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Resumo Expandido

OTIMIZAÇÃO BAYESIANA PARA ALOCAÇÃO DE APOSTAS EM FUTEBOL

Este trabalho apresenta métodos de otimização para alocar apostas em futebol, equipado

com uma sólida modelagem probabilística dos eventos, para maximizar o retorno ajustado ao

risco.

O crescimento das plataformas de apostas online facilitou o acesso ao mercado, mas as odds

oferecidas incluem margens que garantem a lucratividade das casas, reduzindo o valor esperado

para o apostador. Nesse cenário, o objetivo deste projeto é identificar e explorar ineficiências

de mercado, utilizando uma abordagem de otimização baseada em probabilidades.

Diferente da maioria dos estudos, que se concentram em prever desfechos limitados, como

vitória, empate ou derrota, este trabalho está equipado com a modelagem da superfície completa

de probabilidades, representando todos os possíveis resultados de uma partida. Essa superfície,

parametrizada a partir das odds oferecidas pelas casas de apostas, abrange uma variedade de

mercados, como Correct Score, Spread, Over/Under e Both Score. Com essa modelagem, é

possível explorar de maneira robusta diversas oportunidades de apostas, maximizando o uso

das probabilidades implícitas nas odds e proporcionando uma diversificação mais eficiente.

A principal contribuição deste projeto é a otimização da alocação de apostas com base nessa

superfície de probabilidades, por meio de diferentes funções objetivo e maneiras de obter a
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distribuição dos retornos.

O processo de otimização utiliza métodos numéricos para determinar a melhor distribuição

das apostas de acordo com a função objetivo predefinida. A alocação é feita não apenas para um

jogo, mas simultaneamente para múltiplos jogos e mercados em um mesmo dia, para mÃºltiplas

casas de apostas, diversificando a carteira e permitindo o gerenciamento do risco associado.

Uma das principais métricas utilizadas é a Sharpe Ratio, que mede o retorno ajustado ao

risco. O Sharpe Ratio leva em conta o retorno esperado e a volatilidade dos retornos, permitindo

que o sistema ajuste a alocação de apostas para maximizar o ganho potencial enquanto minimiza

a volatilidade.

Outro critério é o Limite Inferior de Confiança (LCL), uma variação do Sharpe Ratio, que

introduz o parâmetro λ para equilibrar expectativa e risco. A otimização LCL ajusta o peso dado

ao risco, permitindo maior controle sobre a volatilidade; λ é sintonizado para que a alocação de

apostas busque maximizar a expectativa de retorno com o controle do risco, priorizando maior

estabilidade ou retornos mais altos, conforme o caso.

Para além das abordagens de objetivo único, foi implementada uma otimização multiobje-

tivo que considera simultaneamente a expectativa e o desvio padrão dos retornos. Essa abor-

dagem utiliza Multi-Objective Bayesian Optimization (MOBO) para encontrar a fronteira de

Pareto, um conjunto de soluções onde nenhum dos objetivos (expectativa de retorno e risco)

pode ser melhorado sem sacrificar o outro.

Além disso, o sistema conta com um procedimento de alocação percentual variável para

definir o percentual do orçamento a ser apostado. Esse percentual é tratado como uma variável

adicional no processo de otimização, o que permite ajustar dinamicamente a exposição ao risco

em função do desempenho do modelo e das condições do mercado de apostas.

Por fim, também foi incorporada uma técnica de otimização de retornos a longo prazo por

meio de simulação de Monte Carlo, aplicando o Sharpe Ratio, para o retorno simulado em um

horizonte de múltiplas rodadas de apostas, em um mesmo dia.

Os métodos empregados neste estudo utilizaram a Otimização Bayesiana para as tarefas
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de otimização. Essa escolha se deu devido à eficácia da Otimização Bayesiana em explorar

espaços de soluções complexos e encontrar pontos ideais de alocação de apostas, especialmente

em situações de alta dimensionalidade e incerteza.

Os experimentos foram conduzidos com dados de apostas coletados entre 2019 e 2024,

aplicando o método de otimização selecionado a partir da superfície de probabilidades. Os

testes indicaram que a aplicação do Sharpe Ratio e de outras funções objetivo resultou em

multiplicações significativas do capital inicial.

Assim, este estudo demonstra que uma combinação de modelagem probabilística e otimiza-

ção multiobjetivo oferece uma abordagem promissora para desenvolver uma estratégia de apos-

tas lucrativa e sustentável a longo prazo. Embora desafios práticos, como o monitoramento em

tempo real e restrições de apostas, devam ser considerados, os resultados indicam que a abor-

dagem pode maximizar o retorno ajustado ao risco, conceitualmente e teoricamente, aprovei-

tando as ineficiências do mercado de apostas esportivas.

Palavras-chave: Otimização Bayesiana. Apostas. Futebol. Arbitragem. Sharpe Ratio. Multi-

Objetivo.
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Abstract

This study explores optimization methods for football betting allocation using probabilistic

modeling to maximize risk-adjusted returns. As online betting markets have become increas-

ingly accessible, bookmakers include profit margins in odds, reducing expected value for bet-

tors. This project aims to detect and leverage market inefficiencies through a comprehensive

probability surface covering multiple markets, such as Correct Score, Spread, Over/Under, and

Both Teams to Score, parameterized from bookmaker odds. The primary contribution is opti-

mizing betting allocation across these markets with various objective functions. Key metrics

include the Sharpe Ratio and Lower Confidence Limit (LCL), enabling maximization of gains

while managing risk. In one proposed method, a parameter representing the percentage of the

budget to be bet is included directly within the optimization process, allowing dynamic adjust-

ment of capital allocation based on model performance and market conditions. Additionally,

a multi-objective Bayesian approach (MOBO) provides a Pareto frontier of solutions that bal-

ance return and risk simultaneously. We demonstrated significant gains, using Brazilian Serie A

data, showing that combining probabilistic modeling with optimization methodsand led to high

multiplication of initial capital, theoretically.

Keywords: Bayesian Optimization. Bets. Football. Arbitrage. Sharpe Ratio. Multi-Objective.
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Chapter 1

Introduction

Online betting platforms offer a wide range of options for different sports and games. They

made it very easy for people to bet from anywhere in the world with just a few clicks.

Bookmakers set betting odds to manage their own risk and ensure profitability, reflecting

not just the likelihood of an event occurring but also incorporating a built-in margin. This

margin means that the odds offered are not fair representations of the true probabilities of each

outcome. Essentially, when a bettor places a wager based on these odds, the potential payout

is adjusted so that it is less than what would be expected if the odds were perfectly fair. This

system enables most of the time for bookmakers to make a profit regardless of the outcome of

the event, as they balance the books by adjusting odds to attract bets on all possible outcomes

in a way that covers their liabilities. A final key factor in setting odds is market behavior: when

bettors heavily favor one side, bookmakers adjust the odds in response, even if the fundamental

probabilities stay constant.

Despite the sophisticated systems used by bookmakers, it remains possible for bettors to find

profitability through strategic betting (Hubáček and Šír, 2023; Wheatcroft, 2020; Terawong and

Cliff, 2024; Kaunitz, Zhong, and Kreiner, 2017).

Success hinges on adopting methods with a solid mathematical foundation, such as arbitrage
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1 or statistical modeling, which exploit odds discrepancies and inefficiencies. So informed bet-

tors can identify overvalued odds and make calculated bets that defy the bookmakers’ margins.

Inefficiencies within the soccer betting market have been identified, suggesting the potential

to develop profitable betting strategies, as discussed by Angelini and De Angelis (2019). While

a significant portion of existing research in sports betting is concentrated on analyzing a limited

range of match outcomes, such as home or away wins in the US National Basketball League

(Hubáček, Šourek, and Železnỳ, 2019; Matej et al., 2021) or the more traditional win, draw, or

lose outcomes in soccer (Kaunitz, Zhong, and Kreiner, 2017), our study proposes to broaden

the scope. Additionally, Mattera (2023) explores binary outcomes in Over/Under markets, but

like others, does not consider the full spectrum of score possibilities in a soccer match, thus

limiting potential betting opportunities.

Our paper extends this research by utilizing the surface of all outcomes in soccer matches.

While studies such as those by Matej et al. (2021) consider multiple games simultaneously, they

typically restrict their focus to simple outcomes. This paper seeks to expand the betting strate-

gies by incorporating methods that allow for simultaneous consideration of multiple games.

Financial strategies in sports betting also typically employ methods like Modern Portfo-

lio Theory (Markowits, 1952) and the Sharpe Ratio (Sharpe, 1994), alongside popular betting

strategies such as the Kelly Criterion (Kelly, 1956) and its variations like the "fractional Kelly"

(MacLean, Ziemba, and Blazenko, 1992). Building on these foundations, our study will mainly

employ Bayesian Optimization (BO) to tackle the stake allocation problem.

The accuracy of predictions in bet exchanges, which often offer favorable conditions for

discerning bettors, has been studied by Franck, Verbeek, and Nüesch (2010). He points out that

selecting bets where the offered odds are more generous than those calculated by bookmakers

can lead to profitable outcomes. This principle is supported by the findings of Mattera (2023),

1In betting, arbitrage refers to taking advantage of odds discrepancies across different bookmakers to secure a
guaranteed profit, regardless of the outcome of the event. This is achieved by placing bets on all possible outcomes
of an event across various bookmakers, where the odds are set such that the combined bets cover all outcomes
profitably.
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which advocate for a "value betting" strategy. According to this strategy, a bet is deemed worth-

while only if the probabilistic forecast (considered as the true likelihood of an event occurring)

is greater than the probability implied by the bookmaker’s odds. This approach aims to ex-

ploit the discrepancies between predicted probabilities and those implied by the odds, targeting

long-term profitability. That principle is central to our project.

In this paper, we present a system for distributing stakes of bets for soccer for the Brazilian

Serie A. Our novel approach has the following components:

First, we use the odds set by bookmakers for probabilistic modeling the outcomes for a

given soccer match via a parametric model that describes the entire probability surface of the

scores (Porfírio, 2023) 2. While the majority of existing research in soccer betting focuses on

constructing predictive models that leverage historical match data, including external variables

such as location and weather conditions (Hubáček and Šír, 2023; Langseth, 2013; Maher, 1982;

Dixon and Coles, 1997), this paper adopts a markedly different approach. Instead of relying on

historical data, our methodology utilizes publicly available odds from bookmakers to estimate

the true probabilities of match outcomes. Furthermore, the prevailing trend in soccer betting

research centers on predicting the probabilities of a small set of outcomes, e.g., home team

win, draw, or away team win. However, that approach overlooks the complexity associated

to the multiplicity of possible scores. In contrast, this paper considers a surface of estimated

probabilities associated to all outcomes of a soccer match.

This approach not only includes the basic match results but also explores a variety of other

potential bets such as Correct Score, Spread, Over/Under and Both Score markets. This broader

perspective allows us to develop more sophisticated betting strategies that are optimized to

exploit inefficiencies across a wider array of betting markets.

Secondly, most studies involve the application of betting strategies on a game-by-game

2The work of Porfírio (2023) was developed as part of the same research project as this dissertation. The
projects are complementary, conceived jointly, with partially overlapping development timelines. While Porfírio
(2023) focuses on modeling the probabilities, this dissertation takes these probabilities as input and focuses on
developing a strategy for bet allocation.
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basis, typically in a sequential manner, i.e., focus on individual matches rather than considering

a collection of games simultaneously. Our approach diverges by addressing the bet distribution

that takes into account multiple matches concurrently. The exploration of all conceivable match

scores and the consideration of multiple games provides ample opportunity because now we

can have access to a vast set of betting market options.

In addition to considering multiple games and markets, it is also pertinent to address the use

of multiple bookmakers. This approach facilitates the exploration of negatively correlated bets,

enabling a more sophisticated form of soft arbitrage.

Lastly, given accurate probability estimates, the task now transitions to calculating the opti-

mal stake allocation for a set of bets. This constitutes a numerical optimization problem, which

is inherently complex due to its multi-dimensional nature and the dependency on the choice

of the objective function. There are numerous potential objectives one could select, ranging

from maximizing returns to minimizing risk, and this problem is further complicated when

considering multiple objective functions simultaneously. It’s important to note that employing

a multi-objective is a complex strategy, capable of providing a more holistic view of the stakes

allocation under varying criteria.

We selected the Sharpe Ratio (but not only) as our cornerstone measure to be maximized.

This measure is particularly useful in contexts like betting where the objective is to maximize

returns while considering the volatility of those returns. The Sharpe Ratio (Sharpe, 1994) in-

herently captures the trade-off between profit expectation and variance, providing a robust the-

oretical foundation to optimize our betting distribution.

To address the task of finding the optimal stake allocation, we will employ mainly Bayesian

Optimization (BO). This method is particularly effective for complex optimization problems,

like ours, that involve multiple dimensions. BO is well-suited for high-dimensional spaces

because it efficiently navigates the search space by strategically choosing the next points to

evaluate based on a probabilistic model. This model predicts the performance of different stake

allocations without needing to exhaustively search every possible combination, which is crucial
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in multi-dimensional settings where the search space expands exponentially with each added

dimension.

Our research is predicated on the hypothesis that consistent application of this strategy will

not only validate an efficient allocation in soccer betting but also demonstrate a conceptually

systematic way to achieve profit over extended periods. Nevertheless, it is important to note that

the proposed method would face significant challenges in real-world operations. Technically,

as it will be presented in following chapters, we are going to consider dozens of bookmakers,

which would demand a sophisticated software system capable of handling real-time deposits

and withdrawals across multiple games simultaneously. Also, operationally, bookmakers would

impose limits on maximum bets and often block accounts with high winnings. Furthermore,

from an accounting perspective, this study will not take into consideration any taxes, fees, or

other costs that might be imposed by either the bookmakers or the government.

In summary, our approach is built upon two components: (1) statistical modeling and (2) op-

timization techniques to calculate the stake allocation for soccer bets with the goal to capitalize

on market inefficiencies.

The rest of the paper is organized as follows. In the following section, we present back-

ground theory for modelling the probabilities (probability surface and the parametric model

that describes it) and betting markets available for soccer. Chapter 3, we present the optimiza-

tion methods, strategies and all hyperparameters that were critical for the tasks. Finally, in

Chapter 4, we present the results of all experiments.
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Chapter 2

Background

2.1 Odds

The term odds, in the context of probability, translates to "chance" and expresses how many

times an outcome is more likely than its complement. According to Giolo, 2017, Definition 1

is provided as follows:

Definition 1. The chance of occurrence of an event "A" of interest (or chance of success)

is given by

OA =
P (A)

1− P (A)
=

Probability of event A occurring
Probability of event A not occurring

For betting houses, the relationship between odds and probability is inverse to Definition

1. This point is very important for the betting house to protect its profit by paying out smaller

amounts for more likely outcomes. Furthermore, the odds from betting houses are increased by

1 to ensure that the winning bettor receives at least the amount they bet.

In the context of football matches, the team with the higher probability of winning will

present the lowest odds for victory, such that the event of interest for calculating this odd is that

the team does not win. That is, let Home be the event that describes the home team winning,
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when adapting Definition 1, it follows that the odd in favor of the home team is given by

OHome = 1 +
1− P (Home)

P (Home)

=
P (Home) + 1− P (Home)

P (Home)

=
1

P (Home)

where P (Home) is the probability of the home team winning the match. Thus, the odds offered

by betting houses are given by Definition 2.

Definition 2. The odds (chance) for the occurrence of an event "A" of interest, as provided

by betting houses, are given by

OA =
1

P (A)

2.2 Betting Markets

2.2.1 Listing

In terms of sports betting, there are several markets to place bets on a match. Due to the

scope of this study, the selected markets are only those that directly contribute to the reconstruc-

tion of the probability surface of the possible outcomes of each match, that is:

1. Head to Head (h2h): odds for the match result (home team win, away team win, or draw);

2. Spread: odds for the match result with a disadvantage for one of the teams. "spread +x/-

x" means the fictitious scenario in which the home team starts the match with a “x” goal

advantage. It is possible to bet on the home team win, draw, and away team win, always

under this fictitious scenario;
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3. Over/Under: odds for the sum of goals from the home and away teams, where you bet on

a sum greater or less than the one set by the betting house;

4. Correct Score: odds for the exact result of the match. You bet on the match score like

"1-1", "2-1", etc.

5. Both Score: odds for both teams to score at least one goal in the match or for at least one

of the teams not to score any goals in the match.

2.2.2 Submarkets and Scenarios

Some of the presented markets are directly related to the odds for a given scenario of the

match, that is, under the h2h market, betting houses present odds for the home team’s victory

scenario. This study nicknamed these cases as scenarios of betting markets.

Some of the presented markets are only related to the odds for a given scenario of the match

through some kind of "submarket", for example, the Spread market first relates to the advantage

or disadvantage for one of the teams, then betting houses present odds for the home team’s

victory scenario. This study nicknamed these cases as submarkets, so submarkets are the sum

of goals from the Over/Under market and the advantages and disadvantages granted by the

Spread market.

2.2.3 Probabilistic Properties

The events described by the Head to Head market cover all possible outcomes in a football

match (home win, draw, and away win). Therefore, if the odds in this market have a probabilistic

correspondence, then these probabilities should sum to exactly 100%. However, they need to

be normalized due to the betting houses having a profit margin on the odds.

Conveniently, all markets share the property that their probabilities corresponding to the

odds should sum to 100%, including the Over/Under market, because the set scores are always
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between two integers, such as 2.5, 3.5, etc. In other words, when studying a market individually,

the odds of the market under study can be analyzed as a discrete probability distribution.

2.3 Normalization

Previous studies indicate that the probability estimates provided by betting houses through

odds do not satisfy the condition that the sum of probabilities of all possible events equals 1, as

the betting houses include their profit margins in the odds themselves (Koning and Zijm, 2023).

Therefore, normalization techniques have been proposed to ensure that this sum equals 1.

The study by Koning and Zijm, 2023 points out two normalization methods: the multiplica-

tive method, which involves dividing the probabilities found by their sum, and the Shin method

proposed by Shin, 1992 and simplified by Clarke, Kovalchik, and Ingram, 2017 to an equivalent

form. The technique adopted by this study is the Shin method.

The Shin method involves assuming a proportion of insiders, individuals who always make

the correct bet, and applying normalization considering this proportion.

2.4 Probability Surface Construction Using Public Odds

In this paper, we explore and implement a structured betting strategy for soccer matches in

Brazilian Serie A. The approach is built upon two fundamental components.

The cornerstone of our methodology involves leveraging publicly available betting odds to

construct a probability surface. This surface describes the various possible outcomes of a soccer

match. Betting odds, which reflect the aggregated insight of the betting market, are converted

into probabilities that provide a detailed statistical representation of expected match outcomes.

In our research, we will benefit from estimated outcome probabilities derived through statistical

modeling conducted via the work of Porfírio, 2023.

We suppose that we have a 7 × 7 = 49 outcomes with unknown probabilities associated

p(i,j) where i = 0, . . . , 6+ represents the possible number of goals of the home team and j =
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0, . . . , 6+ for away team, where 6+ represents the event 6 or more goals. Those probabilities

are unknown, so we work with estimates p̂(i,j).

Bookmakers offer odds that represent how much the stake is multiplicated if you actually

win the bet. For example, if the bookmaker offers the odds of 2.2 to home team win, the bettor

that puts 100 BRL for that outcome wins 100× 2.2 = 220 BRL if that outcome occurs. If not,

he will lost all the stake allocated.

2.4.1 Dataset

The dataset was organized into 2 json files, one file organizes information about the matches

by league, and the other organizes the odds. Both the match information and the odds present

data available for the years 2019, 2020, 2021, 2022 and 2023 and were collected through web

scraping from the platform https://oddspedia.com/br.

2.4.1.1 Information

The file containing match information includes the names of the teams that played, the

number of goals scored by each team during the match, the stage of the championship in terms

of rounds, and the date and time of the match, such that this information can be accessed using

unique identifiers for each match.

2.4.1.2 Odds

The odds file for the matches contains the same unique identifiers as the matches in the

information file. However, the match identifiers lead to the respective betting houses, which in

turn lead to their respective markets available for that match, and the markets lead to the odds.
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2.4.1.3 Leagues

The leagues for which odds were collected for this study are some of the most popular in

Brazil and around the world, but we will work only Brazilian Serie A.

2.4.2 Probabiliy Surface

2.4.2.1 Concept

For each match in the database, there is a special interest in the Correct Score odds, since

Definition 2 allows for estimates of probabilities for each possible score of the match. Having

estimates of the probabilities of the match outcome allows for an investigation of the consistency

of the odds among different betting houses.

For probability surfaces where the X-axis represents the home team’s goals and the Y-axis

represents the away team’s goals, with the values of the axes truncated at 6, generally, the sum

of the estimated probabilities already exceeds 1, reflecting the betting house’s profit margin, as

the betting houses artificially insert a profit margin on the odds. Therefore, the surfaces will be

analyzed with clustering, such that X and Y vary in {0, 1, 2, 3, 4, 5, 6+}2, where 6+ means "6

or more goals".

So we work with a family of models capable of providing a concise description of the entire

probability surface. In other words, the task becomes the estimation of the model parameters

instead of estimating each possible score for the match.

Since not all betting houses offer odds for exact scores, it is noted that the other markets

listed in section 2.2 provide partitions of the probability surface, thus also contributing to the

reconstruction of the surface.

2.4.2.2 Partitions

Each of the betting markets mentioned in section 2.2 was collected with the intention of

providing estimates for the probabilities of each pair (x, y) ∈ {0, 1, 2, 3, 4, 5, 6+}2 possible.
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For example, the result of a draw describes pairs (x, y) such that x = y, therefore, the odds

for a draw describe the sum of the probabilities along the diagonal of the surface, when x = y,

as per Definition 2. Another case is the victory of the home team, which describes pairs (x, y)

such that x > y, i.e., the odds for the home team victory describe the sum of all probabilities of

the cells on the surface below the diagonal of the draw.

Similarly, for other betting markets, Figure 2.1 illustrates in blue which partitions of the

surface are described by the odds for each available market. The total number of goals chosen

was 2.5, and the spread was a 2-goal disadvantage for the home team.

Each betting market can be interpreted as one or more equations that help describe the

probability surface. Under the notation where pij is the probability of the home team scoring i

goals and the visiting team scoring j goals, and OMarket is the odd for a given betting market,

it follows from Figure 2.1 that



1
ODraw

=
∑6

i=0 pii

1
OHome

=
∑6

i=0

∑6
j=0 pij · 1(i>j)

1
OV isitor

=
∑6

i=0

∑6
j=0 pij · 1(j<i)

1
OOver

=
∑6

i=0

∑6
j=0 pij · 1(j+i>T )

1
OUnder

=
∑6

i=0

∑6
j=0 pij · 1(j+i<T )

1
OSpreadHome

=
∑6

i=0

∑6
j=0 pij · 1(i+S>j)

1
OSpreadDraw

=
∑6

i=0

∑6
j=0 pij · 1(i+S=j)

1
OSpreadV isitor

=
∑6

i=0

∑6
j=0 pij · 1(i+S<j)

1
O(Y es)Both Score

=
∑6

i=1

∑6
j=1 pij

1
O(No)Both Score

=
∑6

j=1 p0j +
∑6

i=0 pi0

where T is the total number of goals set (2.5 for Figure 2.1), S is the spread advantage or
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Figure 2.1: Set of outcomes whose probabilities are described by the odds of each betting
market, in case the positive outcome materializes.
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disadvantage for the home team (2 goals against the home team, for Figure 2.1) and 1(condition)

is the Indicator function, presented in Equation (3.2). Combined with the probabilities provided

by the odds for each cell by the Correct Score market, it follows that all equations contribute to

the reconstruction of the surface.

1(condition) =


1, if condition is satisfied

0, otherwise
(2.1)

2.4.2.3 Vector Representation

Figure 2.1 presents the probability surfaces on cartesian planes, suggesting that the surface

could be represented by a matrix. Each market can be represented by a matrix containing only

values 0 or 1, 0 if the market does not pertain to a certain probability and 1 otherwise. For

example, from Figure 2.1, the matrix M for the scenario "home team victory" is given by

M =



0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1


Consider the representation of the elements of a matrix M by Mij , where i, j ≥ 0. Then it

would make sense that the index M10 represents the score 1 to 0 for the home team. Therefore,
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it follows that the matrix M for the scenario "home team victory" is given by

M =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0


However, it is possible to eliminate the bidimensionality of the matrix representation and adopt

a vector representation in which the scores follow 0 to 0, 0 to 1, 0 to 2,..., 1 to 0, 1 to 1, ..., 6+

to 5, 6+ to 6+. That is, the scenario "home team victory" can be represented by the vector V in

the form

V = vec
(
MT
)

From this section, the vector corresponding to a given scenario of a given market will be denoted

by the notation V[scenario], such that the matrix representation of the market is composed of all

its scenarios. For example, for the head-to-head (h2h) market, which includes the home team

victory, visitor team victory, or draw, its matrix representation is given by

M[h2h] =


VT

[home]

VT
[draw]

VT
[visitor]


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For markets with submarkets, such as spread, it is necessary to specify the submarket, such as

spread +2/− 2, then

M[spread(+2/−2)] =


VT

[home]

VT
[draw]

VT
[visitor]


in both cases, the vectors V are respective to the respective market to which the matrix M

corresponds.

2.4.3 Parametric Model

2.4.3.1 Parameterization

Based on previous studies and available data, there is an understanding of a dependency

structure between the number of goals scored by the home team and the visiting team. There-

fore, this study proposes researching a model capable of fitting this dependency structure through

the use of copulas to generate correlated observations, in conjunction with a mixture of the fam-

ilies of Negative Binomial distributions, responsible for the general model of the surface, and

Poisson distributions, responsible for addressing the potential underestimation of probabilities

for draw outcomes.

According to past studies (Mchale and Scarf, 2006), the choice of the Negative Binomial

for the marginal distributions allows greater flexibility for the behavior of the model, as there

are 2 parameters for each to give marginals, while for the inflation of the diagonal, the Poisson

distribution seems to be flexible enough (Karlis and Ntzoufras, 2003).

The model is composed of the parameters:

1. rX , pX = Parameters of the Negative Binomial for the number of goals scored by the

home team;

2. rY , pY = Parameters of the Negative Binomial for the number of goals scored by the

visiting team;

31



cap. 2. Background §2.4. Probability Surface Construction Using Public Odds

3. ρ = Correlation parameter between the marginal distributions;

4. ϵ = Parameter regulating the mixture of distributions by including the distribution that

inflates the diagonal of the surface.

5. α = Parameter of the Poisson distribution, describing the inflation of probabilities on the

surface diagonal (draw outcomes);

2.4.3.2 Data Generating Process

Once the model parameters are known, the proposed model is obtained from the data-

generating process:

Algorithm 1: Data Generating Process
Input:
•Θ = (rX , rY , pX , pY , ρ, ϵ, α);

Output:
• Generated data instance.

Compute:
Generate a sample Z, such that Z ∼ Bernoulli(ϵ)
if Z = 0 then

Generate W, such that W ∼ Poisson(α)
Obtain W = (W,W )

else
if Z = 1 then

Generate the vector (X, Y ), such that (X, Y ) ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
Obtain (U, V ) = (Φ(X),Φ(Y ))
Obtain W = (W1,W2) = (F−1(U |rX , pX), F−1(V |rY , pY ))

W = (min{W1, 6},min{W2, 6})

where W is the vector obtained as a sample, and F−1 is the quantile function of the Negative

Binomial. The proposed model is a joint probability distribution P (W1 = w1,W2 = w2), where

the support of this probability distribution is given by

(W1,W2) ∈ {0, 1, 2, 3, 4, 5, 6+}2
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In other words, the support of the distribution of match scores under the proposed model in-

volves only 49 pairs with non-zero probability.

2.4.3.3 Score Distribution

It is known that the data generating process presented is a mixture of a Poisson distribution

and another distribution whose form is not obvious to the researcher but will be referred to as

the Score distribution. Analogously, the mixture with the Poisson distribution will be called the

Adjusted Score distribution.

The data generating process proposed in Section 2.4.3.2 is computationally inefficient for

the parameter fitting method to be discussed in Section 2.4.3.4.

To improve computational efficiency, we considered writing an analytical form for the Score

distribution. The fact that the support of the Score distribution involves only 49 pairs suggests

expressing its probability function in terms of a Bivariate Normal distribution.

Considering only the Score distribution, suppose that an iteration of the data generating

process resulted in a vector (w1, w2). It is known that this vector was obtained from the quantile

function of the Negative Binomial distribution applied to certain values (u, v). However, it is

not possible to determine the values of the vector (u, v) because the quantile function of the

Negative Binomial distribution is not injective. On the other hand, it is possible to determine

the smallest value u1 for which F−1(u1|rX , pX) = w1 and, analogously, the largest value u2 for

which F−1(u2|rX , pX) = w1. Similarly for w2, for (w1, w2) ∈ {0, 1, 2, 3, 4, 5, 6+}, we have

P (W1 = w1,W2 = w2) =

= P (u1 < U < u2, v1 < V < v2)

= P (Φ−1(u1) < Φ−1(U) < Φ−1(u2),Φ
−1(v1) < Φ−1(V ) < Φ−1(v2))

= P (Φ−1(u1) < X < Φ−1(u2),Φ
−1(v1) < Y < Φ−1(v2))
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Since W was defined from the quantile function of the Negative Binomial distribution, it is

possible to determine (u1, u2) from the inverse of the quantile function, that is, the cumulative

distribution function applied in the form


u1 = P (W1 ≤ w1 − 1|rX , pX)

u2 = P (W1 ≤ w1|rX , pX)

the process for determining (v1, v2) is analogous.

When any of the components of the vector (w1, w2) is 0 or 6, one must be careful with the

cumulative distribution function of the Negative Binomial. Therefore, it is convenient to define

the random variables G and H such that

H ∼ Negative Binomial(r, p)

P (G ≤ g|r, p) =


P (H ≤ g|r, p) , if g < 6

1 , if g ≥ 6

That is, the task of writing the Score distribution in an analytical form was not concluded;

nevertheless, an expression in terms of the Bivariate Normal distribution was reached, which is

computationally more efficient than the data generating process described in Section 2.4.3.2.

Returning to the Adjusted Score distribution, for the Poisson distribution responsible for

inflating the diagonal, it is convenient to define the random variables C and D, such that

C ∼ Poisson(α)

P (D = k|α) =


P (C = k|α), if k ̸= 6

P (C ≥ 6|α), if k = 6

Finally, it is possible to obtain the probability function of the Adjusted Score distribution
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for each possible pair (w1, w2) ∈ {0, 1, 2, 3, 4, 5, 6+} through Algorithm 2.

Algorithm 2: Calculation of the Adjusted Score Distribution
Input:
•Θ = (rX , rY , pX , pY , ρ, ϵ, α);
•Maximum number of goals M , always used as 6 in this study.

Output:
• Probability vector with M2 entries, incrementing the scores first for the visiting team
and then for the home team.

Compute:
goals = {0, 1, 2, ...,M}
probabilities[(M + 1)2] = {}
for w1 ∈ goals do

for w2 ∈ goals do
u1, u2 = (P (G ≤ w1 − 1|rX , pX), P (G ≤ w1|rX , pX))
v1, v2 = (P (G ≤ w2 − 1|rY , pY ), P (G ≤ w2|rY , pY ))
x1, x2 = (Φ−1(u1),Φ

−1(u2))
y1, y2 = (Φ−1(v1),Φ

−1(v2))
PXY = P (x1 < X < x2, y1 < Y < y2|ρ)
PD = P (D = w1|α)1(w1=w2)

probabilities[7w1 + w2] = ϵPXY + (1− ϵ)PD

return probabilities

The Algorithm 2 highlights that the probabilities of the proposed model can be obtained

from the mixture of a Bivariate Normal distribution and a Poisson distribution. The implemen-

tation of Algorithm 2 proved to be more than 1000 times computationally more efficient than

calculating the probabilities based on the data generation process described in Section 2.4.3.2.

2.4.3.4 Model Parameter Estimation

Through the probabilistic property of betting markets described in Section 2.2.3 and the

equations outlined in the system of equations 2.4.2.2, it follows that it is possible to use the

equations of a market to obtain the corresponding probability provided by the proposed model.

This results in a probability distribution provided by the betting house odds and another proba-

bility distribution provided by the proposed model.
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Both obtained probability distributions provide probabilities for the same events of inter-

est. Thus, it is possible to compare these probability distributions by calculating the Kullback-

Leibler Divergence (DKL). Through numerical derivatives, it is possible to determine how the

model parameters should be adjusted to minimize DKL. After multiple iterations, it is expected

that the probabilities provided by the model will closely match those found through the odds.

The probability function resulting from Algorithm 2 describes probabilities for 49 possible

cases, which can be allocated in a vector T, similar to the case in Section 2.4.2.3. The advantage

of this representation is that for a given market, the probabilities corresponding to each scenario

are given by

M[market] · T =


Probability of scenario 1

Probability of scenario 2
...

Probability of scenario n


= Q[market]

Allocate the probabilities obtained from the odds, from a given betting house, for a given mar-

ket, in the vector P[market]. Then,

DKL =
n∑

i=1

P[market]i log

(
P[market]i

Q[market]i

)
,

where Vi, i = 1, 2, 3, ..., n, is the i-th component of any vector V.

Fixing the betting house, it is possible to calculate DKL for all the markets that the betting

house provided and obtain the average D̄KL among all the divergences obtained. The pro-

cess of estimating the model parameters follows similarly to the described single-market case,

calculating numerical derivatives and minimizing the distance metric D̄KL between the model

distribution and the betting house distribution.

In matrix terms, let the support of the markets be given by

C = {h2h, spread(+1/−1), spread(+2/−2), ..., over/under(0.5), ..., both score, exact score}
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which may be reduced if a market is not available. Then,

D̄KL =
1

∥C∥
∑

market∈C

n∑
i=1

P[market]i log

(
P[market]i

Q[market]i

)

This optimization process is described by Algorithms 3 and 4. The R language’s optim function

was specifically used to implement Algorithm 4, dealing with numerical derivatives and the

process of minimizing the Kullback-Leibler Divergence in general.

Algorithm 3: Calculation of Mean Kullback-Leibler Divergence
Dependencies:
• Function P (Θ,M), which executes Algorithm 2;
• Operator

⊙
, for matrix multiplication.

Input:
•Θ = (rX , rY , pX , pY , ρ, ϵ, α);
•Maximum number of goals M , always used as 6 in this study;
• shinprobs, a dictionary (Python) where markets or submarkets map to probabilities
normalized by the Shin method at a betting house;
•mask, a dictionary (Python) containing markets and submarkets as keys and a binary
vector as value, as described in section 2.4.2.3;

Output:
• A scalar indicating the Mean Kullback-Leibler Divergence between the proposed
Adjusted Score Distribution and the betting house.

Compute:
probabilities = P (Θ,M)
DKL = 0
for market ∈ shin_probs do

market_probs = probabilities
⊙

mask
for i ∈ {0, 1, ..., length(shin_probs[market])} do

DKL += shin_probs[market][i] · log
(

shin_probs[market][i]
market_probs[i]

)
mean_DKL = DKL

length(odds)

return mean_DKL
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Algorithm 4: Adjustment of the Adjusted Score Distribution
Dependencies:
• Function P (Θ,M), which executes Algorithm 2;
• Function MDKL(Θ, shin_probs,mask), which returns the result of Algorithm 3
based on the probabilities already calculated by P (Θ,M);
• Function N(odds), which provides probabilities normalized by the Shin method from
the odds of a market or submarket;
• Function∇(Θ, Fun), where Fun is a function evaluated on the parameter set Θ.
The function returns a numerical gradient of the function Fun;
• Function Patch(Θ, Fun, grad_Fun), which returns a set of parameters that
minimizes the function Fun among the options provided by the gradient grad_Fun;

Input:
• Any initial guess Θ = (rX , rY , pX , pY , ρ, ϵ, α);
•Maximum number of goals M , always used as 6 in this study;
• odds, a dictionary (Python) in which markets or submarkets carry the odds from a
betting house;
•mask, a dictionary (Python) containing as keys the markets and submarkets and as
value a binary vector, as described in section 2.4.2.3;
• Convergence tolerance ϵ > 0. •maxit, the stopping criterion of the algorithm, can
be for example the number of updates without improvement.

Output:
• Vector of 7 parameters that describe the probability surface reconstructed through the
Adjusted Score Distribution.

Compute:
min_DKL =∞
probabilities = P (Θ,M)
shin_probs = N(odds)
while no_improv < maxit do

mean_DKL = MDKL(probabilities, shin_probs,mask)
if mean_DKL < min_DKL then

min_DKL = mean_DKL

no_improv = 0

else
no_improv += 1

grad_Fun = ∇(Θ,MDKL)
Θ = Patch(Θ,MDKL, grad_Fun)

return Θ
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2.4.4 Average Model

When fitting models as in Section 2.4.3.3, each game, each betting house will present a set

of 7 parameters that describe the probabilities according to their provided odds. However, it is

expected that the parameters of each betting house are similar because they describe probabili-

ties for the same game scores.

The study by Kaunitz, Zhong, and Kreiner, 2017 proposes, in a simpler scope, to take the

average of the probabilities from each betting house for the same result. This average is called

"consensus probability" and allows decision-making for bet allocation. Building on this idea

of taking the average of measures for decision-making, this study proposes the construction of

"consensus surfaces" from a "average model" among those obtained for the available betting

houses.

If there are n betting houses available for a given game, then the estimated parameters are

obtained as

θ̂1, θ̂2, ..., θ̂n

where θ represents any of the 7 parameters of the model. Assuming that there is a probability

surface that truly describes the probabilities of the scores occurring, which can also be described

by the model proposed in this study, and that the normalized surfaces obtained from the betting

houses approach this real surface, then an idea to estimate the real parameter θ for a given game

is to take the estimator
¯̂
θ =

∑n
i=1 θ̂i
n

≈ θ

where θ represents any of the parameters of the model, that is, the set of estimated parameters

is defined as

Θ̂ =
(
¯̂rX , ¯̂rY , ¯̂pX , ¯̂pY , ¯̂ρ, ¯̂ϵ, ¯̂α

)
and the probabilities of the consensus surface can be obtained as in Algorithm 2. For each
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possible pair (w1, w2) ∈ {0, 1, 2, 3, 4, 5, 6+}, calculate

P
(
W1 = w1,W2 = w2|Θ̂

)
To illustrate the estimation of probabilities across the surface of all outcomes, we can refer

to the following figures.

Figure 2.2: Comparisons between some surfaces obtained through the odds for Exact Score
and surfaces obtained through the estimated parameters for the respective betting house for the
game between Juventude and Coritiba for the 35th round of the Brazilian Serie A 2022.

Figure 2.3: Comparisons between some surfaces obtained through the odds for Exact Score
and surfaces obtained through the estimated parameters for the respective betting house for the
last 10 games of the Brazilian Serie A 2022, only for the betting house 1xBet.
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The Figures 2.2 and 2.3 show a great similarity between the surfaces from the betting houses

and the adjusted surfaces, indicating that the model fitting was successful with respect to the

ability to describe the probabilities corresponding to the odds provided by the betting houses

through a probability distribution with the 7 proposed parameters.

2.5 Multi-Objective Bayesian Optimization

Multi-Objective Bayesian Optimization refers to using a Bayesian probabilistic approach

for an optimization problem with multiple objectives.

Multi-objective (MO) optimization is a powerful approach employed in various fields to

address problems with conflicting objectives, where the optimization of one criterion may come

at the expense of another. We optimize an objective vector f(x) : Rd → RM such that f(x) =

(f (1)(x), . . . , f (M)(x)) over a bounded set x ∈ X ⊂ Rd. Essentially, there is no single solution,

so a set of solutions is considered. At the core of this approach lies the concept of Pareto

domination. This dominance principle asserts that a solution is superior to another if it achieves

better performance in at least one objective without compromising the performance in any other.

Consequently, Pareto domination defines a set of non-dominated solutions, forming the Pareto

front, which represents the spectrum of trade-offs inherent in the optimization problem.

An objective vector f(x) Pareto-dominates f(x′), expressed as f(x) ≻ f(x′), if f (m)(x) ≥

f (m)(x′), ∀m = 1, . . . ,M and exists ate least one m′ ∈ {1, . . . ,M} such that f (m′)(x) >

f (m′)(x′).

We state that P∗ = {f(x) s.t. ∄ x′ ∈ X : f(x′) ≻ f(x)} defines the set of Pareto optimal

solutions andX ∗ = {x ∈ X s.t. f(x) ∈ P∗} as the associated Pareto optimal inputs. Equipped

with that mathematical system, users have the option to choose a solution that involves a trade-

off of objectives, tailored to their priorities.

In the realm of soccer betting, the optimization of a betting strategy presents a multifaceted

challenge with the goal of maximizing returns while effectively managing risks. Several key
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objectives can be considered in the formulation of a multi-objective optimization problem tai-

lored for a betting strategy. Bettors may prioritize risk-adjusted returns by maximizing metrics

such as the Sharpe Ratio (Sharpe, 1994) or Sortino Ratio (Sortino and Price, 1994), which both

balances return against volatility. The maximization of the probability of profitability could be

another objective, emphasizing the likelihood of achieving positive returns. Furthermore, min-

imizing the maximum drawdown also stands as a posible objective, ensuring resilience against

significant losses. The application of the Kelly Criterion (Kelly, 1956), aiming to maximize

the expected logarithm of wealth, reflects a strategy that dynamically adjusts bet sizes based on

perceived edges. Diversification objectives can be incorporated to maximize the distribution of

bets across markets, promoting a well-rounded approach. Consideration of conditional metrics,

such as minimizing Conditional Value-at-Risk (CVaR), provides insights into tail risks. Mean-

while, objectives like maximizing the probability of reaching a target wealth or the probabilistic

Sharpe Ratio address specific wealth accumulation goals and statistical measures, respectively.

The entropy of bet sizes and information entropy objectives introduce elements of diversity and

unpredictability, fostering adaptability in decision-making. Combinations of those objectives

collectively can be considered at the optimization task that we expect will lead to a robust and

profitable betting strategy.

Bayesian Optimization (BO) is a method for optimizing expensive-to-evaluate black-box

functions. BO uses a probabilistic surrogate model, typically a Gaussian Process (GP), to pro-

vide a posterior distribution P (f | D) over the true function values f , given the observed data

D = {(xi,yi)}ni=1.

An acquisition function α : Xcand → R uses the surrogate model to assign a utility value to

a set of candidate points Xcand = {xi}qi=1 to be evaluated on the true function. While the true

f may be expensive to evaluate, the surrogate-based acquisition function is computationally

efficient to optimize, yielding a set of candidates Xcand to be evaluated on f . The acquisition

function delineates where to sample next considering a strategy for balancing the exploration-

exploitation trade-off. If gradients of α(Xcand) are available, gradient-based optimization meth-
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ods can be applied. Otherwise, gradients are either approximated.

Therefore, Bayesian Optimization (BO) has essentially two components: a probabilistic

surrogate model and an acquistion function. The Algorithm 5 and Figure 2.4 outlines the steps

of BO for a 1-D objective.

Algorithm 5: Basic Pseudo-code for Bayesian Optimization for 1-D objective func-
tion

Dependencies:
• Set N as the maximum number of iterations;

Place a Gaussian process prior on f .
Observe f at n0 initial points using a space-filling experimental design.
Set n← n0.
while n ≤ N do

Update the posterior probability distribution of f using all observed data.
Find xn, the optimizer (maximizer or minimizer) of the acquisition function α(x),
computed using the current posterior distribution.

Observe yn = f(xn).
Increment n← n+ 1.

return The solution x∗, either the point evaluated with the largest f(x) or the point
with the largest posterior mean.

BoTorch (Balandat et al., 2020) is one of the main python libraries for BO built on top of

the popular PyTorch framework and we intensively use it for the optimization tasks. The idea

of BO in BoTorch is associated to using Monte Carlo (MC) acquisition functions.

Here, we find it worthwile to provide the background of BO according to the BoTorch

paper (Balandat et al., 2020), because that library is the main tool used in this study for the

optimization tasks.

Given collected data D = {(xi, yi)}ni=1, such that xi ∈ X and yi = ftrue(xi) + vi(xi) with

vi representing a noise disturbing ftrue (the BoTorch paper also extends for the case that ftrue

is multi-output, so yi, vi ∈ Rm). Suppose that a bayesian statistical surrogate model is used to

model the objective function f for any x = {x1, . . . , xq} which produces a distribution over

f(x) = (f(x1), . . . , f(xq)) and y(x) = (y(x1), . . . , y(xq)). Tipically, the model f is a Gaussian
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Figure 2.4: Bayesian Optimization with Gaussian Process (GP) for 1-D objective function
across five iterations of minimization task. The first column shows the true objective function,
the GP that approximates the true objective function and the uncertainty of the approximation.
The second column shows the acquisition function Expected Improvement (EI), after every
surrogate model fit, with the next point to be queried.

44



§2.5. Multi-Objective Bayesian Optimization

Process (GP) and vi are independently and identically distributed (i.i.d). In that case, is possible

to define the posterior distributions fD(x) and yD(x) conditioned on data D, such that both are

multivariate normal distributed. BoTorch relies on a MC approach for the acquisition functions,

so there is no assumption regarding about the exact form of those posterior distributions.

Then the procedure optimizes the acquisition function evaluated on fD(x) over the can-

didate x. The acquisition function assesses the potential value resulting from evaluating the

objective function at a new point x, taking into account the existing posterior distribution over

f and can be stated as

α(x,Φ,D) = E [a(g(f(x)),Φ) | D] , (2.2)

where g : Rq×m → Rq is an objective function, Φ ∈ Φ are parameters independent of x in

some set set Φ and a : Rq × Φ→ R is a utility function that defines the acquisition function.

MC integration can be employed to estimate the expectation 2.2 by utilizing samples drawn

from the posterior distribution.

α̂N(x;Φ,D) = 1

N

N∑
i=1

a(g(ξiD(x)),Φ). (2.3)

suchat that we compute 2.3 via drawing i.i.d. samples ξiD (x) (Balandat et al., 2020). In order

to create a new candidate set x, it is necessary to optimize the acquisition function α. Ac-

complishing this effectively, particularly in higher dimensions, often involves utilizing gradient

information∇xα(x,Φ,D).

The BO literature has previously explored the Monte Carlo approach for optimizing acqui-

sition functions, often employing stochastic optimization methods. But in the paper Balandat

et al., 2020, on the other hand, adopts a unique perspective by focusing on Sample Average

Approximation (SAA).
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Chapter 3

Method

Using the probability estimates derived from the odds, according to Porfírio (2023), as pre-

sented in Chapter 2, we employ numerical optimization methods to find the best distribution of

stakes across various betting options. This process aims to optimize a pre-determined objec-

tive function. Our approach extends to simultaneous betting on multiple games and markets,

which serves to diversify the betting portfolio. Multiple games are considered, because is very

common to have soccer matches scheduled for the same day.

The methodology presented in this section examines bet allocation within a single-day and

our system systematically replicates the method each day throughout the entire betting period.

Consider an allocation vector υ = (υ1, . . . , υn), υi ∈ [0, 1] ∀i,
∑n

i=1 υi ≤ 1 over a set

of selected bets ω = (ω1, . . . , ωn). Each component of υ represents a percentage of the total

budget allocated to a specific bet. As a risk management measure, we introduced certain times

a safety parameter γ, where 0 < γ < 1, such that
∑n

i=1 υi = γ which acts as an upper bound

on the sum of all allocation percentages. When γ < 1, a portion of the budget is deliberately

kept as a cash reserve. We can write the return as

R(w,v) =
n∑

i=1

Oiυi1wi
, (3.1)
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where Oi is i-th odd from a set of n bets considered and

1wi
=


1, if wi bet succeeds

0, otherwise
. (3.2)

With

E[R(w,υ)] =
n∑

i=1

OiυiP (ωi) (3.3)

V ar[R(w,υ)] =
n∑

i=1

O2
i υ

2
i +

n∑
i=1

n∑
j=0
j ̸=i

OiυiOjυjP (ωi ∩ ωj)−

[
n∑

i=1

OiυiP (ωi)

]2
, (3.4)

where P (ωi) is the estimated probability of the bet event ωi occurs, which is estimated by the

probability surface built by the public odds, as described in Chapter 2.

In our setting, it is possible that opportunity ωi is won simultaneously with opportunity ωj ,

i ̸= j (e.g., consider bet of correct score (Home team: 2 and Away Team: 2) and bet that both

teams scores a goal in that match).

Now, υ = (υ1, . . . , υn) is derived via optimization of a pre-determined objective function

M(f(R)), where f is the estimated probability distribution of the return. That is

υ∗ = argmax
υ∈Rn

M(f(R(w,υ))). (3.5)

The specific form of M is a decision that must address the purpose of what we want to optimize,

such as return, risk, or other statistical properties of the distribution.

Having that said, the Sharpe Ratio (but not only) will serve as a fundamental concept in

the optimization tasks, as it provides a critical metric for evaluating the risk-adjusted returns.

Variations of the Sharpe Ratio components and optimization strategies will be detailed in the

subsequent sections, providing a comprehensive understanding of the methodologies applied.
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3.1 Objective Functions

3.1.1 Sharpe Ratio

We first follow a setup of single objective function by optimizing the Sharpe Ratio, i.e,

argmax
υ∈Rn

E[R(w,υ)]√
V ar[R(w,υ)]

(3.6)

argmax
υ∈Rn

∑n
i=1OiυiP (ωi)√∑n

i=1O2
i υ

2
i +

∑n
i=1

∑n
j=0
j ̸=i
OiυiOjυjP (ωi ∩ ωj)− [

∑n
i=1OiυiP (ωi)]

2
. (3.7)

Covariance in the variance equation captures how the outcomes of two or more bets relate to

each other. If the outcomes are positively correlated (i.e., they tend to win or lose together),

the overall risk increases because unfavorable results from one bet are likely to coincide with

others. On the other hand, if the outcomes are negatively correlated or uncorrelated, the bets

can act as a hedge, reducing overall volatility and thus lowering the portfolio’s risk. Notice here

that the covariance is being considered in the variance calculation.

So the presence of covariance allows the optimization to adjust the betting stakes υi accord-

ingly. If certain bets are strongly positively correlated, it might allocate less weight to them

to avoid excessive concentration of risk. Conversely, uncorrelated or negatively correlated bets

might be given higher weights, as they provide diversification benefits, stabilizing returns.

Therefore, the Sharpe Ratio, as a measure of risk-adjusted return, will thus reflect not only

the potential for higher returns but also the risk minimization achieved by diversifying across

more negatively correlated bets opportunities.

3.1.2 Lower Confidence Limit

In this variation, we modify the Sharpe Ratio by introducing a custom formulation that

balances expectancy and risk, via a hyperparameter λ. Specifically, we define the objective
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function Lower Confidence Limit (LCL) as

LCL = E[R(w,υ)]− λ
√

V ar[R(w,υ)]. (3.8)

Here, λ is treated as hyperparameter to be tuned, which controls the trade-off between maxi-

mizing expectancy and minimizing the risk (standard deviation). The higher the λ, the more

emphasis is placed on minimizing risk, while lower values of λ prioritize higher returns, poten-

tially at the expense of greater volatility.

The objective is to optimize both the expectancy and the volatility of the portfolio, allowing

the method to balance between risk and reward based on the optimal value of λ.

3.1.3 Multi-Objective with Sharpe Ratio components

In optimizing betting allocations for soccer games, it is essential to balance the trade-off

between maximizing expected returns and minimizing risk. This balance can be effectively

achieved through Multi-Objective Bayesian Optimization (MOBO).

Here, we consider both the expectancy and the standard deviation as the objectives. So

MOBO seeks to optimize both E[R] and V ar(R) simultaneously and separately. Precisely,

here we maximize the expected return and minimize the standard deviation of the return, which

are the two key components of the Sharpe Ratio.

By constructing surrogate models for these objectives, MOBO efficiently explores the space

of possible betting strategies to identify the Pareto front-the set of non-dominated solutions

where no objective can be improved without worsening another.

This approach differs significantly from optimizing the single objective function Sharpe

Ratio, because (1) optimizing the Sharpe Ratio may obscure the individual contributions of

expected return and risk, making it difficult to understand the trade-offs between them, (2)

the Sharpe Ratio assumes a specific linear relationship between return and risk, which may

not capture the complexities inherent in betting strategies and (3) it yields a single optimal
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solution, neglecting other potentially valuable strategies that could be more suitable depending

on different risk preferences.

In contrast, MOBO provides a set of optimal solutions along the Pareto front, offering a

spectrum of choices catering to various risk-return profiles.

Implementing MOBO involves the following steps:

• Initialization: begin with an initial set of betting strategies and evaluate their expected

return and standard deviation.

• Surrogate Modeling: use Gaussian Processes or other suitable methods to create surrogate

models for both objectives based on the initial data.

• Acquisition Function Optimization: select new betting strategies to evaluate by optimiz-

ing an acquisition function that balances exploration and exploitation.

• Iteration: update the surrogate models with new data and repeat the process until conver-

gence criteria are met.

A deeper understanding of MOBO was presented at Section 2.5.

By focusing on both expectancy and standard deviation, MOBO acknowledges that maxi-

mizing returns often comes with increased risk. It provides a more nuanced optimization frame-

work that accommodates the complex dynamics of betting markets.

In conclusion, MOBO offers a robust and flexible approach to optimizing betting alloca-

tions. It surpasses single-metric optimization methods like the Sharpe Ratio by providing a

comprehensive view of the trade-offs between return and risk.

Here, after obtaining the Pareto front of optimal solutions, the strategy selects the allocation

for the solution with the lowest standard deviation for implementation, which implies that the

allocation is efficient, i.e., there is no other allocation with a higher expectancy for the same or

lower risk.
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3.2 Optimization Strategies

3.2.1 Filtering Bets Rule

Given the real probabilities estimates for all outcomes of soccer games derived by the sta-

tistical modeling, described in Chapter 2, we compare these with the odds offered by public

bookmakers. A bet is considered favorable if the odds offered by the bookmaker are greater

than the odds suggested by our model (real fair odds). This step is crucial as it identifies oppor-

tunities where the bookmaker’s odds are mispriced relative to the true likelihood of an event. By

betting only when the odds are in our favor, theoretically we increase the chances of achieving

a positive return over time.

Once favorable bets are identified, they are ranked from the most favorable to the least.

Ordering bets helps in prioritizing the stake allocation, ensuring that the bets with the greatest

edge are given precedence. We assess the favorability of a bet by using a score, defined by

si = w

(
Oi − 1

p̂i

Oi

)
+ (1− w)p̂i, (3.9)

accounting the public odd Oi, the estimated real probability p̂i, and a weighting factor w. This

score helps in deciding whether or not to place a bet. The expression
(

Oi− 1
p̂i

Oi

)
computes

the relative difference between the public odds and the odds implied by our estimated real

probability, 1
p̂i

is the fair odds computed based on the probability estimate. If the model is

correct, this is what the odds "should" be if they were fair (i.e., no bookmaker margin), Oi − 1
p̂i

gives the difference between the public odds and the calculated fair odds. A positive value

indicates that the public odds are offering more payout than what is fair based on your model,

suggesting a favorable bet. By dividing this difference by Oi, we normalize it by the scale of

the odds, effectively measuring how much more favorable the public odds are compared to the

fair odds.

Furthermore, w is a weighting factor that determines how much emphasis to put on the
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relative difference between public odds and fair odds versus the real probability estimate itself,

the term w

(
Oi− 1

p̂i

Oi

)
scales the normalized difference by w, focusing on the value offered by

the bet relative to its price and the term (1 − w)p̂i adds a component of the raw estimated

probability, scaled down by (1 − w). This part of the score reflects the inherent likelihood of

the event as estimated by your model, regardless of the betting odds. The score si combines

these two aspects (1) the attractiveness of the bet’s odds relative to its fair value and (2) the

underlying probability of the outcome occurring. A higher score indicates a more favorable bet,

either because the odds are particularly good or because the event is likely to occur (or both).

After analysing and empirical testing, the scoring function equation 3.9 outlined in this

study was selected over the straightforward expected value (EV) approach due to its superior

performance in practice. While the traditional EV method focuses solely on the expected return

by calculating

EVi = p̂iOi, (3.10)

it does not account for the balance between the value of the odds and the probability of the

outcome occurring.

Empirical results from backtesting showed that using our scoring function led to more ac-

curate bet selections and higher overall returns compared to the EV method. The flexibility

provided by the weighting factor w enabled optimization tailored to different betting scenarios,

enhancing the model’s adaptability and effectiveness. Consequently, the scoring function was

adopted as the primary method for filtering and ranking bets.

3.2.2 Dynamic Percentage-Based Budget Allocation

In the above optimization tasks, an arbitrary percentage of the budget to bet must be fixed.

However, in practice, the percentage of the budget allocated to betting is a critical parameter

that impacts the performance of the strategy. To address this, in this technique, we insert the

percentage of the budget to bet, denoted by γ, as an additional input to the vector allocation
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optimization task and then we have objective function called γ Sharpe Ratio.

The following equations consider both the preserved and allocated portions of the budget,

unlike previous equations, which accounted only for the portion at risk. We can write the total

return, considering the percentage of the budget to bet, as

T (γ,w,υ) = B(1− γ) + γBR(w,υ) (3.11)

such that B is the budget available for betting in the beginning and γ ∈ [0, 1] is the percentage

of the budget to be used at every betting day. The term B(1 − γ) represents the portion of the

budget that remains uninvested, while γBR(w,υ) is the return from the bets placed.

The expected value, the second moment, and the variance of T (γ,w,υ) are given by

E[T (γ,w,υ)] = B(1− γ) + γBE[R(w,υ)], (3.12)

E[(T (γ,w,υ))2] = B2[(1− γ)2 + 2γ(1− γ)E[R(w,υ)] + γ2E[R(w,υ)]2], (3.13)

V ar[T (γ,w,υ)] = B2γ2V ar[R(w,υ)]. (3.14)

With that, the γ Sharpe Ratio is defined as

γSharpe Ratio =
E[T (γ,w,υ)]√
V ar[T (γ,w,υ)]

=
B(1− γ) + γBE[R(w,υ)]

Bγ
√

V ar[R(w,υ)]

=
(1− γ) + γE[R(w,υ)]

γ
√
V ar[R(w,υ)]

(3.15)

3.2.3 Joint Optimization of (γ, λ∗)

Finally, it is worth noticing that we can optimize both the percentage of the budget γ and

λ from LCL method, from Section 3.1.2, simultaneously, to create the objective function Joint

53



cap. 3. Method §3.2. Optimization Strategies

(γ, λ), which is defined as

Joint (γ, λ) = E[T (γ,w,υ)]− λ
√
V ar[T (γ,w,υ)], (3.16)

3.2.4 Long-Term Return Distribution

The long-term return optimization method in this study is built on Monte Carlo simulation

to estimate the return in the long-term of a betting allocation in a day.

For each day, we bet on multiple games. Let rji denote the return for game i on day j,

where j ∈ Z+ and 1 ≤ j ≤ d represents each betting day, d is the last day of a betting

period,i = 1, 2, . . . , Nj represents each game within the day j. The total return for each day is

the sum of returns across all games played that day:

Rj =

Nj∑
i=1

rji, (3.17)

where Nj is the number of games on day j. This sum reflects the combined effect of all bets

placed on that day.

The next step is to consider the long-term return over 100 instances, given a betting day. For

each day, an observation of long-term return R̃ is defined as the product:

R̃ =
100∏
j=1

Rj =
100∏
j=1

 Nj∑
i=1

rji

 . (3.18)

This equation captures the interaction of returns over all games and all rounds, representing a

proxy for the long-term return of a given betting day. The key idea is that each rij contributes

multiplicatively to the overall performance and compounding effects play a critical role in long-

term.

This is a particularly complex procedure because we are not considering individual bets in

isolation. Instead, multiple games are bet on each day, and the returns from these games interact
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over time, making the dynamics of the process highly non-linear.

To estimate robustly the long term return of a betting day, we apply Monte Carlo simulation.

Specifically, for each simulation k, we compute:

R̃k =
100∏
j=1

 Nj∑
i=1

rji,k

 , (3.19)

where rji,k is the return for game i on day j in the k-th simulation. The index k indicates

that different sets of returns are sampled in each iteration. We repeat this process 1000 times,

generating 1000 synthetic observations of R̃.

By generating 1000 observations of the random variable R̃, we will obtain a distribution of

returns observations over the long term, that resembles the true distribution of long-term returns

f that we can then use to optimize the objective function M , as defined in Equation 3.5.

Here, in the end, we are interested still in the Sharpe Ratio, so the objective function to be

optimized is the Sharpe Ratio of the long-term return and Monte Carlo simulation helps approx-

imate both the expected value and standard deviation of returns, with the optimizer iteratively

adjusting υ to improve this risk-adjusted metric.

Using 1000 simulated outcomes, we approximate the Sharpe ratio as:

Sharpe Ratio ≈
1

1000

∑1000
k=1 R̃k√

1
1000

∑1000
k=1 (R̃k − ¯̃R)2

, (3.20)

where ¯̃R is the mean of the simulated outcomes. This process provides an estimate of the risk-

adjusted performance of the betting strategy, accounting for both the multiplicative nature of

returns and their variability across multiple games and rounds.

The complexity of this approach arises from the fact that we are dealing with multiple games

each day, and the returns are multiplicative. Small changes in allocation or return outcomes can

lead to large variations in our long term return proposition over time due to the compounding
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effect of daily returns. Additionally, different rounds may feature different numbers of games,

and the variability in game outcomes further complicates the optimization process.

BO still could be used, here, but we adopted specifically the Constrained Optimization

BY Linear Approximation (COBYLA) algorithm. We argue that BO optimization’s model-

fitting and acquisition steps are computationally demanding and COBYLA, which employs a

direct search approach without needing to build a surrogate model, demonstrated faster conver-

gence in this context. Additionally, with the non-deterministic nature of the objective function,

COBYLA’s simplicity and direct approach proved advantageous.

3.3 Bayesian Optimization Implementation

With the bets selected, an associated vector of allocation is used to place amounts on each

bet. This involves setting up an optimization task for a pre-determined objective function. The

allocation vector determines how funds are distributed among selected bets, which is critical for

balancing potential returns against risk.

BO is effective in handling complex, noisy optimization problems typical.

In the initial phase of the optimization task, we generate quasi-random samples using the

Sobol sequence for the starting point. Sobol sequences are a type of low-discrepancy sequence

that are particularly effective in creating evenly distributed samples across multi-dimensional

spaces. This method is crucial for efficiently exploring parameter spaces in BO, especially in

high-dimensional scenarios. The use of Sobol sequences in sampling is rooted in their ability

to provide a more uniform exploration of the parameter space with interesting properties and

applications of Sobol sequences in numerical methods and optimization (Sobol, 1967).

The bounds for initial sampling and subsequent optimization phases are set differently,

which is informed by specific operational needs. The initial Sobol sampling uses a narrow range

of [0.001, 0.1], targeted to explore a specific segment of the parameter space where promising

solutions are hypothesized to exist. Conversely, during the acquisition function optimization,
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Algorithm 6: Betting Procedure Daily
Dependencies:
• 7× 7 probability surface estimated for each game i of a day.
• List of all k bet opportunities with the associated odds for each game of a day.
• Objective function M to be optimized.

Initialize the list odds_dt to store the bets selected for all games of the day.
for i in 1, . . . , Nj do

Map each bet of the set of bet opportunities ω(i) = (ω1, . . . , ωk) of i-th game to the
corresponding probability estimate.

Filter the n most favorable bets of i-th game (n is a hyperparameter) and get
ω(i) = (ω1, . . . , ωn), such that (n < k), accordingly to Section 3.2.1.

Store it to odds_dt.
Run optimization task for bets selected inside odds_dt, to optimize pre-determined
objective function M .

Apply Softmax function to the optimization result to obtain the stake allocation.
return Optimized allocation vector υ.

the bounds are much broader. This broader range accommodates the use of a softmax transfor-

mation applied during each evaluation iteration of the objective function, which maps the inputs

of the vector allocation to a [0, 1] range.

The softmax function is a common transformation used in machine learning and optimiza-

tion tasks to convert a vector of arbitrary values into a vector that is defined on a simplex space.

This transformation is particularly useful in the context of stake allocation, where the objective

is to distribute funds among different bets ensuring that the sum of the allocations equals 1. The

softmax function is defined as

softmax(z)i =
ezi∑n
j=1 e

zj
. (3.21)

However, despite this transformation, the results themselves are not confined within any strict

bounds, implying a non-linear or complex relationship that these parameters have with the out-

comes. Therefore, maintaining different bounds in each phase is justified by the necessity to

align the parameters effectively with the characteristics of both the model and the softmax trans-
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formation.

Algorithm 7: Performance
Dependencies:
• Outcome data for all games of the d betting days

for j in 1, . . . , d do
for i in 1, . . . , Nj do

Compute financial return of game i of the day j using the stake allocation
vector (according to Algorithm 6) and the outcome data.

Compute financial return of the day.
return Financial return of betting strategy for all the time period.

Algorithm 8: Optimization Task
Dependencies:
• Bets with associated public odds and probabilities estimates, given by statistical
modeling and objective function to be optimized.
•Maximum number of iterations max_iter.
Output:
• Optimized stake allocation vector.

train_X←− Random samples from Sobol sequence to initialize the optimization task.
train_Y←− Evaluation of these points using the objective function to obtain the
corresponding outputs.

best_value←−Maximum value of objective function.
best_candidate←− Candidate that maximizes objective function.
while number of iterations ≤ max_iter do

Standardize train_Y.
Fit a GP model to the standardized data.
Optimize the acquisition function to find new candidate.
Apply softmax function to the new candidate to obtain the stake allocation vector.
new_Y←− objective function evaluated at new candidate.
Append train_X and train_Y with the new candidate and its evaluation new_Y.
if new_Y > best_value then

best_value←− new_Y
best_candidate←− new candidate

number of iterations←− number of iterations + 1

return Optimized stake allocation vector.

The betting procedure on a day can is presented by following Algorithm 6 and the perfor-
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mance evaluation is described in Algorithm 7 and the optimization task is described in Algo-

rithm 8..

3.4 Hyperparameters

The betting strategy optimization tasks involve several hyperparameters that can be tuned to

achieve a better performance, they are parameters that are not learned during the optimization

process, but rather set before the optimization begins. All the hyperparameters are detailed in

Table 3.1.

Table 3.1: Hyperparameters

Hyperparameters Values Description

γ (0, 1] Percentage of the budget to bet

min_games {0, 1, 2, 3, 4, 5, ...} Minimum number of games to decide if

betting day will be considered

max_games {0, 1, 2, 3, 4, 5, ...} Maximum number of games to decide if

betting day will be considered

max_bets {1, 2, 3, 4, 5, ...} Maximum number of bets to consider

bets_per_game {1, 2, 3, 4, 5, ...} Number of bets per game

w (0, 1) Weight of the linear combination filter

For the sake of simplicity, we will not document exhaustively the configurations of hyper-

parameters for each optimization task, but we will present the relevant ones according to the

methodology of each optimization task. All hyperparameter tuning jobs were done in a dataset

that contains the period from 2019 to 2023, and the best hyperparameters were used to evaluate

the performance of the betting strategy in the period from 2023 to 2024.
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3.5 Evaluation

To evaluate the performance of the optimization tasks, the data has been split as usual:

• Training Set (2019-2023): we use this period to apply the methods and optimization

techniques with multiple configurations of hyperparameters to, in the end, select the con-

figuration for each optimization technique that yields the higher return in that period.

• Test Set (2023-2024): once the best combination of hyperparameters for each technique

is determined, we apply the technique to the 2023-2024 period to validate their real-world

performance on unseen data.

In the following section, we will present the optimization techniques (after the they being

applied to the training set (2019-2023)), assessing their performance and validating them on the

test set (2023-2024).
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Experiments

We present the results of the experiments using web-scraped data from the Brazilian Serie A

soccer league. The bookmakers considered here were Bet365, LeoVegas Sport, 1xBet, Betway,

22Bet, ComeOn, LVBET, Betsson, Marathonbet, 888sport, Betfair, Vbet Sport, Betsafe, bet90,

LSbet, NetBet, Bethard, Mr Green Sport, Betclic, Bodog, Bovada, Mobilebet, NordicBet, Ri-

valo, Pinnacle, Betano, Parimatch, 18Bet, Megapari Sport, Stake.com, GG.BET, Bwin, Beto-

bet, Fansbet, Betwinner, 1xBit, Powbet, Sportaza, Suprabets, 4rabet, Amuletobet, Sportsbet.io,

Dafabet LATAM, BC.Game Sport, Fezbet, Mystake, 31bet, Jackbit, Freshbet, Goldenbet, Welt-

bet, Dafabet, bet365, Midnite, Betibet, Roobet, 20Bet, TonyBet, Ivibet, Vave, SnatchCasino,

Galera.Bet, Nine Casino, Mostbet. None bookmakers were deleted from the dataset at any

point.

The data was collected from 2019 to 2024, and the experiments were conducted from 2019

to 2023. The data was divided into training and test sets, with the training set containing data

from 2019 to 2022 and the test set containing data from 2023 to 2024.

Here, it is important to clarify how the charts should be interpreted. All graphs depicting

portfolio performance are to be understood in terms of how many times the initial budget has

been multiplied over the course of the betting strategy.

The portfolio axis on the charts represents this multiplier effect. Specifically, the first data
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point corresponds to a portfolio value of 1, indicating that no gains or losses have been realized

at the start, meaning the initial budget remains unchanged. As the strategy progresses and

results accumulate, subsequent data points will reflect how the portfolio grows or contracts. A

portfolio value greater than 1 signifies that the initial budget has been increased, resulting in

profit, whereas a value less than 1 indicates a loss.

4.1 Random and baseline

(a) Random strategies for typical bettor. (b) Performance of baseline.

Figure 4.1: (a) Random strategies for typical bettor (b) Performance of baseline (Kaunitz,
Zhong, and Kreiner, 2017).

The typical bettor, lacking access to our sophisticated system which bases probability es-

timates of bet events on rigorous statistical modeling, typically engages in betting through a

simpler, more imprudent approach. We assume that such a bettor merely logs into a betting

application and places daily a bet of 10% of the available budget on a single, arbitrarily se-

lected soccer match. The performance of this conventional betting strategy, demonstrated in

Figure 4.1a, presents results from 30 simulations. This visualization illustrates that for many

participants, this approach will inevitably lead to financial ruin.

Furthermore, we established our initial baseline by implementing the straightforward strat-

egy proposed in the paper "Beating the bookies with their own numbers" (Kaunitz, Zhong, and

Kreiner, 2017). This approach suggests placing a fixed wager whenever the public odds exceed

the true odds implied by the actual probability. We restricted our analysis to simple bets on
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home wins, draws, or away wins, as implemented in the original paper. The core idea behind

this method is to exploit potential inefficiencies in the betting market by identifying instances

where bookmakers may have overestimated the odds for a particular outcome. In theory, this

should provide a statistical edge over time if the true probabilities are accurately estimated.

However, when applied to our dataset and under our specific conditions, this simple ap-

proach failed to yield profitable results, as shown in Figure 4.5b. The approach presented in

exhibits several limitations. First, it overlooks the potential benefits of negative correlations

between bets. Second, it lacks a proper estimation of the probability surface. Third, the strategy

employs a fixed betting amount rather than adjusting the stake based on the total available bud-

get, limiting its potential for optimal capital allocation. Additionally, here, we are using data

from the Brazilian soccer league, which may present unique characteristics not considered in

the original paper that analyzed from 818 leagues and divisions worldwide.

Finally, another probable explanation is that in the paper, they had a live system that mon-

itored the odds and placed bets in real-time, while we are using a unique value to each betting

opportunity to simulate the strategy. This lack of success with the baseline approach under-

scores the need for more sophisticated strategies.

4.2 Sharpe Ratio Optimization

Following the method presented in Section 3.1.1, we executed the single objective Sharpe

Ratio optimization for values of γ (here, it is a fixed percentage of budget to bet), ranging from

{1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}, in the training set. For the

test set, we apply the method with the γ that led to the highest return in training set. The results

are shown in Figure 4.2.

Although, Figure 4.2 does not show γ values from 70% to 100%, they were, in fact, utilized

but led to ruin in the training set.

As shown in the plot, the portfolio dynamics vary significantly depending on the chosen
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(a) Performance 2019-2023 (b) Performance 2023-2024

Figure 4.2: (a) Performance of BO for Sharpe Ratio maximization on training set. (b) Perfor-
mance of BO for Sharpe Ratio maximization on test set.

allocation percentage. The 50% allocation led to the highest final return, and this value will be

used in the next strategies that adopt a fixed percentage of allocation to ensure fair performance

comparisons.

4.3 LCL Optimization

The LCL optimization technique introduced a new hyperparameter, λ, as described in Sec-

tion 3.1.2. With the goal to check how much the λ hyperparameter could increment or decre-

ment the final return (compared to using the Sharpe Ratio criteria) for the experiment in Section

4.2 for the optimal γ = 50% value, we implemented the LCL optimization for the training set

and tested the best configuration in the test set, but we noticed that γ = 50% was too aggressive

for this method.

Therefore, we tested multiple values of λ for a small percentage of the budget to bet (γ =

5%), and we found that λ = 0.1 led to the highest final return. The results of this optimization

are shown in Figure 4.3.

We can see that λ = 0.1 led to the highest final return multiplying the initial budget by 15

times in the test set.
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(a) Performance 2019-2023 (b) Performance 2023-2024

Figure 4.3: (a) Performance of BO for LCL maximization on training set. (b) Performance of
BO for LCL maximization on test set.

4.4 Joint Optimization of (γ, λ)

So, it is evident that λ and γ are crucial hyperparameters that can significantly impact the

strategy’s performance. To further explore the interaction between these two parameters, we

conducted a joint optimization of the LCL method and the budget allocation percentage γ, as

shown in Figure 4.4, as detailed in Section 3.2.3.

Here, we report only the runs that, for the training set, did not lead to ruin, and the best

configuration was tested in the test set. We have considered values of γ of {1%, 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%} and λ values of {0.01, 0.1, 0.5, 1, 2}.

(a) Performance 2019-2023 (b) Performance 2023-2024

Figure 4.4: (a) Performance of BO for joint maximization on training set. (b) Performance of
BO for joint maximization on test set.

Therefore, the optimal values for (γ = 0.1, λ = 0.1) led to a very high multiplication of the

initial budget, here the initial budget was multiplied 50x in the test set.
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4.5 Dynamic Percentage-Based Budget Allocation Optimization

The percentage of budget allocation γ is now a variable included in the optimization process,

as proposed in Section 3.2.2 (γ is treated as part of the input vector to be optimized), unlike the

previous methods, where an pre-determined arbitrary fixed percentage of the budget is set.

(a) Performance of BO for variable γ Sharpe Ratio
maximization.

(b) Histogram of percentages of budget allocated
set by the optimization.

Figure 4.5: (a) Performance of BO for variable γ Sharpe Ratio maximization. (b) Histogram
of percentages of budget allocated set by the optimization.

Table 4.1: Mean and Median Returns for Different γ Buckets.

γ Bucket Mean Return Median Return

(0.0, 0.1125] 0.979 1.062

(0.225, 0.3375] 1.124 1.139

(0.3375, 0.45] 1.044 1.044

The BO optimization for this method with selected Sharpe Ratio optimization made the sys-

tem too conservative, most of the percentages of the budget to bet were concentrated between

1% and 3%, but it is worth noticing that the cases where the percentage was set, by the opti-

mization, in bucket (0.225, 0.3375] or (0.3375, 0.45], we obtained positive results, as shown in

Table 4.1.
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4.6 Long Term Return Distribution Optimization for Sharpe Ratio

Here, we present the results of the long-term optimization for Sharpe Ratio maximization

using the Monte Carlo method, as detailed in Section 3.2.4. The results are shown in Figure

4.6.

Figure 4.6: Performance of long-term COBYLA optimization for Sharpe Ratio maximization.

This method was the only one that used a not bayesian optimization method and the final

return was not as high as the other methods. It led to a multiplication of the initial budget by

almost 1.5x.

4.7 Multi-Objective Bayesian Optimization

Finally, we present the results of the multi-objective Bayesian optimization for the ex-

pectancy and standard deviation objectives, as detailed in Section 3.1.3. The results are shown

in Figure 4.7

Figure 4.7: Performance of Multi-Objective BO with E(R) and V ar(R) as objectives
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This method led to a high multiplication of the initial budget of about 10x, falling behind

the Joint Optimization of (γ, λ) = (0.1, 0.1) optimization and LCL, λ = 0.1 methods.

4.8 Exploratory Data Analysis Study Case

We have presented the performance results of several optimization methods. Each one of

them has its own characteristics, so if we dig into the associated data, we are able to understand

the reasons behind the results. Here, we present an exploratory data analysis of the test set

for the Joint Optimization of (γ, λ) = (0.1, 0.1) method, as a study case. We will analyze the

density of probabilities estimates of executed bets, the distribution of markets of executed bets,

and the distribution of bookmakers of executed bets.

(a) Density of probabilities esti-
mates of executed bets.

(b) Distribution of markets of ex-
ecuted bets.

(c) Distribution of bookmakers of
executed bets.

Figure 4.8: (a) Density plot of the probabilities estimates of the executed bets. (b) Distribution
of markets of the executed bets (the percentage of bets in each market is shown, such that the
sum of all markets is 100% for each month). (c) Distribution of bookmakers of executed bets.
All plots refer to the test set and Joint Optimization of (γ, λ) = (0.1, 0.1) method.

We can see that the density of probabilities estimates of executed bets is right skewed,

suggesting that the majority of bets have high probabilities estimates. Therefore, bets are being

place in high likelihood events.

The Over/Under market has been the predominant betting choice for the majority of the
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period observed, consistently holding a significant share.

Finally, although we had dozens of bookmakers in the dataset, executed bets have consis-

tently originated from a select few bookmakers. The consistent preference for these particular

bookmakers suggests that they likely offer more attractive bets.
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Conclusion

In this work, we have proposed a series of optimization methods, using bayesian framework,

to bet on soccer matches using Brazilian Serie A data, equipped by probability estimates of the

bets that describe 7× 7 matrix of possible outcomes of a soccer match. We have demonstrated

that all proposed methods led to a positive return on investment for the test set that comprehends

data from 2023 to 2024.

We highlighted our novel approach key characteristics. First, we explore negative correla-

tions of the bets, during the optimization tasks. Second, we consider multiple games simulta-

neously every day. Third, we have the access to a mechanism that estimates the probabilities of

the bets.

Considering those characteristics, we have proposed methods of optimization for the allo-

cation vector that varied between changing the objective function, the distribution of the return

itself and percentage of budget to be allocated.

Sharpe Ratio, γ = 50% led to a multiplication of 2.5x of initial portfolio, but did not reach

the high levels of some other methods. LCL, λ = 0.1, by changing the objective function, has

folded the initial portfolio by 15x. Now, the Joint (γ = 0.1, λ = 0.1) was clearly the best

method, with a multiplication of 50x of the initial portfolio. The Long Term, Sharpe Ratio,

γ = 50% although it led to a positive return on investment, it performed considerably worse
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than the other methods. Finally, MOBO, our most complex procedure, that simultaneously

and separately optimized the allocation vector for the objectives of expectancy and standard

deviation, has performed well, with a multiplication of 10x of the initial portfolio.

The overall results show great multiplications of the initial portfolio, which is a strong indi-

cator that the proposed methods are conceptually profitable. However, it is important to high-

light that the methods would face critical issues in a real world operation. Technically, we

are considering 64 bookmakers, which would require a complex software system to be imple-

mented that could on the fly deposit and withdraw money from the bookmakers for multiple

games simultaneously.

Operationally, the bookmakers have rules to limit the maximum bet, they block accounts

that are winning too much. Accounting wise, we did not consider any taxes, fees, or costs that

would be charged by the bookmakers or the government.

Finally, it is important to make it clear that this paper does not encourage gambling, but

rather presents a series of mathematical optimizations tasks that are equipped by a mechanism

that builds the probability estimates of the bets.
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