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ABSTRACT

METHODS FOR ESTIMATING USER POSITION IN THE NEAR-FIELD REGIME

Parameter estimation using signal processing methods is a significant topic in various do-

mains such as radar, seismic analysis, sonar, electronic surveillance, and more. This research

has focused on two key areas within signal processing: antenna array processing and user

position estimation.

In the context of antenna array processing, the user’s localization involves estimating the

position parameters of sources, often employing subspace methods such as Multiple Signal Clas-

sification (MUSIC) and estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT), among others. In far-field scenarios, a source is characterized solely by its direc-

tion of arrival (DOA). However, this assumption no longer holds in near-field situations where

sources are close to the sensor array. In such scenarios, the wavefront of the signal becomes

spherical, necessitating the consideration of two parameters for accurate source localization:

the direction of arrival and the distance between the source and the sensor array.

The near-field user position estimation is crucial due to several factors, especially when

considering advancing networks like sixth-generation (6G), where further improvements are

expected in localization and tracking. These improvements will result from the joint use of

high frequencies and large arrays. With the significant increase of the antenna number and

carrier frequency in future 6G systems, the near-field region of extremely large antenna arrays

(ELAAs) will expand by orders of magnitude. As a result, near-field communications will

play a critical role in future 6G mobile networks, where the propagation model must account

for differences from existing far-field fifth-generation (5G) systems. The spatial density and

the capacity of electromagnetic interactions between neighboring elements in ELAAs introduce

unique considerations for near-field position estimation. Understanding and addressing these

complexities will be the primary focus of this research.

This dissertation delves into two interconnected aspects of source localization: two-dimensional



(2D) source localization in the near-field and three-dimensional (3D) source localization in the

near-field.

In our 2D source localization approach, specifically for coordinates [x,y], we propose an inno-

vative method that combines the adaptive subspace estimation with the sub-array architecture

to accurately locate users in near-field scenarios. By including the sub-array techniques tailo-

red for ELAAs, we explore the rotational invariance in each sub-array to implement the PAST

(Projection Approximation Subspace Tracking) algorithm. This approach is computationally

efficient due to its recursive update formula, which negates the necessity for computationally

intensive tasks like matrix inversions or eigenvalue decompositions. In terms of precision, our

method surpasses existing approaches, as demonstrated in graphs of root-mean-square error

(RMSE) and graphs of cumulative distributed function (CDF) evaluations. Furthermore, the

accuracy of the PAST algorithm at a distance of 3.5 meters is 0.0250 meters at the 10th percen-

tile, outperforming other source localization methods. Similarly, at 25 meters, PAST achieves

an accuracy of 0.3983 (10th percentile). These results highlight PAST’s accuracy and reliabi-

lity for precise source localization in near-field scenarios, making it a robust choice for such

applications.

For 3D source localization, specifically for coordinates [x,y, z], we introduce a novel three-

dimensional position (3D-P) estimation method designed for wireless systems employing Uni-

form Rectangular Arrays (URAs). This approach virtually partitions the array into subarrays,

each is tasked with independently estimating azimuth and elevation angles. To handle the multi-

dimensional data effectively, we employ Higher-Order Singular Value Decomposition (HOSVD),

reducing tensor size for a more concise representation of data structure, particularly beneficial

in URA applications. Additionally, we utilize Taylor series approximation to address non-linear

least square problems, contributing to accurate position estimations, even in intricate scena-

rios with 8 scatters. Our approach showcases the algorithm’s efficacy in mitigating multipath

interference, with noise power exerting minimal influence. The results indicate that sub-meter

accuracy is attainable at 30 and 40 dB SNRs for the 2 and 8 scatters in all percentiles, empha-

sizing the robustness of the technique in favorable conditions.

Keywords: Near-Field, DOA, User’s Location, Sub-array, ELAA, 3D Positioning, URA,



HOSVD.



RESUMO

MÉTODOS DE ESTIMAÇÃO DA POSIÇÃO DO USUÁRIO NO REGIME DE CAMPO

PRÓXIMO

A estimativa de parâmetros usando métodos de processamento de sinais é um tópico im-

portante em várias áreas como radar, análise sísmica, sonar, vigilância eletrônica, entre outros.

Esta pesquisa se concentra em duas áreas-chave dentro do processamento de sinais: processa-

mento de arranjo de antenas e estimativa da posição de usuários.

No contexto do processamento de arranjos de antenas, a localização do usuário envolve a

estimativa dos parâmetros de posição das fontes, muitas vezes empregando métodos subespa-

ciais como Classificação Múltipla de Sinais (MUSIC), Estimativa de Parâmetros de Sinais via

Técnicas de Invariância Rotacional (ESPRIT), entre outros. Em cenários de campo distante,

uma fonte é caracterizada apenas pela sua direção de chegada (DOA). No entanto, essa suposi-

ção não é mais válida quando considera-se o campo próximo, onde as fontes estão próximas do

conjunto de sensores. Nesses cenários, a frente de onda do sinal torna-se esférica, necessitando

da consideração de dois parâmetros para a localização precisa da fonte: a direção de chegada e

a distância entre a fonte e o conjunto de sensores.

A estimativa da posição do usuário em campo próximo é crucial devido a vários fatores,

especialmente quando consideramos as redes avançadas, como a sexta geração (6G), onde é

esperado melhorias na localização e rastreamento. Essas melhorias serão resultados do uso de

altas frequências e grandes conjuntos de antenas. Com esse aumento significativo do número

de antenas e da frequência portadora em futuros sistemas 6G, a região de campo próximo dos

arranjos de antenas extremamente grandes (ELAAs) se expandirá em ordens de magnitude.

Como resultado, as comunicações de campo próximo desempenharão um importante papel nas

futuras redes móveis 6G, onde o novo modelo de propagação deve levar em consideração as

diferenças dos sistemas existentes da quinta geração (5G) de campo distante. A densidade

espacial e a capacidade de interações eletromagnéticas entre os elementos vizinhos nos ELAAs



introduzem considerações únicas para a estimativa da posição no campo próximo. Compreender

e abordar essas complexidades será o foco principal desta pesquisa.

Esta dissertação explora dois aspectos relacionados da localização de fontes: localização de

fontes bidimensional (2D) em campo próximo e localização de fontes tridimensional (3D) em

campo próximo.

Em nossa abordagem de localização de fonte 2D, especificamente para coordenadas [x,y],

propomos um método que combina a estimativa adaptativa de subespaço com a arquitetura de

submatriz para localizar com precisão os usuários no campo próximos. Ao abranger as técnicas

de sub-arranjos adaptados para ELAAs, exploramos a invariância rotacional de cada sub-arranjo

para introduzir o algoritmo de aproximação de projeção de rastreamento subespacial (PAST).

Esta abordagem é computacionalmente eficiente devido à sua fórmula de atualização recursiva,

que nega a necessidade de tarefas computacionalmente intensivas, como inversões de matrizes

ou decomposições de autovalores. Em termos de precisão, nosso método supera as abordagens

existentes, conforme demonstrado nos gráficos da raiz do erro quadrático médio (RMSE) e nos

gráficos da função de distribuição acumulada (CDF). Além disso, a precisão do algoritmo PAST

a uma distância de 3,5 metros é de 0,0250 metros no percentil 10, superando outros métodos

de localização de fonte. Da mesma forma, a 25 metros, o PAST atinge uma precisão de 0,3983

no 10th percentil). Esses resultados destacam a precisão e a confiabilidade do PAST para

localização precisa da fonte em cenários de campo próximo, tornando-o uma escolha robusta

para tais aplicações.

Para localização de fonte 3D, especificamente para coordenadas [x,y, z], introduzimos um

novo método de estimativa de posição tridimensional (3D-P) projetado para sistemas sem fio

empregando Arranjos Retangulares Uniformes (URAs). Esta abordagem particiona virtual-

mente o arranjo em subarranjos, cada uma com a tarefa de estimar independentemente o ângulo

de azimute e o ângulo de elevação. Para lidar com os dados multidimensionais de forma eficaz,

empregamos a decomposição de valores singulares de ordem superior (HOSVD), reduzindo o

tamanho do tensor para uma representação mais concisa da estrutura de dados, particular-

mente benéfica em aplicações URA. Além disso, utilizamos a aproximação da série de Taylor

para resolver problemas não lineares de mínimos quadrados, contribuindo para estimativas de

posição precisas, mesmo em cenários complexos com 8 dispersões. Nossa abordagem mostra a

eficácia do algoritmo na mitigação da interferência de multipercurso, com a potência do ruído



exercendo influência mínima. Os resultados indicam uma precisão submétrica alcançável em

SNRs em SNRs de 30 e 40 dB para os dispersões 2 e 8 em todos os percentis, enfatizando a

robustez da técnica em condições favoráveis.

Palavras-chave: Campo-Próximo, DOA, Localização de Usuário, Sub-Arranjo, ELAA, Posici-

onamento 3D, URA, HOSVD
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CHAPTER 1

INTRODUCTION

This chapter will introduce the background and motivation behind researching near-field

source localization. Furthermore, we will review the developments achieved in this area over the

past decades. Lastly, we will summarize our main contributions and outline the organization of

the dissertation. This work will include a comprehensive literature review on near-field source

localization techniques, highlighting advancements, challenges, and potential future directions.

1.1 BACKGROUND AND MOTIVATION

1.1.1 Background

The advent of Sixth-Generation (6G) mobile networks announced a transformative era for

emerging applications such as holographic video and digital replication. To realize these ad-

vancements, significant research endeavors are underway to innovate new wireless technologies

that surpass the Key Performance Indicators (KPI)s of Fifth-Generation (5G). These techno-

logies are positioned to significantly enhance spectral efficiency, capacity, and coverage in 6G

networks (CUI et al., 2022).

Ultra-Massive (UM) Multiple-Input-Multiple-Output (MIMO) and Cell-Free (CF) massive

MIMO are anticipated to achieve a tenfold increase in spectral efficiency through vast spatial

multiplexing and beamforming gains. Additionally, the introduction of Reconfigurable Intelli-

gent Surfaces (RIS) promises further enhancements in capacity and coverage by dynamically

manipulating the wireless environment using thousands of antennas. Moreover, Millimeter-

Wave (mmWave) and Terahertz (THz) UM-MIMO are expected to provide substantial spectral

resources supporting up to a 100-fold improvement in peak data rates, reaching Terabits per

Second (Tbps) (LIU et al., 2023).
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Despite addressing diverse application scenarios with varied KPIs, these technologies share a

common requirement: the utilization of Extremely Large Antenna Arrays (ELAA). Unlike the

massive MIMO technology in 5G, ELAA for 6G necessitates not only a significant increase in

the number of antennas but also leads to fundamental changes in electromagnetic characteristics

(CUI et al., 2022).

The electromagnetic radiation field is typically categorized into the far-field and radiation

near-field regions, with the boundary delineated by the Rayleigh distance, also known as the

Fraunhofer distance. The Rayleigh distance is proportional to the square of the array aperture

and carrier frequency. While existing 5G communications predominantly operate within the

far-field region due to a limited number of antennas, the substantial increase in antennas and

carrier frequency in 6G will expand the near-field region of ELAA significantly (LIU et al.,

2023), (CUI; DAI, 2021).

Consequently, near-field communications will play a fundamental role in future 6G mobile

networks, necessitating the consideration of spherical wave propagation models, distinct from

the planar wave models used in 5G’s far-field communications. However, the transition to near-

field propagation poses new challenges for ELAA systems that must be identified and addressed

to harness the full potential of 6G communications (CUI et al., 2022).

1.1.2 Problem Statement and Motivation

Many source localization algorithms have been designed to estimate the Direction of Arrival

(DOA) of signal sources, operating under the assumption that these sources are situated in the

far-field. In the far-field scenario, the distance of a source extends well beyond the Fresnel

region, and the signal wavefront is typically approximated as a plane wave upon reaching the

sensor array. Here, each source is characterized solely by its DOA (LIU et al., 2023).

However, in numerous real-world scenarios, sources may fall within the Fresnel region. In

such cases, the assumption of a plane wave does not hold, and the signal wavefronts become

spherical. Consequently, both the DOAs and ranges of sources become crucial for accurate

localization, leading to a more complex localization problem (LIU et al., 2023).

The computational complexity of near-field estimators is notably higher compared to far-
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field estimators, posing a challenge for devices with limited computational power, such as

portable devices. While advanced devices can handle this complexity for achieving high ac-

curacy, energy efficiency and real-time processing remain critical concerns, this is especially

true for long-time field applications, where the electronic energy can not be always guaranteed

(KORSO et al., 2013).

The developing source localization algorithms in the near-field of antenna systems, particu-

larly for ELAA, encompasses several fundamental factors. Firstly, within the realm of ELAA,

which encompasses both Two-Dimensional (2D) and Three-Dimensional (3D) array configura-

tions such as Uniform Linear Arrays (ULA) and Uniform Rectangular Arrays (URA), precise

source localization plays a critical role in optimizing the utilization of these massive antenna

arrays. Accurate estimations of DOA and range in the near-field are important in enhan-

cing spectral efficiency, minimizing interference, and overall system performance enhancement.

Moreover, with the increasing reliance on ELAA technology in 6G and future wireless communi-

cation systems, advancements in near-field source localization algorithms are indispensable for

unlocking the full potential of these next-generation networks. These advancements pave the

way for high data rates, low-latency communications, and seamless connectivity across diverse

deployment scenarios (CUI; DAI, 2021).

1.2 COMPREHENSIVE REVIEW OF NEAR-FIELD SOURCE LOCALIZATION TE-

CHNIQUES

In recent years, numerous methods have emerged specifically tailored for near-field source lo-

calization. Noteworthy among these are the Maximum Likelihood (ML) method (CEKLI; CIR-

PAN, 2001), (CHEN et al., 2002), Multiple Signal Classification (MUSIC) (ZHOU et al., 2020),

(LAVATE et al., 2010), the 2D MUSIC method (HUANG; BARKAT, 1991), and Estimation

of Signal Parameters via Rotational Invariance Techniques (ESPRIT) (LAVATE et al., 2010).

Traditional MUSIC-based approaches faced significant computational complexities due to the

use of Eigenvector Decomposition (EVD) for segregating received signals into signal and noise

spaces (HUANG et al., 2021). The work (HUANG et al., 2021) introduces a low-complexity

localization algorithm, employing Discrete Fourier Transform (DFT) for DOA estimation and

Orthogonal Matching Pursuit (OMP) for range estimation. Despite this advancement, chal-
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lenges such as frequency bias in DFT leading to DOA and range estimation errors persist.

Other techniques include the following method (STARER; NEHORAI, 1994), polynomial roo-

ting method (WEISS; FRIEDLANDER, 1993), weighted linear prediction method (GROSICKI

et al., 2005), and higher-order ESPRIT method (YUEN; FRIEDLANDER, 1998), (CHALLA;

SHAMSUNDER, 1995). Moreover, the innovative approach presented in (CHEN et al., 2020)

leverages compressive sensing and array interpolation to achieve high-resolution localization in

complex near-field environments. However, many existing algorithms either necessitate mul-

tidimensional search, encounter pairing problems or suffer from poor resolution due to heavy

aperture loss.

The advent of Deep Learning (DL) has also influenced source localization research, with

studies like (LIU et al., 2020), (CHAKRABARTY; HABETS, 2019), (LEE et al., 2021), (LIU

et al., 2019), and (KAMILARIS; PRENAFETA-BOLDÚ, 2018) exploring DL-based techniques.

These methods employ Deep Neural Network (DNN) or Convolutional Neural Network (CNN)

with preprocessed data, categorized into grid-free and grid-based approaches. While grid-free

methods lack resolution constraints but may risk errors, grid-based methods offer resolution at

the expense of computational resources and training data (LEE et al., 2021), (LIU et al., 2019),

(KAMILARIS; PRENAFETA-BOLDÚ, 2018).

Recent approaches like those described in (WYMEERSCH, 2020) and (ZHI; CHIA, 2007)

propose transforming the 2D search involved in the parameter estimation to a One-Dimensional

(1D) search strategy based on second-order statistics with symmetric-sub-array partitioning,

avoiding high-order statistics computation and multidimensional search. However, these methods

may incur low precision due to utilizing MUSIC and 2D- Inverse Fast Fourier Transform (IFFT)

with Fisher Information Matrix (FIM) analysis for the user’s estimation.

In the domain of 3D source localization, recent research has started to address the cons-

traints of near-field positioning using 5G antenna arrays, as seen in preliminary studies cited

in references (ELZANATY et al., 2020), (GUSTAFSSON, 2010). However, these investigati-

ons primarily focus on static scenarios and utilize non-Bayesian methodologies. For instance,

(GUERRA et al., 2021) evaluates practical algorithms leveraging Curvature of Arrival (COA)

but acknowledges its limitations tied to sensor geometry and placement accuracy, impacting

adaptability across scenarios and environments.
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Expanding on this context, papers referenced in (KORSO et al., 2013), (ELZANATY et

al., 2020), (GUSTAFSSON, 2010) delve into derivations relevant to near-field sources, parti-

cularly in scenarios featuring transmitter-receiver synchronization. Notably, (KORSO et al.,

2013), (OZTURK et al., 2023), (GUSTAFSSON, 2010), (EMENONYE et al., 2023) and (ABU-

SHABAN et al., 2021) introduce models tailored for scenarios involving metasurfaces, offering

insights into RIS-assisted localization scenarios.

1.3 MAIN CONTRIBUTIONS

In this study, we propose a comprehensive approach to near-field source localization levera-

ging ELAA in both 2D and 3D configurations. For both configurations, we partition the large

array in symmetric subarrays, these subarrays demonstrate rotational invariance properties

akin to far-field scenarios within the signal subspace.

For 2D configuration, our localization solution introduces an adaptive algorithm that tracks

subspace variations along the ELAA. We utilize the Projection Approximation Subspace Trac-

king (PAST) algorithm, known for its efficiency and robustness in subspace tracking, minimi-

zing computational complexity while maintaining accuracy. This stands in contrast to batch

methods like EVD of the sample covariance matrix or Singular Value Decomposition (SVD)

of the data matrix, which demand repetitive estimation of the subspace or eigenvectors. Our

solution consists of two steps: 1) applying PAST to symmetric subarrays for DOA estimation,

and 2) using the estimated angle of arrival for each subarray, we apply the intersection of lines

method for range estimation.

• Publication: Rocha, Larissa, and Daniel Costa Araújo. "Adaptive Subspace-Based User

Localization in Near-Field Regime Using Sub-Array Architecture,"XLI Simpósio Brasi-

leiro de Telecomunicações e Processamento de Sinais, 2023.

1.4 THESIS ORGANIZATION AND STRUCTURE

This thesis is organized into several distinct chapters, each focusing on key aspects of antenna

array systems and source localization techniques.
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In Chapter 2, we first present a brief introduction of the antenna characterization and

measurements. This chapter delves into the fundamental parameters of antenna arrays, high-

lighting various types of antennas and highlighting the significance of array arrangements such

as ULA and URA. Additionally, it addresses antenna measurement techniques essential for

system characterization and performance evaluation.

The third chapter explores measurement models and principles crucial for source localiza-

tion, including Time of Arrival (TOA), Time Difference of Arrival (TDOA), Time of Stationary

Arrival (TSOA), Received Signal Strength (RSS), and DOA. The chapter particularly focuses

on DOA estimation methods, elucidating why they offer superior performance compared to

other localization techniques.

Chapter 4 delves into various DOA estimation algorithms such as the Classical Beamforming

Method Classical Beamforming (CBF), Capon’s Beamformer, MUSIC, and ESPRIT. Each

algorithm’s principles, advantages, and limitations are discussed in detail.

The fifth chapter contrasts Far-Field Communications with Near-Field Communications,

highlighting the challenges posed by spherical wavefronts and introducing techniques like Taylor

approximation and Symmetric Subarray Partitioning to mitigate non-linearity issues associated

with spherical wavefronts in near-field localization.

In Chapter 6, we present a detail of our novel approach for 2D user location estimation in

near-field for ELAA, focusing on the adaptive algorithm employing PAST for efficient subs-

pace tracking. The chapter also discusses computational complexities and the methodology’s

effectiveness compared to other methods.

In Chapter 7, we present our 3D tensor localization method tailored for ELAA with URA.

Subarrays independently estimate azimuth and elevation angles, facilitated by Higher Order

Singular Value Decomposition (HOSVD) for compact data representation. Taylor series appro-

ximation aids in solving non-linear least square problems, ensuring precise position estimations.

The thesis concludes with a comprehensive synthesis of findings from each chapter, high-

lighting key contributions, limitations, and future research directions in the field of antenna

array systems and source localization techniques.



CHAPTER 2

ANTENNA CHARACTERIZATION AND
MEASUREMENTS

Antennas constitute indispensable elements within wireless communication systems, serving

as the conduits for signal transmission transforming electrical signals in wired systems into

electromagnetic waves that propagate through space. Conversely, they facilitate the reception

process, converting incoming electromagnetic waves into signals or voltages at their terminals

for subsequent processing by the receiver. Maxwell’s equations fully characterize the trans-

mitting and receiving functionalities within the antenna structures, providing a comprehensive

framework for understanding and optimizing antenna behavior in various communication sce-

narios. The foundation laid by these equations underscores the pivotal role antennas play in

the seamless exchange of information, making them essential components in modern wireless

communications (EIBERT; VOLAKIS, 2007).

In this study, our focus leans toward practical applications. For those seeking a deeper

understanding of electromagnetism, the author recommends referring to the book (KRAUS,

1988). While electromagnetism is indeed described using mathematical foundations governing

antenna radiation and ensures precision to avoid errors, our approach will not delve deeply into

complex equations or mathematical proofs.

One of the most basic questions that may be asked concerning antennas is “How do they

radiate?” A qualitative understanding of the radiation mechanism may be obtained by consi-

dering that antennas emit radiation through currents. Design involves managing currents to

create a desired radiation pattern (BALANIS, 1992). The challenge often lies in preventing

unintended radiation, especially in circuits. An antenna transforms bound circuit fields into

propagating electromagnetic waves and, by reciprocity, collects power from passing electro-

magnetic waves. According to Maxwell’s equations, any time-varying electric or magnetic field

produces the opposite field and forms an electromagnetic wave. The wave has its two fields
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oriented orthogonally, and it propagates in the direction normal to the plane defined by the per-

pendicular electric and magnetic fields. The electric field, the magnetic field, and the direction

of propagation form a right-handed coordinate system. The propagating wave field intensity

decreases by 1/R away from the source, whereas a static field drops off by 1/R2. Any circuit

with time-varying fields has the capability of radiating to some extent (MILLIGAN, 2005).

We consider only time-harmonic fields and use phasor notation with time dependence e(jωt).

An outward-propagating wave is given by e−j(βR−ωt), where β is the wave number given by

2π/λ. λ is the wavelength of the wave given by c/f , where c is the velocity of light (3 × 108

m/s in free space) and f is the frequency (MILLIGAN, 2005).

2.1 ANTENNA PARAMETERS AND FIGURES OF MERIT

Numerous parameters and figures of merit contribute to defining the performance of an

antenna system. The specific definitions of these metrics are available in references (BALANIS,

1992) and (IEEE. . . , 2014), with the terminologies used herein sourced from (IEEE. . . , 2014)

indicated in quotation marks. In this document, we highlight a selection of the most crucial

metrics in the following discussion.

2.1.1 Antenna Radiation

Antennas radiate spherical waves that propagate radially from the antenna’s center in a

designated coordinate system. As we move to significant distances, spherical waves can be

effectively represented as plane waves, offering a simplified problem-solving approach. It is

important to note that while plane waves are convenient for analysis, they are not physically

realizable as they necessitate infinite power (MILLIGAN, 2005). The radiation property of most

concern is the two- or three-dimensional spatial distribution of radiated energy as a function of

the observer’s position along a path or surface of constant radius. A convenient set of spherical

coordinate systems is shown in Fig. 2.1. The amplitude field pattern is a trace of the received

electric (magnetic) field at a constant radius. On the other hand, a graph of the spatial variation

of the power density along a constant radius is called an amplitude power pattern. Often the
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Figure 2.1: Coordinate system for antenna analysis (BALANIS, 2016).

field and power patterns are normalized concerning their maximum value, yielding normalized

field and power patterns. Also, the power pattern is usually plotted on a logarithmic scale or

more commonly in Decibels (dB) (BALANIS, 2016).

2.1.2 Field Regions

In this document, a fundamental aspect of antenna knowledge revolves around comprehen-

ding the distinct field regions associated with an antenna. The space surrounding an antenna

is typically divided into three regions: (a) the reactive near-field, (b) the radiating near-field

(Fresnel region), and (c) the far-field (Fraunhofer region), as depicted in Figure 2.2. These

designations help characterize the field behavior within each region. While there are no sudden

shifts in field configurations when crossing these boundaries, notable differences exist among

them. Although the exact boundaries between these regions are not universally defined, va-

rious criteria have been established and are commonly employed to delineate these regions

(BALANIS, 2016).

The reactive near-field is defined as that portion of the near-field region immediately sur-

rounding the antenna wherein the reactive field predominates. For most antennas, the outer
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Figure 2.2: Field regions of an antenna (BALANIS, 2016).

boundary of this region is commonly taken to exist at a distance R < 0.62
√
D3/λ from the

antenna surface and D is the largest dimension of the antenna. For a very short dipole or

equivalent radiator, the outer boundary is commonly taken to exist at a distance λ/2π from

the antenna surface (BALANIS, 2016).

The radiating near-field (Fresnel) is the region of the field of an antenna between the reactive

near-field region and the far-field region wherein radiation fields predominate and wherein the

angular field distribution is dependent upon the distance from the antenna. The radial distance

R over which this region exists is 0.62
√
D3/λ ≤ R < 2D2/λ (provided D is large compared to

the wavelength).

The far-field (Fraunhofer) region is characterized as that portion of the antenna’s field where

the angular field distribution remains largely constant regardless of distance from the antenna.

Here, the real part of the power density prevails. The radial distance R defining the extent of

this region is R ≥ 2D2/λ.

The amplitude pattern of an antenna undergoes shape variations, both magnitude and

phase, as the observation distance transitions from the reactive near-field to the far-field. Fig.

2.3 illustrates the typical evolution of the antenna shape, where D represents the largest dimen-

sion. In the reactive near-field region, the pattern is more spread out and nearly uniform, with

slight variations. As the observation point shifts to the radiating near-field region (Fresnel),

the pattern smoothness, forms lobes. In the far-field region (Fraunhofer), the pattern becomes



2.1 – Antenna Parameters and Figures of Merit 11

Figure 2.3: Typical changes of antenna amplitude pattern shape from reactive near-field toward
the far-field (BALANIS, 2016).

well-defined, usually comprising a few minor lobes and one or more major lobes.

2.1.2.1 Radiation Equations for Near-Field and Far-Field

To describe the upcoming antenna parameters, it is essential first to understand the behavior

of the electric and magnetic fields in the different regions, near and far fields. As mentioned

previously, our approach will not delve into complex equations or mathematical proofs. For

more detailed explanations and a deeper understanding, we encourage readers to consult the

book (BALANIS, 2012), which serves as the primary reference for this section.

According to (BALANIS, 2012), In the near-field region, the vector potential A due to a

current density J is given by:

A(x, y, z) =
µ

4π

∫∫∫
V

J(x′, y′, z′)
e−jβR

R
dv′, (2.1)

where µ represents the magnetic permeability of the medium in which the electromagnetic fields

are being calculated, and R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 is the distance between the

source point x′, y′, z′ and the observation point x, y, z.

The magnetic field H is derived from A using:

HA =
1

µ
∇×A. (2.2)
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Applying vector identities and interchanging integration and differentiation, we obtain:

HA(x, y, z) = − 1

4π

∫∫∫
V

(R̂× J)
1 + jβR

R2
e−jβRdv′, (2.3)

where R̂ is a unit vector directed along the line joining any point of the source and the ob-

servation point. This expression shows the intricate dependency on R, typical of near-field

behavior.

Similarly, the electric field E is calculated using:

EA =
1

jωε
∇×HA. (2.4)

Resulting in components:

EAx = − jη

4πβ

∫∫∫
V

{C1Jx + (x− x′)C2 [(x− x′)Jx + (y − y′)Jy + (z − z′)Jz]} e−jβRdv′, (2.5)

EAy = − jη

4πβ

∫∫∫
V

{C1Jy + (y − y′)C2 [(x− x′)Jx + (y − y′)Jy + (z − z′)Jz]} e−jβRdv′, (2.6)

EAz = − jη

4πβ

∫∫∫
V

{C1Jz + (z − z′)C2 [(x− x′)Jx + (y − y′)Jy + (z − z′)Jz]} e−jβRdv′, (2.7)

where

C1 =
−1− jβR + β2R2

R3
, (2.8)

C2 =
3 + j3βR− β2R2

R5
. (2.9)

On the other side, in the far-field approximation, R is simplified as R ≈ r − r̂ · r′, where

r = |r| is the distance from the origin to the observation point (x, y, z), r′ is the vector from

the origin to the source point (x′, y′, z′), r̂ = r
r

is the unit vector in the direction of r, and r̂ · r′

is the dot product of r̂ and r′, representing the projection of r′ onto r̂. This approximation

simplifies the expression for A (BALANIS, 2012):

A(x, y, z) ≈ µe−jβr

4πr

∫∫∫
V

J(x′, y′, z′)ejβr̂·r
′
dv′, (2.10)

where r is the distance from the source to the observation point.

The magnetic field H in the far-field can be derived from A using:

HA =
1

µ
∇×A. (2.11)
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In the far-field, this simplifies to:

HA(x, y, z) ≈
jβ

4π

e−jβr

r
r̂×

∫∫∫
V

J(x′, y′, z′)ejβr̂·r
′
dv′. (2.12)

This expression indicates that the magnetic field in the far-field region predominantly depends

on the current distribution and decays as 1/r.

Similarly, the electric field E is calculated using:

EA =
1

jωε
∇×HA, (2.13)

where ε represents the electric permittivity of the medium. Applying the far-field approxima-

tion:

EA(x, y, z) ≈ ηr̂×HA, (2.14)

where η =
√
µ/ε is the intrinsic impedance of the medium.

To describe the antenna parameters comprehensively, understanding the behavior of electric

and magnetic fields in both near-field and far-field regions is crucial. In the near-field, the fields

exhibit complex dependencies on distance and current distribution. Both electric and magnetic

fields decay slowly with distance, following intricate spatial variations. Conversely, in the far

field, fields simplify to depend predominantly on 1/r. Here, the electric and magnetic fields are

orthogonal to each other and to the direction of propagation, and they decay significantly with

distance from the source (EIBERT; VOLAKIS, 2007).

These field behaviors directly influence the calculation of antenna parameters such as Ra-

diation Power Density, Gain, and Directivity. In the far-field region, these parameters can be

more straightforwardly derived due to the simplified field expressions. Radiation Power Density

is proportional to the square of the field intensity and inversely proportional to the square of

the distance. Gain and Directivity calculations rely on the far-field radiation patterns, which

are easier to characterize due to the uniformity and predictability of the fields. In the near-field

region, however, these parameters require careful consideration of the complex field interacti-

ons and spatial variations, making the calculations more challenging and often necessitating

numerical methods for accurate characterization (KRAUS, 1988).
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2.1.3 Radiation Power Density

Electromagnetic waves are used to transport information through a wireless medium or a

guiding structure, from one point to the other. It is then natural to assume that power and

energy are associated with electromagnetic fields. In general, the power density is complex. In

the reactive near-field, the imaginary component is dominant. In the far-field, the real part is

dominant. The power density S is expressed as (BALANIS, 2016):

S =
1

2
E×H∗ = Sr + jSi, (2.15)

where (·)∗ indicates complex conjugate. The real part is usually referred to as radiation density.

2.1.4 Radiation intensity

The radiation intensity U quantifies the power emitted from an antenna per unit solid angle.

Typically evaluated in the far-field, it represents the distribution of radiated power in different

directions. Mathematically, it is linked to the real part of the power density by the relationship

(VOLAKIS; VOLAKIS, 2007) (BALANIS, 2016):

U = r2Sr, (2.16)

where r is the spherical radial distance.

2.1.5 Beamwidth

Beamwidth is the angular separation between two directions where the radiation intensity is

identical, and there are no other intermediate points with the same value. When the intensity

reaches half of the maximum, it is termed Half-Power Beamwidth (HPBW). A typical antenna

pattern has a major lobe, side lobes, minor lobes, a back lobe, and several nulls, as illustrated

in Fig. 2.4 (MILLIGAN, 2005).

A major lobe (also called the main beam) is defined as the radiation lobe containing the

direction of maximum radiation. In Fig. 2.4 the major lobe is pointing in the θ = 0 direction.
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Figure 2.4: Linear plot of power pattern and its associated lobes and beamwidths (BALANIS,
2016).

In some antennas, such as split beam antennas, there may exist more than one major lobe

(BALANIS, 1992).

A minor lobe is any lobe except a major lobe. In Fig. 2.4 all the lobes except the major

can be classified as minor lobes.

A side lobe is a radiation lobe in any direction other than the intended lobe. (Usually, a

side lobe is adjacent to the main lobe and occupies the hemisphere in the direction of the main

beam).

A back lobe is a radiation lobe whose axis makes an angle of approximately 180◦ to the beam

of an antenna. Usually, it refers to a minor lobe that occupies the hemisphere in a direction

opposite to that of the major (main) lobe.

An isotropic radiator, a hypothetical and lossless antenna with uniform radiation intensity

in all directions, serves as a convenient reference for expressing the directive properties of real

antennas. Its radiation density Sr0 and intensity U0 are defined as (BALANIS, 2016):

Sr0 = Pr

4πr2s
, (2.17)

U0 = Pr

4π
, (2.18)

where Pr represents the power radiated by the antenna.
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2.1.6 Directivity

Directivity is one of the most important figures of merit that describes the performance of

an antenna. It is defined as the ratio of the radiation intensity in a given direction from the

antenna to the radiation intensity averaged over all directions. Using Eq. (2.18), it can be

written as (VOLAKIS; VOLAKIS, 2007) (BALANIS, 2016):

Dr =
U(θ, ϕ)

U0

=
4πU(θ, ϕ)

Pr
, (2.19)

where U(θ, ϕ) is the radiation intensity in the direction θ, ϕ, U0 is the radiation intensity of

isotropic source and Pr is the radiated power. If the direction is not specified, it implies the

direction of maximum radiation intensity (maximum directivity) expressed as:

Dr0 =
Umax(θ, ϕ)

U0

=
4πUmax(θ, ϕ)

Pr
. (2.20)

The directivity is an indicator of the relative directional properties of the antenna.

2.1.7 Gain

Gain is defined as the ratio of the radiation intensity in a specific direction to the radiation

intensity that would result from isotropic radiation of the power accepted by the antenna. This

can be expressed using Eq. (2.18) as (VOLAKIS; VOLAKIS, 2007) (BALANIS, 2016):

G =
U(θ, ϕ)

Ua
=

4πU(θ, ϕ)

Pa
, (2.21)

where Pa denotes the accepted (input) power to the antenna, it is crucial to note that when

a specific direction is not specified, it implies the direction of maximum radiation, which cor-

responds to maximum gain. In simplest terms, the main difference between the definitions of

directivity, as given by Eq. (2.19), and gain, as given by Eq. (2.21), is that directivity is based

on the radiated power while the gain. Since all of the accepted (input) power is not radiated

(because of losses), the two are related by:
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Pr = erPa, (2.22)

where er is the radiation efficiency of the antenna as defined by the ratio of the total power

radiated by an antenna to the net power accepted by an antenna from the connected transmitter.

By using Eq. (2.22) and Eq. (2.19) the gain can be expressed as:

G = er
4πU(θ, ϕ)

Pr
= erDr. (2.23)

For a lossless antenna, its gain is equal to its directivity.

2.2 TYPE OF ANTENNA

In the preceding sections, we have discussed parameters that characterize the performance

of antennas. Now, we delve into the main types of antennas, each designed with specific

configurations tailored to diverse applications. Table 2.1 serves as a comprehensive guide,

presenting an overview of these antenna types along with their distinctive configurations and

applications.

In general, antenna arrays have higher efficiency in space, frequency, and time than ordinary

antennas. Thus, an increasing number of ordinary antennas are replaced by antenna arrays in

practice, and researchers have transferred their focus on antenna arrays from ordinary antennas.

Consequently, in this work, we analyze the performance of antenna arrays, which are more

widely used than ordinary antennas, in user position estimation (VOLAKIS; VOLAKIS, 2007).

Table 2.1: Types of Antennas

Type of Antenna Examples Applications

Wire Antennas Dipole, Monopole, Helix, Loop Personal, Buildings, Ships, Automobiles, Spacecrafts

Aperture Antennas Waveguide, Horn Flush-mounted, Aircraft, Spacecraft

Reflector Antennas Parabolic, Corner Microwave Communication, Satellite Tracking, Radio Astronomy

Lens Antennas Convex-plane, Concave-plane, Convex-convex, Concave-concave Very High-Frequency Applications

Microstrip Antennas Circular, Rectangular Metallic Patch Aircraft, Spacecraft, Satellites, Missiles, Cars, Mobile Phones

Array Antennas Yagi-Uda, Microstrip Patch Array, Aperture Array, Slotted Waveguide Array High-Gain Applications, Radiation Pattern Control
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2.3 ANTENNA ARRAY

Antenna arrays play a crucial role in the realm of wireless communication, with their signi-

ficance expected to escalate further in the context of emerging technologies like 6G, and that

is why the antenna array is a pillar for this work. An antenna array, composed of multiple

individual antennas working collaboratively, offers distinctive advantages such as enhanced di-

rectional sensitivity, increased data rates, improved spatial diversity, and facilitating MIMO

configurations for improved reliability (LIBERTI; RAPPAPORT, 1999). In 6G communication

systems, where the demand for unprecedented data speeds, ultra-reliable low-latency commu-

nication, and massive device connectivity is paramount, antenna arrays shine as a key enabling

technology. Their ability to spatially focus and steer signals, mitigate interference, and support

beamforming techniques positions antenna arrays as instrumental components for achieving the

ambitious goals of 6G networks, heralding a new era of high-performance and versatile wireless

communication (ELZANATY et al., 2023).

An antenna array refers to a configuration of multiple antennas working together as a

collective unit. These antennas are strategically arranged to achieve specific performance cha-

racteristics that may not be possible with a single antenna. In this section, we will cover

crucial concepts regarding antenna arrays, which will be very important throughout this work

(TREES, 2002).

2.3.1 Basic of Array Signal Processing

We investigate the array’s response to an external signal field, comprising isotropic sensors

positioned at locations pm, as depicted in Fig. 2.5. The spatial sampling of the signal field at

these positions pm, for m = 0,1, · · · ,M−1. An external signal field impinges on the array from

the direction (θ, ϕ), with θ and ϕ denoting the elevation angle and azimuth angle respectively

(TREES, 2002).

For simplicity, the external signal field is depicted as a plane wave. The input comprises a

plane wave propagating in the direction u with a temporal frequency ω (expressed in radians).

The temporal responses at the sensors induced by this input can be described in two equivalent
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Figure 2.5: Signal receiving model. Adapted from (YANG, 2020) and (TREES, 2002).

ways. The first approach highlights the time delays associated with the arrival times at different

sensors. Let s(t) be the signal observed at the origin of the coordinate system, and then the

received signals at the sensor array can be given as (TREES, 2002):

s(t,p) =


s (t− τ0)
s (t− τ1)

...
s (t− τM−1) ,

 , (2.24)

where

τm =
uTpm
c

(2.25)

and (·)Tdenotes the transpose operation.

The relationships between rectangular and spherical coordinates (x = r sin θ cosϕ, y =

r sin θ sinϕ and z = r cos θ) the u is a unit vector that can be expressed as:

u =

 − sin θ cosϕ
− sin θ sinϕ

− cos θ

 . (2.26)

In many practical scenarios, signals are commonly modulated, and the signal observed at

the origin of the coordinate system can be expressed as (YANG, 2020):
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s(t) = m(t)ej2πf0t, (2.27)

where m(t) represents the modulation message or the complex envelope of s(t), and f0 is the

carrier frequency. Consequently, the received signal vector takes the form (YANG, 2020):

x(t) =


s (t− τ0)
s (t− τ1)

...
s (t− τM−1)

 =


m(t− τ0) e

−j2πf0τ0

m(t− τ1) e
−j2πf0τ1

...
m(t− τM−1) e

−j2πf0τM−1

 ej2πf0t. (2.28)

In practical scenarios, it is common for the complex envelope m(t) to exhibit narrowband

characteristics, implying a much smaller bandwidth compared to the carrier frequency. This

simplifies the signal expressions:

m(t) ≃ m(t− τ0) ≃ m(t− τ1) ≃ · · · ≃ m(t− τM−1) . (2.29)

Under this narrowband assumption, the received signal vector can be expressed as:

x(t) =


s (t− τ0)
s (t− τ1)

...
s (t− τM−1)

 = m(t)ej2πf0t


e−j2πf0τ0

e−j2πf0τ1
...

e−j2πf0τM−1

 = s(t)a(θ, ϕ). (2.30)

Here, the steering vector the array manifold vector, denoted as a(θ, ϕ), is defined by:

a(θ, ϕ) =


e−j2πf0τ0

e−j2πf0τ1
...

e−j2πf0τM−1

 . (2.31)

In an antenna array, the steering vector represents the spatial sensitivity pattern of the array

with respect to the direction of incoming signals. It is a mathematical vector that describes

how the signals from different directions are weighted or combined by the array elements. The

steering vector is a crucial concept in array signal processing and beamforming (TREES, 2002).

Typically, there are multiple source signals, and the propagation environment introduces

noise. Assuming there are K incoming signals, the signal received by the sensor array can be

expressed as (YANG, 2020):
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x(t) =


e−j2πf0τ1,0 · · · e−j2πf0τK,0

e−j2πf0τ1,1 · · · e−j2πf0τK,1

... . . . ...
e−j2πf0τ1,M−1 · · · e−j2πf0τK,M−1




s1(t)
s2(t)

...
sK(t)

+


w0(t)
w1(t)

...
wM−1(t)

 . (2.32)

In this context, sk(t) represents the signal transmitted by the kth source and observed at

the origin of the coordinate system (k = 1,2, · · · , K). Additionally, wm(t) denotes the noise

collected by the sensor element located at position pm. The term τk,m signifies the time delay

of the observation of sk(t) at the sensor element at pm in relation to the observation at the

origin of the coordinate system.

In matrix form, Eq. (2.32) can be expressed as:

x(t) = As(t) +w(t). (2.33)

Here, A is the directional matrix of the sensor array, given by:

A =
[
a (θ1, ϕ1) a (θ2, ϕ2) · · · a (θK , ϕK)

]
, (2.34)

where a (θk, ϕk) is the directional vector associated with the kth source. The incoming signal

vector s(t) is represented as:

s(t) =
[
s1(t) s2(t) · · · sK(t)

]T (2.35)

and the noise vector w(t) is given by:

w(t) =
[
w0(t) w1(t) · · · wM−1(t)

]T
. (2.36)

In general, the noise is assumed to be Gaussian white temporally and spatially, characterized

by:

E
{
w(t)wH(t)

}
=


σ2

σ2

. . .
σ2

 (2.37)

where σ2 represents the power of the noise and is independent of the source signals.
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The model for the signals observed by the sensor array comprises the directional matrix A,

the incoming signal vector s(t), and the noise vector w(t), as analyzed above.

2.3.2 Conventional Configurations of Sensor Arrays

2.3.2.1 Uniform Linear Array

A ULA, or Uniform Linear Array, is a type of sensor array configuration commonly used in

signal processing and antenna systems. It consists of multiple sensor elements (or antennas)

arranged linearly with uniform spacing between them. Fig. 2.6 illustrates a ULA with M

sensors positioned along the X-axis, each spaced apart by a distance d. For mathematical

convenience, we designate the first element of the array as the origin of the coordinate system

(TREES, 2002).

The positions of the sensor elements can be written as:

pm = (md, 0,0)T m = 0,1,2, . . . ,M − 1. (2.38)

Consider an incoming signal arriving at the ULA from a direction θ. According to Eq.

(2.25), the delay of the received signal at the sensor element positioned at pm relative to the

signal observed at the origin of the coordinate system can be expressed as:

Figure 2.6: Signal receiving model. Adapted from (YANG, 2020) and (TREES, 2002).
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τm = −md sin θ
c

. (2.39)

Hence, the directional vector corresponding to the external signal field is expressed as:

aULA(θ) =


1

ej2πf0
d sin θ

c

...
ej2πf0

(M−1)d sin θ
c

 . (2.40)

For K source signals arriving from directions {θ1, θ2, · · · , θK}, the signal received by the

ULA is expressed as (YANG, 2020):

xULA(t) = AULAs(t) +w(t) (2.41)

with the corresponding directional matrix of the ULA denoted as:

AULA =
[
aULA (θ1) aULA (θ2) · · · aULA (θK)

]
. (2.42)

Typically, the inter-element spacing d of ULAs is set as d = λ
2
. In this case, AULA can be

redefined as:

AULA =


1 1 · · · 1

ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

...
... . . . ...

ej(M−1)π sin θ1 ej(M−1)π sin θ2 · · · ej(M−1)π sin θK

 . (2.43)

2.3.2.2 Uniform Planar Array

A Uniform Planar Array is a type of antenna array configuration that consists of multiple

parallel ULAs arranged in a planar layout. Unlike a ULA, which is a one-dimensional array, a

UPA enables the resolution of both elevation and azimuth angles. In a UPA, sensor elements

are arranged in a grid pattern, forming rows and columns. This grid structure allows for

improved spatial coverage and directional sensitivity. In Fig. 2.7, a UPA lies in the X − Z

plane, containing My sensor elements in each column and Mx sensor elements in each row. The

inter-element spacing is d, and the element in the first column and the first row serves as the

origin of the coordinate system (TREES, 2002).
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The position of the sensor elements is given by:

pmx,my = (mxd, 0,myd)
T (2.44)

with mx = 0,1,2, . . . ,My − 1 and my = 0,1,2, . . . ,Mx − 1.

Suppose an incoming signal arrives at the UPA from direction (θ, ϕ), with θ and ϕ repre-

senting the elevation and azimuth angles, respectively. For the ULA along the Z-axis, the

time delay of the received signal at the sensor element located at p0,my concerning the signal

observed at the origin is expressed as:

τ0,my = −myd cos θ

c
. (2.45)

The directional vector of the ULA associated with this incoming signal is:

aULA,Z(θ, ϕ) =


1

ej2πf0
d cos θ

c

...
ej2πf0

(My−1)d cos θ

c

 . (2.46)

For the ULA along the X-axis, the time delay of the received signal at the sensor element

Figure 2.7: Signal receiving model. Adapted from (YANG, 2020) and (TREES, 2002).
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located at pmx,0 concerning the signal observed at the origin is expressed as:

τmx,0 = −mxd sin θ cosϕ

c
. (2.47)

The directional vector of the ULA associated with this incoming signal is:

aULA,X(θ, ϕ) =


1

ej2πf0
d sin θ cosϕ

c

...
ej2πf0

(Mx−1)d sin θ cosϕ
c

 . (2.48)

The directional vector of the UPA associated with the incoming signal is then given by:

aUPA(θ, ϕ) = aULA,X(θ, ϕ)⊗ aULA,Z(θ, ϕ) (2.49)

where ⊗ represents the Kronecker product.

ForK source signals arriving from directions {(θ1, ϕ1) (θ2, ϕ2) · · · (θK , ϕK)}, the signal

received by the UPA is expressed as (YANG, 2020):

xUPA(t) = AUPAs(t) +w(t) (2.50)

with the directional matrix of the UPA denoted as:

AUPA =
[
aUPA (θ1, ϕ1) aUPA (θ2, ϕ2) · · · aUPA (θK , ϕK)

]
. (2.51)

Setting the inter-element spacing d as λ
2
, the directional matrix aUPA can be re-written as:
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AUPA =



1 · · · 1
ejπ cos θ1 · · · ejπ cos θK

... . . . ...
ej(My−1)π cos θ1 · · · ej(My−1)π cos θK

ejπ sin θ1 cosϕ1 · · · ejπ sin θK cosϕK

ejπ(sin θ1 cosϕ1+cos θ1) · · · ejπ(sin θK cosϕK+cos θK)

... . . . ...
ejπ(sin θ1 cosϕ1+(My−1) cos θ1) · · · ejπ(sin θK cosϕK+(My−1) cos θK)

... . . . ...
ej(Mx−1)π sin θ1 cosϕ1 · · · ej(Mx−1)π sin θK cosϕK

ejπ((Mx−1) sin θ1 cosϕ1+cos θ1) · · · ejπ((Mx−1) sin θK cosϕK+cos θK)

... . . . ...
ejπ((Mx−1) sin θ1 cosϕ1+(My−1) cos θ1) · · · ejπ((Mx−1) sin θK cosϕK+(My−1) cos θK)



. (2.52)

The antenna array, including ULA and URA configurations, holds a significant role in

wireless communication due to their advantages. To enhance its performance even further,

source localization has been studied extensively in the array processing literature. The next

chapter explores measurement models and their intricacies for source localization.



CHAPTER 3

SOURCE LOCALIZATION

Recent years have seen rapidly increasing demand for services and systems that depend

upon the accurate positioning of people and objects. This has led to the development and

evolution of numerous positioning systems, that contribute significantly to fields such as acous-

tics, wireless communication, radar technology, and environmental monitoring. The process

involves determining the spatial coordinates or position of a signal-emitting source based on

measurements obtained from an array of sensors or receivers (GEZICI, 2008).

Source localization is a multidisciplinary field that combines principles from physics, signal

processing, and mathematics. Researchers and engineers develop sophisticated algorithms and

techniques to process sensor data, extract relevant information, and accurately estimate the

source’s location. The advancements in source localization methodologies contribute to the im-

provement of sensor technologies, enabling more precise and reliable measurements. Ultimately,

the importance of source localization in scientific research lies in its ability to provide valuable

insights, enhance decision-making processes, and contribute to the development of innovative

solutions across a diverse range of applications (ZEKAVAT; BUEHRER, 2011).

In wireless communication, source localization plays a important role in locating mobile

devices and identifying potential interference sources. The ability to determine the geographical

location of signal-emitting devices is crucial for optimizing network performance, managing

resources efficiently, and ensuring the security of wireless networks. Moreover, in radar systems,

source localization enables the tracking and identification of objects in the airspace, facilitating

applications in aviation, defense, and weather monitoring (BRENA et al., 2017).

The significance of accurate source localization extends beyond traditional wireless com-

munication applications, encompassing emerging technologies such as 5G and the Internet of

Things (IoT). In 5G networks, where MIMO systems are deployed, antenna arrays enable the

exploitation of spatial multiplexing and beamforming techniques, enhancing both data rates
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and spectral efficiency. Furthermore, in IoT deployments, source localization contributes to the

efficient management of connected devices by providing valuable spatial context. As wireless

communication systems continue to evolve, the continued advancement of source localization

techniques, particularly those leveraging antenna arrays, remains crucial for optimizing network

performance and enabling novel applications in diverse domains (GEOK et al., 2020).

3.1 MEASUREMENT MODELS AND PRINCIPLES FOR SOURCE LOCALIZATION

The determination of a source’s location based on measurements collected from an array of

spatially separated sensors has been a pivotal challenge across various domains, including radar,

sonar, Global Positioning Systems (GPS), mobile communications, multimedia, and wireless

sensor networks. Commonly employed measurements for source localization encompass TOA,

TDOA, TSOA, RSS, and DOA. Essentially, TOAs, TDOAs, TSOAs, and RSSs provide distance

information between the source and sensors, whereas DOAs indicate the source bearings relative

to the receivers. Despite their significance, achieving accurate positioning is intricate due to

the nonlinear relationships inherent in these measurements with respect to the source location

(GEZICI, 2008).

The primary learning objectives for this chapter encompass: (i) gaining a comprehensive

understanding of the development of positioning algorithms utilizing TOA, TDOA, TSOA,

RSS, and DOA measurements; and (ii) acquiring knowledge about the performance metrics

associated with position estimation (ZEKAVAT; BUEHRER, 2011).

3.1.1 TOA

TOA signifies the unidirectional time taken by a signal to traverse the distance between

a source and a receiver. Achieving precise synchronization among the target and all receivers

is essential for obtaining accurate TOA information, though this synchronization requirement

can be relaxed if measuring the round-trip or two-way TOA. The distance between the source

and the receiver is determined by multiplying the TOA by the known propagation speed of the

electromagnetic wave in the air, denoted as c (GEZICI, 2008).
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For instance, in scenarios where sound and light propagate through air, the speeds are

approximate cs ≈ 340 ms−1 and c ≈ 3×108 ms−1 m/s respectively. Assuming no measurement

error, each TOA corresponds to a circle centered at a receiver, where the source must lie in

2D space. As discussed previously, geometrically, three or more noise-free TOA-derived circles

intersect uniquely at a point, representing the source position. This implies that at least three

sensors are required for 2D positioning. However, two TOA circles typically intersect at two

points, indicating two potential source locations. Despite this, the circles may not intersect or

could have multiple intersections in the presence of disturbances, rendering direct circle-based

solutions ineffective. With three or more receivers, it becomes more suitable to transform

the noisy TOAs into a series of circular equations. These equations are then utilized within

an optimization framework, considering the sensor array geometry, to determine the source

position (ZEKAVAT; BUEHRER, 2011).

Mathematically, the TOA measurement model is formulated as follows. Let x =
[
x y

]T
be the unknown source position and xm =

[
xm ym

]T be the known coordinates of the M th

sensor, m = 1,2, · · · ,M , for now M ≥ 3 is the number of receivers. The distance between the

source and the M th sensor, denoted by dm, is simply (ZEKAVAT; BUEHRER, 2011) (BRENA

et al., 2017):

dm = ∥x− xm∥2 =
√

(x− xm)
2 + (y − ym)

2, m = 1,2, · · · ,M. (3.1)

Rewriting Eq. (2.25) in terms of dm, we make the assumption, without loss of generality,

that the source emits a signal at time 0 and the Mth sensor receives it at time tTOA denoted

as:

tTOA =
dm
c
, m = 1,2, · · · ,M. (3.2)

In practice, TOAs are susceptible to measurement errors. As a result, the range measure-

ment based on multiplying tTOA by c, denoted by yTOA,m, is modeled as:

xTOA,m = dm + wTOA,m =

√
(x− xm)

2 + (y − ym)
2 + wTOA,m, m = 1,2, · · · ,M, (3.3)

where wTOA,m is the range error in xTOA,m, which is resulted from the TOA disturbance.
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The Eq. (3.3) can be succinctly expressed in vector form as:

xTOA = sTOA(x) +wTOA, (3.4)

where

xTOA =
[
xTOA,1 xTOA,2 · · · xTOA,m

]T
,

wTOA =
[
wTOA,1 wTOA,2 · · · wTOA,m

]T
,

(3.5)

and

sTOA(x) = d =



√
(x− x1)

2 + (y − y1)
2√

(x− x2)
2 + (y − y2)

2

...√
(x− xm)

2 + (y − ym)
2

 . (3.6)

In this context, sTOA(x) denotes the established function, inherently dependent on the

parameter vector x and essentially representing the noise-free distance vector. The source

localization problem based on TOA measurements is to estimate x given xTOA, defined in Eq.

(3.4).

For streamlined algorithm development, rigorous analysis, and Cramér-Rao Lower Bound

(CRLB) computation, we adopt the assumption that {wTOA,m} constitutes zero-mean uncorre-

lated Gaussian processes characterized by variances
{
σ2
TOA,m

}
. Notably, the zero-mean property

signifies Line-of-Sight (LOS) transmission. The Probability Density Function (PDF) governing

each scalar random variable xTOA,m, denoted as p (xTOA,m), takes the form of (ZEKAVAT;

BUEHRER, 2011):

p (xTOA,m) =
1√

2πσ2
TOA,m

exp

(
− 1

2σ2
TOA,m

(xTOA,m − dm)
2

)
(3.7)

which is characterized by its mean and variance, dm and σ2
TOA,m, respectively. In other words,

we can write xTOA,m ∼ N
(
dm, σ

2
TOA,m

)
. The PDF for xTOA, denoted by p (xTOA), is:

p (xTOA) =
1

(2π)M/2 |CTOA|1/2
exp

(
−1

2
(xTOA − d)T C−1

TOA (xTOA − d)

)
, (3.8)
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where CTOA is the covariance matrix for xTOA which corresponds to:

CTOA = E
{
(xTOA − d) (xTOA − d)T

}
= E

{
wTOAw

T
TOA

}
= diag

(
σ2
TOA,1, σ

2
TOA,2, · · · , σ2

TOA,m

)
.

(3.9)

In Eq. (3.9), the third equality is deduced using the assumption of uncorrelated {wTOA,l}.

Using Eq. (3.9), into Eq. (3.8) we obtain: (ZEKAVAT; BUEHRER, 2011):

p (xTOA) =
1

(2π)M/2ΠM
m=1σTOA,m

exp

(
−1

2

M∑
m=1

(xTOA,m − dm)
2

σ2
TOA,m

)
. (3.10)

In other words, we can write xTOA ∼ N
(
d, diag

(
σ2
TOA,1, σ

2
TOA,2, · · · , σ2

TOA,m

))
.

3.1.2 TDOA

TDOA involves calculating the time difference in signal arrival between a pair of sensors,

necessitating synchronized clocks across all receivers. However, it offers a simpler alternative

to the TOA method, which demands source synchronization, incurring higher hardware costs.

Analogous to TOA, multiplying the TDOA by the known propagation speed yields the range

difference between a source and two receivers. As outlined in Chapter 1, each noise-free TDOA

geometrically defines a hyperbola in the 2D space, with the source located at its intersection

with at least two hyperbolae. In the presence of disturbances, our approach involves estimating

x from a set of hyperbolic equations derived from the TDOA measurements (GEOK et al.,

2020).

The TDOA measurement model is expressed mathematically as follows. We assume that

the source emits a signal at the unknown time t0, and the M -th sensor receives it at time

tm,m = 1,2, · · · ,M , with M ≥ 3. There exist M(M − 1)/2 distinct TDOAs from all possible

sensor pairs, denoted by tl,m = (tl − t0)− (tm − t0) = tl − tm, m, l = 1,2, · · · , L, where l > m.

However, only (M−1) TDOAs are nonredundant. For instance, considering M = 3, the distinct

TDOAs are t2,1, t3,1, and t3,2, with the observation that t3,2 = t3,1 − t2,1 being redundant. To

reduce complexity without compromising estimation performance, it is advisable to measure

all M(M − 1)/2 TDOAs and then convert them into (M − 1) nonredundant TDOAs for source
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localization (SO et al., 2008). Without loss of generality, we designate the first sensor as the

reference, and the nonredundant TDOAs are tm,1,m = 2,3, · · · ,M (ZEKAVAT; BUEHRER,

2011) (GEOK et al., 2020).

Similar to Eq.(3.2) and Eq. (3.3), the range difference measurements deduced from the

TDOAs are modeled as:

xTDOA,m = dm,1 + wTDOA,m, m = 2,3, · · · ,M, (3.11)

where

dm,1 = dm − d1, (3.12)

and wTDOA,m is the range difference error in xTDOA,m which is proportional to the disturbance

in tl,1. Following Eq. (3.4) - Eq. (3.6), the TDOA measurement model in vector form is:

xTDOA = sTDOA(x) +wTDOA, (3.13)

where

xTDOA =
[
xTDOA,2 xTDOA,3 · · · xTDOA,M

]T
,

wTDOA =
[
wTDOA,2 wTDOA,3 · · · wTDOA,M

]T
,

(3.14)

and

sTDOA(x) = d1 =



√
(x− x2)

2 + (y − y2)
2 −

√
(x− x1)

2 + (y − y1)
2√

(x− x3)
2 + (y − y3)

2 −
√
(x− x1)

2 + (y − y1)
2

...√
(x− xM)2 + (y − yM)2 −

√
(x− x1)

2 + (y − y1)
2

 . (3.15)

The source localization problem based on TDOA measurements is to estimate x given

{xTDOA ,m} or xTDOA . Assuming that wTDOA is zero-mean and Gaussian distributed, the PDF

for xTDOA, , denoted by p (xTDOA ), is (ZEKAVAT; BUEHRER, 2011):

p (xTDOA) =
1

(2π)(M−1)/2 |CTDOA|1/2
exp

(
−1

2
(xTDOA − d1)

T C−1
TDOA (xTDOA − d1)

)
, (3.16)
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where CTDOA is the covariance matrix for xTDOA . Alternatively, we can write xTDOA ∼

N (d1,CTDOA ). Since all TDOAs are determined with respect to the first sensor, wTDOA,m,m =

2,3, · · · ,M , are correlated. As a result, CTDOA is not a diagonal matrix (SO et al., 2008).

3.1.3 TSOA

TSOA emerges in MIMO (LI; STOICA, 2008) and multistatic (RUI; HO, 2015) systems,

comprising two sets of sensors: transmitters and receivers. A prominent example is the distri-

buted MIMO radar, featuring widely spaced transmit and receive antennas. Similar to TDOA,

achieving clock synchronization across all transmitters and receivers is essential. In this sce-

nario, a transmitter emits a signal to the source, which reflects and is collected at a receiver.

The total propagation time from the transmit antenna to the receive antenna is termed TSOA.

Multiplying TSOA by the signal propagation speed provides the transmitter-target-receiver dis-

tance or range sum, representing the sum of the distances between the transmitter and source

and between the source and receiver. Geometrically, each noise-free TSOA defines an ellipse in

2D space, on which the source must lie, with the target location determined by the intersection

of at least three ellipses. In the presence of disturbances, we estimate x from a set of elliptic

equations derived from TSOA measurements. Notably, range, range difference, and range sum

are key distance-based location-bearing measurements corresponding to circular, hyperbolic,

and elliptic localization, respectively. Additionally, each range, range difference, and range sum

define a sphere, hyperboloid, and ellipsoid, respectively, in the 3D case (GEZICI, 2008).

The TSOA measurement model is mathematically formulated as follows. To streamline

notation, we introduce xtl =
[
xtl ytl

]T as the known position of the l-th transmitter, where

l = 1,2, · · · , L and L ≥ 1. We utilize {xm} to represent the positions of the M receivers.

Drawing from Eq. (3.2) and Eq. (3.3), and recognizing that TSOA is the sum of two TOAs,

the range sum measurements derived from the TSOAs, denoted by xTSOA,m,m, are modeled as

(ZEKAVAT; BUEHRER, 2011) (GEOK et al., 2020):

xTSOA,l,m = dtl + dm + wTSOA,l,m, l = 1,2, · · · , L, m = 1,2, · · · ,M, (3.17)

where



3.1 – Measurement Models and Principles for Source Localization 34

dtl =

√
(x− xtl)

2 + (y − ytl)
2 (3.18)

and wTSOA,l,m is the range sum error in xTSOA,l,m, which is resulted from the TSOA disturbance.

Similar to Eq. (3.4) - Eq. (3.6), the TSOA measurement model in vector form is:

xTSOA = sTSOA(x) +wTSOA, (3.19)

where

xTSOA = [xTSOA,1,1 xTSOA,2,1 · · · xTSOA,L,1 xTSOA,1,2 · · · xTSOA,L,M ]T ,

wTSOA = [wTSOA,1,1 wTSOA,2,1 · · · wTSOA,L,1 wTSOA,1,2 · · · wTSOA,L,M ]T
(3.20)

and

sTSOA(x) = d2 =



√
(x− xt1)

2 + (y − yt1)
2 +

√
(x− x1)

2 + (y − y1)
2√

(x− xt2)
2 + (y − yt2)

2 +
√
(x− x1)

2 + (y − y1)
2

...√
(x− xtL)

2 + (y − ytL)
2 +

√
(x− x1)

2 + (y − y1)
2√

(x− xt1)
2 + (y − yt1)

2 +
√
(x− x2)

2 + (y − y2)
2

...√
(x− xtL)

2 + (y − ytL)
2 +

√
(x− xM)2 + (y − yM)2


. (3.21)

The TSOA-based localization problem is to estimate x given the LM measurements of

{xTSOA,l,m} or xTSOA .

Assuming that {wTSOA,l,m} are zero-mean uncorrelated Gaussian processes with variances{
σ2
TSOA,l,m

}
, the PDF for xTSOA, denoted by p (xTSOA), is:

p (xTSOA) =
1

(2π)LM/2 |CTSOA|1/2
exp

(
−1

2
(xTSOA − d2)

T C−1
TSOA (xTSOA − d2)

)

=
1

(2π)LM/2
∏L

l=1

∏M
m=1 σTSOA,l,m

exp

(
−1

2

L∑
l=1

M∑
m=1

(xTSOA,l,m − dtl − dm)
2

σ2
TSOA,l,m

)
,

(3.22)

where CTSOA = diag
(
σ2

TSOA,1,1 , σ
2
TSOA ,2,1, · · · , σ2

TSOA ,L,1, σ
2
TSOA ,1,2, · · · , σ2

TSOA ,L,M

)
represents

the covariance matrix for xTSOA . That is, we can also write xTSOA ∼ N (d2,CTSOA ).
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3.1.4 RSS

The RSS represents the average power received at a sensor originating from the emitted

source. It is commonly assumed that the received power adheres to an exponential decay

model, dependent on the transmitted power, path loss constant, and the distance between the

source and the sensor. This positioning scheme offers simplicity compared to methods involving

TOA, TDOA, or TSOA measurements, as it does not necessitate synchronization among the

source and/or sensors. Once distances are derived from the RSS measurements, determining

the source location becomes feasible, akin to the TOA scenario with the utilization of at least

three receivers (GEOK et al., 2020).

The RSS measurement model is formulated as follows. Assuming the source transmitted

power is Pt and in the absence of disturbance, the average power received at the M -th sensor,

denoted by Pr,m, is modeled as (SONG, 1994):

Pr,m = KmPtd
−α
m = KmPt ∥x− xm∥−α2 , m = 1,2, · · · ,M, (3.23)

where Km encompasses all other factors affecting the received power, such as antenna height

and gain, while α represents the path loss constant. Depending on the propagation envi-

ronment, α can vary from 2 to 5, with α = 2 specifically in free space. It is assumed that

Pt, Km,m = 1,2, · · · ,M with M ≥ 3 and α are known a priori. Field trials have corrobora-

ted that disturbances in RSS follow a log-normal distribution. Thus, the log-normal path loss

model can be expressed as:

ln (Pr,m) = ln (Km) + ln (Pt)− α ln (dm) + wRSS,m, m = 1,2, · · · ,M, (3.24)

where the disturbance wRSS,m is now Gaussian distributed. For simplicity, we assume that

wRSS,m,m = 1,2, · · · ,M , are zero-mean uncorrelated Gaussian processes with variances
{
σ2
RSS,m

}
.

Let

xRSS,m = ln (Pr,m)− ln (Km)− ln (Pt) . (3.25)

The RSS measurement model is simplified to:
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xRSS,m = −α ln (dm) +wRSS,m, m = 1,2, · · ·M. (3.26)

The vector form of Eq. (3.26) is then:

xRSS = sRSS(x) +wRSS, (3.27)

where

xRSS =
[
xRSS,1 xRSS,2 · · · xRSS,m

]T
,

wRSS =
[
wRSS,1 wRSS,2 · · · wRSS,m

]T
,

(3.28)

and

sRSS(x) = p = −α



ln

(√
(x− x1)

2 + (y − y1)
2

)
ln

(√
(x− x2)

2 + (y − y2)
2

)
...

ln

(√
(x− xM)2 + (y − yM)2

)


. (3.29)

Comparing with Eq. (3.6), we observe that sRSS(x) also contains range information. The

source localization problem based on RSS measurements is to estimate x given {xRSS,m} or

xRSS. Following the development in Eq. (3.7) - Eq. (3.10), the PDF for xRSS, denoted by

p (xRSS), is determined as:

p (xRSS) =
1

(2π)M/2 |CRSS|1/2
exp

(
−1

2
(xRSS − p)T C−1

RSS (xRSS − p)

)

=
1

(2π)M/2ΠM
m=1σRSS,m

exp

(
−1

2

M∑
m=1

(xRSS,m + α ln (dm))
2

σ2
RSS,m

)
,

(3.30)

where CRSS = diag
(
σ2
RSS,1, σ

2
RSS,2, · · · , σ2

RSS,L

)
. In other words, xRSS ∼ N (p,CRSS).

It is noteworthy that when the source transmitted power is unknown, leveraging the diffe-

rential RSS measurements (LIN et al., 2013), akin to range difference information in TDOA,

becomes instrumental for positioning.
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3.1.5 DOA

DOA represents the arrival angle of the emitted source signal observed at a receiver. Each

DOA allows the drawing of a Line of Bearing (LOB) from the source to the receiver, and the

intersection of at least two LOBs provides the source location. Although this scheme doesn’t

necessitate clock synchronization like RSS-based positioning, it does require an antenna array

installation at each receiver for DOA estimation. Let ϕm denote the DOA between the source

and the M -th receiver, and we have (BRENA et al., 2017):

tan (ϕm) =
y − ym
x− xm

, m = 1,2, · · · ,M (3.31)

with M ≥ 2. Geometrically, ϕm represents the angle between the LOB from the M -th receiver

to the target and the x-axis. The DOA measurements in the presence of angle errors, denoted

by {xDOA,m}, are modeled as (ZEKAVAT; BUEHRER, 2011):

xDOA,m = ϕm + wDOA,m = tan−1

(
y − ym
x− xm

)
+ wDOA,m, m = 1,2, · · · ,M, (3.32)

where {wDOA,m} are the noises in {xDOA,m}, assumed to be zero-mean uncorrelated Gaussian

processes with variances
{
σ2

DOA ,m

}
. The vector form of Eq. (3.32) is:

xDOA = sDOA(x) +wDOA, (3.33)

where

xDOA =
[
xDOA,1 xDOA,2 · · · xDOA,m

]T
,

wDOA =
[
wDOA,1 wDOA,2 · · · wDOA,m

]T (3.34)

and

sDOA(x) = ϕ =


tan−1

(
y−y1
x−x1

)
tan−1

(
y−y2
x−x2

)
...

tan−1
(

y−ym
x−xm

)

 . (3.35)
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The source localization problem based on DOA measurements is to estimate x given xDOA,m,m =

1,2, · · · ,M , or xDOA. Following the development in Eq. (3.7) - Eq. (3.10), the PDF for xDOA,

denoted by p (xDOA), is

p (xDOA) =
1

(2π)M/2 |CDOA|1/2
exp

(
−1

2
(xDOA − ϕ)T C−1

DOA (xDOA − ϕ)

)

=
1

(2π)M/2ΠM
m=1σDOA,m

exp

(
−1

2

M∑
m=1

(xDOA,m − ϕm)
2

σ2
DOA,m

)
,

(3.36)

where CDOA = diag
(
σ2
DOA,1, σ

2
DOA,2, · · · , σ2

DOA,M

)
. In other words, we can write xDOA ∼

N (ϕ,CDOA ).

A comparative analysis of the five measurement models is presented in Table 3.1 (ZEKAVAT;

BUEHRER, 2011):

Based on the comparison, the DOA technique stands out as advantageous for its simplicity,

as it only requires at least two receivers and does not require time synchronization. However,

it is worth noting that smart antennas are needed for DOA, and the method assumes LOS

Table 3.1: Comparison of Location Estimation Techniques

Model Location
Information Advantages Disadvantages

TOA Range - High accuracy.

- Requires time synchronization
across sources and all receivers
(Note: synchronization not
needed for round-trip TOA).
- Assumes LOS.

TDOA Range difference
- High accuracy.
- No time synchronization
required at the source.

- Assumes LOS.

TSOA Range sum
- High accuracy.
- No time synchronization
required at the source.

- Requires multiple transmitters
and receivers.
- Assumes LOS.

RSS Range
- Simple and inexpensive.
- No time synchronization
required.

- Lower accuracy.

DOA Bearing

- Only requires at least two
receivers.
- No time synchronization
required.

- Requires smart antennas.
- Assumes LOS.
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conditions.

3.2 DOA ESTIMATION

DOA estimation is a key technique in the fields of signal processing and communication

engineering and compared to other techniques, DOA estimation offers several key advantages,

making it an essential tool in various industries (CHEN et al., 2010).

1. Precise Localization: One of the primary reasons for the importance of DOA estimation

is its ability to accurately localize a signal source. This is especially useful in applications

such as radar systems, where the precise location of a target is crucial for effective tracking

and detection. DOA estimation allows for localization with high accuracy, even in noisy

environments (ABOUTANIOS et al., 2017).

2. Multiple Source Detection: DOA estimation not only determines the direction of a single

source but can also detect and estimate the directions of multiple sources simultaneously.

This is possible through the use of smart antenna arrays that can distinguish and se-

parate signals from different sources based on their angles of arrival. This capability is

particularly useful in wireless communication systems, where multiple users may transmit

signals at the same time (SAWADA et al., 2003).

3. Improved Signal Quality: DOA estimation plays a vital role in improving the overall

signal quality. By estimating the direction of a signal source, it is possible to filter out

unwanted noise and interference, resulting in a cleaner and more reliable signal. This is

especially important in applications such as audio processing, where accurate direction

estimation can significantly enhance the listening experience (DEY; ASHOUR, 2018).

4. Cost-Efficient: Compared to other localization techniques, DOA estimation is relatively

cost-efficient. It does not require expensive hardware or complex algorithms, making it

accessible to a wide range of applications and industries. This is particularly benefi-

cial for businesses and organizations that may not have the resources to invest in more

sophisticated techniques (HUSAIN et al., 2017).

5. Efficient Resource Management: DOA estimation can also help with efficient resource
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management. By accurately locating the source of a signal, it is possible to focus trans-

mission and reception in that direction, resulting in more efficient use of resources. This

is particularly important in applications such as wireless sensor networks, where power

and bandwidth are limited (ABOUTANIOS et al., 2017).

6. Widely Applicable: DOA estimation is a widely applicable technique, making it invaluable

in various industries and fields. It is used in areas such as defense, navigation, broadcast

communication, healthcare, and transportation. This versatility makes DOA estimation

an essential tool for researchers, engineers, and developers (DEY; ASHOUR, 2018).

Given its numerous advantages, we will employ DOA estimation in this work. We invite the

reader to delve into the forthcoming chapter, where we present DOA estimation algorithms,

exploring their intricacies and applications in greater detail.



CHAPTER 4

DOA ESTIMATION ALGORITHM

The DOA estimation is a crucial aspect in fields like radar systems and wireless communi-

cations, aiming to determine the angles from which signals arrive at a sensor array. Various

algorithms are deployed for this critical task. beamformer scan aims to create a directive ra-

diation pattern, aligning the array’s sensitivity with the direction of interest while mitigating

signals from other directions (KRIM; VIBERG, 1996). The MUSIC algorithm utilizes spec-

tral analysis, offering a high resolution for the detection of closely spaced signals (SCHMIDT,

1986). Capon’s Minimum Variance Distortionless Response (MVDR) (CAPON, 1969) focuses

on minimizing output power while ensuring unity gain for the desired signal, making it effective

in interference suppression.

Techniques such as beamforming, ESPRIT, and Bayesian approaches provide distinct pers-

pectives, with adaptive beamformers excelling in interference handling, ESPRIT leveraging

rotational invariance, and Bayesian methods presenting a probabilistic framework. Compres-

sed sensing techniques exploit signal sparsity for accurate DOA estimation with fewer samples

(ROY; KAILATH, 1989). The selection of an algorithm should consider aspects like applica-

tion requirements and computational complexity, highlighting the continuous evolution of DOA

estimation techniques to meet diverse real-world demands.

4.1 COVARIANCE MATRICES

Before delving into DOA estimation algorithms, it is crucial to acknowledge the real-world

scenario where signals received by an array are typically contaminated by noise. In such con-

texts, the noises are commonly uncorrelated, whereas the pure signals captured by different

elements tend to be correlated since they stem from the same sources. Leveraging this inhe-

rent property, one can effectively extract DOA information. This is achieved by exploiting
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the concept of cross-covariance among the noise-corrupted signals, encapsulated in the spatial

covariance matrix (SCHMIDT, 1986). This matrix, which incorporates both signals and noise,

serves as a cornerstone in determining DOAs. The spatial covariance matrix of the data i.e.,

signals plus noises received by an array is defined as (FOUTZ et al., 2022) (CHEN et al., 2010):

Rxx = E
{
x(t)xH(t)

}
, (4.1)

where E {·}denotes the statistical expectation.

Eq. (4.1) quantifies the degree of correlation of the data signals received by array elements.

The higher the values of its elements, the higher the degree of correlations among the signals.

By substituting Eq. (2.33) with (4.1), we have (FOUTZ et al., 2022) (CHEN et al., 2010):

Rxx = E
{
x(t)xH(t)

}
= ARssA

H + σ2
NIM , (4.2)

where Rss = E
{
s(t)sH(t)

}
is the signal covariance matrix and σ2

N is the common variance of

the noises.

In practical scenarios, finding the precise covariance matrix, Rxx, is challenging due to the

limited data sets processed by an array. Consequently, an estimation is employed. Assuming

the ergodicity of all underlying random noise processes, we replace the ensemble average with a

time average. In this context, L represents the number of snapshots, denoted by l = 1, 2, . . . , L.

The matrix X symbolizes the noise-corrupted signals or data, consisting of L snapshots of x(tl),

where 1 ≤ l ≤ L.

X =
[
x (t1) x (t2) . . .x (tL)

]T
= A

[
s (t1) s (t2) . . . s (tL)

]T
+
[
w (t1) w (t2) . . .w (tL)

]T
= AS+W.

(4.3)

Note that Eq. (4.3) is different from the basic data model Eq. (2.33) in that the left-hand

side term, X, is a stacked noised corrupted signal (or data) received by the array elements at

different snapshots, x (tl) , l = 1,2,3, . . ., L. Similarly, the stacking applies to the pure signal

vector s and the noise vector w.

An estimate of the data covariance matrix Rxx as a time average, R̂xx, can then be computed
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with:

Rxx ≈ R̂xx =
1

L

L∑
l=1

x (tl)x
H (tl) =

1

L
XHX. (4.4)

This matrix serves as the cornerstone in all subsequent explanations of DOA estimation

algorithms. Numerous DOA estimation techniques aim to extract information from this array

data covariance matrix. Armed with an understanding of data models and essential mathema-

tical concepts, we proceed to explore some widely used DOA estimation techniques.

4.2 BEAMFORMER SCAN

The fundamental concept behind the Beamformer Scan method is to systematically direct

the array towards a specific angle, measuring the resulting output power. When this directed

angle aligns with the DOA of a signal, the system observes maximum output power (KRIM;

VIBERG, 1996).

With knowledge of the array steering vector, electronic steering of the array becomes possi-

ble, akin to the mechanical steering of a fixed antenna. However, beyond changing orientation,

the array pattern can also undergo shape variations. A weight vector, denoted as ν, can be craf-

ted and subsequently used to linearly combine the data received by array elements, generating

a singular output signal y(t) (SCHMIDT, 1986)(CHEN et al., 2010),

y(t) = νHx(t), (4.5)

where the weighting vector ν is set as the following equation for a particular steering direction

θc

ν =
a (θc)

M
. (4.6)

Then the power of the output is calculated by
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PCBF (θc) =
1

L

L∑
t=1

|y(t)|2

=
1

L

L∑
t=1

νHx(t)xH(t)ν

=
aH (θc) R̂xxa (θc)

M2
.

(4.7)

The DOA estimation performance of the beamformer scan method is depicted in Fig. 4.1.

In this illustration, the method assumes the presence of two uncorrelated, far-field, and nar-

rowband incoming signals impinging on a ULA with 10 sensor elements from directions 10°,

30°. The chosen configuration includes 200 snapshots, and the SNR is set to 10 dB.

Two peaks are discernible in the DOA estimation plot at 10° and 30°, however, when two

impinging angles are near, the resulting peaks may become blurred into a single pair. This

suggests that the spread of each peak is substantial. These characteristics limit the method’s

effectiveness in scenarios where signals arrive from multiple directions and/or sources, resulting

in poor resolution. Although enhancing resolution is possible by adding more array elements, it
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Figure 4.1: DOA estimation with the conventional beamformer; the signal impinges at 10° and
30°.
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concurrently leads to an increase in the number of receivers and the amount of storage required

for the data (CHEN et al., 2010).

4.3 CAPON’S BEAMFORMER

The traditional beamformer operates under the assumption that directing the strongest

beam toward a specific direction results in peak power arriving from that direction. It works

effectively in the presence of a single incoming signal, utilizing all available degrees of freedom

to form a beam in the desired direction. However, challenges arise in the presence of multiple

signals, as the array output power includes contributions from both the desired and undesired

angles (STOICA et al., 2002).

Capon’s method (CAPON, 1969) addresses this issue by leveraging the degrees of freedom to

create a beam in the desired direction while simultaneously establishing nulls in other directions

to reject unwanted signals. To achieve this, Capon’s method strategically constrains the beam

in the undesired directions, maintaining unity gain in the desired direction. This approach

optimally utilizes all but one degree of freedom to minimize array output power, effectively

enhancing performance in scenarios with multiple signals. The principle of the Capon method

is to minimize the power contributed by the signals coming from other directions and noise

than the current searching one θc by:

min
ν
P (ν) subject to νHa (θc) = 1, (4.8)

where P (ν) = νHR̂xxν (ZUO et al., 2023).

The weight vector selected through this process is commonly known as the MVDR beam-

former. This designation stems from its ability to minimize the variance (average power) of the

array output signal for a specific look direction, ensuring distortion-free passage of the signal

arriving from that direction. The resultant weight vector is expressed as (STOICA et al., 2002)

(CHEN et al., 2010):

ν =
R̂−1
xxa (θc)

aH (θc) R̂−1
xxa (θc)

. (4.9)

Then the power of the output is given by:
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PCapon (θc) =
1

aH (θc) R̂−1
xxa (θc)

. (4.10)

The DOA estimation performance of Capon’s method is depicted in Fig. 4.2. The same

simulation conditions as Fig. 4.1 are assumed.

In contrast to Fig. 4.1, the enhanced performance of Capon’s method is evident in the

sharper and better-separated peaks at 10° and 30°, surpassing the conventional beamformer.

The reduction of side lobes at other angles contributes to a clearer interpretation of output

power. Despite its improved resolution over conventional beamforming, Capon’s method has

drawbacks. It proves ineffective in the presence of correlated signals, as it unintentionally em-

ploys the singular correlation matrix R̂−1
xx for such signals, leading to destructive combinations.

Additionally, the computation of a matrix inverse, a requirement for Capon’s method, becomes

costly for large arrays (CAPON, 1969).
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Figure 4.2: DOA estimation with Capon’s beamformer; the signal impinges at 10° and 30°.
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4.3.1 Concept of Subspaces

To describe the next DOA estimation techniques, as MUSIC and ESPRIT, it is important

to highlight the concept of subspace.

Given a matrix X of size M × N , the columns (rows) can be dependent or independent.

If there are K independent columns in X, forming a K-dimensional range or column space a

subspace of M -dimensional Euclidean space CM , then the matrix is of rank K. If K = M , it

is of full rank; otherwise, it is rank-deficient. Similarly, CN has a K-dimensional subspace as

the row space of x (CHEN et al., 2010) (FOUTZ et al., 2022).

AssumeK ≤M andK ≤ N , a unitary matrix U can be selected such that the d-dimensional

column space of X is spanned by a subset of K columns of U say, the first K columns, which

together form a matrix Us. Let the remaining Ms − K columns together form a matrix U0.

Then (CHEN et al., 2010) (FOUTZ et al., 2022),

U =
[
Us Uo

]
, (4.11)

since U is a unitary matrix, it can be observed that

1. From UHU = IM

Us
HUs = IK (4.12)

UH
s Uo = 0 (4.13)

UH
o Uo = IM−K . (4.14)

2. From UUH = IM

UsUs
H +UoU

H
o = IM , (4.15)

where IK is the identity matrix of rank K, and IM−K is the identity matrix of rank ( M −K).

The relationships (4.12) to (4.14) highlight the orthogonality and decomposition properties.

These equations express that any vector u ∈ CN can be decomposed into mutually orthogonal

vectors us and uo in K-dimensional and (M −K)-dimensional subspaces spanned by Us and

Uo, respectively. The direct sum of these subspaces forms CM . In signal processing, these
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subspaces are identified as the signal subspace and the noise subspace, respectively. Singular

value decomposition (SVD) is a method commonly used to perform such decompositions (CHEN

et al., 2010) (FOUTZ et al., 2022).

4.3.1.1 SVD

The SVD proves to be a robust computational method, providing high-resolution discrimi-

nation against noise space or contamination. For an M × N matrix X of rank K, the SVD

yields the following decomposition (CHEN et al., 2010) (FOUTZ et al., 2022):

X = UΣVH =
[
Us Uo

] [ Σs 0
0 Σo

] [
VH
s

VH
o

]
, (4.16)

where Σ is an M × N diagonal matrix containing the singular values Σsi of X, ordered as

σs1 ≥ σs2 ≥ . . . ≥ σsK ≥ σsK+1 = . . . = 0.

Only theK largest singular values matter, corresponding to the nonzero singular values. The

K columns of Us corresponding to these nonzero singular values span the column space of X

and are called left singular vectors. Similarly, the K rows of Vo are called right singular vectors

and span the row space of X. An alternative decomposition is the eigenvalue decomposition of

the data covariance matrix XXH .

Subspace-based methods aim to find directions where the associated steering vectors are

orthogonal to the noise subspace and lie within the signal subspace. These methods operate

directly on the data matrix X instead of XXH , making them more effective in finite precision

computations. These approaches facilitate the extraction of data model parameters once the

signal subspace is determined, giving rise to various algorithms.

4.4 MULTIPLE SIGNAL CLASSIFICATION

MUSIC is one of the earliest proposed and a very popular method for super-resolution

direction finding. The MUSIC algorithm operates on the fundamental principle of spectral

analysis and demonstrates remarkable efficacy, particularly in scenarios involving correlated

signals or when the number of sources exceeds the number of sensors in the array. This tech-
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nique leverages the eigenvalues and eigenvectors of the sample covariance matrix to effectively

decompose the signal subspace, enabling robust discrimination between signal and noise com-

ponents (TANGSHENG et al., 2012).

Considering the covariance matrix of received signals, denoted as Rxx and described in (4.2),

let the eigenvalues be {λ1, . . . , λM}, satisfying (SCHMIDT, 1986) (CHEN et al., 2010):

|Rxx − λiIM | = 0. (4.17)

Then, the substitution of Eq. (4.2) into Eq. (4.17) reads

∣∣ARssA
H + σ2

NIM − λiIM
∣∣ = 0. (4.18)

Assume that ARssA
H has eigenvalues ei then

ei = λi − σ2
N . (4.19)

Given that A consists of linearly independent steering vectors, it exhibits full column rank,

and the signal correlation matrix Rss is nonsingular under low signal correlation conditions

(SCHMIDT, 1986).

With a full column rank A and a nonsingular Rss, ARssA
H becomes positive semidefinite

with rank K when the number of incident signals K is less than the number of elements

M . Consequently, M − K eigenvalues of Rxx are equal to the noise variance σ2
N and are the

smallest. Thus, once the multiplicity d of the smallest eigenvalue is determined, the estimate

of the number of signals, K, can be obtained accordingly with K =M − d.

The eigenvectors corresponding to eigenvalues λi for i = K + 1, K + 2, . . . ,M are solutions

to the equation (CHEN et al., 2010):

(Rxx − λiIM)qi = 0. (4.20)

For these eigenvectors associated with the M −K smallest eigenvalues, we can express it as

(Rxx − σiIM)qi = ARssA
Hqi + σ2

NIMqi − σ2
Nqi

= ARssA
Hqi = 0.

(4.21)
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Since A is full rank and Rss is nonsingular, it implies that

AHqi = 0. (4.22)

This means the eigenvectors associated with the M −K smallest eigenvalues are orthogonal

to the K steering vectors comprising A, {a (θ1) , . . . , a (θK)} ⊥ {qK+1, . . . ,qM}.

This observation is fundamental to most subspace-based methods. It allows estimating

the steering vectors associated with received signals by identifying vectors orthogonal to the

M − K eigenvectors linked to eigenvalues of Rxx approximately equal to σ2
N . This analysis

demonstrates that the eigenvectors of the covariance matrix Rxx fall into either the principal

eigensubspace (signal subspace) or the nonprincipal eigensubspace (noise subspace). Steering

vectors corresponding to DOA lie in the signal subspace and are orthogonal to the noise subs-

pace. By exploring array steering vectors to find those perpendicular to the space spanned

by nonprincipal eigenvectors, the DOAs can be determined (LIBERTI; RAPPAPORT, 1999)

(LITVA; LO, 1996).

To form the noise subspace, a matrix containing the noise eigenvectors need to be formed:

Vn = [qK+1, . . . ,qM ] . (4.23)

Since the steering vectors corresponding to signal components are orthogonal to the noise

subspace eigenvectors, aH(θc)VnV
H
n a(θc) = 0 for θc = θci corresponding to the DOA of an

incoming signal. Then the following MUSIC spectrum is constructed by taking the inverse of

aH(θcc)VnV
H
n a(θc) (SCHMIDT, 1986)(CHEN et al., 2010):

P (θc) = PMUSIC(θc) =
1

aH(θc)VnVH
n a(θc)

. (4.24)

The DOAs of the multiple incident signals can be estimated by locating the peaks of the

Eq. (4.24). The K largest peaks in the MUSIC spectrum above correspond to the DOAs of the

signals impinging on the array. With the same simulation conditions introduced previously, the

DOA estimation performance of the MUSIC method is shown in Fig. 4.3, which is significantly

better than the beamforming-based methods.
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Figure 4.3: DOA estimation with MUSIC; the radio signals impinges at 10° and 30°

In Fig. 4.3, a significantly sharper peak in angle estimation is evident, accompanied by

nearly imperceptible side lobes. The MUSIC algorithm exhibits a notable advantage over

Capon’s method and beamformer scan in scenarios with closely spaced sources. MUSIC excels

in achieving higher resolution for distinguishing angles of arrival, particularly in cases where

sources are correlated or the number of signals exceeds the number of sensors in the array.

This capacity to effectively handle such challenging scenarios positions MUSIC as the preferred

choice for high-resolution DOA estimation (TANGSHENG et al., 2012).

4.5 ESTIMATION OF SIGNAL PARAMETER VIA ROTATIONAL INVARIANCE

Developed as a subspace-based method, ESPRIT exploits the rotational invariance property

of the array covariance matrix. The algorithm works by decomposing the received data into two

subspaces: the signal subspace, containing information about the directions of arrival, and the

noise subspace. By leveraging the eigenvalue decomposition of the covariance matrix, ESPRIT

achieves a computationally efficient and high-resolution estimation of DOA. One notable feature
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Figure 4.4: Antenna array structure for ESPRIT-based algorithms. (CHEN et al., 2010).

is its ability to estimate DOA pairs accurately even in the presence of closely spaced signals.

The ESPRIT algorithm assumes that an antenna array is composed of two identical subar-

rays as shown in Fig. 4.4. The subarrays may overlap, that is, an array element may be a

member of both subarrays. If there are a total of M elements in an array and m elements in

each subarray, the overlap implies that M ≤ 2m. For subarrays that do not overlap, M = 2m

(ROY; KAILATH, 1989).

The subarrays’ elements can exhibit diverse polarization, directional gain, and phase respon-

ses, as long as each has an identical counterpart in its companion subarray. Paired elements, or

doublets, are assumed to be physically separated by a fixed displacement vector. This creates

a displacement invariance in the array, where elements occur in matched pairs with identical

displacement vectors. This property ensures rotational invariance in signal subspaces formed

by the data vectors from spatially displaced subarrays. ESPRIT leverages this invariance to

effectively determine DOAs (LAVATE et al., 2010).

Assume k signals impinging onto the array. Let x1(t) and x2(t) represent the signals received

by the two subarrays, each corrupted by additive noise w1(t) and w2(t), respectively. Each

subarray consists of m elements. As described in Eq. (2.33), the received signals can be

expressed as (CHEN et al., 2010) (FOUTZ et al., 2022):

x1(t) = As(t) +w1(t), (4.25)
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x2(t) = AΦ(t)s(t) +w2(t). (4.26)

where x1(t) and x2(t) are the m × 1 vectors representing the data received by the first and

second subarrays, respectively. The Φ = diag
[
ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

]
is a K × K

diagonal matrix that relates the signals received by the two subarrays and is called the rotation

operator.

Equations (4.25) and (4.26) can be combined to form the total array output vector as:

x(t) =

[
x1(t)
x2(t)

]
=

[
A
AΦ

]
s(t) +

[
w1(t)
w2(t)

]
= Ãs(t) +w(t). (4.27)

Given L snapshots, x (t1) ,x (t2) , . . . ,x (tl), the objective of the ESPRIT technique is to

estimate the DOAs by determining Φ = diag
(
ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

)
. In doing so,

two steps are required based on the data received by the array: estimating the signal subspace

and then estimating the subspace rotation operator (HAARDT, 1996), (ROY; KAILATH, 1989)

and (RAO; ARUN, 1992)

4.5.1 Signal Subspace Estimation

In the case of K signals, the observed data vectors x(t) = As(t) are constrained to a K-

dimensional signal subspace of CM , referred to as the signal subspace. The goal is to estimate

this K-dimensional signal subspace.

Let E1 and E2 denote two sets of vectors that span the same signal subspace, ideally spanned

by the columns of A. The signal subspace can be obtained from the array output covariance

matrix Rxx. The data covariance matrix Rxx takes the following form (CHEN et al., 2010)

(ROY; KAILATH, 1989):

Rxx = E
[
x(t)xH(t)

]
= ÃRssÃ

H . (4.28)

Both Rs and the steering matrix Ã are assumed to have a full rank K. Suppose that the signal

subspace is spanned as Es = [e1, . . . , ed]. Since Rs has a full rank, Es spans the same space as

Ã. As a result, there must exist a unique nonsingular matrix T such that:
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Es = ÃT, (4.29)

Es can be decomposed into E1 and E2 of the two subarrays such that:

Es =

[
E1

E2

]
=

[
AT
AΦT

]
, (4.30)

from which it can be observed that:

Range {E1} = Range {E2} = Range{A}. (4.31)

Eq. (4.31) indicates that the two subarrays span the same signal subspace and have the same

dimension; this is because they are identically configured. As a result, a nonsingular K × K

matrix denoted as Ψ can be found such that (YANG, 2020):

E1Ψ = E2 ⇒ ATΨ = AΦT (4.32)

and

Ψ = T−1ΦT. (4.33)

Now, Ψ and Φ are connected through an eigenvalue-preserving similarity transformation. The

diagonal elements of Φ correspond to the eigenvalues of Ψ, which rotates the m-dimensional

signal subspace matrix E1 associated with the first subarray to E2 associated with the second

subarray. This shift-invariance property is expressed in terms of signal eigenvectors that span

the subspace.

In practical situations, only a finite number of noisy data are available. The matrix Es is

estimated from the data matrix X or covariance matrix Rxx = E
[
x(t)xH(t)

]
= ÃRssÃ

H +

σ2
NI2m. Due to noise, range{E} ≠ range{Ã} and range{E1} ≠ range{E2}. Thus, E1Ψ = E2 as

in (4.32) cannot be solved exactly, necessitating an estimation approach for Ψ. Two common

methods are Least-Squares (LS) (KARIYA; KURATA, 2004) and Total Least Square (TLS)

(GOLUB; LOAN, 2013), leading to two versions of ESPRIT.
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Considering (4.32) as a matrix model AX = B, LS assumes matrix A is known and attri-

butes errors to noise in B, giving the solution:

X̂ =
[
AAH

]−1
AHB, (4.34)

where X̂ is the estimate of X. However, A may also contain errors due to noise. Therefore,

the TLS method is preferred, addressing noises in both A and B. TLS seeks residual matrices

RA and RB of minimum Frobenius norm such that:

[A+RA] X̂ = B+RB. (4.35)

The computation procedure for TLS is detailed in various literatures, including (GOLUB;

LOAN, 2013). Due to its robustness, we elaborated TLS in this study.

4.5.1.1 Eigenvalues and Eigenvectors of Covariance Matrice

Without additive noise (i.e., σ2
N = 0,Rxx ), Rxx would be rank deficient since (CHEN et

al., 2010)

rank
{
ARssA

H
}
= K < M. (4.36)

In this case, its M −K smallest eigenvalues are equal to zero, and an eigenvalue decompo-

sition of Rxx can be expressed as:

Rxx|σ2
N=0 =

M∑
d=1

λdudu
H
d

=
[
Us Uo

] [ ΛK 0
0 0

] [
UH
s

UH
o

]
= UsΛKU

H
s ,

(4.37)

where the diagonal matrix ΛK = diag [λ1, λ2, . . . , λK ] contains the nonzero eigenvalues. Here,

the eigenvalues λd are ordered according to their magnitudes such that

λ1 ≥ λ2 ≥ . . . ≥ λK ≥ λK+1 = λK+2 = . . . = λM = 0. (4.38)

The columns of

Us = [u1u2 . . . uK ] and Uo = [uK+1uK+2 . . . uM ] , (4.39)
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span the K-dimensional signal subspace S and its orthogonal complement is then called noise

subspace (CHEN et al., 2010). With additive noise, the eigendecomposition of the covariance

matrix Rxx in (4.2) gives

Rxx =
M∑
d=1

ρdudu
H
d

=
[
Us Uo

]([ ΛK 0
0 0

]
+ σ2

NIM

)[
UH
s

UH
0

]
.

(4.40)

Obviously, from (4.37) and (4.40), the eigenvalues of Rxx now become ρk = λk + σ2
N , 1 ≤

d ≤ K; they are shifted by σ2
N , but their corresponding eigenvectors remain the same as those

of (4.37). From (4.2) and (4.37), we can see that

Rxx|σ2
N=0 = ARssA

H = UsΛdU
H
s . (4.41)

From the above relation, it can be observed that the columns of the array steering matrix

A also span the K-dimensional signal subspace, that is,

S = Range {A} = Range {Us} . (4.42)

4.5.1.2 Angle Estimation

There exists a nonsingular K × K matrix TA such that A = UsTA. Now, knowing that

each row in the steering matrix A corresponds to each element of the linear array, we choose

a particular subarray configuration that can be made mathematically by applying a selection

matrix to the overall steering matrix. Due to the shift-invariance property of all the K steering

vectors, it can be expressed in a compact matrix form as (CHEN et al., 2010) (YANG et al.,

2002):

J1AΦ = J2A, (4.43)

where

J1 =


1 1 · · · 1

ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

...
... . . . ...

ej(M−2)π sin θ1 ej(M−2)π sin θ2 · · · ej(M−2)π sin θK

 , (4.44)
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J2 =


ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

ej2π sin θ1 ej2π sin θ2 · · · ej2π sin θK

...
... . . . ...

ej(M−1)π sin θ1 ej(M−1)π sin θ2 · · · ej(M−1)π sin θK

 , (4.45)

Hence, the shift-invariance property of (4.43) can be expressed in terms of the signal eigen-

vectors Us that span the signal subspace:

J1UsTAΦ = J2UsTA ⇔ J1UsΨ = J2Us. (4.46)

After the estimation of the matrix Us that spans the estimated signal subspace, based on

4.46, the two known selection matrices J1 and J2 are applied to form the following invariance

equation.

J1UsΨ ≈ J2Us ∈ Cm×d, (4.47)

where Ψ is the signal subspace rotating operator, defined by (4.37). In contrast to (4.46), this

invariance equation might not have an exact solution; this is because the signal subspace is

estimated from an estimated data covariance matrix (4.16) that is not the true or exact signal

covariance matrix. Also, the size of the subarrays M − 1 should be at least equal to K in order

to compute all the DOAs; otherwise, the invariance system 4.47 would be underdetermined.

Equation (4.47) is solved by using the LS or TLS solutions to get an estimate of the subspace

rotating operator Ψ as explained in the previous section.

Once Ψ ∈ CK×K is found, the desired DOA information can be estimated from it. The

eigenvalues of the estimated Ψ ∈ CK×K can be calculated by its eigendecomposition; this is

because

Ψ = TΦT−1 where Φ = diag
[
1 ejπ sin θ1 ejπ sin θ2 · · · ejπ sin θK

]
. (4.48)

Therefore, after the eigenvalue decomposition of Ψ, for ULA the DOAs can be obtained by

(ROY; KAILATH, 1989):

θc = arcsin

(
angle(Φ(k, k))

π

)
. (4.49)

Without the spectrum, the DOA estimation performance of the ESPRIT method is shown

in Fig. 4.5 with the same simulation conditions introduced above.
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Figure 4.5: DOA estimation by ESPRIT method; the radio signals impinges at 10° and 30°.

The efficacy of ESPRIT relative to other DOA estimation techniques depends on the parti-

cular requirements and attributes of the application. It is worth highlighting that the ESPRIT

presents advantages such as high angular resolution, especially in scenarios with closely spaced

signals, and computational efficiency achieved through its subspace methods. Notably, ESPRIT

demonstrates robustness in the presence of correlated signals, often outperforming methods that

are sensitive to signal correlation in such scenarios. This robustness is a significant strength,

contributing to the versatility of ESPRIT in various practical applications (CHEN et al., 2010).

The DOA estimation algorithms discussed thus far have focused exclusively on the far-field

region. In the upcoming chapter, we delve into the intricacies and obstacles the near field poses.

We propose an approach that combines sub-array division and far-field techniques to overcome

the challenges inherent in near-field scenarios. This approach enables us to employ generalized

far-field DOA estimation algorithms like ESPRIT for accurate bearing estimation in near-field

conditions.



CHAPTER 5

FUNDAMENTALS OF NEAR-FIELD LOCALIZATION

In the realm of mobile communication, there has been a notable emphasis on studying

source localization in the far-field rather than the near-field of antenna arrays. This trend

can be attributed to several key factors. Firstly, the far-field region is often considered more

practical for mobile communication systems due to its clearer propagation characteristics and

adherence to classical electromagnetic wave theory (JINGJING et al., 2021). In this chapter, we

first present the differences between far-field and near-field communications and the challenges

for near-field localization. Subsequently, we delve deeper into developing the system model

used in this study.

5.1 FAR-FIELD COMMUNICATIONS VS. NEAR-FIELD COMMUNICATIONS

In the context of the near-field antenna arrays, we are dealing with relatively short distances

between the signal source and the antenna array. In this case, the near-field electric field

dominates propagation, as mentioned in Section 2.1.2. This can result in significant diffraction

and reflection effects, as well as challenges such as electromagnetic coupling between antennas

in the array. Thus, spherical wavefront characteristics play a crucial role in the near-field region,

which is typically within a few wavelengths of the antenna. Unlike in the far-field where the

wavefront becomes planar and predictable, Another important factor is that due to reciprocity,

in the far-field, the amplitude of the electric field is constant over the receive antenna and

the phase variation only depends on the incident angle, not the distance, unlike the near-field

(HUANG; BARKAT, 1991), (CUI et al., 2022).
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5.1.1 Spherical Wavefront Delay-and-Sum

A widely accepted metric for delineating between far-field and near-field regions is the

Rayleigh distance, also known as the Fraunhofer distance, represented by RF = 2D2/λ, which

typically marks the beginning of the far-field region, as discussed in Section 2.1.2. This distance

is derived from analyzing the phase difference caused by the wave’s curvature from its center to

the edge. Consequently, eliminating the far-field assumption, as illustrated in Fig. 5.1, involves

modeling the wavefront originating from a point source as a spherical surface centered at that

source (LIU et al., 2023). This spherical wavefront intersects the elements of the phased array,

leading to relative time delays determined by the hyperbolic range across collinear elements, as

illustrated in Fig. 5.2. This figure demonstrates the variation in element delays and wavefront

shape between a steered beam with and without focusing, with element delays being relative

to the array center.
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Figure 5.1: Difference in element delays and wavefront shape between a steered beam without
focusing, simulated by a 17-element ULA at an operational frequency of 3GHz.
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Figure 5.2: Difference in element delays and wavefront shape between a steered beam without
focusing, simulated by a 17-element ULA at an operational frequency of 3GHz.

As the spherical wavefront approaches a receiver or encounters a surface, the points closer to

the center of the wavefront reach the receiver or surface earlier than the points located toward

the edge of the wavefront. This is because the points near the center have a shorter path length

to travel compared to the points at the edge, which have to traverse a longer distance along

the curved surface of the wavefront (BJÖRNSON et al., 2021).

If the center is positioned at the Fraunhofer distance R = RF , then R′ in Fig. 5.3 is given

by R′ =
√
R2
F + (D/2)2. Consequently, the phase difference can be expressed as:

2π

λ

(√
R2
F +

D2

4
−RF

)
≈ 2π

λ

D2

8RF

=
π

8
, (5.1)

which is negligible when analyzing antenna patterns. We utilized the Taylor approximation
√
1 + x ≈ 1 + x

2
for x = D2/4R2

F in Eq. (5.1). The approximation error is smaller than

3.5 × 10−3 if RF ≥ 1.2D, which imposes an additional lower limit on the far-field region

(SHERMAN, 1962). This limit represents an angular difference between the center and edge

of at most π/8, leading to a negligible amplitude difference d/d′ ≥ 1.2D/
√

(1.2D)2 +D2/4 ≈
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Figure 5.3: Antenna array structure for ESPRIT-based algorithms. Adapted by (BJÖRNSON
et al., 2021).

cos(π/8) ≈ 0.92. The range of propagation distances between 1.2D and dF is called the Fresnel

region and is characterized by the fact that the amplitude variations can be neglected, but not

the phase variations. The Fresnel region only exists if dF ≥ 1.2D, which implies D ≥ 0.6λ,

thus the Fraunhofer distance is only applicable to electrically large antennas (BJÖRNSON et

al., 2021).

The difference in electromagnetic propagation characteristics leads to distinct beamforming

properties in the near-field and far-field regions. In the far-field, beamforming resembles a

divergent flashlight effect, as depicted in Fig. 5.4, known as beamsteering. Here, planar wave-

fronts steer beam energy towards specific angles across varying distances. However, this concise

linear phase fails to fully capture spherical wave information (CUI et al., 2022).

Conversely, in the near-field, beamforming resembles a concentrated spotlight, as shown in

Fig. 5.4, termed beamfocusing. Here, the phase of spherical waves must be accurately derived

based on physical geometry, a non-linear function of the antenna index. This phase encodes

incident angle and distance information for each path between the BS and UE (CUI et al.,

2022), (LIU et al., 2023).

Near-field beamforming achieves precise energy focusing at specific locations by leveraging

the additional distance information within spherical wavefronts. This capability extends to

both angle and distance domains, enabling targeted energy concentration in both dimensions

(LIU et al., 2023).

For precise user localization in the near-field, one cannot simply overlook the impact of

spherical wavefronts on the communication system. Unlike the location of sources in the far-

field in which only the angle estimation is necessary, for the far-field region it is necessary to



5.2 – Symmetric Subarray Partitioning 63

2 4 6 8 10

2

3

4

5

6

7

8

10

x - axis [m]

y
-

ax
is

[m
]

Near-Field Beam (Beamfocusing)

10 20 30 40 50

5

10

15

20

25

30

35

40

x - axis [m]

y
-

ax
is

[m
]

Far-Field Beam (Beamsteering)

0

20

40

60

80

100

Figure 5.4: Comparison of Far-Field Planar Wavefronts and Near-Field Spherical Wavefronts:
FFC beamsteering resembles a ’flashlight’ emitting light with a plane wavefront, while NFC
beamfocusing is akin to a ’spotlight’ emitting light with a spherical wavefront. The correspon-
ding radiation patterns, simulated for a narrowband system with 512 antennas operating at 3
GHz, are depicted on the right

estimate the angle and also the distance, that is, it is a problem involving 2D search. This

study introduces an approach to tackle the nonlinearity from spherical wavefronts and simplify

the search process from 2D to 1D. Our method, a second-order statistics-based 1D algorithm

with symmetric subarray partition based in (ZHI; CHIA, 2007), efficiently localizes multiple

near-field sources. Unlike conventional methods, our algorithm doesn’t require high-order sta-

tistics computation, parameter pairing, or multidimensional search. By dividing the array into

symmetric subarrays, the steering vectors of the corresponding subarrays yield the far-field-like

rotational invariance property in the signal subspace. We capitalize on this property to par-

tition the problem into multiple smaller arrays, each of which is responsible for estimating its

azimuth and elevation.

5.2 SYMMETRIC SUBARRAY PARTITIONING

This section delves into the concept of subarrays, a key element discussed throughout this

work. To introduce this topic, we analyze a simplified near-field scenario involving K uncor-

related narrowband signals. These signals are directed towards a (2M + 1)-element ULA with

an interelement spacing of d. Let the array center be the phase reference point. The received
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signal, as previously described in Eq. (2.28), but now in near-field at the m-th sensor can be

modeled as: (HE et al., 2008):

xNF (t) =
K∑
k=1

ejτm,ksk(t) + w(t), m = −M, . . . ,M, (5.2)

where sk(t) is the k th source signal, w(t) is the additive noise, and τm,k is the phase shift

associated with the propagation time delay between sensor 0 and sensor m of the k th source

signal, which is a function of source signal parameters, range rk, angle θk and wavelength λ,

given by:

τm,k =
2π

λ

(√
r2k + (md)2 − 2rkmd sin θk − rk

)
. (5.3)

When the source k is in the Fresnel region, which is defined by rk locating in the range,

0.62 (D3/λ)
1/2

< rk < 2D2/λ, with D representing the aperture of the array, as previously des-

cribed in 5.1.1, the delay τm,k can be approximated by using the second-order Taylor expansion:

τm,k =

(
−2πd

λ
sin θk

)
m+

(
πd2

λrk
cos2 θk

)
m2 +O

(
d2

r2k

)
, (5.4)

where O (d2/r2k) denotes terms of order greater than or equal to d2/r2k.

Using this approximation, the signal in (5.2) can be reduced to:

xNF (t) =
K∑
k=1

e
j(− 2πd

λ
sin θk)m+j

(
πd2

λrk
cos2 θk

)
m2

sk(t) + w(t). (5.5)

Considering (2M + 1)-element ULA, the received signal vector xNF (t) = [x−M(t), . . . , xM(t)]T ,

can be written in

xNF (t) = As(t) +w(t), (5.6)

where s(t) = [s1(t), . . . , sK(t)]
T is the signal vector, w = [w−M(t), . . . ,wM(t)]T is the noise

vector, and A is the array manifold matrix in near-fiel given by:

A = [a (r1, θ1) , . . . , a (rK , θK)] (5.7)

with the steering vector a (rk, θk) being expressed as:
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a (rk, θk) =

 ak,−M
...

ak,M



=

 e
j( 2πd

λ
sin θk)M+j

(
πd2

λrk
cos2 θk

)
M2

...

e
−j( 2πd

λ
sin θk)M+j

(
πd2

λrk
cos2 θk

)
M2

 .
(5.8)

5.2.1 Signal Model for Symmetric Subarrays

Observing that the elements in Eq. (5.7) are symmetric with respect to the second term,

we divide the ULA into two subarrays as shown in Fig. 5.5.

The first subarray is formed with the first N sensors in ascending order from sensor −M to

sensor −M+ N − 1, and the second subarray is formed with the last N sensors in descending

order from sensor M to sensor M − N + 1. The received signal vectors of the two subarrays

can be written as (ZHI; CHIA, 2007):

xn1(t) =
[
x−M(t), x−M+1(t), . . . , x−M+(N−1)(t)

]T (5.9)

and

xn2(t) =
[
xM(t), xM−1(t), . . . , xM−(N−1)(t)

]T (5.10)

Figure 5.5: Near-field ULA configuration with symmetric partition. Adapted from (ZHI; CHIA,
2007)
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where K < N < 2M + 1. These two subarray vectors have a similar form:

xn1(t) = A1s(t) +w1(t), (5.11)

and

xn2(t) = A2s(t) +w2(t), (5.12)

where w1(t) =
[
w−M ,w−M+1(t), . . . ,w−M+(N−1)

]T and w2(t) =
[
wM ,wM−1(t), . . . ,wM−(N−1)

]T
are subarray noise vectors. The matrix A1 is the first N rows of A and A2 is constructed with

the last N rows of A in reverse order. The relationship between A and A1,A2 is:

A =

[
A1

last(M −N) rows

]
=

[
first(M −N) rows

JA2

]
, (5.13)

where J is the anti-identity matrix satisfying J2 = I. Define A1 as:

A1 = [a1 (r1, θ1) , . . . , a1 (rK , θK)] (5.14)

with

a1 (rk, θk) =

 ak,−M
...

ak,−M+N−1

 . (5.15)

The symmetric property gives

A2 = [D (θ1) a1 (r1, θ1) , . . . ,D (θK) a1 (rK , θK)] , (5.16)

where

D (θk) = diag
[
e−j(

4πd
λ

sin θk)M , . . . , e−j(
4πd
λ

sin θk)(M−N+1)
]

(5.17)

which is only related with the angle θk.

5.2.1.1 Eigen-Decomposition of the Array Output

As described in Eq. (4.41) of Section 4.5.1.1, the eigendecomposition of the array covariance

matrix Rxx = E
[
x(t)xH(t)

]
is given by Rxx = UsΛsU

H
s +UnΛnU

H
n . Here, Us ∈ C(2M+1)×K

contains K eigenvectors spanning the signal subspace of Rxx, with Λs ∈ CK×K representing the

corresponding eigenvalues. Similarly, Un ∈ C(2M+1)×(2M+1−K) contains 2M+1−K eigenvectors
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in the noise subspace of Rxx, and Λn ∈ C(2M+1−K)×(2M+1−K) is the diagonal matrix comprising

the corresponding eigenvalues.

Simplifying the problem to 1D search and distributing it across multiple smaller arrays

enables us to employ far-field algorithms for estimating azimuth and elevation. This approach

leverages the benefits of far-field techniques while addressing the complexities associated with

near-field scenarios, ultimately improving the accuracy and efficiency of the estimation process.

In the following chapter, we will introduce a more robust and realistic near-field scenario.

Additionally, we will outline an approach that utilizes the subarrays division discussed earlier

to estimate both angle and range accurately.



CHAPTER 6

2D SOURCE LOCATION IN NEAR-FIELD

2D source localization in the near-field region is substantiated by estimating the range and

azimuth angle. It holds immense significance in various fields such as wireless communication,

radar systems, and IoT applications.

The localization approach presented in this chapter leverages the intrinsic properties of

ULAs, such as their directional sensitivity and spatial arrangement, to achieve precise 2D

source localization, i.e DOA and range. Our methodology builds upon recent advancements in

adaptive algorithms tailored for ELAA systems. Specifically, we employ the PAST algorithm

(YANG, 1995), renowned for its efficiency and robustness in subspace tracking tasks.

6.1 SIGNAL MODEL

In the context of near-field considerations, the representation of the ULA shown in Fig.

2.6 in Section 2.3.2.1 has been modified to the depiction illustrated in Fig. 6.1. Here, we

assume that the Base Station (BS) is located near a single-antenna User Equipment (UE)

whose position is unknown and denoted by x = [x,y]T . The BS is equipped with an M -element

linear antenna array, with a spacing of d between each element. The phase reference point is

situated at the array center, and the array elements locations are represented as xm = [md,0]T ,

where m ∈ {−M/2, . . . ,M/2− 1}.

The UE transmits to the BS an Frequency Division Multiplexing (OFDM) signal with a

power of Pt and a total bandwidth of Wb = K∆f . Here, ∆f represents the spacing of the

subcarrier and K is the number of subcarriers. Due to a discrepancy in local oscillators, the

UE has a known clock bias, denoted B.

Let rm = |x − xm| represent the distance between the UE and the m-th sensor. For

convenience, let k ∈ {−K/2, . . . ,K/2− 1} denote the index of the k-th subcarrier. The signal
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Figure 6.1: In a near-field scenario with a transmitting source and a receiver array, the phase
across antenna elements changes nonlinearly, while in a spatial wide-band setting, the delay
across elements varies significantly (ZHI; CHIA, 2007).

received by the m-th sensor can be expressed as follows, according to (ZHI; CHIA, 2007):

ym[k] =
L∑
l=0

αm,ls[k]e
−j 2π

λ
ϵm,l[k] + wm[k] (6.1)

where s[k] is the pilot symbol allocated to the k-th subcarrier and αm,l represents the complex

channel gain at antenna m with respect to the l-th path, and L is the number of paths.

The channel gain is characterized by αm,l = ρm,le
jψm,l , where ρm,l = λ/(2πrm,l) and ψm,l is

a uniformly distributed random phase within the interval [0,2π]. If l = 0, the parameter is

associated with the LOS component; otherwise, for l > 1, the parameters are associated with

the NLOS components. The term wm[k] denotes complex zero-mean Gaussian noise with a

variance of N0/2.

Considering the array center as the phase reference point x0,0 and the center subcarrier k =

0, the phase ϵm,l[k] at any antenna m and any subcarrier k can be expressed as (WYMEERSCH,

2020):

ϵm,l[k] = (rm,l − r0,l) + k
τm

KTsfc
, (6.2)

where Ts = 1/Wb. The first term, rm − r0, represents the difference in path length concerning

the center antenna. The second term, k τm
KTsfc

, depends on the absolute delay τm and increases

with the subcarrier index.
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In Chapter 5, Section 5.1.1 elaborates on the difference in distances for linear arrays, given

by rm−r0 =
√
r20 +m2d2 − 2r0md cos(θ)−r0. This expression can be approximated as rm−r0 ≈

−d cos θ by employing a Taylor expansion centered around z = md/r0 = 0.

We operate in the near-field regime when the distance between antennas falls within the

range of 0.62
√
D3/λ < ||x|| < 2D2/λ, where the curvature of the electromagnetic wave becomes

significant. This condition is detailed in Chapter 2, Section 2.1.2. Furthermore, we consider

narrow-band operation valid whenD ≪ c/Wb, signifying that the signal delay between antennas

is indistinguishable (CHEN et al., 2002).

Under these assumptions, the phase, as described in (HUANG; BARKAT, 1991), can be

expressed as:

ϵm,l[k] = rm,l + (kft − 1)r0,l − kftB, (6.3)

where ft = ∆f/fc and B is a certain bias due to discrepancy between local oscillators. We can

generalise the signal model of Eq. ((6.1)) to the matrix model:

Y =
L∑
l=0

AlV:,lF
H
:,lS+W, (6.4)

where Y ∈ CM×K , V ∈ CM×L contains the array response to each path, so the (m,l)-th element

is Vm,l = e(−ȷ
2π
λ
(rm,l−r0,l)), S = diag(s0, . . . , sK−1), rm,l is the distance between the m-th antenna

element and the point scatterer. For l = 0, rm,0 is the distance between the m-th antenna and

the user. The L × L diagonal matrix Al = diag (α0,l, α1,l, . . . , αM,l). The matrix F ∈ CK×L,

and its (k,l)-th element is Fk,l = e(ȷ
2π
λ
((kft−1)r0,l)).

6.2 NEAR-FIELD USER POSITION ESTIMATION

Our approach involves ELAA comprising N subarrays for DOA and range estimation as

described in Chapter 5 in Section 5.2.1. Initially, we leverage these subarrays to estimate their

individual DOAs. These estimated DOAs are then used to trace lines originating from each

subarray. The intersection point of these lines corresponds to the position of interest.

We partition the rows of Y in Eq. (6.4) into non-overlapping subarrays, each containing N

elements. From the near-filed border ||x|| < 2(Md)2/λ, we establish an expected distance d̄,
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which consists of the maximum range that we expect to find a user equipment and use near-field

maximum distance to obtain

N ≤
√
d̄λ/(2d2). (6.5)

The subarray n corresponds to the observations at antennas (n − 1)N through nN , with

array center x̃n = xM/2 + [d((n)N +N/2, 0]T . In this case, the indexing for n starts at 1. The

total number of subarray is M , assuming M is divider by N .

Each subarray collects its signal from its respective antenna subarray to process them and

extract the subspace. The received signal at the nth subarray is defined as Yn ∈ CN×K .

For subspace estimation, we first remove the pilot contribution by performing the following

operation:

Ŷn = YnS
H(SSH)−1. (6.6)

Once the pilot is removed, the signal is processed by the adaptive algorithm of subspace

estimation. After that, we can use the rotational invariance of the subspace to extract the

angle. The method is detailed in the subsequent subsection.

6.2.1 DOA Estimation

Leveraging the rotational invariance inherent to each subarray, we employ the PAST al-

gorithm to estimate their respective subspaces. Once convergence is reached, this algorithm

is consistently extended to successive subarrays, utilizing computations grounded in the final

subspace estimate derived from the preceding subarray, designated as n− 1.

6.2.1.1 PAST Estimation

The PAST estimation is a widely utilized method in signal processing and adaptive filtering

due to its efficiency and robustness. PAST belongs to the family of subspace tracking algorithms

and is particularly well-suited for tracking changes in the subspace of a signal or system over

time. One of the key advantages of PAST is its computational efficiency. Unlike some other

subspace tracking algorithms that require expensive matrix inversions or eigenvalue decom-

positions, PAST employs a recursive update formula that significantly reduces computational
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complexity (SERGIO; DINIZ, 2002).

Moreover, PAST exhibits robustness in tracking time-varying subspaces, making it suitable

for applications where the underlying signal or system dynamics change over time (VASEGHI,

2000). This adaptability is crucial in scenarios where accurate and real-time tracking of subs-

pace variations is essential for system performance. In summary, the PAST algorithm, initially

proposed by Slock et al. (CHAN et al., 2006), offers a computationally efficient and robust

solution for tracking time-varying subspaces, making it valuable in array processing.

In his work (YANG, 1995), Yang introduced the PAST algorithm designed for tracking

principal components. The PAST estimation consists of an interpretation of the signal subspace

as the solution of a projection-like unconstrained minimization problem, which is solved using

Recursive Least-Squares (RLS) approaches by appropriately approximating the projection. The

dominant subspace estimation consists in minimizing the approximated scalar cost function

J(Un), also known as the linear Principal Component Analysis criterion:

J(Un(k)) = E

{∥∥∥Ŷn −UnU
H
n Ŷn

∥∥∥2} , (6.7)

with the argument Un(k) ∈ CN×γ(γ < N) and γ being the rank represents the argument and

Ŷn denotes the data vector, that in our case is the signal described in Eq. (6.6). The error

surface of this function exhibits several local minima and a single global minimum. At a local

minimum, it is characterized by Un = ÛnQ, where Ûn contains any subset of eigenvectors

from C = E{ŶnŶ
H
n } in Ûn. The matrix Q ∈ Cγ×γ is an arbitrary unitary matrix. When the

cost function J(Un) reaches its lowest possible value, Ûn will not consist of any eigenvectors,

but rather the γ most significant ones (YANG, 1995).

We employ the well-established RLS algorithm to minimize the cost function J(Un). This

can be achieved by reformulating the cost function as follows:

J ′(Un(k)) =
k∑
i=1

βk−i
∣∣∣Ŷn(i)−Un(k)U

H
n (k)Ŷn(i)

∣∣∣2 . (6.8)

In this case, an exponentially weighted sum with the forgetting factor β replaces the expectation

operator. When the forgetting factor is set to 1, all samples receive equal weight, ensuring that

the previous data are not forgotten. By adjusting the forgetting factor to a value between 0

and 1, 0 < β < 1, the resulting algorithm can be used to track nonstationary changes in the
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sources, as outlined in (LANDQVIST; MOHAMMED, 2005).

We can modify the cost function in Eq. (6.8) by approximating UHŶn(i) as UH(i−1)Ŷn(i).

This approximation results in an alternative cost function:

J ′′(U(k)) =
k∑
i=1

βk−i
∥∥∥Ŷn(i)−Un(k)U

H
n (i− 1)Ŷn(i)

∥∥∥2 . (6.9)

By defining Ŷ′
n(i) = UH

n (i− 1)Ŷn(i), we can further simplify the expression as follows:

J ′′(Un(k)) =
k∑
i=1

βk−i
∥∥∥Ŷn(i)−Un(k)Ŷ

′
n(i)
∥∥∥2 . (6.10)

Similar to the cost function of the RLS method, this cost function is quadratic. The only

distinction is that here an error vector e(k) is needed instead of an error scalar e(k). We

conclude that we may approximately minimize the original cost function J(Un) by using RLS

with the input signal Ŷ′
n(k) = UH

n (k − 1)Ŷn(k) and the desired signal Ŷn. Consequently, the

PAST algorithm may be summarized in the Algorithm 1 (LANDQVIST; MOHAMMED, 2005).

The variables h(k) and g(k) are utilized in the equations to calculate the RLS in between steps.

Algorithm 1 The PAST algorithm for tracking the signal subspace

If m = 1: Initialize P(0) and U(0) randomly and appropriately. If m > 1: Initialize using the
estimates from the (m− 1)-th subarray.

for k = 1,2,... do

Ŷ′
n(k) = UH(k − 1)Ŷn(k)

h(k) = P(k − 1)Ŷ′
n(k)

g(k) = h(k)/

[
β +

(
Ŷ′
n(k)

)H
h(k)

]
P(k) = β−1tri

{
P(k − 1)− g(k)hH(k)

}
e(k) = Ŷn −U(k − 1)Ŷ′

n(k)

Un(k) = Un(k − 1) + e(k)gH(k)

end for

To ensure that the matrix P(k) ≈ C−1(k) is symmetric, we use the notation tri {·} to

indicate that only the upper triangular portion of the argument is calculated, and its transpose

is replicated to the lower triangular part. As a result, the algorithm avoids the need for any

matrix inversions, with the most complex operation being scalar division (YANG, 1995).
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It is essential to understand that the converged Un does not directly contain the eigenvectors

of the correlation matrix. The reason behind this is that the cost function, once minimized,

does not lead to a unique solution. In other words, there could be multiple Un matrices that

minimize the cost function, and they might not necessarily correspond to the eigenvectors of

the correlation matrix. Nonetheless, the product UnU
H
n is unique, and it represents the signal

subspace projection matrix.

The columns of the matrix Un that minimize the cost function J(Un) form an orthonormal

basis for the signal subspace generated by the dominant eigenvalues γ of the correlation matrix.

This orthonormal basis is crucial for identifying the directions of received signals, or DOA.

To estimate the DOA, we take the most representative column of Un, corresponding to

this matrix’s first column. This column is then rewritten in the form of two vectors, u1 =

[e−jω0 , . . . , e−jω(N−2)] and u2 = [e−jω1 , . . . , e−jω(N−1)], containing complex exponents related to

the spatial frequencies of the received signals.

The steering vector for a linear array is given by ωi = 2π d
λ
i cos θ. The difference between

consecutive spatial frequencies, ωi − ωi−1, is proportional to the cosine of the angle of arrival

θ. This relationship allows us to estimate the angle θ̂n of a subarray as:

θ̂n = cos−1

(
λ

2πNd

N−1∑
i=0

arg (diag[u∗
1]u2)i

)
, (6.11)

where arg (diag[u∗
1]u2) yields a vector containing the arguments of the complex number entries

of the vector diag[u∗
1]u2.

6.2.2 Range Estimation

Two critical parameters are required to determine a UE’s location: the signal’s angle of

arrival and the distance between the user and the antenna. Having presented a method for

estimating the angle, we utilize this parameter to express a line originating from two subarrays

mathematically. We then calculate the intersection point of the subarray lines, following a

similar approach as presented in (ZHI; CHIA, 2007) and (WYMEERSCH, 2020).

Line intersections occur when two or more lines converge at a shared point. In this context,
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we consider the lines as the distances we aim to determine, and the common point represents

the UE with coordinates x = [x,y]T (BOLDRINI et al., 1980). Considering the estimate angles

and distance values across subarrays, our emphasis is on the angle and distance of both the

initial and final subarrays. This enables us to represent the coordinates as follows:

x =
x̃A · tan(θ̂A)− x̃B · tan(θ̂B)

tan(θ̂A)− tan(θ̂B)
(6.12)

y = x · tan(θ̂A)− x̃A · tan(θ̂B), (6.13)

where, x̃A represents the center of first subarray, x̃B denotes the center of last subarray, θ̂A refers

to the angle estimated by PAST for first subarray, and θ̂B corresponds to the angle estimated

by PAST for last subarray. Incorporating both the angle and range estimation methods, we

summarize the proposed user location Algorithm 2 for subarray localization.

Algorithm 2 Subarray Localization

Assume the number of antennas per subarray as in Eq. (6.5).

Select two subarrays to trace the lines. Choose the first and the last ones.

for n = {1,N} do

Collect Yn.

Verify the most recent estimate of Un.

Obtain Un using the PAST Algorithm 1. If no previous estimate of Un exists for other
subarrays, initialize as a zero matrix.

Estimate θ̂n using Eq. (6.11).

Calculate the center of the subarray: x̃n = xM/2 + [d((n)N +N/2, 0]T .

end for

Calculate x and y using Eq. (6.12) and Eq. (6.13).

Determine the UE position as x = [x,y]T .

It is essential to highlight that the range estimation, which relies on the curvature of the

electromagnetic wave, is not influenced by the bias B. This stands in contrast to the use of

pilots spread across the frequency domain for delay estimation. Furthermore, it is possible to

combine both techniques to estimate the bias B more effectively.
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6.3 SIMULATION AND NUMERICAL RESULTS

We consider a scenario at a carrier fc of 28 GHz (λ ≈ 1.07 cm), a bandwidth W of 100

MHz, c = 0.3 m/ns N0 = 4.0049 × 10−9 mW/GHz, a transmit power Pt of 1 mW (with

E {|s[k]|}2 = Pt/W ) and K = 256 subcarriers with QPSK pilots. The UE has bias B = 20

m. The array has N = 128 elements spaced at λ/2, corresponding to a total size of 69.11 cm

and a far-field distance of 89 m. To test the performance of the algorithm, 500 Monte Carlo

simulations are performed.

To validate the effectiveness of the method proposed in this work, including a PAST with

SVD-based initialization of the first subarray, we conduct a comparative analysis. We con-

trast the RMSE and CDF curves with established techniques from the literature, 2D-IFFT

(WYMEERSCH, 2020) and ESPRIT (ZHI; CHIA, 2007). All estimators employ the subarray

approach and are tested in a multipath propagation setting that includes both LOS and NLOS

components. We change d with random values of θ ∼ U(π/4, 3π/4) and evenly distribute a

scatterer with a radar cross-section of 10 m2 in the plane, this corresponds to a large scattering

object and the forgetting factor β in Algorithm 1 is set to 0.97 (YANG, 1995).

The performance of each estimation method, in terms of position RMSE, as a function of

the distance between the UE and the BS, is depicted in Figure 7.7. Besides estimation models,

the Position Error Bound (PEB) is also presented in the figure. The PEB represents the

minimum error attainable when the position is measured by an unbiased estimator (JOURDAN
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Figure 6.2: RMSE curve of the method proposed in this paper PAST, an enhanced variant PAST
and SVD, 2D-IFFT (ZHI; CHIA, 2007) and ESPRIT (WYMEERSCH, 2020) with respect the
user distance.
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Figure 6.3: Comparison of empirical CDFs between estimators, ||x|| = 3,5 m.

et al., 2006). We observe that the PAST-based estimation exhibits lower position errors than

ESPRIT and 2D-IFFT for distances closer to the BS (ranging from 0.1 m to 1 m). This

can be attributed to the fact that PAST is an iterative search algorithm that projects data

onto a lower-dimensional subspace, refining the DOA estimates with each iteration. However,

beyond 1 m of distance, the PAST estimation’s RMSE increases compared to the 2D-IFFT

DOA estimation. This may occur as the FFT beams approach the far-field beams of each

subarray, which impacts the estimation performance.

The model operates in the near-field regime only when 0.62
√

(Md)3/λ < ||x|| < 2(Md)2/λ

(between 3.4 m and 89 m). Although the 2D-IFFT DOA estimation demonstrates the best

performance in terms of RMSE within the near-field distance compared to other methods, its

precision is limited. This limitation is evident in Figure 6.3 and Figure 6.4, where the CDF

curves indicate a higher variance for the estimator compared to the subspace-based methods.

We examined estimators’ behavior within the near-field region by assessing two distances in

this simulation: 3.5 meters proximal to the array, and 25 meters, distant from the array, both

confined within the near-field range.

The CDF curves of the proposed method exhibit enhanced precision, comparable to that of

Table 6.1: Summary of Percentiles for Cumulative Distribution Function (||x|| = {3.5, 25} m)

Percentile 3.5 m 25 m
PAST PAST/SVD ESPRIT 2D-IFFT PAST PAST/SVD ESPRIT 2D-IFFT

10 0.0250 0.0252 0.0259 0.2090 0.3983 0.2987 0.3847 0.5427
50 0.0251 0.0255 0.0312 0.8065 0.4730 0.3738 0.4103 0.9101
90 0.0253 0.2570 0.0373 1.5012 0.5325 0.5025 0.5563 1.3765
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Figure 6.4: Comparison of empirical CDFs between estimators, ||x|| = 25 m.

2D-IFFT. Additionally, compared to ESPRIT, the curves show a similar performance. Howe-

ver, it is crucial to highlight the lower computational burden of PAST. While the latter has

a complexity of O(Mr) per subarray, ESPRIT’s complexity is primarily dominated by the

SVD, which is O(M3). Therefore, the suggested technique shows reasonable needs, making it

appropriate for subarrays with limited computational restrictions.

We compared the methods using the 10th, 50th, and 90th percentiles. Table I supports the

findings in Figure 6.3 and Figure 6.4. The 2D-IFFT method has outliers, causing positioning

errors over twice that of our method at the 90th percentile. At the 10th and 50th percentiles,

all techniques achieve sub-meter accuracy, but our method performs better. Additionally,

subspace-based methods have comparable performance.

6.4 CONCLUSION

In this chapter, we have presented a novel localization approach that combines the PAST

algorithm and subarray processing for positioning estimation. We have achieved a balance

between low complexity and high-accuracy localization. Our proposed method was compared

to other well-known techniques using RMSE and CDF-based statistical analysis. The results

show that our approach outperforms these techniques in terms of precision.

Despite to its successful performance, it is important to note that our algorithm in this

chapter does not encompass 3D estimation, which involves computing azimuth, elevation angles
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and range. This aspect will be addressed in the next chapter, where we will introduce a more

comprehensive technique for 3D localization, we will introduce a technique that leverages the

Jacobian matrix computed from the spatial gradients of the signal concerning the position.



CHAPTER 7

3D USER LOCATION ESTIMATION

Estimating the three-dimensional position using antenna arrays poses a significant challenge

in localization. This endeavor involves computing azimuth, elevation angles, and the range from

a diverse array of environmental sources, classified as either near-field or far-field (MAZOKHA

et al., 2023).

3D-P estimation in the near field introduces unique challenges and opportunities, promising

insights that could revolutionize wireless communication and signal processing. This becomes

especially crucial with the advent of 6G cellular networks, where significant advancements are

anticipated in localization and tracking (ELZANATY et al., 2023; LIMA et al., 2021).

This chapter delves into the problem of 3D localization, considering the use of ELAAs. These

arrays are composed of URA, exhibiting properties akin to rotational invariance observed in far-

field scenarios within the signal subspace. Leveraging this intrinsic attribute, we partition the

localization challenge into smaller arrays, each independently estimating azimuth and elevation

angles. In addition, our methodology employs the Taylor approximation technique, enabling

us to address non-linear least squares problems adeptly.

7.1 SIGNAL MODEL

In this Chapter, we put our attention to a 3D configuration. Here, we consider a BS

positioned near a single-antenna UE with an unknown location denoted as x = [x,y,z]T . The

BS is equipped with a uniform rectangular antenna array comprising M elements, spaced at a

uniform distance of d between adjacent elements. The center of the matrix acts as the reference

point of the phase and the locations are represented by xmx,my = [mxd,myd,0]
T , where mx and

my ∈ {−M/2, . . . ,M/2− 1}.

The signal model is structured with identical specifications as the one outlined in Chapter
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6 in Section 6.1, differing only in that we now take into account a URA and operate within a

3D configuration.

7.2 TENSOR

Before delving into our 3D localization methods, we will introduce the concepts of tensors

to provide a better understanding of our approach.

Tensors are generalizations of vectors and matrixes, for example, a third-order tensor or

threeway array has three modes, indices or dimensions as shown in Fig. 7.1. A zero-order

tensor is a scalar, a first-order tensor is a vector, a second-order tensor is a matrix, and tensors

of order three and higher are called higher-order tensors (CICHOCKI et al., 2009).

A tensor can be formally defined as:

Definition 7.2.1. (Tensor) Let I1, I2, . . . , IN ∈ N denote index upper bounds, A tensor Y ∈

RI1×I2×···×IN of order N is an N-way array where elements yi,i2···in are indexed by in ∈ {1,2, . . . , In}

for 1 ≤ n ≤ N .

Many modern applications generate large amounts of data with multiple aspects and high di-

mensionality for which tensors (i.e., multi-way arrays) provide a natural representation. Higher-

Figure 7.1: A three-way array (third-order tensor) Y ∈ R7×5×8 with elements yitq (CICHOCKI
et al., 2009)
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order tensor decompositions are nowadays frequently used in a variety of fields including tele-

communication and signal processing. In this study, we will use the Tucker decomposition, one

of the most commonly used decompositions.

7.2.1 Tucker Decompositions

The Tucker decomposition, also called the Tucker 3 or best rank (J,R, P ) approximation,

shown in Fig. 7.2 can be formulated as follows (CICHOCKI et al., 2009):

Given a third-order data tensor Y ∈ RI×T×Q and three positive indices {J,R, P} <<

{I, T,Q}, find a core tensor G = [gjrp] ∈ RJ×R×P and three component matrices called factor

or loading matrices or factors: A = [a1,a2, . . . ,aJ ] ∈ Rl×J ,B = [b1, b2, . . . , bR] ∈ RT×R, and

C = [c1, c2, . . . , cP ] ∈ RQ×P , which perform the following approximate decomposition:

Y =
J∑
j=1

R∑
r=1

p∑
p=1

gjrp (aj ◦ br ◦ cp) + E (7.1)

or equivalently in the element-wise form:

Yitq =
J∑
j=1

R∑
r=1

P∑
p=1

gjrpaijbtrcqp + eitq, (7.2)

where aj ∈ RI , bj ∈ RT , and cj ∈ RQ, that is, the vectors within the associated component

factor matrices A,B and C, and gjrp are scaling factors which are the entries of a core tensor

Figure 7.2: Tucker3 model is a weighted sum of the outer product of three vectors (factors)
stored as columns of component matrices A ∈ RI×J . B = XT ∈ RT×R and C ∈ RQ×P . The
core tensor G ∈ RJ×R×P defines a linking structure between the set of components and J,R,
and P denote the number of components. In order to achieve uniqueness for the Tucker models
it is necessary to impose additional constraints such as sparsity and nonnegativity (CICHOCKI
et al., 2009)
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G = [gjrp] ∈ RJ×R×P .

The Tucker model can be described in several mathematically equivalent ways. One such

representation involves expressing it in matrix form through mode-n multiplications.

Y = G ×1 A×2 B×3 C+ E = JG;A,B,CK + E , (7.3)

where Ŷ = JG;A,B,CK is the shorthand notation for the Tucker3 tensor decomposition. Using

the unfolding approach we can obtain matrix forms expressed compactly by the Kronecker

products:

Y(1)
∼= AG(1)(C⊗B)T , (7.4)

Y(2)
∼= BG(2)(C⊗A)T , (7.5)

Y(3)
∼= CG(3)(B⊗A)T . (7.6)

It is often convenient to represent the three-way Tucker model in its vectorized forms:

vec
(
Y(1)

) ∼= vec
(
AG(1)(C⊗B)T

)
= (C⊗B)⊗A vec

(
G(1)

)
,

vec
(
Y(2)

) ∼= vec
(
BG(2)(C⊗A)T

)
= (C⊗A)⊗B vec

(
G(2)

)
,

vec
(
Y(3)

) ∼= vec
(
CG(3)(B⊗A)T

)
= (B⊗A)⊗C vec

(
G(3)

)
.

(7.7)

The Tucker model discussed earlier is commonly referred to as the Tucker3 model. In

this model, a third-order tensor is decomposed into three factor matrices, referred to as loading

matrices, denoted as {A,B,C}, along with a core tensor G. When dealing with scenarios where

we only have two factor matrices or even just one, the Tucker3 model for a three-way tensor

transforms into simplified versions known as the Tucker 2 or Tucker 1 models (CICHOCKI et

al., 2009).

7.3 SUBSPACE SEPARATION

Now that we have discussed the concept of tensors, let us consider Eq. (6.4), which can

be viewed as a concatenation of N received signals corresponding to subarrays of P antenna

elements in the matrix Y =
[
YT

0 , . . . ,Y
T
N−1

]
, where Yn ∈ CP×K .
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Using tensor decomposition, we address azimuth and elevation estimations more effectively

by modeling linear subarrays in the second and third dimensions of the rectangular array. To

each subarray, the signal can be associated with the tensor model. More specifically, the signal

associated with the n th subarray can be expressed as

Yn = Xn +Wn, (7.8)

where n ∈ {0, 1, . . . , N−1}, Yn ∈ CK×I1×I2 , P = I1I2, Xn ∈ C(K×I1×I2) is the training sequence,

and Wn represents tensor complex noise. Without a lack of generality, we consider I1 = I2 =

I =
√
P , where

√
P ∈ Z+.

Azimuth and elevation are efficiently estimated using the ESPRIT algorithm, extracting the

relevant subspace. This involves decomposing the tensor Ym using HOSVD, the concepts of

which we will describe in the next section.

7.3.1 HOSVD

The HOSVD is a fundamental concept in multilinear algebra, extending the idea of SVD

described in Chapter 4 in Section 4.3.1.1 to higher-dimensional data structures known as ten-

sors. While SVD is specifically designed for matrices, HOSVD generalizes this decomposition

to tensors of any order, enabling efficient analysis and manipulation of multidimensional data

(MARKOPOULOS et al., 2018).

The essence of HOSVD lies in decomposing a tensor into a set of core tensors and ortho-

gonal factor matrices along each mode or dimension. This decomposition allows us to extract

meaningful and interpretable information from complex data structures, aiding in tasks such as

dimensionality reduction, feature extraction, and data compression (KOLDA; BADER, 2009),

(MOOR et al., 1995).

Consider the abstract tensor A given in coordinates with respect to some basis as an Γ-way

array, denoted by A ∈ CI1×I2×···×IΓ×···×IΓ , where Γ is the number of modes and the order of the

tensor. Here, C represents the complex numbers, encompassing both real numbers R and pure

imaginary numbers.

Now, let UΓ ∈ CIΓ×IΓ be a unitary matrix containing a basis of the left singular vectors of
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the standard mode-Γ flattening A[Γ] of A. Each column uj of UΓ corresponds to the j-th largest

singular value of A[Γ]. Notably, the mode/factor matrix UΓ remains independent of the specific

definition of the mode-Γ flattening. Utilizing the properties of multilinear multiplication, we

derive ():
A = A× (I, I, . . . , I)

= A× (U1U
H
1 ,U2U

H
2 , . . . ,UΓU

H
Γ )

=
(
A× (UH

1 ,U
H
2 , . . . ,U

H
Γ )
)
× (U1,U2, . . . ,UΓ),

(7.9)

The second equality holds because the UΓ’s are unitary matrices. Now, define the core

tensor as S := A× (UH
1 ,U

H
2 , . . . ,U

H
Γ ). Therefore, the HOSVD of A is the decomposition:

A = S × (U1,U2, . . . ,UΓ). (7.10)

This construction demonstrates that every tensor has an associated HOSVD.

7.3.2 Azimuth and Elevation Estimation

Azimuth and elevation measurements are accurately estimated using the ESPRIT algorithm,

detailed in Chapter 4. The algorithm initiates by extracting the subspace associated with the

second and third dimensions, providing crucial azimuth and elevation measurements.

This extraction is facilitated through the decomposition of the tensor Yn using the HOSVD

method. The decomposition is expressed as follows:

Xn = Gn ×1 U
m
1 ×2 U

m
2 ×3 U

m
3 , (7.11)

where each term Um
i denotes an orthogonal matrix corresponding to the ith mode of the tensor

Yn. The HOSVD is used to produce results based on the Tucker3 tensor model from the nth

subarray.

Subsequently, the ESPRIT algorithm is used to independently calculate the azimuth and

elevation measurements of the modes Um
2 and Um

3 , respectively. This approach considers Um
2

and Um
3 as two distinct ULAs. The first ULA consists of virtual antennas whose positions are

only along the y axis, while the second ULA has antennas located only along the z axis.

Using the orthonormal matrix Um
2 , it is possible to calculate the azimuth of the most
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representative column, which is the first. This is done by transforming it into two vectors:

u1 = [e−jω0 , . . . , e−jω(I−2)] and u2 = [e−jω1 , . . . , e−jω(I−1)]. Similar to Eq. (6.11), this enables us

to estimate the value of θn for subarray as:

ϕ̂n = sin−1

(
λ

2πId

I−1∑
i=0

arg (diag[u∗
1]u2)i

)
, (7.12)

where arg (diag[u∗
1]u2)i extracts the argument for the entry of the ith complex number of vector

diag[u∗
1]u2.

Elevation estimation is performed in a similar way using the matrix Um
3 . As the virtual

ULA is orientated, the estimated angle must be multiplied by a negative value. Thus, the

estimated elevation of the subarray n is expressed as:

θ̂n = − sin−1

(
λ

2πId

I−1∑
i=0

arg (diag[u∗
1]u2)i

)
. (7.13)

7.3.3 User Position Estimation

Once each subarray has estimated its azimuth and elevation, the connection between Car-

tesian coordinates can be utilized. This allows us to combine the estimated angles into q =[
qT0 , . . . ,q

T
N−1

]T , where qn =
[
θ̂n, ϕ̂n

]T
, and apply the correlation with the user’s position as

specified by: [
ϕn
θn

]
=

tan−1
(

yn−y
xn−x

)
sin−1

(
zn−z
rn

) , (7.14)

where [xn,yn,zn] are the center position of the nth subarray while x = [x,y,z] is the user position,

and rn =
√
(xn − x)2 + (yn − y)2 + (zn − z)2. The relationship between user position, azimuth,

and elevation follows a nonlinear function.

Our approach then consists of minimizing the nonlinear function

J(x,y,z) =
N−1∑
n=0

∥∥∥∥∥qn −
[
tan−1

(
yn − y

xn − x

)
, sin−1

(
zn − z

rn

)]T∥∥∥∥∥
2

2

=
N−1∑
n=0

∥qn − hn(x, y, z)∥22 ,

= ∥q− h(x)∥22 , (7.15)
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where hn(x,y,z) ≡ hn(x) is defined in Equation (7.14), h(x) = [h0(x), . . . ,hN−1(x)]
T , and

q =
[
qT0 , . . . ,q

T
N−1

]T .

The problem is non-linear and challenging to solve, so we use the Taylor series approximation

for the function hn(x). Its first-order approximation is expressed as hn(x) ≈ hn(x0) +Hn(x−

x0), where x0 = x− dx and the Jacobian matrix is

Hn =

[
∂ϕn
∂x

∂ϕn
∂y

∂ϕn
∂z

∂θn
∂x

∂θn
∂y

∂θn
∂z

]
. (7.16)

We then form the matrix H =
[
HT

0 , . . . ,H
T
N2−1

]T by combining the Jacobian N matrices.

Therefore, h(x) ≈ h(x0) +H(x− x0).

The cost function can be approximated as:

J(x) ≈ ∥q− h(x0)−H(x− x0)∥22

= ∥q− h(x0)−Hx+Hx0∥22

= ∥q̃−Hx∥22 , (7.17)

where q̃ = q− h(x0) +Hx0. The solution to the approximate linear problem is x̂ = H†q̃. By

expanding the term q̃, the new estimator is given by:

x̂ = H†(q− h(x0) +Hx0)

= H†Hx0 +H†(q− h(x0))

= x0 +H†(q− h(x0)). (7.18)

This equation suggests an iterative procedure defined by:

x̂[k + 1] = x̂[n] +H†(q− h(x[k])), (7.19)

where the matrix H is updated at each step as specified by its sub-matrices in Equation (7.16).



7.3 – Subspace Separation 88

The derivatives are calculated as:

∂ϕn
∂x

= − (y − yn)

(x− xn)2 + (y − yn)2
,

∂ϕn
∂y

=
(x− xn)

(x− xn)2 + (y − yn)2
,

∂ϕn
∂z

= 0,

∂θn
∂x

=
(x + xn)(z− zn)√(

1− (z−zn)2

(x+xn)2+(y+yn)2+(z+zn)2

)
((x + xn)2 + (y + yn)2 + (z + zn)2)

3

,

∂θn
∂y

=
(y + yn)(z− zn)√(

1− (z−zn)2

(x+xn)2+(y+yn)2+(z+zn)2

)
((x + xn)2 + (y + yn)2 + (z + zn)2)

3

,

∂θn
∂z

= − (x + xn)
2 + (y + yn)

2 + (z + zn)
2 − z2 + z2n√(

1− (z−zn)2

(x+xn)2+(y+yn)2+(z+zn)2

)
((x + xn)2 + (y + yn)2 + (z + zn)2)

3

.

The Jacobian matrix H can be ill-conditioned, resulting in a non-unique pseudoinverse. To

address this, we employ the Levenberg-Marquadt algorithm, which is a combination of gradient

descent and Gauss-Newton methods. This modifies Equation (7.19) to:

x̂[k + 1] = x̂[n] + (HTH+ λDiag(HTH))−1HT (q− h(x[k])), (7.20)

where the Diag(HTH) operator extracts the main diagonal of matrix HTH and λ is a damping

factor. A summary of the solution is provided in Algorithm 3.

7.3.4 Computational Complexity Analysis

We can assess the algorithm’s computational complexity by examining each operation to

determine its cost. The mth subarray has a signal tensor with dimensions CP×I1×I2 , and the

complexity of the HOSVD for a third-order tensor is O (PI21I2 + P 2I1I2 + PI1I
2
2 ). This leads

to a complexity of O (M [LI21I2 + L2I1I2 + LI1I
2
2 ]) for all M subarrays. Inside the loop ’While’,

the most significant operation is the pseudoinverse (HTH + λDiag(HTH))−1HT , which has a

computational complexity O(12M2). Thus, assuming the worst case, where Kmax iterations are

needed to estimate the position of the user, the estimated complexity of the entire algorithm

is O (M [(PI21I2 + P 2I1I2 + PI1I
2
2 ] + 12M2Kmax). In our case, we assume I1 = I2 = I, so the

computational complexity is O (M [2PI3 + P 2I2] + 12M2Kmax). Although we are dealing with
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Algorithm 3 Proposed Algorithm

Split the matrix into smaller sub-arrays to form the tensor signal model as in Eq. 7.8

for each subarray n do

Use HOSVD to obtain the decomposition as shown in Equation (7.11)

Use Um
2 with Equation (7.12)

Use Um
3 with Equation (7.13)

Set qn = [ϕ̂n,θ̂n]
T

Stack the new estimate into q = [qT0 , . . . ,q
T
n ]
T

end for

Create an initial guess for x[0]

Define the maximum number of iterations as Kmax

Compute the error vector e = q− h(x[0])

while ||e|| ≥ ϵ and k < Kmax do

Calculate the matrix H =
[
HT

0 , . . . ,H
T
M−1

]T , where Hn is defined in Equation (7.16).

Update the error vector as e = q− h(x[k])

Compute x[k + 1] using Equation (7.20)

Increment n by 1

end while

extra large arrays, the computational complexity is in the function of the dimension of the

subarray, which we can design within an acceptable computational complexity, considering the

limitations of signal processing capabilities.

7.4 SIMULATION AND NUMERICAL RESULTS

In our indoor scenario, we consider a carrier frequency fc of 15 GHz, where the speed of

light c is 0.3 m/ns, resulting in a wavelength λ of 0.02 meters. The system comprises K = 256

subcarriers with quadrature phase shift keying (QPSK) pilots and a bandwidth W of 1 GHz and

a subcarrier spacing df = W/K. For simulation purposes, we used an antenna element with an

isotropic response pattern. To simulate a large array, we consider a set of URA subarrays with

4 × 4 elements with half-wavelength spacing replicated to obtain a 32 × 32 URA. Figure 7.3

represents the configuration of the array. Under such conditions, the near-field region rNF <
2D2

λ

is approximately 82 meters.



7.4 – Simulation and Numerical Results 90

y

z

Figure 7.3: Visual representation of a 32x32 planar antenna array with 4x4 subarrays.

We evaluate our algorithm via simulations, considering multipath interference due to reflec-

tion, which may bias the estimation. These interference are NLOS components, i.e., L > 0 in

Eq. (6.1). As a baseline, we also consider in our evaluation, the LOS scenario, i.e., L = 0 in

Eq. (6.1). The simulation’s performance metrics are the CDF of the UE location error and the

RMSE of the localization algorithm.

In the following results, we consider the SNR at the receiver side. The noise variance cal-

culation is based on the average spectrum power of the received signal per antenna. Therefore,

in our simulations, we calculate the noise variance σ2 as the ratio of the mean received power

and the desired SNR.

Figure 7.4 displays the CDF of the UE error location with a simulated SNR = −20 dB for

LOS only, 2, 4, and 8 scatters. The algorithm performance degrades with increasing scatters

due to multipath interference. In contrast, Figure 7.5 shows the algorithm enhancement with

lower noise power, SNR = −10 dB. Specifically, the 90th percentile of the 8 scatters curves

improves about 4.4 times from 27.863 to 6.344 meters. This improvement highlights the SNR’s

role in defining the algorithm’s operational area within an acceptable error margin for a service.

The improvement shown in Fig. 7.5 compared to Fig. 7.4 is due to the impact of noise
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Figure 7.4: CDF of the UE location error for SNR = -20 dB.

power on the performance of HOSVD, a subspace method sensitive to rank selection. Although

not optimized here, identifying this parameter could be a future research topic. We extract

azimuth and elevation from the first eigenvector of the tensor’s second and third factor matri-

ces, assuming that the signal LOS power is significantly higher than the NLOS components.

However, a low SNR makes the distinction between LOS and NLOS challenging. Errors also

arise from the reliability of iterative methods, dependence on the Jacobian matrix, the influence

of the SNR on matrix conditioning, and convergence speed.

Figure 7.6 shows a scenario with 0 dB SNR, where the noise power has minimal impact

and multiple paths mainly influence the algorithm performance. The proximity of curves for

different numbers of scatter demonstrates the effectiveness of the algorithm against multipath
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Figure 7.5: CDF of the UE Location Error for SNR = -10 dB.
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Table 7.1: Comparison of 10th, 50th, and 90th percentiles across scenarios with varied SNRs for
LOS only, 2, 4 and 8 scatters.

-20 dB -10 dB 0 dB
# of scatters 10th 50th 90th 10th 50th 90th 10th 50th 90th

LOS only 2.799 m 5.510 m 7.811 m 1.453 cm 4.944 cm 11.625 cm 0.602 cm 2.846 cm 8.378 cm
2 4.277 m 7.109 m 13.658 m 1.090 cm 4.026 cm 12.833 cm 0.873 cm 3.803 cm 11.330 cm
4 4.764 m 8.694 m 18.965 m 2.006 cm 7.989 cm 62.532 cm 1.741 cm 8.000 cm 59.481 cm
8 8.427 m 18.652 m 27.863 m 11.044 cm 53.987 cm 6.344 m 10.902 cm 52.894 cm 9.128 m

interference.

Table 7.1 compares the percentiles of 10th, 50th, and 90th in SNR scenarios of -20 dB, -10

dB and 0 dB, considering the LOS only scenario, as well as, the multipath one with 2, 4, and

8 scatters. The data suggest that submeter accuracy is attainable at SNR ≥ −10 dB for the

10th and 50th percentiles, while at 0 dB, this accuracy can be achieved except for the 90th

percentile with 8 scatters. A notable improvement trend is observed as the SNR increases, with

diminishing variability between percentiles, indicating a more predictable and reliable perfor-

mance. However, as the number of scatter increases, there is a discernible impact on the 90th

percentile values. The best performance is consistently seen with the highest SNR conside-

red of 0 dB, where even in the presence of 4 scatters, the 90th percentile measurement does

not exceed 53.987 centimeters, underscoring the technique’s potential for applications requiring

high precision. Conversely, the most challenging setup is at −20 dB with 8 scatters, where the

accuracy hovers around 27.863 meters at the 90th percentile, highlighting the conditions under

which the performance of the system may be compromised.

We analyze the root mean square error by varying the distance between the UE and the
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Figure 7.6: CDF of the UE Location Error for SNR = 0 dB.
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access point. Figure 7.7 shows that the algorithm demonstrates efficacy in the challenging

near-field scenario for distances closer to the antenna, especially for 10 dBm and 2 scatters.

This is attributed to the combination of higher signal strength and a moderate number of

scatters, which enhance the SNR. However, it should be noted that as the distances become

larger, the performance of the algorithm tends to decrease. This is natural since we have a

fixed transmitted power, and so the SNR tends to decrease. As we discussed previously, noise

power is one of the sources of error that can degrade algorithm performance.

7.5 CONCLUSION

In this Chapter, we propose a 3D-P estimation method designed for wireless systems em-

ploying URAs. This approach virtually partitions the array into subarrays, each is tasked with

independently estimating azimuth and elevation angles. To handle the multidimensional data

effectively, we employ HOSVD, reducing tensor size for a more concise representation of data

structure, particularly beneficial in URA applications. Additionally, we utilize Taylor series

approximation to address non-linear least square problems, contributing to accurate position

estimations.

The results show that even for low SNRs, it is still possible to achieve accuracy within the

sub-meter range. This occurs with 90% probability if there are few scatters in the scenario;

in other words, the multipath interference is very low. Furthermore, the algorithm has shown
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Figure 7.7: The curves represent different power levels (5 dBm, 10 dBm) and scatter scenarios
(2, 4).
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excellent performance in canceling multipath interference with very high SNRs.

Additionally, the RMSE vs. Radius plot further underscores the algorithm’s proficiency

for different numbers of scatters and power of transmission. The low RMSE values at different

distances from the base station ranging from 5 to 100 meters highlight its consistent accuracy in

user localization. Even when users assume random positions within this radius, the algorithm

maintains low error rates. This performance, both in terms of CDF under multipath interference

conditions and RMSE across varying distances, attests to the algorithm’s robustness, making

it well-suited for real-world deployment scenarios.

In summary, the algorithm proposed shows great potential in addressing the issues related

to wireless communication and signal processing, especially in the changing environment of 6G

networks. Its effectiveness in determining the 3D location using antenna arrays in close-range

scenarios despite multipath interference is a useful tool for precise location in various settings.



CHAPTER 8

CONCLUSION

8.1 FINAL CONSIDERATIONS

Source localization using a sensor array is a pivotal research area within array signal pro-

cessing, finding applications in radar, sonar, medical electronics, and beyond. The problem

of source localization can be approached in two distinct manners, depending on the distance

between the source and the array. When the source lies beyond the Fresnel region, it is ca-

tegorized as far-field, necessitating a specific modeling approach. Conversely, when the source

is within the Fresnel region, the problem shifts to the near-field domain, requiring a different

modeling strategy. Our research predominantly focuses on the intricate near-field scenario and

its associated applications.

The localization of transmitted signals in antenna arrays, particularly in near-field scenarios,

remains a challenging yet critical aspect of signal processing research.

One of the cornerstones of our research lies in the strategic utilization of sub-array tech-

niques. By partitioning the antenna array into smaller sub-arrays, we reduced computational

complexity and unlocked the potential for integration with other advanced techniques. The

incorporation of sub-array techniques facilitated seamless integration with sophisticated algo-

rithms like the PAST algorithm in 2D localization and the HOSVD algorithm in 3D localization.

This approach allowed us to balance computational efficiency and high-accuracy localization

harmoniously, overcoming traditional limitations associated with near-field scenarios.

In this dissertation, we explored two distinct yet interconnected aspects of source localiza-

tion: 2D source localization in near-field and 3D source location in the near-field.

• 2D Source Localization in Near Field The first part of our research focused on 2D source

localization in near field, where the proximity of the source to the antenna array introduces

unique challenges. By combining the PAST algorithm with sub-array processing, we
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achieved a delicate balance between computational efficiency and localization accuracy.

Our method exhibited superior performance in terms of precision, as evidenced by the

CDF curves and RMSE metrics.

One of the notable advantages of our approach is its reduced computational burden, ma-

king it well-suited for scenarios with limited computational resources. The comparative

analysis against established techniques like 2D-IFFT and ESPRIT highlighted the robust-

ness and reliability of our proposed method, particularly in noisy environments with low

SNRs.

• 3D Source Location in Near Field In the second part of our research, we explored 3D-P

estimation using URAs and advanced signal processing techniques. Leveraging HOSVD,

Taylor approximation, and the Levenberg-Marquadt algorithm, we developed a sophisti-

cated algorithm capable of accurate 3D source localization in challenging near-field envi-

ronments. Notably, while relying solely on ESPRIT for angle estimation, This methodolo-

gical evolution was particularly evident in the algorithm’s ability to estimate distance with

higher accuracy and reliability in 3D scenarios compared to 2D scenarios. The incorpora-

tion of the Jacobian matrix, computed from spatial signal gradients, played an important

role in refining position estimates, especially in challenging near-field environments with

interference multipath scenarios.

Our comprehensive evaluation metrics, including CDFs and RMSE, demonstrated the

algorithm’s adaptability and robustness across varying signal strengths and distances

from the base station. The algorithm consistently maintained low error rates, showcasing

its proficiency in diverse scenarios and its potential for real-world deployment.

8.2 FUTURE DIRECTIONS

In conclusion, our research has contributed valuable insights and innovative methods to the

field of source localization in near-field scenarios. The combination of advanced algorithms, sub-

array processing, and adaptive techniques has paved the way for enhanced accuracy, reduced

computational complexity, and improved performance in wireless communication systems.

Moving forward, future research endeavors will focus on further refining and optimizing the
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proposed algorithms, especially focusing on the impact of noise power on HOSVD performance,

a subspace method sensitive to rank selection. Although not optimized here, identifying this

parameter could be a future research topic.

Another consideration in this work is that we extract azimuth and elevation from the first

eigenvector of the second and third factor matrices of the tensor, assuming that the signal

LOS power is significantly higher than the NLOS components. However, a low SNR makes the

differentiation of LOS and NLOS challenging. Errors also arise from the reliability of iterative

methods, dependence on the Jacobian matrix, the influence of the SNR on matrix conditioning,

and convergence speed. These refinements in future work could make the localization method

even more robust in terms of user location.

Additionally, as the landscape of wireless communication evolves, our research lays a solid

foundation for addressing the challenges and requirements of emerging technologies, such as 6G

networks.
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