
University of Brasília
Institute of Exact Sciences

Department of Statistics

Master’s Dissertation

Positional Encoder Graph Quantile Neural
Networks for Geographic Data

by

William Edward Rappel de Amorim

Brasília, September 2024

Positional Encoder Graph Quantile Neural
Networks for Geographic Data

by

William Edward Rappel de Amorim

Dissertation submitted to the Department of

Statistics at the University of Brasília in fulfil-

ment of the requirements for obtaining the Mas-

ter Degree in Statistics.

Advisor: Prof. Dr. Guilherme Souza Rodrigues

Brasília, September 2024

To my family and friends, whose support has been fundamental throughout this journey.

Acknowledgments

Thanks to the faculty of PPGEST/UnB, my advisor Dr. Guilherme Souza Rodrigues, all pro-

fessors and colleagues who contributed to this work in any way. Also thanks to Prof. Raul

Yukihiro Matsushita and Prof. Fabrício Aguiar Silva for accepting the invitation to be part of

this work’s evaluation committee.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior - Brasil (CAPES) - Finance Code 001.

Resumo Expandido

REDES NEURAIS QUANTÍLICAS DE GRAFOS COM CODIFICADOR POSICIONAL

PARA DADOS GEOGRÁFICOS

Este trabalho propõe uma nova arquitetura chamada Redes Neurais Quantílicas de Grafos

com Codificador Posicional para Dados Geográficos (PE-GQNN). Ela foi criada para melhorar

a previsão espacial, integrando Redes Neurais de Grafos (GNNs) com Codificação Posicional

(PE) e regressão quantílica. A PE-GQNN é projetada para superar as limitações dos modelos

tradicionais, ao incorporar o contexto espacial e capturar uma ampla gama de quantis condi-

cionais, permitindo a modelagem de incertezas de maneira mais precisa.

Os dados geoespaciais, ou dados espaciais, contêm informações que incluem um ou mais

atributos relacionados às coordenadas geográficas dos dados, geralmente definidas por latitude

e longitude. Estes dados são amplamente utilizados em várias áreas, como economia, meteo-

rologia, transporte urbano, redes sociais, plataformas de comércio eletrônico, entre outras. Um

aspecto importante dos dados espaciais é a autocorrelação espacial, que se refere ao fenômeno

em que pontos de dados espaciais não são estatisticamente independentes, mas sim correla-

cionados, especialmente em locais próximos.

Modelos de regressão espacial tradicionais utilizam matrizes de pesos espaciais ou termos

de defasagem espacial para capturar a estrutura espacial nos dados. No entanto, esses mode-

5

los frequentemente não conseguem modelar relações complexas entre as variáveis preditoras

e a variável de interesse. Por outro lado, os Processos Gaussianos (GPs), que assumem uma

distribuição preditiva Gaussiana, apresentam alta flexibilidade e podem capturar relações com-

plexas, mas enfrentam desafios significativos de escalabilidade e complexidade computacional,

especialmente para conjuntos de dados grandes.

As GNNs surgiram recentemente como uma solução poderosa e escalável para aplicar redes

neurais a dados estruturados em grafos. A abordagem tradicional de GNNs para dados espaciais

consiste em representar os dados como um grafo, permitindo que as GNNs sejam aplicadas para

aprendizado de representações e inferência. No entanto, a eficácia desta abordagem depende

fortemente de como os dados espaciais são representados no grafo, e a aplicação tradicional de

GNNs a dados espaciais pode não modelar efetivamente relações espaciais complexas.

Para melhorar o desempenho preditivo, foi proposta a Rede Neural de Grafos com Codi-

ficador Posicional (PE-GNN), uma abordagem modular e flexível projetada para aplicação a

dados espaciais. A PE-GNN constrói o grafo usando distâncias calculadas a partir das co-

ordenadas geográficas e incorpora um Codificador Posicional (PE) para assimilar o contexto

espacial de cada par de coordenadas. A saída do PE resulta em um embedding espacial que é

concatenado com as variáveis explicativas dos nós antes da aplicação do operador GNN, que

produz uma previsão pontual para a variável alvo.

Entretanto, a PE-GNN está limitada a fornecer apenas previsões pontuais e não foi proje-

tada para oferecer uma descrição probabilística completa da distribuição condicional da variável

alvo. Para superar essa limitação, este trabalho propõe a PE-GQNN, que combina a abordagem

PE-GNN com inovações que permitem a quantificação de incerteza ao realizar previsões, ofer-

ecendo uma descrição completa da distribuição preditiva condicional.

A PE-GQNN inclui três inovações principais: (1) uma nova arquitetura que funde o pro-

cedimento em dois passos proposto por Kuleshov and Deshpande (2022) em um único modelo

intrinsecamente calibrado, adiando a concatenação do quantil τ proposto por Si, Kuleshov, and

Bishop (2022); (2) uma alteração estrutural que aplica o operador GNN apenas às característi-

6

cas dos nós, que são então concatenadas com o embedding espacial; e (3) a introdução da média

da variável alvo dos vizinhos do nó no grafo como uma característica adicional em uma camada

próxima ao output.

A PE-GQNN foi testada em três conjuntos de dados reais contendo dados espaciais. Para

o conjunto de dados da Califórnia, a PE-GQNN atingiu desempenho de estado da arte, com

melhorias relevantes em relação a GNN tradicional e PE-GNN. Ao compará-la com o mod-

elo Processo Neural Condicional com Multi-Atenção Espacial (SMACNP), proposto por Bao,

Zhang, and Zhang (2024), a PE-GQNN consistentemente apresentou desempenho preditivo

superior com uma grande vantagem: melhor quantificação de incerteza.

Utilizando esse mesmo conjunto de dados, as contribuições de cada inovação são reveladas

ao realizar uma análise aprofundada dos resultados. A inovação τ , que corresponde à aplicação

do framework de regressão quantílica proposto por Si, Kuleshov, and Bishop (2022), realizou

um efeito de regularização e melhorou notavelmente a calibração das previsões de quantis, re-

duzindo o MPE e o MADECP. A inovação estrutural, que envolve a aplicação do operador

GNN apenas nas características, é fundamental para melhorar o desempenho das previsões e

melhorar a calibração, conforme evidenciado pela redução do MSE, MAE, MPE e MADECP.

Além disso, o uso da média dos alvos dos vizinhos de treinamento como uma característica in-

troduzida em uma das últimas camadas da rede, inspirada no método KNN, também melhorou

ainda mais o modelo em termos de desempenho preditivo e calibração, apresentando uma re-

dução substancial de MSE, MAE, MPE e MADECP. Além disso, foi verificado empiricamente

que as predições da PE-GQNN não apresentaram casos de cruzamento de quantis.

Os resultados experimentais para os outros dois conjuntos de dados demonstraram que a

PE-GQNN consistentemente supera a GNN tradicional e a PE-GNN em todas as arquiteturas

de GNN. Em cada conjunto de dados, as inovações da PE-GQNN levam a reduções significa-

tivas em MSE, MAE e MPE. Por outro lado, para o conjunto de dados Air Temperature, o

SMACNP alcança o menor MSE e MAE, mas sofre com previsões significativamente descali-

bradas, refletidas por um MPE e MADECP muito mais altos em comparação com a PE-GQNN.

7

Em resumo, a PE-GQNN representa um avanço significativo na modelagem de dados espa-

ciais, combinando a flexibilidade das GNNs com a capacidade de quantificar incerteza através

da regressão quantílica, oferecendo maior capacidade preditiva e uma descrição probabilística

completa da distribuição condicional da variável de interesse.

Palavras-chave: Redes Neurais de Grafos. Regressão quantílica. Dados geoespaciais. Quan-

tificação de incerteza. Calibração. Recalibração de Modelos.

8

Abstract

Positional Encoder Graph Neural Networks (PE-GNNs) are a leading approach for modeling

continuous spatial data. However, they often fail to produce calibrated predictive distributions,

limiting their effectiveness for uncertainty quantification. We introduce the Positional Encoder

Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quan-

tile Neural Networks, and recalibration techniques in a fully nonparametric framework, re-

quiring minimal assumptions about the predictive distributions. We propose a new network

architecture that, when combined with a quantile-based loss function, yields accurate and reli-

able probabilistic models without increasing computational complexity. Our approach provides

a flexible, robust framework for conditional density estimation, applicable beyond spatial data

contexts. We further introduce a structured method for incorporating a KNN predictor into the

model while avoiding data leakage through the GNN layer operation. Experiments on bench-

mark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art

methods in both predictive accuracy and uncertainty quantification.

Keywords: Graph Neural Networks (GNNs). Quantile regression. Geospatial data. Uncer-

tainty quantification. Calibration. Model recalibration.

9

Contents

1 Introduction 15

2 Background 18

2.1 Positional Encoder . 18

2.2 Graph . 19

2.3 Graph Neural Network . 21

2.4 Positional Encoder Graph Neural Network . 23

2.5 Calibration and recalibration . 25

2.6 Quantile regression . 26

2.7 Spatial Multi-Attention Conditional Neural Processes 31

3 Method 33

4 Experiments 39

4.1 Experimental setup . 39

4.2 California Housing . 41

4.3 All datasets . 45

5 Conclusion 47

References 48

10

List of Tables

4.1 Summary of candidate models. 40

4.2 Performance metrics on the California Housing test set. 42

4.3 Performance metrics from three different real-world datasets. 45

11

List of Figures

2.1 (a) For each quantile of interest, a separate NN is trained. (b) Rodrigues and

Pereira (2020): one NN outputs d + 1 predictions: one for the expectation and

d for the quantiles. (c) Si, Kuleshov, and Bishop (2022): a single NN trained

to predict any generic quantile of the conditional distribution. (d) Kuleshov

and Deshpande (2022): two-step procedure: the first model outputs a low-

dimensional representation of the conditional distribution, which a recalibrator

then uses to produce calibrated predictions. 27

3.1 PE-GQNN compared to PE-GNN and GNN. 35

4.1 Validation error curves on the California Housing dataset, measured by the MSE

metric. 42

4.2 Visualization of the predicted results on the California Housing test dataset. . . 43

4.3 (a) PE-GQSAGE predicted densities of 10 observations sampled from the Cali-

fornia Housing test set. (b) ECP for each τ value used for the California Hous-

ing test set. 44

12

Abbreviations and Acronyms

CNN Convolutional Neural Network

CNP Conditional Neural Process

ECP Empirical Cumulative Probability

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

GP Gaussian Process

GSAGE Graph Sample and Aggregate

MAE Mean Absolute Error

MADECP Mean Absolute Distance of the Empirical Cumulative Probability

MLE Maximum Likelihood Estimate

MPE Mean Pinball Error

MSE Mean Squared Error

NLP Natural Language Processing

NN Neural Network

OLS Ordinary Least Squares

PE Positional Encoder

PE-GNN Positional Encoder Graph Neural Network

PE-GQNN Positional Encoder Graph Quantile Neural Network

SMACNP Spatial Multi-Attention Conditional Neural Process

13

List of Symbols and Notations

τ probability associated with the prediction at quantile regression, lies in (0, 1)

n sample size

nB batch size

p number of features

i observation index, goes from 1 to n or 1 to nB

k number of nearest neighbors for the k-nearest neighborhood

K number of GNN layers

A the graph adjacency matrix

D the graph degree matrix

yi target variable value for the i-th observation

ŷi target variable prediction value for the i-th observation

xi vector of features for the i-th observation

ci vector of geographic coordinates for the i-th observation

1(.) indicator function, returns 1 if the event is true and 0 if false

q̂i(τ) target variable prediction value for the i-th observation τ -probability quantile

14

Chapter 1

Introduction

Large spatial datasets are collected in a wide range of applications in economics (Anselin,

2022), meteorology (Bi et al., 2023), urban transportation (Lv et al., 2014; Derrow-Pinion et

al., 2021; Kashyap et al., 2022), social networks (Xu et al., 2020), e-commerce (Sreenivasa

and Nirmala, 2019) and other fields. Gaussian Processes (GPs) (Rasmussen and Williams,

2006; Cressie and Wikle, 2011) are a fundamental tool for modelling spatial data on continuous

domains. They are flexible and interpretable models for unknown functions, both in spatial and

more general regression settings. However, with time complexity O(n3) and storage complexity

O(n2), naive GP methods quickly become intractable for large datasets. This has led to a

large range of approximate inference methods, such as those based on sparse approximations

to covariance or precision matrices (Reinhard Furrer and Nychka, 2006; Lindgren, Rue, and

Lindström, 2011), low rank approximations (Cressie, Sainsbury-Dale, and Zammit-Mangion,

2022) or nearest neighbour approximations (Vecchia, 1998; Datta et al., 2016; Katzfuss and

Guinness, 2021).

Given the difficulty of GP computations, it’s of interest to explore scalable methods for large

spatial datasets using neural networks (NNs) and to enhance their ability to quantify uncertainty.

A state-of-the-art method for making spatial predictions using Graph Neural Networks (GNNs)

is the Positional Encoder Graph Neural Network (PE-GNN) of Klemmer, Safir, and Neill, 2023.

cap. 1. Introduction §1.0.

Our contribution is to make three key modifications to the PE-GNN architecture to enhance its

ability to make accurate spatial predictions and to quantify uncertainty. These modifications

will be explained further below.

NNs are popular in data modeling and prediction tasks like computer vision and natural

language processing (NLP). However, traditional NNs struggle to handle spatial dynamics or

graph-based data effectively. GNNs (Kipf and Welling, 2017; Veličković et al., 2018; Hamilton,

Ying, and Leskovec, 2017) offer a powerful and scalable method for applying NNs to graph-

structured data. The idea is to share information through the edges of a graph, allowing nodes

to exchange information during learning. GNNs are versatile and can uncover nonlinear rela-

tionships among inputs, hidden layers, and each node’s neighborhood information. The success

of GNNs in spatial applications largely depends on the spatial graph construction, including

choice of distance metric and the number of neighboring nodes, and traditional GNNs often

struggle to model complex spatial relationships. To address this, Klemmer, Safir, and Neill,

2023 introduced the PE-GNN, which enhances predictive performance in spatial interpolation

and regression. However, PE-GNN is not designed to provide a full probabilistic description

of the target’s distribution, and assuming a Gaussian distribution for predictions can lead to

poorly calibrated intervals, such as 80% intervals that fail to contain the true outcome 80% of

the time. Recently, Bao, Zhang, and Zhang (2024) proposed a new framework called Spatial

Multi-Attention Conditional Neural Processes (SMACNPs) for spatial small sample prediction

tasks. SMACNPs use GPs parameterized by NNs to predict the target variable distribution,

which enables precise predictions while quantifying the uncertainty of these predictions.

Methods based on quantile regression are an alternative approach to probabilistic forecast-

ing making rapid progress in recent years. Si, Kuleshov, and Bishop (2022) introduced a novel

architecture for estimating generic quantiles of a conditional distribution, proposing a set of ob-

jective functions that lead to enhancements in density estimation tasks. In one dimension, this

method produces quantile function regression and cumulative distribution function regression.

Kuleshov and Deshpande (2022) argue that the method of Si, Kuleshov, and Bishop (2022) is

16

§1.0.

inefficient with high-dimensional predictors. To address this, they modify the original formula-

tion to incorporate a post hoc recalibration procedure whereby an auxiliary model recalibrates

the predictions of a trained model. The first model outputs features, usually summary statis-

tics like quantiles, representing a low-dimensional view of the conditional distribution. The

auxiliary model, the recalibrator, uses these features as input to produce calibrated predictions

using Si et al.’s quantile function regression framework. The main drawback is that it requires

training two separate models, each needing its own training set.

Our work makes three contributions. (1) We propose a new architecture that merges the

two-step procedure of Kuleshov and Deshpande (2022) into a single model by postponing the

concatenation of the τ value proposed by Si, Kuleshov, and Bishop (2022). In this way, we

enhance the network’s ability to model uncertainty and introduce a regularization mechanism.

The model becomes robust to high-dimensional predictor spaces, even though few assumptions

are made about the form of the target’s conditional distribution. This change allows a single

model to fully describe the predictive conditional distribution and to generate quantile predic-

tions and prediction intervals as byproducts. It can be applied to any context, not just spatial

regression or GNNs. We show how to integrate this strategy into the PE-GNN framework to

create an intrinsically calibrated model with no extra computational cost. (2) We introduce a

structural change to PE-GNN. Instead of applying the GNN operator to the concatenation of

the nodes’ features and the spatial embedding, we apply it only to the features. (3) In PE-GNN,

the GNN operator uses neighbours’ features to create new node representations but does not

include the target value of neighboring nodes. Our third contribution introduces the mean target

value of a node’s neighbours as a feature after the GNN layers, closer to the output. This allows

the model to use neighboring observations of the target variable when making predictions.

The structure of this work is as follows: Section 2 offers a brief background overview,

Section 3 outlines the proposed method for geographic data prediction, Section 4 shows exper-

imental results on three real-world datasets, and Section 5 concludes.

17

Chapter 2

Background

In this section, we provide a comprehensive overview of the theoretical foundations and

recent advancements relevant to our proposed approach. This background sets the stage for

introducing our novel PE-GQNN in the following section.

2.1 Positional Encoder

The Transformer architecture, as introduced by Vaswani et al. (2017), stands as a transfor-

mative paradigm shift in the domain of NLP models. This architectural innovation pivots from

the conventional sequence-to-sequence models by leveraging the power of self-attention mech-

anisms. By employing multi-layer stacks of attention modules, it reimagines the way dependen-

cies within sequential data are captured. This pivotal concept of "attention" enables the model

to weigh the significance of various elements within a sequence, offering an elegant solution to

the long-range dependency problem encountered in recurrent models. With the incorporation of

positional encodings, the Transformer effectively addresses the sequential order of data, making

it a foundation in modern NLP models and reaching state-of-the-art performances in many NLP

benchmarks.

Inspired by the Transformer architecture (Vaswani et al., 2017) for geographic data (Mai

§2.2. Graph

et al., 2020), PE-GNN (Klemmer, Safir, and Neill, 2023) employs a PE composed of two com-

ponents: a sinusoidal transformation and a fully-connected NN. The first component is a de-

terministic transformation formed by the concatenation of sinusoidal functions, incorporating

variations in frequency and scale. Let CB = [c1, . . . , cnB
]⊤ be the matrix containing the spatial

coordinates of a batch of datapoints, typically of dimension nB × 2, where each ci corresponds

to the pair (latitudei, longitudei). Then, the sinusoidal transformations are given by

ST (CB, σmin, σmax) = [ST0(CB, σmin, σmax); . . . ;STS−1(CB, σmin, σmax)]

where STs(CB, σmin, σmax) = [STs,1(CB, σmin, σmax);STs,2(CB, σmin, σmax)]

and STs,v(CB, σmin, σmax) =

[
cos

(
C

[v]
B

σmings/(S−1)

)
; sin

(
C

[v]
B

σmings/(S−1)

)]
∀s ∈ {0, . . . , S − 1},∀v ∈ {1, 2};

(2.1)

with σmin and σmax being the minimum and maximum grid scales, S being the number of

grid scales considered and g = σmax

σmin
. Consequently, the sinusoidal transformation handles

the spatial dimensions (typically represented as latitude and longitude) separately. The second

component is a fully-connected NN, denoted by NN(ΘPE). This network takes the output

produced by the sinusoidal transformation as its input and subsequently processes it through

a fully-connected NN. This transformation results in the desired vector space representation,

thereby generating the coordinate embedding matrix Cemb
B = PE(CB, σmin, σmax,ΘPE) =

NN(ST (CB, σmin, σmax),ΘPE).

2.2 Graph

A graph is an exceedingly useful representation for describing various phenomena involv-

ing connections among its components, such as social networks, biological molecules, urban

transportation networks, and more. A graph G = (V,E) is formed by a set of vertices (or

nodes) V = {v1, . . . , vn} and a set of edges (or links) E = {e1, . . . , em}. Nodes represent the

19

cap. 2. Background §2.2. Graph

entities within the graph, while edges represent the relationships between the entities (Pósfai

and Barabasi, 2016).

There are several ways to classify graphs, with the three main criteria being the number of

entity types, the direction of connections, and the weight of connections.

In the first criterion, if all edges represent the same type of entity (e.g., individuals), then

the graph is considered homogeneous. Conversely, if different types of entities exist within the

same graph (e.g., movies and actors), it is classified as heterogeneous.

Regarding the direction of edges, a graph can be directed, meaning its connections have a

defined direction, leading from a source node to a destination node. However, graphs can also

be undirected, where no specific direction is associated with the link; it merely represents a

relationship between nodes, without the notion of "origin" and "destination".

Lastly, concerning the weight of links, a graph can be categorized as unweighted if all its

edges lack a defined property associated with the link, merely indicating their existence or

absence. Conversely, weighted graphs assign a weight to each edge to quantify the relevance of

that connection. These weights can measure factors such as the distance between nodes or their

similarity.

A crucial concept in graph representation is the adjacency matrix, A. This matrix is used

to represent the connectivity of the graph, indicating which nodes are connected and the weight

of each connection. It is a square matrix with dimensions n × n. For unweighted graphs, the

matrix entries are binary: 1 if there is a connection and 0 otherwise. In weighted graphs, matrix

entries are equal to the weight assigned to that connection, and if there is no connection, they

receive a value of 0. Additionally, undirected graphs have symmetric adjacency matrices, as

aij = aji, ∀i, j ∈ {1, . . . , n}.

Another important concept in graph representation is the degree matrix, D. The degree

matrix is a diagonal matrix used to represent the degree of each node in the graph. For a graph

with n nodes, the degree matrix has dimensions n × n. The entry dii on the diagonal of the

degree matrix corresponds to the degree of node i. For unweighted graphs, this entry is simply

20

§2.3. Graph Neural Network

the number of edges connected to node i. In weighted graphs, it is the sum of the weights of the

edges connected to node i. All off-diagonal entries in the degree matrix receive a value of 0.

2.3 Graph Neural Network

GNNs are powerful and scalable solutions for representation learning and inference with

graph-structured data. They are capable of leveraging the existing topological structure of cor-

relation between nearby nodes in the graph and represent each node in a latent space embedding

suitable for the specific downstream task at hand (Wu et al., 2022). The most popular GNN ar-

chitectures use this graph structure to update the embeddings of each node, to consider not only

the features of each node but also those of its neighbors, in an Aggregate and Combine iterative

process (Wu et al., 2022).

The first step consists of the aggregation of the features from neighbors of each node, which

creates a unified output that encapsulates the holistic context of each node’s immediate sur-

roundings. This can be done in a wide range of ways, such as feature summation, averaging, or

more sophisticated methodologies (such as attention mechanisms).

Subsequent to the aggregation operation, the Combine step comes into play, aiming to

combine each node’s prior representation with the output of the Aggregate step. The Combine

process can be as straightforward as concatenating the representations followed by a linear

transformation, or it can employ more intricate techniques such as nonlinear functions.

The initial embedding of each node is its feature vector, so H
(0)
B = XB, i.e., h

(0)
v =

xv, ∀v ∈ VB. Then, for each GNN layer k ∈ {1, . . . , K}, an iteration of the Aggregate

and Combine process is executed, defined as

a(k)
v = AGG(k)({h(k−1)

u : u ∈ N (v)}), (2.2)

h(k)
v = COMB(k)({h(k−1)

v ,a(k)
v }), ∀v ∈ VB, (2.3)

21

cap. 2. Background §2.3. Graph Neural Network

where N (v) is the set of neighbors of node v. The most popular GNN architectures follow the

Aggregate and Combine process, but they differ in the way they aggregate neighbors messages

and update the embeddings.

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) are inspired in the convo-

lution operation from Convolutional Neural Networks (CNNs), which are very famous for their

use in image processing and computer vision, which yielded state-of-the-art performances in

this research domain (Krizhevsky, Sutskever, and Hinton, 2012). For weighted graphs, GCN

layers have the following update equations

H
(k)
B = f (k)

(
D

−1/2
B [AB + IB]D

−1/2
B H

(k−1)
B W (k)

)
, for k ∈ {1, . . . , K}. (2.4)

Here, f (k) is the activation function (e.g., ReLU) and W (k) is a matrix of learnable parameters.

Another popular GNN architecture is the Graph Attention Network (GAT) (Veličković et

al., 2018), which leverages the attention mechanism in the GNNs domain to empower nodes to

prioritize their most informative neighbors, a departure from GCNs, which treat all neighbors

uniformly. GATs calculate pairwise attention scores between nodes, allowing them to discern

the importance of each neighbor’s information. Subsequently, these scores are employed to

weight the contribution of neighbors features during node feature aggregation. Furthermore,

they can utilize multiple attention heads to capture diverse relational information among nodes.

For weighted graphs, GAT layers with single-headed attention only would have the following

update equations

h(k)
v = f (k)

 ∑
u∈N (v)∪{v}

α(k)
vuW

(k)h(k−1)
u

 , ∀v ∈ VB. (2.5)

The attention weights α(k) are generated by an attention mechanism AT (k), normalized so that

22

§2.4. Positional Encoder Graph Neural Network

the sum over all neighbors of each node v is 1:

α(k)
vu =

AT (k)
(
h

(k−1)
v ,h

(k−1)
u , av,u

)
∑

w∈N (v)∪{v}

AT (k)
(
h(k−1)

v ,h(k−1)
w , av,w

) , ∀(v, u) ∈ EB. (2.6)

Here, f (k) is the activation function (e.g., ReLU), av,u is the (v, u) entry of D−1/2
B [AB + IB]D

−1/2
B ,

W (k) and AT (k) are potentially learnable parameters.

Hamilton, Ying, and Leskovec (2017) proposed the GSAGE architecture, which has many

similarities with GCN, but is more flexible and scalable. One of the key aspects of GSAGE is the

neighborhood sampling: regardless of the actual size of a node’s neighborhood, GSAGE takes

a fixed-size random sample of the neighborhood, enabling their application on exceptionally

large graphs. The update equations of this approach are defined as

h(k)
v = f (k)

(
W (k)

[
AGG
u∈N (v)

({h(k−1)
u }),h(k−1)

v

])
, ∀v ∈ VB. (2.7)

Here, f (k) is the activation function (e.g., ReLU), W (k) and AGG are potentially learnable

parameters. If AGG is chosen as the sum, then the update equations become very similar to the

original GCN formulation by Kipf and Welling (2017).

2.4 Positional Encoder Graph Neural Network

Klemmer, Safir, and Neill (2023) proposed a novel approach for applying GNNs to spatial

data: PE-GNN. It is a powerful and flexible approach for predictive modeling of geographic

data. It is based on GNNs and highly modular, capable of accommodating any GNN backbone,

including all the GNN layers presented in Section 2.3. Through the implementation of several

innovations in the traditional method of using GNNs with spatial data, the empirical studies

presented by Klemmer, Safir, and Neill (2023) show that PE-GNN consistently improved the

performance of different GNN layers and achieved competitive results compared to models

23

cap. 2. Background §2.4. Positional Encoder Graph Neural Network

based on GPs.

To achieve these objectives, the first proposed innovation was to incorporate a PE into the

spatial coordinates processing. In the traditional approach of GNNs with geographic data, the

use of coordinates is limited to computing distances between datapoints, which are used to con-

struct the graph with a defined number of nearest neighbors. Once the graph is constructed,

the traditional approach no longer uses spatial location at any point. In contrast, in addition to

using coordinates to construct the graph, PE-GNN also uses them to learn an embedding con-

taining the spatial context of each pair of coordinates. To achieve this objective, the coordinate

pair passes through the PE, as described in Section 2.1. In this process, the PE takes the set of

spatial coordinates for each datapoint as input and produces a vector representing the learned

spatial embedding. This vector is then column concatenated with the node features before the

application of the GNN operator. Thus, for a given batch B of randomly sampled datapoints,

the input to the first GNN layer is

H
(0)
B = concat

(
XB,C

emb
B

)
. (2.8)

Another innovation used in PE-GNN is to learn an auxiliary task in parallel with the main

task. In the traditional approach, the GNN operator takes as input the graph constructed from

the coordinates and the features of each node and outputs the prediction of each node’s target

variable. In contrast, PE-GNN receives as input the graph, along with the features of each node

and the embedding constructed by the PE, and, in addition to the main task prediction, it also

predicts the Local Moran’s I, as proposed by Klemmer and Neill (2021). Local Moran’s I is a

measure of spatial autocorrelation for the target variable yi, given by

Ii = (n− 1)
(yi − ȳ)

n∑
j=1,j ̸=i

(yj − ȳ)2

n∑
j=1,j ̸=i

ai,j(yj − ȳ), (2.9)

24

§2.5. Calibration and recalibration

where ȳ is the sample mean of y, and ai,j ∈ AB denotes adjacency of observations i and j.

The third innovation lies in the training process, as PE-GNN uses a batch-based procedure.

At each training step, a random batch B of nodes is sampled, given by p1, . . . , pnB
∈ B. Using

only the nodes belonging to the batch, the entire process of constructing the training graph,

generating the spatial embedding, column concatenating with the features, and applying the

GNN operator is carried out. Furthermore, the target Local Moran’s I is constructed using only

the data in the batch, which, according to Klemmer, Safir, and Neill (2023), allows for the

minimization of the problem known as the Moran’s I scale sensitivity. An additional advantage

of this training strategy is that it learns a more generalized spatial embedding since, at each

training step, the same datapoint can have a completely different neighborhood. The PE is

jointly learned with the other parameters of PE-GNN, in contrast to the unsupervised approach

proposed by Mai et al. (2020). The loss function used by Klemmer, Safir, and Neill (2023) is

based on MSE and given by

LB = MSE (ŷB,yB) + λMSE (I(ŷB), I(yB)) , (2.10)

where λ denotes the auxiliary task weight.

Despite being a powerful and flexible approach for representation learning and inference

of geographic data, PE-GNN has a major drawback: it is configured for generating point pre-

dictions rather than supplying a comprehensive probabilistic representation of the conditional

distribution. Although one could presume a Gaussian distribution with the predicted values at

its center, this assumption is often not met, resulting in imprecise probabilistic and quantile

forecasts.

2.5 Calibration and recalibration

Quantifying uncertainty is crucial when using predictive models, especially in the case of

NNs, where it presents a complex challenge. Calibration is a desired property of predictive

25

cap. 2. Background §2.6. Quantile regression

models because it allows us to trust their probabilistic predictions. A calibrated model makes

predictions where the predicted confidence levels match the actual outcomes. For example, an

80% confidence level prediction should contain the true observed value 80% of the time. Essen-

tially, a calibrated model estimates the probabilities of events such that the observed frequencies

of these events match the predicted probabilities.

Traditional machine learning models often do not produce calibrated probabilistic predic-

tions (Niculescu-Mizil and Caruana, 2005; Guo et al., 2017). To improve this, a recalibration

process can be applied to modify the original predictions, making them calibrated. Platt scaling

(Platt et al., 1999) is a recalibration method that achieves calibrated predictions but is limited to

quantile calibration. Similarly, Niculescu-Mizil and Caruana (2005) introduced isotonic regres-

sion for recalibration, which is also effective but restricted to quantile calibration. Guo et al.

(2017) introduced temperature scaling, an adaptation of Platt scaling (Platt et al., 1999). This

method adjusts the network’s logits by dividing them by a positive scalar T > 0, followed by

applying the softmax function. However, Kumar, Liang, and Ma (2019) argued that widely used

recalibration techniques such as Platt scaling and temperature scaling are not as well-calibrated

as commonly believed. They proposed the scaling-binning calibrator, which combines binning

with parametric function fitting to minimize variance and improve calibration accuracy. Song

et al. (2019) proposed a more advanced approach using complex variational approximations

for distribution calibration, which, while innovative, is limited to the recalibration of Gaussian

distributions.

2.6 Quantile regression

Traditional Gaussian linear regression, known as OLS regression, seeks to estimate parame-

ters that, when used in a linear combination with the explanatory variables, produce predictions

that minimize the MSE on the training data. Behind the scenes, this method assumes that

the distribution of the target variable, when conditioned on the explanatory variables, follows

26

§2.6. Quantile regression

(a) Non-linear quantile regression using NN. (b) Non-linear multiple quantile regression.

(c) Non-linear quantile function regression. (d) Two-step density estimation.

Figure 2.1: (a) For each quantile of interest, a separate NN is trained. (b) Rodrigues and Pereira
(2020): one NN outputs d + 1 predictions: one for the expectation and d for the quantiles.
(c) Si, Kuleshov, and Bishop (2022): a single NN trained to predict any generic quantile of
the conditional distribution. (d) Kuleshov and Deshpande (2022): two-step procedure: the
first model outputs a low-dimensional representation of the conditional distribution, which a
recalibrator then uses to produce calibrated predictions.

27

cap. 2. Background §2.6. Quantile regression

a Gaussian distribution with the mean given by the linear combination of features and their

respective coefficients, and the variance being an unknown constant to be estimated. In sum-

mary, OLS regression states that, for each observation i ∈ {1, . . . , n}, we have Yi|Xi ∼

Gaussian(Xiβ, σ
2). We obtain the parameters estimates β̂ = argminβ∈Rp+1

∑n
i=1(yi −

Xiβ)
2/n and point predictions ŷi = Ê[Yi|Xi] = Xiβ̂. As the Gaussian distribution assumption

is very often violated, this approach may not be suitable in certain situations.

Often, the study’s interest is not in estimating the mean of the response but rather some

quantile of the conditional distribution, such as the median or another quantile. For these situ-

ations, or when the assumptions of OLS regression are violated, Koenker and Bassett Jr (1978)

proposed linear quantile regression, which is an extension of OLS regression. It still uses the

same linear combination for prediction but replaces the MSE with the pinball loss function,

given by

ρτ (ri) =

τri if ri ≥ 0,

(τ − 1)ri if ri < 0,

(2.11)

where ri = yi− q̂i(τ) and q̂i(τ) = Xiβ̂. Here, τ is the desired cumulative probability associated

with the quantile and q̂i(τ) is the predicted quantile. Equation 2.11 provides the pinball loss

(also known as tilted loss) for the i-th observation. To compute the loss for the whole dataset,

it is necessary to compute the average of each data point’s loss. Then, coefficient estimates are

obtained by

β̂ = argmin
β∈Rp+1

n∑
i=1

ρτ (yi −Xiβ) /n. (2.12)

Despite being more flexible than OLS regression, linear quantile regression requires a linear

relationship between the features and the chosen quantile of the target variable, which is a very

restrictive assumption.

With the rise of NNs for various prediction tasks, a natural extension of quantile linear

regression has emerged: non-linear quantile regression. This concept is illustrated in Figure

28

§2.6. Quantile regression

2.1a, where we seek to estimate the quantile associated with τ 1. The target to be predicted and

the loss function remain identical to those in the linear case (Equation 2.11). However, instead

of using a linear combination of features, we use the NN framework. By adding one or more

layers with non-linear transformations, NNs provide greater flexibility to the model and can

improve predictive performance.

With this approach, we eliminate the need for the two previous assumptions (Gaussian dis-

tribution and linearity). However, this method has a major drawback: for each quantile we aim

to estimate, it is necessary to train an independent model with weights learned separately from

the models of other quantiles. This is illustrated in Figure 2.1a, where if we are interested in

the prediction of d quantiles, we must train d models. Consequently, each model specializes

in estimating a single quantile without sharing representation learning, leading to inconsistent

quantile predictions that often present the quantile crossing problem (e.g., a median prediction

below the prediction for the first quartile).

In the previous two quantile regression approaches, a single quantile of interest must be de-

fined, and thus, the trained model specializes in estimating only the chosen quantile. However,

in many situations, there is an interest in simultaneously estimating various quantiles or even

the entire conditional distribution with only one single model. Rodrigues and Pereira (2020)

proposed an approach that modifies the architecture of the NNs used for predicting a single

quantile to output multiple predictions: one for the expectation and one for each quantile of

interest. For example, if the goal is to predict the mean and d different quantiles, the network

would have d + 1 output values, as shown in Figure 2.1b. Then, the loss function is defined as

follows:

L =
1

d+ 1

[
MSE (ŷ,y) +

n∑
i=1

d∑
j=1

ρτ j (yi − q̂i(τ
j))

n

]
. (2.13)

This loss function combines the traditional MSE with d values of the pinball loss: instead of

evaluating each datapoint only once, each datapoint is used d+ 1 times, where d is the number

of quantiles to be predicted. This strategy allows all the quantiles of interest to be estimated si-

29

cap. 2. Background §2.6. Quantile regression

multaneously and provides a discrete approximation of the cumulative distribution of the target

variable. However, to estimate quantiles not directly predicted by the network, it is necessary

to interpolate the estimated quantiles or perform some additional treatment. Moreover, this

strategy is not capable of fully estimating the conditional density because it is limited to those

previously defined quantiles of interest. As shown by Rodrigues and Pereira (2020), it still

exhibits, to some extent, the quantile crossing problem.

In order to create an even more flexible non-linear quantile regression model based on neural

networks, Si, Kuleshov, and Bishop (2022) proposed a novel method that aims to generate a

model that is independent of an arbitrary selection of quantiles. This procedure is presented in

Figure 2.1c. For each datapoint sampled during training, d values of τ , where τ ∼ U(0, 1), are

sampled. Each of these d values is concatenated with the datapoint features to obtain a quantile

estimate. Therefore, for each datapoint, there are d predicted quantiles, one for each of the τ

values sampled from the Uniform distribution. The loss function is apparently similar to the one

described in Equation 2.13, but they predict random quantiles and discard the MSE component:

L =
1

n · d

n∑
i=1

d∑
j=1

ρτ ji

(
yi − q̂i(τ

j
i)
)
. (2.14)

Here, they do not consider a single or a predefined set of quantiles, but quantiles sampled ran-

domly. Consequently, as the network learns, it becomes capable of providing a direct estimate

to any quantile of interest. Therefore, this procedure outputs an inherently calibrated model

suitable for conditional density estimation. However, Kuleshov and Deshpande (2022) argue

that this method proposed by Si, Kuleshov, and Bishop (2022) is not efficient in moderate to

high dimensions of the predictor space.

Kuleshov and Deshpande (2022) used the architecture proposed by Si, Kuleshov, and Bishop

(2022) to create a two-step procedure. This approach retains the advantages of the original

method introduced by Si, Kuleshov, and Bishop (2022) while making it robust and suitable for

larger predictor spaces. The approach is presented in Figure 2.1d.

30

§2.7. Spatial Multi-Attention Conditional Neural Processes

The first step is to train a model that receives the features as its inputs and outputs a set of

features, usually summary statistics (e.g., quantiles), which constitute a low-dimensional rep-

resentation of the conditional distribution. Then, using a separate dataset called the calibration

set, an auxiliary model (usually referred to as a recalibrator) is trained. The recalibrator receives

this set of features as input, together with d sampled values of τ , where τ ∼ U(0, 1), and outputs

calibrated predictions.

In the procedure proposed by Si, Kuleshov, and Bishop (2022), a single model takes as

input the original features and τ values. For situations with a large number of predictors, this

results in an inefficient model. Using the modification proposed by Kuleshov and Deshpande

(2022), the τ values are introduced only during the training of the recalibrator, which also takes

as input a low-dimensional vector representing the conditional distribution predicted by the first

model. This strategy allows the recalibrator to understand how this representation can be used

to calibrate the predictions of the first model.

The main disadvantages of this approach are: (1) it requires training two NNs and (2) it is

highly dependent on the choice of features that constitute the low-dimensional representation

of the conditional distribution.

2.7 Spatial Multi-Attention Conditional Neural Processes

Proposed by Bao, Zhang, and Zhang (2024), SMACNPs are devised to tackle the com-

plexities of spatial prediction tasks, especially when there are limited observed samples and

numerous prediction samples. Traditional methods like GPs effectively measure interpolation

uncertainty but face significant computational challenges with larger sample sizes. Standard

NNs, while scalable, often overfit when dealing with small sample sizes. SMACNPs combine

the advantages of GPs and NNs to enhance spatial small sample prediction tasks.

SMACNPs use a modular design that applies various attention mechanisms to extract perti-

nent information from different types of sample data. Task representation is derived by evaluat-

31

cap. 2. Background §2.7. Spatial Multi-Attention Conditional Neural Processes

ing the spatial correlation between sample points and the relationships within attribute variables.

GPs parameterized by NNs predict the distribution of the target variable, providing precise pre-

dictions and quantifying uncertainty. This approach integrates spatial context and correlations

into the model, delivering state-of-the-art results in spatial small sample prediction tasks regard-

ing both predictive performance and reliability.

Solutions like Kriging methods use GPs-based models for spatial prediction, but these re-

quire careful parameter selection and can underperform with sparse observed points. Spatial

heterogeneity, where the distribution is non-stationary or anisotropic, also demands models

adaptable to local environments. SMACNPs address these issues by employing attention mech-

anisms to separately model spatial dependencies and attribute influences.

The SMACNP framework comprises a mean encoder and a variance encoder. The mean

encoder features two modules: one modeling spatial autocorrelation using Laplace attention

and another capturing relationships between attribute variables and target values with multi-

head attention. The variance encoder assesses uncertainty based only on explanatory attributes

and spatial locations, improving robust estimations by removing any target value influence. The

decoder then aggregates contextual information to predict the target distribution.

In summary, SMACNPs combine the strengths of GPs and NNs to deliver accurate spatial

predictions, making them an effective tool for spatial small sample prediction tasks by providing

both high predictive accuracy and uncertainty estimates. However, SMACNPs may fail when

the conditional distributions deviate from the Gaussian assumption. Despite this limitation,

experiments on simulated and real-world datasets demonstrate that SMACNPs surpass existing

methods in spatial small sample prediction tasks.

32

Chapter 3

Method

In this work, we propose a novel approach to spatial data prediction tasks: the Positional

Encoder Graph Quantile Neural Network (PE-GQNN). Algorithm 1 shows the step-by-step

procedure to train a PE-GQNN model, and Figure 3.1 illustrates its complete pipeline. Here,

each rectangle labeled "GNN" and "LINEAR" represents a set of one or more neural network

layers, with the type of each layer defined by the title inside the rectangle. At each layer,

a nonlinear transformation (e.g. ReLU) may be applied. Each datapoint pi comprises three

components pi = {yi,xi, ci}. The component yi is the target variable, and as the focus here is

regression, then yi is a continuous scalar. Additionally, xi is the feature vector and ci contains

the geographical coordinates associated with observation i.

After initializing the model and hyperparameters, the first step of PE-GQNN is to randomly

sample a batch B of datapoints, p1, . . . , pnB
. The batch can be fully represented by the target

yB(nB×1), features XB(nB×p), and coordinates matrices CB(nB×2), respectively. The next step

uses the matrix of geographical coordinates CB = [c1, . . . , cnB
]⊤ to obtain spatial embeddings

for each datapoint (Algorithm 1, Step 5). This process receives CB as input, and after passing

through deterministic sinusoidal transformations and a fully-connected NN, outputs the spatial

embedding matrix of the batch Cemb
B (nB×u), containing the spatial context of each pair of coor-

dinates. CB is also used to compute the distance between each pair of datapoints (Algorithm

cap. 3. Method §3.0.

Algorithm 1 PE-GQNN training
Require:

Training data target, features, and coordinates matrices: y(n×1), X(n×p), and C(n×2).
A positive integer k defining the number of neighbors considered in the spatial graph.
Positive integers tsteps and nB, the number of training steps and the batch size.
Positive integers u, g, and s, the embedding dimensions considered in, respectively, the PE,
the GNN layers, and the layer where we introduce τ and ȳ.
An activation function f(·) for τ .

Ensure:
A set of learned weights for the model initialized at Step 1.

1: Initialize model with random weights and hyperparameters.
2: Set optimizer with hyperparameters.

3: for b← 1 to tsteps do ▷ Batched training
4: Sample minibatch B of nB datapoints: XB(nB×p), CB(nB×2), yB(nB×1).
5: Input CB(nB×2) into PE, which outputs the batch’s spatial embedding matrix

Cemb
B (nB×u).

6: Compute the great-circle distance between each pair of datapoints from CB.
7: Construct a graph using k-nearest neighbors from the distances computed in Step 6.
8: Set AB as the adjacency matrix of the graph constructed in Step 7.
9: for i← 1 to nB do

10: Using AB, compute ȳi =
1
k

∑k
j=1 yj , where j = 1, . . . , k are the neighbors of i.

11: end for
12: Set ȳB = [ȳ1, . . . , ȳnB

]⊤.
13: Apply GNN layers to the features XB(nB×p), followed by fully-connected layers to

reduce dimensionality. This step outputs a feature embedding matrix Xemb
B (nB×g).

14: Column concatenate Xemb
B (nB×g) with Cemb

B (nB×u), which results in LB(nB×(g+u)).
15: Apply fully-connected layers to reduce LB(nB×(g+u)) to ϕB(nB×s).
16: Create a vector with values sampled from U(0, 1): τB(nB×1) = [τ1, . . . , τnB

]⊤.
17: Column concatenate ϕB with f (τB) and ȳB to create ϕ̃B(nB×(s+2)).
18: Predict the target quantile vector [q̂1(τ1), . . . , q̂nB

(τnB
)]⊤ using ϕ̃B.

19: Compute loss LB = 1
nB

∑nB

i=1 ρτi (yi − q̂i(τi)).
20: Update the parameters of the model using stochastic gradient descent.
21: end for

34

§3.0.

Figure 3.1: PE-GQNN compared to PE-GNN and GNN.

1, Step 6). From these distances and a predefined number of nearest neighbors, a graph can

be constructed, with each datapoint as a node and edge weights computed from the distances,

leading to the batch adjacency matrix AB.

At Step 13 of Algorithm 1, the first distinction between PE-GQNN and PE-GNN arises:

instead of using the concatenation of the feature matrix and the spatial embedding as the input

for the GNN operator, we apply the GNN operator only to the feature matrix XB. One or more

fully-connected layers are then used to reduce the feature embedding dimensionality. This

process receives the constructed graph and the batch feature matrix XB(nB×p) as input and

yields an embedding matrix of features as output: Xemb
B (nB×g). This modification applies the

GNN operators exclusively to the features, without smoothing out the PEs. The GNN layers

can be of any desired type. Step 14 of Algorithm 1 performs a column concatenation between

the feature embedding Xemb
B (nB×g) and the output obtained from the PE: Cemb

B (nB×u) (Figure

3.1). This concatenation results in the matrix LB(nB×(g+u)). After that, the other innovations of

35

cap. 3. Method §3.0.

PE-GQNN come into play.

First, we use one or more fully-connected layers (Algorithm 1, Step 15) to reduce the di-

mensionality of LB, making it suitable for two of the three innovations in PE-GQNN. This

set of fully-connected layers outputs the matrix ϕB(nB×s), which is then combined with ȳB

and τB. ȳB represents a vector with one scalar for each datapoint in the batch, containing the

mean target variable among the training neighbours for each node. It is computed using the

graph constructed in previous steps (Algorithm 1, Step 10), and has dimensions nB × 1. It is

comparable to a vector of predictions generated by a KNN regression model, where neighbours

are determined using the distance calculated from geographical coordinates. Here, we used the

simple average due to its relationship with KNN prediction; however, one could use a weighted

average via the adjacency matrix AB. We introduce this input at a later stage to avoid data leak-

age. If the GNN operator received ȳB as input, after completing the message passing process in

each GNN layer, the true node target value would inadvertently be transmitted to its neighbours,

creating potential data leakage (Appleby, Liu, and Liu, 2020).

In the same layer where ȳB is introduced, we apply a similar approach to Si, Kuleshov, and

Bishop (2022) to make PE-GQNN an inherently calibrated model suitable for probabilistic and

quantile predictions. For each batch B, we create a nB × 1 vector τB(nB×1) = [τ1, . . . , τnB
]⊤ of

random U(0, 1) draws (Algorithm 1, Step 16). Then, we column concatenate ϕB with f (τB)

and ȳB to create ϕ̃B(nB×(s+2)) (Algorithm 1, Step 17), where f(·) is an activation function.

Here we propose use of f(·) = logit(·), to facilitate the network’s learning. Subsequently,

forward propagation is computed (Algorithm 1, Step 18) in one or more fully-connected layers,

outputting predicted quantiles for each datapoint in the batch. The batch loss is the one proposed

by Si, Kuleshov, and Bishop (2022), but with d = 1 for the τ values.

This procedure aims to improve the model’s ability to learn the conditional probability distri-

bution of the target variable, enhancing uncertainty estimation and quantile predictions. Instead

of introducing τ values alongside features at the network’s input, as suggested by Si, Kuleshov,

and Bishop (2022), we delay their entry into a reduced latent dimension to boost learning. This

36

§3.0.

adjustment makes PE-GQNN suitable for both low- and high-dimensional predictor spaces. It

also improves on the Kuleshov and Deshpande (2022) approach by merging the two-network

process into a single, intrinsically calibrated model.

Incorporating τ values into the model architecture improves its ability to model uncertainty

and serves as a regularization mechanism (Rodrigues and Pereira, 2020). The use of pinball

loss for quantile regression acts as a natural regularizer, producing a detailed description of the

predictive density beyond just mean and variance estimation. For predictions, the quantile of

interest, τ , must be given, along with the basic data components (e.g. τ = 0.25 gives the first

quartile). If interest is in predicting multiple quantiles for the same observation, the input can

be propagated up to the layer where τ is introduced. For each quantile of interest, propagation

can be limited to the final layers.

Target domain The final layer should use an activation function coherent with the domain

of the target variable, ensuring model outputs are valid for target distribution support. E.g., an

exponential function could be appropriate if the target variable is continuous, unbounded and

positive.

Quantile crossing This phenomenon occurs when estimated quantile functions for differ-

ent quantile levels (τ) intersect, violating the requirement that higher quantiles be greater than

or equal to lower quantiles. In PE-GQNN, by utilizing the same latent representation up to the

layer where the quantile level (τ) is introduced, the architecture adopts a hard-parameter shar-

ing multi-task learning framework. This severely mitigates the problem of quantile crossings

by constraining the flexibility of independent quantile regression neural network models. If τ is

introduced at the prediction layer, it is guaranteed that quantile crossings will be absent, as the

layer equation would be

q̂i(τ) = f

(
bias+ wττ + wȳi ȳi +

neurons∑
j=1

wjuj

)
, ∀i ∈ 1, . . . , nB. (3.1)

37

cap. 3. Method §3.0.

Here, neurons denotes the number of neurons in the prediction layer, excluding τ and ȳi.

bias, wτ , wȳi , and {wj} are the prediction layer parameters, and {uj} are the activation values

from the previous layer. Commonly, f is chosen to be monotonic, resulting in a monotonic

relationship between τ and q̂i(τ). When τ is introduced at a layer proximal to, but preceding,

the prediction layer, the results in Section 4 suggest our approach is not prone to suffer from

quantile crossing.

Number of Monte Carlo samples When applying the framework proposed by Si, Kuleshov,

and Bishop (2022), we chose to use d = 1 for the τ values. Let L(θ, τ,x, y) be the loss function

for a given quantile τ ∼ U(0, 1) and an observed pair (x, y) ∼ Ddata, where Ddata denotes the

full data generative process. On each training iteration, we minimize LB, which, by the Law

of Large Numbers, converges to L̃(θ) = Eτ,x,yL(θ, τ,x, y), as the batch size, nB, goes to in-

finity. Therefore, the gradients converge to the same value for any d, provided that nB → ∞.

This choice (d = 1) simplifies the implementation without sacrificing performance, as shown

in Section 4.

38

Chapter 4

Experiments

4.1 Experimental setup

PE-GQNN was implemented using PyTorch (Paszke et al., 2019) and PyTorch Geomet-

ric (Fey and Lenssen, 2019). The source code is available at: https://github.com/

WilliamRappel98/PE-GQNN. We conducted comprehensive simulations to explore the

prediction performance and other properties of the proposed model, comparing it with state-of-

the-art methods. Computation was performed on an Intel i7-7500U processor with 16 GB of

RAM, running Windows 10.

Candidate models The experiment was designed to compare six primary approaches for

addressing spatial regression problems across three distinct real-world datasets. Table 4.1 lists

each candidate model and their applicable datasets. All models were trained using the Adam op-

timizer (Kingma and Ba, 2015), early stopping and, for all GNN-based models, k = 5 nearest-

neighbours.

Approach I involves the traditional application of GNNs to geographic data. Three types of

GNN layers were considered: GCNs (Kipf and Welling, 2017), GATs (Veličković et al., 2018),

and GSAGE (Hamilton, Ying, and Leskovec, 2017). For each of these, the architecture remains

consistent to facilitate performance comparisons: two GCN/GAT/GSAGE layers with ReLU

cap. 4. Experiments §4.1. Experimental setup

Table 4.1: Summary of candidate models.

Approach Model Type Components Loss DatasetsPE Moran’s I τ Structure ȳ

I GNN GNN No No No No No MSE All
II PE-GNN λ = best GNN Yes Yes No No No MSEy + λMSEI(y) All
III PE-GQNN τ GNN Yes No Yes No No Pinball California
IV PE-GQNN τ , Structure GNN Yes No Yes Yes No Pinball California
V PE-GQNN GNN Yes No Yes Yes Yes Pinball All
VI SMACNP GP No No No No No Log Likelihood All but 3D road

activation and dropout, followed by a linear prediction layer.

Approach II involves the application of PE-GNN (Klemmer, Safir, and Neill, 2023) with

optimal weights for each dataset and layer type combination, as demonstrated by the experi-

mental findings of Klemmer, Safir, and Neill (2023). The GNN architecture used is the same

as for approach I. It was implemented using the code available at: https://github.com/

konstantinklemmer/pe-gnn.

Approach III is similar to PE-GNN but augmented with the first innovation proposed in

this study: the quantile regression framework described in Section 3 is applied. Approach IV

is similar to III, but augmented with an additional innovation: the structural alteration in the

model’s architecture, where the GNN operator is applied only to the features. Approach V,

which is the primary focus of this research, explores the utilization of PE-GQNN. The PE and

GNN layers’ architectures remain identical to the previous approaches, with any alterations

limited to the proposed innovations.

Finally, a benchmark approach that does not use GNNs but was recently proposed for mod-

elling spatial data will be considered as approach VI: SMACNPs. This approach, proposed

by Bao, Zhang, and Zhang (2024), has demonstrated superior predictive performance, surpass-

ing GPs models in the three real-world datasets considered. This model was implemented

following the specifications of Bao, Zhang, and Zhang (2024), using the code available at:

https://github.com/bll744958765/SMACNP.

Approaches I and II do not inherently provide predicted conditional distributions. However,

as they optimize the MSE metric, they implicitly learn a Maximum Likelihood Estimate (MLE)

40

§4.2. California Housing

of a Gaussian model. Thus, the predictive distribution considered for these approaches was a

Gaussian distribution centered on the point prediction with variance equal to the MSE of the

validation set. For computational simplicity in the experiments, instead of calculating ȳB for

each batch, we pre-calculated ȳ using the entire training set.

Performance metrics We evaluate predictive accuracy using Mean Squared Error (MSE)

and Mean Absolute Error (MAE). To assess calibration of the predictive distributions, we use

Mean Pinball Error, MPE = 1
n

∑n
i=1 ρτi (yi − q̂i(τi)), where τi ∼ U(0, 1), and the Mean Abso-

lute Distance of the Empirical Cumulative Probability,

MADECP =
1

99

99∑
j=1

∣∣∣∣∣τ j − 1

n

n∑
i=1

1
[
yi ≤ q̂i(τ

j)
]∣∣∣∣∣ . (4.1)

For quantile predictions of a calibrated model for a given τ , the proportion of observed values

less than or equal to the predicted quantile should approximate τ . Evaluating the MADECP

helps determine whether the predicted quantiles are accurate and consistent across the entire

space.

4.2 California Housing

This dataset comprises pricing information for >20,000 residential properties in California,

recorded during the 1990 U.S. census (Pace and Barry, 1997). The main objective is a regres-

sion task: predict housing prices, y, through the incorporation of six predictive features, x,

and geographical coordinates, c. The predictive features are neighborhood income, house age,

number of rooms, number of bedrooms, occupancy and population. All models were trained

and evaluated using 80% of the data for training, 10% for validation, and 10% for testing.

In the case of SMACNP, to adhere to the specifications of Bao, Zhang, and Zhang (2024), a

training subsample was extracted to represent 10% of the entire dataset. The validation MSE

curves throughout training are shown in Figure 4.1. The number of training epochs and final

41

cap. 4. Experiments §4.2. California Housing

(a) GCN. (b) GAT. (c) GSAGE.

Figure 4.1: Validation error curves on the California Housing dataset, measured by the MSE
metric.

test dataset performance metrics are in Table 4.2.

Table 4.2: Performance metrics on the California Housing test set.

Model Epochs Parameters MSE MAE MPE MADECP
GCN 441 1,313 0.0222 0.1101 0.0403 0.0475
PE-GCN λ = best 170 24,129 0.0179 0.0935 0.0354 0.0450
PE-GQCN τ 179 25,217 0.0179 0.0914 0.0351 0.0428
PE-GQCN τ , Structure 264 26,169 0.0138 0.0800 0.0302 0.0287
PE-GQCN 76 26,201 0.0114 0.0686 0.0272 0.0262
GAT 398 1,441 0.0227 0.1099 0.0410 0.0586
PE-GAT λ = best 120 24,290 0.0183 0.0930 0.0352 0.0476
PE-GQAT τ 136 25,345 0.0179 0.0926 0.0355 0.0413
PE-GQAT τ , Structure 261 26,297 0.0140 0.0829 0.0312 0.0193
PE-GQAT 68 26,329 0.0114 0.0685 0.0268 0.0254
GSAGE 348 2,529 0.0170 0.0945 0.0349 0.0569
PE-GSAGE λ = best 222 27,426 0.0114 0.0732 0.0280 0.0464
PE-GQSAGE τ 243 28,481 0.0113 0.0686 0.0266 0.0478
PE-GQSAGE τ , Structure 224 27,385 0.0100 0.0632 0.0248 0.0314
PE-GQSAGE 160 27,417 0.0089 0.0596 0.0229 0.0288
SMACNP 70 748,482 0.0160 0.0881 0.0466 0.1481

As shown in Table 4.2, PE-GQNN achieves state-of-the-art performance metrics, with ma-

jor improvements over traditional GNN, PE-GNN and SMACNP. For the GSAGE layers, PE-

GQSAGE achieved the lowest MSE, MAE and MPE. For this type of layer, which gave the best

42

§4.2. California Housing

(a) Test values. (b) PE-GSAGE predictions.

(c) PE-GQSAGE predictions. (d) SMACNP predictions.

Figure 4.2: Visualization of the predicted results on the California Housing test dataset.

results overall, we still encounter considerable relative improvements from PE-GQSAGE in

comparison with PE-GSAGE, with a reduction of 22% in MSE, 19% in MAE, 18% in MPE, and

38% in MADECP. We can also explore in-depth, the contribution of each specific innovation.

The τ innovation, which corresponds to the application of the quantile regression framework

proposed by Si, Kuleshov, and Bishop (2022), improved the calibration of quantile predictions,

reducing MPE and MADECP. The structural innovation, which involves applying the GNN op-

erator only to the features, is instrumental in enhancing prediction performance and improving

the calibration, as evidenced by reduced MSE, MAE, MPE and MADECP. Finally, the use of

training neighbours’ target mean as a feature introduced at one of the last network layers also

further improved the model. This last innovation also accelerated convergence during model

training, requiring fewer epochs.

Maps of the test values and predictions of selected methods are illustrated in Figure 4.2.

43

cap. 4. Experiments §4.2. California Housing

(a) PE-GQSAGE densities. (b) ECPs for the test set.

Figure 4.3: (a) PE-GQSAGE predicted densities of 10 observations sampled from the Califor-
nia Housing test set. (b) ECP for each τ value used for the California Housing test set.

Visually, the predictions provided by PE-GQNN appear to be the closest to the actual data

behavior, particularly in the major cities.

Figure 4.3 presents plots that elucidate the behavior of the PE-GQSAGE quantile predic-

tions. Figure 4.3a illustrates the predicted density of a subsample of 10 observations from the

test set. For each observation of this sample, the cumulative distribution function was approxi-

mated via the quantile predictions using τ values in [0.001, 0.002, . . . , 0.999]⊤. While paramet-

ric models presume a rigid structure for their outputs (such as a Gaussian distribution), which

constrains their expressiveness, for PE-GQNN, no assumptions are made about the form of the

predictive distribution. However, as shown in Figure 4.3a, despite the absence of explicit model

restrictions, the model produced symmetric distributional shape across predictions, similar to a

Gaussian distribution, in this case.

For all test set observations, we verified that no quantile crossings were observed in any of

the PE-GQNN models, i.e., all predicted quantiles are monotonically increasing with respect

to τ , aligning with the expectations described in Section 3.

Lastly, Figure 4.3b displays the empirical cumulative probability (ECP) for the test dataset

quantile predictions using each of the 99 τ values in [0.01, 0.02, . . . , 0.99]⊤. This type of plot

was proposed by Kuleshov, Fenner, and Ermon (2018). The closer a model gets to the dashed

diagonal line, the closer the τ values and the ECP. The Gold Standard represents one Monte

44

§4.3. All datasets

Carlo draw from a perfectly specified model, where for each quantile level, the ECP is the

observed success rate in n Bernoulli trials with a success probability of τ , where n is the number

of test set instances. It is evident that PE-GQSAGE has by far the best calibration performance.

This is particularly notable when compared to SMACNP, which exhibits substantial calibration

deficiencies due to its tendency to overestimate the variance component.

4.3 All datasets

Experiments were conducted on two other geographic datasets used by Klemmer, Safir,

and Neill (2023) and Bao, Zhang, and Zhang (2024). The Air Temperature dataset (Hooker,

Duveiller, and Cescatti (2018)) contains geographical coordinates for ∼3,000 meteorological

stations worldwide, with the goal of predicting mean temperatures (y) using mean precipitation

levels (x). Models were trained with 80% of the data, with 10% for validation and testing each,

while SMACNP used a 30% subsample for training, following the specifications of Bao, Zhang,

and Zhang (2024). The 3D road dataset (Kaul, Yang, and Jensen (2013)), includes > 430,000

points with latitude, longitude, and altitude for the Jutland, Denmark road network. The task

is to interpolate altitude (y) using latitude and longitude (c). The data were split into 90% for

training, 1% for validation, and 9% for testing. SMACNP metrics are not reported due to high

computational costs.

Table 4.3: Performance metrics from three different real-world datasets.

Model California Housing Air Temperature 3D road
MSE MAE MPE MADECP MSE MAE MPE MADECP MSE MAE MPE MADECP

GCN 0.0222 0.1101 0.0403 0.0475 0.0224 0.1158 0.0427 0.0334 0.0170 0.1029 0.0358 0.0560
PE-GCN λ = best 0.0179 0.0935 0.0354 0.0450 0.0045 0.0467 0.0189 0.0640 0.0032 0.0406 0.0151 0.0476
PE-GQCN 0.0114 0.0686 0.0272 0.0262 0.0025 0.0327 0.0119 0.0713 0.0001 0.0053 0.0022 0.0439
GAT 0.0227 0.1099 0.0410 0.0586 0.0233 0.1166 0.0434 0.0497 0.0170 0.1030 0.0359 0.0601
PE-GAT λ = best 0.0183 0.0930 0.0352 0.0476 0.0058 0.0566 0.0209 0.0960 0.0035 0.0430 0.0163 0.0551
PE-GQAT 0.0114 0.0685 0.0268 0.0254 0.0025 0.0340 0.0143 0.0677 0.0001 0.0053 0.0022 0.0545
GSAGE 0.0170 0.0945 0.0349 0.0569 0.0223 0.1152 0.0431 0.0361 0.0170 0.1031 0.0358 0.0582
PE-GSAGE λ = best 0.0114 0.0732 0.0280 0.0464 0.0037 0.0449 0.0169 0.0720 0.0032 0.0422 0.0146 0.0417
PE-GQSAGE 0.0089 0.0596 0.0229 0.0288 0.0023 0.0326 0.0130 0.0785 0.0001 0.0054 0.0022 0.0786
SMACNP 0.0160 0.0881 0.0466 0.1481 0.0018 0.0290 0.0391 0.2160 - - - -

Table 4.3 showcases the experimental results obtained from the three datasets: California

Housing, Air Temperature, and 3D road. Each GNN layer’s performance is evaluated across

45

cap. 4. Experiments §4.3. All datasets

three approaches: the traditional GNN, PE-GNN, and PE-GQNN. The PE-GQNN models

incorporate all three innovations discussed in Section 3. Additionally, we include the SMACNP

results as a benchmark model based on GPs. Detailed results for the California Housing dataset

are also provided in Table 4.2.

As illustrated in Table 4.3, PE-GQNN consistently outperforms both traditional GNN and

PE-GNN across all datasets and GNN backbones. In every dataset, the PE-GQNN innovations

lead to significant reductions in MSE, MAE, and MPE. For the California Housing dataset,

PE-GQNN also achieves the lowest MADECP, indicating superior calibration of quantile pre-

dictions.

In the California Housing dataset, PE-GQNN consistently outperforms SMACNP in predic-

tive accuracy and provides enhanced uncertainty quantification across all types of GNN layers.

Conversely, for the Air Temperature dataset, SMACNP achieves the lowest MSE and MAE

but suffers from a major drawback: significantly uncalibrated predictions, reflected by a much

higher MPE and MADECP compared to PE-GQNN. Consequently, PE-GQNN provides the

best balance between predictive accuracy and quantile calibration.

46

Chapter 5

Conclusion

In this work, we have proposed the Positional Encoder Graph Quantile Neural Network

(PE-GQNN) as an innovative framework to enhance predictive modeling for geographic data.

Through a series of rigorous experiments on real-world datasets, we have demonstrated the

significant advantages of PE-GQNN over traditional GNN, PE-GNN and SMACNP.

Our study highlighted three key innovations within the PE-GQNN framework. First, the in-

tegration of quantile regression provided inherently calibrated predictions, which were not only

more accurate but also offered a comprehensive understanding of the conditional distribution.

This approach enhanced the model’s ability to capture properties of the conditional distribu-

tion without computational overheads, aligning with the principles laid out by Si, Kuleshov,

and Bishop (2022). Second, the structural alteration where the GNN operator was applied ex-

clusively to the features, followed by concatenation with the spatial embedding, proved to be

instrumental in enhancing prediction performance across various metrics. Lastly, incorporating

the mean target variable of the training neighbors as a feature closer to the output layer further

improved the model’s predictive accuracy by leveraging neighborhood information effectively.

The empirical results underscored the superiority of PE-GQNN in achieving lower MSE,

MAE, and MPE across all datasets and GNN backbones compared to traditional GNN and PE-

GNN. Notably, PE-GQNN demonstrated substantial improvements in predictive accuracy and

cap. 5. Conclusion §5.0.

uncertainty quantification, as evidenced by its consistent performance in quantile calibration

metrics such as MPE and MADECP.

In the California Housing dataset, PE-GQNN significantly outperformed other models,

showcasing its robustness and precision in predictive tasks. For the Air Temperature dataset,

while SMACNP achieved the lowest MSE and MAE, it suffered from uncalibrated predictions,

which PE-GQNN managed to balance more effectively . The 3D road dataset further validated

the model’s capability in spatial interpolation tasks, where PE-GQNN consistently delivered

superior performance metrics.

The proposed PE-GQNN framework’s ability to provide a full description of the predic-

tive conditional distribution, including quantile predictions and prediction intervals, marks a

substantial advancement in geospatial machine learning. By leveraging domain-specific inno-

vations and robust experimental validation, this work establishes PE-GQNN as a versatile and

powerful tool for geographic data analysis. Further research could investigate the integration

of PE-GQNN with other advanced neural network architectures and explore its potential in

dynamic and time-series spatial data contexts.

In conclusion, this work contributes a novel and effective approach to geographic data mod-

eling, providing a solid foundation for future advancements in the field of geospatial machine

learning. The promising results and insights derived from this study pave the way for more

accurate, reliable, and interpretable predictive models, ultimately enhancing decision-making

processes in various geospatial applications. By adhering to the structured methodology and

comprehensive evaluation presented in this work, we have laid a robust groundwork for the on-

going evolution and refinement of machine learning models in the area of spatial data analysis.

48

References

Anselin, Luc (2022). “Spatial econometrics”. Handbook of Spatial Analysis in the Social Sci-

ences, pp. 101–122.

Appleby, Gabriel, Linfeng Liu, and Li-Ping Liu (2020). “Kriging convolutional networks”. Pro-

ceedings of the AAAI Conference on Artificial Intelligence. Vol. 34(04), pp. 3187–3194.

Bao, Li-Li, Jiangshe Zhang, and Chunxia Zhang (2024). “Spatial multi-attention conditional

neural processes”. Neural networks : the official journal of the International Neural Network

Society 173, p. 106201. URL: https://api.semanticscholar.org/CorpusID:

268189461.

Bi, Kaifeng et al. (2023). “Accurate medium-range global weather forecasting with 3D neural

networks”. Nature 619.7970, pp. 533–538.

Cressie, N. and C.K. Wikle (2011). Statistics for Spatio-Temporal Data. CourseSmart Series.

Wiley.

Cressie, Noel, Matthew Sainsbury-Dale, and Andrew Zammit-Mangion (2022). “Basis-Function

Models in Spatial Statistics”. Annual Review of Statistics and Its Application 9, pp. 373–400.

Datta, Abhirup et al. (2016). “Hierarchical nearest-neighbor Gaussian process models for large

geostatistical datasets”. Journal of the American Statistical Association 111.514, pp. 800–

812.

Derrow-Pinion, Austin et al. (2021). “Eta prediction with graph neural networks in google

maps”. Proceedings of the 30th ACM international conference on information & knowledge

management, pp. 3767–3776.

49

cap. REFERENCES §5.0. REFERENCES

Fey, Matthias and Jan Eric Lenssen (2019). Fast Graph Representation Learning with PyTorch

Geometric. arXiv: 1903.02428 [cs.LG].

Guo, Chuan et al. (2017). “On calibration of modern neural networks”. International conference

on machine learning. PMLR, pp. 1321–1330.

Hamilton, Will, Zhitao Ying, and Jure Leskovec (2017). “Inductive Representation Learning on

Large Graphs”. Advances in Neural Information Processing Systems. Ed. by I. Guyon et al.

Vol. 30. Curran Associates, Inc.

Hooker, Josh, Gregory Duveiller, and Alessandro Cescatti (2018). “A global dataset of air tem-

perature derived from satellite remote sensing and weather stations”. Scientific Data 5.1,

pp. 1–11.

Kashyap, Anirudh Ameya et al. (2022). “Traffic flow prediction models–A review of deep learn-

ing techniques”. Cogent Engineering 9.1, p. 2010510.

Katzfuss, Matthias and Joseph Guinness (2021). “A general framework for Vecchia approxima-

tions of Gaussian processes”. Statistical Science 36.1, pp. 124 –141.

Kaul, Manohar, Bin Yang, and Christian S Jensen (2013). “Building accurate 3d spatial net-

works to enable next generation intelligent transportation systems”. 2013 IEEE 14th Inter-

national Conference on Mobile Data Management. Vol. 1. IEEE, pp. 137–146.

Kingma, Diederik and Jimmy Ba (2015). “ADAM: A Method for Stochastic Optimization”.

International Conference on Learning Representations (ICLR). San Diega, CA, USA.

Kipf, Thomas N. and Max Welling (2017). “Semi-Supervised Classification with Graph Con-

volutional Networks”. International Conference on Learning Representations (ICLR).

Klemmer, Konstantin and Daniel B Neill (2021). “Auxiliary-task learning for geographic data

with autoregressive embeddings”. Proceedings of the 29th International Conference on Ad-

vances in Geographic Information Systems, pp. 141–144.

Klemmer, Konstantin, Nathan S Safir, and Daniel B Neill (2023). “Positional encoder graph

neural networks for geographic data”. International Conference on Artificial Intelligence

and Statistics. PMLR, pp. 1379–1389.

50

§5.0. REFERENCES

Koenker, Roger and Gilbert Bassett Jr (1978). “Regression quantiles”. Econometrica: journal

of the Econometric Society, pp. 33–50.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification with

deep convolutional neural networks”. Advances in neural information processing systems

25.

Kuleshov, Volodymyr and Shachi Deshpande (2022). “Calibrated and Sharp Uncertainties in

Deep Learning via Density Estimation”. ICML, pp. 11683–11693.

Kuleshov, Volodymyr, Nathan Fenner, and Stefano Ermon (2018). “Accurate uncertainties for

deep learning using calibrated regression”. International conference on machine learning.

PMLR, pp. 2796–2804.

Kumar, Ananya, Percy S Liang, and Tengyu Ma (2019). “Verified uncertainty calibration”. Ad-

vances in Neural Information Processing Systems 32.

Lindgren, Finn, Håvard Rue, and Johan Lindström (2011). “An explicit link between Gaus-

sian fields and Gaussian Markov random fields: The stochastic partial differential equation

approach”. Journal of the Royal Statistical Society Series B: Statistical Methodology 73.4,

pp. 423–498.

Lv, Yisheng et al. (2014). “Traffic flow prediction with big data: A deep learning approach”.

IEEE Transactions on Intelligent Transportation Systems 16.2, pp. 865–873.

Mai, Gengchen et al. (2020). “Multi-Scale Representation Learning for Spatial Feature Distri-

butions using Grid Cells”. International Conference on Learning Representations.

Niculescu-Mizil, Alexandru and Rich Caruana (2005). “Predicting good probabilities with su-

pervised learning”. Proceedings of the 22nd international conference on Machine learning,

pp. 625–632.

Pace, R Kelley and Ronald Barry (1997). “Sparse spatial autoregressions”. Statistics & Proba-

bility Letters 33.3, pp. 291–297.

Paszke, Adam et al. (2019). “Pytorch: An imperative style, high-performance deep learning

library”. Advances in Neural Information Processing Systems 32.

51

cap. REFERENCES §5.0. REFERENCES

Platt, John et al. (1999). “Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods”. Advances in large margin classifiers 10.3, pp. 61–74.

Pósfai, Márton and Albert-Laszlo Barabasi (2016). Network Science. Citeseer.

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian Processes for Ma-

chine Learning. The MIT Press.

Reinhard Furrer, Marc G Genton and Douglas Nychka (2006). “Covariance Tapering for In-

terpolation of Large Spatial Datasets”. Journal of Computational and Graphical Statistics

15.3, pp. 502–523.

Rodrigues, Filipe and Francisco C Pereira (2020). “Beyond expectation: Deep joint mean and

quantile regression for spatiotemporal problems”. IEEE Transactions on Neural Networks

and Learning Systems 31.12, pp. 5377–5389.

Si, Phillip, Volodymyr Kuleshov, and Allan Bishop (2022). “Autoregressive Quantile Flows for

Predictive Uncertainty Estimation”. International Conference on Learning Representations.

Song, Hao et al. (2019). “Distribution calibration for regression”. International Conference on

Machine Learning. PMLR, pp. 5897–5906.

Sreenivasa, BR and CR Nirmala (2019). “Hybrid location-centric e-Commerce recommenda-

tion model using dynamic behavioral traits of customer”. Iran Journal of Computer Science

2.3, pp. 179–188.

Vaswani, Ashish et al. (2017). “Attention is all you need”. Advances in Neural Information

Processing Systems 30.

Vecchia, A. V. (1998). “Estimation and model identification for continuous spatial processes”.

Journal of the Royal Statistical Society: Series B (Methodological) 50.2, pp. 297–312.

Veličković, Petar et al. (2018). “Graph attention networks”. International Conference on Learn-

ing Representations.

Wu, Lingfei et al. (2022). “Graph neural networks: Foundation, frontiers and applications”.

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, pp. 4840–4841.

52

§5.0. REFERENCES

Xu, Shuai et al. (2020). “Survey on user location prediction based on geo-social networking

data”. World Wide Web 23.3, pp. 1621–1664.

53

