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A B S T R A C T   

Maintenance on flat roofs is a complex activity. Equipment improperly positioned on flat roofs 
hinders the correct drainage of water and makes maintenance services more difficult. This article 
presents an experiment with deep learning algorithms involving 330 images acquired in 9 
buildings by Unmanned Aerial Vehicle-UAV. This dataset was created by the authors to optimize 
decision-making for maintenance through automated processes and is being used for the first time 
in this article. The dataset refers to condenser equipment positioned on flat roofs and was tested 
in six state-of-the-art object-detection deep learning algorithms: Region-based convolutional 
neural networks (Faster R-CNN), Focal Loss (Retina-Net), Adaptive Training Sample Selection 
(ATSS), VarifocalNet (Vfnet), Side-Aware Boundary Localization (SABL) and FoveaBox (Fovea). 
Nine performance metrics were applied, achieving successful results by Faster R-CNN 
(Recall=0.93, Fscore=0.93, MAE=0.43) followed by ATSS (Precision=0.95). In a system with 
many variables, the target is the identification of the best algorithm capable of solving the pro-
posed problem. In conclusion, the types of errors analyzed in detection alert to the diversity of 
causes related to the inherent characteristics of flat roofs that induce network confusion.   

1. Introduction 

Inspection is an essential task for building maintenance services, as it is the process that helps in the diagnosis of present damage, 
aiming at repairs and replacements that influence the performance of the building system. Rehabilitation and maintenance activities 
are key factors for the sustainability and service life of the building [1]. In the roofing system in buildings, the planned building in-
spection procedure has been neglected, making difficult the preventive verification of damage [2]. Mapping of damage in roofing 
systems in advance is essential to maintain the lowest levels of intervention, as long as the problems are repaired within the expected 
maintenance deadlines [3]. 

Traditional inspection procedures done manually by specialized professionals are ostensibly time-consuming, laborious and pose 
threats to the health and safety of inspectors, especially considering working at heights on difficult-to-access roofs and the long time 
spent on inspections. In addition, they are basically sensory, intrinsically visual, and subjective, which will depend on the inspector’s 
experience [4]. Due to these disadvantages, the Architecture, Engineering, Construction, and Operation (AECO) sector invests in new 

* Corresponding author. 
E-mail address: 200054104@aluno.unb.br (L.M.A. Santos).  

Contents lists available at ScienceDirect 

Case Studies in Construction Materials 

journal homepage: www.elsevier.com/locate/cscm 

https://doi.org/10.1016/j.cscm.2023.e01917 
Received 9 December 2022; Received in revised form 30 January 2023; Accepted 3 February 2023   

mailto:200054104@aluno.unb.br
www.sciencedirect.com/science/journal/22145095
https://www.elsevier.com/locate/cscm
https://doi.org/10.1016/j.cscm.2023.e01917
https://doi.org/10.1016/j.cscm.2023.e01917
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cscm.2023.e01917&domain=pdf
https://doi.org/10.1016/j.cscm.2023.e01917
http://creativecommons.org/licenses/by/4.0/


Case Studies in Construction Materials 18 (2023) e01917

2

technologies, in order to facilitate inspection processes, reducing time, risk of accidents, and errors in data collection and processing 
[5]. 

The use of drones for capturing GPS-oriented aerial images during building inspection and for 3D modeling [6,7] has grown rapidly 
in the last decade [8,9]. Establishing a comparison with traditional inspection methods, the advantages of using the drone are asso-
ciated with the flexibility to carry out work at height with difficult access, ease of adaptation to different operating conditions [6,10], 
mobility in data acquisition due to the ability to fly at different heights, with high resolution of digital images [11]. 

The field survey with a drone for the detection of damage is a necessary step for the creation of a dataset [12]. In the roofing system, 
the acquired images record the as-built condition that can be observed visually and contribute to the inventory of equipment through 
object recognition. Considering a dataset, the technological resources given by deep learning applied in computer vision provide the 
automation of damage maps based on image patterns and the monitoring of the state of conservation. In this context, this paper 
presents an experiment carried out to obtain a dataset of condenser equipment positioned on flat roofs and its applicability in deep 
learning to verify the performance of six state-of-the-art object detection algorithms. 

This study was motivated by the need to identify and record equipment installed on large roofs in buildings with many built assets 
as in the case selected for the proposed experiment. Mainly, there is an interest in automated processes to optimize decision-making for 
maintenance planning. This type of equipment arranged on the roof may be deactivated, without functionality, preventing the 
operation of the drains or causing water puddles, which accelerates the degradation of the waterproofing blanket and causes moisture 
infiltration. In addition, complex buildings, such as public buildings owned by government institutions, have a centralized adminis-
tration that hires service providers and purchases materials through budgets and bidding that should be based on a dataset. Audits of 
maintenance and conservation plans, as well as asset controls (facilities and equipment), are objects of interest in analysis and drive 
advances in technological research. 

Among the main contributions reported in this article, the construction of an original and unpublished dataset is highlighted. 
Furthermore, in a complex system with many variables, the identification of the successful convolutional neural networks capable of 
solving the proposed problem was a challenging task. Including, the analysis of the causes that induce the network confusion was a 
relevant contribution. 

2. Overview of deep learning for the detection of equipment positioned on flat roofs 

Convolutional Neural Networks (CNN) has been applied on a large scale for image detection and classification, in addition to being 
effective in discovering complex structures in datasets [13]. However, in the area of Architecture, Engineering, Construction, and 
Operation (AECO) automated processes using Computer Vision still require a lot of research. New digital technologies associated with 
image acquisition gain relevance through automated processes based on machine learning, making it a more dynamic and faster task 
[7,8,14]. 

Especially in buildings, the possibility of associating the drone with the neural network is a suitable option for quick and safe roof 
performance inspections [15]. Algorithms applied in neural networks can be used to process measurements, detect risk situations, or 
evaluate existing conditions, aiming to classify the actions of protection, maintenance, or repair of buildings [16,17]. The use of an 
automated inspection system requires robust detection and classification algorithms using convolutional neural networks [3]. This 
type of detection method improves visual recognition and object detection, potentiating discoveries in large datasets [18]. 

To evaluate the use of drones in image capture, Silveira, Melo, and Costa [5] collected data from 167 roofs of housing. The authors 
compare the difficulties faced during the building inspection of the roofing system with the drone and the traditional method, based on 
accessibility limitations, risk of falls, and the quality of images for the identification of damages. 

The authors Bown and Miller [2] researched the quality of images acquired by the drone during inspections on a roof of 9144 m2, in 
a flight plan performed safely by amateur pilots in less than two hours. The authors considered that the flights were performed 
efficiently for the inspection process, whose image production was of sufficient quality for decision-making and maintenance. In 
addition, the choice of drone, the quality of image acquisition, and the type of flight are factors that help to obtain a methodological 
approach that eliminates the risks involved in sensory inspection, with results in a manageable format and reduced risk of collision 
with obstacles, facilitating inspection and reducing the time spent [2]. 

The use of the drone to carry out an inspection of the roof system is also addressed by Banaszek, Banaszek, and Cellmer [11] who 
describe the way of acquiring 165 aerial images taken at heights of 80 m, 60 m, 40 m, and 20 m. The images allowed an assessment of 
the state of conservation of the roofing system and the equipment present, without the need for the inspector to be physically present 
on the roof. The authors discuss the relationship between flight height and image quality since there are several factors that interfere 
with a result capable of identifying visible damage. 

The authors Yudin et al. [19] used an image segmentation algorithm via Deep Fully Convolutional Network software to detect 
irregularities that cause water accumulation in flat roofs, through aerial photographs, making it possible to detect and measure the size 
and perimeter of the cavities. Rakha et al. [6] used photogrammetry, heat mapping through thermal imaging, and the use of computer 
vision workflows to analyze and segment thermal images, autonomously detecting damage. 

Buildings that have real estate insurance need evaluators to survey the state of conservation of the roofing system, especially when 
it comes to accident events (earthquakes, fires, hail, windstorms). The authors Hezaveh, Kanan, and Salvaggio [3] propose to automate 
the evaluation of the inspection system using RGB images of roofs that suffered damage from hail impact. Using the drone to capture 
images to compose a dataset, the authors obtained results with precision when performing processing by convolutional neural net-
works to infer the extent of roof damage caused by hail. 

In this research, Ottoni, Novo, and Costa [20], and Yeşilmen and Tatar [21], considered the applications of Densely Connected for 
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Convolutional Networks (Densenet121) and Convolutional Network for Classification and Detection (VGG16) network architectures in 
processing a roof image bank to classify two classes: roofs with clean gutters and roofs with dirty gutters. One of the research challenges 
was the definition of hyperparameters, so the authors propose a method for adjusting hyperparameters of convolutional neural net-
works for the classification of images captured by drones in building construction. The HyperparameterSK (HyperTuningSK) algorithm 
was developed to create learning rate and optimization rankings, showing the best results for both network architectures used. 

In their survey based on a bibliographic review, the authors found a lot of research focused on the acquisition of images by drone 
and the formation of dataset to identify the state of conservation. In the publications consulted, a technological stage with low 
experimentation in roof systems with deep learning was found. In the study by Banaszek, Banaszek, and Cellmer [11], the drone 
acquisition of images of the equipment on the roof is carried out, aiming at the inventory of equipment and technical infrastructure of 
the buildings, but the application of deep learning was not used. 

In particular, no publication was found that reported the detection or classification of equipment arranged on a flat roof, and 
neither various algorithms nor metrics of performance have been tested, thus justifying the need to advance in these studies involving 
network architectures capable of differentiating similar objects, in complex environments and with many variables, as is the case with 
waterproofing flat roofs. 

3. Research methodology 

3.1. Experimental environment 

The experiment to detect equipment such as air conditioning condensers on a flat roof with a waterproofing system was carried out 
in a set of 9 buildings located at the Brazilian Army Headquarters (QGEx). Fig. 1 shows the set of buildings. Depending on the 
configuration of the buildings, the dimensions of the roofs vary between 200.40 m x 12.50 m and 250.80 m x 14.90 m. Fig. 2 shows the 
presence of some equipment on the waterproofed slabs of the flat roofs. 

3.2. Parameters and planning for the execution of flights 

To obtain the dataset, the images were captured by the Mavic Pro drone manufactured by DJI - DÀ-JIĀNG INNOVATIONS SCIENCE 
AND TECHNOLOGY [28], during the execution of three flight plans, planned in the DJI PILOT software [28] (see details in Table 2). 
The inspections and data acquisition of the condensers were based on navigation by waypoints defined by geographic coordinates, 
through the Geographic Positioning System (GPS). Fig. 3 presents the drone model used to capture the images. Table 1 lists the pa-
rameters required for experiments with the DJI Mavic Pro UAV to obtain images for the annotations of condensers. 

For the execution of the three flight plans, it was necessary to establish the flight protocol. The distance adopted between the UAV 
and the flat roofs was considered the smallest possible to obtain the level of precision and detail in the acquisition of images. To avoid 
possible collision with the antenna and ladder towers, two flight plans had different altitudes due to these obstacles present in the 
mapped area. All the flat roofs have the same height of 10.6 m, but the ladder towers have a height of 15.80 m. Only one of the 
buildings differs from the others, with a height of 8.45 m and the presence of a transmission antenna approximately 15 m high. 

Fig. 1. Location of buildings at the Brazilian Army Headquarters (QGEx) in Brasília-DF.  

L.M.A. Santos et al.                                                                                                                                                                                                   



Case Studies in Construction Materials 18 (2023) e01917

4

The three flights performed (Fig. 4) to obtain images of the flat roofs were of the cross-flight type (in both directions), with a frontal 
and lateral overlap rate of 60%. In order to maintain greater uniformity of the images, the researchers sought to avoid variations in 
positions and configurations. During the flights performed, it was necessary to change the batteries whose autonomy was 27 min. 

The first two flights performed on 09/08/2021 at 10:00 am had good weather conditions - a sunny day with a wind speed of 14 km/ 
h. The third flight was performed on 03/07/2022 at 15:30 h and, on that day, the sky was partly cloudy, with a wind speed of 24 km/h.  
Table 2 organizes information about the flights performed and the weather conditions at the time of the flight, as well as the number of 
images acquired during each of the flights. 

Fig. 2. Equipment arranged on flat roofs.  

Fig. 3. Mavic Pro UAV.  

Table 1 
DJI Mavic Pro UAV camera parameters [28].  

Parameters Value 

Sensor 1/2.3′′ (CMOS), Effective Pixels: 12.35 M (Total Pixels: 12.71 M) 
Lens FOV 78.8◦ 26 mm (35 mm equivalent format) f/2.2Distortion < 1.5% focus from 0.5 m to ∞ 
ISO photo range 100–1600 
Electronic shutter speed 8 s − 1/8000 s 
Image dimensions 4000 × 3000 pixels 
Take-off weight 734  
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3.3. Pre-processing the images and building the dataset 

The three flights performed provided 766 images acquired by the Mavic Pro UAV. From this total of captured images, 330 images 
were selected with high resolution and good luminosity, which contained air conditioning equipment for later annotation in 
ROBOFLOW [27]. In this stage of pre-processing and construction of the dataset, one of the criteria for selecting the images was to 
identify the presence of condensers that are positioned directly on the slab, because this is one of the causes of water puddles and 
drainage obstruction that accelerate the process of degradation of the waterproofing of the roofing system. 

The ROBOFLOW platform [27] hosts a set of public data in various formats, including the COCO (Microsoft Common Objects in 
Context) format which was used for labeling objects in images (Fig. 5 and Fig. 6) and exporting them, providing the necessary tools to 
convert images into computer vision models. To carry out the training, MMDetection 2.12.0 was used. 

The 330 images annotated in ROBOFLOW [27] constituted a dataset whose characteristics are described in Table 3. Fig. 7 shows the 
distribution of the equipment count per image. On average, the highest count ranged from 2 to 4. Using the heat map shown in Fig. 8, 
the distribution of the positions in which the condensers appear in the image bank is presented, ranging from 0 to 1372 annotations, 
considering the pixels contained in each rectangle. Light green pixels are the ones that appear in most annotations. 

3.4. Experimental approach 

Fig. 9 presents the workflow of the research method. First, three flight plans were established, considering the local conditions as 
barriers to determining the altitude of the flights. Secondly, the flight plan was carried out in loco with the capture of 776 images to 
form the dataset. In the third stage, 330 images were selected, considering only those that contained the presence of condensers. Then, 
the selected images were annotated using the ROBOFLOW platform [27]. The annotations were exported and the six network ar-
chitectures were trained in MMDetection with five-fold cross-validation. Finally, nine metrics were applied to analyze the performance 
of network architectures through statistical results. 

Fig. 4. Flight plans.  

Table 2 
Performed flights and information about the acquired images.  

Site of experimentation QGEx 

Flight A B Total 

Flight date 08/09/21 07/03/22 - 
Number of photos collected 428 338 766 
Number of flights 2 1 3 
Drone DJI Mavic Pro DJI Mavic Pro - 
Total flight duration 26 m 01 s 22 m 09 s 48 m 10 s 
Quantity of batteries 1 1 2 
Height 22 m 35 m - 
Flight type Automatic 

2 directions 
Automatic 
2 directions 

- 

Time 10:00 h 15:30 h - 
Covered area 2 ha 5 ha 7 ha  
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3.4.1. Deep learning - detection algorithms and hyperparameters 
The dataset with 330 annotated images was exported from the ROBOFLOW platform [27] to MMDetection.2.12.0. which is a 

framework with a toolbox containing a set of object detection methods. For the initialization of the training phase, COCO provided the 

Fig. 5. Check box by ROBOFLOW [27].  

Fig. 6. Annotation of condensers by ROBOFLOW [27].  

Table 3 
Description of the dataset on the ROBOFLOW platform: Class Balance – Condenser.  

Images Annotations Average Image Size Median Image Ratio 

330  1372 3.15 MP 2048 × 1680  
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Fig. 7. Histogram of object count by image.  

Fig. 8. Annotation Heatmap.  

Fig. 9. Workflow of the research method.  
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pre-trained weights to the dataset. The training was carried out in six deep neural networks, namely, Region-based convolutional 
neural networks (Faster R-CNN), Focal Loss (Retina-Net), Adaptive Training Sample Selection (ATSS), VarifocalNet (Vfnet), 
Side-Aware Boundary Localization (SABL), and FoveaBox (Fovea). In Table 4 a brief description of these object detection architectures 
is presented. 

To accomplish statistical comparisons of neural network performance, the cross-validation technique was used. This technique 
basically consists of performing training and testing of the networks using the same dataset as a base, but rearranging different sets for 
each fold, and randomly selecting to perform new training and testing. For this experiment, five-folds were used for validation. 

The hyperparameters used for the experiment are presented in Table 5. The hyperparameters were configured so that the CNNs 
were trained for 15 epochs, using a learning rate equal to 0.01. The authors consider a value of 0.5 for the classification threshold and 
50% for the Intersection over Union (IoU). 

3.4.2. Performance Metrics 
The six network architectures were compared to verify the performance in detecting equipment condenser-type positioned on flat 

roofs, using ready-made scripts to generate performance statistics. Nine metrics (Table 6) were used to analyze the performance of the 
object detection system. For each method tested, the metrics Precision, Recall, fscore, mAP, mAP50, mAP75, MAE, RMSE, and r were 
calculated. 

For this experiment, the code detectors_json_k_dobras1 was used. This code was developed and made available by the INOVISÃO 
research group. Statistical analysis was performed using the Rstudio software [29]. 

The research team used a one-way ANOVA [30] hypothesis test performed at a 5% significance level to check for differences 
between the six CNN methods by comparing their respective performance metric values. The condition of homogeneity of the groups 
and normal distribution were checked, both of which are necessary to apply ANOVA and Tukey’s post-hoc test [32]. In addition, the 
non-parametric Kruskal-Wallis test was applied [31]. This decision was based on the fact that the cross-validation was performed five 
times and this number of results may not be representative enough for an ANOVA test. Including, the data were also analyzed using 
descriptive statistics, boxplot, loss convergence curve, and Pearson Correlation to analyze whether there is a relationship between the 
two variables (measured and predicted values). 

4. Results 

Table 7 lists the results of the nine metrics used to evaluate the performance of each of the tested methods. The values presented are 
the arithmetic means resulting from the means of the five folds. 

Comparing the respective performance metric values of the six CNN methods, the application of one-way ANOVA did not show us 
that there are statistical differences between the means of mAP, mAP50, mAP75, Precision, Recall, fscore, MAE, and RMSE. In all cases, 
p > 0.05 was obtained. Thus, the Tukey’s post-hoc test was not applied. Fig. 10 shows the results of ANOVA, means, standard de-
viation, and confidence interval for the metrics and respective methods. 

In Fig. 11, the boxplots for the distribution of the metric values were obtained during processing for each of the methods. Except for 
the Vfnet method, the other five methods showed little variability in the distribution of the measured values. Vfnet shows a very wide 
dispersion in all metrics when compared to the other methods, except for the r metric (Pearson Correlation). 

Table 4 
Description of the object detection methods.  

Symbol Used Descritption 

Faster R- 
CNN 

Region-based convolutional neural network (Faster R-CNN) consists of a two-stage deep learning object detector that uses the Region Proposal 
Network (RPN) as a region proposal algorithm, and Fast R-CNN as a detector network. Firstly, these networks identify regions of interest and use 
the region proposal algorithm to generate bounding boxes or locations of possible objects in the image. Then, these regions are transferred to a 
convolutional neural network that is used to obtain features of these objects followed by a classification layer to predict which class these objects 
belong to and, finally, a regression layer to make the coordinates of the object bounding box more precise [22]. 

Retina-Net Focal Loss (Retina-Net) uses a backbone network and two sub-networks to do specific tasks. The first network, the backbone network is responsible 
for computing a convolutional feature map over an entire input image. The first subnet performs convolutional object classification on the 
backbone’s output, and the second subnet performs convolutional bounding box regression. Two stages object detectors, Class Imbalance is 
addressed by a two-stage cascade and sampling heuristics. The proposal stage rapidly narrows down the number of candidate objects’ locations to 
a small number, filtering the background samples. In the second classification stage, sampling heuristics, such as a fixed-foreground-to- 
background ratio, are performed to maintain a manageable balance between foreground and background [23]. 

ATSS Adaptive Training Sample Selection (ATSS) is a method that automatically selects positive and negative samples according to the statical 
characteristics of the object. It bridges the gap between anchor-based and anchor-free based detectors [24]. 

VFNet VarifocalNet (VFNet) is an IoU-aware Dense Object Detector, aimed at accurately ranking a huge number of candidate detections. It consists of a 
new loss function named Varifocal Loss, for training a dense object detector to predict the IACS (IoU-Aware Classification Score) and a new 
efficient star-shaped bounding box feature representation for estimating the IACS and refining the coarse bounding boxes [23]. 

SABL Side-Aware Boundary Localization (SABL) consists of using a dedicated network branch on each side of the bounding box to localize objects[25]. 
Fovea FoveaBox (Fovea) é uma estrutura precisa, flexível e livre de âncoras para detecç ão de objetos. Esta arquitetura de rede aprende diretamente as 

características do objeto e as coordenadas da caixa delimitadora sem referência de âncora [26].  

1 Available: http://git.inovisao.ucdb.br/inovisao/detectores_json_k_dobras [29] 
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Pearson Correlation is shown in Fig. 12 for each method. The authors analyzed the r-metric (r > 0.72) which shows that the 
relationship between the measured variables and predicted values is a strong relationship and positive. Retina-Net demonstrates a 
better correlation (r = 0.87) followed by Fovea (r = 0.857), and Faster R-CNN (r = 0.83), respectively. The graphs in Fig. 12 show the 
regression lines that were constructed using all the 5-fold test images. This is the reason that explains the difference in the value of the 
RMSE, MAE, and r metrics presented in the graphs of Fig. 12, in relation to the values of the metrics calculated by fold, shown in 
Table 7. 

When applying ANOVA for the r-metric, the evidence shows that there are significant differences (p = 0.0219) between the group 
mean when compared to the means of each method. In this case, considering that p < 0.05, the post hoc Tukey test was applied for the 
multiple comparisons of means, for a 95% confidence level. When comparing the methods with each other, statistical differences were 
found between the ATSS and Faster R-CNN methods, for p = 0.006. 

When the r-metric is analyzed, the results measured in the five folds show less variability among themselves. Stands out that when 
ANOVA was applied, it was not possible to state that there are statistical differences between the groups. However, when applying the 
non-parametric Kruskal-Wallis test for the metric r, H (5, N = 30) = 11.79 and p = 0.0377 were obtained, which explains that there 

Table 5 
Description of the hyperparameters used for the experiment.  

Hyperparameters Description 

Epochs The epochs for an artificial intelligence system refer to the number of times that the algorithm will perform training, tests, and 
validations with the entire available dataset, adjusting the iteration weights based on the results of each executed epoch. 

Classifier threshold Defines the threshold that determines whether or not the detected object is the object to be detected. 
Intersection Over Union 

(IoU) 
Determines the percentage that the annotation performed by the algorithm must intersect with the manual annotation to be 
considered a detection. 

Learning Rate Determines the size of step that each learning iteration should have relative to the whole, as that step moves to the minimum of a loss 
function.  

Table 6 
Description of performance metrics used for evaluation.  

Metric Symbol 
Used 

Descritption 

Precision P It is considered the fraction of the trues positives, correct prediction from the total amount of relevant results, i.e., the sum 
of TP and FP. 
P ¼ TP/(TPþFP) 

Recall R It is defined as the fraction of real positive cases that are related correctly, i.e., the quantity of TP from the total amount of 
TP and FN. In our experiment, how the algorithm works with one-class detection problems, the FN is defined as any 
detection that doesn’t intercept the box area done manually. In this case, the FN is any detection that has IoU equal to zero. 
R¼TP/(TPþFN) 

F1score F1 It is the harmonic mean of precision and recall. 
F1 ¼ 2 x (TP x FP)/(TPþFP) 

Mean Average 
Precision 

mAP The mAP value represents the area under the Precision-Recall curve, which connects the pairs (Px; Ry) in a range from 0 to 
1. 

mAP50 AP50 and AP75 refer to the value fixed for the Intersection Over Union - IoU threshold, respectively, at 50% or 75%. In this 
case, mAP50 and mAP75 represent the mean of values obtained for each fold. mAP75 

Mean Absolute Error MAE It is the magnitude of the difference between an expected and predicted value. As this result can be positive or negative, it is 
suggested to use the MAE math function for the average of absolute error values always returns positive values. 

Root Mean Square 
Error 

RMSE It is the standard deviation of the differences between predicted values and observed values. 

Pearson Correlation r The coefficient shows the relationship between two variables. When r is equal to zero, in this case, there is no correlation 
between the variables. The closer the coefficient is to 1 or − 1, the stronger the relationship. If the correlation is negative, 
the variable is influencing the other in the opposite direction. If positive, both variables are increasing or decreasing in the 
same direction. 

*True Positive-TP; False Positive-FP; True Negative-TN; False Negative-FN. 

Table 7 
Methods used and performance metrics values.   

mAP mAP 50 mAP 75 Precision Recall Fscore MAE RMSE r 

Faster R-CNN  0.654  0.944  0.814  0.927  0.934  0.930  0.439  0.914  0.959 
Retina-Net  0.513  0.750  0.628  0.713  0.730  0.721  1.324  2.024  0.746 
ATSS  0.665  0.943  0.825  0.959  0.835  0.893  0.706  1.527  0.907 
Vfnet  0.399  0.569  0.492  0.537  0.549  0.543  1.976  2.779  0.699 
SABL  0.659  0.951  0.816  0.920  0.893  0.906  0.549  1.177  0.934 
Fovea  0.642  0.935  0.796  0.919  0.889  0.903  0.597  1.208  0.931 

Label: The best performance The second-best performance The third best performance 
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are differences between the groups. When performing multiple comparisons, evidence shows that there are statistically significant 
differences (p = 0.037) for the adopted significance level (p < 0.05) between the medians of Faster R-CNN and ATSS, thus explaining 
the boxplot in Fig. 12 for the r-metric. 

The trained methods’ learning curves are presented in Fig. 13. In general, it was noticed that the learning process occurred in all 

Fig. 10. Graphs showing the metrics values of each method and respective means, standard deviation, and confidence interval.  
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methods. Firstly, it is observed the loss decrease in the curves during the validation process, according to the epochs. This means that 
the algorithms were able to generalize the problem using the data during the training step. 

In addition, the evolution of the loss curve during training shows that the Faster R-CNN and ATSS methods showed stabilization 
from the tenth epoch. Nonetheless, the Retina-Net, Vfnet, SABL e Fovea methods showed instability in the learning step, with an 
eventual tendency for errors. 

The loss curves (Fig. 13) show the importance to adopt many epochs to train the algorithms when it is possible to check if occurred 
learning stabilization process in the network and the non-occurrence of overfitting. If the error is not decreasing, it can be deduced that 
the algorithm, in this situation, can’t generalize due to a small validation or training data set, or indicates an overfitting problem. 
However, the curve behavior can indicate that the adopted learning rate was high, which makes it difficult to learn better for some 
methods. 

As a result of the non-parametric Kruskal-Wallis test, it is not possible to state that the metrics mAP50, mAP75, mAP, MAE, and 
RMSE presented statistically significant differences between the evaluated methods. The metric r (p = 0.038) showed a statistically 
significant difference only between the Faster R-CNN and ATSS methods. However, the Kruskal-Wallis test showed statistically sig-
nificant differences between the methods, when analyzing the metrics Precision (p = 0.0009), Recall (p = 0.0193), and fscore 
(p = 0.0142) shown in Table 8 below. In bold, results are presented where p < 0.05, i.e., when comparisons between two methods 
resulted in statistically significant differences. Table 8 shows that the multiple comparisons performed by the Kruskal-Wallis test show 
significant differences for Precision, between the ATSS _ Retina-Net and ATSS _ Vfnet methods. For the Recall metric, differences were 
observed between ATSS _ Faster R-CNN. Finally, fscore showed differences between ATSS _ Faster R-CNN and Vfnet _ Faster R-CNN. 

ATSS achieved the best Precision (0.959), followed by Faster R-CNN (0.927) and SABL (0.920). Evidence showed that it is not 
possible to indicate whether there are statistical differences between these CNNs, but that Retina-Net and Vfnet had the worst per-
formances. Faster R-CNN had the best Recall (0.934), followed by SABL (0.893) and Fovea (0.889). 

Fig. 11. Boxplot for the metric values measured in each experiment.  
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In turn, it is not possible to state that there are statistical differences between these CNNs, but that ATSS (0.835) differs from Faster 
R-CNN and that Retina-Net and Vfnet had the worst performances. Faster R-CNN had the best Fscore (0.930), followed by SABL (0.906) 
and Fovea (0.903). 

Overall, analyzing the results of Table 7 and Table 8 together, it appears that all tested CNN showed good performance, with 
emphasis on Faster R-CNN followed by SABL, Fovea, and ATSS. The neural networks Retina-Net and Vfnet were those that presented 
the lowest values in the nine tested metrics. 

5. Discussion 

In general, even though convolutional neural networks perform well, the interest in this discussion is to verify why the errors 
occurred since the dataset was built for this study and had never been tested before. In fact, the problem addressed in this article is still 
a research gap, as no publications were found in a bibliographic review reporting object detection in building roofs, using neural 
networks. Therefore, it is primordial to map the errors and to find the causes, from the annotation. 

After the CNN training period, with 1372 annotations in a dataset of 330 images, the condensers that were correctly identified and 
the mistakes made both were possible to analyze. When comparing the manual and automatic annotations, Faster R-CNN was the 
network that made more correct annotations. On the other hand, the most recurrent error was the duplication of automatic annotation, 

Fig. 12. Results of Pearson Correlation: relationship between the measured and predicted values.  
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mainly by Retina-Net and SABL networks. Another important error identified was the loss of image annotations made on the 
ROBOFLOW platform [27], which were not carried over to the neural networks trained in MMDetection. 

The detection of similar objects was also one of the most common types of errors made by all networks (Fig. 14). In the case of the 
flat roof under study, for the neural networks tested, the similar objects are the antennas with circular shapes, the kitchen exhaust 
chimneys, the rectangular substations of the communication antennas in white color, and parts of deactivated appliances, among 
others more sporadic situations such as construction waste deposited on the slab, photovoltaic plates, tiles, and ventilation pipes. 
Incorrectly detected objects have rectangular or circular shapes, with characteristics similar to condensers. 

Many objects were identified even though they were not annotated. For example, the automatic annotations made on the con-
densers on the facades of the buildings (Fig. 15) and the white cars (ambulance) on the sidewalk on the ground floor. This kind of 
mistake was mainly made by Fovea. 

Fig. 16 shows the pooling of water that occurs near the drains, caused by the equipment installed there. The image captured by the 
UAS has good resolution, which illustrates how these types of equipment positioned in inappropriate locations can accelerate the 
degradation process of the waterproofing membrane, due to the presence of moisture and mold formation, impacting the performance 
of construction systems. 

The maintenance performed on the waterproofing blanket caused a color difference and, therefore, was detected. These water-
proofing repairs stand out for their rectangular shape and lighter coloring in relation to the darker color of the background. Fig. 17 

Fig. 13. Loss Curves: validation loss evolution during training.  

Table 8 
Results of non-parametric Kruskal-Wallis test: p < 0.05.  

Multiple Comparisons Methods Faster R-CNN Retina-Net ATSS Vfnet SABL Fovea 

Independent variable: Precision 
Kruskal-Wallis test: H (5, N = 30) = 20.862; 
p = 0.0009 

Faster R-CNN    0.338  1.000  0.354  1.000  1.000 
Retina-Net  0.338    0.002  1.000  1.000  1.000 
ATSS  1.000  0.002    0.002  0.558  0.354 
Vfnet  0.354  1.000  0.002    1.000  1.000 
SABL  1.000  1.000  0.558  1.000    1.000 
Fovea  1.000  1.000  0.354  1.000  1.000   

Independent variable: Recall 
Kruskal-Wallis test: H (5, N = 30) = 13.470; 
p = 0.0193 

Faster R-CNN    1.000  0.005  0.488  0.889  0.467 
Retina-Net  1.000    0.510  1.000  1.000  1.000 
ATSS  0.005  0.510    1.000  1.000  1.000 
Vfnet  0.488  1.000  1.000    1.000  1.000 
SABL  0.889  1.000  1.000  1.000    1.000 
Fovea  0.467  1.000  1.000  1.000  1.000   

Independent variable: fscore 
Kruskal-Wallis test: H (5, N = 30) = 14.232; 
p = 0.0142 

Faster R-CNN    0.060  0.030  0.020  0.636  0.338 
Retina-Net  0.060    1.000  1.000  1.000  1.000 
ATSS  0.030  1.000    1.000  1.000  1.000 
Vfnet  0.020  1.000  1.000    1.000  1.000 
SABL  0.636  1.000  1.000  1.000    1.000 
Fovea  0.338  1.000  1.000  1.000  1.000    
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Fig. 14. Types of errors made by neural networks when detecting similar objects.  

Fig. 15. Detection errors of condensers on the facade by the Fovea network.  
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shows the detection of waterproofing repairs identified as an error in Faster R-CNN, Retina-Net, Vfnet, SABL, and Fovea networks. 
Condensers with two or more exhaust fans or even condensers very close to each other as a result of the duplication of the object by 
automatic annotation, caused the incorrect identification of the bounding box that was displaced from the manually annotated 
parameter, influencing a low IoU value. 

The neural networks had difficulties in detecting the condensers in the images in which the capture angle in relation to the object 
was very close to the right angle (90◦) and also in images with a pigmented background. These discolored areas may have interfered 
with the image homogeneity, causing image noise that can influence the correct convolution of pixels to identify the format and 
pattern of the condensers. The images obtained in the higher altitude flight presented a low resolution, because of the size of the 
condensers. Consequently, the algorithms had difficulties identifying them. The images that neural networks failed to identify 
correctly can affect the Recall metric. 

Retina-Net was the network that had the worst detection performance, presenting the highest number of errors (Fig. 18). The errors 
found in the Retina-Net network were concentrated in the detection of condensers that had already been noted, in the detection of the 
condensers present in the facades, and in the detection of substations with similar shapes and colors of condensers. 

When the performance is analyzed based on theory, it is possible to discuss the fact that Retina-Net is a one-stage detection network 
but seeks to achieve two-stage performance while keeping computational complexity down. In the experiment performed, this 
assumption was not confirmed, since its performance did not surpass other network architectures, including Faster R-CNN, which is a 
two-stage network for detection. 

On the other hand, ATSS is a method that bridges the gap between anchor-based and anchor-free detectors. When analyzing the 
good performance of ATSS for a value of Precision = 0.959 (highest among all tested networks), the advantage of a specialized 
detection method capable of automatically selecting positive and negative samples, according to the static characteristics of the object, 

Fig. 16. Pooling of water in the region of the condensers.  

Fig. 17. Repair carried out on waterproofing blanket.  
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is discussed. 

6. Conclusion 

The six methods tested in the experiment were evaluated by nine performance metrics and the results show that the dataset consists 
of a set of images capable of being measured by deep learning, thus contributing to the advancement of automated processes in real- 
time to decision-making for maintenance planning. 

Due to the pioneering character of the study in flat roofs, the authors highlight the importance of the experiment that tested six 
convolutional neural networks, evaluated in nine metrics, considering both the Analysis of Variance (ANOVA one way) and the non- 
parametric Kruskal-Wallis test. The mistakes made and mapped, as well as the identification of the causes, are impacting factors in the 
decision making regarding the selection of CNN and the acquisition of images to compose the dataset. Among the evaluated methods, 
the best results were provided by Faster R-CNN, ATSS, and SABL. 

Equipment such as condensers can be detected using computer vision. The quality of the dataset positively influenced the good 
performance of the neural networks, although the types of errors made in the detection alert to the diversity of causes related to the 
inherent characteristics of flat roofs. Evaluating the errors made by the networks, when considering geometric shapes and colors 
similar to the condensers, proximity between objects, and location of objects on facades and sidewalks that are different plans from 
those predicted in the annotations, it is verified the need to improve algorithms and architectures of the network with the capacity to 
differentiate similar objects in complex environments, with many variables. 

It is concluded that the problem addressed in the experiment cannot be considered trivial, nor can studies on flat roofs be treated 
from the perspective of methods and metrics established in other areas. In the continuity and improvement of automated processes, 
one must consider the non-homogeneity of materiality in the construction of buildings, their specificities, and the variability found in 
their systems and components. Mainly and finally, the data and results of this experiment can be used as a standard for evaluating roof 
equipment detection algorithms. 

7. Future work 

During the experiments on flat roofs, due to the flight angle of the drone, part of the building’s facades was also captured in the 
images. The condensers located on these facades had not been manually annotated, because the objective of the research was to detect 
the equipment on the flat roofs (horizontal plane). However, some neural networks automatically detected the condensers present on 
the facades (vertical plane). For future work, it is interesting to consider another type of network for pre-processing (or post- 
processing) with segmentation techniques to automatically exclude regions that do not correspond to the roofs, disregarding the 
façade regions. Thus, future research on methods of semantic segmentation, detection, and classification of existing equipment in flat 
roofs becomes potentially innovative for the management of maintenance in the area of Architecture, Engineering, Construction, and 
Operation. 
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Fig. 18. Error in detecting condensers on the Retina-Net network.  
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