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ACCELERATED DERIVATIVE-FREE SPECTRAL RESIDUAL METHOD FOR
NONLINEAR SYSTEMS OF EQUATIONS

Ernesto G. Birgin1,* , John L. Gardenghi2,
Diaulas S. Marcondes3 and José Mario Mart́ınez4

Abstract. Many continuous models of natural phenomena require the solution of large-scale nonlinear
systems of equations. For example, the discretization of many partial differential equations, which are
widely used in physics, chemistry, and engineering, requires the solution of subproblems in which a
nonlinear algebraic system has to be addressed, especially one in which stable implicit difference schemes
are used. Spectral residual methods are powerful tools for solving nonlinear systems of equations without
derivatives. In a recent paper [Birgin and Mart́ınez, SIAM J. Numer. Anal. 60 (2022) 3145–3180], it
was shown that an acceleration technique based on the Sequential Secant Method can greatly improve
its efficiency and robustness. In the present work, an R implementation of the method is presented.
Numerical experiments with a widely used test bed compare the presented approach with its plain (i.e.,
non-accelerated) version that is part of the R package BB. Additional numerical experiments compare
the proposed method with NITSOL, a state-of-the-art solver for nonlinear systems. These comparisons
show that the acceleration process greatly improves the robustness of its counterpart included in the
existing R package. As a by-product, an interface is provided between R and the consolidated CUTEst
collection, which contains over a thousand nonlinear programming problems of all types and represents
a standard for evaluating the performance of optimization methods.
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1. Introduction

Solving nonlinear systems of equations is a ubiquitous problem that appears in a wide range of applied fields
such as physics, chemistry, engineering, and statistics, just to name a few. Techniques for solving nonlinear
equations are closely related to optimization techniques. Newton’s method and its variants are at the heart of
many important algorithms. There are several textbooks devoted specifically to this subject, such as [10,14,21].
Many times, equations are computed using black-box codes and derivatives are unavailable. Thus, derivative-free
solution methods are in order.

Given 𝐹 : R𝑛 → R𝑛, we consider the problem of finding 𝑥 ∈ R𝑛 such that

𝐹 (𝑥) = 0, (1)
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without making use of derivatives. Noting that (1) is equivalent to 𝑥 = 𝑥 − 𝜎𝐹 (𝑥), for any 𝜎 > 0, Spectral
Residual Methods were introduced in [15] and [16] to address problem (1). Spectral residual methods take their
name from the fact that they use a residual-related search direction and the Barzilai–Borwein or spectral step
of minimization methods [2,19,20] as the first trial along the search direction. The method introduced in [15] is
called SANE, which stands for spectral algorithm for nonlinear equations, while the method introduced in [16]
is referred to as DF-SANE. DF stands for derivative free because DF-SANE is a variation of SANE that does
not use derivatives of the function 𝐹 . They are both based on the iteration 𝑥𝑘+1 = 𝑥𝑘 − 𝜎𝑘𝐹 (𝑥𝑘), where

𝜎𝑘 =

⃦⃦
𝑠𝑘−1

⃦⃦2

(𝑦𝑘−1)𝑇
𝑠𝑘−1

, 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1, and 𝑦𝑘−1 = 𝐹
(︀
𝑥𝑘

)︀
− 𝐹

(︀
𝑥𝑘−1

)︀
.

Although very popular, in part due to its simplicity, these methods may suffer from slow convergence. On
the other hand, their simple and fast iterations made them an adequate choice to provide a global convergent
framework to the Sequential Secant approach [1, 25]. This choice was explored in [3], where the Accelerated
DF-SANE method was introduced. Numerical experiments in [3] showed that Accelerated DF-SANE compares
favorably to the classical truncated Newton approach for nonlinear systems implemented in the package NITSOL
(Newton iterative solver) [18], when applied to large-scale problems coming from the discretization of partial
differential equations.

In the present work, an R [23] implementation of Accelerated DF-SANE is introduced. Numerical experi-
ments in [3] are complemented with numerical experiments using the widely-used testing environment for opti-
mization CUTEst [12]. Problems in the CUTEst collection are given in SIF (Standard Input Format; see [9],
Chaps. 2 and 7) and a decoder, named SifDec, translates the problem into Fortran routines. Therefore, to use
the CUTEst collection, an interface with the R language is required. Such interface is introduced in the present
work; and the authors hope that its dissemination in the R community could help in testing and assessing
the performance of optimization methods developed in R. Classical sets of problems, like the ones introduced
in [13,17,22], are included in the CUTEst collection. In addition to the extension of the comparison with NIT-
SOL, using a large set of classical problems, a comparison with the DF-SANE method implemented within the
BB package [24] implemented in R is also provided. The comparison aims to establish not only that Accelerated
DF-SANE is competitive with the state-of-the-art method NITSOL, but also to show that it is the best choice
among the packages implemented in R.

The rest of this work is organized as follows. The Accelerated DF-SANE method and its convergence theo-
retical results are condensed in Section 2. The R implementation of the method and its usage are described in
Section 3. Numerical results are reported in Section 4. Conclusions are given in the last section.

2. Accelerated DF-SANE

In this section, the Accelerated DF-SANE method introduced in [3] and its theoretical convergence results are
summarized. Roughly speaking, Accelerated DF-SANE performs a nonmonotone line search along the direction
of the residue. As a result of a double backtracking, at each iteration 𝑘, a trial point 𝑥𝑘+1

trial is first computed.
Before deciding whether this trial point will be the next iterate 𝑥𝑘+1 or not (as it would be the case in the plain
DF-SANE in which acceleration is not performed), an accelerated point 𝑥𝑘+1

accel is computed. Following sequential
secant ideas, 𝑥𝑘+1

accel is given by 𝑥𝑘+1
accel = 𝑥𝑘−𝑆𝑘𝑌 †

𝑘 𝐹 (𝑥𝑘), where 𝑝 > 1 is a given parameter, 𝑘 = max{0, 𝑘−𝑝+1},

𝑠𝑗 = 𝑥𝑗+1 − 𝑥𝑗 for 𝑗 = 𝑘, . . . , 𝑘 − 1,

𝑦𝑗 = 𝐹
(︀
𝑥𝑗+1

)︀
− 𝐹

(︀
𝑥𝑗

)︀
for 𝑗 = 𝑘, . . . , 𝑘 − 1,

𝑠𝑘 = 𝑥𝑘+1
trial − 𝑥𝑘,

𝑦𝑘 = 𝐹
(︀
𝑥𝑘+1

trial

)︀
− 𝐹

(︀
𝑥𝑘

)︀
,
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𝑆𝑘 =
(︀
𝑠𝑘, . . . , 𝑠𝑘−1, 𝑠𝑘

)︀
,

𝑌𝑘 =
(︀
𝑦𝑘, . . . , 𝑦𝑘−1, 𝑦𝑘

)︀
,

and 𝑌 †
𝑘 is the Moore-Penrose pseudoinverse of 𝑌𝑘. Then, if ‖𝐹 (𝑥𝑘+1

accel)‖22 < ‖𝐹 (𝑥𝑘+1
trial)‖22, the method defines

𝑥𝑘+1 = 𝑥𝑘+1
accel; while 𝑥𝑘+1 = 𝑥𝑘+1

trial in the other case. In practice, 𝑥𝑘+1
accel is computed by first finding the minimum

norm least-squares solution 𝜈 of the linear system 𝑌𝑘𝜈 = 𝐹 (𝑥𝑘+1
trial) and then defining 𝑥𝑘+1

accel = 𝑥𝑥+1
trial − 𝑆𝑘𝜈. The

minimum-norm least-squares solution 𝜈 is computed with a complete orthogonalization of 𝑌𝑘. The key point is
that matrix 𝑌𝑘 corresponds to removing one column and adding one column to matrix 𝑌𝑘−1, keeping the cost
of each iteration low; see Section 5.4 of [3] for details. The whole Accelerated DF-SANE method is given in the
algorithm that follows.

Algorithm 1. Accelerated DF-SANE.
Input. Let 𝛾 ∈ (0, 1), 0 < 𝜎min < 𝜎max < ∞, 0 < 𝜏min < 𝜏max < 1, positive integers 𝑀 and 𝑝, a sequence {𝜂𝑘} such
that 𝜂𝑘 > 0 for all 𝑘 ∈ N and lim𝑘→∞ 𝜂𝑘 = 0, and 𝑥0 ∈ R𝑛 be given. Set 𝑘 ← 0.

Step 1. If 𝐹 (𝑥𝑘) = 0, then terminate the execution of the algorithm.
Step 2. Choose 𝜎𝑘 such that |𝜎𝑘| ∈ [𝜎min, 𝜎max] and 𝑣𝑘 ∈ R𝑛 such that ‖𝑣𝑘‖ = ‖𝐹 (𝑥𝑘)‖. Compute

𝑓𝑘 = max
{︁

𝑓(𝑥𝑘), . . . , 𝑓
(︁
𝑥max{0,𝑘−𝑀+1}

)︁}︁
. (2)

Step 2.1. Set 𝛼+ ← 1 and 𝛼− ← 1.
Step 2.2. Set 𝑑← −𝜎𝑘𝑣𝑘 and 𝛼← 𝛼+. Consider

𝑓
(︁
𝑥𝑘 + 𝛼𝑑

)︁
≤ 𝑓𝑘 + 𝜂𝑘 − 𝛾𝛼2𝑓

(︁
𝑥𝑘
)︁
. (3)

If (3) holds, then define 𝑑𝑘 = 𝑑 and 𝛼𝑘 = 𝛼 and go to Step 3.
Step 2.3. Set 𝑑← 𝜎𝑘𝑣𝑘 and 𝛼← 𝛼−. If (3) holds, then define 𝑑𝑘 = 𝑑 and 𝛼𝑘 = 𝛼 and go to Step 3.
Step 2.4. Choose 𝛼new

+ ∈ [𝜏min𝛼+, 𝜏max𝛼+] and 𝛼new
− ∈ [𝜏min𝛼−, 𝜏max𝛼−], set 𝛼+ ← 𝛼new

+ , 𝛼− ← 𝛼new
− , and go to

Step 2.2.
Step 3. Define 𝑥𝑘+1

trial = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

Step 4. Define 𝑥𝑘+1
accel = 𝑥𝑘 − 𝑆𝑘𝑌 †

𝑘 𝐹 (𝑥𝑘), where 𝑘 = max{0, 𝑘 − 𝑝 + 1},

𝑠𝑗 = 𝑥𝑗+1 − 𝑥𝑗 for 𝑗 = 𝑘, . . . , 𝑘 − 1,

𝑦𝑗 = 𝐹
(︁
𝑥𝑗+1

)︁
− 𝐹
(︁
𝑥𝑗
)︁

for 𝑗 = 𝑘, . . . , 𝑘 − 1,

𝑠𝑘 = 𝑥𝑘+1
trial − 𝑥𝑘,

𝑦𝑘 = 𝐹
(︁
𝑥𝑘+1

trial

)︁
− 𝐹
(︁
𝑥𝑘
)︁
,

𝑆𝑘 =
(︁
𝑠𝑘, . . . , 𝑠𝑘−1, 𝑠𝑘

)︁
,

𝑌𝑘 =
(︁
𝑦𝑘, . . . , 𝑦𝑘−1, 𝑦𝑘

)︁
,

and 𝑌 †
𝑘 is the Moore-Penrose pseudoinverse of 𝑌𝑘.

Step 5. Choose 𝑥𝑘+1 ∈
{︀
𝑥𝑘+1

trial, 𝑥
𝑘+1
accel

}︀
such that

⃦⃦
⃦𝐹
(︁
𝑥𝑘+1

)︁⃦⃦
⃦ = min

{︁⃦⃦
⃦𝐹
(︁
𝑥𝑘+1

trial

)︁⃦⃦
⃦,
⃦⃦
⃦𝐹
(︁
𝑥𝑘+1

accel

)︁⃦⃦
⃦
}︁

.

Step 6. Set 𝑘 ← 𝑘 + 1, and go to Step 1.
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In practice, at Step 1, given 𝜀 > 0, the stopping criterion ‖𝐹 (𝑥𝑘)‖ = 0 is replaced with⃦⃦
𝐹

(︀
𝑥𝑘

)︀⃦⃦
2
≤ 𝜀. (4)

Criterion ‖𝐹 (𝑥𝑘)‖ = 0 in the algorithm is necessary so we can state theoretical asymptotic properties of an
infinite sequence generated by the algorithm. At Step 2, the spectral choice for 𝜎𝑘 (see [2,4–7,19,20]) corresponds
to

𝜎spg
𝑘 =

(︀
𝑥𝑘 − 𝑥𝑘−1

)︀𝑇 (︀
𝑥𝑘 − 𝑥𝑘−1

)︀
(𝑥𝑘 − 𝑥𝑘−1)𝑇 (𝐹 (𝑥𝑘)− 𝐹 (𝑥𝑘−1))

·

Following [16], if |𝜎spg
𝑘 | ∈ [𝜎min, min{1, 𝜎max}], then we take 𝜎𝑘 = 𝜎spg

𝑘 ; otherwise, we take 𝜎𝑘 =
max{𝜎min, min{‖𝑥𝑘‖2/‖𝑣𝑘‖2, 𝜎max}}. Still at Step 2, the residual choice for the search direction corresponds
to 𝑣𝑘 = 𝐹 (𝑥𝑘). At Step 2.4, we compute 𝛼new

+ as the minimizer of the univariate quadratic 𝑞(𝛼) that interpo-
lates 𝑞(0) = 𝑓(𝑥𝑘), 𝑞(𝛼+) = 𝑓(𝑥𝑘 − 𝛼+𝜎𝑘𝐹 (𝑥𝑘)), and 𝑞′(0) = −𝜎𝑘𝐹 (𝑥𝑘)𝑇∇𝑓(𝑥𝑘) = −𝜎𝑘𝐹 (𝑥𝑘)𝑇 𝐽(𝑥𝑘)𝐹 (𝑥𝑘).
Following [16], since we consider 𝐽(𝑥𝑘) unavailable, we consider 𝐽(𝑥𝑘) = 𝐼. Thus,

𝛼new
+ = max

{︃
𝜏min𝛼+, min

{︃
𝛼2

+𝑓
(︀
𝑥𝑘

)︀
𝑓(𝑥𝑘 − 𝛼+𝜎𝑘𝐹 (𝑥𝑘)) + (2𝛼+ − 1)𝑓(𝑥𝑘)

, 𝜏max𝛼+

}︃}︃
.

Analogously,

𝛼new
− = max

{︃
𝜏min𝛼−, min

{︃
𝛼2
−𝑓

(︀
𝑥𝑘

)︀
𝑓(𝑥𝑘 + 𝛼−𝜎𝑘𝐹 (𝑥𝑘)) + (2𝛼− − 1)𝑓(𝑥𝑘)

, 𝜏max𝛼−

}︃}︃
.

Theoretical results of Algorithm 1 are given in Sections 3 and 4 of [3]. Briefly, limit points of sequences
generated by the algorithm are solutions of the nonlinear system or the gradient of the corresponding sum of
squares is null. Moreover, under suitable assumptions, the convergence to solutions is superlinear.

3. Usage of the R implementation

We implemented Algorithm 1 in R language as a subroutine named dfsaneacc. Codes are freely avail-
able at https://github.com/johngardenghi/dfsaneacc and at https://cran.r-project.org/package=
dfsaneacc. In this section, we describe how to use dfsaneacc to solve a nonlinear system implemented in
R and how to solve a nonlinear system from the CUTEst collection.

The calling sequence of dfsaneacc is given by

R> dfsaneacc(x, evalr, nhlim, epsf, maxit, iprint, ...)

where

x: is an 𝑛-dimensional array containing the initial guess.
evalr: is the subroutine that computes 𝐹 at a point x. This subroutine must have the calling sequence

evalr <- function(x, ...) {}
where ... represents the additional arguments of dfsaneacc. The subroutine must return 𝐹 evaluated at x.

nhlim: corresponds to 𝑝+1, where 𝑝 ≥ 1 is the integer that says how many previous iterates must be considered
in the Sequential Secant acceleration at Step 4. The “default” value is 𝑝 = 5, so nhlim=6; but having a
problem at hand, it is recommendable to try different values.

epsf: corresponds to the stopping tolerance 𝜀 in (4).
maxit: represents the maximum number of iterations. It default value is maxit=+∞.
iprint: determines the level of the details in the output of the routine – iprint=−1 means no output,

iprint=0 means basic information at every iteration, iprint=1 adds additional information related to
the backtracking strategy (Step 2), and iprint=2 adds information related to the computation of the
acceleration step (Step 4). Its default value is iprint=−1.

https://github.com/johngardenghi/dfsaneacc
https://cran.r-project.org/package=dfsaneacc
https://cran.r-project.org/package=dfsaneacc
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As an example, consider the Exponential Function 2 from [15], p. 596 given by 𝐹 (𝑥) = (𝐹1(𝑥), . . . , 𝐹𝑛(𝑥))𝑇 ,
where

𝐹1(𝑥) = 𝑒𝑥1 − 1

𝐹𝑖(𝑥) =
𝑖

10
(𝑒𝑥1 + 𝑥𝑖−1 − 1) for 𝑖 = 2, . . . , 𝑛,

with the initial guess 𝑥0 = ( 1
𝑛2 , . . . , 1

𝑛2 )𝑇 . The first step is to code it in R as follows:

R> expfun2 <- function(x) {
+ n <- length(x)
+ f <- rep(NA, n)
+ f[1] <- exp(x[1]) - 1.0
+ f[2:n] <- (2:n)/10.0 * (exp(x[2:n]) + x[1:n-1] - 1)
+ f
+ }

Then, we set the dimension 𝑛 and the initial point 𝑥0 and call dfsaneacc as follows:

R> n <- 3
R> x0 <- rep(1/n^2, n)
R> ret <- dfsaneacc(x=x0, evalr=expfun2, nhlim=6, epsf=1.0e-6*sqrt(n),
+ iprint=0)

obtaining the result below:

Iter: 0 f = 0.02060606
Iter: 1 f = 0.001215612
Iter: 2 f = 4.68925e-05
Iter: 3 f = 4.654419e-08
Iter: 4 f = 1.135198e-11
Iter: 5 f = 9.154603e-16
success!

$x
[,1]

[1,] -3.582692e-11
[2,] -7.222425e-08
[3,] -1.638214e-08

$res
[1] -3.582690e-11 -1.445201e-08 -2.658192e-08

$normF
[1] 9.154603e-16

$iter
[1] 5

$fcnt
[1] 11
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$istop
[1] 0

where

x: is the approximation to a solution 𝑥*.
res: corresponds to 𝐹 (𝑥*).
normF: corresponds to 𝑓(𝑥*) = ‖𝐹 (𝑥*)‖22.
iter: is the number of iterations.
fcnt: is the number of calls to evalr, i.e., the number of functional evaluations.
istop: is the exit code, where istop=0 means that 𝑥* satisfies (4), i.e., ‖𝐹 (𝑥*)‖2 ≤ 𝜀, and istop=1 means

that the maximum allowed number of iterations was reached.

In the rest of this section, we show how to solve a nonlinear system from the CUTEst collection. CUTEst can
be downloaded from https://github.com/ralna/CUTEst. It is assumed that CUTEst is installed, in particular
SifDec, and that there is a folder with all problems in SIF format.

The first step is to choose a problem and run SifDec that, based on the problem’s SIF file, generates a
Fortran routine to evaluate, in this case, function 𝐹 . It should be mentioned that problems in the CUTEst
collection are general nonlinear optimization problems of the form

Minimize Φ(𝑥) subject to ℎ(𝑥) = 0, ℓ𝑔 ≤ 𝑔(𝑥) ≤ 𝑢𝑔, ℓ ≤ 𝑥 ≤ 𝑢, (5)

where Φ : R𝑛 → R is the objective function, ℎ : R𝑛 → R𝑚𝐸 represents 𝑚𝐸 equality constraints, 𝑔 : R𝑛 → R𝑚𝐼

represents 𝑚𝐼 two-side inequality constraints, ℓ𝑔, 𝑢𝑔 ∈ R𝑚𝐼 , and ℓ, 𝑢 ∈ R𝑛 represent bounds on the variables.
(Some components of ℓ𝑔 and ℓ can be −∞ as well as some components of 𝑢𝑔 and 𝑢 can be equal to +∞.) Thus, a
nonlinear system of equations corresponds to a problem of the form (5) with constant or null objective function,
equality constraints only, and 𝑛 = 𝑚𝐸 ; and, in the context of the present work, we define 𝐹 (𝑥) ≡ ℎ(𝑥). Once the
Fortran codes have been generated, a dynamic library must be built and loaded in R. The wrapper (written in
R) uses this library to call, using the .Call tool, a C subroutine from an existent C interface of CUTEst, that
calls the generated Fortran subroutine. In fact, CUTEst is mainly implemented in Fortran and calling a Fortran
subroutine using the tool .Fortran would be the natural choice. However, numerical experiments shown that
the combination of .Call with the existent C interface of CUTEst is faster.

The wrapper consists of five routines named cutest init, cutest end, cutest getn, cutest getx0, and
cutest evalr. Routine cutest init receives as a parameter the name of a problem and executes all initial-
ization tasks described in the previous paragraph. Routine cutest end has no parameters and it cleans the
environment by freeing the memory allocated in the call to cutest init. The other three routines are self-
explanatory. So, for example, a problem named Booth can be solved simply by typing:

R> cutest_init(’BOOTH’)
R> n <- cutest_getn()
R> x0 <- cutest_getx0()
R> ret <- dfsaneacc(x=x0, evalr=cutest_evalr, nhlim=6, epsf=1.0e-6*sqrt(n),

+ iprint=0)
R> cutest_end()

The output follows:

Iter: 0 f = 74
Iter: 1 f = 3.544615
Iter: 2 f = 9.860761e-31
success!

$x

https://github.com/ralna/CUTEst
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[,1]
[1,] 1
[2,] 3

$res
[1] -8.881784e-16 -4.440892e-16

$normF
[1] 9.860761e-31

$iter
[1] 2

$fcnt
[1] 7

$istop
[1] 0

There are environment variables that must be set to indicate where CUTEst was installed, which is the
folder that contains the SIF files of the problems, and which Fortran compiler and compiling options must be
used. A README file with detailed instructions accompanies the distribution of Accelerated DF-SANE and
the CUTEst interface with R.

4. Numerical experiments

In this section, we show the performance of Algorithm 1 by putting it in perspective in relation to the DF-
SANE algorithm of the BB package [24] and the well-known NITSOL method [18]. For that, we consider all 70
nonlinear systems of the CUTEst collection [12] with their default dimensions and their default initial points.

In this work, we implemented Algorithm 1 in R; while a Fortran implementation, available at https://
www.ime.usp.br/~egbirgin/sources/accelerated-df-sane/, was given in [3]. The state-of-the-art solver
NITSOL is available in Fortran in https://users.wpi.edu/~walker/NITSOL/. A Fortran version of DF-SANE
is available under request to the authors of [16]; while an R implementation of DF-SANE is available as part
of the BB package [24]. Problems of the CUTEst collection are written in SIF (Standard Input Format); and a
tool named SifDec (SIF Decoder) generates Fortran routines to evaluate the objective function, in addition to
constraints and their derivatives when desired. So, an interface between R and CUTEst was implemented in order
to test DF-SANE and Accelerated DF-SANE (both in R) with the problems of the CUTEst collection. Fortran
codes were compiled with the GFortran compiler of GCC (version 9.3.0). R codes were run in version 4.0.2.
Tests were conducted on a computer with an Intel Core i7 7500 processor and 12 GB of RAM memory, running
Linux (Ubuntu 20.10).

Regarding the DF-SANE method [16] that is available as part of the BB package [24], a few considerations
are in order. First of all, in the numerical experiments, we considered function dfsane from package BB version
2019.10-1. In the BB package, there is a routine named BBsolve that is a wrapper for dfsane. BBsolve calls
dfsane repeatedly with different algorithm parameters aiming to find a solution to the problem at hand. Since
this strategy can be used in connection with any method, aiming for a fair comparison, in the present work
we report the results obtained with a single run of dfsane with its default parameters. This means that the
strategies described in Section 2.4 of [24] are not being considered. On the other hand, dfsane improves the
original DF-SANE method introduced in [16] in several ways; see Section 2.3 of [24]. Among the improvements,
one is particularly relevant in the context of the present work. When the simple DF-SANE method fails due to
a lack of progress, dfsane launches an alternative method. Specifically, in this case it uses L-BFGS-B for the

https://www.ime.usp.br/~egbirgin/sources/accelerated-df-sane/
https://www.ime.usp.br/~egbirgin/sources/accelerated-df-sane/
https://users.wpi.edu/~walker/NITSOL/
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minimization of 𝑓(𝑥) = |𝐹 (𝑥)‖22. L-BFGS-B [8] is a limited-memory quasi-Newton method for bound-constrained
minimization. In some way, it could be said that this modification aims to mitigate the slow convergence of
DF-SANE. In contrast to the approach presented in the present paper, this device is triggered only once slow
convergence has been detected; while in the present work, acceleration is done at every iteration. Anyway, it is
worth noticing that, by comparing the method being introduced in the present work with dfsane from the BB
package, a comparison is being done with an improved version of the original DF-SANE introduced in [16].

From now on, we refer to the DF-SANE of the BB package simply as DF-SANE; while we refer to Algo-
rithm 1 as “Accelerated DF-SANE”. NITSOL includes three main iterative solvers for linear systems: GMRES,
BiCGSTAB, and TFQMR. Numerical experiments showed that, on the considered set of problems, using
GMRES presents the best performance among the three options. So, from now on, we refer to NITSOL as
“NITSOL (GMRES)”. All default parameters of DF-SANE and NITSOL (GMRES) were considered. For the
Accelerated DF-SANE, following [3], we considered 𝛾 = 10−4, 𝜏min = 0.1, 𝜏max = 0.5, 𝑀 = 10, 𝜎min =

√
𝜖,

𝜎max = 1/
√

𝜖, 𝜂𝑘 = 2−𝑘 min{ 1
2‖𝐹 (𝑥0)‖,

√︀
‖𝐹 (𝑥0)‖}, where 𝜖 ≈ 10−16 is the machine precision, and 𝑝 = 5.

To promote a fair comparison, in all three methods, the common stopping criterion (4) with 𝜀 = 10−6
√

𝑛, was
considered. In addition, each method has its own alternative stopping criteria, mainly related to lack of progress;
and a CPU time limit of 3 min per method/problem was also imposed in the numerical experiments.

Table 1 shows the result of DF-SANE and Accelerated DF-SANE (recall that both methods are implemented
in R). In the table, the first two columns show the problem name and the number of variables and equations.
Then, for each method, the table reports the value of ‖𝐹 (𝑥)‖2 at the final iterate (column ‖𝐹 (𝑥*)‖2), the
number of iterations (column #iter), the number of functional evaluations (column #feval), and the CPU time
in seconds (column time). In column ‖𝐹 (𝑥*)‖2, figures in red are the ones that do not satisfy (4). It is worth
noticing that in all cases in which the final iterate of DF-SANE does not satisfy (4), DF-SANE stops by “lack of
progress” (flag equal to 5). When the same happens with Accelerated DF-SANE, since no stopping criterion due
to lack of progress was implemented, it stops by reaching the CPU time limit. The table shows that Accelerated
DF-SANE satisfied the stopping criterion (4) related to success in 44 out of the 70 considered problems; while
DF-SANE did the same in 32 problems. Moreover, there were 30 problems that were solved by both methods,
14 problems that were solved by Accelerated DF-SANE only, and 2 problems that were solved by DF-SANE
only. These figures show that the acceleration step improves the robustness of DF-SANE.

Figure 1 compares the methods’ efficiencies using performance profiles [11]. In a performance profile, for
𝑖 ∈ 𝑀 = {Accelerated DF-SANE, DF-SANE},

Γ𝑖(𝜏) =
#{𝑗 ∈ {1, . . . , 𝑛𝑃 } | 𝑡𝑖𝑗 ≤ 𝜏 min𝑚∈𝑀{𝑡𝑚𝑗}}

𝑛𝑃
,

where #𝒮 denotes the cardinality of set 𝒮, 𝑛𝑃 = 70 is the number of problems being considered, and 𝑡𝑖𝑗 is
a measure of the performance of the method 𝑖 when applied to the problem 𝑗. If the method 𝑖 was not able
to solve the problem 𝑗, then we set 𝑡𝑖𝑗 = +∞. With these definitions, Γ𝑖(1) is the fraction of problems in
which the method 𝑖 was the fastest method to find a solution; while Γ𝑖(𝜏) for 𝜏 sufficiently large is the fraction
of problems that the method 𝑖 was able to solve, independently of the required effort. Another possibility,
once the robustness of the methods being compared has been established, is to restrict the set of problems
in a performance profile to the set of problems that were solved by both methods (𝑛𝑃 = 30 in this case); so
𝑡𝑖𝑗 < +∞ for all 𝑖 and 𝑗. With these definitions, the performance profile does not reflect the robustness of the
methods anymore (Γ𝑖(𝜏) = 1 for a sufficiently large 𝜏 for all 𝑖 ∈ 𝑀) and it is focused on the methods’ efficiency.
(Γ𝑖(1) still represents the fraction of problems in which method 𝑖 was the fastest method to find a solution.)
This was the choice in Figure 1, in which the number of functional evaluations and the CPU time were used as
performance measures. Both graphics show the methods have very similar efficiencies. It is worth noticing that
CPU times smaller than 0.01 s are considered as being 0.01 and that approximately 90% of the CPU times,
associated with the problems that both methods solve, are smaller than 0.1 s.

In a second experiment, in order to put our method in perspective relatively to a method that represents
the state of the art in solving nonlinear systems, we compared Accelerated DF-SANE with NITSOL (GMRES).
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Since NITSOL (GMRES) is implemented in Fortran, we considered the Fortran version of Accelerated DF-SANE
in this comparison. Of course, we considered NITSOL (GMRES) without Jacobians. Table 2 and Figure 2 show
the results. As in Table 1, in the column ‖𝐹 (𝑥*)‖2, figures in red are the ones that do not satisfy (4). In all

Table 1. Detailed results of the application of Accelerated DF-SANE and DF-SANE to the 70
considered problems from the CUTEst collection.

Problem 𝑛
Accelerated DF-SANE DF-SANE

‖𝐹 (𝑥*)‖ #iter #feval Time ‖𝐹 (𝑥*)‖ #iter #feval Time

BOOTH 2 9.9E−16 2 7 0.005065 2.4E−07 7 8 0.004709
CLUSTER 2 8.3E−07 23 108 0.007488 2.4E−07 40 42 0.005575
CUBENE 2 4.0E−13 9 20 0.005451 1.0E−06 24 26 0.005079
DENSCHNCNE 2 2.3E−11 10 23 0.005626 1.4E−07 16 17 0.005019
DENSCHNFNE 2 2.7E−07 7 23 0.005479 2.5E−07 27 40 0.005340
FREURONE 2 1.5E−08 16 55 0.006213 1.1E+01 103 123 0.007488
GOTTFR 2 1.3E−07 23 67 0.006572 2.6E−02 24 196 154 606 2.629654
HIMMELBA 2 0.0E+00 2 7 0.005166 1.3E−07 7 8 0.004738
HIMMELBC 2 8.4E−08 5 13 0.005269 7.0E−07 10 11 0.004874
HIMMELBD 2 2.4E+00 211 279 5 989 534 180.000000 2.4E+00 188 211 0.009555
HS8 2 4.4E−08 5 13 0.005335 2.1E−07 14 15 0.004822
HYPCIR 2 8.7E−10 6 14 0.005353 1.2E−06 13 14 0.004824
POWELLBS 2 2.3E−03 225 728 4 561 326 180.000000 8.4E−07 106 367 0.010667
POWELLSQ 2 3.9E+00 317 171 779 427 180.000000 9.8E−03 665 188 6 522 441 101.318056
PRICE3NE 2 3.9E−10 7 19 0.005414 9.0E−07 15 16 0.004841
PRICE4NE 2 1.3E−10 10 27 0.005625 2.0E−08 37 39 0.005394
RSNBRNE 2 4.4E−16 56 204 0.009382 3.7E−07 428 564 0.018345
SINVALNE 2 4.9E−15 16 77 0.006542 2.1E+00 5063 52078 0.846892
WAYSEA1NE 2 1.3E−10 12 36 0.005866 1.0E−06 785 3466 0.065970
WAYSEA2NE 2 8.4E−07 481 2179 0.052801 3.4E+01 714 039 12 109 386 180.004208
DENSCHNDNE 3 2.1E−07 26 62 0.006747 1.1E−06 83 86 0.006548
DENSCHNENE 3 9.6E−11 6 16 0.005380 9.8E−01 107 112 0.007418
HATFLDF 3 1.4E−08 26 78 0.006926 9.6E−07 586 907 0.024690
HATFLDFLNE 3 8.0E−03 216 456 5 660 213 180.000000 8.2E−03 170 251 0.010048
HELIXNE 3 2.8E−09 13 35 0.005898 3.1E+01 102 574 0.013981
HIMMELBE 3 1.2E−15 9 21 0.005566 2.1E+00 127 128 0.007795
RECIPE 3 2.9E−07 58 355 0.012444 1.4E−06 56 57 0.005821
ZANGWIL3 3 1.4E−14 3 11 0.005174 1.3E−08 25 27 0.005093
POWELLSE 4 7.3E−07 24 70 0.006980 1.5E+01 101 240 0.009092
POWERSUMNE 4 4.6E−03 2761 64 429 180.000000 2.0E−02 411 485 0.017388
HEART6 6 7.2E−07 245 873 3 845 345 67.912296 1.9E+01 116 476 0.013026
HEART8 8 2.2E−06 54 602 823 267 14.860346 1.3E+01 101 332 0.010646
COOLHANS 9 1.5E−06 10 45 0.006065 3.5E−02 120 124 0.007696
MOREBVNE 10 1.6E−06 37 219 0.009777 3.0E−06 73 76 0.006361
OSCIPANE 10 1.0E+00 54 707 180.000000 1.0E+00 100 113 0.007410
TRIGON1NE 10 1.9E−06 13 29 0.005877 1.7E−06 30 33 0.005321
INTEQNE 12 9.2E−07 3 7 0.005143 1.2E−06 5 6 0.004616
HATFLDG 25 5.0E−06 13 389 211 286 4.406962 5.0E+00 102 189 0.008855
HYDCAR6 29 2.3E−02 206 865 4 255 024 180.000000 2.5E+01 102 430 0.014045
METHANB8 31 3.9E−03 198 664 4 495 087 180.000000 9.9E−01 102 109 0.007866
METHANL8 31 1.6E−01 173 606 3 542 099 180.000000 6.5E+01 101 490 0.015252
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Table 1. continued.

Problem 𝑛
Accelerated DF-SANE DF-SANE

‖𝐹 (𝑥*)‖ #iter #feval Time ‖𝐹 (𝑥*)‖ #iter #feval Time

HYDCAR20 99 2.3E−01 170 393 3 142 121 180.000000 3.6E+01 101 335 0.016278
LUKSAN21 100 8.9E−06 48 441 0.016229 6.7E−06 69 88 0.006922
MANCINONE 100 5.9E−07 5 17 0.022032 5.2E−06 7 8 0.012426
QINGNE 100 4.8E−06 21 45 0.006954 4.5E−06 30 36 0.005532
ARGTRIG 200 1.2E−05 57 199 0.030535 1.2E−05 80 87 0.014297
BROWNALE 200 1.0E−05 9 25 0.007390 1.2E−07 15 16 0.005847
CHANDHEU 500 1.4E−05 18 99 0.273017 2.2E−05 95 104 0.286036
10FOLDTR 1000 9.3E+06 8222 245 098 180.000000 1.8E+05 183 1167 0.845994
KSS 1000 9.3E−06 5 17 0.028989 7.5E−06 9 12 0.021450
MSQRTA 1024 6.1E+01 24 241 454 743 180.000000 8.6E+01 129 585 0.227472
MSQRTB 1024 5.7E+01 26 216 450 488 180.000000 8.6E+01 123 615 0.239714
EIGENAU 2550 1.7E+02 5138 103 264 180.000000 1.8E+02 118 563 0.987960
EIGENB 2550 9.8E+00 6918 102 189 180.000000 9.9E+00 856 7459 12.716400
EIGENC 2652 1.0E+02 4916 97 087 180.000000 1.0E+02 112 545 1.014087
NONMSQRTNE 4900 2.4E+02 3252 43 571 180.000000 2.2E+02 7353 47 727 180.023645
BROYDN3D 5000 5.3E−05 12 25 0.025578 1.7E−05 16 17 0.010604
BROYDNBD 5000 1.0E+00 31 283 472 515 180.000000 3.6E+01 124 327 0.132678
BRYBNDNE 5000 1.0E+00 31 192 471 278 180.000000 3.6E+01 124 327 0.132835
NONDIANE 5000 1.4E+00 33 386 716 126 180.000000 6.4E+02 102 483 0.129502
SBRYBNDNE 5000 2.7E+02 18 630 377 758 180.000000 2.6E+02 319 897 0.356915
SROSENBRNE 5000 3.1E−09 9 34 0.020881 5.7E−08 23 25 0.012307
SSBRYBNDNE 5000 1.8E+02 23 551 354 751 180.000000 1.3E+02 302 1192 0.460639
TQUARTICNE 5000 8.7E−01 53 163 550 903 180.000000 8.9E−01 790 3991 0.853161
OSCIGRNE 100 000 1.8E−04 28 66 1.013625 2.0E−04 24 25 0.196684
CYCLIC3 100 002 6.8E−01 1921 27 552 180.000000 2.3E−04 11 410 11 765 83.093461
YATP1CNE 123 200 2.6E−07 14 41 1.443373 8.4E+03 103 865 20.785781
YATP1NE 123 200 2.6E−07 14 41 1.445582 8.4E+03 103 865 20.736302
YATP2CNE 123 200 3.1E+04 606 8821 180.000000 7.2E+04 114 830 16.063343
YATP2SQ 123 200 4.3E+04 723 8917 180.000000 4.5E+04 104 115 2.406395

cases the final iterate of NITSOL (GMRES) does not satisfy (4), NITSOL (GMRES) stops by “too small step
in a line search” (flag equal to 6).

Figures in Table 2 show that both Accelerated DF-SANE and NITSOL (GMRES) solve 45 problems. There
are 41 problems that were solved by both methods, 4 problems that were solved by Accelerated DF-SANE only,
and 4 problems that were solved by NITSOL (GMRES) only. So, both methods appear to be equally robust.

As well as Figure 1, Figure 2 focuses on efficiency and, thus, it considers only the 41 problems in which
both, Accelerated DF-SANE and NITSOL (GMRES), found a solution. Figure 2a considers the number of
functional evaluations as a performance metric; while Figure 2b considers the CPU time. Figure 2a shows that
NITSOL (GMRES) used less functional evaluations in 63% of the problems; while Accelerated DF-SANE used
less functional evaluations in 39% of the problems. (The sum of the percentages is slightly larger than 100%
because ties are counted twice.) The fact that the two curves reach 0.9 before 𝜏 = 10 means that in 90% of the
problems the number of function evaluations is of the same order. The Accelerated DF-SANE curve reaches the
value of 1 for 𝜏 > 1000 due to only 3 problems. In the problems Recipe, Heart8, and Hatfldg, Accelerated
DF-SANE consumes approximately 14, 33, and 1790 times more function evaluations than NITSOL (GMRES).
On the other hand, the curve of NITSOL (GMRES) reaches the value of 1 between 𝜏 = 10 and 𝜏 = 100 because
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Figure 1. Performance profiles of Accelerated DF-SANE and DF-SANE considering the 30
problems from the CUTEst collection in which both methods found a solution.

in the problem Waysea1ne, NITSOL (GMRES) uses 41 times more function evaluations than Accelerated
DF-SANE.

The performance profile of the Figure 2b that considers CPU time as a performance measure, shows a similar
scenario, contaminated by the fact of having a large proportion of small problems. The figure says that NITSOL
(GMRES) is the fastest method in 95% of the problems; while Accelerated DF-SANE is the fastest method in
85% of the problems, i.e., there are a lot of ties. (As it can be observed in Tab. 2, approximately 90% of the CPU
times associated with problems that are solved by both methods are smaller than 0.1 s; and CPU times smaller
than 0.01 s are considered ties.) The curve of NITSOL (GMRES) reaches 1 before 𝜏 = 2 because in no problem
does NITSOL (GMRES) uses more than twice the time of Accelerated DF-SANE. Accelerated DF-SANE also
did not use more than twice the time of NITSOL in 37 out of the 41 problems. On the remaining 4 problems,
Accelerated DF-SANE uses a little more than twice as much time on Chandheu and Oscigrne (which is why
the curve passes 0.95 before 𝜏 = 3) and on problems Heart8 and Hatfldg it uses 21 and 23 times as much
time.
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Table 2. Detailed results of the application of Accelerated DF-SANE (in Fortran) and NITSOL
(GMRES) to the 70 considered problems from the CUTEst collection.

Problem 𝑛
Accelerated DF-SANE NITSOL (GMRES)

‖𝐹 (𝑥*)‖ #iter #feval Time ‖𝐹 (𝑥*)‖ #iter #feval Time

BOOTH 2 9.9E−16 2 7 0.000014 4.6E−09 3 8 0.000039

CLUSTER 2 8.3E−07 23 108 0.000048 1.2E−09 9 25 0.000046

CUBENE 2 4.0E−13 9 20 0.000022 2.1E−10 38 108 0.000076

DENSCHNCNE 2 2.3E−11 10 23 0.000029 6.7E−07 6 15 0.000043

DENSCHNFNE 2 2.7E−07 7 23 0.000019 1.6E−13 5 16 0.000044

FREURONE 2 1.5E−08 16 55 0.000025 7.0E+00 16 112 0.000058

GOTTFR 2 1.3E−07 23 67 0.000031 3.6E−09 70 236 0.000133

HIMMELBA 2 0.0E+00 2 7 0.000013 2.5E−08 3 8 0.000042

HIMMELBC 2 8.4E−08 5 13 0.000018 1.1E−06 6 14 0.000041

HIMMELBD 2 2.4E+00 11 577 102 439 522 728 180.000000 2.4E+00 48 246 0.000164

HS8 2 4.4E−08 5 13 0.000018 2.4E−11 11 24 0.000045

HYPCIR 2 8.7E−10 6 14 0.000017 5.2E−07 5 13 0.000041

POWELLBS 2 1.4E−06 54 229 896 1 259 707 609 152.775132 1.9E−06 231 692 0.000206

POWELLSQ 2 1.4E−00 13 690 098 34 211 713 180.000000 1.3E+00 37 498 309 809 0.044447

PRICE3NE 2 3.9E−10 7 19 0.000020 4.4E−10 7 20 0.000046

PRICE4NE 2 1.3E−10 10 27 0.000030 3.0E−09 10 27 0.000048

RSNBRNE 2 2.2E−16 56 204 0.000054 1.4E−06 55 161 0.000075

SINVALNE 2 4.9E−15 16 77 0.000040 1.9E−14 6 19 0.000042

WAYSEA1NE 2 1.3E−10 12 36 0.000023 3.4E−08 331 1485 0.000291

WAYSEA2NE 2 8.4E−07 481 2179 0.000401 1.3E−09 766 3751 0.000677

DENSCHNDNE 3 2.3E−07 26 62 0.000043 1.5E−06 22 71 0.000065

DENSCHNENE 3 9.6E−11 6 16 0.000032 1.5E−09 7 19 0.000046

HATFLDF 3 1.4E−08 26 78 0.000049 9.6E−07 71 233 0.000117

HATFLDFLNE 3 7.9E−03 11 587 628 252 488 903 180.000000 7.8E−03 372 2843 0.000672

HELIXNE 3 2.8E−09 13 35 0.000045 5.0E+01 0 14 0.000040

HIMMELBE 3 9.7E−16 9 21 0.000023 7.3E−09 2 9 0.000043

RECIPE 3 6.2E−07 72 403 0.000116 1.4E−06 10 28 0.000048

ZANGWIL3 3 1.4E−14 3 11 0.000015 5.2E−07 3 10 0.000045

POWELLSE 4 7.3E−07 24 70 0.000061 1.5E−06 13 61 0.000064

POWERSUMNE 4 1.2E−02 8 695 243 130 633 973 180.000000 1.6E−06 1417 7084 0.004665

Summing up, we conclude that, while both methods are equally robust, NITSOL (GMRES) is slightly more
efficient than Accelerated DF-SANE in the considered set of problems. On the other hand, it is worth noticing
that numerical experiments in [3] showed that Accelerated DF-SANE outperforms NITSOL (GMRES) to a
large extent on an important class of large-scale problems coming from the discretization of partial differential
equations. Of course, the opposite situation can also occur, which justifies the availability of both methods.

A side note comparing the R and Fortran implementations of Accelerated DF-SANE is in order. Comparing
Tables 1 and 2, it can be seen that they deliver slightly different results in a few problems and deliver identical
results in 40 problems out of the 44 problems in which none of the versions stops by reaching the CPU time
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Table 2. continued.

Problem 𝑛
Accelerated DF-SANE NITSOL (GMRES)

‖𝐹 (𝑥*)‖ #iter #feval Time ‖𝐹 (𝑥*)‖ #iter #feval Time

HEART6 6 1.5E−06 124 382 1 818 751 0.561869 2.7E−01 3854 28 811 0.013372

HEART8 8 2.8E−06 181 971 2 866 905 0.993949 2.2E−06 11 360 86 495 0.046512

COOLHANS 9 1.5E−06 10 45 0.000056 2.3E−06 7 22 0.000057

MOREBVNE 10 1.6E−06 37 219 0.000124 7.9E−08 4 33 0.000068

OSCIPANE 10 1.0E+00 8 608 149 322 784 536 180.000000 1.0E+00 2411 50 650 0.022718

TRIGON1NE 10 1.9E−06 13 29 0.000063 2.5E−06 5 26 0.000069

INTEQNE 12 9.2E−07 3 7 0.000021 3.3E−07 4 10 0.000065

HATFLDG 25 5.0E−06 22 708 356 246 0.232828 7.8E−07 44 199 0.000263

HYDCAR6 29 5.0E−03 2 661 134 61 551 663 180.000000 3.3E−01 30 781 0.002596

METHANB8 31 1.2E−04 2 577 703 67 500 153 180.000000 1.4E−02 6 472 0.001542

METHANL8 31 4.4E−03 2 764 968 66 380 772 180.000000 6.1E−01 28 1052 0.003356

HYDCAR20 99 3.9E−02 917 448 19 172 981 180.000000 9.2E+00 3 287 0.003190

LUKSAN21 100 8.9E−06 48 441 0.001177 6.1E−06 17 123 0.000562

MANCINONE 100 5.9E−07 5 17 0.009272 3.9E−06 4 11 0.005929

QINGNE 100 4.8E−06 21 45 0.000233 4.3E−06 10 35 0.000150

ARGTRIG 200 1.2E−05 57 199 0.016417 1.1E−05 5 86 0.007244

BROWNALE 200 1.0E−05 9 25 0.001325 3.1E−07 3 9 0.000512

CHANDHEU 500 1.4E−05 18 99 0.140877 1.5E−05 10 51 0.065100

10FOLDTR 1000 2.2E+07 9445 272 830 180.000000 2.7E−05 54 6563 4.562871

KSS 1000 9.3E−06 5 17 0.023044 2.2E−08 6 13 0.017676

MSQRTA 1024 4.7E+01 68 938 1 137 480 180.000000 5.5E+01 17 1351 0.210034

MSQRTB 1024 4.6E+01 61 153 1 138 024 180.000000 5.9E+01 13 1964 0.306907

EIGENAU 2550 1.6E+02 12 625 234 607 180.000000 1.6E+02 17 850 0.768981

EIGENB 2550 9.6E+00 15 297 234 454 180.000000 9.8E+00 9 382 0.361665

EIGENC 2652 9.2E+01 14 864 218 919 180.000000 9.7E+01 33 2169 2.097641

NONMSQRTNE 4900 2.4E+02 5731 85 005 180.000000 2.3E+02 23 915 1.804071

BROYDN3D 5000 5.3E−05 12 25 0.005502 2.8E−05 5 19 0.002987

BROYDNBD 5000 2.4E+00 58 861 934 685 180.000000 7.7E+00 11 607 0.176834

BRYBNDNE 5000 2.4E+00 57 595 915 686 180.000000 7.7E+00 11 607 0.176482

NONDIANE 5000 1.0E+00 83 049 1 603 628 180.000000 6.1E+02 686 10 094 1.873028

SBRYBNDNE 5000 2.5E+02 45 364 906 538 180.000000 2.7E+02 50 2935 0.918074

SROSENBRNE 5000 2.5E−09 9 34 0.004332 2.1E−08 4 11 0.001462

SSBRYBNDNE 5000 1.7E+02 50 681 944 507 180.000000 1.6E+02 128 9043 2.794424

TQUARTICNE 5000 8.3E−01 175 237 1 886 434 180.000000 1.5E−07 2 6 0.000899

OSCIGRNE 100 000 1.8E−04 28 66 0.461298 1.5E−04 7 34 0.158588

CYCLIC3 100 002 6.2E−01 3011 53 186 180.000000 1.7E−04 282 992 4.070610

YATP1CNE 123 200 2.6E−07 14 41 0.889454 1.4E−04 17 48 0.970848

YATP1NE 123 200 2.6E−07 14 41 0.891586 1.4E−04 17 48 0.974741

YATP2CNE 123 200 3.1E+04 800 12 314 180.000000 – – – 180.000000

YATP2SQ 123 200 4.1E+04 791 12 362 180.000000 – – – 180.000000
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Figure 2. Performance profiles of Accelerated DF-SANE (in Fortran) and NITSOL (GMRES)
considering the 41 problems from the CUTEst collection in which both methods found a solu-
tion.

limit. If we consider these 40 problems, in which both versions performed an identical number of iterations and
functional evaluations, the Fortran version uses, in average, around 10% of the CPU time required by the R
version of the method.

5. Conclusions

In [3], where it was shown that an acceleration scheme based on the Sequential Secant Method could improve
the performance of the derivative-free spectral residual method [16], numerical experiments with very large
problems coming from the discretization of partial differential equations were presented. In the considered
family of problems, Accelerated DF-SANE outperformed DF-SANE and NITSOL (GMRES) by a large extent.

In the present work, an R implementation of the method proposed in [3] was introduced. In addition, numer-
ical experiments considering all nonlinear systems of equations from the well-known CUTEst collection were
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presented. Default dimensions of the problems were considered; and the collection includes small-, medium-, and
large-scale problems. The results showed that the proposed method is much more robust than the DF-SANE
method included in the R package BB [24]; while it is as robust and almost as efficient as the state-of-the-art
classical NITSOL (GMRES) method (implemented in Fortran). Therefore, the proposed method appears as a
useful and robust alternative for solving nonlinear systems of equations without derivatives to the users of the
R language.

As a byproduct, an interface to test derivative-free nonlinear systems solvers developed in R with the widely-
used test problems from the CUTEst collection [12] was also provided.

The method presented in this work can be extended if we want to consider the use of large-scale parallelism.
Although our contribution is based on classical sequential computing, appropriate extensions can be introduced
to fully exploit parallel computing. The use of simultaneous updating with multiple increments defines several
lines of future research.
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