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a b s t r a c t

Service robots are increasingly being used to perform missions comprising dangerous or tedious tasks
previously executed by humans. However, their users—who know the environment and requirements
for these missions—have limited or no robotics experience. As such, they often find the process of
allocating concrete tasks to each robot within a multi-robot system (MRS) very challenging. Our
paper introduces a framework for Multi-Robot mission Specification and decomposition (MutRoSe) that
simplifies and automates key activities of this process. To that end, MutRoSe allows an MRS mission
designer to define all relevant aspects of a mission and its environment in a high-level specification
language that accounts for the variability of real-world scenarios, the dependencies between task
instances, and the reusability of task libraries. Additionally, MutRoSe automates the decomposition
of MRS missions defined in this language into task instances, which can then be allocated to specific
robots for execution—with all task dependencies appropriately taken into account. We illustrate the
application of MutRoSe and show its effectiveness for four missions taken from a recently published
repository of MRS applications.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Service robots, i.e. ‘‘robots in personal use or professional
use that perform useful tasks for humans or equipment’’ (ex-
cluding industrial automation applications) [1], are increasingly
used in many fields, such as logistics, healthcare, telepresence,
maintenance, domestic tasks, education, and entertainment [2].
The complexity of robotic systems is also increasing, due to
the heterogeneity of robotic agents and the need of collabora-
tive behavior in multi-robot systems (MRS). The Horizon 2020
Robotics Multi-Annual Roadmap1 envisioned that tasks for de-
ployed teams of robots would be configured and specified by
users that may not be familiar with complex robotics design
environments. These users include [3] both technical operators,
who have knowledge of programming languages and instruments
for mission specification, and non-technical operators, who do
not possess programming or robotics knowledge. Non-technical
operators are only able to specify missions using simple tools
[provided with] graphical interfaces [3]. For this to happen, it is
paramount that end users are provided with tools that support
the highly-abstracted specification of missions. Nevertheless, pre-
cisely specifying missions and automatically processing them in

∗ Corresponding authors.
E-mail addresses: ericbgil.mutrose@gmail.com (E.B. Gil),

adu.calinescu@york.ac.uk (R. Calinescu).
1 https://eu-robotics.net/divi_overlay/roadmap/.
ttps://doi.org/10.1016/j.robot.2023.104386
921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
order to allocate tasks to the available MRS robots are among the
main challenges in robotics software engineering [4]. With this in
mind, high-level specification approaches come up as a way to
make MRS mission specification more appealing to end users, as
confirmed in the research literature [4–7].

Furthermore, robot capabilities, task dependencies, execution
constraints and other aspects which are inherent of MRS must
also be considered in such mission specifications [8]. To achieve
this, one needs to automatically perform the mission decompo-
sition as a first step in the MRS workflow, which we term the
mission decomposition process in this paper. In such decomposi-
tion, a mission specification is divided into a set of tasks that are
either independent or sequentially inter-dependent. It must be
noted that by sequentially inter-dependent tasks we mean tasks
that depend on one another and are executed in a sequential
fashion.

The decomposition process takes as input an unambiguous
specification of a mission and provides as a result valid mission
decompositions, given in terms of task instances ultimately re-
fined into actions , i.e., decompositions that satisfy all mission
constraints. In addition, this process must also provide the con-
straints between the task instances, where these constraints must
represent all of the task dependencies provided in the mission
specification. Once it is possible to automate this step, the follow-
ing steps in the MRS workflow can be further performed and the

system can achieve its full automation. To this end, there are four

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ajor characteristics that must be present in the specification in
rder to achieve such automated mission decomposition process.
First, there is the need of mission specification mechanisms

nd/or adaptation mechanisms to enable users to express ‘‘ex-
eptional’’ behaviors in order to specify how robots should cope
ith the real world variability [9], i.e. the variability of conditions

and events of application scenarios in real environments in which
robots are required to operate [3,10]. As stated in [2], ‘‘Program-
ming the [robot’s] task is not the most time consuming thing,
but programming the failure handling [...] People might need two
weeks to set up one application, two days to set up the task, and
eight days to set up all the failure cases’’.

Second, various types of constraints between tasks, and, specif-
ically, capability, execution, and ordering constraints (e.g., se-
quentially dependent tasks [11]) must also be considered since
they represent the dependencies among tasks from the mission
specification.

Third, there is the need to shift from a robot mission specifica-
tion to a fleet mission specification. In other words, the end-users
should be free to focus on the specification of the goal of the
mission without caring about specific tasks and actions to be
performed by a specific robot. This can be obtained by introducing
decoupling between the mission specification itself and the actual
robots to perform the mission [9].

Last but not least, the reusability of MRS task libraries is also at
stake. One of the reasons for the success of ROS, the most popular
middleware in robotics, is related to reusability, its community,
and the existing ecosystem [3]. Also, among the main impedi-
ments for reusing software artifacts we can mention technical
problems and lack of documentation [2]. It would be beneficial
for end-users to make use of libraries of tasks and skills defined
by domain experts [9].

Many approaches have proposed a higher-level abstraction for
MRS specifications [4,12–16]. Generally, these approaches are ei-
ther tailored to a specific domain, which hampers their reusability
across different robotic missions, or are not sufficiently param-
eterized to deal with real-world variability. To the best of our
knowledge, there is no approach that takes into account the
four aforementioned characteristics of real-world variability, vari-
ability of constraints, fleet mission specification, and reusability,
which are important enablers to model and decompose missions
for multi-robot systems. This view is confirmed by the Dragule
et al.’s recent survey of major features in current approaches for
MRS mission specifications [9]; it acknowledges that ‘‘the mission
specification problem still requires solutions able to make robots
usable in everyday life for accomplishing complex missions’’. The
view is also confirmed by the recent study describing the state-
of-the-art and state-of-practice of software variability in software
robotics [3], which, among the other observations, highlights:

• the need for instruments to ease the specification of excep-
tional behaviors in robots, which are, for instance, triggered
by uncertainty in the environment;

• the need for instruments to deal with the high variability
of customer-specific operating environments while dealing
with robustness under uncertainty;

• the need for advanced mechanisms for reusing and cus-
tomizing software solutions in a reliable and easy way.

To fill in those gaps, we introduce a Multi-Robot mission
pecification and decomposition (MutRoSe) framework that:
i) allows a designer to model MRS missions that account for
ariability of real-world scenarios, constraints between tasks,
eusability of task libraries and high-level MRS mission specifi-
ation, as well as, (ii) fully automates the mission decomposition
rocess, thus enabling fleet mission specification.
 i

2

Our MRS mission specification builds upon the concepts of the
Contextual Runtime Goal Model (CRGM) [17] and the Hierarchical
Task Network (HTN) planning formalism [18]. CRGM specifies the
global view of the robotic mission, by means of its high-level
goals, tasks, and their AND/OR refinements. Then, the Hierarchical
Task Network (HTN) further decomposes the high-level CRGM
tasks into fine-grained actions declared using the Hierarchical
Domain Definition Language (HDDL) [19], a common input lan-
guage for hierarchical planning problems. Finally, the mission
decomposition is achieved through a model transformation pro-
cess that takes into account: (i) the CRGM’s AND/OR refinements,
(ii) the HTN decomposition process, and (iii) configuration files
specifying both task constraints and the world knowledge. By
these means, we leverage the automation of the MRS workflow by
providing mission decomposition alternatives that can be further
fed into the task allocation process.2

In order to evaluate the proposed approach, we perform three
different experiments. In the first experiment, we aim at provid-
ing evidence that the approach both concisely models real-world
scenarios and accurately generates MRS mission decompositions.
To that end, we model four missions from the RoboMAX reposi-
tory [21], an extensible collection of robotic mission adaptation
exemplars. In the second experiment, we perform simulations
of multiple missions to assess the correctness and applicability
of the MRS mission decompositions generated by our approach.
To do this, we translate our mission decompositions into Instan-
tiated HTNs (iHTNs) [13], providing possible plans for mission
accomplishment. Finally, the third experiment empirically eval-
uates the scalability of the decomposition process, where the
time to decompose missions is measured for world knowledges of
increasing size. The results show that MutRoSe models are able to
capture several aspects of robotic missions and provide sufficient
features in order to model real-world scenarios. In addition, they
provide evidence for the decomposition process correctness in
MutRoSe, and show that the process is scalable enough for several
scenarios, requiring caution in some specific cases.

The rest of this paper is organized as follows. Section 2 gives
the necessary background. Section 3 presents the MutRoSe frame-
work, with details on the models and the decomposition process.
Section 4 describes the MutRoSe evaluation and its results. Sec-
tion 5 briefly describes related works. Finally, Section 6 provides
conclusions and proposes directions for future work.

2. Background

2.1. Goal modeling

Goal modeling provides a way to analyze the many require-
ments of the different stakeholders of a software system [17]. A
goal model provides a hierarchical decomposition of the system’s
goals into sub-goals and tasks, using a tree structure. The main
building blocks of a goal model are goals, tasks and actors, even
though we can have other structures like resources. Two types of
goal decomposition are supported: (i) OR decomposition, where
the fulfillment of one child goal is sufficient for the fulfillment
of the parent goal, and (ii) AND decomposition, where every
child goal needs to be fulfilled in order for the parent goal to be
fulfilled.

In addition, there can also be contexts and runtime annota-
tions, which compose a Contextual Runtime Goal Model (CRGM)
[17]. Contexts are observations of the system and its environ-
ment, expressed by means of boolean conditions. In turn, runtime
annotations define the runtime behavior of the system by means

2 This topic is outside the scope of our contribution. We refer the reader
nterested on this topic to [8,20].
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Fig. 1. A simple example goal model. The agent in this goal model is the MRS
System, which must perform goal G1 by the sequential execution of tasks T1
and T2.

of runtime operators, inducing the cooperation for the achieve-
ment of goals and execution of tasks in a predefined manner.
An example of a simple CRGM is shown in Fig. 1, where an
MRS system, which is the actor, has to retrieve an object by the
sequential execution of two tasks, labeled ‘Move To Location’
nd ‘Grasp Object’, but it can only start moving if the battery
evel is higher than 50%. In this example, the context condition
n the battery level is represented by a rectangle over the AND
efinement, whereas in our paper, contexts are given as attributes
f goals, as done by the pistar-GODA tool3
According to [22], a goal type is considered as a specific agent

ttitude towards goals. From the numerous goal types proposed
n goal-oriented approaches, we focus on three main goal types
efined in [23]: perform, achieve and query. A perform goal is
goal where the agent generates plans (if possible) and acts

ccordingly, regardless of reaching the state denoted by the goal.
n contrast, an achieve goal is a goal where the agent generates
lans and acts in order to achieve the goal’s achieve condition.
inally, a query goal is used to retrieve information using a query
tatement.
When using goals as runtime objects in a software system,

hese goal types may define additional agent behavior. A perform
oal may have a redo flag associated with it, which when acti-
ated makes the agent check for failure of the generated plans
nd re-execute the applicable ones in case it indeed has failed
uring execution. For an achieve goal, we have that the agent
reate new plans by applying the planning rules in a possibly
ifferent context, executing them in order to reach the achieve
ondition. Finally, a query goal can cause the agent to act in order
o retrieve the desired information, since this goal is considered
o succeed when the agent has all the information it is searching
or.

.2. HTN decomposition

In Hierarchical Task Network (HTN) planning, each state of the
orld is represented by a set of atoms, and each action corre-
ponds to a deterministic state transition, in a manner similar
o classical planning. In this kind of planning, the objective is to
erform some set of tasks having as input a set of operators and a
et of methods with the rules and constraints for decomposing a
ask into subtasks. This differs from classical planning, where the
bjective is to achieve a predefined set of goals. In addition, the
TN planning process decomposes nonprimitive (abstract) tasks
ecursively into smaller subtasks until primitive tasks (actions)

3 https://github.com/lesunb/pistarGODA-MDP.
3

are reached [18]. These primitive tasks can be directly performed
using the planning operators. One of the building blocks of HTN
planning is the task network [18], defined as follows.

Definition 1 (Task Network). A task network is a pair w = (U, C),
where U is a set of task nodes and C is a set of constraints. Each
constraint c ∈ C specifies a requirement that must be satisfied
by every plan that is a solution to the planning problem under
consideration.

In HTN decomposition, a task network is obtained by using an
HTN method to decompose a given task.

Definition 2 (HTN Method). An HTN method is a tuple m =

name(m), task(m), subtasks(m), constr(m)), where: name(m) is
an expression of the form n(x1, x2, . . . , xk) comprising a unique
method symbol n and a set of variable symbols x1, . . . , xk that
occur in m; task(m) is a nonprimitive task (decomposed by m);
and (subtasks(m),constr(m)) is a task network.

There are multiple kinds of constraints in a task network, of
which the following four are relevant to MutRoSE:

1. A precedence constraint is an expression of the form u≺v
which states that the last action in the decomposition of a
task u (defined as last(u, π )) must be executed before the
first action in the decomposition of a task v (defined as
first(v, π )). This type of constraint determines whether a
task network is totally ordered, in which case there is only
one possible decomposition, or partially ordered, in which
case multiple possible decompositions are available.

2. A before constraint is an expression of the form before(u,
condition), which states that a precondition must be true
before the first action from the decomposition of task u.

3. An after constraint is an expression of the form after(u,
condition), which states the expected conditions that must
be true after the last action from the decomposition of a
task u.

4. A between constraint is an expression of the form between
(u, v, condition), which specifies a condition that must be
true just after the last action in the decomposition of a task
u, just before the first action in the decomposition of task
v and in all states in between.

2.2.1. HDDL
HDDL [19] is an extension of the PDDL language for hierar-

chical planning domains. The aim of HDDL is to be as close as
possible to PDDL, since this last one is a very mature and robust
language for classical planning problems. In HDDL we represent
HTN’s and constraints in order to perform HTN planning given
an initial state of the world. In order to do this, we have two
files that provide these definitions: (i) the domain file, where
the HTN’s are defined alongside first-order logic predicates, valid
types and constants, and (ii) the problem file, where the initial
state of the world is defined alongside the initial task network to
be decomposed and the objects that will replace the variables in
tasks.

2.2.2. Task decomposition graph
The Task Decomposition Graph (TDG) [24,25] represents the

AND/OR structure of the task hierarchy. This graph is mainly com-
posed of two types of vertices: (i) task vertices, each of which may
represent an abstract task, if it is a non-leaf vertex, or a primitive
task, if it is a leaf vertex, and (ii) method vertices, which represent
methods and decompose abstract tasks into other abstract tasks
or primitive tasks. An example of a TDG is shown in Fig. 2, where
we can see how a decomposition of a task can be represented
even in the case where a method decomposes a task into itself.
This kind of cyclic decomposition is what makes the structure a
graph and not a tree.
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Fig. 2. An example of a TDG showing how task t1 can be decomposed by two
methods m1 and m2 . Method m1 decomposes it into itself and an action a1 .
Method m2 decomposes it into task t2 , which is further decomposed by method
m3 into actions a2 and a3 .

3. The MutRoSe framework

In this section, we delve into our MutRoSe (MUlTi-RObot sys-
tems mission Specification and dEcomposition) framework for
high-level MRS mission specification and decomposition . Fig. 3
depicts the two major stages of MutRoSe: (i) mission specifica-
tion, performed at design time by the end-user and the system’s
designers, and (ii) mission decomposition, performed by the MRS
at execution time. In the mission specification stage, we provide
the environment where the end-user specifies the global perspec-
tive of the MRS mission through an extended CRGM. In addition,
we integrate the CRGM with tasks and actions specified in the
domain definition to perform decomposition of the goal model
tasks. The mission decomposition step, in its turn, is an auto-
mated process performed by the system at execution time that
takes all of the models and files from the mission specification
step and performs the decomposition of the mission accord-
ingly. This decomposition process generates the valid mission
decompositions and the final constraints between generated task
instances. The decomposition process takes as input the state of
the environment stored in the world knowledge, which consists
of a collection of records and their attributes.

Before further delving into our MutRoSe Framework, we intro-
duce the Room Preparation MRS mission as a guiding example to
be used throughout this section. This mission consists of the col-
laboration of robots for the preparation of hospital rooms in order
to accommodate incoming patients. It is important to note that by
preparing a hospital room we mean cleaning it and organizing its
furnitures in a predefined standard way. The mission is divided
into three main steps: (i) room cleaning, which is performed by
a single robot that enters a room in order to clean it, (ii) robot
sanitization, where the robot leaves the previously cleaned the
room and proceeds to sanitize itself, since it may have been
in contact with infectious diseases, and (iii) furniture moving,
where a group of robots enters the room to move furniture to
their correct spots, but only after the sanitized robot leaves the
room. We should note that these steps need to happen for every
room that is not prepared at the moment the MRS analyzes the
mission, where this information must be obtained from the world
knowledge. The files related to this example can be found in
MutRoSe’s official repository [26] inside the ‘‘Room Preparation
Example’’ folder.

The goal model for this example is shown in Fig. 4, where
we specify the mission in terms of goals, abstract tasks and their
parameters, which are further detailed in this section. The idea
of the goal model is to represent the steps previously described
in a textual format in an unambiguous fashion while capturing
the necessary aspects for the decomposition process to generate
the valid mission decompositions. Firstly, we must verify which
4

rooms need to be prepared, since goal G2 is sequential with goal
G3, and then proceed to prepare the necessary rooms one by
one, as expressed in goal G3’s forall condition. In the real-world
setting, if a sufficient number of robots is provided, the rooms
preparation could be performed in parallel. When preparing a
room, the system will try to achieve goals G5 and G10. Goal G5
consists of the cleaning process where a robot cleans the room
and themselves in a sequential manner, while goal G10 consists
in the rearrangement of furniture, which must be performed by a
group of 2 to 4 robots. Note that the rearrangement of furniture
can only be performed when the room is cleaned, which incurs in
a context condition between task AT1 and goal G10 throughout
the decomposition process.

The next sections are organized as follows: in Section 3.1
we present our proposed high-level modeling structure for MRS
missions; in Section 3.2 we present the domain definition lan-
guage which expresses the subset of HDDL we extend to specify
complex robotic tasks including logic predicates, valid types and
capabilities used to perform reasoning into the mission spec-
ification; in Section 3.3 we present how the binding between
the high-level modeling structure and the language to specify
the complex tasks are bound together. Finally, in Section 3.4 we
present our mission decomposition process which provides as
output valid robotic mission decompositions and task constraints.
A formalization for this decomposition process can be found
in MutRoSe’s official repository [26] inside the ‘‘Formalization’’
folder.

3.1. Goal model for MRS missions

In the goal model for MRS missions we follow the basic struc-
ture of a CRGM, in the sense that we have the same way of
decomposing goals, defining context conditions and establishing
runtime annotations in order to define the desired behavior. Sev-
eral features were introduced to deal with real-world variability,
since the world knowledge is unknown at design time but must
be systematically considered, and the lack of knowledge about
the robots that compose the MRS. The introduced features are:
(i) Controls/Monitors syntax, similar to that proposed in [27],
in order to define variables and maintain a dataflow between
goals and tasks, (ii) goal types, as proposed in [23], (iii) OCL
expressions [28] for variables and conditions definitions, and (iv)
the addition of the group and divisible attributes for goals.

Before delving into the introduced features we need to give
the definition of the goal model for MRS missions, which, for the
sake of simplicity, will be simply called goal model further on.
The goal model is defined as in Definition 3.

Definition 3 (Goal Model). The goal model can be represented by
the tuple GM = (G, AT, E, L). G is the set of goal nodes (GN). AT
is the set of task nodes (TN). E is the set of edges, which can be
AND or OR edges. L is the set of leaf nodes, where for each leaf
node l we have that l ∈ AT or l ∈ G iff l.GT = Query

In addition, goal nodes and task nodes can be defined as in
Definitions 4 and 5, respectively.

Definition 4 (Goal Node). A goal node is represented by the tuple
GN = (GT, CTRS, MTRS, AC, QP, CT, RT). GT is the GoalType prop-
erty, which can assume one of three values: (i) Query, (ii) Achieve
or (iii) Perform. CTRS is the Controls property, which consists is a
list of variables where each variable is a tuple v = (vn, vt ) where
vn is the variable name and vt is the variable type. MTRS is the
Monitors property, which consists in a list of variables, as is the
case for the Controls property, but where for each variable we
can have vt = ∅. AC is the AchieveCondition property, which
is only defined if GN.GT = Achieve. QP is the QueriedProperty
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Fig. 3. Overview of the MutRoSe workflow. In this illustration, we can observe the two major steps in this workflow, which are mission specification and mission
decomposition. Also, we have the processes performed in each of them, where dependencies are indicated with solid arrows. We also have the presence of artifacts,
where the dotted arrows indicate if they are input/output of a given process.

Fig. 4. Goal model for the ‘‘Room Preparation’’ mission.

5
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roperty, which is only defined if GM.GT = Query. CT is the
reationCondition property, which represents contexts and can
e either a boolean condition or a list of events. Finally, RT is the
oal node’s runtime annotation.

efinition 5 (Task Node). A task node can be represented by
the tuple TN = (L, P, RN), where: (i) L is the location property,
which represents the location(s) the task must be performed,
(ii) P is the Params property, which represents additional parame-
ters to the location one, and (iii) RN is the RobotNumber property,
hich represents the number of robots to execute a task and can
e either a fixed number or a range of numbers in the format
min,max].

One important note with respect to goal nodes is that runtime
nnotations are expressions that are related to the goal node’s
hildren and can use one of three operators: (i) parallel (#), (ii) se-
uential (;) or (iii) fallback (FALLBACK). Each goal can only contain
untime annotations with one type of operator. Please, also note
hat cardinalities for the RobotNumber property, which defines
range on the number of robots, is a concept first introduced

n [12].

.1.1. Variable declarations
Variable declarations, alongside their respective types, are per-

ormed using the Controls/Monitors properties and OCL variable
eclarations. The Controls attribute is used in a node that cre-
tes a variable, where variables are declared as they are in OCL
i.e., in the format variable_name : variable_type), and the Moni-
ors attribute defines if a node has access to a previously created
ariable, where type specifications are optional. It is important
o note that variables can be of simple types or collection types,
here the latter must be a Sequence of simple types. Using the

‘Room Preparation’’ example as a guide, we have the following
xamples of variable declarations:

• rooms : Sequence(Room) as the value of the Controls property
for goal G2 and Monitors property for goal G3.

• current_room : Room as the value of the Controls property for
goal G3 and Monitors property of goals G6, G7, and G10.

3.1.2. Goal types
Goal types, and their respective OCL statements, are related

to special behavior of goal nodes. The allowed goal types and
their special attributes are found in Definition 4. In this section,
we further explore Query and Achieve goals. We should note that
Perform is the default type and does not require any additional
properties.

Starting with Query goals, we have that they require an ad-
ditional property QueriedProperty, which uses a select OCL state-
ment. This statement is declared as follows:

[QV1] -> select([QV2]:[T] | C), where

(i) QV1 is the queried variable, which must be a collection
variable declared as one of the monitored variables of the
goal or be equal to the special variable ‘‘world_db’’ that
represents the world knowledge in itself,

(ii) QV2 is the query variable,
(iii) T is the required query variable OCL type, and
(iv) C is a Boolean condition that must be satisfied for an item

to be inserted or assigned to the queried variable.

It is important to note that the condition C can be empty,
which means that no condition is required and that the first
variable in the controlled variables list will be instantiated with
the result of the query operation.
6

Achieve goals, in their turn, require an additional property
AchieveCondition which can be defined in two ways. When an
Achieve goal is said to be universal it makes use of a forall OCL
statement. This statement is declared as follows:

[ITV1] -> forAll([ITV2]:[T] |[C]), where

(i) ITV1 is the iterated variable, which must be a collection
variable declared as one of the monitored variables of the
goal,

(ii) ITV2 is the iteration variable,
(iii) T is the optional iteration variable type, which can be

inferred since the iteration variable must be of the simple
type defined in the iteration variable,

(iv) C is a Boolean condition that must be satisfied after every
child of the goal is checked.

Alternatively, when an Achieve goal is said not to be universal
(or non-universal, for brevity) it is declared simply as a Boolean
condition that must be satisfied after every child of the goal is
checked.

Provided the aforementioned definitions, we have the follow-
ing examples of the second group in the ‘‘Room Preparation’’
mission goal model:

• world_db-> select(r:Room | !r.is_prepared) as the value of the
QueriedProperty for goal G2

• world_db-> select(r:Room | r.name == ‘‘SanitizationRoom’’)
as the value of the QueriedProperty for goal G8

• rooms-> forAll(current_room | current_room.is_prepared) as
the value of the AchieveCondition for goal G3

3.1.3. Divisible and group goals
Divisible and Group are Boolean properties that define what we

call execution constraints in the mission decomposition process.
When a goal has the Group property set to false we have that all of
its children must be executed by a single robot, being executed by
multiple robots (or even team of robots) otherwise. The Divisible
property, in its turn, indicates that all of the goal’s children must
be executed by the same team of robots, if set to false, and that
may be executed by different teams otherwise. It is important to
note that the Divisible property only has an effect when the Group
one is set to true. The ‘‘Room Preparation’’ mission goal model
only has one example of these properties, which is the Divisible
property of goal G5 being set to false. Since the default value for
Group is true, this property has the effect that was explained in
the beginning of this section.

These two properties are used to generate execution con-
straints at the end of the decomposition process. It must be noted
that there is a priority between goals on the generation of this
kind of constraint, where:

• Non-group goals have the higher priority,
• Group and non-divisible goals have the lowest priority,
• Group and divisible goals have no constraint, thus they have

no priority.

For clarification purposes, assume a goal model Gn that has
oal Gm in one of Gn subtrees. Then, suppose Gn defines execution
onstraints of higher priority than those of Gm. In this case, we
o not consider Gm constraints since they will be outclassed by
constraints.
n
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.1.4. Context conditions
In the goal model for MRS missions context conditions are

eclared in a similar fashion as in the CRGM [17] and are de-
lared using the CreationCondition property. The main difference
etween the two declarations is that in this work we have two
ossible types of context conditions. The first type is the condition
ype context, which is declared in the format assertion condi-
ion ‘‘[Condition]’’ where [Condition] is a Boolean condition over
ariable attributes. The second type is the event type context,
hich is declared in the format assertion trigger ‘‘[EVENT_LIST]’’
here [EVENT_LIST] is a list of comma separated event names.

One must note that events are not used for checking throughout
the decomposition process but may be useful at runtime when
the system is executing the mission. In the ‘‘Room Preparation’’
mission, we have one example of context conditions which is
given by assertion condition ‘‘current_room.is_clean’’ in goal G10.

.2. From abstract tasks to domain definition

In this work, we call a domain definition the specification of
ccepted types, predicates, capabilities, abstract tasks and actions.
n addition, this definition must provide enough information in
rder for an automated decomposition of abstract tasks into
ctions to be performed. This is needed due to the fact that an
bstract task is simply a name followed by a set of parameters,
hich must be of the types specified in the accepted types defi-
ition. Moreover, there must be two native types in the domain
efinition, which are robot and robotteam, since they are always
eeded to capture some aspects of the mission related to robots
hemselves. This definition is needed in order to decouple task
ecompositions from the goal model specification, which is sup-
osed to be as high level as possible, and also to specify logical
redicates, valid types and capabilities, which are used to perform
easoning and assertions throughout the decomposition process.

In the MutRoSe framework, we use the HDDL language [19]
n order to specify our domain definition. This language was
hosen due to the hierarchical nature of its definitions, and be-
ause it provides a comprehensive set of structures as a domain
efinition language. Some constructs were added to accommo-
ate native constructs of robotic systems: (i) two new native
ypes, which are robot and robotteam, (ii) capabilities
omain attribute, where the list of capabilities is defined, and (iii)
he required-capabilities attribute required in their corre-
sponding action(s). We exemplify these additional constructs
with excerpts of the ‘‘Room Preparation’’ mission HDDL domain
definitions as follows:

(define (domain hospital)
(:types room - object

MoveRobot CleanerRobot - robot)
...
(:capabilities moveobject cleaning

sanitize door-opening)
...
(:action move-furniture

:parameters (?rt - robotteam
?rm - room)

:required-capabilities (moveobject)
:precondition ()
:effect (and

(prepared ?rm)
)

)
...
7

In these excerpts we can see that we define custom types
MoveRobot and CleanerRobot that inherit from the native type
robot. In addition, we defined the capabilities that exist in this
domain with the :capabilities tag and require them in the move-
furniture action by using the :required-capabilities tag. Finally, in
this same action we define a robotteam type variable, which we
can see that is a native type since we did not define it in the types
definition.

3.3. Mission specification binding

In order to bind the goal model and the domain definition we
create what we call the Bindings Definition. In order to perform
this binding we need the following constructs:

• The high-level user-defined location types. This restricts the
OCL types that can be used as task locations in the goal
model.

• The mappings between OCL types and the domain definition
accepted types. In this way, we decouple the naming of OCL
types from the domain definition ones.

• The mappings between goal model variables and domain
definition variables. This is important since we need to map
the location and the parameters of tasks in the goal model
to their definitions in the domain definition.

• The mappings between predicates defined in the domain
definition and attributes in the world knowledge.

This definition is what enables the decomposition process to
be customized to the user needs. This is desired since types,
predicates and other structures are domain specific and user-
defined.

The binding definition is currently represented in the MutRoSe
framework by the configuration file. In addition to what was
previously described, this file also defines implementation details
like information on the world knowledge file and the output
file. The world knowledge file information consists of the file’s
name, type and location, using the ‘‘world_db’’ tag. The output
file information, in its turn, consists of the name and location of
the file to be generated at the end of the decomposition process.

3.4. Mission decomposition process

As previously depicted in Fig. 3, the MRS mission decom-
position process in MutRoSe comprises two major steps: the
mission specification and the mission decomposition. The mission
specification step is where we define the artifacts detailed in
previous sections. The mission decomposition step makes use of
the artifacts and performs the mission decomposition, for which
results are threefold: (i) the task instances, which are the possible
decompositions of each instance of the abstract tasks, (ii) the
mission constraints, which are sequential, fallback and execution
constraints between our task instances, and (iii) the valid mission
decompositions, which are combinations of the task instances
that are valid given the initial world state defined in the world
knowledge. In order to provide such results, the mission decom-
position is comprised into five other steps, which will be further
explained. We refer the interest reader to further formalization
of this process available in MutRoSe’s official repository [26].

3.4.1. Abstract tasks decomposition
Abstract Tasks Decomposition is the step that performs the de-

omposition process of the abstract tasks. Specifically, it aims at
enerating the possible paths of decomposition for each abstract
ask declared in the domain definition. Since we chose HDDL as
he language for our domain definition, this step is currently per-
ormed in the MutRoSe framework following the HTN theory. For



E.B. Gil, G.N. Rodrigues, P. Pelliccione et al. Robotics and Autonomous Systems 163 (2023) 104386

e
G

i
t
t
m
s
t
t

3

i
a
g
i
e
a
a
e

D
t

t
v
n
h
a
t
a
t
g

3

t
T
s
a
p

D
(

d
e
c
b
c
t
w
d
p
g

3

t

f
t
s
c
n
s
a
r
w
m

3

t
s
p
t
n
a
w
t
g

ach task, it generates a structure similar to a Task Decomposition
raph (TDG) [24,25], which we call a non-ground TDG.
The main difference between a non-ground TDG and a TDG

s that we do not perform grounding of our variables, which is
he process in which the variables are replaced by objects. In
he generation of this structure, we assume that variables are
aintained throughout the process in the way they are declared,
o that our methods do not add new variables and the decomposi-
ion process only deals with the variables declared at the abstract
ask parameters.

.4.2. Goal Model Expansion
Goal Model Expansion is the second step, where the goal model

s expanded based on the world knowledge and the universal
chieve type goals, which are the only nodes that can expand the
oal model. The structure generated at the end of this process
s the Runtime Annotation Tree (Definition 6). It represents the
xpanded goal model with goals represented by their runtime
nnotations, with the exception of means–end decomposed ones,
nd task instances IDs that are changed based on the performed
xpansions.

efinition 6. The Runtime Annotation Tree can be defined as
he tuple RT = (OP, G, AT) where:

• OP is the set of operator nodes, which can assume as value
one of the three runtime annotation operators: (i) parallel
(#), sequential (;) and fallback (FALLBACK);

• G is the set of goal nodes, which only contain the query goals
and the means–end goals from the goal model;

• AT is the set of tasks.

As previously said, universal achieve goals have an effect on
he goal model expansion. This is true since if we have an iterated
ariable, which must be a collection of size n, we will create
copies of that same achieve goal. Each of these copies will
ave a different value for the iteration variable and will aim to
chieve the achieve condition, which can or cannot depend on
he iteration variable. When this is performed for all universal
chieve goals, all of the possible expansions that can happen to
he goal model have already happened and thus we can safely
enerate the runtime annotation tree.

.4.3. Task graph generation
The third step is the Task Graph Generation, where we generate

he Task Graph, which is an important intermediate structure.
his graph is an intermediate structure that represents the mis-
ion decomposition, with the necessary expansions already made
nd all of the constraint links already generated. Definition 7
rovides a precise definition for a Task Graph.

efinition 7. The Task Graph can be defined as the tuple TG =

OP, G, AT, E, D, N) where:

• OP is the set of operator nodes, which can be #, ;, FALLBACK,
• G is the set of goal nodes, which can only be means–end

goals,
• AT is the set of abstract tasks,
• E is the set of directed edges, which can be one of four types.

Thus: ∀e ∈ E, e.type ∈ {AND,OR, EC, CD} where:

– AND and OR refer to normal AND and OR decomposi-
tions from the goal model,

– EC represent execution constraint links, which have
the group and divisible properties,

– CD represent context dependency links.
8

• D is the set of abstract tasks decompositions.
• N = OP ∪ G ∪ AT ∪ D is the set of nodes

At the end of this process, we generate a minimal Task Graph.
In this minimal Task Graph, we have that unnecessary nodes are
removed, where by unnecessary we mean nodes that do not add
any additional behavior that will have an impact in the mission
decomposition. The mathematical definition of a minimal Task
Graph is given in Eq. (1), where (i) T is a Task Graph, (ii) IsAch(n)
returns true if and only if n is an operator node generated from
a single-child achieve goal that is either universal, but gener-
ates only one instance, or non-universal, and (iii) Cn(n) are the
children of node n.

Min(T ) : ∀n ∈ OP, (Cn(n) ≥ 2 ∨

IsAch(n)) ∧ ∀n ∈ N, n /∈ G (1)

At this point, one may be questioning what a context depen-
ency link is and where it comes from. A context dependency
xists when a task has as an effect a condition that activates the
ontext of some goal and their relation in the goal model is given
y a parallel operator (#). In this case, sequential constraints are
reated between the task with the enabling effect and the child
asks of the goal with the activated context, where otherwise
ould have been created parallel constraints. These types of
ependencies are verified throughout the Task Graph generation
rocess, where their links are created and further used in the
eneration of the mission constraints.

.4.4. Valid mission decompositions generations
Following the mission decomposition process, one of the last

wo steps is the Valid Mission Decompositions Generation, where
the Task Graph is traversed in order to define the valid mission
decompositions. A valid mission decomposition is simply a com-
bination of task decompositions where for each abstract task we
can have at most one of its decompositions. By at most one we
mean there can be valid mission decompositions for which there
is no instance for a specific task due to OR-decompositions in the
goal model. In order to verify which decompositions are valid,
we keep track of the world state for each mission decomposition,
where the initial world state is given by the world knowledge.
The world state is updated for each decomposition path given
the runtime annotation operators we have. For children of a
sequential operator we have that the initial world state of a child
c2 will be equal to the end state of the previous child c1. For
allback and parallel operators, on the other hand, it is established
hat the initial world state for all of their children will be the
ame. Moreover, for the parallel operator case we also have to
heck conflicting effects, where the end state of every child must
ot contain an opposite state of another child end state. We
hould note that in our work, OR-decompositions are interpreted
s exclusive-OR (XOR) semantics. As such, OR-decompositions
equire a combinatorial analysis process of OR-decomposed tasks
ith an accordingly updated world state for each decomposed
ission.

.4.5. Constraints generation
Finally, the last step in the mission decomposition process is

he Constraints Generation step, where all of the mission con-
traints between task decompositions are generated. Definition 8
rovides a precise definition for constraints. Each constraint es-
ablishes a relation between two task decompositions. We should
ote that: (i) the order between N1 and N2 matters for sequential
nd fallback constraints, raising the need to explicitly define
hich task is the first and which is the second, and (ii) execution
ype constraints have two additional attributes which are the
roup and divisible attributes.
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Table 1
GQM of the evaluation process.
Experiment Goal Question Metric

Experiment 1

G1: Evaluate the feasibility of modeling
real-world robotic missions in a
high-level fashion using MutRoSe

Q1: Is it possible to model real-world robotic
missions?

M1: Percentage of correctly specified missions

G2: Provide evidence on the correctness
of the mission decomposition process

Q2: Is it possible to correctly decompose a
mission specification given the state of the
world?

M2: Percentage of correctly generated outputs

Experiment 2 G3: Evaluate the applicability of the
valid mission decompositions

Q3: Can we correctly transform the result of
the decomposition process?

M3: Percentage of correctly generated iHTNs

Experiment 3 G4: Evaluate the scalability of the
decomposition process

Q4: How scalable is the decomposition
process?

M4: Time to decompose missions
a
Q
p
t
t
S
t
S
o
[

4

f
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Definition 8. A constraint can be defined as the tuple CTR =

N1, N2, T) where:

• N1 is the first task/decomposition involved in the constraint;
• N2 is the second task/decomposition involved in the con-

straint;
• T is the type of the constraint, which can be Sequential

(SEQ), Parallel (PAR), Fallback (FB) or Execution (EC).

At the end of this process we trim unnecessary constraints
n order to generate a minimal set of mission constraints, which
e call Cmin. This needs to be done because: (i) context depen-
ency generated sequential constraints can make some of the
equential constraints generated in the initial mission constraints
eneration step unnecessary, (ii) parallel operators generated by
niversal achieve goals can introduce unnecessary constraints
n Cmin and (iii) certain specific combinations of operators can
enerate more constraints in Cmin than needed. With this in mind,
min may not be the minimal set of constraints and we will
eed to trim for three particular cases: (a) unnecessary sequential
onstraint given a fallback constraint, (b) unnecessary sequen-
ial constraint given a sequential constraint, and (c) unnecessary
allback constraint given a fallback constraint.

In order to better illustrate the trimming process, assume that
here are three tasks t1, t2, and t3, which have specific constraints
etween them. For case (a) suppose there are three constraints c1

t1 ; t2, c2 = t2 FB t3 and c3 = t1 ; t3. Since t1 is sequential
ith t2 by constraint c1 and t2 is in a fallback relation with t3 by
onstraint c2, one can already infer that t1 is sequential with t3,
ince t3 always happens in case t2 fails, and thus constraint c3 is
nnecessary. In this sense, c3 can be trimmed having as outcome
he minimal set of constraints with c1 and c2 only. For case (b)
uppose there are three sequential constraints c1 = t1 ; t2, c2

t2 ; t3 and c3 = t1 ; t3‘. Since t1 is sequential with t2 by
onstraint c1 and t2 is sequential with t3 by constraint c2, one
an already infer that t1 is sequential with t3 and thus constraint
3 is unnecessary. In this sense, c3 can be trimmed having as
utcome the minimal set of constraints with c1 and c2 only. For
ase (c) we could have a similar example to the one used for
ase (b), but constraints c1, c2, and c3 will be fallback instead
f sequential. The reasoning behind this last case is analogous to
ifferent operators.

. Evaluation and results

This section describes the experiments performed in order to
valuate the MutRoSe framework. With these experiments we
valuate the feasibility of using the framework on real-world
issions from the RoboMAX repository [21]. RoboMAX is a repos-

tory of robotic mission adaptation exemplars that can be used
o develop, evaluate, and compare self-adaptation approaches for
obotic applications [21]. In this work, we focus on the natural
anguage descriptions of the missions which are then modeled
9

nd used to evaluate our MutRoSe framework. We use the Goal
uestion Metric (GQM) [29] method to guide the evaluation
rocess, where the structure is shown in Table 1. Also, a descrip-
ion of the missions is provided in Section 4.1. It is important
o note that Experiment 1 refers to the evaluation shown in
ection 4.2, Experiment 2 refers to the evaluation shown in Sec-
ion 4.3, and Experiment 3 refers to the evaluation shown in
ection 4.4. It is important to note that everything related to each
f the experiments can be found in MutRoSe’s official repository
26].

.1. Description of missions from the community

To conduct our three experiments, we specified four missions
rom the RoboMAX repository [21]. The chosen missions were the
ital Signs Monitoring (VSM), Lab Samples Logistics (LSL), Deliver

Goods/Equipment (DGE) and Food Logistics (FL) ones. We now
provide a brief description of the four RoboMAX missions used in
our evaluation. One must notice that the focus of this section is
to describe the expected behavior for each of the missions used to
evaluate our work. MutRoSe focuses on the MRS behavior, while
abstracting away from specific robot details and actual amount.
Therefore, our approach aims to comply with the fleet specifi-
cation characteristic, as it enables users to model detailed MRS
missions prior to the existence of the system itself.

In the Food Logistics mission the MRS should be able to deliver
food from the kitchen to a patient’s room and to pickup dirty
dishes from a patient’s room to the kitchen. The delivery of food
can be made to the room table by the robot, which requires a
special manipulation skill, or the food can be fetched from the
robot’s tray. Fetching from the robot’s tray requires cooperation
with a human (patient, companion or nurse) or another robot,
where the information if there is some human in the room that is
able to fetch it can be obtained from the patient’s record. For the
retrieval of dishes we have that it can occur unassistedly, with
the cooperation of robots, or with the joint cooperation between
a robot and a human. The information if someone in the room is
able to open the door when the robot comes to it is available in
the patient’s record, as is the case of the possibility to retrieve
the food in the delivery’s case. Given its description, we have
that the Food Logistics mission is actually divided in two distinct
missions, which are called here the Food Logistics Delivery and the
Food Logistics Pickup missions.

In the Lab Samples Logistics mission the MRS should transport
lab samples from patient floors to the laboratory, where the de-
liveries are requested by nurses. In each delivery, the responsible
nurse places the sample in the robot’s drawer. Finally, when the
robot gets to the laboratory, a robotic arm picks the sample from
the robot’s drawer and stores them.

In the Vital Signs Monitoring mission the MRS should be able
to check patients vital signs in every occupied room. In each

room we may have multiple patients, so the robot which is
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Table 2
MRS mission characteristics and their relationship with MutRoSe specification
features.
Mission characteristics Specification features

Real-world variability

Goal model variability
HDDL variability
Condition contexts
Relationship mapping query
Ownership mapping query

Fleet specification Execution constraints
RobotNumber property

Constraints
Trigger contexts
Fallback operator
Execution constraints

Reusability HDDL as a Library

checking a specific roommust know howmany patients the room
has. In addition, it must approach each of them and provide
the instructions for the monitoring process. Then, it collects the
patient’s vital signs and, in case of failure, assesses the patient’s
status by triggering a set of questions. In case of non-response
when assessing the patient status, the robot should send an alert
to the responsible nurse/doctor. Finally, if any contact with an
infected patient was made, the robot should sanitize its actuators
in a specific room designed for this. At any point, if battery levels
get critically low, the robot stops what it is doing and proceeds
to the recharge station in order to recharge its batteries.

In the Deliver Goods/Equipment mission the MRS must be able
o collect resources in the storage and deliver them to a re-
uesting agent at a specific location. In the collection phase, the
obot must go to the storage places where the resources can be
ound. In the delivery phase, the robot will make as many runs
s necessary to take all the resources to the specified location. If
attery gets low during each of the phases, the robot must stop
hat it is doing and go the recharging station. One important note

s that in the delivery phase the robot must return the resource
o a checkpoint before proceeding to recharge.

The reasoning for choosing these missions is threefold: (i) they
valuate different features, (ii) their authors had previous knowl-
dge on goal modeling and the HDDL language, which aids in
itigating misinterpretation of these languages and their nota-

ions, and (iii) it was possible to perform further simulation in
ORSE [30], which is the case for LSL and FL. The features present

n the mission specification capture all of the necessary aspects
f the mission organized into four major MRS mission character-
stics: real-world variability (i.e. correctly capture world knowl-
dge), fleet specification (i.e. no need to assign specific robots to
asks), constraints definition (i.e. definition of constraints between
asks and capabilities in the domain definition) and reusability
i.e. ability to share the same domain definition among multiple
ission specifications). We further detail how we organize the
RS mission characteristics into these specification features as

ollows:

• Variability at goal model level: Real-world variability since
it allows different ways for executing the mission from
OR-decompositions in the goal model.

• Variability at HDDL level: Real-world variability since it
allows multiple different ways for executing the mission as
a single abstract task has multiple decomposition methods
and consequently enables multiple possible valid mission
decompositions.

• Condition type contexts: Real-world variability since, in
most cases, the conditions expressed in this type of context
will relate to numerous variations of the world knowledge.
10
• Trigger type contexts: Constraints due to the fact that events
may be associated with multiple tasks that may trigger
restrictions at execution time.

• Fallback operator: This is a special type of constraint since
it constrains tasks execution in case a failure occurs.

• Relationship type mapping query: Real-world variability as
it indicates the presence of a query related to entities which
are mapped into the configuration file, i.e. knowledge about
the world to variables and their attributes.

• Ownership type mapping query: Real-world variability as it
indicates the presence of a query related to entities which
are mapped by a ownership mapping into the configuration
file, i.e. knowledge about the world to variables and their
attributes.

• HDDL as a library: Reusability since the same HDDL domain
definition can be used for multiple missions specified in
different goal models.

• Execution type constraints: Both constraints and fleet spec-
ification. A task execution can be restricted to a single or to
a team of robots which imposes constraints to the mission
specification but without having knowledge about the actual
robots.

• RobotNumber property: Fleet specification of a MRS mission
as it restricts the execution of a task to a robot team number
without requiring knowledge about the actual robots.

We summarize such relationship in Table 2.

4.2. Results for Experiment 1 – missions specifications and decom-
positions

As earlier mentioned in this section, each example was chosen
due to: (i) its ability to exercise multiple MutRoSe features, the
feasibility to simulate it or, in some cases, both. Table 3 shows
which MutRoSe modeling features are present in which RoboMAX
MRS mission. Note that the Lab Samples Logistics (LSL) contains
only one of them and was chosen mostly due to simulation pur-
poses promptly available in previous work [31]. Additionally the
LSL mission explores even further the ability of MutRoSe to sup-
port fleet specifications and adequately specify and decompose
such missions. In particular, compared to the other four RoboMAX
missions, the HDDL domain definition of the LSL mission requires
a lower level of abstraction of the actions to be performed by
robots in the real world, which indicates that the level of detail
of the specification models is a design decision.

To ensure that the MutRoSe goal model for each MRS mission
from Table 3 captures that mission as envisaged by the Robo-
MAX mission authors, we contacted and discussed our models
with those authors in the supplementary material for [21]. This
involved asking the author(s) of each mission to check the cor-
rectness of our MutRoSe model, and revising this model based on
feedback from the mission author(s) until they confirmed that we
modeled the mission correctly.

In the following sections, we present the results of the de-
composition process for each of the four RoboMAX missions
specified in MutRoSe. We should note that the artifacts related
to these missions are publicly available [26] under the ‘‘Experi-
ments/RoboMAX Examples’’ folder.

4.2.1. Food logistics decomposition
For the delivery part of the mission, the task instances were

generated as expected from the validated specification. There are
tasks only for patients that need delivery of food, which are Pa-
ient 1 and Patient 3, located in Room A and Room C, respectively.
Moreover, the correctness of the output can also be verified as
the decomposed mission comprises:
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Table 3
MutRoSe features present in the modeled RoboMAX MRS missions. For each
mission we mark with a ✓if it contains that feature at some level or ✗ if it does
ot contain it at all. The ✓ used for the ‘‘validated with authors’’ line is just to

differentiate it from the others since it is not a feature, but just a confirmation
that the models are correct.

MutRoSe feature
RoboMAX mission VSM LSL DGE FL

Goal model variability ✗ ✗ ✗ ✓
HDDL variability ✓ ✗ ✗ ✓

Condition contexts ✗ ✗ ✗ ✓
Trigger contexts ✓ ✗ ✓ ✗

Fallback operator ✓ ✗ ✓ ✗

Relationship mapping query ✓ ✗ ✓ ✓
Ownership mapping query ✗ ✗ ✓ ✗

HDDL as a library ✗ ✗ ✗ ✓
Execution constraints ✓ ✓ ✓ ✓

Validated with mission authors ✓ ✓ ✓ ✓

Key: ✓ = feature present; ✗ = feature absent.

• One instance of task GetFood for Room A and Room C, since
this task has only one way to be decomposed;

• One instance of task DeliverToTable for Room A and Room C,
since this task also has only one way to be decomposed;

• Two instances of task DeliverToFetch for Room A and Room
C, since this task can be decomposed in two ways given
that the delivery with fetch can be performed with the
cooperation of a robot and a human or with the cooperation
of two robots.

In addition, we can note that the task DeliverToFetch where co-
peration between a human and a robot is required is not present
n any of the valid mission decompositions for Room C. This is the
case because this cannot happen with Patient 3 at Room C since
we know from the world knowledge that this patient is not able
to do so. From the constraints we have 6 sequential constraints
and 6 execution constraints, given that we have goal Pickup Dishes
in Rooms and Retrieve Them to Kitchen (G3) which is a group and
non-divisible goal. We also have a non-group constraint in goal
Get Food In Kitchen (G4), which leads to instances of the GetFood
ask being non-group tasks. Notice that we generate sequential
nd execution constraints between the only decomposition for
he GetFood task and all of the decompositions for the other two
tasks, given that they relate to same patient (i.e., happen in the
same room, since we have one patient for each room).

For the pickup part of the mission, task instances generation
lso went as expected. There are tasks only for patients that need
ickup of dishes, which are Patient 1 and Patient 3, located in
oom A and Room C, respectively. Furthermore, the correctness
f the output can also be verified as the decomposed mission
omprises:

• Four instances of task PickupDishes for Room A and Room C,
since this task can be decomposed into:

– PickupDishes with a human opening the door and the
cooperation of the robot with a human to pick up the
dishes

– PickupDishes with a human opening the door and the
cooperation of the robot with another robot to pick up
the dishes

– PickupDishes with the cooperation of the robot with
another robot to open the door and with a human to
pick up the dishes

– PickupDishes with the cooperation of the robot with
another robot to open the door and to pick up the

dishes b

11
• One instance of task RetrieveDishes for Room A and Room C,
since this task has only one way of being decomposed;

Additionally, one should note that instances of the task Pick-
pDishes where a human needs to open the door are not present
n any of the valid mission decompositions for Room A. This is the
ase since it is not possible in this location given that we know
rom the world knowledge that Patient 1 is not able to do so. From
he generated constraints we have 8 sequential constraints and 8
xecution constraints, given that we have goal Pickup Dishes in
ooms and Retrieve Them to Kitchen (G3) which is a group and
on-divisible goal. Notice that we generate constraints of all of
he decompositions for task PickupDishes and the decomposition
or task RetrieveDishes, given that they relate to same patient
i.e., happen in the same room, since we have one patient for each
oom).

.2.2. Lab samples logistics decomposition
The task instances for the LSL mission were generated as

xpected from the validated specification. There are tasks for the
nly delivery that we have, requested by Nurse 1 at location Room
, and because we have one instance for each task since each task
as only one way of being decomposed. Since we have no vari-
bility in this example, given that we have no OR decompositions
n the goal model and each task in HDDL has exactly one method,
e end up with only one valid mission decomposition which
ontains all of the generated task instances. When it comes to
onstraints, we have 3 sequential constraints, generated following
he order from left to right in the goal model, and 6 execution
onstraints. These execution constraints exist since goal Pickup
amples for All Requested Deliveries and Deliver Them (G3) is a non-
roup goal, which leads us to end up with all of the combinations
f task decompositions taken two by two in order to generate this
ind of constraint.

.2.3. Vital signs monitoring decomposition
The task instances for the VSM mission were generated as ex-

ected from the validated specification. There are tasks related to
he to patients in Room A, given it is the only room we have from
he world knowledge and both patients need to have their vital
igns checked. Moreover, the decomposed mission comprises:

• One instance of the EnterRoom, RobotSanitization and
RechargeBattery tasks, since we only have a single room and
a single way of decomposing these tasks

• Two instances of the ApproachPatient, ProvideInstructions,
AssessPatientStatus and SendAlert tasks, since we have two
patients and only one way of decomposing both of these
tasks

• Six instances of the CollectVitalSigns task, since we have two
patients and three ways of decomposing this task

For the generated constraints we have that they were gen-
rated correctly with 24 sequential constraints, 18 fallback con-
traints and 145 execution constraints. It is important to note that
ll of the execution constraints are non-group constraints since
oal Check Patients In Current Room (G4) is a non-group goal. This
eads us to have all of the possible combinations between task
ecompositions that are children of this goal taken two by two,
xcept for decompositions of the same task instance.

.2.4. Deliver goods/equipment decomposition
The task instances for the DGE mission were generated as

xpected from the validated specification. There are tasks related
nly to one delivery and the two objects that are requested in
t, which are located in Storage 1 and Storage 2, respectively, and
ecause we have:
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• One instance of task GetObject for the SterileEquipment, at
Storage 1, and one for the CleanLinens, at Storage 2

• One instance of the RechargeBattery task for each GetObject
instance

• One instance of the DeliverObjects, ReturnObjectsToCheck-
point and AlertTrigger tasks, which are related to the only
delivery that the system needs to perform

In addition, there is only one valid mission decomposition
which contains all of the generated task instances. There is no
variability either at the goal model level or at the HDDL level.
When it comes to constraints, four sequential constraints and four
fallback constraints are generated. These constraints are correctly
generated since (i) the request of the objects from agents happens
before those objects are delivered (sequential constraint), (ii) for
every object to be retrieved there is a fallback constraint between
getting the object and recharging the battery, and (iii) for every
agent there is a fallback constraint between delivering the objects,
returning them to a checkpoint and triggering an alert.

4.2.5. Concluding remarks for Experiment 1
In summary, we have that all the examples were in fact

approved by their respective authors, i.e., were validated with the
main author of the mission according to the RoboMAX reposi-
tory [21]. In this sense, the number of correctly specified missions
is evaluated to 100% (M1 from our GQM). Also, we can ver-
ify that the feasibility of modeling real-world missions using
MutRoSe (Q1) was fulfilled. We were able to specify and validate
missions from RoboMAX exercising various features in MutRoSe
framework.

In addition, all of the modeled RoboMAX missions were de-
composed as expected provided a world knowledge, which ren-
ders M2 into 100%. Therefore, MutRoSe was able to correctly
decompose all those missions, given a predefined world state for
each robotic mission.

4.3. Results for Experiment 2 – iHTNs generation and simulation

In this experiment, we generated iHTNs [13] from all of the
RoboMAX missions specified in MutRoSe. It is important to note
that the generated iHTNs are totally ordered, which makes the
iHTN generation process to create a different iHTN not only for
each valid mission decomposition but for each possible ordering
of the task instances in it, which are evaluated based on the
constraints. With this is mind, we evaluate if the correct number
of iHTNs were generated and if they in fact represent the obtained
valid mission decompositions for each mission.

For the sake of demonstrating the executability of the gener-
ated iHTNs, we further simulated some of the robotic missions as
executable from the generated iHTNs. This step was performed
on the MORSE simulator [30] and was used to validate that the
robots behavior was the expected one based on the mission
specification. In this simulation we focused on two missions:
(i) the Lab Samples Logistics (LSL) and (ii) the Food Logistics (FL). For
the LSL case, the choice was made mainly because this mission
was already explored and validated in recent work [31]. The FL
mission, on the other hand, was chosen since it is the mission
which explores most MutRoSe specification features. Results for
this simulation can also be found in the MutRoSe’s official repos-
itory [26] inside the ‘‘Experiments/iHTNs/Simulation’’ folder. The
setup of the simulations were as follows: the simulated mo-
bile robots are Pioneer3DX model and each robot has a laser
rangefinder sensor that mimics the Hokuyo UTM-30LX with scan-
ning frequency of 10 Hz. The robots have sensors for odometry,
battery, and pose (the pose sensor replaces the localization mod-
ule in real-world robots). The arm is a Mitsubishi PA-10 with 6
12
degrees of freedom in its joints plus 1 degree with its gripper.
Also, the arm has position sensor in all its joints.

One final note regarding the size of the world knowledge.
It was suitably trimmed down in order to ease the evaluation
process as it directly impacts the number of mission decompo-
sitions, but without compromising its validity and correctness,
as presented in Experiment 1. For example, in the Food Logistics
mission, where we previously had 2 deliveries and 2 pickups in
Experiment 1, we have 1 of each in this experiment.

The final results for this evaluation are that the correct number
of iHTNs were generated and all of them were correct, given
the valid mission decompositions and constraints generated by
the mission decomposition process for each example. A brief
reasoning on the output of each iHTN generated and the validity
of the mission decompositions follows:

• Lab Samples Logistics: Only one decomposition was ex-
pected for this example. From the world knowledge, we
have only one sample delivery to perform. Also, we do
not have parallel execution of tasks from the goal model
specification, thus leading to a single valid decomposition
with sequential task execution.

• Food Logistics Delivery: For this example we have one deliv-
ery to be performed but three different ways of performing
it. Also, we assume there is no human able to open the
door at the location, even though the patient is able to fetch
dishes. This leads us to three iHTNs: (i) one where we exe-
cute the ‘DeliverToTable’ task, (ii) another where we execute
the ‘DeliverToFetch’ task with robot and human cooperation
and (iii) a final one where we execute the ‘DeliverToFetch’
task with the cooperation of two robots.

• Food Logistics Pickup: As is the case of the delivery mission,
we have only one pickup to perform from the world knowl-
edge, with the same assumptions related to the patient and
the location. This leads us to two iHTNs: (i) one where we
have two robots opening the door and both picking the
patient’s dishes and (ii) another one where we have two
robots opening the door but only one of them picking up
the dishes through cooperation with a human.

• Deliver Goods/Equipment: In this example we have the de-
livery request of a single object called ‘SterileEquipment’.
With this in mind, we have a single iHTN as an outcome,
since there is only AND-decompositions with sequential/
fallback constraints in the goal model. Additionally, tasks
have only one possible way of being decomposed.

• Vital Signs Monitoring: In this example, we assume only
one patient is available for monitoring. This leads us to
a single valid decomposition since we only have AND-
decompositions and sequential/fallback constraints between
tasks. As is the case of the previous examples, tasks have
only one possible way of being decomposed.

The correctness of these iHTNs was manually evaluated based
on the goal model constraints and the world knowledge, which
defines how abstract tasks can be decomposed and which con-
texts are valid. Thus, the GQM’s metric M3, which relates to the
percentage of correctly generated iHTNs, evaluates to 100%. With
respect to the simulations, we obtained positive results given that
the observed behavior was the expected one based on the iHTNs
definitions.

Fig. 5 shows the iHTN obtained for the ‘Lab Samples Logistics’
mission, where we have the single valid mission decomposition
for this example. We can see a ‘ROOT’ task and a ‘ROOT_M’
method, which are used just to provide a single initial point
of the decomposition of the iHTN. For the sake of readabil-
ity purposes, we do not provide here the iHTN encodings for
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Fig. 5. iHTN of the ‘Lab Samples Logistics’ mission.
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he other four RoboMAX examples. However, they are publicly
vailable at the MutRoSe’s official repository [26] inside the ‘‘Ex-
eriments/iHTNs/’’ folder. With this in mind, we are able to
nswer GQM’s question Q3, which is related to the possibility of
ransforming the result of the decomposition process. Therefore,
e can state it is possible to correctly transform the result of the
ecomposition process into another structure, i.e. iHTN, in all the
pecified RoboMAX missions specified in MutRoSe, as the metric
3 proposed.

.4. Results from Experiment 3 – scalability of the mission decom-
osition process

The goal of this experiment is to evaluate the scalability of
he decomposition process. In particular, we aim at analyzing the
erformance of MutRoSe as we scale variables that reflect real-
orld values of the corresponding RoboMAX mission. In order to
o so, we use two previously modeled missions: (i) the Vital Signs
onitoring (VSM) and (ii) the Food Logistics (FL), which further
ivides itself into Food Logistics Delivery (FLD) and Food Logistics

Pickup (FLP). The choice for these specific missions was made
due to the fact that each of them evaluates a different feature
that is expected to impact the decomposition process. We aim at
investigating which feature impacts the most. Furthermore, we
generate thirteen different world knowledge configurations for
each of the three examples.

The Vital Signs Monitoring (VSM) mission has no alternative
valid mission decompositions. Although it does have variability at
HDDL level, only one decomposition is chosen for each patient at
a time. This is the case since the different decomposition methods
refer to opposite patient conditions. Even though there is no
variability at the goal modeling level, the VSM mission contains
two nested forall statements, which are iterations on the hospital
rooms and the patients inside each room. As such, each statement
needs to traverse the subtree, which can contain further forall
tatements. Therefore, the complexity introduced by those nested
orall statements is the most responsible for increasing the time
t takes to perform the decomposition process. In this sense, for
ach world knowledge we generate a number n of rooms where
ach room contains two patients, aiming at analyzing the effects
f these statements in the decomposition. The values chosen for
are [2, 3, 5, 10, 20, 50, 100, 200, 1000, 2000, 3000, 4000, 5000].
e assume that every patient is available for the monitoring.
The Food Logistics Delivery (FLD) mission has variability at the

oal model level. It is expected to be the most time consuming
iven the XOR nature of OR-decompositions in MutRoSe. The
ood Logistics Pickup (FLP) mission, on the other hand, has vari-
bility at the HDDL level, where each OR-decomposition incurs
n variations of valid mission decompositions. These examples
onsist in delivery of food and pickup of dishes in hospital rooms,
13
Table 4
Results for the performance evaluation, where

⨁
indicates a timeout (execution

not completed within 20 min) and
⨂

indicates a memory overflow. The n value
corresponds to: (i) the number of rooms (VSM), (ii) the number of deliveries
(FLD) and (iii) the number of pickups (FLP).
n VSM FLD FLP

2 52 ms 86 ms 24 ms
3 54 ms 133 ms 24 ms
5 53 ms 612 ms 27 ms
10 64 ms 394124 ms 30 ms
20 95 ms

⨂
42 ms

50 318 ms
⨂

146 ms
100 1106 ms

⨂
501 ms

200 4202 ms
⨂

1940 ms
1000 115732 ms

⨂
49086 ms

2000 536348 ms
⨂

208701 ms
3000

⨁ ⨂
516774 ms

4000
⨁ ⨂

965567 ms
5000

⨁ ⨂ ⨁

respectively. Moreover, the previously mentioned variabilities
are the features we aim at analyzing their impact with respect
to their decomposition time. For this purpose, we generate a
number n of deliveries/pickups in each world knowledge, where
each delivery/pickup relates to a single patient in their respective
room. The values chosen for n are [2, 3, 5, 10, 20, 50, 100, 200,
1000, 2000, 3000, 4000, 5000]. Additionally, to further leverage
the variability for each of those examples, it is given that every
patient can fetch the deliveries for the FLD mission and open the
door for the FLP mission. It is also important to note that the goal
models for both missions contain one forall statement each.

Table 4 shows the time results obtained for each execution
given the number n, where each of these results represent the
QM’s metric M4 for each example and configuration. These
xperiments were executed on a Dell Inspiron 7572 laptop with
n Intel Core i7-8550U CPU @ 1.80 GHz processor and 16 GB of
AM, Ubuntu 20.04 LTS subsystem for Windows in a Windows
0 operating system. With these results, we can answer GQM’s
uestion Q4, which relates to the scalability of the decomposition
rocess. Overall, the time required for the decomposition pro-
ess is quite affordable. But caution should be taken, especially
n cases of variability at the goal model level. In such cases,
suitable batching process should be able to turn around this

imitation though.
In addition, the scalability of the process is even greater if

e are dealing with real-world examples where the size of the
orld knowledge is not expected to be extremely large, i.e., n

s expected to be relatively small. For example, a hospital in
uhan during the Coronavirus pandemic, which was run entirely
y robots, had about 200 patients [32]. Assuming this scenario
world knowledge) for our missions, where decompositions were
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erformed in batches, the outcome could be as follows. For the
SM mission, where there are 2 patients per room, we would
ave its decomposition taking approximately 1 s in a single batch
f 100 rooms. For the FLP mission we could process it in one
atch of 200 pickups, taking approximately 2 s to decompose
he mission for each of them. Finally, for the FLD mission we
ould process it in 40 batches of 5 deliveries, which would take
pproximately 600 ms for each one. In all these cases, we are
ssuming that the given mission would need to be performed for
ll patients at the same time, which may not be the case due to
ptimizations made by a mission coordinator or even different
atient’s needs. Furthermore, for every mission we could dis-
ribute batches between available robot teams carrying out their
issions in parallel, thus reducing the time needed to complete
ll mission instances.

.5. Final remarks and threats to validity

In Experiment 1, we analyzed the ability of MutRoSe to ex-
ress the missions descriptions expressed in natural language and
o perform the accurate task decomposition process. We con-
ider these aspects crucial for a deliberation process. To perform
uch experiment, we chose to specify in MutRoSe four missions
rom the RoboMax repository [21]. However, given those sce-
arios were expressed in natural language, their specification in
utRoSe went through a manual process, which requires the
bility to correctly interpret and adequately express them. There-
ore, we validated for correctness of the modeled missions with
heir respective main RoboMax authors in order to mitigate issues
rom natural language interpretation. Also, the authors of all of
he experiments had some experience with the goal modeling
otation and/or HDDL, to isolate the issues that could arise from
earning those languages. The gathered results obtained from this
irst experiment were positive since all the mission specifica-
ions were validated by their respective authors and the obtained
utputs were the expected ones. Nevertheless, even with the
ttempts of mitigating possible unwanted effects the possible
hreats to validity for the first experiment are: (i) possible mis-
nterpretations of the authors with respect to the constructed
odels due to language notations and (ii) errors in the evaluation
f the correct output, since these were manually performed.
Regarding the evaluation of the iHTN generation performed

n Experiment 2, we aimed at providing evidence that we can
transform our decomposition process results into executable and
valid models for robotic mission task allocation/execution. The
possible threats to validity for this experiment were: (i) the fact
that analysis of correctness for the iHTNs relied on the system
designer and (ii) the lack of evidence that these iHTNs can be in
fact executed. To mitigate this last threat, simulations for the Lab
Samples Logistics and Food Logistics examples were performed
in MORSE where the simulated robots behaved as expected from
the mission specification.

Finally, in Experiment 3 we experimentally assessed the com-
utational overhead of the automated mission decomposition
rocess in MutRoSe. It could be noticed that the performance
f the process is quite sensitive to the design decisions, mostly
egarding: (i) the number of forall statements, (ii) variability at
he HDDL level and (iii) variability at goal model level. We noticed
hat the iterations in the forall statements together with the OR-
ecompositions in the goal model were the major reasons for
performance bottleneck in the mission decomposition process.
ur educated guess suggest that, if variability at the goal model
evel cannot be avoided, one possible workaround for missions
hat require such feature is processing requests in batches. By do-
ng this, one could avoid decomposing missions for a high number
f requests at once. Some of the previous modeled examples, each
14
one exploring different features, were used in order to perform
the evaluation using real-world scenarios. One possible threat to
validity in this evaluation is the expressiveness of the mission
specifications. Even though they are real-world scenarios, they
may not explore all of the aspects (or their possible combinations)
in a sufficient way to verify their effects in the decomposition.

With these results we aim at making a statement that the
MutRoSe framework can be used to model and reason about
MRS missions in a high-level fashion. This is done by mod-
eling real-world scenarios, building on missions described in
the RoboMAX repository, in order to verify that: (i) the frame-
work provides various features for MRS mission specification and
(ii) we can represent mission requirements using MutRoSe, which
in our case were provided in a textual format. In addition, we also
provided evidence that we have a decomposition process that
can take a MutRoSe mission specification and generate outputs
that can be used by an MRS to reason about the tasks that
need to be performed and the best way to do it. Furthermore,
we also wanted to build on existing lower-level models (iHTNs)
to strengthen this evidence, with the bonus of performing sim-
ulation using automatically generated low-level models from
high-level specifications. Finally, we also performed an analysis
of the decomposition process scalability where we conclude that,
even though our current implementation has its scalability af-
fected by certain features, it is sufficient for real-world scenarios
where our world knowledge is expected to be limited.

5. Related work

Before providing a list of the most related works, we first
set up the features for comparison between MutRoSe and the
corresponding literature. Such fine-grained features rely mostly
in the work by Dragule et al. [9], which rendered the four coarse-
grained mission specification characteristics we have targeted
throughout our work. The features are as follows:

• Global Perspective: A higher abstraction model that provides
a global overview of the mission allows users to understand
the specification more clearly and easily, instead of focusing
on tasks to be dealt with at lower levels of abstraction. Also,
end-users will often be those without robotic, ICT or math-
ematical expertise [9], but with expertise in the domain
where the robotic system will be executed. In this sense, a
model that allows the domain expert to specify the mission
as a whole, leaving lower-level details to be specified by a
robotics expert, is desired.

• General-purpose models: The robotics domain is divided
into a large variety of sub-domains, including vertical ones
(e.g., drivers, planning, navigation) and horizontal ones (e.g.,
defense, healthcare, logistics), with a vast amount of vari-
ability [9]. In this sense, a language that can specify a mis-
sion using high-level abstractions is desirable since it can
be reused across different domains, leaving domain-specific
concerns to lower-level models and/or specifications.

• Deliberative models: A model that is focused on deliberation
instead of execution can be used for reasoning about real-
world variability and the best alternatives to allocate tasks
to the available robots. As such, deliberative models can
be used as input to a mission decomposition process to
allow the MRS to reason at runtime about the best way of
executing the mission at hand, which is not possible once
tasks are already in execution.

• Capabilities as first-class entities: When having models that
are used for deliberation in cooperative heterogeneous MRS,
the notion of capabilities (often called skills) needs to be
present. In this sense, one can define which capabilities
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Table 5
Major features in MutRoSe and related works.
Features Related works

ALICA [12,33] PROMISE [4] HiDDeN [13] TDL [14] MDL [15] TML [16] ATLAS [34] M2PEM [35] MutRoSe

Global perspective ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
General-purpose models ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Deliberative models ✓ ✗ ✗ ✗ ✗ ✗ ✓

Capabilities ✓ ✗ ✗ ✓ ✓ ✗ ✓

Parameterized models ✓ ✗ ✗ ✗ ✓

High-level constraints ✗ ✓ ✗ ✗ ✗ ✓ ✓

Fleet specification ✓ ✓ ✓ ✗ ✗ ✓
(instead of specific robots) are required to perform certain
actions. Therefore, the reasoning process can easily verify
at runtime whichever available robot is capable or not of
executing an action by performing what is called capability
matchmaking [36].

• Parameterized models: A parameterized model is
paramount when dealing with MRS in order to cope with
the real-world variability. This variability is a concern that
exists in the community [9] and needs to be dealt with.
With the usage of parameters, the system can reason on the
model at execution time (and in an autonomous fashion)
in order to assess which tasks need to be performed and
even how these tasks can be executed, i.e., which actions
can be performed in order to accomplish a certain task given
certain conditions that are verified using the knowledge the
system has about the environment and itself.

• High-level constraints between tasks: In the mission spec-
ification process, we need means to establish constraints
between tasks in some way, despite targeting a high abstrac-
tion model. Ordering constraints, such as those in behavior
trees (e.g. sequential, parallel, fallback) as well as divisible
and group tasks are constraints that directly impact the
allocation process and often reduce the search space for task
allocation algorithms.

• Fleet specification of a mission: Mission specifications
should focus on the end-user needs while robots should
be automatically assigned according to the capabilities and
various quality parameters [9]. In fact, the end-user might
be even unaware of the exact available robots, since the
mission specification model can be conceived before the
MRS itself.

Now, going through the related literature work the vast ma-
jority of the works focus on global perspective as well as general-
purpose models, as is the case of MutRoSe. There are various
works that contribute towards multi-robot mission specification
approaches. There are also works that restrict their models for
a specific domain or types of robotic agents such as (i) vehicle
robots [15] and (ii) aerial robotics [16], while taking advantage of
several features that are present in the more general ones. Even
though these modeling approaches focus on specific domains,
some seem to require a small effort to be extended to other
domains. On the other hand, most of the literature works are
focused in reactive (conversely to deliberative) models. Unlike
MutRoSe and ALICA [12,33], most of the related work focus on
mission execution aspects with the aid of reactive planning. In
the text that follows, we go through the most related work with
respect to the major features in MutRoSe, as summarized in
Table 5.

The work by Garcia et al. [4] proposes a DSL for high-level
mission specification for MRS, called PROMISE. This mission spec-
ification basically consists in the definition of global missions to
be achieved by the MRS and its decomposition into local mis-

sions, which are robot-specific. Besides being a reactive approach,
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PROMISE requires as specification input previous knowledge of
some mission parameters like the task locations and the robots
to execute tasks, which does not comply with the fleet specifica-
tion characteristic that is a central point in MutRoSe. We argue
that PROMISE could be complementary to our approach in MRS
workflow for mission execution and control.

ATLAS [34] is a model-driven, tool-supported framework for
the systematic engineering of MRS. The ATLAS DSL specifies func-
tional and non-functional requirements of the mission in the
form of goals and necessary actions to be performed. However, it
does not perform any automated decomposition as performed by
MutRoSe. Also, ATLAS models do not comply with fleet specifica-
tion as MutRoSe does, since the system needs information about
the robots for the evaluation process performed via simulation.
With this in mind, this work is complementary to MutRoSe, which
output could be transformed into an ATLAS mission and then,
given robot definitions, the ATLAS process could be executed for
simulation purposes.

Task Definition Language (TDL) [14] is a DSL used to design
and implement heterogeneous MRS. TDL follows a model-driven
engineering (MDE) approach which provides platform-specific
robot models and robot-independent task models. Despite its
simplicity, there is no way of formally defining actions pre-
conditions and effects to be used at a planning phase in TDL,
as provided in MutRoSe through the use of HDDL and context
conditions. Also, it is apparently not possible to combine several
composite tasks and to define restrictions between them since
TDL focuses in the MRS mission execution, which renders it not
being a deliberative approach.

In the middle ground between reactive and deliberative ap-
proaches there is HiDDeN [13], which is a distributed deliberative
architecture that manages the execution of a hierarchical plan.
Instantiated HTN (iHTN) are HiDDeN models built upon the HTN
formalism to represent plans. The HiDDeN approach itself makes
use of a deterministic planner, where each abstract task has only
one method. HiDDeN focuses on safety-critical environments. As
such, replanning is performed offline and, thus, it lacks dynam-
icity in the models and in the planning process. Hence, HiDDeN
might hinder automated planning, deliberation and execution for
MRS. In this case, MutRoSe goes one step further by making use of
a higher-level abstraction model, which is the goal model, and by
providing variability features, which also makes it useful in other
types of environments.

Gutmann and Rinner [37] introduce a specification language
for multidrone missions, where the key features are mission ca-
pabilities to compose low-level drone functionalities into mission
building blocks, and a layered execution architecture. Therefore,
their major features lie in capabilities as first-class entities and
high-level constraints between tasks. Despite being a preliminary
work, the idea and the concepts introduced are indeed aligned
with our work.

M2PEM [35] is a graphical framework for mission design and
execution. It encodes deliberative missions models into a busi-

ness process logic to coordinate tactical behaviors and mission
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bjectives of heterogeneous unmanned systems. Additionally, hi-
rarchical abstractions are explored by means of their extended
ubset of the Business Process Modeling Notation (BPMN). Like
utRoSe, M2PEM is also focused on deliberation. However, model
arametrization in M2PEM is rather limited to account for real-
orld variability and high-level constraints as those proposed

n MutRoSe. Moreover, given their focus on unmanned vehicles,
he reasoning process in M2PEM does not target capabilities as
irst-class entities, unlike MutRose.

The comprehensive ARCHES project [38] targets heteroge-
eous robotic missions of autonomous robots in the planetary
xploration domain. In their project, MutRoSe would be compa-
able where they carry out a high-level mission control via two
rameworks working in tandem: ROS Mission Control (ROSMC)
nd RAFCON [39]. Via ROSMC graphical user interface, the user
an interact to add mission tasks and parameterize the mission
gents. The mission execution is then taken over by RAFCON
ased on hierarchical state machines. Such combination of frame-
orks provides ARCHES the ability of coping with real-world
ariability in the planetary exploration domain. Moreover, high-
evel constraints of tasks is key in RAFCON. We believe that
n integration between those two frameworks with MutRoSe
ould have a threefold benefit: (i) leverage the ability of making
he high-level mission control of ARCHES more deliberative, (ii)
rovide a more global perspective of the entire robotic mission for
he scientist (end user) and (iii) automate the mission decompo-
ition producing potentially a more comprehensive range of valid
AFCON models.
Geihs et al. proposed a language for interactive cooperative

gents (ALICA) [12], further extended to ALICA 2.0 [33]. Their
ork is likely the closest in nature to MutRoSe. The ALICA lan-
uage targets modeling of dynamic domains, where agents can-
ot always communicate beforehand and need to take decisions
apidly. Also, it aims at specifying behavior based on a high-
evel goal where the system designer must model the whole
eam behavior (i.e., the mission). Moreover, this approach takes
apabilities into consideration and implements an abstraction
etween plans and agents using roles and tasks. As an extension,
LICA 2.0 language provides (i) the ability to directly attach
onditions to behaviors, and (ii) a general solver interface. By
hese means, they are able to accommodate some execution
onstraints. Even though ALICA makes use of constructs to aid
lanning and allocation in an optimal way, it is focused in highly
ynamic environments, where not being reactive at some level is
ot possible. MutRoSe, on the other hand, focuses in leveraging
deliberative approach, providing the four previously mentioned
ajor characteristics, which are of utmost importance when it
omes to aid efficient planning and task allocation for MRS, rather
han reacting to the environment [9]. Also, MutRoSe provides
igher level models than ALICA, since their approach makes use
f a model that is directly related to HTNs.
We show a general comparison between our work and re-

ated works in Table 5, where we show which of the identified
eatures each work introduces. We use the symbol ✓ for works
hat have a clear and well-defined abstraction to introduce the
eature, for works that have abstractions that introduce a
similar feature or the same feature but not to a full extent and
✗ for works that do not provide explicit means to support the
target feature. It can be noticed that the majority of works have
16
general-purpose models with a global perspective and some level
of parametrization. Also, it is common to have the possibility to
express capabilities, or some similar concept, as first-class entities
and to try to abstract away from modeling the robots themselves
in the mission, even if some notion of the robots themselves
may still be required. On the other hand, the minority of works
propose deliberation-focused approaches where the high-level
constraints between tasks can be expressed in a seamless fashion.
Based on this comparison, we can verify that MutRoSe comes in
as one of those few works that is focused on deliberative models
and fully addresses the fleet specification feature. Also, MutRoSe
relies on parameterized models to its fully extension, since this
is the only way its models can be heavily used for deliberation
purposes. In this sense, MutRoSe comes in as an alternative for
approaches aiming at runtime reasoning based on the system’s
available knowledge. In addition, MutRoSe provides high-level
models which can be easily created by end-users that are not
familiar with robotics. The lack of works that fully address the
MRS specification features, stemmed from the mission character-
istics (c.f. Table 2) is indeed noticeable. Dragule et al. confirm
this conclusion as they recently surveyed current approaches
for MRS mission specifications [9] and proposed those mission
characteristics should be among the main research directions of
the approaches for MRS mission specifications.

6. Conclusions and future work

This work proposes the MutRoSe framework for mission speci-
fication and decomposition. It enables end-users to specify
robotic missions using high-level abstractions, automatically de-
composes the mission specification into tasks, and assigns them
dynamically and at runtime to robots within a multi-robot sys-
tem. The models in this framework are able to tackle important
research topics that have been identified in the community [9],
such as: (i) dealing with real-world variability, (ii) promoting
reusability when specifying missions, and (iii) enabling fleet mis-
sion specification. Furthermore, if the proposed task decomposi-
tion process is combined with task allocation and task execution
approaches, the MRS will be able to perform the steps of the MRS
workflow [8] autonomously.

There are still some open gaps we envision to address in
MutRoSe in the near future. First, the proposed decomposition
process can only deal with fully observable environments, which
is a problem in environments where we may have stale world
knowledge or even where we have lacking information about
the world (e.g., open environments like the ones from military
missions). Moreover, only one domain definition file is accepted
for a given mission, whereas a more modular approach, with
multiple domain definition files that contain similar tasks, can be
the way to leverage reusability even further. Additionally, each
mission must be represented by a single goal model and there is
no current way of establishing a relation between missions, by for
example, defining priorities between them. This may be desirable
in an environment where multiple missions must be executed.
Finally, the current approach for decomposition is exploratory,
which may introduce limitations or may require workarounds to
be used at runtime in some cases. In this sense, possible future
works are:

• A probabilistic extension of the framework in order to tackle
non-deterministic environments. This extension can also
help with decomposition in partially observable environ-
ments. It would be also interesting to identify ways to define
policies for the decomposition of the mission to work in
partially observable environments.
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• Definition of ways to link multiple domain definition files to
a specific goal model, in order to improve reusability.

• Definition of ways for establishing relations between mis-
sions in the same domain. This information may be impor-
tant at runtime in order to define what needs to be executed
at a particular time.

• Creation of heuristics for the decomposition process, which
will be able to reduce time–space complexity to perform
decomposition of missions.

• A model checking approach to verify the correctness of the
mission and its decompositions. This would help to tackle
challenges identified in [40].
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