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Abstract

This work investigates the design and optimization of 3D antenna arrays and ground station
distribution for satellite communication systems. It has the objective of proposing a ground
station distribution that maximizes the contact and downlink data with an LEO satellite over

a given territory.

The dissertation begins with a theoretical foundation, discussing antenna types such as
parabolic reflectors and microstrip antennas. It discusses radiation fields from apertures and
directivity from electric fields. It also discusses the link budget evaluation in the context of
satellite communication. Finally, it presents the optimization algorithms that will be used in
the work. All the antenna field simulation and link budget evaluation are realized through a

developed Python package, arraytools.

The work continues by proposing a multi-step process to distribute ground stations inside a
given territory to maximize the link coverage regarding a given satellite. The process consists
of three concatenated algorithms: convex optimization, sequential least squares and differential
evolution. Each one has its disadvantages, which are compensated by the following algorithms.
It also considers an alternative scenario, in which the ground stations must be placed into some
specific locations due to legacy infrastructure. In this case, the optimization variables are the
antenna parameters instead of the positions. These algorithm implementations are also done

by arraytools.

The next chapter then discusses a method to design a static array that can maintain an
approximately constant power level during satellite passes. The difference between the proposed
algorithm and the more conventional ones is that the antennas are static, physically steered
and can be placed in any 3D position. The developed package also includes all the functions

necessary to combine the fields of a single element into an array.

Finally, it presents the overall results and considerations for future works. First, it was

possible to successfully propose a ground station distribution that maximizes the link coverage



over the Brazilian territory considering two different LEO satellites. Then, it was proposed a
ground station distribution that matches the downlink capability of a ground station positioned
near the South Pole. At last, it was proposed static arrays that can maintain constant power

levels during satellite passes.

Keywords: Antenna Arrays, Satellite Communication, Ground Station Distribution, Convex

Optimization, Differential Evolution, Link Budget.



Resumo Estendido

Titulo: Otimizacao de Arranjos de Antenas 3D e Distribuicao de Estacoes de

Solo para Comunicacgoes via Satélite.

Este trabalho tem o objetivo de propor uma distribuigao de estagoes de solo que maximizem

o contato e o downlink com um satélite de érbita baixa em um dado territorio.

Ele estd inserido no contexto do projeto “Estagao Terrena Autonoma Distribuida de Baixo
Custo e Alta Taxa de Download”, aprovado na chamada CNPq/AEB/MCTI/FNDCT N©
20/2022 do programa UNIESPACO, cujo objetivo é determinar a viabilidade de uma estacao
terrestre programavel remotamente, idealmente sem partes méveis, em regioes nao polares, e
com uma meta de custo inferios a um décimo do custo das estagoes terrestres contemporaneas
para construir e manter. Esse tipo de estudo é pouco explorado com aplicagoes ao territorio
brasileiro, que foi o escolhido como cenario das andlises deste trabalho, embora as ferramentas
desenvolvidas possuam aplicacao para qualquer regiao de interesse. Ainda com a ideia de ex-
plorar aplicacoes nacionais, um dos satélites que foi utilizado neste trabalho foi o VCUBI, o

primeiro satélite de observagao da Terra que foi projetado pela industria nacional.

Para atingir essa finalidade, uma ferramenta em python foi desenvolvida com as seguintes
funcionalidades: simular antenas parabdlicas e de microfita, realizar a rotacao de campos dis-
tantes de antenas fisicamente rotacionadas, combinar varias antenas fisicamente rotacionadas
e posicionadas de forma nao uniforme em um arranjo, avaliar o link budget de um enlace de
comunicacgao satelital, distribuir estacoes de solo através de um dado territorio de forma a
maximizar a cobertura, maximizar a cobertura de estacoes de solo restritas a posicoes fixas em
um territério e projetar um array sem partes moéveis capaz de manter um nivel constante de

poténcia em relacao a um passe de satélite de érbita baixa.

O trabalho inicia com um capitulo relacionado com a fundamentacao teérica do problema,
em que sao apresentadas as equagoes que foram implementadas nos moédulos do pacote em

python. As necessidades de propagacao de drbitas de satélites e calculos de acesso foram



supridas por meio do software SMET, também desenvolvido no contexto do projeto. Um dos
objetivos é integrar as ferramentas desenvolvidas neste trabalho com esse software ja existente.
Dessa forma, ao fim do projeto, espera-se entregar um software completo para realizar anélises
envolvendo enlaces de comunicacao satelitais. Nesse capitulo, o satélite argentino SAC-C foi
utilizado como benchmark das ferramentas desenvolvidas, por ja ter sido alvo de estudos de

link budget e possuir dados disponiveis.

A seguir, apresenta a solucao do problema de distribuicao de estacoes de solo para maxi-
mizar a cobertura de um dado satélite de o6rbita baixa. Para isso, foi sugerido um processo em
trés etapas utilizando diferentes técnicas de otimizacao, com cada etapa resolvendo deficiencias
das etapas passadas. O primeiro passo envolveu um relaxamento do problema para que ele
fosse capaz de ser modelado de forma convexa, restringindo as estacoes de solo a um grid sob o
territorio brasileiro. O resultado dessa otimizacao convexa foi, entao, usado como entrada para
outra abordagem desconsiderando as restricoes das estagoes de solo a um grid. No entanto, con-
siderava uma aproximacao para o padrao de cobertura das antenas, considerando-as circulares
em um grid de latitude e longitude e também nao restringia as antenas a estarem dentro do
territério de interesse. Por fim, esse resultado foi usado como entrada de um algoritmo genético
de evolucao diferencial, que foi capaz de incluir todas as restrigoes desejadas. Cada etapa refi-
nou o resultado inicialmente encontrado pela otimizagao convexa, que se mostrou eficaz mesmo

com o relaxamento do problema.

Também foi apresentada uma modificagao do problema, considerando as estagoes de solo
restritas a locais especificos do pais, em que haja infraestrutura suficiente para facilitar a
manutencao dessas estacoes. Nesse caso, as variaveis a serem otimizadas foram os parametros
das antenas utilizadas, como o diametro do refletor parabdlico. O resultado encontrado, entao,
foi comparado com uma estagao posicionada proximo ao polo sul, obtendo capacidades semel-

hantes de download.

Finalmente, foi proposta uma otimizacao de forma a obter um arranjo de antenas sem partes
moveis capaz de manter um nivel de poténcia aproximadamente constante ao longo da trajetoria
de um satélite de 6rbita baixa. No entanto, embora esse objetivo tenha sido alcancado, o arranjo
ainda apresenta um grande espalhamento de energia, dificultando a capacidade de fechar enlaces
de comunicacao satelitais. Nesse cenario do calculo de arranjo de antenas, foi integrada outra

ferramenta desenvolvida no contexto do projeto, chamada AFTK. Esse médulo é capaz de



reconstruir os campos de uma antena em qualquer ponto a partir de uma amostra dos campos

utilizando modos esféricos.

Em resumo, foi possivel encontrar um procedimento que é capaz de maximizar a area coberta
por estacoes de solo considerando os passes de um satélite, além de também propor uma solucao
de estacoes de solo dentro do territério nacional com capacidades de downlink similares a
uma estacao proxima ao Polo Sul e também propor um arranjo sem partes moveis capaz de
manter um nivel de poténcia aproximadamente constante durante um passe de satélite. Isso
foi alcancado com o desenvolvimento de ferramentas que foram integradas a outros softwares

desenvolvidos no contexto do projeto CNPq.

Palavras-Chave: Arranjo de Antenas, Comunicacao Satelital, Distribuicao de Estacoes de Solo,

Otimizagao Convexa, Evolugao Diferencial, Link Budget.
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Chapter 1

Introduction

1.1 State-of-the-art

A typical state-of-the-art ground station for Low Earth Orbit (LEO) satellites uses a single
large 11-meter parabolic antenna and tracks a single satellite at a time by mechanically sweeping
the antenna up to 160 degrees. The downlink supports data rates ranging from 2 kbps to 150
Mbps. To maximize contact with Sun-Synchronous Orbit (SSO) satellites, ground stations are
ideally located near the poles. These ground stations cost around $4 million each to build and
have high maintenance costs, like the antenna located in Poker Flats. As said in [9], a static
1m dish parabolic reflector would cost around $5000. In this way, an array with elements like
this would be significantly cheaper than the huge state-of-the-art parabolic antennas.

Maintaining consistent and uninterrupted contact with LEO satellites over a specific ter-
ritory brings several advantages and benefits: getting more opportunities to acquire real-time
telemetry, to send commands, to downlink data or to establish efficient and robust communica-
tion links in case of communication payloads. In this context, it is important to place ground
stations in strategic positions, particularly when dealing with huge territories.

The problem of base station placement for maximizing coverage is usually tackled by fields
like mobile communications and unmanned aerial vehicles [6] [21] [16].

To the best of our knowledge, there is no significant work dealing with ground station

placement for satellite coverage optimization.

1.2 Contextualization

This work is supported by the project “Low-Cost and High-Download-Rate Autonomous
Distributed Ground Station” approved in the CNPq/AEB/MCTI/FNDCT Call No. 20/2022,
UNIESPACO Program.

The project objective is to determine the feasibility of a remotely programmable ground
station, ideally without moving parts, in non-polar regions, with a cost target of less than one-
tenth of the cost of contemporary ground stations to build and maintain. Instead of a single
dish, the ground system would consist of a number of antenna arrays with small to moderate
aperture sizes and the array outputs would be adaptively combined to maximize the signal-to-

interference-and-noise ratio of the desired satellite transmission. The main focus of the project
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Figure 1.1: UnB Telecommunications Laboratory - LCEPT [23].

is on the physical layer: the radio-frequency front end and the digital signal processing of the
antenna array outputs.

This ground station will not support downlink speed data as the current state-of-the-art
large dishes. However, as more ground stations are deployed, data could be downloaded in
a distributed manner as the satellite passes through a series of ground stations. Ideally, the
ground stations are connected via the internet, allowing any LEO satellite to be in almost
continuous communication with the Earth network. While the current project focuses on the
ground station to communicate with only one satellite at a time, the studied architecture is
capable of rapid and electronically controlled reconfiguration to enable quick switching from
one satellite to another within the same constellation or communication with multiple satellites.
The UnB Telecommunications Laboratory [23] is involved in this project and already has an

initial antenna site, as shown in Figure 1.1.

To accomplish the ground station design, it is necessary to develop a software capable of
analyzing all steps required for a satellite link budget evaluation, like:

e Propagating a satellite orbit;
e Modeling an antenna or an antenna array;
e Embedding an antenna in a ground station and in a satellite;

e Analyzing the link budget and downlink data of a satellite; and other functions.

1.3 Goals

1.3.1 Main Goal

The main purpose of this work is to propose a low-cost ground station distribution that
maximizes the contact and downlink data with a LEO satellite over a given territory.

1.3.2 Specific Goals

The specific goals of this work are:
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To propose array project methods of combining non-uniform 3D distributed elements

physically steered;

To propose a method to optimally distribute ground stations maximizing the coverage

over a given territory;

To evaluate the download capabilities of antennas placed inside a given territory in com-
parison with ground stations located near the poles; and

To propose a low-cost static antenna array that can maintain a constant power level while
in contact with a LEO satellite.

1.4 Work Contributions

The proposed goals are accomplished via the development of a python module named ar-

raytools that is integrated with two other tools that are being developed in the CNPq project
context, called SMET and AFTK.

The capabilities of arraytools package are:

To simulate Parabolic Reflector and Micro Strip antennas;
To perform far-field rotation after physically steering an antenna;

To be able to perform 3D array far-field calculation, including array elements that are

physically rotated;
To evaluate satellite link budget in relation to a given ground station;

To distribute ground stations over a given territory maximizing the covered area while

minimizing the intersections;

To maximize the covered area by ground stations that are constrained to be in fixed

positions in a territory; and

To project a fixed position array that can maintain a constant power level in a given solid

angle of view.

1.5 Organization

This section provides an overview of the structure of this work, highlighting the key topics

covered in each chapter and how they are related to the overall research objectives.

Chapter 2 presents a review of the theoretical principles underlying antenna design, array

design and satellite link budget evaluation. This chapter discusses two types of antennas,

parabolic reflectors and microstrip antennas, and explain their field radiation characteristics.
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It also explores far-field pattern rotation and gives a brief explanation about optimization

algorithms that are used.

Chapter 3 initially focuses on the distribution of ground stations maximizing the coverage
of Brazil and explores various optimization approaches with its mathematical modeling. It is
proposed the ground station distribution over Brazil considering two different satellites. It also
considers a scenario were the ground station locations are constrained to be in specific points
inside Brazil, while considering antennas with variable parameters and proposes a ground sta-
tion distribution that maximizes the satellite coverage and compares its download performance
against antennas positioned in the poles.

Chapter 4 explores the design of antenna arrays, proposing a model and validating with
HF'SS simulations. Additionally, it also proposes array designs that are capable of maintaining
a constant power level in the direction of a satellite path.

Chapter 5 concludes this work by presenting commentaries on all obtained results.

Additionally, Appendix A contains additional technical details regarding traditional array
design methods and Appendix B provides some scripts used in the production of this work

results.
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Chapter 2

Theoretical Foundation

This chapter presents the theoretical foundation regarding the used antennas, the link bud-
get calculation focused in satellite links and also presents the optimization algorithms used in
this work.

2.1 Antennas

This section briefly introduces the theory of antenna design, with a focus on satellite links.
It starts with a explanation of the equations of radiation fields. Then it introduces some types
of antennas, such as parabolic and microstrip. The first one is the most common antenna used
in satellite communications. The last has a mathematical model simpler than other types of

antennas and presents some advantages regarding size and manufacturing.

2.1.1 Radiation Fields from Apertures

H,, E, are respectively the magnetic and electric aperture fields and that the Huygens

source condition is valid, that is, H, = — n x E,, at all points on the aperture, where 7y is the
o
free wave impedance.

The radiation field at some large distance r in the direction defined by the polar angles 6, ¢

are [15]:

e~ %71 4 cos O
Ey = jk

5 [fzcos¢ + f,sing], and o)

e %1 + cos 6 _
| fycos6 = fusing],
where the vector f = xf, + yf, is the Fourier transform over the aperture:

E¢:jk

a 2m
f<97¢)=/0/0 E. (0, X)) pldpdy. (2.2)

2.1.2 Parabolic Reflector Antenna

Reflector antennas have very high gains and narrow main beams. They are widely used in
satellite communications. A typical parabolic reflector, fed by a horn antenna positioned at the
focus is shown in Figure 2.1 [15].
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Figure 2.1: Parabolic reflector antenna with horn feed at the focus. D = 2a is the reflector
effective diameter, F' is the focal length and 1y is the maximum aperture angle.

The total optical path length from the focus to the aperture plane is constant, independent
of ¢, and given by:

R+ h=2F. (2.3)

From the geometry, it is possible to say:

h = Rcos, (2.4)

R+ Rcosvy = 2F, and (2.5)
2F

R = R (2.6)

Also, the radial displacement p of the reflected ray on the aperture plane is given by
p = Rsint. Therefore:

sin P
If p=a=D/x
D Yo
a=-= 2F tan <?> , and (2.8)
D
Yy = 2 arctan b (2.9)

Gain of Reflector Antennas

From [15], the gain of a parabolic antenna can be summarized as:

D ?
Jmax = €q T s (210)

where the aperture efficiency e, of practical parabolic reflectors is typically of the order of 0.55
- 0.65, A is the wavelength and D is the parabolic reflector diameter.
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Radiation Patterns of Reflector Antennas

The radiation patterns of the reflector antenna can be obtained from the aperture fields
E,, H, integrated over the effective aperture [15].
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Figure 2.2: Projected effective aperture of parabolic antenna [15].

The vector 1’ lies on the aperture plane and is given in cylindrical coordinates by:

/

v =p'p=p (xcosxy+ycosy). (2.11)
Therefore, using Eq. (2.2), the Fourier transform over the aperture becomes
a 2
£(6,¢) = / / Eq(p, x)e™ 5070 pdpd . (2.12)
0o Jo

It is possible to convert this into an integral over the feed angles ¢, x by using the following
equations and dp = Rdvy, p = 2F tan(y/2):

o—29kF
E, = —— (¢, ). (2.13)
Therefore, (2.12) becomes:
—2jkF o 2jkF tan ¥ sin 0 - Y
£(6,¢) =2Fe ™ /0 /0 £, (1), x)eHkE tan 5 sinfcos(@=x) oy §d¢dX- (2.14)

Given a feed pattern f;(¢, x), the aperture pattern f,(¢, x) is determined by:

f, = —f + 20(0 - ;). (2.15)

From f;(1, x), it is possible to solve the Eq. (2.14) numerically. As consequence of the
condition R - f; = 0, the vector f; will only have components along 2[) and y:

f, = F siny + {Fh cos Y, (2.16)
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where FY, Fy are functions of v, y.

Such feeds are referred to as y-polarized. The x-polarized case is obtained by a rotation,
replacing x by x + 90°.

From Eq. (2.15):

f, = —y[Fisin? x + F,cos® x| — X[(Fy — Fy) cos x sin x]. (2.17)

The feed pattern is:

fi(v, x) = Fa(¥, x) (@sinxﬂ%cosx), (2.18)
where:
' ABE
Fo(,X) = =T (1 + cost) Fi (v, 30) Fo(vy: ). 219)

and v, = (Ap/A)sine cos x, v, = (B /) siny siny, Ap, By, are the horn dimensions, o, o3, are

related to the maximum phase deviations in cycles. The horn pattern functions are:

1. 2/ 2

Fy(v,0) = ="/ | (z—i- 0) —F <z - a)] , and (2.20)
o o o
1

Fi(v,0) = 5 [Fo (v +0.5,0) + Fy (v —0.5,0)], (2.21)

where F(z) = C(z) — jS(z) is the standard Fresnel integration.

The corresponding aperture pattern is
f, = _th(¢7 X) (222)
In the general case, a more convenient form of (2.17) is obtained by writing it in terms of

the sum and difference patterns:

:F1+F2 B:F1—F2

A )
2

So, (2.17) becomes:

f,=—y (A — Bcos2y) —x(Bsin2y). (2.24)

In general, A and B will be functions of 1, y. Assuming that they are functions only of v,
then the y-integration in the radiation pattern (2.14) can be done explicitly leaving an integral
over ¢ only. Using (2.24) and the Bessel-function identities, with .J,(u) denoting the Bessel
functions of the first kind of order n,

27
/ e cos(¢—x) [COS nx} dyxy = 2mj" {COS nﬂ Jn(u), (2.25)
0

sinny sin ng
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it is obtained:

£(60,¢) = =y [fa(0) — f5(0) cos 2¢] — x[[f5(6) sin 2¢], (2.26)

where the functions f4(6) and fg(6) are:

%o
fa(0) = 47rFe_2ij/ A()Jy (47;]? tan%sin 6’) tan %dw, and
0

2 2
. i (2.27)
0
fe(0) = —47TF€_2ij/ B(v)J, (W—tan%sin 9) tan %dw.
0 A 2 2
Using (2.24) and some trigonometric identities, the radiation fields (2.1) become:
e I* 1 + cos B :
By = 551 0) + f5(0)]sin 6, and
r (2.28)
e I*1 + cos b
Ey=—j v T[fA(e) — fB(0)] cos ¢.

In the considered scenario, for the parabolic reflector, B(¢)) = 0. Therefore, fg(¢) = 0 and
the electric field equations are reduced to:

e Ik1 4 cos B
o= —i5r—g

ek 1+ cosf
oI5

fa(0)sin ¢, and
(2.29)

fa(8) cos ¢.

Equations for Numerical Evaluation of Radiation Patterns

The equation (2.14) for the horn feed will become [15]:

Yo p2m
£a(6, ) = /0 /0 Fa(th, v, 6, d)dibdy, (2.30)

where the integrand depends on the feed pattern A(1, x):

Falth,x,0,6) = Al )97 3 n0e0(6 ) tan ¥, 2:31)

and the function A(v),y) is given by, up to constant factors:
A(¢7X) = (1 +COSw>F1(Vx)Ua)F0(Uy7O-b)- (232>

Once fa(0,¢) is computed, the un-normalized gains along the H- and E-plane radiation
patterns for the reflector are obtained by setting ¢ = 0° and 90°. That is:

g (0) = |(1+cos0) f4(6,0°)%,  gr(6) = [(1+ cosB) f4(6,90°)[. (2.33)
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The numerical evaluation of the integral can be done with two-dimensional Gauss-Legendre

quadratures, approximating the integral by the double sum:
N1 Ny
Fa(0,0) =Y > wiFa(i, xj)ws; = wi Fawa, (2.34)

i=1 j=1

where [wy;, ;] and [wa;, x;] are the quadrature weights and evaluation points over the intervals
0,40] and [0, 27], and F is the matrix Fa(¢;, x;)-

It is possible to simplify (2.32) considering that the E- and H-plane illumination patterns
are virtually identical over the angular range [0, v|, provided one chooses the horn sides that
Aj, = 1.48B,,. In this case, (2.32) becomes:

A() = (1 + cosp) Fo(vy, o), (2.35)

and the function f4 can be calculated explicitly by (2.27).

Numerical Evaluation of Radiation Patterns

To implement the equations described in Section 2.1.2, the following antenna is considered:

Table 2.1: Ground antenna parameters.

Parameter Description Value
D Antenna diameter 1m
Yo Parabola max aperture angle 60°
Parabola optical length (2.9)  0.433m
f Carrier frequency 8363 MHz
By, Horn side 0.7806 A
Ay Horn side 1.48 By,
€a Antenna aperture efficiency 0.75
Oq Horn o parameter 1.2593
Op Horn o parameter 1.0246
Glground Maximum gain (2.10) 37.61dB
Tsys Receiver noise temperature  18.23 dBK

It was developed a python class inside arraytools that receives all the necessary design
parameters and evaluates the gains, which are displayed in Figure 2.3. The script used to
generate this graph is shown in Appendix B.1.
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Figure 2.4: Microstrip antenna and E-field pattern in substrate [15]. € is the dielectric permit-
tivity. L is the = length, W is the y length, a is the extension of the length L due to fringing
fields and h is the substrate height.

10 Implementations comparison

gain [dB|

—— H-Plane (¢ = 0°)
E-Plane (¢ = 90°)
—— Simplified solution

Figure 2.3: Parabolic horn feed gain pattern implementation comparison. The H- and E- Plane
solutions are evaluated by the equations (2.33), whereas the simplified solution is calculated
using equations (2.27) and (2.35). From this, it is concluded that the simplified implementation
is close to the non-simplified one and has a computational cost significantly lower.

2.1.3 Microstrip Antenna

Another type of antenna proposed for the ground stations is the rectangular microstrip

antenna as shown in Figure 2.4.

The patch acts as a resonant cavity with an electric field perpendicular to the patch, that
is, along the z-direction. The magnetic field has vanishing tangential components at the four
edges of the patch. The field of the lowest resonant mode (assuming L > W) are given by [15]:
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AYy effective radiating apertures

E AR A}

Figure 2.5: Aperture model for microstrip antenna [15].

L

T W w
H,(z) = —Ho cos T T3 Sy < DX

) T L L
E.(x) = —FEysin [ — |, ) <z< > and

(2.36)

where Hy = —j Ey/no.

The aperture model considered is shown in Figure 2.5. The fields are given by:

for sides 1 & 3: E,=x—

a
) _hE.(z) hEy, [7x (2:37)
and for sides 2 & 4: E, =ty =Fy—-=sin| —].
a

L

The outward normal to the aperture plane is n = z for all four sides. Therefore, the surface
magnetic currents J,,, = —2n x E, become:

. _2hEy
for sides 1 & 3: Jms = -y -
) 2hEy, [ mx (2.38)
and for sides 2 & 4: Jms = FX sin | — | .
a L
The radiated electric field is obtained by:
—jkr
E= ]k I X [le + Fm2 + Fmg + Fm4]7 (239)
dr

where the vectors F,, are the two-dimensional Fourier transforms over the apertures:

F,0(0, 6) = / Ty (2, )M 4, (2.40)
A
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The Fourier transforms for each side becomes:

Fo13 = —y4EohW cos (mv,) sinc (1), and

R 4v, cos (Tvy,) . (2.41)
Fm,24 = X4E0hLmSln (7Tl/y) 5
with:
k.L Lx L 9 q
Uy = o N Xsm cos ¢, an (2.4
kW Wy W .
v, = = —== —sin#sin¢.

Yooor AroA
Therefore, the radiated field from sides 1 & 3 are:

efjkr

E(0, ¢) = —jk——4EhW [és cos 0sin ¢ — 6 cos ¢} F(8,¢), and (2.43)
F(0, ¢) = cos(mvy)sinc(myy). (2.44)
Similarly, for sides 2 & 4:
—jkr
E(0,¢) = jk 47ir 4FohL [g?) cos 0 cos ¢ + Osin (b} f(6,¢), and (2.45)
4v, cos (Tvy) |
f(Q, gb) = msm (7TVy) . (246)

Rectangular Patch Design

For a given frequency f, a substrate height h and a substrate relative permittivity e,, it is
possible to calculate the patch dimensions using the method presented in [8]:

1. A practical width that leads to good radiation efficiency is:

Co 2
W=—|——; 2.47
2f\V e, +17 (247)
2. The effective dielectric constant of the microstrip antenna is:
_1/2
_etl el ) 2.48
Ereff = 9 + 9 + W 3 ( . )

3. Because of the fringing effects, electrically the patch of the microstrip antenna looks
greater than its physical dimensions, as shown in Figure 2.5. For the principal E-plane,
the extension a is given by:

w
(€ret +0.3) (7 + 0.264)

W b
(€xetr — 0.258) (7 + 0.8>

a = 0.412h (2.49)
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4. The actual length of the patch can now be determined by:

Co

:2f@—2a. (2.50)

L

Using the design method presented above, consider the antenna with the parameters shown
in Table 2.2.

Table 2.2: Parameters for the microstrip antenna.

Parameter Description Value
f Carrier frequency 10 GHz
h Substrate height 0.1588 cm
€r Relative permittivity 2.2
w Patch width 1.185cm
L Patch length 0.905 cm

For this antenna, the electric fields given by (2.44) and (2.46) are shown in Figure 2.6. It
was implemented a class called MicroStrip inside the module arraytools that implements the
rectangular patch equations. The result is compared against a simulation with the software
ANSYS HFSS, as shown in Figure 2.6. The script used to generate this graph is displayed in
Appendix B.2.

2.1.4 Directivity from Electric Field

The radiation intensity of an antenna is given by [8]:

1

1

where By ~ o is a constant, 1y is the free space wave impedance, Fy and E, are the far-field
o

components of the antenna in spherical coordinates.

The total radiated power is:
2 g
PM:#W@@M:&/(/F&@mMMu (2.52)
Q o Jo

Therefore, the expression for the directivity is:

_4nl.9) F(0,9)

. . 2.53
Prad 2T [TF(0, ¢) sin 0d0de (253)

D(0,¢)
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Figure 2.6: Electric fields for the microstrip antenna using the presented equations compared
with a simulation in HFSS. The differences between the two are expected, as the presented
equations are approximations and the HFSS software considers other factors, such as the asym-

metry regarding the voltage input.
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Given that the space 6 and ¢ are divided, respectively, into N and M uniform intervals, the

denominator of Eq. 2.53 can be approximated as:

/0% /OW F(0, 6) sin 0d6dp — <%) (%) f:

=1

> " F(0;,¢;)sin ei] . (2.54)

i=1

Therefore, the directivity can be approximated as:

2MN F(0,¢)
% |:Z F(Q“ 925]) sin GZ

] (2.55)

2.2 Far-Field Pattern Rotation

This section presents the mathematical model for rotating far-fields pattern of antennas. The
rectangular patch antenna model is adopted, because it has simpler mathematical equations.

Generally, the patch from Figure 2.4 is rotated of angles «, 8,y around the local z, y, z-axes.
As the rotations are represented around the local axis, it is necessary to transform this local

coordinate system to match the initial global one.

The direction defined by the angles (6, ¢) of the original coordinate system is represented

cos ¢ sin 6
by the vector 7 = |sin ¢ sin 6
cos 6
TYz
This direction expressed in the rotated coordinate system is given by 7' = Rup, 7 =
sin @ cos ¢ x
R.p, |sinfsing | = [y'|, where R,s, is the rotation matrix and represents the base transfor-
cos 2z

mation from (X,y,z) to (X',y',7).

From the vector 7/ it is possible to extract the direction (¢',¢’) related to the rotated

Zl /

coordinate system by # = arccos and ¢’ = arctan y—, where the function
Vi +y? 4 2 z’

arctan is evaluated choosing the quadrant correctly and its obtained values are in the range

—m < arctanx < .

To ensure that the angles are in the classical spherical coordinates range, with 0 < ¢ < 27

and 0 < # < 7, some transformations are necessary:

o If ¢/ <O:
¢ — ¢ +2m, and (2.56)
e If0 <O0:
0 — —¢

¢ — (¢’ +m) mod 2. (2:57)
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With the angles in the local antenna field, it is possible to evaluate the fields Ey and Ej.

cos ¢’ cos ¢ —sin 6’
The directions #’ and ¢’ are given by 6 = |sin ¢’ cos ¢’ and ¢’ = | cos®’
s /
—sin @ o'y’ 0 o'y’

Finally, the field expressed in the original coordinate frame is:

E.y. = EyRy5 0 + ELR,L ¢ (2.58)

Expressing it again in spherical coordinates:

Ey = [COS(bCOSQ sin ¢ cosf —sin 0} E,,., and (2.59)
E; = [— sing cos ¢ 0} E,,.. '
To validate the results, the fields obtained by the MicroStrip class developed in Section

2.1.3 are rotated of f = 45° around the y-axis. This rotated far field is then compared with a
simulation from HFSS, as shown in Figure 2.7. This is done by the script in Appendix B.3.

Additionally, the field pattern of the non-rotated patch from HFSS is analytically rotated
by 8 = 45° around the y-axis. This analytically rotated pattern is compared with the pattern
obtained by simulating the rotated patch in HF'SS. The comparison is presented in Figure 2.8.
This is done by the script in Appendix B.4.

Analytical model vs HFSS - Steered § = 45°

E-Plane (¢ = 0°) H-Plane (¢ = 90°)
O_ — .
= 6 b— T —— HFSS
121 - Analytical
S 18 i
—94 4 .
g NN LNL
O_ 4
) 0 ] /\
= —121 1
L \
—24 1 4
—30 ! ! ! } ! ! . ; ; .
0-/ 7\7 1
g ] R
= —129 %4 ™~
£ —18+ 1
= —24 1
-30

“45 —15 15 45 75 105 135-90 —60 —-30 0 30 60 90
o] o]
Figure 2.7: E-plane and H-plane for the microstrip antenna steered of 5 = 45° around the y-axis

using the presented equations compared with a simulation of a steered antenna by the same
angle in HFSS. The differences exists because the model proposed by [8] is a simplification.
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Figure 2.8: E-plane and H-plane for the microstrip antenna steered of § = 45° around the y-
axis using field patterns from HFSS and then analytically rotated compared with a simulation
in HFSS. From this result, it is possible to see that the proposed algorithm produces virtually
the same result as the HFSS simulation.

2.3 Satellite Propagation

The propagation of satellites in this work is done using the SMET software, developed by
Rafael Rodrigues Luz Benevides in the context of the CNPq project.

The software is capable of propagating satellites from the Two-Line Elements using SGP4
propagator, calculating the accesses and line-of-sight angles (in azimuth and elevation) from
a specific point, among other capabilities. It provides useful information for evaluating the
antenna coverage, like geodetic coordinates of the satellite over time and distance in relation

to the station over time.

Using SMET, it was not necessary any other software like ANSYS STK to deal with the

satellite propagation or accesses necessities.

2.3.1 Considered Satellites

For this study, two satellites were chosen: SAC-C from Argentina, with which NASA did
some works and VCUBI from Visiona.
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SAC-C Satellite

The Satellite for Scientific Applications (SAC-C) was developed through the partnership of
Argentine CONAE (National Space Activities Commission) and NASA.

SAC-C satellite is used as a validation tool for the link budget proposed algorithms. Initially,
the results of Section 2.4 are compared with the studies [9] [10] [12]. These studies provided the

necessary information regarding the SAC-C link capabilities to validate the proposed algorithm.

After the procedures validation, it is proposed a method to optimize the link coverage of a

territory, focusing on Brazil. After this, the scenario is modified to consider other satellites.

VCUBI1 Satellite

The second satellite chosen for this study was VCUBI, developed by Visiona, which is a
company that has ongoing collaborations with the University of Brasilia on the scope of the
CNPq project coordinated by UnB Telecommunications Laboratory. This partnership creates
a link between academia and the Brazilian space industry and the choice of VCUB1 not only
emphasizes Brazilian technological advancements but also highlight a greater contribution from
academic research to the national space sector.

VCUBI was launched on April 15", 2023 and is the first Earth Observation Satellite de-
signed by the Brazilian national industry and should demonstrate the capabilities to realize
advanced space missions. The satellite has a camera with spacial resolution of 3.5m, which

allows it to do agricultural and environmental monitoring.

Adding to these facts, VCUBI is a LEO satellite in Sun-Synchronous Orbit (inclination of
98°) and fits well with the proposed algorithms of distributing ground stations inside a given
territory to maximize coverage and compare these results with a ground station positioned in

the poles.

2.4 Link Budget

The procedure that will be followed to calculate the link budget is described in [15].

2.4.1 Transmitted Power

The transmitted power Pgrp is given by:

PEIRP = PoutJsat, (260)

where poyt is the transmitted power of the satellite and gg,; is the satellite antenna gain.
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2.4.2 Free Space Losses

The free space losses are given by:

2
A
= | — 2.61
Iru (47TT) ’ (2.61)

where A is the carrier wavelength and 7 is the distance between the transmitter and the receiver.
The free space losses in dB is represented by G, which represents a negative value.

2.4.3 Power Received by Earth Antenna
The power received by the ground station in dB is given by:
Prec = PEIRP + Gfu + Patm + Ggrounda (262)

with all values in dB. P,y is modeling implementation and atmospheric losses, which represents

a negative value and Ggroung is the ground antenna gain.

2.4.4 Signal to Noise Ratio

The SNR, or Signal to Noise Ratio, is given by:

Prec

NR = — <
SRR KTy B’

(2.63)

where £ is the Boltzmann constant, T, is the noise temperature of the receiver and B is the
bandwidth of the transmitted signal.

2.4.5 Data Rate from Energy Bit per Noise Ratio

The data rate R can be obtained from the SNR:

B
R =SNR

e (2.64)

where Eb/N, is the energy bit per noise ratio and depends on modulation and acceptable bit-error
probability, P..

Alternatively, it is possible to express the ratio £v/n,, considering that the data is transmitted
at a fixed data rate, Rgpec:

B
Eb/NO - SNR

. 2.65
Rspec ( )

In this scenario, the analysis is not dependant on the type of modulation used.
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Data Rate from P

€max

When dealing with the bit-error probability, it is necessary to know the used modulation.
For BPSK and QPSK modulations, the £s/n; is given by:

Ey

i = lerfcinv(2P,)]?, (2.66)

where erfcinv is the complementary error inverse function.

Inverting Eq. (2.66):

P, = —erfc — . (2.67)

2.4.6 Satellite Link

The satellite used for this section is the SAC-C, which is a LEO satellite with the following

characteristics:

Table 2.3: SAC-C parameters.

Parameter Description Value
i Inclination 97.4°
Tp Perigee 422.6 km
Ta Apogee 434 km
Prrp Satellite Antenna EIRP  42.38dB
f Carrier frequency 8363 MHz
Ropec Output data rate 3.303 Mbps
B Bandwidth 13.3 MHz

It is also considered that the ground stations is tracking the satellite. That is, the maximum

gains will be used.

The 1m ground antenna with parameters described in Table 2.1 is located at latitude
—10.78° and longitude —53.07°.

To evaluate the link budget results, first the accesses and distances between the ground
station and the propagated satellite are calculated. Then, using (2.61), the free losses are
computed. Considering that the atmospheric losses are constant and equal to —1.6dB and
using (2.62), the received power at ground station is evaluated. The free losses and power

received are shown in Figure 2.9.
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Figure 2.9: Free losses and power received during a day with 4 passes over the considered
ground station, evaluated using the equations (2.61) and (2.62), respectively.

Using the received power in (2.63), the SNR is computed. Using the SNR and the specified
data transmission, Rgpec, in (2.65), the £v/n; is evaluated. The SNR and £/n, are shown in
Figure 2.10.

SNR Ey/Ny for Data Rate = 3.303 Mbps
15.01
7.5 d SNR . Eb/NO
12.5
5.0 1 M
2 < 10.0
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% 5 7.5
»n 0.01 5]
5.0
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o o g o g ® i ® G ®
Time Time

Figure 2.10: SNR and £v/n, during a day with 4 passes over the considered ground station,
evaluated using equations (2.63) and (2.65), respectively.

Considering only the points where the energy per bit ratio is greater than the threshold
(Ep/No)min = 6.38dB it is possible to estimate how much data is downloaded during a day by
computing how much time this condition is fulfilled in a day and multiplying by the data rate.
The results is shown in Figure 2.11, together with the radiation pattern of the antenna, that
is, in which points it is possible to establish a link. This pattern is the longitude and latitude
points where the condition (Ep/Ny) > 6.38dB is true projected on the ground.

Alternatively, it is possible to analyze the same problem using the bit-error probability
approach. Considering that the modulation is BPSK and using Eq. (2.67), the bit-error
probability is evaluated and shown in Figure 2.12.
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Figure 2.11: Ev/n, heat map. The black lines are the satellite path. From this it is possible to
see the coverage of the antenna, as it shows the positions where the £b/n, is greater than the
necessary to establish the link.
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Figure 2.12: P, during a day with 4 passes over the considered ground station.
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Figure 2.13: P. heat map. The black points are the satellite path. From this it is possible to
see the coverage of the antenna, as it shows the positions where the bit-error probability is less
than the necessary to close the link.

Similarly, to the Energy per Bit over Noise ratio approach, considering a threshold P._ <

max

107 necessary for establish a link, it is possible to estimate the downloaded data during a day

and to obtain the radiation pattern of the antenna, as shown in Figure 2.13.

There is a script that evaluates a link budget example in Appendix B.5. This script uses
three new implemented classes in arraytools: the Satellite, Station and LinkBudget classes.

2.4.7 Secant Antenna Gain

The received power, given by Eq. (2.62), can be reformulated as:

poutgsatggroundg(‘ga ¢) >‘2
PR - )
(4m)2r2

where ¢(6, ¢) is the normalized gain of the ground station, r is the distance to the tracked

(2.68)

object and all values are represented in absolute units.

In ground stations tracking an approaching satellite at a constant altitude h, the ground
station power received can be made independent of the distance r, within a specific range by

selecting an appropriate gain function g(, ¢).

As shown in Figure 2.14, h = r cos 6.
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Figure 2.14: Schematic of a satellite approaching a ground station.

———, where K is a

If the gain is designed to have the secant-squared shape g(0,¢) = 5
cos

constant, the power will become independent of r:

P — poutgsa‘cggroundg<97 ¢>>\2 o poutgsatggroundf()\2 - poutgsatggroundK)\2
i (47)2r2 (47)2r2 cos? (47)2h?

(2.69)

The secant behavior is valid over the range 0 < 6 < 0,,,.x, where 6., is the desired maximum
h

range of the ground station ry,, = ——.
COS 0 ax

2.5 Optimization Algorithms

This section explores some optimization techniques, which are used in this work.

First it is presented the convex optimization, that performs minimization of convex functions
over convex sets. The main advantage of this method is its capability to find the global

minimum. It is widely used in engineering and data analysis.

Then, it is presented the sequential quadratic programming, used for nonlinear programming
problems. It is very useful to approach constrained optimization problems.

Lastly, it is presented the differential evolution algorithm. It is a heuristic approach to solve
highly nonlinear problems.

2.5.1 Convex Optimization

A convex optimization problem is defined as [7]:

min || fo(z)]] subject to

2.70
W@ < bisi =1, ..o, (2:70)
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where the functions fy,..., f,, : R® — R are convex, that is:
fm(ax + By) <= afm(z) + Bfm(y). (2.71)

A problem modeled as a convex one will achieve the global minimum, it the minimum exists.

2.5.2 Sequential Least Squares

Sequential quadratic programming is a efficient computational method to solve the general

nonlinear problem:

i bject t
r;gﬂgf(x) subject to

gi(x) =0, =1,...,me, (2.79)
gi(x) >0, =me+1,...,m, and
o < T < Ty,

for a local minimum, where the problem functions f : R® — R and ¢ : R — R are assumed

to be continuously differentiable.

These problems are solved by many open source libraries, like Python SciPy.

2.5.3 Differential Evolution

Differential Evolution (DE) is a heuristic parallel direct search method which utilizes Np
vectors y; and ¢ € Z with 0 < i < Np as a population for each generation g of a total G [4].

g+1

VI =y 4+ Fs (Yoest — ¥9,) + Fu (9, — 92) (2.73)

where 71,79, 73 are random different integers with 0 < (7;);=123 < Np.

For each vector 37, an offspring vector vY"" is generated according to:

The parameters F,, and Fj are control variables. F|, controls the amplification of the
differential variation (y$3 —yd 4). Fj provides a mean to enhance the greediness of the scheme
by incorporating the current best vector yues;. This is known as mutation.

The mutated vector v/ is then combined with its parent y? to generate u¢*" according to:

g+l _ { Ufjl’ if (Tj < OR \ j = jrand) s

u (2.74)

i = :
J y;, otherwise,

which is known as crossover or recombination. This is the main differential of the method.

g+1

i’j
. 1 . . .

as the next generation yf;’ . Otherwise, the vector y? ; survives for the next generation.

Finally, ] " is evaluated by the cost function. If it has a lower cost than ?JZ ;» 1t 1s selected

Mathematically:

g+l
,L"j -

{“ﬁlﬂff (") < £ (vl) (2.75)

g .
Y; j» otherwise,

where f(y) is the cost function.
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2.6 Spherical Modes

Spherical harmonics are special functions defined on the surface of a sphere. They are useful
to solve differential equations in many fields, including decomposing electromagnetic fields as
the spherical modes method is particularly useful in antenna modeling due to its ability to
account for the geometry and boundary conditions inherent to spherical structures.

The electric fields are represented in spherical modes by [19]:

EO,¢.k) =>_ Y Tim(0,0)q(k), (2.76)

IEN |m|<l

where ¢;,,, are the mode coefficients and can be determined if F is analytically available through
the expression:
1
Q= — (P T1L EdSQ. (2.77)
"o
In these equations, T, is derived from the eigenfunctions Y, Z,, [ is the degree and m is
the order of the corresponding spherical harmonics Y and Z as defined in [19)].

This study uses the software developed by [19], which estimates antennas in spherical modes
based on their analytical electric fields. The software, called AFTK, models the antennas used
in the design of the proposed arrays of this work.
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Chapter 3

Ground Stations Distribution

This chapter, inspired by the studies studies [9] and [10], compares a ground station distri-
bution inside the United Stated with a parabola placed near the pole, proposes an algorithm to
find a ground station distribution inside Brazilian territory that: maximizes the link coverage

for a given satellite and minimizes the number of employed stations.

The considered satellites for this scenario are the SAC-C (with link budget parameters
described in Tables 2.3 and 2.1) and VCUBI (with link budget parameters described in Tables
3.1 and 3.2.

The ground stations are considered to track the satellites. That is, the maximum gain is
used in the link budget evaluation. Also, the atmospheric losses are considered constant and
equal to Py, = —1.6dB.

The problem is initially relaxed to be modeled as a linear convex one and goes through a
Convex (CVX) Optimization. To refine this initial solution, two more algorithms are executed:
a Sequential Least Squares (SQLQ), which improves the first solution, but still does not consider
all constraints, and Differential Evolution (DE), that considers all constraints and refines even
more the solution.

3.1 Problem Analysis
This section provides some notations used in algorithm descriptions.

Table 3.1: VCUBI1 parameters.

Parameter Description Value
Prrp Satellite Antenna EIRP 2dB
f Carrier frequency 2244 MHz
Rgpec Output data rate 10 Mbps
B Bandwidth 6 MHz

31
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Table 3.2: Ground antenna parameters for VCUBI.

Parameter Description Value
D Antenna diameter 2.6m
f Carrier frequency 2244 MHz
€a Antenna aperture efficiency 0.5
Glground Maximum gain using Eq. (2.10) 32.7dB
Teys Receiver noise temperature 24.94 dBK

3.1.1 Brazil Map

The Brazil map is obtained as a shapefile from [22]. The developed functions works for any
territory. It is defined a rectangular grid of M x P points within the latitude and longitude
bounds of the considered shapefile.

Two different grids are chosen for each of the used satellites. For VCUBI, it was used
M = P = 40 and for SAC-C, M = P = 50. Increasing this grid would lead to higher
computational costs, as a lot of RAM is necessary to represent all possible positions coverage.

Each of the Ny = MP points has an associated index 7, which represents the possible
positions for ground stations placement. This represents a convex set.

The script that produces this result is shown in Appendix B.6.

3.1.2 Array Notations

The link budget is evaluated for every possible antenna i in the grid and the resulting £, /Ny
is stored in a matrix a; € RM*P_ If the antenna ¢ is not inside Brazil, the associated a; matrix

is 0p7«p. Any element of a; that corresponds to a point outside Brazil is also set to zero.

This matrix is then parsed into a binary matrix with 1 meaning that the value E,/Nj is
above a threshold (Ej,/Ny)min to establish the link and 0 meaning that is not. Therefore, the
matrix a; represents at which points inside Brazil the satellite can establish a communication
link with the antenna located in position ¢. In other words, it represents the coverage pattern

of the antenna 7.

Then, each matrix a; is reshaped in a vector of size RM¥ and they are concatenated in a
matrix A € RV*MP where Ngiq = MP is the size of the grid. In this way, the new matrix A
contains individual coverage patterns as its columns, with the The script that generates this

matrix is shown in Appendix B.7.

It is also defined a binary vector # € R¥erd| with 1 representing that there is an antenna
in position ¢ and 0 that there is not. Defining the problem with = as binary leads to better
results than using the approach in [14], which employs a combination of /;-norm and /,.-norm

to promote a binary sparse solution.
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Figure 3.1: Ratio E,/N, varying with longitude. From this it is possible to see the distortion of
the antenna coverage in latitude and longitude as the ground stations are positioned in lower
latitudes. The black lines represents the satellite trajectory.

The ratio Ej,/Ny varies with r, that is the distance between the transmitter and the receptor.
From this, it is observed a distortion when projecting the coverage pattern on a latitude versus

longitude graph. This is represented in Figure 3.1.

3.2 Convex Optimization

The objective is to optimize the antenna distribution while maximizing the Brazilian covered

area using the minimum number of antennas.

Using the adopted notation, that means that the vector x must be sparse with few elements

equal to one. These elements represent the chosen antenna positions. Hence, it is necessary
Ngrid

to minimize the {;-norm of x, that is ||z||, = > |x,|. This leads to a sparser solution with
n=1

the minimum of elements set to one [14]. Therefore, from this algorithm, both the number of

antennas and the positions are provided as solutions.

The coverage of the antenna i is represented by a,. The linear operation z” A gives the

resulting coverage of the chosen antennas, which is the sum of the coverage matrices a;.
Thus, the problem can be modeled as:

min ||z||; subject to

3.1
le"A— ], < e (3.1
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N
where |[yll, = 3 |yal> and f; € RMP shares the same physical meaning as reshaped a; and
n=1

represents the desired overall pattern. That is:

. 1,if 7 is inside Brazil

0, otherwise

This represents that is possible to establish a link in any point of the grid inside the Brazilian
territory. In this scenario, €, is the acceptable error, that is, the positions not covered by any

antenna pattern.

The problem formulated like this is linear with positive semi-definite matrices 7 A and f;.

Therefore, it is convex.

To solve these kind of problems there are a lot of open source solvers available like the ones
implemented in CVXPY [13] [17]. The one used in this work is SCIP [18], that is an open

source mixed-integer nonlinear solver.

The solution of Eq. (3.1) only provides the initial solution of the problem. This modeling
of the problem restrains the ground stations positions to the proposed grid. This represents
nothing else but the relaxation of the problem. Thus, the problem has to be tuned to overcome

this limitation.

3.3 Sequential Least Squares Optimization

The output obtained from the CVX algorithm serves as input for a SQLQ Optimization.

The solution of the convex optimization problem provides both the number and the position
of the antennas. The SQLQ takes an initial antenna configuration with a fixed number of

antennas and moves them around to get the optimal solution with minimized intersections.
The input is a matrix y € R?*?, which contains the longitude and latitude of @) antennas.

Given a matrix y it is possible to determine how much area these () antennas cover. This
is represented by S..,(y) and is evaluated by getting the union of every antenna coverage area
and subtracting its intersections.

It is also defined the quantity Spes(y), which is the maximum potential coverage area achiev-

able when all () antennas are placed without intersections.

To achieve the proposed goal of maximizing the covered area, it is necessary to minimize
the difference between Spesi(y) and Sep(y). In this way, the maximum area is covered with
minimum intersections. In an ideal scenario, Spesi(y) = Seov(y), which means that there are no

intersections.

There is still one constraint to consider: the covered area must be the Brazilian terri-
tory, Sprazi- This is achieved by considering that the intersection between S, (y) and Brazil,
Seov(Z) NS Brazi, must be higher than an acceptable parameter, S;. This represents the per-

centage of Brazil that is covered.
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Therefore, the problem can be modeled as:

min (Spest(¥) — Seov(y))  subject to
Scov(y) N S Brazil (33)

This problem is solved by the open source library SciPy [24].

An improvement over the last approach is that the antennas are not restrained to a grid. In
this implementation, they can assume any position, which includes places outside the considered
territory. Limiting the antennas to be inside the territory transforms the problem into a non-
linear one. The next step, Differential Evolution, can include this constraint into the model.

Another observation is that the antenna coverage pattern projected into a latitude versus
longitude grid is approximated to be a fixed circumference. This represents another drawback

of this algorithm. However, this fact is also modeled by the Differential Evolution.

3.4 Differential Evolution

The result obtained from SQLQ serves as input to a DE algorithm. The main advantage
of this algorithm is that it accommodates all problem constraints. It can also consider the
real antenna coverage, instead of approximating them as circles. The disadvantage is that the
solution obtained may not be optimal.

The method described in Section 2.5.3 must be adapted. The matrix g/ € R?*? is identically
defined as the one in SQLQ. This means that as SQLQ, the DE generates position values for a
fixed number () of antennas inside the territory while maximizing the coverage.

The initial solution is usually randomly generated. In this case, the vector obtained by the
SQLQ algorithm is included as one element of the first population and assigned as ypes:, which
is the best solution. The other Np — 1 elements are random.

The mutation process is done as described in Section 2.5.3.

The crossover process is adapted as follows:

+ +

The mutated vector v/ is then combined with its parent y? to generate uf*" according to:

i7j )
I Yy ;, otherwise

W { 09T if two conditions are fulfilled (3.4)

where the conditions are:

1. Y7 must be inside Brazil AND

1,J

2. A randomly generated number r; must be less than the specified crossover probability
(Cr) OR j is equal to j.qng, which is a random generated integer between 0 and Q.
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Table 3.3: Results for the CVX Optimization.

Eb/NOmin =10

€y 9 10 11 12 13 14 15 20
# Antennas 5 5 5 4 4 4 3 3
Coverage (%) 92.63 90.31 91.88 86.62 85.15 84.23 78.39 68.69

Eb/NOmin =11

€u 9 10 11 12 13 14 15 20
# Antennas 7 6 6 6 5 5 5 4
Coverage (%) 94.07 90.98 91.72 86.39 84.43 85.80 &85.66 67.31

Ey/Nomin = 12

€y 9 10 11 12 13 14 15 20
# Antennas 10 9 9 8 8 7 7 5
Coverage (%) 95.34 93.23 92.89 87.04 88.20 81.40 81.79 64.27

Mathematically, this can be expressed as:

(Ugjl = BraZﬂ) N (rj < CR \/] = jrand) (35)

This is how the constraint of keeping the antennas inside the territory is considered. An

offspring will only pass to the next generation if it is inside the territory.

Finally, to analyze if the generated offspring are better than its parents, the cost function
gives the percentage of Brazil area that is not covered.

It was tested a method of multiple offspring generation as described in [11]. However, the
algorithm time has highly increased and it was not observed a better performance than the
usual implementation. Therefore, the last one was chosen.

3.5 Simulations and Results for SAC-C

The simulation considers 3 scenarios for SAC-C, one for each value of the threshold (Ey/No)min:
10, 11and 12dB. This implies antennas with 3 different coverage patterns.

3.5.1 Convex Optimization

To solve this problem it is necessary to select the parameter €,, presented in Section 3.2.
The choice of the acceptable error €, depends on the dimension of the grid and affects how much
area is covered by antennas. Ideally, this parameter should be zero. However, the lower the
value of €,, the more time the algorithm takes to converge and if it is too small, the algorithm
becomes unfeasible. For the proposed 50 x 50 coarse grid, a value of ¢, = 9 is used, which is
approximately equivalent to 1% of the points within the Brazilian territory. Simulations results
are shown in Table 3.3.

The problem is very sensitive to the control variable ¢,, as it is highly non linear.
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Table 3.4: Results for the SQLQ Optimization.

Ey/Nomin Antennas CVX Coverage SQLQ Coverage

10 ) 92.63% 98.03%
10 6 95.68% 95.80%
11 7 94.07% 99.01%
11 8 96.14% 98.99%
12 10 95.34% 98.48%
12 11 96.26% 99.00%

As it is desired to maximize the coverage, in addition to the CVX optimal results, one
variation is also considered as input for SQLQ. For each set of antennas, one antenna is added.
This additional antenna is placed in the middle point of two existing ones. As the territory
geometry is not convex, if the middle point is outside Brazil it is snapped into the nearest inside
point. The antennas are combined two by two, the one that provides the higher increase in

coverage is chosen.

This algorithm is implement by the script in Appendix B.8.

3.5.2 Sequential Least Squares

To solve this problem it is necessary to choose the parameter Sy, which represents the desired
territory coverage, and provide an initial value xy. The algorithm is very dependant on the
initial condition. However, the one provided is from the CVX, which is the optimal solution
considering that the antennas are in a grid and the chosen parameter ¢,. It is considered
Sq = 0.99, i.e., the target is 99% of territory coverage. The results are shown in Table 3.4.
These will serve as input for DE. The implementation of this algorithm is displayed in Appendix
B.9.

3.5.3 Differential Evolution

Before executing DE, it is necessary to parse the solution obtained by SQLQ. If there is any
antenna that is placed outside the territory, this antenna is moved to the nearest point that is

inside Brazil.

The algorithm is initially executed considering that the antennas range is fixed, that is, the
coverage pattern does not depends on the geodetic coordinates of the ground stations. This
simplification is used because computing the actual coverage for every iteration is computational
costly. After this first run, the algorithm is executed computing the real coverage each iteration.
However, in this second run, it runs for fewer generations as the solution is already acceptable

and this final step is for refining purposes.

The algorithm uses the parameters shown in Table 3.5, that are commonly used values for
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Table 3.5: Parameters for DE Algorithm.

F, F3 Crp Np G

Fixed Range 0.3 0.8 0.9 500 300
Variable Range 1 0.6 0.9 500 50

Table 3.6: Results for the DE Algorithm.

Ey/Nomin Antennas Fixed Range Variable Range

10 b} 98.04% 98.36%
10 6 99.90% 99.85%
11 7 99.56% 99.42%
11 8 99.97% 99.95%
12 10 98.54% 98.38%
12 11 99.27% 99.13%

DE implementations. The results are shown in Table 3.6. The implementation of this algorithm

is displayed in Appendix B.10.

3.5.4 Overall Results for SAC-C

Figure 3.2 shows the results obtained from CVX are close to the final one despite the grid-
restrained positions. It is possible to see the refinement of the solution as the algorithms are

executed.

The addition of one antenna in the CVX’s optimal result shows minimal improvement, as
presented in Figure 3.3. The solution found by CVX is a good compromise between covered
area and number of antennas, as the highest improvement found is in case of (Ey/Np)min = 10,
which only provides around 1% more coverage, while also increasing the intersection percentage

by more or less 10%.

3.6 Simulations and Results for VCUB1

The value used in simulation is (Ej,/Ng)min = 7.5dB, because this is the minimum value

necessary for establishing a link connection with the VCUBI.

3.6.1 Convex Optimization

For this algorithm, the followed procedure is the same as in Section 3.2. The results are

shown in Table 3.7 and the covered for ¢, = 8 is shown in Figure 3.4.
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Figure 3.2: Simulation results using from Convex Optimization result of for SAC-C. For each
scenario, the same number of ground stations found in the convex optimization was used in
the other two steps of the algorithm to improve the final coverage. This shows that the initial
solution proposed by the convex optimization is close to the final obtained despite of the initial
problem relaxation.

Table 3.7: Results for the CVX Optimization for the VCUBI.

Eb/NOmin =175
€y 7 8 9 10 20
# Antennas 6 6 5 5 2

Coverage (%) 94.71 96.04 89.79 91.10 48.74
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Figure 3.3: Simulation results using one additional an antenna to CVX optimal result for SAC-
C. For each scenario, one antenna was added to the number of ground stations found in the
convex optimization and then they are used in the following steps. From this, it is possible to
see that the initial solution proposed by the convex optimization, presented in Figure 3.2, is a
great compromise between the covered area and the intersections.
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Table 3.8: Results for the SQLQ Optimization for VCUBI.

Ey/Nomin ~ Antennas CVX Coverage SQLQ Coverage

7.500000 6 96.01% 98.28%
7.500000 7 97.55% 99.87%

Table 3.9: Parameters for DE Algorithm for the VCUBI1 ground station positions.

F, F; Cp Np G

Fixed Range  0.05 0.1 0.9 500 300
Variable Range 0.05 0.1 0.9 100 25

3.6.2 Sequential Least Squares

For this algorithm, the followed procedure is the same as in Section 3.5.2. The results are
shown in Table 3.8 and in Figures 3.4 and 3.5.

3.6.3 Differential Evolution

For this algorithm, the followed procedure is the same as in Section 3.4. The parameters
for the algorithm are shown in Table 3.9 and results are shown in Table 3.10 and in Figures 3.4
and 3.5.

3.6.4 Overall Results for VCUB1

In a similar way of the results of SAC-C, Figure 3.4 shows that the results obtained from
the convex optimization are close to the final one despite the grid-restrained positions. The

SQLQ tuned these results leading to a better coverage and then the DE refined it even more.

The addition of one antenna in the convex optimization result shows minimal improvement,
as presented in Figure 3.5. Again, the solution found by convex optimization is proven to be
the optimal compromise between covered area and number of antennas, as the improvement
provides only around 2% more coverage, while also increasing the intersection percentage by

more or less 5%.

Table 3.10: Results for the DE Algorithm for the VCUB1 ground station positions.

By/Nomin  Antennas Fixed Range Variable Range

7.5 6 98.67% 98.64%
7.5 7 99.99% 100%
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Figure 3.4: Simulation results using from CVX optimal result for VCUB1. The same number
of ground stations found in the convex optimization was used in the other two steps of the
algorithm to improve the final coverage. This shows that the initial solution proposed by the
convex optimization is close to the final obtained despite of the initial problem relaxation.

Convex Optimization
Sequential Least Squares
Differential Evolution

Intersect: Inters
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Figure 3.5: Simulation results using one additional antenna to CVX optimal result for VCUBI.
One antenna was added to the number of ground stations found in the convex optimization and
then they are used in the following steps. This shows that the initial solution proposed by the
convex optimization, shown in Figure 3.4, represents a good compromise between the number
of antennas and the intersections.
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3.7 Parabolic Reflectors with Different Diameters

Another approach to the problem of ground station distribution is to consider that the
antennas cannot be placed anywhere. They should be in specific areas due to a legacy structure,
for instance. In this scenario, the possible ground station sites are fixed and the antennas
themselves are variables.

3.7.1 Sequential Least Squares

For this scenario, it was used an adaptation of the previous algorithm discussed in Section

3.3.

The SQLQ takes an initial antenna configuration with a fixed maximum number of antennas,

(@, and modifies its coverage pattern to get the optimal solution with minimized intersections.

The coverage pattern of the antennas are circles with a range that is dependant on the
antenna diameter. The minimum and maximum antenna diameter, D,;, and D,,.., leads to

the minimum and maximum coverage patterns range. This works as boundaries for the the
SQLQ.
The input is a vector r € R?, which contains the range of the () antennas.

Given a vector r and the antenna locations it is possible to determine how much area these
() antennas cover, as well as their intersections. This is represented by S, (r) and is evaluated
by getting the union of every antenna coverage area and subtracting its intersections, Sn(7).

It is also defined the quantity Spes, which is the maximum potential coverage area achievable
when all () antennas have the maximum possible diameter.

To achieve the proposed goal of maximizing the covered area, it is necessary to minimize

the difference between Spes; and Sy (7). It is also desired to minimize intersections.

There is still one constraint to consider: the covered area must be the Brazilian terri-
tory, Sprazil- Lhis is achieved by considering that the intersection between S, (r) and Brazil,
Su(r) N S Brazil, must be higher than an acceptable parameter, S;. This represents the percent-

age of Brazil that is covered.
Therefore, the problem can be modeled as:
min [C} (Spest — Su(r)) + C2 (Sn)]  subject to
SU (T) N S Brazil (36>

SBrazil

There is another variation of the problem, instead of using the coverage as a circle, it uses the
real coverage of each station. In this scenario, the vector r has the possible parabolic antenna
diameters. In the same way, from the vector r it is possible to evaluate the real coverage of each
station, their union and intersection. The problem is modeled in the same way as Eq. (3.6),
but Sy(r) and Sh(r) are evaluated considering the actual coverage of the ground stations.
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Possible Ground Station Positions.

™

Figure 3.6: Positions for the () = 9 possible ground stations that are used in the algorithm
described in Section 3.7.1. The chosen criteria for these locations are capitals or cities with
enough infrastructure to receive an antenna site.
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Figure 3.7: Antenna diameter impact on range and on Brazil coverage. From this, it is possible
to choose a maximum diameter of D,,., = 6 m, as a higher diameter would not increase neither

the coverage nor the range.

3.7.2 Simulation Results

For this scenario, it is considered ) = 9 ground stations in the positions shown in Figure 3.6.
The link budget is analyzed considering the VCUBI characteristics. The variable parameters
are only the ground antenna diameters. The control variables for the problem are C = 0.5,
Cy = 0.5 and Sy = 0.99.

To evaluate the impact of antennas with different diameters, it is possible to see how the
diameters impact their individual coverage and the total coverage. This result is shown in
Figure 3.7.

Based on this, the maximum is Dy, = 6 m. The simulation result is shown in Figure 3.8.
Only 3 out of the initial 9 antennas were used. The antennas that are not used are set to D i,
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Table 3.11: Results for the Parabolic Reflectors with Different Diameters for the VCUB1. The
used ground stations are in bold.

Latitude [°] Longitude [°] Diameter [m]

-48.05 -15.99 0
-45.88 -23.21 0
-54.94 -30.27 6.00
-44.37 -2.32 2.19
-37.94 -4.60 6.00
-60.70 2.85 6.00
-63.90 -8.76 0
-54.66 -20.46 0
-38.33 -12.91 0
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Figure 3.8: Results for the algorithm described in Section 3.7.1. On the left, it is the result
considering that the antenna coverages are circular. On the right, it is the result considering

the deformation in the coverages.

by the algorithm. In addition, the ground stations with more than 50% of its area overlapping

other antenna coverage are not considered.

The results found considering the antenna coverage approximated by a circle are used as
input for the algorithm that considers the real coverage of each antenna. However, when trying
to find a better solution, the algorithm does not find any direction towards the gradient is

negative. Thus, it converges to the same solution as the simpler scenario.

The script that implements this algorithm is found in Appendix B.11.

3.7.3 Downlink Capabilities of the Proposed Stations

Concluding this analysis of ground station positioning, it is evaluated how much data is
possible to be downloaded from the satellite in comparison with a ground station near the pole.
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To this calculation, it is considered how much time the satellite is in contact with the ground
station with the ratio E,/Ny > 7.5dB.

It is considered an antenna in Comandante Ferraz Antarctic Station, which is the Brazilian
station on the south pole. The results are shown in Figure 3.9.

The ground station located on the Brazilian mainland has virtually the same capability of
downlink as the station in Comandante Ferraz, as shown in Figure 3.9, with significantly fewer

resources necessary for the maintenance of these stations.

The station outside of the Brazilian territory is useful for other reasons than just down-
link capabilities. Considering the case of an Earth Observation satellite that cannot receive
commands while imaging, and that the main necessities of imaging are inside Brazil, it is inter-
esting to send commands to the satellite outside of the area of interest. However, the proposed
scenario is still useful considering that the satellite payload is an optical imaging system, as in
this case the night passes can be used for downlink and imaging planning, while the day passes

can be used for imaging purposes.

Also as a matter of comparison, a station placed in Svalbard, Norway, is capable of download-
ing 48.55 Gbits/day. The proposed system has approximately 65% of the download capability
of Svalbard.
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Main Land: 31.24 Gbits/day
South Pole: 28.39 Gbits/day

——

Figure 3.9: Comparison between the obtained ground station on mainland Brazil configuration
against a station placed near the South Pole. It has virtually the same capability to download
data. The gray points represent some of the satellite coordinates.
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Antenna Array Design
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Chapter 4

Antenna Array Design

The Appendix A presents the classical methods of designing an array, which, in general, is

useful to project uniform arrays varying only their input magnitude and phase.

This chapter proposes a design process of a static antenna array with the antennas physically
steered and in any 3D position. This introduces more degrees of freedom to the problem when

compared to more classical approaches.

4.1 Physically Steered Array

First, it is proposed a method to combine the field of one element into an array.

A generic array with N elements can be described by its global Cartesian positions
(do,dy,...,dn_1), its feed coefficients (ag, ay,...,ay_1), its local rotations around x-axis

(v, 01, ..., an—1), around y-axis (5o, B, ..., Bn—1) and around z-axis (Yo, 1, .-, YN-1)-

For this generic array, the resultant fields £y and Ey are given by:

N-1
Ey, = Z anEg[n]e?® 4 and
n=0

N1 (4.1)
E¢ = Z anE¢[n]€jk'dn,
n=0
9 o | €08 ¢sinf
where k = Tf = sin¢sin® | and Ey[n], Ey[n] are evaluated using the local angles av,, G,

cos 6
v, and then rotated to the global axis using the method presented in Section 2.2.

To validate the method, it is first considered a non rotated array with N = 3 elements placed
along the z-axis: dy = [—*/2,0,0], d; = [0,0,0] and dy = [*/2,0,0]. This array is compared with
a simulation in HF'SS representing the same array. The results are shown in Figure 4.1.

Also as a form of validation, it is proposed another array with N = 3 elements placed along
the z-axis: dy = [-*/2,0,0], d; = [0,0,0] and do = [*/2,0,0]. But in this scenario, they are
rotated around the y-axis: 5y = 51 = [f2 = 45°. Again, this array is compared with a simulation
in HF'SS representing the same array. The results are shown in Figure 4.2.

49
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Figure 4.1: E-plane and H-plane for the microstrip antenna array equations compared with a
simulation in HFSS. This shows that the implemented array equations are close enough to the
HF'SS array simulation. The differences are justifiable by the simplification of the microstrip
fields model.

In both cases, the results of the proposed model for the MicroStrip antenna are very similar,
with the differences being justifiable by the simplification of the equations presented in Section
2.1.3. To overcome this, another scenario is considered. Instead of using the proposed equations,
the fields of a MicroStrip antenna are extracted from HFSS and these fields are combined and

rotated into arrays by the proposed equations.

To replicate the first result, it is considered the field pattern of the non-rotated patch
obtained from HFSS and this pattern is combined to form an array, which is compared against

the same array simulated in HF'SS. The result is in Figure 4.3.

Then, to replicate the second result, it is proposed another scenario: the patch is analytically
rotated of § = 45° around the y-axis and combined into an array. The result is compared
against the rotated array patch simulated on HF'SS and is shown in Figure 4.4. These figures
are obtained using the script in Appendix B.12.

4.2 Validation Model

For the validation model, the considered array element is the one presented in Figure 4.5,
which is a Yagi Uda antenna with 4 elements designed by [20]. This antenna is then modeled
with spherical modes using AFTK.

To validate the algorithm, it is proposed the following objective array:



4.2 — VALIDATION MODEL 51

Analytical model vs HFSS - Steered 5 = 45°

E-Plane (¢ = 0°) H-Plane (¢ = 90°)
0 4 .
6 ] —— HFSS
—12+ . —— Analytical

E, [dB]
s Lol

e}
(e}

“45 —15 15 45 75 105 135-90 —60 —-30 0 30 60
0[] 0[]

Figure 4.2: E-plane and H-plane for the microstrip antenna array steered of 5 = 45° around the
y-axis using the presented equations compared with a simulation in HFSS. This shows that the
implemented steered array equations are close enough to the HFSS steered array simulation.
The differences are justifiable by the simplification of the microstrip fields model.

Analytically Combined Array vs HFSS array
E-Plane (¢ = 0°) H-Plane (¢ = 90°)

—6 . —— HFSS
—12+ E *  Analytical

—18 -
— 94
-30 T T T T T

0-
—6
—192-
—18 -
— 94
-30

0-
—6
—192-

:;i:_\ — F-

7200 60 —30 0 30 60 90-90 —60 —30 0 30 60
0[] 0[]

Ep[°] [dB]

Ey [dB]

X

Eiot [dB]

e}
(e}

Figure 4.3: E-plane and H-plane for the microstrip antenna using field patterns from HFSS and
then analytically combined into an array compared with a simulation in HFSS. This scenario
eliminates the simplifications on the microstrip model and evaluates only the equations that
implements the array. As the result is virtually the same as the HFSS simulation, the proposed
model is validated.
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Analytically Rotated and Combined Array vs HFSS - Steered 5 = 45°
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Figure 4.4: E-plane and H-plane for the microstrip antenna analytically rotated of 5 = 45°
around the y-axis using field patterns from HFSS analytically combined into an array compared
with a simulation in HF'SS. This scenario eliminates the simplifications on the microstrip model
and evaluates only the equations that implements the steered array. As the result is virtually
the same as the HF'SS simulation, the proposed model is validated.
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Figure 4.5: Electric fields and directivity for one array element, which is an Yagi Uda antenna
with 4 elements designed by [20] and modeled with spherical modes using AFTK.
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0o 0 0
d= 1[0 A2 A (4.2)
0 0 0
where each column represents the coordinates d,, = (z,,, Yn, 2,) of the n-th element.
The elements are rotated of:
0° 0° 0°
Y= |-90° —90° —90°], (4.3)
55°  B55°  Bh°
where each column represents the angles 1, = (v, B,,Vn) of the n-th element.
The input array for the algorithm is slightly offset from the objective:
0 0.07A 0.14X 0° 0° 0°
d= [0 0.8\ 1.6\ Y = [—90° —90° —90°| . (4.4)
0 0 0 90°  30° 110°

The field pattern is analyzed in 0 < 6 < 180° and for ¢ = 90°.

The objective is to optimize the positions and rotations of /N antennas to match the objective

array pattern of far-field Ey and E.

It is possible to write this problem as:

min Y~ [||Eo(6, 6, d, ) — B, (0,0)|, + | Es(0, 6, d, ) — Eg,(6,6)|l,]  subject to

™

60— (B0, 6, d4p) + En, (6, 0) |, — |Eo(0, 6, ) — B, (0, 0)],] >

O=—m

(4.5)

where ¢ is the acceptable error. This problem is solved using the Sequential Least Squares
algorithm.

The obtained positions and rotations are displayed in Table 4.1. As the problem is non-
convex, the algorithm converged to a solution that is not equal to the initially proposed array.
However, it is possible to see a successfully convergence, as the cost profile shown in Figure 4.6
converges. Also, as shown in Figure 4.7, the projected array fields match the obtained fields.
This algorithm is implemented by the script displayed at Appendix B.13.

4.3 Field Pattern Design

For this section, it is also considered the element array presented in Figure 4.5.

The objective of this section is to propose an array capable of maintaining a approximately

constant field strength over a desired range of 6.
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Table 4.1: Results of the Sequential Least Squares algorithm

multiple of .

. The values of x,y and z are in

Al ylAl 2A o] BT [
0 0.16 -0.50 0.00 -18.49 -90.00 36.51
1 0.16 0.00 0.00 -14.63 -90.00 40.37
2 0.16 0.50 0.00 -4.12 -90.00 50.88
Final cost = 4.21E-02
10-’1<
:51:-:""' ': . 29
10&'-3.' ..".;;_-.. . ) q
-‘-“' . J ¢ .
10° 4 e .
.'“-b. 1.
é 10" 4 H';:.. 5
\--. .
o] e
-i . .
107" 4 S~
Cost N
0 250 500 750 1000 1250 1500 1750

Number of Evaluations

Figure 4.6: Sequential Least Squares cost profile for the validation model algorithm. This shows
a convergence, as the cost is reducing as the iterations increases.
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Figure 4.7: Field comparison between the projected array and the obtained from the Sequential
Least Squares optimization. The field profile is virtually the same as the projected array, even
though the found optimal array is not the same as the target one in terms of position and
rotation of the array elements. This shows that the problem has multiple solutions.
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Table 4.2: Obtained array for the plateau design. The values of x,y and z are in multiple of \.

I L I s R

0 0.00 295 0.00 90.00 -89.82 -90.00
0.00 281 0.51 64.32 -90.00 -64.32
2 000 -281 0.19 -273 -90.00 86.84

—_

Final cost = 1.12E+00

i . Cost
103 i
102 i
8
QO
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0 500 1000 1500 2000 92500 3000
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Figure 4.8: BFGS cost profile for the plateau pattern design with 6., = 70°. It can be seen
the algorithm convergence, as the cost reduces with the iterations.

It is possible to model this problem by adapting the algorithm presented in Section 4.2 as
follows:

max || Ey(0, ¢, d, )|

‘ 4.6
" minHE9(9)¢7 d7¢)“ ( )

For this problem, the chosen algorithm was BFGS.

For testing purposes it is proposed to find an array that has a plateau from 6 = 0° to
6 = 70°. The obtained array is shown in Table 4.2.

Figure 4.8 shows the cost profile and Figure 4.9 shows that the initial objective was accom-
plished.

When repeating the same procedure considering more antennas, the found result is more
oscillatory, as shown in Figures 4.10 and 4.11. However, the power level increases as there are
more elements.

This algorithm is implemented by the script displayed in Appendix B.14.
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Figure 4.9: Fields obtained by the BFGS algorithm with 3 elements in array for the plateau
pattern design in |Ey| with 6., = 70°. The algorithm successfully converged to a solution with

a plateau over the desired values of 6.
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Figure 4.10: Fields obtained by the BFGS algorithm with 5 elements in array for the plateau
pattern design in |Ey| with 0,,x = 70°. Compared with the solution array using 3 elements,
shown in Figure 4.9, the result is more oscillatory, but with higher plateau values as there are

more elements.
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Figure 4.11: Fields obtained by the BFGS algorithm with 21 elements in array for the plateau
pattern design in |Ey| with O, = 70°. This solution is even more oscillatory than the one
with 5 elements, shown in Figure 4.10, and has a higher plateau value.

4.4 Filter Pattern Design for Satellite Passes

In this section is presented an array design considering given satellite passes.

For this section, the considered array element is the one presented in Figure 4.12, which is
designed with AFTK considering the maximum directive antenna with ., = 5.

The considered satellite for this scenario is VCUB1, NORAD 56215, passing over the cen-
troid point of Brazil.

To achieve the goal of projecting fixed-position arrays capable of tracking a specific satellite,
the passes are categorized, as illustrated in Figure 4.13. The time interval considered is 60 days.

For the algorithm validation, the descending east passes are considered.

In this scenario, it is possible to model the optimization problem as:
minz |fa(x) — Eiot(x)], subject to
T

min Fy, 4.7
—tt—eE >= (0, and (4.7)
maXEtot

dmin — € >= 07

where f; is the desired pattern, which in this case is a constant vector with all elements
equal one. FEj, is the normalized field absolute value, y/|Eg|> + |Eg|*. diin is the minimum

acceptable distance between two elements in multiple of \. At last, e is the goal ratio between
the minimum and maximum E}, inside the region of interest and ¢4 is the minimum acceptable

distance between two array elements. Ideally, ez = 1 and ¢4 are big enough to prevent a
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Figure 4.12: Electric fields and directivity for one element used in the design of the array that
points towards the satellite path. It is designed with AFTK, considering the maximum directive

antenna with /.« =

d.
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Ascending East Passes

Figure 4.13: This figure shows how the passes are categorized before the optimization runs.
First, they are divided into descending and ascending passes. Then, into east or west of the
considered ground station. Finally, each group is divided considering the maximum elevation
of the passes into nine categories. Each color represents passes in the same maximum elevation

group.
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physical intersection between two elements. Two possibilities are considered for «:

T = (;L- B|Z 7|Z |a||, é , 0T (4.8)
L R N B VO
I

x= T Yi % o Bi v ) (4.9)
LA A U N ) (VO

where N is the number of elements composing the array, z;, y;, z; are the Cartesian position for
the i-th antenna and oy, §;, ; are the rotation around z-axis, y-axis and z-axis, respectively, for
the i-th antenna. Finally, |a;| and sa; are the input magnitude and phase for the i-th antenna.

This problem is highly nonlinear, and there are multiple possible local solutions. To prevent

the algorithm from converge to one of these local solutions, two runs are executed.

The first run considers the « in (4.8), which is a more conventional approach for designing

arrays and provides a good start point for the next run.
The second run considers the « in (4.9), which provides the final solution for the problem.

For the proposed solutions, the algorithm runs for arrays with a minimum of N = 3 and
a maximum of N = 9 elements, with ez = 1 and ¢; = 0.3. The most directive arrays are
presented in Figure 4.14, with the details about the position in Table 4.3. This algorithm is
implemented by the script in Appendix B.15.

The arrays found are not able to establish a link with a satellite like VCUB1, because they
are not very directive and the output power of the satellite is too low.

These total cost of these arrays is around $1 million. Which is 25% of the cost of a state-
of-the-art parabolic reflector.

Table 4.3: Final array configurations for the satellite descending east pass optimization. The
values of z,y and z are in multiple of .

T A I A I R
0° to 10° - 5 elements
0.26 -1.34 223 -66.15 -73.68 240.61
0.75 0.39 253 -61.47 -74.17 208.79
0.88 0.92 240 10.26 8223 81.88
0.51 -0.85 1.80 65.53 73.45 6294
0.57 1.78 270 4777 81.02 20.57
10° to 20° - 8 elements
0.69 -0.92 4.38 69.78 -4825 3.45
1.68 -0.81 4.28 74.85 -50.55 316.94
1.58 -0.22 3.87 -74.54 47.52 140.83
0.87 -0.08 5.04 62.75 -71.99 31.88
1.49 092 4.58 -5.07 32.02 142.86
Continued on next page
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Table 4.3 — continued from previous page

1.69 049 5.07 10.01 -79.18 330.37
1.21 143 485 -67.96 49.46 167.73
0.73 232 236 -73.23 -70.09 318.36
20° to 30° - 4 elements
-1.75  0.89 1.71 -9.43 78.94 54.33
-1.12 114 1.88 1690 6522 65.64
-1.32 146 2.25 79.69 -33.94 66.78
-1.78 216 2.36 66.86 4.69  39.15
30° to 40° - 4 elements
1.25 -0.04 1.94 -39.28 76.83 80.71
0.68 -0.23 1.69 12.21 59.19 63.40
098 0.11 149 76.32 3522 82285
0.38 -0.07 3.11 56.98 12.33 45.24
40° to 50° - 4 elements
1.24 -0.79 1.69 -29.44 71.19 59.90
0.96 -0.68 1.21 21.14 44.13 4490
0.57 -0.37 1.72 73.30 3544 93.55
1.69 -0.34 2.02 29.11 41.09 9543
50° to 60° - 5 elements
2.22 -0.91 3.75 -71.95 7771 91.51
2.92 0.73 3.43 -45.88 22.08 109.22
235 096 3.03 -14.01 26.72 131.14
1.93 211 3.29 41.74 -27.47 41.07
1.92 295 3.20 5824 -77.14 66.11
60° to 70° - 7 elements
1.99 -140 3.61 -18.26 67.65 53.95
213 -1.38 3.25 -21.61 76.21 49.59
2.15 -0.60 3.63 -35.75 -11.28 252.61
233 039 3.66 -11.03 32.74 108.05
1.60 -1.32 445 -6.26 39.92 60.59
240 1.21 3.63 59.60 -3.88 67.94
2.60 3.63 280 77.60 -48.43 83.96
70° to 80° - 9 elements
-1.98 -3.75 5.68 -8.41 5294 34.38
-2.30 -4.15 b5.55 -44.84 85.19 58.53
-2.30 -3.62 5.54 -78.52 46.86 101.57
-2.04 -4.03 549 6.35 13.70 45.82
-2.23 -3.36 5.13 -2.89 30.86 29.83
-1.76 -4.71 5.62 2454 0.07 66.96
-1.79 -4.16 5.58 5422 1.80 85.09
-1.89 -2.14 5.82 7428 R80.31 107.56
-2.15 -3.85 6.07 72.82 19.32 103.72
80° to 90° - 8 elements
0.99 098 542 -71.28 3790 94.53
1.17 1.31 5.23 -53.91 41.46 68.79
0.50 1.26 4.69 -27.00 28.15 65.71

Continued on next page




4.4 — FILTER PATTERN DESIGN FOR SATELLITE PASSES 62

Table 4.3 — continued from previous page
023 1.09 4.62 496 14.29 31.33
093 1.00 461 6.03 -9.40 34.32
0.64 0.60 4.76 29.80 -23.79 60.78
0.12 127 5.32 6596 -14.30 92.55
031 146 536 7222 -33.85 82.64

As a measure to increase the directivity in the desired region, the arrays found for each
group were considered as a substation in a new uniform linear array separated by A that is in
the direction perpendicular to the satellite trajectory. The resulting array is also electronically
steered towards Oc.n Of each group of passes. The resulting directivity if shown in Figure
4.15, from where it is possible to see that this approach worked well for the satellite groups
with maximum elevation lower than 20° and maximum elevation higher than 50°; in which the
directivity is greater than the original array found by the optimization. Unexpectedly, it does
not work well for the passes with a maximum elevation between 20° and 50°.

Finally, this simulation is repeated considering that the array is composed of an element
that is equivalent to a 1m dish parabola. The results are shown in Figure 4.16.
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Directivity for East Descending Passes

0° to 10° - 5 elements 10° to 20° - 8 elements 20° to 30° - 4 elements
%0 13.4 %0 11.0 9.8
10.4 8.0 6.8
7.4 5.0 3.8
4.4 2.0 0.8
1.4 -1.0 -2.2 =
-1.6 -4.0 525
4.6 7.0 827
-7.6 -10.0 -11.2
-10.6 -13.0 -14.2
-13.6 -16.0 -17.2
o70° -16.6 o700 -19.0 o700 -20.2
30° to 40° - 4 elements 40° to 50° - 4 elements 50° to 60° - 5 elements
9.9 9.7 8.6
6.9 6.7 5.6
3.9 3.7 2.6
0.9 0.7 -0.4
2.1 -2.3 -3.4 =
-5.1 -5.3 6.4
8.1 8.3 947
-11.1 -11.3 -12.4
-14.1 -14.3 -15.4
-17.1 -17.3 ‘ -18.4
270° -20.1 270° -20.3 270° -21.4
60° to 70° - 7 elements
10.5 8.9 9.1
7.5 5.9 6.1
4.5 2.9 3.1
1.5 -0.1 0.1
-1.5 -3.1 -2.9 —
-4.5 -6.1 5.9
75 9.1 8.9F
-10.5 -12.1 -11.9
-13.5 -15.1 -14.9
: -16.5 -18.1 -17.9
270° -19.5 270° -21.1 270° -20.9
0[] 0[] 0[]

Figure 4.14: This figure shows the directivity for the arrays of all groups of descending passes
that are located east from the ground station. The objective is to maintain an approximately
constant power level for each satellite pass, which is represented by the white dots. The element
composing the arrays in this scenario is equivalent to a 30 cm dish parabola.
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Figure 4.15: This figure shows the arrays with 2 substations for the descending satellite passes
that are located east from the ground station. It is possible to see that this approach worked
well for the satellite groups with maximum elevation lower than 20° and with maximum eleva-
tions higher than 50°, in which the directivity is greater than the original array found by the
optimization. The satellite trajectory is depicted by the white dots on each graph.
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Directivity for East Descending Passes

0° to 10° - 7 elements 10° to 20° - 10 elements 20° to 30° - 10 elements
154 14.1 9 14.2
12.4 11.1 11.2
9.4 8.1 8.2
6.4 5.1 5.2
3.4 2.1 2.2 =
0.4 -0.9 0.8
2.6 3.9 38°
-5.6 -6.9 -6.8
-8.6 -9.9 -9.8
-11.6 -12.9 -12.8
-14.6 -15.9 270° -15.8
50° to 60° - 10 elements
14.2 13.7 12.9
11.2 10.7 9.9
8.2 7.7 6.9
5.2 4.7 3.9
2.2 1.7 0.9 =
-0.8 -1.3 21=
-3.8 4.3 515
-6.8 -7.3 -8.1
-9.8 -10.3 -11.1
-12.8 -13.3 -14.1
270° -15.8 270° -16.3 270° -17.1
13.6 13.3 13.5
10.6 10.3 10.5
7.6 7.3 7.5
4.6 4.3 4.5
1.6 1.3 1.5 =
-1.4 -1.7 15
4.4 4.7 455
-74 =TT -7.5
-10.4 -10.7 -10.5
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570° -16.4 -16.7 -16.5
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Figure 4.16: This figure shows the directivity for the arrays of all groups of descending passes
that are located east from the ground station. The objective is to maintain an approximately
constant power level for each satellite pass, which is represented by the white dots. The element
composing the arrays in this scenario is equivalent to a 1 m dish parabola.
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Chapter 5

Results and Conclusion

This chapter reviews and summarizes the obtained results of this work and suggests future

works to continue the research.

This work presented many optimization techniques involving satellite communication, like
proposing a ground station distribution to maximize a territory coverage, also proposing a
distribution inside the Brazilian territory that has virtually the same downlink capability of a
station placed near the South Pole and, finally, proposing an static array that can maintain an

approximately constant power level during a satellite pass.

5.1 Ground Station Distribution Maximizing Coverage

The proposed technique to solve the problem of optimal placement of ground stations over
a region to establish communication links with specific satellites involved a multi-step process
utilizing three optimization techniques.

First, the problem was linearly relaxed so it could be convexly modeled and solved by Convex
Optimization. The limitation of this model is that the antenna positions were restrained to a
coarse grid.

This solution was then fed to a Sequential Least Squares model, where the positions are no
longer restrained. In this scenario, antennas can even be placed outside the region of interest,
which is a drawback of this model. The antenna coverage pattern depends on the geodetic

coordinates of the ground stations. However, it was considered fixed in this model.

The result from SQLQ was then the input for a Differential Evolution algorithm. This
one, at last, made a fine adjustment in the previous solution while accommodating all problem
constraints. This combination of techniques was able to successfully place ground stations
inside Brazilian territory considering communication links with SAC-C and VCUBI1 satellites

with acceptable percentages of coverage.

Furthermore, it was observed that despite the problem relaxation, the number of antennas
obtained by the Convex Optimization model was an optimal trade-off between the number
of antennas and the covered area. That is, adding one more antenna to this solution before
feeding it to the other algorithms did not lead to a significant increase in the coverage area

while increasing the intersection among the antennas.
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5.2 Ground Station Parameters Optimization

Adapting the used Sequential Least Squares model, it was analyzed a different scenario. In
this case, the ground station must be placed in specific locations, due to some legacy infras-
tructure, for instance. Given these possible positions, the proposed algorithm finds which are
the best antenna to employ in order to maximize the link coverage. In the specific solved case,
were considered parabolic antennas with variable diameters and the algorithm found where to
put the stations and which parabolic diameter to use.

In this new scenario, it was proposed a two-step process. The first step is a simplified version
of the problem, which considers that each antenna coverage is circular. The solution of this
step is then fed into the same optimization, with one difference: considering the real coverage
instead of circular approximations. The second algorithm was not able to find a better solution
as it could not find any direction where the gradient was negative.

The proposed solution was compared with antennas near the poles, in Comandante Ferraz
Antarctic Station, that is the Brazilian South Pole Station, and in Svalbard, Norway. The pro-
posed solution has virtually the same downlink capability as the antenna placed in Comandante
Ferraz and approximately 65% of the capability of Svalbard.

5.3 Antenna Array Design

There are methods of designing arrays considering the electronic steer of the elements. That
is, it varies only the feed input magnitude and phase to achieve some desired pattern. It is
proposed a method to vary the positions and physical rotation of the array elements, increasing
the degrees of freedom of the problem.

The main objective of this section is to propose an static array that can maintain an ap-
proximately constant level of power during a satellite pass. To achieve this, first the possible
passes were categorized, to reduce the area in which is necessary to irradiate power. It were
used two elements for the design, one equivalent to a 30 cm dish parabola and other equivalent
to a 1m dish parabola. In both cases, the maximum directivity of the obtained arrays were

not greater than 15 dB, which is not enough to establish a link with the considered satellite.

A more directive element could be used. However, it would require a huge computational
capability, as the number of elements necessary in each array would increase considerably. Also,
as the software AFTK was used for modeling the element arrays, for more directive elements
it requires more spherical modes to be able to estimate the antenna, which also increases the

computational cost of the problem.

For these reasons, the conclusion was that this approach to the problem is not the best.
It would be best to use a design method considering Space-Fed Lens, which is composed of
a feed array and a radiating array with each corresponding element pair interconnected by

transmission lines of different lengths to radiate a plane wave in the forward direction, as
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described in [10] and [12].

5.4 Other applications

The developed algorithms can also be used to solve problems as:

e How to distribute air defense radars to fully cover a given territory;

e How to distribute surveillance telescopes to get every space object that passes over a
given territory; and

e Integration with ANSYS STK through easy tweaks if necessary.

5.5 Future Works

This section presents some directions for future research, showing identified gaps observed
during the development of this work.

First, the inclusion of the Doppler effect in satellite link calculations. The Doppler effect
must be compensated in order to establish a link connection with a satellite, so this must be

integrated into the software that is being developed in the context of the project.

Another possible work is to consider dynamic elements to compose the array instead of

static ones. This would compensate the problems encountered with the low directivity.

It would also be relevant a research regarding the impacts of ionospheric scintillation in

satellite communication, as the Brazilian territory is affected by the South Atlantic Anomaly.

Finally, the electronic steering of the found arrays in Chapter 4 needs to be investigated
in more detail, finding a way to make the arrays more directive and, therefore, being able to
establish a communication link with more satellites.
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Appendix A

Antenna Array Electrical Design

A.1 Translational Phase Shift

The fundamental characteristic of an array is that the spatial displacements between its
antenna elements result in relative phase shifts within the radiation vectors. These shifts can
either combine constructively in certain directions or cancel each other out in others. This
phenomenon directly derives from the translational phase-shift property inherent in Fourier
transforms, where a spatial or temporal translation corresponds to a phase shift in the Fourier
domain.

The current density of the translated antenna is Jq(r) = J(r —d). By definition, the
radiation vector is the three-dimensional Fourier transform of the current density. Thus, the

radiation vector of the translated current is:

Fq= /ejk'r.]d(r)d?’r = /ejk'r.](r—d)dgr: /ejk'(rurd)J(r')d‘?r’

(A.1)
— ejk-d/ejk-r/'](rl)dfirl — ejk-dF7
with ' = r —d.
A.2 Array Pattern Multiplication
Consider N antennas in positions dy, dy, . . . , dy_1 with relative feed coefficients ag, a1, ..., an_1.

The current density of the nth antenna will be J,(r) = a,J (r — d) and the corresponding ra-

diation vector:

Fo (k) = a,e/*% F (k). (A.2)

The total current density of the array is:

Jtot('r) = a0J<’I‘ — do) + alJ('r — dl) + -+ aN,lJ('r — del)' (A3>
And the total radiation vector is:

71
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Fip(k) =Y Fn=> a,e™"F(k) = A(k)F(k), (A.4)

n

where A(k) is the array factor:

A(k) = Zanejk'd". (A.5)

n

Since k = kr, it is also possible to denote the array factor as A(t) or A(6, ).

A.3 One-Dimensional Arrays

Consider a uniformly-spaced one-dimensional array. An array along the z-axis with elements
positioned at locations x,, n = 0,1,2..., will have displacement vectors d; = r,x and array
factor:

A(e, ¢) _ Zanejl;-Jn _ Zanejknxn _ Z anejk:(:n sin9005¢>’ (A6)
n n n

where k, = ksinf cos ¢. In this case, the array factor is:

A(97¢) _ Zanejnkdsinﬁcosqﬁ _ Zanejllln’ (A?)

where ¥ = k,d = kdsin 0 cos ¢ is the digital wavenumber, which is a normalized version of the

wavenumber k, and is measured in units of radians per (space) sample.
The wavenumber WV is defined similarly for arrays along the y- or z- directions:
VU = k,d = kdsinfcos¢ for an array along z-axis,
U = kyd = kdsinfsin¢ for an array along y-axis, and (A.8)

U =k,d = kdcost for an array along z-axis.

A.3.1 Analogy with Time-Domain Digital Signal Processing (DSP)

The array factor A(V) is the wavenumber version of the frequency response of a digital filter
defined by:

Alw) =) aneen. (A.9)

The distinction in the exponent sign between (A.9) and (A.7) is rooted in the contrast
between defining time-domain and space-domain Fourier transforms. This discrepancy can also

be attributed to the variation in the sign for a plane wave, specifically expressed as e/“t=7kT,

It is also possible to define the spatial analog of the z-plane by defining the variable z = /¥

and the corresponding z-transform:
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Az) = Zanz”. (A.10)

The difference between the space-domain and time-domain definitions is also evident in this

equation, where the expansion is in powers of z" instead of z7".

The array factor A(V) can be referred to as the discrete-space Fourier transform (DSFT)
of the array weighting sequence a,, like the discrete-time Fourier transform (DTFT) in the
time-domain scenario. The corresponding inverse DSFT is obtained by:

™

1 .
— —j¥n
n = o A(W)e 7dW. (A.11)

™

The inverse transform forms the basis of most design methods for the array coefficients.
These methods are identical to the methods of designing finite impulse response filters in DSP.

A.4 \Visible Region

The array factor A(¥) is periodic in ¥ with period 27, which means it is enough to know
it within one Nyquist interval, that is, —7 < ¥ < 7.

However, the actual range of variation of U depends on kd = 2wd/\. The overall range of
variation of W is called the visible region is defined as:

—kd < T < kd. (A.12)

The visible region can also be viewed as that part of the unit circle covered by the angle

range.

Depending on the value of kd, the visible region can be less, equal or more than one Nyquist

interval:
d<A2=kd<m= VU, <2r less than Nyquist,

d=\2=kd=m= V¥, =2r full Nyquist, or (A.13)
d>\2=kd>mr= Vs >2r more than Nyquist.

A.5 Grating Lobes

When kd > m, the values of A(¥) become redundant and cyclically repeat across the visible
region. This redundancy can lead to the emergence of grating lobes or fringes, representing
mainbeam lobes in directions other than the intended one.

The quantity of grating lobes within an array pattern corresponds to the number of complete
Nyquist intervals that fit within the width of the visible region, expressed as:

m = Wys/2m = kd/m = 2d/\. (A.14)
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A.6 Electronically Steered Array

An array is typically designed to achieve maximum directive gain at broadside, specifically

T
at ¢ = — (assuming an array along the z-axis). The objective is to electronically steer the array
pattern towards a different direction, denoted as ¢q, without the need for physical rotation.

This steering process can be accomplished through wavenumber translation in W-space,
where the broadside pattern A(W) is replaced by the translated pattern A(V — Wy). Thus, is
defined the steered array factor:

A(T) = AT — ), (A.15)

and the translated wavenumber variable:

U =0 — W, (A.16)

The concept of visible region translates with minor modifications to the case of a steered

array:

—kd(1 + costhg) < V' < kd(1 + cosy). (A.17)

A.7 Array Design Methods

The array design problem is essentially equivalent to designing finite impulse response (FIR)
digital filters in DSP.

A.7.1 Notation
One-dimensional equally-spaced arrays are commonly analyzed with symmetry concerning

the origin of the array axis. However, when dealing with an even number of array elements, a

slight adjustment to the definition of the array factor is necessary.

Consider an array of N elements at locations {x,,} along the z-axis with element spacing
d. The array factor is:

A0, ¢) = Zamejk”m = Z Qe FEm sinfcosé (A.18)

If N =2M +1 (odd), the element locations {x,,} are:

Tm=md, m=0,41,42, ... +£M. (A.19)
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Writing the array factor as a discrete-space Fourier transform and as a spatial z-transform:

M M
A(T) = Z ame™ = ay + Z [amejm\y + a_me’jm‘l’} , and
m M N (A.20)
A(z) = Z amz" = ag + Z [amzm + a_mz_m} )
m=—M m=1

On the other hand, if N = 2M (even), in order to have symmetry with respect to the origin,
the elements x,, must be placed in half-integer locations:

d 1
xim:i<md—§>:i<m—§>d, m=1,2,..., M. (A.21)

Writing the array factor as a discrete-space Fourier transform and as a spatial z-transform:

M
A(T) = Z [ ™DV g eIV and

" (A.22)
A(z) = Z [amzm_1/2 + a_mz_(m_l/Q)} '

m=1

In most design methods, the weights array a,, is symmetric with respect to the origin, that

is, a,, = a_,,. In this case, the array factor can be simplified:

M
A(V) =ag+ 2 Z Ay cos (ma)) , forN = 2M + 1, and
u (A.23)
A(T) =2 aycos[(m — 1/2)¢], forN = 2M.
m=1

In both even and odd cases, the spatial z-transform can be expressed as the left-shifted

version of a right-sided z-transform:

N-1
A(z) = 2z WVD2 () = ,~WN-D/2 Z anz", (A.24)
n=0
where @ = [ag, a1, ..., ay_1] is the vector of array weights reindexed to be right-sided. In terms
of the original symmetric:
a = [ao,dl,...,d]v_l] = [a_M,...,a_l,ao,al,...,aM], for N =2M + 1, and
o ~ (A.25)
a = [ag,as,...,any_1| =la_p, ... a_1,a1,...,apr], for N = 2M.

The corresponding array factors in W-space are, setting z = e/¥:

N-1
A(T) = e VN2 () = (=7 VN-1)/2 Z a, e, (A.26)
n=0
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The steered version of A(¥) is:

A(T) = dPoWN=D2 J(T — ), (A.27)
which implies for the weights:

a~n/ _ dne—j\llo[n—(N—l)/Q]7 n=20,1,... , N —1. (A28)

A.8 Woodward-Lawson Frequency-Sampling Design

Equations (A.20) and (A.22) represents truncated versions of the corresponding infinite
Fourier series. Considering the case where the inverse transform integrals cannot be done
exactly, the frequency-sampling design method of DSP is used [3] [5]. Assuming an infinite and

convergent series, it is possible to write, for the odd case:
AW) = a0+ S [ame™ + a_pe ] L g, = / A)e=T™ (A.29)
m=1
Similarly, for the even case:

Z a4, MUY | —i(me 1/2)\1/} _ _/ 6¢9m L20% qap. (A.30)
m=1

Therefore, given a desired response, Ay(WV), it is possible to choose a window length, N,
and calculate the N ideal weights a4(m) by evaluating the inverse integrals of (A.29) or (A.30).
Then, the final weights are obtained by windowing with a length-N window w(m):

a(m) = w(m)aqg(m). (A.31)

This method is convenient when it is possible to evaluate the integrals analytically, when
Ay(1) has a simple shape, such as an ideal lowpass filter. For arbitrary shaped A4(¢), the
integrals must be approximated by an inverse DFT. Also, the method requires that A,(1) be

specified over one complete Nyquist interval, —m < < 7.

When it’s not possible to analytically evaluate A(v)), it is necessary to have the array factor
sampled at N points, named DFT frequencies, ¢;,7 =0,1,--- /N — 1:

271
W = ~ (A.32)

The frequency samples A(1);) are related to the array weights by the forward N-point DFT’s
obtained by:

M
AWr) =ag+ Y _ [ame™ +a_pe ™), N =2M+1,0r
o " (A.33)
Z a,, /MDY aimefj(mfl/Z)\I!} ’ N =90
m=1
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The corresponding inverse N-point DFT’s are as follows:

1N—1 ‘
amz—ZA(@/)i)e_me", N=2M+1, M=0,+1,+2,...,+M, or
=0

=

N_1 (A.34)
A()ePm=D% N —2oM, M =1,2,..., M.
0

1
af:l:m:N

There is an alternative definition of the N DFT frequencies v; that is usually preferred in array
processing and maintains the presented equations for the inverse DFT’s:
27(1 — K) N -1

K=—"—" (A.35)

Vi — N 9

As an example, consider the design of a sector beam with edges #; and 5. Thus, the beam
0y + 0,

is centered at 0, = . As 0 ranges over [0y, 6], the wavenumber for an array along the

z-axis, 1 = kdcos 6, ranges over kdcosfy < 1) < kdcos#,. Assuming the alternative definition

for wz

L i kdeosty < 270D pdcost
A(;) = ) 1 CoOSUz > N < kdcost/y,or (A.36)

0, otherwise.
Substituting kd = 27d /), the DFT index i — K becomes:

. . . ... Nd ~ Nd
g1 <i— K < jg, with j; = Tcoseg, Jo = Tcosel. (A.37)

These are the indices ¢ that A(1);) = 1.

The method works well for half-wavelength spacing d = A\/2, because all N DFT frequencies
1; fall within the visible region, which, in this scenario, aligns with the complete Nyquist

interval, defined as —m < ¢ < 7. An example of design is shown in Figure A.1.

This method can be used to any desired A(¢)). Consider one that has a secant-squared gain
pattern, as discussed in Section 2.4.7.

Consider an array of N elements along the z-direction with half-wavelength spacing A/2.
In this scenario, ¢ = kd cosf and the desired array factor, g4(#), is:

K VK

94(0) = |A(w)|” = = [AW)] =

(A.38)

cos? 6 lcos 0|

As the secant pattern is only desired to a maximum angle 6,,.,, the normalized theoretical

array factor is:

€08 Oax
CO8Tmax 40 < 0 < By, OF
Anorm(e) = cos 0 (A39)
n
! if G <0< 2.

As 6 varies over [0, Oy, the wavenumber 1 ranges over [¢max, kd] = [max, 7.
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Sector Beam for N = 21 elements

0
_5
~101
—151
—920 1

_25 4

gain [dB]

_30 T T T T T
0 15 30 45 60 I6) 90
0

Figure A.1: Designed array factor of a sector beam with edges 6; = 20° and 6y = 90° for
N = 21 elements spaced of d = \/2 placed along the z-axis.

AS 08 Opax/ €08 0 = pax /1

wmax

Anorm(w) = ¢ 7
1, if 0 <Y < Ypax.

if Ve < <, or (A.40)

An example of this design is shown in Figure A.2.

An adaptation of this method is to include the gain pattern of one array element, gejem ().
This means that the antenna array will not be considered as omnidirectional. In this case, the
equivalent array factor (not normalized) is:

cos
e if 0 <6 < Omax, OF

A9) = gelenll(e) cos 0 - (A.41)
TN if emax S 0 S o) and
gelem(w) 2

wmax .
A(qﬂ) — M7 if 7/}max < w <, or (A 42>
1 ‘ '
gl—(@’ if 0 < ¢ < Yumaxs

where ¢ = 27wd cos 6.

An example of this design is shown in Figure A.3.
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Secant Gain for N = 21 elements

0.0 - Desired Pattern ;

—— Generated Pattern

—2.51

—5.01

—7.51

gain [dB]

—10.0 1

—12.5 1

—15.01

0 15 30 45 60 75 90
0[]

Figure A.2: Designed array factor of a secant gain with 6.« = 80° for N = 21 elements spaced
of d = \/2 placed along the z-axis.

5 Secant Gain for N = 21 elements

........ Nominal A,4(6#
107 =--- Adapted A4(0
—— Generated A(6)

Generated g(6)A(0)
—— Array element g(6)

—_ —

gain [dB]

0 15 30 45 60 75 90

Figure A.3: Designed array factor of a secant gain with 6, = 80° for N = 21 elements spaced
of d = A\/2 placed along the z-axis.



A.9 — TAYLOR ONE-PARAMETER SOURCE 80

A.9 Taylor One-Parameter Source

This section employs the Kaiser window for designing a narrow beam array, a problem
analogous to the spectral analysis of windowed sinusoids [3] [5] [2].

Taylor’s one-parameter continuous line source has current I(z) flowing along the z-axis and
corresponding radiation pattern F(u) given by the Fourier transform pair [1]:

F(u) = Sin};E;Bi”QB_;“ ) £, I(w) = Io (wBy/1= (20/17) (A.43)

where z is the space region limiting the current, —1/2 < x < [/2, Iy(-) is the modified Bessel

function of first kind and zeroth order, B is a positive parameter that controls the sidelobe
level and u is the normalized wavenumber defined by:

lk, 2mu [
_ = = = Xsm@cos Q. (A.44)

= — < R,
Y 2 l

For u > B, the pattern becomes a sinc-pattern in the variable v/u? — B2, and for large u,
it tends to the pattern of the uniform line source.

This method of design uses array weights equal to the window coefficients that is obtained
from using z,, = md with d = [/(2M) in (A.43). This way, the parameter B or « = 7B
controls the sidelobe level:

a(m) = w(m) = Iy (aW) : (A.45)

where

+1,+£2,....£M, for even array elements, N = 2M, or
_ (A.46)

0,+1,+2,...,£M, for odd array elements, N = 2M + 1.

The continuous line pattern of (A.43),

Flu) sinh (m/ B? — u2) sin (m/u2 — B2) (AAT)

u) = = , .
v B? — u? TvVu? — B?

has a first null at ug = v B? + 1, and, therefore, the first sidelobe will occur for u > ugy. For

this range, it must be used the sinc-form of F'(u) and it is possible to find the peak sidelobe

of sinc(z), 7o = 0.2172. This value corresponds, in db, to Ry = 13.26dB. For R < Ry, w(m)

becomes the rectangular window, and, therefore, B = 0.

The sidelobe level R, is defined as the ratio of pattern at u = 0 to the maximum sidelobe

level rg:
1 sinh(7B)
R, = ———, A.48
To B ( )
and, in dB, R = 20log,,(R,). For R > Ry, it is possible to solve numerically (A.48) and find

the parameter B.



A.10 — MULTIBEAM ARRAY 81

The 3-dB angle is calculated by finding it in u-space, then transforming it to -space and
them to the ¢-space.

The width w is given by the solution of the half-power condition:

P = ylrop - MLUVE D _ k) (449

Then, transforming to the ¢-space:

2mu

(IS N (A.50)

where N is the number of elements in the array.

And, finally, to the ¢-space:

¢3dB
kd sin ¢0 ’

G3aB =
2\/%, for g =0, ¢y = .

Once the B-parameter is determined, the array weights w(m) can be computed from (A.45)

for 0 < ¢g < m,or
(A.51)

and then steered towards an angle ¢ using:

a(xm) = T =1/2%0(£m), for N=2M, m=1,2,...,M, or

‘ (A.52)
a(m) = e 7™ow(m),  for N=2M +1, m=0,%1,+2,...,£M,
with 1y = kd cos ¢y.
To avoid grating lobes, the element spacing must be less then the maximum:
A
dy = ——F———— A.53
"7 1+ |cos ¢y ( )

And, in order for the visible region in 1)-space to cover at least one Nyquist period, the
element spacing d must be in the range:

d
50 <d<d (A.54)

A.10 Multibeam Array

An array has the capability to generate multiple narrow beams directed towards different
angles. Generally, for a odd number of array elements, N = 2M + 1, it is possible to form L

beams towards the angles ¢;,7 = 1,2,..., L by superimposing the steered beams:

L
a(m) = Ae7™w(m),  m=0,£1,42 ... £M, (A.55)
=1
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Beam Design with R = 20 dB

_10_

—151

gain [dB]

_20_

_25 4

w1
60

0 30 90 120 150 180
¢ [l

Figure A.4: Array factor designed with Taylor method. It has N = 21 elements spaced of
d = \/4 placed along the z-axis with sidelobe atennuation of R = 20dB.

where ¢; = kdcos¢;,i = 1,2,...,L and A; are the complex amplitudes that represents the
relative importance of the beams.

For an even number of array elements, N = 2M, the equation becomes:

L
a(tm) =Y A2 ip(km),  m=0,£1,£2,..., £ M. (A.56)

i=1

For both cases, the corresponding array factor will be the superposition:
L
AW) =Y AW (@ =), (A.57)

As an example, consider a beam designed with the Taylor method presented in Section A.9
with V = 21 elements spaced of d = A/4 and R = 20dB. The result is presented in Figure A.4.

Then, consider L = 8 beams each one steered of ¢; 1 = ¢; + 2¢3qs. This way, the patterns
merge with each other. The result is shown in Figure A.5.



A.10 — MULTIBEAM ARRAY 83

Multi Beam Design with 8 lobes

0 30 60 90 120 150 180
¢ [

Figure A.5: Multibeam array designed with L = 8 lobes with steering angles close to each other
about one 3-dB beamwidth.
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Appendix B

Scripts

B.1 Parabolic Reflector Gain

arraytools *
numpy
pandas
matplotlib pyplot as plt
matplotlib use, rc
rc(’text’, usetex=True)
rc(’font’, family=’serif’)
use (’Qt5Agg’)
font_size = 15
plt.rcParams.update ({’font.size’: font_sizel})
pandas.set_option(’expand_frame_repr’, False)
__name__ == ’__main__"’:
f = 8363e6

lamb = cO0 / £

theta = numpy.linspace (0, numpy.pi, 2000)

phi = numpy.full_like(theta, 0)

parabola = Parabola(f=f, D=1 / lamb, eff=0.75, theta=theta, phi=phi,
use_parallel=True)

parabola.calc_gain_pattern_sym()

fig_sym, axes_sym = parabola.plot_gain_pattern_sym()
parabola.calc_gain_pattern ()
fig_comparison, axes_comparison = parabola.plot_gain_pattern_comparison ()

B.2 MicroStrip Design

arraytools *
numpy
pandas
matplotlib pyplot as plt
matplotlib use, rc
rc(’text’, usetex=True)
rc(’font’, family=’serif’)

use (’Qt5Agg’)
plt.rcParams.update({’font.size’: 15})
pandas.set_option(’expand_frame_repr’, False)
pandas.set_option(’display.max_rows’, 500)
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__name__ == ’__main__":

# This method of project is following Balanis Chapter 14.2.C
f = 10e9

lamb = cO0 / £

eps_r = 2.2

h = 0.1588e-2

parameters = {
Ilhll: h’
"eps_r": eps_r,
Ilf": f

}

strip = MicroStrip (**parameters, hfss_path=’hfss_data/E.csv’)

step_theta_hfss = 1

step_phi_hfss =1

theta_hfss = numpy.arange(-180, 180 + step_theta_hfss, step_theta_hfss)
phi_hfss = numpy.arange(-180, 180 + step_phi_hfss, step_phi_hfss)
phi_hfss[phi_hfss < 0] += 360

theta_grid = deg2rad(theta_hfss)

n_theta_hfss = (theta_hfss)

n_phi_hfss = (phi_hfss)

hfss_e_db = pandas.read_csv(’hfss_data/E_db_full_theta.csv’, skiprows=1,
header=None, index_col=0)

hfss_e_tot_db, hfss_e_phi_db, hfss_e_theta_db = parse_hfss_data(hfss_e_db,
phi_hfss)

e_plane_phi = 0
h_plane_phi
y_min = -30

]
©
o

# Electric fields before rotation

e_theta_nominal, e_phi_nominal = strip.e_analytical(theta_grid, deg2rad(
e_plane_phi))
e_tot_nominal = numpy.sqrt (numpy. (e_theta_nominal) ** 2 + numpy. (

e_phi_nominal) *x 2)

h_theta_nominal, h_phi_nominal = strip.e_analytical(theta_grid, deg2rad(
h_plane_phi))

h_tot_nominal = numpy.sqrt(numpy. (h_theta_nominal) ** 2 + numpy. (
h_phi_nominal) #** 2)

fig_size = 3

fig, axes = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True,
figsize=(3 * fig_size, 2 * fig_size))

fig.suptitle (f"Analytical model vs_ HFSS")

axes [0] [0] .set_title(f"E-Plane, ($\phi = 0" \circ$)")

axes [0] [1] .set_title(f"H-Plane,($\phi =90 \circ$)")

axes [0] [0] .set_ylabel (r"$E_\theta, ["\circ]$, [dBI")

axes [1] [0].set_ylabel (r"$E_\phi$, ,[dBI")

axes [2] [0] . set_ylabel (r"$E_{tot}$,[dB]1")

axes [2] [0] .set_xlabel(r"$\theta, , [“\circl$")

axes [2][1].set_xlabel (r"$\theta, ,["\circl$")

axes [0] [0] .plot (theta_hfss, hfss_e_theta_db[e_plane_phil)
axes [1] [0] . plot (theta_hfss, hfss_e_phi_dbl[e_plane_phil)
axes [2] [0] . plot (theta_hfss, hfss_e_tot_db[e_plane_phil)
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axes [0] [0] . plot (theta_hfss, to_db(numpy. (e_theta_nominal), db=20))
axes [1] [0] . plot (theta_hfss, to_db(numpy. (e_phi_nominal), db=20))
axes [2] [0] . plot (theta_hfss, to_db(numpy. (e_tot_nominal), db=20))

-

-

axes [0] [1].plot (theta_hfss, hfss_e_theta_db[h_plane_phi], label="HFSS")
axes [1] [1] .plot (theta_hfss, hfss_e_phi_db[h_plane_phil)

axes [2] [1] . plot (theta_hfss, hfss_e_tot_db[h_plane_phil)

axes [0] [1] . plot (theta_hfss

="Analytical")

axes [1] [1].plot (theta_hfss, to_db(numpy. (h_phi_nominal), db=20))
axes [2] [1] . plot (theta_hfss, to_db(numpy. (h_tot_nominal), db=20))
axes [0] [1].legend ()

-

-

-

-

ax axes:
_ax ax:
ax.grid (True)

ax.set_ylim([y_min, 1])

ax.set_yticks (numpy.arange(y_min, 1, step=6))

ax.set_xticks (numpy.arange(-90, 91, step=30))

_ax.set_x1im ([-90, 90])

plt.subplots_adjust (wspace=0.1, hspace=0.1)

fig.savefig(
f’../parts/AntennaArray/hfss_vs_analytical.pdf’,
transparent=True, bbox_inches=’tight’, pad_inches=0)

filtered_theta_deg = numpy.linspace(0, 180, 181, dtype= )
filtered_theta = deg2rad(filtered_theta_deg)

filtered_phi_deg = numpy.linspace(0, 360, 361, dtype= )

filtered_phi = deg2rad(filtered_phi_deg)

Theta, Phi = numpy.meshgrid(filtered_theta, filtered_phi, indexing=’1ij’)

to_db (numpy . (h_theta_nominal), db=20), label

e_theta_nominal, e_phi_nominal = strip.e_analytical(Theta.flatten(), Phi.

flatten())

e_theta_nominal = numpy. (e_theta_nominal)

e_phi_nominal = numpy. (e_phi_nominal)

e_tot_nominal = numpy.sqrt(numpy. (e_theta_nominal) ** 2 + numpy. (
e_phi_nominal) *#* 2).reshape(Theta.shape)

e_theta_hfss = to_db(numpy. (strip.e_theta[filtered_phi_deg].loc([
filtered_theta_degl) .to_numpy (), db=20)

e_phi_hfss = to_db(numpy. (strip.e_phi[filtered_phi_deg]l.locl
filtered_theta_degl) .to_numpy (), db=20)

e_tot_hfss = to_db(strip.e_tot[filtered_phi_degl.loc[filtered_theta_deg].

to_numpy (), db=20)

fig_fields, axes_fields = plt.subplots(nrows=3, ncols=2, sharex=True,
sharey=True, figsize=(10, 12),
subplot_kw={’projection’: ’polar’

plot_polar_contour_mag_db_in_axis(fig_fields, axes_fields [0][0],
filtered_theta, filtered_phi, e_theta_hfss,
theta_max_deg=90, theta_step=30)
plot_polar_contour_mag_db_in_axis(fig_fields, axes_fields[0][1], Theta,

B

b

Phi

to_db(e_theta_nominal.reshape(Theta.shape

), db=20),
theta_max_deg=90, theta_step=30)
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plot_polar_contour_mag_db_in_axis(fig_fields, axes_fields[1][0],
filtered_theta, filtered_phi, e_phi_hfss,
theta_max_deg=90, theta_step=30)
plot_polar_contour_mag_db_in_axis(fig_fields, axes_fields[1][1], Theta, Phi
to_db(e_phi_nominal.reshape(Theta.shape),
db=20) ,
theta_max_deg=90, theta_step=30)

plot_polar_contour_mag_db_in_axis(fig_fields, axes_fields[2][0],
filtered_theta, filtered_phi, e_tot_hfss,
theta_max_deg=90, theta_step=30)
plot_polar_contour_mag_db_in_axis(fig_fields, axes_fields[2][1], Theta, Phi
, to_db(e_tot_nominal, db=20),
theta_max_deg=90, theta_step=30)
axes_fields [0] [0].set_title ("HFSS")
axes_fields [0][1].set_title("Analytical")
axes_fields [0][0].set_ylabel("$|E_\\thetal|$")
axes_fields [1][0].set_ylabel ("$|E_\\phil$")
axes_fields [2] [0].set_ylabel ("$|E_{tot}|$")
axes_fields [0][1].set_ylabel("$|E_\\thetal$")
axes_fields [1][1].set_ylabel ("$|E_\\phil$")
axes_fields [2][1].set_ylabel ("$|E_{tot}|$")
plt.subplots_adjust (wspace=0.2, hspace=0.45)
fig_fields.set_tight_layout (True)
fig_fields.savefig(f’../parts/Antenna Array/hfss_vs_analytical_polar.pdf’,
transparent=True, bbox_inches=’tight’, pad_inches=0)

B.3 MicroStrip Analytical Rotation

arraytools *

numpy

pandas
matplotlib pyplot as plt
matplotlib use, rc

rc(’text’, usetex=True)

rc(’font’, family=’serif’)

use (’Qt5Agg’)

plt.rcParams.update ({’font.size’: 15})
pandas.set_option(’expand_frame_repr’, False)
pandas.set_option(’display.max_rows’, 500)

__name__ == ’__main__":
# This method of project is following Balanis Chapter 14.2.C
f = 10e9

lamb = c0 / £
eps_r = 2.2
h = 0.1588e-2

parameters = {
llh": h,
"eps_r": eps_r,
llf”: f

}

strip = MicroStrip (**parameters, hfss_path=’hfss_data/E.csv’)
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beta = deg2rad (45)

step_theta_hfss = 1

step_phi_hfss =1

theta_hfss = numpy.arange(-180, 180 + step_theta_hfss, step_theta_hfss)
phi_hfss = numpy.arange(-180, 180 + step_phi_hfss, step_phi_hfss)
phi_hfss[phi_hfss < 0] += 360

theta_grid = deg2rad(theta_hfss)

n_theta_hfss = (theta_hfss)

n_phi_hfss = (phi_hfss)

filtered_theta_deg = numpy.linspace (0, 180, 181, dtype= )
filtered_theta = deg2rad(filtered_theta_deg)
filtered_phi_deg = numpy.linspace(0, 360, 361, dtype= )

filtered_phi = deg2rad(filtered_phi_deg)
Theta, Phi = numpy.meshgrid(filtered_theta, filtered_phi, indexing=’ij’)

hfss_e_db_steered = pandas.read_csv(’hfss_data/E_db_beta_45_full_theta.csv’
, skiprows=1, header=None, index_co0l=0)

hfss_e_tot_db_steered, hfss_e_phi_db_steered, hfss_e_theta_db_steered =
parse_hfss_data(hfss_e_db_steered, phi_hfss)

e_plane_phi = 0
h_plane_phi 90
y_min = -30

# Electric fields after rotation

e_theta_steered, e_phi_steered = strip.e_rotated(Theta.flatten(), Phi.
flatten(), 0, -beta, 0)

# e_theta_steered, e_phi_steered = general_rotated_fields_func(Theta.
flatten(), Phi.flatten(), 0, -beta, 0)

e_tot_steered = numpy.sqrt (numpy. (e_theta_steered) ** 2 + numpy. (
e_phi_steered) **x 2)
max_rotated = numpy. (e_tot_steered)

e_theta_steered, e_phi_steered = strip.e_rotated(theta_grid, numpy.
full _like(theta_grid, deg2rad(e_plane_phi)), 0, -beta, 0)

e_tot_steered = numpy.sqrt(numpy. (e_theta_steered) ** 2 + numpy. (
e_phi_steered) **x 2)

e_theta_steered = e_theta_steered / max_rotated

e_phi_steered = e_phi_steered / max_rotated

e_tot_steered e_tot_steered / max_rotated

h_steered = strip.e_rotated(theta_grid, numpy.full_like(theta_grid, deg2rad
(h_plane_phi)), 0, -beta, 0)

h_theta_steered = h_steered[0]

h_phi_steered = h_steered[1]

h_tot_steered = numpy.sqrt(numpy. (h_theta_steered) ** 2 + numpy. (
h_phi_steered) #** 2)

h_theta_steered = h_theta_steered / max_rotated

h_phi_steered = h_phi_steered / max_rotated

h_tot_steered = h_tot_steered / max_rotated

fig_size = 3

fig, axes = plt.subplots(nrows=3, ncols=2, sharey=True, sharex=’col’,
figsize=(3 *x fig_size, 2 * fig_size))

axes [0] [0] .set_title(f"E-Plane,, ($\phi = 0" \circ$)")

axes [0] [1] .set_title(f"H-Plane,,($\phi =, 90" \circ$)")
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fig.suptitle(f"Analytical_ model_ vs_ HFSS, -, Steered_ $\\beta = ,{rad2deg(beta)

:0.0fF \circ$™")
axes [0] [0].
axes [0] [1].
axes [0] [0].
axes [1] [0].
axes [2] [0].
axes [2] [0].
axes [2] [1].

axes [0] [0]
axes [1] [0]
axes [2] [0]
axes [0] [0]
axes [1] [0]
axes [2] [0]

.plot (theta_hfss,
.plot (theta_hfss
.plot (theta_hfss
.plot(theta_hfss
.plot(theta_hfss
.plot (theta_hfss,

-

-

-

-

axes [0] [1]
HFSS")
axes [1][1]

.plot (theta_hfss

-

.plot (theta_hfss

axes [2] [1] . plot (theta_hfss,

axes [0] [1] . plot (theta_hfss
="Analytical")

axes [1] [1] . plot (theta_hfss

axes [2] [1] .plot (theta_hfss

axes [0][1].1legend O)

-

-

-

-

ax axes:

ax

ax.

ax.

ax.

ax

ax:
grid (True)

set_ylim([y_min, 1])
.set_x1im([-90, 901)
ax.

ax axes[:, 0]:
ax.
ax.

step=30))
plt.subplots_adjust (wspace=0.1,

fig.savefig(

set_yticks (numpy.arange(y_min, 1,
set_xticks (numpy.arange (-90,

set_x1im ([-90 + rad2deg(beta),
set_xticks (numpy.arange (-90 + rad2deg(beta),

set_title(f"E-Plane, ($\phi =,0"\circ$)")
set_title (f"H-Plane  ($\phi =,90"\circ$)")
set_ylabel (r"$E_\theta,["\circl$,[dB]1")
set_ylabel (r"$E_\phi$ [dBI")

set_ylabel (r"$E_{tot}$,[dBI")
set_xlabel(r"$\theta,[“\circl$")
set_xlabel(r"$\theta,  ["\circl$")

hfss_e_theta_db_steered[e_plane_phil)
hfss_e_phi_db_steered[e_plane_phi])
hfss_e_tot_db_steered[e_plane_phi])

to_db (numpy. (e_theta_steered), db=20))

to_db (numpy . (e_phi_steered), db=20))

to_db (numpy . (e_tot_steered), db=20))
hfss_e_theta_db_steered[h_plane_phi], label="
hfss_e_phi_db_steered[h_plane_phi])
hfss_e_tot_db_steered[h_plane_phi])

to_db (numpy . (h_theta_steered), db=20), label
to_db (numpy . (h_phi_steered), db=20))

to_db (numpy. (h_tot_steered), db=20))

step=6))
91, step=30))

90 + rad2deg(beta)l)
91 + rad2deg(beta),

hspace=0.1)

f’../parts/Antenna Array/hfss_vs_analytical_steered.pdf’,

transparent=True,

bbox_inches=’tight’,

pad_inches=0)

B.4 MicroStrip HFSS Analytically Steered

arraytools *
numpy
pandas
matplotlib pyplot as plt
matplotlib use, rc
rc(’text’, usetex=True)

rc(’font’, family=’serif’)

use (’Qt5Agg’)

plt.rcParams.update ({’font.size’: 15})
pandas.set_option(’expand_frame_repr’,

False)
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pandas.set_option(’display.max_rows’, 500)
__name__ == ’__main__":
# This method of project is following Balanis Chapter 14.2.C
f = 10e9

lamb = c0 / £
eps_r = 2.2
h = 0.1588e-2

parameters = {
Ilh": h
"eps_r": eps_r,
llf": f

}

strip = MicroStrip (**parameters, hfss_path=’hfss_data/E.csv’)
beta = deg2rad (45)

step_theta_hfss = 1

step_phi_hfss =1

theta_hfss = numpy.arange(-180, 180 + step_theta_hfss, step_theta_hfss)
phi_hfss = numpy.arange(-180, 180 + step_phi_hfss, step_phi_hfss)
phi_hfss[phi_hfss < 0] += 360

theta_grid = deg2rad(theta_hfss)

filtered_theta_deg = numpy.linspace(0, 180, 181, dtype= )
filtered_theta = deg2rad(filtered_theta_deg)
filtered_phi_deg = numpy.linspace(0, 360, 361, dtype= )

filtered_phi = deg2rad(filtered_phi_deg)
Theta, Phi = numpy.meshgrid(filtered_theta, filtered_phi, indexing=’1ij’)

hfss_e_db_steered = pandas.read_csv(’hfss_data/E_db_beta_45_full_theta.csv’

, skiprows=1, header=None, index_col=0)
hfss_e_tot_db_steered, hfss_e_phi_db_steered, hfss_e_theta_db_steered =
parse_hfss_data(hfss_e_db_steered, phi_hfss)

e_plane_phi = 0
h_plane_phi 90
y_min = -30

e_theta_steered_hfss, e_phi_steered_hfss = strip.e_rotated(theta_grid,
numpy.full_like(theta_grid, deg2rad(e_plane_phi)),
0, -beta, 0, hfss=True)

e_tot_steered_hfss = numpy.sqrt(numpy. (e_theta_steered_hfss)**2 + numpy.
(e_phi_steered_hfss) **2)

e_theta_steered_hfss = e_theta_steered_hfss

e_phi_steered_hfss = e_phi_steered_hfss

e_tot_steered_hfss = e_tot_steered_hfss

h_theta_steered_hfss, h_phi_steered_hfss = strip.e_rotated(theta_grid,
numpy.full_like(theta_grid, deg2rad(h_plane_phi)),
0, -beta, 0, hfss=True)

h_tot_steered_hfss = numpy.sqrt (numpy. (h_theta_steered_hfss)**2 + numpy.

(h_phi_steered_hfss) *x*2)
h_theta_steered_hfss = h_theta_steered_hfss
h_phi_steered_hfss = h_phi_steered_hfss
h_tot_steered_hfss = h_tot_steered_hfss

# Using field from hfss
fig_size = 3
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fig, axes = plt.subplots(nrows=3, ncols=2, sharey=True, sharex=’col’,
figsize=(3*xfig_size, 2xfig_size))

axes [0] [0] .set_title(f"E-Plane  ($\phi =,0"\circ$)")

axes [0] [1] .set_title(f"H-Plane,($\phi = 90" \circ$)")

fig.suptitle (f"HFSS Analytically Steered, vs HFSS_ Steered, -, ,$\\beta, = {
rad2deg(beta) :0.0f} \circ$")

axes [0] [0] .set_title(f"E-Plane, ($\phi =0 \circ$)")

axes [0] [1] .set_title(f"H-Plane,($\phi =,90"\circ$)")

axes [0] [0].set_ylabel (r"$E_\theta, [ \circl$,[dB]1")

axes [1][0].set_ylabel (r"$E_\phi$ [dB]")

axes [2] [0] .set_ylabel (r"$E_{tot}$,[dBI")

axes [2] [0] .set_xlabel (r"$\theta, ,["\circl$")

axes [2] [1].set_xlabel (r"$\theta, ,["\circl$")

-

axes [0] [0] . plot (theta_hfss
theta_hfss])

axes [1] [0] . plot (theta_hfss
theta_hfss])

axes [2] [0] . plot (theta_hfss
theta_hfss])

axes [0] [0] . plot (theta_hfss, to_db(numpy. (e_theta_steered_hfss), db=20),
’-.7, markersize=10)

hfss_e_theta_db_steered[e_plane_phil].locl[

hfss_e_phi_db_steered[e_plane_phi].loc[

-

hfss_e_tot_db_steered[e_plane_phi].loc[

-

axes [1] [0] . plot (theta_hfss, to_db(numpy. (e_phi_steered_hfss), db=20), °’
-.’, markersize=10)
axes [2] [0] . plot (theta_hfss, to_db(numpy. (e_tot_steered_hfss), db=20),

-.’, markersize=10)

axes [0] [1] . plot (theta_hfss, hfss_e_theta_db_steered[h_plane_phil].locl[
theta_hfss], label="HFSS")

axes [1] [1] .plot (theta_hfss, hfss_e_phi_db_steered[h_plane_phil].locl
theta_hfss])

axes [2] [1] .plot (theta_hfss, hfss_e_tot_db_steered[h_plane_phil.loc([
theta_hfss])

axes [0] [1] .plot (theta_hfss, to_db(numpy. (h_theta_steered_hfss), db=20),
>-.7, label="Analytical", markersize=10)

axes [1][1].plot (theta_hfss, to_db(numpy. (h_phi_steered_hfss), db=20), °’
-.’, markersize=10)

axes [2] [1] . plot (theta_hfss, to_db(numpy. (h_tot_steered_hfss), db=20), ~’

-.’, markersize=10)
axes [0] [1].1legend ()

ax axes:
_ax ax:
ax.grid (True)
ax.set_ylim([y_min, 11)
ax.set_yticks (numpy.arange(y_min, 1, step=6))
ax.set_x1im([-90, 901)
_ax.set_xticks (numpy.arange(-90, 91, step=30))
ax axes[:, 0]:

ax.set_x1im([-90 + rad2deg(beta), 90 + rad2deg(beta)l])
ax.set_xticks (numpy.arange (-90 + rad2deg(beta), 91 + rad2deg(beta),
step=30))
plt.subplots_adjust (wspace=0.1, hspace=0.1)
fig.savefig(
f’../parts/Theoretical Foundation/hfss_analytically_rotated_vs_hfss.pdf

)
>

transparent=True, bbox_inches=’tight’, pad_inches=0)
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B.

5 Link Budget Example

rc(’t
rc(’f
use (’
# use
plt.r
panda

arraytools *

numpy

pandas
matplotlib pyplot as plt
matplotlib use, rc
datetime datetime
shapely.geometry Point

multiprocessing

ext’, usetex=True)

ont’, family=’serif’)

Qt5Agg’)

(’TkAgg’)

cParams .update ({’font.size’: 18})
s.set_option(’expand_frame_repr’, False)

name__ == "’ main 7

num_cores = multiprocessing.cpu_count ()

S

n
n
b

f
1
s
v

s
#
e

1
s
s

hapefile Path(__file__) .parent / "input/brazil_Brazil_Country_Boundary.
shp"
_lon = 40
_lat = 40
razil_points, main_land = generate_grid_from_shapefile(shapefile, n_lat=
n_lat, n_lon=n_lon)
= 2244e6
amb = c0 / £
tart = datetime.now ()
cubl = Satellite(eirp=32 - 30, start_time=’2023-06-01,00:00:00.000",
end_time=’2023-07-01,00:00:00.000",
N=5000000, 1linel=’1,,56215U,23054AP,23188.40114352
.00016899,,00000+0,,67546-3,0,,9998",
line2=’2,,56215,,97.4015,,83.1853,0008227,292.9660,,
67.0710,15.25154711,,13184°, f=f)

ave_pickle(vcubl, °’./input/satellite_vcubl.pkl’)
vcubl = read_pickle(’./input/satellite_vcubl.pkl’)
nd = datetime.now ()
(f"Elapsed {(end,-ystart).total_seconds():5.2f} seconds in satellite")
ong_min, lat_min, long_max, lat_max = main_land.bounds
tation_lon, station_lat = main_land.centroid.coords [0]
tart = datetime.now ()

ground_parabola = Parabola(f=f, D=2.6 / lamb, eff=0.67)
Eb_NO_min = 7.5

station_parameters = {’f’: f, ’eff’: 0.67, ’temp’: 312, ’bandwidth’: 6e6}
link_parameters = {’satellite’: vcubl, ’R_spec’: 10e6, ’Eb_NO_min’:
Eb_NO_min, ’calc_transmitted_data’: True, ’G_other’:-1.6}
ground_station = Station(lon=station_lon, lat=station_lat,
e_theta_e_phi_function=ground_parabola.get_fields_sym, *x*
station_parameters,
G_max=ground_parabola.G_max)
link_cope = LinkBudget(station=ground_station, **link_parameters)
end = datetime.now ()
(f"Elapsed{(end - start) .total_seconds () :5.2f} seconds")
start = datetime.now()

e

nd = datetime.now ()
(f"Elapsed {(end -, start) .total_seconds () :5.2f} seconds in link
calculation")
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longs = numpy.unique (brazil_points[’lon’].values)
lats = numpy.unique(brazil_points[’lat’].values)
fig, axes = link_cope.plot_contour_eb_n0O(save=False, path="../parts/Link,

Budget/contour_eb_nO.png")
axes.plot (*main_land.exterior.coords.xy, color=’black’)
axes.set_xlim([long_min, long_max])
axes.set_ylim([lat_min, lat_max])
axes.plot(station_lon, station_lat, ’x’, color=’black’)
axes.set_title(’Link_ Budget Example’)
axes.set_aspect(’equal’)
plt.show ()

B.6 Brazil Grid

arraytools *

use (’Qt5Agg’)
pandas.set_option(’expand_frame_repr’, False)
font_size = 15
plt.rcParams.update ({’font.size’: font_sizel})
rc(’text’, usetex=True)
rc(’font’, family=’serif’)

__name__ == ’__main__":

shapefile = Path(__file__) .parent / "input/brazil_Brazil_Country_Boundary.

shp"
n_lon = 50
n_lat = 50

# df , main_land = generate_grid_from_shapefile(shapefile, n_lat=n_lat,
n_lon=n_lon)

main_land = brazil_mainland ()

contains_func = main_land.contains

long_min, lat_min, long_max, lat_max = main_land.bounds

longs, lats = numpy.meshgrid(numpy.linspace(long_min, long_max, n_lon),

numpy.linspace(lat_min, lat_max, n_lat), indexing=’ij’)

df = pandas.DataFrame ({
’lon’: longs.flatten(),
’lat’: lats.flatten(),

>coord’: ( (longs.flatten(), lats.flatten()))
b
df [’point’] = df[’coord’]. (shapely.geometry.Point)
df [’inside’] = df[’point’]. (contains_func)

# Plotting result

fig, axes = plt.subplots ()

lon df ["df [’inside’]][’lon’].values

lat df ["df [’inside’]][’1lat’].values

axes.plot(lon, lat, ’o’, color=’red’, markersize=1)
lon = df[df[’inside’]][’lon’].values

lat = df [df[’inside’]][’lat’].values

axes.plot(lon, lat, ’o’, color=’green’, markersize=1)
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axes.plot (*main_land.exterior.coords.xy, color=’black’)
axes.set_aspect(’equal’)
axes.set_xlabel (’Degrees Longitude’)
axes.set_ylabel (’Degrees Latitude’)
axes.set_title(f’Brazil {n_lon}tx{n_lat} grid’)
fig.set_size_inches (8, 6)

axes.set_xlim([long_min, long_max])
axes.set_ylim([lat_min, lat_max])

fig.tight_layout ()

plt.show ()

# fig.savefig(f’./graphs/brazil_points_{n_lon}x{n_lat}_grid.png’,
transparent=True, bbox_inches=’tight’, pad_inches=0, dpi=300)
df .to_pickle(’./input/brazil_points_sacc.zip’)

B.7 Creating Database and A matrix

shapely.prepared prep
arraytools *
numpy
pandas
matplotlib pyplot as plt
matplotlib use
shapely
shapely.geometry Point
multiprocessing
alive_progress alive_bar

use (’Qt5Agg’)
plt.rcParams.update ({’font.size’: 20})

pandas.set_option(’expand_frame_repr’, False)
__name__ == ’__main__":
num_cores = multiprocessing.cpu_count ()
f = 22446

lamb = ¢c0 / f
# sat = Satellite(eirp=32 - 30, start_time=’2023-07-01 00:00:00.000°,
end_time=’2023-07-31 23:59:59.999° ,

# N=5000000, 1linel=’1 562150 23054AP 23188.40114352
.00016899 00000+0 67546-3 0 9998’ ,

# line2=’2 56215 97.4015 83.1853 0008227 292.9660
67.0710 15.25154711 13184°)

# save_pickle(sat, ’./input/satellite_vcubl.pkl’)

sat = read_pickle(’./input/satellite_vcubl.pkl?’)

brazil_points = pandas.read_pickle(’input/brazil_points_vcubl.zip’)

brazil_points_inside = brazil_points[brazil_points.inside]

main_land = brazil_mainland ()

main_land_contains = main_land.contains

long_min, lat_min, long_max, lat_max = main_land.bounds

longs = numpy.unique (brazil_points[’lon’].values)

lats = numpy.unique(brazil_points[’lat’].values)

brazil_points[’transmitted_data’] = 0

Eb_NO_min = 7.5

a = numpy.zeros (shape=( (brazil_points.index), (lats), (longs)))

with alive_bar ( (brazil_points.index), force_tty=True) as bar:

index, row brazil_points.iterrows():
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bar ()
a_matrix = numpy.zeros (shape=( (lats), (longs)))
row.inside:
# Calculating antenna
ground_parabola = Parabola(f=f, D=2.6 / lamb)
station = Station(f=f, lat=row.lat, lon=row.lon,
e_theta_e_phi_function=ground_parabola.get_fields_sym,
bandwidth=6e6, eff=0.5, temp=312, G_max=
ground_parabola.G_max)
link = LinkBudget(satellite=sat, station=station, R_spec=10e6,
Eb_NO_min=Eb_NO_min,
calc_transmitted_data=True, G_other=-1.6)
link_data = link.datal[[’lon_WGS84_deg’, ’lat_WGS84_deg’, ’Eb_NO
>1]1.copy O)
link_data.rename (columns=A{
>lon_WGS84_deg’: ’lon’,
’lat_WGS84_deg’: ’lat’
}, inplace=True)
coords = ( (link_datal[’lon’].values, link_datal[’lat’].
values))
points = [Point(coord) coord coords]
link_data[’radius’] = shapely.distance(points, row.point)
link_data.to_pickle(f"database/vcubl/antennas/
link_data_south_america/{index}.zip")
brazil_points.loc[index, ’transmitted_data’] = link.total_data
(0]
antenna = link.get_shapely_contour ()
prep_shape = prep(antenna)
inside_mask = numpy.array([prep_shape.contains (point) point
brazil_points.point.values])
inside_points = brazil_points[inside_mask][’point’].values
point inside_points:
long_idx = numpy.where(longs == point.x) [0][0]
lat_idx = numpy.where(lats == point.y) [0][0]
a_matrix[lat_idx, long_idx] = 1
IndexError:

pandas.DataFrame () .to_pickle (f"database/vcubl/antennas/
link_data_south_america/{index}.zip")
alindex] = a_matrix
brazil_points.to_pickle(’input/
vcubl_brazil_points_with_transmission_south_america.zip?’)
save_pickle(a, f’./input/a_matrix_{int (10*Eb_NO_min) :03d}
_binary_vcubl_south_america.pkl?’)

index_inside = brazil_points_inside.index [300]

fig, axis = plot_contour_eb_nO_from_matrix(al[index_inside], main_land,
longs, lats)

plt.show ()

B.8 Convex Optimization

arraytools *
numpy
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pandas
matplotlib pyplot as plt
matplotlib use, rc

CVXpPy as cp

use (’Qt5Agg’)

rc(’text’, usetex=True)
rc(’font’, family=’serif’)
plt.rcParams.update({’font.size’: 15})
pandas.set_option(’expand_frame_repr’, False)
__name__ == ’__main__":
brazil_points = pandas.read_pickle(’input/brazil_points_vcubl.zip’)
brazil_points_inside = brazil_points[brazil_points.inside].copy()
main_land = brazil_mainland ()
long_min, lat_min, long_max, lat_max = main_land.bounds
longs = numpy.unique (brazil_points[’lon’].values)
lats = numpy.unique(brazil_points[’lat’].values)
longs_inside = numpy.unique(brazil_points[brazil_points.inside][’lon’].
values)
lats_inside = numpy.unique(brazil_points[brazil_points.inside][’lat’].
values)

satellite = read_pickle(’./input/satellite_vcubl.pkl’)

Eb_NO_min = 7.5
warm_start = False
Eb_NO_min [7.5]:

a = read_pickle(f’./input/a_matrix_{int (10,*,Eb_NO_min) :03d}
_binary_vcubl.pkl’)

N = (a)

M, P = al[0].shape

A = numpy.zeros((N, M * P))

f_d = numpy.zeros(shape=(M, P))
_index, _row brazil_points[brazil_points.inside].iterrows():
coord = _row.coord

long_idx = numpy.searchsorted(longs, coord[0], side="left")
lat_idx = numpy.searchsorted(lats, coord[1], side="left")
f_d[lat_idx, long_idx] = 1

IndexError:

f_d = f_d.flatten ()

inside_mask = f_d == 1
inside_total = (f_d[inside_mask])
k (N):
Alk, :]1 = alk].flatten()
epsilon [20, 10, 9, 8, 71:
(o)

(f"Starting, for Eb_NO_ =, ,{Eb_NO_min:02f} and_ epsilon,= ,{epsilon

:02£3M")

# x = cp.Variable(N, integer=True)
warm_start:
x0 = numpy.load(

f’arrays/vcubl/xbest_cvxpy_boolean_{int (10,* Eb_NO_min) :03d

}_eps_{int (10,*,(epsilon+1)) :03d}.npy’)
x = cp.Variable(N, boolean=True, value=x0)

X cp.Variable (N, boolean=True)
objective = cp.Minimize (cp.norm(x, 1))

constraints = [cp.norm2((x @ A) - f_d) <= epsilon]
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prob = cp.Problem(objective, constraints)
(prob.solve(verbose=True, warm_start=warm_start, solver=’SCIP’

scip_params={’limits/time’: 3600%41}))
delta = le-2
threshold = 0.9

_fig, _axes = plt.subplots()
_axes.plot(x.value, ’.7)
_axes.axhline(threshold, color=’red’, label=’threshold’)
_fig.set_size_inches (8, 6)
_fig.savefig(
f’graphs/vcubl/chosen_antennas_Eb_NO_{int (10,*,Eb_NO_min) :03d}
_eps_{int (10, % epsilon) :03d} _cvxpy.pdf’,
transparent=True, bbox_inches=’tight’)
plt.close(_fig)
numpy . save (
f’arrays/vcubl/xbest_cvxpy_boolean_{int (10,*,Eb_NO_min) :03d}
_eps_{int (10, % epsilon) :03d}.npy’,
x.value)
_x = x.value.copy()
_x[_x <= threshold] = 0
_x[_x > threshold] = 1

fig, axes = plot_contour_eb_nO_from_matrix((_x @ A).reshape(M, P),
main_land, longs, lats, Eb_NO_min)
index, row brazil_points[_x == 1].iterrows():
axes.plot(row.lon, row.lat, ’x’, color=’black’)

fig.savefig(
f’graphs/vcubl/coverage_Eb_NO_{int (10,* Eb_NO_min) :03d} _eps_{
int (10,*,epsilon) : 03d} _cvxpy.pdf’,
transparent=True, bbox_inches=’tight’)
plt.show ()

B.9 Sequential Least Squares

arraytools *
numpy
pandas
matplotlib use, rc
shapely.geometry Point
matplotlib.pyplot as plt
shapely.geometry LineString, LinearRing, Polygon
shapely.plotting plot_line, plot_points, plot_polygon
figures SIZE, BLACK, BLUE, GRAY, YELLOW, RED, set_limits
shapely.ops unary_union, nearest_points
scipy.optimize minimize
shapely.prepared prep
itertools combinations
rc(’text’, usetex=True)
rc(’font’, family=’serif’)
use (’Qt5Agg’)
font_size = 13
plt.rcParams.update ({’font.size’: font_sizel})

pandas.set_option(’expand_frame_repr’, False)
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combine_antennas (_antennas, _radius):
unary_union ([Point (_ant [0], _ant[1]). (_radius) _ant
_antennas])

combine_antenna_xy(_x, _y, _radius):
unary_union ([Point (point [0], point[1]). (radius) point
( (_x.value, _y.value))])

minimize_antennas (x0, region_boundary, radius, desired_coverage=0.99):
N = (x0)
x0 = x0.flatten ()

brazil_area = region_boundary.area

region_prep = prep(region_boundary)

long_min, lat_min, long_max, lat_max = region_boundary.bounds
best_coverage_area = N * numpy.pi * radius ** 2
max_iterations = 10000

func_to_minimize(x):

x = x.reshape(-1, 2)

coverage = combine_antennas(x, radius)
(best_coverage_area - coverage.area)

constraint_function(x):
X = x.reshape(-1, 2)
coverage = combine_antennas(x, radius)
region_boundary.intersection(coverage) .area / brazil_area -
desired_coverage

inside_brasil (x):
sigma (x):
1/ (1 + numpy.exp(-x))
x = x.reshape(-1, 2)
violation_count = 0
_X X:
region_prep.contains (Point (_x)):

violation_count += 1

sigma(violation_count) - 0.5
constraints = [
{
’type’: ’ineq’,
’fun’: constraint_function
},
{
’type’: ’eq’,
’fun’: inside_brasil
}
constraints = [
{
’type’: ’ineq’,
’fun’: constraint_function
}]

bounds = N * [[long_min, long_max], [lat_min, lat_max]]
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res = minimize (func_to_minimize, x0, method=’SLSQP’, constraints=
constraints, bounds=bounds,
options={’maxiter’: max_iterations,

’ftol’: 5e-3,
’eps’: le-5})
("Final constraint:_ ", constraint_function(res.x))

res

__name__ == ’__main__":

main_land = brazil_mainland ()

brazil_area = main_land.area

main_land_contains = prep(main_land).contains

brazil_points = pandas.read_pickle(’input/brazil_points.zip?’)
brazil_points_inside = brazil_points[brazil_points.inside]
longs = numpy.unique(brazil_points[’lon’].values)

lats = numpy.unique(brazil_points[’lat’].values)

longs_inside = numpy.unique(brazil_points_inside[’lon’].values)
lats_inside = numpy.unique(brazil_points_inside[’lat’].values)
points_x = main_land.exterior.coords.xy[0]

points_y = main_land.exterior.coords.xy[1]

long_min, lat_min, long_max, lat_max = main_land.bounds

threshold 0.2
Eb_NO_min = 10
epsilon = 11

all_results = []
Eb_NO_min [7.5]:
epsilon [8]:

x0 = numpy.load(f’arrays/vcubl/xbest_cvxpy_boolean_{int (10%
Eb_NO_min) :03d} _eps_{int (10*xepsilon) :03d}.npy’)

x1 = x0.copy ()

x1[x1 <= threshold] = 0

x1[x1 > threshold] = 1

D1 = (numpy .where(x1l == 1) [0]) # number of active antennas

index = numpy.where(xl == 1) [0][0]

link_data = pandas.read_pickle(f’database/vcubl/antennas/link_data
/{index}.zip’)

radius = link_datal[link_data[’Eb_NO’] > Eb_NO_min].sort_values(’
Eb_NO’).iloc [0].radius

x1 = brazil_points.loc[numpy.where(xl == 1)]J[[’lon’, ’lat’]].values
.copy O)

possible_antennas = []
comb combinations (x1, 2):

ant = (comb[0] + comb[1])/2
“"main_land_contains (Point (ant)):

near = nearest_points(main_land, Point(ant)) [0]
ant = numpy.array([near.coords.xy[0][0], near.coords.xy
(1100111
possible_antennas.append (numpy.vstack ((xl.copy (), ant)))
cov = 0
best = None
ant possible_antennas:
_cov = combine_antennas (ant, radius)
_cov = main_land.intersection(_cov).area

_CoVv > cov:
cov = _cCov
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131 best = ant
132 x2 = best.copy (O
133 numpy .save (f’arrays/vcubl/x0_sqlq_{int (10*Eb_NO_min) :03d}_{D1+1:024d
}_antennas.npy’, x2)
134
135 initial_values = [x1, x2]
136 # Defining complex optimization problem
137
138 res = [minimize_antennas(initial_value, main_land, 0.95%radius)
initial_value initial_values]
139 (res)
140
141 fig_full, axes_full = plt.subplots(ncols=2, figsize=(8, 4), sharey=
True)
142 fig_counter = 0
143 ax axes_full:
144 ax.tick_params (left=False, right=False, labelleft=False,
labelbottom=False, bottom=False)
145 ax.set_aspect (’equal’)
146 plt.subplots_adjust (wspace=0, hspace=0)
147 r, x0 (res, initial_values):
148 _x = x0.reshape(-1, 2)
149 D = (_x)
150 filled_polygon = combine_antennas(_x, radius)
151 initial_coverage = main_land.intersection(filled_polygon).area
/ brazil_area
152 fig, axes = plt.subplots ()
153 axes.plot (points_x, points_y, color=’black’)
154 axes.plot(_x[:, 0], _x[:, 1], ’+’, color=’black’)
155 axes.set_title(f’Coverage of {initial_coverage *,100:3.2f}\%y
with,,{D}_ antennas.’)
156 antenna _X:
157 plot_polygon(Point (antenna[0], antennal[1]). (radius),
ax=axes, add_points=False, color=BLUE)
158 # plot_polygon(filled_polygon, ax=axes, add_points=False, color
=BLUE)
159 diff = main_land.difference(filled_polygon)
160 .
161 (diff, Polygon):
162 plot_polygon(diff, ax=axes, add_points=False, color=RED
)
163 .
164 pol diff.geoms:
165 plot_polygon(pol, ax=axes, add_points=False, color=
RED)
166 IndexError:
167
168 axes.set_xlabel (’Degrees Longitude’)
169 axes.set_ylabel (’Degrees Latitude’)
170 axes.set_xlim([long_min, long_max])
171 axes.set_ylim([lat_min, lat_max])
172 plt.show ()
173 fig.savefig(
174 f>final_results/vcubl/coverage_Eb_NO_{int (10*Eb_NO_min) :03d
}_eps_{int (10*epsilon) :03d} _minimalist_{D}
_antennas_boolean.pdf’,
175 transparent=True, bbox_inches=’tight’)
176 plt.close(fig)
177
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178 X = r.x
179 x = x.reshape(-1, 2)

180 D = (x)

181 filled_polygon = combine_antennas (x, radius)

182 coverage = main_land.intersection(filled_polygon).area /

brazil_area
183

184 fig, axes = plt.subplots()
185 axes.plot (points_x, points_y, color=’black’)
186 axes.plot(x[:, 0], x[:, 1], ’+’, color=’black’)
187 axes.set_aspect(’equal’)
188 axes.set_title(f’Coverage of {coverage *,100:3.2f}\% with {D},
antennas.’)
189 axes_full[fig_counter].plot(points_x, points_y, color=’black’)
190 axes_full[fig_counter].plot(x[:, 0], x[:, 1], ’+’, color=’black
?)
191 axes_full[fig_counter].set_aspect(’equal’)
192 axes_full[fig_counter].set_title(f’D,=,{D}_ antennas’)
193 antenna X:
194 plot_polygon(Point (antenna[0], antennal[1]). (radius),
ax=axes, add_points=False, color=BLUE)
195 plot_polygon(Point (antenna[0], antennal[1]). (radius),
ax=axes_full[fig_counter], add_points=False, color=BLUE
)
196 # plot_polygon(filled_polygon, ax=axes, add_points=False, color
=BLUE)
197 diff = main_land.difference(filled_polygon)
198 H
199 (diff, Polygon):
200 plot_polygon(diff, ax=axes, add_points=False, color=RED
)
201 plot_polygon(diff, ax=axes_full[fig_counter],

add_points=False, color=RED)
202 :
203 pol diff.geoms:

204 plot_polygon(pol, ax=axes, add_points=False, color=
RED)
205 plot_polygon(pol, ax=axes_full[fig_counter],
add_points=False, color=RED)
206 IndexError:
207
208 axes.set_xlabel (’Degrees Longitude’)
209 axes.set_ylabel (’Degrees Latitude’)
210 axes.set_xlim([long_min, long_max])
211 axes.set_ylim([lat_min, lat_max])
212 axes_full[fig_counter].set_xlim([long_min, long_max])
213 axes_full[fig_counter].set_ylim([lat_min, lat_max])
214 plt.show ()
215
216 numpy .save (f’arrays/vcubl/xbest_scipy_{int (10*Eb_NO_min) :03d}
_eps_{int (10*epsilon) :03d}_{D}_antennas.npy’, x)
217 numpy .save (f’arrays/vcubl/radius_scipy_{int (10*Eb_NO_min) :03d}
_eps_{int (10*epsilon) :03d}_{D}_antennas.npy’, radius)
218 fig.savefig(f’final_results/vcubl/coverage_ Eb_NO_{int (10%*

Eb_NO_min) :03d}_eps_{int (10*epsilon) :03d}_scipy_{D}
_antennas.pdf’,

219 transparent=True, bbox_inches=’tight’)

220 # plt.close(fig)

221 all_results.append ({
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"$(E_b/N_0) _{\min}$": Eb_NO_min,
"Active_ Antennas": D,
"Initial, Coverage": f"{initial_coverage *,100:3.2f}\%",
"Final_Coverage": f"{coverage *,100:3.2f}\%"
1))

axes_full[fig_counter].text(0.01, 0.11, f’Coverage:’, transform

=axes_full[fig_counter].transAxes,
fontsize=font_size)

axes_full[fig_counter].text(0.01, 0.01, f’{coverage *,100:3.2f

F\%’, transform=axes_full[fig_counter].transAxes,
fontsize=font_size)
fig_counter += 1
df = pandas.DataFrame(all_results)
(df .to_latex(index=False))

df .to_pickle(’arrays/vcubl/scipy_summary.zip’)
fig_full.savefig(f’../parts/Ground, Stations Distribution/vcubl/

coverage_Eb_NO_{int (10,*,Eb_NO_min) :03d}_eps_{int (10 * ,epsilon) :03d}

_scipy_combined.pdf’,

transparent=True, bbox_inches=’tight’)

B.10 Differential Evolution

arraytools *
numpy
pandas
matplotlib pyplot as plt
matplotlib use, rc
shapely
shapely.geometry Point, Polygon, MultiPoint
shapely.ops unary_union
shapely.plotting plot_polygon
figures SIZE, BLACK, BLUE, GRAY, YELLOW, RED, set_limits
shapely.ops nearest_points
itertools combinations
rc(’text’, usetex=True)
rc(’font’, family=’serif’)

use (’Qt5Agg’)
plt.rcParams.update ({’font.size’: 153})

pandas.set_option(’expand_frame_repr’, False)
__name__ == ’__main__":
Eb_NO_min = 7.5
epsilon = 8
threshold = 0.2
f = 2244e6
lamb = c0 / £
brazil_points = pandas.read_pickle(’input/brazil_points.zip’)
brazil_points_inside = brazil_points[brazil_points.inside].copy()
main_land = brazil_mainland ()
main_land_contains = main_land.contains
brazil_area = main_land.area
long_min, lat_min, long_max, lat_max = main_land.bounds
points_x = main_land.exterior.coords.xy[0]
points_y = main_land.exterior.coords.xy[1]

longs = numpy.unique(brazil_points[’lon’].values)
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lats = numpy.unique(brazil_points[’lat’].values)

longs_inside = numpy.unique(brazil_points_inside[’lon’].values)

lats_inside = numpy.unique(brazil_points_inside[’lat’].values)

a = read_pickle(f’./input/a_matrix_{int (10*Eb_NO_min) :03d}_binary_vcubl.pkl
)

index = brazil_points_inside.iloc[100].name

link_data = pandas.read_pickle(f’database/vcubl/antennas/link_data/{index}.
zip’)

fixed_radius = link_data[link_data[’Eb_NO’] > Eb_NO_min].sort_values(’Eb_NO
’).iloc [0].radius

use_fixed_radius = False
satellite = read_pickle(’./input/satellite_vcubl.pkl’)
N = (a)
M, P = a[0].shape
A = numpy.zeros((N, M * P), dtype= )
k (N):

Alk, :] = alk].flatten()

f_d = numpy.zeros(shape=(M, P))
_index, _row brazil_points[brazil_points.inside].iterrows():
coord = _row.coord

long_idx = numpy.searchsorted(longs, coord[0], side="left")
lat_idx = numpy.searchsorted(lats, coord[1], side="left")
f_d[lat_idx, long_idx] = 1

IndexError:

f_d = f_d.flatten ()
inside_mask = f_d == 1
inside_total = (f_d[inside_mask])

# Differential Evolution
NP = 100 # size of population

CR = 0.9

F_a = 0.05

F_.b = 0.1

activate_antenna = 0.01

deactivate_antenna = 0.5

generations = 25

possible_combinations = {
7.5: [6]

}

all_results = []

ground_parabola = Parabola(f=f, D=2.6 / lamb)

station_parameters = {
"fre £,
"temp": 312,
"eff": 0.5,
"bandwidth": 6e6,
"e_theta_e_phi_function": ground_parabola.get_fields_sym,
"G_max": ground_parabola.G_max
3
link_parameters = {

"satellite": satellite,
"R_spec": 10e6,

"Eb_NO_min": Eb_NO_min,
"calc_transmitted_data": False,
"G_other": -1.6
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91
92 mutation(g):
93 rl, r2, r3, r4 = numpy.random.default_rng().integers(low=0, high=NP,
size=4)
94 v_i_gpl = X[g, r1]l] + F_b * (x_best - X[g, r2]) + F_a *x (X[g, r3] - Xl[g,
r4])
95 v_i_gpl
96
97
98 recombination(g, i, v_i_gpl):
99 u_i_gpl = numpy.zeros_like(v_i_gp1l)
100 j (D) :
101 “"main_land_contains (Point(v_i_gp1[jl)):
102 near = nearest_points(main_land, Point(v_i_gp1[jl)) [0]
103 # print (f"Snipping antenna {v_i_gpl1[jl}")
104 v_i_gpl1[j] = numpy.array([near.coords.xy[0][0], near.coords.xy
[11[0011)
105 main_land_contains (Point(v_i_gp1[jl)) (
106 numpy .random.uniform() <= CR j == numpy.random.
default_rng().integers(low=0, high=D, size=1)):
107 u_i_gp1[j]l = v_i_gp1l[j]
108 H
109 u_i_gp1[jl = X[g, i, jl
110 u_i_gp1l
111
112
113 fit(x_i):
114 radius = numpy.zeros (D)
115 circles = []
116 _i (D):
117 lon = x_i[_i][0]
118 lat = x_i[_i][1]
119 use_fixed_radius:
120 radius[_i] = fixed_radius
121 circles.append (Point (lon, lat). (radius[_i]))
122 :
123 station = Station(lat=lat, lon=lon, **station_parameters)
124 link = LinkBudget(station=station, **link_parameters)
125 H
126 circles.append(link.get_shapely_contour ())
127 IndexError:
128 radius[_i] = 0
129 circles.append (Point (lon, lat). (radius[_i]1))
130 ("Couldnotget shapely contour")
131 combined_circles = unary_union(circles)
132 main_land.intersects (combined_circles):
133
134 intersection = shapely.intersection(main_land, combined_circles
)
135 RuntimeWarning:
136 intersection = shapely.intersection(combined_circles, main_land
)
137 .
138 1, 0, O
139 coverage_area = intersection.area
140 coverage = coverage_area / brazil_area
141 intersect = coverage_area / best_coverage_area
142 1 - coverage, coverage, intersect
143
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for Eb_NO_min in possible_combinations.keys():
for D in possible_combinations [Eb_NO_min]:
link_parameters ["Eb_NO_min"] = Eb_NO_min
x0_sufix_results = £"{D:02d}_antennas_Eb_NO_{int (10 *_ Eb_NO_min) :03
d}_eps_{int (10,*epsilon) :03d}_CR_{int (10,*,CR) :02d} _F_a_{int
(100,*,F_a) :03d}_F_b_{int (100,*,F_b) :03d} _fixed_radius_True"
sufix = f"Eb_NO_{int (10,*,Eb_NO_min) :03d}_eps_{int (10, * epsilon) :03
d}_{D}_antennas_boolean_fixed_radius_{use_fixed_radiusl}"
print ("\n======================================================\1n")
print (f"Eb_NO_,=,{Eb_NO_min}, epsilon,=,{epsilon}, Dy=,{D}, F_a =41
F_a},uF_bu=u{F_b},uCRu=u{CR}")
print ("\n======================================================\1n")
fixed_radius = numpy.load(
f’arrays/vcubl/radius_scipy_{int (10,*_ Eb_NO_min) :03d}_eps_{int
(10,*,epsilon) :03d}_{D}_antennas.npy’)
if use_fixed_radius:
x0 = numpy.load(
f’arrays/vcubl/xbest_scipy_{int (10,*,Eb_NO_min) :03d}_eps_{
int (10,*,epsilon) :03d}_{D}_antennas.npy’)
else:
x0 = numpy.load(
f’arrays/vcubl/best_result_{xO_sufix_results}.npy’)

best_coverage_area = D * numpy.pi * fixed_radius *x 2
fit_before_snip, coverage_before_snip, intersect_before_snip = fit(
x0)

for i in range(len(x0)):
ant = x0[i]
if "main_land_contains (Point (ant)):

near = nearest_points(main_land, Point(ant)) [0]
x0[i] = numpy.array([near.coords.xy[0][0], near.coords.xy
(110011
fit_after_snip, coverage_after_snip, intersect_after_snip = fit(x0)

X = numpy.zeros(shape=(generations, NP, D, 2))
if use_fixed_radius:
for i in range (NP):

X[0, i] = brazil_points_inside.loc[numpy.random.choice(
brazil_points_inside.index.values, D, replace=False)][
[’lon’, ’lat’]].values
combs = combinations (x0, 2)
possible_antennas = []

for comb in combs:

ant = (comb[0] + comb[1]) / 2

if “"main_land_contains (Point (ant)):
near = nearest_points(main_land, Point (ant)) [0]
ant = numpy.array([near.coords.xy[0][0], near.coords.xy

[(110011)

for _k in range(len(x0)):
new_ant = x0.copy()
new_ant [_k] = ant
possible_antennas.append(new_ant)

for _k in range(min(len(possible_antennas), NP - 1)):
X[0, _k + 1] = possible_antennas/[_k]
else:
X[0, :]1 = numpy.load(
f’arrays/vcubl/best_result_{x0O_sufix_results}.npy’)
for i in range(l, 50):
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X[o, il =\
brazil_points_inside.loc([
numpy .random.choice(brazil_points_inside.index.
values, D, replace=False)]l[
[’lon’, ’lat’]].values
X[0, 0] = x0

n0 = 5
# Plot snipped antennas
circles = []
radius = numpy.zeros (D)
_i (D):
lon = x0[_i][0]
lat = x0[_i]l[1]
antenna_point = Point(lon, lat)
use_fixed_radius:
radius[_i] = fixed_radius
circles.append (Point (lon, lat). (radius[_i]))
station = Station(lat=lat, lon=lon, **station_parameters)
link = LinkBudget (station=station, **link_parameters)
circles.append(link.get_shapely_contour ())
combined_circles = unary_union(circles)
intersection = shapely.intersection(main_land, combined_circles)
coverage = intersection.area / brazil_area

fig, axes = plt.subplots()

axes.plot(points_x, points_y, color=’black’)

axes.plot(x0[:, 0], xO[:, 1], ’+’, color=’black’)

axes.set_aspect (’equal’)

axes.set_title(f’Coverageof {coverage *,100:3.2f}\% with_ {D},
antennas.’)

i (D) :
plot_polygon(circles[i], ax=axes, add_points=False, color=BLUE)

diff = main_land.difference(combined_circles)

(diff, Polygon):
plot_polygon(diff, ax=axes, add_points=False, color=RED)

pol diff.geoms:
plot_polygon(pol, ax=axes, add_points=False, color=RED)
IndexError:

axes.set_xlabel (’Degrees Longitude’)

axes.set_ylabel (’Degrees Latitude’)

axes.set_xlim([long_min, long_max])

axes.set_ylim([lat_min, lat_max])

fig.savefig(
f’final_results/vcubl/coverage_snipped_antennas_{sufix}.pdf’,
transparent=True, bbox_inches=’tight’)

plt.close(fig)

# DE algorithm

x_best = x0

best_fit, best_coverage, best_intersect = fit(x_best)

bests = [x_best]

bests_fits = [best_fit]

fit_X = numpy.zeros (NP)

coverage_X = numpy.zeros (NP)

intersect_X = numpy.zeros (NP)
(f’Initial fit: {100,* ,best_fit:1.5f}’)
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tol = le-7
for g in range(generations - 1):
for i in range (NP):
if g == 0:
fit_X[i], coverage_X[i], intersect_X[i] = fit(X[g, 1il)

v_i_gpl = mutation(g)
u_i_gpl = recombination(g, i, v_i_gp1l)
fit_u, coverage_u, intersect_u = fit(u_i_gpl)

if fit_u < fit_XI[il:
print (f’Generation, {g}, iteration {i}’
fo\tyFityux:u{100*xfit_X[i]:2.5f}’
f°\t Fit u:,{100*xfit_u:2.5f}’)
X[g + 1, il = u_i_gpl.copy(O)
fit_X[i] = fit_u
coverage_X[i] = coverage_u
intersect_X[i] = intersect_u
if fit_u < best_fit:
best_fit = fit_u
best_coverage = coverage_u
best_intersect = intersect_u
x_best = u_i_gpl.copy()
bests.append (x_best)
bests_fits.append(best_£fit)
print (f’Generation {g:02d}, iteration, ;{i:03d}.\n’
f’\t, Found better fit:, {100,* ,best_fit:1.5f}"’
)
else:
X[g + 1, il = X[g, i].copy(O)
print (f"Bestyof generation {g:02d}:,{100*x best_fit:1.5f}\n"

if best_coverage >= 1 - le-6:
break

sufix_results = £"{D:02d}_antennas_Eb_NO_{int (10,*,Eb_NO_min) :03d}
_eps_{int (10,*_epsilon) : 03d} _CR_{int (10*%CR) : 02d} _F_a_{int (100%*
F_a):03d}_F_b_{int (100*F_b) :03d} _fixed_radius_{use_fixed_radius
}II

numpy . save (
f’arrays/vcubl/best_generation_{sufix_results}.npy’,
Xlg)

numpy . save (
f’arrays/vcubl/xbests_{sufix_results}.npy’,
numpy . array (bests))

numpy . save (
f’arrays/vcubl/best_result_{sufix_results}.npy’,

x_best)
circles = []
radius = numpy.zeros (D)

for _i in range(D):

lon = x_best[_i][0]
lat = x_best[_i][1]
antenna_point = Point(lon, lat)

if use_fixed_radius:
radius[_i] = fixed_radius
circles.append (Point (lon, lat).buffer(radius[_i]))
else:
station = Station(lat=lat, lon=lon, **station_parameters)
link = LinkBudget (station=station, **link_parameters)
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circles.append(link.get_shapely_contour ())
combined_circles = unary_union(circles)

intersection = shapely.intersection(main_land, combined_circles)

coverage = intersection.area / brazil_area

fig, axes = plt.subplots()

axes.plot (points_x, points_y, color=’black’)
axes.plot(x_best[:, 0], x_best[:, 1], ’+’, color=’black’)
axes.set_aspect (’equal’)

axes.set_title(f’Coverage of {coverage *,100:3.2f}\/ywith {D},

antennas.’)
i (D) :

plot_polygon(circles[i], ax=axes, add_points=False, color=BLUE)

diff = main_land.difference(combined_circles)

(diff, Polygon):

plot_polygon(diff, ax=axes, add_points=False, color=RED)

pol diff.geoms:

plot_polygon(pol, ax=axes, add_points=False, color=RED)

IndexError:

axes.set_xlabel (’Degrees Longitude’)
axes.set_ylabel (’Degrees Latitude’)
axes.set_xlim([long_min, long_max])
axes.set_ylim([lat_min, lat_max])
fig.savefig(

f’>final_results/vcubl/coverage_{sufix_results}_after_{g, +,1:034d

}_iterations.pdf’,
transparent=True, bbox_inches=’tight’)
plt.close(fig)

all_results.append ({

"$\\nicefrac{E_b}{N_O0}_{\min}$":

Eb_NO_min,

"Active_ Antennas": D,

"Coverage Before, Snip":

"Coverage After, Snip":

"Best ,Coverage":

"Iterations": f"{g}"
»

df = pandas.DataFrame(all_results)

f"{coverage_before_snip, *,100:3.2f}",
f"{coverage_after_snip_ *,100:3.2f}",

f"{best_coverage *,100:3.2f}",

df .to_pickle(f’final_results/vcubl/de_result_{sufix_results}.zip’)

(df .to_latex(index=False))

B.11 Fixed Positions

arraytools *
numpy
pandas
matplotlib use, rc
shapely.geometry Point
shapely
matplotlib.pyplot as plt
shapely.geometry
shapely.plotting

LineString, LinearRing, Polygon
plot_line,

plot_points, plot_polygon
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figures SIZE, BLACK, BLUE, GRAY, YELLOW, RED, set_limits
shapely.ops unary_union
scipy.optimize minimize
shapely.prepared prep
itertools combinations
rc(’text’, usetex=True)
rc(’font’, family=’serif’)
use (’Qt5Agg’)
font_size = 15
plt.rcParams.update ({’font.size’: font_sizel})
pandas.set_option(’expand_frame_repr’, False)
get_antenna_coverage_and_intersection(_antennas, _diameter):
individual_coverages = []
intersections = []
n ( (_antennas)):
_ground_parabola = Parabola(f=f, D=_diameter [n] / lamb, eff=0.5)
_station = Station(G_max=_ground_parabola.G_max, lon=_antennas[n][0],
lat=_antennas [n][1],
e_theta_e_phi_function=_ground_parabola.
get_fields_sym, **station_parameters)
_link = LinkBudget(station=_station, **link_parameters)
_link.passes == {}:
individual_coverages.append(shapely.Point(_station.lon, _station.
lat) . (0))

individual_coverages.append(_link.get_shapely_contour ())
comb combinations (individual_coverages, 2):
comb [0] . overlaps (comb[1]) :
intersections.append (comb [0].intersection(comb[1]))
individual_coverages, intersections

combine_antennas (_antennas, _radius):
unary_union ([Point (_antennas[n][0], _antennas[n][1]).
nl) n ( (_antennas))])
combine_antenna_xy(_x, _y, _radius):
unary_union ([Point (point [0], point[1]). (_radius)

( (_x.value, _y.value))])

get_antennas_intersection(_antennas, _radius):

intersections = []

individual_coverages = [Point(_antennas[n][0], _antennas[n][1]).
_radius[n]) n ( (_antennas))]
comb combinations (individual_coverages, 2):

comb [0] . overlaps (comb [1]) :
intersections.append(comb [0].intersection(comb[1]))
unary_union(intersections)

minimize_antennas_with_real_coverage(region_boundary, x0, d_min,
desired_coverage=0.99999, algorithm="SLSQP"):

N = (positions)

brazil_area = region_boundary.area

(_radius[

point

d_max,
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maximum_coverage , maximum_intersection =
get_antenna_coverage_and_intersection(positions, d_max*numpy.ones(N))

maximum_coverage = unary_union(maximum_coverage)
maximum_coverage_area = maximum_coverage.area
max_iterations = 10000

func_to_minimize (x):

coverage, intersections = get_antenna_coverage_and_intersection(
positions, x)
coverage = unary_union(coverage)
intersections = unary_union(intersections)
0.4*(maximum_coverage_area - coverage.area) + 0O.6*xintersections.
area

constraint_function(x):

coverage, intersections = get_antenna_coverage_and_intersection(
positions, x)
coverage = unary_union(coverage)

region_boundary.intersection(coverage) .area / brazil_area -
desired_coverage

constraints = [
{
’type’: ’ineq’,
’fun’: constraint_function

]

bounds = N * [[d_min, d_max]]
res = minimize(func_to_minimize, x0, method=algorithm, constraints=
constraints, bounds=bounds,
options={’maxiter’: max_iterations,
’ftol’: b5e-3,
’eps’: le-61})
("Final,constraint:_", constraint_function(res.x))
res

minimize_antennas(region_boundary, x0, r_min, r_max, desired_coverage
=0.99999) :

N = (positions)

brazil_area = region_boundary.area

region_prep prep(region_boundary)

maximum_coverage = combine_antennas (positions, r_max*numpy.ones(N))
maximum_coverage_area = maximum_coverage.area

max_iterations = 10000

func_to_minimize(x):
# best_coverage_area = numpy.sum(N * numpy.pi * x ** 2)
coverage = combine_antennas (positions, x)
intersections = get_antennas_intersection(positions, x)
0.5*(maximum_coverage_area - coverage.area) + 0O.b5xintersections.
area

constraint_function (x):
coverage = combine_antennas (positions, x)
region_boundary.intersection(coverage).area / brazil_area -
desired_coverage

constraints = [
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111 {
112 ’type’: ’ineq’,
113 >fun’: constraint_function
114 }]
115
116 bounds = N * [[r_min, r_max]]
117 res = minimize (func_to_minimize, x0, method=’SLSQP’, constraints=
constraints, bounds=bounds,
118 options={’maxiter’: max_iterations,
119 ’ftol’: 5e-3,
120 ’eps’: le-61})
121 ("Final constraint:_ ", constraint_function(res.x))
122 res
123
124
125 __name__ == ’__main__"’:
126 main_land = brazil_mainland ()
127 south_america = get_south_america()
128 # brazil = numpy.load(’./input/brazil.npy’)
129 # main_land = Polygon(brazil)
130 brazil_area = main_land.area
131 brazil_points = pandas.read_pickle(’input/brazil_points.zip’)
132 brazil_points_inside = brazil_points[brazil_points.inside]
133 longs = numpy.unique (brazil_points[’lon’].values)
134 lats = numpy.unique(brazil_points[’lat’].values)
135 longs_inside = numpy.unique(brazil_points_inside[’lon’].values)
136 lats_inside = numpy.unique(brazil_points_inside[’lat’].values)
137 points_x = main_land.exterior.coords.xy[0]
138 points_y = main_land.exterior.coords.xy[1]
139 long_min, lat_min, long_max, lat_max = main_land.bounds
140 # plot_long_min, plot_lat_min, plot_long_max, plot_lat_max = south_america.
bounds
141 plot_long_min, plot_lat_min, plot_long_max, plot_lat_max = -76, -43, -25,
16
142 sat = read_pickle(’./input/satellite_vcubl.pkl’)
143 f = 22446
144 lamb = c0 / £
145 Eb_NO_min = 7.5
146 diameter_min = 1.5
147 diameter_max = 6
148 station_parameters = {’f’: f, ’eff’: 0.5, ’temp’: 312, ’bandwidth’: 6e6}
149 link_parameters = {’satellite’: sat, ’R_spec’: 10e6, ’Eb_NO_min’: Eb_NO_min
, ’calc_transmitted_data’: True, ’G_other’:-1.6%}
150
151 antenna_ranges = []
152 diameters = numpy.linspace(diameter_min, diameter_max, 20)
153 diam diameters:
154 ground_parabola = Parabola(f=f, D=diam / lamb, eff=0.5)
155 station = Station(G_max=ground_parabola.G_max, lat=antenna_positions/[’
unb’][’lat’], lon=antenna_positions[’unb’][’lon’],
156 e_theta_e_phi_function=ground_parabola.get_fields_sym
, **station_parameters)
157 link = LinkBudget(station=station, **link_parameters)
158 link.passes == {}:
159 antenna_reach = 0
160 :
161 coords = ( (link.data[’lon_WGS84_deg’].values, link.datal’
lat_WGS84_deg’].values))
162 points = [Point (coord) coord coords]
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link.data[’radius’] = shapely.distance (points, Point(
antenna_positions[’unb’][’lon’], antenna_positions[’unb’][’lat’
1)

antenna_reach = link.data[link.data[’Eb_NO0’] >= Eb_NO_min].
sort_values (’Eb_NO’).iloc[0].radius
antenna_ranges.append (antenna_reach)
antenna_ranges = numpy.array(antenna_ranges)

N = (positions)

x0 = numpy.ones (N)

r_tol = le-5

r_max = numpy. (antenna_ranges)

initial_res = minimize_antennas(main_land, x0, r_tol, r_max)

initial_diameters = numpy.interp(initial_res.x, antenna_ranges, diameters)
initial_diameters[initial_diameters <= 1.05*%diameter_min] = 0
(initial_res)
radius = initial_res.x
# used_antennas = “numpy.isclose(r_tol, res.x)
coverages, intersection = get_antenna_coverage_and_intersection(positions,
initial_diameters)
used_antennas = []
n ( (positions)):
individual_cov = coverages[n]
unary_union(coverages[:n] + coverages[n+1:]).intersection/(
individual_cov).area <= 0.8 * individual_cov.area:
used_antennas . append (True)

used_antennas.append(False)

# used_antennas = initial_res.x > r_min_on

# used_antennas = numpy.ones_like(radius, dtype=bool)

D = numpy.count_nonzero(used_antennas)

filled_polygon = combine_antennas (positions[used_antennas], radiusl([
used_antennas])

coverage = main_land.intersection(filled_polygon).area / brazil_area

fig, axes = plt.subplots(figsize=(6, 6))

axes.plot (south_america.exterior.coords.xy[0], south_america.exterior.
coords.xy[1], color=’lightgrey’)

axes.plot (points_x, points_y, color=’black’)

axes.plot(positions[used_antennas][:, 0], positions[used_antennas]([:, 1], °’
+’, color=’black’)

axes.set_aspect(’equal’)

axes.set_title(f’Coverage of {coverage *,100:3.2f}\%, with,{D} antennas.’,
fontsize=font_size - 1)

axes.tick_params (left=False, right=False, labelleft=False, labelbottom=
False, bottom=False)

("Lat,yLon, Diameter , Range")

n =20
antenna, r, diam (positions, radius, initial_diameters):
(f"{antenna[0]:0.2f} & {antenna[1]:0.2f} &, {diam:0.2f} & {r:0.2f}"
)
used_antennas [n]:
plot_polygon (Point (antenna[0], antennal[1]). (r), ax=axes,
add_points=False, color=BLUE)
n += 1

diff = main_land.difference(filled_polygon)

(diff, Polygon):
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210 plot_polygon(diff, ax=axes, add_points=False, color=RED)

211 :

212 pol diff.geoms:

213 plot_polygon(pol, ax=axes, add_points=False, color=RED)

214 IndexError:

215

216 axes.set_xlim([plot_long_min, plot_long_max])

217 axes.set_ylim([plot_lat_min, plot_lat_max])

218 fig.set_tight_layout (True)

219 sufix = f"d_min_{int (l10*diameter_min) :02d}_d_max_{int (10*xdiameter_max) :024}

220 fig.savefig(f’../parts/Ground Stations_ Distribution/vcubl/
varying_gain_results_fixed_coverage_{sufix}.pdf’,

221 transparent=True, bbox_inches=’tight’)

222 full_stations_vector = numpy.hstack([positions, initial_diameters.reshape
(-1, 1D

223 numpy .save (f"arrays/vcubl/

full_stations_vector_varying_diameter_fixed_coverage_{sufix}.npy",
full_stations_vector)

224 stations_vector = numpy.hstack([positions[used_antennas], initial_diameters
[used_antennas].reshape(-1, 1)1)

225 numpy .save (f"arrays/vcubl/stations_vector_varying _diameter_fixed_coverage_{
sufix}.npy", stations_vector)

226 plt.show ()

227

228 final_res = minimize_antennas_with_real_coverage(region_boundary=main_land,
x0=initial_diameters, d_min=r_tol, d_max=diameter_max, algorithm="L-
BFGS-B")

229 (final_res)

230 final_diameters = final_res.x

231

232 individual_patterns, individual_intersections =

get_antenna_coverage_and_intersection(positions, final_diameters)

233 used_antennas = []

234 n ( (positions)):

235 individual_cov = individual_patterns[n]

236 individual_cov.area < 1 unary_union(individual_patterns[:n] +

individual _patterns[n+1:]) .intersection(individual_cov).area > 0.8
* individual_cov.area:

237 used_antennas.append(False)

238 :

239 used_antennas.append (True)

240

241 D = numpy.count_nonzero(used_antennas)

242 filled_polygon = unary_union(individual_patterns)

243 coverage = main_land.intersection(filled_polygon).area / brazil_area

244

245 fig, axes = plt.subplots(figsize=(6, 6))

246 axes.plot (south_america.exterior.coords.xy[0], south_america.exterior.
coords.xy[1], color=’lightgrey’)

247 axes.plot (points_x, points_y, color=’black’)

248 axes.plot(positions[used_antennas][:, 0], positions[used_antennas]([:, 1], °’
+7, color=’black’)

249 axes.set_aspect(’equal’)

250 axes.set_title(f’Coverage of {coverage *,100:3.2f}\%,with {D} antennas.’,
fontsize=font_size-1)

251 axes.tick_params (left=False, right=False, labelleft=False, labelbottom=

False, bottom=False)
252 ("Lon,_ Lat,_ Diameter")
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n ( (positions)):
(f"{positions [n] [0]:0.2f} & {positions[n][1]:0.2f} & {
final_diameters[n]:0.2f}")
used_antennas [n]:
plot_polygon(individual_patterns[n], ax=axes, add_points=False,
color=BLUE)
diff = main_land.difference(filled_polygon)

(diff, Polygon):
plot_polygon(diff, ax=axes, add_points=False, color=RED)

pol diff.geoms:
plot_polygon(pol, ax=axes, add_points=False, color=RED)
IndexError:

axes.set_xlim([plot_long_min, plot_long_max])

axes.set_ylim([plot_lat_min, plot_lat_max])

axes.set_x1im([-83, -201)

axes.set_ylim([-55, 23])

fig.set_tight_layout (True)

fig.savefig(f’../parts/Ground Stations Distribution/vcubl/
varying_gain_results_real_coverage_{sufix}.pdf’,
transparent=True, bbox_inches=’tight’)

full_stations_vector = numpy.hstack([positions, final_diameters.reshape(-1,
DN

numpy .save (f"arrays/vcubl/
full_stations_vector_varying_diameter_real_coverage_{sufix}.npy",
full_stations_vector)

stations_vector = numpy.hstack([positions[used_antennas], final_diameters][
used_antennas].reshape (-1, 1)1])

numpy .save (f"arrays/vcubl/stations_vector_varying_diameter_real_coverage_{
sufix}.npy", stations_vector)

plt.show ()

B.12 MicroStrip Array

arraytools *
numpy
pandas
matplotlib pyplot as plt
matplotlib use, rc
rc(’text’, usetex=True)
rc(’font’, family=’serif’)

use (’Qt5Agg’)
plt.rcParams.update ({’font.size’: 15})

pandas.set_option(’expand_frame_repr’, False)
pandas.set_option(’display.max_rows’, 500)
__name__ == ’__main__":
# This method of project is following Balanis Chapter 14.2.C
f = 10e9

lamb = c0 / £
eps_r = 2.2

h = 0.1588e-2
parameters = {
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"h": h,
"eps_r": eps_r,
vfr: f
}
strip = MicroStrip (**parameters, hfss_path=’hfss_data/E.csv’)
N =3
# Distance must be greater than 2x*L
distance = 0.5 * lamb
d = distance * numpy.arange(-(N - 1) / 2, (N / 1) / 2, 1)
a =1/ N *x numpy.ones (N)
antenna_pos = numpy.vstack([d,
numpy.zeros_like(d),
numpy.zeros_like(d)]).T
beta = deg2rad (45)
step_theta_hfss = 1
step_phi_hfss =1
theta_hfss = numpy.arange(-180, 180 + step_theta_hfss, step_theta_hfss)

phi_hfs
phi_hfs

s = numpy.arange(-180, 180 + step_phi_hfss, step_phi_hfss)
s [phi_hfss < 0] += 360

theta_grid = deg2rad(theta_hfss)
phi_grid = deg2rad(phi_hfss)

n_theta
n_phi_h

Theta,

hfss_e_

_hfss = (theta_hfss)
fss = (phi_hfss)
Phi = numpy.meshgrid(theta_grid, phi_grid, indexing=’ij’)

db_steered = pandas.read_csv(’hfss_data/E_db_beta_45_full_theta.csv’

, skiprows=1, header=None, index_col=0)
hfss_e_tot_db_steered, hfss_e_phi_db_steered, hfss_e_theta_db_steered =
parse_hfss_data(hfss_e_db_steered, phi_hfss)

hfss_e_

db_array = pandas.read_csv(’hfss_data/E_db_array_full_theta.csv’,

skiprows=1, header=None, index_col=0)
hfss_e_tot_db_array, hfss_e_phi_db_array, hfss_e_theta_db_array =
parse_hfss_data(hfss_e_db_array, phi_hfss)

hfss_e_

db_array_steered = pandas.read_csv(’hfss_data/

E_db_array_beta_45_full_theta.csv’, skiprows=1, header=None,

hfss_e_

index_col=0)
tot_db_array_steered, hfss_e_phi_db_array_steered,

hfss_e_theta_db_array_steered = parse_hfss_data(

hfss_e_db_array_steered, phi_hfss)

e_plane_phi = 0

h_plane_phi = 90

y_min = -30

betas = 0 * numpy.ones (N)

# Find max_value

e_theta_steered_array, e_phi_steered_array = combining_general_array(
antenna_pos=antenna_pos, a=a,
theta=Theta.flatten(), lamb=lamb,
phi=Phi.flatten(),
betas=betas, fields_func=strip.e_analytical)

e_tot_steered_array = numpy.sqrt(numpy. (e_theta_steered_array) ** 2 +
numpy . (e_phi_steered_array) *x* 2)

array_r

otated_max = numpy. (e_tot_steered_array)
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73

74 e_theta_nominal_array, e_phi_nominal_array = combining_general_array(

75 antenna_pos=antenna_pos, a=a,

76 theta=theta_grid, lamb=lamb,

7 phi=numpy.full_like(theta_grid, deg2rad(e_plane_phi)),

78 betas=betas, fields_func=strip.e_analytical)

79 h_theta_nominal_array, h_phi_nominal_array = combining_general_array (

80 antenna_pos=antenna_pos, a=a,

81 theta=theta_grid, lamb=lamb,

82 phi=numpy.full_like(theta_grid, deg2rad(h_plane_phi)),

83 betas=betas, fields_func=strip.e_analytical)

84 e_tot_nominal_array = numpy.sqrt(numpy. (e_theta_nominal_array) ** 2 +
numpy . (e_phi_nominal_array) ** 2)

85 h_tot_nominal_array = numpy.sqrt(numpy. (h_theta_nominal_array) ** 2 +
numpy . (h_phi_nominal_array) *x 2)

86 _array [e_theta_nominal_array, e_phi_nominal_array,
h_theta_nominal_array, h_phi_nominal_array,

87 e_tot_nominal_array, h_tot_nominal_array]:

88 _array = _array / array_rotated_max

89 fig_size = 3

90 y_min = -30

91 fig, axes = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True,
figsize=(3 *x fig_size, 2 * fig_size))

92 axes [0] [0] .set_title(f"E-Plane,($\phi = 0" \circ$)")

93 axes [0] [1] .set_title(f"H-Plane,($\phi = 90" \circ$)")

94 fig.suptitle (f"Analytical model array,vs HFSS_ array")

95 axes [0][0].set_ylabel (r"$E_\theta, [ "\circl$, [dBI")

96 axes [1]1[0].set_ylabel (r"$E_\phi$, [dBI")

97 axes [2] [0] .set_ylabel (r"$E_{tot}$,[dBI")

98 axes [2] [0] .set_xlabel (r"$\theta,["\circl$")

99 axes [2] [1] .set_xlabel (r"$\theta,["\circl$")

100

101 axes [0] [0] . plot (theta_hfss, hfss_e_theta_db_array[e_plane_phil)

102 axes [1] [0] . plot (theta_hfss, hfss_e_phi_db_array[e_plane_phil)

103 axes [2] [0] . plot (theta_hfss, hfss_e_tot_db_arrayl[e_plane_phil)

104 axes [0] [0] . plot (theta_hfss, to_db(numpy. (e_theta_nominal_array), db=20))

105 axes [1] [0] . plot (theta_hfss, to_db(numpy. (e_phi_nominal_array), db=20))

106 axes [2] [0] . plot (theta_hfss, to_db(numpy. (e_tot_nominal_array), db=20))

107

108 axes [0] [1] .plot (theta_hfss, hfss_e_theta_db_array[h_plane_phi], label="HFSS
")

109 axes [1] [1].plot (theta_hfss, hfss_e_phi_db_array[h_plane_phil)

110 axes [2] [1] . plot (theta_hfss, hfss_e_tot_db_array[h_plane_phil)

111 axes [0] [1] .plot (theta_hfss, to_db(numpy. (h_theta_nominal_array), db=20),

label="Analytical")

112 axes [1] [1].plot (theta_hfss, to_db(numpy. (h_phi_nominal_array), db=20))

113 axes [2] [1] . plot (theta_hfss, to_db(numpy. (h_tot_nominal_array), db=20))

114 axes [0][1].1legend O)

115

116 ax axes:

117 _ax ax:

118 _ax.grid(True)

119 _ax.set_ylim([y_min, 1])

120 _ax.set_yticks (numpy.arange(y_min, 0.1, step=6))

121 _ax.set_x1im([-90, 90])

122 _ax.set_xticks (numpy.arange(-90, 91, step=30))

123 plt.subplots_adjust (wspace=0.1, hspace=0.1)

124 fig.savefig(

125 f’../parts/Antenna Array/hfss_vs_analytical_array.pdf’,
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transparent=True, bbox_inches=’tight’, pad_inches=0)

# Array rotated
# Find max_value
betas = -beta * numpy.ones(N)
e_theta_steered_array, e_phi_steered_array = combining_general_array(
antenna_pos=antenna_pos, a=a,
theta=Theta.flatten(), lamb=lamb,
phi=Phi.flatten(),
betas=betas, fields_func=strip.e_analytical)

e_tot_steered_array = numpy.sqrt(numpy. (e_theta_steered_array) **x 2 +
numpy . (e_phi_steered_array) ** 2)

array_rotated_max = numpy. (e_tot_steered_array)

e_theta_steered_array, e_phi_steered_array = combining_general_array (

antenna_pos=antenna_pos, a=a,
theta=theta_grid, lamb=1lamb,
phi=numpy.full_like(theta_grid,
deg2rad(e_plane_phi)),
betas=betas, fields_func=strip.e_analytical)

e_tot_steered_array = numpy.sqrt(numpy. (e_theta_steered_array) **x 2 +
numpy . (e_phi_steered_array) ** 2)

e_theta_steered_array = e_theta_steered_array / array_rotated_max

e_phi_steered_array = e_phi_steered_array / array_rotated_max

e_tot_steered_array = e_tot_steered_array / array_rotated_max

h_theta_steered_array, h_phi_steered_array = combining_general_array (

antenna_pos=antenna_pos, a=a,
theta=theta_grid, lamb=lamb,
phi=numpy.full_like(theta_grid,

deg2rad (h_plane_phi)),
betas=betas, fields_func=strip.e_analytical)

h_tot_steered_array = numpy.sqrt(numpy. (h_theta_steered_array) ** 2 +
numpy . (h_phi_steered_array) *x* 2)

h_theta_steered_array = h_theta_steered_array / array_rotated_max

h_phi_steered_array = h_phi_steered_array / array_rotated_max

h_tot_steered_array = h_tot_steered_array / array_rotated_max

y_min = -30

fig, axes = plt.subplots (nrows=3, ncols=2, sharex=’col’, sharey=True,
figsize=(3 * fig_size, 2 *x fig_size))

axes [0] [0] .set_title(f"E-Plane, ($\phi = 0" \circ$)")

axes [0] [1] .set_title(f"H-Plane,($\phi =,90" \circ$)")

fig.suptitle (f"Analytical model vs HFSS,-,Steered $\\beta,= ,{rad2deg(beta)
:0.0f} " \circ$")

axes [0] [0] .set_ylabel (r"$E_\theta, [ "\circ]$, [dBI")

axes [1] [0] . set_ylabel (r"$E_\phi$ [dBI")

axes [2] [0].set_ylabel (r"$E_{tot}$, ,[dBI™")

axes [2] [0].set_xlabel(r"$\theta,[“\circl$")

axes [2] [1] .set_xlabel (r"$\theta,["\circl$")

axes [0] [0] . plot (theta_hfss, hfss_e_theta_db_array_steered[e_plane_phil)
axes [1] [0] . plot (theta_hfss, hfss_e_phi_db_array_steered[e_plane_phil)

axes [2] [0] . plot (theta_hfss, hfss_e_tot_db_array_steered[e_plane_phil)

axes [0] [0] . plot (theta_hfss, to_db(numpy. (e_theta_steered_array), db=20))
axes [1] [0] . plot (theta_hfss, to_db(numpy. (e_phi_steered_array), db=20))
axes [2] [0] . plot (theta_hfss, to_db(numpy. (e_tot_steered_array), db=20))

-

-

-

-




B.12 — MICROSTRIP ARRAY 118

180
181 axes [0] [1] . plot (theta_hfss, hfss_e_theta_db_array_steered[h_plane_phil],
label="HFSS")
182 axes [1][1].plot (theta_hfss, hfss_e_phi_db_array_steered[h_plane_phil)
183 axes [2] [1] . plot (theta_hfss, hfss_e_tot_db_array_steered[h_plane_phil)
184 axes [0] [1] .plot (theta_hfss, to_db(numpy. (h_theta_steered_array), db=20),
label="Analytical")
185 axes [1] [1].plot (theta_hfss, to_db(numpy. (h_phi_steered_array), db=20))
186 axes [2] [1].plot (theta_hfss, to_db(numpy. (h_tot_steered_array), db=20))
187 axes [0][1].1legend O)
188
189 ax axes:
190 _ax ax:
191 _ax.grid(True)
192 _ax.set_ylim([y_min, 1])
193 _ax.set_yticks (numpy.arange(y_min, 0.1, step=6))
194 _ax.set_x1im([-90, 90])
195 _ax.set_xticks (numpy.arange(-90, 91, step=30))
196 ax axes[:, 0]:
197 ax.set_x1im([-90 + rad2deg(beta), 90 + rad2deg(beta)])
198 ax.set_xticks (numpy.arange (-90 + rad2deg(beta), 91 + rad2deg(beta),
step=30))
199 plt.subplots_adjust (wspace=0.1, hspace=0.1)
200 fig.savefig(
201 f’../parts/Antenna Array/hfss_vs_analytical_array_steered.pdf’,
202 transparent=True, bbox_inches=’tight’, pad_inches=0)
203
204 # HFSS combined array
205 betas = 0 * numpy.ones (N)
206 e_theta_hfss_combined_array, e_phi_hfss_combined_array =
combining_general_array (
207 antenna_pos=antenna_pos, a=a,
208 theta=theta_grid, lamb=1lamb,
209 phi=numpy.full_like(theta_grid, deg2rad(e_plane_phi)),
210 betas=betas,
211 fields_func=strip.e_hfss)
212 h_theta_hfss_combined_array, h_phi_hfss_combined_array =
combining_general_array (
213 antenna_pos=antenna_pos, a=a,
214 theta=theta_grid, lamb=lamb,
215 phi=numpy.full_like(theta_grid, deg2rad(h_plane_phi)),
216 betas=betas,
217 fields_func=strip.e_hfss)
218 e_tot_hfss_combined_array = numpy.sqrt(
219 numpy . (e_theta_hfss_combined_array) ** 2 + numpy. (
e_phi_hfss_combined_array) ** 2)
220 h_tot_hfss_combined_array = numpy.sqrt(
221 numpy . (h_theta_hfss_combined_array) #** 2 + numpy. (
h_phi_hfss_combined_array) *x 2)
222
223 fig, axes = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True,
figsize=(3 * fig_size, 2 * fig_size))
224 axes [0] [0] .set_title(f"E-Plane,, ($\phi = 0 \circ$)")
225 axes [0] [1] .set_title(f"H-Plane,($\phi =, 90" \circ$)")
226 fig.suptitle(f"Analytically_ Combined Array, vs HFSS array")
227 axes [0] [0] .set_ylabel (r"$E_\theta, ["\circl$, [dBI")
228 axes [1] [0].set_ylabel (r"$E_\phi$ ,[dBI")
229 axes [2] [0] .set_ylabel (r"$E_{tot}$, [dBI")
230 axes [2] [0].set_xlabel (r"$\theta,["\circl$")
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231 axes [2][1].set_xlabel (r"$\theta,["\circl$")

232

233 axes [0] [0] . plot (theta_hfss, hfss_e_theta_db_arrayle_plane_phil].locl
theta_hfss])

234 axes [1]1 [0] . plot (theta_hfss, hfss_e_phi_db_array[e_plane_phil].loc[theta_hfss
D

235 axes [2] [0] . plot (theta_hfss, hfss_e_tot_db_array[e_plane_phi].loc[theta_hfss
D

236 axes [0] [0] . plot (theta_hfss, to_db(numpy. (e_theta_hfss_combined_array),
db=20), ’.7)

237 axes [1]1 [0] . plot (theta_hfss, to_db(numpy. (e_phi_hfss_combined_array), db
=20), ’.7)

238 axes [2] [0] . plot (theta_hfss, to_db(numpy. (e_tot_hfss_combined_array), db
=20), ’.7)

239

240 axes [0] [1].plot (theta_hfss, hfss_e_theta_db_array[h_plane_phi].loc[
theta_hfss], label="HFSS")

241 axes [1] [1] .plot (theta_hfss, hfss_e_phi_db_array[h_plane_phi].loc[theta_hfss
D

242 axes [2] [1] . plot (theta_hfss, hfss_e_tot_db_array[h_plane_phil].loc[theta_hfss
D)

243 axes [0] [1] .plot (theta_hfss, to_db(numpy. (h_theta_hfss_combined_array),
db=20), ’.’, label="Analytical")

244 axes [1] [1] .plot (theta_hfss, to_db(numpy. (h_phi_hfss_combined_array), db
=20), ’.7)

245 axes [2] [1].plot (theta_hfss, to_db(numpy. (h_tot_hfss_combined_array), db
=20), ’.7)

246 axes [0] [1] . legend ()

247

248 ax axes:

249 _ax ax:

250 _ax.grid(True)

251 _ax.set_ylim([y_min, 1])

252 _ax.set_yticks (numpy.arange(y_min, 0.1, step=6))

253 _ax.set_x1im([-90, 90])

254 _ax.set_xticks (numpy.arange(-90, 91, step=30))

255 plt.subplots_adjust (wspace=0.1, hspace=0.1)

256 fig.savefig(

257 f’../parts/Theoretical Foundation/hfss_analytically_array_vs_hfss_array

.pdf’,

258 transparent=True, bbox_inches=’tight’, pad_inches=0)

259

260 # HFSS combined and rotated array

261 betas = -beta * numpy.ones(N)

262 e_theta_steered_array, e_phi_steered_array = combining_general_array(

263 antenna_pos=antenna_pos, a=a,

264 theta=Theta.flatten(), lamb=lamb,

265 phi=Phi.flatten(),

266 betas=betas, fields_func=strip.e_hfss)

267 e_tot_steered_array = numpy.sqrt(numpy. (e_theta_steered_array) *x* 2 +
numpy . (e_phi_steered_array) ** 2)

268 array_rotated_max = numpy. (e_tot_steered_array)

269

270 e_theta_hfss_combined_array, e_phi_hfss_combined_array =
combining_general_array (

271 antenna_pos=antenna_pos, a=a,

272 theta=theta_grid, lamb=lamb,

273 phi=numpy.full_like(theta_grid, deg2rad(e_plane_phi)),

274 betas=betas,
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fields_func=strip.e_hfss)

h_theta_hfss_combined_array, h_phi_hfss_combined_array =
combining_general_array(
antenna_pos=antenna_pos, a=a,
theta=theta_grid, lamb=1lamb,
phi=numpy.full_like(theta_grid, deg2rad(h_plane_phi)),
betas=betas,
fields_func=strip.e_hfss)
e_tot_hfss_combined_array = numpy.sqrt(
numpy . (e_theta_hfss_combined_array) ** 2 + numpy. (
e_phi_hfss_combined_array) x* 2)
h_tot_hfss_combined_array = numpy.sqrt(
numpy . (h_theta_hfss_combined_array) ** 2 + numpy. (
h_phi_hfss_combined_array) *x 2)

fig, axes = plt.subplots(nrows=3, ncols=2, sharex=’col’, sharey=True,
figsize=(3 *x fig_size, 2 * fig_size))

axes [0] [0] .set_title(f"E-Plane  ($\phiy=,0"\circ$)")

axes [0] [1] .set_title(f"H-Plane,($\phi = 90" \circ$)")

fig.suptitle (f"Analytically_ Rotated and Combined Array,vs HFSS,-,Steered,$
\\beta,=,{rad2deg(beta) :0.0f} \circ$")

axes [0] [0] .set_ylabel (r"$E_\thetay["\circ]l$, [dBI1")

axes [1]1[0].set_ylabel (r"$E_\phi$ ,[dBI")

axes [2] [0] .set_ylabel (r"$E_{tot}$,[dB]1")

axes [2] [0] .set_xlabel(r"$\theta, ["\circl$")

axes [2][1].set_xlabel(r"$\theta,  [“\circl$")

axes [0] [0] . plot (theta_hfss, hfss_e_theta_db_array_steered[e_plane_phil].locl[
theta_hfss])

axes [1]1 [0] . plot (theta_hfss, hfss_e_phi_db_array_steered[e_plane_phi].locl[
theta_hfss])

axes [2] [0] . plot (theta_hfss, hfss_e_tot_db_array_steered[e_plane_phil].loc([
theta_hfss])

axes [0] [0] . plot (theta_hfss, to_db(numpy. (e_theta_hfss_combined_array) /

array_rotated_max, db=20), ’.’°)

axes [1] [0] . plot (theta_hfss, to_db(numpy. (e_phi_hfss_combined_array) /
array_rotated_max, db=20), ’.°)

axes [2] [0] . plot (theta_hfss, to_db(numpy. (e_tot_hfss_combined_array) /
array_rotated_max, db=20), ’.°)

axes [0] [1].plot (theta_hfss,

hfss_e_theta_db_array_steered[h_plane_phil.loc[

theta_hfss], label="HFSS")

axes [1] [1] .plot (theta_hfss,
theta_hfss])

axes [2] [1] . plot (theta_hfss,
theta_hfss])

axes [0] [1].plot (theta_hfss,

hfss_e_phi_db_array_steered[h_plane_phi].loc[
hfss_e_tot_db_array_steered[h_plane_phi].loc[

to_db (numpy . (h_theta_hfss_combined_array) /

array_rotated_max, db=20), ’.7,
label="Analytical")

axes [1] [1].plot (theta_hfss,

to_db (numpy . (h_phi_hfss_combined_array) /

array_rotated_max, db=20), ’.’)

axes [2] [1] . plot (theta_hfss,

to_db (numpy . (h_tot_hfss_combined_array) /

array_rotated_max, db=20), ’.’°)

axes [0] [1].1legend ()

ax axes:
ax ax:

_ax.grid(True)
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317 _ax.set_ylim([y_min, 1])

318 _ax.set_yticks (numpy.arange(y_min, 0.1, step=6))

319 _ax.set_x1im ([-90, 90])

320 _ax.set_xticks (numpy.arange(-90, 91, step=30))

321 ax axes[:, 0]:

322 ax.set_x1im([-90 + rad2deg(beta), 90 + rad2deg(beta)l)

323 ax.set_xticks (numpy.arange (-90 + rad2deg(beta), 91 + rad2deg(beta),
step=30))

324 plt.subplots_adjust (wspace=0.1, hspace=0.1)

325 fig.savefig(

326 f’../parts/Theoretical Foundation/
hfss_analytically_rotated_array_vs_hfss_array.pdf’,

327 transparent=True, bbox_inches=’tight’, pad_inches=0)

B.13 Validation Model for Optimizing Array

1 arraytools *

2 numpy

3 pandas

4 matplotlib pyplot as plt

5 matplotlib use, rc

6 scipy.optimize minimize

7

g |rc(’text’, usetex=True)

9 |lrc(’font’, family=’serif’)

10 [use(’Qtb5Agg’)

11 |plt.rcParams.update ({’font.size’: 15})

12 | pandas.set_option(’expand_frame_repr’, False)
13 | pandas.set_option(’display.max_rows’, False)

14 |numpy.set_printoptions (edgeitems=30, linewidth=100000)
15

16 |costs = []

17

18 __name__ == ’__main__":

19 f = 0.433e9

20 lamb = c0 / £

21 theta_min = 0

22 theta_max = 180

23 theta_deg = numpy.linspace(theta_min, theta_max, 200)

24 full_theta_deg = numpy.linspace(theta_min, theta_max, 200)

25 theta_grid = deg2rad(theta_deg)

26 full_theta_grid = deg2rad(full_theta_deg)

27 n_theta_hfss = (theta_deg)

28 e_plane_phi = 90

29 phi_plane = numpy.full_like(theta_grid, deg2rad(e_plane_phi))

30

31 E_theta, E_phi, directivity = get_Etheta_Ephi_directivity(full_theta_grid,
phi_plane)

32

33 # Plotting 1 element

34 fig_size = 3

35 fig, axes = plt.subplots(nrows=3, ncols=1, sharey=True, sharex=True,
figsize=(8, 9))

36 axes [0] .plot (full_theta_deg, to_db(numpy. (E_phi) .astype( ), db=20),

label=f’0ne element’)
37 axes [0] .set_ylabel (£"$E_\\phi$ ,[dB]1")
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axes [1] .set_ylabel (£"$E_\\theta$ ,[dB]")

axes [2] . set_ylabel (£"D,[dB]")

axes [1] .plot(full_theta_deg, to_db(numpy. (E_theta) .astype( ), db=20)
, label=f’0One_element’)

axes [2] .set_xlabel (r"$\theta,["\circl$")

axes[1] .set_x1im ([0, 180])

axes [2] . plot (full_theta_deg, to_db(numpy. (directivity), db=20), label=f’
One_element’)
ax axes:
ax.grid ()

ax.legend ()
plt.subplots_adjust (wspace=0.1, hspace=0.1)
fig.set_tight_layout (True)

N =3
# Distance must be greater than 2x*L
distance = 0.5 * lamb

d = distance * numpy.arange(-(N - 1) / 2, (N / 1) / 2, 1)
a = numpy.ones (N)

fields_func (theta, phi):
_e_theta, _e_phi, _dir = get_Etheta_Ephi_directivity(theta, phi)
_e_theta, _e_phi

antenna_pos = numpy.vstack ([numpy.zeros_like(d),
d,
numpy .zeros_like(d)]).T

alphas = deg2rad (numpy.array(N * [0]))
betas = deg2rad(numpy.array(N * [-90]))
gammas = deg2rad (numpy.array(N * [55]))

e_theta_steered_array, e_phi_steered_array = combining_general_array(
antenna_pos=antenna_pos, fields_func=fields_func,
a=a, theta=theta_grid, phi=phi_plane,
lamb=lamb, alphas=alphas,
betas=betas, gammas=gammas)

e_tot_steered_array = numpy.sqrt(numpy. (e_theta_steered_array) **x 2 +
numpy . (e_phi_steered_array) ** 2)

e_theta_steered_array = e_theta_steered_array.T

e_phi_steered_array = e_phi_steered_array.T

e_tot_steered_array = e_tot_steered_array.T

f_d_theta = e_theta_steered_array
f_d_phi = e_phi_steered_array
epsilon =1

max_iterations = 500

get_e_theta_e_phi_from_x(x):

x = x.reshape (-1, n_var)

pos = x[:, :3]

alphas = x[:, 3]

betas = x[:, 4]

gammas = x[:, 5]

a_module = x[:, 6]

a_phase = x[:, 7]

a = a_module * exp(lj * a_phase)
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94 _e_theta, _e_phi = combining_general_array(

95 antenna_pos=pos, fields_func=fields_func,

96 a=a, theta=theta_grid, phi=phi_plane,

97 lamb=1lamb, alphas=alphas,

98 betas=betas, gammas=gammas)

99 _e_theta, _e_phi

100

101

102 func_to_minimize (x):

103 costs

104 _e_theta, _e_phi = get_e_theta_e_phi_from_x(x)

105 f_theta = _e_theta

106 f_theta = f_theta.T

107 f_phi = _e_phi

108 f_phi = f£f_phi.T

109 min_value = numpy. (numpy . (f_theta - f_d_theta)) + numpy. (numpy

(f_phi - f_d_phi))

110 (f"Difference: {min_valuel}")

111 costs.append(min_value)

112 min_value

113

114

115 constraint_function(x):

116 _e_theta, _e_phi = get_e_theta_e_phi_from_x(x)

117 f_theta = _e_theta

118 f_theta = f_theta.T

119 f_phi = _e_phi

120 f_phi = f_phi.T

121 constraint = epsilon - numpy. (numpy . (f_theta - f_d_theta)) -

numpy. (numpy . (f_phi - f_d_phi))

122 constraint

123

124

125 do = 0.8 * lamb

126 n_var = 8

127 x0 = numpy.zeros (shape=(N, n_var))

128 x0[:, :3] = numpy.vstack([numpy.array([0.2, 0.2, 0.2]) * 4O,

129 d0 * numpy.arange(-(N - 1) / 2, (N / 1) / 2, 1),

130 numpy.zeros(N)]).T

131 x0[:, 3] = deg2rad(numpy.array(N * [0]))

132 x0[:, 4] = deg2rad(numpy.array(N * [-90]))

133 x0[:, 5] = deg2rad(numpy.array([90, 30, 110]))

134 x0[:, 6] = numpy.ones(N)

135 x0[:, 7] = numpy.zeros(N)

136

137 x0 = x0.flatten()

138

139 bounds = N * [[-N * lamb, N * lamb], [-N * lamb, N * lamb], [0, N * lamb],
(-pi / 2, pi / 2], [-pi / 2, pi / 2],

140 (-pi / 2, pi / 21, [0, 11, [0, 2 * pill]

141

142 constraints = (

143 {

144 ’type’: ’imneq’,

145 ’fun’: constraint_function

146 b

147 algorithm = "SLSQP"

148 res = minimize (func_to_minimize, xO0, method=algorithm, bounds=bounds,
constraints=constraints,
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options={’maxiter’: max_iterations, ’disp’: Truel})
X = res.x
x = x.reshape(-1, n_var)
pos = x[:, :3]
_alphas = x[:, 3]
_betas = x[:, 4]
_gammas = x[:, 5]
_a_module = x[:, 6]
_a_phase = x[:, 7]
_a = _a_module * exp(lj * _a_phase)
e_theta_opt, e_phi_opt = combining_general_array(
antenna_pos=pos, fields_func=fields_func,
a=_a, theta=theta_grid, phi=phi_plane,
lamb=1lamb, alphas=_alphas,
betas=_betas, gammas=_gammas
)
e_tot_opt = numpy.sqrt(numpy. (e_theta_opt) **x 2 + numpy. (e_phi_opt)
**k 2)
e_theta_opt = e_theta_opt.T
e_phi_opt = e_phi_opt.T
e_tot_opt = e_tot_opt.T
("Desiredarraygpositions:")
(antenna_pos / lamb)
("Final array_,positions:")
(pos / lamb)
("Desiredarrayyalphas:")
(rad2deg(alphas))
("Final array_,alphas:")
(rad2deg(_alphas))
("Desired array_ betas:")
(rad2deg (betas))
("Final array_ betas:")
(rad2deg(_betas))
("Desiredarray, gammas:")
(rad2deg (gammas))
("Final array, gammas:")
(rad2deg(_gammas))
("Desired a:")
(a)
("Finalga:")
(_a)
# Plotting results
fig, axes = plt.subplots(nrows=3, ncols=1, sharey=True, sharex=True,
figsize=(8, 6))
axes [0] .plot(theta_deg, to_db(numpy. (e_phi_steered_array) .astype( ),
db=20) ,
label=f’Array_ with {N} elements’)
axes [0] . plot(theta_deg, to_db(numpy. (e_phi_opt) .astype( ), db=20), ~’
--7, label=f’SQLQuresult’)
axes [0] .set_ylabel (£"$E_\\phi$,,[dB]1")
axes [1].set_ylabel (£"$E_\\theta$ ,[dB]")
axes [1] .plot(theta_deg, to_db(numpy. (e_theta_steered_array) .astype(
), db=20),
label=f’Array with, {N} elements’)
axes [1] . plot (theta_deg, to_db(numpy. (e_theta_opt) .astype( ), db=20),

J )
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label=f’SQLQ,result’)
axes[-1].set_xlabel(r"$\theta, ,["\circl$")
axes [-1] .set_x1lim([theta_min, theta_max])
axes [2] .set_ylabel (£f"$|E|$,[dB]")

axes [2] . plot (theta_deg, to_db(numpy. (e_tot_steered_array) .astype( ),
db=20), label=f’Array_ with ,{N} jelements’)

axes [2] . plot(theta_deg, to_db(numpy. (e_tot_opt) .astype ( ), db=20), °’
--7, label=f’SQLQ_result’)
ax axes:
ax.grid ()

ax.legend ()
plt.subplots_adjust (wspace=0.1, hspace=0.1)
fig.set_tight_layout (True)

# Plotting cost

figl, axesl = plt.subplots(nrows=1, ncols=1, sharey=True, sharex=True,
figsize=(8, 6))

axesl.set_yscale("log")

axesl.plot (numpy.array(costs), ’.’, label="Cost")

axesl.legend ()

axesl.grid ()

axesl.set_x1im ([0, (costs)])

axesl.set_title(f’Final costy=,{numpy.min (numpy.array(costs)):0.2E}’)

axesl.set_xlabel ("Number  of Evaluations")

axesl.set_ylabel ("Cost")

fig.set_tight_layout (True)

df = pandas.DataFrame ({
'$x,[\lambdal$’: x[:, 0] / lamb,
"$y,[\lambdal$’: x[:, 1] / lamb,
'$z, [\lambdal$’: x[:, 2] / lamb,
’$\\alpha,["\circ]$’: rad2deg(_alphas),
>$\\beta, ["\circl$’: rad2deg(_betas),
’$\\gamma, ["\circl$’: rad2deg(_gammas)
b

save_results = True
save_results:
df .to_csv(f’./../../parts/Antenna Array/array_configuration_{algorithm
}.csv?)
df .to_latex(f’./../../parts/AntennayArray/array_configuration_{
algorithm}.tex’, float_format="%.2f")
fig.savefig(f’./../../parts/Antenna Array/field_comparison_{algorithm}.
pdf’, transparent=True,
bbox_inches=’tight’, pad_inches=0)
figl.savefig(f’./../../parts/Antenna Array/algorithm_convergence_{
algorithm}.pdf’, transparent=True,
bbox_inches=’tight’, pad_inches=0)

B.14 Optimizing Array Pattern Design

arraytools *
numpy
pandas
matplotlib pyplot as plt

matplotlib use, rc
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scipy.optimize minimize
rc(’text’, usetex=True)
rc(’font’, family=’serif’)

use (’Qt5Agg’)

plt.rcParams.update ({’font.size’: 15})
pandas.set_option(’expand_frame_repr’, False)
pandas.set_option(’display.max_rows’, False)

numpy .set_printoptions (edgeitems=30, linewidth=100000)

costs = []

__name__ == ’__main__":

f = 0.433e9

lamb = cO0 / £

theta_min = 0

theta_max = 90

fov_theta = 70

maximum_e_theta_drop = 0.5

theta_deg = numpy.linspace(theta_min, fov_theta, 200)
full_theta_deg = numpy.linspace(theta_min, theta_max, 200)
theta_grid = deg2rad(theta_deg)

full_theta_grid = deg2rad(full_theta_deg)

phi_deg = numpy.linspace (0, 360, 200)

phi_grid = deg2rad(phi_deg)

n_theta_hfss = (theta_deg)

n_phi_hfss = (phi_deg)

e_plane_phi = 90

phi_plane = numpy.full_like(theta_grid, deg2rad(e_plane_phi))

E_theta, E_phi, directivity = get_Etheta_Ephi_directivity(full_theta_grid,
phi_plane)

# Plotting 1 element

fig_size = 3

fig, axes = plt.subplots(nrows=3, ncols=1, sharey=True, sharex=True,
figsize=(8, 9))

axes [0] .plot(full_theta_deg, to_db(numpy. (E_phi) .astype( ), db=20),

label=f’0ne element ’)

axes [0] .set_ylabel (£"$E_\\phi$, [dB]1")

axes [1] .set_ylabel (£"$E_\\theta$ ,[dBI")

axes [2] .set_ylabel (£"D,[dB]")

axes [1] .plot(full_theta_deg, to_db(numpy. (E_theta) .astype ( ), db=20)
, label=f’0One_element’)

axes [2] .set_xlabel (r"$\theta, ["\circl$")

axes[1] .set_xlim([theta_min, theta_max])

axes [2] .plot (full_theta_deg, to_db(numpy. (directivity), db=20), label=f’
One_ element’)
ax axes:
ax.grid ()
ax.legend ()

plt.subplots_adjust (wspace=0.1, hspace=0.1)

fig.set_tight_layout (True)

# Plotting 1 element

fig_size = 3

fig, axes = plt.subplots(nrows=3, ncols=1, sharey=True, sharex=True,
figsize=(8, 9))
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59 axes [0] .plot(full_theta_deg, numpy. (E_phi) .astype( ), label=f’0ne
element’)

60 axes [0] .set_ylabel (£"$E_\\phi$")

61 axes [1] .set_ylabel (£"$E_\\theta$")

62 axes [2] .set_ylabel (£"D")

63 axes [1] .plot (full_theta_deg, numpy. (E_theta) .astype ( ), label=f’0ney
element’)

64 axes [2] .set_xlabel (r"$\theta,["\circl$")

65 axes[1] .set_xlim([theta_min, theta_max])

66 axes [2] .plot (full_theta_deg, numpy. (directivity), label=f’0One element’)

67 ax axes:

68 ax.grid ()

69 ax.legend ()

70 plt.subplots_adjust (wspace=0.1, hspace=0.1)

71 fig.set_tight_layout (True)

72

73

74 fields_func(theta, phi):

75 _e_theta, _e_phi, _dir = get_Etheta_Ephi_directivity(theta, phi)

76 _e_theta, _e_phi

77

78

79 N =5

80 a = numpy.ones (N)

81 epsilon = 0

82 max_iterations = 300

83

84

85 get_e_theta_e_phi_from_x(x):

86 x = x.reshape(-1, 6)

87 pos = x[:, :3]

88 alphas = x[:, 3]

89 betas = x[:, 4]

90 gammas = x[:, 5]

91 _e_theta, _e_phi = combining_general_array(

92 antenna_pos=pos, fields_func=fields_func,

93 a=a, theta=theta_grid, phi=phi_plane,

94 lamb=1lamb, alphas=alphas,

95 betas=betas, gammas=gammas)

96 _e_theta, _e_phi

97

98

99 func_to_minimize (x):

100 costs

101 _e_theta, _e_phi = get_e_theta_e_phi_from_x(x)

102 f_theta = _e_theta

103 f_theta = f_theta.T

104 f_phi = _e_phi

105 f_phi = f_phi.T

106 e_tot = numpy.sqrt(numpy. (f_theta) **2 + numpy. (f_theta) **2)

107 delta = e_tot. () / e_tot. () - epsilon

108 (f"Delta: {deltal}")

109 costs.append(delta)

110 delta

111

112

113 distance = 0.5 * lamb

114 d0 = distance * numpy.arange(0, N, 1)

115 x0 = numpy.zeros (shape=(N, 6))
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x0[:, :3] = numpy.vstack([numpy.array(N * [0]) * 4O,
do0,
numpy.zeros_like(d0)]1).T
x0[:, 3] = deg2rad(numpy.array(N * [0]))
x0[:, 4] = deg2rad(numpy.array(N *x [0]))
x0[:, 5] = deg2rad (numpy.array(N * [0]))
df0 = pandas.DataFrame ({
’$x_0,[\lambdal$’: xO0[:, 0] / lamb,
’$y_0,[\lambdal$’: x0[:, 1] / lamb,
’$z_0,[\lambdal$’: x0[:, 2] / lamb,
’$\\alpha_0,["\circl$’: rad2deg(x0[:, 31),
’$\\beta_0,["\circl$’: rad2deg(x0[:, 41),
’$\\gamma_O0, ["\circl$’: rad2deg(x0[:, 5])
i)
x0 = x0.flatten ()
bounds = N * [[-N * lamb, N * lamb], [-N * lamb, N * lamb], [0, N * lamb],
[-pi / 2, pi / 2], [-pi / 2, pi / 2],
[-pi / 2, pi / 211
algorithm = ’L-BFGS-B’
res = minimize(func_to_minimize, x0, method=algorithm, bounds=bounds,
options={’maxiter’: max_iterations, ’disp’: Truel})
X = res.x
x = x.reshape (-1, 6)
pos = x[:, :3]
_alphas = x[:, 3]
_betas = x[:, 4]
_gammas = x[:, 5]

e_theta_result, e_phi_result =
antenna_pos=pos,
a=a, theta=full_theta_grid,
lamb=lamb, alphas=_alphas,
betas=_betas, gammas=_gammas)

e_tot_steered_array_sqlq =
numpy . (e_phi_result) *x 2)
e_theta_result = e_theta_result.T
e_phi_result = e_phi_result.T
e_tot_steered_array_sqlq =

("Final array,positions:")
(pos)

("Final array,alphas:")
(rad2deg(_alphas))

("Final array_ betas:")
(rad2deg(_betas))
("Final array, gammas:")
(rad2deg (_gammas))

# Plotting results

fig_size = 3

fig, axes = plt.subplots(nrows=2,
figsize=(8, 6))

axes [0] .plot (full_theta_deg, to_db(numpy.
db=20), label=f’SQLQ_result’)

ncols=1,

numpy . sqrt (numpy .

combining_general_array (
fields_func=fields_func,
phi=phi_plane,

(e_theta_result) *x 2 +

e_tot_steered_array_sqlq.T

sharey=True, sharex=True,

(e_phi_result).astype(
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axes [0].set_ylabel (£"$E_\\phi$,[dBI")
axes [1].set_ylabel (£"$E_\\theta$ ,[dB]")
axes [1] .plot(full_theta_deg, to_db(numpy. (e_theta_result) .astype( ),
db=20), label=f’SQLQuresult’)
axes [1].set_xlabel(r"$\theta, [“\circ]l$")
axes[1] .set_xlim([theta_min, theta_max])
ax axes:
ax.grid ()
ax.legend ()
plt.subplots_adjust (wspace=0.1, hspace=0.1)
fig.set_tight_layout (True)

# Plotting cost

figl, axesl = plt.subplots(nrows=1, ncols=1, sharey=True, sharex=True,
figsize=(8, 6))

axesl.set_yscale("log")

axesl.plot (numpy.array(costs), ’.’, label="Cost")

axesl.legend ()

axesl.grid ()

axesl.set_x1im ([0, (costs)])

axesl.set_title(f’Final costy=,{numpy.min(numpy.array(costs)):0.2E}’)

axesl.set_xlabel ("Number  of Evaluations")

axesl.set_ylabel ("Cost")

fig.set_tight_layout (True)

df = pandas.DataFrame ({
'$x,[\1lambdal$’: x[:, 0] / lamb,
’$y,[\lambdal$’: x[:, 1] / lamb,
’$z,[\lambdal$’: x[:, 2] / lamb,
"$\\alpha,["\circ]l$’: rad2deg(_alphas),
"$\\beta, ["\circ]l$’: rad2deg(_betas),
"$\\gamma,, ["\circl$’: rad2deg(_gammas)

»

(df0)

(df)
save_results = False

save_results:
sufix = f"for_{fov_theta}_degrees_{N}_antennas_{algorithm}"
fig.savefig(f’./../../parts/Antenna Array/field_result_{sufix}.pdf’,
transparent=True, bbox_inches=’tight’, pad_inches=0)
figl.savefig(f’./../../parts/Antenna Array/algorithm_convergence_{sufix
}.pdf’,
transparent=True, bbox_inches=’tight’, pad_inches=0)
df .to_csv(f’./../../parts/Antenna Array/array_configuration_{sufix}.csv

)
df .to_latex(f’./../../parts/Antenna Array/array_configuration_{sufix}.
tex’,

float_format="7%.2f")
df0.to_latex(
£f°./../../parts/Antenna Array/initial_array_configuration_{sufix}.
tex’,
float_format="Y%.2f")
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numpy
pandas
matplotlib pyplot as plt
matplotlib use, rc
datetime datetime
multiprocessing
requests
json
configparser
scipy.optimize minimize
time sleep
aftk.antenna.eigenantenna get_eigenantennas_smc,
get_max_directivity

rc(’text’, usetex=True)

rc(’font’, family=’serif’)

use (’Qt5Agg’)

plt.rcParams.update ({’font.size’: 153})
pandas.set_option(’expand_frame_repr’, False)
pandas.set_option(’display.max_rows’, False)

numpy .set_printoptions (edgeitems=30, linewidth=100000)

costs = []
__name__ == ’__main__":
num_cores = multiprocessing.cpu_count ()
f = 2244e6
lamb = cO0 / £
sat_number = "56215"
start_time = ’2024-03-04,00:00:00.000"
stop_time = ’2024-05-03,23:59:59.999"
prop_end_time = stop_time

update_tle = False
update_tle:
df = get_tle_from_spacetrack(sat_number, start_time, stop_time)
linel = df.iloc[0].TLE_LINE1
line2 = df.iloc[0].TLE_LINE2

linel = ’1,562150,23054AP,,24064.22928279,.00040375,,,00000-0,,10529-2,

0,,9998”
line2 = ’2,56215,,97.3763,323.0596,,0008862,130.9637,229.2376,

15.38687649,,50033"

sat = Satellite(eirp=2, start_time=start_time, end_time=prop_end_time, N
=500000, calc_gain_pattern_sym=False,
linel=linel, line2=1ine2, f=f)

main_land = brazil_mainland ()

long_min, lat_min, long_max, lat_max = main_land.bounds

station_lon, station_lat = main_land.centroid.coords [0]

ground_antenna = Parabola(f=f, D=1.5 / lamb, eff=0.5, temp=312, bandwidth=6
e6)

station = Station(f=f, lat=station_lat, lon=station_lon,

e_theta_e_phi_function=ground_antenna.get_fields_sym)
link = LinkBudget(satellite=sat, station=station, R_spec=10e6, Eb_NO_min
=7.5, calc_transmitted_data=False,
G_other=-1.6)
# Getting only the biggest pass
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link.passes.loc[:, ’maxjelev’] = link.passes[’max_ elev’].astype(float).
apply (numpy .rad2deg)

link.passes.loc[:, ’meanjazi’] = link.passes[’meanyazi’].astype(float).
apply (numpy.rad2deg)

link.passes.sort_values(by=’duration’, inplace=True, ascending=False)

# link.passes = link.passes[link.passes[’max elev’] > 5]

n_theta = 90

n_phi = 180

theta_max_deg = 180

theta_deg = numpy.linspace(0, theta_max_deg, n_theta)

phi_deg = numpy.linspace (0, 360, n_phi)

theta_grid = deg2rad(theta_deg)

phi_grid = deg2rad(phi_deg)

Theta, Phi = numpy.meshgrid(theta_grid, phi_grid, indexing=’ij’)
Theta = Theta.flatten()

Phi = Phi.flatten ()

l_max =5

q = get_eigenantennas_smc(l_max, O, 0)[:, O0].reshape(-1, 1)

# q = "./yagi.smc.est"

# Best design:

# for N, elev_min, elev_max in [(4, 20, 30), (5, 30, 40), (5, 40, 50), (6,

60, 70), (9, 70, 80), (8, 80, 90), (9, 80, 90)1]:
for N in [5]:
for elev_min, elev_max in [(60, 70)]:
filter_direction = True
direction = "descending"
right_passes = True
left_passes = False
max_iterations = 500
from_last_run = True
minimize_dir = False
use_constraints = False
minimize = "e_tot"
algorithm = "COBYLA"
algorithm "L-BFGS-B"
algorithm "SLSQP"
# optimize_for_x0 = "angles_and_a_factor"
optimize_for_x0 = "position_and_angles"
direction_for_x0 = "descending_right"
# optimize = "all"
# optimize = "angles_and_a_factor"
optimize = "position_and_angles"
print (£"0Optimizing {optimize} for {N} antennas, from elevation{
elev_min} to,{elev_max}.")
print (
f"from_last_run,=_ {from_last_run}, |yright_passes =1
right_passes}, |l left_passesy =, {left_passes}_ |y
use_constraints =, ,{use_constraintsl}")
# Plotting passes
fig_mask, axes_mask = plt.subplots(figsize=(8, 6))
axes_mask.plot (*main_land.exterior.coords.xy, color=’black’)

axes_mask.plot(station_lon, station_lat, "x", color=’black’)
if filter_direction:
filtered_passes = link.passes[link.passes[’direction’] ==

direction].copy ()
else:
filtered_passes = link.passes.copy()
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_lat = link.datal[row.init:row.end][’lat_WGS84_deg’]
_lon = link.data[row.init:row.end][’lon_WGS84_deg’]
axes_mask.plot(_lon, _lat, ’.°)
axes_mask.set_aspect(’equal’)
axes_mask.set_xlabel(’Degrees Longitude’)
axes_mask.set_ylabel(’Degrees Latitude’)
axes_mask.set_title(f’Pass_ mask’)
fig_mask.set_size_inches (8, 6)
axes_mask.set_xlim([long_min, long_max])
axes_mask.set_ylim([lat_min, lat_max])
fig_mask.tight_layout ()
plt.show ()
("Filtered_ passes:")
(filtered_passes)
# Selecting pass

el_rad = numpy.concatenate (
[link.data[row.init:row.end][’el_rad’].values index, row
filtered_passes.iterrows()])
az_rad = numpy.concatenate (
[link.data[row.init:row.end][’az_rad’].values index, row

filtered_passes.iterrows ()])
# Polar angle = 90 - Elevation
pass_theta_grid = pi / 2 - el_rad
# Azimuth angle = 180 - Azimuth
pass_phi_grid = pi - az_rad
pass_phi_grid[pass_phi_grid < 0] += 2 % pi
pass_theta_deg = rad2deg(pass_theta_grid)
pass_phi_deg = rad2deg(pass_phi_grid)
kx, ky, kz = from_spherical_to_cartesian(numpy.ones_like(

pass_theta_grid), pass_theta_grid, pass_phi_grid)

k = numpy.vstack([kx, ky, kz])
k0O = k[:, 0]
kn = k[:, -1]
satellite_direction = kn - kO
k = numpy.vstack ([kx, ky, kzl)

theta_min = (pass_theta_deg)
theta_max = (pass_theta_deg)
phi_min = (pass_phi_deg)
phi_max = (pass_phi_deg)

# Plotting az, el, theta_grid and phi_grid

figure_pass, axes_pass = plt.subplots(2, 2, sharex=True, figsize
=(10, 10))

i=20
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filtered_passes = filtered_passes[filtered_passes[’max_ elev’] >
elev_min].copy ()
filtered_passes = filtered_passes[filtered_passes[’maxelev’] <
elev_max].copy ()
right_passes left_passes:
filtered_passes = filtered_passes[filtered_passes[’position’]
== ’right’]
direction += " _right"
left_passes right_passes:
filtered_passes = filtered_passes[filtered_passes[’position’]
== ’left’]
direction += "_left"
direction += "_right_left"
index, row filtered_passes.iterrows ():
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index, row filtered_passes.iterrows () :

data = link.datal[row.init:row.end]

_el_rad = data.el_rad.values

_az_rad = data.az_rad.values

_theta_grid = pi / 2 - _el_rad

_phi_grid = pi - _az_rad

_theta_deg = rad2deg(_theta_grid)

_phi_deg = rad2deg(_phi_grid)

axes_pass [0] [0].plot (data.index, numpy.rad2deg(_az_rad), ’.°,
color=f"C{il}")

axes_pass [0] [0] .set_title(’Azimuth’)

axes_pass [0] [1].plot(data.index, numpy.rad2deg(_el_rad), ’.’,
color=£f"C{i}")

axes_pass [0][1].set_title(’Elevation’)

axes_pass [1] [0] .plot (data.index, _phi_deg, ’.’, color=£f"C{il}")
axes_pass [1][0].set_title(r’$\phi$’)
axes_pass [1][1].plot(data.index, _theta_deg, ’.’, color=f"C{il}"
)
axes_pass [1][1].set_title(r’$\theta$’)
i += 1
ax axes_pass:
_ax ax:
_ax.grid )
# xloc = md.MinutelLocator (interval=2)
xloc = md.DayLocator (interval=5)
# majorFmt = md.DateFormatter (’%H:%M’)
majorFmt = md.DateFormatter (’%d/%m’)
axes_pass [0][-1].xaxis.set_major_locator (xloc)
axes_pass[1][-1].xaxis.set_major_locator(xloc)
axes_pass [0][-1].xaxis.set_major_formatter (majorFmt)
axes_pass [1][-1].xaxis.set_major_formatter (majorFmt)
figure_pass.set_tight_layout (True)

folder_path = ’>./../../parts/Antenna Array/’

xO_sufix = f’{N}_antennas_{algorithm}_{optimize_for_x0}
_multipass_from_{elev_min}_to_{elev_max}_{direction_for_xO0}
_1 max_{1_max} _minimizing_ {minimizel}’

x0_path = f’{folder_path}tarray_configuration_{xO_sufix}.csv’

sufix = f’{N}_antennas_{algorithm}_{optimize} _multipass_from_{
elev_min}_to_{elev_max}_{direction}_l_max_{l_max}_minimizing_<{
minimizel}’

from_last_run:
a_threshold = 0
first_df0 = pandas.read_csv(xO_path, index_col=0)

first_df0 = first_dfO0[first_df0[’$lal$’].values > a_threshold]
N = (first_dfo0)

_x0 = first_dfo[’$x,[\\lambdal$’].values * lamb

_y0 = first_dfO0[’$y,[\\lambdal$’].values * lamb

_z0 = first_df0[’$z,[\\lambdal$’].values * lamb

alphas_0 = deg2rad(first_df0[’$\\alpha,["\\circ]$’].values)
betas_0 = deg2rad(first_df0[’$\\beta,["\\circl$’].values)
gammas_0 = deg2rad(first_dfO[’$\\gamma,["\\circ]l$’].values)

initial_pos = numpy.vstack([_x0,
_yo,
_z01).T
optimize == "angles_and_a_factor" optimize == "a_factor":

a = first_dfo[’$lal$’].values
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a_phase = deg2rad(first_dfO[’$\\phase{a}["\\circ]$’].values

)
a = numpy.ones(N)
a_phase = numpy.zeros (N)
distance = 0.5 * lamb
pos_x0 = numpy.zeros (N)
pos_y0 = distance * numpy.arange(-(N - 1) / 2, (N / 1) / 2, 1)
pos_z0 = numpy.zeros(N)
N % 2 == 0:
pointing_el = numpy.linspace (numpy. (el_rad), numpy. (
el_rad), ((N + 2) / 2))I[1:]
pointing_el = numpy.concatenate([pointing_el, pointing_el
[::-11D)
pointing_theta = (pi / 2 - pointing_el) * numpy.ones(N)
pointing_el = numpy.linspace (numpy. (el_rad), numpy. (
el_rad), ((N + 3) / 2))I[1:]
pointing_el = numpy.concatenate([pointing_el[:-1],

pointing_el[::-111])
pointing_theta = (pi / 2 - pointing_el) * numpy.ones (N)
right_passes:

pointing_azi = numpy.linspace (numpy. (az_rad), numpy. (
az_rad), N)
gammas_0 = pointing_azi - pi / 2

betas_O0 = numpy.zeros(N)
alphas_0 = pointing_theta # pitch

pointing_phi = numpy.linspace (numpy. (pass_phi_grid),
numpy . (pass_phi_grid), N)

gammas_0 = pi / 2 - pointing_phi # yaw

betas_O0 = numpy.zeros(N)

alphas_0 = pointing_theta # pitch

a = numpy.ones(N)

a_phase = numpy.zeros(N)

initial_pos = numpy.vstack([pos_xO0,
pos_yoO,
pos_z0]).T

_e_theta_0, _e_phi_O0 = combining_physical_steered_array(
initial_pos, a, Theta, Phi, lamb,
alphas=alphas_0, betas=betas_0, gammas=gammas_O,
antenna=q, l_max=1_max)

_e_tot_0 = numpy.sqrt(numpy. (_e_theta_0) ** 2 + numpy. (
_e_phi_0) =*x 2)

figd, axesO = plot_polar_contour_mag_db(Theta, Phi, to_db(_e_tot_0,

db=20) ,
title=f’$|E|$ for {N},
antennas’, ylabel=f"$|E
[$,[dB1™)
axes0.plot(pass_phi_grid, pass_theta_deg, ’.’, color=’white’)
plt.show ()

res, e_theta_result, e_phi_result, df0, df, costs =
minimize_pattern_diff (
theta_grid=pass_theta_grid, phi_grid=pass_phi_grid, lamb=lamb,
N=N, optimize=optimize,
a=a, a_phase=a_phase, algorithm=algorithm,
initial_pos=initial_pos, use_constraints=use_constraints,
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antenna=q, l_max=1_max, minimize=minimize,
alphas_O=alphas_0O, betas_O=betas_0, gammas_O=gammas_O,

max_iterations=max_iterations)

e_tot_result = numpy.sqrt(numpy. (e_theta_result) **x 2 + numpy.
(e_phi_result) **x 2)
e_theta_result = e_theta_result.T
e_phi_result = e_phi_result.T
e_tot_result = e_tot_result.T
xf = df [’$x,[\\lambdal$’].values * lamb
yf = df[’$y,[\\lambdal$’].values * lamb
zf = df[’$z,[\\lambdal$’].values * lamb
final_alphas = deg2rad(df[’$\\alpha,["\\circ]$’].values)
final_betas = deg2rad(df[’$\\beta,["\\circ]l$’].values)
final_gammas = deg2rad(df [’$\\gamma,["\\circ]$’].values)
final_a = df[’$lal$’].values * numpy.exp(1lj * df[’$\\phase{a}["\\
circ]$’].values)
final_pos = numpy.vstack ([xf,
yt,
zf1).T
distances = numpy.array (
[numpy . (
numpy . (numpy .sqrt ((final_pos[k, :] - numpy.delete(
final_pos, k, axis=0)) ** 2), axis=1)) / lamb
k

( (final_pos))1)

min_dist = numpy. (distances)

df ["Min_Distance_ $[\\lambdal$"] = distances
from_last_run:

(first_dfo0)
(df0)
(daf)
(f"Min_dist: {min_dist}")

e_theta_full, e_phi_full = combining_physical_steered_array(

f

inal_pos, final_a, Theta, Phi, lamb,

antenna=q, l_max=1_max,
alphas=final_alphas, betas=final_betas,
gammas=final_gammas)

e_tot

e_

# Plo
fig,

e_

_full = numpy.sqrt(numpy. (e_theta_full) ** 2 + numpy. (
phi_full) =*x 2)

tting results

axes = plot_fields_versus_phi(e_theta_result, e_phi_result,
tot_result, pass_phi_deg)

fig_theta, axes_theta = plot_fields_versus_phi(e_theta_result,

e_

# Plo
figl,

phi_result, e_tot_result, pass_theta_deg)
tting cost
axesl = plt.subplots(nrows=1, ncols=1, sharey=True, sharex=

True, figsize=(8, 6))

axesl.
axesl.

axesl

axesl.

axesl

axesl.

)
axesl
axesl
figl.

set_yscale("log")

plot (numpy.array(costs), ’.’, label="Cost")

.legend ()

grid ()

.set_x1im ([0, (costs)])
set_title(f’Final cost,=_ {numpy.min (numpy.array(costs)) :0.2E}

.set_xlabel ("Number of Evaluations")
.set_ylabel ("Cost")
set_tight_layout (True)
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save_results = True

fig2d, axes2d = plot_polar_contour_mag_db(Theta, Phi, to_db(
e_tot_full, db=20),
title=f’$|El$ for {N},
antennas’, ylabel=f"$
|[EI$,[dBI")
axes2d.plot(pass_phi_grid, pass_theta_deg, ’.’, color=’white’)

if save_results:

fig.savefig(f’{folder_path}field_result_{sufix}.pdf’,
transparent=True)

figl.savefig(f’{folder_path}algorithm_convergence_{sufix}.pdf’,

transparent=True)

df .to_csv(f’{folder_path}array_configuration_{sufixl}.csv’)

df .to_latex(f’{folder_path}tarray_configuration_{sufix}.tex’,
float_format="%.2f")

df0.to_csv(f’{folder_path}tinitial_array_configuration_{sufix}.
csv’)

df0.to_latex(f’{folder_pathl}initial_array_configuration_{sufix
}.tex’, float_format="9%.2f")

fig2d.savefig(f’{folder_path}field_2d_{sufix}.pdf’, transparent
=True)

fig_pos, axes_pos = plt.subplots(subplot_kw={’projection’: ’3d°’})
axes_pos.scatter(df ["$x,[\lambdal$"].values, df["$y, [\lambdal$"].
values, df ["$z_ [\lambdal$"].values)
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