
Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Enhanced Run-Time Reconfigurable
Myokinetic Interface for Prosthetic Control of

Artificial Hands

Davi de Alencar Mendes

DISSERTAÇÃO DE MESTRADO

PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS MECATRÔNICOS

Brasília

2024

Mendes, Davi de Alencar.
M538e Enhanced Run-Time ReconfigurableMyokinetic Interface for

Prosthetic Control of Artificial Hands / Davi de Alencar Mendes;
orientador Daniel Mauricio Muñoz Arboleda. -- Brasília, 2024.

87 p.

Dissertação de Mestrado (Programa de Pós-Graduação em
Sistemas Mecatrônicos) -- Universidade de Brasília, 2024.

1. FPGA. 2. Zynq SoC. 3. Partial Reconfiguration. 4. Myoki-
netic Interface. I. Arboleda, Daniel Mauricio Muñoz, orient. II.
Título

Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Aprimoramento de uma Interface Miocinética
Dinamicamente Reconfigurável para Controle

Protético de Mãos Artificiais

Davi de Alencar Mendes

Dissertação de Mestrado submetida ao Depar-
tamento de Engenharia Mecânica da Univer-
sidade Brasília como parte dos requisitos ne-
cessários para a obtenção do grau de Mestre

Orientador: Prof. Dr. Daniel Mauricio Muñoz Arboleda

Brasília

2024

Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Enhanced Run-Time Reconfigurable Myokinetic
Interface for Prosthetic Control of Artificial Hands

Davi de Alencar Mendes

Dissertação de Mestrado submetida ao Depar-
tamento de Engenharia Mecânica da Univer-
sidade Brasília como parte dos requisitos ne-
cessários para a obtenção do grau de Mestre

Trabalho aprovado. Brasília, 19 de Julho de 2024:

Prof. Dr. Daniel Mauricio Muñoz
Arboleda, UnB/FT/ENM

Orientador

Prof. Dr. Renato Coral Sampaio,
UnB/FGA

Examinador interno

Prof. Dr. Vanderlei Bonato, USP/ICMC
Examinador externo

Prof. Carlos Eduardo da Silva Santos, IFTo
Examinador externo

Brasília
2024

“Para:
Meus amados pais José Ricardo & Eunice Mendes,
Querida irmã Sarah Mendes Barbosa & Ruy Barbosa,
Minha esposa Gabriela Chiesse.”

Davi Mendes

Acknowledgements

Primeiramente, agradeço à Deus, pois toda inteligência e sabedoria provêm dEle.
Aos meus pais, José Ricardo & Eunice Mendes, obrigado pelo amor e apoio incondicional,
sou eternamente grato por tudo que fizeram, pela dedicação e suporte aos meus estudos,
sem vocês nada disso seria possível. Tenho muito orgulho de ser filho de vocês e minha
admiração por tudo que são e conquistaram é eterna. À minha irma, Sarah, que está comigo
desde sempre, obrigado por acreditar no meu potencial. À minha amada esposa, Gabriela
Chiesse, pelo companheirismo diário, carinho e paciência, sem os quais eu não chegaria até
aqui, obrigada por me motivar a ir mais longe e estar comigo em cada etapa dessa jornada.
À minha avó, Izabel, agradeço pelo amor diário e por ser uma figura essencial em nossa
família - esse trabalho também é para a senhora.

Ao meu Professor Orientador Daniel Muñoz, agradeço pelas aulas na graduação que
me fizeram perceber o excelente docente que é, pelo amparo imensurável durante todo o
mestrado, pelas palavras de encorajamento e, principalmente, por confiar em mim para
realizar esse trabalho. Sou eternamente grato à todas as oportunidades queme deu, carregarei
com carinho tudo o que fez por mim.

Por fim, agradeço a CAPES e a UnB pelo suporte financeiro dedicado ao desenvolvi-
mento da pesquisa.

Abstract

In recent years, FPGAs have become more popular in embedded systems, both as a main
computation resources and as hardware accelerators. Partial Run-Time Reconfiguration of
FPGAs is a compelling design concept for general purpose reconfigurable systems for its
flexibility and extensibility. In the recent literature research for the Myokinetic Control Inter-
face – a Human-Machine Interface (HMI) based on implanted magnets and gross muscular
motion – embedded solutions have been proposed to the development of a self-contained
transcutaneous magnet localizer system. Previous works show that, when designed prop-
erly a magnet localizer system can improve its performance with reduced logic utilization
taking advantage of a partial run-time reconfigurable architecture. Unfortunately, there are
problems to face: the reconfiguration overhead is not negligible compared with nowadays
CPUs performance, and elevated power consumption. In an attempt to cover this gap, here
we present a novel implementation for a run-time reconfigurable architecture used to esti-
mate magnet displacement using data-driven models implemented as hardware accelerators
capable of tracking five magnets. The architecture is implemented on both AMD Xilinx
FPGA and SoC-FPGA devices aimed at reducing the reconfiguration overhead with the
pre-fetching (hardware pipelining) of reconfigurable modules (RM). The system exhibits
short execution time (6.67 ms – SoC-FPGA, and 5.97 ms – FPGA) and power consumption
(1.635 W – SoC-FPGA, and 1.203 W – FPGA). The system proved able to localize magnets
with high accuracy (RMSE ranging from ≈ 0.076 mm to ≈ 0.043 mm). The obtained re-
configuration throughput (∼ 399MB/s) using the internal configuration port is considered
optimal. In conclusion, we demonstrated the design and implementation of an enhanced
run-time reconfigurable architecture applied to myokinetic interface paving the way towards
the development of a self-contained FPGA-based magnet localizer.

Keywords: FPGA. Zynq SoC. Partial Reconfiguration. Myokinetic Interface.

Resumo

Nos últimos anos, FPGAs tem se tornado mais populares em sistemas embarcados, tanto
comoprincipais recursos computacionais quanto como aceleradores emhardware. AReconfi-
guração Dinâmica Parcial é um conceito de projeto atraente para sistemas reconfiguráveis de
proposito geral devido à sua flexibilidade e extensibilidade. Na literatura acadêmica recente a
respeito da Interface Miocinetica – uma Interface Homem-Máquina (IHM) baseada em ímãs
implantados e movimento muscular (contração e elongamento) – soluções embarcadas tem
sido propostas para o desenvolvimento de um sistema localizador de ímãs transcutâneo autô-
nomo. Trabalhos anteriores mostram que, quando projetado adequadamente, um sistema
localizador de ímãs pode melhorar seu desempenho com utilização reduzida de lógica, ao
adotar uma arquitetura reconfigurável em tempo de execução. Infelizmente, há problemas
a serem enfrentados: a sobrecarga de reconfiguração não é negligenciável em comparação
com o desempenho das CPUs atuais, e o consumo elevado de energia. Em uma tentativa
de cobrir essa lacuna, apresentamos aqui uma nova implementação para uma arquitetura
reconfigurável em tempo de execução usada para estimar o deslocamento de ímãs utilizando
modelos orientados por dados implementados como aceleradores de hardware capazes de
rastrear cinco ímãs. A arquitetura é implementada em dispositivos AMD Xilinx FPGA e
SoC-FPGA visando reduzir a sobrecarga de reconfiguração com pre-fetching (hardware pipe-
lining) de módulos reconfiguráveis (MR). O sistema apresenta reduzido tempo de execução
(6,67 ms – SoC-FPGA, e 5,97 ms – FPGA) e consumo de energia (1,635 W – SoC-FPGA,
e 1,203 W – FPGA). O sistema demonstrou ser capaz de localizar ímãs com alta precisão
(RMSE variando de ≈ 0,076mm a ≈ 0,043mm). A taxa de transferência de reconfiguração
obtida (∼ 399MB/s) utilizando a porta de configuração interna é considerada ideal. Em
conclusão, demonstramos o projeto e a implementação de uma arquitetura reconfigurável
em tempo de execução aprimorada aplicada à interface miocinética, abrindo caminho para
o desenvolvimento de um localizador de ímãs autônomo baseado em FPGA.

Palavras-chave: FPGA. Zynq SoC. Partial Reconfiguration. Myokinetic Interface.

List of Figures

Figure 1 – Basic FPGA Architecture. Adapted from (CHURIWALA, 2016). 20
Figure 2 – Design Flow for FPGA Hardware System Development. Adapted from

(UG892. . . , 2022). 22
Figure 3 – Vitis HLS Design Flow. Adapted from (UG1399. . . , 2022). 24
Figure 4 – Dynamic Partial Reconfiguration – Single RP scheme: concept and termi-

nology. 25
Figure 5 – Partial Reconfiguration Design Tool Flow. Adapted from (UG947. . . , 2022). 27
Figure 6 – DFX Block Design Container (BDC) in IP-Integrator (Block Diagram).

Adapted from (UG947. . . , 2022). 30
Figure 7 – Zynq SoC – Signals, Interfaces and Pins. Adapted from (UG585. . . , 2023). 31
Figure 8 – Zynq SoC - Simplified Architecture Diagram. Adapted from (UG585. . . ,

2023). 32
Figure 9 – MicroBlaze Core Block Diagram. Adapted from (UG984. . . , 2022). . . . 34
Figure 10 – Myokinetic Interface Mockup. Adapted from (TARANTINO et al., 2017) 39
Figure 11 – Magnetic Sensor Data for Multisine Acquisition – Five-Magnets Dataset.

The x-axis display the number of samples in the dataset. The y-axis de-
picts the mean-centered readings in Gauss for (a), and the normalized
displacement in (b). In both figures, the right plot is the zoomed window
view of left plot data. 41

Figure 12 – Magnetic Sensor Data for Ramp Acquisition – Five-Magnets Dataset. The
x-axis display the number of samples in the dataset. The y-axis depicts the
mean-centered readings in Gauss for (a), and the normalized displace-
ment in (b). In both figures, the right plot is the zoomed window view of
left plot data. 42

Figure 13 – Feedforward Neural Network Architecture 45
Figure 14 – Radial-Basis Function Network Architecture 46
Figure 15 – Singular Values and Cumulative Variance for the magnetic sensor read-

ings from the five-magnet dataset – multisine acquisition. 50
Figure 16 – Correlation ranking of Principal Components for every magnet with first

12 PCs ranked. 51
Figure 17 – Model performance MSE (dB) with reduced magnetic features for every

Magnet. Baseline results are shown for models with unprocessed features
(Raw Inputs). The horizontal axis represents the number of PCs used
in model training. The vertical axis represents the obtained MSE in dB
(lower is better) and the best metric is highlighted for each magnet. . . . 52

Figure 18 – Model performance 𝑅2 with reduced magnetic features for every Magnet.
Baseline results are shown for models with unprocessed features (Raw
Inputs). The horizontal axis represents the number of PCs used in model
training. The vertical axis represents the obtained 𝑅2 (higher is better)
and the best metric is highlighted for each magnet. 53

Figure 19 – Feedforward Neural Network with a three-layer structure. The numbers
indicate that 4 neurons are used in the hidder layer and a single neuron
is used in the output layer. 58

Figure 20 – Linear Regression Model (pLinRGen) – 20a: Top-level view with ROM,
Control State Machine and Linear Model Pipeline. 20b: Internal pipeline
representation. Adapted from (MENDEZ et al., 2022). 60

Figure 21 – RBFNN Regression Model (vRBFGen) – 21a: Top-level view with ROMs,
Control State Machine and RBF "Neuron" instances. 21b: RBF "Neuron"
with Control State Machine. Adapted from (MENDEZ et al., 2022). . . . 61

Figure 22 – Scheduling of five magnet tracking using a single RP on the left and two
RPs on the right. The scheme with a single RP was taken from (MENDEZ,
2021). The scheme with two RPs is the proposed scheme to reduce the
total execution time and increase parallelism. It should be noted that the
illustration does not present any time scale for the reconfiguration time
and model latency. 62

Figure 23 – Proposed floorplanning for FPGA and SoC-FPGA with two Reconfig-
urable Partitions (RPs). 63

Figure 24 – Vivado SoC-FPGA Block Design for the RTR implementation for the
proposed myokinetic interface localizer. The diagram is presented with
the "Interfaces View" in which block connections are AXI interfaces. . . 64

Figure 25 – Vivado FPGABlock Design. The diagram is presented with the "Interfaces
View" in which block connections are AXI interfaces. 66

Figure 26 – Implemented Designs: Device View with highlights and labels. 69

List of Tables

Table 1 – I/O Peripheral Interfaces . 33
Table 2 – Zynq-7000 Family Members – Programmable Logic 33
Table 3 – Brief Summary for Recent Myokinetic Interface Solutions 38
Table 4 – MSE [dB] and 𝑅2 values for model training with unprocessed magnetic

sensor features. Highlighted cells presents the best MSE [dB] (lower is
better) for each MM (Magnetic Marker) in the experimental data. 49

Table 5 – Summary of models selected for hardware implementation. 54
Table 6 – HLS Synthesis Performance & Resource Estimates 57
Table 7 – HLS Synthesis Binding Operator/Storage Summary 58
Table 8 – ReconfigurableModules (RMs) ImplementedUtilization Summary –FPGA:

ARTY A7 . 67
Table 9 – Reconfigurable Modules (RMs) Implemented Utilization Summary – SoC-

FPGA: PYNQ-Z2 . 68
Table 10 – Target Device Partial Bitstream Sizes . 68
Table 11 – DPR Design Utilization on SoC-FPGA . 70
Table 12 – DPR Design Utilization on FPGA . 70
Table 13 – DPR System Computational & Reconfiguration Latency 71
Table 14 – DPR System Power Summary . 72

Contents

1 INTRODUCTION . 13
1.1 Problem Description . 13
1.2 Research Questions . 15
1.3 Objectives . 16
1.3.1 Specific Objectives . 16
1.4 Contributions . 16
1.5 Document Organization . 18

2 THEORETICAL FOUNDATION . 19
2.1 FPGA & SoC-FPGA . 19
2.1.1 FPGA Design Flow . 21
2.1.2 HLS Design Flow . 23
2.2 Partial Reconfiguration . 25
2.2.1 PR Design Flow . 26
2.2.2 Configuration Management . 27
2.2.3 DPR Infrastructure: Xilinx Dynamic Function eXchange (DFX) 28
2.3 The ZYNQ-7000 SoC Family . 30
2.3.1 Processing System – PS . 31
2.3.2 Programmable Logic – PL . 33
2.3.2.1 MicroBlaze Soft Processor Core . 34
2.3.3 Processing System – Programmable Logic Interfaces 35
2.4 The Myokinetic Approach for Hand Prosthetic Control 36
2.4.1 Human-Machine Interface – HMI . 36
2.4.2 Data-Driven Magnet Tracking applied to the Myokinetic Control Interface 39
2.4.2.1 Experimental Data Acquisition . 39
2.4.2.2 Dimensionality Reduction using Principal Component Analysis (PCA) 43
2.4.2.3 Regression using Black-Box Data-Driven Models 43

3 RUN-TIME RECONFIGURABLE ARCHITECTURE FORMYOKI-
NETICMAGNET TRACKING . 47

3.1 Introductory Remarks . 47
3.2 Proposed Modeling for Five Magnet Tracking 47
3.2.1 Model Performance with Unprocessed Magnetic Sensor Features 48
3.2.2 Model Performance with Dimensionality Reduction of Magnetic Sensor

Features . 50
3.3 Machine Learning Models Implementation on Hardware 54

3.3.1 HLS Implementation for Dimensionality Reduction using PCA 54
3.3.1.1 HLS Source & Synthesis Results . 55
3.3.2 Feedforward Neural Network Model – HLS-FFNN 58
3.3.3 Linear Regression Model – pLinRGen . 59
3.3.4 Radial-Basis Function Network Model – vRBFGen 60
3.4 Run-time Reconfigurable System Implementation 61
3.4.1 Floorplanning . 63
3.4.2 System Overview & Block Design . 64

4 RUN-TIME RECONFIGURABLE ARCHITECTURE IMPLEMEN-
TATION RESULTS . 67

4.1 Reconfigurable Modules Hardware Utilization 67
4.2 DPR System Design Utilization . 68
4.3 DPR System Performance Evaluation 71

5 FINAL REMARKS . 74
5.1 Conclusions . 74
5.2 Future Work . 74

REFERENCES . 76

APPENDIX 80

APPENDIX A – RELATED ARTICLES 81

13

1 Introduction

1.1 Problem Description

Restoring dexterous motor functions equivalent to those of the human hand, after
amputation, is considered one of the major goals in rehabilitation engineering and applied
neuroscience. Reaching this goal requires a successful execution of the two key components
of a prosthesis: the artificial hand and the Human-Machine Interface (HMI). The artificial
hand must be capable of movements and graps comparable to those of the natural hand,
while the HMI should allow effortless control of such movements, bridging the artificial
hand and the sources of volition 1.

Currently, sEMG (Surface Electromyography) is an extensively used signal in biomed-
ical HMI applications for prosthetic control (ESPOSITO et al., 2021), for it is easy to access
and provides an intuitive control strategy to reproduce the function of a biological limb. This
biopotential contains information about neural signals transmitted from the brain to the
muscles to perform a motor task. Hence, it allows for capturing the subject’s movement in-
tention. EMG-controlled artificial limbs are referred to as myoelectric prostheses ranging in
invasiveness (from surface sensors to intra-neural electrodes). Despite its widespread usage,
myoelectric prosthetic control suffers from fundamental issues regarding signal acquisition
and the lack of accessible independent control sources for the realization of simultaneous
control of multiple DoFs (Degrees of Freedom) (ESPOSITO et al., 2021).

An innovative solution abandoning the paradigm of transducing electrical signals
was proposed recently for hand prosthetic control by inferring muscles contractions from
the deflection of permanent magnets implanted into the amputee’s residual muscles, the
Myokinetic Control Interface (TARANTINO et al., 2017) (GHERARDINI; MASIERO, et
al., 2023). For that, an array of 3-axis magnetic field sensors disposed around the forearm
exploits the magnetic field variations caused by the implanted magnetic markers (MMs)
displacement (elongation, and contraction). The study of (MORADI et al., 2022) presents
the first clinical implementation of implanted magnetic markers for an amputee’s prosthetic
hand. In their proposed approach, the magnetic field signals directly drive the prosthesis
hand skipping the magnet localization step. This is done by detecting gesture types and
grades of motion using artificial neural networks and convolutional neural networks. More
recently, the first-in-human implementation of a self-contained myokinetic interface was
implemented: a transradial amputee received the implantation of sixmagnets andwas able to
control a robotic hand following direct and pattern recognition control strategies exploiting
1 i.e. the exercise of choosing or willing; a state of choice

14

magnet localization data, derived through numerical approximation methods (CIPRIANI
et al., 2023).

Indeed, to estimate the magnet’s displacements, two main strategies can be adopted:
(a) to solve the inverse problem ofmagnetostatics, which commonly is addressed by optimiza-
tion solvers (BRUCKNER et al., 2017) and requires numerical approximations as reported
in (TARANTINO et al., 2017) (CLEMENTE et al., 2019) and (IANNICIELLO, 2024); (b) to
use data-driven methods and machine learning (ML) models for mapping experimental
magnetic measurements to the magnet’s displacements (MENDEZ, 2021; MENDEZ et al.,
2022).

In (TARANTINO et al., 2017), magnets were analytically modeled as point dipoles,
and localization was obtained through the Levenberg–Marquardt (LM) optimization al-
gorithm. The output of the optimization problem is a functioning solution to the inverse
problem of magnetostatics. However, the LM algorithm does not provide a fixed execution
time, which represents a major drawback for real-time constraints (ZHOU et al., 2019). The
work of (TARANTINO et al., 2017) utilized a tracking algorithm that was ineffective in
providing estimations as fast as the sensor acquired information. More specifically, while
sensors could acquire ∼75 samples per second (one sample every 13 ms), 45 ms were needed
for localizing four magnets. In (CLEMENTE et al., 2019), a fully embedded system was
presented, which proved capable of tracking up to five magnets in less than ∼4 ms using 32
magnetic field sensors with a power consumption of 980 mW (550 mW for the acquisition
unit and 430 mW for the computational unit). In this case, the time needed for sampling the
sensors readings, and sending them to the computational unit was ∼24 ms.

The elevated data transfer latency limitation was recently addressed with the design
of a new modular, parallel architecture capable of acquiring synchronized samples from
one acquisition unit (sampling rate of 100Hz) up to eight acquisition units (sampling rate
of 38Hz), significantly increasing the system output rate (IANNICIELLO, 2024). Despite
these advances in system bandwidth, limitations on the reliability of the localization output,
employed to control the prosthesis, emerged during the first-in-human study of the system
(CIPRIANI et al., 2023). In fact, when using localization data to train pattern recognition
algorithms, the repeatability of the feature set may be affected by the accuracy of the lo-
calization algorithm, based on numerical approximation methods, which can deteriorate
due to several factors. For instance, factors intrinsic to the optimization technique, such as
the presence of local minima in the solution or the need for user-defined initial conditions,
can induce localization errors and thus variability in the feature set. The latter aspect posed
challenges for developing robust classifiers during the in-human pilot study (CIPRIANI
et al., 2023).

To overcome these drawbacks, here we suggest to exploit data-driven algorithms in
place of numerical approximation methods for deriving magnet displacement. The work

15

of (MENDEZ et al., 2022) demonstrated the feasibility of using data-driven methods imple-
mented on hardware to retrieve the position of a single magnet, to control a hand prosthesis.
Field Programmable Gate Arrays (FPGAs) were used to obtain hardware parallel archi-
tectures for two regression models: a) Linear Model, and b) Radial-Basis Function Neural
Network model (RBFNN). Ad-hoc solutions with 8 parallel operators for the linear model
and 8 parallel neurons for the RBFNN model were obtained, being able to estimate the
magnet displacement in 4.8 𝜇s and 12.07 𝜇s for the linear and RBFNN models, respectively.
Although both models performed with good accuracy, the RBFNN model performed with
higher precision than the linear one, as repeatability of the measurements is the most im-
portant characteristic of the myokinetic interface for prosthetic control. However, the main
drawback of the RBFNNmodel is its extensive hardware occupation, with a utilization of
near 95% of the Look-up Tables (LUTs) for a ZYNQ-7020 SoC-FPGA device, dissipating a
power of 209 mW and 545 mW for the linear and RBFNN models, respectively.

In (MENDEZ, 2021), a Partial Run-Time Reconfigurable (RTR) SoC-FPGA archi-
tecture was exploited to improve the efficiency of the aforementioned system (MENDEZ
et al., 2022) both in terms of performance and energy. The proposed RTR FPGA architecture
implemented the Linear Model, RBFNNModel, and a Multilayer Perceptron Model (MLP,
akin to a feedforward artificial neural network) to derive magnet displacements. Regard-
ing data processing, the magnetic sensor data was further processed into a reduced set of
features using principal component analysis (PCA). In addition, a single reconfiguration
partition (RP) (placed in an entire device clock region) provides the reconfigurable slot for
the hardware accelerators. The SoC-FPGA architecture is capable of tracking five magnets
within ∼ 9.5 ms of total execution time requiring two reconfiguration steps (reconfiguration
time of ∼ 4.74 ms). The total power consumption was estimated in 1719 mW, of which: 1514
mW are dedicated to ARMCortex A9 Core, and 162 mW are dissipated by the programmable
logic (PL). Despite of its advantages, the RTR-based solution has some shortcomings when it
comes to power consumption and reconfiguration overhead. The hard-core ARM processor
is power demanding (over 88% of total power consumption) and the usage of a single large
RP makes so that partial bitstreams are large in size (over 1 MB) with considerable dedicated
reconfiguration time impacting the overall system performance.

1.2 Research Questions

In this context, the present work is dedicated to answering the questions:

• What are the advantages, limitations and peculiarities for the implementation of a data-
driven magnet tracking system for the Myokinetic Control Interface with run-time
reconfiguration capabilities on a FPGA platform and on a SoC-FPGA platform?

16

• What guidelines (constraints, design flow, design methods) and optimizations must be
used to assure that RTR architecture meets/exceeds previous works in power efficiency
and hardware utilization, mitigating the reconfiguration overhead?

These key points represents the core of the presented work and could contribute to
the research in this field by providing technological and scientific advancements in a core
component for the Myokinetic Control Interface using reconfigurable hardware.

1.3 Objectives

This work’s purpose is to develop a run-time reconfigurable (RTR) architecture on
FPGA and SoC-FPGA embedded platforms for a Myokinetic Human-Machine Interface
(HMI) used for prosthetic limbs (i.e. robotic hands). In this proposal, the tracking of multi-
ple magnets is done by hardware accelerators based on data-driven models with adaptive
capabilities using dynamic partial reconfiguration (DPR).

1.3.1 Specific Objectives

In the proposal, the specific objectives are to:

• Devise a hardware implementation at the RTL level capable of processing myokinetic
magnetic sensor data for the localization of multiple magnets aimed at the control
of prosthetic limbs. It should be capable of estimating the displacement of five MMs
(magnetic markers) virtually implanted in an anatomically relevant forearm mockup
used for the experimental data acquisition.

• Demonstrate the RTR architecture for the myokinetic magnet tracking in FPGA and
SoC-FPGA embedded platforms. This is done to exploit optimizations on the DPR
hardware implementation to pursue cost-effective and power-efficient solutions con-
sidering real-time operational constraints and reduced logic utilization.

• Characterize the embedded implementation according to its localization accuracy,
power consumption and total execution time, aiming at reducing the reconfiguration
time overhead by implementing a more efficient DPR architecture with hardware
pipelining capabilities.

1.4 Contributions

Within the research work, there are three types of expected contributions, namely:
(i) Scientific, (ii) Technological, and (iii) Academic contributions.

17

• Scientific:

– Implementation of a novel FPGA-based real-time embedded system for theMyoki-
netic Control Interface for multi-magnet localization with dynamic partial recon-
figuration and hardware pipelining (pre-fetching) capabilities. It is also intended
to provide a SoC-FPGA implementation to assess advantages and limitations in
the novel implementation.

• Technological:

– Design & Development of an embedded RTR system under FPGA and SoC-
FPGA targets with reusable components across implementations using hardware
description language (HDL) and High-Level Synthesis (HLS) for the RTL imple-
mentation. If design goals are attained, the implementation will be more power
efficient with increased performance and accuracy.

– Improvements to the IP-Cores from LEIA Laboratory used in the implementation
of Linear Regression and Radial-Basis Function Neural Network.

• Academic:

– Continue the ongoing collaborationwith theBiorobotics Institute at the Sant’Anna
School of Advanced Studies about the MYKI Project.

• Journal Articles

– Run-Time Reconfiguration for Tracking Multiple Magnets with a Myoki-
netic Interface. Sergio A. Pertuz, Davi A. Mendes, Marta Gherardini, Daniel
M. Muñoz, Helon Vicente Hultmann Ayala and Christian Cipriani. IEEE Trans-
actions on Medical Robotics and Bionics. Submission Date: July./2024. Status:
Publication Accepted.

• Conference Papers

– AComparative Analysis of HDL andHLS for AcceleratingMachine Learn-
ing based StrainEstimationwithUltrasonicGuidedWaves. Davi A.Mendes,
Gabriel Reves, M. A. Pastrana, Pedro H. Domingues, Helon V. H. Ayala, Alan C.
Kubrusly, Daniel M. Muñoz and Carlos H. Llanos. XIII Brazilian Symposium on
Computing Systems Engineering. Submission Date: July/2023. Status: Published
(DOI: 10.1109/SBESC60926.2023.10324053).

– Implementation of a PID Controller using Online Tuning Applied to a
Mobile Robot Obstacle Following/Avoidance. M. A. Pastrana, L. H. Oliveira,
D. A. Mendes, D. L. Silva, J. Mendoza-Peñaloza and Daniel M. Muñoz. 2024
Argentine Conference on Electronics (CAE), Submission Date: September/2023.
Status: Published (DOI: 10.1109/CAE59785.2024.10487152)

https://ieeexplore.ieee.org/document/10324053
https://ieeexplore.ieee.org/document/10487152

18

– Teaching Control Theory using Mobile Robot Obstacle Following/Avoid-
ance with CoppeliaSim andMFO Algorithm.. M. A. Pastrana, J. Bautista, J.
Mendoza-Peñaloza, L.H.Oliveira, D.A.Mendes andDanielM.Muñoz. 2023Latin
American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics
(SBR), and 2023 Workshop on Robotics in Education (WRE). Submission Date: Ju-
ly/2023. Status: Published (DOI: 10.1109/LARS/SBR/WRE59448.2023.10333042).

1.5 Document Organization

The work is divided into five chapters including the Introduction from Chapter 1.
Chapter 2 dedicated to the research theoretical foundations regarding FPGAs, SoC-FPGA
and its design flows and design methodologies. The Myokinetic Interface literature research
is also presented in Chapter 2. Chapter 3 presents the development of the proposed run-time
reconfigurable architecture from the experimental modeling used for training the machine-
learning models used in estimating magnet displacement to their implementation at the
RTL-level. In addition, we also present the implemented design for the DPR system for the
FPGA and SoC-FPGA platforms. Chapter 4 presents the obtained results of the SW/HW co-
design implementation in both the SoC-FPGAandFPGAplatforms. The analysis includes the
design utilization for the proposed static and reconfigurable logic and a system performance
evaluation metrics based on in-target execution results. Lastly, 5 presents the final remarks
for the report with suggestions for future works.

https://ieeexplore.ieee.org/document/10333042

19

2 Theoretical Foundation

This chapter provides an overview about the tools and methods used in the develop-
ment/research of reconfigurable hardware. The focus is on the relevant aspects of FPGAs &
SoC-FPGAs, such as the design flow, toolchain and Dynamic Partial Reconfiguration (DPR)
as a mean of implementation of RTR-based systems and reconfiguration strategies and their
technological aspects.

In addition, the chapter also provides an overview about the state-of-the-art regarding
the Myokinetic Control Interface (HMI) and the machine learning algorithms used to devise
the magnet tracking scheme used in the hardware implementation.

2.1 FPGA & SoC-FPGA

Field Programmable Gate Arrays (FPGAs) are Integrated Circuits (ICs) that can
be reprogrammed after fabrication with strong spatial (parallel) computing style similar
to Application Specific Integrated Circuits (ASICs). ASICs are, in general, more efficient
than instruction flow processors, which are oriented towards a temporal computing style
(sequential). Reconfigurable hardware combines efficiency and flexibility for the realization
of a multitude of complex applications. These applications are often constrained by power
consumption and performance requirements with the need to adaptation in different operat-
ing environments. As ASICs may lack the desired flexibility and might pose a development
overhead due to its increased design complexity, FPGAs arise as a viable option for modern
engineering applications. In order to achieve higher levels of integration, security and re-
liability System-On-Chip FPGAs with on-chip fixed-function processing subsystems have
recently emerged as potential contenders for high-end processing applications. SoC-FPGAs
combine the advantages of hardware programmability with the software programmability
found in modern processing cores.

The primary function of the FPGA is to implement programmable logic, which
can be used by end customers to create new hardware devices. In its essence, FPGAs are
built around an array of programmable logic block embedded in a sea of programmable
interconnect. The array is often referred to as the programmable logic fabric (or fabric for
short) (CHURIWALA, 2016). Figure 1 shows a basic architecture of an FPGA.

20

Figure 1 – Basic FPGA Architecture. Adapted from (CHURIWALA, 2016).

As the FPGA market matured, it became clear that special functionality needed
its own dedicated functions built from hard gates, such as: carry chains, block RAM, DSP
blocks, transceivers and others. This hardening improves not only cost but also frequency
substantially.

Within any one FPGA family, devices will share a common fabric architecture with
a different amount of programmable logic. This enables users to match their logic require-
ments and application I/O requirements with the available options for device packages.
FPGA devices also provide options for multiple speed grades and temperature grades and
voltage levels. The highest speed devices are typically 25% faster than lower speed devices
(CHURIWALA, 2016).

Modern FPGAs commonly operate at 100-500 Mhz. In general, most logic designs
run in the mid-frequency range. The highest frequency designs are typically DSP designs
with extensive BRAM blocks. A logic design might exploit multiple clock domains across a
wide frequency range depending on its purpose and clocking requirements.

In the following, we present a high level overview of FPGA architectures and the
associated design flow for FPGA designs.

Programmable Interconnect

In order to enable arbitrary logic networks, a set of wires is woven through the FPGA
fabric. The interconnect wires architecture varies from generation to generation and is
hidden from the user by the tools.

21

Programmable Logic Block

An array of programmable logic blocks are embedded into the programmable inter-
connect – called CLBs (configurable logic blocks) in Xilinx devices. Today, a single logic
block consists of one or more programmable logic functions implemented as a 4-6 bit con-
figurable lookup table (LUT), a configurable carry chain, and configurable registers. These
configurable hard blocks can be configured through the FPGAs configuration memory to be
used in user’s defined logic (CHURIWALA, 2016).

The combination of a LUT, carry chain, and register is called a logic cell, which is a
standard unit for measuring FPGAs capacity.

Memory

The spatial computing inherent to FPGAs is powered by dataflow and memory.
Programmable logic designs commonly use a combination of local memories embedded
in the FPGA fabric and external DDR memories. Within the logic fabric, memory can be
implemented as discrete registers, shift registers, distributed RAM, or block RAM. System
memory access to external DDR memory is done via a bus interface which is usually an AXI
protocol internal to the FPGA.

In general, registers are flip-flops – used for status and control datapaths, pipelining,
and shallow (1-2 deep) FIFOs. Shift registers are commonly used for delay buffer elements
and pipeline balancing in DSP designs.

DSP Blocks

Modern FPGAs contain discrete multipliers to enable efficient DSP processing. These
applications are built using pipelines or flow graphs of DSP operations and data streaming.
Pipelines are implemented for optimal throughput to compute at every clock cycle. Xilinx
FPGAs contain a DSP block known as a DSP48, which supports an 18-bit × 25-bit multiplier,
a 48-bit accumulator, and a 25-bit pre-adder (UG479. . . , 2018). In addition, up to four levels
of pipelining can be supported for operating up to 500 MHz. The DSP48 supports integer
math and the implementation of a 32-bit floating-point multiplier requires two DSP48 blocks
and several hundred LCs.

2.1.1 FPGA Design Flow

Figure 2 presents the design flow with FPGAs with a high-level summary of a more
traditional design flow for a hardware-only system. The individual design steps are as follows:

22

1. System Design Entry: This step comprises a functional description using design
sources (RTL, Block Diagram, IP, Netlist) in which basic design constraints are taken
into account for area, performance and I/O for instance. Behavioral logic simulation
is used in analysis and verification of the design and allows for functional iterations
on the design for resource tuning.

2. Implementation: Implementation step uses the output from the top-down synthesis
of the overall RTL design to place and route the netlist onto the available device
resources of the target part. The EDA tool works to satisfy logical, physical, and timing
constraints of the design.

3. Design Verification: This step is shared with other design steps as verification is
spread out and produces valuable insights to optimize, validate and modify the design
at each stage of the process. Behavioral and structural logic simulation are used to
verify the correctness of the design across the process.

4. Hardware Bring-Up Validation: In this phase, in-circuit validation is performed
using the bitstream generated from the implementation results. This bitstream is used
by the target part configuration logic to program the device in hardware debug and
validation tasks.

Figure 2 – Design Flow for FPGA Hardware System Development. Adapted from (UG892. . . , 2022).

Often, FPGA designs are developed based on high level functional specifications.
These high level specifications might not cover key features such as timing, power, and

23

size of the design. Despite not being an explicit part of the design flow shown in Fig. 2,
the identification of functional requirements, definition & refinement of performance and
design constraint requirements are an essential process input to the system design entry
stage.

2.1.2 HLS Design Flow

High-Level Synthesis (HLS) is the process of compiling a software description (e.g.,
in C or C++ or OpenCL) into a digital circuit. HLS aims to increase designer productivity
by allowing a higher abstraction level that eases and shortens the hardware design process
(SIMPSON, 2015). While this has enabled a wider audience to target spatial computing
architectures, the optimizations principles known from traditional software design are no
longer sufficient to implement high-performance code, due to fundamentally distinct aspects
of hardware design (FINE LICHT et al., 2021).

TheHLS converts a pragma-assisted procedural description to a functional equivalent
behavioral description in a HDL such as Verilog or VHDL. This requires mapping variables
and operations to corresponding constructs, the scheduling operations according to their
inter-dependencies. A central task in HLS is to transform the untimed representation into a
timed representation such that the throughput requirements are satisfied,which for pipelined
sections might require the circuit to accept a new input every cycle. Coarse-grained control
flow is implemented with state machines, while computations and fine-grained control flow
are organized in pipelines.

Most effort invested by an HLS programmer lies in guiding the scheduling process to
implement deep, efficient pipelines, but logical synthesis is considered when choosing data
types and buffer sizes, and post-implementation place & route can ultimately bottleneck
applications once the desired parallelism has been achieved, requiring the developer to adapt
their code to aid this process (CONG et al., 2011).

HLS tools typically rely on functional verification of a particular circuit through
hardware simulation and software/hardware cosimulation. However, performing exhaustive
hardware simulations may become unfeasible or time-consuming as designs increase in
complexity. Furthermore, the lack of formal proof on the correctness of particular synthesis
steps and the resulting RTL modules prevents the adoption of HLS in domains where design
iterations are significantly more expensive (CONG et al., 2011).

Figure 3 shows theAMDXilinx Vitis HLSDesign Flow. ThisHLS framework supports
C and C++ to generate RTL modules packaged as IP-Cores for the Vivado Design Suite. It
is possible to use optimization directives to modify and control the implementation of the
internal logic and I/O ports.

24

Figure 3 – Vitis HLS Design Flow. Adapted from (UG1399. . . , 2022).

Vitis HLS inputs include (UG1399. . . , 2022):

• Primarily, C functions (C and C++11/C++14).

• Design Constraints with specifications for: clock period, clock uncertainty, and the
device target.

• Optional Directives for the implementation of specific behaviors, such as: AXI interface
configuration, dataflow, and others.

• C test bench and associated files to simulate the C function prior to synthesis, and to
verify the RTL output using C/RTL Co-simulation.

The following are Vitis HLS Outputs (UG1399. . . , 2022):

• Primarily, RTL implementation files in HDL formats available in both Verilog, and
VHDL standards. These can be synthesized and implemented into Xilinx devices using
the Vivado Design Suite.

• Reports generated as a result of simulation, synthesis, C/RTL co-simulation, and
generating output.

25

2.2 Partial Reconfiguration

FPGA technology provides the flexibility of programming and reprogramming a
device in the field without the need to go through re-fabrication. Dynamic Partial Reconfig-
uration (DPR) takes this one step further, allowing the dynamic modification of part of an
operating FPGA design without impacting the rest of the design.

Any systemwith functions that can be time-multiplexed stands to benefit from taking
advantage of Partial Reconfiguration. However, that does not mean that DPR can be applied
into any FPGA design with ease or without major changes to the architectural design. DPR
allows functions to be switched on hardware, similar to a microprocessor’s ability to switch
between tasks in software.

Hardware coprocessing is achieved by off-loading compute-intensive functions from
the central processor to a dedicated hardware, executing with lower power and latency.
Having dedicated hardware for each function is an inefficient use of resources. Partial
reconfiguration allows a library of hardware functions to be partially reconfigured onto the
same set of FPGA resources on-demand.

DPR-based designs consists of three basic parts. The Static is the portion of the design
that is expected to function at all times and does not possess run-time reconfigurability.
The Reconfigurable Partition (RP) is the instance or level of hierarchy within multiple
Reconfigurable Modules (RMs) are defined and implemented. Each Reconfigurable Module
represents one of the time-multiplexed functions (hardware co-processors) that will be
switched in and out of the FPGA (Figure 4).

Figure 4 – Dynamic Partial Reconfiguration – Single RP scheme: concept and terminology.

DPR-based designs can contain one or more RPs, each of which must occupy a
mutually exclusive physical area (programmable block) of the FPGA determined during the
floorplanning. The programmable block must contain the aggregated resources required to

26

individually implement each of the RMs associated with it. In each device family, different
resource types and granularity of the physical area can be reconfigured dynamically.

Partial bitstreamsmust be generated for each RM in each RP aswell as a full bitstream
which contains the data for both the static and theRMsbeing implemented. The full bitstream
is used for initial configuration of the FPGA, while partial bitstreams can be loaded via
the FPGA external configuration ports or via the internal configuration ports which can be
incorporated into the static portion of the design.

In order to take full advantage of the potential benefits of Partial Reconfiguration
for a given application, the FPGA device family; design structure modeling and support
functions for DPR must be considered prior to starting the design.

2.2.1 PR Design Flow

The PR tool flow involves a number of simple steps (Fig. 5):

1. Synthesize the Static region with RPs as black boxes.

2. Synthesize each RM separately in a bottom-up scheme (out-of-context – OOC). This
allows this portion to be stitched into the rest of the design at a later stage.

3. Create a physical area constraint (programmable block) to define the RP for each RM.
This area should contain all the resources required for each of the RMs and its routing.

4. Implement the static logic with one RM per RP with a fully routed design.

5. Lock the static placement and routing.

6. Add a different RM to static-only design to each RP, implement, and store the fully
routed design. Repeat for multiple configurations of all RMs.

7. Run partial verification utility and DRC on every routed design.

8. Generate bitstreams for each configuration with full bitstreams and partial bitstreams
for each RM.

27

Figure 5 – Partial Reconfiguration Design Tool Flow. Adapted from (UG947. . . , 2022).

Static/Reconfigurable Decoupling

The ports of the instance will be the partition pins of the RP. These must be the union
of the pins of all the RMs associated with that RP. These partition pins are used to bridge the
static/reconfigurable areas of the design and must be decoupled when loading a new RM
into the RP as unknown logic states can propagate across the static logic causing issues.

The decoupler must be driven from the static logic to provide stable inputs during
partial reconfiguration. When considering bus interfaces, the decoupler might need to im-
plement additional functionality to deal with handshakes, pending transfers. The following
signals must be considered for decoupling:

• All the control signals generated from the RPs.

• In the event of the RM being loaded without a full reset before an operation, all control
signals into the RP must be decoupled.

• Clock inputs must be decoupled if the RM contains logic that can initialized without
being qualified by a decoupled control signal.

2.2.2 Configuration Management

Storing and managing partial bitstreams is a major concern in a DPR design. Storage
of partial bitstreams is typically outside the FPGA, either on a nonvolatile flash memory, on
high-speed DDR SDRAM volatile memory, or other data transfer protocol (PCIe, Ethernet).

28

Managing these partial bitstreams often requires a processing unit (hard-core or soft-core
processor) or dedicated logic into the static region of the FPGA.

Depending on the location of the partial bitstreams and the management engine
used, selected configuration ports can be used to configure the FPGA on AMDXilinx devices,
namely:

• ICAP (Internal Configuration Access Port): Preferable choice for configuration man-
agement internally to the FPGA. Requires a reconfiguration controller and dedicated
logic to drive the ICAP interface.

• PCAP (Processor Configuration Access Port): The primary configuration mechanism
for ZYNQ-7000 SoC FPGA designs.

• MCAP (Media Configuration Access Port): Provides access to configuration memory
from PCIe block on UltraScale devices.

• JTAG: For test and debug.

• Slave SelectMAP: Mostly used to perform full and partial reconfiguration, especially
when using an external processor.

On AMD Xilinx 7-Series, the internal configuration access port (ICAP) clock fre-
quency is limited up to 100MHzwith a 32-bit data path (UG909. . . , 2022). Given a theoretical
bandwidth of 400 MB/s, it should not be a bottleneck in many scenarios. Nevertheless, there
are some applications that requires high reconfiguration throughput to sustain delivering
large partial bitstreams in a timely manner. In order to achieve the maximum physical limit
of ICAP, the data storage and reconfiguration controller must be designed to operate within
the maximum bandwidth.

2.2.3 DPR Infrastructure: Xilinx Dynamic Function eXchange (DFX)

The AMD Xilinx Dynamic Function eXchange (DFX) is a comprehensive solution
for dynamic partial reconfiguration on Xilinx devices. These IP-Cores are available to assist
users in quick and easily implementing key aspects of a reconfigurable design (UG909. . . ,
2022).

These Dynamic Function eXchange IPs are:

• Dynamic Function eXchange Controller: The DFX Controller provides manage-
ment functions for self-controlling partially reconfigurable designs. Intended for en-
closed systems where all of the RMs are known to the controller. Supports hardware
and software triggers in addition to the AXI4-Lite register control interface. Bitstreams

29

are fetched from an AXI4 bus, and as result, is not tied to any particular storage
device. Also, provides additional functionality to enable decoupling and reset after
reconfiguration.

• Dynamic Function eXchange Decoupler: The DFX Decoupler can be used for
managing the boundary between the static logic and an RP during reconfiguration. It
can be customized for the number of interfaces, decoupling functionality, status and
control via AXI4-Lite interface.

• Dynamic Function eXchange AXI ShutdownManager: The DFX AXI Shutdown
Manager can be used to make AXI interfaces between a RP and the static logic safe
during reconfiguration as failures in AXI transfers could cause system deadlock. It is
used to handle the termination of transfers, for the RMmight not be able to complete
them.

• Dynamic Function eXchangeBitstreamMonitor: TheDFXBitstreamMonitor can
be used to identify partial bitstreams as they flow through the design. This information
can be used for debugging or system applications such as blocking bitstream loads.

DFX Guidelines for 7-Series and Zynq Devices

Some design requirements are unique to DFX and specific to 7-Series and ZYNQ-7000
SoC-FPGA devices. With the Reset After Reconfiguration feature (RESET_AFTER_RECONFIG),
the reconfiguring region is held in a steady state during partial reconfiguration, and then
all logic in the new RM is initialized to its starting values. This feature behaves in the same
manner as the initial configuration of the FPGA. In order to apply Reset After Reconfigu-
ration, the height of the RP must align to clock region boundaries. Otherwise, any static
logic placed between the RP and the clock region boundary would be affected after partial
reconfiguration.

The width of the RP must be set so that the left and right edges of the programmable
block (Pblock) rectangle make the most efficient use of interconnect and clocking resources.
These edges should be placed between two resource columns and not between two inter-
connect columns, allowing the placer and router tools the full use of all resources in both
static and reconfigurable logic. If this rule is not followed, the tool might prohibit the usage
of interconnect columns in the Pblock.

Vivado 2021.2 introduced an IP Integrator (Block Design) project based environment
for DFX applications (UG947. . . , 2022). The DFX IP Integrator Project Flow includes:

• Within a Block Design, creating Block Design Containers (BDC) to identify hierarchy
in a project.

30

• Defining BDCs as Reconfigurable Partition within the design hierarchy.

• Populating a set of RMs for each RP.

• Creating a set of top-level and module-level synthesis runs.

• Creating a set of related implementation runs.

• Managing dependencies as sources, constraints, or options are modified.

• Checking DRC rules and results.

• Verifying configurations.

• Generating compatible sets of full and partial bitstreams.

The DFX BDC Project Flow is particularly interesting because it is IP-centric and
based on the IP Integrator (Block Diagram). In this methodology, each RM is contained
within a block design with a fixed set of input/output ports. Figure 6 shows a DFX block
diagram.

Figure 6 – DFX Block Design Container (BDC) in IP-Integrator (Block Diagram). Adapted from
(UG947. . . , 2022).

2.3 The ZYNQ-7000 SoC Family

The AMD Xilinx ZYNQ-7000 is an All-Programmable SoC (System-On-Chip) com-
bining all aspects of a digital system: processing, high-speed logic, interfacing, memory, and
so on. All of these functions are combined into a lower cost, with faster and more secure
data transfers between various system elements, lower power consumption, smaller physical
size, and better reliability solution integrated at the chip level. The Zynq SoC comprises two
main parts: a Processing System (PS) around a dual-core ARM Cortex-A9 processor, and
Programmable Logic (PL) – a 7-Series FPGA. Data-links between the PL and PS are made
using industry standard Advanced eXtensible Interface (AXI) connections (UG585. . . , 2023)
depicted in Fig. 7.

31

Figure 7 – Zynq SoC – Signals, Interfaces and Pins. Adapted from (UG585. . . , 2023).

2.3.1 Processing System – PS

The Zynq processing system encompasses a set of associated resources besides the
ARM processor forming an Application Processing Unit (APU), and further peripheral
interfaces, cache memory, memory interfaces, interconnect, and clock generation circuitry
(UG585. . . , 2023).

The APU is primarily comprised of two ARM processing cores; NEONMedia Pro-
cessing Engine and Floating Point Unit (FPU); a Memory Management Unit (MMU); and
a Level 1 cache memory. The APU also includes a Level 2 cache memory, and On Chip
Memory (OCM). The architecture diagram is shown in Fig. 8.

The ARM Cortex-A9 can operate at up to 1Ghz, depending on the particular Zynq
device. Each of the cores has separate Level 1 caches for data and instructions, both of which
are 32 KB; The larger Level 2 cache of 512 KB is shared between the two cores for instructions
and data, and there is a further 256 KB of on-chip memory within the APU.

The Snoop Control Unit (SCU) interfaces between the processors and cache mem-
ories to ensure cache coherency, also initiates and controls access to the Level 2 cache,
arbitrating between requests from the two cores when necessary. The SCU also manages
PS-PL transactions via the Accelerator Coherency Port (ACP).

32

Figure 8 – Zynq SoC - Simplified Architecture Diagram. Adapted from (UG585. . . , 2023).

Besides that, the Zynq PS features a variety of interfaces between the PS and external
components. These I/O includes standard communications interfaces, and General Purpose
Input/Output (GPIO). Table 1 presents the relevant interfaces (UG585. . . , 2023).

33

Table 1 – I/O Peripheral Interfaces

I/O Interface Description

SPI (2) Serial Peripheral Interface
Either in master or slave mode (4-pin)

I2C (2)
I2C bus
Compliant with I2C spec. version 2.
Supports master and slave modes.

CAN (2)
Controller Area Network
Bus interface controller compliant with
ISO 118980-1, CAN 2.0A and CAN 2.0B.

UART (2)
Universal Asynchronous Receiver Transmitter
Low rate data modem interface for
serial communication.

GPIO General Purpose Input/Output
4 banks, each of 32 bits.

SD (2) For interfacing with SD card memory.

USB (2)
Universal Serial Bus
Compliant with USB 2.0 in host, device, or
flexible OTG mode.

Gib. Eth.
Ethernet
Ethernet MAC peripheral for 10Mbps,
100 Mbps and 1Gbps modes.

2.3.2 Programmable Logic – PL

The second principal part of the Zynq architecture is the programmable logic (PL).
This is based on 7-Series devices – Artix-7 and Kintex-7 FPGAs. Table 2 presents the promi-
nent features of each Zynq-7000 device for its PL device.

Table 2 – Zynq-7000 Family Members – Programmable Logic

Zynq PL Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100
Logic Cells (K) 28 74 85 125 275 350 444
Block RAM (Mb) 2.1 3.3 4.9 9.3 17.6 19.1 26.5
DSP Slices 80 160 220 400 900 900 2,020
Maximum I/O Pins 100 150 200 250 362 362 400
Maximum Transceiver Count - 4 - 4 16 16 16

The Z-7010, Z-7015, Z-7020 are cost-optimized devices featuring Artix-7 FPGAs,
while the Z-7030, Z-7035, Z-7045, Z-7100 are mid-range devices featuring Kintex-7 FPGAs.
The main difference between the specific devices within the Zynq family is the type and
quantity of the programmable logic. Each of the family members provides a different amount
of general purpose logic, block RAMs, and DSP blocks. Naturally, the overall processing
capabilities and I/O of the PL section increases in proportion to its resources.

34

The PS is kept the same across all family members, with the addition that the maxi-
mum frequency of the ARM core differs. The PS on the Artix-7 based devices can be clocked
at up to 866 MHz, the Kintex-7 devices up to 1GHz.

2.3.2.1 MicroBlaze Soft Processor Core

For comparison purposes, the alternative to a hard processor is a so called soft proces-
sor like the Xilinx MicroBlaze, which is comprised of logical elements of the programmable
logic fabric. The implementation of a soft processor is therefore equivalent of any other IP
block of an FPGA design.

The MicroBlaze embedded processor soft core is a reduced instruction set computer
(RISC) optimized for implementation in AMD Xilinx FPGAs. It is implemented with a
Harvard memory architecture; instruction and data access are done in separate address
spaces. Figure 9 shows a functional block diagram of the MicroBlaze core.

Figure 9 – MicroBlaze Core Block Diagram. Adapted from (UG984. . . , 2022).

The fixed feature set includes:

• a thirty-two 32-bit or 64-bit general purpose registers.

• 32-bit instruction word with three operands and two addressing modes.

• a 32-bit address bus, extensible to 64 bits.

It can be used with an optional instruction/data cache for improved performance
when executing/reading code that resides outside the local memory bus (LMB) address
range. Moreover, a large set of additional features enables MicroBlaze implementations for
different scenarios with extensive flexibility.

35

According to Xilinx literature (UG984. . . , 2022), optimal MicroBlaze configurations
can achieve no more than 260 DMIPs (Dhrystone Millions of Instructions Per second) on
Zynq in speed grade -3 device, whereas the dual-core ARM is projected to reach 5000 DMIP
(2500 DMIPs per core), assuming a PS clock frequency of 1GHz (UG585. . . , 2023). Therefore,
indicating that the ARM core offers about 20 times greater processing performance than a
single MicroBlaze core.

Despite its reduced processing capabilities, MicroBlaze can interface with up to 16
AXI4-Stream interfaces, each consisting of one input and one output port. These channels are
dedicated uni-directional point-to-point 32-bit data streaming interfaces. Each link provides
a low latency dedicated interface to the processor pipeline allowing for an highly efficient
solution for transferring data to/from dedicated hardware functions.

2.3.3 Processing System – Programmable Logic Interfaces

The appeal of Zynq SoC-FPGA lies not just in the PL or PS parts but in the composition
of a complete embedded solution to form an integrated system. This is mostly due to the
adoption of AXI interconnects and interfaces used to bridge the PS-PL boundary. In addition,
PS-PL connections can also be made using the EMIO (Extended MIO).

AMD Xilinx contributed strongly to defining AXI4 (part of the ARM AMBA 3.0 open
standard) as the definitive interconnect technology for usewithin FPGAarchitectures. Briefly,
there are three flavours of AXI4, each composing a bus protocol. Furthermore, the AXI4
Standard does not impose strict timing between address and data operations. Unaligned data
transfers are also supported independently of buswidth. Out-of-order transaction completion
is supported through the transaction identifier in AXI side-channel signals.

The specification is geared towards the interface of IP blocks, rather than the in-
terconnect itself. An interconnect is effectively a switch which manages and routes traffic
between attached AXI interfaces. There are several interconnects within the PS, some of
which directly route to the PL.

• AXI4: For memory-mapped links, capable of high-performance with independent
read and write channels, which support burst-based access of up to 256 data words.
Also supports multiple outstanding addresses for parallel processing of transactions.
This is the full link specification.

• AXI4-Lite: A simplified subset link with support to a single data exchange per transfer
(without bursts). It is also memory-mapped resembling a register-like interface in
which an address and single data word are transferred.

• AXI4-Stream: For high-speed streaming data, supporting burst transfers of unre-
stricted size. There is no address mechanism. Additional side-channel signals might

36

be used to transfer positional or sequential information and signaling of packet bound-
aries. In this interface, a simple FIFO-like handshake is used for data transfers.

The PS-PL interface is divided intoAXIGeneral Purpose Ports, AXIHigh-Performance
Ports, and Accelerator Coherency Port (ACP). The General Purpose AXI is a 32-bit data bus,
suitable for low andmedium rate communications between the PL and PS. TheACP interface
is mostly used for cache coherent transactions. The High-Performance ports include FIFO
buffers to accommodate read/write bursts for high rate communications. The data width is
either 32 or 64 bits, and the PL is the master of all four interfaces. These High-Performance
Ports are also attached to the DDR memory controller, which makes them the preferable
option when dealing with Direct Memory Access (DMA) inside the PL.

2.4 The Myokinetic Approach for Hand Prosthetic Con-

trol

This Section is dedicated to the core concepts of the Myokinetic approach for Hand
Prosthetic Control, a Human-Machine Interface based on implanted magnets and gross
muscular motion. Furthermore, the experimental data collected from virtually implanted
magnets in an anatomically relevant forearm mockup is introduced to test and validate the
data-driven scheme devised to estimate magnet displacement. In addition, the algorithms
used to estimate the magnet displacement are also introduced with details regarding data
pre-processing based on the Principal Component Analysis (PCA).

2.4.1 Human-Machine Interface – HMI

In the context of prosthetic control, the HMI should allow effortless control of distinc-
tive movements, bridging the artificial hand and the sources of volition. Novel techniques
are in pursuit for a physiologically appropriate interface that could entail simultaneous,
direct control over multiple DoFs (Degrees of Freedom). The Myokinetic Control Interface
has been proposed to bridge the existing scientific and technological gap embracing the ideia
of sensing the magnetic field of implanted magnets in the residual limb muscles, to monitor
their contractions and send appropriate commands to the artificial hand (TARANTINO
et al., 2017).

As part of such concept, the myokinetic interface requires a transcutaneous magnet
localizer that can be integrated in a self-contained limb prosthesis, a feature yet to be realized
within the current state of the art (IANNICIELLO, 2024). The magnet localizer is a key
component that should translate the magnetic field generated by one or multiple magnetic
sources using a set of magnetometers into the position and orientation (pose) of target
magnetic markers (MMs).

37

In magnetic tracking, certain constraints on the geometry of the generated field must
be established so that tackling the inverse problem of magnetostatics through the usage
of optimization algorithms that minimize the deviation between measured and modeled
magnetic field is feasible (BRUCKNER et al., 2017). In this regard, different methods have
been proposed for magnet localization: linear methods with closed form solutions that are
more sensitive tomeasurement noise, and nonlinear approaches using Levenberg-Marquardt
(LM) algorithm, particle swarm optimization (PSO) with higher computational cost and
reduced localization error.

Concerning the sensing system, in (GHERARDINI; MANNINI; CIPRIANI, 2021) the
effects related to the number and spatial distribution of magnetic sensors were investigated
for the optimal distribution while minimizing the computational cost of localization. Briefly,
a simulated proximal amputation with 11 MMs and 480 sensing elements provides the initial
distribution for the fast and intuitive proposed sensor set selection strategy. Additionally,
(MASIERO et al., 2021) addresses the effects of intrinsic sensor properties such as resolution
and localization rate with experimentally verified computer simulations in terms of tracking
accuracy and the number of iterations of the LM algorithm.

In (CLEMENTE et al., 2019), an ARM-based embedded solution for the magnet
localizer was introduced with the utilization of 32 magnetometers as data providers for the
LM algorithm used to devise magnet pose. An Acquisition Unit (AU) was developed to house
the tri-axial magnetometers (MAG3110), and a dedicated 16-bit microcontroller (dSPIC33EP)
was selected for interfacing with the magnetometers using a I2C serial communication bus.
It was reported that 24 ms were necessary to sample and transmit the magnetometers
readings to the ARM core in which the localization algorithm ran. Despite its capabilities,
the embedded solution suffered from elevated latency data acquisition and transmission.
Also, the reported power consumption was of of 980 mW (550 mW for que acquisition unit
and 430 mW for the computational unit).

A novel design was proposed in (IANNICIELLO, 2024), with a more modular ap-
proach composed of anARM-basedmodular solutionwith capacity for up to eight acquisition
units (20 magnetometers each). This design provides a sampling rate for magnetic sensor
data of 100 Hz for a single AU and 38 Hz for 8 AUs. The field is digitized in 6.6 ms and
additional 2.2 ms are needed for data transfers. The LM algorithm was used to provide
magnet localization in parallel to the data sampling and acquisition with mostly constant
accuracy and errors below 70 𝜇m. Power consumption ranged from less than 600 mW with
one AU to ∼1.2 W for eight AUs. It should be noted that the previous design had only a
single AU (32 magnetometers) reaching near 1 W of total power, while the improved design
was able to adopt 5 AUs (for a total of 100 magnetometers) within the same power budget.

Furthermore, due to the larger system of equations used to derive magnet localiza-
tion the LM algorithmic latency ranged from 153 𝜇s (one-magnet/AU) to 21.3 ms (five-

38

magnets/AU) and even higher processing time when multiple movements were considered
due to longer iterations (IANNICIELLO, 2024). Table 3 summarizes the works related to the
development of myokinetic interfaces, their localization methods, and platform.

Table 3 – Brief Summary for Recent Myokinetic Interface Solutions

Authors Year
Acquisition Unit Myokinetic Control Interface
Sensors MMs Localization Method Platform

Tarantino et al. (2017) 2017 6 1 MMs as point magnetic dipole: localization through
the Levenberg–Marquardt optimization algorithm.

PC

Clemente et al. (2019) 2019 32 1-5 ARM

Masiero et al. (2021) 2021 32 1-10
Sensory system resolution and localization rate simu-
lation and experimental assessment in terms of track-
ing accuracy and computation time.

PC

Taylor et al. (2021) 2021 96 2
Real-timemuscle length tracking in an in vivo turkey
model while investigating accuracy, biocompatibility
and stability.

PC

Moradi et al. (2022) 2022 3 3

Clinical implementation of a bionic hand controlled
with artificial neural networks which extracts hu-
man intention directly from the implanted magnet’s
magnetic fields.

PC

Mendez et al. (2022) 2022 128 1 Data-Driven: Localization through model inference
using Linear and RBFNN models. SoC-FPGA

Ianniciello (2024) 2024 160 8

Acquisition Unit (AU) with 20 sensors (up to 8
AUs). Localization through Levenberg–Marquardt
optimization algorithm. Computation time of 21.3
ms per iteration.

ARM

Mendez (2021) 2024 128 5

Data-Driven with Dimensionality Reduction: Local-
ization through run-time reconfiguration (RTR) for
model inference using Linear, RBFNNandMLPmod-
els.

SoC-FPGA w. DPR

In (MENDEZ et al., 2022), a data-driven method was adopted in place of numerical
optimization methods previously used for magnet localization. In this approach, a set of
offline experimental data can be used to train, test, and validate machine learning models
used to devise magnet displacement from ground-truth data (actual displacement). To that
end, a SoC-FPGA was used in a highly parallel implementation for Linear Regression and
Radial-Basis Function Neural Network (RBFNN) models within microseconds of compu-
tational latency. In the proposal, the number of sensors was also set to 128 (4 AUs). The
main shortcoming of this design was that the logic utilization required by the implementa-
tion of the magnet localizer might hinder the implementation of additional logic dedicated
to control, acquisition, and other functionality required for the eventual self-contained
transcutaneous magnet localizer.

In order to mitigate issues in the SoC-FPGA implementation, (MENDEZ, 2021)
improved the overall SoC-FPGA proposal with DPR allowing the design architecture to be
reconfigured at run-time. This technology allowed the implementation of a set of models
used to localize five magnets under real-time constraints with reduced logic utilization. The
obtained results pave the way towards the adoption of DPR-based architectures for magnet
localization applied to myokinetic interface.

39

2.4.2 Data-Driven Magnet Tracking applied to the Myokinetic Control In-
terface

In order to devise precise magnet localization for the myokinetic interface, one must
consider which model structure to use based on a fitting solution that accurately represents
the system behavior. The general process of model training, testing and cross validation is
usually a small problem. The difficulty lies in selecting the proper model structure, hyper-
parameters and in devising engineering choices based prior knowledge or physical insight
into the system.

2.4.2.1 Experimental Data Acquisition

A Myokinetic Interface mockup (Fig. 10) was used to experimentally assess the
accuracy, repeatability, and response time of the HMI prototype. The mockup was carefully
designed with anatomic relevant proportions and magnet trajectory. It was intended to
replicate the contraction and elongation of the extrinsic muscles of the hand.

Figure 10 – Myokinetic Interface Mockup. Adapted from (TARANTINO et al., 2017)

The experimental data was collected using different configurations for the displace-
ment of magnets from a single magnet to five magnets. A total of eleven datasets were
acquired for the different configurations and displacement profiles utilized (six for a single
magnet control; five for five-magnets). The mockup is capable of ∼ 10 mm of maximum
translation of the wire connected to each magnet with independent control for each magnet

40

every 50 ms. The input displacement applied to the servos is used as a ground-truth value for
the analysis of the retrieved magnet displacement by the myokinetic localizer. The length of
the trajectory was derived from anatomical measurements (TARANTINO et al., 2017).

The magnetic fields are sampled through four AUs, each equipped with 32 three-axis
magnetometers. For every AU, the sensors were laid out on orthogonal 8×4 grids with 9 mm
inter-spacing. The AUs were positioned on four opposite sides of a parallelepiped enclosing
the mockup workspace. The sensor readouts were sampled at 20 Hz and all collected signals
were stored to be used for offline processing.

Five-Magnet Dataset – Multisine Acquisition Procedure

The five-magnet dataset captures the magnetic sensor readouts from the 4 AUs (total
of 32 × 4 × 3 = 384 features) for the simultaneous displacement of five magnets with a
multisine displacement trajectory for the servo command.

𝑦𝑘 =
𝐴
2𝑀 (

𝑀∑

𝑖=1
[sin (2𝜋𝑓𝑖𝑡𝑠𝑘 + 𝜙𝑖)] + 1)

where 𝑦𝑘 denotes the servo command trajectory at the discrete time 𝑘 = 0, 1, … ,𝑁,
𝐴 is the desired amplitude for 𝑦𝑘 in the range [0, 𝐴],𝑀 is the number of sine wave given the
equally spaced frequency 𝑓1,𝑓2, … ,𝑓𝑀 and 𝜙1,𝜙2, … ,𝜙𝑀 random phases in the range [0, 90◦].
The multisine trajectory displacement is able to excite the system with simultaneous control
of each magnet with smooth trajectories that could give insights into the dynamic behavior
of the system.

The acquisition is shown in Figure 11, considering: 𝐴 = 10mm for the displacement
amplitude,𝑀 = 10 sine waves, and frequencies in a range between 0.1 and 0.5 Hz.

Five-Magnet Dataset – Ramp Acquisition Procedure

The Ramp acquisition uses a ramp-like output to the servo displacement trajectory.
A set of four ramps profiles was acquired as it is relevant for the application of magnet
displacement in the myokinetic interface. The ramps are configured with positive and
negative slopes with varying speed for 20, 40, 60 and 80. Figure 12 depicts the sensed
magnetic field and the controlled displacement of the five-magnets during acquisition.

It can be seen that there is a distinguishable relationship between the measured
magnetic field and the output displacement, especially in 12 given the simpler magnet
trajectory for each magnet.

41

(a) Magnetic Sensor Data

(b) Target Magnet Displacement

Figure 11 – Magnetic Sensor Data for Multisine Acquisition – Five-Magnets Dataset. The x-axis
display the number of samples in the dataset. The y-axis depicts the mean-centered
readings in Gauss for (a), and the normalized displacement in (b). In both figures, the

right plot is the zoomed window view of left plot data.

42

(a) Magnetic Sensor Data

(b) Target Magnet Displacement

Figure 12 – Magnetic Sensor Data for Ramp Acquisition – Five-Magnets Dataset. The x-axis display
the number of samples in the dataset. The y-axis depicts the mean-centered readings in
Gauss for (a), and the normalized displacement in (b). In both figures, the right plot is

the zoomed window view of left plot data.

In (MENDEZ et al., 2022; MENDEZ, 2021), the multisine acquisition was used in
model fitting for training, and testing procedures. The sum of sinusoidal waves is a common
excitation signal used in system identification and the parameters used in data acquisition

43

were selected for the purpose of machine-learning model training. The ramp-like signals
were used to validate model inference effectively testing the fitted machine-learning models
with a different set of data than the one used to train each model.

In the following, we present some of tools & methods used in data-driven magnet
localization for the myokinetic interface.

2.4.2.2 Dimensionality Reduction using Principal Component Analysis (PCA)

PCA is widely used to reduce the data dimensionality of machine learning models. It
is used to devise a truncated linear transformation (Eq. 2.1) in which 𝐾 columns from the
𝐕 matrix (i.e., the principal components, PCs) form an orthogonal basis for the 𝐾 features
providing a low-dimensional approximation (𝐓𝐊) to the high-dimensional 𝐗 data in terms
of relevant patterns. This transformation is associated with another matrix factorization
given by the SVD of 𝐗 ∈ ℂ𝑛×𝑚 (Eq. 2.2).

𝐓𝐊 = 𝐗𝐕𝐊 (2.1)
𝐗 = 𝐔𝚺𝐕𝐻, (2.2)

where 𝐔 ∈ ℂ𝑛×𝑛 and 𝐕 ∈ ℂ𝑚×𝑚 are unitary matrices and 𝐕 holds an orthonormal-basis
of corresponding eigenvectors (BRUNTON; KUTZ, 2019). Here 𝐻 denotes the complex
conjugate transpose.

The PCA has two main stages, the training and the projection stage. During the
training stage, principal components are derived using SVD. This stage is computationally
complex and time-consuming as it involves computing a matrix factorization (BENGIO;
COURVILLE; VINCENT, 2013). The projection stage requires the PCs and the input values
to perform the dimensionality reduction (see Eq. 2.1).

The usage of PCA for magnetic field data is relevant as the acquired data is composed
of 128 three-axial readings (384 total features) and the selection of an optimal set of mea-
surements is capable of providing reduced localization error (GHERARDINI; MANNINI;
CIPRIANI, 2021). Therefore, in (MENDEZ, 2021) a dimensionality reduction based on PCA
was used to train shallow models with less inputs, yielding more efficient and compact
hardware implementations.

2.4.2.3 Regression using Black-Box Data-Driven Models

In the proposal for the development of a magnet localizer architecture for the myoki-
netic interface, we consider a black-box modeling, in which no physical insight is known,
the dynamic behavior of the system is considered to be nonlinear. In this modeling scheme,
we attempt to obtain model parameters based on measured input and output data (NELLES,

44

2020). The hardware implementation for the candidate models will be detailed later in
Chapter 3.

We begin by introducing the basic formulation for a set of three models used in the
proposed system: Linear Regression, Artificial Neural Networks (ANNs), and Radial-Basis
Function Neural Network (RBFNN). Both model structure and parameters are determined
from experimental modeling guided towards efficient hardware implementations. The goal
is to attain elevated accuracy without resorting to sophisticated and resource-consuming
machine learning approaches.

Linear Regression

A linear model may be able to approximate a nonlinear process with reasonable
accuracy if its nonlinear characteristic is weak. It is a simple model with a small number of
parameters.

𝑦̂ =
𝑝∑

𝑖=0
𝑤𝑖𝑢𝑖, with 𝑢0 = 1

Despite of its simplicity, linear models are the standard models with a series of
relevant properties (NELLES, 2020):

• Evaluation speed is fast since on 𝑝 multiplications and additions are required.

• Parameter optimization can be performed very rapidly by a least squares algorithm.

• Structures optimization can be performed efficiently by a linear subset selection tech-
nique such as the orthogonal least squares (OLS) algorithm.

• Constraints can be incorporated for the model output and parameters if a quadratic
programming algorithm is used instead of the least squares.

Artificial Neural Networks – ANN

Within the context of Artificial Neural Networks (ANNs), the Feedforward Neural
Network (FFNN), also called Multilayer Perceptron (MLP) is structured around layers and
neurons in which the information flows forward through hidden nodes (if any) to the output
nodes; see Fig. 13. In basis function formulation, the FFNN can be written as:

𝑦̂ =
𝑀∑

𝑖=0
𝑤𝑖𝜙𝑖

⎛
⎜
⎝

𝑝∑

𝑗=0
𝑤𝑖𝑗𝑢𝑗

⎞
⎟
⎠

45

with the output later weights𝑤𝑖 and the hidden layer weights𝑤𝑖𝑗. The 𝜙𝑖 is the output
from the activation function.

Figure 13 – Feedforward Neural Network Architecture

The FFNN is a universal approximator (NELLES, 2020). This means it can approxi-
mate any smooth function to an arbitrary degree of accuracy as the number of hidden layer
neuron increases. However, this proof is not constructive in the sense that it determines the
desired structure of the neural network. An FFNN is trained by the optimization of these
neuron weights.

Some important properties can be summarized:

• Sensitivity to noise is very low since almost all training data samples are exploited to
estimate all model parameters.

• Evaluation speed is fast since the number of neurons is relatively small compared with
other neural network architectures.

• Parameter optimization is slow due to the usage on nonlinear optimization techniques.

• Structure optimization requires expensive pruning or growing methods.

Radial-Basis Function Neural Network – RBFNN

In contrast to the FFNN, the Radial-Basis FunctionNeural Network (RBFNN) utilizes
a radial construction mechanism. Its operation can be split into two parts. First, the distance
of the input vector 𝐮 to the center vector 𝐜 with respect to the covariance matrix 𝚺𝑖 is
calculated. In the second part, this scalar distance is transformed by the nonlinear activation
function 𝑔(𝑥) (NELLES, 2020). A typical choice for activation function is the Gaussian
function:

46

𝑔(𝑥) = exp (−12𝑥
2)

If several RBF neurons are used in parallel and are connected to an output neuron,
the radial basis function network is obtained (Figure 14). It can be described as:

𝑦̂ =
𝑀∑

𝑖=0
𝑤𝑖𝜙𝑖(||𝐮 − 𝐜𝐢||Σ𝑖)

𝜙𝑖(𝐮, 𝜃𝑖) = exp (−12||𝐮 − 𝐜𝐢||2Σ𝑖)

where the hidden layer parameter vector 𝜃𝑖 consists of the coordinates of the center
vector 𝑐𝑖 and the entries of the inverse covariance matrix, and output layer weights 𝑤𝑖.

Figure 14 – Radial-Basis Function Network Architecture

Contrary to the FFNN, multiple hidden-layers are not feasible as the neuron outputs
of a possible hidden layer would span the input space for the second hidden layer. Due to
the lack of interpretation, the hidden layer parameters of the second hidden layer cannot be
chosen by prior knowledge, which is a major strength of the RBFNN.

47

3 Run-Time Reconfigurable Architec-
ture for Myokinetic Magnet Tracking

In this chapter, it is presented the relevant steps taken towards the development of a
run-time reconfigurable system, together with its design features, conceptual design, and
implemented design. The proof of concept of the prototype exploits an experimental dataset
for model training & validation to localize five MMs simulating a multi-DoF prosthetic hand.
The dataset was used to experimentally assess the accuracy, repeatability and response time
of the proposed magnet tracking system.

3.1 Introductory Remarks

The proposedmyokinetic localizer for the eventual control of the hand prosthesis was
implemented in two different embedded targets: the SoC-FPGA (ZYNQ-7020 – PYNQ-Z2)
development kit and the FPGA (Artix-7 – Arty A7-100T) development kit. The SoC-FPGA
integrates the software programmability of an ARM-based processor with the hardware
programmability of an FPGA. This was done in order to characterize the proposed DPR
system using a hard-core processor (ARM Cortex A9) and a soft-core processor (MicroBlaze)
implemented into the FPGA fabric.

At the system level, both implementations (FPGA and SoC-FPGA) must perform a
similar set of tasks regarding magnet tracking, which is based on machine learning models
implemented as reconfigurable modules. The proposed run-time reconfiguration scheme is
also kept the same in both implementations, notably: the partial reconfiguration controller,
number of reconfigurable partitions, floorplanning constraints and the data source for partial
bitstreams.

At the architectural level, each embedded platform (FPGA or SoC-FPGA) will require
differentmeans of implementation for the proposedDPR system specification. This chapter is
also dedicated to the analysis of the SW/HW co-design for the proposed myokinetic localizer.

3.2 Proposed Modeling for Five Magnet Tracking

In order to develop an efficient localizer, we are interested in selecting a viable set of
estimators for a multi-magnet tracking scenario. This modeling process requires evaluating
tradeoffs, such as model complexity, accuracy, and required resources/area in the FPGA
fabric.

48

We adopted experimental data collected in (MENDEZ et al., 2022) and the data
modeling methodology presented in (MENDEZ, 2021) to train/test and validate the data-
drivenmodels used inmagnet tracking for a set of fivemagneticmarkers from themyokinetic
experimental dataset. In this proposal, we also adopted the same VHDL code generator
tools for the RTL implementation of RBFNN and Linear Regression models with our own
improvements for the proposed DPR design, these improvements are detailed in Section
3.3.3 and 3.3.4.

The experimental dataset is used to train the Linear Regression, RBFNN, and FFNN
data-driven models to perform regression for the expected magnet displacement for each
magnetic marker. This modeling allows the usage of different models for magnetic tracking.
In addition, the data dimensionality from the 128 three-axis digitalmagnetometersmight lead
to extensive hardware utilization for the implementation of thesemodels in hardware as seen
in (MENDEZ et al., 2022). In our proposal, we used the same pre-processing from (MENDEZ,
2021) to perform dimensionality reduction using PCA with our own RTL implementation
using high-level synthesis as described in Section 3.3.1. The RTL implementation for the
FFNN model was also developed using high-level synthesis and is described in Section 3.3.2.

3.2.1 Model Performance with Unprocessed Magnetic Sensor Features

From the experimental dataset, the multisine samples are used in model training
& validation with a 75% partition used for training and the remaining 25% used for testing.
The MSE (Mean Squared Error) is used to assess the accuracy of the localizer based on its
predicted magnet displacement 𝑋̂ and the real magnet displacement 𝑋. This measure is
shown in Eq. 3.1 for a sample of 𝑛 data points and in Eq. 3.2 calculated in dB.

MSE = 1
𝑛

𝑛∑

𝑖=1
(𝑋𝑖 − 𝑋̂𝑖)2 (3.1)

MSEdB = 10 log10MSE (3.2)

To translate the obtained MSE in dB to a measure of error in magnet displacement it
is necessary to scale the measure accordingly. AMSE of -10 dB corresponds to 1 mm2 (RMSE
≈ 0.31mm) which is around 3.1% of the maximummuscle deflection applied during data
acquisition (up to 10 mm).

Another metric used to evaluate model performance is the 𝑅2 (coefficient of deter-
mination) as a larger value of 𝑅2 implies in a more successful regression model. It can be
calculated as follows in Eq. 3.3 using the SSE (residual sum of squares - Eq. 3.4) and SST
(total sum of squares - Eq 3.5):

49

𝑅2 = 1 − SSE
SST (3.3)

SSE =
𝑛∑

𝑖=1
(𝑋𝑖 − 𝑋̂𝑖)2 (3.4)

SST =
𝑛∑

𝑖=1
(𝑋𝑖 − 𝑋̄)2 (3.5)

𝑋̄ = 1
𝑛

𝑛∑

𝑖=1
𝑋𝑖 (3.6)

The task of model identification for the multi-magnet tracking is twofold: a) determi-
nation of model structure and model parameters estimation and; b) model subset selection.
The model structure consists in the determination of kernel parameters and hyperparame-
ters. The parameters estimation step is model-dependent as each model possesses its own
training method. The FFNN is trained using backpropagation algorithm for the network
weights and bias. The Linear Regression Model is trained using the least-squares approach.
The RBFNN kernel centers and widths are estimated using clustering schemes (LLOYD,
1982) and its weights are estimated using the least squares algorithm.

The first approach for the data modeling consists in model training without any
pre-processing stages for the magnetic sensor features in order to establish baseline results.
The MSE and 𝑅2 for this approach are shown in Table 4.

Table 4 – MSE [dB] and 𝑅2 values for model training with unprocessed magnetic sensor features.
Highlighted cells presents the best MSE [dB] (lower is better) for each MM (Magnetic

Marker) in the experimental data.

Magnet
Model

Linear RBFNN FFNN
𝑅2 MSE [dB] 𝑅2 MSE [dB] 𝑅2 MSE [dB]

MM1 0.936 -21.9573 0.942 -22.3632 0.932 -21.7635
MM2 0.884 -18.2703 0.653 -14.2600 0.889 -18.4118
MM3 0.894 -18.8868 0.769 -15.8982 0.922 -20.2026
MM4 0.974 -25.6571 0.967 -25.3986 0.971 -25.8990
MM5 0.882 -19.4943 0.364 -13.8027 0.889 -19.8585

The overall results from Table 4 are satisfactory and show that the FFNN obtains the
best MSE for four out of five magnets if compared to the other models. It is also necessary
to evaluate the required area/logic resources needed for the RTL implementation for these
models as the number of input features from 128 magnetic sensors (a total of 384 inputs)
will lead to designs with high utilization.

50

In this regard, (MENDEZ, 2021) proposed the usage of a dimensionality reduction pre-
processing stage to save on hardware utilization by selecting shallow models with desirable
characteristics based on MSE and 𝑅2 obtained during model training.

3.2.2 Model Performance with Dimensionality Reduction of Magnetic Sen-
sor Features

Using PCA to provide a low dimensional approximation of high dimensional cor-
related data from the myokinetic experimental dataset allows for retaining as much of the
variance in the dataset as possible. Figure 15 presents the singular values and cumulative
variance obtained using the multisine acquisition in the myokinetic dataset.

0 100 200 300 400

r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
in

g
u

la
r

v
a

lu
e

,
r2

0 20 40 60 80 100

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 V

a
ri
a
n
c
e

99.21% Cum. Var. (r = 12)

Figure 15 – Singular Values and Cumulative Variance for the magnetic sensor readings from the
five-magnet dataset – multisine acquisition.

A low dimensional approximation is given by the truncation of Principal Compo-
nents (PCs). The selection criteria for the PCs selection might be based on the desired rank,
noise magnitude, and the distribution of PCs. It is a common practice to perform the trunca-
tion based on the explained variance (typically at a threshold of 99%). For the myokinetic
experimental data, this yields 12 PCs as seen in Fig. 15.

Furthermore, the applicability of PCA presents some limitations as the results depend
on data alignment (scaling, translation, rotation), and this condition might lead to artificial
rank inflation. When considering that a truncated set of PCs is used to obtain the low-rank

51

approximation for multiple outputs (the displacement of five magnets) it is beneficial to use
a selecting criteria based on the correlation between PCs and the desired output.

This correlation ranking method mitigates the effects of rank inflation and selects
the components of interest for each magnet. In the implementation, PCs are ranked by
their correlation coefficient with the property to be correlated (i.e., the dependent variable).
Therefore, we calculated each PC’s absolute correlation with every output (i.e., magnet
displacement). Results for this ranking strategy are shown in Fig. 16 for the first 12 PCs.

2 1 7
1

7 3 8
1

5
2

1
1

9
3

7
1

2 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
b

s
o

lu
te

 N
o

rm
a

liz
e

d
 C

o
rr

e
la

ti
o

n

Magnet No. 1

5 4 3 2
1

8
1

3
1

1 1
1

9
1

4
1

2 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Magnet No. 2

4 5 3 2 1
1

5
1

7
2

1
1

6
1

9
1

4
1

8

Principal Component

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Magnet No. 3

1 3
3

2
2

3
1

8
2

9
1

4 6
2

6
2

0
2

5
5

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Magnet No. 4

7 5 4 2 9 3
1

3 6
1

2 1
1

0
2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Magnet No. 5

Figure 16 – Correlation ranking of Principal Components for every magnet with first 12 PCs ranked.

In the explained variance ranking strategy, PCs with reduced associated variance
might not be selected but it can not be implied that the corresponding PC is unimportant.
The correlation-based ranking yields better results in model performance and it can be seen
that somemagnets share a similar set of PCs with high correlation to its displacement output.
This ranking overlap between different magnets reduces the required amount of PCs to be
kept in the transformation matrix used to obtain the low dimensional approximation in the
hardware implementation.

Regardingmodel performance, different model schemes can be exploited by selecting
at most 𝑘 PCs to be used in the low-rank approximation following the correlation ranking. In
this regard, we conducted tests using 𝑘 = [4, 5, 8, 10, 16, 20, 25, 32, 50, 64, 100, 128, 150, 200]
PCs for model training and evaluation of MSE in dB and 𝑅2.

The analysis of models with reducedmagnetic features will provide insights onmodel
selection for hardware implementation based on error criteria (MSE and 𝑅2) and based on

52

hardware utilization as the reconfigurable partition (RP) has area and resource constraints.
Results are shown in Fig. 17 for MSE and Fig. 18 for 𝑅2.

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

-24

-23

-22

-21

-20

-19
Magnet No. 1

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

-24

-22

-20

-18

-16

-14

-12
Magnet No. 2

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

-26

-24

-22

-20

-18

-16

-14

-12

M
S

E
 [

d
B

]
(L

o
w

er
 i

s
B

et
te

r)

Magnet No. 3

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

k Principal Components

-28.5

-28

-27.5

-27

-26.5

-26

-25.5

-25
Magnet No. 4

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

k Principal Components

-26

-24

-22

-20

-18

-16

-14

-12
Magnet No. 5

Raw Inputs - Linear

Raw Inputs - RBFNN

Raw Inputs - FFNN

Linear

RBFNN

FFNN

Magnet Global Best

MSE [dB]

Figure 17 – Model performance MSE (dB) with reduced magnetic features for every Magnet.
Baseline results are shown for models with unprocessed features (Raw Inputs). The
horizontal axis represents the number of PCs used in model training. The vertical axis
represents the obtained MSE in dB (lower is better) and the best metric is highlighted for

each magnet.

53

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

0.92

0.94

0.96

0.98

1
Magnet No. 1

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

0.88

0.9

0.92

0.94

0.96

0.98

1
Magnet No. 2

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

0.88

0.9

0.92

0.94

0.96

0.98

1

R
2

 (
H

ig
h

er
 i

s
B

et
te

r)

Magnet No. 3

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

k Principal Components

0.95

0.96

0.97

0.98

0.99

1
Magnet No. 4

4 5 8 10 16 20 25 32 50 64 10
0

12
8

15
0

20
0

k Principal Components

0.88

0.9

0.92

0.94

0.96

0.98

1
Magnet No. 5

Raw Inputs - Linear

Raw Inputs - RBFNN

Raw Inputs - FFNN

Linear

RBFNN

FFNN

Magnet Global Best

R2

Figure 18 – Model performance 𝑅2 with reduced magnetic features for every Magnet. Baseline
results are shown for models with unprocessed features (Raw Inputs). The horizontal
axis represents the number of PCs used in model training. The vertical axis represents
the obtained 𝑅2 (higher is better) and the best metric is highlighted for each magnet.

From the results, one can conclude that for certain combinations of magnets/models,
the usage of reduced magnetic sensor features outperformsmodels trained with unprocessed
features. The FFNN model presents the best results in MSE (dB) for magnets 1, 2, and 3
considering 50, 25, and 16 PCs, respectively. For magnets 4 and 5, the Linear Regression

54

model with 20 and 64 PCs performs better the FFNN and RBFNN models.

Regarding the hardware implementation, models with a reduced number of inputs
(fewer PCs) are preferred due to lower hardware utilization and latency. Table 5 presents
the candidate models for hardware implementation of the RTR architecture. It should
be noted that 38 out of the total of 384 PCs are needed for the implementation of the
dimensionality reduction, since some of the PCs have a high correlation with the output
(magnet displacement) across different magnets.

Table 5 – Summary of models selected for hardware implementation.

Magnet No. Model 𝑘 PCs MSE [dB] 𝑅2

MM1 RBFNN 10 -22.41 0.94
MM2 FFNN 25 -23.99 0.96
MM3 FFNN 16 -24.63 0.97
MM4 Linear Regression 16 -27.40 0.98
MM5 Linear Regression 16 -24.95 0.96

3.3 Machine Learning Models Implementation on Hard-

ware

This section presents the detailed design and means of implementation for the data-
driven models used in the proposed RTR architecture. First, the HLS-based implementation
for the Dimensionality Reduction using PCA is presented in 3.3.1. Key results are pre-
sented regarding the RTL obtained from the imperative code implementation in 3.3.1.1.
The proposed HLS-based PCA implementation was also featured in another research paper
(MENDES et al., 2023) (Appendix A) with adaptations used in a machine learning-based
strain estimation task with ultrasonic guided waves.

The proposal for the FFNNmodel implementation is also based onHLS is described in
Sec. 3.3.2. The Linear Regression, and RBFNNmodels are derived fromHDL code generators
allowing the selection of model parameters for its structure (number of operators and
parallelism) with parametric floating-point bit-width. The Linear Model is further detailed
in Sec. 3.3.3 and the RBFNN model in Sec. 3.3.4.

3.3.1 HLS Implementation for Dimensionality Reduction using PCA

As previously stated, model inference using reduced features is able to provide accept-
able accuracy for magnet localization. In the proposal, this HLS kernel for dimensionality
reduction using PCA works as a functional block in the embedded design. It must be able to
receive input data from magnetic sensors and provide the features used for magnet localiza-
tion in further stages by the machine learning models.

55

The proposed kernel implements three processing pipelines: (i) mean-removal, (ii)
dimensionality reduction using PCA, and (iii) output data scaling. In addition, a single
AXI4 Memory-Mapped interface is used for reading and writing from a memory bank. It
also considers a 32-bit data path used for single-precision floating-point operations and a
sequential execution mode controlled by an AXI4-Lite interface.

The first pipeline module processes the input data from magnetic sensors with
a mean removal operation using values taken from model training. By subtracting the
mean of each feature from the data points, mean removal ensures that the data is centered
for the dimensionality reduction stage. In the following pipeline stage, the features are
transformed into a lower-dimensional subspace spanned by the principal components.
The projection stage operates by projecting the magnetic data points onto the principal
components subspace. Mathematically, this projection is achieved by computing the dot
product between the feature data vector and the matrix containing the principal components
which was stored from the singular value decomposition (SVD) performed during model
training. Each row in the resulting projected data matrix corresponds to the projection of
the corresponding original data point onto the principal components subspace.

The algorithmic implementation consists in a loop re-ordered matrix multiplication,
which transposes the iteration space in order to eliminate loop-carried dependencies and
enable pipelining (FINE LICHT et al., 2021). This transformation also impacts the memory
access pattern with improvements to performance as the input is processed in a contiguous
fashion. In the kernel, principal components and expected mean values (used in mean-
removal) were mapped into ROM elements.

3.3.1.1 HLS Source & Synthesis Results

As for the Vitis HLS development flow, the design was validated through testbench
simulation based on ground-truth results for correctness. In addition, a C/RTLCo-Simulation
was used to verify that the RTL is functionally identical to the C implementation. After
verification, the RTL design was exported from Vitis HLS as a Vivado IP. Moreover, the
exported IP was integrated in Block Design to the ZYNQ PS for implementation on the
selected target device (xc7z020clg400-1).

The source code for the proposed kernel is shown in Listing 1. Pipelining and un-
rolling using pragma directives were performed. Input/Output interface configuration is also
derived frompragma directives. The source headers and includes are generated automatically
from scripts with values from the magnet tracking training set.

Code 1 – HLS PCA IP Source Code

1 #include "pca.h"
2

56

3 void dut(const float in[M], float out[N_PCs]) {
4 #pragma HLS TOP name = dut
5 // NOTE -- AXI Memory-Mapped interface to the IP
6 #pragma HLS INTERFACE m_axi port=in offset=slave depth=M bundle=gmem
7 #pragma HLS INTERFACE m_axi port=out offset=slave depth=N_PCs bundle=gmem
8 // NOTE -- AXI Lite control interface to the IP
9 #pragma HLS INTERFACE s_axilite port=return
10
11 // Init Constant Values
12 const float mn[M] = {
13 #include "mn.txt"
14 };
15 const float V[M*N_PCs] = {
16 #include "V_corr.txt"
17 };
18
19 // R/W Signals
20 float out_data[N_PCs];
21
22 ap_uint<16> p;
23 ap_uint<8> m;
24
25 // PCA ITERATIVE MODULE
26 iter_in: // PCA ITERATIVE LOOP
27 for (p = 0; p < M; ++p) {
28 // Mean Removal
29 const auto IN = (in[p] - mn[p]);
30 iter_pc: // PCA INNER LOOP
31 for (m = 0; m < N_PCs; ++m) {
32 #pragma HLS PIPELINE II=1
33 const auto prev = (p == 0) ? 0 : out_data[m];
34 out_data[m] = prev + IN * V[p * N_PCs + m];
35 #pragma HLS DEPENDENCE variable=out_data false
36 }
37 }
38
39 // Scaler & Output
40 float out_scaled = 0;
41 iter_scaler: // DATA SCALER MODULE
42 for (m = 0; m < N_PCs; m++) {
43 #pragma HLS PIPELINE II=1
44 // Scaler (as float)
45 out_scaled = (out_data[m] - SCALER_MIN);
46 out_scaled = out_scaled / (SCALER_MAX - SCALER_MIN);
47 // Scaler (as int)
48 out_scaled = out_scaled * (SCALER_RANGE_MAX - SCALER_RANGE_MIN);
49 out_data[m] = out_scaled + SCALER_RANGE_MIN;
50 }
51
52 iter_output: // DATA OUTPUT MODULE
53 for (m = 0; m < N_PCs; m++) {
54 #pragma HLS PIPELINE II=1
55 out[m] = out_data[m];
56 }
57 }

Table 6 summarizes the estimated latency and resource consumption for the synthe-

57

sized design. From Table 6, it is noticed that the PCA processing pipeline takes up ≈ 99.44%
of the total latency. This pipeline was implemented with II = 1 (Initiation Interval) for
optimal throughput performance.

Tables 6 and 7 consider a synthesis target clock of 100 MHz for the target device in
the ZYNQ SoC-FPGA (xc7z020-clg400-1). Post-route timing report from Vitis HLS indicates
that the design is capable of operating at up to 120.83 MHz (8.276 ns). The obtained latency
of 227.84 𝜇s is within the margin of the required time to process magnetic sensor features
for real-time operation and the required fabric resources required by the HLS kernel will
not impact the DPR system implementation as this logic will be placed in a static (non-
reconfigurable) region.

As the Vitis HLS tool implements code operations using specific device resources
in the RTL it is worthwhile to analyze the usage of operators and storage elements after C
synthesis, as presented in Table 7.

Table 6 – HLS Synthesis Performance & Resource Estimates

Module & Loops Latency
(cycles)

Latency
(ns)

Iteration
Latency

Initiation
Interval

Trip
Count Pipelined FF LUT

HLS Design 22784 2.278 ⋅ 105 - 22785 - ✖ 2283 (2%) 3496 (6%)
∙ PCA Iterative Loop 22656 2.266 ⋅ 105 59 - 384 ✖ - -
◦ PC Inner Module 50 500 - 50 - ✖ 297 (≈ 0%) 175 (≈ 0%)

◦ PC Inner Loop 48 480 12 1 38 ✓ - -
∙ PCA Scaler Module 71 710 - 71 - ✖ 506 (≈ 0%) 484 (≈ 0%)
◦ PCA Scaler Loop 69 690 33 1 38 ✓ - -

∙ Output Module 41 410 - 41 - ✖ 44 (≈ 0%) 73 (≈ 0%)
◦ Output Loop 39 390 3 1 38 ✓ - -

From Table 7, the synthesized HLS RTL considers an output buffer implemented
as a true dual-port RAM used to store partial results processed by intermediate pipelines.
Furthermore, each processing module makes use of the single-precision floating-point
multiplication/addition/subtraction using DSP-based and/or logical fabric implementation
for a total consumption of 7 DSPs (also reported on Table 7). The PCA and Data Scaler
modules also implement ROM storage elements for constant values such as mean values
coefficients and principal components matrix coefficients for a total consumption of 35
BRAMs units.

58

Table 7 – HLS Synthesis Binding Operator/Storage Summary

Hierarchy Op./Storage Impl. DSP BRAM Latency
Functional Addition × 2 add fabric - - 0
Single-Precison Subtraction fsub fulldsp 2 - 4
Mean Values rom_1p BRAM - 1 1
∙ PCA Iterative Module
Functional Addition × 2 add fabric - - 0
Principal Components Matrix rom_1p BRAM - 32 1

∙ Data Scaler Module
Functional Addition add fabric - - 0
Single-Precison Division fdiv fabric - - 15
Single-Precison Add/Sub. fadd/fsub fulldsp 2 - 4

∙ Data Output Module
Functional Addition add fabric - - 0
Output Buffer ram_s2p BRAM - 2 1

TOTAL 7 35

3.3.2 Feedforward Neural Network Model – HLS-FFNN

A Feedforward Neural Network (FFNN) was developed for the proposed DPR system
and will be used inmagnet localization receiving reduced features from the PCAmodule and
will produce an estimate of magnet displacement as an output. Once again, this development
was done using Vitis HLS and followed the same design flow as the one used to develop the
HLS-based PCA IP core.

This HLS-FFNN design is one of the reconfigurable modules (RM) in the DPR
system and is constrained by the available fabric resources for its reconfigurable partition
(RP). Therefore, special attention was given to utilization and timing constraints so that
placement/routing requirements would be met during the DPR design implementation.

The HLS-based FFNN uses AXI Stream interfaces for receiving and transmitting
32-bit data that is used in single-precision floating-point processing pipelines. These stream
interfaces also implement the TLAST side-channel signal to indicate the boundary of a packet.
Figure 19 shows the overall FFNN three-layer structure. The hidden layer uses a hyperbolic
tangent sigmoid activation function and the output layer uses a linear activation function.

Figure 19 – Feedforward Neural Network with a three-layer structure. The numbers indicate that 4
neurons are used in the hidder layer and a single neuron is used in the output layer.

59

The HLS-FFNN design implements four pipelines: (i) input propagation into hidden
layer weight multiplication; (ii) hidden layer bias accumulation; (iii) hidden layer activation
function; and (iv) output layer weight multiplication with accumulation. In the first pipeline,
input data is multiplied by the hidden layer weights in loop re-ordered fashion to allow
pipelining the inner accumulation loop. The results are passed to the following pipeline for
bias accumulation. The hidden layer output is then obtained after intermediate values are
passed to the sigmoid (hyperbolic tangent) activation pipeline. The output layer performs
weight multiplication and accumulation in a single pipeline to compute the network output.

During development, experimental design space exploration was used to obtain
different levels of parallelism (by unrolling loops) and different pipeline organizations (by
merging pipelines) searching for a feasible RTL design that would meet utilization, timing,
and latency constraints. For instance, the pipelines for the hidden layer bias accumulation
and activation function could be unrolled for greater parallelism and reduced latency but it
would require extensive fabric resources to be implemented.

Due to its small scale, all layer weights/bias of its 4 neurons are stored in partitioned
arrays using fabric resources. The hyperbolic tangent sigmoid is implemented inline using the
equivalence tanh(𝑁) = 2∕(1 + exp (−2 ⋅ 𝑁)) − 1. This optimization using a single-precision
exponential operator reduced resource utilization for the pipeline used in the activation
function for the hidden layer in comparison with the standard hyperbolic tangent operator
available from Vitis HLS math library.

3.3.3 Linear Regression Model – pLinRGen

A Linear Regression Model (pLinRGen) was previously developed in (MENDEZ et
al., 2022)with its floating-point operators (multipliers and adders) based on pre-characterized
FPLib IP-Cores (MUÑOZ et al., 2010a,b). In addition, FPLib supports parametric floating-
point bit-width representation. A trade-off analysis between hardware consumption, compu-
tational performance, numerical precision, and latency was performed in order to provide
the optimal physical implementation in (MENDEZ, 2021).

In this work the pLinRGen was improved by supporting AXI Stream interfaces for
receiving and transmitting data. The required changes in the RTL architecture were verified
using automatic testbenchs through behavioral and timing simulations. In-circuit tests were
also performed to validate the design using the AXI-DMA to perform data transfers. In
addition, several scripts were developed to allow IP testing/exporting using the Vivado
Design Suite. All changes were submitted to the LEIA UnB – pLinRGen private repository.

The overall architecture of the Linear Regression Model is shown below in Figure 20.
For a more comprehensive description, the reader is referred to (MENDEZ, 2021).

60

(a) Linear Regression Top Module View (b) Linear Model Pipeline Architecture

Figure 20 – Linear Regression Model (pLinRGen) – 20a: Top-level view with ROM, Control State
Machine and Linear Model Pipeline. 20b: Internal pipeline representation. Adapted

from (MENDEZ et al., 2022).

The pLinRGen tool allows the HDL (VHDL-based) code generation of Linear Re-
gression Models with an internal pipeline. It can be configured through a set of parameters
to produce different model schemes, its parameters include:

• fpwidth: The floating-point bit-width representation.

• 𝑛var: Number of input variables.

• 𝑐𝑁: Regression coefficients.

• 𝑛op: Number of parallel operators fromwhich the number of pipeline stages are derived.

After code generation using the desired set of parameters and the selection of re-
gression coefficients derived from the magnetic tracking training dataset, the AXI-Stream
version of the pLinRGen IP is exported to the Vivado IP repository for usage in the DPR
system implementation.

3.3.4 Radial-Basis Function Network Model – vRBFGen

A Radial-Basis Function Neural Network Model (vRBFGen) was previously de-
veloped in (AYALA, H. V. H. et al., 2017; AYALA, H. et al., 2016) with its floating-point
operators (multiplication, addition, subtraction, exponentiation) based on pre-characterized
FPLib IP-Cores (MUÑOZ et al., 2010a,b) with support to parametric floating-point bit-width
representation.

In this work, the vRBFGen was improved by supporting AXI Stream interfaces for
receiving and transmitting data. The required changes in the RTL architecture were verified
using automatic testbenchs through behavioral and timing simulations. In-circuit tests were
also performed to validate the design using the AXI-DMA to perform data transfers. In
addition, a set of scripts was developed to allow IP testing/exporting using the Vivado Design
Suite. All changes were submitted to the LEIA UnB – vRBFGen private repository.

61

(a) RBFNN Top Module View (b) RBF "Neuron" Instance Architecture

Figure 21 – RBFNN Regression Model (vRBFGen) – 21a: Top-level view with ROMs, Control State
Machine and RBF "Neuron" instances. 21b: RBF "Neuron" with Control State Machine.

Adapted from (MENDEZ et al., 2022).

The vRBFGen tool provides an HDL (VHDL-based) code generation of Radial-Basis
Function Network Models using parallel neurons. It can be configured through a set of
parameters to produce different model structures, including:

• fpwidth: The floating-point bit-width representation.

• 𝑛var: Number of input variables.

• 𝑀: Number of hidden-layer neurons.

• 𝑐𝑛:𝑀 × 𝑛var vector with the centers for every neuron.

• 𝛿:𝑀 × 1 vector for neurons spreads (obtained using 1∕(2𝜎2)).

• 𝑤:𝑀 × 1 vector with output layer weights.

3.4 Run-time Reconfigurable System Implementation

This study aims to provide an RTR design capable of tracking two magnets concomi-
tantly (for a total of five magnets) with reduced hardware utilization for the implementation
of data-driven models used in magnet tracking. This is done by using two reconfigurable
partitions and by constraining the area of these partitions to reduce reconfiguration time. As
the reconfiguration time poses an overhead in the total execution time, we are interested in
mitigating this by using an RP scheduling scheme as shown in Fig. 22.

62

Figure 22 – Scheduling of five magnet tracking using a single RP on the left and two RPs on the right.
The scheme with a single RP was taken from (MENDEZ, 2021). The scheme with two
RPs is the proposed scheme to reduce the total execution time and increase parallelism.

It should be noted that the illustration does not present any time scale for the
reconfiguration time and model latency.

In Fig. 22, 𝑇𝑀𝑀1, 𝑇𝑀𝑀2, 𝑇𝑀𝑀3, 𝑇𝑀𝑀4, 𝑇𝑀𝑀5 denote the execution time for tracking
magnets 1 to 5, and 𝑇reconf is the reconfiguration time for loading a new RM into the RP.
In the work of (MENDEZ, 2021), a single RP is used to sequentially load and process each
magnet localization. A single module (RM) is shared for magnets 2, 3, and 5 as the same
Linear Regression model is used avoiding reconfiguration steps.

Fig. 22 shows how the processing of magnet tracking is done for the proposed dual RP
scheme. The performance gain offered by the architecture with two RPs is evident with the
capability to mitigate the reconfiguration time and increase parallelism. By using two RPs,
we are able to process the sequential magnet localization while the other accelerator is still
under reconfiguration, effectively hidding the computational latency for magnet localization
given that this latency is below the reconfiguration time for the RM.

The proposed design implements a "hardware pipelining" or "hardware pre-fetching"
in the RTR architecture with dual RPs. However, this performance gain is not for free,
since the system is more complex than the one with a single RP: it requires more hardware
resources to be implemented.

As a longer reconfiguration time is not tolerable, a straightforward way to lower the
impact of the reconfiguration overhead is to reduce the dedicated area for the programmable

63

block used by the RP. In the following, we present the conceptual design (floorplanning,
system overview, and block design) used in the implementation of the RTR architecture
under the FPGA and SoC-FPGA platforms.

3.4.1 Floorplanning

In the DPR design flow, the floorplanning comprises the allocation of programmable
blocks for each RP. This step was done following guidelines presented in Xilinx UG909
for 7-Series Devices (UG909. . . , 2022). The height for each RP is aligned with clock region
boundaries to apply reset after reconfiguration functionality. This option holds internal
signals steady during reconfiguration, then issues a masked global reset to the reconfigured
logic.

In depth, an entire clock region contains 3200 Slices for the SoC-FPGA and 2600
Slices for the FPGA device. Using an entire clock region for each RP would lead to an
undesirable high resource utilization. Thus, the width of the RP was set so that the RP would
encompass 1600 Slices for the SoC-FPGA (PYNQ-Z2) and 1700 Slices for the FPGA (ARTY
A7) device (about half the area of an entire clock region). By constraining the available
area/resources in the RP, it is possible to iterate the selection of model parameters (number
of neurons/operators) so that hardware implementations are feasible. Figure 23 depicts the
proposed floorplanning.

(a) FPGA (ARTY A7 – xc7a100tcsg324-1) (b) SoC-FPGA (PYNQ-Z2 – xc7z020clg400-1)

Figure 23 – Proposed floorplanning for FPGA and SoC-FPGA with two Reconfigurable Partitions
(RPs).

64

3.4.2 System Overview & Block Design

The FPGA and SoC-FPGA designs were implemented in Vivado 2022.2 using a Block
Design (IP Integrator) flow (UG892. . . , 2022). In addition, the DFx (Dynamic Function
eXchange) design flow and IPs are used to provide run-time reconfiguration capabilities to
the design using the floorplanning presented in the previous Section 3.4.1. The DFx IPs used
are the DFx Reconfiguration Controller and DFx Decoupler. Briefly, the Reconfiguration
Controller delivers the partial bitstream to the ICAP and uses the AXI-HP bus attached to
the DDR memory as its data source. The DFx Decoupler is used to decouple signals from/to
the RP, avoiding indefinite states in the programmable logic.

Each one of the five RMs is implemented as a child block diagram in a parent
block diagram which implements the static logic. The generated RTL modules for the
RBFNN, FFNN, and Linear Regression are packaged into AXI-Stream compatible IPs to
be implemented in the reconfigurable partitions. The proposed HLS-based PCA IP will be
implemented in the static (non-reconfigurable) logic.

The data transfers to/from the RMs are performed by AXI-DMA (Direct Memory
Access) blocks. Each RP contains a single input and single output AXI-Stream channel used
to provide the input/output data for eachmodel. TheHLS PCA IP uses AXIMemory-Mapped
interfaces to transfer incoming data from DDR memory and outputs data features used as
model inputs. Regarding data storage, an SD card is used to store partial bitstreams and
unprocessed magnetic sensor data. The proposed system uses the DDR memory to cache
the bitstreams and data buffers used during the system application execution.

Each embedded platform (either FPGA or SoC-FPGA) has its own means of imple-
menting system-level functionalities. Figure 24 presents the Block Design for the SoC-FPGA
platform.

DDR

FIXED_IO

ICAP

axi_dma_0

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_dma_1

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_gpio_0

AXI GPIO

S_AXI
GPIO

GPIO2

axi_intc

AXI Interrupt Controller

s_axi

axi_interconnect_0

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axi_mem_intercon_0

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axi_mem_intercon_1

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axi_timer

AXI Timer

S_AXI

dfx_controller_0

DFX Controller

ICAP

M_AXI_MEM
s_axi_reg

dfx_decoupler_0

DFX Decoupler

s_axis_mdl
rp_axis_mdl

s_mdl_axis
rp_mdl_axis

s_axi_reg

dfx_decoupler_1

DFX Decoupler

s_axis_mdl
rp_axis_mdl

s_mdl_axis
rp_mdl_axis

s_axi_reg

myki_model_0

mm1_rbfnn.bd

m00_axiss00_axis

myki_model_1

mm1_rbfnn.bd

m00_axiss00_axis

myki_pca

hls_pca_aximm_ip (Pre-Production)

s_axi_control m_axi_gmem

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

S_AXI_HP1_FIFO_CTRL

S_AXI_HP2_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

S_AXI_HP1

S_AXI_HP2

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

M07_AXI

M08_AXI

Figure 24 – Vivado SoC-FPGA Block Design for the RTR implementation for the proposed
myokinetic interface localizer. The diagram is presented with the "Interfaces View" in

which block connections are AXI interfaces.

65

From the SoC-FPGA Block Design (Fig. 24), the ZYNQ7 Processing System (PS) is
configured with: AXI General-Purpose Port 0 for peripherals AXI-Lite control interfaces;
AXI High-Performance Interfaces 0 and 2 are connected to AXI-DMAs 1 and 2; AXI High-
Performance Interface 1 is connected to the HLS PCA IP and DFx Controller. The SD card
and DDR memory are also enabled by default and a clock of 100 MHz is used to supply the
PL clock used across all AXI Peripherals and ICAP interface. In addition, the following IPs
are also used:

• AXI Interrupt Controller: Interrupt signals from the HLS PCA IP and AXI-DMAs are
connected to the PS IRQ-F2P Interrupt Port. This is a core component used to check,
enable and acknowledge interrupts using AXI-Lite registers.

• AXI Timer: This timer is used to capture events and measure time intervals such as
the model execution latency and reconfiguration time.

The platform software is a standalone application (bare-metal). During initialization,
the partial bitstreams and the experimental dataset are loaded into the DDR memory from
the SD-card storage. The ARM allocates memory buffers used to send/receive data from the
PCA pre-processing stage and memory buffers used to send/receive RM data through the
AXI-DMA. The system is prepared to perform reconfiguration by software triggers and uses
the interrupts from the PCA IP and AXI-DMAs to control the data flow and reconfiguration.

The FPGA design for the RTR architecture requires the implementation of a soft-core
processor (MicroBlaze) and a DDR memory controller (MIG 7-Series) in the programmable
logic. In addition, a PMODMicro-SD is attached to the FPGA development kit to allow the
host board to read/write nonvolatile storage over an SPI interface.

The overall software capabilities for the FPGA design are limited in comparison
with the SoC-FPGA design which contains an ARM-based processing system. This comes
at the cost of power consumption as the SoC-FPGA is more power-demanding than its
FPGA counterpart. Figure 25 presents the block design for the proposed FPGA-based RTR
architecture.

66

MIG

ddr3_sdram

S00_AXI

S01_AXI

S02_AXI

S03_AXI

ICAP

usb_uart

axi_smc

AXI SmartConnect

S00_AXI

S01_AXI

S02_AXI

S03_AXI
M00_AXI

aclk

aclk1

mig_7series_0

Memory Interface Generator (MIG 7 Series)

DDR3

S_AXI

sys_rst

clk_ref_i ui_clk

sys_clk_i

PmodSD_0

PmodSD_v1_0

AXI_LITE_SPI

AXI_LITE_SDCS
Pmod_out

axi_gpio

AXI GPIO

S_AXI
GPIO

GPIO2

axi_intc

AXI Interrupt Controller

s_axi interrupt

axi_timer

AXI Timer

S_AXI

axi_uartlite_0

AXI Uartlite

S_AXI UART

ddr3_sdram

dfx_controller_0

DFX Controller

ICAP

M_AXI_MEM
s_axi_reg

dfx_decoupler_0

DFX Decoupler

s_mdl_axis
rp_mdl_axis

s_axis_mdl
rp_axis_mdl

s_axi_reg

dfx_decoupler_1

DFX Decoupler

s_mdl_axis
rp_mdl_axis

s_axis_mdl
rp_axis_mdl

s_axi_reg

ja

mdm_0

MicroBlaze Debug Module (MDM)

MBDEBUG_0

microblaze_0

MicroBlaze

INTERRUPT

DLMB

ILMB

M_AXI_DP

M0_AXIS
S0_AXIS

M1_AXIS
S1_AXIS

M_AXI_DC

M_AXI_IC

DEBUG

microblaze_0_local_memory

DLMB

ILMB

myki_model_0

mm1_rbfnn.bd

m00_axiss00_axis

myki_model_1

mm2_ffnn.bd

m00_axiss00_axis

myki_pca

hls_pca_aximm_ip (Pre-Production)

s_axi_control m_axi_gmemIC

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

M07_AXI

M08_AXI

M09_AXI

Figure 25 – Vivado FPGA Block Design. The diagram is presented with the "Interfaces View" in
which block connections are AXI interfaces.

The FPGA design uses the MicroBlaze soft-core processor with a customized Real-
Time preset. The DDR memory is interfaced through the Memory Interface Generator (MIG
7-Series) and is used as data and instruction cache for the soft-core processor. TheMicroBlaze
is configured to provide 2 AXI-Stream interfaces with input/output ports for data transfers
with the RPs. These stream interfaces can be used efficiently with assembly instructions for
blocking and non-blocking data transfers.

The AXI Interrupt Controller and AXI-Timer are also used with the same purpose as
in the SoC-FPGA platform. The Pmod-SD IP is used to interface with the attached Micro-
SD Card Slot and the AXI-UARTLite provides serial communication used to debug the
standalone application (bare-metal) for the MicroBlaze.

The RTL description (in VHDL), IP sources, and TCL build scripts were added to
the LEIA UnB – MYKI private repository along with full, and partial bistreams used in the
aforementioned implementation. Also, the C-source code used in the standalone application
was also added.

67

4 Run-Time Reconfigurable Architec-
ture Implementation Results

This Chapter is dedicated to the analysis and discussion of the SW/HW co-design
implementation in both the SoC-FPGA and FPGA platforms. Firstly, relevant metrics re-
garding design utilization for the implemented FPGA and SoC-FPGA platforms described in
Sections 4.1, 4.2 are presented. Furthermore, Section 4.3 presents results for the performance
metrics regarding latency, reconfiguration time and throughput, power consumption, and
computational efficiency.

4.1 Reconfigurable Modules Hardware Utilization

Based on themodels fromTable 5, the synthesis and implementationwere carried out
considering: a) fpwidth = 27 bits (floating-point bit-width) as it reduces the required number
of DSP blocks used for the operators used in the RBFNN and Linear Regression models;
b) the FFNN uses standard fpwidth = 32 (single-precision) for its operators; c) The number
of operators for the Linear Regression model was 𝑛op = 8 due to the RP area constraint; d)
Both the RBFNN and FFNN contain 4 neurons in the hidden layer.

Table 8 and 9 present the total hardware utilization for the implementation of the
proposed models for the FPGA and SoC-FPGA platforms, respectively. It can be seen that
the RBFNN is occupying more than 95% of RM Slices. Reducing the RP area beyond the
current allocation of approx. 1600/1700 Slices might not be viable for the implementation of
all RMs.

Table 8 – Reconfigurable Modules (RMs) Implemented Utilization Summary – FPGA: ARTY A7

Reconfigurable
Module

Reconfigurable Partition (Pblock)
Slice Registers

(13600)
Slice LUTs
(6800)

Slice
(1700)

DSPs
(20)

Block RAM Tile
(10)

MM1: RBFNN 2400 (17.65%) 5966 (87.74%) 1622 (95.41%) 5 (25%) 0 (0%)
MM2: FFNN 2462 (18.10%) 2243 (32.99%) 944 (55.53%) 14 (70%) 0.5 (5%)
MM3: FFNN 2455 (18.05%) 2233 (32.84%) 943 (55.47%) 14 (70%) 0.5 (5%)
MM4: Lin. Reg. 2480 (18.24%) 3281 (48.25%) 1180 (69.41%) 8 (40%) 0 (0%)
MM5: Lin. Reg. 2480 (18.24%) 3289 (48.37%) 1239 (72.35%) 8 (40%) 0 (0%)

68

Table 9 – Reconfigurable Modules (RMs) Implemented Utilization Summary – SoC-FPGA: PYNQ-Z2

Reconfigurable
Module

Reconfigurable Partition (Pblock)
Slice Registers

(12800)
Slice LUTs
(6400)

Slice
(1600)

DSPs
(35)

Block RAM Tile
(20)

MM1: RBFNN 2400 (18.75%) 5905 (92.27%) 1576 (98.5%) 5 (12.5%) 0 (0%)
MM2: FFNN 2231 (17.43%) 2219 (34.67%) 937 (58.56%) 14 (35%) 0.5 (2.5%)
MM3: FFNN 2224 (17.38%) 2208 (34.5%) 878 (54.88%) 14 (35%) 0.5 (2.5%)
MM4: Lin. Reg. 2480 (19.38%) 3317 (51.83%) 1258 (78.63%) 8 (20%) 0 (0%)
MM5: Lin. Reg. 2480 (19.38%) 3317 (51.83%) 1166 (72.88%) 8 (20%) 0 (0%)

From the RMs physical implementation, it is possible to derive the partial bitstream
size for each target device used for each RM. The total reconfiguration time is directly related
to the size of the partial bitstream and the bandwidth of the configuration port used. For
7-Series devices, both PCAP (Processor Configuration Access Port) and ICAP (Internal
Configuration Access Port) are limited to 3.2 Gb/s (32-bit data width with 100 MHz clock)
(UG909. . . , 2022).

Table 10 presents the size of partial bitstreams from the proposed floorplanning
and the associated reconfiguration time considering the maximum bandwidth. To achieve
the maximum bandwidth, the memory bank providing the partial bitstream data must be
capable of handling such transfers. The SoC-FPGA (PYNQ-Z2) provides a DDR3 memory
and the FPGA (ARTY A7) provides a DDR3L memory, which can be used to store the partial
bitstreams and deliver them to the desired configuration port.

Table 10 – Target Device Partial Bitstream Sizes

Reconfigurable Partition SoC-FPGA
PYNQ-Z2

FPGA
ARTY A7

Partial Bitstream Size [bytes] 857740 761588
Theoretical Reconfiguration Time

@ 400 MB/s 2144.35 𝜇s 1903.97 𝜇s

From a system-level perspective, the reconfiguration time is the determinant factor
when accounting for the total execution time for the five-magnet tracking as the reconfigu-
ration time is expected to be much longer than the hardware accelerator latency.

4.2 DPR System Design Utilization

Tables 11 shows the SoC-FPGA hardware utilization and 12 shows the FPGA hard-
ware utilization for the implementations of the block designs (Fig. 25, 24), respectively. Both
implementations share the same set of RPs and RMs. The FPGA implementation demands

69

more resources (almost twice the FFs and LUTs occupation) as it implements theMicroBlaze
soft-core processor and the DDR memory interface infrastructure.

(a) FPGA Device View with highlights.
Labeled Regions – (1) DDR Interface;
(2) HLS-PCA IP; (3) MicroBlaze Core;
(4) AXI IPs; (5) DFX Controller &
Decoupler; (6) PMOD-SD IP.

(b) SoC-FPGA Device View with highlights. Labeled
Regions – (1) AXI-DMA; (2) HLS-PCA IP; (3) DFX

Controller & Decoupler; (4) AXI Interconnect; (5) AXI
IPs; (6) AXI-DMA.

Figure 26 – Implemented Designs: Device View with highlights and labels.

The proposed floorplanning with reduced area for the RPs proved successful as the
FPGA design only occupies ∼43% of total slices and the SoC-FPGA design ∼31% of total
slices. Figure 26 shows the device view with highlights.

In (MENDEZ, 2021), the FFNNmodel was also implemented using HLS considering
a parallel neuron structure with a total utilization of 7188 LUTs, and 6354 FFs. In this work,
the implementation considers a less parallel approach but with efficient pipeline processing
with a total utilization of 3281 LUTs, and 2455 FFs. The present implementation saves logic
resources in comparison with the previous implementation.

From the utilization results, it is possible to conclude that the RBFNNmodel requires
a considerable amount of resources for its implementation (about 95% of all RP Slices). The
other models reach up to 80% of RP Slice utilization. This is an indication that the RP area
could be further reduced to save on logic utilization, partial bitstreams storage, and power
dissipation if the RBFNN implementation were to be optimized.

70

Table 11 – DPR Design Utilization on SoC-FPGA

Hierarchy SoC-FPGA Implemented Design Utilization
Slice Registers

(106400)
Slice LUTs
(53200)

Slice
(13300)

DSPs
(220)

Block RAM
(140)

Total – Static Logic 11476 10.80% 9618 18.04% 4188 30.96% 7 3.18% 25.0 17.85%
HLS-PCA 2497 2.35% 2164 4.07% 848 6.38% 7 3.18% 18.5 13.21%
AXI-DMA 0 2094 1.97% 1442 2.71% 660 4.96% 0 0% 3 2.14%
AXI-DMA 1 2032 1.91% 1442 2.65% 632 4.75% 0 0% 3 2.14%
DFX Controller 1520 1.43% 1333 2.51% 545 4.10% 0 0% 0.5 0.36%
AXI Interconnect 0 1344 1.26% 1213 2.28% 466 3.50% 0 0% 0 0%
PS7 AXI Interconnect 664 0.62% 728 1.37% 378 2.84% 0 0% 0 0%
AXI Interconnect 0 501 0.47% 411 0.77% 177 1.33% 0 0% 0 0%
AXI Interconnect 1 350 0.33% 361 0.68% 168 1.26% 0 0% 0 0%
AXI Timer 240 0.23% 289 0.54% 110 0.83% 0 0% 0 0%
AXI Int. Controller 98 0.09% 97 0.18% 34 0.26% 0 0% 0 0%
AXI GPIO 96 0.09% 43 0.08% 35 0.26% 0 0% 0 0%
PS7 System Reset 33 0.03% 17 0.03% 13 0.10% 0 0% 0 0%
DFX Decoupler 0 7 <0.01% 39 0.07% 25 0.19% 0 0% 0 0%
DFX Decoupler 1 7 <0.01% 39 0.10% 27 0.20% 0 0% 0 0%

Reconfigurable Modules
MM1: RBFNN 2400 2.26% 5905 11.10% 1576 11.85% 5 2.27% 0 0%
MM2: FFNN 2231 2.10% 2219 4.17% 937 7.05% 14 6.36% 0.5 0.36%
MM3: FFNN 2224 2.09% 2208 4.15% 878 6.60% 14 6.36% 0.5 0.36%
MM4: Lin. Reg. 2480 2.33% 3317 6.23% 1258 9.46% 8 3.64% 0 0%
MM5: Lin. Reg. 2480 2.33% 3317 6.23% 1166 8.77% 8 3.64% 0 0%

Table 12 – DPR Design Utilization on FPGA

Hierarchy FPGA Implemented Design Utilization
Slice Registers

(126800)
Slice LUTs
(63400)

Slice
(15850)

DSPs
(240)

Block RAM
(135)

Total – Static Logic 19318 15.24% 17745 28.00% 6753 42.60% 12 5.00% 40.5 30.00%
DDRMem. Interface 10809 8.52% 9362 14.77% 3488 22.01% 0 0% 0 0%
AXI SmartConnect 6735 5.31% 4750 7.49% 1947 12.28% 0 0% 0 0%
MIG 7-Series 4074 3.22% 4615 7.28% 1571 9.91% 0 0% 0 0%

MicroBlaze 2764 2.18% 3388 5.34% 1148 7.24% 5 2.08% 20 14.81%
HLS-PCA 2729 2.15% 2148 3.39% 934 5.89% 7 2.92% 18.5 13.70%
DFX Controller 1517 1.20% 1379 2.18% 535 3.38% 0 0% 0 0%
PMOD-SD IP 585 0.46% 394 0.62% 171 1.08% 0 0% 0 0%
AXI Timer 240 0.19% 289 0.46% 105 0.66% 0 0% 0 0%
AXI Int. Controller 170 0.13% 119 0.19% 44 0.28% 0 0% 0 0%
AXI Interconnect 129 0.10% 301 0.47% 129 0.81% 0 0% 0 0%
MicroBlaze Debug 110 0.09% 93 0.15% 41 0.26% 0 0% 0 0%
AXI UART-Lite 107 0.08% 89 0.14% 33 0.21% 0 0% 0 0%
AXI GPIO 96 0.08% 43 0.07% 37 0.23% 0 0% 0 0%
PS System Reset 34 0.03% 17 0.03% 13 0.08% 0 0% 0 0%
MicroBlaze Memory 14 0.01% 17 0.03% 11 0.07% 0 0% 2 1.48%
DFX Decoupler 0 7 <0.01% 53 0.08% 34 0.21% 0 0% 0 0%
DFX Decoupler 1 7 <0.01% 53 0.08% 30 0.19% 0 0% 0 0%

Reconfigurable Modules
MM1: RBFNN 2400 1.89% 5966 9.41% 1622 10.23% 5 2.08% 0 0%
MM2: FFNN 2462 1.94% 2243 3.54% 944 5.96% 14 5.83% 0.5 0.37%
MM3: FFNN 2455 1.94% 2233 3.52% 943 5.95% 14 5.83% 0.5 0.37%
MM4: Lin. Reg. 2480 1.96% 3281 5.18% 1180 7.44% 8 3.33% 0 0%
MM5: Lin. Reg. 2480 1.96% 3289 5.19% 1239 7.82% 8 3.33% 0 0%

71

4.3 DPR System Performance Evaluation

For the performance evaluation of the proposed architectures, it is worthwhile to
analyze computational latency, reconfiguration time and throughput, power consumption,
and computational efficiency metrics.

The SoC-FPGA architecture uses the ARM core as its main processing unit, while the
FPGA design uses the MicroBlaze soft-core. Despite its hardware differences, the software
implementation is somewhat similar. The system works based on interrupts triggered in
the PL by the HLS-PCA IP and AXI-DMA IPs, the AXI Interrupt Controller is used to
manage these interrupt signals. In both implementations, the platform software is bare-metal
(standalone) and time interval measurements are taken using the AXI-Timer implemented in
the PL,with the capability to capture trigger inputs from the aforementioned interrupt signals.
This allows measuring model execution latency, PCA inference latency, and reconfiguration
time.

Table 13 shows the measured computational latency for the inference of each model
and the reconfiguration time and estimated reconfiguration throughput. It can be seen that
theMicroBlaze-based design increases the computational latency for themagnet localization
tasks. This is mostly due to the fact the MicroBlaze Core is not able to transfer data at every
clock cycle. The stream link from the MicroBlaze to the RP can only transfer data at every 2
clock cycles, while the SoC-FPGA design uses the AXI-HP port and AXI-DMA IP capable
of transfer bursts for every clock cycle. It should be noted that both designs use the same
frequency of 100 MHz for the PL clock domain. However, the measured latency is acceptable
and won’t affect system-level performance. It is worth noticing that these measured values
are close to the values presented in Table 10 which were estimated using the size of the RPs.

In addition, the reconfiguration throughput is near the theoretical limit of 400 MB/s
in both designs. The work of (MENDEZ, 2021) was only able to achieve about 250 MB/s
(estimated) of reconfiguration throughput in its implementation (reconfiguration time of
4740.8 𝜇s). From the results, one can conclude that the reconfiguration time still poses an
overhead in the total execution time but with the adoption of 2 RPs this effect is partially
mitigated.

Table 13 – DPR System Computational & Reconfiguration Latency

Target Measured Latency [𝜇s] Reconfiguration Metrics
MM1 MM2 MM3 MM4 MM5 Time [𝜇s] Throughput [MB/s]

SoC-FPGA 3.8636 7.6421 6.2549 3.8671 3.8636 2145.627 399.76
FPGA 6.0184 13.4654 9.5670 8.5955 8.5948 1907.136 399.33

The latency for the HLS-PCA IP was estimated at 227.84 𝜇s during synthesis. In
the SoC-FPGA, the measured latency was 229.04 𝜇s, and on its counterpart (FPGA) was

72

237.18 𝜇s. As the pre-processing is done on static logic, it can be processed concurrently
with magnet localization by each RM.

A total execution time can be calculated using the proposed RP scheduling scheme
(Fig. 22) and the measured latency seen from the results and considering that in the worst-
case scenario, the PCA inference needs to be sequentially processed before starting magnet
localization.

𝑇total = 𝑇𝑃𝐶𝐴 + 𝑇𝑀𝑀1 + 𝑇reconfig + 𝑇reconfig + 𝑇reconfig + 𝑇𝑀𝑀5

𝑇total (SoC-FPGA) ≈ 229.04 + 3.86 + 3 × 2145.62 + 3.86 ≈ 6673.62 𝜇𝑠

𝑇total (FPGA) ≈ 237.18 + 6.01 + 3 × 1907.13 + 8.59 ≈ 5973.17 𝜇𝑠

This leads to an approximation for the total execution time for the SoC-FPGA of 6.67
ms and 5.97ms for the FPGA-based solution. This latency considers the five-magnet tracking
tasks and the PCA inference used in the pre-processing stage of magnetic data acquisition.
In previous work, (MENDEZ, 2021) obtained approx. 9.5 ms as the DPR solution had to be
reconfigured twice for tracking five magnets.

Table 14 presents the power consumption summary for the proposed architectures.
The total dynamic power consumption for the SoC-FPGA is 1.493 W, within which 1.257 W
are dedicated to the PS. From that, 270 mW is used for the ARM Cortex-A9 dual-core; 630
mW for the DDR3 memory; 16 mW for I/O peripherals; and 344 mW for clocking resources
(Processor, Memory, I/O). The FPGA-based design uses nearly 1W of dynamic power. From
that, 685 mW are dedicated to the DDR3 Memory Interface; 114 mW to the MicroBlaze
soft-core; and 108 mW for clocking resources. In previous work, (MENDEZ, 2021) obtained
1718 mW of total power consumption using a similar SoC-FPGA device.

Table 14 – DPR System Power Summary

Target On-Chip Power [W] Reconfigurable Modules [mW]
Dynamic Static Total MM1 MM2 MM3 MM4 MM5

SoC-FPGA 1.493 0.142 1.635 60 70 68 53 55
FPGA 1.094 0.108 1.203 80 73 73 48 49

With these metrics for latency and power consumption, it is possible to devise a
measure of the number of magnet localizations per second (𝑓𝐿) per Watt to provide insights
into the overall computational efficiency of each solution. The proposed FPGA-based solution
is able to achieve 696.19 𝑓𝐿/W; the SoC-FPGA-based solution 458.48 𝑓𝐿/W; (MENDEZ,
2021) obtained 305.53 𝑓𝐿/W. In (IANNICIELLO, 2024), if we consider the minimum power
consumption (single AU configuration) of ∼ 600 mW and the computational time of 21.3

73

ms (worst-case scenario per iteration) for tracking eight magnets, this yields ≈ 625.97 𝑓𝐿/W.
These baseline results for power efficiency are a clear indicator that the proposed solution
on the FPGA platform presents a clear appeal regarding its reduced power consumption
and execution time for five-magnet tracking.

While the work of (IANNICIELLO, 2024) is a more complete representation of a
transcutaneous magnet localizer for the myokinetic interface, the proposed run-time re-
configurable architecture demonstrated to be capable of real-time operation with accurate
localization of multiple magnets. In the proposal, we also demonstrated the complete mag-
netic data processing pipeline done at the RTL level using a combination of HLS-based IPs
and HDL-based IPs. The measured reconfiguration throughput was found to be as close as
possible to the theoretical limit for the interface. This reduces the reconfiguration overhead
as partial bitstreams can be loaded faster into the RP. The pre-fetching scheme is a consider-
able advance from previous work (MENDEZ, 2021), as it enables parallel magnet tracking
and mitigates the overhead.

It is also worthwhile noting that given the design utilization from the proposed
implementation, it is still viable to implement additional modules. These modules could be
implemented in parallel for the prosthetic control of artificial hands, such as the UnB-LEIA
Hand (PERTUZ; LLANOS; MUNOZ, 2021). For the prosthetic control, there are several
systems for filtering, parametric estimation, position and torque control for grasp execution.
These tasks could be executed in parallel fashion using a FPGA-based system. From a
software perspective, implementing all these tasks might not be viable while using a single
microprocessor given the real-time, power requirements for the development of artificial
hands.

74

5 Final Remarks

This brief chapter presents the conclusions and future works derived from the initial
research questions, developments and obtained results during the research period.

5.1 Conclusions

The present work was dedicated for attaining the objectives set out in Chapter 1.

First, the hardware implementation of a FPGA-based solution in place of a SoC-
FPGA solution proved to be a good decision based on the actual obtained results for power
consumption and computational latency. The Zynq SoC-FPGA is a powerful processing unit
but given the self-contained nature of the transcutaneous magnet localizer, reduced power
consumption is highly desirable. One limitation that must be considered is the need for an
external high-speed DDR memory to provide storage capabilities for partial bitstreams. This
comes at the expense of power dissipation for the interface and memory controller.

Furthermore, the software application is standalone (bare-metal) and all the data
processing is done on the FPGA fabric. One could conclude that the ARM processing cores
are sub-utilized and the need for such processing power might not cover for the additional
power expense. Also, the MicroBlaze soft-core processor demonstrated similar performance,
providing an integrated solution to the RPs using the AXI4-Stream links.

Regarding theDPR design, the RP area is in direct relation to the partial bitstream size,
which is strictly tied to the reconfiguration time. The proposed DPR design with two RPs is
capable of reducing the reconfiguration overhead but could still benefit from a reduction on
reconfiguration time. In fact, the upper bound to the RP area was the logic utilization of the
RBFNNmodel, which implements every neuron in parallel. Also, the proposed solution was
carefully designed to achieve the near maximum reconfiguration throughput (400 MB/s).

5.2 Future Work

During the research, some improvement points were noted and could provide inter-
esting research ideas for future works.

With dedicated effort, the proposed solution could be integrated with an Acquisition
Unit (AU) capable of sampling and acquiring magnetic field measurements from magne-
tometers. This is considered the next step toward developing an FPGA-based embedded
myokinetic localizer. Expanding the scope of machine-learning models for the estimation of

75

magnet displacement based on the experimental dataset could reveal candidate models for
hardware implementation with greater accuracy.

For the DPR design methodology, assess the usage of compressed partial bitstreams
in order to reduce the reconfiguration time overhead. The AMD Xilinx DFX Controller
supports bitstream compression but this feature was not investigated.

Regarding the models architecture, implement additional functionality so that model
parameters can be changed at run-time. This could be done by adding an AXI-Lite interface
to configure model parameters (weights, bias, and others) before initiating data transfers.
This can improve the execution time avoiding reconfiguration steps.

76

References

AMD XILINX. UG1399 – Vitis High-Level Synthesis User Guide. July 2022. v2022.1.
Cit. on p. 24.

AMD XILINX.UG479 – 7 Series DSP48E1 Slice. Mar. 2018. v1.10. Cit. on p. 21.

AMD XILINX.UG585 – Zynq-7000 Technical Reference Manual. June 2023. v1.14. Cit.
on pp. 30–32, 35.

AMDXILINX.UG892 – VivadoDesign Suite Design Flows Overview. Apr. 2022. v2022.1.
Cit. on pp. 22, 64.

AMD XILINX.UG909 – Vivado Design Suite Dynamic Function eXchange. June 2022.
v2022.1. Cit. on pp. 28, 63, 68.

AMD XILINX.UG947 – Vivado Design Suite Tutorial: Dynamic Function eXchange.
May 2022. v2022.1. Cit. on pp. 27, 29, 30.

AMD XILINX. UG984 – MicroBlaze Processor Reference Guide. June 2022. v2022.1.
Cit. on pp. 34, 35.

AYALA, H.; SAMPAIO, R.; MUÑOZ, D. M.; LLANOS, C.; COELHO, L.; JACOBI, R. Non-
linear model predictive control hardware implementation with custom-precision
floating point operations. In: 2016 24th Mediterranean Conference on Control and
Automation (MED). 2016. P. 135–140. Cit. on p. 60.

AYALA, H. V. H.; MUÑOZ, D. M.; LLANOS, C. H.; COELHO, L. d. S. Efficient hardware
implementation of Radial Basis Function Neural Network with customized-precision
floating-point operations. Control Engineering Practice, Elsevier BV, v. 60, p. 124–
132, Mar. 2017. ISSN 0967-0661. DOI: 10.1016/j.conengprac.2016.12.004.
Available from: <http://dx.doi.org/10.1016/j.conengprac.2016.12.004>.
Cit. on p. 60.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation Learning: A Review and New
Perspectives. IEEETransactions onPatternAnalysis andMachine Intelligence,
Institute of Electrical and Electronics Engineers (IEEE), 2013. DOI: 10.1109/tpami.
2013.50. Cit. on p. 43.

BRUCKNER, F.; ABERT, C.; WAUTISCHER, G.; HUBER, C.; VOGLER, C.; HINZE, M.;
SUESS, D. Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint
Method. Scientific Reports, v. 7, 2017. Cit. on pp. 14, 37.

BRUNTON, S. L.; KUTZ, J. N.Data-Driven Science and Engineering. Cambridge Univer-
sity Press, 2019. DOI: 10.1017/9781108380690. Cit. on p. 43.

https://doi.org/10.1016/j.conengprac.2016.12.004
http://dx.doi.org/10.1016/j.conengprac.2016.12.004
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1017/9781108380690

77

CHURIWALA, S. Designing with Xilinx® FPGAs: Using Vivado. Springer International
Publishing, 2016. ISBN 9783319424385. Available from: <https://books.google.
com.br/books?id=6vFNDQAAQBAJ>. Cit. on pp. 19–21.

CIPRIANI, C. et al. The MyoKinetic prosthetic hand: Implanted magnets restore grasping in
humans with upper limb amputation. Preprint available at https://doi.org/10.
21203/rs.3.rs-3221346/v1, 2023. Cit. on p. 14.

CLEMENTE, F.; IANNICIELLO, V.; GHERARDINI, M.; CIPRIANI, C. Development of
an Embedded Myokinetic Prosthetic Hand Controller. Sensors, v. 19, n. 14, 2019.
Cit. on pp. 14, 37, 38.

CONG, J.; LIU, B.; NEUENDORFFER, S.; NOGUERA, J.; VISSERS, K.; ZHANG, Z. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, v. 30, n. 4,
p. 473–491, 2011. DOI: 10.1109/TCAD.2011.2110592. Cit. on p. 23.

ESPOSITO, D.; CENTRACCHIO, J.; ANDREOZZI, E.; GARGIULO, G. D.; NAIK, G. R.;
BIFULCO, P. Biosignal-Based Human–Machine Interfaces for Assistance and Re-
habilitation: A Survey. Sensors, v. 21, n. 20, 2021. ISSN 1424-8220. DOI: 10.3390/
s21206863. Available from: <https://www.mdpi.com/1424-8220/21/20/6863>.
Cit. on p. 13.

FINE LICHT, J. de; BESTA, M.; MEIERHANS, S.; HOEFLER, T. Transformations of High-
Level Synthesis Codes for High-Performance Computing. IEEE Transactions on
Parallel and Distributed Systems, 2021. DOI: 10.1109/TPDS.2020.3039409.
Cit. on pp. 23, 55.

GHERARDINI,M.;MANNINI,A.; CIPRIANI, C.Optimal Spatial SensorDesign forMagnetic
Tracking in a Myokinetic Control Interface. Computer Methods and Programs in
Biomedicine, Elsevier, v. 211, p. 106407, 2021. Cit. on pp. 37, 43.

GHERARDINI, M.; MASIERO, F.; IANNICIELLO, V.; CIPRIANI, C. The Myokinetic Inter-
face: implanting permanent magnets to restore the sensory-motor control loop in
amputees. Current Opinion in Biomedical Engineering, p. 100460, 2023. ISSN
2468-4511. DOI: https://doi.org/10.1016/j.cobme.2023.100460. Cit. on p. 13.

IANNICIELLO, V.; GHERARDINI, M.; CIPRIANI, C. Transcutaneous Magnet Localizer for
a Self-Contained Myokinetic Prosthetic Hand. IEEE Transactions on Biomedical
Engineering, v. 71, n. 3, p. 1068–1075, 2024. DOI: 10.1109/TBME.2023.3325910.
Cit. on pp. 14, 36–38, 72, 73.

LLOYD, S. Least squares quantization in PCM. IEEE Transactions on Information The-
ory, Institute of Electrical and Electronics Engineers (IEEE), v. 28, n. 2, p. 129–137,
Mar. 1982. ISSN 0018-9448. Cit. on p. 49.

https://books.google.com.br/books?id=6vFNDQAAQBAJ
https://books.google.com.br/books?id=6vFNDQAAQBAJ
https://doi.org/10.21203/rs.3.rs-3221346/v1
https://doi.org/10.21203/rs.3.rs-3221346/v1
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.3390/s21206863
https://doi.org/10.3390/s21206863
https://www.mdpi.com/1424-8220/21/20/6863
https://doi.org/10.1109/TPDS.2020.3039409
https://doi.org/https://doi.org/10.1016/j.cobme.2023.100460
https://doi.org/10.1109/TBME.2023.3325910

78

MASIERO, F.; SINIBALDI, E.; CLEMENTE, F.; CIPRIANI, C. Effects of Sensor Resolution
and Localization Rate on the Performance of a Myokinetic Control Interface. IEEE
Sensors Journal, Institute of Electrical and Electronics Engineers (IEEE), v. 21,
n. 20, 2021. DOI: 10.1109/jsen.2021.3109870. Cit. on pp. 37, 38.

MENDES, D. A.; REVES, G.; PASTRANA, M. A.; DOMINGUES, P. H.; AYALA, H. V. H.;
KUBRUSLY, A. C.; MUÑOZ, D. M.; LLANOS, C. H. A Comparative Analysis of
HDL and HLS for Accelerating Machine Learning based Strain Estimation with
Ultrasonic GuidedWaves. In: 2023 XIII Brazilian Symposium on Computing Systems
Engineering (SBESC). 2023. P. 1–6. DOI: 10.1109/SBESC60926.2023.10324053.
Cit. on p. 54.

MENDEZ, S. P. RUN-TIME RECONFIGURATION FOR EFFICIENT TRACKING OF
IMPLANTEDMAGNETSWITH AMYOKINETIC CONTROL INTERFACE
APPLIED TO ROBOTICHANDS. Apr. 2021. PhD thesis – Universidade de Brasília.
Available from: <https://repositorio.unb.br/handle/10482/41876>. Cit. on
pp. 14, 15, 38, 42, 43, 48, 50, 59, 62, 69, 71–73.

MENDEZ, S. P.; GHERARDINI, M.; PAULA SANTOS, G. V. de; MUNOZ, D. M.; AYALA,
H. V. H.; CIPRIANI, C. Data-Driven Real-Time Magnetic Tracking Applied to Myoki-
netic Interfaces. IEEE Transactions on Biomedical Circuits and Systems, Insti-
tute of Electrical and Electronics Engineers (IEEE), v. 16, n. 2, p. 266–274, Apr. 2022.
DOI: 10.1109/tbcas.2022.3161133. Cit. on pp. 14, 15, 38, 42, 48, 59–61.

MORADI, A.; RAFIEI, H.; DALIRI, M.; AKBARZADEH-T., M.-R.; AKBARZADEH, A.;
NADDAF-SH., A.-M.; NADDAF-SH., S. Clinical implementation of a bionic hand
controlled with kineticomyographic signals. Scientific Reports, v. 12, n. 1, p. 14805,
2022. ISSN 2045-2322. DOI: 10.1038/s41598-022-19128-1. Cit. on pp. 13, 38.

MUÑOZ, D. M.; SANCHEZ, D. F.; LLANOS, C. H.; AYALA-RINCÓN, M. FPGA based
floating-point library for CORDIC algorithms. In: 2010 VI Southern Programmable
Logic Conference (SPL). Porto de Galinhas, Brazil: IEEE, 2010a. DOI: 10.1109/spl.
2010.5483002. Cit. on pp. 59, 60.

MUÑOZ, D. M.; SANCHEZ, D. F.; LLANOS, C. H.; AYALA-RINCÓN, M. Tradeoff of FPGA
Design of a Floating-point Library for Arithmetic Operators. Journal of Integrated
Circuits and Systems, Journal of Integrated Circuits and Systems, 2010b. Cit. on
pp. 59, 60.

NELLES, O. Local linear neuro-fuzzy models: Fundamentals. Springer International
Publishing, 2020. P. 393–445. Cit. on pp. 43–45.

PERTUZ, S. A.; LLANOS, C. H.; MUNOZ, D. M. Development of a Robotic Hand Using
Bioinspired Optimization for Mechanical and Control Design: UnB-Hand. IEEE

https://doi.org/10.1109/jsen.2021.3109870
https://doi.org/10.1109/SBESC60926.2023.10324053
https://repositorio.unb.br/handle/10482/41876
https://doi.org/10.1109/tbcas.2022.3161133
https://doi.org/10.1038/s41598-022-19128-1
https://doi.org/10.1109/spl.2010.5483002
https://doi.org/10.1109/spl.2010.5483002

79

Access, Institute of Electrical and Electronics Engineers (IEEE), v. 9, p. 61010–61023,
2021. DOI: 10.1109/access.2021.3073010. Cit. on p. 73.

SIMPSON, P. A. FPGA Design: Best Practices for Team-based Reuse. 2. ed.: Springer
International Publishing, 2015. ISBN 978-3-319-17923-0,978-3-319-17924-7. Cit. on
p. 23.

TARANTINO, S.; CLEMENTE, F.; BARONE, D.; CONTROZZI, M.; CIPRIANI, C. The
myokinetic control interface: tracking implanted magnets as a means for prosthetic
control. Scientific Reports, Nature Publishing Group, v. 7, n. 1, 2017. Cit. on pp. 13,
14, 36, 38–40.

TAYLOR, C. R.; SRINIVASAN, S. S.; YEON, S. H.; O’DONNELL, M. K.; ROBERTS, T. J.;
HERR, H. M. Magnetomicrometry. Science Robotics, v. 6, n. 57, eabg0656, 2021.
DOI: 10.1126/scirobotics.abg0656. Cit. on p. 38.

ZHOU, J.; CHEN, X.; CHANG, U.; LU, J.-T.; LEUNG, C. C. Y.; CHEN, Y.; HU, Y.; WANG, Z. A
Soft-Robotic Approach to Anthropomorphic Robotic Hand Dexterity. IEEE Access,
v. 7, p. 101483–101495, 2019. DOI: 10.1109/ACCESS.2019.2929690. Cit. on p. 14.

https://doi.org/10.1109/access.2021.3073010
https://doi.org/10.1126/scirobotics.abg0656
https://doi.org/10.1109/ACCESS.2019.2929690

Appendix

81

APPENDIX A – Related Articles

A Comparative Analysis of HDL and HLS for
Accelerating Machine Learning based Strain

Estimation with Ultrasonic Guided Waves
Davi A. Mendes∗, Gabriel Reves∗, M. A. Pastrana∗, Pedro H. Domingues†,

Helon V. H. Ayala†, Alan C. Kubrusly‡, Daniel M. Muñoz∗ and Carlos H. Llanos∗
∗ Department of Mechanical Engineering

University of Brası́lia - UnB
Brası́lia, Brazil

Email: davi.mendes@ieee.org, gabriel.reves@gmail.com, mariopastrana403@gmail.com, damuz@unb.br, llanos@unb.br

† Department of Mechanical Engineering
Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro, Brazil
Email: phd.engmec@gmail.com, helon@puc-rio.br

‡ Center for Telecommunications Studies
Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro, Brazil
Email: alan@cpti.cetuc.puc-rio.br

Abstract—In the field of nondestructive testing and structural
health monitoring, ultrasonic waves are widely utilized to identify
defects and characterize materials. Recently, data-driven machine
learning models have been proposed for strain estimation us-
ing shallow-models and Principal Component Analysis (PCA).
However, little research effort has been guided towards the
development of real-time strain estimation hardware accelerators.
This study presents a novel comparative analysis of hardware
implementations of PCA on a low-cost SoC-FPGA using High-
level Synthesis (HLS) and HDL-based architectures. The com-
parison was conducted in terms of relevant metrics: hardware
occupation, latency, and computational efficiency. Additionally,
we demonstrate a scalability analysis considering floating-point
bit-width representation and the number of operators. The
proposed HDL-based architecture was able to achieve similar
performance in comparison with the HLS-based implementation.
The advantages of the proposed hardware accelerators are shown
by their real-time inference capabilities, low power consumption,
and reduced hardware utilization associated with low latency and
elevated computational efficiency.

Index Terms—FPGA; HLS; Principal Component Analysis;
Machine Learning; Ultrasonic Guided Waves; Strain Estimation.

I. INTRODUCTION

Ultrasonic waves are widely used in nondestructive tests and
structural health monitoring fields in order to identify defects
and characterize materials [1]. Due to the acoustoelastic effect
[2], ultrasonic waves can also be used to measure mechanical
stress by observing subtle time-of-flight variations within the
received signals [3], [4]. Thin structures behave as ultrasonic
waveguides allowing propagation over long distances and
providing information on the condition of a larger area [5].
Ultrasonic guided waves propagate under distinct, generally
dispersive, wave modes [6], which can be simultaneously
generated due to a given excitation signal [7].

The stress dependence of ultrasonic guided waves is, how-
ever, complex not only due to wave mixing within the received
signal [8], but due to the different stress sensitivity of each
guided wave mode [9], [10].

Recently, data-driven machine learning techniques have
been applied in the evaluation and monitoring of mechanical
stress [11] and plastic strain of metallic plates [12].

In [13], an online stress monitoring system for metal-
lic plates was proposed. The method consists of an uni-
dimensional Convolutional Neural Network (1D-CNN) trained
with the Lamb wave responses sensed in the plate in different
static loadings, which proved effective in the estimation of the
stress under static and dynamic loadings.

Similar approach was used in [14] to assess the stress level
of pretensioned rods for civil construction, considering three
types of grout materials and noise levels. The CNN presented
an accuracy of 100% in identifying the prestressing level of
the rods when in 90dB-noise and maintained an acceptable
accuracy in other noise levels. Contrasting, in [4], a support
vector regressor model was trained with features extracted
from ultrasonic guided waves signals using Wavelet Packet
(WPD) and Singular Value Decomposition (SVD).

Developing real-time monitoring of mechanical stress re-
quires a detailed study into numerical precision and compu-
tational performance while considering power and computa-
tional constraints present in embedded solutions. The authors
of [11] explored different machine-learning models to estimate
the mechanical stress of an aluminum plate to which tensile
stress was applied demonstrating that the models based on
Principal Component Analysis (PCA) exhibit superior accu-
racy and require a smaller model size than previous models.

In general, dedicated hardware accelerators are extremely
helpful, specially in low-cost embedded systems with con-

82

strained performance. Since PCA is computationally expensive
including a large number of arithmetic operations on vast
datasets, significant research efforts have been invested into
designing efficient and optimized PCA architectures using
Field Programmable Gate Arrays (FPGAs) to accelerate its
execution for dimensionality reduction and feature extraction.

In spite of the fact that HDL-based RTL implementation
using VHDL or Verilog is still predominant in FPGA de-
velopment, High-Level Synthesis (HLS) leverages program-
ming languages such as C/C++ to provide hardware layouts
from imperative code and annotated directives. HLS tools
can provide faster development time and allows for guided
design exploration with detailed resource and timing reports.
Furthermore, the quality of the implementation depends on
the intricacy of the compiler and the designers ability to
generate efficient hardware. In this regard, the work of [15]
presents several transformations and guidelines for developing
performance oriented hardware layouts from HLS codes.

Nowadays, HLS-based designs have been proposed as ef-
ficient PCA hardware accelerators, for instance, in [16], a
fall detection system was presented employing PCA as a
dimensionality reduction method for a decision tree classifier
implemented in Programmable Logic (PL) on a Zynq SoC. In
[17], the authors demonstrate an HLS-based PCA implementa-
tion for spectral image processing with 12 channels on a Zynq
SoC. The eigenproblem is solved in the Processing System
(PS) while the remaining steps are mapped and executed in
the PL. In addition, the work of [18] presents a HLS design
space exploration for PCA projection applied to spectral image
processing. In [19], [20], a guided design space exploration is
used to evaluate a flexible PCA hardware implementation for
floating-point and fixed-point arithmetic using an SVD Core.
The authors of [21] proposed an efficient HLS implementa-
tion for a linear discriminant analysis classifier using PCA
theory to reduce computational complexity by: (i) providing
low-dimensional features and (ii) avoiding matrix inversion
operations on an AMD Xilinx Virtex UltraScale series FPGA.

Alternatively, the work of [22] presents an HDL-based im-
plementation of the full PCA algorithm split across processing
elements mapped in a powerful AMD Xilinx Virtex-7 FPGA.
It features a MicroBlaze soft-core processsor and the HDL
architecture is responsible for carrying out dimensionality
reduction on hyperspectral images up to 256 channels with
real-time capabilities. A parametric HDL-based floating-point
algorithmic implementation for the PCA was proposed in [23]
for embedded machine learning applications. It considers a
tunable representation and evaluates the numerical precision,
throughput and power dissipation for different bit-width rep-
resentations.

This study aims at providing hardware architectures for
accelerating embedded machine learning algorithmic imple-
mentations in which the PCA is used for dimensionality
reduction with a given set of recorded principal components.
In this proposal, we adopted experimental data collected in
[8] and the data modeling methodology presented in [11] to
provide an accurate and efficient hardware accelerator in a

strain estimation task with real-time capabilities on a low-cost
Zynq-7000 SoC.

Regarding the RTL design, our exploration was divided into
(i) a high-level synthesis approach using Vitis HLS and (ii)
a parametric HDL IP-core. This allowed us to analyze the
shortcomings of each approach in detail and point out how
these problems affect our machine-learning accelerator.

Therefore, our study provides a novel comparative analysis
that takes into account the design space exploration and the
code transformations described in [15] for the HLS-based
architecture, providing an optimized kernel. Additionally, it
also features a conceptual design and implementation for a
parametric HDL IP-Core with streaming interfaces used in
cooperating ARM-FPGA computation.

Moreover, for each approach, we provide relevant results
for the synthesized design, interfacing schemes, and task-load
distribution, as well as implementation results for hardware
occupation, computational latency and efficiency. As the HDL-
based architecture uses tunable floating-point operators, a
tradeoff analysis for hardware consumption and dissipated
power was also performed for different bit-width represen-
tations.

II. METHODS

A. Strain Estimation Dataset

a) Experimental Dataset: In [8], an aluminum plate with
800×100×3mm dimensions had its farthest ends attached to a
bridge structure, where one extremity was fixed while the other
moved under the action of an endless screw. A transmitting
piezoelectric transducer was used to excite the plate with a 2.5
MHz bandwidth sinc-like broad-band pulse, inducing multiple
Lamb modes to be propagated in the plate, which are recorded
by a receiving piezoelectric transducer, 700 mm away from the
transmitter. Tensile loads were applied to the plate by turning
the endless screw, promoting deformations between 0 to 150
µm/m. These deformations were recorded by a resistive strain
gauge in the center of the plate. Finally, the plate excitation
process was performed 499 times for different strain levels in
the aforementioned range. The acquired signals were sampled
at 10 MHz, with 8,192 samples, comprising the observable
interval from 130.0 µs to 949.1 µs.

b) Principal Component Analysis: PCA is widely used
to reduce the data dimensionality of machine learning models.
It is used to devise a truncated linear transformation (Eq. 1)
in which K columns from the V matrix (i.e., the principal
components, PCs) form an orthogonal basis for the K fea-
tures providing a low-dimensional approximation (TK) to the
high-dimensional X data in terms of relevant patterns. This
transformation is associated with another matrix factorization
given by the SVD of X ∈ Cn×m (Eq. 2).

TK = XVK (1)

X = UΣVH , (2)

83

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and
V holds an orthonormal-basis of corresponding eigenvectors
[24]. Here H denotes the complex conjugate transpose.

The PCA has two main stages, the training and the projec-
tion stage. During the training stage, principal components are
derived using SVD. This stage is computationally complex and
time-consuming as it involves computing a matrix factorization
[25]. The projection stage requires the PCs and the input
values to perform the dimensionality reduction (see Eq. 1).

c) Data Modeling: Guided by the data modeling method-
ology and model construction procedure presented in [11]
and the experimental data from [8] we demonstrate a novel
SoC-FPGA hardware implementation for a shallow machine
learning model with dimensionality reduction using PCA. In
the inference stage, the hardware accelerator receives the input
signal with 8192 samples which is reduced to a set of 9
features after dimensionality reduction. Then, linear regression
is applied to determine the estimated strain level for the
excitation process.

B. Proposed Approach

1) HLS – High Level Synthesis: The proposed HLS kernel
implements three processing pipelines: (a) dimensionality re-
duction using PCA, (b) data scaling and (c) linear regression.
In this kernel, three input ports and a single output port
were mapped into separate AXI4 Memory-Mapped interfaces.
This interface protocol provides independent read and write
channels, which support burst-based access and provide a
queue for outstanding transactions. The kernel implementation
considers a 32-bit data path used for single-precision floating-
point operations and a sequential execution mode controlled
by an AXI4-Lite interface.

The first processing module computes the dimensionality
reduction applied to the normalized (zero-mean) input data.
At this point, the required input data, mean values and the
principal components are read from AXI4 Memory-Mapped
Interfaces. This algorithmic implementation consists in a loop
re-ordered matrix multiplication which transposes the iteration
space in order to eliminate loop-carried dependencies and
enable pipelining [15]. The subsequent processing module
transforms the reduced PCA features by scaling each one to
unitary range. Finally, the scaled features are used as inputs
for the Linear Regression module.

As for the Vitis HLS development flow, the design was
validated through testbench simulation based on ground-truth
results for correctness. After a C/RTL Co-Simulation, the RTL
design was exported from Vitis HLS as a Vivado IP. Moreover,
the packaged IP-Core was integrated in Vivado to the Zynq PS
for implementation onto the selected target (xc7z020clg400-1).

2) HDL – Hardware Description Language: The pro-
posed HDL IP-Core implements a parametric tree-reduction
multiply-add architecture (i.e. the vector multiplication mod-
ule) that calculates a scalar product between two vectors. This
architecture is synchronized to a Serial-Input Parallel-Output
(SIPO) register which stores the input data and the principal
components (PCs).

On the PL side, the architecture is connected to an AXI-
DMA bridge using a single input and a single output AXI-
Stream interface with a 32-bit data path. Figure 1 shows
the proposed high-level interfacing scheme. At the PS side,
the Zynq processor interfaces with the DMA using High-
Performance AXI ports for data transfers and a simple AXI-
Lite interface for flow control. In short, the AXI-DMA bridge
provides a seamless connection between the SIPO register used
in the HDL-IP Core and an addressable memory bank stored
into the PS.

Fig. 1. Interfacing scheme for the proposed HDL IP-Core.

Regarding the dataflow, the SIPO register simultaneously
loads the multiplication inputs into the first operand level while
the vector multiplication is being performed, thus enabling
the loading of new input data to the SIPO register in a
pipelined fashion. Figure 2 shows the fine-grained details
of the module implemented in the PL. Using a SIPO input
register and a First-In-First-Out (FIFO) output register eases
the development of additional logic required for the AXI-
stream handshake protocol.

Fig. 2. The Vector Multiplication Module (depicted in the AXI Stream
Wrapper block in Fig. 1).

The floating-point operators used for the multipliers and
adders are based on pre-characterized FPLib IP-Cores [26],
[27]. In addition, FPLib supports parametric floating-point
bit-width representation. This could be exploited in a trade-
off analysis between hardware consumption, computational
performance, and numerical precision in order to provide the
optimal physical implementation [27].

84

TABLE I
HLS SYNTHESIS PERFORMANCE & RESOURCE ESTIMATES

Module & Loops Latency
(cycles)

Latency
(ns)

Iteration
Latency Interval Trip

Count
Initiation
Interval Pipelined DSP FF LUT

HLS Design 73846 7.385 · 105 - 73847 - - ✖ 7 (3%) 6136 (5%) 11809 (22%)
• PCA Iterative Module 73744 7.374 · 105 - 73744 - - 2 (≈0%) 1485 (1%) 1047 (1%)

◦ PCA Iterative Loop 73742 7.374 · 105 24 9 8192 9 ✓ - - -
• PCA Scaler Module 21 210 - 21 - - - 319 (≈0%) 102 (≈0%)

◦ PCA Scaler Loop 19 190 12 1 9 1 ✓ - - -
• Lin. Regression Module 52 520 - 52 - - - 511 (≈0%) 359 (≈0%)

◦ Linear Regression Loop 50 500 27 20 2 20 ✓ - - -

It is possible to assign the amount of parallel multiply/add
operators in the tree-reduction architecture depending on the
application requirements. In our proposal, we considered two
main variations for implementation using 5 and 100 cores,
structured with 6 and 7 levels of depth, respectively.

The 5 cores size parameter was selected for implementation
because it matches the latency for filling up the input buffer
and for processing the actual vector multiplication, while the
100 cores was chosen because it was the highest number of
cores viable for implementation on the FPGA using single-
precision floating-point operators. Each adder stage is con-
nected to the previous multiplier stage through an AND gate
connected to the multiplier ready signal and adder start
signal. This is done because the floating-point operators can
only receive new inputs after the output is processed.

The PS-PL task handling was done as follows: The PL
component was tasked with multiplying a tiled segment of the
matrix multiplication, while the PS component was responsible
for streaming data to the PL, handling any interruptions
created by the architecture, accumulating partial results into
a complete result, and aligning memory sections to prepare
them for transmission to the AXI-DMA bridge. This task
distribution for matrix multiplication is shown in Eq. 3.

Cij =
M∑

1︸︷︷︸
PS

cores+k∑

k

Aik ·Bkj ,

︸ ︷︷ ︸
PL

(3)

with M being the number of necessary calls of the imple-
mented architecture, calculated as M = ⌈8192/cores⌉. This
means that for the 100 cores implementation, 82 calls are
needed for a single result, but, if 5 cores are used, 1640
calls are needed. Besides, the dataset and the required set
of principal components were stored in a SD Card external
memory, and were loaded as the processing occurs.

III. RESULTS

This section discusses the obtained results in the implemen-
tation with the HLS and HDL architectures evaluated on the
low-cost AMD Xilinx ZYNQ SoC (xc7z020clg400-1) used in
the Zybo Z7-20 development kit. The clock frequency is 100
MHz.

For the proposed HLS approach, Table I summarizes the
estimated latency and resource consumption for the syn-

thesized design. From Table I, it is noticed that the PCA
processing pipeline takes up ≈ 99.86% of the total latency.
This pipeline was implemented with II = 9 (Initiation Interval)
for optimal throughput performance with unrolling for nested
loops processing each one of the 9 output samples.

From Table II, the synthesized HLS RTL considers (i) an
accumulation buffer implemented as a true dual-port RAM
used to store partial results processed by the first pipeline
and (ii) an intermediate buffer implemented as ROM for the
scaled data output from the data scaler pipeline. Furthermore,
each processing module makes use of the single-precision
floating-point multiplication/addition/subtraction using DSP-
based and/or logical fabric implementation for a total con-
sumption of 7 DSPs (also reported on Table I). The PCA Scaler
and Linear Regression modules also implement ROM storage
elements for constant values such as: data scaler coefficients
and regression coefficients.

TABLE II
HLS SYNTHESIS BIND OPERATOR/STORAGE SUMMARY

Hierarchy Op./Storage Impl. Latency

Single-Precision Mul. (3 DSP) fmul maxdsp 4
Single-Precison Add/Sub. (2 DSP) fadd/fsub fulldsp 4
Functional Addition ×3 add fabric 0
Accumulation Buffer ram_t2p BRAM 1
Scaled Data Buffer rom_np BRAM 1
PCA Iterative Add. (2 DSP) fadd fulldsp 4
Scaler Coef. Parameters rom_1p BRAM 1
Regression Coef. Parameters rom_1p BRAM 1

Table III reports the target device utilization for each
architecture. The HLS-based architecture is tightly contained
with a significant consumption of BRAM resources, mainly
used in the AXI4 Memory-Mapped ports to store interface
data from the read channel.

In opposition, the HDL w. 100 cores architecture was
designed for parallelism/throughput with a trade-off between
performance and area in the hardware implementation as
shown by the elevated count of utilized DSPs and LUTs. The
architecture with 5 cores is able to overcome the HLS design
by reducing LUT usage in 2.8% and Slice Registers (FF) by
3.36% with an overhead of 3 DSP units.

Additionally, Fig. 3 exhibits the device implementation view
with cell highlight for the proposed RTL components. Indeed,

85

TABLE III
IMPLEMENTED DESIGN HARDWARE UTILIZATION

Design Information LUT
(53200)

FF
(106400)

BRAM
(140)

DSP
(220)

HDL w. 5 cores 4794 (9.01%) 4817 (4.53%) 3.5 (2.5%) 10 (4.55%)
• HDL RTL 1789 (3.36%) 1291 (1.21%) 0 (0%) 10 (4.55%)

HDL w. 100 cores 44935 (84.46%) 26140 (24.57%) 3.5 (2.5%) 200 (90.91%)
• HDL RTL 41930 (78.81%) 22615 (21.26%) 0 (0%) 200 (90.91%)

HLS Architecture 5106 (9.60%) 7157 (6.73%) 52.5 (37.50%) 7 (3.18%)
• HLS RTL Only 3276 (6.16%) 4865 (4.57%) 52.5 (37.50%) 7 (3.18%)
◦ PCA Pipeline 847 (1.59%) 1423 (1.34%) - 2 (0.91%)
◦ Scaler Pipeline 51 (0.10%) 191 (0.18%) - -
◦ Regression P. 357 (0.67%) 493 (0.46%) - -

HDL-based solution with 100 cores takes up almost all of the
available fabric logic as it is expected from Table III data.

Fig. 3. Device implementation view. Left: HDL-based with 5 cores; Center:
HDL-based with 100 cores; Right: HLS-based.

The computational latency, as shown in Table IV, was
measured using an AXI-Timer while performing in-circuit
verification. The HLS approach fared the worst and the HDL-
based architecture with 100 cores performed the best, being
almost 15% faster for a single execution in the model inference
task. The architecture with 5 cores is quite similar to the
HLS solution. The ARM latency was outperformed by the
hardware accelerators with a speedup of: ≈ 14 [HDL: 100
cores], ≈ 11.7 [HDL: 5 cores] and ≈ 11.8 [HLS] respectively.

In addition, Table IV also presents the computational latency
for the test set inference, which consists in sequentially
processing all the 250 recorded runs.

TABLE IV
MEASURED COMPUTATIONAL LATENCY

Computational Latency
HDL

Architecture
(5 cores)

HDL
Architecture
(100 cores)

HLS
Architecture ARM

Single Execution [ms] 1.688 1.414 1.6710 19.792
Test Set Inference [ms] 422.0 353.5 416.0 4948.0

In order to evaluate computational efficiency, Table V
presents the power report with respect to the architecture PS
and PL dynamic/static power consumption. From the data, it
is observed that the HDL architecture with 100 cores is more
power intensive than the HLS counterpart by almost 37.5%,
while the HDL architecture with 5 cores is only 3% more
power intensive.

To put the data into perspective, evaluating each proposed
architecture in terms of inference frequency (fL) per watt, the

TABLE V
POWER REPORT SUMMARY

On-Chip HDL
5 cores

HDL
100 cores

HLS
Architecture

Dynamic (W) 1.436 1.948 1.387
• PS Dynamic (W) 1.404 1.404 1.258
• PL Dynamic (W) 0.032 0.544 0.129

◦ Proposed Design (W) 0.006 0.521 0.113
Device Static (W) 0.138 0.153 0.142
Total On-Chip Power (W) 1.575 2.101 1.529

5 cores HDL-based design exhibits ≈ 376.1 fL/W, the 100
cores HDL design exhibits ≈ 336.6 fL/W and the HLS-based
design exhibits ≈ 391.4 fL/W. Although the HDL architecture
with 100 cores is slightly faster it is not as efficient as the HLS-
based which provides a 16% improvement over its counterpart.
The HDL architecture with 5 cores achieves similar latency
and total on-chip power when compared to the HLS-based
solution which maintains a marginal improvement of ≈ 4% in
computational efficiency over the 5-core architecture.

To assess the scalability of the HDL-based implementation,
we also considered three distinct bit-width floating point
representations: 16 bits with e = 5 exponent bits and m = 10
mantissa bits, 27 bits (e = 8,m = 18) and single-precision
with 32 bits (e = 8,m = 23). Furthermore, four different core
sizes, namely 5, 10, 50, and 100, were evaluated. Table VI
provides a summary of the resource and power consumption
for each combination.

TABLE VI
SCALABILITY ANALYSIS FOR THE BIT-WIDTH AND NUMBER OF CORES.

HDL Design
Parameters

LUT
%

DSP
%

FF
%

On-chip
power (W)

5 cores, 16 bits 979 (1.84%) 5 (2.27%) 479 (0.45%) 0.01
10 cores, 16 bits 1944 (3.65%) 10 (4.55%) 890 (0.84%) 0.017
50 cores, 16 bits 9868 (18.55%) 50 (22.73%) 4189 (3.94%) 0.066
100 cores, 16 bits 19794 (37.21%) 100 (45.45%) 8290 (7.79%) 0.123

5 cores, 27 bits 2021 (3.80%) 5 (2.27%) 772 (0.73%) 0.018
10 cores, 27 bits 4040 (7.59%) 10 (4.55%) 1443 (1.36%) 0.033
50 cores, 27 bits 20138 (37.85%) 50 (22.73%) 6833 (6.42%) 0.141
100 cores, 27 bits 40269 (75.69%) 100 (45.45%) 13534 (12.72%) 0.262

5 cores, 32 bits 2117 (3.98%) 10 (4.55%) 912 (0.86%) 0.025
10 cores, 32 bits 4217 (7.93%) 20 (9.09%) 1708 (1.61%) 0.045
50 cores, 32 bits 21043 (39.55%) 100 (45.45%) 8103 (7.62%) 0.193
100 cores, 32 bits 42040 (79.02%) 200 (90.91%) 16054 (15.09%) 0.365

Table VI reveals that the hardware resource consumption,
including LUTs, FF, DSP and on-chip power escalates signif-
icantly as the bit-width representation increases. For instance,
the 16-bit implementation generally reduces by half the re-
quired hardware resources in comparison the single-precision
implementation. Moreover, deploying an architecture with 100
cores using a higher bit-width (27 or 32 bits) representation
takes up a considerable portion of the available fabric logic,
which in turn might restrict the implementation of additional
modules required for a specific application.

IV. CONCLUSION

This study conducted a comparative analysis between the
High-Level Synthesis (HLS) and hand-written HDL focus-

86

ing on the implementation of Principal Component Analysis
(PCA) for dimensionality reduction applied to mechanical
strain estimation using ultrasonic guided waves.

The proposed HDL architecture utilizes a SIPO register
and a multiply-add tree, which uses parametric floating-point
arithmetic representation. The SIPO register is written through
the use of an AXI-Stream protocol with Direct Memory Ac-
cess. In order to investigate the impact of different architecture
parameters such as bit-width representation, number of cores,
and SIPO size, a custom HDL code generator was developed,
which can be utilized to implement various hardware solutions.
The proposed cooperating computation using PS-PL for the
HDL-based solutions also proved to be efficient and was able
to provide similar computational latency in comparison to the
HLS-based solution with complete hardware implementation.

The analysis of resources and power consumption revealed
that the proposed HDL architecture with 5 cores achieves
better computational efficiency compared to the HDL design
with 100 cores. Even though the HLS-based design consumes
more hardware resources, it outperforms the HDL design
with 5 cores by approximately 4% in terms of computational
efficiency.

The HLS-based solution also proved to have a faster
development pace and was also able to provide insightful
reports during the initial design space exploration. In addition,
the efficient implementation of memory-mapped interfaces
provided by the HLS tool highlights its capabilities for the
proposed application.

Finally, a scalability analysis was performed in terms of
bit-width and number of parallel cores, demonstrating that
HDL-based solution using half-precision (16 bits) floating-
point representation is able to reduce the hardware occupation
by half of the resources required the 27-bit-width solution
while maintaining the same latency and throughput.

In future works, the implementation of a more diverse set of
hardware machine-learning techniques intend to be integrated
into the proposed PCA architecture enabling the real-time
estimation of mechanical strain using ultrasound waveguides
with low-cost SoC-FPGA.

REFERENCES

[1] Z. Yang, H. Yang, T. Tian, D. Deng, M. Hu, J. Ma, D. Gao, J. Zhang,
S. Ma, L. Yang, H. Xu, and Z. Wu, “A review in guided-ultrasonic-
wave-based structural health monitoring: From fundamental theory to
machine learning techniques,” Ultrasonics, 2023.

[2] Y. Pao, W. Sachse, and H. Fukuoka, “Acoustoelasticity and ultrasonic
measurements of residual stresses,” Phys. Acoust., 1984.

[3] V. V. Mishakin, S. Dixon, and M. D. G. Potter, “The use of wide band
ultrasonic signals to estimate the stress condition of materials,” Journal
of Physics D: Applied Physics, 2006.

[4] Q. Ji, L. Jian-Bin, L. Fan-Rui, Z. Jian-Ting, and W. Xu, “Stress
evaluation in seven-wire strands based on singular value feature of
ultrasonic guided waves,” Structural Health Monitoring, 2021.

[5] E. H. Ling and R. H. A. Rahim, “A review on ultrasonic guided wave
technology,” Australian Journal of Mechanical Engineering, 2020.

[6] J. L. Rose, Ultrasonic Guided Waves in Solid Media. Cambridge
University Press, 2014.

[7] H. Nishino, K. Yoshida, H. Cho, and M. Takemoto, “Propagation phe-
nomena of wideband guided waves in a bended pipe,” Ultrasonics, 2006,
proceedings of Ultrasonics International (UI’05) and World Congress on
Ultrasonics (WCU).

[8] A. C. Kubrusly, N. Pérez, T. F. Oliveira, J. C. Adamowski, A. M. B.
Braga, and J. P. Von de Weid, “Mechanical strain sensing by broadband
time reversal in plates,” IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 2016.

[9] N. Gandhi, J. E. Michaels, and S. J. Lee, “Acoustoelastic lamb wave
propagation in biaxially stressed plates,” The Journal of the Acoustical
Society of America, 2012.

[10] A. C. Kubrusly, A. M. B. Braga, and J. P. von der Weid, “Derivation of
acoustoelastic lamb wave dispersion curves in anisotropic plates at the
initial and natural frames of reference,” The Journal of the Acoustical
Society of America, 2016.

[11] C. D. V. Holguin, H. V. H. Ayala, and A. C. Kubrusly, “Improved
stress estimation with machine learning and ultrasonic guided waves,”
Experimental Mechanics, 2021.

[12] R. B. Vieira and J. Lambros, “Machine learning neural-network predic-
tions for grain-boundary strain accumulation in a polycrystalline metal,”
Experimental Mechanics, 2021.

[13] H. Lim and H. Sohn, “Online stress monitoring technique based on
lamb-wave measurements and a convolutional neural network under
static and dynamic loadings,” Experimental Mechanics, 2020.

[14] Z. Zhang, F. Tang, Q. Cao, H. Pan, X. Wang, and Z. Lin, “Deep learning-
enriched stress level identification of pretensioned rods via guided wave
approaches,” Buildings, 2022.

[15] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transforma-
tions of high-level synthesis codes for high-performance computing,”
IEEE Transactions on Parallel and Distributed Systems, 2021.

[16] A. A. S. Ali, M. Siupik, A. Amira, F. Bensaali, and P. C. de-la Higuera,
“HLS based hardware acceleration on the zynq SoC: A case study for
fall detection system,” in 2014 IEEE/ACS 11th International Conference
on Computer Systems and Applications (AICCSA). IEEE, 2014.

[17] M. Schellhorn and G. Notni, “Optimization of a principal component
analysis implementation on field-programmable gate arrays (fpga) for
analysis of spectral images,” in 2018 Digital Image Computing: Tech-
niques and Applications (DICTA), 2018.

[18] R. Marino, J. M. Lanza-Gutierrez, T. Riesgo, and M. Holgado, “Design
space exploration for PCA implementation of embedded learning in FP-
GAs,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2018.

[19] M. A. Mansoori and M. R. Casu, “Efficient FPGA implementation
of PCA algorithm for large data using high level synthesis,” in 2019
15th Conference on Ph.D Research in Microelectronics and Electronics
(PRIME). IEEE, 2019.

[20] ——, “HLS-based flexible hardware accelerator for PCA algorithm on
a low-cost ZYNQ SoC,” in 2019 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC). IEEE, 2019.

[21] D. Peng and J. Sha, “Efficient HLS implementation of fast linear
discriminant analysis classifier,” IEEE Embedded Systems Letters, 2021.

[22] D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, “FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,” Journal of Real-Time Image Pro-
cessing, 2016.

[23] M. Franceschi, A. Nannarelli, and M. Valle, “Tunable floating-point
for embedded machine learning algorithms implementation,” in 2018
15th International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD).
IEEE, 2018.

[24] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering.
Cambridge University Press, 2019.

[25] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2013.

[26] D. M. Muñoz, D. F. Sanchez, C. H. Llanos, and M. Ayala-Rincón,
“FPGA based floating-point library for CORDIC algorithms,” in 2010 VI
Southern Programmable Logic Conference (SPL). Porto de Galinhas,
Brazil: IEEE, 2010.

[27] ——, “Tradeoff of FPGA design of a floating-point library for arithmetic
operators,” Journal of Integrated Circuits and Systems, 2010.

87

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Problem Description
	Research Questions
	Objectives
	Specific Objectives

	Contributions
	Document Organization

	Theoretical Foundation
	FPGA & SoC-FPGA
	FPGA Design Flow
	HLS Design Flow

	Partial Reconfiguration
	PR Design Flow
	Configuration Management
	DPR Infrastructure: Xilinx Dynamic Function eXchange (DFX)

	The ZYNQ-7000 SoC Family
	Processing System – PS
	Programmable Logic – PL
	MicroBlaze Soft Processor Core

	Processing System – Programmable Logic Interfaces

	The Myokinetic Approach for Hand Prosthetic Control
	Human-Machine Interface – HMI
	Data-Driven Magnet Tracking applied to the Myokinetic Control Interface
	Experimental Data Acquisition
	Dimensionality Reduction using Principal Component Analysis (PCA)
	Regression using Black-Box Data-Driven Models

	Run-Time Reconfigurable Architecture for Myokinetic Magnet Tracking
	Introductory Remarks
	Proposed Modeling for Five Magnet Tracking
	Model Performance with Unprocessed Magnetic Sensor Features
	Model Performance with Dimensionality Reduction of Magnetic Sensor Features

	Machine Learning Models Implementation on Hardware
	HLS Implementation for Dimensionality Reduction using PCA
	HLS Source & Synthesis Results

	Feedforward Neural Network Model – HLS-FFNN
	Linear Regression Model – pLinRGen
	Radial-Basis Function Network Model – vRBFGen

	Run-time Reconfigurable System Implementation
	Floorplanning
	System Overview & Block Design

	Run-Time Reconfigurable Architecture Implementation Results
	Reconfigurable Modules Hardware Utilization
	DPR System Design Utilization
	DPR System Performance Evaluation

	Final Remarks
	Conclusions
	Future Work

	References
	Appendix
	Related Articles

