
University of Brasília
Institute of Exact Sciences

Department of Computer Science

P2MLF: An End-to-End Privacy-Preserving
Framework for Machine Learning Applications

Ricardo José Menezes Maia

Document submitted in partial fullfilment of the requirements to Doctoral Degree in
Informatics

Advisor
Prof. Dr. Ricardo Pezzuol Jacobi

Co-advisor
Prof. Dr. Anderson Clayton Alves Nascimento

Brasília
2024

University of Brasília
Institute of Exact Sciences

Department of Computer Science

P2MLF: An End-to-End Privacy-Preserving
Framework for Machine Learning Applications

Ricardo José Menezes Maia

Document submitted in partial fullfilment of the requirements to Doctoral Degree in
Informatics

Prof. Dr. Ricardo Pezzuol Jacobi (Advisor)
CIC/UnB

Prof. Dr. Bernardo Machado David Prof. Dr. João José Costa Gondim
IT-University of Copenhagen Electrical Engineering Department UnB

Prof. Dr. Edward David Moreno Ordonez
Federal University of Sergipe

Prof. Dr. Rodrigo Bonifácio Almeida
Coordinator of the Graduate Program in Informática

Brasília, November 28th 2024

7 Getting wisdom is the wisest thing you can do!
And whatever else you do, develop good judgment.

8 If you prize wisdom, she will make you great.
Embrace her, and she will honor you.

Proverbs 4:7-8, The Holy Bible.

Dedications

I dedicate this work, first and foremost, to God, who has guided my actions throughout
my life. My mother and father have always been by my side. To my brothers and sister,
for their unwavering support, and to my beloved wife, whose love and encouragement
sustained me at every moment. I also dedicate this work to the friends who, in one way
or another, accompanied me on this journey, offering their support and understanding of
the time, energy, and dedication it demanded.

iii

Acknowledgements

First, I am thankful to God for everything. I include my mother, father, brothers, and
sister, whose constant love and support have given me the energy to pursue the purposes
I believe in.

I owe my wife thanks for her unwavering support and belief in me throughout this
journey of seeking knowledge. She has been by my side, sharing the challenges and
triumphs of this research. Her patience and willingness to listen to my practice sessions
countless times have made her as familiar with this work as I am.

I am grateful to the Danish Data Science Academy program for the opportunity to
visit the IT University of Copenhagen and INESC TEC, which allowed me to serve as a
visiting researcher at the University of Porto.

I am grateful to the PPML Huskies team at the University of Washington Tacoma.
The lessons I have learned from this group have been invaluable. It was an honor to win
second place in the competition organized by the USWhite House and first place in iDASH
2021, but above all, to experience the true spirit of inclusive and collaborative teamwork.
These achievements, which I never imagined possible, were made even more special by
the warm welcome and camaraderie of the friends I made in Tacoma and Seattle.

I am grateful to my co-advisor and friend for introducing me to the fascinating world
of modern cryptography, showing me how to combine it with artificial intelligence, and
challenging me to expand my horizons. I am eternally grateful to my advisor for opening
the door that allowed me to pursue a PhD at the University of Brasília and for his
invaluable guidance throughout my research.

There are countless others to whom I owe immense gratitude—friends, colleagues, and
mainly mentors—who have inspired me to persevere in one way or another. To the friends
I met on this journey at the University of Brasília, the University of Washington Tacoma,
the University of IT Copenhagen, and the University of Porto, meeting you in person and
sharing this journey was an unforgettable experience.

Finally, I am grateful to the Brazilian public university system, which provided me
with my undergraduate, master’s, and now doctoral degrees, making all of this possible.

iv

Resumo

P2MLF: Um Arcabouço para Preservação de Privacidade de Ponta a Ponta
para Aplicações de Aprendizado de Máquina

O direito à privacidade de dados é fundamental para indivíduos e empresas. Pode-se
mencionar os benefícios dos aplicativos Machine Learning (ML) para pessoas e empresas.
Por isso, é essencial encontrar soluções que garantam a privacidade de dados em aplicações
que utilizam ML, especialmente em cenários onde os aplicativos ML têm requisitos de
privacidade não funcionais por razões legais.

No requisito de privacidade abordado neste trabalho, apenas o proprietário terá acesso
aos seus dados. Problemas de privacidade podem surgir nos estágios de entrada e saída da
aplicação de ML e, para ilustrar esse problema, considere Alice como o proprietário das
informações e Bob como o proprietário do modelo ML.Garantir a privacidade de entrada
significa impedir a exposição dos dados, preservando tanto a privacidade das informações
de Alice quanto a propriedade intelectual do modelo de Bob. Garantir a privacidade
de saída significa que Bob não precisa expor seu modelo em texto simples para Alice, e
Alice não precisa revelar seus dados em texto simples para o modelo de Bob. Mesmo
com privacidade de entrada, Alice poderia potencialmente explorar informações usadas
por Bob no treinamento do modelo, e a privacidade de saída evita vazamento de dados
durante o treinamento. Garantir a privacidade dos dados de entrada e saída durante a
inferência e o treinamento é essencial para a proteção de privacidade de ponta a ponta
em aplicativos ML.

Visando solucionar o problema descrito, este trabalho tem como objetivo principal
propor uma abordagem para garantir privacidade de ponta a ponta, abrangendo tanto as
entradas quanto as saídas, em aplicativos de ML, denominada Privacy-Preserving Machine
Learning Framework (P2MLF).

Entre os objetivos secundários desta tese, destaca-se a demonstração da aplicabilidade
de P2MLF, utilizando uma aplicação baseada em Secure Multi-Party Computation (MPC)
para inferência segura de Malicious Software (Malware) usando modelos MultiLayer Perceptron

v

(MLP), One-Dimensional Convolutional Neural Network (CNN1D) e Long Short-Term
Memory (LSTM) treinados com Differentially-Private Stochastic Gradient Descent (DP-SGD).
Outra aplicação utilizará os métodos de P2MLF para treinamento colaborativo de modelos
Collaborative Intrusion Detection Systems (CIDS).

Uma das contribuições do método de inferência do P2MLF é o uso de quantização
float16 pós-treinamento de modelos de aprendizado profundo comMPC para obter detecção
eficiente e segura de Domain Generation Algorithms (DGA). Este trabalho demonstra que
a quantização aumenta significativamente a velocidade, reduzindo o tempo de execução da
inferência em 23% a 42%, sem prejuízo à precisão, utilizando um protocolo de computação
segura de três partes. Soluções anteriores não garantem privacidade de ponta a ponta, não
fornecem garantias de Differential Privacy (DP) para resultados do modelo e assumem que
os Embedding Layer (EL)s do modelo são conhecidos publicamente. O melhor protocolo
em termos de precisão é executado em aproximadamente 0, 22 segundos.

Por fim, a segunda contribuição destaca a avaliação dos três métodos de treinamento
colaborativo propostos pelo P2MLF, com foco em escalabilidade e privacidade, aplicados
ao treinamento do CIDS. Entre os métodos avaliados, o que demonstrou o melhor equilíbrio
entre privacidade e escalabilidade foi aquele que combina um protocolo MPC para agregação
commodelos locais diferencialmente privados, treinados por meio de aprendizagem federada.
Esse método é aproximadamente 1,5 vezes mais rápido que a abordagem de maior privacidade,
que utiliza exclusivamente protocolos MPC com garantias de DP.

Palavras-chave: Computação Multipartidária Segura, Privacidade Diferencial, Aprendizagem
Federada, Detecção de Algoritmos de Geração de Domínios, Sistema de Detecção de
Intrusão Colaborativo, Preservação de Privacidade em Aprendizagem de Máquina

vi

Abstract

The right to data privacy is fundamental for individuals and companies. One can mention
the benefits of Machine Learning (ML) applications for people and businesses. Therefore,
finding solutions to balance the dilemma of ensuring data privacy in applications that use
ML is vital, especially in scenarios where ML applications have non-functional privacy
requirements for legal reasons.

In the privacy requirement addressed in this work, only the data owner will know their
data. Privacy issues can arise in the input and output stages of the application of ML,
and to illustrate this problem, consider Alice as the owner of the information and Bob
as the owner of the model ML. Ensuring input privacy means that data should not be
exposed to avoid compromising the privacy of Alice ’s data or the intellectual property of
Bob ’s model. Ensuring output privacy means that Bob does not need to expose his model
in plain text to Alice, and Alice does not need to reveal her data in plain text to Bob ’s
model. Even with input privacy, Alice could potentially exploit information used by Bob
in model training, and output privacy prevents data leakage during training. Ensuring
the privacy of the input and output data during inference and training is essential for
end-to-end privacy protection in ML applications.

Concerning solving the problem proposed, this work’s main objective is to propose
an approach to ensure end-to-end privacy, encompassing inputs and outputs, in ML
applications, referred to as Privacy-Preserving Machine Learning Framework (P2MLF).

This thesis will demonstrate as secondary objectives the framework’s applicability
through an application that uses Secure Multi-Party Computation (MPC) for private
inference of Malicious Software (Malware), using MultiLayer Perceptron (MLP), One-Dimensional
Convolutional Neural Network (CNN1D), and Long Short-Term Memory (LSTM) models
trained with Differentially-Private Stochastic Gradient Descent (DP-SGD). Another application
will apply the methods described in this work for collaborative training Collaborative
Intrusion Detection Systems (CIDS) models.

In addition, to mention one of the contributions of P2MLF inference method, this
work uses post-training float16 quantization of deep learning models with MPC to achieve
efficient and secure detection of Domain Generation Algorithms (DGA). This work demonstrates

vii

that quantization significantly increases speed, resulting in a 23% to 42% reduction in
inference execution time without reducing accuracy, using a three-party secure computation
protocol that tolerates one corruption. Previous solutions are not end-to-end private, do
not provide Differential Privacy (DP) guarantees for model results, and assume that
the model’s Embedding Layer (EL)s are publicly known. The best protocol in terms of
accuracy runs in approximately 0.22 seconds.

Finally, as a second contribution, it emphasizes evaluating the three collaborative
training methods proposed by P2MLF, focusing on scalability and privacy, applied to the
training of CIDS. Among the evaluated methods, the one that presented the best balance
between privacy and scalability - being 1.50 times faster than the approach with the
highest privacy, based exclusively on MPC protocols with DP guarantees — is the method
that combines an MPC protocol for aggregation of local models with DP guarantees and
trained through Federated Learning (FL).

Keywords: Secure Multi-party Computation, Differential Privacy, Federated Learning,
Domain Generation Algorithms Detection, Collaborative Intrusion Detection Systems,
Privacy-Preserving Machine Learning

viii

Resumo Extendido

P2MLF: Um Arcabouço para Preservação de Privacidade de Ponta a Ponta
para Aplicações de Aprendizado de Máquina

Para atender às normas da Universidade de Brasília, este capítulo apresenta um resumo
de cada capítulo em Português.

Capítulo 1 - Introdução
Esta tese se concentra em técnicas para garantir a privacidade dos dados durante as fases de

treinamento e inferência de modelos de Machine Learning (ML). Este trabalho utiliza estudos de
caso práticos para demonstrar a eficácia dos métodos propostos em Privacy-Preserving Machine
Learning Framework (P2MLF) para preservar a privacidade das informações enquanto viabilizam
operações de ML.

ML usa dados para generalizar e aprender padrões sem definir explicitamente esses comportamentos
por meio de programação. Os modelos ML dependem de grandes quantidades de dados para
aprender um amplo espectro de padrões [1].

Esses dados podem ser obtidos de diversas origens, como dispositivos Internet of Things
(IoT) [2], dados de rede de computadores [3, 4], usuários, entidades governamentais, dados
hospitalares [5], dados cerebrais [6, 7], destacando o amplo escopo do campo.

Embora muitas aplicações ML benéficas estejam surgindo, há uma crescente preocupação
social sobre a privacidade de dados sensíveis utilizados durante o treinamento e a inferência de
modelos ML [8].

Um exemplo de uma aplicação ML com requisitos de privacidade é a detecção de crimes
financeiros usando dados de diferentes instituições financeiras em vários países [9]. Outro
exemplo envolve o treinamento de modelos ML com dados de diferentes hospitais para detectar
doenças cardíacas [5], câncer ou COVID-19 usando raios X de tórax e dados clínicos. Outros
exemplos incluem sistemas de recomendação que usam dados confidenciais do usuário, como
orientação sexual, religiosa ou política. Na segurança cibernética, surgem desafios quando
uma empresa deseja usar um sistema de detecção de intrusão [3], mas deve proteger dados
confidenciais, como propriedade industrial ou segredos comerciais, devido às leis de privacidade.

ix

Dados sensíveis incluem informações como origem racial ou étnica, crenças religiosas, opiniões
políticas, filiações sindicais e dados relacionados à saúde ou vida sexual [10]. Também englobam
dados genéticos, renda, empréstimos, informações fiscais e biométricas vinculadas a uma pessoa
física [10]. Para empresas, dados sensíveis podem incluir informações do cliente ou detalhes
sobre faturamento, lucros e salários.

Em alguns cenários, é possível remover dados sensíveis. No entanto, essa remoção pode ser
impraticável quando essas informações são essenciais para melhorar o desempenho do modelo
durante o treinamento ou necessárias para a inferência. Portanto, é fundamental desenvolver
métodos que garantam a privacidade, especialmente quando os algoritmos de ML utilizam
dados sensíveis [11–13]. A área de pesquisa que concilia ML com privacidade é conhecida
como Privacy-Preserving Machine Learning (PPML). Essa área é crucial porque dados sensíveis
geralmente são úteis em uma infinidade de aplicações e podem ser essenciais na criação de
modelos ML benéficos em vários domínios, como medicina, finanças ou até mesmo na segurança
cibernética.

A motivação para abordar esse problema decorre de discussões sociais sobre privacidade [14],
uma vez que o direito à privacidade dos dados é uma das garantias fundamentais do indivíduo.
Em uma sociedade orientada à informação, muitos dados confidenciais são coletados sobre
indivíduos e empresas. Portanto, o problema de garantir privacidade de dados e, ao mesmo
tempo, possibilitar o seu uso em modelos de ML pode viabilizar o desenvolvimento de inúmeras
aplicações que beneficiam os indivíduos. Por exemplo, informações pessoais em redes sociais
podem ser usadas para fazer recomendações personalizadas de notícias, livros, roupas, destinos
de viagem, hotéis, restaurantes, filmes e música [11–13].

Esta tese propõe o arcabouço P2MLF, que integra protocolos de Secure Multi-Party Computation
(MPC) para inferência e modelos treinados com Differential Privacy (DP), sejam eles colaborativos
ou não colaborativos. Em síntese, o foco do arcabouço propoto é garantir a privacidade de dados
em algoritmos de ML [15], com ênfase especial no próprio P2MLF. O trabalho apresenta estudos
de caso aplicados à inferência de Malicious Software (Malware) e ao treinamento colaborativo de
modelos ML para detecção de intrusão. O arcabouço proposto garante a privacidade de dados
durante as fases de treinamento e inferência de modelos focados em segurança cibernética. Para
inferência segura, este trabalho propõe usar protocolos MPC e modelos treinados com DP. Para
o treinamento, este trabalho propõe métodos colaborativos e não colaborativos com diferentes
níveis de privacidade, segurança e desempenho. O primeiro método é colaborativo e combina
Federated Learning (FL) com DP; o segundo é colaborativo e combina MPC com DP; o terceiro
é colaborativo e utiliza FL com DP e agregação com MPC para garantir a privacidade dos
dados; e o quarto método é não colaborativo e utiliza apenas DP. A proposta de diferentes
métodos de treinamento busca discutir o uso ideal de cada abordagem, considerando os níveis
de privacidade, desempenho e a presença ou ausência de colaboração.

Problema

x

Problemas de privacidade surgem nos estágios de entrada e saída em aplicações que utilizam
ML. Para ilustrar esses problemas, considere que Alice é a proprietária das informações e Bob
é o proprietário do modelo. No estágio de entrada, os dados usados para detecção podem ser
expostos, comprometendo a privacidade dos dados de Alice ou a propriedade intelectual do
modelo de Bob. Garantir a privacidade da entrada significa que Bob não expõe seu modelo
para Alice, assim como Alice não expõe seus dados para o modelo de Bob. Da mesma forma,
no estágio de saída, os resultados da classificação podem revelar informações sobre o modelo,
permitindo sua exploração para realizar engenharia reversa dos dados de treinamento. Garantir
a privacidade dos dados de entrada e saída durante a inferência e o treinamento é essencial para
a proteção de privacidade de ponta a ponta.

Portanto, o principal desafio é propor um arcabouço computacional que garanta a privacidade
de entrada e saída em aplicações de aprendizagem de máquina.

Motivação para o Problema

O direito à privacidade de dados pessoais é um princípio fundamental garantido por legislações
específicas [10,16], essencial para a proteção dos indivíduos. Ao mesmo tempo, os benefícios das
aplicações que utilizam ML estão se tornando amplamente difundidos na sociedade, de forma que
buscar soluções para resolver o problema de combinar ML e privacidade é tarefa extremamente
relevante.

Para atingir esse propósito, é necessário superar o dilema de utilizar dados sensíveis sem
que cada parte tenha acesso às informações confidenciais das demais partes envolvidas nas fases
de treinamento e inferência dos modelos ML. Embora os dados sensíveis possam, teoricamente,
ser armazenados com segurança e nunca usados, essa abordagem é impraticável, especialmente
quando os dados podem melhorar a precisão dos algoritmos de aprendizado de máquina ou são
essenciais em determinadas aplicações.

O desafio está em encontrar maneiras de controlar o vazamento de dados sensíveis enquanto
eles são armazenados, comunicados ou processados, mesmo quando o proprietário dos dados não
confia nas outras partes envolvidas. Esse problema é particularmente relevante, pois diversos
serviços valiosos de ML podem ser desenvolvidos usando dados sensíveis de diferentes fontes.
Por exemplo, dados confidenciais de vários indivíduos podem ser combinados para detectar
pandemias ou doenças. Outro exemplo é a detecção de crimes relacionados à pornografia infantil,
garantindo simultaneamente a proteção da privacidade dos dados dos suspeitos [17].

O problema torna-se desafiador devido à sobrecarga computacional introduzida pela adoção
de protocolos criptográficos como MPC o que leva ao aumento do tempo de execução, de memória
e de consumo de energia. Além disso, técnicas como DP podem comprometer as métricas de
ML, especialmente à medida que o nível de privacidade aumenta.

Para ilustrar a importância de garantir a privacidade na entrada e na saída, consideram-se
as fases de inferência e treinamento. Na fase de inferência em ML, a privacidade de entrada é
essencial para proteger tanto os dados de Alice quanto o modelo de Bob. Durante o treinamento,

xi

a privacidade de entrada viabiliza a criação de ummodelo global de ML que preserva a privacidade
dos dados de diferentes partes, como Alice, Bob, Clara e Dan. Já a privacidade de saída impede
que Alice, durante a inferência, obtenha informações sobre os dados de treinamento utilizados
no modelo de Bob.

Objetivos

Esta tese apresenta o arcabouço P2MLF, projetado para garantir a privacidade tanto na
entrada quanto na saída de modelos de aprendizado de máquina, otimizando simultaneamente
a eficiência no uso das tecnologias MPC, FL e DP. O objetivo principal é reduzir o tempo de
execução e as rodadas de comunicação em rede, mantendo a acurácia dos modelos treinados em
níveis comparáveis aos daqueles desenvolvidos sem mecanismos de privacidade.

Além do objetivo principal, este trabalho busca atingir os seguintes objetivos secundários:

• Aplicar o arcabouço P2MLF à inferência com privacidade emMalware, utilizando protocolos
MPC para modelos MultiLayer Perceptron (MLP), One-Dimensional Convolutional Neural
Network (CNN1D) e Long Short-Term Memory (LSTM). Este trabalho busca identificar
o modelo ML que oferece o melhor equilíbrio entre privacidade, menor tempo de execução
e menores taxas de erro dentre os três protocolos MPC implementados.

• Demonstrar a aplicação do P2MLF no treinamento colaborativo, utilizando como estudo
de caso um sistema de detecção de intrusão treinado de forma colaborativa.

Resultados e Contribuições Científicas

Portanto, este trabalho propõe o arcabouço P2MLF, aplicado à detecção automatizada e
terceirizada de Domain Generation Algorithms (DGA), garantindo a privacidade tanto dos dados
dos usuários da rede empresarial quanto dos provedores de serviços de detecção de DGA. Nesse
arcabouço, o tráfego de Domain Name System (DNS) não é exposto em texto claro aos provedores
de serviços, e o modelo não é compartilhado com os administradores da rede, assegurando que
nenhuma informação sensível seja revelada a qualquer outra parte. Além disso, o trabalho
incorpora técnicas para evitar que invasores obtenham informações adicionais sobre os dados
de treinamento ou reconstruam o modelo a partir dos resultados de classificação enviados aos
administradores da rede.

O trabalho mais relacionado à detecção com preservação de privacidade de DGAs é apresentado
em [18]. Esse trabalho fornece privacidade apenas na entrada, utilizando MPC, mas deixa a fase
de inferência vulnerável a ataques que exploram os dados de treinamento (consulte o capítulo
3 para mais detalhes). Em contraste, esta tese propõe o primeiro arcabouço de preservação de
privacidade de ponta a ponta para classificação de DGAs, garantindo tanto a privacidade de
entrada quanto de saída. As contribuições podem ser resumidas a seguir:

xii

• Este trabalho propõe o arcabouço P2MLF para oferecer classificação segura como um serviço
para domínios DGA/não-DGA, garantindo privacidade de entrada (MPC) e privacidade de
saída (DP).

• O arcabouço proposto, P2MLF, é o primeiro a considerar o treinamento diferencialmente
privado de modelos para a classificação de DGA.

• O P2MLF suporta classificadores baseados em MLP, CNN1D e LSTM. O protocolo MPC
desenvolvido para LSTM é inovador, eficiente e representa a primeira implementação desse
tipo no arcabouço computacional MPC chamado MP-SPDZ [19].

• Este trabalho avalia o P2MLF utilizando conjuntos de dados reais — DGArchive e Alexa
— em tarefas de classificação de nomes de domínio binários e multiclasse. No problema
de classificação binária, a tarefa é distinguir se um domínio é benigno ou malicioso. Já no
problema de classificação multiclasse, a tarefa inclui identificar a família DGA correspondente
ao domínio malicioso.

• Este trabalho analisa empiricamente as compensações entre privacidade e utilidade do P2MLF
ao utilizar os modelos MLP, CNN1D e LSTM. Os resultados mostram que a privacidade de
saída, garantida pela introdução de ruído para atender às exigências de DP, degrada a precisão
apenas de forma mínima nos experimentos. Por outro lado, o uso de protocolos MPC para
garantir a privacidade de entrada não compromete a utilidade do modelo de classificação. O
modelo mais rápido em termos de tempo de execução é o MLP, com um tempo de inferência
de 0, 07 segundos. Enquanto que o modelo com a melhor precisão é o CNN1D, que alcança
uma precisão de 93% com um epsilon igual a 5.

• Este trabalho demonstra a eficiência do P2MLF em termos de tempo de execução, considerando
cenários com 2 ou 3 partes de computação.

• Este trabalho observa que a quantização proporciona melhorias significativas no desempenho
dos protocolos MPC, reduzindo as rodadas de comunicação e o tempo de inferência. Os
experimentos indicam uma redução de 23% a 42% no tempo de execução da inferência, sem
comprometer a precisão, na configuração com 3 partes (usando replicated secret sharing).
Os resultados demonstram que é possível alcançar detecção segura quase em tempo real de
domínios DGA.

• Uma das principais contribuições do treinamento de Collaborative Intrusion Detection Systems
(CIDS) utilizando o P2MLF é a avaliação de três métodos de treinamento colaborativo
propostos, com foco no equilíbrio entre escalabilidade e privacidade. Dentre os métodos
analisados, o que demonstrou o melhor equilíbrio foi aquele que combina um protocolo MPC
para agregação de dados com modelos locais diferencialmente privados, treinados por meio
de aprendizagem federada. Esse método se mostrou aproximadamente 1, 5 vezes mais rápido
do que a abordagem mais focada em privacidade, que utiliza exclusivamente protocolos MPC
com garantias de DP.

xiii

Contents

1 Introduction 1
1.1 Problem . 3
1.2 Motivation for the problem . 3
1.3 Objectives . 4
1.4 Results and Scientific Contributions . 4
1.5 Publications and Competitions . 5
1.6 Outline of the Thesis . 7

2 Background 8
2.1 Privacy-Enhancing Technologies . 8

2.1.1 Secure Multi-Party Computation 8
2.1.1.1 History of MPC . 9
2.1.1.2 Applications of MPC . 10
2.1.1.3 Basic primitives . 11
2.1.1.4 Secret Sharing . 11
2.1.1.5 Protocol for addition . 12
2.1.1.6 Protocol for addition by a constant 12
2.1.1.7 Protocol for multiplication by a scalar 12
2.1.1.8 Protocol for Multiplication 12
2.1.1.9 Adversarial Models . 13
2.1.1.10 Real-World and Ideal-World Paradigms 13
2.1.1.11 Semi-honest or curious . 14
2.1.1.12 Malicious . 15
2.1.1.13 The need for a trusted third party 15
2.1.1.14 Outsourced Computation 16

2.1.2 Universal Composability . 16
2.1.3 Differential Privacy . 16

2.1.3.1 Differentially-Private Stochastic Gradient Descent 17
2.1.4 Federated Learning . 18

xiv

2.2 Machine Learning and Deep Learning . 18
2.2.1 Logistic Regression . 19
2.2.2 Multilayer Perceptron . 19
2.2.3 Long Short-Term Memory Networks 20
2.2.4 Convolutional Neural Network . 21
2.2.5 Preprocessing . 22

2.2.5.1 Embedding layer . 22
2.2.6 Post-Processing . 23

2.2.6.1 Quantization . 23
2.3 Applications . 23

2.3.1 Domain Generation Algorithms . 23
2.3.2 Intrusion Detection System . 25

3 Related Works 27
3.1 DGA detection using deep learning . 27
3.2 Secure Multi-Party Computation for DGA Detection 29
3.3 Secure Multi-Party Computation for Natural Language Processing 30
3.4 IDS with Privacy-Preserving Machine Learning 31
3.5 Attacks and Defenses on Machine Learning 32
3.6 Frameworks PPML . 33

4 P2MLF 35
4.1 Introduction . 35
4.2 Threat Model . 38
4.3 Privacy Requirements . 38
4.4 Basic Building Blocks . 38
4.5 P2MLF Preprocessing . 39

4.5.1 Embeddings . 39
4.6 P2MLF Models . 40

4.6.1 MLP . 41
4.6.2 CNN1D . 41
4.6.3 LSTM . 42
4.6.4 LR . 42

4.7 P2MLF Inference . 43
4.8 P2MLF Training . 43

4.8.1 Basic Building Blocks . 44
4.8.2 Collaborative Training . 44

4.8.2.1 DP with FL . 45

xv

4.8.2.2 DP with FL(Aggregation on MPC) 46
4.8.2.3 DP with MPC . 48

4.8.3 Non-Collaborative Training . 50
4.8.3.1 DP (DP-SGD) . 50

4.9 Security and Privacy . 51
4.9.1 Input privacy . 52
4.9.2 Output privacy . 52

5 P2MLF Training Applied in CIDS 53
5.1 Introduction . 53
5.2 Problem . 54
5.3 Motivation to the Problem . 56
5.4 Contributions . 57
5.5 P2MLF Applied in CIDS . 58
5.6 CIDS using P2MLF Collaborative Training 58

5.6.1 P2MLF Collaborative Training DP with FL 58
5.6.2 DP with FL (Aggregation on MPC) 58
5.6.3 P2MLF training MPC with DP . 59

5.7 P2MLF Inference of CIDS . 59
5.8 Dataset . 60
5.9 Utility-Privacy Trade-Off . 60
5.10 Security and Privacy . 61
5.11 Runtimes . 61
5.12 Final considerations . 62

6 P2MLF Inference Applied in DGA 64
6.1 Introduction . 64
6.2 Problem . 65
6.3 Contributions . 66
6.4 P2MLF Applied in DGA Detection . 66
6.5 DGA Classifiers using P2MLF Non-Collaborative Training 68
6.6 P2MLF inference of DGA domains . 69
6.7 Dataset . 69
6.8 Model Architectures and Parameters . 70
6.9 Utility-Privacy Trade-Off . 71
6.10 Runtimes . 72
6.11 Final considerations . 73

xvi

7 Conclusions and Future Work 75

References 78

xvii

List of Figures

1.1 Example of applications that may require privacy requirements 2

2.1 Illustration of DGA usage: The botmaster and malware on an infected
client generate an identical list of domain names. The botmaster registers
one of these generated domains. The malware then attempts to resolve
each domain in the list via DNS queries until it finds the registered domain,
thus establishing a successful connection between the infected client and
the CCS server. 25

4.1 P2MLF pipeline . 36
4.2 P2MLF Framework Overview . 37
4.3 P2MLF Inference . 43
4.4 P2MLF Training . 44
4.5 P2MLF Collaborative Training using DP with FL 45
4.6 P2MLF Collaborative Training using DP with FL (Aggregation with MPC) 48
4.7 P2MLF Collaborative Training using DP with MPC 49
4.8 P2MLF Non-Collaborative Training with DP 51

5.1 Illustration of benefits and challenges for training a CIDS with data from
different parties . 55

5.2 Illustration of benefits and challenges of secure inference 55

6.1 The flowchart uses an end-to-end privacy approach to describe the privacy-preserving
service for DGA inference. The service provider (Bob) trains the DNS
domain name classifier with DP-SGD, ensuring DP (output privacy). Alice
submits new domain names, and Bob’s model classifies these domains using
MPC. MPC servers execute protocols over encrypted data, maintaining
input privacy. 67

xviii

List of Tables

5.1 P2MLF Runtimes . 62
5.2 Metrics for Different Noise Levels . 62
5.3 P2MLF MPC Protocols . 62

6.1 Results related to the accuracy of DGA inference were obtained for different
noise levels, both with and without the application of quantization [3]. . . 72

6.2 Inference using MPC protocol [3]. 73
6.3 inference using MPC protocol with quantization applied after training with

DP [3]. 73

xix

List of Abbreviations

CCS Command and Control Server.

CIDS Collaborative Intrusion Detection Systems.

CNN Convolutional Neural Network.

CNN1D One-Dimensional Convolutional Neural Network.

DDoS Distributed Denial of Service.

DGA Domain Generation Algorithms.

DL Deep Learning.

DNS Domain Name System.

DP Differential Privacy.

DP-SGD Differentially-Private Stochastic Gradient Descent.

EL Embedding Layer.

FL Federated Learning.

HE Homomorphic Encryption.

IDASH PRIVACY SECURITY WORKSHOP - Secure Genome Analysis Competition.

IDS Intrusion Detection System.

IoT Internet of Things.

LR Logistic Regression.

LSTM Long Short-Term Memory.

xx

Malware Malicious Software.

ML Machine Learning.

MLP MultiLayer Perceptron.

MPC Secure Multi-Party Computation.

NLP Natural language processing.

P2MLF Privacy-Preserving Machine Learning Framework.

PET Privacy-Enhancing Technologies.

PPML Privacy-Preserving Machine Learning.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

TF-Privacy TensorFlow Privacy.

UC Universal Composability.

xxi

Symbol Reference

x A scalar (integer or real), represented by lowercase letters, e.g. x, y.
x Vector, represented by bold lowercase letters, e.g. x, y.
X A matrix, represented by bold uppercase letters, e.g. X, Y.
JxK A secret sharing of x, where JxK is (x0, x1, · · · , xn)
π Prefix to represent a protocol.
πCNN1D Secure Multi-Party Computation (MPC) protocol for the One-Dimensional Convolutional

Neural Network (CNN1D) layer.
πDP Add Laplacian Noise Differential Privacy (DP) on the vector.
πDENSE MPC protocol for the dense layer.
πEMBEDDING MPC protocol for the Embedding Layer (EL) layer.
πLRINFERENCE MPC protocol to secure inference of Logistic Regression (LR) model.
πLRTRAINING MPC protocol to the LR models training with DP guarantees
πLSTM MPC protocol for the Long Short-Term Memory (LSTM) layer.
πMUL MPC protocol for dot product.
πRELU MPC protocol for the relu function.
πSIGMOID MPC protocol for the sigmoid function.
πSOFTMAX MPC protocol for the softmax function.
πSUM MPC protocol for the secure sum.
πTANH MPC protocol for the hyperbolic tangent function
πFLCLIENT Federated Learning (FL) client protocol used in the LR models training using

DP.
πFLSERVER FL server protocol to aggregate the models.
πSECUREFLCLIENT FL client used in the LR model training using DP but sending to the

server the secret shares of the model.
πSECUREFLSERVER FL server that calls the the protocol πFLAGGREGATOR.
πFLAGGREGATOR FL server with MPC protocol to aggregate the models.

xxii

Chapter 1

Introduction

This thesis proposes an approach known as Privacy-Preserving Machine Learning Framework
(P2MLF), designed to ensure data privacy throughout the various stages of Machine
Learning (ML). P2MLF is applied to practical scenarios to demonstrate its effectiveness in
balancing privacy and scalability in the context of Privacy-Preserving Machine Learning
(PPML).

ML uses data to generalize and learn patterns without the need for explicit programming
definitions of behaviors. To achieve this, ML models rely on large volumes of data to begin
generalizing or learning various patterns [1].

These data can come from various sources, such as Internet of Things (IoT) sensors [2],
network data [3, 4], genome, brain data [6, 7], data to detect pandemics, hospitals [5],
judicial proceedings, financial institutions [9], and social media, which illustrates the
breadth of the field according to figure 1.1. Due to legislation regulating data privacy,
privacy guarantees may be necessary for user data, private companies, or the government.

Although the use of ML generates beneficial applications, there is growing societal
concern about the privacy of sensitive data used in the training and inference of ML
models [8].

An example of a privacy-demanding ML application is the detection of financial
crimes using data from different financial institutions in multiple countries [9]. Another
example involves using hospital data to perform the training on ML models to detect heart
disease [5], cancer, or COVID-19 [20]. Recommendation systems also deal with sensitive
user data, such as sexual, religious, or political orientation. In cybersecurity, challenges
arise when companies need to adopt intrusion detection systems [3,4] but must protect
sensitive data, such as industrial property or trade secrets, due to privacy laws.

Sensitive data include information such as race, ethnicity, religious beliefs, political
opinions, trade union membership, health or sex life data, genetic data, income, loans,
tax, and biometric information linked to an individual. For companies, sensitive data

1

Figure 1.1: Example of applications that may require privacy requirements

may include customer information, revenue, profits, and salaries. While it is possible to
remove sensitive data for legal reasons in some situations, this may not be feasible in
others, as this information may be essential to improve the model’s performance during
training or needed in the inference phase. Therefore, appropriate methods are necessary
for handling private information when the data used by ML algorithms are sensitive. The
field of research that seeks to reconcile ML with privacy is known as PPML. This area is
fundamental since sensitive data are essential for many ML models, especially in health [5],
genetics, finance [9], and cybersecurity [3].

The motivation to explore this problem arises from social discussions about privacy [14].
An information-driven society collects vast amounts of sensitive data from individuals and
companies. This problem is significant because data, when properly used, can generate
numerous beneficial applications for individuals. For example, social networks use personal
information to make personalized recommendations for news, books, clothes, travel, hotels,
restaurants, movies, and music [11–13].

Therefore, ensuring data privacy in ML applications in healthcare, financial services,
or cybersecurity is crucial, both for legal reasons and for the challenge of implementing
Privacy-Enhancing Technologies (PET), which significantly increases the computational
cost and execution time of ML-based solutions. The ideal privacy would be one in which
the user’s data is known only to the user; cryptographic solutions that require data
decryption before being processed by ML algorithms would not meet this requirement.

This thesis proposes and implements a framework that ensures data privacy in ML

2

model algorithms [15], with case studies focused on the detection of Malicious Software
(Malware). The proposed framework preserves data privacy in the training and inference
phases of model secure computing. P2MLF inference uses Secure Multi-Party Computation
(MPC) protocols and models trained with Differential Privacy (DP). P2MLF proposes
three three methods to train: the first combines Federated Learning (FL) with DP, the
second combines MPC with DP, and the third involves FL with DP and aggregation with
MPC, thus ensuring data privacy.

1.1 Problem

Privacy issues arise at both the input and output stages in ML applications. To illustrate
these issues, consider that Alice owns the data and Bob owns the model. At the input
stage, it is possible to expose the data needed for detection, compromising both the privacy
of Alice ’s data and the intellectual property of Bob ’s model. Ensuring input privacy
means that Bob does not need to reveal his model to Alice, and Alice does not need to
expose her data to Bob ’s model.

Similarly, classification results may reveal information about the model at the output
stage, allowing attackers to exploit it and reverse engineer the training data [21]. Hence,
the challenge is to enhance privacy in both the input and output stages during inference.
It is important to note that training plays a crucial role in ensuring end-to-end privacy
protection, adding a layer of complexity to the task.

Thus, the central problem to be solved is to propose a comprehensive approach that
functions as a framework to ensure the privacy of input and output in ML applications.

1.2 Motivation for the problem

The right to personal data privacy is fundamental for individuals [10]. At the same time,
the benefits provided by the ML applications are crucial, making it essential to find
solutions that reconcile ML and privacy.

One of the main dilemmas to resolve is to perform ML training or inference without
relying on a trusted third party. In other words, it is necessary to overcome the dilemma
of using private data without allowing each party to access the confidential data of the
different parties involved in the training and inference phases of the ML models.

Although private data could be stored securely and never used, this approach could
be more practical, especially considering that such data can significantly improve the
accuracy of ML algorithms.

3

The challenge lies in controlling the leakage of private data, considering a scenario
where data is stored, communicated, or processed, even without requiring the data owner
to rely on a trusted party for data transmission. This problem becomes particularly
intriguing because private data from different sources can drive the creation of many
valuable ML-based services. For example, researchers or organizations can combine
sensitive information from multiple individuals to detect pandemics or diseases. Another
example would be the detection of crimes related to child pornography while ensuring the
privacy of suspect data is protected [17].

The figure 1.1 will be used to motivate the importance of ensuring the privacy of input
and output in ML. In the inference phase in ML, input privacy may be necessary to protect
Alice’s data and Bob’s model. In training, input privacy enables the creation of a global
ML model that ensures the privacy of data from different parties, such as Alice, Bob,
Clara, and Dan. Output privacy helps prevent Alice in the inference phase from obtaining
information about the training data of Bob’s model.

1.3 Objectives

This thesis presents the P2MLF framework, designed to ensure both input and output
privacy in ML models while simultaneously optimizing efficiency in the use of MPC, FL,
and DP technologies. The main objective is to reduce execution time and the number of
network communication rounds while maintaining the accuracy of the trained models at
levels comparable to those developed without privacy mechanisms.

In addition to the main objective, this work seeks to achieve the following secondary
goals:

• Apply the P2MLF framework to privacy-preserving Malware inference, using MPC
protocols for MultiLayer Perceptron (MLP), One-Dimensional Convolutional Neural
Network (CNN1D), and Long Short-Term Memory (LSTM) models. This work
aims to identify the ML model that offers the best balance between privacy, lower
execution time, and lower error rates among the three implemented MPC protocols.

• Demonstrate the application of P2MLF to collaborative training, using a collaboratively
trained intrusion detection system as a case study.

1.4 Results and Scientific Contributions

This thesis proposes an approach called P2MLF to ensure data privacy in the training,
pre-processing, and inference phases of ML and Deep Learning (DL) models. The

4

application of P2MLF will be demonstrated in the inference phase through the Domain
Generation Algorithms (DGA) detection problem. In contrast, the approach will create a
Collaborative Intrusion Detection Systems (CIDS) model using network data from various
sources during the training phase. The methodology adopted in this thesis formalizes
P2MLF in structured blocks, integrated into a ML pipeline, allowing it to serve as a
practical guide for professionals who need to incorporate privacy into ML applications.
For these reasons, P2MLF is presented as one of the main contributions of this thesis.

Some of the contributions of P2MLF-based inference are listed below:
• The closest work on privacy-preserving detection of DGA is that of Drichel et al. [18],

which provides only input privacy via MPC, leaving the inference phase vulnerable
to privacy attacks on training data. This thesis fills the exit privacy gap identified in
Drichel’s work. Therefore, this thesis proposes the first end-to-end privacy-preserving
framework for DGA classification, ensuring both input and output privacy.

• A method for secure inference from DGA using ML, with input privacy and output
privacy guarantees.

• Original approach for DGA classification using ML with DP.
• The framework uses different MPC protocols such as MLP, CNN1D, and LSTM which

are all combined into a MPC protocol for Embedding Layer (EL). The goal was to
achieve a model with higher accuracy and shorter runtime.

• The MPC protocol for LSTM is the first to be built on MP-SPDZ [19].
• 23% to 42% reduction in runtime using post-training quantization with 16 bits, without

reducing accuracy in a semi-honest MPC protocol.
Some of the contributions of P2MLF-based training are listed below:

• Three methods for secure collaborative training from CIDS using ML, with guarantee
of input privacy and output privacy.

• Comparison of the three collaborative trains concerning scalability and privacy.
• The method to a collaborative training of P2MLF using aggregation with MPC is

considered the better balance considering scalability and privacy, being 1.50 times faster
than the approach with the highest level of privacy.

1.5 Publications and Competitions

The following is a list of published works related to this thesis’s work.

• Ricardo Jose Menezes Maia, Dustin Ray, Sikha Pentyala, Rafael Dowsley,
Martine De Cock, Anderson C. A. Nascimento and Ricardo Jacobi. An
End-to-End Framework for Private DGA Detection as a Service. Plos One

5

Journal 2024 has accepted this paper for publication. The results of this paper
support this thesis’s work on the method for secure inference.

This paper results from the U.K.-U.S. prize challenges Jelle Vos, Sikha Pentyala,
Steven Golob, Ricardo Maia, Dean Kelley, Zekeriya Erkin, Martine De
Cock, and Anderson Nascimento. Privacy-Preserving Membership Queries
for Federated Anomaly Detection. 24th Privacy Enhancing Technologies
Symposium (PETS 2024) 15-20 July 2024 Bristol, UK. 1 [9]. My contribution
to this paper was experiments with neural networks and DP. This paper is about a
proposal to ensure data privacy and detect financial crimes using ML.

• David Melanson; Ricardo Maia; Hee-Seok Kim; Martine De Cock; Anderson
Nascimento. Secure Multi-Party Computation for Personalized Human
Activity Recognition. 2022. Neural Processing Letters – Springer Journals.
2. My contribution to the paper is the MPC protocol to Convolutional Neural Network
(CNN), which I also used in the DGA paper. This paper is about calibrating Human
Activity Recognition (HAR) models to end-users with Transfer Learning (TL), which
often yields significant accuracy improvements. By design, this type of TL relies on
sensors worn close to the human body to collect personal data. To protect users’
privacy, we introduce MPC protocols for personalizing HAR models and securing
activity recognition with personalized models [22].

Throughout this thesis’s research, I had the privilege and opportunity to participate in
three competitions related to PPML, which is the area of this thesis. The competitions
are listed below by impact factor:

• U.K.-U.S. Prize Challenges: At the Summit for Democracy, the United
Kingdom and the United States announced the winners of the Challenge
to Drive Innovation in Privacy-Enhanced Technologies that Reinforce
Democratic Values. The US and the UK governments organized this challenge.
I competed on the US team, named PPMLHuskies 3. Our team consisted of the
University of Washington Tacoma in the US, colleagues from the University of Delft
in the Netherlands, and myself, representing the University of Brasília. We secured
second place in this prestigious competition that involved American companies and
universities. The competition aimed to detect financial crimes between banks in
different countries while ensuring data privacy. My contribution to this competition
consisted of conducting experiments and hyperparameter optimizations for the

1https://petsymposium.org/popets/2024/popets-2024-0074.pdf
2https://link.springer.com/article/10.1007/s11063-023-11182-8
3https://petsprizechallenges.com/

6

https://petsymposium.org/popets/2024/popets-2024-0074.pdf
https://link.springer.com/article/10.1007/s11063-023-11182-8
https://petsprizechallenges.com/

models trained with DP and participating in discussions until we arrived at the
proposed solution.

• Solution of Team PPMLRobots for PRIVACY SECURITYWORKSHOP
- Secure Genome Analysis Competition (IDASH) 2021, Track III: A
Differentially Private MPC Protocol for Logistic Regression. I competed
on the US team, PPMLRobots, and this collaborative work with colleagues from the
University of Washington Tacoma in the US, Monash University in Australia, and
me, representing the University of Brasília, submitted it to IDASH. In this global
competition, universities compete around the world. We achieved first place 4, with
the winner determined by the solution with the shortest execution time and highest
accuracy. My contribution to this competition was the creation of MPC protocols
for training logistic regression models using DP with Laplacian noise. The paper
that consolidates the results of the competition IDASH is Sikha Pentyala; Davis
Railsback; Ricardo Maia; Rafael Dowsley; David Melanson; Anderson
Nascimento; Martine De Cock. Training Differentially Private Models with
Secure Multiparty Computation. Computer Science -> Cryptography and Security.
2022. [5].

1.6 Outline of the Thesis

This thesis organizes its content into chapters that systematically address the research
objectives. Chapter 1 presents the introduction to the work, including the problem
description, motivation, contributions, published papers, and awards obtained in international
competitions related to the thesis. Chapter 2 discusses the privacy techniques and
theoretical foundations of the MPC, DP, and this work will address ML algorithms.
Chapter 3 deals with works related to privacy-preserving DGA detection.

Chapter 4 describes the general framework proposed in this thesis, which is general-purpose
but will be applied explicitly to the detection of DGA and Intrusion Detection System
(IDS). The 5 chapter demonstrates methods for securely training a ML model using a
combination of techniques such as FL, MPC, and DP and applies these methods to a IDS.
Chapter 6 presents an application developed to detect Malware in inputs and outputs
of private domain names, using the DP and MPC protocols with LSTM, CNN1D and
MLP models, in addition to analyzing the results of the privacy-preserving DGA detection.
Finally, Chapter 7 contains the conclusions and developments of future work.

4http://www.humangenomeprivacy.org/2021/

7

http://www.humangenomeprivacy.org/2021/

Chapter 2

Background

This chapter establishes the essential theoretical foundations necessary to understand and
support the protocols proposed in this thesis.

The symbols x and y (x and y are scalars; x and y are vectors; X and Y are matrices)
may have different meanings in subsequent sections depending on the context. The
meanings will be explicitly defined whenever mentioned throughout the text to avoid
ambiguity.

2.1 Privacy-Enhancing Technologies

This section discusses the main technologies used in this thesis to enhance data privacy,
including Secure Multi-Party Computation (MPC), Differential Privacy (DP), and Federated
Learning (FL).

2.1.1 Secure Multi-Party Computation

MPC protocols allow mutually distrustful parties to perform joint computations, ensuring
that all honest parties obtain the correct result. No group of corrupt parties can obtain
information beyond what is deducible from their inputs and outputs. In this work, we use
a variant of traditional MPC, where computation servers offer MPC as a service, receiving
inputs from external parties that do not participate directly in the protocol [15,23–25].

The central principle of all MPC protocols is to decompose the function and to compute
it into a circuit composed of addition and multiplication gates. The underlying MPC
protocol executes and evaluates these gates sequentially until the final result is computed
and revealed to the recipient [23].

8

Splitting functions into addition and multiplication circuits efficiently is not trivial.
Optimized representations can significantly improve the performance of a MPC computation
for a specific function.

The MPC protocols in this thesis use secret sharing, a technique in which a secret s is
split into multiple shares xi, distributed among shareholders. Only authorized combinations
of shareholders can reconstruct the secret, and no individual shareholder can learn anything
about the secret s.

MPC protocols based on secret sharing work by sharing the inputs among all computation
servers. Computations occur in shares, not in the original inputs [15].

MPC involves n parties, {P1, P2, ..., Pn}, each with a private input xi. The goal is to
compute a function y = f(x1, x2, ..., xn), such that:

• Each party Pi learns only y, the output of f .

• No party learns information about the inputs of other parties xj, where j 6= i.

This process uses an MPC protocol, which involves local computations and message
exchanges based on the inputs xi and random bits ri sampled by each party. The protocol
ensures that y ← f(x1, x2, ..., xn), while preserving the privacy of each entry xi.

2.1.1.1 History of MPC

Andre Yao introduced the concept of secure computation in 1982 [26]. In this paper, Yao
formulated the "millionaire problem" to illustrate his idea: "Two millionaires want to know
who is richer, but without revealing any additional information about their wealth".

Later, in 1986, Yao presented new protocols for MPC, known as Yao-garbling, in [27].
The garbling technique showed that two participants can evaluate any function with
computational security.

In 1987, Goldreich, Micali, and Wigderson [28] expanded this result to any number of
participants as long as there was an honest majority based on the existence of one-way
permutations with a trapdoor. This result emerged independently, followed by the work
of Chaum, Damgaard, and van de Graaf [29]. It is worth mentioning that Yao’s technique
results in protocols with a constant number of rounds. A constant number of rounds for an
arbitrary number of participants was achieved in 1990 by Beaver, Micali, and Rogaway [30].

In 1988, Ben-Or, Goldwasser, and Wigderson [31], independently of Chaum, Crepeau,
and Damgaard [32], showed that in the secure point-to-point channel model, any function
is possible to evaluate with unconditional security against up to T corrupted parties, where
T < n

2 for passive adversaries and T < n
3 for active adversaries. In 1989, Ben-Or and

Rabin [33] showed that achieving T < n
2 even against active adversaries is possible if

broadcast and a small error probability is allowed.

9

2.1.1.2 Applications of MPC

Some possible applications for MPC include secure auctions, secret voting, secure Machine
Learning (ML), and private database querying [15,23–25,34].

Consider, for example, the problem of comparing a person’s DNA with a database
of DNA from cancer patients to determine whether that person is in a high-risk group
for a specific category of cancer. This task is critical to health and society, but DNA
information is highly confidential, and one should not reveal it to private organizations.
One can resolve this dilemma using MPC, which reveals only the cancer category that
matches the person’s DNA (or none). In this scenario, privacy is ensured by limiting
disclosure to only the cancer category, without revealing additional information about the
person’s DNA or the patients in the database [35]. Furthermore, correctness ensures that
no malicious party can alter the outcome, for example, by making the person believe they
are unduly at risk.

Another example involves a trading platform, where parties submit bids and offers
and then compare them to determine a match when the offer is higher than the bid. The
trading price may be a function of the bid and offer. In this scenario, it may be beneficial
from a game theory perspective to keep the actual values of the bids and offers private
since other participants could use this information to manipulate prices. Privacy limits
disclosure to only the match and the resulting price, while correctness verifies that the
price aligns with the established function [23]. In some cases, privacy is more critical (as
in the DNA example), while in others, correctness is paramount (as in negotiation). In
any case, MPC guarantees both properties.

MPC protocols allow mutually distrusting parties to perform a computation so that
all the honest parties receive the correct result at the end of the protocol. Colluding
dishonest parties cannot gain any information about the inputs of honest parties beyond
what their inputs and outputs allow them to infer. In this work, we will use a variant of
the traditional MPC scenario, where the computation servers offer MPC as a service, with
external parties providing the inputs that do not directly participate in the MPC protocol.
For a more detailed introduction to MPC, we suggest reading works such as [15,23–25].

The central idea of all MPC protocols is to decompose the function to compute into a
circuit composed of addition and multiplication gates. The underlying protocol MPC is
then used to evaluate each addition and multiplication gate sequentially until the result is
computed and revealed to the designated receiver [36].

Decomposing functions into addition and multiplication circuits efficiently is a non-trivial
task. Optimized representations can significantly improve the performance of a MPC
computation for a specific function. We implement our solutions using the publicly
available MP-SPDZ framework [19], which implements several protocols MPC. MP-SPDZ

10

provides a high-level Python interface to present a circuit to compute in an MPC protocol.
In addition, MP-SPDZ already has circuit representations for ML algorithms, including
MultiLayer Perceptron (MLP) and 2D Convolutional Neural Network (CNN). However, to
date, no implementations Long Short-Term Memory (LSTM) or Embedding Layer (EL)
are available in the literature for MP-SPDZ. This work presents new circuit representations
for LSTM and EL network inference, which have been implemented in MP-SPDZ [19].

In this work, we use secret sharing-based protocols MPC. Secret sharing consists of
dividing an input s into multiple fragments (secret shares) xi and distributing these
fragments among different parties (shareholders). Only authorized combinations of
these shareholders can reconstruct the secret, and no individual shareholder can obtain
information about the value of s. Secret-sharing-based MPC protocols work by sharing
the inputs secretly among all computing servers, and computations are performed directly
on these shares instead of on the original inputs [15].

2.1.1.3 Basic primitives

This section will discuss basic primitives used to create MPC protocols.

2.1.1.4 Secret Sharing

Secret sharing is a fundamental primitive at the core of many approaches to MPC.
Informally, a secret sharing scheme (t, n) divides the secret s into n shares such that any
t − 1 of the shares reveal no information about the secret s. In contrast, any set of t
shares allows the complete reconstruction of s. Several variants exploit different security
properties of secret sharing schemes [36].

Let D be the domain of secrets and D1 be the domain of shares. We define Shr :
D → Dn

1 as a (possibly random) sharing algorithm and Rec : Dk
1 → D as a reconstruction

algorithm. A secret sharing scheme (t, n) is a pair of algorithms (Shr, Rec) that satisfy
the following properties:

• Correction: Let (s1, s2, . . . , sn) = Shr(s). Then:

Pr[∀k ≥ t, Rec(si1 , . . . , sik) = s] = 1

• Privacy: Any set of shares with less than t shares does not reveal anything about
the secret in the information-theoretic sense. Formally, for any two secrets a, b ∈ D
and any possible vector of shares v = (v1, v2, . . . , vk) such that k < t:

Pr[v = Shr(a)|k] = Pr[v = Shr(b)|k],

11

where |k denotes the proper projection onto a subspace of k elements.

Consider the function f will calculate the values of JxK (known only to Alice) and JxK
(known only to Bob). The value of JxK is split in secret shares (x0, x1), while JyK is split in
secret shares (y0, y1). In the secret sharing paradigm, only shares are exchanged between
the parties. For ease of understanding, only the shares x0 and x1, as well as the values y0

and y1, would remain private to the respective parties [36].
Alice and Bob compute on integers modulo an integer q, a hyperparameter defining

their operations’ algebraic structure. To secret-share a value x in Zq ← {0, 1, . . . , q − 1},
they select uniformly random values x0, x1 ∈ Zq such that x0 + x1 ≡ x (mod q). Alice and
Bob hold x0 and x1 as additive shares of x. While neither x0 nor x1 individually reveal
any information about the secret value x, they can easily reconstruct x by combining both
shares. This approach enables Alice and Bob to perform computations on their respective
shares collaboratively without exposing the actual values of the numbers [36].

2.1.1.5 Protocol for addition

Consider that Alice and Bob want to compute the function JzK ← f(x, y), where f is
defined as JzK← JxK + JyK, JxK← (x0, · · · , x1), and JyK← (y0, · · · , y1). Therefore Alice
and Bob computes x+ y using their local shares as follow x+ y ← x0 + x1 + y0 + y1. In
this work, πSUM represents this protocol.

2.1.1.6 Protocol for addition by a constant

Consider that Alice and Bob want to compute the function JzK← f(x, c), where f is defined
as JzK ← JxK + c, JxK ← (x0, · · · , x1), and publicly known constant c ∈ Zq. Therefore,
Alice and Bob compute x+ c using their local shares as follows x+ c← x0 + c+ x1.

2.1.1.7 Protocol for multiplication by a scalar

Consider that Alice and Bob want to compute the function JzK ← f(x, c), where f is
defined as JzK← c JxK, JxK← (x0, · · · , x1), and publicly known scalar c ∈ Zq. Therefore,
Alice and Bob compute cx using their local shares as follows: cx← cx0 + cx1.

2.1.1.8 Protocol for Multiplication

In this protocol for multiplication during the online phase, the parties generate multiplication
triples (Beaver triples [37]) in the offline phase. Each triple, (JaK , JbK , JcK), consists of
random values a ← (a0, · · · an), b ← (b0, · · · bn) ∈ Zq, and JcK ← JaK · JbK, unknown to
either party. These tuples are independent of the inputs and optimize the online phase by
offloading expensive preprocessing work to the offline phase [36].

12

Alice and Bob want to compute the product of two shared values, JxK and JyK, without
revealing their complete values. They use a precomputed multiplication triple (JaK , JbK , JcK).
Alice and Bob start by locally computing JdK ← JxK − JaK and JeK ← JyK − JbK, then
exchange their shares of JdK and JeK to reconstruct the public values d and e. Using d, e,
and the triple, they compute JzK← d · JbK + e · JaK + JcK + d · e, obtaining a shared value
of z = x · y without revealing the individual values of x and y.

Replacing the terms of d← x− a and e← y − b into the expression JzK← d · JbK + e ·
JaK + JcK + d · e, and considering that JcK← JaK · JbK, the expression simplifies to z ← xy,
ensuring that the product of the original shared values is calculated correctly.

2.1.1.9 Adversarial Models

A more formal definition helps clarify the security properties that MPC offers. The
real-world and ideal-world paradigms form the conceptual basis for defining security.

2.1.1.10 Real-World and Ideal-World Paradigms

One way to define security is to list the conditions that constitute a security violation.
For example, the adversary must not be able to learn a specific predicate from another
party’s input, induce incorrect outputs for honest parties, or make its inputs depend on
the inputs of honest parties. However, this approach is cumbersome and error-prone since
it is not trivial to ensure that the list of conditions is complete [23].

To provide a mathematical proof of security, it is necessary first to define what it means
for a protocol to be secure. This proof is difficult to formalize in the context of MPC since
the parties need to learn the output, which depends on the inputs, and one cannot simply
say that the parties "learn nothing". Furthermore, the "correct" output depends on the
inputs, and it is not known in advance which inputs the corrupted parties will use [23].

The real/ideal paradigm solves this difficulty by introducing an "ideal world" that
implicitly captures all security guarantees and defines security relative to that world [23].

Ideal World

In the ideal world, the parties securely compute the function F by sending its inputs
privately to a fully trusted party T . Each party Pi provides its input xi to T , which
computes F (x1, ..., xn) and returns the result to all parties [23].

One can imagine an adversary attacking this interaction in the ideal world. The
adversary can take control of any party Pi, but not T (which justifies trust in T). The
simplicity of the ideal world makes it easy to understand the effects of an attack [23].

13

Although the ideal world is easy to understand, the presence of a trusted third party
makes it imaginary. The ideal world serves as a benchmark for judging the security of a
protocol in the real world [23].

Real World

In the real world, there is no trusted party. Instead, all parties communicate using a
protocol [23].

In the real world, an adversary can corrupt some parties, and corruption at the beginning
of the protocol is equivalent to the original party becoming an adversary. Depending on
the threat model, corrupted parties may follow the protocol as specified or arbitrarily
deviate from its behavior. Intuitively, the real-world protocol π is secure if a corresponding
adversary in the ideal world can achieve any effect that the real-world adversary could
achieve. In other words, the goal of a protocol is to provide security in the real world
(given a set of assumptions) equivalent to security in the ideal world [23].

2.1.1.11 Semi-honest or curious

A semi-honest, or curious, adversary corrupts the parties but follows the specified protocol.
This type of adversary is also called passive or "honest but curious". The corrupted
parties execute the protocol correctly but may attempt to extract as much information
as possible from the messages they receive from other parties. This process may involve
multiple corrupt parties colluding to obtain information. Semi-honest adversaries are
passive because they cannot take any action other than to attempt to obtain private data
by observing the execution of the protocol [23].

In the real/ideal paradigm, security implies that such an "attack" could also be
performed in the ideal world. For a protocol to be considered secure in the ideal world,
generating something indistinguishable from the adversary’s view of the real world must
be possible. The adversary’s view in the ideal world consists only of the inputs sent to the
trusted third party T and the outputs received from T . Thus, an ideal-world adversary
should be able to use this information to generate what appears to be a view of the real
world. Referring to an ideal-world adversary as a simulator is possible because it generates
a "simulated" view of the real world while operating in the ideal world. Showing that such
a simulator can exist demonstrates that an adversary can do nothing in the real world
that cannot be done in the ideal world [23].

It is possible to formalize as follows: Let π be a protocol and F be a functionality. Let
C be the set of corrupted parts and Sim be the simulator. The following distributions of
random variables are defined:

14

• Realπ(k, C;x1, ..., xn): execute protocol with security parameter k, where each party
Pi executes protocol honestly with private input xi. Let Vi denote the final view of
the Pi part, and let yi denote the final output of the Pi part. Output { Vi|i ∈ C },
(y1, . . . , yn).

• IdealF,Y es(k, C;x1, ..., xn): Compute (y1, . . . , yn)← F (x1, . . . , xn).

Output Yes (C, {(xi, yi)|i ∈ C}), (y1, . . . , yn).

A protocol is secure against semi-honest adversaries when corrupt parties in the real
world hold views indistinguishable from those they would have in the ideal world.

2.1.1.12 Malicious

A malicious adversary, also known as an active adversary, can cause corrupt parties to
deviate from the prescribed protocol to compromise security arbitrarily. A malicious
adversary has all the powers of a semi-honest adversary to analyze the execution of the
protocol but can also perform any actions during execution. The actions of this malicious
adversary may include controlling, manipulating, and injecting messages into the network.
Protocols that ensure security in this model offer very high protection. In the case of a
dishonest majority, the most an adversary can do is force the honest parties to abort the
protocol upon detecting cheating. If the honest parties obtain results, these are guaranteed
to be correct and always preserve privacy [23].

2.1.1.13 The need for a trusted third party

The problem arises when trying to find a third party, T, that is sufficiently trustworthy
for all parties to share their secrets. In this scenario, the parties give their inputs to T,
which performs the computations, announces the results to each party, and then deletes
the confidential data to which it has access. However, this approach presents security
problems: (i) T is a single point of attack, making it vulnerable to private data extraction,
and (ii) the parties need to trust T to ensure both the accuracy of the results and the
confidentiality of the data. The question arises: Why would the parties trust T if they do
not trust each other [25]? Although a trusted third party would work in an ideal scenario,
it does not exist in the real world.

This question arises: solving the problem without a trusted third party when one wants
to compute a result that depends on private data from all parties involved [25].

15

2.1.1.14 Outsourced Computation

Secure computation encompasses methods that perform computations on sensitive data.
In contrast, verifiable computation allows participants to confirm that the result is indeed
the correct output of the function on the given inputs. Two main categories are outsourced
computation and multi-party computation [23].

In an outsourced computation, one party owns the data and wants to obtain the result
of a computation. The second party receives the data in an encrypted format, performs
the computations on the encrypted data, and returns the encrypted results to the data
owner without learning anything about the input information, the intermediate values, or
the result [23].

The data owner decrypts the results to obtain the output. Homomorphic Encryption
(HE) allows for operations on encrypted data and is a suitable primitive to implement
third-party computation [23].

2.1.2 Universal Composability

Universal Composability (UC) serves as a framework for cryptographic protocol design,
ensuring that security properties remain intact when protocols are composed or executed
concurrently [38]. Consider a protocol ΠF that securely implements a functionality F in
the presence of an auxiliary functionality R, a hybrid model. While R acts as a trusted
intermediary in this model, it must be instantiated in practice, typically by another protocol
ΠR, which might rely on a simpler functionality T . The UC framework’s core result is
that the composed protocol inherits the security properties of the involved protocols:
ΠF securely implements F , even when replaces R by ΠR in the T -hybrid model. This
modularity enables the breakdown of complex protocols into simpler components, with
security proofs combining each part to ensure the overall system’s security. Additionally,
the UC framework supports concurrent execution of multiple protocols in distributed
systems, maintaining security even when different protocols interact. Making UC mighty
compared to stand-alone models facilitates robust, modular, and scalable protocol design
and analysis [23,36].

2.1.3 Differential Privacy

Informally, a differentially private algorithm produces a given output with approximately
the same probability, regardless of whether a single entry is present or absent in a dataset
used to compute the algorithm output. Meaning that the output is negligibly affected by
the participation of a single user, offering privacy through plausible deniability [39].

This work presents the definition of DP as described in [39]:

16

Definition 1. (ε, δ) - DP
A randomized algorithmM with domain D is (ε, δ) - differentially private if for all S

⊆ Range(M) and for all x, y ∈ D such that ||x− y||1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ (2.1)

The definition 1 implies that queries in datasets x and y that differ in a single input
(||x− y||1 ≤ 1) should produce different results with a bounded probability, depending on
the parameters ε and δ. The constant ε is the privacy budget. The smaller the value of
ε, the more privacy the randomized algorithmM provides. The constant δ captures a
small probability of violating the privacy guarantee. When δ equals zero, the algorithm
is considered pure DP. When δ > 0, the algorithm is said to be an approximate DP.
Generally, choosing δ heuristically and empirically to be less than or equal to the reciprocal
of the dataset size [39].

2.1.3.1 Differentially-Private Stochastic Gradient Descent

Deep learning models often leak information about their training datasets. This leakage
can occur even with limited access to the model when an adversary only observes the
output of the deep neural network. DP is used to prevent such leaks. It is possible in the
training deep learning models with DP guarantees using Differentially-Private Stochastic
Gradient Descent (DP-SGD) [40].

The two essential steps in DP-SGD, compared to traditional Stochastic Gradient
Descent (SGD), are gradient clipping and noise addition. Gradient clipping limits the
magnitude of gradients to a predetermined threshold, ensuring that the gradients computed
for each data point decrease if they exceed this threshold. Preventing individual data
points from disproportionately impacting the model’s learning by reducing the model’s
sensitivity to any single piece of data. After clipping, the process adds noise to ensure
privacy. The process typically samples this noise from a Gaussian distribution, setting the
standard deviation or scale parameter proportional to the chosen privacy budget ε. Lower
values of ε provide better privacy but require adding more significant amounts of noise,
which can compromise the model’s accuracy [40].

DP-SGD ensures (ε, δ)−DP through repeated applications of the Gaussian mechanism.
During model training, Bob performs the following steps:

• Initialize the model M with random parameters.

• For each input xi in a batch B, compute the model output M(xi) and, given the
corresponding label yi associated with xi, compute the gradient of the loss function,
denoted gi.

17

• For each gradient gi in batch B, clip the gradient if its L2 norm is greater than or
equal to a threshold c.

• Average all clipped gradients in batch B and add, to each gradient coordinate, a
random variable sampled from a Gaussian distribution with mean 0 and standard
deviation σ.c, where c is the clipping threshold, and σ is a constant chosen to ensure
DP.

• Update the model parameters using these aggregated, noisy gradients multiplied by
the learning rate.

• Repeat this process for each batch in the dataset.

The post-processing property of DP ensures that any output derived from the model
also maintains DP.

2.1.4 Federated Learning

In FL, a collaborative approach ML, users benefit from shared models trained on data from
multiple sources without the need for centralized information storage. In this technique, a
group of participating devices, called clients, collaborate to solve the learning task under
the coordination of a central server [41].

Each client trains the model using its local data without sharing or transferring these
data to the central server [42]. Instead, clients compute updates based on their local data
to improve the global model maintained by the server. The clients send only these updates
back to the central server. In this way, the global model benefits from the knowledge
of all clients without exposing their raw data or leaving their devices. This approach
preserves data privacy while enabling collaborative model improvement, ensuring customers
contribute to ML securely and privately [41].

FL allows models to be trained locally without sharing private data but is vulnerable to
backdoor attacks by compromised parties. In these situations, an adversary manipulates the
global model by sending malicious updates that trigger unwanted behavior. Furthermore,
FL does not prevent attacks such as membership inference, where one of the parties having
access to the model can obtain information used by the other parties in training the local
model.

2.2 Machine Learning and Deep Learning

Next, this work will address the ML and deep learning algorithms used in this thesis.

18

ML is an area of knowledge that applies statistical techniques through computational
algorithms to identify patterns in data, with the aim of generalizing learning to new contexts.
ML is divided into supervised learning, which uses labeled data, and unsupervised learning,
which explores patterns in unlabeled data, distinguishing itself for using computers to
estimate complex functions adjusted by hyperparameters. It is possible to define Deep
Learning (DL) as a subarea of ML that uses deep neural networks to learn hierarchical
representations of data using optimization algorithms. The main characteristic of DL is
the ability to solve complex problems through structures composed of multiple processing
layers [1].

2.2.1 Logistic Regression

Statistical prediction using binary Logistic Regression (LR) determines the probability
that an observation falls into one of two categories based on a binary outcome variable.
This prediction depends on one or more independent variables that can be continuous or
categorical. The process involves constructing a logistic regression equation that calculates
the probabilities’ natural logarithm (LN), known as the logit transformation [43,44].

logit(p)← ln
(

p

1− p

)
← β0 + β1x1 + β2x2 + . . .+ βkxk (2.2)

In equation LR 2.2, p represents the probability that an observation belongs to one of the
two categories, while β0 is the model constant. The undetermined parameters β0, β1, . . . , βk

must be estimated from the data and x0, x1, . . . , xk represent the independent variables.

2.2.2 Multilayer Perceptron

An MLP is a ML model that represents a fully connected neural network architecture.
The structure includes an input layer, an output layer, and one or more hidden layers,
where neurons in adjacent layers are fully connected.

Equation 2.3 outlines the operation of a neuron in a MLP computing the output y
and using an activation function σ. The function σ receives its argument by computing
the dot product between the input vector of the neuron x and the weight matrix W and
adding the vector bias b.

y ← σ(x ·W + b) (2.3)

19

2.2.3 Long Short-Term Memory Networks

Understanding and reasoning about information in an abstract way depends on prior
experience. For tasks such as reading text, humans extract knowledge based on the context
of previous and recent pieces of content. Traditional neural networks do not have memory
structures analogous to the human brain. Recurrent Neural Network (RNN) addresses
this limitation, which more closely resembles memory processes. Thus, with a RNN, it
is possible to perform the training and to learn based on previous elements of an input
sequence.

RNNs are well suited to model problems where the input data is time-dependent
or sequential, where the next task depends on the previous one. Examples include
temperature/weather forecasting, historical air quality trends, and traffic congestion
patterns. Furthermore, in Natural language processing (NLP), the meaning of texts and
language structures depend on the content of previous texts.

LSTM is a type of RNN, is designed to solve the problem of vanishing and exploding
gradients, common in traditional RNN models that deal with long-term dependencies [45].
LSTMs are particularly effective for Domain Generation Algorithms (DGA) detection
[46–54]. Therefore, this work investigates the effectiveness of LSTM in the DGA detection
problem, also considering the preservation of privacy.

The central concept of LSTM networks is the cell state, which functions as an internal
memory. LSTM cells have gates that control the flow of information, allowing the network
to add or remove information from the cell state, which acts as an adjustable memory
system.

This work describes the functioning of a LSTM cell and its use for inference, i.e.,
to compute the outputs of a trained LSTM. The notation and explanation follow those
presented in [55]. In the implementation, the input to the network is a sequence of
characters x1, . . . , xt, . . . , xn. Section 2.2.5.1 explains converting each character into a
numeric representation. The inputs to the t-th cell consist of the output of the previous
cell ht−1, the character xt, and the state of the previous cell ct−1. The cell outputs ht, and
its state is ct. The following section explains how to calculate these quantities.

First, we define how much of the previous state ct−1 will be "forgotten", denoted by the
parameter ft in Equation 2.4. The value of ft is calculated based on the dot product of the
weights wf and the concatenation of the output of the previous cell ht−1 with the input of
the cell xt, plus the bias bf . The training process learns with the weights and biases. This
value is passed to the function sigmoid σ, which returns values between 0 and 1. When ft
equals 1, the process is to retain the entire previous state. In contrast, when ft equals 0,
the process fully discards the previous state while calculating the new cell state.

20

ft ← σ(wf · [ht−1, xt] + bf) (2.4)

Equation 2.7 shows the calculation of the cell state at position t. It is a weighted
average between the previous state of the cell, ct−1, and the state that depends on the
current input, xt, denoted as c′t. This average uses ft and it as weights, with it determining
the portion of the "current" state (c′t) to retain. The values of it and c

′
t are obtained

according to Equations 2.5 and 2.6, respectively. The parameters wi and wc represent the
weights, while bi and bc are the biases adjusted during training. The function tanh refers
to the hyperbolic tangent.

it ← σ(wi · [ht−1, xt] + bi]) (2.5)

c
′

t ← tanh(wc · [ht−1, xt] + bc]) (2.6)

ct ← ft · ct−1 · it · c
′

t (2.7)

Finally, the cell output at position t, denoted as ht, is calculated according to Equations
2.8 and 2.9. In these equations, wo represents the weights and bo the biases.

ot ← σ(wo · [ht−1, xt] + bo]) (2.8)

ht ← ot · tanh(ct) (2.9)

The variables ht, ct, and xt+1 pass to the next cell, where the calculations proceed
similarly for the cell at position t+ 1.

2.2.4 Convolutional Neural Network

A CNN typically consists of convolution blocks followed by a fully connected network. A
typical convolution block includes a convolution layer, an activation layer, and a pooling
layer. The standard convolution layer (2D-CNN) takes a three-dimensional input with
height h, width w, and depth c, and contains f 2D learnable kernels, each of size k × l,
applied to each input channel c. These kernels traverse in two directions over the input,
generating a three-dimensional output.

In a One-Dimensional Convolutional Neural Network (CNN1D), the input is typically
a sequence or vector, and the kernel traverses in only one direction [56].

21

Consider x as the input of a CNN1D, y as the output of the CNN1D layer, and k as
the total number of kernels. The length of y is given by l − k + 1, assuming no padding is
applied. The kernel performs a sliding window operation on the input x.

Equation 2.10 expresses the output of a CNN1D, where y[i] denotes the output at
position i. The operation involving x and w is a dot product; b is the bias; w represents
the trainable weights of the CNN1D including the kernels, and w[j] is the kernel at position
j.

y[i]←
k−1∑
j=0

(x[i+ j] ·w[j]) + b, (2.10)

2.2.5 Preprocessing

In this section, the concepts of EL are used to improve the accuracy of detecting DGA.

2.2.5.1 Embedding layer

EL allows texts representing vectors of real numbers with finite precision. In this work,
each vector represents a letter of the domain name. Instead of manually defining the
embedding values, the method treats them as trainable parameters [3].

The process of obtaining the output of EL is described by Equation 2.11:

Y← X ·W, (2.11)

The matrix X, dimension l × c, contains one-hot encoded entries in the equation. In
contrast, the output of EL, the matrix Y of dimension l × d, represents embedding the
input domain name to be classified. The matrix W, of dimension c× d, is the embedding
matrix, where l is the length of the input domain, c is the size of the character set, and d
is the dimensionality of the vector space [3].

EL is used in this work to demonstrate secure inference, being the first layer in the
DGA detection models. Removing the EL causes the accuracy of the DGA detection
models to drop by more than 10%.

The use of EL in this context serves to more efficiently represent the characters of the
Domain Name System (DNS) domains. The pre-processing, in this case, converts each
character in a domain DNS into its ASCII value, and the matrix generated by EL maps
these values into a weight vector, which serves as input for the subsequent layers of the
model.

22

During training, EL is fine-tuned, learning to generate a weight matrix that optimally
represents each character in a DNS domain, thus improving the performance of subsequent
layers of the model.

2.2.6 Post-Processing

In this section, the concepts of quantization, which aims to improve the performance of
MPC protocols applied to DGA detection, reducing execution time and communication
overhead, will be presented.

2.2.6.1 Quantization

The precision used to represent the parameters of a ML model significantly impacts the
model’s accuracy, runtime, and size. This effect becomes even more pronounced when
executing ML models with MPC protocols. Quantization, which reduces the accuracy of
the models, improves the overall runtime efficiency and reduces communication in MPC
protocols [3].

The detection of DGA uses quantization with Float16 post-training method1, which
converts the model weights from 32-bit floating-point numbers to 16-bit floating-point
numbers, reducing the model size by half with minimal loss of accuracy. This quantization
decreases the secure inference DGA runtime by approximately 23% to 42%.

2.3 Applications

This section presents two applications that exemplify the use of the framework proposed
in this thesis: DGA and Intrusion Detection System (IDS).

2.3.1 Domain Generation Algorithms

Malicious Software (Malware) refers to a class of software that infects computers to
perform unauthorized actions on the system or gain access to confidential information.
This type of software is a significant source of illicit activity, causing increasingly negative
impacts [57–60] and resulting in substantial losses in sectors such as government, energy, and
manufacturing [61]. Examples of Malware families, such as Trojans, viruses, ransomware,
keyloggers, worms, spyware, and hidden cryptominers, have as their primary goals
information theft, espionage, and service disruption [3, 57,58].

1https://ai.google.dev/edge/litert/models/post_training_quantization

23

https://ai.google.dev/edge/litert/models/post_training_quantization

Botnets, networks of computers infected with Malware, are typically controlled and
updated through communication with a Command and Control Server (CCS) under
the control of an adversary or botmaster [62]. When the IP address of the CCS server
is hardcoded directly in Malware, IDS systems or firewalls on the DNS servers can
block detected malicious domains, preventing connection to CCS and rendering Malware
ineffective. However, sophisticated cyberattacks use innovative techniques to obfuscate the
identity of the CCS, with the use of DGA being one of the most prevalent approaches [3,63].

DGA is an algorithm that periodically generates pseudo-random combinations of
characters or words to create hundreds or thousands of new domain names, producing
artificial malicious domains. The central idea is that a DGA can generate identical lists
of new domains when executed on different machines, such as the botmaster and an
infected host. The botmaster registers one or more generated domains, and the infected
machines systematically query these domains until they successfully resolve one. If the
botmaster does not register the queried domain, the infected machine receives a response of
a non-existent domain and discards the attempt. Once the infected bot locates a registered
domain, it establishes communication with the CCS, enabling the malware to execute the
malicious activities directed by the CCS. DGAs play a crucial role in malware that relies
on networked communication between the botmaster and bots (infected clients) [3, 63–65].

The malware’s ability to dynamically generate new domain names prevents traditional
blocklists from being effective in permanently blocking communication between the
botmaster and infected machines [3]. If a firewall or IDS detects and blocks a domain,
the botmaster can use DGA to generate and register a new domain, which the malware
will use to establish a new connection. This work aims to perform the training and use
neural networks capable of distinguishing between domains generated by DGA and benign
domains, using ML models to recognize these domains in DNS traffic and mitigate the
damage [3, 66].

The constant change of CCS domains makes it more difficult for IDS systems and
firewalls to detect and contain attacks. Identifying generated malicious domains is the
main challenge in mitigating DGA attacks. DNS servers need to be able to block these
malicious domains while maintaining regular operation for benign domains. Identifying
malicious domains can drastically reduce the damage caused by Malware [3].

As illustrated in Fig. 2.1, the central idea is that the botmaster and the malware in
infected bots run the same DGA, with the same seed to generate identical lists of artificial
domains. The botmaster registers one or more of these automatically generated domains,
while Malware in infected bots attempts to resolve each domain through DNS.

As illustrated in Figure 2.1, the botmaster and the malware in the bots use the
DGA "xxhex" family to generate a set of domain names, such as "xxd80cd4e0.cn" and

24

Figure 2.1: Illustration of DGA usage: The botmaster and malware on an infected client
generate an identical list of domain names. The botmaster registers one of these generated
domains. The malware then attempts to resolve each domain in the list via DNS queries
until it finds the registered domain, thus establishing a successful connection between the
infected client and the CCS server.

"xxe0d80cd4.kz", among others. The botmaster registers the domain "xxe0d80cd4.kz" and
associates it with the IP address "189.6.29.252". When infecting a client, the malware
attempts to resolve each generated domain through DNS queries. In Figure 2.1, when trying
to resolve the domain "xxd80cd4e0.cn", DNS returns a non-existing domain (NXDOMAIN
or NXD) error, indicating that the domain is not registered. On the other hand, when
resolving the domain "xxe0d80cd4.kz", DNS returns the IP "189.6.29.252". The malware
then connects to this IP address, where CCS is registered, thus establishing communication
between the botmaster and the infected machine [3].

2.3.2 Intrusion Detection System

IDS protect networks by monitoring traffic to identify and categorize threats. However,
these systems often monitor only a portion of the network, which can result in potential
blind spots. For example, Distributed Denial of Service (DDoS) attacks, which pose major

25

cybersecurity risks, can challenge the effectiveness of IDS when operating in isolation.
Furthermore, different IDS have varying levels of effectiveness in detecting different types
of attacks [67–69].

This proposal presents a Collaborative Intrusion Detection Systems (CIDS) that seeks
to overcome these limitations. CIDS is trained with data from different sources, ensuring
the privacy of each participant. The main advantage of this approach is that it maintains
data privacy while identifying attack patterns that individual datasets might miss. Since
companies deal with sensitive user information, privacy preservation is essential when
defining specific solutions for CIDS.

The proposed framework allows stakeholders to collaborate to build a model that takes
advantage of each dataset’s unique strengths while prioritizing information privacy.

26

Chapter 3

Related Works

This work presents the related literature and compares the proposed solution and previous
approaches.

The related work organizes the content according to two specific objectives of this
thesis: Domain Generation Algorithms (DGA) and Intrusion Detection System (IDS)
detection with privacy guarantees. Regarding DGA and IDS, the focus will be on studies
that use Privacy-Enhancing Technologies (PET), such as Differential Privacy (DP), Secure
Multi-Party Computation (MPC), and Federated Learning (FL). For DGA detection, a
topic in Natural language processing (NLP) is included because the Domain Name System
(DNS) domains are text, and the NLP techniques that generate embeddings of these
domains have shown the best accuracy results.

3.1 DGA detection using deep learning

Initially, DGA detection methods did not utilize Machine Learning (ML). For example,
Sharifnya et al. [70] developed a technique that identifies hosts with a high volume of
failed DNS queries by adding these hosts to a "suspicious failure matrix". This section lists
relevant work on DGA detection using deep learning or ML without privacy guarantees.

Li et al. [71] propose real-time detection models and frameworks that utilize domain-generated
metadata, combining the advantages of a deep neural network and a lexical-resource-based
model through ensemble. Another work along these lines is [72], which uses the Helix
architecture, representing DGA as embeddings. The use of MultiLayer Perceptron (MLP)
for the detection of DGA was also explored in [73] and [74].

Huang et al. [75] propose the Helios architecture, which uses Convolutional Neural
Network (CNN) to detect DGA. Zhou et al. [76] also use One-Dimensional Convolutional
Neural Network (CNN1D) for DGA detection, allowing binary and multiclass analysis.

27

Berman [77] employs CNN1D with a one-dimensional convolutional layer to detect DGA.
Chen et al. [78] apply CNN1D and BiGRU to detect DGA.

Shahzad et al. [79] use Recurrent Neural Network (RNN) to detect DGA based only on
the domain name without additional information, comparing the performance with other
RNN architectures such as Unidirectional Long Short-Term Memory (LSTM), Bidirectional
LSTM (Bi-LSTM) and Gated Recurrent Unit (GRU).

Zhang et al. [80] design and implement DGA classifiers using ML (SVM and RF)
and deep learning (CNN, LSTM, and Bi-LSTM) methods. Yang et al. [81] explore
character-level features of DGA domain names and propose a heterogeneous deep neural
network framework including CNN1D and LSTM. The use of LSTM for binary and
multiclass detection of DGA based on alphanumeric domain names was studied in [46, 47].
Tran et al. [49] present a novel LSTM algorithm to address the multiclass imbalance
problem in DGA-related botnet detection. Strategies to deal with imbalanced datasets are
essential for multiclass detection of DGA. Balakrishna et al. [82] utilize LSTM to improve
the prediction of imbalanced datasets. Josan et al. [50] employ bidirectional LSTM for
binary and multiclass detection of DGA. Other applications of LSTM in DGA detection
are in [51,52,54,67].

Liu et al. [83] combine CNN and bidirectional LSTM to detect DGA. Yun et al. [84]
use natural language processing and Wasserstein Generative Adversarial Networks (GAN)
to prevent attackers from evading DGA detection.

DGA detection in Internet of Things (IoT) scenarios was investigated by [85], focusing
on its relevance for Malicious Software (Malware) detection in IoT devices.

Li et al. [86] use Hidden Markov Models (HMM) for inference. Koh et al. [87] use
pre-trained context-aware word embeddings to classify DGA. Cucchiarelli et al. [88] use the
Kullback-Leibner divergence and Jaccard Index to estimate similarities in DGA detection.
Yilmaz et al. [89] apply LSTM and a GAN to identify unknown malicious domains.

Yu et al. [64] observe that simpler architectures tend to be faster in training and
inference and are less prone to overfitting, a key finding for this work, which seeks
lightweight architectures with better performance in MPC protocols. Yu et al. [66] propose
heuristics to label domain names monitored in real traffic automatically, and [65] propose
a method to label large volumes of real traffic, allowing training of models with real data.

Sivaguru et al. [90] strengthen DGA detectors against adversarial attacks by evaluating
deep learning models and random forests (RFs) for DGA detection based on information
beyond the domain name.

28

3.2 Secure Multi-Party Computation for DGADetection

The closest work to ours is that of Drichel et al. [18], who also propose a framework and
protocols for private inference and classification of DNS traffic. However, their runtimes
and accuracy are not directly comparable to ours due to the weaker privacy guarantees
they achieve. The work of Drichel et al. [18] allows the model information to leak Bob
(such as embeddings). Furthermore, their solution fails to provide output privacy because
it does not involve training the model with DP. Even with these weaker guarantees, their
solution does not outperform ours in terms of runtime. Their models have inference times
greater than 1 seconds, and their experiments do not consider network delays. The most
accurate classifier in our solution (CNN1D) runs in less than 0.4 seconds, including network
delays.

Drichel et al. [18] proposed a solution for MPC-based private inference applied to DGA
detection models. The approach used several publicly available MPC frameworks for its
implementation. At the time, there were no protocols or implementations available to
perform word embedding (Embedding Layer (EL)) privately, leading the authors to assume
that EL was publicly accessible and implemented by the party responsible for domain
classification. However, this approach may leak information about the model, especially if
EL was trained with private data [3].

In terms of communication complexity, the models presented in [18] exchange more
than 190 MB in messages, while our fastest protocol exchanges 17 MB (with quantization)
and the most accurate exchanges 21 MB (with quantization).

The work of Drichel et al. [18] uses MPC protocols to classify domains as DGA or
non-DGA, implementing their proposals in different MPC frameworks, such as PySyft,
TF-Encrypted, MP2ML and SecureQ8, applied to classifiers such as Inline [65], NYU [64],
ResNet [62] and FANCI.

Despite being a pioneering approach, the work of Drichel et al. [18] has several
limitations:

• It uses CNN-2D for the private inference of DNS domains, which adds unnecessary
complexity, since CNN1D is more appropriate for text classification problems.

• It does not use privacy-preserving EL, which implies that Bob needs to leak the
embeddings (EL) to Alice so that she can perform the embedding operation on the
plaintext. Thus, the solution does not guarantee end-to-end privacy.

• It does not consider the use of LSTM models with MPC.

• It is limited to binary classification, while this work presents predictions for detecting
binary and multiclass of DGA.

29

• Our work is the first to delve into the privacy-utility trade-off of Differentially-Private
Stochastic Gradient Descent (DP-SGD) in the context of DGA classification. This
unique perspective and our pioneering research make our work a compelling read for
those interested in the intersection of privacy and utility in deep learning.

3.3 Secure Multi-Party Computation for Natural Language
Processing

Hao et al. [91] present a solution for private inference in BERT transformer-based models
in a client-server setting, where clients have private inputs and servers maintain proprietary
models. One of their contributions is the development of a custom method for matrix
multiplication based on homomorphic encryption.

Adams et al. [92] introduce the first application of MPC protocols to text classification
using CNN. Their method adapts a CNN-2D from the Crypten framework into a CNN1D,
using two 2D convolutional layers to emulate the behavior of a CNN1D. In contrast,
this research directly implements a one-dimensional and private EL, resulting in a more
efficient solution. Furthermore, while [92] focuses on word-level classifications, this research
emphasizes secure character-level text classification. Finally, Adams et al. [92] do not
address private embeddings, assuming that Alice converts her text into an embedding
vector using a public BERT model before sharing it secretly. This method is not feasible
when the embedding is part of Bob’s confidential information. This work overcomes this
limitation by providing protocols and implementations for secure embeddings.

The SecureNLP model [93] presents two security protocols for LSTM and RNN in the
honest but curious model. The main difference from this research is that it uses LSTM for
character-level inference, while SecureNLP performs word-level inference. Additionally,
SecureNLP does not support private EL.

Knott et al. [94] provides a comprehensive overview of the Crypten framework,
demonstrating its application in text classification, speech recognition, and image classification.
Their work performs text classification through a sentiment analysis experiment using
a linear layer applied over word embeddings. Their approach differs from this research,
focusing on word-level rather than character-level classification. They do not include
private embeddings or provide protocols and implementations for LSTM.

30

3.4 IDS with Privacy-Preserving Machine Learning

Oliveira et al. [4] propose F-NIDS, which is a network IDS based on FL for IoT networks.
It uses FL and DP techniques with asynchronous communication between system entities,
aiming for scalability and data confidentiality. F-NIDS is adaptable to cloud and fog IoT
environments, maintaining satisfactory attack detection and classification performance.
The study evaluates three robustness strategies: Gaussian noise adjustment to protect
against inference attacks, sample size variation to secure training data, and resilience
against model inversion attacks.

Popoola et al. [95] propose Federated Deep Learning (FDL) for IDS in heterogeneous
networks. The FDL model showed better classification and generalization performance than
local DNN models. Furthermore, the Fed+ algorithm outperformed two state-of-the-art
fusion algorithms: federated averaging (FedAvg) and coordinated averaging (CM).

Nguyen et al. [96] provides a comprehensive review of emerging applications of FL in
IoT networks, covering recent advances in FL and IoT to their integration.

Zhu et al. [68] propose a scheme that combines perturbation encryption and data
encryption to protect privacy, using k-Nearest Neighbors (kNN) as the detection algorithm.

Celdrán et al. [97] propose a novel host-based, federated learning-driven IDS for IoT
spectrum sensors, employing ML and unsupervised deep learning, as well as system
call-based fingerprinting.

Aouedi et al. [98] introduce a IDS framework focused on federated mixture models
applied to IoT and Industrial IoT (IIoT). The framework initially uses primary classifiers,
such as Decision Tree (DT) and Random Forest (RF), to generate metadata, and the
Neural Network (NN) metaclassifier uses this metadata in the federated training step to
perform the final classification on the test set. Metadata, rather than sensitive user data,
is used in the training of the federated metaclassifier to enhance privacy.

Neto et al. [99] examine the correctness, validity, usefulness, and data collection pipeline
of the IoT datasets for experiments.

Li et al. [100] proposes the Dynamic Weighted Aggregation Federated Learning (DAFL)
IDS based on FL. Compared to conventional IDS, DAFL implements dynamic filtering and
weighting strategies for local models, improving IDS with lower communication overhead.

Attota et al. [101] present the MV-FLID approach, which uses FL on multiple views of
IoT network data to detect and classify attacks in a decentralized manner, maximizing
the detection efficiency of different classes of attacks.

Folino et al. [102] investigate data mining algorithms applied to IDS in distributed and
cloud environments, focusing on solutions based on the ensemble paradigm.

31

The works of [2,103–107] involve the use of FL in IDS, with [106] using a MPC approach.
In contrast, [104] focuses on an IDS approach for the IoT, and [103] applies it to mobile
devices.

Truex et al. [108] shows that the same global DP could be guaranteed by adding
a "fraction" of DP noise locally rather than using MPC protocols or the proposed DP
protocol.

3.5 Attacks and Defenses on Machine Learning

Carlini et al. [21] propose an analysis of membership inference attacks, which allow an
adversary to identify whether a specific piece of data was present in the training set of a
machine learning model. It argues that the evaluation of these attacks should focus on
the true positive rate at low false positive rates (≤ 0.1%) since commonly used average
accuracy metrics do not capture the confidence of the attack in identifying training set
members. To this end, the authors develop the Likelihood Ratio Attack (LiRA).

Sánchez et al. [109] discusses FL offers a solution by preserving privacy, but it is
vulnerable to malicious actors. This work contributes with a new dataset suitable for
FL, modeling the behavior of spectrum sensors under different SSDF attacks, and with
experiments that evaluate the robustness of the federated models against three families of
sensors, eight SSDF attacks, four detection scenarios (supervised and unsupervised), up to
33% of malicious participants, and four anti-adversarial aggregation functions.

Fredrikson et al. [110] introduce a new model inversion attack class that exploits
prediction confidence values to extract sensitive information. The attacks have been
applied to decision trees for lifestyle surveys and neural networks for facial recognition,
allowing them to infer sensitive information and reconstruct facial images. In addition,
researchers have investigated countermeasures such as training decision trees with privacy
and rounding confidence values, showing how to prevent these attacks with minimal utility
loss.

Mansouri et al. [111] examine the suitability of secure aggregation based on cryptographic
schemes for FL, formally defining the problem and categorizing existing solutions. In
addition to exploring the specific challenges of FL, it reviews recent secure aggregation
solutions. It proposes an improved definition of secure aggregation that better fits this
context while identifying future research directions.

Nguyen et al. [112] presents FLAME, a defense framework that estimates the amount
of noise needed to eliminate backdoors. It uses model clustering and weight pruning
to minimize injected noise. The evaluation of FLAME on image classification, word

32

prediction, and IoT intrusion detection datasets demonstrates that it effectively removes
backdoors with minimal impact on benign model performance.

Bonawitz et al. [113] present a communication-efficient and fault-robust protocol for
secure aggregation of high-dimensional data. The protocol allows a server to securely
compute the sum of large data vectors maintained by users on mobile devices (without
learning the individual contributions). It can be used, for example, in federated learning
to aggregate user-contributed deep neural network model updates. This work proves the
protocol’s security in honest-but-curious and active adversary scenarios. This work shows
that security is maintained even if an arbitrary subset of users abandons the process at
any time.

Haoyang et al. [114] propose 3DFed, an adaptive, extensible, and multi-layered
framework for performing covert backdoor attacks in a black-box scenario. 3DFed has three
evasion modules that camouflage the backdoor models: training with constrained loss,
noise mask, and decoy model. By implanting indicators into the backdoor model, 3DFed
obtains feedback from the global model and dynamically adjusts the hyperparameters of
the evasion modules.

Shejwalkar et al. [115] propose to develop a systematization of poisoning attacks in
FL, enumerating possible threat models, poisoning variations, and adversary capabilities.
This work focuses on non-targeted poisoning attacks, which are highly relevant for FL
deployments in production. This work critically analyzes these attacks in practical
FL environments, carefully characterizing the threat models and realistic adversary
capabilities. This work proposes data and model poisoning attacks and demonstrates,
through experiments on three benchmark datasets, the (in)effectiveness of poisoning
attacks in the presence of simple defenses.

3.6 Frameworks PPML

This section will list some frameworks used and comment on the need to unite them all
with Privacy-Preserving Machine Learning Framework (P2MLF).

Keller [19] proposes MP-SPDZ, which is software designed to evaluate the performance
of several MPC protocols under different security models, including honest or dishonest
majority and semi-malicious (passive) and malicious (active) corruption scenarios. It
incorporates technologies such as secret sharing, Homomorphic Encryption (HE), and
garbled circuits to support various security configurations. P2MLF build MPC protocols
using MP-SPDZ and perform inference with trained models such as CNN1D, LSTM, MLP,
EL, and Logistic Regression (LR). An MPC protocol is also employed to aggregate models

33

trained with FL. In addition, MPC is used for training LR, allowing the inclusion of
Laplacian noise after training to create a differentially private LR model.

Beutel et al. [116] propose Flower is a framework that adapts existing ML algorithms and
training pipelines to federated settings, allowing the evaluation convergence properties and
training times. It supports extensions for mobile and wireless clients with varying compute,
memory, and network resources and simulates these conditions in cloud environments
for realistic testing. Designed for scalability, Flower allows connecting and training large
numbers of clients simultaneously, providing a platform for FL experiments. Flower does not
support MPC protocols, as its focus is to act as a framework for FL. Integrating protocols
such as MPC or HE could increase privacy by allowing aggregators to aggregate local
models in one global model. Alternatively, improve security and privacy by aggregating
and detecting adversarial attacks on encrypted data. P2MLF build FL protocols using
Flower.

Google Research team proposes TensorFlow Privacy (TF-Privacy) 1, an open-source
library that provides implementations of optimizers with DP support for training ML
models using DP-SGD. P2MLF trains EL, CNN1D, LSTM, and MLP models using
DP-SGD from the TF-Privacy library, with DP optimizers provided by the TensorFlow
and Keras APIs.

Ziller et al. [117] propose PySyft, which is an open-source library that improves security
and Privacy-Preserving Machine Learning (PPML) by integrating with popular frameworks
such as PyTorch, providing a user-friendly interface for researchers to implement FL, MPC
and DP methods. Designed for accessibility and extensibility, PySyft allows researchers to
explore privacy-preserving techniques easily.

Like PySyft the P2MLF framework supports MPC, FL, and DP. However, the difference
is that PySyft does not contain native MPC protocols for EL, LSTM, and CNN1D built on
MP-SPDZ [19] to the P2MLF. P2MLF uses MP-SPDZ because it contains many protocols
MPC for performing experiments.

1https://github.com/tensorflow/privacy

34

https://github.com/tensorflow/privacy

Chapter 4

P2MLF

This chapter presents Privacy-Preserving Machine Learning Framework (P2MLF) 1 proposal
to ensure data privacy in Machine Learning (ML).

The framework focuses on mechanisms for performing inference and training with data
privacy guarantees.

This work refers to techniques that use training data from multiple parties as collaborative
training, as these parties work together to develop a ML model using data from all
participants. Therefore, methods using Secure Multi-Party Computation (MPC) and
Federated Learning (FL) will be classified as collaborative training.

P2MLF is applied to the problem Domain Generation Algorithms (DGA) (see Chapter
6) using all framework phases: preprocessing, training, model, and inference. In terms
of training, only the non-collaborative training method uses Differential Privacy (DP)
guarantees through the use of Differentially-Private Stochastic Gradient Descent (DP-SGD).

For naming purposes, this work refers to P2MLF training as secure training and P2MLF
inference as secure inference.

The solution incorporates collaborative training to address the Collaborative Intrusion
Detection Systems (CIDS) problem (see Chapter 5).

4.1 Introduction

Figure 4.1 outlines an application life cycle’s different phases incorporating ML, including
preprocessing, training, modeling, and inference. In addition, it demonstrates how to map
these phases to solutions that ensure privacy.

Although designed for DGA and CIDS problems, P2MLF allows adaptation to other
issues by reusing parts of its structure. For example, it is possible to perform training
without privacy but use the trained model in the clear in a method with secure inference.

1https://github.com/ricardojmmaia/p2mlf

35

https://github.com/ricardojmmaia/p2mlf

Figure 4.1: P2MLF pipeline

The proposed block-based overview lets the engineer understand which privacy requirements
must follow each phase of a ML pipeline. In this case, an engineer or designer looking to
use P2MLF for other problems must consider the trade-off between the privacy level and
runtime in the case of collaborative training, as there is the possibility of using one of the
following approaches: DP with FL (aggregator using MPC), DP with MPC, and DP with
FL.

For a simple explanation of the phases of P2MLF, this work will assume that Alice is
the data owner and Bob is the model owner. In the case of collaborative training, where
the goal is to perform model training using data from different parties, this thesis will
introduce Clara and Dan while also considering that Bob also intends to use his data for
training.

Figure 4.2 shows two main aspects of the P2MLF that provide security and inference,
keeping the privacy data; there is a proposal to preprocessing in the general training and
inference are two main aspects in ML.

Consider the inference represented in the diagram 4.2, where Alice has input data and

36

the desire to get inference without providing her clear data. Consider clear data as original
information without protection from cryptographic protocols.

The proposal is to provide secure inference to Alice and keep the privacy of Bob’s
model parameters. The P2MLF uses MPC protocols to create secure inference, where the
MPC protocols will detailed in the section 4.5, and 4.6.

P2MLF focused only on the MPC protocols necessary to the applications DGA(see
Chapter 6) and CIDS (see Chapter 5). Creating MPC protocols to represent the respective
ML model will be necessary if an engineer intends to use secure inference.

Regarding the secure training on P2MLF, four proposals are divided into collaborative
and non-collaborative trains. The non-collaborative training is a situation where only
Bob has the training data. Collaborative training is a situation where only Bob, Clara,
and Dan intend to create a ML model. The privacy collaborative training is beneficial
in situations where Bob needs another training data (Clara and Dan in this scenario) to
detect different cases and improve the accuracy of the Bob’s model.

Figure 4.2: P2MLF Framework Overview

37

4.2 Threat Model

P2MLF builds the MPC protocols on existing MPC primitives [19]. It is possible to adapt
the proposed protocols to any threat model by replacing the underlying primitives with
those available in the literature for the specified threat model. This work demonstrates
how the protocols work for the case of “honest-but-curious” servers, which are participants
that follow the protocol instructions but try to obtain as much information as possible
about the secret data. This work considers threat models:

• With two and three computing servers.

• That withstands attacks by any adversary that can corrupt one server that he
chooses, meaning the system preserves privacy guarantees even if one of the MPC
servers becomes corrupted.

4.3 Privacy Requirements

Bob cannot learn anything about Alice’s input. Alice should only learn the result of the
classification protected by (ε, δ)-DP and cannot learn anything else about Bob’s model and
training data. The MPC servers cannot learn anything about Alice’s and Bob’s private
inputs.

P2MLF supports the input and output privacy requirements. Regarding output privacy,
the goal is to protect the data used to perform model training because, only with the
input privacy requirement, it is possible for Alice (considering P2MLF Inference) to get
information of the Bob’s model during secure inference. To ensure privacy in the output,
P2MLF uses the guarantees of DP during the training of the models.

In the training with privacy requirements, the P2MLF guarantees input privacy, where
only the owner data knows their data, on MPC protocols. In the case of collaborative
training, Bob, Clara, and Dan do not need to share their data with a trusted third party.
In addition, no other party will know the data of another party. Furthermore, P2MLF
ensures that during collaborative training, there is no leakage of data from Bob, Clara,
and Dan.

4.4 Basic Building Blocks

This work builds on the proposed protocols on a few existing building blocks in the
MP-SPDZ framework [19]. This work uses MPC protocols πSIGMOID for the sigmoid

38

function, πSOFTMAX for the softmax function, πMUL for the secure dot product, πTANH for
the hyperbolic tangent, πRELU for the relu function, πDENSE for the dense layer, and πLR for
Logistic Regression (LR) model. See [19] for a detailed description of these primitives.

4.5 P2MLF Preprocessing

This section presents a proposal to ensure privacy in preprocessing.
Considering the requirement that only the owner knows their data, Bob does not want

to pass their model, which is their data, to Alice.
Therefore, in the DGA problem, Alice needs a MPC protocol to represent Embedding

Layer (EL) to process their text input Domain Name System (DNS) into numbers.
P2MLF privately obtains the embeddings, which are numerical values, and then passes

them to the subsequent layers (One-Dimensional Convolutional Neural Network (CNN1D),
Long Short-Term Memory (LSTM), or MultiLayer Perceptron (MLP)) for the DGA
application.

The question is whether there is any preprocessing of Alice’s data that depends on
any information from Bob. An MPC protocol should represent the desired preprocessing
algorithm. This work requires an EL for the reasons outlined in this section’s beginning.

It is possible to structure the pipeline in blocks and add new MPC protocols depending
on the problem; it is essential to consider the case where there is processing with Alice’s
data that depends on some data from Bob.

4.5.1 Embeddings

The EL transforms the input matrix X from Alice to provide a vector representation of
the characters in the input text using Bob’s learned embedding weights matrix W.

Many previous works for MPC-based privacy-preserving text classification, including
DGA detection, require Alice to embed the input text, which in turn requires the
trained embeddings to be made public and may leak information regarding training
data unless trained with DP guarantees [18, 92]. Moreover, these trained embeddings may
be proprietary.

In order to mitigate the problems related to the above scenarios, this work proposes
a novel MPC protocol for the embedding layer to compute the embeddings of private
input text in an oblivious manner. The vectors resulting from the embedding layer of the
classification models represent the lexical information of the characters in the given DGA
domain (URL) in the ASCII character set. The idea behind πEMBEDDING is simple: this

39

work extracts the vector representation of each character in the input text (in this case, it
is a domain or URL) from the trained embeddings with guarantees of DP.

One of the simplest ways to extract such embeddings (Protocol 1) is to represent
the input text as one hot encoded matrix JXK of dimension l × 128 and multiply it
with the weights of trained embeddings JWK of dimension 128× 128. The product is a
matrix JYK of dimension l × 128 that represents a set of vector representations of each
character in the input text. This work notes that feature extraction done this way requires
only multiplication operations for which state-of-the-art MPC primitives are available,
resulting in optimized performance of the MPC protocol to extract embeddings of the
input. Moreover, this protocol is general enough to work with character sets of arbitrary
cardinality c.

Protocol 1: πEMBEDDING for secure inference of embedding layer
Input : Shared secret matrices JXK of dimension l × c representing one-hot encoded

inputs, and matrix JWK of dimension c× d representing embedding weights
are used, considering l the length of the input text in characters, c as the
cardinality of the character set and d is the dimensionality of the embedding
space.

Output :A shared secret embedding matrix JYK of dimensions l × d is generated from
the input domain to be classified.

1 JYK← πMUL(JXK , JWK)
2 return JYK

This work provides the first protocol and implementation for an embedding layer in
MPC and implements it in the MP-SPDZ framework. The main idea behind this solution
is to represent Alice’s input to the protocol as a matrix JXK where each row of JXK is
one hot encoding of a character of the domain name to be classified. So, each row of JXK
consists of a binary vector where precisely one bit sets to 1. An inner product is made
between JXK and the private embedding matrix JWK, resulting in JYK, and the result of
the embedding layer is the input data for the CNN1D, LSTM, and MLP models [3].

4.6 P2MLF Models

This section shows MPC protocols built to represent a ML model needed for P2MLF
inference.

The challenge inherent to each of the models created in this section concerns the
restrictions imposed by MPC that restrict the use of addition and multiplication operations.
An engineer who wishes to use P2MLF for inference must create an MPC protocol, if one
does not exist, to represent the model or layers of an ML model.

40

4.6.1 MLP

This work leverages an existing implementation of an MPC protocol for secure inference
with a MLP, available within the MP-SPDZ framework [19]. MLPs represented by πDENSE

will be used as a baseline method in this framework.
The input is secret shared by Alice, while Bob secret shares the model weights. Bob’s

model in the architecture with MLP composes the weights of the embedding and dense
layers.

4.6.2 CNN1D

This solution is now presented based on CNN1D. This architecture has an input layer
with protocol πEMBEDDING, a layer with protocol πCNN1D, and a layer with protocol πDENSE

representing the dense layer in MPC. The input will be secret shared by Alice, while Bob
secret-shares the model’s weights.

This work leverages a proposal for a CNN1D [92]. The protocol πCNN1D for secure
inference with CNN1D uses (a) the existing MPC protocols available in the literature
for πRELU, and πMUL (b) the MPC protocols for embedding is πEMBEDDING and CNN1D is
πCNN1D.

In Protocol 2 for secure inference with a CNN1D layer, it is used as input of the secret
shared embeddings obtained as output from the πEMBEDDING protocol and the parameters
of the secret shared model, i.e. the weights of the kernel (k in total), each of size k for the
CNN1D layer of Bob.

Protocol 2: πCNN1D for secure inference with CNN1D Convolution
Input :The shared secret matrices JXK, obtained as the output of the private

embedding computed by the πEMBEDDING Protocol, JbK, and JwK representing
input, bias, and weight as secret shared. The constants k and l represent the
kernels and rows of JxK.

Output :A secret shared JyK of dimension l − k + 1.
1 for i← 0 to l − k + 1 do
2 Jy[i]K← JbK
3 for j ← 0 to k − 1 do
4 Jy[i]K← Jy[i]K + πMUL(JX[i+ j]K , Jw[j]K)
5 end
6 end
7 return πRELU(JyK)

41

4.6.3 LSTM

Now, the solution based on LSTM includes an input layer with the πEMBEDDING protocol,
a layer with the πLSTM protocol, and a layer with the πDENSE protocol representing the
dense layer in MPC. Alice securely shares her input, while Bob securely shares the model
weights.

Protocol 3 describes the layer LSTM. The input for the LSTM layer is the secret shared
output of the EL, while the Bob secret shares the kernel weights (JwfK , JwiK , JwoK , JwcK)
and the biases (JbfK , JbiK , JboK , JbcK). This work refers the reader to Section 2.2.3 for an
explanation of these terms. Operations involve MPC protocols πSIGMOID for the sigmoid,
πMUL for secure multiplications, and πTANH for the hyperbolic tangent.

Protocol 3: πLSTM for secure LSTM
Input : Secret shared vector x (obtained as output of the private embedding computed

by Protocol πEMBEDDING), and secret shared values of the weights (Jwf K, JwiK,
JwoK, JwcK), and biases (Jbf K, JbiK, JboK, JbcK). Let [a, b] be the concatenation of
a and b, with the input length publicly known.

Output : In the inference process the result after the LSTM layer is a secret shared
vector JyK.

1 Jh0K← 0
2 Jc0K← 0
3 for t← 1 to n do
4 JftK← πSIGMOID(πMUL(Jwf K , [Jht−1K , Jx[t]K]) + Jbf K)
5 JitK← πSIGMOID(πMUL(JwiK , [Jht−1K , Jx[t]K]) + JbiK)
6

r
c
′
t

z
← πTANH(πMUL(JwcK , [Jht−1K , Jx[t]K]) + JbcK))

7 JctK← πMUL(JftK , πMUL(Jct−1K , πMUL(JitK ,
r
c
′
t

z
)))

8 JotK← πSIGMOID(πMUL(JwoK , [Jht−1K , Jx[t]K]) + JboK)
9 JhtK← πMUL(JotK , πTANH(JctK))

10 Jy[t]K← JhtK
11 end
12 return JyK

4.6.4 LR

Protocol 4 describes the protocol MPC for secure inference πLR is known by Alice and Bob.
Alice provides the input vector x, and Bob provides the LR model of coefficients vector
w and bias b. The πLRINFERENCE protocol uses a MPC πSIGMOID protocol after the secure
sum πSUM of the bias JbK and the result of secure dot product Alice’s input JxK with Bob’s
coefficients JwK. At the end step of the πLR protocol, Alice and Bob receive the inference
values JyK. In the experiments conducted in this study, this work used a previously trained

42

LR model with DP. However, the πLRINFERENCE protocol allows loading LR models trained
earlier with or without DP.

Protocol 4: πLRINFERENCE is the MPC protocol to secure inference of LR model
Input : secret-shared input vector JxK of length n represents input data, vector JwK of

lenght n represents coefficients of the LR model, and JbK value represents the
model’s bias.

Output :A secret-shared value JyK represents output of the model
1 JyK← πSIGMOID(πSUM(πDOTPRODUCT(JxK , JwK), JbK))
2 return JyK

4.7 P2MLF Inference

P2MLF inference is represented by the Figure 4.3. To ensure the inference privacy in the
P2MLF uses MPC protocols.

In the secure inference, Alice and Bob send servers the secret shares of their data. In
this case, Alice sends the secret shares of the input data, and Bob sends the representation
of the secret shares of the parameters of the model ML. Then, the servers compute only
the secret shares of the Alice’s input data and Bob’s model parameter instead of clear data.
The servers compute secret shares in the final phase step and then return the inference
result.

Figure 4.3: P2MLF Inference

4.8 P2MLF Training

This section discusses four methods to secure training, divided into non-collaborative
and collaborative training. Regarding collaborative training, there are methods proposals
summarized in figure 4.4: DP with FL; DP with MPC; DP with FL using aggregations of
model parameters with MPC;

43

Figure 4.4: P2MLF Training

4.8.1 Basic Building Blocks

P2MLF training establishes components within the MPC framework, specifically using
MP-SPDZ, as referenced in [19] and FL Framework called Flower, as detailed in [116].
Additionally, P2MLF training integrates the LR with DP on MPC protocol from the works
cited in [5].

Furthermore, this section uses LR with DP as created in the work cited in [118].
P2MLF inference uses MPC protocols πSIGMOID for the sigmoid function, πDOTPRODUCT

for the secure dot product, πSUM for the sum, πLRINFERENCE for inference LR, πLR for the
training LR. See [19] for a detailed description of these MPC primitives. P2MLF training
uses the πDP protocol to generate DP noise on MPC, described in [5].

P2MLF training uses FL primitives πFLSERVER for FL Server protocol, πFLCLIENT for the
FL Client protocol, and πFLAGGREGATOR that combines local LR on each client with a server
that performs model averaging LR. For a detailed description of these primitives FL, refer
to [116]. In the FL protocols, this work implements the πLRDP protocol to perform LR
training with DP, as implemented in the work cited in [118].

4.8.2 Collaborative Training

The collaborative P2MLF training is helpful in situations where Bob wants to improve his
model using other training data and thus detect patterns belonging to the training data of
Clara and Dan. However, in collaborative training, the P2MLF training aims to guarantee

44

privacy in both input and output. The framework P2MLF can be used in collaborative
training with n clients.

4.8.2.1 DP with FL

Figure 4.5 represents this collaborative training method that uses protocols FL with DP.

Figure 4.5: P2MLF Collaborative Training using DP with FL

This method describes the FL training protocol using two protocols, πFLSERVER represented
by protocol 6 and πFLCLIENT represented by protocol 5. Each client possesses their data
and performs local training with it. Each party’s data, split horizontally, consists of a
matrix with input data X. The function LR_traindp, which embodies training with LR
and DP [118].

The expression wi
e ← we means that each model of each client i at epoch e receives

the latest global model.
wi

e+1 ← LR_traindp(wi
e,X) means that the next client local model will be trained

in 1 epoch using the local data of client i.
Finally, the local model wi

e+1 will be sent to the FL server to be aggregated with other
local models from other clients.

45

After clients send their models to the server, the πFLAGGREGATOR protocol aggregates
them into a single global model using an arithmetic mean, as detailed in [119].

In this method, the aggregator receives the model’s parameter in the clear, and this
could be a security failure point because it aggregates models from different parties without
privacy guarantees.

Protocol 5: πFLCLIENT represents the FL client in the P2MLF training using LR
model

Input :Each client i provides the matrix input data X. The function LR_dp is the
LR algorithm to perform the training with DP locally in each client. wi

e

represents the model of the client i trained with LR and DP in epoch e. we is
the global model in the epoch e

Output :Each client i sends to server the model wi
e

1 wi
e ← we

2 wi
e+1 ← LR_traindp(wi

e,X)
3 return πFLCLIENT sends wi

e+1 to the FL Server

Protocol 6: πFLSERVER is the FL Server protocol to P2MLF training of LR model
Input :n is the total number of clients.
Output :The aggregation of the LR model’s parameter of all n clients. we+1 is the next

global model
1 for each client i where 1 ≤ i ≤ n do
2 we

i ← πFLCLIENT(i)
3 end

4 we+1 ←
∑n

i←0 wi
e

n
5 return we+1

4.8.2.2 DP with FL(Aggregation on MPC)

Figure 4.6 represents this collaborative training method that uses LR with DP as created
in the work cited in [118].

In this case, the client does not send the parameters in the clear to an aggregator
server, but rather the secret shares of the model parameters. The aggregator server uses
a MPC protocol to obtain the sum of each of the parameters of the client models. For
performance reasons of the MPC protocol, the division occurs on the client side in the
clear; after all, a division is computationally expensive in MPC.

For a detailed description of these primitives FL, refer to [116]. In the FL protocols,
this work implements the πLRDP protocol to perform LR training with DP, as implemented
in the work cited in [118].

46

Protocol 7: πSECUREFLCLIENT represents the Secure FL Client in the P2MLF
training using LR model

Input :Each client i provides the matrix input data X. The function LR_dp is the
LR algorithm to perform the training with DP locally in each client. wi

e

represents the model of the client i trained with LR and DP in epoch e. we is
the global model in the epoch e. Consider that Jwi

eK is the secret shares of wi
e

Output :Each client i sends to the Secure FL Server the secret shared Jwi
eK model

1 wi
e ← we

2 wi
e+1 ← LR_traindp(wi

e,X)
3 return πSECUREFLCLIENT sends

q
wi

e+1y to the Secure FL Server

Protocol 8: πSECUREFLSERVER is the Secure FL Server protocol to P2MLF training
of LR’s model using MPC protocol to aggregate the clients’s models

Input :n is the total number of clients.
Output :The aggregation of the LR model’s parameter of all n clients.

q
we+1y is the

next global model
1 for each client i where 1 ≤ i ≤ n do
2 Jwi

eK← πSECUREFLCLIENT(i)
3 end
4

q
we+1y← πSUM([Jw0K,···JwnK])

n
5 return

q
we+1y

This training uses FL primitives πSECUREFLSERVER for FL Server protocol, πSECUREFLCLIENT

for FL Client protocol, and πSUM that is a MPC protocol that combines the local LR
model on each client with a server that performs the sum of the model LR. Each client
sends secret shares representing the model parameters to a set of servers that will process
these secret shares.

In this case, the aggregator will aggregate the models from the different parties, ensuring
the privacy of the model parameters.

To increase security in this specific method or opportunities to research:

• The aggregator should avoid adversarial attacks, in which one of the parties could
poison the models by trying to change the parameters of their model to influence
the global model. One way to avoid adversarial attacks would be a MPC protocol
that checks whether the parameters of a ML model are an outlier, thus removing
the poisoned model.

• A possible method to identify outliers in poisoned models is using the L2 Norm, the
Euclidean Norm [120]. However, it is necessary to investigate the impact of using
two models trained with differential privacy in this scenario. In this case, research
about other distance calculation methods must focus on methods that perform well
when mapped to MPC.

47

Figure 4.6: P2MLF Collaborative Training using DP with FL (Aggregation with MPC)

• One point worth researching is a MPC protocol for aggregation to check if some
clients use DP while training their local models.

• Another possibility is to research the impacts of a MPC aggregator protocol that
adds DP generating the global model in FL scenarios.

4.8.2.3 DP with MPC

Figure 4.7 represents this collaborative training method that uses protocols MPC with
DP.

For this P2MLF training, this method bases the MPC protocol 9 on the work [5], which
uses MPC and DP to perform the LR training. The party has horizontally partitioned the
data into a matrix, including the input data x and labels. The first step of the protocol
involves the existing MPC protocol πLR to perform LR training using Stochastic Gradient

48

Figure 4.7: P2MLF Collaborative Training using DP with MPC

Descent (SGD) [19]. The second step involves using the πDP protocol to add Laplacian
noise on the coefficients of LR model, as described in work [5].

The protocol πDP, as described in [5], requires the parties to jointly generate noise
appropriate for unseen model coefficients, ensuring that no entity discerns its true value.
This approach safeguards the integrity of DP, allowing for the secure disclosure of noisy
coefficients without violating DP’s confidentiality standards [5].

This protocol πLRTRAINING uses an MPC protocol to achieve ε by perturbing the
coefficients of a trained LR model with a noise vector η. The mechanism samples noise
from a probability density function defined as h(η) ∝ e−

nεΛ
2 |η| [5], where n is the number

of training instances, ε is the privacy parameter, Λ is the regularization strength, and |η|
is the L2 norm of the noise vector [5].

Two conditions must be satisfied to ensure ε-DP: All input feature vectors must have an

49

L2 norm of 1, and the LR model must use L2 regularization. When these conditions hold,
the sensitivity of the coefficients is bounded by 2

nΛ , enabling the mechanism to preserve
differential privacy [5].

In summary, πDP protocol defines sensitivity with the L2 norm and generates a noise
vector from a multidimensional power exponential distribution. πDP protocol follows three
steps: First, they generate a d-dimensional Gaussian vector by sampling each coordinate
from a Gaussian distribution with mean zero and variance one. Next, they normalize
the vector by dividing each coordinate by its L2 norm, ensuring it is on the unit sphere.
Finally, πDP adjusts the vector’s magnitude by multiplying each coordinate by a γ value
sampled from an appropriate gamma distribution. The parties then add the resulting
noise vector to the model’s coefficients trained in the πLR protocol, preserving privacy and
ensuring compliance with DP guarantees to the LR model [5].

Protocol 9: πLRTRAINING is the MPC protocol to secure training of LR model
Input : Alice provides the data JXK of length n, where the JXK matrix contains input

data. Bob provides his LR model’s JwK vector of length n and its bias value
JbK. The LR model with DP features the coefficient vector JwdpK and the bias
value JbdpK

1 . Output :A secret-shared value JwdpK, and JbdpK represents output of the model with
DP

2 JwK , JbK← πLR(JXK)
3 JwdpK , JbdpK← πDP(JwK , JbK) return JwdpK, JbdpK

As an improvement, this protocol could incorporate the detection of adversarial attacks,
considering the poisoning of the parties’ data.

4.8.3 Non-Collaborative Training

The non-collaborative P2MLF training uses only the Bob’s training data, but in this case,
use DP during training to avoid leaking Bob’s training data.

4.8.3.1 DP (DP-SGD)

Figure 4.8 illustrates the non-collaborative training approach utilizing DP. In this scenario,
P2MLF uses DP-SGD in the models training based on CNN1D, LSTM, and MLP. This
approach assumes that only Bob possesses the training data and seeks to ensure the privacy
of the data by incorporating differential privacy into the training process.

50

Figure 4.8: P2MLF Non-Collaborative Training with DP

4.9 Security and Privacy

In this section, security considerations will be made for the preprocessing, model, inference,
and training phases when the protocols MPC and DP are involved to ensure input privacy
and output privacy. To simplify the explanation, the DGA application (see Chapter 6),
which utilizes all phases of the P2MLF, will be used as an example.

In P2MLF, collaborative training methods do not prevent adversarial attacks. The
principle is to eliminate an attacker who has modified his parameter and is trying to
influence the global model. An adversarial attack, for example, could try to influence the
global model to, for example, try to change a class considered malignant to benign.

One way to prevent adversarial attacks is to use methods to check whether the
parameters sent by a given local model are outliers [120]. In this way, the aggregator
would exclude a poisoned local model, which would return the global model without the
poisoned model.

A secure aggregator [111] could be built with or without MPC protocols or Homomorphic
Encryption (HE).

The following is the list of collaborative training methods in ascending order of
privacy guarantees P2MLF training DP with FL > P2MLF training FL with DP and
aggregator using MPC > P2MLF training MPC with DP. However, reverses this order
when considering the scalability of each method:

1. P2MLF training DP with FL: Clients perform the training of the local models with
DP guarantee and send the parameters to an aggregator that will aggregate the
parameters of the local models.

2. P2MLF training FL with DP and aggregator using MPC: Clients perform training
on local models with DP guarantee and send the parameters to a MPC protocol for
a secure aggregator that will aggregate the parameters of the local models.

51

3. P2MLF training MPC with DP: MPC protocols for training ML models with DP
guarantees.

4.9.1 Input privacy

The underlying MPC protocols from MP-SPDZ [19] that this work uses in the solutions
(replicated secret sharing in the case of 3 computing servers with an honest majority
and the semi2k protocol in the case of 2 computing servers without an honest majority)
implement a secure arithmetic black-box MPC. They only perform operations over secret
shares and no information leaks during the computation over the secret shares. Moreover,
this work uses the MPC sub-protocols πSIGMOID for the sigmoid function, πSOFTMAX for the
softmax function, πMUL for the secure dot product, πTANH for the hyperbolic tangent, πRELU

for relu function, πDENSE for dense layer, and πLR for LR model from MP-SPDZ [19]. All
these sub-protocols do not leak any information and are universally composable, Universal
Composability (UC), secure. The novel protocols that it proposes (πEMBEDDING, πCNN1D,
and πLSTM), therefore, do not leak any information to the computing servers responsible
for the MPC operations over the secret shares about Alice’s or Bob’s inputs; nor any
private information leaks to Alice or Bob other the result of the classification (which
Alice can reconstruct by getting all shares of the output from the computing server). The
protocols UC-securely implement the ideal functionality FPPCDGA for privacy-preserving
classification of domains as DGA or non-DGA that is described below for the case of
classification using MLP, CNN1D, or LSTM models.

Therefore, P2MLF follow UC framework to the protocols πCNN1D, πDP, πDENSE, πEMBEDDING,
πLRINFERENCE,πLRTRAINING, πLSTM, πMUL, πRELU, πSIGMOID, πSOFTMAX, πSUM, πTANH, πFLAGGREGATOR.

Functionality FPPCDGA

FPPCDGA waits until it receives as input from Alice her domain name x and as
input from Bob his model m for the DGA classification that he trained with DP
guarantees.
Upon receiving both inputs, FPPCDGA locally computes the result y of classification
x using the model m and sends y as a public delayed output to Alice.

4.9.2 Output privacy

The guarantee that Alice does not learn information about individual entries used in
the training of Bob’s model - is provided by the DP guarantees of DP-SGD [40] as
utilized by Bob. With output privacy, attacks such as membership inference [21] or model
inversion [110] can be avoided.

52

Chapter 5

P2MLF Training Applied in CIDS

This chapter presents collaborative and secure training proposals based on Privacy-Preserving
Machine Learning Framework (P2MLF) applying in the Collaborative Intrusion Detection
Systems (CIDS) problem. It discusses each proposed method’s privacy, security, and
performance levels.

A CIDS consists of network data from different parts [106,121]. This work analyzes
the privacy requirements of both input and output data to underscore the necessity of
adopting P2MLF. A CIDS is helpful because it enables the creation of a model to detect a
wide range of network attacks. Privacy is essential when parties(organizations, devices, or
people) must perform model training with sensitive data due to regulatory data privacy
requirements.

Thus, secure training will enable parties to collaborate to build a model that takes
advantage of each data set’s unique characteristics while prioritizing each party’s data
protection.

The intrusion detection discussed will focus on protecting network data from Internet of
Things (IoT) devices. Differential Privacy (DP) is used to perform Logistic Regression (LR)
model training, ensuring the privacy of the results and preventing potential leaks in trained
models. Input data privacy is on guarantees through Secure Multi-Party Computation
(MPC) and Federated Learning (FL), which distribute the training process between parties.

This chapter will not address the prevention of adversarial attacks, where a participant
could introduce a compromised model to alter the behavior of the global Machine Learning
(ML) model, potentially causing the model to classify a malicious class as benign.

5.1 Introduction

Intrusion Detection System (IDS) detects irregularities and potential threats in network
traffic by analyzing incoming data, inspecting packets or flow types, and identifying

53

malicious traffic [122] [123]. Confirmed incidents generate reports that are kept confidential
for privacy reasons. However, significant volumes of both benign and malicious traffic
information are required to build effective ML models that can learn to detect threats.
Organizations can collaborate to expand their incident base and conduct collaborative
training. However, many companies need to avoid such collaboration to avoid exposing
data that could reveal sensitive customer information [124].

A traditional approach to training ML involves sending data to a trusted third party to
consolidate it and use it as training data. However, centralizing data also poses significant
privacy and security risks. A centralized approach becomes a single point of failure; if the
data center holding the data is compromised, it allows an attacker to leak that information.
This vulnerability highlights the need for stringent security measures and robust data
protection protocols to protect provisional information from malicious actors [69,97,101].

The availability of multiple datasets from different parties allows for developing models
(CIDS) capable of identifying a broader range of attacks. However, there are situations
where companies holding datasets are willing to contribute their data as long as data
privacy guarantees are in place [69,97,101].

Information exchange on cyberattack incidents can facilitate rapid decision-making and
the implementation of robust countermeasures. Specifically, integrating proactive cyber
threat incident sharing with defensive mitigation strategies can increase the resilience
of entities to build a collective defense against new or potentially unknown attacks and
malware. Therefore, it is crucial to develop platforms, tools, frameworks, and methodologies
that enable efficient access and sharing of information on threat events to respond quickly
and mitigate potential damages [121].

Considering all the points presented, the main contribution of this work is a CIDS
approach that prioritizes the privacy of the parties’ network data and the intellectual
property of the CIDS model owner. This work uses DP in the LR model training, ensuring
output privacy and avoiding potential data leaks in the trained models. This work ensures
input privacy by using MPC and FL to distribute training across parties.

5.2 Problem

Consider that two or more parties wish to develop a CIDS utilizing data from all involved
parties. However, privacy requirements dictate that only the data owner should have
exclusive access to their information. This work will refer to this problem as the problem
of training with data privacy.

Figure 5.1 illustrates the first problem discussed in this work. Consider three parties(organizations)
with data confidential: Bob, Clara, and Dan. Consider that these parties have confidential

54

Figure 5.1: Illustration of benefits and challenges for training a CIDS with data from
different parties

data traffic on their IoT networks and intend to use these data to create a CIDS. As a
result, Bob, Clara, and Dan are seeking a solution that facilitates the training of a CIDS
while simultaneously ensuring the privacy of each party’s data. They aim to develop a
CIDS that upholds training data privacy. By combining the data from the three parties,
this work can create a model for a CIDS that efficiently detects attacks A1, A2, and A3.
The challenge lies in training the CIDS’s ML model with data from the three parties
without using a centralized repository or trusting these data to a third trusted party. In
other words, one must conduct the process in a way that allows only each data owner to
access their respective data.

This problem to be solved is how to perform a CIDS’s model training with data from
different parties, ensuring that only the data owner can access their respective information.

Figure 5.2: Illustration of benefits and challenges of secure inference

55

Consider a second problem where there are two parties, and one owns the data and
wants to perform inference to detect intrusion using a model CIDS. However, there is a
privacy requirement on both sides; only the owner must know the data and only the model
owner must know the CIDS model.

The second problem, illustrated in Figure 5.1, explains the secure inference. Consider
a party called Alice, which has sensitive data traffic from the IoT networks. Consider
another party, Bob, who owns a model for CIDS. Therefore, Alice wants Bob to provide
data inference, ensuring Alice’s data privacy; this way, Bob will not know Alice’s plain
text data. The meaning of Bob’s privacy guarantee will ensure that Alice does not receive
any information about the weights of the model trained by Bob.

When applied in ML, technologies like MPC, Homomorphic Encryption (HE), and FL
are instrumental in safeguarding input privacy and effectively ensuring the confidentiality
of a party’s data; however, it is crucial to recognize that MPC, HE, and FL, while
securing data privacy for parties during model training ML, do not prevent information
leakage after completing model training; in essence, these methods do not secure output
privacy [41,110,125,126].

This work aims to provide comprehensive privacy protection, addressing input and
output privacy challenges in a model CIDS. This framework encompasses three strategies
for secure training: integrating MPC with DP, FL with DP, and FL with DP using a
protocol MPC to aggregation. Moreover, this framework utilizes MPC to ensure data
privacy and security for secure inference.

The challenge in the proposed problem is that existing techniques add a sizeable
computational overhead in processing, memory, energy, and network communication.
Therefore, this work needs to reconcile privacy techniques and optimize ML models to
make the use of a ML model for CIDS viable and with privacy guarantees.

5.3 Motivation to the Problem

The problems discussed in the section 5.2 are justified when parties desire the training
sensitive data. In principle, solving the problem of secure ML collaborative training will
allow us to create models by aggregating data from different parties and protecting the
privacy of the data of each participant in the model and considering that a given model
trained with a set of data from various participants will allow us to create a CIDS that
can cover attacks that training with isolated data would not be able to.

Solving the problem regarding secure inference protects the owners of sensitive data in
scenarios with a malicious service or CIDS tool. Therefore, it protects data from conditions
where there is a malicious tool CIDS that can expose the analyzed network data. The

56

solution to the problem also protects the intellectual property of the CIDS model in case
of a compromise of the infrastructure that hosts the service that hosts the CIDS.

5.4 Contributions

The following are the contributions outlined in this chapter:

• P2MLF secure collaborative training methods applied in CIDS problem using private
IoT data from different parties, ensuring CIDS models that can detect a wide range
of attacks obtained from knowledge of different datasets.

• Input privacy by ensuring that the data is known only to the owner of the information
through the use of MPC and FL.

• Output privacy, ensuring that there is no leakage of data used in training models
CIDS through DP.

• This proposal guarantees output privacy, ensuring that there is no leakage of data
used in training models CIDS through DP.

• Method with protocol MPC for secure aggregation in FL with local model trained
with DP.

• Considering Alice as the owner of the data and Bob as the model CIDS, this work
proposes that no information from Alice’s data will leak to Bob. On the other hand,
Bob will not need to expose his model, thus guaranteeing the intellectual property of
CIDS.

• This solution provides a protocol for CIDS training differentially private using MPC.

• This solution provides a differentially private model FL training instance for CIDS.

• P2MLF secure inference using MPC protocols with CIDS differentially private
[15,23–25,34].

• This work provides an empirical performance analysis of the secure training of CIDS
differentially private models trained with MPC and FL.

• This work provides an empirical analysis of the different epsilon used in differentially
private models and considers the metrics’ impact as accuracy, precision, recall, and
average F1.

57

5.5 P2MLF Applied in CIDS

P2MLF guarantees privacy at the input and output of CIDS models. Ensuring privacy at
the input maintains the data’s privacy as it reaches the model during the training and
inference phases. Ensuring privacy at the output prevents data leakage after training the
model since even a trained model can potentially leak data from the training process.

This chapter compares the performance of CIDS models to evaluate the efficacy of the
suggested framework. These models will be developed using LR and trained with MPC
and FL, with adaptations to accommodate training with DP in the LR model.

5.6 CIDS using P2MLF Collaborative Training

Consider n clients who want to collaborate to create a CIDS model. This section will
present three possibilities for these clients to collaborate with their data in the training of
a CIDS model. The idea is to compare the three collaborative methods regarding runtime
and privacy.

5.6.1 P2MLF Collaborative Training DP with FL

In this method, clients use the πFLCLIENT protocol, where each client trains locally with
their network data in the clear. The local models use LR with DP guarantees. Afterward,
each client sends only the parameters in the clear of the generated local models LR-DP to
a server that will run the πFLSERVER protocol.

When running the πFLSERVER protocol, the server receives the parameters in the clear
from the models of n clients as input. It calculates the arithmetic mean of each parameter
among the n models, returning a global model for each client.

The system achieves the lowest privacy level because it trains the data in the clear and
aggregates the models in the clear. On the other hand, the performance is the highest
since it does not run MPC protocols.

5.6.2 DP with FL (Aggregation on MPC)

The difference between this method and the 5.6.1 method is that πSECUREFLSERVER uses a
MPC protocol to aggregate models.

In this method, clients use the πSECUREFLCLIENT protocol, where each client trains a
local LR model with DP based on its network data in the clear, performing training for
just one epoch. Each client sends the secret shared parameters of its local model LR-DP
to a server running the πSECUREFLSERVER protocol.

58

When executing the πSECUREFLSERVER protocol, the server receives the secret shared
parameters from the models of n clients and computes the protocol MPC to realize the
secure aggregation (πFLAGGREGATOR) of each parameter across the n models. In the final
πFLAGGREGATOR, the protocol πSECUREFLSERVER returns a global model with the sum of each
parameter for all n clients.

Upon receiving the global model, each client will divide it by n to calculate the average
of each of the parameters of the global model.

The system provides an intermediate privacy level because it trains the data in the
clear. Still, the aggregation of the models uses the MPC protocol that will compute secret
shares of the models. The runtime is shorter than the method with FL and DP.

5.6.3 P2MLF training MPC with DP

The MPC protocol πLRTRAINING is to perform LR training on models with DP guarantees.
P2MLF training employs the πDP protocol to generate DP Laplacian noise in MPC,
described in [5].

The level of privacy in this case is higher since the training is on the secret shares of
the data. On the other hand, the execution time is longer since there are rounds of MPC
communication, and there is also more data to compute in secret shares.

5.7 P2MLF Inference of CIDS

In the inference stage, Alice must determine whether an instance (network data) is malicious
or non-malicious.

Alice shares her network data, Bob shares the model parameters with the computing
servers, and Bob’s model architecture is public knowledge.

The computing servers execute MPC protocols that output Alice’s secret shares of the
classification result. This proposed framework can perform inference using models with
LR architecture.

Alice receives the classification output of her network data in this proposed solution
for secure inference. In the binary case, it is malicious or non-malicious.

This output should preserve the privacy of the individual entries of Bob’s training data
set. This work employs the well-known DP technique to mitigate privacy concerns and
provide DP guarantees for Bob’s training data set according to Definition 1. This work
explicitly trains the LR model with DP guarantees.

In this problem, the P2MLF inference uses MPC protocols πSIGMOID for the sigmoid
function, πDOTPRODUCT for the secure dot product, πSUM for the sum, πLRINFERENCE for

59

inference LR, πLR for the training LR. See [19] for a detailed description of these MPC
primitives.

5.8 Dataset

The IoT attack dataset CICIoT2023 1 [99] contains 33 attacks organized in the categories:
DDoS, DoS, Recon, Web-based, Brute Force, Spoofing and Mirai [99]. Finally, malicious
IoT devices execute all attacks, targeting other IoT devices.

The 39 features of the dataset CICIoT2023 [99] are Header_Length, Protocol Type,
Time_To_Live, Rate, fin_flag_number, syn_flag_number, rst_flag_number, psh_flag_number,
ack_flag_number, ece_flag_number, cwr_flag_number, ack_count, syn_count, fin_count,
rst_count, HTTP, HTTPS, DNS, Telnet, SMTP, SSH, IRC, TCP, UDP, DHCP, ARP,
ICMP, IGMP, IPv, LLC, Tot sum, Min, Max, AVG, Std, Tot size, IAT, Number,
Variance [99].

There are three binary datasets representing Bob, Clara, and Dan, each containing
6000 examples. Bob’s dataset includes 500 examples of each of the following attacks,
in addition to 500 examples of benign data: Backdoor Malware, Browser Hijacking,
Command Injection, DDoS-ACK Fragmentation, DDoS-HTTP Flood, DDoS-ICMP Flood,
DDoS-ICMP Fragmentation, DDoS-PSHACK Flood, DDoS-RSTFIN Flood, DDoS-SYN
Flood, and DDoS-SlowLoris.

The dataset of Clara has a similar data division to that of Bob. It has the following
attacks: DDoS SynonymousIP Flood, DDoS TCP Flood, DDoS UDP Flood, DDoS UDP
Fragmentation, DNS Spoofing, Dictionary Brute Force, DoS HTTP Flood, DoS SYN
Flood, DoS TCP Flood, DoS UDP Flood, MITM Arp Spoofing.

The dataset of Dan has a data division similar to that of Bob, and Clara and has
the following attacks: Mirai greeth flood, Mirai greip flood, Mirai udp plain, Recon Host
Discovery, Recon OS Scan, Recon Ping Sweep, Recon Port Scan, SQL Injection, Uploading
Attack, Vulnerability Scan, XSS.

All data was split and shuffled, with 80% for training data and 20% for testing data
for the architecture with binary models.

5.9 Utility-Privacy Trade-Off

Table 5.2 presents an in-depth examination of the balance between utility, as gauged by
the model’s accuracy, and privacy, as denoted by the degree of DP within a given privacy
budget, symbolized as ε.

1https://www.unb.ca/cic/datasets/iotdataset-2023.html

60

The privacy budget ε serves as a quantifiable indicator of privacy. Generally, a value
of ε below one signifies a high level of privacy, ranging from one to two, which denotes
moderate privacy, and a value of ε exceeding two indicates a low level of privacy. An
infinity value ε corresponds to a model devoid of DP guarantees. This work can verify, as
anticipated, that there is an inverse relationship between the model’s accuracy and the
privacy budget; as the budget diminishes, the model’s accuracy decreases, thus propelling
it into a higher privacy domain. This phenomenon underscores the inherent trade-off
between utility and privacy when implementing DP.

5.10 Security and Privacy

When applied to training CIDS models, this framework’s security arises from using
MPC protocols (for three and two parties) and carrying out operations on secret shares.
This framework guarantees input privacy, meaning that the servers involved in MPC
computation learn nothing about Alice and Bob’s input.

This work also proposes training a CIDS with FL that guarantees input privacy of the
parties’ data.

This solution ensures privacy in the output through DP [40], thus preventing Alice
from learning about the individual inputs used in Bob’s CIDS model.

This work presents a secure inference using MPC. This solution allows a trained model
to be loaded using secure training comprising MPC and FL solutions. This proposal can
also load a trained model outside the secure training framework.

The proposed framework also allows for a scenario with a lower security level but
higher performance, providing training models with privacy in a shorter execution time.

5.11 Runtimes

This work implemented the MPC-based protocols in three computing servers (3PC)
connected over a Gigabit Ethernet local area network. This work used the following
underlying MPC protocols available on MP-SPDZ [19] using replicated secret sharing for
3PC. The runtimes are available in Table 5.1 and include communication and computation
delays. In table 5.1, the results of the protocol πLRINFERENCE are only for one inference.
For the LR model, this work evaluated metrics across various values of ε (see Table 5.2).
A smaller ε corresponds to a higher level of applied noise, while an infinite ε represents
the absence of noise. The results show that noise significantly impacts the data in this
experiment, causing the metrics to decline noticeably.

This work notes that protecting the model with DP does not affect runtimes.

61

This work used AMD EPYC instances with 32 cores @ 2.9 GHz and 65GB of RAM for
the inference and training experiments.

The method using DP with MPC presents a higher level of privacy because it computes
data over secret shares, but the runtime to perform the training of this method is longer. On
the other hand, the other two methods using FL and with and without πFLAGGREGATOR have
runtimes very close. This runtime behavior is because the MPC protocol for πFLAGGREGATOR

aggregation receives secret shares from the local models and returns the global model as a
sum of all parameters from all involved parties. The average is calculated in each party to
reduce the runtime of the πFLAGGREGATOR protocol.

Model Runtime seconds
DP with FL 42.29

DP with FL(Aggregation on MPC) 42.30
DP with MPC 62.9461
πLRINFERENCE 0.0076

Table 5.1: P2MLF Runtimes

Noise Epsilon Accuracy Precision Recall Average F1
0.1 0.39 0.85 0.39 0.49
0.5 0.52 0.85 0.52 0.62
1 0.57 0.85 0.57 0.66
∞ 0.92 0.85 0.92 0.88

Table 5.2: Metrics for Different Noise Levels

Protocol Setting Online Phase Offline Phase
Rounds Data

Sent(MB)
Runtime Rounds Data

Sent(MB)
Runtime

πLRTRAINING 3PC 142676 1160.13 35.5968 87408 1756.9 25.1032
πLRINFERENCE 3PC 14 0.00188 0.002 8 0.043 0.002
πFLAGGREGATOR 3PC 2 0.00032 0.0005 - - 0.00003

Table 5.3: P2MLF MPC Protocols

5.12 Final considerations

This work introduced P2MLF developed for the training and inference of CIDS models,
considering privacy preserving at both the input and the output. In other words, this
work presented the first DP training to avoid leaky data in CIDS and the first secure

62

inference with MPC and FL. Input privacy ensures that the computational servers, the
model owner, or Bob cannot learn anything about the classified data. It also ensures that
the model’s details remain undisclosed to the data owner, Alice, and the computational
servers. Conversely, to safeguard the data used in training, output privacy implementation
prevents extracting individual data entries from the training dataset of the ML model
employed within the framework.

This work evaluated the efficacy of secure inference within this framework, which
employs LR models trained to use DP and secured by implementing various MPC protocols.
Furthermore, this work evaluated the performance of secure training with three methods
of this framework: DP with FL, DP with FL(Aggregation on MPC), and DP with MPC.

All three methods guarantee privacy at both input and output but differ in scalability.
The method that combines DP and FL presents greater scalability since it allows the
aggregator to run on a single server. However, this aggregator becomes a single point of
failure since it has direct access to each participant’s local models in the clear.

On the other hand, the method that uses DP, FL, and πFLAGGREGATOR offers a better
balance between privacy and scalability, being 1.5 faster than the method with MPC and
DP. It guarantees privacy at both input and output while maintaining the second-lowest
execution time. πFLAGGREGATOR adds an extra level of privacy by generating the global model
based on secret shares of the local models, preventing direct access to the participants’
model. A possible improvement would be to use πFLAGGREGATOR to detect adversarial
attacks through MPC protocols.

The method that combines DP and MPC achieves the highest level of privacy, as it
trains a LR model using a MPC protocol and, in the end, adds DP by applying Laplacian
noise to the model parameters through a MPC protocol.

63

Chapter 6

P2MLF Inference Applied in DGA

This chapter proposes a secure inference and non-collaborative secure training strategy
based on Privacy-Preserving Machine Learning Framework (P2MLF) applied to detect
Domain Generation Algorithms (DGA) and evaluates each proposed method’s privacy,
security, and performance levels. For nomenclature reasons, the P2MLF inference method
will be called secure inference.

This chapter uses the framework P2MLF that combines the benefits of automated and
outsourced DGA detection while preserving the data privacy of enterprise network users
and DGA detection service providers. This framework does not expose the Domain Name
System (DNS) in clear text to DGA detection service providers, nor is the model shared
with enterprise network administrators (The parties do not receive any private information).
This chapter incorporates techniques that prevent attackers from obtaining additional
information about training data or reconstructing the model from the classification results
sent to enterprise network administrators.

6.1 Introduction

The applicability of Machine Learning (ML) models to develop classifiers that identify
and differentiate benign domains from malicious domains generated by Malicious Software
(Malware) based on DGA represents a viable approach, as discussed in [66]. These classifiers
automate the detection of Malware in corporate networks.

Advanced deep learning models achieve high accuracy but require large amounts of
data for training [64]. Third-party organizations often offer these models through service
providers as part of a DGA detection service to meet this demand. In this architecture,
the company’s DNS traffic goes to the provider, which classifies the domains as malicious
or benign and returns the results to the company [65].

64

However, this outsourced detection architecture raises significant privacy concerns. The
company’s DNS traffic may contain sensitive information, compromising users’ privacy on
the corporate network, which raises concerns in the DGA-as-a-service detection paradigm.

An alternative involves providing the ML model directly to the company’s network
administrators, allowing for local deployment. However, this brings new challenges since
the service provider owns the model. Furthermore, the data used in the training of these
models may be private, and providing the model to the enterprise exposes these data to
attacks, as discussed in [125,126].

Protecting sensitive data from the enterprise and service providers is essential, but
Privacy-Enhancing Technologies (PET) significantly increases computational costs.

This chapter explores how to ensure privacy for both the owner of the ML model and
the party performing the DNS domain classification. This chapter shows an end-to-end
privacy-preserving architecture for outsourced DGA classification that protects enterprise
users and service providers.

This solution allows network administrators to outsource traffic analysis (in this case,
DNS traffic) to external parties without risking information leakage. Furthermore, the
approach also protects the intellectual property of the ML model by preventing the
consuming party from obtaining any information about the model used.

6.2 Problem

This work recalls that Alice holds a DNS domain to be classified, and Bob holds a ML
model that classifies DNS domains as malicious or benign. This framework consists of a
set of m untrusted computing servers (Secure Multi-Party Computation (MPC) servers)
S = {S1, S2, . . . , Sm}. Although the proposed protocols MPC are general and work for
any number of servers, this work demonstrates the protocols proposed for m = 2 and
m = 3. This work assumes pairwise authenticated and private communication channels
between the servers. The communication between Alice, Bob, and any server Si ∈ S is
also authenticated and private. The proposed secure classification works as follows:
• Initially, Alice and Bob convert their private inputs with real values (domains in the case

of Alice and the model parameters in the case of Bob) into fixed-point representations.
They then secret-share their respective fixed-point inputs with the computing servers.

• The computing servers then engage in MPC-based communications and computations
to execute the MPC protocols to classify Alice’s domain names using Bob’s model.

• The inference uses secrets shared among the computing servers at the end of the MPC
protocols. The computing servers send their shares to Alice. Finally, Alice aggregates
the secret shares and retrieves the classification result.

65

6.3 Contributions

The following are the contributions outlined in this chapter:
• Proposition of a new framework for private classification of glsDGA/non-DGA domains,

with guarantees input privacy MPC and output privacy Differential Privacy (DP).
• Presentation of the first approach that considers differentially private training of models

for DGA classification.
• The solution works with classifiers based on MultiLayer Perceptron (MLP), One-Dimensional

Convolutional Neural Network (CNN1D), and Long Short-Term Memory (LSTM). The
MPC protocol for LSTM is novel, efficient, and the first on the MPC MP-SPDZ
framework [19].

• Evaluation of the proposed framework on real datasets — DGArchive and Alexa — for
binary and multiclass classification tasks of domain names. The binary classification
problem distinguishes domains as benign or malicious, while the multiclass classification
problem identifies the DGA family associated with the malicious domain.

• Empirical analysis of the privacy-utility trade-offs of the approach using MLP, CNN1D
and LSTM. It observes that ensuring output privacy slightly degrades accuracy due to
noise introduced to ensure DP while using MPC to ensure input privacy does not affect
the usefulness of the classification model. The fastest model in terms of inference time
is MLP, with a time of 0.07 seconds. The model with the highest accuracy is CNN1D,
achieving the accuracy 93% for an epsilon of 5.

• Demonstration of the efficiency of the proposed solution in terms of execution time
with two or three computation parts.

• Significant improvements in the performance of MPC protocols were observed with
quantization, resulting in a 23% to 42% reduction in inference runtime, without
compromising accuracy, in the 3PC setting (using replicated secret sharing). The
proposed solution enables near-real-time secure detection of DGA domains.

6.4 P2MLF Applied in DGA Detection

Figure 6.1 presents a high-level proposal for secure DGA inference. In the scheme, Alice
represents the company, which owns the domains and DNS traffic, while Bob represents
the service provider, which owns the weights (parameters) of the already trained model
ML.

Bob can choose to perform an MLP training, a CNN1D, or an LSTM model, and the
selected model must be trained with DP guarantees, as described by [39] to ensure privacy
in the output. In addition, Alice wants her DNS traffic to be classified by Bob. In the

66

Figure 6.1: The flowchart uses an end-to-end privacy approach to describe the
privacy-preserving service for DGA inference. The service provider (Bob) trains the
DNS domain name classifier with DP-SGD, ensuring DP (output privacy). Alice submits
new domain names, and Bob’s model classifies these domains using MPC. MPC servers
execute protocols over encrypted data, maintaining input privacy.

context of this chapter, Alice’s DNS data and Bob’s model weights are considered private
data.

The proposed framework uses MPC techniques [15] to preserve input privacy. To do so,
Alice and Bob secretly share their private data with a set of untrusted computing servers
(parties). These MPC servers perform computations on the secret shares, labeling the
domain names as benign or malicious, ensuring that:

(P1) None of the parties, including the servers, has direct access to Alice’s data or Bob’s
model parameters.

(P2) Input and output privacy are preserved throughout the classification process.

This approach ensures that the data privacy of both parties is maintained, even in an
outsourced computing environment.

(P1) No individual MPC server can obtain any information about the domain names
owned by Alice;

(P2) No individual MPC server can access any information about the weights of Bob’s
ML model;

(P3) Only Alice should receive the classification result;
(P4) The classification result cannot reveal to Alice any private information about the

individual inputs used in Bob’s training dataset;

This chapter observes that (P4) provides output privacy and is achieved when Bob
trains the model with DP guarantees. Items (P1)–(P3) guarantee input privacy that

67

achieves through the novel MPC protocols proposed for inference with a neural network
model trained for DGA detection.

MPC protocols typically incur high communication and computation costs, which
impact inference runtime and overall performance. To improve the performance of the
proposed MPC protocols for secure DGA domain classification, take advantage of the
quantization schemes available in TensorFlow (TFLite). The quantization method reduces
the precision of the parameters of an ML model, which is typically 32-bit floating point
numbers 1. The method proposes that Bob use post-training quantization techniques on
the DP-trained model before using it for classification.

6.5 DGA Classifiers using P2MLF Non-Collaborative
Training

In this proposed solution, Alice receives the output of her domain classification, which
can be a DGA or non-DGA label in the binary case. In the multiclass case, the output
indicates a non-DGA label or a specific DGA family.

This method ensures that this output preserves the privacy of the individual entries
of Bob’s training dataset. To alleviate privacy concerns and provide DP guarantees over
Bob’s training dataset, is used the technique known as Differentially-Private Stochastic
Gradient Descent (DP-SGD) [40], as defined in Definition 1. This method explicitly trains
the MLP, CNN1D, and LSTM models with DP guarantees.

This method applies the post-training quantization technique to improve the inference
performance of the trained model. This technique reduces the precision of the model
weights and activations from 32-bit floating point to lower precision representations. In
this method is quantized the model parameters to float16 2, which results in minimal
accuracy loss and allows for more efficient deployment on various hardware, such as GPU
and CPU with float32 or float16 support.

The DP guarantees remain in the post-trained quantized model due to the post-processing
property of DP. Furthermore, it is possible to adapt this framework to other quantization
schemes [34, 127, 128]. Combining DP with quantization techniques can preserve the
privacy of Bob’s training dataset while accelerating the inference process.

1https://www.tensorflow.org/lite/performance/post_training_quantization/
2https://www.tensorflow.org/lite/performance/post_training_quantization#float16_

quantization

68

https://www.tensorflow.org/lite/performance/post_training_quantization/
https://www.tensorflow.org/lite/performance/post_training_quantization#float16_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization#float16_quantization

6.6 P2MLF inference of DGA domains

During the inference phase, Alice receives an instance (raw text input, such as the domain
name string) and calls the inference service to classify it as either a DGA or a non-DGA
domain. The process starts by adjusting the length of the given input text to a publicly
known value, l, by truncating or padding the input text with zeros.

After this adjustment, the preprocessing encodes the fixed-length text in a one-hot
format based on ASCII characters. This results in an array x of dimension l × 128, where
the ASCII array contains 128 characters. Alice secretly shares the array x, while Bob
secretly shares the model parameters with the compute servers. The architecture of Bob’s
model is publicly known.

The computing servers execute the MPC protocols, which produce the secret shares
of the classification result for Alice. The proposed framework supports inference using
models with MLP, CNN1D, and LSTM architectures, all equipped with an embedding
layer as the first layer.

Then, the proposed MPC protocols for these models, which perform secure inference,
are described.

The implementation of this solution uses MP-SPDZ [19], a public framework to
implement various MPC protocols. MP-SPDZ provides a high-level Python interface that
describes a circuit in a MPC protocol. It also has circuit representations for ML algorithms
such as MLP and 2D Convolutional Neural Network (CNN). However, no implementations
are available for LSTM or Embedding Layer (EL) in MP-SPDZ. This work proposes new
circuit representations to compute inference in the LSTM and EL networks.

6.7 Dataset

This work obtains the DGA dataset from the DGArchive3, containing all DGA examples
collected until 2019. The method removes DGA families with low representation in
the dataset (less than 30K samples), resulting in 1, 000, 000 examples from different
DGA families, including: bamital, banjori, bedep, beebone, blackhole, bobax, conficker,
corebot, cryptolocker, darkshell, dircrypt, dnsbenchmark, dnschanger, downloader, dyre,
ekforward, emotet, feodo, fobber, gameover, gameover_p2p.csv, gozi, gspy, hesperbot,
locky, madmax, matsnu, modpack, Murofet, Murofetweekly, Necurs, Nymaim, Oderoor,
Padcrypt, Proslikefan, Pushdo, Pushdotid, Pykspa, Pykspa2, Pykspa2s, Qadars, Qakbot,
Ramdo, Ramnit, Ranbyus, Randomloader, Redyms, Rovnix, Shifu, Simda, Sisron, Suppobox,

3https://dgarchive.caad.fkie.fraunhofer.de/welcome/

69

Sutra, Symmi, Szribi Temped, reve, tinba, torpig, tsifiri, urlzone, vawtrak, virut, volatilitycedar
and xxhex.

For non-DGA domains, approximately 1, 000, 000 domains were acquired from the
latest known version of the "Alexa top 1 million domains" dataset4 and used in the training
of the model to identify legitimate domains.

All data was shuffled and split into 80% for training and 20% for testing across binary
and multiclass model architectures.

The preprocessing converts the alphanumeric characters representing the domain names
to lowercase for use in the model. Then, it converts each character to the corresponding
ASCII code, ranging from 0 to 127. The maximum length of an ASCII domain string is 64
characters. The method is padded with zeros for domains shorter than 64 characters until
the desired length.

This work evaluated the experimental results by comparing the CNN1D, LSTM, and
MLP models using secure MPC, both for binary and multiclass DGA detection, with and
without applying DP.

In addition, after training with DP, the tested model quantization reduced the weights
to 16 bits, which provided performance gains during the inference phase with MPC.

6.8 Model Architectures and Parameters

All trained models use an embedding layer as the first layer. The input consists of a vector
of 64 numeric elements, resulting from converting each character into its respective ASCII
code. After the embedding layer, the result is a matrix with dimensions 128 by 128.

In binary models, the last layer is a dense layer with one neuron, using the sigmoid
activation function, the binary cross-entropy loss function, and the Adam optimizer.

In multiclass models, the last layer comprises a dense layer with 65 neurons, representing
all DGA families, with the softmax activation function. The loss function used is a sparse
categorical cross-entropy, and the optimizer is Adam, with a learning rate of 0.001, batch
size of 64, and 30 training epochs.

This work details below the additional layers for each of the architectures used 5:

• MLP: The MLP models, both binary and multiclass, have a flatten layer, which
transforms the data resulting from the embedding layer into a one-dimensional
representation. Next is a dense layer with 100 neurons, using the ReLU activation
function and a dropout rate of 0.1. The binary MLP model has 835, 785 parameters,
while the multiclass model has 842, 249 parameters.

4https://en.wikipedia.org/wiki/Alexa_Internet
5https://github.com/ricardojmmaia/private-dga-detection

70

https://en.wikipedia.org/wiki/Alexa_Internet
https://github.com/ricardojmmaia/private-dga-detection

• CNN1D: The CNN1D models, binary and multiclass, have (1) a CNN1D layer with
32 filters, the kernel of size 2, ReLU activation function, and a dropout rate of 0.1; (2)
a flatten layer that converts the output of the previous layer into a one-dimensional
representation; (3) a dense layer with 100 neurons, ReLU activation, and a dropout
rate of 0.1. The binary CNN1D model contains 226, 409 parameters, while the
multiclass model has 232, 671 parameters.

• LSTM: The LSTM models, binary and multiclass, include (1) a LSTM layer with
32 units, ReLU activation, and a dropout rate of 0.1; (2) a flatten layer to transform
the output of the previous layer into one-dimensional data; (3) a dense layer with
100 neurons, ReLU activation function, and a dropout rate of 0.1. The binary LSTM
model has 48, 713 parameters, while the multiclass model has 55, 177 parameters.

The DP-SGD parameters used in the experiments are available in TensorFlow Privacy 6.
The values are as follows: the delta is 6.188× 10−7, the clipping norm is 1, and the number
of microbatches is 1. Regarding the noise multipliers, for an epsilon of 0.1, the value is
2.51; for an epsilon of 2, it is 0.61; and for an epsilon of 5, it is 0.46.

6.9 Utility-Privacy Trade-Off

The table 6.1 presents a detailed analysis of the trade-off between utility (measured by
model accuracy) and privacy, represented by the privacy budget, denoted by ε, of the DP
mechanism for all models.

The privacy budget ε quantifies the level of privacy guaranteed. In general, values of ε
less than one indicate high privacy, values between one and two suggest moderate privacy,
while values greater than two are considered low privacy. A ε equal to infinity indicates a
model with no guarantees DP. As expected, the model’s accuracy decreases as the privacy
budget decreases, reflecting greater privacy protection. The accuracy reduces even more
in the multiclass model.

This analysis shows the trade-off between utility and privacy when applying DP. In
addition, Table 6.1 shows the accuracy levels of each model with quantization. Quantization
did not change the accuracy of the models, although it significantly accelerated performance
compared to non-quantized models.

6https://www.tensorflow.org/responsible_ai/privacy/api_docs/python/tf_privacy/
DPKerasAdamOptimizer

71

https://www.tensorflow.org/responsible_ai/privacy/api_docs/python/tf_privacy/DPKerasAdamOptimizer
https://www.tensorflow.org/responsible_ai/privacy/api_docs/python/tf_privacy/DPKerasAdamOptimizer

Model Non-Quantized, ε = Quantized, ε =
0.1 2 5 ∞ 0.1 2 5 ∞

CNN1D binary 90% 93% 93% 99% 90% 93% 93% 99%
CNN1D multiclass 25% 47% 53% 88% 25% 47% 53% 88%

LSTM binary 88% 91% 92% 97% 88% 91% 92% 97%
LSTM multiclass 23% 46% 51% 88% 23% 46% 51% 88%

MLP binary 90% 93% 93% 96% 90% 93% 93% 96%
MLP multiclass 24% 46% 51% 87% 24% 46% 51% 87%

Table 6.1: Results related to the accuracy of DGA inference were obtained for different
noise levels, both with and without the application of quantization [3].

6.10 Runtimes

This chapter presents MPC-based inference in the scenario of two compute servers (2PC)
and three compute servers (3PC) connected by a local gigabit Ethernet network. Inference
experiments use three Azure instances with 32 Intel(R) Xeon(R) Platinum 8272CL CPU
cores at 2.60 GHz and 64 GB of RAM. The underlying protocols MPC used in the
experiments, available in MP-SPDZ [19], are semi2k for 2PC and replicated secret sharing
for 3PC.

The runtimes, which include communication and computation delays, are described in
Table 6.2. The MLP model showed the best execution times, while CNN1D achieved the
highest accuracy, especially for higher values of ε (see Table 6.1).

The runtimes do not change with the model using DP guarantees. Furthermore, the
corruption threshold significantly impacts execution times. Protocols involving three
parties (with an honest majority) tend to be faster than those with two parties, where
there is no honest majority.

This chapter also performed inference experiments based on MPC, applying quantization
to the models after training with DP. The resulting runtimes are presented in table 6.3.

The quantization decreases the inference runtime by approximately 23% to 42% when
the method uses the replicated secret sharing protocol (with three parties). In the 2PC
setting (using the semi2k protocol), the reduction was 2% for binary MLP, 4% for multiclass
MLP, 1% for CNN1D and 42% for LSTM.

This work uses post-training float16 quantization to optimize models aggressively [128].
By reducing the precision of the model weights to 16 bits, this approach decreases runtimes
by approximately 23% to 42% in a 3PC setting (using replicated secret sharing), with
minimal impact on accuracy [3].

72

Model Setting Inference Time (sec) Rounds Data Sent (MB)
MLP Binary 3PC 0.0778787 2773 17.217

CNN1D Binary 3PC 0.319441 8551 21.6062
LSTM Binary 3PC 10.4153 195131 1485.53
MLP Multiclass 3PC 0.133239 3615 24.8676

CNN1D Multiclass 3PC 0.359278 9382 29.0157
LSTM Multiclass 3PC 10.5449 197123 1489.92

MLP Binary 2PC 14.2051 42923 3951.16
CNN1D Binary 2PC 14.2954 54151 3983.37
LSTM Binary 2PC 103.472 441023 26752.6
MLP Multiclass 2PC 14.577 44599 4054.73

CNN1D Multiclass 2PC 14.6503 55831 4089.34
LSTM Multiclass 2PC 104.077 443895 26820.1

Table 6.2: Inference using MPC protocol [3].

Model Setting Inference Time (sec) Rounds Data Sent (MB)
MLP Binary 3PC 0.0593449 2469 12.3028

CNN1D Binary 3PC 0.223521 7371 12.3982
LSTM Binary 3PC 5.9959 137044 545.121
MLP Multiclass 3PC 0.076885 3038 15.0529

CNN1D Multiclass 3PC 0.260958 7940 15.1483
LSTM Multiclass 3PC 6.15767 138573 546.706

MLP Binary 2PC 13.813 42723 3845.97
CNN1D Binary 2PC 14.1394 51795 3937.96
LSTM Binary 2PC 60.3208 310659 15352.2
MLP Multiclass 2PC 13.9138 44599 3983.37

CNN1D Multiclass 2PC 14.4177 54151 4054.73
LSTM Multiclass 2PC 60.247 312951 15388.2

Table 6.3: inference using MPC protocol with quantization applied after training with
DP [3].

6.11 Final considerations

The multiclass models were more sensitive to the noise added by DP than the binary
models. All the evaluated models used an architecture with a first layer of EL and differed
in the subsequent layer with the use of three options: MLP, LSTM, or CNN1D.

Considering that the runtimes are for one input example, the models with the LSTM
layer presented worse runtime. The models using MLP presented shorter runtimes than
CNN1D, but in compensation, the models with CNN1D presented higher accuracy than
MLP. If the objective is a model with greater accuracy, the models with CNN1D are an
option, but considering the runtime, the models with MLP stand out.

73

The 16-bit quantization applied to the models after training reduced runtime, rounds,
and data sent and did not affect the accuracy of the models. Other techniques can be used
to optimize further the presented MPC protocols, which is to generate larger circuits at
compile time and thus further reduce communication rounds.

74

Chapter 7

Conclusions and Future Work

Privacy-Preserving Machine Learning Framework (P2MLF) is introduced as a robust
approach to ensuring Privacy-Preserving Machine Learning (PPML), meeting both input
and output privacy requirements. The design of Secure Multi-Party Computation (MPC)
protocols ensures that information is not leaked and inherits the characteristics of secure
Universal Composability (UC) protocols. Designed to be versatile, P2MLF is presented in
a framework, making it adaptable for another application that demands privacy in Machine
Learning (ML). However, a limitation of P2MLF is its inability to prevent adversarial
attacks.

Another limitation of P2MLF is the higher energy consumption due to the requirement of
more than two servers in MPC-based protocols. Moreover, Privacy-Enhancing Technologies
(PET) technologies introduce significant computational overhead, affecting runtime,
memory usage, and the number of communication rounds, especially compared to ML
models trained on plaintext data.

This work uses P2MLF to create the first framework that implements outsourced
Domain Generation Algorithms (DGA) detection with privacy-preserving guarantees at
both input and output levels. Input privacy ensures that no information about the
Domain Name System (DNS) domain is leaked to the computation servers or to the model
owner (Bob), and no data about the model is leaked to the domain owner (Alice) or the
computation servers. The privacy of the output ensures that the results of the computation
do not reveal individual data from the training set of the ML model.

This work also introduces MPC protocols for Long Short-Term Memory (LSTM) and
Embedding Layer (EL) in the MP-SPDZ framework, advancing the practical application
of ML with privacy and security.

The performance of Convolutional Neural Network (CNN), LSTM, and MultiLayer
Perceptron (MLP) trained with Differential Privacy (DP) and inferred with MPC protocols
were analyzed and compared. One-Dimensional Convolutional Neural Network (CNN1D)

75

demonstrated the best balance between accuracy and performance in the two-party scenario
MPC. At the same time, there is a balance in the performance trade-off between CNN
and MLP for three computation servers.

Post-training float16 quantization with DP improved 23% to 42% runtimes without
significant accuracy loss when applied in a three-party setup with an honest majority.

This work focuses on performance against honest but curious adversaries. Considering
entirely malicious adversaries would likely increase inference times, especially in scenarios
with a dishonest majority. Developing efficient protocols for this context is an open
challenge.

The proposed solution assumes that the players input the correct data into the protocol.
In the case of Bob, there is nothing to prevent adversarial or out-of-distribution input from
being provided, which represents a potential limitation.

Training a Collaborative Intrusion Detection Systems (CIDS) using P2MLF is one
of the advances presented in this work, with the advantage of proposing three distinct
approaches for training a ML model using data from different parties. One of the main
contributions is the in-depth discussions on the levels of scalability and privacy offered by
these three collaborative training approaches available in P2MLF. The method that uses
Federated Learning (FL) and a MPC protocol to aggregate local models with DP presents
the best balance between scalability and privacy, being 1.50 times faster than the proposal
with the highest level of privacy, which is a MPC protocol for training models with DP.

However, a limitation identified in the training proposed for CIDS is the inability to
prevent adversarial attacks with privacy guarantees. This limitation is particularly critical
because, even with privacy guaranteed in the input and output data, one of the parties
may attempt to poison the global model in a collaborative training environment. To cite
an example of an adversarial attack, an attacker can manipulate the model to misclassify
an intrusion or malware as being in a benign class.

Some possible applications and developments of the methods developed in this thesis
include:

• Extend to general natural language classification tasks. Including verifies the
possibility of federated training of a Large Language Model, including DP guarantees.

• Build MPC protocols to mitigate adversarial attacks during training with FL.

• Research the impacts of secure aggregator on MPC protocols to prevent adversarial
attacks considering local models trained with DP.

• This work must investigate whether DP disproportionately affects underrepresented
domains in these datasets, leaving this question for future research.

76

• In terms of social impact, implementing these solutions can increase energy consumption,
considering that more than one server performs the inference instead of a single
central server.

• Research techniques to reduce the size of MPC circuits.

• Accelerate the pre-generation of Beaver triples for use in MPC protocols, aiming
to reduce runtime and communication rounds. Inference methods that rely on dot
product operations, such as Logistic Regression (LR), can apply this optimization. A
potential extension of this research involves comparing the preprocessing performance
across different hardware platforms, including CPU, GPU, and FPGA.

• Research on synthesizing depth-optimized MPC circuits and increasing circuit width
to reduce communication rounds and runtime.

• Research methods to validate whether a model uses DP while preserving the privacy
of the data and the ML model itself.

• To evaluate the impact of a MPC protocol that performs model aggregation on
FL while mitigating adversarial attacks such as model poisoning and incorporating
Laplacian noise into the generated global model.

77

References

[1] I. Goodfellow et al., “Deep learning-ian goodfellow, yoshua bengio, aaron courville,”
Adapt. Comput. Mach. Learn, 2016. ix, 1, 19

[2] A. Belenguer, J. Navaridas, and J. A. Pascual, “A review of federated learning in
intrusion detection systems for iot,” arXiv preprint arXiv:2204.12443, 2022. ix, 1, 32

[3] R. J. Maia, D. Ray, S. Pentyala, R. Dowsley, M. De Cock, A. C. Nascimento, and
R. Jacobi, “An end-to-end framework for private dga detection as a service,” PloS
one, vol. 19, no. 8, p. e0304476, 2024. ix, xix, 1, 2, 22, 23, 24, 25, 29, 40, 72, 73

[4] J. A. de Oliveira, V. P. Gonçalves, R. I. Meneguette, R. T. de Sousa, D. L. Guidoni,
J. C. Oliveira, and G. P. Rocha Filho, “F-nids — a network intrusion detection system
based on federated learning,” Computer Networks, vol. 236, p. 110010, 2023. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1389128623004553 ix,
1, 31

[5] S. Pentyala, D. Railsback, R. Maia, R. Dowsley, D. Melanson, A. Nascimento,
and M. D. Cock, “Training differentially private models with secure multiparty
computation,” Cryptology ePrint Archive, Paper 2022/146, 2022, https:
//eprint.iacr.org/2022/146. [Online]. Available: https://eprint.iacr.org/2022/146 ix,
1, 2, 7, 44, 48, 49, 50, 59

[6] A. Agarwal, R. Dowsley, N. D. McKinney, D. Wu, C.-T. Lin, M. De Cock, and
A. C. A. Nascimento, “Protecting privacy of users in brain-computer interface
applications,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 27, no. 8, pp. 1546–1555, 2019. ix, 1

[7] E. Debie, N. Moustafa, and M. T. Whitty, “A privacy-preserving generative
adversarial network method for securing eeg brain signals,” in 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8. ix, 1

[8] National Institute of Standards and Technology (NIST), “Nist special publication
800-226 (initial public draft): Guidance on evaluating privacy-preserving
techniques for artificial intelligence,” National Institute of Standards and
Technology, Tech. Rep., 2023, initial Public Draft. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-226.ipd.pdf ix,
1

[9] J. Vos, S. Pentyala, S. Golob, R. Maia, D. Kelley, Z. Erkin, M. De Cock, and
A. Nascimento, “Privacy-preserving membership queries for federated anomaly

78

https://www.sciencedirect.com/science/article/pii/S1389128623004553
https://eprint.iacr.org/2022/146
https://eprint.iacr.org/2022/146
https://eprint.iacr.org/2022/146
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-226.ipd.pdf

detection,” Proceedings on Privacy Enhancing Technologies, vol. 3, pp. 186–201,
2024. ix, 1, 2, 6

[10] European Parliament and Council, “Regulation (eu) 2016/679 of the european
parliament and of the council of 27 april 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data
(general data protection regulation),” 2016, official Journal of the European Union,
L119, 1-88. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679/oj x, xi,
3

[11] R. E. Shawi, M. Maher, and S. Sakr, “Automated machine learning: State-of-the-art
and open challenges,” CoRR, vol. abs/1906.02287, 2019. [Online]. Available:
http://arxiv.org/abs/1906.02287 x, 2

[12] M. D. Cock, R. Dowsley, C. Horst, R. Katti, A. C. A. Nascimento, S. C. Newman,
and W.-S. Poon, “Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation,” Cryptology
ePrint Archive, Report 2016/736, 2016, https://eprint.iacr.org/2016/736. x, 2

[13] A. Agarwal, R. Dowsley, N. D. McKinney, D. Wu, C. Lin, M. D. Cock,
and A. C. A. Nascimento, “Protecting privacy of users in brain-computer
interface applications,” CoRR, vol. abs/1907.01586, 2019. [Online]. Available:
http://arxiv.org/abs/1907.01586 x, 2

[14] “The need for privacy with public digital contact tracing during the covid-19 pandemic
- the lancet digital health,” https://www.thelancet.com/journals/landig/article/
PIIS2589-7500(20)30133-3/fulltext, (Accessed on 09/23/2021). x, 2

[15] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015. x, 3, 8, 9, 10, 11, 57, 67

[16] “LEI N° 13.709, DE 14 DE AGOSTO DE 2018,” 2018. [Online]. Available:
https://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm xi

[17] Apple, “Child sexual abuse material (csam) detection - technical summary,” https:
//www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf,
Agosto 2021, (Accessed on 10/17/2021). xi, 4

[18] A. Drichel, M. A. Gurabi, T. Amelung, and U. Meyer, “Towards privacy-preserving
classification-as-a-service for dga detection,” in 2021 18th International Conference
on Privacy, Security and Trust (PST), 2021, pp. 1–10. xii, 5, 29, 39

[19] M. Keller, “MP-SPDZ: A versatile framework for multi-party computation,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020. [Online]. Available: https://doi.org/10.1145/3372297.3417872 xiii, 5,
10, 11, 33, 34, 38, 39, 41, 44, 49, 52, 60, 61, 66, 69, 72

[20] B. Sowmiya, V. Abhijith, S. Sudersan, R. Sakthi Jaya Sundar, M. Thangavel,
and P. Varalakshmi, “A survey on security and privacy issues in contact tracing
application of covid-19,” SN computer science, vol. 2, pp. 1–11, 2021. 1

79

https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://arxiv.org/abs/1906.02287
https://eprint.iacr.org/2016/736
http://arxiv.org/abs/1907.01586
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30133-3/fulltext
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30133-3/fulltext
https://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://doi.org/10.1145/3372297.3417872

[21] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership
inference attacks from first principles,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 1897–1914. 3, 32, 52

[22] D. Melanson, R. Maia, H.-S. Kim, A. Nascimento, and M. De Cock, “Secure
multi-party computation for personalized human activity recognition,” Neural
Processing Letters, pp. 1–27, 2023. 6

[23] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to secure
multi-party computation,” Found. Trends Priv. Secur., vol. 2, no. 2–3, p. 70–246,
Dec. 2018. [Online]. Available: https://doi.org/10.1561/3300000019 8, 10, 13, 14, 15,
16, 57

[24] Y. Lindell, “Secure multiparty computation,” Commun. ACM, vol. 64, no. 1, p.
86–96, Dec. 2020. [Online]. Available: https://doi.org/10.1145/3387108 8, 10, 57

[25] D. Catalano, R. Cramer, G. Di Crescenzo, I. Darmgård, D. Pointcheval, T. Takagi,
R. Cramer, and I. Damgård, Multiparty computation, an introduction. Springer,
2005, pp. 41–87. 8, 10, 15, 57

[26] A. C. Yao, “Protocols for secure computations (extended abstract),” in 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982. IEEE Computer Society, 1982, pp. 160–164. [Online]. Available:
https://doi.org/10.1109/SFCS.1982.38 9

[27] ——, “How to generate and exchange secrets (extended abstract),” in 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986. IEEE Computer Society, 1986, pp. 162–167. [Online]. Available:
https://doi.org/10.1109/SFCS.1986.25 9

[28] S. Micali, O. Goldreich, and A. Wigderson, “How to play any mental game,” in
Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC. ACM
New York, 1987, pp. 218–229. 9

[29] D. Chaum, I. B. Damgård, and J. van de Graaf, “Multiparty computations ensuring
privacy of each party’s input and correctness of the result,” in Advances in Cryptology
— CRYPTO ’87, C. Pomerance, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1988, pp. 87–119. 9

[30] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols,” in
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing,
ser. STOC ’90. New York, NY, USA: Association for Computing Machinery, 1990,
p. 503–513. [Online]. Available: https://doi.org/10.1145/100216.100287 9

[31] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for
non-cryptographic fault-tolerant distributed computation,” in Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, ser. STOC ’88. New
York, NY, USA: Association for Computing Machinery, 1988, p. 1–10. [Online].
Available: https://doi.org/10.1145/62212.62213 9

80

https://doi.org/10.1561/3300000019
https://doi.org/10.1145/3387108
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/62212.62213

[32] D. Chaum, C. Crépeau, and I. Damgard, “Multiparty unconditionally secure
protocols,” in Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, ser. STOC ’88. New York, NY, USA: Association for Computing
Machinery, 1988, p. 11–19. [Online]. Available: https://doi.org/10.1145/62212.62214
9

[33] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty protocols
with honest majority,” in Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, ser. STOC ’89. New York, NY, USA:
Association for Computing Machinery, 1989, p. 73–85. [Online]. Available:
https://doi.org/10.1145/73007.73014 9

[34] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of quantized neural
networks,” Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 4, p.
355–375, Aug 2020. [Online]. Available: http://dx.doi.org/10.2478/popets-2020-0077
10, 57, 68

[35] W. Du and M. J. Atallah, “Secure multi-party computation problems and their
applications: a review and open problems,” in Proceedings of the 2001 workshop on
New security paradigms, 2001, pp. 13–22. 10

[36] D. Escudero, “An introduction to secret-sharing-based secure multiparty
computation,” Cryptology ePrint Archive, Paper 2022/062, 2022, https:
//eprint.iacr.org/2022/062. [Online]. Available: https://eprint.iacr.org/2022/062 10,
11, 12, 16

[37] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Advances
in Cryptology—CRYPTO’91: Proceedings 11. Springer, 1992, pp. 420–432. 12

[38] R. Canetti, “Security and composition of multiparty cryptographic protocols,”
Journal of CRYPTOLOGY, vol. 13, pp. 143–202, 2000. 16

[39] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,”
Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3-4, p. 211–407,
2013. 16, 17, 66

[40] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, 2016, pp. 308–318.
17, 52, 61, 68

[41] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open
problems in federated learning,” Foundations and Trends® in Machine Learning,
vol. 14, no. 1–2, pp. 1–210, 2021. 18, 56

[42] Y. J. Wong, M.-L. Tham, B.-H. Kwan, and Y. Owada, “Fedddrl: federated
double deep reinforcement learning for heterogeneous iot with adaptive early client
termination and local epoch adjustment,” Sensors, vol. 23, no. 5, p. 2494, 2023. 18

81

https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/73007.73014
http://dx.doi.org/10.2478/popets-2020-0077
https://eprint.iacr.org/2022/062
https://eprint.iacr.org/2022/062
https://eprint.iacr.org/2022/062

[43] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression.
John Wiley & Sons, 2013, vol. 398. 19

[44] I. Politis, G. Georgiadis, A. Kopsacheilis, A. Nikolaidou, C. Sfyri, and S. Basbas, “A
route choice model for the investigation of drivers’ willingness to choose a
flyover motorway in greece,” Sustainability, vol. 15, no. 5, 2023. [Online]. Available:
https://www.mdpi.com/2071-1050/15/5/4614 19

[45] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding recurrent
networks,” 2015. 20

[46] P. Vij, S. Nikam, and A. Bhatia, “Detection of algorithmically generated domain
names using lstm,” in 2020 International Conference on COMmunication Systems
NETworkS (COMSNETS), 2020, pp. 1–6. 20, 28

[47] S. Akarsh, S. Sriram, P. Poornachandran, V. K. Menon, and K. P. Soman,
“Deep learning framework for domain generation algorithms prediction using long
short-term memory,” in 2019 5th International Conference on Advanced Computing
Communication Systems (ICACCS), 2019, pp. 666–671. 20, 28

[48] H. Mac, D. Tran, V. Tong, L. G. Nguyen, and H. A. Tran, “Dga botnet detection
using supervised learning methods,” in Proceedings of the Eighth International
Symposium on Information and Communication Technology, ser. SoICT 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p. 211–218. [Online].
Available: https://doi.org/10.1145/3155133.3155166 20

[49] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, “A
lstm based framework for handling multiclass imbalance in dga botnet
detection,” Neurocomputing, vol. 275, pp. 2401–2413, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217317320 20, 28

[50] G. S. Josan and J. Kaur, “Lstm network based malicious domain name detection,”
International Journal of Engineering and Advanced Technology (IJEAT) ISSN, vol. 8,
pp. 2249–8958, 2019. 20, 28

[51] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting domain
generation algorithms with long short-term memory networks,” 2016. 20, 28

[52] Y. Qiao, B. Zhang, W. Zhang, A. K. Sangaiah, and H. Wu, “Dga domain
name classification method based on long short-term memory with attention
mechanism,” Applied Sciences, vol. 9, no. 20, 2019. [Online]. Available:
https://www.mdpi.com/2076-3417/9/20/4205 20, 28

[53] P. Lison and V. Mavroeidis, “Automatic detection of malware-generated domains
with recurrent neural models,” 2017. 20

[54] R. R. Curtin, A. B. Gardner, S. Grzonkowski, A. Kleymenov, and A. Mosquera,
“Detecting dga domains with recurrent neural networks and side information,”
in Proceedings of the 14th International Conference on Availability, Reliability
and Security, ser. ARES ’19. New York, NY, USA: Association for Computing

82

https://www.mdpi.com/2071-1050/15/5/4614
https://doi.org/10.1145/3155133.3155166
https://www.sciencedirect.com/science/article/pii/S0925231217317320
https://www.mdpi.com/2076-3417/9/20/4205

Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3339252.3339258 20,
28

[55] C. Olah, “Understanding lstm networks,” https://colah.github.io/posts/
2015-08-Understanding-LSTMs/, accessed: 2023-07-04. 20

[56] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” Advances in neural information processing systems, vol. 28, 2015. 21

[57] “Enisa threat landscape - the year in review — enisa,” https://www.enisa.europa.
eu/publications/year-in-review, 2020, (Accessed on 09/09/2021). [Online]. Available:
https://www.enisa.europa.eu/publications/year-in-review/view/++widget+
+form.widgets.fullReport/@@download/ETL2020+-+A+year+in+review+A4.pdf
23

[58] ENISA, “Enisa etl2020 - malware,” https://www.enisa.europa.eu/topics/
threat-risk-management/threats-and-trends/etl-review-folder/etl-2020-malware,
2020, (Accessed on 09/09/2021). 23

[59] McAfee, “Mcafee labs threats report, april 2021,” https://www.mcafee.
com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf, april 2021,
(Accessed on 09/09/2021). 23

[60] “Dbir - data breach investigations report,” https://enterprise.verizon.com/resources/
reports/2021-data-breach-investigations-report.pdf, 2021, (Accessed on 09/09/2021).
23

[61] C. Patsakis and F. Casino, “Exploiting statistical and structural features
for the detection of domain generation algorithms,” Journal of Information
Security and Applications, vol. 58, p. 102725, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212620308632 23

[62] A. Drichel, U. Meyer, S. Schüppen, and D. Teubert, “Analyzing the real-world
applicability of dga classifiers,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, ser. ARES ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3407023.3407030 24, 29

[63] M. Pereira, S. Coleman, B. Yu, M. DeCock, and A. Nascimento, “Dictionary
extraction and detection of algorithmically generated domain names in passive
dns traffic,” in Research in Attacks, Intrusions, and Defenses: 21st International
Symposium, RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018,
Proceedings 21. Springer, 2018, pp. 295–314. 24

[64] B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, “Character level based
detection of dga domain names,” in 2018 International Joint Conference on Neural
Networks (IJCNN), 2018, pp. 1–8. 24, 28, 29, 64

[65] B. Yu, D. L. Gray, J. Pan, M. D. Cock, and A. C. A. Nascimento, “Inline dga
detection with deep networks,” in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), 2017, pp. 683–692. 24, 28, 29, 64

83

https://doi.org/10.1145/3339252.3339258
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.enisa.europa.eu/publications/year-in-review
https://www.enisa.europa.eu/publications/year-in-review
https://www.enisa.europa.eu/publications/year-in-review/view/++widget++form.widgets.fullReport/@@download/ETL2020+-+A+year+in+review+A4.pdf
https://www.enisa.europa.eu/publications/year-in-review/view/++widget++form.widgets.fullReport/@@download/ETL2020+-+A+year+in+review+A4.pdf
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/etl-review-folder/etl-2020-malware
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/etl-review-folder/etl-2020-malware
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf
https://enterprise.verizon.com/resources/reports/2021-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2021-data-breach-investigations-report.pdf
https://www.sciencedirect.com/science/article/pii/S2214212620308632
https://doi.org/10.1145/3407023.3407030

[66] B. Yu, J. Pan, D. Gray, J. Hu, C. Choudhary, A. C. A. Nascimento, and M. De Cock,
“Weakly supervised deep learning for the detection of domain generation algorithms,”
IEEE Access, vol. 7, pp. 51 542–51 556, 2019. 24, 28, 64

[67] S. Kumar and A. Bhatia, “Detecting domain generation algorithms to prevent ddos
attacks using deep learning,” in 2019 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), 2019, pp. 1–4. 26, 28

[68] L. Zhu, X. Tang, M. Shen, X. Du, and M. Guizani, “Privacy-preserving ddos attack
detection using cross-domain traffic in software defined networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 3, pp. 628–643, 2018. 26, 31

[69] E. C. P. Neto, S. Dadkhah, and A. A. Ghorbani, “Collaborative ddos detection
in distributed multi-tenant iot using federated learning,” in 2022 19th Annual
International Conference on Privacy, Security & Trust (PST), 2022, pp. 1–10. 26,
54

[70] R. Sharifnya and M. Abadi, “A novel reputation system to detect dga-based botnets,”
in ICCKE 2013, 2013, pp. 417–423. 27

[71] S. Li, T. Huang, Z. Qin, F. Zhang, and Y. Chang, “Domain generation algorithms
detection through deep neural network and ensemble,” in Companion Proceedings
of The 2019 World Wide Web Conference, ser. WWW ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 189–196. [Online]. Available:
https://doi.org/10.1145/3308558.3316498 27

[72] L. Sidi, Y. Mirsky, A. Nadler, Y. Elovici, and A. Shabtai, “Helix: Dga domain
embeddings for tracking and exploring botnets,” in Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, ser. CIKM ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p. 2741–2748.
[Online]. Available: https://doi.org/10.1145/3340531.3416022 27

[73] M. I. Ashiq, P. Bhowmick, M. S. Hossain, and H. S. Narman, “Domain flux-based
dga botnet detection using feedforward neural network,” in MILCOM 2019 - 2019
IEEE Military Communications Conference (MILCOM), 2019, pp. 1–6. 27

[74] J. Mao, J. Zhang, Z. Tang, and Z. Gu, “Dns anti-attack machine learning
model for dga domain name detection,” Physical Communication, vol. 40, p.
101069, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1874490719309036 27

[75] J. Huang, P. Wang, T. Zang, Q. Qiang, Y. Wang, and M. Yu, “Detecting domain
generation algorithms with convolutional neural language models,” in 2018 17th
IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), 2018, pp. 1360–1367. 27

[76] S. Zhou, L. Lin, J. Yuan, F. Wang, Z. Ling, and J. Cui, “Cnn-based dga detection
with high coverage,” in 2019 IEEE International Conference on Intelligence and
Security Informatics (ISI), 2019, pp. 62–67. 27

84

https://doi.org/10.1145/3308558.3316498
https://doi.org/10.1145/3340531.3416022
https://www.sciencedirect.com/science/article/pii/S1874490719309036
https://www.sciencedirect.com/science/article/pii/S1874490719309036

[77] D. S. Berman, “Dga capsnet: 1d application of capsule networks to
dga detection,” Information, vol. 10, no. 5, 2019. [Online]. Available:
https://www.mdpi.com/2078-2489/10/5/157 28

[78] C. Chen, L. Pan, and X. Xie, “Dga domain name detection based on
bigru-mcnn,” in Proceedings of the 2019 4th International Conference on
Intelligent Information Processing, ser. ICIIP 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 315–319. [Online]. Available:
https://doi.org/10.1145/3378065.3378126 28

[79] H. Shahzad, A. R. Sattar, and J. Skandaraniyam, “Dga domain detection using deep
learning,” in 2021 IEEE 5th International Conference on Cryptography, Security
and Privacy (CSP), 2021, pp. 139–143. 28

[80] Y. Zhang, “Automatic algorithmically generated domain detection with deep learning
methods,” in 2020 IEEE 3rd International Conference on Automation, Electronics
and Electrical Engineering (AUTEEE), 2020, pp. 463–469. 28

[81] L. Yang, G. Liu, Y. Dai, J. Wang, and J. Zhai, “Detecting stealthy domain generation
algorithms using heterogeneous deep neural network framework,” IEEE Access, vol. 8,
pp. 82 876–82 889, 2020. 28

[82] S. K, P. Balakrishna, V. Ravi, and S. KP, “Deep learning based frameworks for
handling imbalance in dga, email, and url data analysis,” 2020. 28

[83] Z. Liu, Y. Zhang, Y. Chen, X. Fan, and C. Dong, “Detection of algorithmically
generated domain names using the recurrent convolutional neural network with
spatial pyramid pooling,” Entropy, vol. 22, no. 9, 2020. [Online]. Available:
https://www.mdpi.com/1099-4300/22/9/1058 28

[84] X. Yun, J. Huang, Y. Wang, T. Zang, Y. Zhou, and Y. Zhang, “Khaos: An
adversarial neural network dga with high anti-detection ability,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 2225–2240, 2020. 28

[85] R. Vinayakumar, M. Alazab, S. Srinivasan, Q. Pham, S. K. Padannayil, and
K. Simran, “A visualized botnet detection system based deep learning for the internet
of things networks of smart cities,” IEEE Transactions on Industry Applications,
vol. 56, no. 4, pp. 4436–4456, 2020. 28

[86] Y. Li, K. Xiong, T. Chin, and C. Hu, “A machine learning framework for
domain generation algorithm-based malware detection,” IEEE Access, vol. 7, pp.
32 765–32 782, 2019. 28

[87] J. J. Koh and B. Rhodes, “Inline detection of domain generation algorithms with
context-sensitive word embeddings,” in 2018 IEEE International Conference on Big
Data (Big Data), 2018, pp. 2966–2971. 28

[88] A. Cucchiarelli, C. Morbidoni, L. Spalazzi, and M. Baldi, “Algorithmically
generated malicious domain names detection based on n-grams features,” Expert
Systems with Applications, vol. 170, p. 114551, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417420311957 28

85

https://www.mdpi.com/2078-2489/10/5/157
https://doi.org/10.1145/3378065.3378126
https://www.mdpi.com/1099-4300/22/9/1058
https://www.sciencedirect.com/science/article/pii/S0957417420311957

[89] I. Yilmaz, A. Siraj, and D. Ulybyshev, “Improving dga-based malicious domain
classifiers for malware defense with adversarial machine learning,” in 2020 IEEE 4th
Conference on Information Communication Technology (CICT), 2020, pp. 1–6. 28

[90] R. Sivaguru, J. Peck, F. Olumofin, A. Nascimento, and M. De Cock, “Inline detection
of dga domains using side information,” IEEE Access, vol. 8, pp. 141 910–141 922,
2020. 28

[91] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron: Private inference
on transformers,” in Advances in Neural Information Processing Systems, A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available:
https://openreview.net/forum?id=deyqjpcTfsG 30

[92] S. Adams, D. Melanson, and M. De Cock, “Private text classification with
convolutional neural networks,” in Proceedings of the Third Workshop on Privacy in
Natural Language Processing, 2021, pp. 53–58. 30, 39, 41

[93] Q. Feng, D. He, Z. Liu, H. Wang, and K.-K. R. Choo, “Securenlp: A system for
multi-party privacy-preserving natural language processing,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3709–3721, 2020. 30

[94] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and L. van der
Maaten, “Crypten: Secure multi-party computation meets machine learning,”
Advances in Neural Information Processing Systems, vol. 34, 2021. 30

[95] S. I. Popoola, G. Gui, B. Adebisi, M. Hammoudeh, and H. Gacanin, “Federated
deep learning for collaborative intrusion detection in heterogeneous networks,” in
2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). IEEE, 2021,
pp. 1–6. 31

[96] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.
Poor, “Federated learning for internet of things: A comprehensive survey,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021. 31

[97] A. H. Celdrán, P. M. S. Sánchez, C. Feng, G. Bovet, G. M. Pérez, and B. Stiller,
“Privacy-preserving and syscall-based intrusion detection system for iot spectrum
sensors affected by data falsification attacks,” IEEE Internet of Things Journal,
2022. 31, 54

[98] O. Aouedi and K. Piamrat, “F-bids: Federated-blending based intrusion detection
system,” Pervasive and Mobile Computing, p. 101750, 2023. 31

[99] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A.
Ghorbani, “Ciciot2023: A real-time dataset and benchmark for large-scale
attacks in iot environment,” Sensors, vol. 23, no. 13, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/13/5941 31, 60

[100] J. Li, X. Tong, J. Liu, and L. Cheng, “An efficient federated learning system for
network intrusion detection,” IEEE Systems Journal, 2023. 31

86

https://openreview.net/forum?id=deyqjpcTfsG
https://www.mdpi.com/1424-8220/23/13/5941

[101] D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An ensemble
multi-view federated learning intrusion detection for iot,” IEEE Access, vol. 9,
pp. 117 734–117 745, 2021. 31, 54

[102] G. Folino and P. Sabatino, “Ensemble based collaborative and distributed intrusion
detection systems: A survey,” Journal of Network and Computer Applications, vol. 66,
pp. 1–16, 2016. 31

[103] Y. Cheng, J. Lu, D. Niyato, B. Lyu, J. Kang, and S. Zhu, “Federated transfer
learning with client selection for intrusion detection in mobile edge computing,”
IEEE Communications Letters, vol. 26, no. 3, pp. 552–556, 2022. 32

[104] E. M. Campos, P. F. Saura, A. González-Vidal, J. L. Hernández-Ramos,
J. B. Bernabé, G. Baldini, and A. Skarmeta, “Evaluating federated learning
for intrusion detection in internet of things: Review and challenges,”
Computer Networks, vol. 203, p. 108661, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128621005405 32

[105] Y. Qin and M. Kondo, “Federated learning-based network intrusion detection
with a feature selection approach,” in 2021 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), 2021, pp. 1–6. 32

[106] L. Mokry, P. Slife, P. Bishop, J. Quiroz, C. Guzzi, Z. Chen, A. Crainiceanu, and
D. Needham, “Efficient and privacy-preserving collaborative intrusion detection
using additive secret sharing and differential privacy,” in 2021 IEEE International
Conference on Big Data (Big Data), 2021, pp. 3324–3333. 32, 53

[107] S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, M. Alazab,
S. Bhattacharya, P. K. R. Maddikunta, and T. R. Gadekallu, “Federated learning for
intrusion detection system: Concepts, challenges and future directions,” Computer
Communications, 2022. 32

[108] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and R. Zhang, “A hybrid
approach to privacy-preserving federated learning,” CoRR, vol. abs/1812.03224,
2018. [Online]. Available: http://arxiv.org/abs/1812.03224 32

[109] P. M. S. Sánchez, A. H. Celdrán, T. Schenk, A. L. B. Iten, G. Bovet, G. M. Pérez,
and B. Stiller, “Studying the robustness of anti-adversarial federated learning models
detecting cyberattacks in iot spectrum sensors,” IEEE Transactions on Dependable
and Secure Computing, vol. 21, no. 2, pp. 573–584, 2022. 32

[110] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security, 2015, pp. 1322–1333.
32, 52, 56

[111] M. Mansouri, M. Önen, W. B. Jaballah, and M. Conti, “Sok: Secure aggregation
based on cryptographic schemes for federated learning,” Proceedings on Privacy
Enhancing Technologies, 2023. 32, 51

87

https://www.sciencedirect.com/science/article/pii/S1389128621005405
https://www.sciencedirect.com/science/article/pii/S1389128621005405
http://arxiv.org/abs/1812.03224

[112] T. D. Nguyen, P. Rieger, R. De Viti, H. Chen, B. B. Brandenburg, H. Yalame,
H. Möllering, H. Fereidooni, S. Marchal, M. Miettinen et al., “{FLAME}: Taming
backdoors in federated learning,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1415–1432. 32

[113] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for
privacy-preserving machine learning,” in proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1175–1191. 33

[114] H. Li, Q. Ye, H. Hu, J. Li, L. Wang, C. Fang, and J. Shi, “3dfed: Adaptive and
extensible framework for covert backdoor attack in federated learning,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp. 1893–1907. 33

[115] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back to the drawing
board: A critical evaluation of poisoning attacks on production federated learning,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1354–1371.
33

[116] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
H. L. Kwing, T. Parcollet, P. P. d. Gusmão, and N. D. Lane, “Flower: A friendly
federated learning research framework,” arXiv preprint arXiv:2007.14390, 2020. 34,
44, 46

[117] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke, J.-M.
Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose et al., “Pysyft: A library for
easy federated learning,” Federated Learning Systems: Towards Next-Generation AI,
pp. 111–139, 2021. 34

[118] N. Holohan, S. Braghin, P. Mac Aonghusa, and K. Levacher, “Diffprivlib: the IBM
differential privacy library,” ArXiv e-prints, vol. 1907.02444 [cs.CR], Jul. 2019. 44,
45, 46

[119] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” 2023.
46

[120] V. Aggarwal, V. Gupta, P. Singh, K. Sharma, and N. Sharma, “Detection of spatial
outlier by using improved z-score test,” in 2019 3rd International Conference on
Trends in Electronics and Informatics (ICOEI). IEEE, 2019, pp. 788–790. 47, 51

[121] M. Guarascio, N. Cassavia, F. S. Pisani, and G. Manco, “Boosting cyber-threat
intelligence via collaborative intrusion detection,” Future Generation Computer
Systems, vol. 135, pp. 30–43, 2022. 53, 54

[122] E. Hooper, “An intellilgent infrastructure strategy to improvilng the performance
and detection capability of intrusion detection systems,” in 2006 Securecomm and
Workshops. IEEE, 2006, pp. 1–15. 54

88

[123] C. F. T. Pontes, M. M. C. de Souza, J. J. C. Gondim, M. Bishop, and M. A. Marotta,
“A new method for flow-based network intrusion detection using the inverse potts
model,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp.
1125–1136, 2021. 54

[124] K. V. Jönsson, G. Kreitz, and M. Uddin, “Secure multi-party sorting
and applications,” Cryptology ePrint Archive, Paper 2011/122, 2011, https:
//eprint.iacr.org/2011/122. [Online]. Available: https://eprint.iacr.org/2011/122 54

[125] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models that
remember too much,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 587–601. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/3133956.3134077 56, 65

[126] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating
and testing unintended memorization in neural networks,” in USENIX 2019, 2019,
pp. 267–284. 56, 65

[127] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 2704–2713. 68

[128] M. Keller and K. Sun, “Secure quantized training for deep learning,” Cryptology
ePrint Archive, Paper 2022/933, 2022, https://eprint.iacr.org/2022/933. [Online].
Available: https://eprint.iacr.org/2022/933 68, 72

89

https://eprint.iacr.org/2011/122
https://eprint.iacr.org/2011/122
https://eprint.iacr.org/2011/122
https://dl.acm.org/doi/pdf/10.1145/3133956.3134077
https://eprint.iacr.org/2022/933
https://eprint.iacr.org/2022/933

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	ResumoExtendido
	Introduction
	Problem
	Motivation for the problem
	Objectives
	Results and Scientific Contributions
	Publications and Competitions
	Outline of the Thesis

	Background
	Privacy-Enhancing Technologies
	Secure Multi-Party Computation
	History of MPC
	Applications of MPC
	Basic primitives
	Secret Sharing
	Protocol for addition
	Protocol for addition by a constant
	Protocol for multiplication by a scalar
	Protocol for Multiplication
	Adversarial Models
	Real-World and Ideal-World Paradigms
	Semi-honest or curious
	Malicious
	The need for a trusted third party
	Outsourced Computation

	Universal Composability
	Differential Privacy
	Differentially-Private Stochastic Gradient Descent

	Federated Learning

	Machine Learning and Deep Learning
	Logistic Regression
	Multilayer Perceptron
	Long Short-Term Memory Networks
	Convolutional Neural Network
	Preprocessing
	Embedding layer

	Post-Processing
	Quantization

	Applications
	Domain Generation Algorithms
	Intrusion Detection System

	Related Works
	DGA detection using deep learning
	Secure Multi-Party Computation for DGA Detection
	Secure Multi-Party Computation for Natural Language Processing
	IDS with Privacy-Preserving Machine Learning
	Attacks and Defenses on Machine Learning
	Frameworks PPML

	P2MLF
	Introduction
	Threat Model
	Privacy Requirements
	Basic Building Blocks
	P2MLF Preprocessing
	Embeddings

	P2MLF Models
	MLP
	CNN1D
	LSTM
	LR

	P2MLF Inference
	P2MLF Training
	Basic Building Blocks
	Collaborative Training
	DP with FL
	DP with FL(Aggregation on MPC)
	DP with MPC

	Non-Collaborative Training
	DP (DP-SGD)

	Security and Privacy
	Input privacy
	Output privacy

	P2MLF Training Applied in CIDS
	Introduction
	Problem
	Motivation to the Problem
	Contributions
	P2MLF Applied in CIDS
	CIDS using P2MLF Collaborative Training
	P2MLF Collaborative Training DP with FL
	DP with FL (Aggregation on MPC)
	P2MLF training MPC with DP

	P2MLF Inference of CIDS
	Dataset
	Utility-Privacy Trade-Off
	Security and Privacy
	Runtimes
	Final considerations

	P2MLF Inference Applied in DGA
	Introduction
	Problem
	Contributions
	P2MLF Applied in DGA Detection
	DGA Classifiers using P2MLF Non-Collaborative Training
	P2MLF inference of DGA domains
	Dataset
	Model Architectures and Parameters
	Utility-Privacy Trade-Off
	Runtimes
	Final considerations

	Conclusions and Future Work
	References

