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Resumo

O sistema de Bresse é um modelo matemático para vigas circulares destacando as pro-

priedades de força de cisalhamento, momento fletor e forças axiais. De acordo com trabalhos

recentes de Jorge Silva e Ma (2023), estudaremos um sistema termoelástico do tipo Fourier

onde a temperatura atua independentemente nas três propriedades acima mencionadas. Nossos

resultados são os seguintes: a) Primeiramente, estudaremos a estabilidade exponencial de sistema

termoelástico com a condição de fronteira de Dirichlet, sem adicionar hipóteses extras sobre

os coeficientes do sistema. Mas por causa das dificuldades geradas pelos termos de fronteira,

provaremos uma nova desigualdade de observabilidade. Isso nos permitirá aplicar uma carac-

terização de semigrupos exponencialmente estáveis de Gearhart e Prüss. b) Na presença de

forças não lineares, provaremos a existência de um atrator global de dimensão fractal finita.

c) Em seguida, perturbamos o sistema com um termo de retardo (delay) atuando no momento

fletor. Provaremos que para um retardo suficientemente pequeno, a dissipação térmica ainda

pode estabilizar o sistema exponencialmente. Notamos que na presença de um retardo, nosso

sistema deixa de ser uniformemente dissipativo. Para contornar esse obstáculo apresentaremos

algumas ideias novas. d) Finalmente, na presença de forças não lineares, comentaremos alguns

trabalhos futuros sobre a dinâmica de longo prazo de tais sistemas com retardos.

Palavras-Chaves: Equações diferenciais parciais, viga circular, sistema de Bresse, estabili-

dade exponencial, atrator global, análise de resolvante.

Título em Português: A Dinâmica de Sistemas de Bresse Termoelásticos: Lei de Fourier,

Observabilidade e Retardos
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Abstract

The Bresse system is a mathematical model for circular beams that features shear force,

bending moment and axial displacements. Following recent works of Jorge Silva and Ma (2023),

we consider a thermoelastic Bresse beam where thermal effects satisfy Fourier Law and acts

independently on above three features. Our main results are the following: a) First, we study the

thermoelastic system with Dirichlet boundary condition. We prove that the thermal dissipation

can drives the system exponentially to zero without adding special assumptions on the system’s

coefficients. To this end, because the difficulties coming from the boundary condition, we shall

provide a suitable observability inequality. Then we apply a characterization of exponentially

stability for linear semigroups by Gearhart and Prüss. b) Next, by adding a nonlinear foundation,

we prove the existence of a global attractor. The main difficult is to show that the system is

quasi-stable in the sense of Chueshov and Lasiecka. c) Then we perturb the thermoelastic Bresse

system with a delay term acting on the bending moment. We prove that for a sufficiently small

delay the thermal dissipation can still stabilize exponentially the system. Such kind of result was

early proved for wave equations with frictional damping or with viscoelastic dissipation. Our

result needs new arguments since thermal dissipation is essentially different from delay effect.

In addition, our delay system is not uniformly dissipative. To deal with the delay term we use

a method by Nicaise and Pignotti. d) Finally, in the framework of nonlinear foundation, we

comment future ideas about the long time dynamics for the delay system.

Keywords: Partial differential equations, circular beam, Bresse system, exponential stability,

global attractor, resolvent analysis.
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Introduction

The use of arched structures is known since ancient times. Remarkable presence of such structure

can be found in roman aqueducts and bridges. In many situations such structures can modeled

through beam equations. Our objective is to study a class of arched beam proposed by Jacques

Antonine Charles Bresse (1859) in the framework of thermoelasticity. As noticed in Jorge Silva

and Ma [22], the effect of heat flux can act differently on the shear and bending components, and

the producing new thermoelastic models.

Our work is to analyze the well-posedness, asymptotic stability and long-time dynamics of a

thermoelastic Bresse beam featuring Fourier Law, as described in [22].

Literature. Proposed by Bresse [12], the arched beam has three main quantities to be taken

into account, namely, vertical displacement (φ), rotation angle (ψ) and horizontal displacement

(w). See Figure 1. The equations that describe its vibrations are given by,


ρ1φtt − k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) = 0,

ρ2ψtt − bψxx + k(φx + ψ + ℓw) = 0,

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) = 0,

(1)

with x ∈ (0, L) and t ≥ 0. Here, ρ1, ρ2, ρ3, k, b, k0 are positive parameters of the model,

accounting for density, modulus of elasticity, Poisson ratio and other physical quantities. We

shall review some works close to ours.
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• Modeling aspects of Bresse system can be found in Bresse [12], Lagnese, Leugering and

Schmidt [24], Almeida Junior, Muñoz Rivera and Santos [3] and Jorge Silva and Ma [22].

• A celebrated paper that motivated many further analyses on the subject is given by Liu

and Rao [25]. They presented a first analysis of the Bresse system by using Semigroup

Theory. In a thermoelestic setting, they also studied the asymptotic behavior of the model.

To this regard, they proved stability of the solution semigroup through resolvent analysis

of Gearhart [20] and Prüss [31]. See also [26, Theorem 1.3.2].

• About thermoelastic Bresse systems, some early results where established by, for instance,

Fatori and Muñoz Rivera [18], Bittencourt Moraes and Jorge Silva [11], and Dell’oro [16].

Almeida Junior, Muñoz Rivera and Santos [3], presented novel ideas where dissipative

thermal effect appears only on the shear component, not on bending, including some

modeling aspects. Our work is based in part on that paper. More recently, we find new

results focusing longtime dynamics in Freitas et al. [19].

• Many papers deal with partially damped Bresse systems. Then exponential stability are

achieved with some sort of equal wave condition. We mention, for instance, [1, 19, 8, 7, 16]

and references therein.

• Some Bresse systems with viscoelastic properties can be found in [6, 29, 33] and references

therein.

• Our work also consider a special class of delay system, which for wave equations, is

precisely 2u + µut(t − τ) = 0. Note that delay term appears at the velocity level, as

proposed by Nicaise and Pignotti [28]. In this direction, the main property is that a

frictional damping can control the delay term in order to get exponential stability. In the

same direction, a memory term can control the delay µut(t− τ) if µ > 0 is small enough.

See e.g. [2].
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Figure 1: The Bresse arched beam.

On the modeling aspects. In what follows, let us denote:

Q = shear force, M = bending moment, N = axial tension.

Then the original linear Bresse model, without thermal effects, can be deduced from the constitu-

tive equations 
Q = k(φx + ψ + ℓw),

M = bψx,

N = k0(wx − ℓφ).

(2)

and the governing equations 
ρ1φtt = Qx + ℓN,

ρ2ψtt =Mx −Q,

ρ1wtt = Nx − ℓQ,

(3)

Combining (2) and (3) we obtain the classical Bresse system (1).

13
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Now, one introduces (distinct) heat effects θ1, θ2, θ3 on Q,M,N , respectively. Then we get new

constitutive laws, 
Q = k(φx + ψ + ℓw)−m1θ

1,

M = bψx −m2θ
2,

N = k0(wx − ℓφ)−m3θ
3.

(4)

For each heat component θj one has a proper Fourier heat equation. Then inserting new Q,M,N

(4) into the governing equations (3), we finally obtain,



ρ1φtt − k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 = 0,

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 = 0,

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ2x − ℓm1θ
1 = 0,

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0,

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0,

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0,

(5)

defined with x ∈ (0, L) and t ≥ 0.

In the following we shall establish several results on the dynamics of this thermoelastic system.

Our results to the system with Dirichlet boundary condition. In the Chapter 2 we study

the system (5) with Dirichlet boundary condition for all the equations (sometimes called full-

Dirichlet). In this case, for a solution (φ, ψ,w, θ1, θ2, θ3), the energy of the system (5) is defined

by

E(t) =
k

2
∥φx + ψ + ℓw∥2 + b

2
∥ψx∥2 +

k0
2
∥wx − ℓφ∥2

+
ρ1
2
∥φt∥2 +

ρ2
2
∥ψt∥2 +

ρ1
2
∥wt∥2

+
σ1
2
∥θ1∥2 + σ2

2
∥θ2∥2 + σ3

2
∥θ3∥2.

14



CONTENTS

It follows that the energy space is H = H1
0 (0, L)

3 × L2(0, L)6. We can deduce that

E ′(t) = −
(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
,

which shows that thermal effect are the only dissipative components of the system.

Our contributions to this system are the following:

• We prove the Hadamard well-posedness to the system (5). This step is standard. We write

the system as an abstract Cauchy Problem

dy

dt
= Ay, y(0) = y0,

defined in H, and then apply Semigroup Theory. We also consider a nonlinear foundation to

the system by adding nonlinear forces fj(φ, ψ,w), j = 1, 2, 3, on the first three equations,

respectively. To keep the variational structure of the problem, we assume the forces are

of gradient type, that is, there exists a potential F : R3 → R, such that ∇F = (f1, f2, f3).

Under some appropriate assumptions, we also prove the well-posedness of the semilinear

problem. See Theorem 2.2.

• To the linear problem, we show that thermal dissipation drives the system exponentially to

zero, without any special condition on the model parameters, including equal wave speeds.

This is done by using the resolvent analysis by Gearhart and Prüss. The challenging point

is that, with Dirichlet boundary condition, some boundary quantities are difficult to be

estimated. To bypass this, we provide an observability inequality motivated by results in

Bittencourt Moraes and Jorge Silva (see also [11], [4]). Our results are Theorem 2.3 and

Lemma 2.5.

• To the semilinear problem, we establish the existence of a finite-dimensional global

attractor. We show that the system is quasi-stable in the sense of Chueshov and Lasiecka

15
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[15] by analyzing directly the variation of parameters formulae. This allow us taking

advantage of the previous result where it was proved that the linear system corresponds

to an exponentially stable contraction semigroup. It seems this approach is new in our

context. See Theorem 2.7.

Our results to the system with delay at velocity level. In the Chapter 3 we consider the

Bresse system (5) with a delay term at velocity level. As mentioned above, wave equations with

frictional damping and delay at velocity level were studied by Nicaise and Pignotti [28]. To

simplify a little the presentation, let us suppose that delay effect is effective only on the rotation

angle ψ. Since it appears at velocity level, we shall modify the governing equation for ψ, that is,

ρ2ψtt =Mx −Q+ µψt(x, t− τ). (6)

Then system (5) becomes



ρ1φtt − k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 = 0,

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + µψt(x, t− τ) = 0,

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 = 0,

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0,

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0,

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0.

(7)

To this delay system, we shall assume that equations for φ, ψ,w satisfy Dirichlet, Neumann,

Neumann, boundary conditions, respectively. On the other hand, the equations for θ1, θ2, θ3

satisfy Neumann, Neumann, Dirichlet, boundary conditions, respectively. This assumption allow

us to compare our results with some previous one in the literature and also makes observability

inequality not necessary.

16



CONTENTS

Our contributions are the following.

• The delay system needs a prescribed function g accounting ψt(x, t) when −τ < t < 0.

Then using a change of variables proposed in Nicaise and Pignotti [28], namely,

z(x, ρ, t) = ψt(x, t− ρτ), (x, ρ, t) ∈ (0, L)× (0, 1)× R+,

we can write system (7) into an equivalent one, defined only for t ≥ 0, with variables

(φ, ψ,w, φt, ψt, wt, θ
1, θ2, θ3, z). As we will see in Chapter 3, this new system is no longer

(uniformly) dissipative, that is, ⟨Az, z⟩ ≤ 0 does not hold. As a consequence, we cannot

apply, for instance, the Lumer-Phillips Theorem to study its well posedness. Then, to

prove the existence of result we show that associated linear operator is maximal monotone.

See Theorem 3.1.

• By using energy method, we show that ∥θ2x∥ can control ξ∥ψt∥ for ξ > 0 sufficiently small.

Also, ξ∥ψt∥ can control µ∥ψt(t− τ)∥ if µ > 0 is sufficiently small. From this, we obtain

an equivalent perturbed energy functional that decays exponentially to zero. This implies

the exponential stability of the delay system. See Theorem 3.2.

• Finally, our last result establishes the existence of global solutions to the associated

semilinear problem. We also discuss the steps to prove existence of global attractors.

Because the associated linear operator is not uniformly dissipative, the system energy is

not a strict Lyapunov functional. Then, to show the system is dissipative, we need construct

an absorbing set. So, under certain assumptions, the existence of a finite dimensional

global attractor can be obtained from the quasi-stability property. Upper semicontinuity of

attractors for parameter µ→ 0 can be also addressed.

17



Chapter 1

Preliminaries

This section is dedicated to introducing some known results that will be very helpful to

understand appropriately the concepts, ideas and conclusions that will be presented throughout

this work. This preliminaries involve concepts and classical definitions of Lp-spaces (see for

more detail in [13, 32] ). For Semigroup Theory and characterization of semigroups with

additional properties, we use [30, Chapter 1] to obtain a better reference. Finally, we have a

powerful tool which that we will use to show the existence and uniqueness for both of problems

presented in this work (See [30, Chapter 4]).

1.1 Sobolev spaces

Given a open bounded set Ω ∈ Rn, we represent by Lp(Ω), with 1 ≤ p < ∞, the space of

measurable functions u : Ω → R such that |u|p is Lebesgue integrable over Ω, and L∞(Ω) the

space of measurable functions such that |u(x)| is bounded by a constant c almost everywhere in

Ω. Such spaces is endowed with the norm:

∥u∥p = ∥u∥Lp(Ω) :=
(∫

Ω

|u(x)|p
) 1

p
, for 1 ≤ p <∞,

18



Sobolev spaces

∥u∥∞ = ∥u∥L∞(Ω) := sup
x∈Ω

{
|u(x)|

}
and they are Banach spaces. In particular, the space L2(Ω), endowed with the inner product

(u, v) =

∫
Ω

u(x)v(x)dx

is a Hilbert space.

Given a bounded set Ω ∈ Rn, and taking a positive natural number m, we define the space:

Wm,p(Ω) := {u ∈ Lp(Ω)| Dαu ∈ Lp(Ω), ∀|α| ≤ m}

where Dα represents the derivative in the sense of distributions. This space is endowed with the

norm:

∥u∥Wm,p := ∥u∥Wm,p(Ω) =
( ∑

|α|≤m

∫
Ω

|Dαu(x)|pdx
) 1

p
, for 1 ≤ p <∞

and it is a Banach space, and its called a Sobolev space. Similarly, if we take p = 2, the space

Wm,2(Ω) is as Hilbert space, represent by Hm(Ω), and the inner product is given by:

(u, v)Hm(Ω) =
∑
|a|≤m

(Dαu,Dαv)L2 , ∀u, v ∈ Hm(Ω).

This space is a Sobolev space of order m. When m = 0, we identify the space H0(Ω) with

L2(Ω).

Definition 1.1. Given a bounded set Ω, the space Wm,p
0 (Ω) is defined by the closure of C∞

0 (Ω)

in Wm,p(Ω), and the norm is defined by:

∥u∥Wm,p
0

:=
( ∑

|α=m|

∫
Ω

|Dαu(x)|pdx
) 1

p

and it is equivalent to the norm Wm,p
0 (Ω).

19



Chapter 1. Preliminaries Sobolev spaces

With this, we can define:

H1
0 (Ω) = {u ∈ L2(Ω)| Dαu ∈ L2(Ω),∀|α| ≤ 1}

which norm is equivalent to the norm of space H1(Ω), and its defined by

∥u∥H1
0
= ∥∇u∥L2 .

1.1.1 Auxiliary results

Definition 1.2. Let X and Y two Hilbert spaces, with X being a subspace of Y . We say X is

continuously embedded in Y , if there exist a positive constant M such that:

∥u∥Y ≤M∥u∥X , ∀u ∈ X.

We denote this embed by X ↪→ Y .

With this, we have that:

1. The distribution space D(Ω) is dense in Lp(Ω) and D(Ω) ↪→ Lp(Ω), for all 1 ≤ p < +∞;

2. If Ω is bounded, and 1 ≤ p < q <∞, then Lq(Ω) ↪→ Lp(Ω).

Proposition 1.1. (Cauchy-Schwarz inequality)

Let H an Hilbert space. Then, given u, v0 ∈ H , we have

|(u, v)H | ≤ ∥u∥H · ∥v∥H .

Proposition 1.2. (Young’s Inequality)

Consider 1 < p, q <∞ such that 1
p
+ 1

q
= 1 and a, b positive numbers. Then

ab ≤ ap

p
+
bq

q

20



Semigroup theory

In particular, for any ε > 0, we have the following inequality

ab ≤ εap + C(ε)bq

where C(ε) is a constant dependent on ε.

Proposition 1.3. (Poincare’s Inequality) Suppose Ω is an bounded open set in Rn. Then, for

every 1 ≤ p <∞, there exists a constant, cp, such that

∥u∥W 1,p
0

≤ cp∥∇u∥Lp , ∀u ∈ W 1,p
0 (Ω).

In particular, if we consider Ω = (0, L) ∈ R, we have the Poincare-Wirtinger inequality (See

[27]):

∥u∥L2 ≤ L

π
∥ux∥L2 , and ∥u∥H1

0
= ∥ux∥L2

for any u ∈ H1
0 (0, L).

Lemma 1.1. (Grönwall type Lemma)

Consider m ∈ L1(a, b) such that m ≥ 0 almost everywhere in (a, b) e let c ≥ 0. Take

f : [a, b] → R satisfying:

f(t) ≤ c+

∫ t

a

m(s)f(s)ds, ∀t ∈ [a, b].

Then:

f(t) ≤ ce
∫ t
0 m(s)ds, ∀t ∈ [a, b].

1.2 Semigroup theory

Consider X a Banach space. A one parameter family T , with 0 ≤ t < ∞, of bounded linear

operators from X onto X is called a semigroup of bounded linear operator on X if:

21



Chapter 1. Preliminaries Semigroup theory

1. T (0) = I , where I is the identity operator on X .

2. T (t+ s) = T (t)T (s), for every t, s ≥ 0, (the semigroup property).

A semigroup of bounded linear operators, T (t), is called uniformly continuous if satisfies:

lim
t→0+

∥T (t)− I∥ = 0.

The linear operator A defined by:

D(A) =

{
x ∈ X : lim

t→0+

T (t)x− x

t
exists

}

and

Ax = lim
t→0+

T (t)x− x

t
=
d+T (t)x

dt

∣∣∣
t=0

for x ∈ D(A),

is the infinitesimal generator of the semigroup T (t), where D(A) means for the domain of A.

Definition 1.3. A semigroup T (t), 0 ≤ t < ∞ of bounded linear operators on X is called a

semigroup of class C0, or simply a C0 semigroup if

lim
t→0+

T (t)x = x, for every x ∈ X.

Theorem 1.1. Let T (t) be a C0 semigroup. There exists constants ω ≥ 0 and M ≥ 1 such that:

∥T (t)∥ ≤Meωt for 1 ≤ t <∞.

Proof: See [30].

Corollary 1.1. If T (t) is a C0 semigroup the for every x ∈ X , t → T (t)x is a continuous

function from R+
0 into X .

Proof: See [30].
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The Hille-Yoshida and Lumer Phillips theorems

1.3 The Hille-Yoshida and Lumer Phillips theorems

Let T (t) be a C0 semigroup. From the Theorem 1.1 it follows that there are constants ω ≥ 0

and M ≥ 1 such that ∥T (t)∥ ≤; eωt, for t ≥ 0. Of ω = 0, T (t) its called uniformly bounded.

Moreover, if M = 1, the semigroup T (t) is called a C0 semigroup of contractions. In this section

we give the characterization of the infinitesimal generators of C0 semigroups of contractions.

The conditions on the operator A, which are necessary and sufficient for A to be the infinitesimal

generator of a C0 semigroup of contractions, are given. Remembering that if A is a linear, not

necessary bounded, operator in X , the resolvent set ρ(A) of A is the set of all complex numbers

λ such that λI − A is invertible, i.e., (λI − A)−1 is a bounded linear operator on X . The family,

R(λ : A) = (λI − A)−1, λ ∈ ρ(A) of bounded linear operator is called the resolvent of A.

With this, we state the first important Theorem of this section.

Theorem 1.2. (Hille-Yoshida Theorem)

The linear operator A is the infinitesimal generator of a C0 semigroup of contractions T (t),

t ≥ 0 if and only if

1. A is closed and D(A) = X .

2. The resolvent set ρ(A), of A contains R+ and for every λ > 0,

∥R(λ : A)∥ ≤ 1

λ

This theorem is very important since it helps to guarantee the existence of an operator A such

that it is the infinitesimal generator of a C0 semigroup T (t). However, in many real models, is

not easy to find the sufficient conditions to prove such a result. For this reason, we resort to a

auxiliary Theorem that is more applicable to the general problems.

Let be X a Banach space, and let X∗ be its dual. We denote the value x∗ ∈ X∗ at x ∈ X by
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⟨x, x∗⟩ or ⟨x∗, x⟩. For each x ∈ X we define the duality set F (X) ⊆ X∗ by:

F (X) =
{
x∗ : x∗ ∈ X∗ and ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2

}
(1.1)

Then, by the Hahn-Banach Theorem it follows that F (x) ̸= 0 for every x ∈ X .

Definition 1.4. A linear operator A is called dissipative if for every x ∈ D(A) there is a

x∗ ∈ F (x) such that Re⟨Ax, x∗⟩ ≤ 0.

With this, we enunciate a second important Theorem:

Theorem 1.3. (Lumer-Phillips)

Let A be a linear operator (non necessary bounded) with dense domain D(A) in X .

1. If A is dissipative and there is a λ0 > 0 such that the range, R(λ0I −A), of λ0I −A is X ,

then A is the infinitesimal generator of a C0 semigroup of contractions on X .

2. If A is the infinitesimal generator of a C0 semigroup of contractions on X then the range

R(λI − A) = X for all λ > 0 and A is dissipative. Moreover, for every x ∈ D(A) and

every x∗ ∈ F (x), Re⟨Ax, x∗⟩ ≤ 0..

Finally, we state an auxiliary and very useful result as consequence of the Lumer-Phillips

theorem.

Theorem 1.4. LetA be an linear, not necessary bounded, dissipative operator with domainD(A)

dense in X . If 0 ∈ ρ(A), then A is a infinitesimal generator of a C0 semigroup of contractions.

Proof: See [1, 30].

1.4 The abstract Cauchy problem

LetX be a Banach space and letA be a linear operator (not necessary bounded) fromD(A) ⊂ X

into X . Given x ∈ X the homogeneous abstract Cauchy problem for A with initial data x consist
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of searching a solution y(t) to the initial value problem:

dy(t)

dt
= Ay(t), t > 0 (1.2)

y(0) = x.

where by a solution we mean an valued function y(t) in X such that y(t) is continuous for

t ≥ 0, continuously differentiable and y(t) ∈ D(A), for t > 0 and (1.2) is satisfied. Remember

that since y(t) ∈ D(A) for t > 0 and y is continuous at t = 0, (1.2) cannot have solution for

x /∈ D(A).

From the results of the previous sections, it is clear that if A is the infinitesimal generator of a

C0 semigroup T (t), the Homogeneous abstract Cauchy problem for A has a solution, namely

y(t) = T (t)x, for every x ∈ D(A). Its not difficult to show that for x ∈ D(A), y(t) → T (t)x is

the only solution of (1.2). The following theorem show us that, for every x ∈ D(A), we have an

unique solution.

Theorem 1.5. Let A be a densely defined linear operator with a nonempty resolvent set ρ(A).

The initial value problem (1.2) has a unique solution y(t), which is continuously differentiable

on [0,∞), for every initial value x ∈ D(A) if and only if A is the infinitesimal generator of a

C0 semigroup T (t).

Proof: See [30].

The next theorem describes a situation in which the initial value problem (1.2) has a unique

solution for every x ∈ X .

Theorem 1.6. If A is a infinitesimal generator of a differentiable semigroup then for every

x ∈ X the initial value problem (1.2) has a unique solution.

Proof: See [30].
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Now, consider a function f : [0, T ] → X . The non homogeneous Cauchy problem is defined by:

dy(t)

dt
= Ay(t) + f(t), t > 0 (1.3)

y(0) = x.

We will assume throughout this section that A is th infinitesimal generator of a C0 semigroup

T (t) so that the corresponding homogeneous equation (that is, f = 0), has a unique solution for

every initial value x ∈ D(A).

Definition 1.5. A function y : [0, T ) → X is a (classical) solution of (1.3) on [0, T ] if y is

continuous on [0, T ), continuously differentiable on (0, T ), y(t) ∈ D(A) for 0 < t < T and

(1.3) is satisfied on [0, T ).

Let T (t) be the C0 semigroup generated by A (from the homogeneous problem), and let y be a

solution of (1.3). Then the X-valued function g(s) = T (t−s)y(s) is differentiable for 0 < s < t

and

dg

ds
= −AT (t− s)y(s) + T (t− s)y′(s)

= −AT (t− s)y(s) + T (t− s)Ay(s) + T (t− s)f(s)

= T (t− s)f(s).

If f ∈ L1(0, T : X) then, T (t− s)f(s) is integrable and integrating the last inequality from 0 to

t yields

y(t) = T (t)x+

∫ t

0

T (t− s)f(s)dx. (1.4)

Corollary 1.2. If f ∈ L1(0, T : X) then for every x ∈ X , the initial value problem (1.3) has at

most one solution. If it has a solution, this solution is given by (1.4).

Proof: See [30].
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We conclude this section with a few observations concerning still another notion of solution of

the initial value problem (1.3), namely strong solution.

Definition 1.6. A function y : [0, T ) → X which is differentiable almost everywhere on [0, T ]

such that y′ ∈ L1(0, T : X) is called a strong solution of the initial value problem (1.3) if

y(0) = x and y′(t) = A(u) + f(t), a.e on [0, T ].

As an important result that we will use in the next chapters, we have:

Theorem 1.7. Let X be a reflexive Banach space and let A be the infinitesimal generator of a

C0 semigroup T (t) on X . If f is Lipschitz continuous on [0, T ] then for every x ∈ D(A) the

initial value problem (1.3) has a unique strong solution y on [0, T ], given by:

y(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds.

Proof: See [30].
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Chapter 2

Bresse-Fourier system with full thermal

coupling

2.1 Well-posedness

In this section, we are concerned to study the well-posedness of solutions for a semilinear

Bresse-Fourier system with thermal coupling in all variables, and we prove the existence and

uniqueness of their solution, considering the nonlinear model as follows:

ρ1φtt − k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 + f1(φ,ψ,w) = 0, (2.1)

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + f2(φ,ψ,w) = 0, (2.2)

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 + f3(φ,ψ,w) = 0, (2.3)

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0, (2.4)

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0, (2.5)

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0, (2.6)
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defined in (0, L) × R+, where fi(φ, ψ,w), for i = 1, 2, 3, are nonlinear external forces. The

system is subject to the totally-Dirichlet boundary conditions:

φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = w(0, t) = w(L, t) = 0, t ≥ 0, (2.7)

θ1(0, t) = θ1(L, t) = θ2(0, t) = θ2(L, t) = θ3(0, t) = θ3(L, t) = 0, t ≥ 0, (2.8)

and, for i = 1, 2, 3, initial data:

φ(x, 0) = φ0(x); ψ(x, 0) = ψ0(x); w(x, 0) = w0(x); θi(x, 0) = θi0(x);

φt(x, 0) = φ1(x); ψt(x, 0) = ψ1(x); wt(x, 0) = w1(x). (2.9)

Here, ρ1, ρ2, σ1, σ2, σ3, k, k0,m1,m2,m3 and b are all positive structural constants coming from

the physical model, γ1, γ2, γ1 > 0 represents the damping coefficients, L > 0 is the length of the

beam, ℓ > 0 means the beam curvature, and the unknown variables φ, ψ,w stands for the vertical

displacement, rotation angle, and longitudinal displacement, respectively. In addition, θ1, θ2, θ3

are the difference (in comparison with the environment) of temperatures of the thermal coupling.

Since our problem has thermal damping terms in all of the equations (2.1)-(2.3) we shall not

assume the equal wave speed assumption. (See [27]).

For the linear model, the equation is described by:

ρ1φtt − k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 = 0, (2.10)

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 = 0, (2.11)

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 = 0, (2.12)

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0, (2.13)

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0, (2.14)

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0, (2.15)
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2.1.1 Phase space H

Let us start with the development of the phase space H for the system (2.10)-(2.15) . First of

all, notice that the system has the first usual three equations for a Bresse system, in addition

with three heat equations on the next ones. So, equations (2.10) − (2.12) are multiplied by

φt, ψt and wt, respectively, while (2.13)− (2.15) are multiplied by θ1, θ2, θ3, respectively. Then,

integrating on (0, L), and using the Dirichlet boundary conditions we have:

ρ1

∫ L

0
φttφtdx+k

∫ L

0
(φx + ψ + ℓw)(φx)tdx+ k0

∫ L

0
(wx − ℓφ)(−ℓφt)dx

+m1

∫ L

0
(θ1x)(φt)dx+m2

∫ L

0
(θ2)(ℓφ)t︸ ︷︷ ︸

A1

dx = 0

ρ2

∫ L

0
ψttψtdx+ b

∫ L

0
ψx(ψx)tdx+ k

∫ L

0
(φx + ψ + ℓw)(ψt)dx

+m3

∫ L

0
(θ3x)(ψt)dx−m1

∫ L

0
(θ1)(ψt)︸ ︷︷ ︸

A2

dx = 0

ρ1

∫ L

0
wttwtdx+k0

∫ L

0
(wx − ℓφ)(wx)tdx+ k

∫ L

0
(φx + ψ + ℓw)(ℓw)tdx

+m2

∫ L

0
(θ2x)(wt)dx−m1

∫ L

0
(θ1)(ℓw)t︸ ︷︷ ︸

A3

dx = 0

σ1

∫ L

0
θ1t · θ1dx+ γ1

∫ L

0
|θ1x|2dx+m1

∫ L

0
(φx + ψ + ℓw)t(θ

1)︸ ︷︷ ︸
A4

dx = 0

σ2

∫ L

0
θ2t · θ2dx+ γ2

∫ L

0
|θ2x|2dx+m2

∫ L

0
(wx − ℓφ)t(θ

2)︸ ︷︷ ︸
A5

dx = 0

σ3

∫ L

0
θ3t · θ3dx+ γ3

∫ L

0
|θ3x|2dx+m3

∫ L

0
(ψx)t(θ

3)︸ ︷︷ ︸
A6

dx = 0
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Using integration by parts and using the boundary conditions (2.8) on temperature variables,

terms A1 to A6 are canceled from each other. Remarking that

d

dt
∥θi∥2 = 2

∫ L

0

θit · θidx

Thus:

σi

∫ L

0

θit · θidx =
d

dt

(σi
2
∥θi∥2

)
If we don’t consider the temperature terms, (2.10)-(2.12) are usually known and we can obtain

the same terms as long as classical Bresse systems. Then, we obtain :

d

dt

1

2

(
k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

)
= 0

The next three equations give us:

d

dt

1

2

(
σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2

)
= −

(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
Adding this last two equations, we get:

d

dt

1

2

(
k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+ σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2
)

= −γ1∥θ1x∥2 − γ2∥θ2x∥2 − γ3∥θ3x∥2 ≤ 0 (2.16)

Where the terms ∥ · ∥2 means for the L2-classical norm over (0, L).

Remark: Damping means dissipation coefficients that make energy decays. So, we can say,

without loss of generality, that γ1, γ2, γ3 are damping coefficients.

Thus, for a vector y = (φ, ψ,w, φt, ψt, wt, θ
1, θ2, θ3), the phase space H associated to the
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Chapter 2. Bresse-Fourier system with full thermal coupling Well-posedness

previous identity (2.16) is:

H = (H1
0 (0, L))

3 × (L2(0, L))6 (2.17)

endowed with the norm
∥∥y∥∥2

H defined as:

∥∥y∥∥2H = k∥φx + ψ + ℓw∥2+k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2. (2.18)

Remembering that the usual norm for H is:

∥∥y∥∥2
u
= ∥φx∥2 + ∥ψx∥2 + ∥wx∥2 + ∥φt∥2 + ∥ψt∥2 + ∥wt∥2 + ∥θ1∥2 + ∥θ2∥2 + ∥θ3∥2. (2.19)

Therefore, we can define the linear energy of the system as follows:

E(t) =
1

2

(
k∥φx + ψ + ℓw∥2+k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2
)
. (2.20)

Due to the Dirichlet conditions in all of their terms ([27]), the norms above are equivalent for any

ℓ > 0, with equivalence constants depending on such parameter, that is, there exists constants η1

and η2 such that:

η1∥y∥2H ≤ ∥y∥2u ≤ η1∥y∥2H (2.21)

.
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The norm ∥ · ∥H comes from the inner product induced by the system in the space H:

⟨y1, y2⟩ =k⟨φx + ψ + ℓw, φ̃x + ψ̃ + ℓw̃⟩+ k0⟨wx − ℓφ, w̃x − ℓφ̃⟩+ b⟨ψx, ψ̃x⟩

+ ρ1⟨φt, φ̃t⟩+ ρ2⟨ψt, ψ̃t⟩+ ρ1⟨wt, w̃t⟩

+ σ1⟨θ1, θ̃1⟩+ σ2⟨θ2, θ̃2⟩+ σ3⟨θ3, θ̃3⟩.

for y1 = (φ, ψ,w, φt, ψt, wt, θ
1, θ2, θ3) and y2 = (φ̃, ψ̃, w̃, φ̃t, ψ̃t, w̃t, θ̃1, θ̃2, θ̃3).

Thus, we can rewrite problem (2.10)-(2.15), with initial-boundary condition (2.7)-(2.9) as the

abstract Cauchy problem:

d

dt
y(t) = Ay(t), t > 0, (2.22)

y(0) = y0,

where

y(t) = (φ(t), ψ(t), w(t), φ′(t), ψ′(t), w′(t), θ1(t), θ2(t), θ3(t)) ∈ H,

with

φ′ = φt, ψ
′ = ψt, w

′ = wt.

The initial data is determined by:

y(0) = (φ0, ψ0, w0, φ1, ψ1, w1, θ
1
0, θ

2
0, θ

3
0) = y0.
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The unbounded operator A : D(A) ⊂ H −→ H is given by:

A



φ

ψ

w

φ′

ψ′

w′

θ1

θ2

θ3



=



φ′

ψ′

w′

k

ρ1
(φx + ψ + ℓw)x +

k0ℓ

ρ1
(wx − ℓφ)− m1

ρ1
θ1x −

m2ℓ

ρ1
θ2

b

ρ2
ψxx −

k

ρ2
(φx + ψ + ℓw)− m3

ρ2
θ3x +

m1

ρ2
θ1

k0
ρ1

(wx − ℓφ)x −
kℓ

ρ1
(φx + ψ + ℓw)− m2

ρ1
θ2x +

ℓm1

ρ1
θ1

γ1
σ1
θ1xx −

m1

σ1
(φ′

x + ψ′ + ℓw′)

γ2
σ2
θ2xx −

m2

σ2
(w′

x − ℓφ′)

γ3
σ3
θ3xx −

m3

σ3
(ψ′

x)



The boundary conditions in the problem allow us to define the domain of A as follows:

D(A) =
(
H2(0, L) ∩H1

0 (0, L)
)3 × (H1

0 (0, L))
3 ×

(
H2(0, L) ∩H1

0 (0, L)
)3
.

Results about linear Bresse systems showed that D(A) is dense in H (cf. [6, 27, 7]). Since

abstract Cauchy problem (2.22) has not force terms, we can easily see that:

Re⟨Ay, y⟩ = −
(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
≤ 0 (2.23)

for all y ∈ D(A), which proofs the dissipativity of A . It remains to prove that 0 ∈ ρ(A). To this

end, let’s take J(t) = (j1, j2, ..., j9) ∈ H. We want to prove that there exists a unique y ∈ D(A)

such that:

Ay = J.
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The previous identity is equivalent to the following:

φ′ = j1,

ψ′ = j2,

w′ = j3,

k(φx + ψ + ℓw)x + k0ℓ(wx − ℓφ)−m1θ
1
x − ℓm2θ

2 = ρ1j4,

bψxx − k(φx + ψ + ℓw)−m3θ
3
x +m1θ

1 = ρ2j5,

k0(wx − ℓφ)x − kℓ(φx + ψ + ℓw)−m2θ
2
x + ℓm1θ

1 = ρ1j6,

γ1θ
1
xx −m1(φ

′
x + ψ′ + ℓw′) = σ1j7,

γ2θ
2
xx −m2(w

′
x − ℓφ′) = σ2j8,

γ3θ
3
xx −m3(ψ

′
x) = σ3j9,

With the aim of obtaining what is desired, we deduce from the first three equations that:

φ′ = j1; ψ
′ = j2; w

′ = j3 ∈ H1
0 (0, L)

Without loss of generality, we can replace the right side of the remaining equations for functions

−hi, with i = 1, ..., 6, obtaining:

k(φx + ψ + ℓw)x + k0ℓ(wx − ℓφ)−m1θ
1
x − ℓm2θ

2 = ρ1j4 = −h1

bψxx − k(φx + ψ + ℓw)−m3θ
3
x +m1θ

1 = ρ2j5 = −h2

k0(wx − ℓφ)x − kℓ(φx + ψ + ℓw)−m2θ
2
x + ℓm1θ

1 = ρ1j6 = −h3

γ1θ
1
xx = m1(j1,x + j2 + ℓj3) + σ1j7 = −h4

γ2θ
2
xx = m2(j3,x − ℓj1) + σ2j8 = −h5

γ3θ
3
xx = m3(j2,x) + σ3j9 = −h6
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Since h4, h5 and h6 are functions belongs to L2(0, L), and by the boundary conditions for

temperature, we deduce that:

θ1, θ2, θ3 ∈ H2(0, L) ∩H1
0 (0, L).

This reduces our previous expression to:

k(φx + ψ + ℓw)x + k0ℓ(wx − ℓφ) = +m1θ
1
x + ℓm2θ

2 − h1 =: −h1

bψxx − k(φx + ψ + ℓw) = m3θ
3
x −m1θ

1 − h2 =: −h2

k0(wx − ℓφ)x − kℓ(φx + ψ + ℓw) = m2θ
2
x − ℓm1θ

1 − h3 =: −h3

From this point, we will proceed to construct all necessary components for applying the Lax-

Milgram theorem. Multiplying the previous equations by φ̃, ψ̃, w̃ ∈ H1
0 (0, L), respectively, give

us:

−k
∫ L

0

(φx + ψ + ℓw)(φ̃x + ψ̃ + ℓw̃)dx− k0

∫ L

0

(wx − ℓφ)(w̃x − ℓφ̃)dx− b

∫ L

0

ψx · ψ̃xdx

= −
∫ L

0

(
h1φ̃+ h2ψ̃ + h3w̃)dx

Then

k

∫ L

0

(φx + ψ + ℓw)(φ̃x + ψ̃ + ℓw̃)dx+ k0

∫ L

0

(wx − ℓφ)(w̃x − ℓφ̃)dx+ b

∫ L

0

ψx · ψ̃xdx

=

∫ L

0

(
h1φ̃+ h2ψ̃ + h3w̃)dx (2.24)

Considering the Hilbert space V = (H1
0 (0, L))

3, let us define a bilinear form a:

a : V × V −→ R
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given by

a((φ, ψ, w), (φ̃, ψ̃, w̃)) =k

∫ L

0

(φx + ψ + ℓw)(φ̃x + ψ̃ + ℓw̃)dx+ k0

∫ L

0

(wx − ℓφ)(w̃x − ℓφ̃)dx

+ b

∫ L

0

ψx · ψ̃xdx.

and a functional F : V −→ R as:

F (φ, ψ,w) =

∫ L

0

(
h1φ̃+ h2ψ̃ + h3w̃)dx.

Here, we can use the induced norm in V defined by

∥y∥V := k∥φx + ψ + ℓw∥L2 + b∥ψx∥L2 + k0∥wx − ℓφ∥L2 ,

and the usual norm, for every y = (φ, ψ,w), by

∥y∥ = ∥φx∥+ ∥ψx∥+ ∥wx∥,

Taking (2.24), we associate the left side one with the bilinear form a( , ), and the right side with

the functional F to obtain

a(y1, y2) = F(y2).

where y1 = (φ, ψ,w), y2 = (φ̃, ψ̃, w̃) ∈ V .

By definition of both bilinear form a and functional F, in addition with the equivalence of the

norms mentioned above, is not difficult to prove the conditions for Lax-Milgram theorem, that is:

· a is coercive.

· a is continuous.

To show the continuity of F, we can choose an arbitrary y = (φ, ψ,w) in V , then, by Holder’s
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inequality:

|F(y)| ≤ ∥h1∥L2 · ∥φ∥L2 + ∥h2∥L2 · ∥ψ∥L2 + ∥h3∥L2 · ∥w∥L2

Since the functions h1, h2, h3 are well known, there are limited by a universal constant C . By

the Poincare inequality, and the property of equivalence of norms, give us the following result

|F(x)| ≤ C∥y∥V .

In consequence, by Lax-Milgram Theorem, there exist an unique y1 = (φ, ψ,w) in V such that

a(y1, y2) = F(y2)

for all y2 ∈ V .

In addition, due to elliptic regularity, we have that y in H also satisfies y ∈ D(A). Then,

0 ∈ ρ(A), where ρ(A) means the resolvent of the unbounded operator A.

With this result, the dissipativity of A, and the density of D(A) into H , we can conclude that A

is an infinitesimal generator of a C0-semigroup of contractions S(t), for t ≥ 0. Therefore, the

existence theorem is given in terms of the equivalent Cauchy problem (2.22), as follows:

Theorem 2.1. Under the above notations, let us assume that ℓ > 0 and ρ1, ρ2, k, k0, b, γ1, γ2, γ3,

σ1, σ2, σ3 positive constants. Then for any initial data y0 ∈ H and T > 0, problem (2.32) has a

unique mild solution

y ∈ C([0, T ],H); y(0) = y0,

which depends continuously on the initial data. In particular, if y0 ∈ D(A), then the solution is

strong. Moreover, if y ∈ D(A), and y(t) is a local solution of (2.22) in (0, Tmax), then

Tmax = +∞.
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2.1.2 The nonlinear case

As we mentioned in the beginning of this section, we are interested about the existence, unique-

ness and continuous dependence of solutions for the system (2.1)-(2.6). To this end, we will give

the assumptions on the external force terms f1, f2 and f3.

Lets start assume there exists a C2(0, L) function F : R3 → R such that:

∇F = (f1, f2, f3), (2.25)

satisfying the following conditions: There exists a constant mF > 0 such that

F (u, v, w) ≥ −mF , ∀u, v, w ∈ R, (2.26)

and there exists p ≥ 1 and a constant Cf > 0 such that, for i = 1, 2, 3,

|∇fi(u, v, w)| ≤ Cf (1 + |u|p−1 + |v|p−1 + |w|p−1), ∀u, v, w ∈ R. (2.27)

In particular this implies that there exists a constant CF > 0 such that

|Fi(u, v, w)| ≤ CF (1 + |u|p+1 + |v|p+1 + |w|p+1), ∀u, v, w ∈ R. (2.28)

Furthermore, we assume that, for all u, v, w ∈ R,

∇F (u, v, w) · (u, v, w)− F (u, v, w) ≥ −mF . (2.29)

This information allow us to define the non-linear energy of the system (2.1)-(2.6) as

E(t) := E(t) +

∫ L

0

F (φ, ψ,w)dx, (2.30)

39



Chapter 2. Bresse-Fourier system with full thermal coupling Well-posedness

whereE(t) is the linear energy mentioned in the linear case section. Then, multiplying (2.1)-(2.6)

by φt, ψt, wt, θ
1, θ2, θ3 respectively, we obtain by integration over [0, L] the following identity:

d

dt
E(t) = −

∫ L

0

(
γ1|θ1x(x, t)|2 + γ1|θ2x(x, t)|2 + γ1|θ3x(x, t)|2

)
dx, t ≥ 0. (2.31)

The existence of global mild and strong solutions to the Bresse-Fourier system will be established

through nonlinear semigroup theory [30, Theorem 4.1.6]. We shall write the system (2.1)-(2.9)

as an abstract Cauchy Problem

d

dt
y(t) = Ay(t) + F(y(t)), t > 0 (2.32)

y(0) = 0,

where

y(t) =
(
φ(t), ψ(t), w(t), φ′(t), ψ′(t), w′(t), θ1(t), θ2(t), θ3(t)

)
∈ H,

with

φ′ = φt, ψ
′ = ψt, w

′ = wt,

and initial data given by

y(0) = (φ0, ψ0, w0, φ1, ψ1, w1, θ
1
0, θ

2
0, θ

3
0) = y0.
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We see that A : D(A) ⊂ H → H has the same form as the linear case, with domain

D(A) =
(
H2(0, L) ∩H1

0 (0, L)
)3 × (H1

0 (0, L))
3 ×

(
H2(0, L) ∩H1

0 (0, L)
)3

and the forcing terms are described by a nonlinear function F : H → H defined by:

F



φ

ψ

w

φ′

ψ′

w′

θ1

θ2

θ3



=



0

0

0

−f1(φ, ψ, w)/ρ1

−f2(φ, ψ, w)/ρ2

−f3(φ, ψ, w)/ρ1

0

0

0


Thus, our existence theorem is given in terms of equivalent problem (2.32).

Theorem 2.2. Assume that ℓ > 0 and the hypotheses (2.25)-(2.29) holds. Then for any initial

data y0 ∈ H and T > 0, problem (2.32) has a unique weak solution

y ∈ C([0, T ];H), with y(0) = y0,

given by

y(t) = S(t)y0 +

∫ t

0

S(t− s)F(y(s))ds, t ∈ [0, T ], (2.33)

and depends continuously on the initial data, where S(t) represents the semigroup associated to

the linear problem (2.22). In particular, if y0 ∈ D(A) then the solution is strong.

Proof: First, we can see from (2.23) that A is dissipative and from previous results, the problem

(2.22) has a unique solution. Then, we will prove that system (2.32) is a locally Lipschitz
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perturbation of (2.22).

To show that operator F : H → H is locally Lipschitz, let B a bounded set of H and two vectors

y1, y2 in B. Since the external forces act only on φ, ψ and w, we denote z1 = (φ1, ψ1, w1) and

z2 = (φ2, ψ2, w2). From (2.27) we see that, for i = 1, 2, 3,

|fi(z1)− fi(z
2)| ≤ |∇fi(λz1 + (1− λ)z2)|2 · |z1 − z2|2

≤ C2
f (1 + |φ1|p−1 + |ψ1|p−1 + |w1|p−1 + |φ2|p−1 + |ψ2|p−1 + |w2|p−1)2

× (|φ1 − φ2|2 + |ψ1 − ψ2|2 + |w1 − w2|2)

Thus, we deduce that, for some constant CB > 0, and Poincare’s inequality:

∫ L

0

|fi(z1)− fi(z
2)|2dx ≤ CB∥z1 − z2∥2(H1

0 )
3 ≤ CB∥y1 − y2∥2H

Summing this estimate on i, we obtain:

∥F(y1)−F(y2)∥2H =
3∑

i=1

∫ L

0

|fi(z1)− fi(z
2)|2dx ≤ 3CB∥y1 − y2∥2H

which proves that F is locally Lipschitz on H.

Then, from classical results in [27], we obtain a local solution that is defined on a interval

[0, Tmax) where, if Tmax <∞, then:

lim
t→Tmax

∥y(t)∥H = +∞. (2.34)

To see that solution is global, that is, Tmax = +∞, we start the proof supposing by contradiction

that time maximal is finite, and let y(t) a mild solution with initial data y0 ∈ D(A). Then it is, in
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fact, a strong solution and so we can use the following estimate:

E(t) = E(t) +

∫ L

0

F (φ, ψ, w)dx

≥ 1

2
∥y∥2H −

∫ L

0

mF dx

=
1

2
∥y∥2H − LmF , t ≥ 0. (2.35)

and then ∥y∥2H ≤ 2
β0
(E(t) + LmF ), and thus, ∥y∥2H doesn’t blow up. By density, this inequality

holds for mild solutions. Then, we can easily see that (2.34) does not hold and therefore

Tmax = +∞.

Finally, using the variation of parameter formula (2.33), we can verify that for any initial data

y10, y
2
0 ∈ H, the corresponding solutions y1 and y2 satisfy:

∥y1(t)− y2(t)∥2H ≤ 2∥S(t)(y10 − y20)∥2H + 2
∥∥∫ t

0
S(t− s)[F(y1(s))−F(y2(s))]ds

∥∥2
H

≤ C∥y10 − y20∥2H

for any 0 < t < T and a bounded set B.■

The previous results shows that, the semilinear Bresse-Fourier system (2.1)-(2.9) is well posed.

Then, the solution operator T (t) : H → H is a C0-semigroup on H. Thus, we denote by

(H, T (t)) the dynamical system generated by the problem (2.1)-(2.9), meanwhile (H, S(t))

is the dynamical system generated by the linear problem (2.10)-(2.15), with initial-boundary

conditions (2.7)-(2.9).

The next section uses the results from Theorem 2.1 to show that the energy of the linear system

decays exponentially.
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2.2 Exponential stability

In this section we prove the exponential stability for the semigroup solution of Bresse-Fourier

system (2.10)− (2.15), with initial-boundary conditions (2.7)-(2.9). More precisely, we have:

Theorem 2.3. Under the hypotheses of Theorem 2.1, and assuming γ1, γ2, γ3 > 0, there exists

positive constants a, C > 0 such that:

∥y∥H ≤ C∥y0∥H · e−at, t > 0, (2.36)

where ∥y∥H represents the norm in the Hilbert space H.

The proof of Theorem 2.3 will be concluded as a consequence of some important lemmas and

the Gearhart-Pruss characterization of exponential stability for C0-semigroups on Hilbert Spaces

(see [7, 11, 4]).

Theorem 2.4. Let {S(t)}t≥0 = {eAt} be the C0-semigroup of contractions on a Hilbert space

H associated to (2.10)− (2.15), with conditions (2.7)-(2.9). Then:

{S(t)} is exponentially stable ⇔ iR ⊆ ρ(A) and lim sup
|λ|→+∞

∥(iλI − A)−1∥ <∞,

where ρ(A) means the resolvent of the unbounded operator A.

Proof: Our starting point is the resolvent equation:

iλy − Ay = f, λ ∈ R, (2.37)

where f = (f1, f2, f3, f4, f5, f6, f7, f8, f9) ∈ H is given, and the solution is defined by

y = (φ, ψ,w, φ′, ψ′, w′, θ1, θ2, θ3)

in D(A), that is, term by term:
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

iλφ

iλψ

iλw

iλφ′

iλψ′

iλw′

iλθ1

iλθ2

iλθ3



-



φ′

ψ′

w′

k

ρ1
(φx + ψ + ℓw)x +

k0ℓ

ρ1
(wx − ℓφ)− m1

ρ1
θ1x −

ℓm2

ρ1
θ2

b

ρ2
ψxx −

k

ρ2
(φx + ψ + ℓw)− m3

ρ2
θ3x +

m1

ρ2
θ1

k0
ρ1

(wx − ℓφ)x −
kℓ

ρ1
(φx + ψ + ℓw)− m2

ρ1
θ2x +

ℓm1

ρ1
θ1

γ1
σ1
θ1xx −

m1

σ1
(φ′

x + ψ′ + ℓw′)

γ2
σ2
θ2xx −

m2

σ2
(w′

x − ℓφ′)

γ3
σ3
θ3xx −

m3

σ3
(ψ′

x)



=



f1

f2

f3

f4

f5

f6

f7

f8

f9



.

Then

iλφ− φ′ = f1, (2.38)

iλψ − ψ′ = f2, (2.39)

iλw − w′ = f3, (2.40)

iλρ1φ
′ − k(φx + ψ + ℓw)x − ℓk0(wx − ℓφ) +m1θ

1
x + ℓm2θ

2 = ρ1f4, (2.41)

iλρ2ψ
′ − bψxx + k(φx + ψ + ℓw) +m3θ

3
x −m1θ

1 = ρ2f5, (2.42)

iλρ1w
′ − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ

2
x − ℓm1θ

1 = ρ1f6, (2.43)

iλσ1θ
1 − γ1θ

1
xx +m1(φ

′
x + ψ′ + ℓw′) = σ1f7, (2.44)

iλσ2θ
2 − γ2θ

2
xx +m2(w

′
x − ℓφ′) = σ2f8, (2.45)

iλσ3θ
3 − γ3θ

3
xx +m3(ψ

′
x) = σ3f9. (2.46)

In order to prove iR ⊆ ρ(A), we observe that, from the definition of D(A), it is closed and

compactly embedded in H. Then, the spectrum

σ(A) = C\ρ(A)
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has only eigenvalues.

Let suppose that A possesses an imaginary eigenvalue λ = iβ ∈ σ(A), with β ̸= 0, and with

their corresponding eigenvector

y = (φ, ψ,w, φ′, ψ′, w′, θ1, θ2, θ3) ̸= 0

From (2.37), taking inner product by y ∈ D(A) , with f = 0, and taking the real part, we have

that:

γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2 = −Re⟨Ay, y⟩ = 0. (2.47)

Using the Poincare’s inequality, we easily conclude that θ1 = θ2 = θ3 = 0. Returning to

equations (2.46) and (2.38), we have respectively that

ψ′ = ψ = 0.

After that, we see from the remaining equations that w′ = w = 0, and finally φ′ = φ′ = 0, which

implies that y = 0 (This contradicts the fact that y ̸= 0 is an eigenvector).

Hence, there are no purely imaginary eigenvalues in the spectrum σ(A) = C\ρ(A), that is,

iR ⊆ ρ(A).

The next goal for complete the proof of Theorem 2.3 is to prove the following estimate:

∥y∥H ≤ C∥f∥H (2.48)

for some constant C > 0.
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Lemma 2.1. Under the hypotheses of Theorem 2.3, there exist a constant C > 0 such that

σi∥θix∥2 ≤ C∥y∥H · ∥f∥H (2.49)

for i=1,2,3. And consequently:

σi∥θi∥2 ≤ C∥y∥H · ∥f∥H (2.50)

Proof: From the resolvent equation, we have, for any y ∈ D(A), that:

iλ⟨y, y⟩ − ⟨Ay, y⟩ = ⟨f, y⟩.

Taking the real part

Re
(
iλ⟨y, y⟩ − ⟨Ay, y⟩

)
= Re⟨f, y⟩,

and then

−Re⟨Ay, y⟩ ≤ |⟨f, y⟩|.

Equation (2.47) showed that:

−Re⟨Ay, y⟩ = γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2.

Thus, by Cauchy-Schwarz inequality:

γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2 ≤ ∥y∥H · ∥f∥H.

Consequently, for each i = 1, 2, 3,

γi∥θix∥2 ≤ ∥y∥H · ∥f∥H
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Multiplying the inequality by σi and dividing by γi , we conclude

σi∥θix∥2 ≤
σi
γi
∥y∥H · ∥f∥H = C∥y∥H · ∥f∥H.

For the therms σi∥θi∥2, the prove follows immediately by Poincare inequality (See [27]).

For the sake of brevity of computations, we need to state some estimates of norms that were

previously shown. For this reason, we present the following argument that will be very useful in

future calculations.

Proposition 2.1. Under the assumptions of Theorem 2.3, given the functions h ∈ L2(0, L),

f ∈ H and y ∈ D(A), we have, for any ε > 0:

1. If ∥h∥L2 ≤ ∥y∥H, then: ∥θix∥ · ∥h∥ ≤ ε∥y∥2H + Cε∥f∥2H.

2. If ∥h∥L2 ≤ ∥f∥H, then: ∥θix∥ · ∥h∥ ≤ ε∥y∥2H + Cε∥f∥2H.

The same argument applies for θi instead θix, by the Poincare inequality.

Proof: For the first item, observe that, from Young’s inequality and Lemma 2.1, we obtain:

∥θix∥ · ∥h∥ ≤ cε∥θix∥2 +
ε

2
∥h∥2

≤ ∥y∥H · cε∥f∥H +
ε

2
∥y∥2H

≤ ε

2
∥y∥2H + Cε∥f∥2H +

ε

2
∥y∥2H

≤ ε∥y∥2H + Cε∥f∥2H.
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Analogously, for the second one, we use the same arguments above to obtain:

∥θix∥ · ∥h∥ ≤ 1

2
∥θix∥2 +

1

2
∥h∥2H

≤ 1

2
∥θix∥2 +

1

2
∥f∥2H

≤ ∥y∥H · C∥f∥H +
1

2
∥f∥2H

≤ ε∥y∥2H + cε∥f∥2H +
1

2
∥f∥2H

≤ ε∥y∥2H + Cε∥f∥2H

In order to show the same result for θi instead θix, we notice that:

∥θi∥ ≤ π

L
∥θix∥

Thus:

∥θi∥ · ∥h∥ ≤ π

L
∥θix∥ · ∥h∥

and we just take ε→ ε · π
L

, and h is satisfying hypotheses 1. or 2. ■

Remark: The choose of ε can be different in each Young’s inequality, but in principle, we

abbreviate this constants in such a way that we can make the proofs of lemmas easier to read.

Additionally, C, cε and Cε > 0 represent several the constants that can be grouped in order to

make easier the redaction.
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2.2.1 Observability

Lemma 2.1 show us:

∥θ1∥2 + ∥θ2∥2 + ∥θ3∥2 ≤ ε∥y∥2H + Cε∥f∥2H (2.51)

for any ε > 0 and for a |λ| > 1 large enough. Then, to prove (2.48), it remains to proof:

∥φx + ψ + ℓw∥2 + ∥ψx∥2 + ∥wx − ℓφ∥2 + ∥φt∥2 + ∥ψt∥2 + ∥wt∥2 ≤ ε∥y∥2H + Cε∥f∥2H.

Unlike another estimates (See [6]), this one presents some restrictions when performing the

calculations. More specifically, totally Dirichlet type boundary conditions in all of terms prevent

vanishing estimates on the boundary. Therefore, the methods used above cannot help to solve an

appropriate estimate for all the terms mentioned above. For this reason, we will introduce an

important observability criteria (see [11]).

First Step: We define an auxiliary cut-off function (for more details, see [4]). Indeed, let us

consider l0 ∈ (0, L) and δ > 0, arbitrary numbers such that (l0−δ, l0+δ) ⊂ (0, L), and consider

a function s ∈ C2(0, L) satisfying:

supp s ⊂ (l0 − δ, l0 + δ), 0 ≤ s(x) ≤ 1, x ∈ (0, L) , and

s(x) = 1, for x ∈ [l0 −
δ

2
, l0 +

δ

2
]. (2.52)

Thus, with this new construction, we are able to state the following lemmas.

Lemma 2.2. Assume the condition (2.52) and the hypotheses of Theorem 2.3 hold. Then, for

every ε > 0, there exist a constant Cε > 0, independent of λ, such that:

∫ l0+
δ
2

l0− δ
2

k|φx + ψ + ℓw|2dx ≤ ε∥y∥2H + Cε∥f∥2H , (2.53)
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Proof: From equations (2.38)-(2.40), we deduce that

(φ′
x + ψ′ + ℓw′) = iλ(φx + ψ + ℓw) + (f1,x + f2 + ℓf3).

Using this equation into (2.44), we have:

iλσ1θ
1 − γ1θ

1
xx + iλm1(φx + ψ + ℓw)−m1(f1,x + f2 + ℓf3) = σ1f1.

⇒

σ1
m1

θ1 − γ1
iλm1

θ1xx + (φx + ψ + ℓw)− 1

iλ
(f1,x + f2 + ℓf3) =

σ1
iλm1

f7.

Multiplying this equation by k · s(φx + ψ + ℓw), and integrating on (0, L), we obtain

k

∫ L

0

s
∣∣φx + ψ + ℓw

∣∣2dx =
σ1k

iλm1

∫ L

0

sf7(φx + ψ + ℓw)dx− σ1k

m1

∫ L

0

sθ1(φx + ψ + ℓw)dx

+
k

iλ

∫ L

0

s(f1,x + f2 + ℓf3)(φx + ψ + ℓw)dx

+
γ1k

iλm1

∫ L

0

sθ1xx(φx + ψ + ℓw)dx.

Integrating by parts the last term of the above identity, and using the fact that s = 0 in {0, L},

we obtain

k

∫ L

0

s
∣∣φx + ψ + ℓw

∣∣2dx =
σ1k

iλm1

∫ L

0

sf7(φx + ψ + ℓw)dx− σ1k

m1

∫ L

0

sθ1(φx + ψ + ℓw)dx

+
k

iλ

∫ L

0

s(f1,x + f2 + ℓf3)(φx + ψ + ℓw)dx

− γ1k

iλm1

∫ L

0

θ1x(s(φx + ψ + ℓw))xdx.
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Taking module and denoting for C for several constants, we have that

k

∫ L

0
s
∣∣φx + ψ + ℓw

∣∣2dx ≤ C

|λ|

∫ L

0

∣∣sf7(φx + ψ + ℓw)
∣∣dx+ C

∫ L

0

∣∣sθ1(φx + ψ + ℓw)
∣∣dx

+
C

|λ|

∫ L

0

∣∣s(f1,x + f2 + ℓf3)(φx + ψ + ℓw)
∣∣dx

+
C

|λ|

∫ L

0

∣∣θ1xsx(φx + ψ + ℓw)
∣∣dx+

C

|λ|

∫ L

0

∣∣sθ1x(φx + ψ + ℓw)x
∣∣dx.

Using Hölder, Young and Poincare’s inequalities, the fact that |λ| > 1, and s ∈ C2, we have

k

∫ L

0
s
∣∣φx + ψ + ℓw

∣∣2dx ≤ C

∫ L

0

∣∣f7(φx + ψ + ℓw)
∣∣dx+ C

∫ L

0

∣∣θ1(φx + ψ + ℓw)
∣∣dx

+ C

∫ L

0

∣∣(f1,x + f2 + ℓf3)(φx + ψ + ℓw)
∣∣dx

+ C

∫ L

0

∣∣θ1x(φx + ψ + ℓw)
∣∣dx+

C

|λ|

∫ L

0

∣∣θ1x(φx + ψ + ℓw)x
∣∣dx

≤ C∥f∥H∥y∥H + C∥θ1∥∥y∥H + ∥f∥H∥y∥H + C∥θ1x∥∥y∥H

+
C

|λ|

∫ L

0

∣∣θ1x(φx + ψ + ℓw)x
∣∣dx

≤ ε∥y∥2H + Cε∥f∥2H +
C

|λ|

∫ L

0

∣∣θ1x(φx + ψ + ℓw)x
∣∣dx.

Seeing for the last inequality, we noticed an integral term. Analyzing it:

C

|λ|

∫ L

0

∣∣θ1x(φx + ψ + ℓw)x
∣∣dx =

C

|λ|

∫ L

0

∣∣θ1x[iλρ1φ′ − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 − ρ1f4]
∣∣dx

≤ C

|λ|

∫ L

0
|iλρ1θ1xφ′|dx+

C

|λ|

∫ L

0
|k0ℓθ1x(wx − ℓφ)|dx

+
C

|λ|

∫ L

0
|θ1x|2dx+

C

|λ|

∫ L

0
|ℓm2θ

1
xθ

2|dx

+
C

|λ|

∫ L

0
|ρ1f4θ1x|dx

≤C
∫ L

0
|θ1xφ′|dx+ C

∫ L

0
|θ1x(wx − ℓφ)|dx+ C

∫ L

0
|θ1x|2dx

+ C

∫ L

0
|θ1xθ2|dx+ C

∫ L

0
|θ1xf4|dx.
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Here, we use Lemma 2.1 and Proposition 2.1, to reduce the last inequality into:

C

|λ|

∫ L

0

∣∣θ1x(φx + ψ + ℓw)x
∣∣dx ≤ ε∥y∥2H + Cε∥f∥2H.

With this, the initial expression is estimated, for any |λ| > 1, by:

k

∫ L

0

s
∣∣φx + ψ + ℓw

∣∣2dx ≤ ε∥y∥2H + Cε∥f∥2H.

By definition of s, and hypotheses (2.52), we conclude that:

k

∫ l0+
δ
2

l0− δ
2

∣∣φx + ψ + ℓw
∣∣2dx ≤ k

∫ l0+δ

l0−δ

s
∣∣φx + ψ + ℓw

∣∣2dx ≤ ε∥y∥2H + Cε∥f∥2H.

Thus:

∫ l0+
δ
2

l0− δ
2

k
∣∣φx + ψ + ℓw

∣∣2dx ≤ ε∥y∥2H + Cε∥f∥2H.

Lemma 2.3. Under the conditions (2.52) and Theorem 2.3, given ε > 0, there exist a constant

Cε > 0 such that

∫ l0+
δ
2

l0− δ
2

b|ψx|2dx ≤ ε∥y∥2H + Cε∥f∥2H , (2.54)

for |λ| > 1 large enough.

Proof: Deriving (2.39) in x and inserting this identity into equation (2.46), we have

iλσ3θ
3 − γ3θ

3
xx +m3(iλψx − f2,x) = σ3f9.

⇒ iλσ3θ
3 − γ3θ

3
xx + iλm3ψx −m2f2,x = σ3f9.

⇒ σ3θ
3 − γ3

iλ
θ3xx +m3ψx −

m3

iλ
f2,x =

σ3
iλ
f9.
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Multiplying by b · sψx and integrating over (0, L), we obtain

σ3b

∫ L

0

s · θ3ψx −
γ3b

iλ

∫ L

0

s · θ3xxψx+m3b

∫ L

0

s|ψx|2 −
m3b

iλ

∫ L

0

s · f2,xψx

=
σ3b

iλ

∫ L

0

s · f9ψxdx.

Thus, integrating by parts

m3b

∫ L

0

s|ψx|2dx = σ3b

∫ L

0

(sθ3)x · ψdx+
γ3b

iλ

∫ L

0

sθ3xx · ψxdx

+
m3b

iλ

∫ L

0

s · f2,xψxdx+
σ3b

iλ

∫ L

0

s · f9ψxdx.

Using again integration by parts on s · θ3xxψx , we obtain:

m3b

∫ L

0

s|ψx|2dx = σ3b

∫ L

0

sx · θ3ψ + σ3b

∫ L

0

s · θ3xψ +
γ3b

iλ

∫ L

0

s · θ3xxψxdx

+
m3b

iλ

∫ L

0

s · f2,x ψx +
σ3b

iλ

∫ L

0

s · f9ψxdx

= σ3b

∫ L

0

sx · θ3ψ + σ3b

∫ L

0

s · θ3xψ − γ3b

iλ

∫ L

0

θ3x · (sψx)xdx

− m3b

iλ

∫ L

0

s · f2,x ψx +
σ3b

iλ

∫ L

0

s · f9ψxdx

= σ3b

∫ L

0

sx · θ3ψ + σ3b

∫ L

0

s · θ3xψ − γ3b

iλ

∫ L

0

sx · θ3x · ψxdx

− γ3b

iλ

∫ L

0

s · θ3x ψxx +
m3b

iλ

∫ L

0

s · f2,x ψx +
σ3b

iλ

∫ L

0

s · f9ψxdx.

Let’s estimate all the terms of above identity. To this end, all several constants independent of λ,

will be denoted by C, for simplicity of the computations. Indeed

∣∣∣σ3b ∫ L

0

sx · θ3ψdx
∣∣∣ ≤ C

∣∣∣ ∫ L

0

θ3 · ψ dx
∣∣∣ ≤ C∥θ3∥ · ∥ψ∥ ≤ C∥θ3x∥ · ∥ψx∥

≤ C∥θ3x∥ · ∥y∥H ≤ 1

6
ε∥y∥2H + Cε∥f∥2H,
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where were we used Hölder’s inequality, Poincare’s inequality, the fact that sx is bounded in

(0, L) and Proposition 2.1. By the same arguments, we can estimate the other terms as follows:

∣∣∣σ3b ∫ L

0

s · θ3x ψ
∣∣∣ ≤ C

∣∣∣ ∫ L

0

θ3x · ψ
∣∣∣ ≤ C∥θ3x∥ · ∥ψ∥ ≤ C∥θ3x∥ · ∥ψx∥

≤ C∥θ3x∥ · ∥y∥H ≤ 1

6
ε∥y∥2H + Cε∥f∥2H.

Since |λ| > 1, we estimate the third term to obtain:

∣∣∣γ3b
iλ

∫ L

0

sx · θ3x · ψx

∣∣∣ ≤ γ3b
∣∣∣ ∫ L

0

θ3x · ψx

∣∣∣ ≤ C∥θ3x∥ · ∥ψx∥ ≤ 1

6
ε∥y∥2H + Cε∥f∥2H.

Similarly, the fifth term is limited by:

∣∣∣m3b

iλ

∫ L

0

s · f2,x ψx

∣∣∣ ≤ C
∣∣∣ ∫ L

0

f2,x · ψx

∣∣∣ ≤ C∥f2,x∥ · ∥ψx∥ ≤ C∥y∥H∥f∥H

≤ 1

6
ε∥y∥2H + Cε∥f∥2H.

Analagously, sixth term is bounded by:

∣∣∣σ3b
iλ

∫ L

0

s · f9 ψx

∣∣∣ ≤ C
∣∣∣ ∫ L

0

f9 · ψx

∣∣∣ ≤ C∥f9∥ · ∥ψx∥ ≤ C∥y∥H∥f∥H

≤ 1

6
ε∥y∥2H + Cε∥f∥2H.

To estimate fourth term, we need to rewrite term ψxx using the equation (2.42), obtaining:

−γ3b
iλ

∫ L

0
s · θ3x ψxx =

γ3
iλ

∫ L

0
s · θ3x (−bψxx)dx

=
γ3
iλ

∫ L

0
sθ3x

(
ρ2f5 − k(φx + ψ + ℓw)−m3θ

3
x +m1θ1 + iλρ2ψ′

)
dx

=
γ3ρ2
iλ

∫ L

0
sθ3x f5 −

γ3k

iλ

∫ L

0
sθ3xk(φx + ψ + ℓw)− γ3m3

iλ

∫ L

0
s|θ3x|2

+
γ3m1

iλ

∫ L

0
s · θ3x θ1dx+ γ3ρ2

∫ L

0
s · θ3x ψ′dx.
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Taking module in all of those terms, and using the Proposition 2.1, we conclude that:

∣∣∣γ3b
iλ

∫ L

0

s · θ3x ψxx

∣∣∣dx ≤ 1

6
ε∥y∥2H + Cε∥f∥2H.

Combining all the estimates, and adapting ε to convenience, we conclude that:

b

∫ L

0

s · |ψx|2dx ≤ ε∥y∥2H + Cε∥f∥2H. (2.55)

By definition of the function s, we have:

b

∫ l0+δ

l0−δ

s|ψx|2dx ≤ ε∥y∥2H + Cε∥f∥2H. (2.56)

Finally,

b

∫ l0+
δ
2

l0− δ
2

|ψx|2dx ≤ b

∫ l0+δ

l0−δ

s|ψx|2dx ≤ ε∥y∥2H + Cε∥f∥2H,

for |λ| large enough, which proves the lemma. ■
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Lemma 2.4. Under the conditions of previous Lemmas and Theorem 2.3, for any ε > 0, there

exist a constant Cε > 0 independent of λ, such that, for |λ| > 1 large enough:

∫ l0+
δ
2

l0− δ
2

k0|wx − ℓφ|2dx ≤ ε∥y∥2H + Cε∥f∥2H, (2.57)

Proof: Using equations (2.38) and (2.40), the following estimate is valid:

(w′
x − ℓφ′) = iλ(wx − ℓφ)− (f3,x − ℓf1).

Then, we use this identity into (2.45), to obtain

iλσ2θ
2 − γ2θ

2
xx +m2

(
iλ(wx − ℓφ)− (f3,x − ℓf1)

)
= σ2f8.

Then

σ2θ
2 − γ2

iλm2

θ2xx + (wx − ℓφ)− 1

iλ
(f3,x − ℓf1) =

σ2
iλm2

f8.

Multiplying by sk0(wx − ℓφ) and integrating over (0, L), we obtain:

k0

∫ L

0

s|wx − ℓφ|2dx =
σ2k0
iλ

∫ L

0

sf8(wx − lφ)dx− σ2k0

∫ L

0

sθ2(wx − lφ)dx

+
γ2k0
iλ

∫ L

0

sθ2xx(wx − lφ)dx+
m2k0
iλ

∫ L

0

(f3,x − ℓf1)(wx − lφ)dx.

Integrating by parts the integral with the term θ2xx, we obtain:

k0

∫ L

0

s|wx − ℓφ|2dx =
σ2k0
iλ

∫ L

0

sf8(wx − lφ)dx− σ2k0

∫ L

0

sθ2(wx − lφ)dx

− γ2k0
iλ

∫ L

0

θ2xsx(wx − lφ)dx− γ2k0
iλ

∫ L

0

sθ2x(wx − lφ)xdx

+
m2k0
iλ

∫ L

0

(f3,x − ℓf1)(wx − lφ)dx.

57



Chapter 2. Bresse-Fourier system with full thermal coupling Exponential stability

Same as previous lemmas, the integral
∫ L

0
sθ2x(wx − ℓφ)xdx can be written as:

∫ L

0

sθ2x(wx − lφ)xdx =

∫ L

0

sθ2x
[
− iλρ1w′ − kℓ(φx + ψ + ℓw)−m2θ2x + ℓm1θ1 + ρ1f6

]
dx.

Including this identity on the previous one, we have:

k0

∫ L

0

s|wx − ℓφ|2dx =
σ2k0
iλ

∫ L

0

sf8(wx − lφ)dx− σ2k0

∫ L

0

sθ2(wx − lφ)dx

− γ2k0
iλ

∫ L

0

θ2xsx(wx − lφ)dx+
m2k0
iλ

∫ L

0

(f3,x − ℓf1)(wx − lφ)dx

+
γ2k0
iλ

∫ L

0

iλρ1sθ
2
xw

′dx+
γ2k0
iλ

∫ L

0

skℓθ2x(φx + ψ + ℓw)dx

+
γ2k0
iλ

∫ L

0

m2s|θ2x|2dx−
γ2k0
iλ

∫ L

0

ℓm1sθ
2
xθ

1dx− γ2k0
iλ

∫ L

0

ρ1sθ
2
xf6dx.

Combining all the constants except λ, and calling it by C, we can apply module on this identity

to obtain:

k0

∫ L

0

s|wx − ℓφ|2dx ≤ C

|λ|

∫ L

0

|f8(wx − ℓφ)|dx+ C

|λ|

∫ L

0

|θ2(wx − ℓφ)|dx

+
C

|λ|

∫ L

0

|θ2x(wx − ℓφ)|dx++
C

|λ|

∫ L

0

|(f3,x − ℓf1)(wx − lφ)|dx

+ C

∫ L

0

|θ2xw′|dx+ C

|λ|

∫ L

0

|θ2x(φx + ψ + ℓw)|dx+ C

|λ|

∫ L

0

|θ2x|2dx

+
C

|λ|

∫ L

0

|θ2xθ1|dx+
C

|λ|

∫ L

0

|θ2xf6|dx

Since |λ| > 1, then
C

|λ|
≤ C. Thus, we use the known inequalities, Lemma 2.1 and Proposition

2.1, to reduce the last inequality into:

∫ l0+
δ
2

l0− δ
2

k0|wx − ℓφ|2dx ≤ k0

∫ L

0

s|wx − ℓφ|2dx ≤ ε∥y∥2H + Cε∥f∥2H.

which complete the proof of the lemma. ■
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Before establish estimates for the kinetic terms, we are going to state some preliminary results

that will be very helpful to us in reducing terms for the next lemmas.

Proposition 2.2. Consider y(t) solution for the system (2.22) such that y ∈ D(A), with s(x)

being the function defined in (2.52). Then, for every ε > 0, there exists a constant Cε > 0 such

that:

∥s(φx + ψ + ℓw)∥ · ∥h∥ ≤ ε∥y∥2H + Cε∥f∥2H,

∥s(wx − ℓφ)∥ · ∥h∥ ≤ ε∥y∥2H + Cε∥f∥2H.

for any h ∈ L2(0, L) with ∥h∥L2 ≤ ∥y∥H or ∥h∥L2 ≤ ∥f∥H.

Proof: We use Lemma 2.2 to calculated the first inequality as follows:

∥s(φx + ψ + ℓw)∥ · ∥h∥ =

∫ L

0
s2|(φx + ψ + ℓw)|2dx · ∥h∥

≤
∫ L

0
s|(φx + ψ + ℓw)|2dx · ∥h∥

≤
√
δ2∥y∥2H + Cδ∥f∥2H · ∥h∥

≤
(
δ∥y∥H + Cδ∥f∥H

)
· ∥h∥L2 .

If ∥h∥ ≤ ∥y∥H, we deduce that:

∥s(φx + ψ + ℓw)∥ · ∥h∥ ≤ δ∥y∥2H + Cδ∥f∥H∥y∥H

≤ ε∥y∥2H + Cε∥f∥2H,

where ε = 2δ. If ∥h∥ ≤ ∥f∥H, we take ε = δ3, in order to obtain:

∥s(φx + ψ + ℓw)∥ · ∥h∥ ≤
(
δ∥y∥H

)
∥f∥H + Cδ∥f∥2H ≤ ε∥y∥2H + ∥f∥2H.■

Remark: Same arguments are valid for ∥s(wx − ℓφ)∥ (Using Lemma 2.2 instead).
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Lemma 2.5. Under the conditions of previous Lemmas and Theorem 2.3, for any ε > 0, there

exist a constant Cε > 0 independent of λ, such that

ρ1

∫ l0+
δ
2

l0− δ
2

|φ′|2dx ≤ ε∥y∥2H + Cε∥f∥2H, (2.58)

for |λ| > 1, large enough.

Proof: From (2.38), we deduce easily that:

iλφ− φ′ = f1 =⇒ φ =
i

λ
(φ′ + f1).

Then, we multiply (2.41) by sφ and integrate over (0, L), and use the identity above to obtain:

iλρ1

∫ L

0

sφ′ · i
λ
(φ′ + f1)dx− k

∫ L

0

s(φx + ψ + ℓw)xφdx− k0ℓ

∫ L

0

s(wx − ℓφ)φdx

+m1

∫ L

0

sθ1xφdx+ ℓm2

∫ L

0

sθ2φdx = ρ1

∫ L

0

sf4φdx.

Thus

ρ1

∫ L

0

s|φ′|2dx =− ρ1

∫ L

0

sf4φdx− ρ1

∫ L

0

sφ′f1dx− k

∫ L

0

s(φx + ψ + ℓw)xφdx

− k0ℓ

∫ L

0

s(wx − ℓφ)φdx− ℓm2

∫ L

0

sθ2φdx+m1

∫ L

0

sθ1xφdx.

Integrating by parts in the integral with the term (φx + ψ + ℓw)x, we obtain:

ρ1

∫ L

0

s|φ′|2dx =− ρ1

∫ L

0

sf4φdx− ρ1

∫ L

0

sφ′f1dx+ k

∫ L

0

sx(φx + ψ + ℓw)φdx

− k0ℓ

∫ L

0

s(wx − ℓφ)φdx− ℓm2

∫ L

0

sθ2φdx+m1

∫ L

0

sθ1xφdx

+ k

∫ L

0

s(φx + ψ + ℓw)φxdx.
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Taking module in the last expression, and knowing that |sx| is bounded, we observe that:

ρ1

∫ L

0

s|φ′|2dx ≤ ρ1

∫ L

0

|f4φ|dx+ ρ1

∫ L

0

|φ′f1|dx+ k

∫ L

0

|(φx + ψ + ℓw)φ|dx

+ k0ℓ

∫ L

0

|s(wx − ℓφ)φ|dx− ℓm2

∫ L

0

|θ2φ|dx+m1

∫ L

0

|θ1xφ|dx

+ k

∫ L

0

|s(φx + ψ + ℓw)φx|dx. (2.59)

Here, we use the known computations (Including Propositions 2.1 and 2.2) to estimate almost all

of integrals, with except of:

k

∫ L

0

|(φx + ψ + ℓw)φ|dx.

We will estimate this term. Using the representation of φ =
i

λ

(
φ′ + f1

)
, and taking |λ| > 1

k

∫ L

0
|(φx + ψ + ℓw)φ|dx = k

∫ L

0
|(φx + ψ + ℓw)

i

λ

(
φ′ + f1

)
|dx

≤ C

|λ|

∫ L

0
|(φx + ψ + ℓw)||φ′|dx+

C

|λ|

∫ L

0
|(φx + ψ + ℓw)||f ′1|dx

≤ C

|λ|

∫ L

0
|(φx + ψ + ℓw)||φ′|dx+ C

∫ L

0
|(φx + ψ + ℓw)||f ′1|dx

≤ C

|λ|
∥y∥2H + C∥y∥H∥f∥H

Taking |λ| large enough, and use ε-Young type inequality, we conclude that:

k

∫ L

0

|(φx + ψ + ℓw)φ|dx ≤ ε∥y∥2H + Cε∥f∥2H.

Inserting this estimate into (2.59), we conclude that:

∫ l0+
δ
2

l0− δ
2

ρ1|φ′|2dx ≤ ρ1

∫ L

0

s|φ′|2dx ≤ ε∥y∥2H + Cε∥f∥2H.
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Lemma 2.6. Considering all the assumptions of previous Lemmas, given ε > 0, there exist a

constant Cε > 0, such that:

ρ2

∫ l0+
δ
2

l0− δ
2

|ψ′|2dx ≤ ε∥y∥2H + Cε∥f∥2H, (2.60)

for |λ| > 1 large enough.

Proof: Under the above conditions of the cut-off function s(x) we start the proof considering the

equation (2.42)

iλρ2ψ
′ − bψxx + k(φx + ψ + ℓw) +m3θ

3
x −m1θ

1 = ρ2f5,

and a variation of equation (2.39), as follows

ψ =
i

λ

(
f2 + ψ′

)
. (2.61)

Multiplying (2.42) by s · ψ and integrating over (0, L):

iλρ2

∫ L

0

s · ψ′ ψ−b
∫ L

0

s · ψxx ψ + k

∫ L

0

s · (φx + ψ + ℓw) ψ

m3

∫ L

0

s · θ3x ψ −m1

∫ L

0

s · θ1 ψ

= ρ2

∫ L

0

s · f5 ψdx.

⇒

iλρ2

∫ L

0

s · ψ′ ψ+b

∫ L

0

s · ψx ψx +

∫ L

0

sx · ψx ψ + k

∫ L

0

s · (φx + ψ + ℓw) ψ

m3

∫ L

0

s · θ3x ψ −m1

∫ L

0

s · θ1 ψ = ρ2

∫ L

0

s · f5 ψdx.
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Replacing (2.61) into the first term of the above equation, we obtain

−ρ2
∫ L

0
s · ψ′ ψ′ − ρ2

∫ L

0
s · ψ′ f2 + b

∫ L

0
s · ψx ψx + b

∫ L

0
sx · ψx ψ

+k

∫ L

0
s · (φx + ψ + ℓw) ψm3

∫ L

0
s · θ3x ψ −m1

∫ L

0
s · θ1 ψdx = ρ2

∫ L

0
s · f5 ψdx.

Thus

ρ2

∫ L

0
s · |ψ′|2dx =− ρ2

∫ L

0
s · f5ψ − ρ2

∫ L

0
s · ψ′f2 + b

∫ L

0
s · |ψx|2 +

A7︷ ︸︸ ︷
b

∫ L

0
sx · ψx ψ

+ k

∫ L

0
s(φx + ψ + ℓw) ψ +m3

∫ L

0
s · θ3x ψ −m1

∫ L

0
s · θ1 ψdx. (2.62)

Taking module, all terms with except of A7 can be bounded easily by ε∥y∥2H + Cε∥f∥2H, using

the previous methods, with the same arguments.

Let’s construct an appropriate estimate for:

b

∫ L

0

sx · ψx ψdx.

To this end, using (2.61):

∣∣∣b ∫ L

0

sx · ψx ψ dx
∣∣∣ ≤ C

∣∣∣ ∫ L

0

i

λ
ψx · (ψ′ + f2)dx

∣∣∣
≤ C

|λ|

∣∣∣ ∫ L

0

ψx · ψ′dx
∣∣∣+ C

|λ|

∣∣∣ ∫ L

0

ψx · f2dx
∣∣∣

≤ C

|λ|
∥ψx∥ · ∥ψ′∥+ C

|λ|
∥ψx∥ · ∥f2∥

≤ C

|λ|
∥y∥2H + C∥y∥H · ∥f∥H.

Combining all estimates, (2.62) is bounded by

ρ2

∫ L

0

s · |ψ′|2dx ≤ ε∥y∥2H + Cε∥f∥2H +
C

|λ|
∥y∥2H. (2.63)
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Taking |λ| large enough, and as the same as Lemma 2.3, by definition of s, we have

ρ2

∫ l0+δ

l0−δ

s · |ψ′|2dx ≤ ε∥y∥2H + Cε∥f∥2H. (2.64)

Therefore:

ρ2

∫ l0+
δ
2

l0− δ
2

|ψ′|2dx ≤ ε∥y∥2H + Cε∥f∥2H,

ending the proof of the Lemma. ■

The last Lemma is given on the same way as the another kinetic terms.

Lemma 2.7. Assume that condition (2.52) and the hypotheses of Theorem 2.3 are hold. Given

any ε > 0, there exists a constant Cε, that not depends on λ, such that:

ρ1

∫ l0+
δ
2

l0− δ
2

|w′|2dx ≤ ε∥y∥2H + Cε∥f∥2H. (2.65)

Proof: We are going to proceed in the same way as the estimates for the kinetic terms. Using

(2.40) and inserting into equation (2.44), we have

ρ1

∫ L

0
s|w′|2dx =− ρ1

∫ L

0
sw′f3dx+ k0

∫ L

0
sx(wx − ℓφ)wdx+ k0

∫ L

0
s(wx − ℓφ)wxdx

+ kℓ

∫ L

0
s(φx + ψ + ℓw)wdx+m2

∫ L

0
sθ2xwdx

− ℓm1

∫ L

0
sθ1wdx− ρ1

∫ L

0
sf6wdx.

Taking module on the last expression, the kinetic term w′ can be estimated by

ρ1

∫ L

0
s|w′|2dx ≤ρ1

∫ L

0
|sw′f3|dx+ k0

∫ L

0
|s(wx − ℓφ)wx|dx+ kℓ

∫ L

0
|s(φx + ψ + ℓw)w|dx

+m2

∫ L

0
sθ2xwdx− ℓm1

∫ L

0
sθ1wdx− ρ1

∫ L

0
sf6wdx

+ k0

∫ L

0
|sx(wx − ℓφ)w|dx.

Almost all of the terms above can be estimated using classical computations, using the conclusion
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of Propositions 2.1 and 2.2. Our focus is then, estimate the following expression:

k0

∫ L

0

|sx(wx − ℓφ)w|dx.

Since sx is bounded on (0, L), we deduce that

k0

∫ L

0

|sx(wx − ℓφ)w|dx ≤ C

∫ L

0

|(wx − ℓφ)w|dx ≤ C

|λ|
∥y∥2H +

C

|λ|
∥y∥∥f∥.

Then, using ε-Young type inequality and for |λ| > 1 large enough:

k0

∫ L

0

|sx(wx − ℓφ)w|dx ≤ ε∥y∥2H + Cε∥f∥2H.

Then, we have

ρ1

∫ L

0

s|w′|2dx ≤ ε∥y∥2H + Cε∥f∥2H.

Thus, by definition of s(x), we conclude

ρ1

∫ l0+
δ
2

l0− δ
2

|w′|2dx ≤ ε∥y∥2H + Cε∥f∥2H.

which concludes the proof of Lemma and consequently, all the estimates for the norm terms. ■

Corollary 2.1. Under the hypotheses of Lemmas above, given an ε > 0, there exist a (universal)

constant Cε, that is not depend of λ, such that:

∫ l0+
δ
2

l0− δ
2

k|φx + ψ + ℓw|2 + k0|wx − ℓφ|2 + b|ψx|2 + ρ1|φ′|2 + ρ2|ψ′|2 + ρ1|w′|2dx

≤ ε∥y∥2H + Cε∥f∥2H. (2.66)

Proof: It follow as consequence of results of Lemmas (2.2)-(2.7).
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Considering the classical Bresse system and using the resolvent equation (2.37), we can easily

deduce that:

iλφ− φ′ = g1 := f1 ∈ H1
0 (0, L),

iλψ − ψ′ = g2 := f2 ∈ H1
0 (0, L),

iλw − w′ = g3 := f3 ∈ H1
0 (0, L),

iλφ′ρ1 − k(φx + ψ + ℓw)x − k0(wx − ℓφ) = g4 := ρ1f4 ∈ L2(0, L),

iλψ′ρ2 − bψxx + k(φx + ψ + ℓw) = g5 := ρ2f5 ∈ L2(0, L),

iλw′ρ1 − k0(wx − ℓφ)x + ℓk(φx + ψ + ℓw) = g6 := ρ1f6 ∈ L2(0, L).

This new Bresse system is denoted as (P ). Denoting by V and G the vector-valued functions

V = (φ, ψ,w, φ′, ψ′, w′)T and G = (g1, g2, g3, g4, g5, g6)
T , respectively. In addition, given any

a1, a2 ∈ [0, L] with a1 < a2 and (a1, a2) ∈ [0, L]. Finally, the notation ∥ ∥a1,a2 stands for:

∥V ∥2a1,a2 :=
∫ a2

a1

(|φx + ψ + ℓw|2 + |wx − ℓφ|2 + |ψx|2 + |φ′|2 + |ψ′|2 + |w′|2)dx. (2.67)

Theorem 2.5. (Observability Result) Under the above notations, let V = (φ, ψ,w, φ′, ψ′, w′)T

be a strong solution of (P ), for a vector G given, and suppose that 0 ≤ a1 < a2 ≤ L . Then,

there exist constants C0, C1 > 0 such that, for i = 1, 2, and |λ| > 1 large enough, one has:

|φx(aj) + ψ(aj) + ℓw(aj)|2 + |wx(aj)− ℓφ(aj)|2 + |ψx(aj)|2

+ |φ′(aj)|2 + |ψ′(aj)|2 + |w′(aj)|2 ≤ C0∥V ∥2a1,a2 + C0∥G∥20,L . (2.68)

and

∥V ∥2a1,a2 ≤ C1

[
|φx(aj) + ψ(aj) + ℓw(aj)|2 + |wx(aj)− ℓφ(aj)|2 + |ψx(aj)|2

+ |φ′(aj)|2 + |ψ′(aj)|2 + |w′(aj)|2
]
+ C1∥G∥20,L . (2.69)
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As a consequence to our main result, we have the following corollary, which gives us the estimate

required for the stability of the system (P )

Corollary 2.2. Consider V a vector as the same as Theorem 2.5. If for some sub interval

(a1, a2) ⊂ (0, L), one has

∥V ∥2a1,a2 ≤ Λ, (2.70)

with Λ depending on V,G and λ, then, there exist a constant C > 0 such that

∥V ∥20,L ≤ CΛ + C∥G∥20,L (2.71)

Proof of Theorem 2.5:

Guided by the results in [11], the proof will be done in three steps.

Step 1: A key identity: Let us start by fixing three functions q1, q2, q3 ∈ C1[a1, a2]. Taking

the term q1k(φx + ψ + ℓw) and multiplying with the fourth equation of (P ) and integrating on

(a1, a2), we get:

∫ a2

a1

q1kg4(φx + ψ + ℓw)dx

=

∫ a2

a1

q1
(
iλρ1φ

′ − k(φx + ψ + ℓw)x − k0(wx − ℓφ) · k(φx + ψ + ℓw)
)
dx

= −

J1︷ ︸︸ ︷∫ a2

a1

q1 ρ1k · φ′(iλφx + ψ + ℓw)dx

+

J2︷ ︸︸ ︷∫ a2

a1

q1 (k(φx + ψ + ℓw))x · (k(φx + ψ + ℓw))dx

+

J3︷ ︸︸ ︷∫ a2

a1

q1 k0ℓ(wx − ℓφ) · (φx + ψ + ℓw)dx (2.72)
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Here, we are going to estimate all terms above. From the system (P ), we see that:

J1 =−
∫ a2

a1

q1ρ1kφ
′ ·
(
(g1,x + g2 + ℓg3) + (φ′

x + ψ′ + ℓw)
)
dx

=−
∫ a2

a1

q1ρ1kφ
′ · φ′

x −
∫ a2

a1

q1ρ1kφ
′ · (ψ′ + ℓw′)−

∫ a2

a1

q1ρ1kφ
′ · (g1,x + g2 + ℓg3)dx

=− 1

2
q1ρ1k|φ′|2

∣∣∣a2
a1

+
1

2

∫ a2

a1

(q1 ρ1k)x|φ′|2dx

−
∫ a2

a1

q1 ρ1k|φ′|2 −
∫ a2

a1

q1ρ1kφ
′ · (g1,x + g2 + ℓg3)dx.

Then

Re J1 = −1

2
q1ρ1k|φ′|2

∣∣∣a2
a1

+
1

2

∫ a2

a1

(q1ρ1k)x|φ′|2dx

− Re
∫ a2

a1

q1ρ1kφ
′ · (ψ′ + ℓw′)dx− Re

∫ a2

a1

q1ρ1k φ
′ · (g1,x + g2 + ℓg3)dx

and, analogously:

Re J2 = −1

2
q1k

2|φx + ψ + ℓw|2
∣∣∣a2
a1
+

1

2

∫ a2

a1

q1,x · k2|φx + ψ + ℓw|2dx

Thus, taking the real part in (2.72), we obtain

1

2

[
−
(
q1ρ1k|φ′|2 + q1k

2|φx + ψ + ℓw|2
)∣∣∣a2

a1
+

∫ a2

a1

(q1ρ1k)x|φ′|2 + q1,xk
2|φx + ψ + ℓw|2

]
= Re

∫ a2

a1

q1kg4(φx + ψ + ℓw)dx+ Re
∫ a2

a1

q1ρ1kφ(g1,x + g2 + ℓg3)dx

+ Re
∫ a2

a1

q1ρ1kφ
′ · (ψ′ + ℓw′)dx+ Re

∫ a2

a1

q1k0ℓk(wx − ℓφ) · (φx + ψ + ℓw)dx (2.73)
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Secondly, multiplying the third equation of (P ), by q2bψx and integrating over (a1, a2):

∫ a2

a1

q2bg5ψxdx =

J3︷ ︸︸ ︷
−
∫ a2

a1

q2bρ2ψ
′(iλψx)dx

J4︷ ︸︸ ︷
−
∫ a2

a1

q2(bψx)x(bψx)dx

J5︷ ︸︸ ︷
+

∫ a2

a1

q2bk(φx + ψ + ℓw)ψxdx . (2.74)

Thus, using the equations of (P ) and integrating by parts, J3 and J4 yields:

Re J3 = Re (−
∫ a2

a1

q2bρ2(ψ
′ψ′

x + ψ′g2,x)dx)

= −1

2
q2ρ2b · |ψ′|2

∣∣∣a2
a1
+

1

2

∫ a2

a1

(q2ρ2b)x · |ψ′|2dx− Re
∫ a2

a1

q2ρ2b ψ
′ · g2,xdx

and

Re J4 = −1

2
q2b

2|ψx|2
∣∣∣a2
a1
+

1

2

∫ a2

a1

q2,x · b2|ψx|2dx

In addition, integration by parts J5 and using the equations of (P ), one has:

Re J5 = Re
(∫ a2

a1

q2bk(φx + ψ + ℓw) · ψxdx
)

= Re
(
q2bk · (φx + ψ + ℓw)ψ

∣∣∣a2
a1
−
∫ a2

a1

(q2bk · (φx + ψ + ℓw))x · ψdx
)

Analyzing the second part of the last identity, we noticed that, by the derivation of the product:

−Re
(∫ a2

a1

(q2bk·(φx + ψ + ℓw))x · ψdx
)

=− Re
[ ∫ a2

a1

q2,xbk(φx + ψ + ℓw)(
1

λ
)(ψ′ + g2)dx

]
+ Re

[ ∫ a2

a1

q2b(g4 + k0ℓ(wx − ℓφ)− iλρ1φ
′)ψ dx

]
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Remembering that, if z = a+ ib is a complex number, then:

Re iz = −Im z

With this and some calculations, we obtain that:

−Re
(∫ a2

a1

(q2bk · (φx + ψ + ℓw))x · ψdx
)
=

1

λ
Im

∫ a2

a1

(q2b)x · k(φx + ψ + ℓw)ψ′dx

+
1

λ
Im

∫ a2

a1

(q2b)x · k(φx + ψ + ℓw)g2dx

+ Re
∫ a2

a1

q2bg4 · ψ′dx

− Im
∫ a2

a1

q2bk0ℓ(wx − ℓφ)g2dx

− Im
∫ a2

a1

q2bk0(wx − ℓφ)ψ′dx

+ Re
∫ a2

a1

q2bρ1φ
′g2dx

+ Re
∫ a2

a1

q2bρ1φ
′ · ψ′dx

Returning to (2.74), taking its real part and replacing these last three identities, we conclude that:

−1

2

(
q2bρ2|ψ′|2 + q2b

2|ψx|2
)∣∣∣a2

a1
+

1

2

(
(q2bρ2)x|ψ′|2 + q2,xb

2|ψx|2
)∣∣∣a2

a1

= Re
∫ a2

a1

q2bg5ψxdx+ Re
∫ a2

a1

q2ρ2bψ
′ · g2,xdx− Re

(
q2bk(φx + ψ + ℓw)ψ

)∣∣∣a2
a1

− 1

λ
Im

∫ a2

a1

(q2b)x · k(φx + ψ + ℓw)g2dx− 1

λ
Im

∫ a2

a1

(q2b)x · k(φx + ψ + ℓw)ψ′dx

− Re
∫ a2

a1

q2bg4 · ψdx+
1

λ
Im

∫ a2

a1

q2bk0ℓ(wx − ℓφ)g2dx− Re
∫ a2

a1

q2bρ1φ
′ · g2

+
1

λ
Im

∫ a2

a1

q2kb0ℓ(wx − ℓφ)ψ′dx− Re
∫ a2

a1

q2bρ1ψ
′ · ψ′dx (2.75)

Third, taking the multiplier q3k(wx − ℓφ) in the last equation of (P ), and integrate over (a1, a2),
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we get:

∫ a2

a1

q3k0g6(wx − ℓφ)dx =

J6︷ ︸︸ ︷
−
∫ a2

a1

q3ρ1k0w
′ · (iλ(wx − ℓφ))dx

J7︷ ︸︸ ︷
−
∫ a2

a1

q3(k0(wx − ℓφ))x(k0(wx − ℓφ))dx

+

∫ a2

a1

q3k0ℓk(wx − ℓφ)(wx − ℓφ)dx (2.76)

Here, we will make use of some previous results to obtain

J6 = −
∫ a2

a1

q3ρ1k0w
′ · w′dx+

∫ a2

a1

q3ρ1k0w
′ · ℓφ′dx+

∫ a2

a1

q3ρ1k0w
′ · (g3,x − ℓg1)dx

Using integration by parts, J6 is equal to:

J6 =− 1

2
q3ρ1k0|w′|

∣∣∣a2
a1
+

1

2

∫ a2

a1

(q3ρ1k0)x|w′|2dx

+

∫ a2

a1

q3ρ1k0w
′ · ℓφ′dx+

∫ a2

a1

q3ρ1k0w
′ · (g3,x − ℓg1)dx.

and

Re J7 = −1

2
q3k

2
0|wx − ℓφ|2

∣∣∣a2
a1
+

1

2

∫ a2

a1

q3,xk
2
0|wx − ℓφ|2dx

Then, taking the real part of (2.76), we obtain:

−1

2
(q3ρ1k0|w′|2 + q3k

2
0|wx − ℓφ|2)

∣∣∣a2
a1

+
1

2

∫ a2

a1

(
(q3ρ1k0)x|w′|2 + q3,xk

2
0|wx − ℓφ|2

)
dx

=Re
∫ a2

a1

(
(q3ρ1k0)x|w′|2 + q3,xk

2
0|wx − ℓφ|2

)
dx− Re

∫ a2

a1

q3ρ1k0ℓw
′ · φ′dx

+Re
∫ a2

a1

q3ρ1k0ℓ(g3,x − ℓg1)dx− Re
∫ a2

a1

q3k0ℓk(φx + ψ + ℓw)(wx − ℓφ)dx (2.77)
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Finally, combining the identities (2.73),(2.75) and (2.77), we arrive at:

∫ a2

a1

(
q1,xk

2|φx + ψ + ℓw|2 + (q1ρ1k)x|φ′|2 + q2,xb
2|ψx|2 + (q2ρ2b)x|ψ′|2

+ q3,xk
2
0|wx − ℓφ|2 + (q3ρ1k0)x|w′|2

)
dx

=
(
q1k

2|φx + ψ + ℓw|2 + q1ρ1k|φ′|2 + q2b
2|ψx|2 + q2ρ2b|ψ′|2

)∣∣∣a2
a1

+
(
q3k

2
0|wx − ℓφ|2 + q3ρ1k0|w′|2

)∣∣∣a2
a1
+ P (a1, a2) + J10 + J11 + J12 + J13. (2.78)

for any q1, q2, q3 ∈ C1[a1, a2], which denote:

P (a1, a2) = −2Re
(
q2bk(φx + ψ + ℓw)ψ

∣∣∣a2
a1

)
J10 = 2Re

∫ a2

a1

(q1ρ1k − q2ρ1b)φ
′ · ψ′dx+ 2Re

∫ a2

a1

ℓ(q1ρ1k − q3ρ1k0)w
′ · φ′dx

J11 = −2

λ
Im

∫ a2

a1

(q2b)xk(φx + ψ + ℓw)ψ′dx+
2

λ
Im

∫ a2

a1

q2bk0ℓ(wx − ℓφ)ψ′dx

J12 = −2

λ
Im

∫ a2

a1

(q2b)xk(φx + ψ + ℓw)g2dx+
2

λ
Im

∫ a2

a1

q2bk0ℓ(wx − ℓφ)g2dx

+ 2Re
∫ a2

a1

q3ρ1k0w
′(g3,x − ℓg1)dx+ 2Re

∫ a2

a1

q1ρ1kφ
′(g1,x + g2 + ℓg3)dx

+ 2Re
∫ a2

a1

q3k0g6(wx − ℓφ)dx+ 2Re
∫ a2

a1

q1kg4(φx + ψ + ℓw)dx

+ 2Re
∫ a2

a1

q2 · b(g4ψx + ρ2ψ
′g2,x − ρ1φ

′ · g2 − g4ψ)dx

J13 = 2Re
∫ a2

a1

k0ℓk(q1 − q3)(φx + ψ + ℓw)(wx − ℓφ)dx.

72



Exponential stability

Step 2: Conclusion of (2.70) - (2.71) for j = 2

Since (2.78) holds for any q1, q2, q3 ∈ C1[a1, a2], let us choose them so that:

(q1k)(x) = (q2b)(x) = (q3k0)(x) =

∫ x

a1

enπdτ,

for x ∈ [a1, a2] and n ∈ N to be determined later.

Its easy to deduce that J10 = 0. Let us the estimate the remaining terms in (2.78).Indeed, since

the constants ρ1, ρ2, k, k0, b are positive, from the Holder’s inequality, there exist a constant

Cn > 0 such that:

|J11| ≤
2

λ

∣∣∣ ∫ a2

a1

(q2b)xk(φx + ψ + ℓw)ψ′dx
∣∣∣+ 2

λ

∣∣∣ ∫ a2

a1

q2bk0(wx − ℓφ)ψ′dx
∣∣∣

≤ Cn

λ

∣∣∣ ∫ a2

a1

(φx + ψ + ℓw)ψ′dx
∣∣∣+ Cn

λ

∣∣∣ ∫ a2

a1

(wx − ℓφ)ψ′dx
∣∣∣

≤ Cn

λ

∫ a2

a1

|φx + ψ + ℓw|2 + |wx − ℓφ|2 + |ψ′|2dx

≤ Cn

λ
∥V ∥2a1,a2 .

For J12, since |λ| > 1, the functions qi are bounded in [a1, a2], we can use the known techniques

for estimates to obtain, in each integral, equivalent terms that are part of ∥V ∥a1,a2 and ∥G∥0,L.

Thus:

|J12| ≤ Cn∥V ∥a1,a2 · ∥G∥0,L . (2.79)

Using Holder and Young inequalities and the embedding H1(a1, a2) ↪→ L∞(a1, a2), one sees
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that:

|P (a1, a2)| =
∣∣∣− 2Re

(
q2bk(φx + ψ + ℓw)ψ

∣∣∣a2
a1

)∣∣∣
≤ 2

|λ|

∣∣∣q2b(φx + ψ + ℓw)(ψ′ + g2)
∣∣∣a2
a1

∣∣∣
≤ C

|λ|

∣∣∣(q2b)(φx + ψ + ℓw)ψ′
∣∣∣a2
a1

∣∣∣+ C

|λ|

∣∣∣(q2b)(φx + ψ + ℓw)g2

∣∣∣a2
a1

∣∣∣
≤ C

|λ|

∣∣∣ ∫ a2

a1

enτdτ · (φx + ψ + ℓw)(ψ′)(a2)−
∫ a1

a1
(((((((((((((
enτdτ · (φx + ψ + ℓw)(ψ′)(a1)

∣∣∣
+
C

|λ|

∣∣∣ ∫ a2

a1

enτdτ · (φx + ψ + ℓw)(g2)(a2)−
∫ a1

a1 (((((((((((((
enτdτ · (φx + ψ + ℓw)(g2)(a1)

∣∣∣
≤ Cn

|λ|

∣∣∣(φx + ψ + ℓw)(ψ′)(a2)
∣∣∣+ Cn

|λ|

∣∣∣(φx + ψ + ℓw)(g2)(a2)
∣∣∣dx

Since |λ| > 1, we deduce that 1
|λ|2 <

1
|λ| , and then:

|P (a1, a2)| ≤
Cn

|λ|

∣∣∣(φx + ψ + ℓw)(a2)
∣∣∣2 + Cn

|λ|

∣∣∣ψ′(a2)
∣∣∣2 + Cn

|λ|2
∣∣∣(φx + ψ + ℓw)(a2)

∣∣∣2 + Cn

∣∣∣g2(a2)∣∣∣2
≤ Cn

|λ|

∣∣∣(φx + ψ + ℓw)(a2)
∣∣∣2 + Cn

|λ|

∣∣∣ψ′(a2)
∣∣∣2 + Cn∥g2∥2∞

≤ Cn

|λ|

∣∣∣(φx + ψ + ℓw)(a2)
∣∣∣2 + Cn

|λ|

∣∣∣ψ′(a2)
∣∣∣2 + Cn∥G∥20,L. (2.80)

Now, observing that:

(q1 − q3)(x) =
1

k

∫ x

a1

enτdτ − 1

k0

∫ x

a1

enτdτ =
k − k0
k · k0

∫ x

a1

enτdτ =
k − k0
k · k0

(enx − ena1

n

)

we infer:

(ℓk0 · k)(q1 − q3)(x) = ℓ(k0 − k)
(enx − ena1

n

)
.
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Returning to J13 and using the Young’s inequality, we have that:

|J13| = 2
∣∣∣ ∫ a2

a1

ℓk0 · k(q1 − q3)(x)(φx + ψ + ℓw)(wx − ℓφ)dx
∣∣∣

≤ M

n

∣∣∣ ∫ a2

a1

(enx − ena1)(φx + ψ + ℓw)(wx − ℓφ)dx
∣∣∣

≤ M

n

∫ a2

a1

enx
(
|φx + ψ + ℓw|2 + |wx − ℓφ|2

)
dx. (2.81)

Replacing (2.79)-(2.81) into (2.78), and using the fact that (q1k)(a1) = (q2b)(a1) = (q3k0)(a1)=0,

this estimate becomes:

α0

∫ a2

a1

enx
(
|φx + ψ + ℓw|2 + |φ′|2 + |ψx|2 + |ψ′|2 + |wx − ℓφ|2 + |w′|2

)
dx

≤
∫ a2

a1

(
q1,xk

2|φx + ψ + ℓw|2 + (q1ρ1k)x|φ′|2 + q2,xb
2|ψx|2 + (q2ρ2b)x|ψ′|2

+ q3,xk
2
0|wx − ℓφ|2 + (q3ρ1k0)x|w′|2

)
dx

≤ (q1k)(a2)k|φx + ψ + ℓw|2(a2) + (q1k)(a2)ρ1|φ′|2(a2) + (q2b)(a2)b|ψx|2

+ (q2b)(a2)ρ2|ψ′|2(a2) + (q3k0)(a2)k0|wx − ℓφ|2(a2) + (q3k0)(a2)ρ1|w′|2(a2)

+
Cn

|λ|
|(φx + ψ + ℓw)(a2)|2 +

Cn

|λ|
|ψ′(a2)|2 + Cn∥G∥20,L +

Cn

|λ|
∥V ∥2a1,a2

+ Cn∥V ∥a1,a2 · ∥G∥0,L +
M

n

∫ a2

a1

enx
(
|φx + ψ + ℓw|2 + |wx − ℓφ|2

)
dx

where α0 = min{b, k, k0, ρ1, ρ2}. Taking n0 ∈ N large enough such that:

α0 −
M

n0

> 0

and denoting, for j = 1, 2:

I(aj) = |φx(aj)+ψ(aj)+ℓw(aj)|2+|wx(aj)−ℓφ(aj)|2+|ψx(aj)|2+|φ′(aj)|2+|ψ′(aj)|2+|w′(aj)|2

(2.82)
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We conclude that there exist a constants C, α0 > 0 so that:

Cen0a1∥V ∥2a1,a2 ≤ C · I(a2) +
C

|λ|
∥V ∥2a1,a2 + C∥V ∥a1,a2 · ∥G∥0,L + C∥G∥20,L

Considering |λ| > 1 large enough and using Young’s inequality with ϵ > 0, there exist a constant

C1 > 0 such that:

∥V ∥2a1,a2 ≤ C1 · I(a2) + C1∥G∥20,L.

which concludes (2.69) for j = 2. To conclude (2.68) for j = 2, we recall again the identity

(2.78) and, in view of estimates (2.79)-(2.81), along the assumption that constants b, k, k0, ρ1, ρ2 are

positive, we use the positivity of the terms in (2.78) to estimate I(a2) as:

I(a2) =

∫ a2

a1

(
q1,xk

2|φx + ψ + ℓw|2 + (q1ρ1k)x|φ′|2 + q2,xb
2|ψx|2 + (q2ρ2b)x|ψ′|2

+ q3,xk
2
0|wx − ℓφ|2 + (q3ρ1k0)x|w′|2

)
dx− P (a1, a2)− J10 − J11 − J12 − J13

≤C∥V ∥2a1,a2 + P (a1, a2) + J10 + J11 + J12 + J13

≤C∥V ∥2a1,a2 +
C

|λ|
|(φx + ψ + ℓw)(a2)|2 +

C

|λ|
|ψ′(a2)|2 + C∥G∥20,L +

C

|λ|
∥V ∥2a1,a2

+ C∥V ∥a1,a2 · ∥G∥0,L + Cen0a2∥V ∥2a1,a2

with n0 ∈ N taking previously. Taking |λ| > 1 large enough and using Young’s inequality, there

exist a constant C0 > 0 such that:

I(a2) ≤ C0∥V ∥2a1,a2 + C0∥G∥20,L.

This concludes the proof of (2.68) for j = 2. ■

Step 3. Conclusion of (2.68) and (2.69) for j = 1:

The proof is similar to the case j = 2 with some minimal changes. In fact, we starting choosing
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the functions q1, q2, q3, specifically as:

(q1k)(x) = (q2b)(x) = (q3k0)(x) = −
∫ a2

x

e−nτdτ

for x ∈ [a1, a2] and n ∈ N. Starting at (2.78) we see that J10 = 0 and the estimates (2.79) and

(2.81) follow analogously (for more details, see [11]).

The next step proofs the extension result of the last theorem (Corollary 2.2).

Proof of Corollary 2.2:

From the last theorem, we proved that:

I(aj) ≤ C0∥V ∥2a1,a2 + C0∥G∥20,L

for j = 1, 2. If we considering (a1, a2) = (0, b2) for some 0 < b2 ≤ a2 we have:

I(bj) ≤ C0Λ + C0∥G∥20,L. (2.83)

Taking j = 2, and using the previous estimate, we obtain:

∫ b2

0

(
|φx + ψ + ℓw|2 + |wx − ℓφ|2 + |ψx|2 + |φ′|2 + |ψ′|2 + |w′|2

)
dx

C1 · I(b2) + C1∥G∥20,L ≤ C0 · C1Λ + C1 · C0∥G∥20,L + C1∥G∥20,L

≤ C2Λ + C2∥G∥20,L (2.84)

with C2 = C0 · C1 + C1.

Analogously, using (2.69) with a1 = b2, a2 = L and (2.83) with j = 2. we also obtain:

∫ L

b2

(
|φx+ψ+ℓw|2+ |wx−ℓφ|2+ |ψx|2+ |φ′|2+ |ψ′|2+ |w′|2

)
dx ≤ C2Λ+C2∥G∥20,L (2.85)
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Finally, combining (2.84) and (2.85), there exists a constant C > 0, independent of λ, such that:

∥V ∥20,L ≤ CΛ + C∥G∥20,L ■

Completion the proof of Theorem 2.4:

In order to prove the exponential stability and conclude Theorem 2.4, we will use last results in

this section to show the desired result:

Consider ε > 0 be given. From corollary 2.1, we deduce that:

∫ l0+
δ
2

l0− δ
2

(
|φx + ψ + ℓw|2 + |wx − ℓφ|2 + |ψx|2 + |φ′|2 + |ψ′|2 + |w′|2

)
dx

≤ ε∥y∥2H + Cε∥f∥2H := Λ,

For some constant Cε > 0.

In view of (2.38) - (2.43) the vector function V := (φ, ψ, w, φ′, ψ′, w′)T is a solution of the

system (P ) with G = (g1, g2, g3, g4, g5, g6)
T given above, and the condition of Corollary 2.2 is

verified with

a1 = l0 −
δ

2
and a2 = l0 +

δ

2
.

Thus, since G has terms that depends of f , we can estimate its norm easily by ∥G∥20,L ≤ ∥f∥2H,

and then, by Corollary 2.2, we obtain

∥V ∥20,L ≤ C(ε∥y∥2H + Cε∥f∥2H) + C∥G∥20,L ≤ Cε∥y∥2H + Cε∥f∥2H
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Using the result of Lemma 2.1 and Young’s inequality, we conclude

∥y∥2H ≤ ∥V ∥20,L + σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2

≤ Cε∥y∥2H + Cε∥f∥2H + σ1∥θ1∥2 + σ1∥θ2∥2 + σ1∥θ3∥2

≤ Cε∥y∥2H + Cε∥f∥2H + C∥y∥H · ∥f∥H

≤ ε∥y∥2H + Cε∥f∥2H.

for |λ| > 1 large enough.

Finally, with the aim to prove (2.48), take ε > 0 small enough in the last inequality to reach:

∥y∥2H ≤ C∥f∥2H,

and regarding the resolvent equation (2.37), we conclude:

∥(iλ− A)−1f∥H ≤ C∥f∥H, as |λ| → ∞.

Therefore, we complete the proof of Theorem 2.4 and show the exponential stability of the

Bresse-Fourier system with full thermal coupling. ■
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2.3 Gradient systems

From now on we will study the long time dynamics of the dynamical system associated with

problem (2.1)-(2.9). We say that a dynamical system (H, Tℓ(t)) is gradient if it admits a

Lyapunov function, that is, a functional G : H → R such that G(T (t)y) is non-increasing with

respect to t ≥ 0, for any y ∈ H; and whenever y satisfies

G(T (t)y) = G(y), for t > 0

one has that y is a stationary point (that is T (t)y = y for all t ≥ 0). In this way, we obtain the

next result:

Lemma 2.8. Suppose that conditions (2.25)-(2.29) holds. Then the dynamical system (H, T (t))

is gradient and, the associated Lyapunov functional G satisfies:

G(y) → ∞ if and only if ∥y∥H → ∞ (2.86)

Proof: Let us define the strict Lyapunov function as nonlinear energy of the system (2.30). Given

a y0 ∈ H, the trajectory of this vector is given by:

Gy0(t) = (φ(t), ψ(t), w(t), φ′(t), ψ′(t), w′(t), θ1(t), θ2(t), θ3(t)).

and thus,

G(T (t)y0) =
1

2
∥
(
φ(t), ψ(t), w(t), φ′(t), ψ′(t), w′(t), θ1(t), θ2(t), θ3(t)

)
∥2H

+

∫ L

0

F (φ(t), ψ(t), w(t))dx. (2.87)
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Remembering that semilinear energy is defined as:

E(t) = E(t) +

∫ L

0

F (φ(t), ψ(t), w(t))dx.

Then, from (2.31), the Lyapunov functional satisfies the following estimate:

d

dt
G(T (t)y0) = −γ1∥θ1x(t)∥2 − γ2∥θ2x(t)∥2 − γ3∥θ3x(t)∥2 ≤ 0, (2.88)

Therefore, the functional G is non increasing, for t ≥ 0.

Now suppose that for some y0 ∈ H, the functional is stationary, that is:

G(T (t)y0) = G(y0), t > 0. (2.89)

Then

−γ1∥θ1x(t)∥2 − γ2∥θ2x(t)∥2 − γ3∥θ3x(t)∥2 =
d

dt
G(T (t)y0) =

d

dt
G(y0) = 0

⇒

γ1∥θ1x(t)∥2 + γ2∥θ2x(t)∥2 + γ3∥θ3x(t)∥2 = 0,∀ t > 0.

From which we can deduce that

∥θ1x(t)∥L2 = ∥θ2x(t)∥L2 = ∥θ3x(t)∥L2 = 0 (2.90)

for any t > 0. Now, we gonna use the Poincare’s inequality to obtain

∥θ1(t)∥L2 = ∥θ2(t)∥L2 = ∥θ3(t)∥L2 = 0, (2.91)
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for t > 0. This implies that

θi(x, t) = θix(x, t) = 0. (2.92)

for a.e x ∈ (0, L), and for any t > 0. We conclude then, by continuity of t, that:

d

dt
θi(x, t) = θit(x, t) = 0 (2.93)

for t ≥ 0, and for a.e x ∈ (0, L).

This information is consistent with the fact that the energy remains stationary. In other words,

there is no dissipation in the temperatures. We use this important result to show that kinetic

terms φt, ψt, wt are equal to 0. Observing the third heat equation of the Bresse-Fourier system,

we note that:

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0 ⇒ (ψt)x = 0

for t ≥ 0 and x ∈ (0, L). Here, was used the Schwarz theorem in order to change the derivation

order. From this, we have:

π

L
∥ψt∥ ≤ ∥(ψt)x∥ = 0,

which is valid for all t > 0. Thus:

∥ψt(t)∥L2 = 0, for t ≥ 0.

We conclude then that ψ not depends on t, that is:

ψ(x, t) = ψ(x) in (0, L). (2.94)
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From the fourth equation of the nonlinear system, we can use (2.94) and the fact that temperature

θ1 is stationary, to obtain:

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0 ⇒ (φx + ℓw)t = 0

in (0, L)× (0,∞). Thus:

φx(x, t) + ℓw(x, t) = g1(x). (2.95)

Following the same argument in the fifth equation, we have:

wx(x, t)− ℓφ(x, t) = g2(x). (2.96)

Now, differentiating (2.96) in x, multiplying (2.95) by ℓ and add both equations, we obtain:

wxx(x, t) + ℓ2w(x, t) = g2,x(x) + ℓg1(x) = g3(x)

which represents an non-homogeneous second order ordinary differential equation that does not

depend on t. Then, the last expression can be rewritten as:

wxx(x) + ℓ2w(x) = g3(x). (2.97)

Then, the solution of this ordinary differential equations, give us an function w that does not

depend on t, from where

w(x, t) = w(x).

for x ∈ (0, L) and t > 0.
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Using this information into (2.96), we deduce that

φ(x, t) = φ(x)

for x ∈ (0, L) and t > 0. Combining these last two results with (2.94) and (2.92), we conclude

from assumption (2.89) that:

(φ, ψ, w, φt, ψt, wt, θ
1, θ2, θ3) = (φ(x), ψ(x), w(x), 0, 0, 0, 0, 0, 0).

i.e, the trajectory is stationary.

Remark: We say the temperatures are equal to 0 does not mean that literally is zero, but the

temperature coincides with the surrounding environment which the system is developed.

To show the property (2.86), we use the properties of F and f to show that:

E(t) = E(t) +

∫ L

0

F (φ, ψ, w)dx

≤ ∥y∥2H + CF

∫ L

0

(1 + |φ|p+1 + |ψ|p+1 + |w|p+1)dx

≤ ∥y∥2H + C
(
1 + ∥φ∥p+1

p+1 + ∥ψ∥p+1
p+1 + ∥w∥p+1

p+1

)
Using Sobolev embedding and equivalence of norms, we conclude that:

E(t) ≤ ∥y∥2H + C(1 + ∥y∥p+1
H ) (2.98)

Thus, if G(y) goes to +∞, then ∥y∥H −→ +∞.

Analogously, we see that:

E(t) ≥ 1

2
∥y∥2H −

∫ L

0

mFdx =
1

2
∥y∥2H − LmF
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Therefore:

E(t) + Lmf ≥ 1

2
∥y∥2H (2.99)

Here, if ∥y∥H goes to +∞, the functional G(y) tends to +∞. Finally, (2.86) is showed and the

proof of the lemma is concluded. ■
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2.4 Global attractors

2.4.1 Quasi-stability

In order to prove the existence of a global attractor for the Bresse-Fourier system, we must have

a criteria of asymptotic compactness. The method of quasi-stability of Chueshov and Lasiecka

has become a useful tool when demonstrating asymptotic compactness and other proprieties of

dynamical system generated by wave type PDEs.

In simply words, the theory is applicable when the difference of two solutions (trajectories), in

any bounded set that is forward invariant, is limited by a stable term and a compact term.

Lets start taking a bounded forward invariant set B ⊂ H. Given yi ∈ B the corresponding

solution trajectory is denoted by

T (t)yi =
(
φi(t), ψi(t), wi(t), φi

t(t), ψ
i
t(t), w

i
t(t), θ

1,i(t), θ2,i(t), θ3,i(t)
)
, (2.100)

for t ≥ 0, i = 1, 2. The difference of this solutions is written by

φ = φ1 − φ2, ψ = ψ1 − ψ2, w = w1 − w2, θk = θk,1 − θk,2, k = 1, 2, 3.

By the results in [27], the quasi-stability property reduces to show the following estimate:

∥T (t)y1 − T (t)y2∥2H

≤ CBe
−at∥y1 − y2∥2H +KB sup

0≤s≤t

(
∥φ(s)∥2p+2 + ∥ψ(s)∥2p+2 + ∥w(s)∥2p+2

)
(2.101)

for t > 0, where CB, KB are positive constants depending on B.

Theorem 2.6. Suppose the conditions (2.25)-(2.29) hold. Then, the dynamical system (H, T (t))

associated with (2.1)-(2.9) is quasi-stable on every bounded forward invariant set B ⊂ H, that

is, satisfies the condition (2.101).
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The proof of this theorem will use the result of exponential stability proved in the previous

sections. Taking the difference of the solutions mentioned above, and by the corresponding

notations, taking (φ, ψ,w) = (φ1, ψ1, w1)− (φ2, ψ2, w2), we use the following notation:

Fi(φ, ψ,w) = fi(φ
1, ψ1, w1)− fi(φ

2, ψ2, w2), i = 1, 2, 3.

Then the difference (φ, ψ,w, φt, ψt, wt, θ
1, θ2, θ3) is the solution of:

ρ1φtt − k(φx + ψ + ℓw)x − ℓk0(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 = −F1(φ, ψ,w),

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 = −F2(φ, ψ,w),

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 = −F3(φ, ψ,w),

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0,

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0,

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0,

with boundary conditions and initial condition:

(φ(0), ψ(0), w(0), φt(0), ψt(0), wt(0), θ
1(0), θ2(0), θ3(0)) = y1 − y2.

Since the homogeneous Bresse-Fourier system is exponentially stable, we have from the parame-

ter variation formula that:

∥T (t)y1 − T (t)y2∥2H ≤ 2∥S(t)y1 − S(t)y2∥2H + 2
∥∥∥∫ t

0
S(t− s)

[
F(y1(s))−F(y2(s))

]
ds
∥∥∥2
H

≤ CBe
−at∥y1 − y2∥2H + CB

∫ t

0
e−a(t−s)∥F(y1(s))−F(y2(s))∥2Hds. (2.102)

Where it was used the fact that the semigroup solution for the linear problem S(t) is exponentially
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stable. By definition of F , and hypotheses on fi, we have that:

∥F(y1)−F(y2)∥2H ≤ C

∫ L

0

|F1(φ, ψ,w)|2 + |F2(φ, ψ, w)|2 + |F3(φ, ψ,w)|2dx

≤ C

∫ L

0

|∇f1|2|(φ, ψ,w)|2dx+ C

∫ L

0

|∇f2|2|(φ, ψ,w)|2dx

+ C

∫ L

0

|∇f3|2|(φ, ψ,w)|2dx

where ∇fi = (1 + |φ1|p−1 + |ψ1|p−1 + |w1|p−1 + |φ2|p−1 + |ψ2|p−1 + |w2|p−1).

Applying Holder’s inequality for p, and since both of trajectories are bounded on B, we can

estimate all of terms ∇fi by a constant that depends on B. Thus:

∥F(y1)−F(y2)∥2H ≤ kB
[
∥φ∥2p + ∥ψ∥2p + ∥w∥2p

]
Then, back into (2.102), we see that:

∥T (t)y1 − T (t)y2∥2H ≤ CBe
−at∥y1 − y2∥2H

+ CB · kB
∫ t

0
e−a(t−s)

[
∥φ(s)∥2p + ∥ψ(s)∥2p + ∥w(s)∥2p

]
ds

≤ CBe
−at∥y1 − y2∥2H

+ CBkB sup
0≤s≤t

[
∥φ(s)∥2p + ∥ψ(s)∥2p + ∥w(s)∥2p

] ∫ t

0
e−a(t−s)ds

≤ CBe
−at∥y1 − y2∥2H

+
CBkB
a

sup
0≤s≤t

[
∥φ(s)∥2p + ∥ψ(s)∥2p + ∥w(s)∥2p

]
ds

= CBe
−at∥y1 − y2∥2H +KB sup

0≤s≤t

[
∥φ(s)∥2p + ∥ψ(s)∥2p + ∥w(s)∥2p

]
which proves estimate (2.101) and finishes the proof. ■

In the next, we will show an important estimate for stationary solutions of problem (2.1)-(2.9) in

order to conclude the proof for existence of a global attractor.
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Lemma 2.9. The set Nℓ of stationary solutions of problem (2.1)-(2.9) is bounded.

Proof: We start taking y ∈ Nℓ. Then, it has the form y = (φ, ψ,w, 0, 0, 0, θ1, θ2, θ3) with the

property , θ1t = θ2t = θ3t = 0. With this, for y ∈ (0, L), it satisfies:

−k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 + f1(φ, ψ,w) = 0,

−bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + f2(φ, ψ,w) = 0,

−k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 + f3(φ, ψ,w) = 0,

−γ1θ1xx = 0,

−γ2θ2xx = 0,

−γ3θ3xx = 0. (2.103)

Here, we deduce from the last three equations that θi(x) = aix+ bi, for i = 1, 2, 3. Adding the

boundary conditions on the temperature, we conclude that:

θ1(x) = θ2(x) = θ3(x) = 0, for x ∈ (0, L).

This information allow us to reduce the last system into:

−k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) = −f1(φ, ψ,w), (2.104)

−bψxx + k(φx + ψ + ℓw) = −f2(φ, ψ,w), (2.105)

−k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) = −f3(φ, ψ,w). (2.106)

Multiplying the equations (2.104),(2.105), (2.106) by φ, ψ, w respectively, and integrating over

[0, L], we obtain
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∫ L

0

(
bψ2

x + k(φx + ψ + ℓw) + k0(wx − ℓφ)
)
dx

= −
∫ L

0

(
f1(φ, ψ,w)φ+ f2(φ, ψ,w)ψ + f3(φ, ψ, w)w

)
dx

Then, using the conditions about f and F , and the fact that ∥θi∥L2 = 0, for i = 1, 2, 3, the last

equation turns into:

∥y∥2H = k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2

≤ −
∫ L

0

∇F (φ, ψ,w) · (φ, ψ, w)dx

≤ −
∫ L

0

F (φ, ψ, w)dx+ Lmf

≤ 2LmF .

Therefore, Nℓ is bounded in H. ■

Finally, with the results of Lemma 2.8, Theorem 2.6 and Lemma 2.9, we are in position to state

our main theorem of this chapter:

Theorem 2.7. Under the hypotheses (2.25)-(2.29), for each ℓ > 0, the dynamical system

(H, T (t)) generated bye the nonlinear problem (2.32) has a finite dimension global attractor Aℓ.

In addition, it is characterized by

Aℓ = M+(Nℓ),

where M+(Nℓ) is the unstable manifold emanating from Nℓ, the set of stationary points of T (t).

Proof: Throughout this chapter we have explored the property of quasi-stable systems for

a Bresse-Fourier system with full thermal coupling. Therefore, by [27, Theorem 4.1], it is

asymptotically smooth. Furthermore, we have also proved that the system is gradient, satisfies
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(2.86) and the set of stationary points is bounded. Thus, a classical result states that (H, T (t))

has a global attractor Aℓ which coincides with the unstable manifold emanating from Nℓ (see

references [27]).■

Remark: We note that the global attractor obtained from Theorem 2.7 has further standard

properties, for instance, Aℓ ⊂ D(A) and it is upper semi-continuous with respect to ℓ. Indeed

they are consequences of the quasi-stability estimate (Theorem 2.6). See Chueshov and Lasiecka

[15, Chapter 7].
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Chapter 3

A thermoelastic Bresse system with delay

3.1 Introduction

The presence of a time delay arises very frequently in many physical, economic, chemical,

biological and thermal phenomena. It is well known that delay terms in the system may generate

exponential instability [5], so various methods have been investigated in order to resolve and

control this term [28]. One of the most known techniques is to insert a frictional dissipation

within the delay term in the internal feedback, or equations with past memory terms. In both of

cases, "small" delays can be controlled by the dissipation and the stability is guaranteed [5].

In this chapter, we deal with a similar model to (2.10)-(2.15), but adding a delay term in the shear

angle (2.12), and considering different boundary conditions, and we will show that, under certain

conditions for the parameter ℓ, we can still obtain a result of exponential stability, regardless of

the wave speed condition [27]. In other words, we will prove that, using the multiplier method,

the dissipation induced by Fourier’s laws are sufficiently strong as to stabilize the thermal Bresse

system, in the presence of a "small" delay.
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3.2 Well-posedness

In this section we will obtain the existence and uniqueness result for the following system with

delay term in the internal feedback:

ρ1φtt − k(φx + ψ + ℓw)x − ℓk0(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 = 0, (3.1)

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + µψt(x, t− τ) = 0, (3.2)

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 = 0, (3.3)

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0, (3.4)

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0, (3.5)

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0, (3.6)

where all equations are defined in (0, L)×R+, and φ, ψ,w are subject to the Dirichlet-Neumann-

Neumann boundary conditions:

φ(0, t) = φ(L, t) = ψx(0, t) = ψx(L, t) = wx(0, t) = wx(L, t) = 0, t ≥ 0. (3.7)

The thermal terms have the Neumann-Dirichlet-Dirichlet boundary conditions:

θ1x(0, t) = θ1x(L, t) = θ2(0, t) = θ2(L, t) = θ3(0, t) = θ3(L, t) = 0, t ≥ 0, (3.8)

with initial data, for i = 1, 2, 3:

φ(x, 0) = φ0(x); ψ(x, 0) = ψ0(x); w(x, 0) = w0(x); θi(x, 0) = θi0(x);

φt(x, 0) = φ1(x); ψt(x, 0) = ψ1(x); wt(x, 0) = w1(x). (3.9)
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The delay’s condition is given as follows:

ψt(x, t− τ) = g0(x, t− τ) in (0, L)× (0, τ), (3.10)

where g0 represents a history function. The relevance of this new variable lies in the fact that the

function ψt cannot represent the effect of the values of t in the past (more specifically, values of

t with a delay of τ ), and we need to describe the events of the past through a function, since the

effects of the changes are not felt immediately.

3.2.1 Construction of the phase space H

Let start with a introduction of a new dependent variable for the delay:

z(x, ρ, t) := ψt(x, t− ρτ), for (x, ρ, t) ∈ (0, L)× (0, 1)× R+.

A simple derivation tell us that z satisfies:

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in (0, L)× (0, 1)× R+,

with the following proprieties:

z(x, 0, t) = ψt(x, t) =: ψt, (x, t) ∈ (0, L)× R+, (3.11)

z(x, 1, t) = ψt(x, t− τ), (x, t) ∈ (0, L)× R+, (3.12)

z(x, ρ, 0) = g0(x,−ρτ), (x, ρ) ∈ (0, L)× (0, 1). (3.13)
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With this new hypotheses, we have the following new system:

ρ1φtt − k(φx + ψ + ℓw)x − ℓk0(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 = 0, (3.14)

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + µz(x, 1, t) = 0, (3.15)

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 = 0, (3.16)

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0, (3.17)

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0, (3.18)

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0, (3.19)

τzt + zρ = 0, (3.20)

where the conditions (3.7)-(3.9) are preserved. The condition (3.13), that refers to the delay, is

also added to the system.

In the same way as in the previous chapter, we multiply each equation of the system by φt, ψt, wt,

θ1, θ2, θ3, and µz(x, ρ, ·), respectively. The last equation (3.20) and the condition (3.11) give us

d

dt

(1
2
µτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx
)
= −µ

∫ L

0

∫ 1

0

zρ(x, ρ, t)z(x, ρ, t)dρdx

= −µ
(1
2

∫ L

0

|z(x, 1, t)|2dx− 1

2

∫ L

0

|z(x, 0, t)|2dx
)

=
µ

2

∫ L

0

|ψt(x, t)|2dx−
µ

2

∫ L

0

|z(1)|2dx.

From the second equation (3.15), since we have the presence of the delay, the identity results

into:

ρ2

∫ L

0

ψttψtdx+ b

∫ L

0

ψx(ψx)t + k

∫ L

0

(φx + ψ + ℓw)(ψt)dx

+m3

∫ L

0

θ3x · ψtdx−m1

∫ L

0

θ1 · ψtdx+ µ

∫∫∫ L

0

z(1) ·ψtdx = 0
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Thus, after similar calculations to the previous chapter, and using the news results, we obtain

d

dt

1

2

(
k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2 + µτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx
)

=−
(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
− µ

∫ L

0

z(1) · ψtdx

+
µ

2

∫ L

0

|ψt(x, t)|2dx−
µ

2

∫ L

0

|z(1)|2dx. (3.21)

Using Hölder and Young inequalities, we obtain:

d

dt

1

2

(
k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2 + µτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx
)

≤−
(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
+
µ

2

∫ L

0

|z(1)|2dx+ µ

2

∫ L

0

|ψt|2dx

+
µ

2

∫ L

0

|ψt(x, t)|2dx−
µ

2

∫ L

0

|z(1)|2dx

=−
(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
+ µ∥ψt∥2.

Defining the linear energy as:

E(t) =
1

2

(
k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2 + µτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx
)
, (3.22)

we arrive at:

d

dt
E(t) ≤ −

(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
+ µ∥ψt∥2. (3.23)
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Same as Chapter 2, we need to choose an appropriate space to energy make sense. First, we

need to highlight the presence of a new variable within the energy, that is, z(x, ρ, t). Since this

variable tells that for each ρ ∈ [0, 1], the function z(x, ·, t) is in L2(0, L), the appropriate space

for this variable is defined by:

L2
(
[0, 1];L2

∗(0, L)
)

On this form, and due to the boundary conditions given before, we define the phase space H:

H := H1
0 (0, L)×(H1

∗ (0, L))
2×L2(0, L)×(L2

∗(0, L))
2×L2

∗(0, L)×(L2(0, L))2×L2
(
[0, 1];L2(0, L)

)
where L2

∗(0, L) and H1
∗ (0, L) are Banach spaces defined as:

L2
∗(0, L) := {u ∈ L2(0, L),

∫ L

0

u(x)dx = 0}.

H1
∗ (0, L) := H1(0, L) ∩ L2

∗(0, L).

Thus, for a vector y(t) = (φ(t), ψ(t), w(t), φt(t), ψt(t), wt(t), θ
1(t), θ2(t), θ3(t), z(·, t)) in H,

the norm induced by this space is defined as:

∥y∥2H := k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2 + µτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx. (3.24)

Additionally, we define de usual norm by:

∥y∥2 := ∥φx∥2 + ∥ψx∥2 + ∥wx∥2 + ∥φt∥2 + ∥ψt∥2 + ∥wt∥2 + ∥θ1∥2 + ∥θ2∥2 + ∥θ3∥2

+

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx. (3.25)

Lemma 3.1. For each ℓ > 0 with ℓ ̸= nπ
L

, norms (3.24) and (3.25) are equivalents, which

constants η1 and η2 dependents of ℓ.
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From (3.24), we can easily deduce that:

E(t) =
1

2
∥y∥2H.

An important observation about the estimate (3.23) is that we cannot conclude that energy is

decreasing, because the presence of delay.

Thus, similar to [5], we introduce the vector function:

y(t) =
(
φ(t), ψ(t), w(t), φ′(t), ψ′(t), w′(t), θ1(t), θ2(t), θ3(t), z(·, t)

)
where φ′ = φt, ψ′ = ψt and w′ = wt.

In order to prove the existence of a solution for the problem (3.14)-(3.20), with boundary-initial

conditions (3.7)-(3.9), and condition (3.13), we use the semigroup theory via Lumer-Phillips

theorem, and construct an unbounded operator with the monotonicity property (see [5]). Unlike

the Chapter 2, the presence of the delay does not allow to define an unbounded operator A such

that it be monotone. Then, motivated by the argument explained by Nicasse and Pignotti ([28]),

we add and subtract a frictional damping type term µψ′ in the equation (3.15). Then, the system

(3.14)-(3.20), with conditions (3.7)-(3.9), and n (3.13) can be rewritten as:

d

dt
y(t) + [A+B]y(t) = 0, t > 0, (3.26)

y(0) = y0.

with y0 =
(
φ0, ψ0, w0, φ1, ψ1, w1, θ

1
0, θ

2
0, θ

3
0, g0

)
, and the operator A : D(A) ⊂ H → H is

defined by:
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A



φ

ψ

w

φ′

ψ′

w′

θ1

θ2

θ3

z



=



−φ′

−ψ′

−w′

−
( k
ρ1

(φx + ψ + ℓw)x +
k0ℓ

ρ1
(wx − ℓφ)− m1

ρ1
θ1x −

m2ℓ

ρ1
θ2
)

−
( b

ρ2
ψxx −

k

ρ2
(φx + ψ + ℓw)− m3

ρ2
θ3x +

m1

ρ2
θ1
)
+
µ

ρ2
ψ′ +

µ

ρ2
z(1)

−
(k0
ρ1

(wx − ℓφ)x −
kℓ

ρ1
(φx + ψ + ℓw)− m2

ρ1
θ2x +

ℓm1

ρ1
θ1
)

−
(γ1
σ1
θ1xx −

m1

σ1
(φ′

x + ψ′ + ℓw′)
)

−
(γ2
σ2
θ2xx −

m2

σ2
(w′

x − ℓφ′)
)

−
(γ3
σ3
θ3xx −

m3

σ3
(ψ′

x)
)

1

τ
zρ


and the operator B : D(B) = H → H is defined by:

By(t) =
µ

ρ2



0

0

0

0

−ψ′

0

0

0

0

0



.

The domain of A is defined by

D(A) =
{
y ∈ H| φ ∈ H2(0, L) ∩H1

0 (0, L); ψ,w ∈ H2(0, L) ∩H1
∗ (0, L),

φ′, θ2, θ3 ∈ H1
0 (0, L); ψ

′, w′, θ1 ∈ H1
∗ (0, L)

z, zρ ∈ L2((0, 1);L2(0, L)), z(x, 0) = ψ′(x)
}
.
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Chapter 3. A thermoelastic Bresse system with delay Well-posedness

From [5], D(A) is dense in H. Therefore, we have the following existence and uniqueness result:

Theorem 3.1. Let y0 ∈ H. Then there exists a local solution y ∈ C ([0, Tmax];H) for the Cauchy

problem (3.26). Moreover, if y0 ∈ D(A), then y ∈ C1([0, Tmax];D(A)), with Tmax <∞.

Proof: We use the semigroup theory using the characterization of maximal monotone operators

[27]. So, we prove that A is a maximal monotone operator and that B is a Lipschitz continuous

operator. In what follows, we show that A is monotone. In that way, we use the information

about the unbounded operator from the last chapter to see that:

⟨Ay, y⟩ = γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2 + µ

∫ L

0
|ψ′|2dx+ µ

∫ L

0
z(1) · ψ′dx+ µ

∫ L

0

∫ 1

0
zzρdρdx.

We use the Young’s inequality to show that the fifth term in the last identity gives

−µ
∫ L

0

z(1) · ψ′dx ≤ µ

2

∫ L

0

z2(1)dx+
µ

2

∫ L

0

(ψ′)2dx,

which implies the following inequality

µ

∫ L

0

z(1) · ψ′dx ≥ −µ
2

∫ L

0

z2(1)dx− µ

2

∫ L

0

(ψ′)2dx.

For the last term, we use integration by parts and the fact that z(x, 0, t) = ψ′(x, t) to deduce that:

∫ L

0

∫ 1

0

zzρdρdx =
1

2

∫ L

0

z2(1)dx− 1

2

∫ L

0

(ψ′)2dx

Consequently, ⟨Ay, y⟩ is estimated by:

⟨Ay, y⟩ ≥ γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2 ≥ 0. (3.27)

Therefore, A is monotone. Next, we prove that operator I + A is surjective, where I : H → H

means the identity operator. In other words, given G = (g1, ..., g10) ∈ H we prove that there
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exists y ∈ D(A) satisfying:

(I + A)y = G, (3.28)

That is:

−φ′ + φ = g1 (3.29)

−ψ′ + ψ = g2 (3.30)

−w′ + w = g3 (3.31)

−
( k
ρ1

(φx + ψ + ℓw)x +
k0ℓ

ρ1
(wx − ℓφ)− m1

ρ1
θ1x −

m2ℓ

ρ1
θ2
)
+ φ′ = g4 (3.32)

−
( b

ρ2
ψxx −

k

ρ2
(φx + ψ + ℓw)− m3

ρ2
θ3x +

m1

ρ2
θ1
)
+
µ

ρ2
ψ′ +

µ

ρ2
z(1) + ψ′ = g5 (3.33)

−
(k0
ρ1

(wx − ℓφ)x −
ℓk

ρ1
(φx + ψ + ℓw)− m2

ρ1
θ2x +

ℓm1

ρ1
θ1
)
+ w′ = g6 (3.34)

−
(γ1
σ1
θ1xx −

m1

σ1
(φ′

x + ψ′ + ℓw′)
)
+ θ1 = g7 (3.35)

−
(γ2
σ2
θ2xx −

m2

σ2
(w′

x − ℓφ′)
)
+ θ2 = g8 (3.36)

−
(γ3
σ3
θ3xx −

m3

σ3
(ψ′

x)
)
+ θ3 = g9 (3.37)

1

τ
zρ + z = g10. (3.38)

Following a similar procedure as [5], we start the proof assuming φ, ψ,w, θ1, θ2 and θ3 are given

with the appropriate regularity. Thus, from equations (3.29),(3.30) and (3.31), we obtain:

φ′ = φ− g1 ∈ H1
0 (0, L), (3.39)

ψ′ = ψ − g2 ∈ H1
∗ (0, L), (3.40)

w′ = w − g3 ∈ H1
∗ (0, L). (3.41)
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Chapter 3. A thermoelastic Bresse system with delay Well-posedness

The tenth equation (3.38) together with the (3.40) and the fact that z(x, 0) = ψ′, give us :

z(x, ρ) = ψ(x)e−τρ − e−τρg2(x) + τe−τρ

∫ ρ

0

eτsg10(x, s)dx ∈ L2
∗(0, L). (3.42)

Then, we use the above results to reduce our system to:

−
( k
ρ1

(φx + ψ + ℓw)x +
k0ℓ

ρ1
(wx − ℓφ)− m1

ρ1
θ1x −

ℓm2

ρ1
θ2
)
+ φ = g4 + g1,

−
( b

ρ2
ψxx −

k

ρ2
(φx + ψ + ℓw)− m3

ρ2
θ3x +

m1

ρ2
θ1
)
+
µ

ρ2
ψ − µ

ρ2
g2 +

µ

ρ2
z(1) + ψ = g5 + g2,

−
(k0
ρ1

(wx − ℓφ)x −
ℓk

ρ1
(φx + ψ + ℓw)− m2

ρ1
θ2x +

ℓm1

ρ1
θ1
)
+ w = g6 + g3,

−
(γ1
σ1
θ1xx −

m1

σ1
(φx + ψ + ℓw)

)
− m1

σ1

(
g1,x + g2 + ℓg3

)
+ θ1 = g7,

−
(γ2
σ2
θ2xx −

m2

σ2
(wx − ℓφ)

)
− m2

σ2

(
g3,x − ℓg1

)
+ θ2 = g8,

−
(γ3
σ3
θ3xx −

m3

σ3
(ψx)

)
− m3

σ3
g2,x + θ3 = g9.

Thus, φ, ψ,w, θ1, θ2 and θ3 satisfying the following system:

−k(φx + ψ + ℓw)x − k0ℓ(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 + ρ1φ = h1 ∈ L2(0, L),

−bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + µ̃ψ = h2 ∈ L2
∗(0, L),

−k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 + ρ1w = h3 ∈ L2
∗(0, L),

−γ1θ1xx +m1(φx + ψ + ℓw) + σ1θ
1 = h4 ∈ L2

∗(0, L),

−γ2θ2xx +m2(wx − ℓφ) + σ2θ
2 = h5 ∈ L2(0, L),

−γ3θ3xx +m3(ψx) + σ3θ
3 = h6 ∈ L2(0, L), (3.43)
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where

µ̃ = µ+ ρ2 + µe−τ

h1 = ρ1(g4 + g1)

h2 = µ̃g2 + ρ2g5 − µτe−τ

∫ 1

0

e−τsg10ds

h3 = ρ1(g6 + g3)

h4 = σ1g7 +m1(g1,x + g2 + ℓg3)

h5 = σ2g8 +m2(g3,x − ℓg1)

h6 = σ2g9 +m3(g2,x).

The variational formulation corresponding to the above system takes the form:

B(v, ṽ) = F(ṽ). (3.44)

where v = (φ, ψ,w, θ1, θ2, θ3), and ṽ = (φ̃, ψ̃, w̃, θ̃1, θ̃2, θ̃3), B is the bilinear form defined by:

B :
[
H1

0 (0, L)×H1
∗ (0, L)×H1

∗ (0, L)× L2
∗(0, L)× L2(0, L)× L2(0, L)

]
−→ R

B :=k

∫ L

0
(φx + ψ + w)(φ̃x + ψ̃ + w̃)dx+ k0

∫ L

0
(wx − ℓφ)(w̃x − ℓφ̃)dx+ b

∫ L

0
ψxψ̃xdx

+ ρ1

∫ L

0
φφ̃dx+ µ̃

∫ L

0
ψψ̃dx+ ρ1

∫ L

0
ww̃dx+ σ1

∫ L

0
θ1θ̃1dx+ σ2

∫ L

0
θ2θ̃2dx

+ σ3

∫ L

0
θ3θ̃3dx+ γ1

∫ L

0
θ1xθ̃

1
xdx+ γ2

∫ L

0
θ2xθ̃

2
xdx+ γ3

∫ L

0
θ3xθ̃

3
xdx

−m1

∫ L

0
θ1(φ̃x + ψ̃ + w̃)dx−m2

∫ L

0
θ2(w̃x − ℓφ̃)dx−m3

∫ L

0
θ3ψ̃xdx

+m1

∫ L

0
(φx + ψ + w)θ̃1dx+m2

∫ L

0
(wx − ℓφ)θ̃2dx+m3

∫ L

0
ψxθ̃

3dx.
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Chapter 3. A thermoelastic Bresse system with delay Well-posedness

and F :
[
H1

0 (0, L) × H1
∗ (0, L) × H1

∗ (0, L) × L2
∗(0, L) × L2(0, L) × L2(0, L)

]
−→ R is a

functional satisfying:

F(ṽ) =

∫ L

0

h1φ̃dx+

∫ L

0

h2ψ̃dx+

∫ L

0

h3w̃dx+

∫ L

0

h4θ̃1dx+

∫ L

0

h5θ̃2dx+

∫ L

0

h6θ̃3dx.

The norm for V := H1
0 (0, L)×H1

∗ (0, L)×H1
∗ (0, L)×L2

∗(0, L)×L2(0, L)×L2(0, L), is given

by:

∥v∥2V = ∥φx + ψ + w∥2 + ∥ψx∥2 + ∥wx − ℓφ∥2 + ∥θ1x∥2 + ∥θ2x∥2 + ∥θ3x∥2.

Thus, if ℓ ̸= nπ
L

, and using Holder,Young and Poincare’s inequalities, one can see easily that B

and F are bounded. Also, we see that:

B(v, v) =k

∫ L

0
|φx + ψ + w|2dx+ k0

∫ L

0
|wx − ℓφ|2dx+ b

∫ L

0
|ψx|2dx

+ ρ1

∫ L

0
|φ|2dx+ µ̃

∫ L

0
|ψ|2dx+ ρ1

∫ L

0
|w|2dx

+ σ1

∫ L

0
|θ1|2dx+ σ2

∫ L

0
|θ2|2dx+ σ3

∫ L

0
|θ3|2dx

+ γ1

∫ L

0
|θ1x|2dx+ γ2

∫ L

0
|θ2x|2dx+ γ3

∫ L

0
|θ3x|2dx ≥ C

∥∥v∥∥2
V
.

Thus, B is coercive. Consequently, by Lax-Milgram theorem, the system (3.43) has a unique

solution v ∈ V . Moreover, by elliptic regularity (see [7]), we can show additionally that

y ∈ D(A). Therefore, A is maximal. With this, we conclude that A is an maximal monotone

operator. On the other hand, by definition of the operator B, it is Lipschitz continuous. Finally,

by the results in [27, 30], the operator A is the infinitesimal generator of a C0-semigroup of

contractions on H. Hence, the existence of a local solution is guaranteed ([5]). ■

In order to proof the existence for a global solution, we need to show that the behavior of the

local solution y(t), for t large, is controlled. More specifically, we will proof the exponential

stability of the solution, so that the solution is limited and thus, Tmax = +∞.
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Exponential stability

3.3 Global solution and exponential stability

In this section we discuss the asymptotic behavior of the solution for system (3.14)-(3.20).

Remembering that he energy functional associated to this system was defined by:

E(t) =
1

2

(
k∥φx + ψ + ℓw∥2 + k0∥wx − ℓφ∥2 + b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+σ1∥θ1∥2 + σ2∥θ2∥2 + σ3∥θ3∥2 + µτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx
)
.

An important remark about the energy is the fact that, by previous computations, is not decreasing

at all, that is:

E ′(t) ≤ −γ1∥θ1x∥2 − γ2∥θ2x∥2 − γ3∥θ3x∥2 + µ∥ψt∥2 ≰ 0.

However, we can state a stability result through the following theorem:

Theorem 3.2. Let y(t) a solution for the system (3.14)-(3.20), with conditions (3.7)-(3.9) and

(3.13), and assume that ℓ ̸= nπ
L

. For ℓ > 0 small enough, the solution is global and we have that:

E(t) ≤ KE(0)e−αt, ∀t ≥ 0, (3.45)

where α,K are two positive constants.

To establish the proof of Theorem 3.2, we will make use of the multiplier method, so we need

several lemmas.

Lemma 3.2. Let y(t) be the solution of (3.26). Then the energy functional, defined by (3.22),

satisfies

d

dt
E(t) ≤ −

(
γ1∥θ1x∥2 + γ2∥θ2x∥2 + γ3∥θ3x∥2

)
+ µ∥ψt∥2, (3.46)

for all t ∈ [0, Tmax).
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Chapter 3. A thermoelastic Bresse system with delay Exponential stability

Proof: Immediately from (3.23).

Remark: We see from the last inequality that energy is non decreasing in general. Thus, the

system (3.26) is not necessarily dissipative.

Lemma 3.3. Consider y(t) be the solution of (3.26). Then the functional

F1(t) =

∫ L

0

(ρ1φφt + ρ2ψψt + ρ1wwt) dx

satisfies, for all t ∈ [0, Tmax), the following estimate:

F ′
1(t) ≤− k

2
∥φx + ψ + ℓw∥2 − k0

2
∥wx − ℓφ∥2 − b

2
∥ψx∥2

+ ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2 + c1∥θ1x∥2 + c1∥θ2x∥2 + c1∥θ3x∥2 + c1µ
2∥z(1)∥2.

(3.47)

Proof: Taking the derivative in t for F1(t), and using (3.14), (3.15) and (3.16), we see that:

F ′
1(t) = ρ1

∫ L

0
|φt|2dx+ ρ2

∫ L

0
|ψt|2dx+ ρ1

∫ L

0
|wt|2dx

+ k

∫ L

0
(φx + ψ + ℓw)xφdx+ k0

∫ L

0
(wx − ℓφ)φdx−m1

∫ L

0
θ1xφdx+ ℓm2

∫ L

0
θ2φdx

+ b

∫ L

0
ψxxψdx− k

∫ L

0
(φx + ψ + ℓw)ψdx−m2

∫ L

0
θ3xψdx+m1

∫ L

0
θ1ψdx− µ

∫ L

0
z(1)ψdx

+ k0

∫ L

0
(wx − ℓφ)xwdx− kℓ

∫ L

0
(φx + ψ + ℓw)wdx−m2

∫ L

0
θ2xwdx+ ℓm2

∫ L

0
θ1wdx

= − k∥φx + ψ + ℓw∥2 − k0∥wx − ℓφ∥2 − b∥ψx∥2 + ρ1 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

−m1

∫ L

0
θ1xφdx+m1

∫ L

0
θ1ψdx+m1

∫ L

0
θ1(ℓw)dx

−m2

∫ L

0
θ2xwdx+ ℓm2

∫ L

0
θ2φdx−m3

∫ L

0
θ3xψdx− µ

∫ L

0
z(1)ψdx.

Here, we use integration by parts, boundary conditions (3.7) and (3.8), and several inequalities,
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to show that:

F ′
1(t) = − k∥φx + ψ + ℓw∥2 − k0∥wx − ℓφ∥2 − b∥ψx∥2 + ρ1 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+m1

∫ L

0
θ1(φx + ψ + ℓw) dx+m2

∫ L

0
θ2(wx − ℓφ)dx+m3

∫ L

0
θ3ψxdx− µ

∫ L

0
z(1)ψdx.

≤ − k∥φx + ψ + ℓw∥2 − k0∥wx − ℓφ∥2 − b∥ψx∥2 + ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2

+
k

2
∥φx + ψ + ℓw∥2 + k0

2
∥wx − ℓφ∥2 + b

4
∥ψx∥2 + c1µ

2∥z(1)∥2 + b

4
∥ψx∥2

+ c1∥θ1x∥2 + c1∥θ2x∥2 + c1∥θ3x∥2.

Thus:

F ′
1(t) ≤−

k

2
∥φx +ψ+ ℓw∥2 −

k0

2
∥wx − ℓφ∥2 −

b

2
∥ψx∥2

+ ρ1∥φt∥2 + ρ2∥ψt∥2 + ρ1∥wt∥2 + c1∥θ1x∥2 + c1∥θ2x∥2 + c1∥θ3x∥2 + c1µ
2∥z(1)∥2.

where c1 is a constant that have no relevance in the estimates. Terms in bold are important and

their importance will be explained in detail later.

Lemma 3.4. Consider y(t) a solution from Cauchy problem (3.26), and define:

F2(t) = −ρ1σ2
m2

∫ L

0

θ2
( ∫ x

0

wtdy
)
dx.

Thus, the functional satisfies, for all ε2, ε̄2 > 0, and t ∈ [0, Tmax), the following estimate:

F ′
2(t) ≤− ρ1

2
∥wt∥2 + ρ1Lℓ

2∥φt∥2 + ε2∥wx − ℓφ∥2 + ε2∥φx + ψ + ℓw∥2

+ c2(1 +
1

ε2
+

1

ε̄2
)∥θ2x∥2 + c2∥θ1x∥2. (3.48)
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Proof: Using equations (3.16) and (3.18), and integration by parts, we have that:

F ′
2(t) =

ρ1
m2

∫ L

0

(−σ2θ2t )
(∫ x

0

wtdy
)
dx+

σ2
m2

∫ L

0

θ2
(∫ x

0

(−ρ1wtt)dy
)
dx

=− ρ1γ2
m2

∫ L

0

θ2xx

∫ x

0

wtdydx+
ρ1m2

m2

∫ L

0

(wx − ℓφ)t

(∫ x

0

wtdy
)
dx

− σ2k0
m2

∫ L

0

θ2
(∫ x

0

(wx − ℓφ)xdy
)
dx+

σ2
m2

∫ L

0

θ2
(∫ x

0

kℓ(φx + ψ + ℓw)dy
)
dx

+
σ2m2

m2

∫ L

0

θ1
(∫ x

0

θ2xdy
)
dx− σ2m1ℓ

m2

∫ L

0

θ1
(∫ x

0

θ1dy
)
dx

=
ρ1γ2
m2

∫ L

0

θ2xwtdx+ ρ1

∫∫∫ L

0

wxt

(∫∫∫ x

0

wtdy
)
dx− ρ1ℓ

∫ L

0

φt

(∫ x

0

wtdy
)
dx

− σ2k0
m2

∫ L

0

θ2(wx − ℓφ)dx+
σ2kℓ

m2

∫ L

0

θ2
(∫ x

0

(φx + ψ + ℓw)dy
)
dx

+
σ2m2

m2

∫ L

0

θ1
(∫ x

0

θ2xdy
)
dx− σ2m1ℓ

m2

∫ L

0

θ1
(∫ x

0

θ1dy
)
dx

Here, we use again several computations and Young’s inequalities with ε2 and ε̄2, and imply that:

F ′
2(t) ≤ c2∥θ2x∥2 +

ρ1
4
∥wt∥2 − ρ1∥wt∥2 +

ρ1
4
∥wt∥2 + ρ1Lℓ

2∥φt∥2 + ε2∥wx − ℓφ∥2

+
c2
ε2
∥θ2x∥2 + ε̄2∥φx + ψ + ℓw∥2 + c2

ε̄2
+ c2∥θ1x∥2 + c2∥θ2x∥2

Arranging the terms of the inequality, we have:

F ′
2(t) ≤−

ρ1

2
∥wt∥2 + ρ1Lℓ

2∥φt∥2 + ε2∥wx − ℓφ∥2 + ε2∥φx + ψ + ℓw∥2

+ c2(1 +
1

ε2
+

1

ε2
)∥θ2x∥2 + c2∥θ1x∥2

where c2 is a general constant.

Lemma 3.5. Consider y(t) be the solution of (3.26). Then the functional:

F3(t) = −σ3ρ2
m3

∫ L

0

θ3
(∫ x

0

ψtdy
)
dx
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satisfies, for all ε2, ε̄2 > 0, and t ∈ [0, Tmax), the following estimate:

F ′
3(t) ≤ − ρ2

2
∥ψt∥2 + ε3∥ψx∥2 + ε3∥φx + ψ + ℓw∥2 + µ2

2
∥z(1)∥2

+ c3∥θ1x∥2 + c3

(
1 +

1

ε3
+

1

ε3

)
∥θ3x∥2. (3.49)

where c3 is a general constant that not depends on ℓ.

Proof: We start the proof with a derivation in t the functional F3(t), obtaining:

F ′
3(t) = − ρ2

m3
σ3

∫ L

0
θ3t

(∫ x

0
ψtdy

)
dx− σ3

m3
ρ2

∫ L

0
θ3
(∫ x

0
ψttdy

)
dx

=
ρ2
m2

∫ L

0
(−γ3θ3xx +m3ψxt)

(∫ x

0
ψtdy

)
dx

+
σ3
m3

∫ L

0
θ3
(∫ x

0
(−bψxx + k(φx + ψ + ℓw) +m3θ

3x−m1θ
1 + µz(1))dy

)
dx

= − ρ2γ3
m3

∫ L

0
θ3xx

( ∫ x

0
ψtdy

)
dx+ ρ2

∫∫∫ L

0
ψxt

(∫∫∫ x

0
ψtdy

)
dx− σ3b

m3

∫ L

0
θ3
(∫ x

0
ψxxdy

)
dx

+
kσ3
m3

∫ L

0
θ3
(∫ x

0
(φx + ψ + ℓw)dy

)
dx+

σ3m3

m3

∫ L

0
θ3
(∫ x

0
θ3xdy

)
dx

− σ3m1

m3

∫ L

0
θ1
(∫ x

0
θ3dy

)
dx+

σ3
m3

µ

∫ L

0
θ3
(∫ x

0
z(1)dy

)
dx

= +
ρ2γ3
m3

∫ L

0
θ3xψtdx− ρ2

∫∫∫ L

0
ψtψtdx− σ3b

m3

∫ L

0
θ3ψxdx

+
kσ3
m3

∫ L

0
θ3
(∫ x

0
(φx + ψ + ℓw)dy

)
dx+

σ3m3

m3

∫ L

0
θ3
(∫ x

0
θ3xdy

)
dx

− σ3m1

m3

∫ L

0
θ1
(∫ x

0
θ3dy

)
dx+

σ3
m3

µ

∫ L

0
θ3
(∫ x

0
z(1)dy

)
dx

and again, using the known inequalities, we have that:

F ′
3(t) ≤ c2∥θ3x∥2 +

ρ2
2
∥ψt∥2 − ρ2∥ψt∥2 +

c3
ε3
∥θ3x∥2 + ε3∥ψx∥2 +

c3
ε3
∥θ3x∥2 + ε3∥φx + ψ + ℓw∥2

+ c3∥θ3x∥2 + c3∥θ1x∥2 +
µ2

2
∥z(1)∥2

Therefore:
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F ′
3(t) ≤ −

ρ2

2
∥ψt∥2 + ε3∥ψx∥2 + ε3∥φx + ψ + ℓw∥2 + µ2

2
∥z(1)∥2 + c3∥θ1x∥2

+ c3

(
1 +

1

ε3
+

1

ε3

)
∥θ3x∥2

where c3 > 0 is a general constant.

Lemma 3.6. Consider, for a solution y(t), the following functional:

F4(t) = −σ1ρ1
m1

∫ L

0

φt

(∫ x

0

θ1dy
)
dx

Then, this functional, satisfies the next estimate:

F ′
4(t) ≤

ρ1
2
∥φt∥2 + ρ1Lℓ

2∥wt∥2 + ε4∥wx − ℓφ∥2 + ε̄4∥φx + ψ + ℓw∥2

+ c4(1 +
1

ε4
+

1

ε̄4
)∥θ1x∥2 + c4∥θ2x∥2, (3.50)

for every ε4, ε̄4 > 0 and t ∈ [0, Tmax).

Proof: Lets start the demonstration using the equations (3.14) and (3.17), and we use similar

computations to previous lemmas:

F ′
4(t) =

σ1ρ1
m1

∫ L

0

φtt

(∫ x

0

θ1dy
)
dx+

σ1ρ1
m1

∫ L

0

φt

(∫ x

0

θ1t dy
)
dx

=
σ1
m1

∫ L

0

(
k(φx + ψ + ℓw)x + k0ℓ(wx − ℓφ)−m1θ

1
x − ℓm2θ

2
)( ∫ x

0

θ1dy
)
dx

+
ρ1
m1

∫ L

0

φt

(∫ x

0

(γ1θ
1
xx −m1(φx + ψ + ℓw)t)dy

)
dx
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Using Holder, Poincare’s and Young’s inequalities with ε4 and ε̄4, we infer that:

F ′
4(t) ≤ ε4∥φx + ψ + ℓw∥2 + ε̄4∥wx − ℓφ∥2 ++c4(1 +

1

ε4
+

1

ε̄4
)∥θ1x∥2 + c4∥θ2x∥2

+
ρ1
m1

∫ L

0

φt

(∫ x

0

(
γ1θ

1
xx −m1(φx + ψ + ℓw)t

)
dy

)
dx

≤ ε4∥φx + ψ + ℓw∥2 + ε̄4∥wx − ℓφ∥2 ++c4(1 +
1

ε4
+

1

ε̄4
)∥θ1x∥2 + c4∥θ2x∥2

+
γ1ρ1
m1

∫ L

0

φtθ
1
xdx− ρ1∥φt∥2 − ρ1

∫ L

0

φt

( ∫ x

0

ψtdy
)
dx− ρ1ℓ

∫ L

0

φt

( ∫ x

0

wtdy
)
dx

Thus, we deduce that:

F ′
4(t) ≤ ε4∥φx + ψ + ℓw∥2 + ε̄4∥wx − ℓφ∥2 ++c4(1 +

1

ε4
+

1

ε̄4
)∥θ1x∥2 + c4∥θ2x∥2

− ρ1
2
∥φt∥2 + c4∥ψt∥2 + ρ1Lℓ

2∥wt∥2

and therefore, arranging the terms, we conclude that:

F ′
4(t) ≤ −

ρ1

2
∥φt∥2 + ρ1Lℓ

2∥wt∥2 + c4∥ψt∥2 + ε4∥φx + ψ + ℓw∥2 + ε̄4∥wx − ℓφ∥2

+ c4(1 +
1

ε4
+

1

ε̄4
)∥θ1x∥2 + c4∥θ2x∥2.

where c4 is a general constant.

Lemma 3.7. Let y(t), a solution for the Linear Cauchy problem (3.26). The following functional:

F5(t) = τ

∫ L

0

∫ 1

0

e−τρz2(x, ρ, t)dρdx

defined for every t ∈ [0, Tmax) satisfies the following estimate.

F ′
5(t) ≤ −m0

(
∥z(1)∥2 + τ∥z∥2ρ

)
+ ∥ψt∥2, (3.51)
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for every m0 > 0 and t ≥ 0.

Proof: For this functional, we make use of equation (3.20) and the fact that z(0) = ψt, to obtain:

F ′
5(t) = 2τ

∫ L

0

∫ 1

0

e−τρz(x, ρ, t)zt(x, ρ, t)dρdx

= −2

∫ L

0

∫ 1

0

e−τρzρ(x, ρ, t)z(x, ρ, t)dρdx

= − d

dρ

∫ L

0

∫ 1

0

e−τρz2(x, ρ, t)dρdx− τ

∫ L

0

∫ 1

0

e−τρz2(x, ρ, t)dρdx

= −
[ ∫ L

0

(z2(1)e−τ − z(0))dx
]
− τ

∫ L

0

∫ 1

0

e−τρz2(x, ρ, t)dρdx

≤
∫ L

0

|ψt|2dx− c

∫ L

0

|z(1)|2dx− cτ

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx

≤ −m0

(
∥z(1)∥2 + τ∥z∥2ρ

)
+ ∥ψx∥2.

Thus:

F ′
5(t) ≤ −m0

(
∥z(1)∥2 + τ∥z∥2

ρ

)
+ ∥ψt∥2,

where m0 is a positive number. ■

Terms in bold from each Lemma presented are important since they represent a partial term of

the negative linear energy. It is relevant since we want to construct a functional of Lyapunov that

has the form:

L(t) = NE(t) +G(t), (3.52)

where N is a positive constant and G(t) is a perturbation of the energy. With this, we search the
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following estimates:

L′(t) ≤ −CE(t)

where C is a positive general constant, and

c1E(t) ≤ L(t) ≤ c2E(t)

with c1 and c2 are positive numbers. Then, in order to show the last two inequalities, we state the

following lemmas.

Lemma 3.8. Suppose that y(t) is a solution for (3.26). Additionally, suppose ℓ > 0 small enough.

Then, the functional of Lyapunov defined by:

L(t) := NE(t) +N1F1(t) +N2F2(t) +N3F3(t) +N4F4(t) +
ρ2
4
F5. (3.53)

for N and Ni are positive real number to be chosen appropriately later, satisfies:

c1E(t) ≤ L(t) ≤ c2E(t), ∀t ∈ [0, Tmax) (3.54)

for two positive constants c1 and c2.

Proof: Let N1 equal to 1, and define:

G(t) := F1(t) +N2F2(t) +N3F3(t) +N4F4(t) +
ρ1
4
F5.
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Then:

|G(t)| ≤ρ1
∫ L

0

|φtφ|dx+ ρ2

∫ L

0

|ψtψ|2dx+ ρ1

∫ L

0

|wtw|dx+
ρ1σ2N2

m2

∫ L

0

∣∣∣θ2 ∫ x

0

wt(y, t)dy
∣∣∣dx

+
ρ2σ3N3

m3

∫ L

0

∣∣∣θ3 ∫ x

0

ψt(y, t)dy
∣∣∣dx+ ρ1σ1N4

m1

∫ L

0

∣∣∣φt

∫ x

0

θ1(y, t)dy
∣∣∣dx

+
τρ1
4

∫ L

0

∫ 1

0

e−τρz2(x, ρ, t)dρdx.

By using Young, Hölder and Poincare’s inequalities, and the equivalence of norms, we have that

|G(t)| ≤c
∫ L

0

(
|φx|2 + |φt|2 + |ψx|2 + |ψt|2 + |wx|2 + |wt|2 + |θ1x|2 + |θ2x|2 + |θ3x|2

)
dx

+

∫ L

0

∫ 1

0

z2(x, ρ, t)dρdx

≤cE(t).

Consequently, by definition of G(t), we infer that:

|L(t)−NE(t)| ≤ cE(t),

which implies that:

(N − c)E(t) ≤ L(t) ≤ (N + c)E(t)

By choosing of N large enough, estimate (3.54) is showed. ■

The next Lemma is important to show how the behavior of functional L(t) with respect to the

energy.
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Lemma 3.9. Under the same Hypotheses as Lemma 3.8, we have the following estimate for

ℓ > 0 small enough:

L′(t) ≤ −CE(t), (3.55)

where C is a general constant.

Proof: We differentiate (3.53), and recall the previous lemmas to obtain:

L′(t) ≤−
[k
2
−N2ε̄2 −N3ε̄3 −N4ε4

]
∥φx + ψ + ℓw∥2

−
[ b
2
−N3ε3

]
∥ψx∥2

−
[k0
2

−N2ε2 −N4ε̄4

]
∥wx − ℓφ∥2

−
[
N4

ρ1
2

− ρ1 −N2ρ1Lℓ
2
]
∥φt∥2

−
[
N3

ρ2
2

− ρ2 − µN −N4c4 −
ρ2
4

]
∥ψt∥2

−
[
N2

ρ1
2

− ρ1 −N4ρ1Lℓ
2
]
∥wt∥2

−
[
Nγ1 − c1 −N2c2 −N3c3 − c4(1 +

1

ε4
+

1

ε4
)
]
∥θ1x∥2

−
[
Nγ2 − c1 − c2(1 +

1

ε2
+

1

ε2
)−N4c4

]
∥θ2x∥2

−
[
Nγ3 − c1 − c3(1 +

1

ε3
+

1

ε3
)
]
∥θ3x∥2

−
[ρ2m0

2
− c1µ

2 −N3
µ2

2

]
∥z(1)∥2

−
[ρ2m0τ

2

]
∥z∥2ρ.

Here, we might choose carefully our constants. We set:

ε2 =
k0
8N2

, ε̄2 =
k

8N2

, ε3 =
b

4N3

, ε̄3 =
k

8N3

, ε4 =
kb

8N4

, ε̄4 =
k0
8N4

.
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With this, the last inequality reduces to

L′(t) ≤− k

8
∥φx + ψ + ℓw∥2 − b

4
∥ψx∥2 −

k0
4
∥wx − ℓφ∥2 − ρm0τ

2
∥z∥2ρ

−
[
N4

ρ1
2

− ρ1 −N2ρ1Lℓ
2
]
∥φt∥2 −

[
N3

ρ2
2

− ρ1 − µN −N4c4 −
ρ2
4

]
∥ψt∥2

−
[
N4

ρ1
2

− ρ1 −N2ρ1Lℓ
2
]
∥wt∥2 −

[ρ2m0

2
− c1µ

2 −N3
µ2

2

]
∥z(1)∥2

−
[
Nγ1 − c1 −N2c2 −N3c3 − c4(1 +

8N4

k
+

8N4

k0
)
]
∥θ1x∥2

−
[
Nγ2 − c1 − c2(1 +

8N2

k
+

8N2

k0
)−N4c4

]
∥θ2x∥2

−
[
Nγ3 − c1 − c3(1 +

4N3

b
+

8N3

k
)
]
∥θ3x∥2.

We take N2 and N4 large enough such that:

N4
ρ1
2

− ρ1 > 0 and = N2
ρ1
2
> 0.

(For example, N2 = N4 = 0). Then, we choose ℓ small enough to satisfies:

β1 = N4
ρ1
2

− ρ1 > 0−N2ρ1Lℓ
2 and β2 = N2

ρ1
2

−N4ρ1Lℓ
2 > 0

After that, we can choose µ small enough such that numbers as µN and are still small. With this,

we choose N3 appropriately to obtain

β3 = N3
ρ2
2

− ρ1 − µN −N4c4 −
ρ2
4
> 0.

Next, as µ is small, without loss of generality, we assume that µ2N3 continues smaller. So, we

deduce that:

β4 =
ρ2m0

2
− c1µ

2 −N3
µ2

2
> 0.

Finally, for the dissipation terms, we can take N large enough such that Nγi continues larger
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and therefore, we conclude that:

β5 = Nγ1 − c1 −N2c2 −N3c3 − c4(1 +
8N4

k
+

8N4

k0
) > 0,

β6 = Nγ2 − c1 − c2(1 +
8N2

k
+

8N2

k0
)−N4c4 > 0,

β7 = Nγ3 − c1 − c3(1 +
4N3

b
+

8N3

k
) > 0.

To conclude the estimate, we use Poincare’s inequality for the thermal terms and take the

minimum of all constants
k0
2
,
k

2
,
b

2
, β1, β2, β3, β4, β5, β6, β7, to conclude that:

L′(t) ≤− c
[
∥φx + ψ + ℓw∥2 + ∥ψx∥2 + ∥wx − ℓφ∥2 + ∥φt∥2 + ∥ψt∥2 + ∥wt∥2

+ ∥θ1∥2 + ∥θ2∥2 + ∥θ3∥2 + ∥z(1)∥2 + ∥z∥2ρ
]
.

Adapting the constants to the phase space norm and cancel the term −∥z(1)∥2 ≤ 0, we obtain

L′(t) ≤ −CE(t).

which shows the Lemma.

Conclusion the proof of Theorem 3.2:

Estimates (3.54) and (3.55), give us:

L′(t) ≤ −k2L(t) (3.56)

where k2 =
C

c2
. By a Gronwall type Lemma, previous estimate implies that:

c1E(t) ≤ L(t) ≤ L(0)e−k2t ≤ c2E(0)e
−αt, ∀t ∈ [0, Tmax).

As we see in Theorem 3.1, we obtain a local solution y(t) for the abstract Cauchy problem (3.26)
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; and the Theorem 3.2 tell us that the solution is controlled by a exponential function that decays

to zero. That is, the solution does not explode when the time t is longer. Thus, by [30] we

conclude that solution y(t) is global and then Tmax = +∞, and proves (3.45), which ends the

proof of stability exponential. ■

3.4 The nonlinear case

As we noticed in the Chapter 2, we can consider the presence of nonlinear forces in the system

(7). More precisely, this functions act on the three main components of the system: φ, ψ and w.

In this section, we will show the existence of a solution for a semilinear Bresse system, with the

presence of the delay term acting on the rotation angle. Therefore, we consider three external

forces fi(φ, ψ, w), i = 1, 2, 3, satisfying conditions (2.25)-(2.29).

Then, the semilinear Bresse system with the presence of delay is given by:

ρ1φtt − k(φx + ψ + ℓw)x − ℓk0(wx − ℓφ) +m1θ
1
x + ℓm2θ

2 + f1(φ, ψ, w) = 0 (3.57)

ρ2ψtt − bψxx + k(φx + ψ + ℓw) +m3θ
3
x −m1θ

1 + µz(x, 1, t) + f2(φ, ψ, w) = 0 (3.58)

ρ1wtt − k0(wx − ℓφ)x + kℓ(φx + ψ + ℓw) +m2θ
2
x − ℓm1θ

1 + f3(φ, ψ, w) = 0 (3.59)

σ1θ
1
t − γ1θ

1
xx +m1(φx + ψ + ℓw)t = 0 (3.60)

σ2θ
2
t − γ2θ

2
xx +m2(wx − ℓφ)t = 0 (3.61)

σ3θ
3
t − γ3θ

3
xx +m3(ψx)t = 0 (3.62)

τzt + zρ = 0 (3.63)

defined for x ∈ (0, L) and t ≥ 0. This system is subject under the Dirichlet-Neumann-Neumann

hypotheses for the functions φ, ψ and w (condition (3.7)), and Neumann-Dirichlet-Dirichlet

hypotheses for the temperature equations (condition (3.8)). We also assume the same initial data
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(3.9):

y0 =
(
φ0, ψ0, w0, φ1, ψ1, w1, θ

1
0, θ

2
0, θ

3
0, g0

)
.

Thus, the linear energy of the system is given by:

E(t) := E(t) +

∫ L

0

F (φ, ψ,w)dx. (3.64)

And, this functional satisfies the following estimate:

E(t) ≤ −
(
γ1|θ1x(x, t)|2 + γ1|θ2x(x, t)|2 + γ1|θ3x(x, t)|2

)
dx+ µ

∫ L

0

|ψt(x, t)|2dx. (3.65)

The previous chapter shows that, by certain conditions on the unbounded operator A and the

functional F , it is possible to proof the existence of local weak and strong solutions when

using nonlinear semigroup theory (cf. [30, Theorem 4.1.6]). For this, we rewrite the system

(3.57)-(3.63) as an Cauchy Problem:


d

dt
y(t) + Ay(t) = Fy(t),

y(0) = y0,

(3.66)

where

y(t) =
(
φ(t), ψ(t), w(t), φ′(t), ψ′(t), w′(t), θ1(t), θ2(t), θ3(t)

)
∈ H,

with

φ′ = φt, ψ
′ = ψt, w

′ = wt.
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The unbounded operator A : D(A) ⊂ H → H is the same as linear one obtained in this Chapter,

with domain:

D(A) =
{
y ∈ H| φ ∈ H2(0, L) ∩H1

0 (0, L); ψ,w ∈ H2(0, L) ∩H1
∗ (0, L),

φ′, θ2, θ3 ∈ H1
0 (0, L); ψ

′, w′, θ1 ∈ H1
∗ (0, L)

z, zρ ∈ L2((0, 1);L2(0, L)), z(x, 0) = ψ′(x)
}
.

Now, the functional F is composed by the terms of operator B and the external forces, as follows:

Fy(t) =



0

0

0

−f1(φ, ψ,w)/ρ1

−f2(φ, ψ,w)/ρ2 −µψ′/ρ2

−f3(φ, ψ,w)/ρ1

0

0

0

0



.

The existence theorem is then given in terms of the problem (3.66).

Theorem 3.3. (Well-Posedness). Consider ℓ ̸= nπ
L

, with ℓ > 0. Assume that conditions for the

linear delay system (3.14)-(3.20) and hypotheses about external forces (2.25)-(2.28) hold. Thus,

for any initial data y0 ∈ H and T > 0, the abstract problem (3.66) has a unique weak solution:

y ∈ C([0, T ],H), with y(0) = y0.
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The solution is given by:

y(t) = etAy0 +

∫ t

0

e(t−s)AF(y(s))ds, t ∈ [0, T ] (3.67)

with depends continuously on the initial data. In particular, if y0 ∈ D(A) then the solution is

strong.

Proof: Under the hypotheses on linear case, the operator A is maximal monotone in H, and

from standard theory (cf. [30]), the abstract Cauchy problem (3.26) has a unique solution. We

will show that system (3.66) is a Lipschitz perturbation of (3.26). Then from [27], we obtain a

local solution defined in an interval [0, tmax], where if tmax <∞, then

lim
t→∞

∥y(t)∥H = +∞. (3.68)

To show that operator F :→ H is locally Lipschitz, let B a bounded set on H and y1.y2 in B.

Then, we can see the functional F as a sum of operator B and the functional F given in Chapter

2:

Fy(t) =



0

0

0

−f1(φ, ψ,w)/ρ1

−f2(φ, ψ,w)/ρ2

−f3(φ, ψ,w)/ρ1

0

0

0

0



+



0

0

0

0

−µψ′/ρ2

0

0

0

0

0



.
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The previous chapters show us that F is locally Lipschitz, and B represents a projection from

y(t) into his component ψt, when we can easily deduce that is a locally Lipschitz operator, for

any bounded set B ∈ H. Thus, the sum continues to be locally Lipschitz in H. ■

Now, in order to prove that the solution is global, that is, tmax = ∞, let y(t) be a mild solution

with initial data y0 ∈ D(A). Then, by [27], it is indeed a strong solution and so we can use

energy estimate (2.35) to conclude that:

∥y∥2H ≤ 2

β0
(E(t) + LmF )

Thus, ∥y∥2H is bounded.

By density, this inequality holds for mild solutions. Then, we can see easily that (2.34) does not

hold and therefore: Tmax = +∞.

Finally, using the variation of parameter formula (2.33), we can verify that for any initial data

y10, y
2
0 ∈ H, the corresponding solutions y1 and y2 satisfy:

∥y1(t)− y2(t)∥2H ≤ 2∥etA(y10 − y20)∥2H + 2
∥∥∫ t

0
e(t−s)A[F(y1(s))−F(y2(s))]ds

∥∥2
H

≤ C∥y10 − y20∥2H

for any 0 < t < T and a bounded set B.■
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