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Braśılia

2024



Universidade de Braśılia
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de vocês foi imprescind́ıvel na minha trajetória.
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Resumo

Nesta tese apresentamos uma visão geral e novos resultados relacionados a um

problema com operador de Schrödinger eĺıptico e dados em medida de Borel.

Introduzimos dois métodos de aproximação para esse problema de Schrödinger;

no primeiro, apresentamos uma técnica de aproximação no potencial de Schrödinger,

que leva à medida reduzida e, consequentemente, a uma subsolução maximal do

problema; enquanto, no segundo método, introduzimos uma técnica de aproximação

no dado da medida de Borel que possibilita a introdução do conceito de limite

reduzido.

Em seguida, provamos propriedades de monotonicidade e semicontinuidade in-

ferior do limite reduzido, em função dos conjuntos de torsão zero e zero universal.

Como consequência, mostramos a existência de uma solução (limite reduzido) e a

ocorrência do fenômeno de Lavrentiev para um problema de controle optimal. As

principais ferramentas usadas são de Teoria Geométrica da Medida e Teoria do

Potencial.

T́ıtulo em português: Métodos de Aproximação para o Problema de Dirichlet

Envolvendo o Operador de Schrödinger e Dado em Medida.

Palavras-chave: Equações Diferenciais Parciais Eĺıpticas, dados em medida de

Borel, conjunto de torsão zero, conjunto zero universal, desigualdade de Kato, ca-

pacidades de Sobolev, medida reduzida, limite reduzido, teoria geométrica da me-

dida, teoria do potencial, problema de controle optimal, fenômeno de Lavrentiev.
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Abstract

In this thesis we present an overview and new results related to a problem

involving an elliptic Schrödinger operator and Borel measure data.

We introduce two approximation methods for this Schrödinger problem; in the

first one we present an approximation technique on the Schrödinger potential, that

leads to the reduced measure and, consequently, to a maximal subsolution to the

problem; while in the second method, we introduce an approximation technique

in the Borel measure data, that allows the introduction to the concept of reduced

limit.

Next, we prove monotonicity and lower semicontinuity properties of the reduced

limit, depending on the torsion and universal zero-sets. As a consequence, we

show the existence of a solution (the reduced limit) and the occurrence of the

Lavrentiev phenomenon to an optimal control problem. The main tools used are

from Geometric Measure Theory and Potential Theory

Keywords: Elliptic Partial Differential Equations, Borel measure data, torsion

zero-set, universal zero-set, Kato’s inequality, Sobolev capacities, reduced measure,

reduced limit, geometric measure theory, potential theory, optimal control problem,

Lavrentiev phenomenon.
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Notation

• µ, λ denote finite Borel measures;

• M(X) denote the normed vector space of all finite Borel measures over X;

• µ A is the restriction of the measure µ to the set A;

• Ω denotes an open subset of RN ;

• µk
∗
⇀ µ denotes the weak* convergence;

• C∞
c (Ω) := {f : Ω → R; f ∈ C∞(Ω) and supp(f) is compact};

• C∞
0 (Ω) := {f : Ω → R; f |∂Ω ≡ 0 and f |Ω ∈ C∞

c (Ω)};

• W n,p(Ω) denotes the Sobolev space of order n, p over Ω;

• W n,p
0 (Ω) := C∞

0 (Ω)
∥·∥Wn,p(Ω)

;

• capWn,p denotes the capacity related to the Sobolev space W n,p;

• f̂ is the precise representative of the function f ;

• [V ;µ] denotes the Schrödinger problem with potential V and density µ:

{−∆u+ V u = µ in Ω,

u = 0 on ∂Ω;

• ζf is the variational solution of the Schrödinger problem with potential V and

data f ;

• S ⊂ Ω denotes the torsion zero-set;

• Z ⊂ Ω denotes the universal zero-set;

• µ∗ ∈ M(Ω) denotes the reduced measure related to µ;

• µ# ∈ M(Ω) denotes the reduced limit related to µ.
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1 Introduction

In physics, partial differential equations are ubiquitous, from the study of heat

and waves to the study quantum mechanics. We are generally presented with a

problem as the following: {−∆u = f in Ω,

u = 0 on ∂Ω,

where ∆ is the Laplace operator operator and it is assumed some regularity on the

real function f . Because of analytical reasons, it is extremely hard to derive explicit

solutions to these equations, so mathematicians are inclined to weaken the meaning

of solution. One of the most useful ways is taking the theory of distributions into

account.

Distributions are linear functional on the space of smooth functions with com-

pact support. These functions are very useful because a big range of functions can

be treated as such, using the following transformation:

⟨f, ϕ⟩ :=
ˆ
Ω

fϕ.

This way of thinking about differential equations and generalized functions was

introduced by the mathematicians Serguëı Lvovitch Sobolev (1908-1989) and Lau-

rent Schwartz (1915-2002), when working with Partial Differential Equations.

One of the most important aspects of the space of distributions is that it is

big enough to contain a large range of functions, but small enough so that we

can have some regularity inside it. For example, we can talk about derivatives of

distributions using the duality properties of the space, defining the derivative T ′ of

the distribution T using the integration by parts:

⟨T ′, ϕ⟩ := −⟨T, ϕ′⟩,∀ϕ ∈ C∞
c (Ω).

Some phenomenon in physics can not be accurately described by real functions,

being set functions the most appropriate object to work with. For these phenomenon

we are motivated to use more general objects, like measures. Then, we can start

studying equations like the following:{
−∆u+ V u = µ in Ω,

u = 0 on ∂Ω.

This type of generalized partial differential equation also suffers from the same

limitations related to explicit solutions. Therefore we can talk about weak or gen-

eralized solutions using the space of distributions. A measure µ can be seen as a
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distribution according to the following identification:

⟨µ, ϕ⟩ :=
ˆ
Ω

ϕ dµ, ϕ ∈ C∞
c (Ω).

This allows us to talk about this type of equation with more ease; and to use

several results from the usual box of analytic tools coming from the study of partial

differential equations.

Our study will focus on the following partial differential equation:{−∆u+ V u = µ in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain, µ is a finite Borel measure on Ω and V : Ω → R
is a Lebesgue-measurable function. We call this the Schrödinger problem with

potential V and density µ and denote it by [V ;µ].

We call the function V a Schrödinger potential, and the operator ∆ + V a

Schrödinger operator. This operator appears naturally in physics when studying

a force field of the form −∇V . We can also see this type of equation in quantum

mechanics when studying wave functions on a quantum field.

Our measure is not necessarily nonnegative. This is also used in many appli-

cations in physics, for example when working with an electric field, where we can

have negative values.

Problems with measure data have been studied in Stampacchia’s Le problème

de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus

in 1965 (see [27]).

In this article, Stampacchia studies, in particular, the following problem:{−∆u+ V u = µ in Ω,

u = c on ∂Ω,

for a bounded V and c ∈ R, proving some existence results and spectral properties

on the operator (−∆+ V ).

Malusa and Orsina also study some problems with measure data in Existence and

regularity results for relaxed Dirichlet problems with measure data ( [18]), dealing

with a more generalized elliptic operator.

The more modern approach to studying the potential ∆u as a measure started

with Brezis and Ponce, with results such as the Kato’s inequality and the weak

maximum principle (see [7], [8] and [9]).

Some of the results we prove in this text are motivated by the ones achieved for

the following nonlinear problem
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{
−∆u+ g(u) = µ in Ω,

u = 0 on ∂Ω,

in the papers [6] and [20]. In these works, the authors prove some approximation re-

sults, leading to the definitions of reduced measure and reduced limit which inspired

us to define their analogous versions in our context of the Schrödinger problem.

Maybe motivated by the techniques that lead to the results about the above

problem, Orsina and Ponce studied the Schrödinger problem closely, with the ob-

jective of proving maximum principle results, as in [22] and [24], and the Hopf

potential [23]. Some of the most important results that we use are the decomposi-

tion of the set Ω into sets that obey the maximum principle, the characterization

of nonnegative good measures, and the properties of the zero-sets S and Z.

Another source of results and techniques in our approach is the book Elliptic

PDEs, Measures And Capacities [25] by Ponce, which presents an overview of po-

tential theory and differential equations with measure data. It also proves some

comparison methods regarding measures and distributions that are also useful in

our text.

With this text, we aim to build on the existent theory, by studying two ap-

proximation methods, already used in studying the nonlinear problem. The biggest

difficulty is in the treatment of the potential V , that can take the value ∞ in a set

of positive measure. Our methods will then heavily use the theory of zero-sets as

presented in [24].

Our first objective is to lay down all the known foundations to work with these

types of equations with measure data. This is the aim of Chapter 2. This overview of

the known literature is necessary for the development of our approximation methods

in Chapters 3 and 4.

In Section 2.1 we study finite Borel measures and how they relate to nonnegative

Borel semimeasures. The main definition in this section will be the diffuse and

concentrated limits of a sequence of measures. These concepts are strongly related

to the concepts of absolutely continuous and singular measures from usual measure

theory, but here they are generalized and this will allow us to talk more deeply

about sequences of measures.

In Section 2.2 we lay the foundations of the area of study known as Geometric

Measure Theory (GMT). This is the field that studies fine properties of functions

and subsets of RN , using nonnegative Borel semimeasures that can look deeper

into those objects. The most important tools are the Sobolev capacities and Haus-

dorff measures. We present three different types of capacities and the relationships

between them. We also talk about how they relate to the Hausdorff measure.

In Section 2.3 we deal with the concept of precise representatives, which is a tool

that allow us to talk about pointwise properties of functions that are defined almost

8



everywhere. This concept derives from the Lebesgue’s Differentiation Theorem and

the maximal function. We can compute the precise representative f̂ of a Sobolev

function f with the integral

f̂(x) = lim
r→0

1

|B(x; r)|

ˆ
B(x;r)

f.

Then we talk about quasicontinuous functions, and quasi-open and quasi-closed

sets. We can then define a class of subsets of RN called the Sobolev-open sets,

that generate a topology that is going to be very useful to our studies. Similarly,

we define the Sobolev-closed sets. We end the section with some useful results

describing some properties of measures in Sobolev-open sets.

On Section 2.4 we start our discussion of the Schrödinger problem. We first

make clear the differences between distributions, measures and functions and show

some relationships between these objects, in order to manipulate them with care.

Then we present the definition of a type of solution to the Schrödinger problem

using the theory of distributions. When a function u ∈ L1(Ω) ∩ L1(Ω;V ) satisfies

ˆ
Ω

u(−∆ψ + V ψ) =

ˆ
Ω

ψ dµ

for every ψ ∈ C∞
0 (Ω), we call this function a distributional solution to the

problem [V ;µ]. We denote by G(V ) the set of finite Borel measures for which the

Schrödinger problem with potential V has a solution. These measures are called

good measures.

We make the distinction between a distributional solution with measure data

and a solution with L2 data, which is a function u ∈ W 1,2
0 (Ω) ∩ L2(Ω;V ) that

satisfies ˆ
Ω

u(−∆ψ + V ψ) =

ˆ
Ω

ψ dµ

for every ψ ∈ W 1,2
0 (Ω)∩L2(Ω;V ). We call this function a variational solution to

the problem [V ;µ]. These solutions can also be found by minimizing an energy

function, as seen in Definition 2.36. Every variational solution is a distributional

solution, and a distributional solution does not always exist.

With the purpose of having a candidate for the distributional solution, we define

the duality solution that always exists and is unique for every Borel-measurable

V : Ω → [0,∞] and µ ∈ M(Ω). When the distributional solution exists, they are

also duality solutions to the same problem.

On the last section (Section 2.5) we move on to zero-sets. The first zero-set,

that we denote by S, is related to the set of points of Ω for which the precise

representative of the variational solution with f ≡ 1, which we call torsion function,

is zero. While the set Z is the subset of Ω for which the precise representative of

9



each the distributional solution, for nonnegative f ∈ L∞(Ω), is zero. We call S the

torsion function zero-set and Z the universal zero-set. In particular, S ⊂ Z.

One of the possible interpretations of these sets, and the one that can be used to

obtain S and Z, is related to the strong maximum principle. We know that because

of the generality of our potential V , the strong maximum principle does not hold in

all cases, i.e., for a variational solution ζ of the Schrödinger problem with potential

V and L∞ data, we do not necessarily have

ζ̂ > 0 or ζ̂ ≡ 0 in Ω,

(this is particularly true when dealing with a singular potential V , when we can

have, for example, the set {x ∈ Ω;V (x) = ∞} with positive Lebesgue measure).

The set Z is precisely the subset of Ω for which every distributional solution is

zero everywhere. In the classical theory of partial differential equations we have the

validity of this maximum principle, therefore we do not see the occurrence of these

zero-sets.

The set Z gives us a characterization of the existence of solutions to the Schrödin-

ger problem, as seen in Theorem 1.4 from On the nonexistence of Green’s function

and failure of the strong maximum principle - Luigi Orsina, Augusto Ponce - 2019

(see [24]). The theorem states that for every V : Ω → [0,+∞], the Schrödinger

problem with potential V and nonnegative density µ has a distributional solution

if, and only if,

µ (Z) = 0.

About S, an important result is the decomposition of Ω in terms of the strong

maximum principle using Sobolev-connected sets, as seen in Theorem 1.1 from [24].

We can also use the set S to construct a Schrödinger problem for which a duality

solution is a distributional solution. Some remarks about the sizes of these sets can

also be made using the capacities and the Hausdorff measure. The set S performs

a crucial role in the next chapters.

In the following Chapters 3 and 4 we present our original results and contribu-

tions of this thesis to the theory of elliptic differential equation with measure data

and some applications.

In the first section of Chapter 3 we will study and connect two types of ap-

proximation methods, that we will call reduced measure and reduced limit. The

reduced measure comes from an approximation on the potential V and gives us

a generalized version of the distributional solution. It was first introduced to the

theory of elliptic problems with measure by Malusa and Orsina in [18] and, later,

a version of the concept of reduced measure was used to study nonlinear equations

with measure data.

In order to prove the Theorem 3.8 bellow we were inspired by Malusa and
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Orsina’s approximation method to work with problems regarding the Schrödinger

operator and measure data. We want to find, for every nonnegative µ ∈ M(Ω), an

L1(Ω) function that is going to be either the distributional solution of the problem

if µ is a good measure, or the maximal subsolution to the problem, if µ is not a good

measure. We find that the reduced measure µ∗ also has good properties, namely,

it is the biggest good measure smaller than µ. Our results can be stated in the

following theorem:

Theorem 3.8. For every nonnegative µ ∈ M(Ω) and Borel-measurable V : Ω →
[0,∞], there exists a measure µ∗ ∈ M(Ω), called the reduced measure of [V ;µ], that

satisfies:

(i) µ∗ is a good measure, that is, there exists the distributional solution of the

problem [V ;µ∗], say u∗ ∈ L1(Ω);

(ii) u∗ is a subsolution of [V ;µ] and every subsolution v ∈ L1(Ω) of [V ;µ] satisfies

v ≤ u∗ almost everywhere in Ω;

(iii) µ∗ ≤ µ and for every λ ∈ G(V ) such that λ ≤ µ, we have λ ≤ µ∗;

(iv) µ∗ = µ Ω\Z.

In the next section, we introduce the concept of reduced limit. We want

to talk about sequences of solutions and how they relate to each other. If we

take a sequence (µk) of measures for which the Schrödinger problem has solutions

(uk), we want to know if uk → u# in L1(Ω) implies that u# is a solution to some

Schrödinger equation with the same potential V . If the L1(Ω) limit u# is a solution

to a Schrödinger problem with potential V and density µ#, we call µ# the reduced

limit of the sequence (µk).

We answer the question about existence positively:

Theorem 3.25. Let (µk)k∈N ⊂ G(V ), not necessarily nonnegative measures, be a

bounded sequence in M(Ω). For each k ∈ N, denote by uk ∈ L1(Ω) the distributional

solution of the Schrödinger problem with Borel-measurable potential V : Ω → [0,∞]

and density µk. If

uk → u# in L1(Ω),

then:

(i) the reduced limit of (µk)k∈N exists and it is unique, say µ# ∈ M(Ω);

(ii) u# is the distributional solution of [V, µ#], in particular, µ# is a good measure.

An important property of the reduced limit is the monotonicity over Ω\S given

by the following theorem.
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Theorem 3.31. Let V : Ω → [0,∞] a Borel-measurable function and (µk)k∈N,

(λk)k∈N ⊂ G(V ) be bounded sequences of not necessarily nonnegative measures, with

reduced limits µ#, λ# ∈ M(Ω), respectively. If, for every k ∈ N,

µk ≥ λk in Ω\S,

then

µ# ≥ λ# in Ω\S.

Another important property of the reduced limit concerns the lower semiconti-

nuity with respect to the total variation norm (see Section 2.1).

Theorem 3.32. Assume V : Ω → [0,∞] a Borel-measurable function and (µk)k∈N ⊂
G(V ), not necessarily nonnegative measures, be a bounded sequence in M(Ω) with

reduced limit µ# ∈ M(Ω). Then,∣∣µ#
∣∣ (Ω\S) ≤ lim inf

k→∞
|µk| (Ω\S) .

Lastly, in Chapter 4 we study two applications of these concepts. We start with

an optimization problem known as the Optimal Control problem. This is a type of

problem that appears naturally in physics and engineering, and uses tools from the

area of Calculus of Variations and Dynamical Systems. We deal with the following

Cost Functional:

Fp,ud
(µ) =



∥u− ud∥Lp(Ω) + α |µ| (Ω\S) , if the Schrödinger problem with

potential V and density µ has a

distributional solution u,

∞, otherwise,

where the function ud : Ω → R is a given L1(Ω) function that we call “ideal state”.

We want to solve the following optimal control problem:

find µ# ∈ M such that Fp,ud

(
µ#
)
= inf

µ∈M
Fp,ud

(µ) . (P)

We note that the linear functional F is not lower semicontinuous with respect to

the weak∗ convergence of measures, which makes the problem more difficult.

Our first result gives us a way to deal with the singularity of the zero set S when

calculating the total variations of a measure µ ∈ M(Ω) for which the Schrödinger

problem has a solution. In this case we have:

If µ ∈ L1(Ω) ∩ G(V ), then ∥µ∥L1(Ω) = |µ| (Ω\S).

12



Then we prove that our optimal control problem has a solution:

Theorem 4.2. Assume V : Ω → [0,∞] a Borel-measurable function, µ ∈ M(Ω)

being not necessarily nonnegative, ud ∈ L1(Ω), 1 ≤ p ≤ ∞ and α > 0. Then the

minimization problem (P) has a unique solution µ# ∈ M(Ω). Moreover, µ# is the

reduced limit of any minimizing sequence of the functional Fp,ud
, in particular, there

exists u# ∈ L1(Ω), the distributional solution of the problem [V ;µ#].

Our second application addresses a type of phenomenon that occurs when we

have a solution to an optimization problem that is not summable. This is called the

Lavrentiev Phenomenon named after Mikhäıl Lavrentiev (1900-1980). Our result

regarding the Lavrentiev phenomenon is the following:

Theorem 4.7. Let µ ∈ M(Ω) be not necessarily nonnegative, N ≥ 3 and N
N−2

≤
p <∞. Assume 0 ≤ V ∈ Lq′ (Ω) for some 1 ≤ q < p, where 1

q
+ 1

q′
= 1. Then there

exists a nonnegative and nontrivial w ∈ Lq(Ω) ∩W 1,r
0 (Ω), for every 1 ≤ r < N

N−1
,

distributional solution to the problem [V ;λ], for some nonnegative and nontrivial

λ ∈ M(Ω), such that the cost functional Fp,w satisfies

Fp,w ̸≡ ∞ in M (Ω) and Fp,w ≡ ∞ in L1 (Ω) .

To elaborate this thesis, we took inspiration on the ideas from results of a specific

type of problem, in this case, the nonlinear problem, and we aimed to develop some

similar and new ones from techniques, with significant changes, to another type of

problem, the Schrödinger problem.

We had to take specific care with the singularity of the potential V (since the

set {x ∈ Ω;V (x) = ∞} can have positive Lebesgue measure), and with the help of

the zero-sets this study became more viable. The development of a different set of

techniques for this specific type of problem was necessary.
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2 Preliminaries

In this first chapter we lay the foundations for the study of our main problem.

First we have to study measures and their properties. Our main object of study

will be finite Borel measures, and in the first section we define and study these

measures.

We first talk about diffuse and concentrated measures, that are the equivalent

in potential theory to the usual concepts of absolutely continuous and singular

measures with respect to the Newtonian capacity.

Using the weak*-convergence we can also define the diffuse and concentrating

limits that will help us look more deeply into finer properties of measures.

The next chapter is dedicated to the Sobolev capacity, a type of measure that

allows us to examine closer into sets in the Euclidean space. These ”measures” are

finer than the usual Lebesgue measure over RN , and when paired with measure

theory can be powerful tool in understanding complicated sets.

Lastly, we introduce the concept of precise representative. Often in analysis we

deal with functions defined almost everywhere. When integrating with respect to

the Lebesgue measure, this does not present any difficulties. But when working

with integrals with respect to arbitrary measures, we have to use functions defined

pointwise.

The precise representative is a way to define a function in every point without

losing too much information about it and still retaining some important properties.

We pair this concept with the ideas of quasicontinuity and Sobolev-open sets, that

present a natural way to study some of the functions (notably the solutions to our

main problem) and sets (notably the zero-sets) we will see in the next chapters.

Since it is uncommon to have measure as data in a differential equation, in this

chapter we also take the time to lay the technical foundation to study the problem

we have.

In Section 2.4 we generalize the concept of function using linear functionals

defined over continuous functions and Schwartz distributions, and show how these

relate to a broader understanding of differential phenomena.

By showing how these ideas are linked to each other we can expand our idea of

what a differential equation is, and with this, also expand the tools we can work

with to approach, solve and understand partial differential equations.

We then define what we mean by a solution to our PDE, and show how the

equation can be seen as a distributional or a functional equation.

In the last section we define other weaker notions of solutions, namely the duality

and the variational solutions, that are going to help us study our main problem.

We also see some results concerning existence and uniqueness of solutions and

the application of the weak maximum principle. Next we introduce the zero-sets S

and Z that are closely reated to the maximum principle results.
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We end the chapter with a result about the decomposition of the set Ω into

parts that obey the maximum principle, and a characterization of nonnegative good

measures, both results from [22].
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2.1 Finite Borel measures

Throughout this text we will work with the normed vector space RN , N ≥ 1,

endowed with the usual topology generated by the Euclidean metric, and pair it with

the Borel σ-algebra on RN . This class of subsets of RN , that we notate by B(RN),

is defined as the σ-algebra generated by the open subsets of RN or, equivalently,

the smallest σ-algebra that contains all the open subsets of RN .

We call a set X ∈ B(RN) a Borel subset of RN , and define the Borel σ-algebra

over X, denoted B(X), as the natural restriction of B(RN) to the set X:

B(X) := {A ∩X;A ∈ B(RN)}.

We begin by defining our main objective of study:

Definition 2.1. Let X ∈ B(RN). A finite Borel measure over X is a function

µ : B(X) → R such that

µ

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ (Ak)

for every sequence (Ak)k∈N ⊂ B(X) of disjoint sets. A measure space is a pair

(X;µ), where X ∈ B(RN) and µ is a finite Borel measure over X.

Remark. Note that the series
∑∞

k=1 µ (Ak) must be absolutely convergent, so that

it does not depend on the order of summation, that is

∞∑
k=1

|µ (Ak)| <∞.

It follows from the definition that for every measure space (X;µ), µ (∅) = 0.

Note that finite Borel measures can take negative values. In particular, if the

measure µ only takes nonnegative values, we have:

(I) If A,B ∈ B(X) and A ⊂ B, then

µ (A) ≤ µ (B) .

(II) If (Ak)k∈N ⊂ B(X), then

µ

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ (Ak) .

Given a measure space (X;µ) and a set Y ∈ B(X), one defines the following

finite Borel measure:

µ Y (A) := µ (Y ∩ A) , ∀A ∈ B (X) .
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This is called the contraction of µ to Y .

We say that the measure µ is nonnegative, and denote µ ≥ 0, if for every

A ∈ B(X),

µ (A) ≥ 0.

More generally, given two finite Borel measures over X, µ and λ, we say that the

inequality µ ≤ λ holds in the sense of measures when

µ (A) ≤ λ (A) , ∀A ∈ B (X) ,

and we say that the inequality µ ≤ λ holds in Y ∈ B(X) in the sense of measures,

when

µ Y (A) ≤ λ Y (A) , ∀A ∈ B (X) .

The next classical result, which is a combination of Theorems 3.3 and 3.4 from

[15], gives us a decomposition of the set X in terms of a given finite Borel measure:

Theorem 2.2 (Hahn-Jordan decomposition). If (X;µ) is a measure space, then

there exist sets P,N ∈ B(X) such that

(i) P ∪N = X, P ∩N = ∅, µ(P ∩N) = 0;

(ii) µ P and −µ N are nonnegative finite Borel measures over X.

In particular, µ = µ P − (−µ N), i.e., we can write µ as the difference of two

nonnegative finite Borel measures.

Definition 2.3. Let (X;µ) be a measure space, and P,N ∈ B(X) be the sets given

by the Hahn-Jordan Decomposition. The positive part of µ, notated by µ+, and the

negative part of µ, notated by µ−, are the nonnegative measures defined as

µ+ := µ P and µ− := −µ N .

The total variation of µ, notated by |µ|, is defined as

|µ| := µ+ + µ−.

For more about measures, we refer to [11] and [15].

We are also interested in the following alternative way of measuring sets:

Definition 2.4. Let X ∈ B(RN). A nonnegative Borel semimeasure over X is a

function T : B(X) → [0,∞] such that

(i) T (∅) = 0;

(ii) T (A) ≤ T (B) for every A,B ⊂ B(X) such that A ⊂ B;
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(iii) there exists a real constant c > 0 such that

T

(
∞⋃
k=1

Ak

)
≤ c

∞∑
k=1

T (Ak)

for every (Ak)k∈N ⊂ B(X).

Every nonnegative finite Borel measure is a nonnegative Borel semimeasure.

The most important example of a nonnegative Borel semimeasure is the Lebesgue

measure over RN . We will in generally denote the Lebesgue measure over X ∈
B(RN) by

| · | : B (X) → [0,∞] ,

and we denote the integral with respect to this measure either by omitting the

measure in the integral, or by using the symbol dx.

Now we are going to define two possible relationships between a measure and a

nonnegative semimeasure:

Definition 2.5. Let (X;µ) be a measure space and T be a nonnegative Borel

semimeasure over X.

(I) The measure µ is a diffuse measure with respect to T , or T -diffuse measure,

notated by µ≪ T , if

|µ| (A) = 0

for every A ∈ B(X) such that T (A) = 0.

(II) The measure µ is a concentrated measure with respect to T , or T -concentrated

measure, notated by µ ⊥ T , if there exists a set N ∈ B(X) such that

T (N) = 0 and |µ| (X\N) = 0.

These concepts are analogous to the usual concepts of absolute continuous and

singular measures from classical measure theory.

Next we present an equivalent version of the Lebesgue Decomposition Theorem.

Its proof can be found in [25], Theorem 14.12.

Theorem 2.6 (Lebesgue Decomposition Theorem). Let (X;µ) be a measure space

and T be a nonnegative Borel semimeasure over X. Then, there exist a unique

finite Borel measures over X, µd and µc, such that

(i) µ = µd + µc;

(ii) µd ≪ T and µc ⊥ T .
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Now we start working with sequences of measures. The definitions of diffuse

and concentrated measures are a particular case of the following definitions for

sequences:

Definition 2.7. Let (µk)k∈N be a sequence of finite Borel measures over X, and T

be a nonnegative semimeasure over X.

(I) The sequence (µk)k∈N is an equidiffuse sequence with respect to T , or T -

equidiffuse sequence, if, for every ε > 0, there exists δ > 0 such that

A ∈ B (X) and T (A) < δ =⇒ |µk| (A) < ε ∀k ∈ N;

(II) The sequence (µk)k∈N is a concentrating sequence with respect to T , or T -

concentrating sequence, if there exists (Ak)k∈N ⊂ B(X), such that

lim
k→∞

T (Ak) = 0 and lim
k→∞

|µk| (X\Ak) = 0.

Our objective is to study the convergence of equidiffuse and concentrating se-

quences. For this we introduce a normed vector space structure over measures.

First of all, for every X ∈ B(RN), we define the space M(X) as the vector space

(over R) of all finite Borel measures over X. In particular, we denote by M+(Ω)

the subset of all nonnegative finite Borel measures over X.

We then define the following norm over M(X), called the total variation norm:

∥µ∥M(X) := sup {µ (A)− µ (B) ;A,B ∈ B (X)} .

Throughout this work we shall use the following characterization of this norm:

∥µ∥M(X) = µ+ (X) + µ− (X) = |µ| (X) =

ˆ
X

d |µ| .

We can then talk about convergence in norm. Given a sequence (µk)k∈N ⊂
M(X) we say that it converges to µ ∈ M(X), and denote it by

µk → µ in M(X),

if

lim
k→∞

∥µk − µ∥M(X) = 0.

This is also called the strong convergence in M(X). The normed vector space

(M(X), ∥ · ∥M(X)) is a Banach space, this means that every Cauchy sequence of

elements of M(X) converges to an measure in M(X).

From now on we consider the special case of measures over bounded open sets

Ω ⊂ RN , and we want to define a weaker type of convergence on M(Ω). Let us
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define the support of a function f : Ω → R as:

supp(f) := {x ∈ Ω; f(x) ̸= 0},

and the following function space:

Cc(Ω) := {f : Ω → R; f is continuous and supp(f) is compact}.

We introduce the concept of weak* convergence on M(Ω):

Definition 2.8. Let (µk)k∈N ⊂ M(Ω) and µ ∈ M(Ω). We say that the sequence

(µk)k∈N converges weakly* (or vaguely) to µ in M(Ω), notated by

µk
∗
⇀ µ in M(Ω),

if

lim
k→∞

ˆ
Ω

ϕ dµk =

ˆ
Ω

ϕ dµ

for every ϕ ∈ Cc(Ω). In this case we say that (µk)k∈N is weakly* convergent and

that µ is the weak* limit of (µk)k∈N.

See Section 2.4 for a deeper discussion of the relationship between the spaces

M(Ω) and Cc(Ω).

We know that the convergence in norm implies the weak* convergence, and we

also have the following compacity and semicontinuity results:

Theorem 2.9. For every bounded sequence (µk)k∈N ⊂ M(Ω), there exists a subse-

quence (µkj)j∈N, and µ ∈ M(Ω) such that

µkj
∗
⇀ µ ∈ M (Ω) .

Theorem 2.10. If (µk)k∈N ⊂ M(Ω) and µ ∈ M(Ω) are such that µk
∗
⇀ µ in M(Ω),

then

∥µ∥M(Ω) ≤ lim inf
k→∞

∥µk∥M(Ω) .

The proofs can be found in [25], Propositions 2.6 and 2.8, respectivelly.

The following is an important result regarding weak* limits of T -equidiffuse

sequences:

Proposition 2.11. Let T be a nonnegative Borel semimeasure over Ω, and (µk)k∈N
⊂ M(Ω) be a T -equidiffuse sequence. If µk

∗
⇀ µ in M(Ω), then, µ is T -diffuse.

The following result is a generalization for sequences of the analogous version of

the Lebesgue Decomposition Theorem and its proof can be found in [10].

20



Theorem 2.12 (Biting Lemma). Let T be a nonnegative Borel semimeasure over

Ω ⊂ RN , and (µk)k∈N ⊂ M(X) be bounded. Then, there exist sequences (αk)k∈N, (σk)k∈N ⊂
M(X) such that

(B0) (αk)k∈N and (σk)k∈N are bounded in M(X);

(B1) for every k ∈ N, µk = αk + σk;

(B2) (αk)k∈N is T -equidiffuse and (σk)k∈N is T -concentrating.

When the results of the Biting Lemma hold, we say that (αk)k∈N is a T -

equidiffuse sequence of (µk)k∈N, and (σk)k∈N is a T -concentrating sequence of (µk)k∈N.

We can also prove that, for every k ∈ N, αk ⊥ σk.

The next theorem shows that if a T -equidiffuse or T -concentrating sequence of

(µk)k∈N has a weak* limit, then every other subsequence of that type is also weakly*

convergent and its limit is the same:

Theorem 2.13. Let (µk)k∈N ⊂ M(X) be weakly* convergent and bounded, (αk)k∈N,

(σk)k∈N and (α′
k)k∈N, (σ

′
k)k∈N ⊂ M(X) be two pairs of sequences satisfying the Biting

Lemma with respect to (µk)k∈N, and α, σ ∈ M(X) be measures such that αk
∗
⇀ α

and σk
∗
⇀ σ in M(X). Then

α′
k

∗
⇀ α and σ′

k
∗
⇀ σ in M(X).

This proves that the weak* limit of these sequences is independent of the choice

of T -equidiffuse and T -concentrating subsequences. We can then define:

Definition 2.14. Let T be a nonnegative Borel semimeasure over X ∈ B(RN),

(µk)k∈N ⊂ M(X) be a bounded sequence, and (αk)k∈N and (σk)k∈N ⊂ M(X) be,

respectively, T -equidiffuse and T -concentrating sequences of (µk)k∈N.

(I) The diffuse limit of (µk)k∈N with respect to T , or the T -diffuse limit of (µk)k∈N,

is the weak* limit of (αk)k∈N.

(II) The concentrated limit of (µk)k∈N with respect to T , or the T -concentrated

limit of (µk)k∈N, is the weak* limit of (σk)k∈N.

Proposition 2.11 shows us that the T−diffuse limit of a sequence is a T -diffuse

measure, although it is not true that the T -concentrated limit is a T -concentrated

measure.
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2.2 The Sobolev capacity

Let us start by taking X ∈ B(R) and recalling that a function f : X → R is

Borel-measurable if, for every A ∈ B(R), we have f−1(A) ∈ B(X). We then set, for

each 1 ≤ p <∞, the following classes of Borel-measurable functions:

Lp(X) :=

{
f : X → R;

ˆ
X

|f |p <∞
}

and

L∞(X) :=
{
f : X → R;∃M ∈ R with |{x ∈ X; |f(x)| > M}| = 0

}
.

Given Borel-measurable functions f, g : X → R, we say that f = g almost every-

where (often abbreviated to a.e.) in X if∣∣{x ∈ X; f(x) ̸= g(x)}
∣∣ = 0.

We can then define:

Definition 2.15. Let X ∈ B(R), 1 ≤ p ≤ ∞ and ∼X be the equivalence relation

defined by

f ∼X g if f = g almost everywhere in X.

The space Lp(X) is the quotient space

Lp(X)/∼X .

When 1 ≤ p < ∞ we call Lp(X) the space of Lebesgue p-integrable functions (or

p-summable functions) over X. We call L∞(X) the space of essentially bounded

functions over X.

Given a function f ∈ Lp(X), 1 ≤ p ≤ ∞, we denote by [f ] ∈ Lp(X) the

equivalence class determined by f . We can define the following norms:

∥[f ]∥Lp(X) :=

(ˆ
X

|f |p
) 1

p

, for 1 ≤ p <∞

and

∥[f ]∥L∞(X) := inf
M∈R

{
|{x ∈ X; |f(x)| > M}| = 0

}
.

With this structure,
(
Lp(X), ∥ · ∥Lp(X)

)
, 1 ≤ p ≤ ∞, are Banach spaces.

For every 1 ≤ p ≤ ∞ we can also define Lp
loc(X), called the space of locally

p-integrable (if 1 ≤ p <∞) or locally essentially bounded functions (if p = ∞), by:

Lp
loc(X) := {f : X → R; [f |K ] ∈ Lp(K) for every compact K ⊂ X} ,
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and

Lp
loc(X) := Lp

loc(X)/∼X .

It is customary to treat the elements of Lp(X) and Lp
loc(X) as real functions

instead of equivalence classes, often taking a function f : X → R and writing

expressions like f ∈ Lp(X) and ∥f∥Lp(X) instead of [f ] ∈ Lp(X) and ∥[f ]∥Lp(X).

We will adopt this approach of presentation in order to simplify the notation and

match the usual literature.

Now we consider an open set Ω ⊂ RN , and denote the space of infinitely differ-

entiable real functions over Ω, by C∞(Ω). Then we set

C∞
c (Ω) := {f : Ω → R; f ∈ C∞(Ω) and supp(f) is compact}.

This space is called the space of test functions. Since these functions are smooth,

we can take a multi-index α as an N -tuple α = (α1, α2, ..., αN) ∈ NN , with

|α| :=
N∑
i=1

αi,

and define the differential operator Dα : C∞
c (Ω) → C∞

c (Ω), that maps ϕ ∈ C∞
c (Ω)

into Dαϕ ∈ C∞
c (Ω) defined by:

Dαϕ :=
∂|α|ϕ

∂α1
1 ∂α2

2 ...∂αN
N

.

We are then ready to define:

Definition 2.16. Let Ω ⊂ RN be open, 1 ≤ p ≤ ∞ and n ∈ N. The Sobolev space

of order n, p on Ω, denoted by W n,p(Ω), is the space of functions ζ ∈ Lp(Ω) such

that, for each multi-index α with |α| ≤ n, there exists fα ∈ Lp(Ω) satisfying

ˆ
Ω

ζ ·Dαϕ = (−1)|α|
ˆ
Ω

fα · ϕ

for every ϕ ∈ C∞
c (Ω). In this case we call fα the weak derivative of order α of ζ

and we use the notation Dαζ := fα.

The Sobolev space equipped with the norm

∥ζ∥Wn,p(Ω) :=


( ∑

0≤|α|≤n

∥Dαζ∥pLp(Ω)

) 1
p

, if 1 ≤ p <∞∑
0≤|α|≤n

∥Dαζ∥L∞(Ω), if p = ∞

is a Banach space.
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We can also define the spaces W n,p
0 (Ω), for 1 ≤ p ≤ ∞ and n ∈ N :

W n,p
0 (Ω) := C∞

c (Ω)
∥·∥Wn,p(Ω)

.

This space contains the functions ofW n,p(Ω) that, in a certain sense, are zero in the

border of Ω (see more about trace theory in Chapter 15 of [25]). For more about

Sobolev spaces we refer to [5] and [17].

Our study of the Sobolev capacity starts with compact sets. Let 1 ≤ p < ∞
and n ∈ N. We define the set function capWn,p over compact subsets K ⊂ RN as:

capWn,p (K) := inf
{
∥ϕ∥p

Wn,p(RN )
;ϕ ∈ C∞

c (RN), ϕ ≥ 0 in RN , ϕ > 1 in K
}
.

This function has several properties:

(I) For every compact K ⊂ RN ,

|K| ≤ capWn,p (K) .

(II) If K,L ⊂ RN are compact sets with K ⊂ L, then

capWn,p (K) ≤ capWn,p (L) .

(III) Let {Kj}j∈{1,...,m} be a finite family of compact subsets of RN . Then, the

following finite semi-additivity property holds:

capWn,p

(
m⋃
j=1

Kj

)
≤ C

m∑
j=1

capWn,p (Kj) ,

with C = C(N, n, p) ≥ 1. In particular, when p = 1 we have C = 1.

(IV) For every 1 ≤ p <∞ and every compact K ⊂ RN ,

capWn,p (K) ≤ capWn+1,p (K) .

The proofs of these facts can be found in Section A.1 from [25].

We can extend this function to open subsets U ⊂ RN by inner regularity:

capWn,p (U) := sup
{
capWn,p (K) ;K ⊂ RN is compact, K ⊂ U

}
,

and to general subsets of RN by outer regularity:
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Definition 2.17. Let 1 ≤ p < ∞ and n ∈ N. The Sobolev capacity of order n, p,

denoted by capWn,p, is the function defined for every A ⊂ RN as

capWn,p (A) := inf
{
capWn,p (U) ;U ⊂ RN is open, A ⊂ U

}
.

Using the properties that hold for compact sets, we have the next result (see

Proposition A.9 [25]):

Proposition 2.18. (I) For every A,B ⊂ RN with A ⊂ B we have

capWn,p (A) ≤ capWn,p (B) .

(II) Let (Ak)k∈N be a sequence of subsets of RN . We have the following semi-

additivity property:

capWn,p

(
∞⋃
k=1

Ak

)
≤ C

∞∑
k=1

capWn,p (Ak) ,

with C = C(N, k, p) ≥ 1.

When we want to prove relationships between Sobolev capacities and finite Borel

measures, it is necessary to restrict capWn,p to a good class of subsets of RN . The

next result shows us that the Borel σ-algebra of RN serves that purpose well:

Proposition 2.19. The Sobolev capacity capWn,p defined over B(RN), the Borel

σ-algebra of RN , is a nonnegative Borel semimeasure.

Proof: First of all, for every A ⊂ RN (and in particular, for every A ∈ B(RN)),

we have

capWn,p (A) ≥ 0.

We also have that, since the function ϕ ≡ 0 is nonnegative and satisfies ϕ > 1 in ∅,

capWn,p (∅) = 0.

We conclude by using Proposition 2.18. ■

With this in hand we can talk about diffuse and concentrated measures with re-

spect to capWn,p , as well as capWn,p-equidiffuse and capWn,p-concentrating sequences

of measures. Naturally, everytime we talk about these concepts, we are dealing with

capWn,p restricted to B(RN) and if there is no risk of confusion we shall make no

distinction between capWn,p as a set function defined for every subset of RN and

capWn,p as a nonnegative Borel semimeasure.

The next result shows that capWn,p is finer than the Lebesgue measure:
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Proposition 2.20. The Lebesgue measure is capWn,p-diffuse.

Proof: In fact, we have

|K| ≤ capWn,p (K)

for every compact K ⊂ RN (note that B(RN) contains every compact subset of

RN). Using the definition of capWn,p for open sets, and the outer regularity of the

Lebesgue measure, we have

|A| ≤ capWn,p (A)

for every A ∈ B(RN). In particular, if capWn,p(A) = 0, then |A| = 0. ■

The field of Geometric Measure Theory is a vast one. We refer to the references

[14] and [21] for more about this topic.
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2.3 Precise representatives and quasicontinuity

Thoughout this section, for an integrable function f : A → R with |A| > 0, we

use the notation:  
A

f :=
1

|A|

ˆ
A

f.

The following is a fundamental theorem, whose proof can be found in [25],

Proposition 8.1:

Theorem 2.21 (Lebesgue Differentiation Theorem). Let f ∈ L1(RN). Then, there

exists A ∈ B(RN) such that

(i) |RN\A| = 0;

(ii) for every x ∈ A we have

lim
r→0

 
B(x;r)

|f − f(x)| = 0.

In particular, this implies that, for functions f ∈ L1(R), the primitive function

F : R → L1(R) defined as

F (x) =

ˆ x

0

f,

is differentiable, except in a set with Lebesgue measure zero.

We now want to give special importance to the set of points of RN for which

the Lebesgue’s Differentiation Theorem holds.

Definition 2.22. Let f ∈ L1
loc(RN). A point x ∈ RN is a Lebesgue point of f if

there exists c ∈ R such that

lim
r→0

 
B(x;r)

|f − c| = 0.

The set of all Lebesgue points of f is called the Lebesgue set of f and it is denoted

by Lf . The set RN\Lf is called the exceptional set of f .

The Lebesgue’s Differentiation Theorem shows us that the exceptional set is

small with respect to the Lebesgue measure, i.e.,∣∣RN\Lf

∣∣ = 0,

and that the number c ∈ R, associated to the point x ∈ Lf , is f(x) when x is a

point for which the limit shown in the theorem holds. Furthermore it is easy to

know that we also have:
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Proposition 2.23. Let f, g ∈ L1
loc(RN), a ∈ R and H : R → R be a Lipschitz-

continuous function. Then

(I) (Lf ∩ Lg) ⊂ Lf+g;

(II) Lf ⊂ Laf ;

(III) Lf ⊂ LH(f).

Now we define a function associated to f in the set Lf :

Definition 2.24. Let f ∈ L1
loc(RN) and Lf the Lebesgue set of f . The precise

representative of f , denoted by f̂ : Lf → R, is defined as the function that at the

point x ∈ Lf , assumes the value f̂(x) ∈ R that satisfies

lim
r→0

 
B(x;r)

∣∣∣f − f̂(x)
∣∣∣ = 0.

Similar to the linearity properties of the Lebesgue sets, we have:

Proposition 2.25. Let f, g ∈ L1
loc(RN), a ∈ R and H : R → R a Lipschitz-

continuous function. Then

(I) f̂ + g = f̂ + ĝ in Lf ∩ Lg;

(II) âf = af̂ in Lf ;

(III) Ĥ(f) = H(f̂) in Lf .

We know that the precise representative f̂ is defined almost everywhere in RN .

If we denote by Af the set of points of RN for which the limit in the Lebesgue’s

Differentiation Theorem holds, then

Af ⊂ Lf

and

f = f̂ in Af .

And since ∣∣∣∣ 
B(x;r)

(
f − f(x)

)∣∣∣∣ ≤  
B(x;r)

|f − f(x)|

for every r > 0, then

f̂(x) = lim
r→0

 
B(x;r)

f

for every x ∈ Af , which is a nice way to compute the precise representative at

almost every point.
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We can define all these concepts for functions in L1
loc(Ω) for Ω ⊂ RN , since the

definition is only local, i.e., if f ∈ L1
loc(Ω), then the extension f ∈ L1

loc(RN) defined

by

f = f in Ω, and f = 0 in RN\Ω,

gives a unique c ∈ R that satisfies

lim
r→0

 
B(x;r)

∣∣f − c
∣∣ = lim

r→0,B(x;r)⊂Ω

 
B(x;r)

|f − c| = 0

for every x ∈ Ω.

Now we present the concept of quasicontinuity:

Definition 2.26. Let X ∈ B(RN), f : X → R be a measurable function and T

be a nonnegative Borel semimeasure over X. We say that f is a quasicontinuous

function with respect to T , or T -quasicontinuous function, if there exists a sequence

(Ak)k∈N ⊂ B(RN) such that

(i) f |Ak
is continuous for every k ∈ N;

(ii) lim
k→∞

T (X\Ak) = 0.

We also say that a property holds T -quasi-everywhere in X if it holds in the set

X\A and T (A) = 0.

Definition 2.27. Let X ∈ B(RN) and T be a nonnegative Borel semimeasure over

X. A set A ⊂ X is a quasi-open set with respect to T , or a T -quasi-open set, if

there exists a sequence (Uk)k∈N, of open subsets of Ω, such that

(i) A ∪ Uk is an open subset of X for every k ∈ N;

(ii) lim
k→∞

T (Uk) = 0.

Furthermore, A ⊂ X is a quasi-closed set with respect to T , or a T -quasi-closed

set, if X\A is a T -quasi-open set.

We show that the class of T -quasi-open sets is bigger than the class of open

subsets of RN :

Proposition 2.28. Let T be a nonnegative Borel semimeasure over RN . Every

open subset of RN is a T -quasi-open set.

Proof: It is enough to take a sequence (Uk)k∈N where

Uk := ∅, k ∈ N,

and the result follow from the definition. ■
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Now, let Ω ⊂ RN be an open set and let us start to study a particular case

of the definitions we layed down. We look more closely at capW 1,2-quasicontinuous

functions and capW 1,2-quasi-open and capW 1,2-quasi-closed sets. First we define

another class of subsets of Ω:

Definition 2.29. A set U ⊂ Ω is a Sobolev-open set if there exists a nonnegative

function ζ ∈ W 1,2
0 (Ω) such that Lζ = Ω, i.e., every x ∈ Ω is a Lebesgue point of ζ,

and

U =
{
ζ̂ > 0

}
,

where ζ̂ is the precise representative of ζ. Moreover, F ⊂ Ω is a Sobolev-closed set

if Ω\F is Sobolev-open.

We show a property of functions in W 1,2
0 (Ω):

Proposition 2.30. If ζ ∈ W 1,2
0 (Ω), then ζ̂ is capW 1,2-quasicontinuous.

This is Lemma 2.152 from [19]. As an immediate corolary we have:

Corollary 2.31. Every Sobolev-open set is a capW 1,2-quasi-open set.
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2.4 Functions, measures and distributions

Let Ω ⊂ RN be a bounded open set. We want to make sense of the following

expression:

−∆u+ V u = µ, (1)

where u is Lebesgue-integrable over Ω, V : Ω → [0,∞] is a Borel-measurable

function such that V u is Lebesgue-integrable over Ω, and µ is a finite Borel measure

on B(Ω). Our aim is to look at both sides of this expression as more general

elements in a bigger space, in particular where the object ∆u is well defined, and

then compare these more general objects.

First of all, given a topological real vector space X, we notate the space of all

continuous real linear functionals over X, by X ′, called the continuous dual space of

X; and we notate the value of the functional F ∈ X ′ acting on u ∈ X, by ⟨F, u⟩X .
The bilinearity of the application ⟨·, ·⟩X on X ×X ′ can be easily seen: if a, b ∈ R,
u, v ∈ X and F,G ∈ X ′, then

⟨aF +G, bu+ v⟩X = ab⟨F, u⟩X + a⟨F, v⟩X + b⟨G, u⟩X + ⟨G, v⟩X .

Let us consider C∞
c (Ω) as a real vector space, and, given a sequence (ϕk)k∈N ⊂

C∞
c (Ω) and ϕ ∈ C∞

c (Ω), we say that ϕk → ϕ in the sense of test functions, if there

exists a compact K ⊂ Ω such that for every k ∈ N, ϕk|Ω\K ≡ 0,

lim
k→∞

∥Dαϕk −Dαϕ∥∞ = 0

for every multi-index α, where ∥ · ∥∞ is called the supremum norm, defined as:

∥ϕ∥∞ := sup {|ϕ(x)|;x ∈ Ω} .

(See Section 2.2 for the definition of multi-index and the differential operator Dα).

This notion of convergence is enough to induce a topology τ on C∞
c (Ω) (see

the beginning of Chapter 9 from [15]). We denote the topological real vector space

(C∞
c (Ω), τ) simply by D(Ω) and when ϕk → ϕ in the sense of test functions, we

write

ϕk → ϕ in D(Ω).

Definition 2.32. A distribution over Ω is a linear functional T : D(Ω) → R which

is continuous, i.e., for every (ϕk)k∈N ⊂ C∞
c (Ω), such that ϕk → ϕ in D(Ω), we have

lim
k→∞

⟨T, ϕk⟩D(Ω) = ⟨T, ϕ⟩D(Ω).

We denote the space of distributions over Ω by D′(Ω).

It is possible to define certain operators on distributions by knowing how these
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operator behave on the space of test functions. In particular, the differential oper-

ator can be defined on elements of D′(Ω). Given T ∈ D′(Ω) and a multi-index α,

we define DαT as the distribution that satisfies

⟨DαT, ϕ⟩D(Ω) := (−1)|α|⟨T,Dαϕ⟩D(Ω)

for every ϕ ∈ C∞
c (Ω). In particular, we define ∆T as the distribution that satisfies

⟨∆T, ϕ⟩D(Ω) := ⟨T,∆ϕ⟩D(Ω)

for every ϕ ∈ C∞
c (Ω).

Now, we define an operator H : L1(Ω) → M(Ω) that assigns, for each integrable

function f , a finite Borel measure Hf given by

Hf : B(Ω) → R

X 7→
ˆ
X

f.

Another operator, I : M(Ω) → D′(Ω), takes a finite Borel measure µ ∈ M(Ω) onto

a distribution Iµ given by

Iµ : C∞
c (Ω) → R

ϕ 7→
ˆ
Ω

ϕ dµ.

Now, denoting by J the composition I ◦H, and by Jf the image of f ∈ L1(Ω), we

can write:

J :L1(Ω) → D′(Ω)

f 7→ Jf : C∞
c (Ω) → R

ϕ 7→
ˆ
Ω

f · ϕ.

These operations define bijective isomorphisms over their respective images, with

H being an isometry, and we can draw the following diagram:

Now we are ready to make sense of (1). We use the function J to find a
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distribution on the right-hand side of the expression, and I to find a distribution

on the left-hand side:

Since u, V u ∈ L1(Ω), then Ju,JV u ∈ D′(Ω), and using the definition of the

differential operator over D′(Ω), we can define the distribution ∆Ju. Then −∆Ju+

JV u ∈ D′(Ω) is the distribution that satisfies

⟨−∆Ju + JV u, ϕ⟩D(Ω) = ⟨−∆Ju, ϕ⟩D(Ω) + ⟨JV u, ϕ⟩D(Ω)

= ⟨Ju,−∆ϕ⟩D(Ω) + ⟨JV u, ϕ⟩D(Ω)

=

ˆ
Ω

u(−∆ϕ) +

ˆ
Ω

V u · ϕ

=

ˆ
Ω

u(−∆ϕ+ V ϕ)

for every ϕ ∈ C∞
c (Ω). Analogously, for µ ∈ M(Ω) we have Iµ ∈ D′(Ω). We now

compare elements of the same space:

If, given V and µ, we can find u ∈ L1(Ω) such that V u ∈ L1(Ω), and the

distributions −∆Ju + JV u and Iµ coincide, we will have

ˆ
Ω

u(−∆ϕ+ V ϕ) = ⟨−∆Ju + JV u, ϕ⟩D(Ω)

= ⟨Iµ, ϕ⟩D(Ω)

=

ˆ
Ω

ϕ dµ

for every ϕ ∈ C∞
c (Ω). This is our motivation to define:

Definition 2.33. Let Ω ⊂ RN be a nonempty, smooth and bounded open set, V :

Ω → [0,∞] be a Borel-measurable function and µ ∈ M(Ω). We say that u ∈ L1(Ω)

solves in the sense of distributions the Schrödinger equation with potential V and

density µ, and we denote by

−∆u+ V u = µ in D′(Ω),

if

(i) V u ∈ L1(Ω);

(ii) for every ϕ ∈ C∞
c (Ω),

ˆ
Ω

u(−∆ϕ+ V ϕ) =

ˆ
Ω

ϕ dµ.

Our main objective of study is the following problem, that we call the Schrödinger

problem with potential V and density µ:
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{
−∆u+ V u = µ in Ω,

u = 0 on ∂Ω.

Since the space of infinitely differentiable functions with compact support is not able

to detect boundary values of distributional solutions of the equation with potential

V and density µ, we have no information about the value of u on ∂Ω (formally, we

have no information about the trace of the function u). To overcome this obstacle

we assign the boundary values of u in the definition:

Definition 2.34. Let Ω ⊂ RN be a nonempty, smooth and bounded open set, V :

Ω → [0,∞] be a Borel-measurable function and µ ∈ M(Ω). We say that u ∈
L1(Ω) is a solution in the sense of distributions, or distributional solution, of the

Schrödinger problem with potential V and density µ, if

(i) u ∈ W 1,1
0 (Ω);

(ii) V u ∈ L1(Ω);

(iii) for every ϕ ∈ C∞
c (Ω),

ˆ
Ω

u(−∆ϕ+ V ϕ) =

ˆ
Ω

ϕ dµ.

We can obtain the following characterization of the distributional solution:

Proposition 2.35. Let Ω ⊂ RN be a nonempty, smooth and bounded open set,

V : Ω → [0,∞] be a Borel-measurable function and µ ∈ M(Ω). The function

u ∈ L1(Ω) is a distributional solution of the Schrödinger problem with potential V

and density µ if, and only if

(i) V u ∈ L1(Ω);

(ii) for every ψ ∈ C∞
0 (Ω),

ˆ
Ω

u(−∆ψ + V ψ) =

ˆ
Ω

ψ dµ.

We can prove this using Proposition 6.3 from [25] for the datum µ− V u, since

V u ∈ L1(Ω) and therefore µ− V u ∈ M(Ω).

Not every Schrödinger problem has a solution in the sense we just defined. We

then introduce the concept of duality solution, which can be used as candidates

for distributional solutions, since they always exist and they are a generalization

of distributional solutions (following Malusa and Orsina [18]. To introduce this

concept we first need to talk about the particular case where our measure data is

2-integrable:
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Definition 2.36. Let Ω ⊂ RN be a nonempty, smooth and bounded open set, V :

Ω → [0,∞] be a Borel-measurable function and f ∈ L2(Ω). We say that u ∈
W 1,2

0 (Ω) ∩ L2(Ω;V ), is a variational solution of the problem{−∆u+ V u = f in Ω,

u = 0 on ∂Ω,

called the Schrödinger problem with potential V and data f , if it satisfies

ˆ
Ω

(∇u · ∇z + V uz) =

ˆ
Ω

fz

for every z ∈ W 1,2
0 (Ω) ∩ L2(Ω;V ), or, equivalently, if it is the minimizer, in

W 1,2
0 (Ω) ∩ L2(Ω;V ), of the functional

E (z) :=
1

2

ˆ
Ω

(
|∇z|2 + V z2

)
−
ˆ
Ω

fz.

We denote this solution by ζf .

From classical minimization techniques (Proposition 22.10 from [25]) we have:

Proposition 2.37. Let Ω ⊂ RN be an open and bounded set. For every Borel-

measurable V : Ω → [0,∞] and f ∈ (W 1,2
0 (Ω))′, the variational solution of the

Schrödinger problem with potential V and data f always exists and it is unique.

For more about the variational treatment of differential equation we refer to [3]

and [12].

Let us define a linear functional over L∞(Ω) using the canonical pairing (u, f) 7→´
Ω
u · f for every u ∈ L1(Ω). Using the Hölder’s inequality:

|⟨u, f⟩L∞(Ω)| =
∣∣∣∣ˆ

Ω

u · f
∣∣∣∣

≤ ∥u∥L1(Ω)∥f∥L∞(Ω),

i.e., every Lebesgue-integrable function can be seen as a continuous real linear

functional over L∞(Ω). Also, if f ∈ L2(Ω), the variational solution ζf exists and

we can write ˆ
Ω

(∇ζf · ∇z + V ζfz) =

ˆ
Ω

f · z

for every z ∈ W 1,2
0 (Ω) ∩ L2(Ω;V ), and since variational solutions are distributional
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solutions, we have:

ˆ
Ω

ζ̂f dµ =

ˆ
Ω

(∇ζf · ∇z + V ζfz)

=

ˆ
Ω

f · z,

where ζ̂f is the precise representative of ζf (note that ζ̂f is defined pointwise in

Ω). If we want a function u ∈ L1(Ω) that can be represented by the integral with

respect to µ, we require

ˆ
Ω

u · f = ⟨u, f⟩(L∞(Ω))′ =

ˆ
Ω

ζ̂f dµ

for every f ∈ L∞(Ω).

Then we define:

Definition 2.38. Let Ω ⊂ RN be a nonempty, smooth and bounded open set, V :

Ω → [0,∞] be a Borel-measurable function and µ ∈ M(Ω). We say that u ∈ L1(Ω)

is a duality solution of the Schrödinger problem with potential V and density µ if

ˆ
Ω

u · f =

ˆ
Ω

ζ̂f dµ

for every f ∈ L∞(Ω), where ζ̂f is the precise representative of the variational solu-

tion of the Schrödinger problem with potential V and density f .

For more about the duality solution and its first introduction, see Malusa and

Orsina [18], Section 5.

The duality solution always exists and is unique (Proposition 3.3, [24]). To see

that we can use duality solutions as candidates for distributional solutions of the

problem, we need the following result, whose proof is Proposition 3.3, [22]:

Proposition 2.39. Every distributional solution to the Schrödinger problem with

Borel-measurable potential V : Ω → [0,∞] and density µ ∈ M(Ω) is a duality

solution to the same problem.

Now, let u, v ∈ L1(Ω) be distributional solutions to the Schrödinger problem

with potential V and density µ. Proposition 2.39 tell us that u and v are duality

solutions of this problem, and the uniqueness tells us that u = v in L1(Ω). This

proves the uniqueness of distributional solutions.

While duality solutions always exist they are not very well behaved: two Schrödinger

problems with the same potential, but different measures can have the same dual-

ity solution. Still, this concept is useful when one wants to use Perron’s method of

subharmonic functions (see Section 5 of [24]).
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So far, we have found a way to rigorously represent the expression −∆u + V u

as −∆Ju + JV u using the theory of distributions, which allowed us to compare it

to the distribution Iµ, defined by a measure µ. Since M(Ω) ⊊ D′(Ω), our objective

in the rest of this section is to give a formal meaning to the particular case where

−∆u+ V u ∈ M(Ω),

when u, V u ∈ L1(Ω). Our first step is finding a way to represent elements of M(Ω)

as linear functionals. First of all we define the normed vector space (C0(Ω), ∥ · ∥∞),

where

C0(Ω) :=
{
f : Ω → R; f is continuous and f |∂Ω ≡ 0

}
,

and ∥ · ∥∞, defined for every ϕ ∈ C0(Ω) as

∥ϕ∥∞ := sup
{
|ϕ(x)|;x ∈ Ω

}
,

is called the supremum norm. We denote the dual of (C0(Ω), ∥ · ∥∞) simply by

(C0(Ω))
′.

Let T be the operator that assigns for each µ ∈ M(Ω) a functional Tµ, defined

over C0(Ω), by

Tµ : C0(Ω) → R

ϕ 7→
ˆ
Ω

ϕ dµ.

The following is a very important result, which is proved in [15], Proposition 7.17,

and is a version of the Riesz Representation Theorem:

Theorem 2.40. (I) For every µ ∈ M(Ω),

Tµ ∈
(
C0(Ω)

)′
,

i.e., Tµ is a continuous linear functional defined over C0(Ω).

(II) The operator T is a bijection and satisfies

T(αµ+λ) = αTµ + Tλ, and

∥µ∥M(Ω) = ∥Tµ∥C0(Ω)

for every µ, λ ∈ M(Ω), and α ∈ R, i.e., T is a bijective isometric isomor-

phism between M(Ω) and (C0(Ω))
′.

This theorem is the reason why we can identify the spaces M(Ω) and (C0(Ω))
′

and are able to talk about weak* convergence in the space of finite Borel measures
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(see Section 2.1, Definition 2.8). It also allows us to define another norm over

M(Ω) (equivalent to the norms we have defined in Section 2.1) using the usual

norm defined for continuous linear functionals:

∥µ∥M(Ω) := ∥Tµ∥(C0(Ω))′

= sup

{ˆ
Ω

ϕ dµ;ϕ ∈ C0

(
Ω
)
and ∥ϕ∥∞ ≤ 1

}
.

This theorem also gives us a more complete version of the diagram

Now, let us take u ∈ C2
0(Ω). First of all, for such functions, the expression

−∆u + V u is Lebesgue-integrable, since the Laplacian of u, ∆u : Ω → R, is a real

function defined everywhere on Ω and ∆u ∈ C0(Ω). That gives us:

−∆u+ V u ∈ L1(Ω).

Now we want to find a way to identify this L1(Ω) function with an arbitrary measure

µ ∈ M(Ω).

For every u we define:

Fu : C2
0(Ω) → R

ϕ 7→
ˆ
Ω

u(−∆ϕ+ V ϕ).

Then, using the Green’s Formula (Gauss-Green Theorem in [13], Appendix C, The-

orem 1), for every nonzero ϕ ∈ C2
0(Ω):

|Fu(ϕ)| =
∣∣∣∣ˆ

Ω

u(−∆ϕ+ V ϕ)

∣∣∣∣ = ∣∣∣∣ˆ
Ω

ϕ(−∆u+ V u)

∣∣∣∣
≤ ∥ϕ∥L∞(Ω)

∣∣∣∣ˆ
Ω

(−∆u+ V u)

∣∣∣∣ ,
which shows that Fu ∈ (C2

0(Ω))
′ (since ∥ϕ∥L∞(Ω) ≤ ∥ϕ∥C2

0 (Ω) for the usual C2
0(Ω)

norm).

Now, since C2
0(Ω)

∥·∥C0(Ω)
= C0(Ω), i.e., C

2
0(Ω) is dense on C0(Ω), we can find, for
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every u ∈ C2
0(Ω), a unique functional Fu ∈ (C0(Ω))

′ such that, for every ϕ ∈ C2
0(Ω):

Fu(ϕ) = Fu(ϕ)

=

ˆ
Ω

u(−∆ϕ+ V ϕ).

Moreover, the right side of expression (1) is a finite Borel measure. From The-

orem 2.40, there exists a unique Tµ ∈ (C0(Ω))
′ such that

T µ(ϕ) =

ˆ
Ω

ϕ dµ

for every ϕ ∈ C0(Ω).

Now, we can deal with elements of the same space: Fu, Tµ ∈ (C0(Ω))
′. If Fu = Tµ,

then, in particular

ˆ
Ω

u(−∆ϕ+ V ϕ) = Fu(ϕ) = Fu(ϕ) = Tµ(ϕ) =

ˆ
Ω

ϕ dµ (2)

for every ϕ ∈ C2
0(Ω).

This allows us to give a meaning to expression (1) by associating the functional

Fu with −∆u+ V u and Tµ with µ, by these expressions.

When Fu = Tµ, expression (2) holds, for every ϕ ∈ C2
0(Ω), and we can identify

−∆u+ V u ∈ L1(Ω) with µ ∈ M(Ω) using the notation

−∆u+ V u = µ in (C0(Ω))
′.

Then, motivated by this, given a bounded set Ω, u ∈ L1(Ω) and a Borel-

measurable function V : Ω → [0,∞] such that V u ∈ L1(Ω), we write

−∆u+ V u ∈ M(Ω)

if there exists a unique (given by the uniqueness of the solution to the equation

with potential V and density µ) µu,V ∈ M(Ω) such that

ˆ
Ω

u(−∆ϕ+ V ϕ) =

ˆ
Ω

ϕ dµu,V (3)

for every ϕ ∈ C∞
c (Ω).

In particular, if −∆u + V u ∈ M(Ω) then, since V u ∈ L1(Ω) ⊂ M(Ω), we can

also write −∆u ∈ M(Ω).

It is important to notice that even though (3) is the same expression we look

for when searching for a distributional solution to the Schrödinger equation with

potential V and density µ, as seen in Definition 2.33, solving the equation requires
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a fundamentally different approach.

In the first case we are given a measurable potential and a measure for which

we want to find an integrable distributional solution u, and in the second case we

have functions u, V u ∈ L1(Ω) and we want to find out whether the distribution

−∆u + V u is a measure or not. This difference is made clear when we use the

notation µu,V to explicit the dependency of this measure.
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2.5 Maximum principle and zero-sets

In this section we deal with the maximum principle for the operator −∆ + V .

First of all, the weak maximum principle holds for every Borel-measurable potential

V : Ω → [0,∞]. We want to study the cases where the strong maximum principle

fails to hold to describe the subsets of Ω where wf satisfies{−∆wf + V wf = f in Ω,

u = 0 on ∂Ω,

for some f ∈ L2(Ω) nonnegative, but wf = 0. To make sense of the pointwise

values we take the precise representatives of these solutions. We then have the first

definition (from [24]):

Definition 2.41. We denote by S the subset of Ω defined as

S =
{
x ∈ Ω; ζ̂1 (x) = 0

}
,

where ζ̂1 is the precise representative of the variational solution of the Schrödinger

problem with potential V and data f ≡ 1. We call this set the torsion function

zero-set.

Note that S is a Sobolev-closed set by definition and that the precise represen-

tative of ζ1 is defined over Ω. Too see why this is true it is enough to note that

ζ1 · V ∈ L1(Ω) and, using Proposition 8.1 of [23], we obtain

−∆ζ1 + V ζ1 ≤ 1.

This implies that ζ1 is the difference, almost everywhere, between a continuous

and a bounded superharmonic function. From [25], Lemma 8.10, every x ∈ Ω is a

Lebesgue point of ζ1.

We can also define more generally:

Definition 2.42. We define the universal zero-set Z associated to the operator

−∆+V as the set of points x ∈ Ω with the following property: for every nonnegative

f ∈ L∞(Ω) such that

−∆wf + V wf = f in Ω

holds in the distributional sense, for some wf ∈ W 1,2
0 (Ω) ∩ L∞(Ω), such a solution

satisfies

ŵf (x) = 0.
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It is clear from the definitions that both of these sets are strongly dependent

of the potential V . But we have decided to not explicit this relationship in the

notation, since our potential is arbitrary most of the time. We will though, clarify

the dependency when necessary, to avoid confusion.

We present first results concerning the relationship between S and Z (see Section

4 from [24]).

Lemma 2.43. The set S can be characterized by:

S =
{
x ∈ Ω; ζ̂f (x) = 0 for every f ∈ L∞(Ω)

}
.

Proof: It is evident that{
x ∈ Ω; ζ̂f (x) = 0 for every f ∈ L∞(Ω)

}
⊂ S,

since f ≡ 1 is an L∞(Ω) function. Now let us prove the other inclusion.

Taking a function f ∈ L∞(Ω), we have the following, in the variational sense:{
−∆ζf + V ζf = f in Ω,

ζf = 0 on ∂Ω,

(4)

and

{−∆ζ1 + V ζ1 = 1 in Ω,

ζ1 = 0 on ∂Ω.

(5)

Using the linearity of the Schrödinger problem, we obtain, from (5):−∆
(
∥f∥L∞(Ω) ζ1

)
+ V

(
∥f∥L∞(Ω) ζ1

)
= ∥f∥L∞(Ω) in Ω,

∥f∥L∞(Ω) ζ1 = 0 on ∂Ω.

(6)

We now take the sum and the difference between (4) and (6) to have, in the

variational sense:

−∆
(
∥f∥L∞(Ω) ζ1 − ζf

)
+ V

(
∥f∥L∞(Ω) ζ1 − ζf

)
= ∥f∥L∞(Ω) − f in Ω,

∥f∥L∞(Ω) ζ1 − ζf = 0 on ∂Ω,

and
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−∆
(
∥f∥L∞(Ω) ζ1 + ζf

)
+ V

(
∥f∥L∞(Ω) ζ1 + ζf

)
= ∥f∥L∞(Ω) + f in Ω,

∥f∥L∞(Ω) ζ1 + ζf = 0 on ∂Ω.

Then we have that ∥f∥L∞(Ω)ζ1− ζf is the variational solution of the Schrödinger

problem with potential V and data ∥f∥L∞(Ω) − f , and ∥f∥L∞(Ω)ζ1 + ζf is the varia-

tional solution of the Schrödinger problem with potential V and data ∥f∥L∞(Ω)+f .

A property following from the definition of the norm in L∞(Ω) gives us

∥f∥L∞(Ω) − f ≥ 0 and ∥f∥L∞(Ω) + f ≥ 0.

Then, since our data is nonnegative, we can use the weak maximum principle

to conclude

∥f∥L∞(Ω) ζ1 − ζf ≥ 0 and ∥f∥L∞(Ω) ζ1 + ζf ≥ 0,

which implies

|ζf | ≤ ∥f∥L∞(Ω) ζ1.

The same estimate is satisfied by the precise representatives (because of the

monotonicity of limits and integrals), from which we have

S ⊂
{
x ∈ Ω; ζ̂f (x) = 0 for every f ∈ L∞(Ω)

}
.

This concludes the proof. ■

Proposition 2.44. For every V : Ω → [0,+∞], we have S ⊂ Z

Proof: If x ∈ S then, from the characterization of S given by the previous propo-

sition

ζ̂f (x) = 0

for every f ∈ L∞(Ω).

In particular, this holds for every nonnegative f ∈ L∞(Ω). Since ζf is a mini-

mizer of the functional E (see Definition 2.36), then it is also a duality solution of

the Schrödinger problem with potential V and data f .

Now, if the Schrödinger problem with potential V and data f (in particular with

f ≥ 0) has a distributional solution w, then this solution is equal to ζf (distribu-

tional solutions are duality solutions). Therefore we would have

ŵ(x) = ζ̂f (x) = 0,

that is, x ∈ Z. ■
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Examples. (I) Let V ∈ L1(Ω). Then we have that capW 1,2(Z) = 0. Thus, if µ

is capW 1,2-diffuse, then the Schrödinger problem has a distributional solution,

since that implies µ(Z) = 0 (see Theorem 1.1, [24]).

(II) Let V ∈ Lp(Ω) for p > 1. In this case we use the maximum principle from [22]

that says that if

−∆u+ V u ≥ 0,

and û = 0 in a compact set with positive capW 2,p, then û = 0 in Ω. This

implies that capW 2,p(Z) = 0. Then, if µ is capW 2,p-diffuse, the Schrödinger

problem has a distributional solution.

The introduction of the set S allows us to have the following result, that gives

us a distribution solution of the Schrödinger equation:

Proposition 2.45. Let u ∈ L1(Ω) be a duality solution of the Schrödinger problem

with potential V and nonnegative density µ. Then u is the distributional solution

of the Schrödinger equation with potential V and density µ Ω\S − λ, i.e,

−∆u+ V u = µ Ω\S − λ in Ω,

where λ ∈ M(Ω) is nonnegative, capW 1,2-diffuse, and such that λ Ω\S = 0.

The proof of this proposition can be found in Proposition 4.1 from [24].

The next results are essential to prove the close relationship between the set S

and duality solutions.

Proposition 2.46. Let µ ∈ M(Ω), and u ∈ L1(Ω) be the duality solution of the

Schrödinger problem with potential V and density µ. Then u is also the duality

solution of the Schrödinger problem with potential V and density µ Ω\S

Proof: Using Lemma 2.43 we have

ˆ
Ω

uf =

ˆ
Ω

ζ̂f dµ

=

ˆ
Ω

ζ̂f dµ Ω\S

for every f ∈ L∞(Ω). This proves the result. ■

Proposition 2.47. Let µ ∈ M(Ω). Then

µ = 0 in Ω\S
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if, and only if, ˆ
Ω

ζ̂f dµ = 0

holds for every f ∈ L∞(Ω).

Proof: First, let us suppose that µ = 0 in Ω\S. From Lemma 2.43 we know that

ζ̂f = 0 in S for every f ∈ L∞(Ω). We then have:

ˆ
Ω

ζ̂f dµ =

ˆ
Ω\S

ζ̂f dµ+

ˆ
S

ζ̂f dµ

= 0.

This concludes the first part of the proof.

Now let us suppose that
´
Ω
ζ̂f dµ = 0 for every f ∈ L∞(Ω). ■

Corollary 2.48. Let µ, λ ∈ M(Ω), and u, v ∈ L1(Ω) be such that u is the duality

solution of the Schrödinger problem with potential V and density µ, and v is the

duality solution of the Schrödinger problem with potential V and density λ. Then

µ = λ in Ω\S

if, and only if,

u = v almost everywhere in Ω.

Proof: Let us suppose that µ = λ in Ω\S. Then µ − λ = 0 in Ω\S and, from

Proposition 2.47, this holds if, and only if

ˆ
Ω

ζ̂f d(µ− λ) = 0

for every f ∈ L∞(Ω). This is equivalent to

ˆ
Ω

uf =

ˆ
Ω

ζ̂f dµ

=

ˆ
Ω

ζ̂f dλ

=

ˆ
Ω

vf

for every f ∈ L∞(Ω). And we have that

ˆ
Ω

uf =

ˆ
Ω

vf
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holds for every f ∈ L∞(Ω) if, and only if, u = v almost everywhere in Ω, as we

wanted to prove. ■

Now we show some results concerning a decomposition of Ω\S, a maximum

principle and a new way to find duality solutions. We present the results without

proof, that can be found in the Section 9 of [24], in particular in the proof of

Theorem 1.1 from said article.

Definition 2.49. Let X ⊂ RN . We say that a countable family (Ai)i∈I , of subsets

of X, is a Sobolev-connected-open decomposition of X, if

(i) the sets (Ai)i∈I are disjoint pairwise,

(ii)

X =
⋃
i∈I

Ai,

(iii) for every i ∈ I, Ai is a Sobolev-connected-open set. In this case we say that X

has a Sobolev-connected-open decomposition.

Theorem 2.50. The set Ω\S has a Sobolev-connected-open decomposition (Di)i∈I .

Theorem 2.51. Let f ∈ L∞(Ω) be a nonnegative function, u ∈ L1(Ω) be the duality

solution of the Schrödinger problem with potential V and density f dx, and (Di)i∈I
be the Sobolev-connected-open decomposition of Ω\S. Then we have

either û ≡ 0 in Di or û > 0 in Di

for every i ∈ I.

Another consequence of the decomposition of the set Ω\S is the following:

Theorem 2.52. Let u ∈ L1(Ω) be the duality solution of the Schrödinger problem

with potential V and density µ ∈ M(Ω), and (Di)i∈I be the Sobolev-connected-open

decomposition of Ω\S.
Then, for every i ∈ I, we have that uχDi

∈ L1(Ω) is the duality solution of the

Schrödinger problem with potential V and density µ Di
.

In the next result we use the theory of Sobolev-open and Sobolev-closed pre-

sented in Section 2.3. and we present the outline of the proof:

Proposition 2.53. Let (µk) ⊂ M(Ω) be an equidiffuse sequence of measures such

that µk
∗
⇀ µ in M(Ω) and µk ≥ 0 in Ω\S for every k ∈ N. Then

µ ≥ 0 in Ω\S.
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Proof: By definition, we have a nonnegative function

ζ1 ∈ W 1,2
0 (Ω) ∩ L∞ (Ω) ,

such that ζ̂1 is defined pointwise in Ω and

S =
{
x ∈ Ω; ζ̂1 (x) = 0

}
.

Thus S is a Sobolev-closed set. We then have that Ω\S is Sobolev-open set and

the desired result. ■

To stablish results concerning the existence of distributional solutions of the

Schrödinger problem we use the set Z and the following result that characterizes

distributional solution with nonnegative measures:

Theorem 2.54. For every V : Ω → [0,+∞], the Schrödinger problem with potential

V and nonnegative density µ has a distributional solution if, and only if,

µ (Z) = 0.

This is Theorem 1.4 from [24].

47



3 Methods of approximation

In this chapter we present our contributions to the theory of elliptic differential

problems with measure data. We study two different methods of approximation in

our differential problem.

The first method is an approximation on the potential V . We define a type of

sequence that generalizes the concept of truncation and apply it to the potential V .

Then, using some of the methods we gathered in the previous chapters, we prove

the convergence of a sequence of distributional solutions, related to a nonnegative

measure µ, to a summable function u∗ that we use to define the reduced measure.

The reduced measure has some properties related to good measures, namely it

it the biggest good measure smaller than µ. Also, the function u∗ ∈ L1(Ω), the

distributional solution of the problem [V ;µ∗], is the biggest subsolution of [V ;µ].

Using this property and a characterization of nonnegative good measures from

[22] we find a representation of the reduced measure that uses the universal zero-set

Z.

We then define the reduced measure operator and prove some linear functional

properties about it.

In the second part of the chapter we use another type of approximation, this

time taken on the measure. From a bounded sequence of measures we can define

the reduced limit: a measure µ# that has as a distributional solution a summable

function u# that is the limit of the approximation taken on the measure µ.

We can prove good properties of this approximation with relation to the total

variation norm and the weak* limit of measures.

The properties we prove are the monotonicity of the reduced limit and the lower

semicontinuity. Since these results cannot be achieved in the entire domain Ω,

we prove them on the set Ω\S, mainly using decomposition and measure methods.

These results show the importance of the study of the zero-sets and how they appear

naturally when we study properties of the problem. Also, the dependence of the

potential V is very explicit in these contexts.

These methods were first introduced by Malusa and Orsina in [18] to a prob-

lem involving a general elliptic operator (and later adapted and expanded for the

nonlinear problem involving the Laplacian operator, by Brezis, Marcus and Ponce

in [6] and Marcus and Ponce in [20]) but without dealing with the case of a singular

potential. We adapt this method to our type of problem and obtain similar results.
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3.1 Reduced measure

In this section we introduce an adaptation to the theory of linear equations

with singular potential of the concept of the reduced measure, closely related to the

concept of sub-solution, that we define in the following:

Definition 3.1. Let V : Ω → [0,∞] be a Borel-measurable function and let µ ∈
M(Ω). We say that v ∈ L1(Ω) ∩ W 1,1

0 (Ω) is a sub-solution of the Schrödinger

problem with potential V and density µ if

ˆ
Ω

v(−∆ϕ+ V ϕ) ≤
ˆ
Ω

ϕ dµ

for every ϕ ∈ C∞
c (Ω).

We also define the concept of truncated-type sequence as the following:

Definition 3.2. Let V : Ω → [0,∞] be a Borel-measurable function. We say that

a sequence (Vk)k∈N is a truncated-type sequence of V if

(i) for every k ∈ N, Vk : Ω → [0,∞] is bounded, Borel-measurable, and satisfies

Vk ≤ Vk+1;

(ii) Vk → V pointwise in Ω.

Next we give the example that motivated this definition:

Example. Given any Borel-measurable V : Ω → [0,∞], we can define a truncated-

type sequence of V by setting, for each k ∈ N, the function defined pointwise by

Vk(x) := min {V (x), k} .

This is called the truncation of V at k. It is easy to see that the sequence (Vk)k∈N
thus defined is a truncated-type sequence of V .

Let us present the first technical result (Proposition 14.12 from [25]), a variation

of the Lebesgue’s decomposition theorem:

Theorem 3.3. If M is a positive Borel semimeasure and µ ∈ M(Ω), then we ca

uniquely decompose µ as µ = α+σ with α, σ ∈ M(Ω), where α is concentrated with

respect to M , and σ is diffuse with respect to M . We call α the concentrated part

of µ with respect to M , and σ the diffuse part of µ with respect to M .

In our text we will use a specific positive semimeasure called the Newtonian H1

capacity (sometimes called the Sobolev W 1,2 capacity), that we denote simply by

cap, and is defined on a compact set K ⊂ RN by

cap(K) = inf
(
∥ϕ∥2W 1,2(RN );ϕ ∈ C∞

c (RN), ϕ ≥ 0 and ϕ > 1 in K
)
,
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and defined on every subset of RN by inner regularity. (For more about the Sobolev

capacity and related properties, see Section 2.2)

Given µ ∈ M(Ω) we shall denote by µc the concentrated part of µ with respect

to cap, and µd the diffuse part of µ with respect to cap.

Let us present the first technical lemmas. The first is the Maximum Principle

for weak solutions, and the second is Kato’s inequality for potentials:

Lemma 3.4. Let u ∈ L1(Ω) with −∆u ≥ 0 in the sense of distributions, i. e., for

every ϕ ∈ C∞
0 (Ω): ˆ

Ω

u(−∆ϕ) ≥ 0.

Then u ≥ 0 almost everywhere in Ω.

This proof can be found in [25], Proposition 6.1.

Lemma 3.5. Let u ∈ L1(Ω) such that ∆u ∈ M(Ω). Then we have

(i) ∆u+ ∈ M(ω),

(ii) (−∆u+)c = (−∆u)+c in ω,

(iii) (∆u+)d ≥ χ[u≥0](∆u)d in ω

for every open set ω ⊂ Ω.

This result can be found in Section 6.2 of [25].

Our first result is the following:

Proposition 3.6. Let V1, V2 : Ω → [0,∞] be Borel-measurable functions with V1 ≤
V2 and such that µ ∈ G(V1) and µ ∈ G(V2) and let us denote by u1 and u2 the

distributional solutions of [V1;µ] and [V2;µ], respectively. Then u2 ≤ u1 almost

everywhere in Ω.

Proof. First of all, since in the sense of distributions

−∆u1 + V1u1 = µ

and

−∆u2 + V2u2 = µ,

then by subtracting the first equation from the second one, we have

−∆(u2 − u1) = (V1u1 − V2u2). (7)

in the sense of distributions.
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Since u1 and u2 are distributional solutions to Schrödinger problems, from defi-

nition we have u1, u2, V1u1, V2u2 ∈ L1(Ω), and from (7) we know that ∆(u2 − u1) is

the difference of two L1(Ω), and therefore, it is a measure in M(Ω).

Then we can apply Kato’s inequality to (u2 − u1) and obtain:

(i) (∆(u2 − u1)
+)c = (∆(u2 − u1))

+
c , and

(ii) (∆(u2 − u1)
+)d ≥ χ[u2−u1≥0](∆(u2 − u1))d.

But we can rewrite (∆(u2 − u1))
+
c as (V2u2 − V1u1)

+
c because of (7), and since

(V2u2 −V1u1) ∈ L1(Ω), then (∆(u2 − u1))
+
c = (V2u2 −V1u1)

+
c = 0. This follow from

the fact that functions in L1(Ω) are concentrated with respect to the Lebesgue

measure and that the Lebesgue measure is concentrated with respect to cap.

We also have that

χ[u2−u1≥0](∆(u2 − u1))d = χ[u2≥u1](V2u2 − V1u1)d

≥ 0,

since this characteristic function is only nonzero when u2 ≥ u1, and that means,

since V1 ≤ V2, that V2u2 − V1u1 ≥ 0, and the diffuse part of a nonnegative measure

is nonnegative.

We can then write

∆(u2 − u1)
+ = (∆(u2 − u1)

+)c + (∆(u2 − u1)
+)d

≥ 0

=⇒ −∆(−(u2 − u1)
+) ≥ 0.

in the sense of distributions. Then the maximum principle for weak solutions gives

us −(u2 − u1)
+ ≥ 0. Then

−(u2 − u1)
+ ≥ 0 =⇒ (u2 − u1)

+ ≤ 0

=⇒ (u2 − u1)
+ = 0

=⇒ u2 ≤ u1 almost everywhere in Ω.

■

In an analogous way we can prove the following result:

Proposition 3.7. Let V1, V2 : Ω → [0,∞] be Borel-measurable functions with V1 ≤
V2 and such that there exist u1, u2 ∈ L1(Ω) with V1u1, V2u2 ∈ L1(Ω) and

−∆u2 + V2u2 ≤ −∆u1 + V1u1
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in the sense of distributions, then u2 ≤ u1 almost everywhere in Ω.

With this result in hand we can prove that the Schrödinger problem [Vk;µ],

where (Vk)k∈N is a truncated-type sequence of V , has a distributional solution.

This happens because we can always find real numbers α and β such that β is

not in the spectrum of −∆ and

α < Vk < β.

We can then use a result from Stampacchia (Proposition 9.1 from [27]) to see that

the problems [α;µ] and [β;µ] have distributional solutions, that we can denote by

v and w.

From our last result, we have w ≤ v almost everywhere in Ω, and w is a subsolu-

tion of the problem [Vk;µ], while v is a supersolution. Then, applying Proposition

22.7 from [25], we have our desired solution to [Vk;µ]. We denote this distributional

solution by uk and our objective is to study the sequence (uk)k∈N.

First of all we have 0 ≤ Vk ≤ Vk+1 for every k ∈ N. Then, from the previous

proposition we have

uk+1 ≤ uk almost everywhere in Ω.

In other words, (uk)k∈N is monotone.

Let us now prove that the sequence (uk)k∈N is convergent. In order to do this

we will need our measure µ to be nonnegative since we are using the Monotone

Convergence Theorem and Fatou’s Lemma. From this point on in this section, let

us consider only nonnegative finite Borel measures, unless the contrary is explicitly

stated.

Our aim is then to prove the following main theorem:

Theorem 3.8. For every nonnegative µ ∈ M(Ω) and Borel-measurable V : Ω →
[0,∞], there exists a measure µ∗ ∈ M(Ω), called the reduced measure of [V ;µ], that

satisfies:

(i) µ∗ is a good measure, that is, there exists the distributional solution of the

problem [V ;µ∗], say u∗ ∈ L1(Ω);

(ii) u∗ is a subsolution of [V ;µ] and every subsolution v ∈ L1(Ω) of [V ;µ] satisfies

v ≤ u∗ almost everywhere in Ω;

(iii) µ∗ ≤ µ and for every λ ∈ G(V ) such that λ ≤ µ, we have λ ≤ µ∗;

(iv) µ∗ = µ Ω\Z.

We begin with a proposition:
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Proposition 3.9. Let µ ∈ M+(Ω) and uk ∈ L1(Ω) be the distribution solution of

the Schrödinger problem [Vk;µ], where (Vk) is a truncated-type sequence of V . Then

there exists a function u∗ ∈ L1(Ω) such that

uk → u∗ in L1(Ω).

In particular, we have −∆u∗ + V u∗ ∈ D′(Ω).

Proof. First of all, expression (2.3) in [24] gives us

∥uk∥L1(Ω) ≤ C∥µ∥M(Ω)

for every k ∈ N, where the constant C does not depend on the potential Vk.

Since (uk)k∈N is monotone, from the Monotone Convergence Theorem, we have

that there exists an L1(Ω) function u∗, such that uk → u∗ in L1(Ω).

Also from [24], expression (2.2), we have that for every k ∈ N

∥Vkuk∥L1(Ω) ≤ ∥µ∥M(Ω),

and using Fatou’s Lemma we conclude

V u∗ ∈ L1(Ω).

Now, since u∗, V u∗ ∈ L1(Ω), the distribution −∆u∗ + V u∗ is well defined, as we

wanted to show. ■

Now we want to define a finite measure depending on the functions u∗ and V .

For that we need to prove the following:

Proposition 3.10. Let u∗ ∈ L1(Ω) be the function given by the previous proposi-

tion. Then, ∆u∗ + V u∗ ∈ M(Ω).

Proof. First of all, for every k ∈ N and every ψ ∈ C∞
0 (Ω):∣∣∣∣ˆ

Ω

uk∆ψ + Vkukψ

∣∣∣∣ = ∣∣∣∣ˆ
Ω

ψ dµ

∣∣∣∣ .
We also have that uk → u∗ almost everywhere in Ω and since Vk → V almost

everywhere in Ω, then

Vkuk → V u∗ almost everywhere in Ω.
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Using Fatou’s Lemma:∣∣∣∣ˆ
Ω

u∗(−∆ψ + V ψ)

∣∣∣∣ = ∣∣∣∣ˆ
Ω

lim inf
k→∞

(uk∆ψ + Vkukψ)

∣∣∣∣
≤ lim inf

k→∞

∣∣∣∣ˆ
Ω

uk∆ψ + Vkukψ

∣∣∣∣
=

∣∣∣∣ˆ
Ω

ψ dµ

∣∣∣∣
≤ ∥ψ∥∞∥µ∥M(Ω).

Using the density of the space C∞
0 (Ω) into the space C0(Ω), this expression holds

for every ψ ∈ C0(Ω). This means that the linear functional F : C0(Ω) → R, defined
as the extension of ˆ

Ω

u∗(−∆ψ + V ψ)

to C0(Ω), is continuous. This means, from the representation of measures as func-

tionals, Theorem 2.40, there exists a unique measure µu∗,V ∈ M(Ω) such that, for

every ψ ∈ C0(Ω),

F (ψ) =

ˆ
Ω

ψ dµu∗,V .

In particular, if ψ ∈ C∞
c (Ω):

ˆ
Ω

u∗(−∆ψ + V ψ) =

ˆ
Ω

ψ dµu∗,V .

Therefore −∆u∗ + V u∗ ∈ M(Ω), as we wanted to prove. ■

We then prove that the limit u∗ does not depend on the chosen truncated-type

sequence Vk:

Proposition 3.11. Let u∗ ∈ L1(Ω) be the function defined as the L1 limit of the

sequence (uk)k∈N of distributional solutions of the Schrödinger problem [Vk;µ] with

µ ∈ M+(Ω). Then u∗ is a subsolution of [V ;µ] and if v is a subsolution to [V ;µ],

then v ≤ u∗ almost everywhere in Ω, in other words, u∗ is the maximal subsolution

to the Schrödinger problem with potential V and density µ.

Proof. Since, for every ϕ ∈ C∞
0 (Ω) we have

ˆ
Ω

uk(−∆ϕ+ Vkϕ) =

ˆ
Ω

ϕ dµ,
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uk → u∗ and Vkuk → V u in Ω almost everywhere in Ω, from Fatou’s Lemma:

ˆ
Ω

u∗(−∆ϕ+ V ϕ) ≤
ˆ
Ω

ϕ dµ,

for every nonnegative ϕ ∈ C∞
0 (Ω). Therefore, u∗ is a subsolution of [V ;µ].

Now, let v ∈ L1(Ω) be a subsolution of [V ;µ]. Since Vk ≤ V almost everywhere

in Ω we have for every nonnegative ϕ ∈ C∞
0 (Ω):

ˆ
Ω

v(−∆ϕ+ Vkϕ) ≤
ˆ
Ω

v(−∆ϕ+ V ϕ)

≤
ˆ
Ω

ϕ dµ

=

ˆ
Ω

uk(−∆ϕ+ Vkϕ).

This is the same as

−∆v + Vkv ≤ −∆uk + Vkuk in the sense of distributions in Ω.

Then we have v ≤ uk almost everywhere in Ω, and taking the limit we have

v ≤ u∗ almost everywhere in Ω,

therefore, every subsolution of [V ;µ] is bounded above by u∗, as we wanted to prove.

■

Recalling the measure µu∗,V that is given by the Theorem 2.40 (see the proof of

Proposition 3.10), we can then define our main objective of study in this text:

Definition 3.12 (Reduced Measure). Let V : Ω → [0,∞] be a Borel-measurable

function and µ ∈ M+(Ω). We define the reduced measure of the Schrödinger prob-

lem with potential V and density µ as the measure

µ∗ := µu∗,V .

Now we prove this very important property about the reduced measure:

Proposition 3.13. Let V : Ω → [0,∞] be a Borel-measurable function, µ ∈ M+(Ω)

and µ∗ ∈ M(Ω) be the reduced measure of [V ;µ]. Then, we have:

(i) µ∗ ≤ µ;

(ii) if there exists λ ∈ G(V ) such that λ ≤ µ, then

λ ≤ µ∗.

55



We will use the decomposition of these measures in their diffuse and concentrated

parts with respect to cap. Kato’s inequality is a natural tool to prove this.

We first present a lemma (Corollary 9 from [6]):

Lemma 3.14. Let u ∈ L1(Ω), ∆u ∈ M(Ω) and Tk : R → R be the truncation

defined by

Tn(s) := n− (n− s)+, s ∈ R.

Then,

∆Tn(u) ≤ χ[u≤n](∆u)d + (∆u)+c .

Proof. We can apply Kato’s inequality to the function v := n− u, obtaining:

(∆Tn(u))d = −(∆v+)d

≤ −χ[v≥0](∆v)d

= χ[u≤n](∆u)d

and

(∆Tn(u))c = (∆u)+c .

Where we used that the Laplacian of a constant and the concentrated part of a

constant (with respect to cap) are zero. Then,

∆Tn(u) = (∆Tn(u))d + (∆Tn(u))c

≤ χ[u≤n](∆u)d + (∆u)+c .

And the result follow from the regularity of the finite Borel measures. ■

Lemma 3.15. Let µ∗ ∈ M(Ω) be the reduced measure of [V ;µ]. Then

µd − µ−
c ≤ µ∗.

Proof. Let (uk)k∈N be the sequence of distributional solutions to the problem [Vk;µ],

where (Vk)k∈N is a truncated-type sequence of V .

Since we know that, for every k ∈ N, uk ∈ L1(Ω) and ∆uk ∈ M(Ω), we can

apply the previous lemma to each uk, thus obtaining

∆Tn(uk) ≤ χ[uk≤n](∆uk)d + (∆uk)
+
c .

Now we use that the uk are solutions, and obtain:

(∆uk)d = Vkuk − µd
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and

(∆uk)c = −µc.

The previous expressions give us

−∆Tn(uk) ≥ χ[uk≤k]µd − VkTnuk − µ−
c .

Now, we also have, from the monotonicity of the sequence (uk)k∈N:

[u∗ ≤ n] ⊃ [uk ≤ n] ⊃ [u1 ≤ n]

and

χ[uk≤n]µd ≥ χ[u1≤n]µ
+
d − χ[u∗≤n]µ

−
d .

We then have

−∆Tn(uk) + VkTnuk ≥ χ[u1≤n]µ
+
d − χ[u∗≤n]µ

−
d − µ−

c .

Now we can use the Dominated Convergence Theorem, again from the mono-

tonicity of (uk)k∈N and conclude:

−∆Tn(u
∗) + V Tnu

∗ ≥ χ[u1≤n]µ
+
d − χ[u∗≤n]µ

−
d − µ−

c .

Finally, we use that the functions u1 and u
∗ are quasicontinuous (from Proposition

18.8 in [25] and since both are in L1(Ω) and ∆u1,∆u
∗ ∈ M(Ω)) and that implies

that both sets [u1 = ∞] and [u∗ = ∞] have zero capacity.

Then taking the limit n→ ∞ in the previous expression we have

µ∗ := −∆u∗ + V u∗

≥ µ+
d − µ−

d − µ−
c

= µd − µc,

as we wanted to prove. ■

We are ready to prove the main result:

Proof of Psoposition 3.13. We know that since u∗ is a subsolution of [V ;µ], this

means that

µ∗ := −∆u∗ + V u∗

≤ µ.
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Then, together with the previous Lemma, we can write

µd − µ−
c ≤ µ∗ ≤ µ,

and taking the diffuse part we have

µd − µ−
c ≤ µ∗ ≤ µ

=⇒ µd − (µ−
c )d ≤ (µ∗)d ≤ (µ)d

=⇒ µd ≤ (µ∗)d ≤ (µ)d

=⇒ µd = (µ∗)d.

Now, let λ ∈ G(V ) with λ ≤ µ. Then, the previous expression gives us

λd ≤ µd = (µ∗)d. (8)

Also, since λ ∈ G(V ), let us denote v the distributional solution of the problem

[V ;λ]. Then v is a subsolution of [V ;µ], and we have proved that u∗ is the largest

subsolution to this problem, therefore

v ≤ u∗ almost everywhere in Ω.

Then we can apply the inverse maximum principle (Proposition 6.13 from [25])

to the nonnegative function u∗ − v, obtaining:

(−∆v)c ≤ (−∆u∗)c.

Now we use the fact that L1(Ω) functions are diffuse with respect to any Sobolev

capacity, and in particular, the one we are dealing with and denoting by cap. Then,

taking the concentrated part of the equations satisfied by the functions u∗ and v

we have:

λc = (−∆v)c ≤ (−∆u∗)c = (µ∗)c. (9)

Summing expressions (8) and (9) together, we have

λ ≤ µ∗,

as we wanted to prove. ■

Corollary 3.16. Let µ ∈ M+(Ω) and V : Ω → [0,∞] be Borel-measurable and

µ∗ ∈ M(Ω) be the reduced measure of [V ;µ]. Then

µ ∈ G(V ) if, and only if, µ = µ∗.
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Proof. If µ = µ∗, then by the very construction of the reduced measure, we have

that µ = µ∗ ∈ G(V ).

On the other hand, let µ ∈ G(V ). The first item of Theorem 3.13 gives us

µ∗ ≤ µ. But it is evident that µ ≤ µ, which allows us to apply the second item of

Theorem 3.13, obtaining µ ≤ µ∗. We conclude µ = µ∗. ■

Here we can prove the following result:

Proposition 3.17. The reduced measure of the (nonnegative) measure µ can be

written as:

µ∗ = µ Ω\Z .

This follow from the previous proposition and the characterization of nonnega-

tive reduce measures (Theorem 1.4 from [24]).

Proof of Theorem 3.8 - Conclusion. Using Propositions 3.10, 3.11, 3.13 and

3.17, we conclude the proof of Theorem 3.8. ■

Now let us define the reduced limit operator and show some properties. For

every Borel-measurable V : Ω → [0,∞], we define the function RV :

RV : M+(Ω) → M(Ω)

µ 7→ µ∗.

First we want to prove that RV is linear. This follows from the linearity of our

problem:

Proposition 3.18. The function RV : M(Ω) → M(Ω) is a linear operator.

Proof. Let µ, λ ∈ M(Ω), α ∈ R, V : Ω → [0,∞] Borel-measurable, and (Vk)k∈N a

truncated-type sequence of V .

Then, there exist sequences (uk)k∈N, (vk)k∈N ⊂ W 1,1
0 (Ω) such that in the sense

of distributions:

−∆uk+Vkuk = µ

and

−∆vk+Vkvk = λ.

In particular, using the linearity of the problem, we know that αuk + vk is the

distributional solution of [Vk, αµ+ λ].

We know that (uk)k∈N and (vk)k∈N converge in L1(Ω) to functions that we denote

by u∗ and v∗, respectively. We also know that RV (αµ+ λ) is given by the measure
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representation of the functional represented by −∆w∗+V w∗ where w∗ is the L1(Ω)-

limit of αuk + vk. Then

RV (αµ+ λ) := −∆w∗ + V w∗

= −∆(αu∗ + v∗) + V (αu∗ + v∗)

= −∆(αu∗) + V αu∗ −∆v∗ + V v∗

= αRV (µ) +RV (λ).

Therefore RV is a linear operator. ■

We call RV the reduced measure operator.

We know from the construction of µ∗ that reduced measures are good measures.

We can then write

RV (M(Ω)) ⊂ G(V ),

and if λ ∈ G(V ), then λ = λ∗ ∈ RV (M(Ω)), that is

G(V ) ⊂ RV (M(Ω)).

This proves that

Proposition 3.19. The image of the reduced measure operator RV : M(Ω) →
M(Ω) is G(V ).

Using the fact that RV (RV (µ)) = RV (µ) (since the image of a good measure is

a good measure), we have:

Proposition 3.20. The reduced measure operator is a projection.

Proof. It suffices to notice that R2
V = RV and RV is linear. ■

Since every linear projection creates a direct sum over the vector space it is

defined over, this allows us to write the vector space M(Ω) as

M(Ω) = G(V )⊕ kerRV

For every Borel measure µ ∈ M(Ω)\G(V ) can be written as λ + ν, where

λ ∈ G(V ) and RV (ν) = 0. Then

RV (µ) = RV (λ+ ν)

= RV (λ) +RV (ν)

= λ.
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Then, every measure µ can be written as µ = µ∗ + ν, where RV (ν) = 0.

Now we want to prove that RV is a continuous operator. We will use the Closed

Graph Theorem for this purpose. But first we need to prove some properties about

the vector subspaces G(V ) and kerRV :

Lemma 3.21. The vector subspace of all the good measures, G(V ), is a closed

subspace of M(Ω).

Proof. Let (µk)k∈N ⊂ G(V ) and µk → µ strongly in M(Ω). Since µk is a good

measure, there exists, for every k ∈ N, uk the distributional solution of the problem

[V ;µk]. Let ki, kj ∈ N. From the linear estimates (identity (2.2), page 80 from [24])

we have:

∥V uki − V ukj∥L1(Ω) ≤ ∥µki − µkj∥M(Ω)

and

∥uki − ukj∥L1(Ω) ≤ C · ∥∆(uki − ukj)∥M(Ω) = 2C · ∥µki − µkj∥M(Ω).

This implies that the sequences (uk)k∈N and (V uk)k∈N are Cauchy sequences in

L1(Ω), which gives us u, v ∈ L1(Ω) such that in L1(Ω):

uk → u

and

V uk → v.

In particular, V u = v almost everywhere in Ω.

Now, from the definition of distributional solution, for every k ∈ N and every

ϕ ∈ C∞
0 (Ω): ˆ

Ω

−uk∆ϕ+

ˆ
Ω

V ukϕ =

ˆ
Ω

ϕ dµk.

Since uk → u strongly in L1(Ω) and µk → µ strongly in M(Ω), and therefore

µk
∗
⇀ µ, then ˆ

Ω

−u∆ϕ+

ˆ
Ω

V uϕ =

ˆ
Ω

ϕ dµ.

We conclude that (µk)k∈N ⊂ G(V ) and µk → µ strongly in M(Ω) implies that

µ ∈ G(V ). That means that G(V ) is a closed subspace of M(Ω), as we wanted to

prove. ■

And also:

Lemma 3.22. The kernel of the linear operator RV is a closed subspace of M(Ω).

Proof. Let (µk)k∈N ⊂ kerRV and µk
M(Ω)−−−→ µ. Then RV (µk − µ) = RV (µ).
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Now let (Vl)l∈N be a truncated-type sequence of V and ul,k ∈ W 1,1
0 the distribu-

tion solution of the problem [Vl, µk]. We know that

ul,k
L1(Ω)−−−→
l→∞

u∗k

with

−∆u∗k + V u∗k = 0 ∀k ∈ N.

From the usual linear estimates we have, for every k ∈ N:

∥u∗k∥L1(Ω) ≤ C · ∥µ∥M(Ω) = 0

=⇒ u∗k = 0 almost everywhere in Ω.

This implies that (u∗k)k∈N converges in L1(Ω) to some v ∈ L1(Ω) with v = 0

almost everywhere in Ω.

On the other hand, for every k, l ∈ N and ψ ∈ C∞
0 (Ω):{

−∆ul,k + Vlul,k = µk in Ω,

ul,k = 0 on ∂Ω.

Let ki, kj ∈ N. Again from the usual linear estimates:

∥ul,ki − ul,kj∥L1(Ω) ≤ ∥µki − µkj∥M(Ω).

Then (ul,k)k∈N converges in L1(Ω):

ul,k
L1(Ω)−−−→
k→∞

vl

and

Vl ul,k
L1(Ω)−−−→
k→∞

Vl vl.

Using the same arguments as the previous lemma we arrive at the following identity

in the sense of distributions:

−∆vl + Vlvl = µ ∈ Ω.

From the construction of the reduced measure, (vl)l∈N converges in L1(Ω) (to a

function v∗), therefore it converges almost everywhere in Ω. Since for almost every

x ∈ Ω, the following limits exist:

lim
k→∞

ul,k(x) and lim
l→∞

ul,k(x),
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then, for almost every x ∈ Ω:

lim
l→∞

vl(x) = lim
l→∞

lim
k→∞

ul,k(x)

= lim
k→∞

lim
l→∞

ul,k(x)

= lim
k→∞

u∗k(x)

= 0.

Then RV (µ) = µ∗ := −∆v∗ + V v∗ = 0. Therefore, kerRV is a closed subspace

of M(Ω), as we wanted to prove. ■

We can then prove:

Proposition 3.23. The reduced measure operator is continuous.

Proof. First of all let

µk
M(Ω)−−−→ µ

and

RV (µk) = µ∗
k

M(Ω)−−−→ λ.

Since G(V ) is closed, then λ ∈ G(V ), which gives us RV (λ) = λ.

But µk − RV (µk)
M(Ω)−−−→ µ − λ. Now, since kerRV is closed and RV (µk −

RV (µk)) = 0 then µk −RV (µk) ∈ kerRV and µ− λ ∈ kerRV . This implies

RV (µ− λ) = 0 =⇒ RV (µ)−RV (λ) = 0

=⇒ RV (µ) = λ.

We have that (µk,RV (µk))
M(Ω)×M(Ω)−−−−−−−−→ (µ, λ) implies RV (µ) = λ. The Closed

Graph Theorem allows us to conclude that the operator RV is continuous. ■
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3.2 Reduced Limit

Now, using the definitions we have laid down, we can talk about a new concept of

limit, the reduced limit. This concept was been introduced to nonlinear equations

involving measures in 2009 by Marcus and Ponce (see [20]). Here we adapt and

expand the concept for linear equations involving a singular Schrödinger potential.

This can be done by taking a sequence of measures in G(V ) and whose sequence of

distributional solutions converge in L1(Ω). We then will prove properties involving

this idea.

Definition 3.24. Let (µk)k∈N ⊂ M(Ω) be a bounded sequence. We say that µ# ∈
M(Ω) is the reduced limit of (µk)k∈N if

(i) for every k ∈ N, µk ∈ G(V ), i.e., there exists (uk)k∈N ⊂ L1(Ω) such that uk
is a distributional solution of the Schrödinger problem with potential V and

density µk;

(ii) (uk)k∈N converges in L1(Ω) to a function we denote by u#;

(iii) u# is a distributional solution of the Schrödinger problem with potential V

and density µ#.

The next diagram shows a graphical way to conceptualize the reduced limit:

µk µ#

uk u#

reduced limit

L1(Ω)

The dotted arrows indicate that uk and u# are the distributional solutions of

Schrödinger problems associated with the densities µk and µ#, respectively.

It is clear from the definition, that there is a dependence of the reduced limit

on the Borel-measurable and nonnegative potential V . In this text, when we talk

about reduced limit, we are always refering to an arbitrary potential, except when

explicitly stated.

We now show that, given the two first items of the previous definition, i.e., if

we have (i) and (ii) from Definition 3.24, then the reduced limit exists:

Theorem 3.25. Let (µk)k∈N ⊂ G(V ), not necessarily nonnegative measures, be a

bounded sequence in M(Ω). For each k ∈ N, denote by uk ∈ L1(Ω) the distributional
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solution of the Schrödinger problem with Borel-measurable potential V : Ω → [0,∞]

and density µk. If

uk → u# in L1(Ω),

then:

(i) the reduced limit of (µk)k∈N exists and it is unique, say µ# ∈ M(Ω);

(ii) u# is the distributional solution of [V, µ#], in particular, µ# is a good measure.

Proof: First of all, for every k ∈ N, we have the following estimate that can be

found in [24]:

∥V uk∥L1(Ω) ≤ ∥µk∥M(Ω) .

From this we conclude that (V uk)k∈N is bounded in L1(Ω).

Now, we note that, since uk → u# in L1(Ω), then for a subsequence of (uk)k∈N
that we can still denote by (uk)k∈N, we have

V uk → V u# a.e. in Ω,

and using Fatou’s Lemma:

ˆ
Ω

∣∣V u#∣∣ = ˆ
Ω

lim inf
k→∞

|V uk|

≤ lim inf
k→∞

ˆ
Ω

|V uk|

<∞,

since (V uk)k∈N is bounded in L1(Ω). We can conclude that

V u# ∈ L1 (Ω) .

Using that (µk)k∈N and (V uk)k∈N are bounded in M(Ω), we use the weak*

compacity in this space (Proposition 2.9) to find a subsequences of (µk)k∈N and

(V uk)k∈N (that we can still denote the same way) such that

µk
∗
⇀ µ in M(Ω)

and

V uk
∗
⇀ λ in M (Ω) .

If we define the following measure on M(Ω):

µ# := µ+ V u# − λ,
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we have {
−∆u# + V u# = µ# in Ω,

u# = 0 on ∂Ω,

as we wanted to show. ■

We are now interested in proving the lower semicontinuity of the total variation

norm with respect to the reduced limit µ# of a sequence (µk)k∈N, i.e., the following

identity: ∥∥µ#
∥∥
M(Ω)

≤ lim inf
k→∞

∥µk∥M(Ω) .

Let us first analyze a special case:

Proposition 3.26. Let (µk)k∈N ⊂ M(Ω) be a bounded sequence with reduced limit

µ#. If, for every k ∈ N,
µk Z = 0,

where Z is the universal zero-set, then∥∥µ#
∥∥
M(Ω)

≤ lim inf
k→∞

∥µk∥M(Ω) .

Proof: Let µ+
k and µ−

k be, respectively, the positive and negative parts of µk

given by the Jordan Decomposition Theorem. Then by definition, there exist sets

P,N ⊂ Ω such that

µ+
k = µk P and µ−

k = µk N .

Therefore we have µ+
k (Z) = 0 and µ−

k (Z) = 0. Using Theorem 2.54 we can

conclude that there exist a pair of sequences (vk)k∈N, (wk)k∈N ⊂ L1(Ω) distributional

solutions of the Schrödinger problem with density µ+
k and µ−

k .

We then take µ⊕, µ⊖ the weak* limits of (µ+
k )k∈N and (µ−

k )k∈N, respectively,

v#, w# the L1(Ω) limits of (vk)k∈N and (wk)k∈N, and µ
#
⊕ and µ#

⊖ the reduced limits

of (µ+
k )k∈N and (µ−

k )k∈N, respectively. Now using the monotonicity of the reduced

limit (previous result) we have

−µ#
⊖ ≤ µ# ≤ µ#

⊕,

and using Fatou’s Lemma we have

−µ⊖ ≤ µ#
⊖ and µ#

⊕ ≤ µ⊕.

Then by using both inequalities and taking the measure of the set Ω we have:∥∥µ#
∥∥
M(Ω)

≤ ∥µ⊖∥M(Ω) + ∥µ⊕∥M(Ω) .
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Now, the result follows from the lower semicontinuity of the total variation norm

with respect to the weak* convergence:∥∥µ#
∥∥
M(Ω)

≤ ∥µ⊖∥M(Ω) + ∥µ⊕∥M(Ω)

≤ lim inf
k→∞

∥∥µ+
k

∥∥
M(Ω)

+ lim inf
k→∞

∥∥µ−
k

∥∥
M(Ω)

≤ lim inf
k→∞

∥µk∥M(Ω) .

■

Remark. We know from the theory of Differential Problems with Measure Data,

that the set S is very problematic. It is very hard to deal with this set because of its

singularity and the fact that our variational solutions are null in S (Lema 2.43).

For this reason it is not easy to prove the lower semicontinuity in the general case

precisely because we would have to measure S. The solution is then to work only

with the set Ω\S. Then, the inequality we aim to prove is as follows:∣∣µ#
∣∣ (Ω\S) ≤ lim inf

k→∞
|µk| (Ω\S),

where µ# is the reduced limit of (µk)k∈N. This would allow us to solve certain

problems without having to deal with the set S and its intricacies. The next results

aim to prove the previous inequality.

Proposition 3.27. Let (µk)k∈N ⊂ G(V ) be such that

µk ≥ 0 in Ω\S,

µ# ∈ M(Ω) be the reduced limit of (µk)k∈N, u
# ∈ L1(Ω) be the distributional

solution of the Schrödinger problem with potential V and density µ#, H be the

function given by the Comparison Principle, and (Di)i∈I be the Sobolev-connected-

open decomposition of Ω\S. Then, for every i ∈ I, we have

either u# = 0 a.e. in Di, or ζ̂H(u#) > 0 in Di.

Proof: First, for every k ∈ N, let us denote by uk the distributional solution of

the Schrödinger problem with potential V and density µk. From Proposition 2.39

we know that the functions (uk)k∈N and u# are also duality solutions with their

respective densities. We have, for every k ∈ N and every f ∈ L∞(Ω):

ˆ
Ω

ukf =

ˆ
Ω

ζ̂f dµk and

ˆ
Ω

u#f =

ˆ
Ω

ζ̂f dµ
#.

From Proposition 2.45 we have that, for every k ∈ N, the function uk is also the
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duality solution of the Schrödinger problem with potential V and density µk Ω\S.

We have also that

µk Ω\S ≥ 0.

Since this measure is nonnegative, we obtain, for every k ∈ N:

uk ≥ ζH(uk) almost everywhere in Ω, (10)

where H : [0,∞) → [0,∞) is a bounded (H ≤ M), continuous and nondecreasing

function that satisfies H(t) > 0 for t > 0, and ζH(uk) is the variational solution of

the Schrödinger problem with potential V and data H(uk) ∈ L∞(Ω) ⊂ L2(Ω).

We now want to show that the following inequality holds:

u# ≥ ζH(u#) almost everywhere in Ω. (11)

It is enough to note that ζH(uk) − ζH(u#) is the variational solution of the

Schrödinger problem with potential V and data H(uk) − H(u#). Using an esti-

mate of the variational solution:

∥ζH(uk) − ζH(u#)∥W 1,1(Ω) ≤ ∥H(uk)−H(u#)∥L1(Ω).

Since uk, u
# ∈ L1(Ω), we have

lim
k→∞

∥ζH(uk) − ζH(u#)∥W 1,1(Ω) = 0.

In particular,

ζH(uk) → ζH(u#) almost everywhere in Ω..

Using this with the identity (10), we conclude (11).

Now we apply the localized strong maximum principle for the Sobolev-connected-

open components of Ω\S (Theorem 2.51) to the function ζH(u#), which is a duality

solution of the Schrödinger problem with potential V and density H(u#) dx, where

H(u#) ∈ L∞(Ω). The theorem gives us, for every i ∈ I:

either ζ̂H(u#) ≡ 0 in Di or ζ̂H(u#) > 0 in Di. (12)

If ζ̂H(u#) ≡ 0 in Di, then, since the precise representative of a function agrees

with the function almost everywhere, we have ζH(u#) ≡ 0 almost everywhere in Di.

Using that ζH(u#) is a duality solution of the Schrödinger problem with potential V
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and density H(u#) dx, we have for every f ∈ L∞(Ω):

ˆ
Ω

ζH(u#)f =

ˆ
Ω

ζfH(u#).

From Theorem 2.52 we know that, for every f ∈ L∞(Ω):

ˆ
Ω

ζH(u#)χDi
f =

ˆ
Ω

ζfH(u#)χDi
.

Since ζH(u#) ≡ 0 almost everywhere in Di, then ζH(u#)χDi
= 0 almost everywhere

in Ω and we obtain:
ˆ
Ω

ζfH(u#)χDi
= 0 ∀f ∈ L∞(Ω).

Using Proposition 2.47 we conclude that H(u#) dx = 0 in Ω\S, which implies that

H(u#) = 0 almost everywhere in Di. Since H(t) is nonzero for t > 0, we have

u# = 0 almost everywhere in Di. This gives us

ζ̂H(u#) ≡ 0 in Di =⇒ u# = 0 almost everywhere in Di. (13)

Then, expressions (12) and (13) conclude the result. ■

For the next proposition we need the following lemma:

Lemma 3.28. Let X ⊂ RN be a bounded set and {At}t∈I be a family of disjoint

Borel-measurable subsets of X. Then, there exists a countable subset J ⊂ I, such

that |At| > 0 if, and only if, t ∈ J .

Proof: First, we define the sequence (Bk)k∈N as:

B1 := {t ∈ I; 1 < |At|} and Bk :=

{
t ∈ I; k > 1,

1

k
< |At| ≤

1

k − 1

}
.

Our objective is to prove that each set Bk is finite.

Let us fix a k ∈ N. We know that t ∈ Bk implies |At| > 1
k
; the sets At are

disjoint;
⋃

t∈Bk
At ⊂ X; and X is bounded, and therefore, its Lebesgue measure is

finite. Then ∑
t∈Bk

1

k
≤
∑
t∈Bk

|At| =

∣∣∣∣∣ ⋃
t∈Bk

At

∣∣∣∣∣ ≤ |X| <∞.

Since an infinite series with constant terms cannot be finite, we conclude that, for
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every k ∈ N, Bk is a finite set. Defining

J :=
∞⋃
k=1

Bk,

we see that J ⊂ I, t ∈ J if, and only if |At| > 0, and J is the countable union of

finite sets, and therefore it is a countable set. This concludes the proof. ■

Proposition 3.29. Let (µk)k∈N ⊂ G(V ) be such that

µk ≥ 0 in Ω\S,

and, for every k ∈ N, uk ∈ L1(Ω) be the distributional solution of the Schrödinger

problem with potential V and density µk, with uk → u# in L1(Ω). If α ∈ M(Ω) is

the capW 1,2-diffuse limit of the sequence (V uk dx)k∈N, then

α = V u# dx in
{
ζ̂H(u#) > 0

}
.

Proof: First we note that, since, for every k ∈ N, the measure µk is nonnegative

in Ω\S, then the function uk is also nonnegative, and so is u#.

We apply Lemma 3.28 to the family of disjoint sets {u# = t} ⊂ Ω, t ∈ R+. The

lemma tells us that the set {t ∈ R+; |{u# = t}| ≠ 0} is countable. We can then

find a strictly increasing sequence (Cj)j∈N ⊂ R such that Cj → ∞ and∣∣{u# = Cj

}∣∣ = 0.

We now define the set

Ak,j,ε := {uk ≤ Cj} ∩
{
ε < ζH(u#)

}
.

Now let us work with this set and, for every ε > 0, analyse the double sequence

(V ukχAk,j,ε
)j,k∈N.

Our first objective is to find the L1(Ω) limit of (V ukχAk,j,ε
)k∈N using Lebesgue’s

Dominated Convergence Theorem. From the definition of Ak,j,ε we have:

uk ≤ Cj =
Cj

ε
· ε < Cj

ε
ζH(u#) in Ak,j,ε,

that implies

V ukχAk,j,ε
≤ Cj

ε
V ζH(u#) ∈ L1(Ω), (14)

since V ≥ 0 and V ζH(u#) ∈ L1(Ω). We also have that |{u# = Cj}| = 0 and

uk → u# a.e. in Ω, i.e., there exists a set N ⊂ Ω such that |N | = 0 and, for every
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x ∈ Ω\N, uk(x) → u#(x). From this we obtain:

(a) if x ∈ Ω\(N ∪ {u# = Cj}) and u#(x) < Cj, then, for some k ∈ N large

enough, uk(x) ≤ Cj, thus χ{u#≤Cj}(x) = 1 implies χ{uk≤Cj}(x)
k→∞−−−→ 1;

(b) if x ∈ Ω\(N ∪ {u# = Cj}) and u#(x) > Cj, then, for some k ∈ N large

enough, uk(x) > Cj, thus χ{u#≤Cj}(x) = 0 implies χ{uk≤Cj}(x)
k→∞−−−→ 0.

This means that

χ{uk≤Cj}
k→∞−−−→ χ{u#≤Cj} a.e. in Ω.

Using χA∩B = χAχB and the limit of the product, we have:

χAk,j,ε
= χ{uk≤Cj}χ{ζ

H(u#)
>ε}

k→∞−−−→ χ{u#≤Cj}χ{ζ
H(u#)

>ε}

= χ{u#≤Cj}∩{ζH(u#)
>ε} a.e. in Ω.

Then

V ukχAk,j,ε

k→∞−−−→ V u#χ{u#≤Cj}∩{ζH(u#)
>ε} a.e. in Ω. (15)

From (14), (15) and Lebesgue’s Dominated Convergence Theorem we have

V ukχAk,j,ε

k→∞−−−→ V u#χ{u#≤Cj}∩{ζH(u#)
>ε} in L1(Ω). (16)

Now we take the sequence (V u#χ{u#≤Cj}∩{ζH(u#)
>ε})j∈N and find its L1(Ω) limit

using the Monotone Convergence Theorem. First we have that

V u#χ{u#≤Cj}∩{ζH(u#)
>ε} ≥ 0.

and that, for every j ∈ N:

V u#χ{u#≤Cj}∩{ζH(u#)
>ε} ≤ V u#χ{u#≤Cj+1}∩{ζH(u#)

>ε},

and

V u#χ{u#≤Cj}∩{ζH(u#)
>ε} → V u#χ{ζ

H(u#)
>ε} a.e. in Ω.

since (Cj)j∈N is increasing and Cj → ∞.

We use the Monotone Convergence Theorem to conclude

V u#χ{u#≤Cj}∩{ζH(u#)
>ε} → V u#χ{ζ

H(u#)
>ε} in L1(Ω).
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Now we want to use a diagonal argument to find a subsequence (ukj)j∈N ⊂
(uk)k∈N such that

V ukjχAkj,j,ε
→ V u#χ{ζ

H(u#)
>ε} in L1(Ω).

Let us define k1 := 1. The sequence kj will then be defined recursively. If kj−1 is

defined then kj > kj−1 is chosen such that (using (16)):∥∥∥V ukjχAkj,j,ε
− V u#χ{u#≤Cj}∩{ζH(u#)

>ε}

∥∥∥
L1(Ω)

≤ 1

2j
.

That implies∥∥∥V ukjχAkj,j,ε
− V u#χ{ζ

H(u#)
>ε}

∥∥∥
L1(Ω)

≤ 1

2j
+
∥∥∥V u#χ{u#≤Cj}∩{ζH(u#)

>ε} − V u#χ{ζ
H(u#)

>ε}

∥∥∥
L1(Ω)

j→∞−−−→ 0,

as we wanted to show.

Our objective now is to take the sequence of measures (V ukj dx)j∈N and decom-

pose it in capW 1,2-equidiffuse and capW 1,2-concentrating sequences and to analyse

these sequences and their weak* limits.

We can write

V ukj = V ukjχAkj,j,ε
+ V ukjχ{ukj

>Cj} + V ukjχZj,ε
,

where Zj,ε = {ukj ≤ Cj} ∩ {ζH(u#) ≤ ε}. Applying the Biting Lemma to the

sequence (V ukjχZj,ε
)j∈N, we find capW 1,2-equidiffuse and capW 1,2-concentrating sub-

sequences (βj,ε)j∈N and (γj,ε)j∈N such that, for every j ∈ N we have βj,ε ⊥ γj,ε, i.e.,

there exist measurable sets Xj,ε and Yj,ε such that Xj,ε∪Yj,ε = Zj,ε, Xj,ε∩Yj,ε = ∅,

βj,ε = 0 in Yj,ε and γj,ε = 0 in Xj,ε. This implies: βj,ε = V ukjχXj,ε
dx and

γj,ε = V ukjχYj,ε
dx.

This gives us the following decomposition:

V ukj = V ukjχAkj,j,ε
+ V ukjχ{ukj

>Cj} + V ukjχXj,ε
+ V ukjχYj,ε

,

where Xj,ε and Yj,ε are measurable, Xj,ε ∪ Yj,ε = {ukj ≤ Cj} ∩ {ζH(u#) ≤ ε},
Xj,ε ∩ Yj,ε = ∅, and the sequences (V ukjχXj,ε

)j∈N and (V ukjχYj,ε
)j∈N are capW 1,2-

equidiffuse and capW 1,2-concentrating, respectively.

Now we note that

capW 1,2

({
ukj > Cj

})
≤ c

Cj

→ 0,
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from Lemma 3.2 in [20]. Then the sequence of sets {ukj > Cj} satisfy:

capW 1,2

({
ukj > Cj

})
→ 0

and ˆ
Ω\{ukj

>Cj}
V ukjχ{ukj

>Cj} = 0.

This means that the sequence (V ukjχ{ukj
>Cj} dx)j∈N is capW 1,2-concentrating.

Then

αkj := V ukjχAkj,j,ε
+ V ukjχXj,ε

,

σkj := V ukjχ{ukj
>Cj} + V ukjχYj,ε

are, respectively, an capW 1,2-equidiffuse and a capW 1,2-concentrating subsequence of

(V ukj dx)j∈N.

Let us calculate α, the weak* limit of (αkj)j∈N, i.e., the capW 1,2-diffuse limit of

(V ukj dx)j∈N.

First we know that the weak* limit of (V ukjχAkj,j,ε
)j∈N is V u#χ{ζ

H(u#)
>ε} dx,

since this is its L1(Ω) limit.

Let us denote the weak* limit of (V ukjχXj,ε
)j∈N by λε. We know that the

sequence (V ukjχXj,ε
)j∈N is capW 1,2-equidiffuse and that, since Xj,ε ⊂ {ζH(u#) ≤ ε},

we have
ˆ
{ ̂ζ

H(u#)
>ε}

V ukjχXj,ε
=

ˆ
{ζ

H(u#)
>ε}

V ukjχXj,ε

= 0.

Since ζ̂H(u#) ∈ W 1,2
0 (Ω) and it is defined pointwise in Ω, then, the set {ζ̂H(u#) > ε} is

a Sobolev-open set, and we know that the capW 1,2-equidiffuse sequence of measures

(V ukjχXj,ε
)j∈N equals zero on this set. Therefore, we obtain

λε

({
ζ̂H(u#) > ε

})
= 0.

Then

α = V u#χ{ ̂ζ
H(u#)

>ε} + λε,

that implies, for every ε > 0:

α { ̂ζ
H(u#)

>ε} = V u#χ{ ̂ζ
H(u#)

>ε} dx.
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Let k ∈ N and A ⊂ {ζ̂H(u#) > 0}. Using that

A ∩
{
ζ̂H(u#) >

1

k

}
⊂ A ∩

{
ζ̂H(u#) >

1

k + 1

}
,

A =
⋃
k∈N

(
A ∩

{
ζ̂H(u#) >

1

k

})
,

and the continuity from below of finite Borel measures, we have:

α(A) = α

(⋃
k∈N

(
A ∩

{
ζ̂H(u#) >

1

k

}))

= lim
k→∞

α

(
A ∩

{
ζ̂H(u#) >

1

k

})
= lim

k→∞

ˆ
{
A∩

{
̂ζ
H(u#)

> 1
k

}} V u# dx

=

ˆ
{⋃

k∈N

(
A∩

{
̂ζ
H(u#)

> 1
k

})} V u# dx

=

ˆ
A

V u# dx.

Then, we conclude α = V u# dx in {ζ̂H(u#) > 0}, as we wanted to prove. ■

The next result is a type of monotonicity result restricted to Ω\S:

Proposition 3.30. Let V : Ω → [0,∞] a Borel-measurable function and (µk)k∈N ⊂
G(V ), not necessarily nonnegative measures, be a bounded sequence in M(Ω) with

reduced limit µ# ∈ M(Ω). If, for every k ∈ N,

µk ≥ 0 in Ω\S,

then

µ# ≥ 0 in Ω\S.

Proof: First, we can use the Sobolev-connected-open decomposition of the set

Ω\S to write

µ#
Ω\S =

∑
i∈I

µ#
Di
.

We will prove the result for each measure µ#
Di

and use this identity to conclude

the proof.
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From Proposition 3.27 we have that, for each i ∈ I:

either u# = 0 a.e. in Di, or ζ̂H(u#) > 0 in Di.

We will now consider each one of these cases.

If u# = 0 almost everywhere in Di, we recall that u# is the duality solution of

the Schrödinger problem with potential V and density µ# and we apply Theorem

2.52 to u#, obtaining, for every f ∈ L∞(Ω):

ˆ
Ω

ζf dµ
#

Di
=

ˆ
Ω

u#χDi
f = 0.

And from Proposition 2.47 we have

µ#
Di

= 0 in Ω\S.

Since Di ⊂ Ω\S, this implies

µ# = 0 in Di.

We now turn our attention to the case ζ̂H(u#) > 0 in Di. By noting that Di ⊂
{ζ̂H(u#) > 0}, we know, from Theorem 3.29, that the diffuse limit of the sequence

(V uk dx)k∈N is V u# dx, in Di. We denote by ν the weak* limit of (V uk dx)k∈N and

by λ the concentrated limit of this sequence, thus obtaining

ν = V u# dx+ λ in Di.

Now we know that the following equation holds in the sense of distributions:

−∆uk + V uk = µk in Ω.

Denoting by µ the weak* limit of (µk)k∈N, recalling that −∆u# is the weak* limit

of (−∆uk)k∈N, and taking the weak* limit in the last identity, we have

−∆u# + ν = µ in Ω.

Contracting this identity to Di:

−∆u# + V u# dx+ λ = µ in Di.

Using this expression and the fact that u# is the distributional solution of the
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Schrödinger equation with potential V and density µ#:

µ# = −∆u# + V u# dx

= µ− λ in Di. (17)

Now, from the Biting Lemma (Theorem 2.12) we can write, for every k ∈ N:

µk = αk + σk,

where (αk)k∈N ⊂ M(Ω) is capW 1,2-equidiffuse, (σk)k∈N ⊂ M(Ω) is capW 1,2-concentrating

and αk ⊥ σk.

Since for every k ∈ N, µk ≥ 0 in Ω\S, we also have (αk)k∈N and (σk)k∈N are

nonnegative in Di. Denoting the diffuse and the concentrated limits of (µk)k∈N, by

α and σ respectively, we have µ = α+σ. Now we use the fact that, for every k ∈ N,
αk is nonnegative in Ω\S and the monotonicity of the weak* limit in Sobolev-open

sets, to conclude that α ≥ 0 in Ω\S, from which follows

µ = α + σ

≥ σ in Di.

In particular, we have

λ− µ ≤ λ− σ in Di. (18)

Rewritting ∆uk as

∆uk = V uk − µk in Ω,

and noting that the capW 1,2-concentrated limit of (V uk)k∈N is λ and the capW 1,2-

concentrated limit of (µk)k∈N is σ, we have that λ − σ is the capW 1,2-concentrated

limit of (∆uk dx)k∈N. Since uk ≥ 0 for every k ∈ N, we can use the Inverse

Maximum Principle for Sequences and conclude that the capW 1,2-concentrated limit

of (∆uk dx)k∈N is nonpositive, i.e.

λ− σ ≤ 0 in Ω. (19)

Using (17), (18) and (19) we obtain

µ# = µ− λ ≥ σ − λ ≥ 0 in Di.

This concludes the proof. ■

The next result follows directly from this proposition:
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Theorem 3.31. Let V : Ω → [0,∞] a Borel-measurable function and (µk)k∈N,

(λk)k∈N ⊂ G(V ) be bounded sequences of not necessarily nonnegative measures, with

reduced limits µ#, λ# ∈ M(Ω), respectively. If, for every k ∈ N,

µk ≥ λk in Ω\S,

then

µ# ≥ λ# in Ω\S.

Proof: First, let us take the sequences (uk)k∈N, (vk)k∈N ⊂ L1(Ω) such that, for

every k ∈ N, uk is the distributional solution of the Schrödinger problem with

potential V and density µk, vk is the distributional solution of the Schrödinger

problem with potential V and density λk, uk → u# in L1(Ω) and vk → v# in L1(Ω).

Then we define the sequence of measures given by

(µk − λk)k∈N ⊂ M(Ω).

This sequence is nonnegative in Ω\S, and for every k ∈ N, uk − vk is the distribu-

tional solution of the Schrödinger problem with potential V and density µk − λk.

Moreover, uk − vk → u# − v# in L1(Ω), i.e., u# − v# is the reduced limit of

(µk − λk)k∈N. Applying Proposition 3.30 we conclude that

µ# − λ# ≥ 0 in Ω\S,

as we wanted to prove. ■

Now we want to prove the following result concerning the lower semicontinuity

of the reduced limit contracted to the set Ω\S:

Theorem 3.32. Assume V : Ω → [0,∞] a Borel-measurable function and (µk)k∈N ⊂
G(V ), not necessarily nonnegative measures, be a bounded sequence in M(Ω) with

reduced limit µ# ∈ M(Ω). Then,∣∣µ#
∣∣ (Ω\S) ≤ lim inf

k→∞
|µk| (Ω\S) .

Proof: Let us work with the two following sequences:(
µ+
k

)
k∈N ,

(
µ−
k

)
k∈N ⊂ M (Ω) .

Since (µk)k∈N is bounded in M(Ω), the sequences (µ+
k )k∈N and (µ−

k )k∈N are also

bounded (since |µ+
k |(Ω) + |µ−

k |(Ω) = |µk|(Ω)) and we can define the weak* limits:

µk
∗
⇀ µ,µ+

k Ω\S
∗
⇀ µ⊕, µ

−
k Ω\S

∗
⇀ µ⊖ in M(Ω).
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And we have that

µk = µ+
k − µ−

k =⇒ µ = µ⊕ − µ⊖.

We denote the distributional (and duality) solution of the Schrödinger problem

with potential V and density µk, by uk ∈ L1(Ω), and the L1(Ω) limit of (uk)k∈N
by u#. And since the duality solution always exists for any density in M(Ω), we

denote by vk and wk ∈ L1(Ω) the duality solutions of the Schrödinger problem with

potential V and density µ+
k and µ−

k , respectively.

Now, we use the fact that the measures µ+
k and µ−

k are nonnegative, and apply

Proposition 2.45 to conclude that the following equations hold in the distributional

sense:

−∆vk + V vk = µ+
k Ω\S − λk in Ω,

−∆wk + V wk = µ−
k Ω\S − τk in Ω,

where, for every k ∈ N, the measures λk and τk are nonnegative, capW 1,2-diffuse,

and λk Ω\S = τk Ω\S = 0. Let us prove that the sequences (µ+
k Ω\S − λk)k∈N and

(µ−
k Ω\S − τk)k∈N are bounded in M(Ω).

We know that from identity (2.2) from [24], that

∥V vk∥L1(Ω) ≤ ∥µ+
k ∥M(Ω).

Also from [24], we have, for every ϕ ∈ C∞
c (Ω), that∣∣∣∣ˆ

Ω

ϕ d(λk − V vk)

∣∣∣∣ ≤ C∥µ+
k ∥M(Ω).

By noting that the sequence (µ+
k )k∈N is bounded in M(Ω), we conclude that (λk)k∈N

is also bounded in M(Ω), from which we know that (µ+
k Ω\S − λk)k∈N is bounded

in M(Ω), as we wanted to show. To prove the same result for (µ−
k Ω\S − τk)k∈N we

use analogous arguments.

Now, our objective is to prove that the reduced limits of the sequences (µ+
k Ω\S−

λk)k∈N and (µ−
k Ω\S − τk)k∈N exist, i.e., we want to show that (vk)k∈N and (wk)k∈N

converge in L1(Ω) up to a subsequence.

Since the sequence (µ+
k − λk)k∈N is bounded in M(Ω), then we have:

∥V vk∥L1(Ω) ≤ ∥µ+
k − λk∥M(Ω) ≤ C,

and we conclude that (∆vk)k∈N is bounded in L1(Ω). This implies that (vk)k∈N is

bounded in W 1,p
0 (Ω) for every p < N

N−1
. By Rellich-Kondrachov Theorem we have

the compact embedded in L1(Ω), thus there exists a subsequence of (vk)k∈N that
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converges in L1(Ω). We denote this limit in L1(Ω) by v#.

We can apply the same reasoning to the sequence (µ−
k − τk)k∈N and find a

subsequence of (wk)k∈N that converges in L1(Ω) to a function we can denote by w#.

Defining the following two measures:

µ#
⊕ := −∆v# + V v#, µ#

⊖ := −∆w# + V w# in Ω,

in the sense of distributions, we conclude that µ#
⊕ and µ#

⊖ ∈ M(Ω) are the reduced

limits of (µ+
k Ω\S − λk)k∈N and (µ−

k Ω\S − τk)k∈N, respectively.

We can compare the sequences (µk)k∈N, (µ
+
k Ω\S−λk)k∈N and (µ−

k Ω\S−τk)k∈N in

Ω\S, using the definition of positive and negative parts of a measure, and obtain:

−µ−
k ≤ µk ≤ µ+

k in Ω =⇒ −(µ−
k Ω\S − τk) Ω\S ≤ µk Ω\S ≤ (µ+

k Ω\S − λk) Ω\S.

Since these sequences have reduced limits, we can apply Theorem 3.31 (and the fact

that the reduced limit is linear) to obtain:

−µ#
⊖ ≤ µ# ≤ µ#

⊕ in Ω\S. (20)

Let us prove that µ#
⊕ ≤ µ⊕ in Ω.

We want to prove that, for every nonnegative function ϕ ∈ C∞
c (Ω) we have:

ˆ
Ω

−v#∆ϕ+ V v#ϕ ≤
ˆ
Ω

ϕ dµ⊕.

First of all, we know that since, for every k ∈ N, λk ≥ 0, and we have, in the

distributional sense, the equation

−∆vk + V vk = µ+
k − λk,

then

−∆vk + V vk ≤ µ+
k ,

that in the distributional sense we can write as
ˆ
Ω

−vk∆ϕ+

ˆ
Ω

V vkϕ ≤
ˆ
Ω

ϕ dµ+
k ∀ϕ ∈ C∞

c (Ω), ϕ ≥ 0. (21)

Now we can use the fact that vk → v# in L1(Ω).

In the first integral of (21), we use the fact that ∆ϕ is bounded, and for this

reason, the linear operator T : L1(Ω) → R defined by

T (f) =

ˆ
Ω

f∆ϕ,
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is continuous, and therefore, we have

lim
k→∞

ˆ
Ω

−vk∆ϕ =

ˆ
Ω

−v#∆ϕ. (22)

In the second integral of (21), we use Fatou’s Lemma, since V, vk, ϕ ≥ 0 and

vk → v# almost everywhere in Ω, and conclude:

lim
k→∞

ˆ
Ω

V vkϕ =

ˆ
Ω

V v#ϕ. (23)

Finally, in the last term of (21) we can apply the definition of weak* limit, since

µ+
k

∗
⇀ µ⊕ in M(Ω), and obtain:

lim
k→∞

ˆ
Ω

ϕ dµ+
k . (24)

We then have from (21), (22), (23) and (24):

ˆ
Ω

−v#∆ϕ+ V v#ϕ ≤
ˆ
Ω

ϕ dµ⊕,

as we wanted to conclude.

We prove −µ⊖ ≤ −µ#
⊖ in Ω with an analogous argument. Using these two

inequalities and identity (20) we have:

−µ⊖ ≤ µ# ≤ µ⊕ in Ω\S.

Taking the positive and negative parts from of the measures in this inequality,

we have, respectively:

0 ≤ (µ#)+ ≤ µ⊕ in Ω\S, (25)

and

0 ≤ (µ#)− ≤ µ⊖ in Ω\S, (26)

since we have that µ⊕,−µ⊖ ≥ 0.

Now, we use the weak* limit of (µ+
k Ω\S)k∈N and the lower semicontinuity of the
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total variation norm with respect to the weak* limit, and obtain:

µ⊕(Ω\S) ≤ µ⊕(Ω)

= ∥µ⊕∥M(Ω)

≤ lim inf
k→∞

∥µ+
k Ω\S∥M(Ω)

= lim inf
k→∞

µ+
k (Ω\S),

and by the same arguments, we also have

µ⊖(Ω\S) ≤ lim inf
k→∞

µ−
k (Ω\S).

Using these two inequalities, together with (25) and (26), we obtain:

|µ#|(Ω\S) ≤ µ⊕(Ω\S) + µ⊖(Ω\S)
≤ lim inf

k→∞
µ+
k (Ω\S) + lim inf

k→∞
µ−
k (Ω\S)

= lim inf
k→∞

|µk|(Ω\S).

This concludes the proof. ■
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4 Applications

In this chapter we will use the results we achieved to some applications.

We deal with an optimal control problem, a type of optimization problem that

involves the minimization of a functional, called the cost functional. Our functional

in particular involves a measure.

The first result is an alternative way to measure the L1-norm of a good measure,

which gives us a different way to write the cost functional.

Then we prove the existence of solution to the minimization problem showing

that the solution is the reduced limit as defined in the previous chapter. One of

the methods we use is proving that the cost functional is lower semicontinuous by

using the semicontinuity of the reduced limit, proved on Chapter 3.

Next we investigate a phenomenon called the Lavrentiev phenomenon. This

phenomenon in its classical form is about the strict inequality between the infimum

of a functional over absolutely continuous trajetories and Lipschitz trajetories.

In our text we prove that for some choice of parameters N and p, our problem

satisfies the Lavrentiev phenomenon: the infimum of the cost functional over mea-

sures is strictly smaller than the infimum of the cost functional over L1 functions.

This is proved using Sobolev and Newtonian capacities, Hausdorff measures, the

properties of the reduced limit and the results proved in the previous chapters.
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4.1 Optimal control problem

We want to prove an existence result for a minimization problem related to the

Schrödinger problem with potential V and density µ. First let us define a functional

Fp : M(Ω) → [0,∞] in the following way:

Fp(µ) =



∥u− ud∥Lp(Ω) + α ∥µ∥L1(Ω) , if the Schrödinger problem with

potential V and density µ has a

distributional solution u,

∞, otherwise,

where 1 ≤ p ≤ ∞, ud ∈ L1(Ω) is a function that we call the ideal state. and α > 0.

We want to use a lower semicontinuity type of inequality applied to this func-

tional. Unfortunately, we don’t have such result for the L1(Ω) norm. The next

proposition solves this issue by letting us calculate the total variation of µ in Ω\S
and use the last result from the previous section.

Proposition 4.1. If µ ∈ L1(Ω) ∩ G(V ), then

∥µ∥L1(Ω) = |µ| (Ω\S).

Proof: First of all, let’s denote by u the distributional solution for the Schrödinger

problem with data µ.

Let µ = µ+ − µ− be the decomposition of µ in its positive (µ+) and negative

(µ−) parts given by the Hahn-Jordan Decomposition Theorem. We then have,

by Proposition 3.3, [22], that there are u1, u2 ∈ L1(Ω) such that u1 and u2 are

the (unique) duality solutions of the Schrödinger problem with datas µ+ and µ−,

respectively. By definition, for every f ∈ L∞(Ω),

ˆ
Ω

u1f =

ˆ
Ω

ζ̂fdµ
+ and

ˆ
Ω

u2f =

ˆ
Ω

ζ̂fdµ
−. (27)

Now, since µ+ and µ− are nonnegative measures, we can use the Remark 4.3

from [24] to conclude that

u1 = u2 = 0 a.e. in S. (28)

Taking the difference between the two expressions in (27), we have, for every
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f ∈ L∞(Ω):

ˆ
Ω

(u1 − u2) f =

ˆ
Ω

ζ̂fd
(
µ+ − µ−)

=

ˆ
Ω

ζ̂fdµ,

i.e., u1 − u2 is a duality solution of the Schrödinger problem with data µ. But

we have that u is a distributional solution, then it is also a duality solution of the

Schrödinger problem with data µ. Again by Proposition 5, we have that the duality

solution is unique, from which we can conclude that u = u1−u2, and using (28) we

have

u = 0 a.e. in S.

From this, we have that

V u = 0 a.e. in S. (29)

Next we want to prove estimates about the value of ∆u in the set {u = 0}
(and in particular in S, since S ⊂ {u = 0} as we just concluded). First of all, the

absorption estimate from [24] (expression 2.2) states that

∥V u∥L1(Ω) ≤ ∥µ∥M(Ω) ,

which means that V u ∈ L1(Ω). Since we have −∆u + V u = µ, then µ ∈ L1(Ω)

gives us

−∆u = µ− V u ∈ L1(Ω).

We can use the Theorem 1.1 from [2]. This theorem gives us (since u ∈ L1
loc(Ω) and

∆u is locally finite):

(∆u)a = 0 a.e. in {u = α} ∪ {∇u = e}

for every α ∈ R and every e ∈ RN , where (∆u)a is the absolutely continuous part

of ∆u with respect to the Lebesgue measure. In particular

(∆u)a = 0 a.e. in {u = 0} .

It is enough to use the fact that S ⊂ {u = 0} and observe that, since ∆u ∈ L1(Ω),

then (∆u)a = ∆u, to conclude

∆u = 0 a.e. in S. (30)

We then have from (29) and (30):

µ = −∆u+ V u = 0 a.e. in S,
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from which the result follows directly. ■

Let’s now work with the following functional F : M(Ω) → [0,∞]:

F (µ) =



∥u− ud∥Lp(Ω) + α |µ| (Ω\S) , if the Schrödinger problem with

potential V and density µ has a

distributional solution u,

∞, otherwise,

where ud ∈ L1(Ω) is a function called the ideal state, 1 ≤ p ≤ ∞ and α > 0.

Our objective is to prove the following minimization problem:

find µ# ∈ M such that Fp,ud

(
µ#
)
= inf

µ∈M
Fp,ud

(µ) , (P)

Our next result states that a solution to this problem exists:

Theorem 4.2. Assume V : Ω → [0,∞] a Borel-measurable function, µ ∈ M(Ω)

being not necessarily nonnegative, ud ∈ L1(Ω), 1 ≤ p ≤ ∞ and α > 0. Then the

minimization problem (P) has a unique solution µ# ∈ M(Ω). Moreover, µ# is the

reduced limit of any minimizing sequence of the functional Fp,ud
, in particular, there

exists u# ∈ L1(Ω), the distributional solution of the problem [V ;µ#].

Proof: Our first aim is to prove that F is lower semicontinuous with respect to

the reduced limit, i.e., if (µk) ⊂ M is a sequence with a reduced limit µ#, and

satisfies, for every k ∈ N, F (µk) <∞, then

F
(
µ#
)
≤ lim inf

k→∞
F (µk) . (31)

We start by taking a subsequence of (µk)k∈N so that the liminf in (31) is a

limit. We can keep calling this subsequence (µk)k∈N. Then by the definition of

reduced limit we can take, for every k ∈ N a function uk ∈ L1(Ω) so that uk is a

distributional solution of the Schrödinger problem with data µk.

Again, using the definition of reduced limit we have that uk → u# in L1(Ω) and

u# is the distributional solution of the Schrödinger problem with data µ#. We can

take a subsequence of (uk)k∈N to have the almost everywhere convergence, i.e., we

have uk → u# a.e. in Ω.

Now if we have 1 ≤ p <∞ we can use Fatou’s Lemma to conclude∥∥u# − ud
∥∥
Lp(Ω)

≤ lim inf
k→∞

∥uk − ud∥Lp(Ω) .
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If, on the other hand we have p = ∞ we have∣∣u# − ud
∣∣ = lim

k→∞
|uk − ud| ≤ lim inf

k→∞
∥uk − ud∥L∞(Ω) a.e. in Ω,

where the equality comes from the convergence of (uk)k∈N and the inequality comes

from the definition of the L∞(Ω) norm.

Then, for every 1 ≤ p ≤ ∞,∥∥u# − ud
∥∥
Lp(Ω)

≤ lim inf
k→∞

∥uk − ud∥Lp(Ω) . (32)

Using the following estimate:∣∣µ#
∣∣ (Ω\S) ≤ lim inf

k→∞
|µk| (Ω\S),

and (32), we have the semicontinuity of F as we wanted to prove.

The following step is to take a minimizing sequence (µk) ⊂ M(Ω) of F , i.e.,

lim
k→∞

F (µk) = inf
µ∈M(Ω)

F (µ) .

Since we can always find a measure µ so that the Schrödinger problem has a

distributional solution, we have F ̸≡ ∞. So we can take our minimizing sequence

consisting of measures for which the Schrödinger problem has a distributional solu-

tion, i.e., good measures, and conclude, for every k ∈ N, F (µk) <∞.

We can also take a subsequence of (µk)k∈N so that it has a reduced limit µ#.

Using the previously proven lower semicontinuity of F with respect to the reduced

limit, we have

F
(
µ#
)
≤ lim inf

k→∞
F (µk) = inf

µ∈M(Ω)
F (µ) .

This proves that µ# is the minimizer of F in M(Ω), i.e. the solution of (P).

The theorem is then proved. ■
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4.2 The Lavrentiev phenomenon

Now, we are interested in a version of the Lavrentiev Phenomenon. We wish

to prove that the function that minimizes the functional Fp,w in M(Ω) does not

belong to L1(Ω). In other words, we want to show that

Fp,w ̸≡ ∞ in M (Ω) and Fp,w ≡ ∞ in L1 (Ω) .

We present a lemma that will help us prove a diffusity property. We will not

prove it here, but its proof can be found in [26] Proposition 3.1.

Lemma 4.3. Let 1 ≤ p <∞, and K ⊂ Ω be a compact set such that cap(∆,Lp)(K; Ω) =

0. Then there exists a sequence (ϕk)k∈N ⊂ C∞
c (Ω) of nonnegative functions such

that

(i) ϕk → χK pointwise, i.e., for every x ∈ Ω, ϕk(x) → χK(x);

(ii) (ϕk)k∈N is bounded in L∞(Ω), i.e., for every k ∈ N, ∥ϕk∥L∞(Ω) ≤M ;

(iii) ∆ϕk → 0 in Lp(Ω), i.e., ∥∆ϕk∥Lp(Ω) → 0.

Our first result is the following:

Lemma 4.4. Let v ∈ Lp(Ω), p > 1, such that ∆v ∈ M(Ω). Then ∆v is cap(∆;Lp′ )-

diffuse.

Proof: First of all, we take ϕ ∈ C∞
c (Ω), and since v ∈ Lp(Ω) and ∆ϕ ∈ Lp′(Ω),

we have, using the Green’s identity and the Hölder inequality:∣∣∣∣ˆ
Ω

ϕ∆v

∣∣∣∣ = ∣∣∣∣ˆ
Ω

v∆ϕ

∣∣∣∣ ≤ ∥v∥Lp(Ω)∥∆ϕ∥Lp′(Ω). (33)

Now let K be a compact subset of Ω such that cap(∆;Lp′ )(K; Ω) = 0. Since p > 1

then 1 ≤ p′ < ∞ and we can apply Lemma 4.3. Then we know that there exists a

sequence (ϕk)k∈N ⊂ C∞
c (Ω) of nonnegative functions such that

(i) ϕk → χK pointwise;

(ii) (ϕk)k∈N is bounded in L∞(Ω);

(iii) ∆ϕk → 0 in Lp′(Ω).

Using the expression (33) for the functions ϕk, k ∈ N, we have:∣∣∣∣ˆ
Ω

ϕk∆v

∣∣∣∣ ≤ ∥v∥Lp(Ω)∥∆ϕk∥Lp′(Ω).

Now we use the items (i), (ii) and Lebesgue’s Dominated Convergence Theorem to

have ∣∣∣∣ˆ
Ω

ϕk∆v

∣∣∣∣→ ∣∣∣∣ˆ
K

∆v

∣∣∣∣ .
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Using (iii) we have:

∥v∥Lp(Ω)∥∆ϕk∥Lp′(Ω) → 0.

From the last three expressions we conclude∣∣∣∣ˆ
K

∆v

∣∣∣∣ = 0.

This means that, for every compact K ⊂ Ω such that cap(∆;Lp′ )(K; Ω) = 0 we have

(∆v dx)(K) = 0.

Let us now take an arbitrary Borel set A ⊂ Ω such that cap(∆;Lp′ )(A; Ω) = 0.

For every compact K such that K ⊂ A we also have cap(∆;Lp′ )(K; Ω) = 0 and this

implies (∆v dx)(K) = 0. Since ∆v ∈ M(Ω), we can use the inner regularity of

finite Borel measures, that tells us that the measure of any Borel set A can be

calculated using only the measure of compact sets contained in A. Then

(∆v dx)(A) = sup {(∆v dx)(K);K ⊂ A is compact}
= 0

This proves the result. ■

Lemma 4.5. Let N
N−2

≤ p ≤ ∞, w ∈ L1(Ω) be such that ∆w ∈ M(Ω) and

µ ∈ M(Ω) be such that Fp,w(µ) <∞. Then

µc = (−∆w)c,

where the subscript c denotes the cap(∆;Lp′ )-concentrated part of the measure.

Proof: First of all, since Fp,w(µ) <∞, we have that there exists a distributional

solution to the Schrödinger problem with potential V and density µ. Let us denote

this solution by u. We also have that u− w ∈ Lp(Ω).

Now we know that, since V u ∈ L1(Ω), then V u ∈ M(Ω). Also,

∆u = V u− µ ∈ M(Ω),

and since ∆w ∈ M(Ω), we have

∆(u− w) ∈ M(Ω).

By hypothesis, we have that p ≥ N
N−2

> 1. We can then apply Lemma 4.4 to

conclude that ∆(u− w) is cap(∆;Lp′ )-diffuse.
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We can write:

µ = −∆u+ V u

= −∆w +∆(u− w) + V u.

We know that ∆(u−w) and V u are cap(∆;Lp′ )-diffuse, that is, (∆(u−w))c = (V u)c =

0. Taking the cap(∆;Lp′ )-concentrated parts in the last identity gives us

µc = (−∆w)c

as we wanted to prove. ■

We will also use the following result as a lemma. We will not prove it here, but

it is Proposition 2.1 in [24].

Lemma 4.6. If the Schrödinger problem with potential V and nonnegative density

µ has a distributional solution, then, for every λ ∈ M(Ω) such that |λ| ≤ µ, the

Schrödinger problem with potential V and density λ also has a distributional solu-

tion.

We wish to prove the following result:

Theorem 4.7. Let µ ∈ M(Ω) not necessarily nonnegative, N ≥ 3 and N
N−2

≤ p <

∞. Assume 0 ≤ V ∈ Lq′ (Ω) for some 1 ≤ q < p, where 1
q
+ 1

q′
= 1. Then there

exists nonnegative and nontrivial w ∈ Lq(Ω) ∩W 1,r
0 (Ω), for every 1 ≤ r < N

N−1
,

distributional solution to the problem [V ;λ] for some nonnegative and nontrivial

λ ∈ M(Ω) such that the cost functional Fp,w satisfies

Fp,w ̸≡ ∞ in M (Ω) and Fp,w ≡ ∞ in L1 (Ω) .

Proof: Let us split this proof in two cases. The first case is q ≥ N
N−2

.

First of all, we want to find a measure µ ∈ M(Ω) that is both cap(∆,Lq′ )-diffuse

and cap(∆,Lp′ )-concentrated. For this, we take a Cantor set K ⊂ Ω such that

0 < HN−2p′(K) <∞; (34)

for the construction of this set see [4].

We know that K is a compact set and since N
N−2

≤ p < ∞, then 1 < p′ < N
2
.

This and (34) gives us (using Theorem 5.1.9 from [1]):

capW 2,p′ (K) = 0,
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and from the Calderón–Zygmund Lp′ estimates (Corollary 9.10; [16]) we have

cap(∆,Lp′ )(K; Ω) = 0.

Since p > q, then p′ < q′ and also

cap(∆,Lp′ )(K; Ω) = 0 and cap(∆,Lq′ )(K; Ω) > 0.

Then, using Proposition A.17 from [25] we can conclude the existence of a non-

negative finite Borel measure λ supported in K such that λ(K) = 1 and, for every

nonnegative ζ ∈ C∞
0 (Ω),

0 ≤
ˆ
Ω

ζ dλ ≤ C1∥∆ζ∥Lq′ (Ω). (35)

Also, using the proof of Lemma 4.4, we can conclude that λ is cap(∆,Lq′ )-diffuse.

Now we take u ∈ L1(Ω), the distributional solution of the Schrödinger problem

with density λ, i.e. u satisfies: {
−∆u = λ in Ω,

u = 0 on ∂Ω,

and, for every ζ ∈ C∞
0 (Ω), ˆ

Ω

u∆ζ =

ˆ
Ω

ζ dλ.

Using (35), we have: ∣∣∣∣ˆ
Ω

u∆ζ

∣∣∣∣ ≤ C1∥∆ζ∥Lq′ (Ω).

Using the Riesz Representation Theorem we conclude that u ∈ Lq(Ω) and since

V ∈ Lq′(Ω), we have

V u ∈ L1(Ω).

Since λ is a nonnegative measure, by the weak maximum principle we have that

u ≥ 0 almost everywhere in Ω.

Now, since V ≥ 0 (by hypothesis) we have V u ≥ 0 and by consequence, for

every nonnegative ζ ∈ C∞
0 (Ω):

ˆ
Ω

u∆ζ +

ˆ
Ω

V uζ ≥
ˆ
Ω

ζ dλ ≥ 0.

90



Thus, u is a supersolution for the Schrödinger problem with datum λ. Since

the constant function 0 is a subsolution, by [25, Proposition 22.7] there exists a

distributional solution of the Schrödinger problem with potential V and density λ.

We denote this solution by w.

From Theorem 4.2, the optimal control problem (P) with the desired state w

has a solution µ# and, in particular, we have

F (µ#) ≤ F (λ) = α∥λ∥M(Ω) <∞.

We now show that for any β ∈ M(Ω) with F (β) <∞ (which includes β = µ#)

we have β ̸∈ L1(Ω). Indeed, from Lemma (4.5),

αc = (−∆w)c = λc = λ ̸= 0. (36)

Since being in L1(Ω) implies begin diffuse with respect to the capacities, we then

have α /∈ L1(Ω) as claimed.

Now let us prove the remaining case, that is, let us now assume 1 ≤ q < N
N−2

.

This implies q′ > N
2
, and we have, from the Morrey-Sobolev inequalities that the

capacity capW 2,q′ is zero only in the empty set. This means in particular that for

every µ ∈ M(Ω) we have that capW 2,q′ (A) = 0 =⇒ A = ∅ =⇒ µ(A) = 0. This

means that

µ≪ capW 2,q′ .

Using Proposition 22.8 from [25] we know that, since V ∈ Lq′(Ω) with q′ > N/2

there exists a solution for the Schrödinger problem with potential V and every finite

measure µ. We take as w the solution associated with µ = HN−2p′⌊K .
In particular, F (µ) <∞ and the minimization problem has a finite infimum. We

may now proceed as before to deduce (36) for a general measure λ with F (λ) <∞.

We then get the desired result when 1 ≤ q < N
N−2

. The proof is complete. ■
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93



[26] Augusto C. Ponce and Nicolas Wilmet. Schrödinger operators involving singu-

lar potentials and measure data. J. Differential Equations, 263(6):3581–3610,

2017.

[27] Guido Stampacchia. Le problème de Dirichlet pour les équations elliptiques du
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