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Abstract: Cities in South America face many of the urban water supply challenges experienced globally including increasingly extreme
future hydroclimatic conditions and rapid population growth. These challenges are further exacerbated by historical socioeconomic inequity,
informal land occupation, and poor water services management. In recent years, decision support tools that aid in structuring water supply
management and infrastructure pathway policies that remain robust under deeply uncertain future scenarios have been developed. However,
within the context of developing countries, failing to acknowledge the complex social and institutional dynamics and stark differences in
residents’ experiences of climate extremes may lead to uneven adaptation capacities across socioeconomic strata. Toward this end, our study
extends the deeply uncertain pathways framework by applying multiobjective optimization, disaggregated service area-level assessments
of performance and vulnerability across time, and exploratory visual analytics in the Federal District of Brazil (FDB). We highlight
the performance and robustness disparities between two water supply service areas in the FDB that differ in socioeconomic standing to
reveal the impacts of deeply uncertain future hydroclimatic and socioeconomic scenarios on vulnerable populations. We further show that
historical inequity renders poorer residents significantly more vulnerable to deeply uncertain future conditions without urgent and significant
infrastructure investments. Overall, the outcomes of our study are largely applicable to urban water utilities in regions with high levels of
historical regional inequity seeking to develop water management and infrastructure planning policies that are robust, adaptive, and equitable.
DOI: 10.1061/JWRMD5.WRENG-6353. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

The International Panel on Climate Change estimates that half of
the world’s population experiences severe water scarcity for at least
part of the year (IPCC 2022). Aptly, the United Nations Sustainable
Development Goal 6 reflects this widespread international concern
over water scarcity: “to ensure availability and sustainable manage-
ment of water and sanitation for all” (United Nations 2015). Yet,
providing water supply reliability in urban areas is a growing chal-
lenge (World Bank 2018). Recent studies estimate that one in four
cities around the globe currently faces water stress, and the global
urban population facing seasonal water shortages will grow to
1.9 billion by 2050 (McDonald et al. 2011; Mc Donald 2014;
World Bank 2018). The transition to sustainable urban water supply

is further challenged by socioeconomic inequity. In many coun-
tries, the accessibility to basic water supply among the richest pop-
ulation quantile is at least twice as high as the poorest quantile
(WHO 2019).

Cities in South America exemplify many global urban water
supply challenges. South America, the most urbanized region in
the world, is home to more than 150 million people living in highly
water-scarce areas (World Bank 2022). Rapid population growth
marked by socioeconomic inequity, widespread informal occupa-
tion, and weak urban services management—particularly in the
water and sanitation sector—characterizes many of the region’s
urban centers (Carrera et al. 2018). Urban areas in Brazil—a coun-
try that contributes 48% of the South American Gross Domestic
Product (GDP) and contains nearly 50% of the continent’s popu-
lation (IMF 2023; United Nations 2022)—have recently grappled
with severe water supply crises. Droughts in São Paulo from 2014
to 2016 and in the Federal District of Brazil from 2016 to 2018 have
limited the water supplies for millions of residents and increased
the price of water for economically disadvantaged communities
(Escobar 2015; ADASA et al. 2018). The crisis in the Federal
District of Brazil represents the many challenges that modern urban
spaces face in the global south: increasingly frequent extreme cli-
mate events, rapid and unregulated urban growth, uncoordinated
land occupation, economic and political uncertainties, and changes
in water and sanitation regulation. The drivers underlying these
challenges cause the evolution of these urban water systems to
be deeply uncertain—when decision-makers are unable to identify
or agree upon the system boundaries, outcomes of interest, and
probability distributions of uncertainties that drive risk in urban
water supply systems (Lempert et al. 2003; Walker et al. 2013;
Kwakkel et al. 2016).
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In the past decade, the literature on decision-making under deep
uncertainty (DMDU) has significantly advanced decision support
tools incorporating planned adaptation, risk management, and vul-
nerability assessment. This set of tools focuses on exploring system
dynamics, discovering consequential scenarios, and finding robust
strategies that perform acceptably in a wide range of possible fu-
tures (Marchau et al. 2019). DMDU frameworks such as robust
decision-making (Lempert et al. 2006), many-objective robust
decision-making (Kasprzyk et al. 2013), info-gap (Ben-Haim
2006), and decision scaling (Brown et al. 2012) have been widely
applied in water supply planning contexts (for recent examples, see
Miro et al. 2022; Housh and Aharon 2021; and Ray et al. 2020). In
long-term water supply planning, the deeply uncertain pathways
(DU Pathways) framework has been shown to be capable of aiding
decision-makers seeking to develop robust and adaptive infrastruc-
ture investment and management policies (Trindade et al. 2019;
Gorelick et al. 2022; Gold et al. 2023).

DU Pathways develops robust and adaptive water supply poli-
cies by using state-aware rule systems to trigger adaptive decisions,
employing many-objective optimization to explore tradeoffs be-
tween conflicting objectives, and facilitating the exploration of sce-
narios that give rise to water supply vulnerability (Trindade et al.
2019). Building off Zeff et al. (2016), Trindade et al. (2019) first
introduced the DU Pathways framework to support water supply
planning in the Southeastern United States (US). Gold et al.
(2022) expanded DU Pathways by contributing methodology to
evaluate power dynamics in regional water supply systems, dem-
onstrating the expanded framework on a hypothetical group of US
water utilities. Gorelick et al. (2023) contributed to the develop-
ment of DU Pathways by evaluating alternative financial agreement
structures within water supply partnerships in the US. Gold et al.
(2023) and Lau et al. (2023) further expanded DU Pathways, con-
tributing new methodology to explore implementation uncertainty,
equitable contract design, and time-evolving vulnerability.

Although DMDU approaches such as DU Pathways are increas-
ingly applied in water supply planning contexts (Lempert et al.
2011; Steinschneider et al. 2015; Groves et al. 2019), incorporating
equity considerations remains a core challenge (Fletcher et al.
2022). Many water supply management models and decision-
support processes treat regional systems as homogeneous spaces
and lack the ability to assess the influence of internal political, so-
cial, and economic inequities on vulnerable populations (Savelli
et al. 2022). By simplifying or ignoring complex social dynamics,
decision support frameworks can generate policies that may lead to
or aggravate uneven adaptation capacities across actors within the
system and different experiences of water crisis among its popula-
tion (Zeitoun et al. 2016; Savelli et al. 2021). In developing coun-
tries such as Brazil, the path-dependent legacies of historical
development of urban water supplies significantly influence current
infrastructure access inequities, especially in sanitation and access
to safe drinking water (de Jesus et al. 2023).

In recent literature, there are a limited number of published ap-
plications of DMDU frameworks on water supply applications in
the global south. Taner et al. (2019) apply decision scaling to stress-
test four candidate dam designs for a water supply project in Kenya,
evaluating the robustness and vulnerability of prespecified design
alternatives. Freeman et al. (2020) use multiobjective optimization
and exploratory modeling to discover and evaluate water supply
alternatives for Mexico City, Mexico, finding that meaningful
coproduction and recognition of the regional socio-economic con-
text are critical to developing resilient outcomes. Fletcher et al.
(2019) use engineering options analysis to design adaptive water
supply planning alternatives in Riyadh, Saudi Arabia, concluding
that adaptive planning reduces financial risk without incurring

significant water supply risk. Skerker et al. (2023) use a Bayesian
learning approach to develop adaptive infrastructure planning
alternatives for a stylized test case near Mombasa, Kenya—
highlighting the benefits of adaptive planning for avoiding over-
building in wet futures. The DU Pathways Framework, which
incorporates elements of each of these studies—exploratory
stress-testing, multiobjective, and adaptive planning—into a single
urban water supply planning framework, has never been applied
outside of the US.

This study contributes an extension of the DU Pathways frame-
work that explicitly considers regional equity during the develop-
ment of adaptive long-term water supply planning in the Federal
District of Brazil (FDB). Development of the FDB has historically
been marked by rapid population growth, inequitable land develop-
ment and infrastructure access, and significant socioeconomic
disparities (CODEPLAN 2020b). Regional water managers are cur-
rently developing long-term water supply management strategies
but are strongly challenged by deeply uncertain hydroclimatic
and socioeconomic factors. Our extension of DU Pathways couples
multiobjective optimization, detailed temporal diagnostics of per-
formance, and exploratory visual analytics to reveal the impacts of
historical socioeconomic inequity within the FDB. The outcomes
of our work will aid decision-makers in regions with high levels of
regional inequity in implementing long-term water supply manage-
ment strategies that account for deeply uncertain future scenarios,
incorporate adaptive measures, and prioritize equitable access for
all residents.

Case Study: The Federal District of Brazil

The Federal District of Brazil (FBD) is located in the central
west region of Brazil [Fig. 1(a)] and is home to nearly 3 million
people (IBGE 2023). The FDB has experienced rapid population
growth since the 1960s when the federal capital of Brazil was
transferred from Rio de Janeiro to the newly founded city of
Brasilia within the FDB (CODEPLAN 2020b). Since the founding
of Brasilia, the region has experienced rapid population growth,
reaching an average annual growth rate of 2.28% between
2000 and 2010 (GDF 2017), which has led to both sustained in-
crease in water demand and unplanned occupation in urban spaces
(CODEPLAN 2020b).

The development of the FDB has been marked by socioeco-
nomic inequities. The high-income population—usually involved
in government services—predominantly settled in planned urban
areas that were designed and built with appropriate water supply
infrastructure (GDF 2009). In contrast, the region’s low-income
population—comprised mostly of people that migrated to work
in the construction of Brasilia or that kept coming to the region
searching for jobs—mainly moved into informal settlements sur-
rounding the city (GDF 2009). These informal settlements initially
contained little or no drinking water supply infrastructure and have
received far less infrastructure investment than the affluent urban
core. The legacy of uneven regional development is evident today
in the wide disparities in demographic density and household in-
come [Figs. 1(b and d)]. These disparities are also observed in
household water consumption [Fig. 1(c)].

The FDB region’s water supply is managed by a single water
utility, CAESB, which services the five main subsystems within
the FDB. Two of these subsystems, Descoberto and Santa Maria,
are the main supply sources in the region, providing water to more
than 80% of the regional population, and therefore making
them highly relevant to our study. These two subsystems operate
separate reservoir networks but are jointly managed by CAESB.
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This enables water transfers between the two subsystems via a
complex infrastructure network. The region’s water supply is
primarily served by surface water reservoirs and withdrawal from
local rivers [Fig. 2(b)]. The Descoberto reservoir (Descoberto
subsystem) is the region’s largest supply source, serving approx-
imately 465,000 households that primarily reside in the lower-
income settlements outside of Brasilia. According to data from
an FDB Survey (CODEPLAN 2020a), more than 98% of the pop-
ulation in the Descoberto service area is connected to the water
supply network. However, specifically in informal settlements
within the Descoberto area, most people have access to water sup-
ply using irregular connections to the utility water network. On the
other hand, the wealthier urban core of Brasilia draws water from
Santa Maria Reservoir, Paranoa Lake, and two rivers—the Bananal
Stream and Torto Stream (Santa Maria subsystem). Around
200,000 households are served by these sources. A full list of
regional water supply sources is provided in Table S1.

Concern over the region’s water supply was heightened after
a severe drought between 2015 and 2018. During this period,
the Descoberto reservoir volume dropped to 5% of its total capac-
ity, the lowest recorded storage volume since water levels began to
be monitored in 1987 (ADASA et al. 2018). In response to the

drought crisis, the regional government imposed severe water ra-
tioning and tariffs, promoted educational campaigns, reinforced
integrated water inspections in big consumers, reactivated old,
smaller catchments, installed new transfer networks between water
sources, and invested in reducing water losses (ADASA et al.
2018). Higher-income populations were able to avoid the worst
impacts of these policies by privately storing water in domestic
water tanks. However, the rationing and tariffs were felt acutely by
low-income populations that did not have the means to purchase
water tanks. In response to the 2015–2018 crisis, the government
established a new water supply source catchment in the Paranoa
Lake, built a new water treatment plant, and also sped up the
implementation of a new water production subsystem based upon
the Bananal stream catchment (ADASA et al. 2018). While these
options are expected to improve the region’s resilience to drought,
the regional government anticipates the need to develop new infra-
structure in the near future and is currently developing a regional
infrastructure investment and management policy. The new
policy will specify drought mitigation measures, including water-
use restrictions, drought tariffs, and treated transfers between res-
ervoir systems. The new policy will also develop an infrastructure
investment plan, which will prioritize candidate infrastructure

Descoberto

Santa Maria

Paranoa

Corumba

Corumba

Descoberto
Santa Maria

Paranoa

Corumba

Descoberto

Santa Maria

Paranoa

Demographic density
(inhab/ha)

Descoberto service area Santa Maria service area
28.27-111.87
5.86-28.26
3.13-5.85
0.57-3.12

Water consumption
(L/inhab-day)

251-447
180-251
148-180
121-148

Household income
(R$ per capita)

5,133-8,355
2,959-5,133
1,607-2,959
573-1,607

5 010

Paranoa

Santa Maria

Descoberto

Corumba*

*outside FDB limits

Torto Catchment
Bananal Catchment
Reservoirs
Water treatment
plant

Other service areas
Descoberto service area
Santa Maria service area

Distance (mi)

FDB

(a)

(b)

(c)

(d)

Fig. 1. FDB socioeconomic context and relevant features of its water supply system: (a) Federal District of Brazil (FDB) geographic situation,
water supply infrastructure, and service areas; (b) demographic density (inhab/ha); (c) water consumption (L/inhab-day); and (d) household income
(R$ per capita). [Data for (a) from SEMA-DF, n.d.; ADASA 2018. Data for (b–d) from ADASA et al. 2018; CODEPLAN 2018; SEMA-DF, n.d.]
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investments (listed in Table S2) and specify how these investments
will be triggered.

Methodological Framework

This work extends the DU Pathways framework’s (Trindade et al.
2019) discovery of robust water supply management and infrastruc-
ture investment policies to explore the systemic inequities in the
FDB. This work represents the first time, to the best of our knowl-
edge, that DU Pathways or a similar methodology has been applied
to support water supply planning in the global south. Our method-
ology explicitly incorporates equity by disaggregating the perfor-
mance of low-income and high-income service areas in the FDB
and evaluating regional tradeoffs across multiple measures of sys-
tem performance (Fletcher et al. 2022). We also contribute new
diagnostic analyses that incorporate visual analytics to explore
time-evolving performance and adaptation for the region’s most
vulnerable population. Our methodology is composed of the four
main steps, described in Fig. 2(a): problem formulation, deep un-
certainty optimization (DU Optimization), deep uncertainty reeval-
uation (DU Reevaluation), and scenario discovery.

During problem formulation, we identify and mathematically
define regional performance objectives, candidate policy actions

(decision variables), relevant deep uncertainties, and sampling
strategies for constructing DU states of the world (SOWs). Our
problem formulation emphasizes regional equity by disaggregating
regional performance across water service areas and applying
Rawls’ difference principle during optimization to prioritize the
performance of the region’s most vulnerable population. After for-
mulating the problem, we perform DU Optimization, which uses
many-objective evolutionary search (Coello Coello et al. 2007)
across DU SOWs to discover candidate robust water supply man-
agement and infrastructure investment policies. We use the results
of DU optimization to explore tradeoffs between conflicting objec-
tives and evaluate regional performance over time.

We then perform DU reevaluation to evaluate each policy under
a much broader and more computationally challenging set of DU
SOWs. We use the results of DU reevaluation to examine the ro-
bustness of candidate policies using multiple robustness metrics
(Herman et al. 2015; McPhail et al. 2018). Finally, we perform sce-
nario discovery to explore which combinations of future scenarios
generate vulnerability for the regional system and develop narrative
scenarios to guide the decision-making process. This analysis of-
fers consequential insights for regional water managers that can
advance their understanding of current water supply risks and en-
hance the robustness of planning decisions to improve regional
equity while balancing supply reliability and financial stability.

(a)

(b)

(c)

(d)

Fig. 2. (a) Methodological framework derived from the DU Pathways framework (reprinted from Advances in Water Resources, Vol. 134,
B. C. Trindade, P. M. Reed, and G. W. Characklis, “Deeply uncertain pathways: Integrated multi-city regional water supply infrastructure investment
and portfolio management,” 103442, © 2019, with permission from Elsevier); (b) schematic representation of the FDB water supply system;
(c) policy evaluation in DU optimization step; and (d) policy evaluation in the DU reevaluation step.
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Problem Formulation

In this study, we subdivided the main water supply system within
the FDB (both managed by a regional utility called CAESB) into
two service areas, Descoberto and Santa Maria, to better capture the
effects of regional socio-economic inequity. We model the regional
system using the representation of the infrastructure and available
projects developed by Giacomazzo (2020), visualized in Fig. 2(b).
The systemmodel was created inWaterPaths, a generalizable, cloud-
compatible, open-source exploratory modeling system designed
to support long-term regional water supply planning (Trindade
et al. 2020).

We formulate the water supply planning problem as the many-
objective optimization under DU SOWs problem shown in
Eqs. (1)–(4). This formulation searches for the set of actions (a pol-
icy denoted by θ�) that minimizes objective function F. For both
service areas we seek to maximize water supply reliability (fREL),
minimize water-use restriction frequency (fRF), minimize the infra-
structure net present cost (fNPC), minimize the peak financial cost
of drought mitigation and debt payments (fPFC), and minimize the
worst-case cost of drought mitigation actions (fWCC). These objec-
tives were selected based on prior studies on regional water supply
planning that have been shown to holistically capture stakeholders’
priorities (Matrosov et al 2015; Borgomeo et al 2018; Hall 2019;
Gorelick et al 2023; Gold et al. 2022) and implementations of DU
Pathways in the US (Zeff et al. 2016; Trindade et al. 2019; Gold
et al. 2022; Gorelick et al. 2023). The formulations for each objec-
tive were reviewed with CAESB to ensure that the choice of ob-
jectives reflected the preferences of regional decision-makers.

The reliability and restriction frequency objectives are particu-
larly important for evaluating the equity of water supply policy al-
ternatives. Like in many regions of the global south, underserved
communities in the FDB experience disproportional impacts from
supply disruption (measured by the reliability objective) because
they do not have access to private sources of water such as cisterns
(ADASA et al. 2018; Saveli et al. 2021). Water-use restrictions and
associated tariffs (captured by the restriction frequency objective)
increase the financial burden on lower-income populations and im-
pact customers’ health and quality of life (Calverley and Walther
2022; Leflaive and Hjort 2020). To ensure the many-objective
search prioritizes equity we employ a minimax formulation where
the regional objective values are taken as the worst value for each
objective between the two service areas. The minimax formulation
is an application of Rawls’ difference principle that prioritizes
equity by maximizing the performance of the least-well-off popu-
lation (Hammond 1976; Rawls 1999):

θ� ¼ argminθ F ð1Þ

F ¼

2
66666664

maxðfNPC;D; fNPC;SMÞ
maxð−fREL;D;−fREL;SMÞ

maxðfRF;D; fRF;SMÞ
maxðfWCC;D; fWCC;SMÞ
maxðfPFC;D; fPFC;SMÞ

3
77777775

ð2Þ

where fD = objective values for the Descoberto service area;
and fSM = objective values for the Santa Maria service area. Note
that the objective vector, F, is being minimized, and the max oper-
ators on each element of F carry out the minimax formulation.
Performance objectives are described in detail in Eqs. (S5)–(S14).

A policy, θ, is mathematically expressed using Eq. (3):

θ ¼ ½ θgr; θΔgr; θgt; θci; θaccf; ICO � ð3Þ

where θgr = risk-of-failure (ROF) trigger threshold for educational
campaigns; θΔgr = trigger threshold for rationing and contingency
tariffs; θgt = ROF trigger threshold for water transfers; θci = ROF
trigger threshold for infrastructure construction; θaccf = annual
contributions to the contingency fund; and ICO = matrix contain-
ing the construction orders for implementing each infrastructure
option.

To develop policies that dynamically respond to evolving sys-
tem risk, DU Pathways uses metrics known as risk of failure (ROF)
to adaptively trigger both short-term drought mitigation actions
and long-term infrastructure investment decisions (Zeff et al. 2016;
Trindade et al. 2019). Drought mitigation actions, including water-
use restrictions (θΔgr) and treated transfers (θgt), are triggered using
short-term ROF, a dynamic representation of a service areas evolv-
ing capacity-to-demand ratio, calculated on a weekly basis. Infra-
structure investment decisions are triggered based on long-term
ROF, which is calculated annually and describes the risk of a sup-
ply failure in a given year if all reservoirs begin the year at full
capacity. ROFs allow system managers to adapt their strategies in
response to changing future conditions. For more detail on the ROF
formulation used in this work, see Appendix S1.

Both drought mitigation actions and infrastructure investment
can exacerbate the financial risk of FDB utility (ADASA et al.
2018). To manage financial risks, recent studies have recommended
using financial instruments such as contingency funds and third-
party drought insurance (Zeff et al. 2014; Gorelick et al. 2022).
Since the FDB’s water supply utilities only consider the use of
contingency funds (CF), this work will suggest exclusively the
application of this measure, of which its operation is presented
in Eq. (4):

CFyþ1 ¼ CFyð1þ rÞ þ ðθyaccf · TARyÞ ð4Þ

where CF = contingency fund; TAR = total annual revenue in year
y; θyaccf = percentage of annual revenue allocated to the contin-
gency fund (annual contributions to the contingency fund) in year
y; and r = interest rate.

Many-Objective Optimization

We use the Borg Multi-Objective Evolutionary Algorithm (MOEA;
Hadka and Reed 2013) to find an approximate Pareto set of non-
dominated solutions to the many-objective optimization problem
described in the Problem Formulation section. Policies in the Pareto
set are “nondominated,” meaning they perform better than all other
policies in at least one of the objectives of function F. The Borg
MOEA is a global population-based evolutionary algorithm that
employs multiple evolutionary search operators that are adaptively
selected based on their ability to find optimal solutions. The Borg
MOEA also uses epsilon dominance archiving (Laumanns et al.
2002), stagnation detection, and randomized restarts to avoid local
optima and overcome dominance resistance (Hanne 2001; Hadka
and Reed 2013). These characteristics have resulted in the Borg
MOEA demonstrating superior performance for exploration and
optimization of complex, high-dimensional problems with nonlin-
ear, discontinuous decision spaces (Reed et al. 2013; Zatarain
Salazar et al. 2017; Gupta et al,. 2020).

To discover policies that maintain robust performance across
DU futures, we incorporate DU into the many-objective search
process using DU Optimization (Trindade et al. 2019). DU
Optimization utilizes the sampling scheme illustrated in Fig. 2(c).
DU Optimization has been shown to produce robust policies with
acceptable performance over a large ensemble of SOWs (Trindade
et al. 2017; Gold et al. 2022). During this process, each candidate
policy is evaluated across 1,000 DU SOWs that are composed of
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random parings of one DU sample (Ψs) and a set of natural inflows
(NI) and natural evaporations (NE) that have time horizons of
40 years. Here, the goal is to efficiently explore the implications
of hydroclimatic and socio-economic uncertainty on the perfor-
mance of a specific policy. We utilize visual analytics (Keim 2002)
to explore multiple perspectives of policy performance, visualize
differences between the Descoberto and Santa Maria service areas,
and examine how performance changes over time.

DU Reevaluation

During DU reevaluation, the optimized portfolios are stress tested
across a wider, more challenging, and computationally demanding
set of deeply uncertain states of the world (SOWs) using the DU
reevaluation sampling scheme shown in Fig. 2(d). The first step
of DU reevaluation is to produce a new set of 1,000 new natural
inflow and evaporation, and demand time series, following the
same methodology presented in the Problem Formulation section.
The DU samples are represented in a matrixΨs, composed of 1,000
LHS samples of infrastructure construction, policy effectiveness,
and socio-economic DU factors that describe a large ensemble
of potential future scenarios that include extreme events. The DU
samples in DU reevaluation are structured by coupling one hydro-
climatic realization with one vector of DU factors, or one row of
Ψs, as illustrated in Fig. 2(d). Under DU reevaluation, each Pareto-
approximate policy is evaluated across 1,000,0000 total simula-
tions, each representing a sample of NI, NE, and D with one sample
from Ψs.

We evaluate the performance of candidate policies using three
measures of robustness (Herman et al. 2015; McPhail et al. 2018).
Satisficing, S, measures the fraction of SOWs that each solution
meets a set of performance criteria, as shown in Eq. (5):

S ¼ 1

N

XN
j¼1

Λθ;j ð5Þ

where

Λθ;j ¼
�
1; if FðθÞ ≤ Φj

0; otherwise
ð6Þ

where Φ = vector of performance criteria. Given the lack of
extensive applications of DMDU approaches in Brazilian systems,
we first evaluate satisficing with a baseline set of criteria chosen
to represent “high performance,” and then evaluate how chang-
ing perceptions of acceptable performance impacts perceived
robustness.

We complement the satisficing-based robustness with two mea-
sures of regret. Type I regret (R1) measures how much a policy’s
performance deviates from its performance under an expected
“baseline” SOW (Kasprzyk et al. 2013; Herman et al. 2015). In
effect, R1 measures the consequences of incorrect assumptions re-
garding the future when implementing a given policy. R1 calculates
regret as the 90th percentile deviation of an objective within a given
SOW from its performance in the baseline SOW across all SOWs,
maximized across all objectives, as shown in Eqs. (7) and (8):

R1 ¼ max
i
½Di;90;PðDi ≤ Di;90Þ ¼ 0.90� ð7Þ

Di;j ¼ FðθÞi;j − FðθÞbi ð8Þ

where FðθÞbi = value of objective i in the baseline SOW b; FðθÞi;j =
value of objective i calculated in SOW j; and Di;j = deviation of

objective i in SOW j from its performance in b (Herman et al.
2015).

Our final measure of robustness, Type II regret (R2), measures
the deviationDi;j between objective i’s performance and that of the
best-possbile value for objective i across all policies θ within the
prevailing state of the world j (Herman et al. 2015). The value of
Di;j is normalized by the actual objective FðθÞi;j itself as the latter
value may approach zero due to the minimization approach of
the objectives’ formulation. This metric provides a measure of
the impact of choosing the wrong policy alternative across SOWs
(Savage 1951):

R2 ¼ max
i
½Di;90;PðDi ≤ Di;90Þ ¼ 0.90� ð9Þ

Di;j ¼ FðθÞi;j −min
θ

FðθÞi;j ð10Þ

where min
θ

FðθÞi;j = minimum (best) value of objective i taken

across all policies θ under SOW j.

Scenario Discovery

We perform scenario discovery (Groves and Lempert 2007; Bryant
and Lempert 2010) to develop narratives of future change to inform
the selection and implementation of infrastructure investment and
management policy. In its traditional form, scenario discovery uses
machine learning and data mining algorithms to map which com-
binations of DU SOWs generate vulnerability for candidate policies
(Groves and Lempert 2007; Bryant and Lempert 2010; Jafino and
Kwakkel 2021). In this work, we use gradient boosted trees (GBT)
to discover consequential combinations of DU factors (Freund et al.
1999). GBT is a tree-based machine learning method that predicts
the probability of a policy’s success or failure. We selected GBT
because of its model-free, unbiased implementation that can clas-
sify nonlinear, nonconvex, discontinuous success–failure regions in
a visually interpretable manner. In this study, we expand traditional
scenario discovery to include a temporal component by coupling
output from GBT with a visual exploration of system performance
over time. This coupling yields narrative scenarios that capture not
only how vulnerability occurs, but also when it occurs in the water
supply system.

Computational Experiment

The complexity of the FDB system motivated the use of Water-
Paths (Trindade et al. 2020), an open-source, cloud-compatible
software capable of capturing the unique characteristics of regional
water supply systems and support the decision-making process
through exploratory modeling. In this work, the baseline version
of WaterPaths was modified to more accurately represent FDB
water supply system. In the DU Optimization phase, WaterPaths
was coupled with Master-Worker (MW) Borg (Reed and Hadka
2014; Hadka and Reed 2015). This implementation of the Borg
MOEA was selected as it has been previously shown to be effec-
tive, efficient, and reliabile for WaterPaths-based DU Optimization
application (Trindade et al. 2019). In this study we used five
MW Borg MOEA seed trials; each one ran on 240 Intel E5-2680
CPUs @ 2.7 GHz, 128 GB of RAM with 1,000 realizations for
each function evaluation [Fig. 2(c)]. The final reference Pareto
approximate set was attained by selecting Pareto dominant policies
across the five seeds when evaluated across a new sample of 1,000
realizations. The ranges for the decision variables are presented in
Tables S3 and S4, while the significance of the objective values is
presented in Table S5.
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Results and Discussion

Many-Objective Optimization under Deep Uncertainty

Fig. 3 shows the Pareto-approximate water supply infrastructure
investment and management policies discovered through many-
objective DU optimization. The Pareto-approximate set includes
a total of 91 policies, each representing a set of ROF-based rules
that coordinate drought mitigation actions and infrastructure invest-
ment pathways. Figs. 3(a and b) show the performance of Pareto-
approximate policies for the Descoberto [Fig. 3(a)] and Santa
Maria [Fig. 3(b)] service areas on parallel-axis plots. Each line
in Figs. 3(a and b) represents a Pareto-approximate regional policy,
and each vertical axis represents a performance objective. The or-
ange lines are policies in which no new infrastructure is built for
Descoberto and Santa Maria respectively, while the blue lines
are policies that require significant infrastructure investments to
achieve high performance in other objectives. The remaining gray
lines are the Pareto-approximate policies that do not belong to ei-
ther group. The point where each line crosses a certain axis corre-
sponds to the policy performance for a specific objective. The slope
of the lines between each axis denotes the degree of tradeoff, where
a steeper slope indicates that a stronger tradeoff exists between two
objectives. The arrow indicating direction of preference indicates
whether a higher or lower value of the performance objective is
preferable, depending on the objective. For all objectives except
reliability, lower values approaching zero are preferred, with the
direction of preference being downward. The axis for reliability
is vertically flipped to align with the direction of preference being
downward, as higher values of reliability are preferred.

Figs. 3(a and b) highlight the necessity of infrastructure to
maintain regional water supply reliability. Policies that contain zero
infrastructure net present cost [the orange lines in Figs. 3(a and b)]

yield poor performance for both service areas. Without infrastruc-
ture investment, the Descoberto service area can achieve a maxi-
mum reliability of 56% and must experience high frequency of
water-use restrictions in most future years. The Santa Maria service
area also struggles under policies that do not include infrastructure
investment. When the infrastructure net present cost is zero, Santa
Maria either experiences severe levels of water-use restrictions or is
exposed to worst-case drought management costs in excess of 20%
of annual volumetric revenue (AVR).

We highlight a set of “highest-performance” regional policies
[blue lines in Figs. 3(a and b)] that maintain reliability over 85%
and a restriction frequency of less than 20% for both service areas.
These policies require a minimum infrastructure net present cost of
R$320,000,000 in the Descoberto service area and R$83,000,000
in the Santa Maria service area. While these policies maintain rel-
atively high performance for both service areas when compared to
policies that do not employ infrastructure investment, there is a
wide discrepancy between the best achievable performance of the
two service areas. Under high-performance policies, the affluent
Santa Maria service area maintains nearly 100% reliability, with
little or no restriction frequency and modest drought management
costs. In contrast, Descoberto, the lower-income service area with a
predominantly low-income population, achieves a maximum reli-
ability of 92% and a minimum of 11% restriction frequency. The
contrast between the performance of Descoberto and Santa
Maria—both evaluated across the same set of hydroclimatic scenar-
ios and deep uncertainties—highlights the impact of historical
regional inequity in water supply infrastructure investment, which
has left Descoberto vulnerable to water supply failures.

Fig. 3(c) provides more detail on how Pareto-approximate pol-
icies perform in the Descoberto service area. Fig. 3(c) illustrates the
strong tradeoff between Descoberto’s reliability and restriction fre-
quency and highlights how increasing infrastructure investment

(a)

(c)

(b)

Fig. 3. Pareto-approximate water supply polices: (a) policy performance for the Descoberto service area; (b) policy performance for the Santa Maria
service area; and (c) tradeoffs between reliability, restriction frequency, and infrastructure net present cost for Descoberto. Four policies are
highlighted for further analysis.
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shifts this tradeoff surface to improve performance under both ob-
jectives. Policies that do not incorporate infrastructure (colored
dark blue) perform poorly in both reliability and restriction fre-
quency. In contrast, most policies that make substantial infrastruc-
ture investments (green and yellow points) maintain reliability
values greater than 80% and have lower restriction frequency.

Using these results, we highlight four policies for further
evaluation. First, we designate a “baseline” policy [diamond in
Fig. 3(c)], which does not make use of infrastructure investments
or treated transfers, instead relying on water-use restrictions to
manage drought conditions. This policy performs poorly in both
reliability and restriction frequency. Second, we denote a “transfer-
dominant” policy [cross in Fig. 3(c)] that makes use of both water-
use restrictions and treated transfers. This policy does not include
new infrastructure in the Descoberto service area but makes modest
infrastructure investments in Santa Maria’s treatment capacity.
The investment in additional Santa Maria treatment capacity may
increase the region’s ability to send treated water to Descoberto,
resulting in improved reliability with respect to the baseline policy
and suggesting a strong interdependency between the two service
areas. Third, we highlight a “moderate-infrastructure” compromise
policy [triangle in Fig. 3(c)] that performs substantially better
in reliability and restriction frequency when compared to the
baseline and transfer-dominant policies but requires an average
of R$545 million infrastructure net present cost. Finally, we select
a “high-infrastructure” compromise policy [square in Fig. 3(c)]
that has an infrastructure net present cost of R$624 million
and improves Descoberto’s reliability when compared with the
moderate-infrastructure policy, though it also incurs an increase
in restriction frequency. We will use the selected policies through-
out the rest of this section to explore the dynamics of the regional
system and the performance gap between the two water service
areas.

Fig. 4 illustrates the decision variables that compose each of the
four policies highlighted in Fig. 3(c) and the infrastructure path-
ways generated by each policy. Decision variables are shown in
Figs. 4(a–d), where each axis represents a decision variable, with
values further from the center representing increasing risk aversion
and use of the associated management actions, as well as a lower
ROF threshold value. Each policy represents an adaptive rule sys-
tem that triggers drought management measures and infrastructure
investments in response to observed SOWs. Figs. 4(e–l) summarize
these infrastructure pathways for both service areas by clustering
high, medium, and low infrastructure SOWs and plotting the aver-
age year that each infrastructure option is triggered for each cluster.
The frequency that each infrastructure option is triggered is repre-
sented by the shading behind the clusters.

Under the baseline policy [Fig. 4(a)], Descoberto does not
utilize treated transfers or infrastructure investment. Instead,
drought is managed solely through water-use restrictions. Under
this policy, the Santa Maria service area utilizes both treated trans-
fers and new infrastructure investment. However, the infrastructure
pathways [Figs. 4(e and i)] reveal that no investments are made
for either service area under this policy. The transfer-dominant
policy [Figs. 4(b, f, j)] makes use of treated water transfers and
water-use restrictions to manage drought in the Descoberto service
area but does not include any new infrastructure investment in
the area.

The policy also utilizes water-use restrictions and treated water
transfers to manage drought risk in the Santa Maria service area and
includes the potential for new infrastructure development in Santa
Maria to ensure enough treated water for transfers. This reinforces
the hypothesis of high interdependency between the two service
areas. Examining the infrastructure pathways for this policy reveals

that it expands the surface water treatment capacity in the Santa
Maria system by developing the largest option of the Paranoa
Treatment Expansion project.

Under the high-infrastructure compromise [Figs. 4(c, g, k)],
both service areas utilize water-use restrictions, treated transfers,
and infrastructure investment to manage long-term water supplies.
The Corumba 2 expansion project is built as early as possible in
the Descoberto service area under every SOW, highlighting that
this project is essential to Descoberto’s performance. The high-
infrastructure compromise also expands the Descoberto reservoir,
but the timing of this investment infrastructure varies depending on
the challenging nature of observed SOWs. The high-infrastructure
policy also constructs the largest Paranoa treatment expansion in
the Santa Maria service area under all SOWs. Like the Corumba
2 expansion, this project is built as early as possible, highlighting
that it likely plays a key role in regional reliability. Under the
moderate-infrastructure compromise policy [Figs. 4(d, h, l)], both
service areas again utilize treated transfers, water-use restrictions,
and infrastructure investment. Like the high-infrastructure compro-
mise, this policy builds the Corumba 2 expansion in the Descoberto
service area under all SOWs [Fig. 4(l)]. In the Santa Maria Service
area, all three Paranoa treatment capacity expansion projects are
developed over the simulation period [Fig. 4(h)].

Temporal Diagnostics

Fig. 5 shows Descoberto’s reliability [Fig. 5(a)], restriction fre-
quency [Fig. 5(b)], average annual transfer volume [Fig. 5(c)],
and average annual debt service [Fig. 5(d)] as a function of time.
These values are calculated across 1,000 hydrologic conditions
(composed of natural inflows and evaporation) under a “base
SOW,” where all DU factors are set to 1. These settings represent
optimistic system conditions that do not account for deep uncer-
tainty. Instead, they serve to decompose the behavior of the system
by the hydrologic scenario (Hamilton et al. 2022), highlighting
plausible extreme future scenarios that draw attention to the effects
of internal variability on the performance of the system over
time (Lehner and Deser 2023). More detailed exploration on the
effects of deep uncertainties will be performed in the following
sections.

Under these conditions, the baseline policy (red lines in Fig. 5)
experiences a rapid decline in reliability over the course of the plan-
ning horizon [Fig. 5(a)]. This is accompanied by a corresponding
rise in restriction frequency to a level of 100%, indicating that
under the expected demand growth conditions, the total supply
capacity of Descoberto’s current infrastructure cannot meet future
water demands, even in mild future hydrologic scenarios. The base-
line policy utilizes transfers from Santa Maria to Descoberto early
in the planning period [Fig. 5(c)], but the volume of water supplied
to Descoberto via transfers decreases as regional demand grows.
This is likely because of limitations to Santa Maria’s treatment
capacity, which is eventually stressed by growing demands.

Under the transfer-dominant policy (green line), Descoberto ex-
periences a rapid decrease in reliability in the first five years of the
planning horizon. This rapid decline is arrested after the Paranoa 3
expansion is triggered [shown in Fig. 4(f)]. The increase in Santa
Maria’s treatment capacity from the Paranoa 3 expansion allows
more water to be transferred from Santa Maria to Descoberto, as
demonstrated by the increase in average annual transfer volume
in Fig. 5(c). However, this benefit is short-lived, and Descoberto’s
reliability soon begins to decline once more. Like the baseline
policy, Descoberto is subject to water-use restrictions in 100% of
inflow scenarios under the transfer-dominant policy by year 20. The
performance of this policy underscores how regional cooperation
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can help Descoberto improve supply reliability but also highlights
that additional supply infrastructure investment is needed to achieve
reliable performance in the long term.

Under the high-infrastructure compromise, Descoberto’s perfor-
mance is very different from the baseline and transfer-dominant
policies. While Descoberto’s reliability decreases sharply over
the first six years of the planning period, it quickly rebounds after
infrastructure investment is completed. Like the transfer-dominant
policy, Descoberto is able to obtain a much greater volume of
treated transfers after the Paranoa expansion has been triggered
in year 5 [Fig. 4(g)]. However, after the Corumba 2 reservoir ex-
pansion has been completed in year 6 [Fig. 4(k)], Descoberto’s pur-
chase of treated transfers drops precipitously. After Corumba 2 is
constructed, Descoberto’s reliability also climbs to nearly 100%,
and its use of water-use restrictions drops to below 20%. While
Descoberto’s reliability decreases slightly as demand grows, the

infrastructure investments made to increase Santa Maria’s transfer
capacity and Descoberto’s storage capacity show clear benefits for
regional water supply.

Under the moderate-infrastructure compromise (solid blue line
in Fig. 5), Descoberto experiences a rapid decline in reliability
during the first six years of the planning period. Like the high-
infrastructure compromise, the new infrastructure constructed in
year 6 [Fig. 4(l)] rapidly improves Descoberto’s reliability. Instead
of making large investments in additional storage late in the plan-
ning period, like the high-infrastructure compromise [Fig. 5(d)],
the moderate-infrastructure compromise makes a series of smaller
investments in Santa Maria’s treatment capacity, allowing the sus-
tained use of treated transfers throughout the planning period, even
as Santa Maria’s demand grows [Fig. 5(c)]. These investments al-
low the moderate-infrastructure policy to maintain similar reliabil-
ity to the high-infrastructure policy, with lower overall investment

(e) (f) (g) (h)

(i) (j) (k) (l)

(a) (b) (c) (d)

Fig. 4. Decision variables and infrastructure pathways for the four selected policies: (a, e, and i) baseline; (b, f, and j) transfer dominant; (c, g, and k)
high infrastructure; and (d, h, and l) moderate infrastructure. Plots (a)–(d) represent the risk tolerance dynamics for each policy and service area and
their preferences for certain management actions. The direction of the arrow indicates a decreased tolerance for risk of failure that manifests as a lower
ROF trigger, or increased payments in the case of annual payments. Plots (e)–(l) show the infrastructure pathways for each policy, segregated by
service area.
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in infrastructure and lower frequency use of water-use restrictions
in the last 20 years of the planning period.

Overall, Fig. 5 reveals several important initial insights into the
regional water supply planning problem. First, the rapid decline in
reliability across all four policies, and the subsequent long-term
decline of the baseline and transfer-dominant policies, suggest that
current water supplies are not sufficient to accommodate even
modest levels of demand growth in Descoberto. The near-term de-
cline in reliability also suggests that the system is currently at a high
level of risk, and decision-makers must act fast to maintain regional
supply reliability. Second, Fig. 5 reveals the benefits of regionally
coordinated treated transfers. Although transfers alone are not
enough to maintain a reliable water supply in Descoberto (as dem-
onstrated by the performance of the transfer-dominant policy), in-
vesting in expanded treatment capacity in Santa Maria has strong
benefits for Descoberto and plays a crucial role in maintaining near-
term regional reliability [as shown in Figs. 5(a and c)]. Finally,
Fig. 5 reveals that investing in the Corumba 2 storage expansion
greatly reduces Descoberto’s water supply risk. When coupled with
investments in Santa Maria’s treatment capacity, both policies that
triggered the Corumba 2 project raised Descoberto’s reliability to
values similar to Santa Maria’s. These results reinforce the impor-
tance of infrastructure investment to maintain regional reliability,
even under the generally optimistic baseline scenario.

Robustness to Deep Uncertainty

We next transition to evaluating how policies respond when stress
tested under the much broader and more challenging set of future
SOWs generated by DU Reevaluation sampling [Fig. 2(d)]. Fig. 6
shows the robustness of Pareto-approximate infrastructure invest-
ment and management policies for the Descoberto service area us-
ing three different measures. The Santa Maria service area is not
substantially impacted by deep uncertainties and is omitted from
Fig. 6. Fig. 6(a) shows robustness as measured by the domain cri-
terion satisficing metric [Starr 1963; Eqs. (5) and (6)], which eval-
uates a policy’s ability to maintain a set of satisficing criteria
(reliability >90%, restriction frequency <20%, and worst-case
drought management cost <10% annual revenue) across the broad
and challenging set of future SOWs sampled using DU reevaluation
sampling [Fig. 2(d)].

Across all 91 Pareto-approximate policies, only 24 policies meet
the satisficing criteria in any SOW. The high-infrastructure policy
has the largest robustness of any policy in the Pareto approximate
set, meeting the satisficing criteria in 67.8% of sampled SOWs.

The satisficing-based robustness of the other highlighted policies
is markedly worse. The moderate-infrastructure policy is only able
to meet the criteria under 14% of SOWs, and neither the baseline
nor the transfer-dominant policy met the satisficing criteria under
any sampled SOW.

While the high-infrastructure compromise is clearly the most
robust alternative when evaluated using the assumed satisficing cri-
teria, Fig. 6(b) explores how our perception of robustness changes
when alternative performance criteria are applied to the high- and
moderate-infrastructure compromises. In each plot, moving left to
right indicates an increased tolerance for water-use restrictions,
moving from top to bottom indicates an increased tolerance for
supply failures, and the colored shading in each cell indicates the
satisficing value achieved for the corresponding reliability and re-
striction frequency thresholds. The satisficing criteria used to cal-
culate robustness in Fig. 6(a) (Rel > 90%, RF < 20%) is shown
with the star in each plot. Fig. 6(b) illustrates key differences in
the performance of the two compromise policies under deep uncer-
tainty. The high-infrastructure compromise can maintain reliability
of at least 88% and a maximum restriction frequency of 21% under
all DU SOWs. In contrast, the moderate-infrastructure compromise
can maintain reliability of 86% with a maximum restriction fre-
quency of 12% under all DU SOWs. While Fig. 6(b) illustrates
a strong tradeoff between reliability and restriction frequency for
the two policies, it also highlights that neither policy can achieve
reliability greater than 91% for Descoberto, a level of performance
that would be considered unacceptable by major urban water util-
ities in the US (Asefa et al. 2015).

Figs. 6(c and d) complement the satisficing-based robustness
assessment by showing robustness evaluation using regret-based
metrics (Herman et al. 2015). Fig. 6(c) shows the performance
of candidate policies using Type I regret [Eqs. (7) and (8)], which
measures the difference between a policy’s performance in an as-
sumed “base” SOW and the performance of the policy in the 90th
percentile of SOWs (i.e., the top 10% most challenging SOWs).
Fig. 6(c) highlights tradeoffs between Type I regret across three
individual metrics: reliability, restriction frequency, and infrastruc-
ture net present cost. Across the four compromise policies, the
moderate-infrastructure compromise has the lowest Type I regret
in all three performance criteria, indicating that it experiences
the lowest change in performance under challenging future scenar-
ios when compared to the expected future. The high-infrastructure
compromise experiences a slightly higher Type I regret with respect
to restriction frequency and reliability and a much higher regret
with respect to infrastructure net present cost. However, it is
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Fig. 5. Descoberto’s (a) reliability; (b) restriction frequency; (c) average annual transfer volume; and (d) average annual debt service as a function
of time.
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important to note that a high-infrastructure net present cost regret is
not necessarily a negative quality but may reflect the policy’s ability
to adapt to challenging future SOWs by triggering infrastructure.
Both the baseline and transfer-dominant policies have much higher
Type I regret in reliability and restriction frequency, indicating that,
in addition to never meeting the satisficing criteria, the performance
of these policies is severely degraded under challenging future
SOWs.

Fig. 6(d) shows a final measure of robustness, Type II regret
[Eqs. (9) and (10)]. Type II regret measures the performance of each
solution with respect to the performance of the best-performing
solution in the prevailing SOW. In effect, this metric is evaluating
the consequences of making an incorrect choice when selecting a
policy (Savage 1951; Herman et al. 2015). Fig. 6(d) once again
showcases the strong tradeoff between reliability and restriction
frequency. Both the baseline policy and the transfer-dominated
policy perform very poorly when evaluated using Type II regret,
reinforcing that there are solutions in the Pareto-approximate set
that greatly outperform both across all SOWs. In contrast, policies
that include infrastructure investment lie on a tradeoff surface
between reliability and restriction frequency, indicating that the
choice of policy represents an application of preference between
reliability, restriction frequency, and infrastructure investment
cost. Both the high-infrastructure and moderate-infrastructure com-
promises represent a balance between reliability and restriction

frequency, though the high-infrastructure policy favors reliabil-
ity while the moderate-infrastructure policy favors restriction
frequency.

Discovering Narrative Scenarios

Fig. 7 provides additional context about how the high- and
moderate-infrastructure compromises perform across DU SOWs.
Figs. 7(a and c) contain factor maps resulting from the scenario
discovery process described in the Scenario Discovery section.
Factor maps plot Descoberto’s ability to maintain the satisficing
criteria used to evaluate robustness in Fig. 6(a) (reliability > 90%,
restriction frequency < 20%, worst-case drought management
cost < 10% AVR) under different future SOWs. The GBT algo-
rithm indicated that, for both the high-infrastructure and moderate-
infrastructure compromises, restriction effectiveness and demand
growth rate are the two most influential deep uncertainties (for a
full list of feature importance from GBT, see Table S7). Fig. 7(a)
reveals that the moderate-infrastructure compromise can only meet
these performance criteria when water-use restrictions are more
effective than anticipated (restriction effectiveness multiplier
values greater than 1) and the demand growth rate is low. The high-
infrastructure compromise [Fig. 7(c)] meets the performance
criteria in most SOWs, only failing in SOWs where restriction ef-
fectiveness is low and the demand growth is high.

Fig. 6. Robustness of the Pareto-approximate infrastructure investment and management policies for Descoberto. (a) Ranking of each compromise
policy’s robustness using satisficing criteria where reliability > 90%, restriction frequency < 20%, and worst-case drought management cost < 10%

annual revenue. (b) Change in robustness of the moderate- and high-infrastructure policies as the value of the satisficing criteria’s thresholds changes.
(c, d) Robustness for each compromise policy measured using (c) Type I and (d) Type II regret, with the four highlighted policies shown using
different marker shapes.
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While Figs. 7(a and c) appear to reveal a strong difference be-
tween the two policies, these differences appear less substantial
when policy performance is examined in detail under the most fa-
vorable and least favorable SOWs [highlighted in Figs. 7(a and c)
with white and red stars]. Figs. 7(b and d) show Descoberto’s reli-
ability over time under both compromise policies. As in the base
SOW (Fig. 5), the reliability of both policies declines sharply in the
first six years of the simulation under both the most and least fa-
vorable SOWs. The high-infrastructure policy maintains a higher
reliability during this period than the moderate-infrastructure policy
under both SOWs. During this critical point in the planning period,
no infrastructure has been completed, so the higher reliability pro-
vided by the high-infrastructure compromise is due to an increased
use of water-use restrictions. After new infrastructure projects have
been completed, both policies maintain similar levels of reliability
under both the most and least favorable SOWs. This finding adds
context to the scenario discovery results—before new infrastructure
has been completed, Descoberto is heavily dependent on water-use
restriction to manage supply shortfalls. When demand growth is
high and water-use restrictions are less effective than anticipated,
Descoberto is at increased risk of near-term failure.

Figs. 7(b and d) illustrate how static factor maps—created using
a metric that aggregates the dynamics of the entire simulation
period as the worst reliability over time—may mislead decision-
makers if not contextualized with further analysis. Coupling the
factor maps with detailed diagnostics deepens the scenario discov-
ery process by providing a temporal dimension to narrative scenar-
ios. In the case of the FDB, we find that Descoberto is vulnerable to
supply reliability failures that may be caused by ineffective water-
use restrictions and high demand growth in the near term. The
system is also vulnerable if construction of new infrastructure is
not built as early as possible. If CAESB can manage near-term
droughts and accelerate the development of new water supply infra-
structure, the utility has the opportunity to overcome the large his-
torical inequities in the water supply system.

Implications for the Federal District Water Supply
System

The results of our DU Pathway analysis provide local decision-
makers with actionable water supply infrastructure investment and
management policies and reveal new insights into regional water
supply vulnerability. Using multiobjective optimization, we dis-
cover a wide disparity in achievable performance between the
Descoberto and Santa Maria service areas [Fig. 3(a)]. However,

further analysis reveals that infrastructure investment greatly im-
proves Descoberto’s water supply reliability and restriction fre-
quency (Figs. 5 and 7). Importantly, to improve Descoberto’s
performance, CAESB must make new investments in both service
areas [Fig. 3(a)], indicating that transfers from Santa Maria play
an important role shaping Descoberto’s performance. Our analysis
reveals that the Corumba 2 expansion provides large improvements
to Descoberto’s performance, and is triggered as early as possible
in both highlighted compromise policies [Figs. 4(k and l)]. We
find diminishing returns for additional infrastructure projects
after Corumba 2 has been completed. The high-infrastructure
compromise prioritizes two additional infrastructure projects
after Corumba 2 [Fig. 4(k)]—at an additional average expense of
R$ 350 million—but does not generate higher long-term perfor-
mance than the moderate-infrastructure policy, which only con-
structures Corumba 2 (Fig. 7).

Our analysis suggests that decision-makers should construct the
Corumba 2 expansion as soon as possible and prepare for possible
restrictions and shortages until it comes online. Scenario discovery
reveals that high demand growth and low restriction effectiveness
cause near-term vulnerability for Descoberto. Policies that curb
near-term demand and educate residents about water conservation
may help the utility improve conditions until Corumba 2 has been
completed.

Conclusion

This study provides a detailed assessment of how the path-
dependent legacy of historical inequity impacts present and future
water supply in the FDB. Our methodology extends the DU
Pathways framework to reveal wide disparities in water supply reli-
ability and achievable robustness between vulnerable and affluent
populations within the FDB. Our results highlight the importance
of prioritizing equity considerations during all phases of the DU
Pathways framework. Our methodology centered equity during
the problem formulation process by independently evaluating
the performance of the two service areas and applying Rawls’ dif-
ference principle during multiobjective search. Our analysis reveals
that Descoberto faces a strong near-term risk of supply failures
from drought, while Santa Maria is relatively more secure in its
near-term water supply. This finding bears similarities to other re-
search on water supply systems in the global south, such as Savelli
et al. (2021), who illustrate how the severe impacts of the 2015–
2017 Cape Town drought are not solely attributable to extreme

(a) (b) (c) (d)

Fig. 7. Factor maps from scenario discovery and reliability over time in the most favorable and least favorable SOWs: (a) scenario discovery
for moderate-infrastructure compromise; (b) reliability in most favorable SOW; (c) scenario discovery for high-infrastructure compromise; and
(d) reliability in least favorable SOW.
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hydroclimatic conditions, but a product of inequitable access to
water supplies—a finding that emerges only when system perfor-
mance is disaggregated across socioeconomic groups. As in the
Cape Town example, we find that water supply vulnerability in the
FDB is primarily borne by the region’s most vulnerable population.

Our analysis further illustrates that the two systems have
complex interdependencies and require substantial increases in co-
ordinated drought mitigation actions as well as longer-term invest-
ments. Given Descoberto’s consistently severe vulnerability to
declines in its supply reliability, rapid actions are necessary to en-
hance regionally coordinated treated transfers from Santa Maria.
However, short-term transfers alone are not enough to maintain
a reliable water supply in Descoberto; investing in expanded treat-
ment capacity in Santa Maria has strong benefits for Descoberto
and plays a crucial role in maintaining regional reliability of the
FDB overall. Constructing the Corumba 2 expansion has large ben-
efits for Descoberto, and mitigates much of the water supply risk.
These findings provide actionable information to guide regional
decision-makers in developing equitable and robust long-term
regional water supply policies. Beyond the FDB, our results are
generalizable to practitioners who are or will be applying DMDU
methodology in global south nations. First, discussions with the
FDB regulation agency (ADASA) and water utility (CAESB) dem-
onstrate that iterative decision-maker engagement was essential for
developing an actionable water resources system model. Before this
analysis, regional decision-makers were unfamiliar with DMDU
literature, and applications in South America are still rare. Bringing
decision-makers into the planning process provided an opportunity
for dialogue about decision-making methodology and helped
refine estimates for key system inputs. Second, by disaggregating
regional performance between high- and low-income service areas,
our methodology identifies the impacts of inequitable historical
development on the region’s most vulnerable populations. These
insights may have been missed or underrepresented if the CAESB
utility had been treated as a single, homogenous system, showing
that a region-specific problem formulation is needed to accurately
represent regional dynamics. Finally, our results highlight the
importance of pairing multiobjective optimization and scenario dis-
covery with detailed temporal diagnostics. Incorporating a tempo-
ral dimension into the development of narrative scenarios revealed
severe near-term risks for Descoberto and demonstrated the bene-
fits of rapid infrastructure investment.

Our analysis illustrates the impact of historical inequity between
regional service areas but does not resolve water supply impacts at a
household level. Future work can complement this analysis by ex-
amining the impacts of water-use restrictions and tariffs on vulner-
able populations at a household level. Additional analysis could
also investigate how private household water supply impact dispar-
ities in safe drinking water access for the residents of FDB.
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