of the slab 

described according to the Equations (2.9), (2.10) and (2.11). 

𝐴 = ⁡𝑇𝑏𝑜𝑡 (2.9) 

𝐵 =
4𝑇𝑚𝑖𝑑 − 3𝑇𝑏𝑜𝑡 − 𝑇𝑡𝑜𝑝

ℎ
 

(2.10) 

𝐶 =
2(𝑇𝑏𝑜𝑡 + 𝑇𝑡𝑜𝑝 − 2𝑇𝑚𝑖𝑑)

ℎ2
 

(2.11) 

where 𝑇𝑡𝑜𝑝 = temperature measured at the top of the slab (𝑧 = ℎ), 𝑇𝑚𝑖𝑑 is the 

temperature measured in the middle of the slab (𝑧 = ℎ 2⁄ ), 𝑇𝑏𝑜𝑡 is the temperature measured 

at the bottom of the slab (𝑧 = 0) and ℎ is the thickness of the slab. 

The temperature component causing axial displacement is determined by integrating 

the temperature across the section and dividing the integral by the slab thickness, as can be 

seen in the Equation (2.12). 

𝑇𝐴 =
1

ℎ
∫ (𝐴 + 𝐵𝑧 + 𝐶𝑧2)𝑑𝑧

ℎ

0

= 𝐴 + 𝐵(ℎ 2⁄ ) + 𝐶(ℎ2 3⁄ ) (2.12) 

The temperature component causing bending of the slab is determined by taking the 

moment of the area that remains after the axial component is subtracted from the total area 

under the curve and the finding a linear temperature distribution that would produce the same 

moment. The moment is taken with respect to the mid-depth of the slab. Let 𝑧′⁡ = ⁡ (ℎ/2)⁡– ⁡𝑧. 

Then we arrive at the Equation (2.13): 

𝑇(𝑧) − 𝑇𝐴 = 𝐵𝑧 + 𝐶𝑧2 − 𝐵(ℎ/2) − 𝐶(ℎ2/3) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= −𝐶(ℎ²/12) − (𝐵 + 𝐶ℎ)𝑧′ + 𝐶𝑧′² 
(2.13) 

The moment, taken with respect to slab mid-depth, will be according to the Equation 

(2.14).   

𝑀 = ∫ (𝑇(𝑧) − 𝑇𝐴)𝑧′𝑑𝑧′
ℎ/2

−ℎ/2

= −(𝐵 + 𝐶ℎ)ℎ³/12) (2.14) 

For linear temperature distribution varying from +𝑇𝐿 to −𝑇𝐿, the moment caused by 

this temperature is described by the Equation (2.15). 

𝑀 = 2𝑇𝐿(ℎ/4)(ℎ/3) = 𝑇𝐿(ℎ²/6) (2.15) 

By setting this moment equal to the moment as expressed in Equation (2.14), 𝑇𝐿(𝑧) at 

any depth 𝑧 can be solved to be according to the Equation (2.16). 
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𝑇𝐿(𝑧) = (𝐵 + 𝐶ℎ)[𝑧 − (ℎ/2)] (2.16) 

 Last, the nonlinear temperature component is determined by the Equation (2.17). 

𝑇𝑆𝐸𝑆(𝑧) = 𝑇(𝑧) − 𝑇𝐴 − 𝑇𝐿(𝑧) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝐶[𝑧² − ℎ𝑧 + (ℎ²/6)] 
(2.17) 

Several authors, such as Choubane and Tia (1995), Mohamed and Hansen (1997), 

Ioannides and Khazanovich (1998) and Rodden (2006) have developed and presented the 

formulation to calculate the total curling stress based on axial, linear and non-linear 

components. Taking as a basis the formulation developed by the authors, we can arrive at the 

formulation of the self-equilibrating stress (𝜎𝑆𝐸𝑆) (Equation (2.18)). 

𝜎𝑆𝐸𝑆 = 𝐶
𝐸𝛼

1 − 𝜈
[𝑧2 − ℎ𝑧 +

ℎ2

6
] (2.18) 

Bearing in mind that nonlinear temperature profiles can have an impact on the 

emergence of stresses and fatigue of the structure, Hiller and Roesler (2010) developed a 

parameter called nonlinear area (NOLA), which is defined by the area between the real 

temperature profile (𝑇(𝑧)) and the linear temperature profile (𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝑧)) on the slab, which 

is described by the Equation (2.19).  

𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝑧) =
(𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡)𝑧

ℎ
 (2.19) 

This parameter reveals the level of nonlinearity in any distribution, which can be 

related to the self-equilibrating stress (𝜎𝑆𝐸𝑆). And it can be described mathematically by the 

Equation (2.20): 

𝑁𝑂𝐿𝐴 = ∫ [𝑇(𝑧) − 𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝑧)]𝑑𝑧
ℎ

0

 (2.20) 

If we use the Equations (2.9) to (2.11), substitute in (2.8) and apply in (2.20), we 

obtain the Equation (2.21):  

𝑁𝑂𝐿𝐴 = ∫ [𝑇𝑏𝑜𝑡 +
4𝑇𝑚𝑖𝑑 − 3𝑇𝑏𝑜𝑡 − 𝑇𝑡𝑜𝑝

ℎ
𝑧

ℎ

0

+
2(𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡 − 2𝑇𝑚𝑖𝑑)

ℎ2
𝑧2 −

(𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡)

ℎ
𝑧] 𝑑𝑧 

(2.21) 

 

When solving the integration, Equation (2.22) is obtained: 

𝑁𝑂𝐿𝐴 =
2𝑇𝑚𝑖𝑑 − 𝑇𝑏𝑜𝑡 − 𝑇𝑡𝑜𝑝

3
ℎ (2.22) 
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When we isolate 𝑇𝑚𝑖𝑑 in Equation (2.22) and substitute in (2.11), we arrive at 

Equation (2.23): 

𝐶 =
−6𝑁𝑂𝐿𝐴

ℎ3
 (2.23) 

Substituting (2.23) into (2.18), we arrive at Equation (2.24): 

𝜎𝑆𝐸𝑆 =
−6𝑁𝑂𝐿𝐴

ℎ3
𝐸𝛼

1 − 𝜈
[𝑧2 − ℎ𝑧 +

ℎ2

6
] (2.24) 

Finally, when we apply the Equation (2.24) to 𝑧 = ℎ and 𝑧 = 0 we arrive at Equation 

(2.25), which describes the stresses at the top and bottom of the slab: 

𝜎𝑆𝐸𝑆(ℎ) = 𝜎𝑆𝐸𝑆(0) =
−𝑁𝑂𝐿𝐴

ℎ

𝐸𝛼

1 − 𝜈
 (2.25) 

Or, substituting the Equation (2.22), we arrive at Equation (2.26). 

𝜎𝑆𝐸𝑆(ℎ) = 𝜎𝑆𝐸𝑆(0) =
(𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡 − 2𝑇𝑚𝑖𝑑)

3

𝐸𝛼

1 − 𝜈
 (2.26) 

2.3. MACHINE LEARNING MODELS (DECISION TREE AND RANDOM FOREST) 

To better understand Random Forest, it is necessary to know more about Decision 

Tree (DT). DT is a Machine Learning technique that builds a hierarchical decision structure 

based on the analysis of variables (Mueller, Kusne and Ramprasad, 2016). As can be seen in 

Figure 2.4, with x being the input value, which goes through several decision points until 

reaching the result (y), output value. 

 

Figure 2.4 - Structure of the algorithm with decision trees: a) Decision Tree (DT); b) Random Forest (RF) 

 

 
a) 

 
b) 

Source: Author. 

 

The algorithm has a criterion for the choice of the position of each decision point (or 

also known as node) that is made based on the Equation (2.27) that calculate the entropy (or 
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disorganization) of the output variable (Y) of the database of training and the Equation (2.28) 

that calculate the information gain of each variable of an input dataset (𝑋𝑖). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌) =∑−𝑝𝑖 log2 𝑝𝑖

𝑐

𝑖=1

 (2.27) 

where 𝑐 = the number of different values of the output variable; and 𝑝𝑖 = the ratio of 

the number of times a value appears divided by the total number of values of the output 

variable. 

𝐺𝑎𝑖𝑛(𝑌,𝑋𝑖) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌) − ∑
|𝑋𝑖𝑥|

|𝑌|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑖𝑥)

𝑥∈𝑉𝑎𝑙𝑢𝑒𝑠(𝑋𝑖)⁡

 (2.28) 

where |𝑌| = number of values in the output variable; |𝑋𝑖𝑥| = number of times a value 

appears in an input variable; 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑖𝑥) = entropy of a value of an input variable; 

𝑉𝑎𝑙𝑢𝑒𝑠(𝑋𝑖) = set of different values of an input variable; and x = value of an input variable. 

The variables that present the highest information gain values remain at the top of the 

hierarchy (also known as the root of the tree). From this, branches arise according to the 

number of different values of the root variable and the process restarts for each existing 

branch, excluding the variable that gave rise from the process, repeating this until only 

existing one variable to be analyzed in each branch and generating the output values, these 

being the leaves of the tree (Mueller, Kusne and Ramprasad, 2016). However, depending on 

how the data set is subdivided between training and testing, DTs can produce different 

responses, that is, they have a large variance. Therefore, the following techniques aim to 

reduce this variance. 

Also known as bootstrap aggregating, this technique aims to create several versions of 

a predictor from different training sets (𝑓𝑏(𝒙)) and build a predictor based on the combination 

of these versions (𝑓𝑏𝑎𝑔(𝒙)), with the variance of this final predictor being smaller than that of 

the predictors that gave rise to it. In other words, a series of weak forecasters (with a high 

error rate) are considered to obtain a strong forecaster (with a low error rate). However, 

considering that, in general, there are not several training sets, bootstrap replicas are used (i.e., 

simple random samples with replacement of the same size as the initial set, with each element 

having the same probability of being selected) of the training set to obtain the different 

versions of the predictors (Morettin, 2022). As can be better understood through Equation 

(2.29). 
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𝑓𝑏𝑎𝑔(𝒙) =
1

𝐷
∑𝑓𝑏(𝒙)

𝐷

𝑏=1

 (2.29) 

where 𝐷 = the number of predictors; and 𝑓𝑏(𝒙) = the predictor generated from a 

training set or bootstrap replica. 

Unlike the bagging technique, in boosting the trees are built in sequence from the 

training set, with each element having a distinct and variable weight (or probability) of being 

selected, therefore, poorly classified elements in a predictor receive greater weights in the 

selection of the following tree, therefore, cases in which classification is more difficult receive 

greater attention. Therefore, the final classifier (𝑐̂𝑏𝑜𝑜𝑠𝑡(𝒙)) is built through the 𝐷 weak 

classifiers generated in sequence from different trees, with the classification of each element 

applied through the majority vote principle. Furthermore, the classifiers also receive weights 

depending on their error rates, with the strong classifier being described by Equation (2.30) 

(Morettin, 2022). Both bagging and boosting have the same purpose, reducing variance and 

bias, however the second can reduce bias better than the first (the representation of working of 

both of them can be seen in the Figure 2.5).  

𝑐̂𝑏𝑜𝑜𝑠𝑡(𝒙) = ∑ 𝑐̂𝑏(𝒙)𝜑(𝑏)

𝐷

𝑏=1

 (2.30) 

where 𝜑(𝑏) = weight given to the classifier 𝑐̂𝑏(𝒙); and 𝑐̂𝑏(𝒙) = classifier generated 

from a training set with different weights for its elements. 

 

Figure 2.5 – Representation of algorithms of reduction of bias and variance (Bagging and Boosting) 

Author: Machine Learning Plus (2024) 
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Different from the model used by bagging and boosting techniques, in which they use 

a set of 𝐷 trees using the same amount 𝑝 of predictor variables, Random Forest uses different 

sets of predictor variables in the construction of each tree, that is, in a certain way, it can be 

said that it applies the bagging technique to the set of 𝑝 predictor variables, introducing more 

randomness and diversification in the process of creating the final (aggregated) model 

(Morettin, 2022). 

In general, Random Forest generates fewer variable outputs compared to those 

obtained through bagging, in which strong predictors are usually selected at the root node, 

generating very similar trees, not contributing to reducing the variability of predictions. 

Contrary to this, in random forests, strong predictors do not tend to be selected in the division 

of all nodes, producing less correlated results and the “average”, obtained by the majority 

vote, generally reduces variability. Furthermore, the accuracy of Random Forest adjustment is 

equal to or exceeds boosting, in general, it is more robust if we consider outliers and noise, 

and it is also faster when compared to other techniques (Morettin, 2022).     

Decision trees are best suited when the relationship between the predictor variables 

and responses does not follow a linear model, otherwise, linear regression is recommended. In 

the case of DT, some predictor variables can be qualitative, and there is no need to transform 

them into dummy variables, as is done in regression models. The purpose used in this model 

is similar to those applied in classification models: subdividing the space generated by the 

explanatory variables into several regions and adopting the average responses of each of them 

as predictors, with the regions being selected in such a way that they produce the smallest 

Mean Square Error (MSE) or the lowest coefficients of determination (R²) (Morettin, 2022). 

Kawsar, Serker and Afsana (2024) tested Artificial Neural Network, Support Vector 

Machine, Decision Tree, Random Forest and Linear Regression to predict the strength of 

concrete using a database from the University of California containing 1030 samples and 

Random Forest obtained the best results, being much superior to the others. Suliman et al. 

(2024) applied Linear Regression, Multivariate Adaptive Regression Splines, Gaussian 

Process Regression and Artificial Neural Network in a database with 1414 data and 21 

variables to predict the International Roughness Index of concrete pavement plans, with Deep 

Artificial Neural Network presented the best results. Pasupunuri, Thom and Li (2023) tested 

Decision Tree Regression, Random Forest Regression and Deep Neural Network to predict 

transverse cracks in planes of joined concrete pavements and the latter obtained the best 

results. Jung et al. (2024) developed a Machine Learning model capable of predicting 
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pathologies on the surface of a concrete pavement. They used Particle Filtering, known for its 

performance in time series analysis, being compared with Long Short-Term Memory 

Networks and Deep Neural Networks and proving superior to them. Gungor and Abd Al-Qadi 

(2018) used Support Vector Machine with the aim of calculating the temperature, curvature 

and bending stresses inside the pavement using data from 4 taxiways at John F. Kennedy 

International Airport and obtaining satisfactory results. Different from the previous works, 

this thesis used Random Forest technique to create a model to predict tensile stresses in 

concrete airport pavements using data obtained by Finite Element Method through ILLISLAB 

in order to substitute this method and generated better results creating a model that achieved a 

R² near 100%.  

3. METHODOLOGY 

To achieve the proposed objective, predicting linear, self-balancing and total stresses 

in rigid airport pavements, the Equation (3.1) was used, being this equation obtained from the 

Equation (2.7), as can be seen in the Equation (3.2): 

𝜎𝑇(𝑧) = 𝜎𝐿(𝑧) + 𝜎𝑆𝐸𝑆(𝑧) (3.1) 

where 𝜎𝑇(𝑧) = total stress, 𝜎𝐿(𝑧) = linear stress; and 𝜎𝑆𝐸𝑆(𝑧) = self-equilibrating 

stress, all of them as a function of depth. 

(𝑇(𝑧) = 𝑇𝐴 + 𝑇𝐿(𝑧) + 𝑇𝑆𝐸𝑆(𝑧))
𝐸𝛼

1 − 𝜈
⁡→ 𝜎𝑇(𝑧) = 𝜎𝐴 + 𝜎𝐿(𝑧) + 𝜎𝑆𝐸𝑆(𝑧) (3.2) 

The axial stress (𝜎𝐴) is usually treated as negligible, so for the purposes of this study it 

was not considered, as explained in Section 2.2. Note that it is enough to predict the linear and 

total stresses to obtain the self-equilibrating. Due to this, it was decided to create two models, 

one responsible for predicting the linear stresses and the other responsible for predicting the 

total stresses and the self-equilibrating stresses being obtained from the subtraction of both 

values. This decision was made aiming to obtain models with better results, less time for 

processing and less space of storage.  

To create the machine learning model (ML/RF), three steps were followed, which 

consisted of: extracting data from finite element simulations through ILLISLAB software, 

using software GetData Digitizer, building the dataset, and training and validating the ML/RF 

technique using Python and its available libraries, according to the Figure 3.1, in which each 

step will be better described in the Sections 3.1 to 3.3:  
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Figure 3.1 – Flowchart summary of the methodology 

 

 

 

 

 

 

 

 

 

 
Source: Author. 

3.1. FINITE ELEMENT SIMULATIONS DATA 

To develop the work, it was necessary to gather stress values obtained by FEM in 

different scenarios, including different temperature differentials (ΔT) along the slab´s 

thickness, from airport concrete pavement slabs. To this end, the work of Fonteles (2017) was 

selected, which presents the data mentioned above, necessary for the research. The data were 

extracted using the GetData Digitizer software and organized into tables. Fonteles (2017) used 

the ILLISLAB software, a program developed at the University of Illinois at Urbana – 

Champaign, which allows numerical simulation by varying linear and non-linear temperature 

distributions, making it possible to obtain stresses in rigid pavements under different 

configurations. ILLISLAB makes the analysis in two steps providing a reasonable approach: 

first, a two-dimensional analysis of the whole concrete pavement and then a three-

dimensional analysis of a small section of the joint that uses the results of the two-

dimensional analysis in terms of the proper boundary condition (Tabatabaie and Barenberg, 

1978). The software uses a concrete pavement slab model developed by Melosh (1963), 

represented by a rectangular plate element with four nodes (one in each corner) with three 

displacement components – a vertical deflection (𝑊) in Z-direction, a rotation (𝜃𝑋) about the 

X-axis, and a rotation (𝜃𝑌) about the Y-axis – and corresponding to these displacement 

components, there are three force components – a vertical force (𝑃𝑊), a couple about the X-

axis (𝑃𝜃𝑋), and a couple about the Y-axis (𝑃𝜃𝑌), respectively (Tabatabaie and Barenberg, 

1978; Khazanovich, 1994). For each element, these forces and displacement can be related by 

matrix notation, as can be seen in the Equation (3.3) : 

{𝑃}𝑒 = [𝐾𝑡𝑜𝑝 + 𝐾𝑏𝑜𝑡 + 𝐾𝑠𝑢𝑏]𝑒⁡{𝐷}𝑒 (3.3) 

Extraction of 

simulated data 

by FEM 

 

A380 and B747 

ILLISLAB simulations 

by Fonteles (2017): 
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where [𝐾𝑡𝑜𝑝]𝑒⁡= the stiffness matrix of the top layer; [𝐾𝑏𝑜𝑡]𝑒⁡= the stiffness matrix of 

the bottom layer; [𝐾𝑠𝑢𝑏]𝑒⁡= the stiffness matrix of the subgrade; {𝑃}𝑒 = the force vector of the 

slab element; and {𝐷}𝑒 = the displacement vector of the slab element. 

A bar with two degrees of freedom/node is used to model the dowel bars at the joints. 

The two displacement components at each node are a vertical displacement (𝑊) in the Z-

direction and a rotation (𝜃𝑌) about the Y-axis, and their corresponding force (𝑃𝑊) and couple 

about the Y-axis (𝑃𝜃𝑌), respectively (Tabatabaie and Barenberg, 1978; Khazanovich, 1994). 

The force-displacement relation can be written according to the Equation (3.4). 

{𝑃}𝑏 = [𝐾𝑑𝑜𝑤𝑒𝑙]𝑏⁡{𝐷}𝑏 (3.4) 

where [𝐾𝑑𝑜𝑤𝑒𝑙]𝑏⁡= the stiffness matrix of the dowel bar; {𝑃}𝑏 = the force vector of the 

bar element; and {𝐷}𝑏 = the displacement vector of the bar element. 

The relative deformation of the dowel bar and surrounding concrete is represented as 

the stiffness of a vertical spring element that extends between the dowel bar and the 

surrounding concrete at the joint face. This displacement component at each node is a vertical 

displacement (𝑊) in the Z-direction, and the corresponding force component is a vertical 

force (𝑃𝑊) (Tabatabaie and Barenberg, 1978; Khazanovich, 1994). The force-displacement 

relation for a spring element can be written according to the Equation (3.5). 

{𝑃}𝑠 = [𝐾𝐴𝑔𝑔]𝑠⁡{𝐷}𝑠 (3.5) 

where [𝐾𝐴𝑔𝑔]𝑠⁡= the stiffness matrix of the spring element; {𝑃}𝑠 = the force vector of 

the spring element; and {𝐷}𝑠 = the displacement vector of the spring element. 

The overall structural stiffness matrix [𝐾] is formulated by superimposing the effects 

of the individual element stiffnesses by using the topological (or the element-connecting) 

properties of the pavement system and used to solve the set of simultaneous equations that 

have the form according to the Equation (3.6) (Tabatabaie and Barenberg, 1978; 

Khazanovich, 1994). 

{𝑃} = [𝐾]⁡{𝐷} (3.6) 

where {𝑃} = equivalent nodal forces for a uniformly distributed load over a rectangular 

section of the concrete slab; and {𝐷} = resultant nodal displacements for the whole system. 

Fonteles (2017) built a model with 16 square slabs measuring 7.62 meters on a side, 

varying thicknesses of 0.250, 0.406 and 0.508 meters, and LTE of 0 and 85% in both 

directions, choosing slab 11 as the control one to predict the stresses in all analyzes, as  shown 
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in Figure 3.2 along with the position of all set of slabs and the finite element mesh used by the 

author. 

 

Figure 3.2 - Model of concrete pavement slabs in FEM developed by Fonteles (2017): a) set of slabs; b) detail of 

the finite element mesh 

 
                                        a)                                                                                                b) 

Source: Author. 

 

For this thesis, the loading of the A380 and B747 aircraft was used considering the 

complete landing gear (TPC) as detailed in Figure 3.3. Tire pressure (𝜌) equal to 1.38 MPa 

(200 psi) was used, square tires with 0.38 m (15 inches) of side and 200,349.86 N (45,000 

pounds) of load per tire. 
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Figure 3.3 - Dimensions of the landing gears used by Fonteles (2017) as loading: a) A380 (TPC); b) B747 

(TPC). Units in meters 

  

 
a) 

 
b) 

Source: Author; Pictures: Air Journal (2016) 

 

Other parameters of pavement geometry, material properties and loads that were 

assumed constant for training the ML/RF model are listed in Table 3.1. 
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Table 3.1 - Constant parameters and properties. 

Parameter or property Values 

Plate length and width (𝐿) [m] 7.62 

Tire length and width (𝑙) [m] 0.38 

Modulus of elasticity (𝐸) [MPa] 31,000 

Thermal expansion coefficient (𝛼) [1/°C] 5.0e-6 

Poisson’s ratio (𝜈) 0.15 

Specific weight (𝛾) [kg/m³] 2,408.15 

Tire pressure (𝜌) [MPa] 1.38 

Tire load (𝑃) [N] 200,349.86 

Source: Author. 

 

The aircraft's landing gear arrangement on the slabs was represented by the center of 

gravity (CG) of the landing gears showed in Figure 3.3, varying 0.25 m along the transverse 

joint and 0.38 m along the longitudinal joint (as can be seen in the Figure 3.4). Therefore, the 

passing lines (ACL 1 to 17) were named in a way that ACL1 is the passing line in which the 

CG is over the longitudinal joint of slab 11, ACL2 has the CG passing 0.25 m off that 

longitudinal joint towards the interior of slab 11, and so forth (Figure 3.5). All positions along 

the passing lines from ACL1 to ACL17 were simulated with different temperature 

differentials (ΔT) to cover a wide range of possible temperature differentials occurring into 

the slabs. For each application of loading on slab (ACL or LP), Fonteles (2017) gathered the 

greatest tensile stresses presented at whole slab, for each configuration, creating graphs like 

Figure 3.6, the sources of data used by this work. 
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Figure 3.4 - The aircraft's landing gear arrangement on the slabs 

 

Source: Fonteles (2017) 

 

Figure 3.5 – Demonstration of the ACL 1 to 17 (LP1 to LP17) 

 

Source: Fonteles (2017) 
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Figure 3.6 – Graph created by Fonteles (2017) gathering the greatest tensile stresses at whole slab for each 

application of loading (ACL or LP) 

 

Source: Fonteles (2017) 

 

3.2. CONSTRUCTION OF THE DATASET AND TRAINING THE MODELS 

After data extraction, the datasets were organized to be used for training and validating 

the ML/RF. 

3.2.1. Linear Stresses Dataset 

The dataset was organized with the FEM results of maximum tensile stress simulated 

through ILLISLAB simulations provided by Fonteles (2017). Based on those, a dataset was 

developed in which the input variables are presented in Table 3.2 for the output maximum 

tensile stress occurred at the top or bottom of the transverse joint (𝜎∆𝑇
𝐿 ) of the control slab 11. 

The values between […] are the ones adopted in the simulations, and finite element 

simulation. 
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Table 3.2 - Input variables for predicting the maximum linear stress (𝜎∆𝑇
𝐿 ) in the pavement slab.  

Symbol Description Adopted values 

𝜉 Aircraft type 0 (B747) or 1 (A380) 

𝜌 Tire pressure (MPa) [1.52; 1.38; 1.03; 0.55] 

TB Stress position in the slab 0 (Top) or 1 (Bottom) 

h Pavement thickness (m) [0.250; 0.406; 0.508] 

LTE Load transfer efficiency (%) [0; 85] 

ΔT Linear temperature difference (°C) [16.67; 8.33; 0; -8.33; -16.67] 

ACL Passing line [1; …; 17] 

ℓ Radius of relative stiffness (m) [1.32; 1.44; 2.25] 

k Modulus of subgrade reaction (MPa/m) [40.7a; 13.6b] 
a: used for thickness of 0.406 m; b: used for thickness of 0.250 m and 0.508 m. 

Source: Author. 

 

With all the combinations between the input variables, it was possible to train the 

ML/RF by dividing the dataset into 75% for training (119,514 simulations) and 25% for 

testing (39,838 simulations), total of 159,352 data in the dataset. The algorithm was trained 

using the Scikit-learn Python library and using 5-fold cross-validation within a Bayesian 

optimizing algorithm to obtain the best hyperparameters (Table 3.3) that minimized the mean 

squared error of the cross-validation predictions. The k-fold cross-validation separate 

randomly the dataset into k folds with same size and use 1 fold as test and the others as 

training and calculate the error. This process repeats until each fold is used as test and the 

error of each of them is calculated. Therefore, the error of the model is calculated using the 

average of the errors (Figure 3.7). 

Figure 3.7 – Demonstration of operation of k-fold cross-validation 

 

Source: Savietto (2021) 
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Table 3.3 – Hyperparameters used for predicting the maximum linear stress (𝜎∆𝑇
𝐿 ) and the maximum total stress 

(𝜎∆𝑇
𝑇 ) in the pavement slab. 

Hyperparameters Values for 𝜎∆𝑇
𝐿  Values for 𝜎∆𝑇

𝑇  

Bootstrap True True 

Ccp_alpha 0.0 0.0 

Criterion Squared_error Squared_error 

Max_depth 45 35 

Max_features 3 2 

Max_leaf_nodes None None 

Max_samples None None 

Min_impurity_decrease 0.0 0.0 

Min_samples_leaf 1 1 

Min_samples_split 2 7 

Min_weight_fraction_leaf 0.0 0.0 

Monotonic_cst None None 

N_estimators 350 450 

N_jobs None None 

Oob_score False False 

Random_state None None 

Verbose 0 0 

Warm_start False False 

Source: Author 

 

3.2.2. Total Stresses Dataset 

To build the dataset of self-equilibrating stresses, several statistical analyzes were 

carried out with data from São Paulo in order to know the characteristic values of each 

variable, separating them according to the season of the year in which the reading was taken 

and their time: spring, summer, autumn, winter, day, night and total (all data). To this end, the 

NOLA parameter was used to characterize the level of nonlinearity of the profiles, this 

parameter was described by Equation (2.22). Finally, using the different values that could be 

found using NOLA equation, discovered from the analyses, the dataset used was the one 

presented in Table 3.4. 
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Table 3.4 - Input variables for predicting the maximum total stress (𝜎∆𝑇
𝑇 ) in the pavement slab.  

Symbol Description Adopted values 

𝜉 Aircraft type 0 (B747) or 1 (A380) 

𝜌 Tire pressure (MPa) [1.52; 1.38; 1.03; 0.55] 

TB Stress position in the slab 0 (Top) or 1 (Bottom) 

h Pavement thickness (m) [0.250; 0.406; 0.508] 

LTE Load transfer efficiency (%) [0; 85] 

ΔT Linear temperature difference (°C) [16.67; 8.33; 0; -8.33; -16.67] 

ACL Passing line [1; …; 17] 

ℓ Radius of relative stiffness (m) [1.32; 1.44; 2.25] 

k Modulus of subgrade reaction (MPa/m) [40.7a; 13.6b] 

NOLA Non-Linear Area (°C m) [-3.39, ..., 3.38] 
a: used for thickness of 0.406 m; b: used for thickness of 0.250 m and 0.508 m. 

Source: Autor. 

 

With all the combinations between the input variables, it was possible to train the 

ML/RF by dividing the dataset into 75% for training (510,883 simulations) and 25% for 

testing (170,295 simulations), total of 681,178 data in the dataset. The algorithm was trained 

using the Scikit-learn Python library and using 5-fold cross validation within a Bayesian 

optimizing algorithm to obtain the best hyperparameters (Table 3.3) that minimized the mean 

squared error of the cross-validation predictions. 

3.3. VALIDATION OF THE MODELS AND PERFORMANCE MEASUREMENTS 

To validate the Machine Learning technique, initially, several comparison graphs were 

generated, comparing the data obtained from the ILLISLAB software and those predicted by 

the proposed ML/RF. Subsequently, performance measurements as the coefficient of 

determination (R²), mean absolute errors (MAE), mean square errors (MSE), root mean 

square errors (RMSE) and absolute residuals (𝜀𝑎𝑏), were determined for training and testing 

predictions. Those performance measurements are defined as the Equation (3.7a-e): 

𝑅² =
∑ (𝜎̂∆𝑇𝑖 − 𝜎∆𝑇)

2𝑛
𝑖=1

∑ (𝜎∆𝑇𝑖 − 𝜎∆𝑇)
2𝑛

𝑖=1

 

(3.7a-e) 
𝑀𝐴𝐸 =

∑ |𝜎̂∆𝑇𝑖 − 𝜎∆𝑇𝑖|
𝑛
𝑖=1

𝑛
 

𝑀𝑆𝐸 =
∑ (𝜎̂∆𝑇𝑖 − 𝜎∆𝑇𝑖)

2𝑛
𝑖=1

𝑛
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𝑅𝑀𝑆𝐸 = √∑ (𝜎̂∆𝑇𝑖 − 𝜎∆𝑇𝑖)
2𝑛

𝑖=1

𝑛
 

𝜀𝑎𝑏 = 𝜎̂∆𝑇𝑖 − 𝜎∆𝑇𝑖  

where 𝑛 = number of data points; 𝜎̂∆𝑇𝑖 = maximum tensile stress predicted by the 

proposed ML/RF (𝜎̂∆𝑇); 𝜎∆𝑇𝑖 = maximum tensile stress observed in the dataset (𝜎∆𝑇⁡predicted 

by FE simulation); and 𝜎∆𝑇⁡ = average of 𝜎∆𝑇𝑖 values. 

4. RESULTS AND DISCUSSIONS 

In this section, the results obtained with the proposed ML/RF models is presented on 

two subsections: direct comparison with ILLISLAB and performance analysis of trained and 

tested machine learning models. In addition, measurements obtained from the analysis of 

temperature data from São Paulo will be presented. 

4.1. LINEAR STRESS 

4.1.1. Direct Comparison Between Machine Learning Final Model and ILLISLAB 

Simulations 

Comparisons were made by plotting the original data simulated by Fonteles (2017) 

and the tensile stresses predicted by the proposed machine learning ML/RF model for 

different configurations, especially different temperature differential though the slab´s 

thickness (∆𝑇) and passing lines position of the landing gear (ACLs). The plots can be seen 

from Figure 4.1 to Figure 4.6, being grouped according to the aircraft type (A380 and B747) 

and the slab´s thickness (0.250, 0.406, and 0.508). 
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Figure 4.1 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different passing lines (ACL) for A380, h = 0.250m, 

Top stress: a) LTE = 0%, b) LTE = 85%; Bottom stress: c) LTE = 0%, d) LTE = 85% 

 

a) b) 

c) d) 

Source: Author. 
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Figure 4.2 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different passing lines (ACL) for A380, h = 0.406m, 

Top stress: a) LTE = 0%, b) LTE = 85%; Bottom stress: c) LTE = 0%, d) LTE = 85% 

 

a) b) 

 

c) 

 

d) 

Source: Author. 
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Figure 4.3 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different passing lines (ACL) for A380, h = 0.508m, 

Top stress: a) LTE = 0%, b) LTE = 85%; Bottom stress: c) LTE = 0%, d) LTE = 85% 
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Source: Author. 
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Figure 4.4 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different passing lines (ACL) for B747, h = 0.250m, 

Top stress: a) LTE = 0%, b) LTE = 85%; Bottom stress: c) LTE = 0%, d) LTE = 85% 

 

a) b) 

c) d) 

Source: Author. 
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Figure 4.5 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different passing lines (ACL) for B747, h = 0.406m, 

Top stress: a) LTE = 0%, b) LTE = 85%; Bottom stress: c) LTE = 0%, d) LTE = 85% 

 

a) b) 

c) d) 

Source: Author. 
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Figure 4.6 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum linear tensile stress (𝜎∆𝑇
𝐿 ) for different passing lines (ACL) for B747, h = 0.508m, 

Top stress: a) LTE = 0%, b) LTE = 85%; Bottom stress: c) LTE = 0%, d) LTE = 85% 

 

a) b) 

c) d) 

Source: Author. 
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LTE=0% (subfigures a) and c)). Note also that the proposed model is able to predict tensile 

stresses with negative, positive, and null temperature differential across the thickness. 

4.1.2. Performance of Training and Test 

The performance of the ML/RF can be qualitatively assessed with the comparison 

presented in Figure 4.7, which visually the ILLISLAB predictions 𝜎∆T
L  and the data predicted 

by the proposed ML/RF model 𝜎̂∆T
L

 for both training and testing datasets. The ML/RF 

predicted values were extremely close to the line of equality (45° degrees line) demonstrating 

an almost perfect equality between the ILLISLAB and machine learning predictions. This 

extreme similarity could be an indicator of overfitting of the data by the machine learning 

model, however, the same equality of predictions can be seen on the testing plot where all 

those data were unseen by the training phase, which excludes overfitting during model 

training. 

Also note that both ILLISLAB and ML/RF predicted very high tensile stresses reaching up to 

12 MPa which is far off the range accepted in pavement design. Those predicted values are 

from extreme combinations such as high values for tire pressure and |ΔT| combined with 

lower values of thickness, modulus of subgrade reaction and load transfer efficiency. Those 

combinations are part of the dataset to allow a comprehensive machine learning model able to 

accurate predict possible extreme conditions to be discarded during the design phase.  

Figure 4.7 - Maximum tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝐿 ) and predicted with ML/RF (𝜎̂∆𝑇

𝐿 ) 

for the datasets: a) Training; b) Testing 

a) b) 

Source: Author. 

 

𝜎∆T
L  (MPa) 𝜎∆T

L  (MPa) 

𝜎
∆
TL
 (

M
P

a)
 

𝜎
∆
TL
 (

M
P

a)
 

2 4 6 8 10 12 0 2 4 6 8 10 12 0 

2 

4 

6 

8 

10 

12 

0 

2 

4 

6 

8 

10 

12 

0 



 

 

54 

 

Table 4.1 further confirms the high accuracy of the ML/RF predictions and effectivity 

of the trained algorithm showed high R² and low values for the error performance 

measurements (MAE, MSE, and RMSE) for both training and testing datasets. Note that for 

all error measurements, the performance of the testing presented higher errors than the 

training, indicating that the overfitting did not occur during training.  The good performance 

presented by the can be attributed to the Random Forest algorithm be able to very accurately 

model the data based on the input variable of Table 3.2. 

Table 4.1 - Performance measurements with ML/RF for linear tensile stresses 

Dataset R² (%) MAE (MPa) MSE (MPa²) RMSE (MPa) 

Training 99.99 4.47e-3 6.20e-5 7.87e-3 

Testing 99.99 1.09e-2 3.60e-4 1.90e-2 

Source: Autor. 

 

Figure 4.8 presents histograms of absolute residuals (𝜀𝑎𝑏
𝐿 )⁡which shows those errors 

values with its number of occurrences for both training and testing. Both histograms show 

most of the errors were concentrated between -0.05 MPa and 0.05 MPa, with the highest 

concentration occurring many close to 0 as expected for an adequate machine learning model. 

 

Figure 4.8 - Histogram of absolute residuals for linear tensile stresses (𝜀𝑎𝑏
𝐿 ) for the dataset: a) Training; b) 

Testing 

a) b) 

Source: Author. 
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The bar charts presented in the Figure 4.9 show the 𝜀𝑎𝑏
𝐿  with the observed tensile 

stresses obtained with ILLISLAB for both the training and testing datasets which shows the 

errors distributed over the values of the simulated stress. In the tested dataset (Figure 4.9b), 

which were unseen by the algorithm during training, only a few cases 𝜀𝑎𝑏
𝐿 > 0.20⁡𝑀𝑃𝑎, 

however those cases are on the range 𝜎∆𝑇
𝐿 > 6⁡𝑀𝑃𝑎. As desired, the bar’s distribution does 

not show any trend of accumulating higher 𝜀𝑎𝑏
𝐿  in specific ranges of 𝜎∆𝑇

𝐿  for both training and 

testing sets. 

 

Figure 4.9 – Linear tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝐿 ) and absolute residuals (𝜀𝑎𝑏

𝐿 ) for the database: 

a) Training; b) Testing 

a) b) 

Source: Author. 

 

Probability plots of 𝜀𝑎𝑏
𝐿  for both training and testing datasets are presented in Figure 

4.10, relating the theoretical quantity (TQ), represented by standard deviations of 𝜀𝑎𝑏
𝐿 , with 

the ordered 𝜀𝑎𝑏
𝐿  data (OV). The figure shows that the 𝜀𝑎𝑏

𝐿  follows a normal distribution with 

the range of ±2⁡standard deviations, but deviated from normality beyond that point which are 

the rare combinations among the input combinations of Table 3.2. Even on those ranges, the 

proposed ML/RF show small absolute errors. 
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Figure 4.10 - Probability plots with absolute residuals (𝜀𝑎𝑏
𝐿 ) for the database: a) Training; b) Testing 

a) b) 

Source: Author. 

4.2. TOTAL STRESS 

4.2.1. Direct Comparison Between Machine Learning Final Model and ILLISLAB 

Simulations  

Comparisons were made by plotting the original data simulated by Fonteles (2017) 

added to the self-equilibrating stresses obtained through the Equation (2.26) using the 𝑇𝑚𝑄95
  

and 𝜔𝑄05 from the day and night scenarios of São Paulo, and the tensile stresses predicted by 

the proposed machine learning ML/RF model for different configurations, especially different 

temperature differential though the slab´s thickness (∆𝑇) and passing lines position of the 

landing gear (ACLs). The plots can be seen from Figure 4.11 to Figure 4.16, being grouped 

according to the aircraft type (A380 and B747), the slab´s thickness (0.250, 0.406, and 0.508), 

the average temperature on the slab (36.16 and 33.26), and the level of nonlinearity (-0.134 

and -0.036). 
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Figure 4.11 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different passing lines (ACL) for h = 0.250m, LTE = 

85% and 𝑁𝑂𝐿𝐴 = -0.808. B747: a) Top stress, b) Bottom stress; A380: c) Top stress, d) Bottom stress 
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c) d) 

Source: Author. 
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Figure 4.12 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different passing lines (ACL) for h = 0.406m, LTE = 

85% and 𝑁𝑂𝐿𝐴 = -1.312. B747: a) Top stress, b) Bottom stress; A380: c) Top stress, d) Bottom stress 
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Source: Author. 
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Figure 4.13 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different passing lines (ACL) for h = 0.508m, LTE = 

85% and 𝑁𝑂𝐿𝐴 = -1.641. B747: a) Top stress, b) Bottom stress; A380: c) Top stress, d) Bottom stress 
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Source: Author. 
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Figure 4.14 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different passing lines (ACL) for h = 0.250m, LTE = 

85% and 𝑁𝑂𝐿𝐴 = -0.200. B747: a) Top stress, b) Bottom stress; A380: c) Top stress, d) Bottom stress 
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Source: Author. 
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Figure 4.15 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different passing lines (ACL) for h = 0.406m, LTE = 

85% and 𝑁𝑂𝐿𝐴 = -0.324. B747: a) Top stress, b) Bottom stress; A380: c) Top stress, d) Bottom stress 
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Source: Author. 
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Figure 4.16 - Comparison between proposed machine learning ML/RF (continuous line) and ILLISLAB (dashed 

line) predictions of maximum total tensile stress (𝜎∆𝑇
𝑇 ) for different passing lines (ACL) for h = 0.508m, LTE = 

85% and 𝑁𝑂𝐿𝐴 = -0.406. B747: a) Top stress, b) Bottom stress; A380: c) Top stress, d) Bottom stress 

 

a) b) 

c) d) 

Source: Author. 

 

The results presented by the figures showed a very good agreement between the proposed 

ML/RF predictions and the original ILLISLAB simulated tensile stresses (top and bottom 

surface) for all the configurations with different aircraft type loading, slab´s thickness, 

temperature differentials, load transfer efficiency, average temperature and level of 

nonlinearity. The ML/RF showed very good agreement even in strong variation of the 

distribution of tensile stresses along the passing lines. Note also that the proposed model is 

able to predict tensile stresses with negative, positive, and null temperature differential across 
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the thickness. In addition to this, comparing different thicknesses and same LTE, is possible 

to notice that the nonlinearity with respect to passing lines (ACL) and temperatures. 

4.2.2. Performance of Training and Test 

The performance of the ML/RF can be qualitatively assessed with the comparison 

presented in Figure 4.17 - , which visually the ILLISLAB predictions 𝜎∆𝑇
𝑇  and the data 

predicted by the proposed ML/RF model 𝜎̂∆𝑇
𝑇  for both training and testing datasets. The 

ML/RF predicted values were extremely close to the line of equality (45° degrees line) 

demonstrating an almost perfect equality between the ILLISLAB and machine learning 

predictions. This extreme similarity could be an indicator of overfitting of the data by the 

machine learning model, however, the same equality of predictions can be seen on the testing 

plot where all those data were unseen by the training phase, which excludes overfitting during 

model training. 

Also note that both ILLISLAB and ML/RF predicted very high tensile stresses 

reaching up to 12 MPa which is far off the range accepted in pavement design. Those 

predicted values are from extreme combinations such as high values for tire pressure and |ΔT| 

combined with lower values of thickness, modulus of subgrade reaction and load transfer 

efficiency. Those combinations are part of the dataset to allow a comprehensive machine 

learning model able to accurate predict possible extreme conditions to be discarded during the 

design phase.  

Figure 4.17 - Maximum tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝑇 ) and predicted with ML/RF (𝜎̂∆𝑇

𝑇 ) for the 

datasets: a) Training; b) Testing 

a) b) 

Source: Author. 
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Table 4.2 further confirms the high accuracy of the ML/RF predictions and effectivity 

of the trained algorithm showed high R² and low values for the error performance 

measurements (MAE, MSE, and RMSE) for both training and testing datasets. Note that for 

all error measurements, the performance of the testing presented higher errors than the 

training, indicating that the overfitting did not occur during training.  The good performance 

presented by the can be attributed to the Random Forest algorithm be able to very accurately 

model the data based on the input variable of Table 3.4. 

Table 4.2 - Performance measurements with ML/RF for total tensile stresses. 

Dataset R² (%) MAE (MPa) MSE (MPa²) RMSE (MPa) 

Training 99.99 4.49e-3 6.21e-5 7.88e-3 

Testing 99.99 1.09e-2 3.60e-4 1.90e-2 

Source: Author. 

 

Figure 4.18 presents histograms of absolute residuals (𝜀𝑎𝑏
𝑇 )⁡which shows those errors 

values with its number of occurrences for both training and testing. Both histograms show 

most of the errors were concentrated between -0.05 MPa and 0.05 MPa, with the highest 

concentration occurring many close to 0 as expected for an adequate machine learning model. 

 

Figure 4.18 - Histogram of absolute residuals (𝜀𝑎𝑏
𝑇 ) for the dataset: a) Training; b) Testing 

a) b) 

Source: Author. 

 

The bar charts presented in the Figure 4.19 show the 𝜀𝑎𝑏
𝑇  with the observed stresses 
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distributed over the values of the simulated stress. In the tested dataset (Figure 4.19b), which 

were unseen by the algorithm during training, only a few cases 𝜀𝑎𝑏
𝑇 > 0.20⁡𝑀𝑃𝑎, however 

those cases are on the range 𝜎∆𝑇
𝑇 > 6⁡𝑀𝑃𝑎. As desired, the bar’s distribution does not show 

any trend of accumulating higher 𝜀𝑎𝑏
𝑇  in specific ranges of 𝜎∆𝑇

𝑇  for both training and testing 

sets. 

 

Figure 4.19 - Total tensile stresses obtained with ILLISLAB (𝜎∆𝑇
𝑇 ) and absolute residuals (𝜀𝑎𝑏

𝑇 ) for the database: 

a) Training; b) Testing 

a) b) 

Source: Author. 

 

Probability plots of 𝜀𝑎𝑏
𝑇  for both training and testing datasets are presented in Figure 

4.20, relating the theoretical quantity (TQ), represented by standard deviations of 𝜀𝑎𝑏
𝑇 , with 

the ordered 𝜀𝑎𝑏
𝑇  data (OV). The figure shows that the 𝜀𝑎𝑏

𝑇  follows a normal distribution with 

the range of ±2⁡standard deviations, but deviated from normality beyond that point which are 

the rare combinations among the input combinations of Table 3.4. Even on those ranges, the 

proposed ML/RF show small absolute errors. 
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Figure 4.20 - Probability plots with absolute residuals (𝜀𝑎𝑏
𝑇 ) for the database: a) Training; b) Testing 

 

a) b) 

Source: Author. 

 

4.3. ANALYSIS OF SÃO PAULO TEMPERATURE DATA 

Severi (2002) used an experimental track composed of 15 concrete slabs with different 

sizes (Figure 4.21) instrumented with thermal resistors built at the Polytechnic School of the 

University of São Paulo to obtain temperature profile data. The resistors were installed in 

strategic locations (in the center and at the edge of each slab) (Figure 4.22) positioned at 2.00 

cm, 7.25, 12.50 cm, 17.75 cm and 19.75 cm from the top of the pavement. Data were 

collected between October 1999 and February 2001, totaling 190 reading days, 74 readings on 

spring days, 39 on summer days, 43 in autumn and 34 in winter. The readings were taken at 

different times of the day, thus obtaining graphs such as Figure 4.23 constructed with Severi 

(2002)’s data, which shows the temperature at each depth for each reading time: 
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Figure 4.21 – Layout of concrete slabs built as experimental track at the Polytechnic School of the University of 

São Paulo 

 

Source: Severi (2002) 

 

Where CCP = thickness of the slab (ℎ); BGS = used Simples Graded Gravel as 

material of subgrade; and CCR = used Roller-Compacted Concrete as material of subgrade.  
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Figure 4.22 – Position of the thermal resistors installed at experimental track at Polytechnic School of the 

University of São Paulo 

 

Source: Severi (2002) 
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Figure 4.23 - Temperature profile in a concrete slab for a day with Multiple Inversions. Graph constructed using 

Severi (2002)’s data. a) Profiles during the Day (6:00 to 18:00); b) Profiles during the Night (18:00 to 6:00)   

 
a) 

 
b) 

 

Source: Author. 

 

 

In order to know the values that describe the temperature profiles in concrete slabs in 
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percentile (Q05), 25th percentile (Q25), 50th percentile (or median), 75th percentile (Q75), 

95th percentile (Q95), range between quartiles (IQR = Q75 – Q25), asymmetry and kurtosis 

were obtained. The data was separated into scenarios depending on the day and time 

collected: spring, summer, autumn, winter, day, night and total. All these tables were 

constructed by the author analyzing and organizing the Severi (2002)’s data. 

 

Table 4.3 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) during spring. 

 
∆𝑇 

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 

Maximum 14.901 0.280 

Average -0.092 -0.067 

Minimum -5.782 -0.671 

Standard Deviation 4.916 0.203 

Q05 -5.223 -0.456 

Q25 -3.954 -0.175 

Median -2.016 -0.029 

Q75 2.969 0.048 

Q95 9.841 0.241 

IQR 6.923 0.223 

Asymmetry 1.088 -0.699 

Kurtosis 0.313 0.154 

Source: Author. 
 

 

Table 4.4 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) during summer. 

  
∆𝑇  

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 
Maximum 16.837 0.342 

Average 0.407 -0.098 

Minimum -5.512 -0.504 

Standard Deviation 5.297 0.194 

Q05 -4.976 -0.433 

Q25 -3.859 -0.277 

Median -1.239 -0.037 

Q75 3.868 0.006 

Q95 10.355 0.236 

IQR 7.727 0.283 

Asymmetry 1.137 -0.278 

Kurtosis 0.695 -0.442 

Source: Author. 
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Table 4.5 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) during autumn. 

 
∆𝑇 

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 

Maximum 13.467 0.260 

Average 2.377 0.080 

Minimum -1.439 -0.315 

Standard Deviation 3.749 0.131 

Q05 -0.961 -0.265 

Q25 -0.494 0.051 

Median 0.735 0.116 

Q75 3.998 0.159 

Q95 11.327 0.223 

IQR 4.492 0.108 

Asymmetry 1.304 -1.512 

Kurtosis 0.939 1.885 

Source: Author. 

 

Table 4.6 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) during winter. 

 
∆𝑇 

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 

Maximum 10.929 0.110 

Average 0.318 -0.157 

Minimum -5.985 -0.667 

Standard Deviation 4.311 0.192 

Q05 -4.542 -0.528 

Q25 -3.149 -0.249 

Median -0.612 -0.103 

Q75 2.941 -0.015 

Q95 9.394 0.076 

IQR 6.090 0.234 

Asymmetry 0.837 -0.910 

Kurtosis -0.224 -0.075 

Source: Author. 

 

Table 4.7 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) during day (from 6:00 AM to 6:00 PM). 

 
∆𝑇 

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 

Maximum 16.837 0.342 

Average 3.065 -0.178 

Minimum -5.985 -0.671 

Standard Deviation 5.186 0.217 

Q05 -4.790 -0.518 

Q25 -1.202 -0.350 

Median 2.989 -0.171 

Q75 6.972 -0.038 

Q95 11.544 0.173 

IQR 8.173 0.312 

Asymmetry 0.281 0.056 

Kurtosis -0.668 -0.605 

Source: Author. 
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Table 4.8 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) during night (from 6:00 PM to 6:00 AM). 

 
∆𝑇 

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 

Maximum 8.008 0.286 

Average -2.098 0.042 

Minimum -5.782 -0.214 

Standard Deviation 2.411 0.102 

Q05 -5.138 -0.131 

Q25 -3.991 -0.020 

Median -2.729 0.020 

Q75 -0.238 0.109 

Q95 2.319 0.221 

IQR 3.753 0.130 

Asymmetry 0.855 0.284 

Kurtosis 0.893 -0.377 

Source: Author 

 

 

Table 4.9 - Statistical parameters calculated from temperature measurements in São Paulo from data collected by 

Severi (2002) 

 
∆𝑇 

(°C) 

𝑁𝑂𝐿𝐴 

(°C m) 

Maximum 16.837 0.342 

Average 0.501 -0.069 

Minimum -5.985 -0.671 

Standard Deviation 4.805 0.203 

Q05 -4.976 -0.456 

Q25 -3.403 -0.175 

Median -0.519 -0.024 

Q75 3.059 0.065 

Q95 9.885 0.213 

IQR 6.462 0.240 

Asymmetry 0.968 -0.679 

Kurtosis 0.292 -0.025 

Source: Author. 

 

When analyzing the tables, it is possible to notice the values that describe the 

temperatures in the concrete slabs in São Paulo. The ∆𝑇 presented a maximum value on a 

summer day, a minimum on a winter day, an average of around 0.50°C, asymmetry to the 

right and a leptokurtic distribution. The 𝑁𝑂𝐿𝐴 presented a maximum value on a summer day, 

a minimum on a spring day, an average of around -0.07, left asymmetry and a platykurtic, 

almost mesokurtic, distribution. Therefore, it is possible to notice that during summer or 

spring days the highest stresses occur and the lowest during winter days, however high 

stresses can occur in all seasons of the year. 
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In addition to the tables, Figure 4.24 to Figure 4.27 present the graphs constructed 

with the aim of verifying whether there was a relationship between the variables to the point 

of replacing the use of artificial intelligence, in addition to helping to understand the linear 

and self-equilibrating components existing in the stresses. Summer data was chosen, as it 

presented the highest stresses, and the entire data set was subsequently used. The graphs were 

organized according to the aircraft type (A380 and B747) and stress position (Top or Bottom). 

In the first column, are presented the stresses predicted using Δ𝑇𝑄05 and 𝑁𝑂𝐿𝐴𝑄05 as input to 

top stress or Δ𝑇𝑄95 and 𝑁𝑂𝐿𝐴𝑄05 as input to bottom stress, the alternation of these parameters 

is with the aim of presenting the highest stresses. The second and third columns show the 

stresses corresponding to each variable: ∆𝑇 (Δ𝑇𝑄05 when top stress and Δ𝑇𝑄95 when bottom 

stress) and 𝑁𝑂𝐿𝐴𝑄05 respectively. And the last one shows the characteristic stress, the 95th 

percentile of the total stresses presented in the São Paulos’s slabs (𝜎𝑄95), the choosing of 

theses parameters is with the aim of presenting the highest stresses. For all variables, linear 

and self-balancing stresses were calculated, in addition to showing the maximum (𝜎𝑚𝑎𝑥), 

average (𝜎𝑚𝑒𝑎𝑛) and minimum (𝜎𝑚𝑖𝑛) total stresses of each scenario, considering the stresses 

that happened in this period, with all values divided by their respective linear stress generated 

when the temperature differential from the top to bottom of the slab are equal to zero (𝜎∆𝑇=0), 

as shown in Table 4.10. All stresses were obtained using the following parameters: h = 

0.250m, LTE = 85%, ℓ = 1.32m e k = 13.6 MPa/m, selected to be the parameters presented in 

the database more similar to the conditions involved in the Severi (2002)’s data obtaining. 

 

Table 4.10 – Linear stress for ∆𝑇 = 0 (𝜎∆𝑇=0) for each configuration. 

 B747 A380 

Stress position 𝜎∆𝑇=0 

(MPa) 

𝜎∆𝑇=0 

(MPa) 

Top 2.225 2.630 

Bottom 6.617 4.490 

Source: Author. 
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Figure 4.24 - Stress graph generated from São Paulo summer temperature data for A380, h = 0.250m, LTE = 

85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress 

 

  
 
 

a) 

 

 
 

 

b) 

Source: Author 
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Figure 4.25 - Stress graph generated from São Paulo summer temperature data for B747, h = 0.250m, LTE = 

85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress 
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Source: Author 

 

1.499 1.499

0.859

1.499

0.197

0.001

0.170

0.007

σmean = 1.02

σmax = 1.53

σmin = 0.66

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

1.118 1.118 1.118 1.118

0.066 0.064 0.057 0.064

σmean = 1.03

σmax = 1.26

σmin = 0.90

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400


 





=


 


 





=


 

∆
𝑇 𝑄

0
5
 

𝜎
𝑄
9
5
 

𝑁
𝑂
𝐿
𝐴
𝑄
0
5
 

∆
𝑇 𝑄

0
5
/𝑁
𝑂
𝐿
𝐴
𝑄
0
5
 

∆
𝑇 𝑄

9
5
 

𝜎
𝑄
9
5
 

𝑁
𝑂
𝐿
𝐴
𝑄
0
5
 

∆
𝑇 𝑄

9
5
/𝑁
𝑂
𝐿
𝐴
𝑄
0
5
 



 

 

76 

 

Figure 4.26 – Stress graph generated from all temperature data from São Paulo for A380, h = 0.250m, LTE = 

85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress 
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Source: Author 
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Figure 4.27 - Stress graph generated from all temperature data from São Paulo for B747, h = 0.250m, LTE = 

85%, ℓ = 1.32m, k = 13.6 MPa/m. a) Top stress; b) Bottom stress 
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Analyzing the graphs, relationships between the variables were found, with ∆𝑇𝑄95 or 

∆𝑇𝑄05⁡being sufficient to determine the linear stresses arising from 𝜎𝑄95. Furthermore, it was 

possible to better understand the behavior of stresses and confirm the importance of analyzing 

the temperatures involved, as, in some cases, there is the possibility of increasing by more 

than 50% or decreasing by more than 40% the stresses acting on concrete pavements. 

5. CONCLUSION 

The proposed machine learning models based on eleven input variables including type 

of aircraft (B747 and A380), geometry, loading and material properties, was able to very 

accurately predict the maximum top and bottom tensile stresses due to the landing gear and 

temperature differentials, obtaining an MSE equal to 3.60e-4 MPa² to the test dataset. This 

was possible due to the structure of the optimized random forest algorithm which used 

decision trees, that in the case of the dataset in this paper, was able to be efficiently trained to 

substitute computationally cost finite element analysis involving mechanical and temperature 

loadings and predict stresses in seconds without the necessity of rebuilding a model. The 

analysis of the absolute errors showed that, even for the testing dataset, those errors were 

smaller than 0.20MPa in the majority of the cases, only presenting three errors greater than 

that, but smaller than 0.25MPa, showing high accuracy and reliability. In addition of this, the 

histogram of absolute residuals shows the highest concentration around 0MPa. In this way, 

machine learning models can be trained using a broad database from responses previously 

modeled by the finite element method to create a generalizing model that accurately predicts 

the tensile stress results and no longer requires the use of costly analyzes with that numerical 

method. 

5.1. SUGGESTIONS OF FUTURE WORKS 

Despite the excellent results presented by the proposed model, there are still points 

that can be improved in order to further increase its predictive power. Therefore, the 

following proposals for future works are made: 

• Use finite element models and create a database with a greater diversity of 

values in each variable; 

• To train and validate a new Random Forest model using a database with a 

greater diversity of inputs; 
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• Submit the model proposed by this work and check its performance using 

values different from those existing in the database used; 

• Carry out temperature studies on concrete slabs in regions outside São Paulo. 
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APPENDIX A - TEMPERATURE PROFILES IN CONCRETE SLABS IN THE CITY 

OF SÃO PAULO FOR DIFFERENT WEATHER CONDITIONS 

All the graphs in this appendix were done by the author based on the measurements 

collected and presented in Severi (2002). 

 
Figure A.1 – Temperature profiles along the depth of the concrete slab in the city of São Paulo: a) Spring 1 – 

12/06/2000; b) Spring 2 – 12/07/2000; c) Spring 3 – 08/12/2000; d) Primera 4 – 12/09/2000; e) Rainy Day – 

12/01/2000; f) Multiple Inversion – 12/10/2000 

 

 

a) b) 

c) d) 

e) f) 
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Figure A.2 - Temperature profiles along the depth of the concrete slab in the city of São Paulo: a) Summer 1 – 

10/02/2001; b) Summer 2 – 11/02/2001; c) Summer 3 – 12/02/2001; d) Summer 4 – 13/02/2001; e) Hot sunny 

day – 08/02/2001; f) Typical situation – 11/12/2000 
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Figure A.3 - Temperature profiles along the depth of the concrete slab in the city of São Paulo: a) Autumn 1 – 

21/03/2000; b) Autumn 2 – 03/22/2000; c) Autumn 3 – 03/23/2000; d) Autumn 4 – 03/24/2000; e) Positive 

thermal differential all day – 10/17/2000; f) Negative thermal differential all day – 11/14/2000 
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Figure A.4 - Temperature profiles along the depth of the concrete slab in the city of São Paulo: a) Winter 1 – 

09/08/2000; b) Winter 2 – 09/09/2000; c) Winter 3 – 10/09/2000; d) Winter 4 – 11/09/2000; e) Cloudy Day 1 – 

12/09/1999; f) Cloudy Day 2 – 07/03/2000 
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