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Orientador:
Prof. Dr. Martino Garonzi

Braśılia
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Resumo

O número de cobertura de um grupo finito não ćıclico G, denotado por σ(G), é o menor
inteiro positivo k tal que G é uma união de k subgrupos próprios. Se G é um grupo 2-
gerado, seja ω(G) o tamanho máximo de um subconjunto S de G com a propriedade de
que quaisquer dois elementos distintos de S geram G. Uma vez que qualquer subgrupo
próprio de G pode conter no máximo um elemento de tal conjunto S, ω(G) é no máximo
σ(G). Para uma famı́lia de grupos primitivos G com um único subgrupo normal mı́nimo
N isomorfo a uma potência direta do grupo alternado An e G/N ćıclico, calculamos σ(G)
para n diviśıvel por 6 e m pelo menos 2. Este resultado é uma generalização de um
resultado de E. Swartz relativo aos grupos simétricos, que corresponde ao caso m = 1.
Para a famı́lia de grupos primitivos G acima, também provamos um resultado relativo à
geração 2-a-2: para m fixo e pelo menos 2 e n par, calculamos assintoticamente o valor
de ω(G) quando n vai para o infinito e mostramos que ω(G)/σ(G) tende para 1 quando
n tende para infinito.

Palavras-chave: Grupo de Permutação, Grupo Primitivo, Cobertura, Geração de
grupo.

T́ıtulo: Coberturas e Geração dois a dois de alguns grupos primitivos
de tipo entrelaçado



Abstract

The covering number of a finite noncyclic group G, denoted σ(G), is the
smallest positive integer k such that G is a union of k proper subgroups. If
G is 2-generated, let ω(G) be the maximal size of a subset S of G with the
property that any two distinct elements of S generate G. Since any proper
subgroup of G can contain at most one element of such a set S, ω(G) is
at most σ(G). For a family of primitive groups G with a unique minimal
normal subgroup N isomorphic to a direct power of the alternating group
An and G/N cyclic, we calculate σ(G) for n divisible by 6 and m at least 2.
This is a generalization of a result of E. Swartz concerning the symmetric
groups, which corresponds to the case m = 1. For the above family of
primitive groups G, we also prove a result concerning pairwise generation:
for fixed m at least 2 and n even, we calculate asymptotically the value of
ω(G) when n goes to infinity and show that ω(G)/σ(G) tends to 1 as n
tends to infinity.

Keywords: Permutation group, Primitive group, Covering, Group gen-
eration.
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Introduction

In this work, all groups are assumed to be finite. A covering of a group
G is a family of proper subgroups of G whose union is G and the covering
number of G, denoted σ(G), is the smallest size of a covering of G. This
interesting invariant was introduced by J. H. E. Cohn in [9] and it was later
studied by many authors. Note that there always exist minimal coverings
consisting of maximal subgroups. IfG is cyclic then σ(G) is not well defined
because no proper subgroup contains any generator of G, in this case we
define σ(G) = ∞, with the convention that n < ∞ for every integer n.

A simple graph Γ is a pair (V,E) where V is a set, whose elements are
called vertices, and E is a set of subsets of V of size 2, whose elements
are called edges. If {x, y} ∈ E, we say that x and y are connected by an
edge. The graph Γ is called complete if {x, y} ∈ E for every two distinct
elements x, y of V . A subgraph of the simple graph Γ = (V,E) is a graph
∆ = (W,F ) where W is a subset of V and F is a subset of E, and such
that whenever x, y are two distinct elements of W , we have {x, y} ∈ F if
and only if {x, y} ∈ E (in other words, for us all subgraphs are induced
subgraph). A clique of a simple graph Γ is a complete subgraph of Γ, and
the clique number of Γ is the maximal size of a clique of Γ, where by “size”
of a graph we mean the size of its vertex set.

If G is a group, denote by d(G) the minimal size of a subset S of G
which generates G, i.e. ⟨S⟩ = G. For example, G is cyclic if and only
if d(G) ⩽ 1. The group G is called d-generated if d(G) ⩽ d. If G is a
2-generated group, the generating graph of G is the simple graph whose
vertices are the elements of G and two vertices x, y are connected by an
edge if and only if ⟨x, y⟩ = G. We denote by ω(G) the clique number of
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the generating graph of G. In other words ω(G) is the maximal size of a
subset S of G with the property that ⟨x, y⟩ = G whenever x, y ∈ S and
x ̸= y. Since any proper subgroup of G can contain at most one element
of such a set S, we have

ω(G) ⩽ σ(G).
It is very natural to ask whether equality occurs for some families of groups.
In general, equality doesn’t hold, for example ω(A5) = 8 and σ(A5) = 10.
A clique of the generating graph of A5 of maximal size is

C = {(145), (235), (12354), (15342), (12453), (15423), (14235), (12345)}.

A covering of A5 of size 10 is given by (any) four point stabilizers and the
six Sylow 5-subgroup normalizers.

The following approach is due to Eric Swartz. Using GAP (a system for
computational discrete algebra [16]) and GUROBI (a linear programming
solver [22]), it is possible to calculate ω(G) for groups G of small orders.
The approach of calculating the function σ for groups of (relatively) small
order was followed in [25], where the covering number of S9 was calculated
(among other things, see below for more information).

• GAP formulates the problem,

• GUROBI solves it.

The general idea is the following.

G = {g1, . . . , gn}, n = |G|,

M := {maximal subgroups of G},

IM := {i ∈ {1, . . . , n} : gi ∈ M} ∀M ∈ M.

The linear optimization problem is the following. The variables are xi ∈
{0, 1}.

Maximize
∑n

i=1 xi subject to
∑

i∈IM
xi ⩽ 1 for all M ∈ M.

The interpretation is the following: we are looking for a clique C of
maximal size in the generating graph of G. Let us interpret the variables
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xi as follows.

xi =
 1 if gi ∈ C,

0 if gi ̸∈ C.

The condition
∑

i∈IM
xi ⩽ 1 means exactly that no two distinct elements of

C can belong to M , and this must hold for every M ∈ M. Of course, this
is the definition of C being a clique, and we have

|C| =
n∑

i=1
xi.

The GAP and GUROBI code used in [25] and the GAP code used in [36]
(to compute the value σ(S14)) can be found in the Reference. Furthermore,
in [19, Section 5.2] can be found a pseudocode that provide both upper and
lower bounds for the covering number.

Let us now recall some results about σ(Sn), σ(An), ω(Sn) and ω(An).

In [34] A. Maróti obtained an exact formula for σ(Sn) for odd n ̸= 9
and σ(An) for n ≡ 2 mod 4.

Theorem (A. Maróti, 2005). Let n > 3, and let Sn and An be the symmetric
and the alternating group, respectively, on n letters.

(1) We have σ(Sn) = 2n−1 if n is odd unless n = 9, and σ(Sn) ⩽ 2n−2 if
n is even.

(2) If n ̸= 7, 9, then σ(An) ⩾ 2n−2 with equality if and only if n ≡ 2
mod 4.

In [25] L.-C. Kappe, D. Nikolova-Popova, and E. Swartz proved the
following.

Theorem (L.-C. Kappe, D. Nikolova-Popova, E. Swartz, 2016). σ(S9) =
29−1. In particular, Maróti’s formula σ(Sn) = 2n−1 holds for all odd
integers n ⩾ 3. Moreover σ(S8) = 64, σ(S10) = 221, σ(S12) = 761,
σ(M12) = 208, and 5316 ⩽ σ(J1) ⩽ 5413.

In [6] S. R. Blackburn proved that σ(Sn) = ω(Sn) if n is odd and suffi-
ciently large.
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Theorem (S. R. Blackburn, 2006). For all sufficiently large odd integers n,
ω(Sn) = 2n−1.

Later in [39] L. Stringer proved the following.

Theorem (L. Stringer, 2008). Let n be a positive integer larger than 2.

(1) If n is odd and different from 5, 9 or 15, then ω(Sn) = 2n−1.

(2) ω(S5) = 13 < 16 = 25−1 = σ(S5), and 235 ⩽ ω(S9) ⩽ 244 < 256 =
29−1 = σ(S9).

(3) If n ≡ 2 mod 4 and n is different from 6, 10, 14 or 18, then ω(An) =
2n−2.

(4) ω(A6) = 11 < 16 = 26−2.

It is not known wheter ω(S15) equals σ(S15) or not. In un unpublished
paper, E. Swartz proved the following.

Theorem (E. Swartz, unpublished). We have ω(A10) = 256 = 28, ω(A11) =
2734, ω(M12) = 144, ω(M22) = 771, ω(J1) = 5121, ω(J2) = 907 and
ω(S9) ∈ {240, 241}.

In the next tables we show some values of these invariants calculated
for symmetric and alternating groups G of small order.

G S3 S4 S5 S6 S7 S8 S9 S10
σ(G) 4 4 16 13 64 64 256 221
ω(G) 4 4 13 11 64 64 191

Table 1: Comparing σ(G) and ω(G) for some symmetric groups.

with
240 ⩽ ω(S9) ⩽ 241.

G A4 A5 A6 A7 A8 A9 A10 A11
σ(G) 5 10 16 31 71 157 256 2751
ω(G) 5 8 11 27 71 125 256 2734

Table 2: Comparing σ(G) and ω(G) for some alternating groups.
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We also want to mention that ω(G) was calculated in [29] when G =
PSL(2, q) with q odd and when G is a Suzuki group Suz(q).

About ω(Sn) for even n, F. Fumagalli, M. Garonzi and A. Maróti [15]
proved the following result.

Theorem (F. Fumagalli, M. Garonzi, A. Maróti, 2022). If n is even then
σ(Sn) and ω(Sn) are asymptotically equal to 1

2
(

n
n/2

)
.

This, together with S. R. Blackburn’s result mentioned above, implies
that the quotient ω(Sn)/σ(Sn) tends to 1 as n tends to infinity, without
restrictions on the parity of n.

The alternating and symmetric groups are examples of a broad family
of groups called primitive groups. Let H ⩽ G, the normal core of H in G
is defined by

HG =
⋂

g∈G

Hg =
⋂

g∈G

g−1Hg.

A group G is called primitive if it admits a maximal subgroup with trivial
normal core. If M is a maximal subgroup of G then G/MG is a primitive
group, since its subgroupM/MG is maximal and it has trivial normal core.
A normal subgroupN of G is called a minimal normal subgroup of G ifN ̸=
{1} and N does not properly contain any nontrivial normal subgroup of G.
Recall that any minimal normal subgroup of G is isomorphic to a direct
power of a simple group. The socle soc(G) of a group G is the subgroup
of G generated by the minimal normal subgroups of G. A group with a
unique minimal normal subgroup is called monolithic. If G is primitive,
then either G is monolithic or it contains precisely two minimal normal
subgroups (See Theorem 4).

Recall that the Frattini subgroup of G, denoted Φ(G), is the inter-
section of all the maximal subgroups of G. For a general G, we have
σ(G) = σ(G/Φ(G)) and, if G is 2-generated, ω(G) = ω(G/Φ(G)). Indeed,
generation can be determined modulo Φ(G) and we can lift a covering
consisting of maximal subgroups.

A subdirect product of a family of groups {X1, . . . , Xn} is a subgroup
H of X1 × . . . × Xn such that the restrictions to H of the projections
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πi|H : H → Xi are surjective. Observe that G/Φ(G) is a subdirect product
of primitive groups, each of which is a quotient of G, since denoting with
M the family of all maximal subgroups of G, the natural map

G →
∏

M∈M

G/MG

has kernel equal to Φ(G). Therefore the study of σ(G) and of ω(G) when G
is a primitive group is crucial for the understanding of the general behaviour
of these invariants.

Note that if N is a normal subgroup of a group G then σ(G) ⩽ σ(G/N).
Indeed, every covering of G/N can be lifted to a covering of G. If there
exists N � G with σ(G) = σ(G/N) then we may consider as well the
quotient G/N instead of G. This leads to the following definition.

Definition. A finite noncyclic group G is called σ-elementary if σ(G) <
σ(G/N) for every non-trivial normal subgroup N of G.

This definition was given in [11] but there such groups were called “σ-
primitive”. The terminology “σ-elementary”was used in [19]. For example,
any finite nonabelian simple group is σ-elementary (for obvious reasons)
and the symmetric group Sn is σ-elementary for all n ⩾ 3, n ̸= 4. More
generally, if G is a noncyclic finite group such that every proper quotient
of G is cyclic, then G is σ-elementary. This is an interesting notion for the
following reason: if G is any finite non-cyclic group, there exists N � G

such that σ(G) = σ(G/N) and G/N is σ-elementary. To see this, consider
the family F consisting of the normal subgroups N of G with the property
that σ(G) = σ(G/N) and let N be a member of F of maximal order. Then
σ(G) = σ(G/N) and of course σ(G/N) is σ-elementary. An immediate
consequence of this is the following observation: if we denote by G the
class of all finite noncyclic groups and by S the class of all σ-elementary
groups, then

{σ(G) : G ∈ G } = {σ(G) : G ∈ S }.
An interesting open question is the following: are there infinitely many
natural numbers not belonging to the above set?

The σ-elementary groups were studied by E. Detomi and A. Lucchini in
[11]. They conjectured that:
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Conjecture (E. Detomi, A. Lucchini, 2008). Every non-abelian σ-elementary
group is primitive and monolithic.

This was confirmed in [19, Theorem 4.5] for σ-elementary groups G with
σ(G) ⩽ 129.

This conjecture suggests that it makes sense to consider primitive mono-
lithic groups that are σ-elementary and to compute σ(G) for such groups G.
Note that deciding whether a primitive monolithic group G is σ-elementary
is hard in general, but it is certainly true if G/ soc(G) is cyclic. In other
words, every primitive monolithic group G with G/ soc(G) cyclic is σ-
elementary. So, this is the first case to consider.

Let us consider a primitive monolithic group G, with N = soc(G) ∼=
T1 × . . .×Tm

∼= Tm, where Ti
∼= T for i = 1, . . . ,m, T a non-abelian simple

group, and G/N is cyclic. Since every proper quotient of G is cyclic, G is a
σ-elementary group. Let now n,m be positive integers with n ⩾ 5 and sup-
pose that T = An, i. e., soc(G) = Am

n . Define X = NG(T1)/CG(T1). This
is a group isomorphic to a subgroup of Aut(T ) containing an isomorphic
copy of T as a normal subgroup. If n ̸= 6, then Aut(An) ∼= Sn, therefore
either X ∼= An (“even case”) or X ∼= Sn (“odd case”). In the even case
G ∼= An ≀ Cm, and these groups have been studied in [20] by M. Garonzi
and A. Maróti obtaining lower and upper bounds for σ(G) and its exact
value in the case n ≡ 2 mod 4. The odd case is the group Gn,m and will
be defined below.

LetG = Gn,m be the semidirect productAm
n ⋊⟨γ⟩ where γ = (1, . . . , 1, τ)δ ∈

Sn ≀ Sm, with τ = (1 2) and δ = (1 . . .m). If x1, . . . , xm ∈ An, we have

(x1, . . . , xm)γ = (xm
τ , x1, . . . , xm−1).

The group Gn,m is a generalization of the Symmetric Group Sn, if m = 1
then G = An ⋊ ⟨(1 2)⟩ ∼= Sn.

In [17] M. Garonzi obtained an exact formula for σ(G) when n is odd
with some exceptions, and an asymptotic formula when n is even.

Theorem (M. Garonzi, 2013). Let m,n be positive integers, and let G =
Gm,n. Let α(x) denote the number of prime factors of the positive integer
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x. The following holds:

(1) Suppose that n ⩾ 7 is odd and m ̸= 1 if n = 9. Then

σ(G) = α(2m) +
(n−1)/2∑

i=1

n
i

m

.

(2) If n = 5, then

10m ⩽ σ(G) ⩽ α(2m) + 5m + 10m.

(3) Suppose that n ⩾ 8 is even. Then1
2

 n

n/2

m

⩽ σ(G) ⩽ α(2m) +
1

2

 n

n/2

m

+
[n/3]∑
i=1

n
i

m

.

In particular, σ(G) ∼
(

1
2
(

n
n/2

))m
as n → ∞.

(4) If n = 6, then
σ(G) = α(2m) + 2 · 6m.

In 2016, E. Swartz calculated σ(Sn) when n is divisible by 6 (see [40]),
which corresponds to the group Gn,m when m = 1.
Theorem (E. Swartz, 2016). Let n ≡ 0 mod 6, n ⩾ 24. If σ(Sn) denotes
the covering number of Sn, then

σ(Sn) = 1
2

 n

n/2

 +
n/3−1∑

i=0

n
i

.
Moreover,

σ(S18) = 1
2

18
9

 +
5∑

i=0, i̸=2

18
i

 = 36773.

In each of these cases, the minimal covering using only maximal subgroups
is unique.

Inspired by this result, we investigated the value of σ(G) where G =
Gn,m, n is divisible by 6 and m > 1. The first main results of this thesis
concern this covering number, and it was published in [2]. We obtained an
exact formula for σ(G) when n ⩾ 30 and divisible by 6 and m ⩾ 2.
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Theorem 1 (J. Almeida, M. Garonzi, 2023). Let G = Gn,m, for n ⩾ 30
divisible by 6 and m ⩾ 2. Denote by α(x) the number of distinct prime
factors of the positive integer x. Then

σ(G) = α(2m) +
1

2

 n

n/2

m

+
n/3−1∑

i=1

n
i

m

.

Moreover, G has a unique minimal covering consisting of maximal sub-
groups.

We now consider the problem of determining the clique number of the
generating graph of such groups. The fact that Gn,m is 2-generated can be
proved directly or with the help of the following theorem of A. Lucchini
and F. Menegazzo [31].

Theorem (A. Lucchini, F. Menegazzo, 1997). If G is noncyclic finite group
with a unique minimal normal subgroup N , then d(G) = max{2, d(G/N)}.

This result implies that, ifG is a primitive monolithic group andG/ soc(G)
is cyclic, then d(G) = 2. So, in this case too, the first case to consider is
the one in which G/N is cyclic, and we have seen that, if N is a direct
power of an alternating group, then G must be one of the two types of
groups discussed above (the even type and the odd type). As in Theorem
1, we concentrate on the odd type. Let G := Gn,m and assume n is even.
Two explicit generators of Gn,m are αi = (xi, 1, . . . , 1)γ for i = 1, 2, where
x1, x2 ∈ An and ⟨x1τ, x2τ⟩ = Sn (see Section 2.3.4 for more details).

The second main result of this thesis, published in [2], is the following. It
gives an asymptotic formula for ω(G) when n is even and tends to infinity.

Theorem 2 (J. Almeida, M. Garonzi, 2023). Set G := Gn,m. For fixed
m ⩾ 1, ω(G) is asymptotically equal to1

2

 n

n/2

m

for n → ∞, n even. Moreover ω(G)/σ(G) tends to 1 as n → ∞, n even.
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This is a generalization of [15, Theorem 1], which deals with m = 1.
Note that the second statement of the theorem follows from the first one
using item (3) from M. Garonzi’s theorem above. Specifically, we achieve
the above asymptotic formula by proving that, if n is sufficiently large,
then1

2

 n

n/2

m

⩽ ω(G) ⩽ σ(G) ⩽ α(2m) +
1

2

 n

n/2

m

+
[n/3]∑
i=1

n
i

m

.

It would be interesting to investigate exactly how large n should be for the
lower bound to hold for all m ⩾ 1 (the upper bound always holds). This
would settle the question of whether ω(G)/σ(G) tends to 1 as |G| → ∞.

A coclique of a graph Γ is an empty subgraph of Γ, i.e. a full subgraph
without edges.

Definition. The chromatic number of the generating graph of G, denoted
by χ(G), is the least number of colors needed to color the vertices of the
graph in such a way that the endpoints of each edge receive different colors.

Observe that a coloring as above corresponds to writing the vertex set
as a union of cocliques. This means that χ(G) is the “coclique covering
number” of G, i.e. the smallest number of cocliques (of the generating
graph) whose union is G. We have

ω(G) ⩽ χ(G) ⩽ σ(G),

where the first inequality follows from the fact that the intersection between
a clique and a coclique has size at most 1 and the second inequality follows
from the fact that the proper subgroups of G are cocliques of the generating
graph. It is very natural to ask whether equalities among ω(G), χ(G), σ(G)
occur for some families of groups, at least asymptotically.

In [30] A. Lucchini and A. Maróti proved:

Theorem (A. Lucchini, A. Maróti, 2009). Let G be a 2-generated finite
group with Fitting height at most 2, in other words there exists a nilpotent
normal subgroup N of G such that G/N is nilpotent. Then ω(G) = χ(G).
Moreover, if G is noncyclic, then ω(G) = σ(G).



Introduction 19

In the case of Suzuki groups Suz(q) where q = 22m+1, M. S. Lucido
[32] calculated σ(Suz(q)), and A. Lucchini and A. Maróti [29] calculated
ω(Suz(q)) and χ(Suz(q)).

ω(Suz(q)) = q4/2, χ(Suz(q)) = q2(q2+1)/2−1, σ(Suz(q)) = q2(q2+1)/2.

Note that χ(Suz(q)) = σ(Suz(q)) − 1.

About linear groups, A. Lucchini and A. Maróti [29] the following result:

Theorem (A. Lucchini, A. Maróti, 2009). Let q > 9 be an odd prime power.
Let G be any of the groups PSL(2, q), SL(2, q). Then ω(G) = χ(G) =
σ(G) = (q(q + 1)/2) + 1.

And in [7], J. R. Britnell et al. proved the following:

Theorem (J. R. Britnell, A. Evseev, R. M. Guralnick, P. E. Holmes, A.
Maróti, 2008). Let G be any of the groups (P )GL(n, q), (P )SL(n, q). Let
b be the smallest prime factor of n, and let N(b) be the number of proper
subspaces of V = Fn

q of dimensions not divisible by b. If n ⩾ 12, then

ω(G) = 1
b

n−1∏
i=1,
b ∤ i

(qn − qi) + ⌊N(b)/2⌋.

We have seen that, in general, σ(G) and ω(G) are not equal, however
it is still interesting to ask whether the quotient ω(G)/σ(G) tends to 1
when |G| tends to infinity. In general, this is false: in [30] A. Lucchini and
A. Maróti show an interesting example of a family of groups G for which
ω(G)/σ(G) tends to 0. However, it is reasonable to expect that ω(G)/σ(G)
tends to 1 when G varies in the family of nonabelian simple groups. This
was conjectured by S. R. Blackburn in [6]:

Conjecture (S. R. Blackburn, 2006). Let G vary in the family of nonabelian
simple groups. Then ω(G)/σ(G) tends to 1 when |G| → ∞.

Of course, in order to attack this conjecture, it makes sense to prove it
for G varying in specific families F of simple groups. In [7] the authors
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show that Blackburn’s conjecture holds for projective special linear groups.
In [14], F. Fumagalli, M. Garonzi and P. Gheri proved the conjecture for
the family of alternating groups of composite degree.

Combining [15] and [6] we see that ω(Sn)/σ(Sn) → 1 if n → ∞. It is
natural to expect that S. R. Blackburn’s conjecture should hold for more
general families of groups, for example the monolithic primitive groups.
For instance, it is natural to expect that ω(Gn,m)/σ(Gn,m) tends to 1 for
fixed m and for n → ∞. We did this for n even. In the case n odd, this is
very probably true.



Chapter 1

Preliminaries

In this chapter we present definitions and results that are important
throughout the text.

1.1 Primitive groups

Let G be a finite group acting on the set X, and denote the action by
(x, g) 7→ xg. Such action is said to be transitive if for every x, y ∈ X there
exists g ∈ G such that xg = y. For x ∈ X, we define

StabG(x) = {g ∈ G : xg = x} ⩽ G

the stablizer of x and

OG(x) = {xg : g ∈ G} ⊆ X

the G-orbit of x. Equivalently, the action is transitive if X is the unique
orbit.

Giving an action of G on X is equivalent to giving a group homomor-
phism

γ : G −→Sym(X)
g 7−→ γg : X −→ X

x 7−→ xg.
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The kernel of this homomorphism is

Ker(γ) = {g ∈ G : γg = idX} = {g ∈ G : γg(x) = x, ∀x ∈ X}
= {g ∈ G : xg = x,∀x ∈ X} =

⋂
x∈X

Gx.

The kernel of the action is by definition equals to the kernel of the corre-
spondent homomorphism G → Sym(X). An action is said to be faithful if
it has trivial kernel.

A partition of X is a family P = {B1, . . . , Bk} of non-empty proper
subsets of X such that B1 ∪ . . . ∪ Bk = X and Bi ∩ Bj = ∅ whenever
i ̸= j. The trivial partitions of X are {X} and {{x} : x ∈ X}. We say
that G stabilizes the partition P if Bg

i ∈ P for every g ∈ G and for every
i ∈ {1, . . . , k}. An example of stabilized partition is given by the G-orbits,
and such partition is not {X} if the action of G is intransitive. Assume
now that the action of G on X is transitive and that it stabilizes a partition
P = {B1, . . . , Bk}. Then G acts on P by (Bi, g) 7→ Bg

i , and this action
is transitive. In fact, if Bi, Bj ∈ P and x ∈ Bi, y ∈ Bj then there exists
g ∈ G such that xg = y, so y ∈ Bg

i ∩ Bj. But Bg
i and Bj are members of

the partition P , so the fact that Bg
i ∩Bj ̸= ∅ implies that Bg

i = Bj.

The action of G on X is said to be primitive if it is transitive and
no nontrivial partition of X is stabilized by G, in other words for every
partition P of X that is not trivial and for every g ∈ G we have

{Bg : B ∈ P} ≠ P .

Since the partition consisting of the orbits is always stabilized, in the defi-
nition of primitive action the assumption that the action is transitive is su-
perfluous unless |X| = 2, and in this case the trivial action (x, g) 7→ xg = x
does not stabilize nontrivial partitions since all partitions are trivial. If the
action of G on X is not primitive and P is a G-invariant partition of X,
then the parts of P are called blocks of imprimitivity.

Lemma 1. Let the group G act transitively on the set X, and assume |X| >
2. Such action is not primitive if and only if there exists a subset A of X
such that |A| ⩾ 2 and whenever g ∈ G, either Ag = A or Ag ∩ A = ∅.
Such an A is called imprimitivity block for the action of G on X.
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Proof. Let us assume that the action is not primitive, and let P be a
nontrivial G-invariant partition. Since this partition is not trivial, there
exists A ∈ P such that |A| ⩾ 2 and A ̸= X. Since the partition is stabilized,
the claim follows. Conversely, let us assume that there exists A as in the
statement. Then the family {Ag : g ∈ G} is a partition of X stabilized by
G.

Example. Consider X = {1, 2, 3, 4, 5, 6}, σ = (123456) ∈ S6 and G =
⟨σ⟩ < S6, as a permutation group of degree 6. Since σ2 = (135)(246)
and σ3 = (14)(25)(36), X has precisely two G-invariant partitions, namely
{{1, 3, 5}, {2, 4, 6}} and {{1, 4}, {2, 5}, {3, 6}}. As the following picture
shows, the cycle (123456) acts as a 2-cycle on the first partition and as a
3-cycle on the second.
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1
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A group G acting on X is called faithfully primitive on X if its action
on X is faithful and primitive. In this case, the cardinality of X is called
a primitivity degree of G.

Proposition 1. [5, Proposition 1.1.2] Let G be a group acting on a set X
and x ∈ X. If the action is transitive, then there is a bijection between

{ block B of X : x ∈ B } → { H ⩽ G : StabG(x) ⩽ H }

which preserves containments.

Proof. Given a block B in X such that x ∈ B, then GB = {g ∈ G :
Bg = B} is a subgroup of G and the stabiliser StabG(x) is a subgroup of
GB. Conversely, if H is a subgroup of G containing StabG(x) then the set
B = {xh : h ∈ H} is a block and x ∈ B. These are the mutually inverse
bijections required.
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Let H ⩽ G, the normal core of H in G is defined by

HG =
⋂

g∈G

Hg.

Theorem 3. [5, Theorem 1.1.5] Let G be a group. The following conditions
are equivalent:

1. G possesses a faithful transitive permutation representation with no
nontrivial blocks;

2. there exists a core-free maximal subgroup of G.

Proof. 1 implies 2: Suppose that there exists a transitive G-set X with
no non-trivial blocks and consider any x ∈ X. The action of G on X

is equivalent to the action of G on the set of right cosets of StabG(x) in
G (see [24, Theorem 1.10]). The kernel of this action is the normal core
(StabG(x))G and, by hypothesis, is trivial. By Proposition 1 if H is a
subgroup of G containing StabG(x), there exists a block B = {xh : h ∈ H}
of X such that x ∈ B and H = GB = {g ∈ G : Bg = B}. Since G
has no non-trivial blocks, either B = {x} or B = X. If B = {x}, then
StabG(x) = H and if B = X, then H = G. Hence the stabiliser StabG(x)
is a core-free maximal subgroup of G.

2 implies 1: If U is a core-free maximal subgroup of G, then the action
of G on the set of right cosets of U in G is faithful and transitive. By
maximality of U , this action has no non-trivial blocks by Proposition 1.

The primitivity degrees of an abstract group G are the indices of the
maximal subgroups of G with trivial normal core.

Definition 1. We say that a group is primitive if it admits a faithful prim-
itive action. Equivalently, G is primitive if and only if there exists a max-
imal subgroup M of G with MG = {1}.

Lemma 2. Let G be a group.

1. Let N �G. If N ⩽ H ⩽ G, then (H/N)G/N = HG/N .
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2. If M is a maximal subgroup of G, then G/MG is primitive.

Proof. 1.

(H/N)G/N =
⋂

gN∈G/N

(H/N)gN =
⋂

g∈G

Hg/N = (
⋂

g∈G

Hg)/N = HG/N.

2. Since M is maximal in G, M/MG is maximal in G/MG. By the pre-
vious item, (M/MG)G/MG

= MG/MG, that is, M/MG has trivial core
in G/MG.

Let H,K ⩽ G. We say that H is a supplement of K in G, or that H
supplements K in G, if HK = G. We say that H is a complement of K in
G, or that H complements K in G, if H supplements K and H ∩K = {1}.
Note that if K � G and H complements K in G, then G/K ∼= H, and G
is isomorphic to the semidirect product K ⋊ H given by the conjugation
action of H on K.

A nontrivial subgroup N of a group G is called a minimal normal sub-
group if it is normal and for any normal subgroupK of G such thatK ⩽ N ,
either K = N or K is trivial.

The socle of a group G, denoted by soc(G), is the subgroup generated
by the minimal normal subgroups of G. If soc(G) is a minimal normal sub-
group of G, then it is the unique minimal normal subgroup of G. A group
admitting a unique minimal normal subgroup is usually called monolithic.
The next theorem was proved by R. Baer and in this result the primitive
groups are classified in terms of their socle.

Theorem 4. [5, Theorem 1.1.7] Let G be a finite group.

1. G is primitive if and only if there exists a proper subgroup U of G
such that UN = G whenever N is a nontrivial normal subgroup of G.

2. Let G be a primitive group. Assume that M is a core-free maximal
subgroup of G and that N is a nontrivial normal subgroup of G. Then
CG(N) ∩ M = {1}, moreover either CG(N) = {1} or CG(N) is a
minimal normal subgroup of G.
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3. If G is a primitive group and M is a core-free maximal subgroup of
G, then exactly one of the following statements holds:

(a) soc(G) is an abelian minimal normal subgroup of G complemented
by M . In this case G is called affine or primitive of type I.

(b) soc(G) is a nonabelian minimal normal subgroup of G supple-
mented by M . In this case G is called primitive of type II.

(c) G admits precisely two minimal normal subgroups A,B and soc(G) =
A × B. Moreover A and B are nonabelian, A = CG(B), B =
CG(A), M complements both A and B in G and A ∼= AB ∩M ∼=
B. In this case G is called primitive of type III.

Proof. 1. If G is primitive and M is a core-free maximal subgroup of G
then M does not contain any nontrivial normal subgroup of G and
M < MN ⩽ G for all N�G, thereforeMN = G for all {1} ≠ N�G.
Conversely if G is a finite group and the proper subgroup U of G
satisfies UN = G whenever N is a nontrivial normal subgroup of G
then letM be a maximal subgroup of G containing U . We haveMG =
{1}, because otherwise, sinceMG�G, we would have G = UMG ⩽M ,
a contradiction. So G is primitive.

2. Let G be primitive and let M be a core-free maximal subgroup of G.

If N is a nontrivial normal subgroup of G then CG(N) is the kernel
of the conjugation action G → Aut(N), hence CG(N) � G, therefore
M∩CG(N)�M , soM is contained in the normalizer NG(M∩CG(N)).
ButN is also contained in such normalizer, henceG = MN ⩽ NG(M∩
CG(N)) which implies that M ∩ CG(N) � G. Since MG = {1}, we
deduce that M ∩ CG(N) = {1}. If CG(N) ̸= {1} then, since G is
finite, there exists a minimal normal subgroup X of G contained in
CG(N). Since MG = {1} we have XM = G. By Dedekind’s law

CG(N) = CG(N) ∩G = CG(N) ∩XM = X(CG(N) ∩M) = X.

This implies that CG(N) is a minimal normal subgroup of G.

3. Let G be primitive and let M be a core-free maximal subgroup of G.
If G admits three distinct minimal normal subgroups A, B, C then



1.1 Primitive groups 27

B, C are contained in CG(A) being A ∩ B = {1} and A ∩ C = {1}
and this contradicts the fact that CG(A), if nontrivial, is a minimal
normal subgroup ofG. This proves thatG admits at most two minimal
normal subgroups.

Assume first that G contains only one minimal normal subgroup, call
it N . Since M is a core-free maximal subgroup, MN = G. If N is
nonabelian then G is a primitive group of type II and CG(N) = {1}.
Assume now that N is abelian. Then N ⩽ CG(N) and, since CG(N) is
a minimal normal subgroup of G, we deduce that CG(N) = N . This
implies that M ∩ N = M ∩ CG(N) = {1}, in other words M is a
complement for N in G hence G is a primitive group of type I.

Finally assume that G contains precisely two minimal normal sub-
groups, A and B. Clearly soc(G) = A×B. The fact that A∩B = {1}
implies that A ⩽ CG(B) and B ⩽ CG(A), so since CG(A) and CG(B)
are minimal normal subgroups of G, we deduce that A = CG(B)
and B = CG(A). In particular A and B are nonabelian. Moreover
M ∩ A = M ∩ CG(B) = {1} and M ∩ B = M ∩ CG(A) = {1}, so M
complements both A and B in G. By Dedekind’s law,

A(AB ∩M) = AB ∩ AM = AB ∩G = AB,

B(AB ∩M) = AB ∩BM = AB ∩G = AB,

therefore

A ∼= A/A ∩B ∼= AB/B = B(AB ∩M)/B ∼= AB ∩M,

B ∼= B/A ∩B ∼= AB/A = A(AB ∩M)/A ∼= AB ∩M.

It follows that A ∼= AB ∩M ∼= B.

Since we focus on monolithic primitive groups with non-abelian socle, we
are interested in primitive groups of type II. According to Baer’s Theorem,
the socle of a primitive group of type II is a non-abelian minimal normal
subgroup. A non-abelian minimal normal subgroup N of a finite group G
is a direct product of copies of a non-abelian simple group S, i. e., there is
a positive integer m with N = Sm [23, Chapter I, Theorem 9.12].
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Proposition 2. Let G be a finite group. The following are equivalent.

1. G is primitive of type II.

2. There exists a minimal normal subgroup N of G such that CG(N) =
{1}.

3. There exists a nonabelian minimal normal subgroup N of G such that,
up to isomorphism, N ⩽ G ⩽ Aut(N), where N is embedded in
Aut(N) via the natural conjugation action G → Aut(N).

Proof. By Baer’s theorem, (1) implies (2). If (2) holds then the conjugation
action G → Aut(N) has kernel CG(N) = {1}, so (3) follows. If (3) holds
then any element of the centralizer CG(N) is an automorphism of N fixing
N pointwise, hence CG(N) = {1} and (2) follows.

We are left to prove that (2) implies (1). The Frattini subgroup of G is
nilpotent, however N is not nilpotent being a direct product of nonabelian
simple groups. Since every subgroup of a nilpotent group is nilpotent,
this implies that there exists a maximal subgroup M of G not containing
N . In particular N is not contained in the normal core MG of M in G.
The intersection N ∩ MG is normal in G and contained in N , so since
N is a minimal normal subgroup, N ∩ MG = {1}. This implies that
MG ⩽ CG(N) = {1}, henceMG = {1}. Moreover, N is the unique minimal
normal subgroup of G since any other minimal normal subgroup would be
contained in CG(N) = {1}. This proves that G is primitive of type II.

Definition 2. A group G is said to be almost-simple if it admits a nonabelian
simple normal subgroup S such that CG(S) = {1}. In this case, S coincides
with the socle of G.

For n ⩾ 5, Sn is an almost simple group. In fact, for n ⩾ 5, An is a
nonabelian simple normal subgroup of Sn such that CSn

(An) = {1}.

If G is an almost-simple group with socle S, then the canonical map
G → Aut(S) is injective, therefore G can be thought of as a subgroup
of Aut(S) containing the isomorphic copy of S which is the image of the
canonical map S → Aut(S). In other words, we may assume that S�G ⩽
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Aut(S). This shows that the group G is almost-simple if and only if there
exists a nonabelian simple group S such that G is isomorphic to a subgroup
of Aut(S) containing S (where we identify S with a subgroup of Aut(S)
via the canonical map S → Aut(S)). In particular, if S is a nonabelian
simple group, then Aut(S) is almost-simple.

By Proposition 2, an almost simple group is a primitive group of type
II.

Definition 3. Let H and K be two groups and K ⩽ Sn. The wreath product
H ≀ K is the semidirect product Hn ⋊ K, where Hn is the direct product
of n copies of H, and K acts on Hn by permuting the coordinates. More
specifically, π ∈ K acts on Hn by

(h1, . . . , hn)π = (h1π−1, . . . , hnπ−1)

for each hi ∈ H, i = 1, . . . , n.

Let’s show that this action is a group action. If π, τ ∈ K, defining
ti = hiπ−1 we have

tiτ−1 = hiτ−1π−1 = hi(πτ)−1,

then

((h1, . . . , hn)π)τ = (h1π−1, . . . , hnπ−1)τ = (h1(πτ)−1, . . . , hn(πτ)−1) = (h1, . . . , hn)πτ .

The subgroup Hn is said to be the base of the group H ≀K. Note that
|H ≀K| = |H|n|K|.

The following result is due to Frobenius.

Theorem 5 (Embedding Argument). Let H be a subgroup of the finite group
G, let x1, . . . , xn be a right transversal for H in G, and let ξ be any homo-
morphism with domain H, say ξ : H → X. Then the map

f : G → ξ(H) ≀ Sn,

x 7→ (ξ(x1xx
−1
1π ), . . . , ξ(xnxx

−1
nπ))π,

where π ∈ Sn is the unique permutation that satisfies xix ∈ Hxiπ for
all i = 1, . . . , n, is a well-defined homomorphism with kernel equal to the
normal core of ker ξ in G, in other words ker f = (ker ξ)G.
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Proof. Since xi ∈ Hxi the permutation corresponding to the identity is 1
hence f(1) = 1. Now let x, y ∈ G and assume xixx

−1
iπ ∈ H, xiyx

−1
iτ ∈ H for

all i ∈ I = {1, . . . , n}, then applying the second to iπ we find xiπyx
−1
iπτ ∈ H

for all i ∈ I, so xixyx
−1
iπτ = (xixx

−1
iπ )(x−1

iπ yx
−1
iπτ) ∈ H. It follows that the

permutation corresponding to xy is πτ and

f(xy) = (ξ(xixyx
−1
iπτ))i∈Iπτ = (ξ(xixx

−1
iπ )ξ(xiπyx

−1
iπτ))i∈Iπτ

= f(x) · π−1(ξ(xiπyx
−1
iπτ))i∈Iπτ = f(x) · (ξ(xiyx

−1
iτ ))i∈Iτ = f(x)f(y).

f(x) = 1 if and only if the permutation π corresponding to x is the identity
and xixx

−1
i ∈ ker ξ for all i ∈ I, in other words x ∈ x−1

i (ker ξ)xi for all
i ∈ I. Since ker ξ�H, the conjugates of ker ξ in G are precisely the groups
x−1

i (ker ξ)xi for i ∈ I. This proves that ker f = (ker ξ)G.

Proposition 3. Let G be a finite group. Then the following are equivalent.

1. G is primitive of type II.

2. There exists an almost-simple group X with socle S and a transitive
group K ⩽ Sm such that G is isomorphic to a subgroup of X ≀ K
containing Sm and the restriction of the natural projection G → K is
surjective.

Proof. Assume (2) holds. Let S = soc(X), a nonabelian simple group.
Then N = Sm is a minimal normal subgroup of G since S is simple and K
acts transitively on the components. We are left to check that CG(N) =
{1}. If g ∈ CG(N) then of course the permutational part of g is trivial
since g must fix all the direct factors of N . So g has type (x1, . . . , xm) and
xi is an element of X centralizing S, so since CX(S) = {1} we deduce that
xi = 1 for all i.

Assume (1) holds. Let N = T1×. . .×Tm be the socle of G, where the Ti’s
are pairwise isomorphic nonabelian simple groups. Denote by R the first
factor, R := T1 × {1} × . . .× {1}. Let H := NG(R) and C := CG(R) �H.
Note that since R ∼= T1 is a nonabelian simple group, R ∩ C = {1}.
We claim that X := H/C is an almost-simple group with socle RC/C.
Clearly RC/C is a normal subgroup of H/C and RC/C ∼= R/R ∩ C ∼= R
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is nonabelian simple. We are left to show that CH/C(RC/C) is trivial.
Assume that h ∈ H is such that hC centralizes RC/C, in other words
hCrC = rChC for all r ∈ R, then h−1r−1hr ∈ R ∩ C = {1} for all r ∈ R
and this implies that h ∈ C, in other words hC = C.

We now apply the embedding argument to the natural homomorphism

ξ : H → Aut(R).

Note that ker(ξ) = C, ξ(H) ∼= H/C = X and the conjugates of C in G are
precisely the centralizers of the direct factors of N , therefore an element
belongs to the normal core ker(ξ)G if and only if it centralizes all of the
factors, in other words ker(ξ)G = CG(N) = {1}. The group K is the image
of the homomorphism G → Sm given by the conjugation action of G on the
direct factors of N , which is transitive being N a minimal normal subgroup
of G.

Proposition 4. Let S a non-abelian simple group and write Sn = S×. . .×S,
the direct product of n copies of S, for some positive integer n. Then the
minimal normal subgroups of Sn are the Ni = {1} × . . .× {1} × S × {1} ×
. . . {1}, where only the i-th coordinate is equal to S, for each i = 1, . . . , n.

Proof. For each i = 1, . . . , n, the subgroups Ni are normal in Sn. Indeed,
given s = (s1, . . . , sn) ∈ Sn and x = (1, . . . , xi, . . . , 1) ∈ Ni, we have

xs = (1, . . . , xsi
i , . . . , 1) ∈ Ni.

Furthermore, the subgroups Ni are minimal normal in Sn. If there is
Ki ⩽ Ni with Ki � Sn, the subgroup K ⩽ S formed by the elements of
the i-th coordinate of Ki is such that K is normal in the simple group S.
Then either K = {1} or K = S and then either Ki = {1} × . . . × {1} or
Ki = Ni.

Let N be a minimal normal subgroup of Sn different from the Ni. Then
N ∩ Ni = {1} for all i = 1, . . . , n. Since N and Ni are normal in Sn,
we have [N,Ni] ⩽ N ∩ Ni = {1}, and then N centralizes all the Ni and
N ⩽ Z(Sn) = {1}× . . .×{1}, a contradiction. Therefore, the only minimal
normal subgroups of Sn are the Ni, i = 1, . . . , n.
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Proposition 5. [5, Proposition 1.1.20] Let S be a non-abelian simple group
and write Sn = S1 × . . .×Sn for the direct product of n copies S1, . . . Sn of
S, for some positive integer n. Then Aut(Sn) ∼= Aut(S) ≀ Sym(n), where
Sym(n) is the symmetric group of degree n.

We are interested in the maximal subgroups of a primitive group of type
II.

Definition 4. Let G = ∏n
i=1 Si be a direct product of groups. A subgroup

H of G is said to be diagonal if each projection πi : H → Si i = 1, . . . , n,
is injective. If each projection πi : H → Si is an isomorphism, then the
subgroup H is said to be a full diagonal subgroup.

A reference for the following discussion is [5, Remark 1.1.40].

Let G be a primitive monolithic group with non-abelian socle N = Sm,
and S a non-abelian simple group. For i ∈ {1, . . . ,m}, let Si be the
subgroup of N equal to

∏m
j=1 Uj where Ui = S and Uj = {1} for all j ̸= i

(coordinate subgroup), so that Si
∼= S for all i. Let H be a maximal

subgroup of G such that N ̸⊆ H, then HN = G. Suppose that N∩H ̸= ∅.
Since N is the unique minimal normal subgroup of G and H is a maximal
subgroup of G not containing N , H = NG(N ∩H).

In the following let X := NG(S1)/CG(S1). X is an almost simple group
with socle S1CG(S1)/CG(S1) ∼= S1. There are two possibilities for the
intersection N ∩H:

1. Product type. Suppose the projections H → Si are not surjective.
Then there exists a subgroup M of S such that NX(M) supplements
S in X and there exists elements a2, . . . , am ∈ S such that

H ∩N = M ×Ma2 × . . .×Mam.

2. Diagonal type. Suppose the projections H → Si are surjective. Then
there exists an H-invariant partition ∆ of {1, . . . ,m} into blocks for
the action of H on {1, . . . ,m} such that

H ∩N =
∏

D∈∆
(H ∩N)πD ,
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and for each D ∈ ∆ the projection (H ∩ N)πD is a full diagonal sub-
group of

∏
i∈D Si.

1.2 Maximal subgroups of the Symmetric Group

A subgroup G of Sn is typically classified according to its action on
X = {1, . . . , n}. If P is a property of a group action, for example transitive,
a subgroup G of Sn is called P if its natural action on X = {1, . . . , n} is
P . We will use the word intransitive to mean not transitive.

Observe that if G ⩽ Sn is intransitive then it has more than one orbit
on X, and letting O be one of them, G is contained in

StabSn
(O) = {g ∈ Sn : Og = O} ∼= Sym(O) × Sym(X \O).

This is called a maximal intransitive subgroup of Sn. We will see such
a subgroup is maximal in Sn unless |O| = |X \ O|. For this we use a
reformulation of Jordan’s Theorem [42, Theorem 13.9].

Proposition 6. Let G ⩽ Sn act primitively on X = {1, . . . , n}. If G con-
tains a transposition then G = Sn. If G contains a 3-cycle then G = An

or G = Sn.

Proposition 7. Let O be a nonempty proper subset of X = {1, . . . , n} and
let G := StabSn

(O). Then G is a maximal subgroup of Sn unless n is even
and |O| = n/2.

Proof. We study the maximality of G inside Sn. If G is not maximal then
it is properly contained in K ⩽ Sn which therefore is transitive on X. If
K is primitive then it contains a 2-cycle, moving 2 elements of O or of
O := X \O, and Jordan’s Theorem implies that K = Sn.

Suppose now that K is imprimitive, let B be a nontrivial block for K.
Then B is a nontrivial block forG, therefore B∩O is either empty or a block
for GO and B∩O is either empty or a block for GO. Since GO ∼= Sym(O) is
primitive on O and GO ∼= Sym(O) is primitive on O, we deduce that either
|B ∩O| ⩽ 1 or B ∩O = O, furthermore either |B ∩O| ⩽ 1 or B ∩O = O.
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Assume B ∩ O = {α}, B ∩ O = {β}, then B = {α, β}. If there exists
γ ∈ O − B then g = (αγ) ∈ G and Bg = {β, γ}, a contradiction, and
similarly O − B = ∅, so X = B and n = 2, this contradicts the fact that
B is nontrivial.

Assume B ∩ O = {α}, B ⊇ O. Then B = {α} ∪ O, however this is a
contradiction because, since B is a nontrivial block, there exists β ∈ O−B,
hence there exists g ∈ G such that αg = β (being GO = Sym(O)) so
Bg = {β} ∪O is not disjoint from B and not equal to B.

We are left with the case in which one of B ∩ O and B ∩ O is empty,
say B ∩ O = ∅. Then B = O. Since K is transitive, there exists k ∈ K
that takes an element of O to an element of O, hence Bk ⊆ O. But then
Bk = Bk ∩O is a block for GO = Sym(O), of size at least 2, hence Bk = O.

This proves that if O is a proper subset of X and G = Stab(O) <
Sym(X) is not a maximal subgroup then |X| > 2 and |O| = |O|. In other
words G has type Sa × Sa with 2a = n.

Indeed, such subgroup is not maximal if n > 2: it is contained in an
imprimitive wreath product Sn/2 ≀ S2, the stabilizer of a partition with two
parts of size n/2, which, as we will see, is a maximal subgroup of Sn.

If a, b > 1 and ab = n, then the full wreath product Sa ≀ Sb embeds
into Sn as an imprimitive subgroup. To see this, it is enough to check that
Sa ≀ Sb acts faithfully and imprimitively on the set {1, . . . , a} × {1, . . . , b},
which is a set of size ab = n, by the rule

(i, j)(x1,...,xb)σ := (ixj, jσ).
This is an action since

(i, j)(x1,...,xb)σ·(y1,...,yb)τ = (i, j)(x1y1σ,...,xbybσ)στ = (ixjyjσ, jστ),
is equals to(

(i, j)(x1,...,xb)σ)(y1,...,yb)τ = (ixj, jσ)(y1,...,yb)τ = (ixjyjσ, jστ).
This action is imprimitive admitting Bj = {1, . . . , a} × {j} as a block
system, j = 1, . . . , b. Indeed,

B
(x1,...,xb)σ
j = Bj

σ = Bjσ.
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The block system consists of b blocks of size a. The kernel of the action
consists of the elements (x1, . . . , xb)σ ∈ Sa ≀ Sb such that

(i, j)(x1,...,xb)σ = (ixj, jσ) = (i, j),

for all (i, j) ∈ {1, . . . , a} × {1, . . . , b}. This implies that x1 = . . . = xb = 1
and σ = 1, that is, the action is faithful. Therefore Sa ≀ Sb embeds into Sab

as an imprimitive subgroup.

Proposition 8. Actually Sa ≀Sb is a maximal imprimitive subgroup, meaning
that it is not properly contained in any imprimitive subgroup of Sn. More-
over, every maximal imprimitive subgroup is conjugate in the symmetric
group to Sa ≀ Sb.

Proof. AssumeG ⩽ Sn acts transitively and imprimitively onX = {1, . . . , n}.
This means that there is a nontrivial imprimitivity block B for G, let
a = |B|. Let H = GB = {g ∈ G : Bg = B}, the setwise stabilizer of B.
Observe that G acts transitively on the set of blocks {Bg : g ∈ G} with
H as point stabilizer, so |G : H| equals the number of translates of B, call
it b. Since the translates of B partition X we have ab = n. Of course we
have a homomorphism

ξ : H → Sym(B) ∼= Sa

induced by the action of H on B. By Theorem 5 we deduce a homomor-
phism

f : G → ξ(H) ≀ Sb ⩽ Sa ≀ Sb

with kernel the normal core of ker(ξ) in G. Observe that if h ∈ ker(ξ) then
h fixes B pointwise, and if h ∈ ker(ξ)g then ghg−1 ∈ ker(ξ) so h fixes Bg

pointwise. This implies that (ker(ξ))G = {1} hence f is injective. This
means that G embeds in the wreath product Sa ≀ Sb. On the other hand
such wreath product embeds in Sn as an imprimitive subgroup with blocks
of size a. This proves that the stabilizers in Sn of the partitions consisting
of b blocks of size a, i.e. the maximal imprimitive subgroups of Sn with
blocks of size a, are isomorphic to wreath products Sa ≀ Sb.

Similarly, the maximal imprimitive subgroups of An with b blocks of
size a are isomorphic to the intersection between An and the maximal
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imprimitive subgroups of Sn with b blocks of size a, in other words, with
abuse of notation, they are of the form An ∩ (Sa ≀ Sb).

Consider the wreath product G = Sn ≀Sm. We have seen that it admits a
faithful imprimitive action of degree nm. Consider now the product action
of G, that is, the action of G on {1, . . . , n}m given by

(a1, . . . , am)(σ1,...,σm)π := (a1π−1σ1π−1, . . . , amπ−1σmπ−1).

We show that this action is transitive.

Given (a1, . . . , am) ∈ {1, . . . , n}m, if (σ1, . . . , σm) ∈ (Sn)m, we have

(a1, . . . , am)(σ1, . . . , σm)(1) = (a1σ1, . . . , amσm),

and

{1, . . . , n}m ⊆ {(a1σ1, . . . , amσm) : σi ∈ Sn, } ⊆ OG((a1, . . . , am))
= {(a1, . . . , am)g : g ∈ G} ⊆ {1, . . . , n}m.

Also this is a faithful action. Moreover the stabilizer of (i, i, . . . , i) is iso-
morphic to Sn−1 ≀ Sm. Indeed, if (σ1, . . . , σm)π ∈ StabG((i, . . . , i)) then
(iπσ1π, . . . , iπσmπ) = (i, . . . , i), that is, iπσkπ = i, for all k = 1, . . . ,m. Since
π only permutes the coordinates, we have iσk = i, for all k = 1 . . . ,m, that
is, σk ∈ StabSn

(i). Then (σ1, . . . , σm)π ∈ StabSn
(i) ≀ Sm

∼= Sn−1 ≀ Sm. Using
the same calculations, it is proved that StabSn

(i) ≀ Sm ⊆ StabG(i, . . . , i).

For the following observe that if A, B are subgroups of G such that AB
is a subgroup of G then |AB : A| = |B : A ∩B|.

Lemma 3. Assume that n ⩾ 5 and m a positive integer. Then G = Sn ≀ Sm

is a primitive group of type II with degree nm.

Proof. Since n ⩾ 5, An is the only proper normal subgroup of Sn, then
N = (An)m is a non-Abelian normal subgroup of G. We will show that
N is a minimal normal subgroup of G. Let Ni, Nj, as in Proposition 4,
minimal normal subgroups of N with i ̸= j. The permutation (ij) ∈ Sm is

such that N
(ij)
i = Nj. Let {1} ≠ K ⩽ N with K � G. Since K is normal

in N there exists i with Ni ⩽ K. Since K � G, we have Kg = K, for all
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g ∈ G. Let g = 1(ij). We have Nj ⩽ K, for all j. Then K = N and N is
a minimal normal subgroup of G. We will now show that CG(N) = {1}.
Let g = (σ1, . . . , σm)π ∈ CG(N). Since g must centralize all elements of
N of the form (1, . . . , 1, a, 1, . . . , 1), we must have π = 1. Then CG(N) ⩽
Sm

n , and CG(N) ⩽ CSm
n

(Am
n ) = (CSn

(An))m = ({1})m. Therefore Am
n is a

minimal normal subgroup of G with trivial centralizer. By proposition 2,
G is a primitive group of type II.

We are left to show thatM := Sn−1 ≀Sm is a core-free maximal subgroup
of G. It is clearly core-free because Am

n is the unique minimal normal
subgroup of G and M does not contain it. We also have

|G : M | = (n!)mm!
((n− 1)!)mm! = nm.

We need to show that M is a maximal subgroup of G.

Let K := (Sn−1)m ⩽ B := (Sn)m. We claim that M = NG(K). The
inclusion M ⩽ NG(K) is clear since K �M . Now

B ∩NG(K) = NB(K) = NSm
n

(Sm
n−1) = (NSn

(Sn−1))m = Sm
n−1 = K,

since Sn−1 is maximal and not normal in Sn. It is clear that the permuta-
tional factor Sm is contained in NG(K), therefore G = BSm ⩽ B · NG(K)
hence G = B ·NG(K). Therefore

|G : NG(K)| = |B ·NG(K) : NG(K)| = |B : B ∩NG(K)|
= |B : K| = |B : M ∩B| = |BM : M | = |G : M |.

Since M ⩽ NG(K), it follows that M = NG(K).

Let H be a maximal subgroup of G containing M . We claim that
H = M . This follows if we can show that H ∩ B = K. Indeed, assuming
H ∩B = K, since H ∩B�H we have that that H ⩽ NG(H ∩B) = NG(K)
and NG(K) ̸= G being K not normal in G. Since H is maximal in G, we
deduce that H = NG(H ∩ B) = NG(K) = M . Therefore it is enough to
show that H ∩B = K. The inclusion K ⊆ H ∩B is clear.

We are left to prove that H ∩B ⊆ K. Write B = B1 × . . .×Bm and

Ri = {1} × . . .× {1} ×Bi × {1} × . . .× {1}
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for i ∈ {1, . . . ,m}. G acts transitively on Γ = {R1, . . . , Rm} by conjugation
with kernel equal to B. Since H ⩾ M and G = BM , we have G =
BH, hence H acts transitively on Γ. Let πi : B → Ri be the canonical
projections, i ∈ {1, . . . ,m}. Fix i, j ∈ {1, . . . ,m} and let h ∈ H be such
that Rh

i = Rj. Composing the conjugation by h, γh : H ∩ B → H ∩ B,
with the canonical projection we find a surjective homomorphism

H ∩B
γh //H ∩B

πj |H∩B// πj(H ∩B)

whose kernel is ker(πi|H∩B). The isomorphism theorem implies that

πi(H ∩B) ∼= πj(H ∩B).

Since πi(K) ∼= Sn−1 is a maximal subgroup of Bi
∼= Sn and K ⩽ H ∩B,

we have πi(K) ⩽ πi(H ∩ B) ⩽ Bi therefore either πi(H ∩ B) = πi(K) or
πi(H ∩B) = Bi. In the first case

|H ∩B| ⩽
m∏

i=1
|πi(H ∩B)| =

m∏
i=1

|πi(K)| = ((n− 1)!)m = |K|

hence H ∩B = K being H ∩B ⩾ K.

Now assume that πi(H ∩B) = Bi for all i ∈ {1, . . . ,m}.

Let i ∈ {1, . . . ,m}. We claim that H ∩ Ri � Ri. If y ∈ H ∩ Ri then
πj(y) = 1 for every j ̸= i. If r ∈ Ri then, being πi(H ∩ B) = Bi, there
exists x ∈ H ∩ B such that πi(x) = πi(r). Since x, y, r are m-tuples and
y ∈ Ri, the fact that πi(x) = r implies that r−1yr = x−1yx ∈ H. This
proves the claim.

But since H ∩Ri contains K ∩Ri
∼= Sn−1, H ∩Ri is nontrivial and it is

not the alternating group An, hence H ∩Ri = Ri, in other words Ri ⩽ H.
This holds for every i ∈ {1, . . . ,m}, hence B ⩽ H. This contradicts the
fact that H ̸= HB = G. The proof is completed.

We now state the O’Nan-Scott Theorem.

Theorem 6 (O’Nan-Scott Theorem). If G is any proper subgroup of Sn,
other than An, then G is a subgroup of one or more of the following sub-
groups.
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1. An intransitive group Sk × Sm where n = k +m.

2. An imprimitive group Sk ≀ Sm where n = km.

3. A primitive wreath product Sk ≀ Sm where n = km.

4. An affine group AGLd(p) = Fd
p ⋊GLd(Fp) where n = pd.

5. A group of shape Tm.(Out(T ) × Sm) where T is a non-abelian simple
group, acting on the cosets of a subgroup Aut(T ) × Sm, where n =
|T |m−1.

6. An almost-simple group acting on the cosets of a core-free maximal
subgroup of index n.

Note that this theorem does not say that the groups listed are maximal
in Sn. But certainly every maximal subgroup of Sn is of one of the types
listed.

Now we will prove O’Nan-Scott Theorem.

Proof. This proof follows the line of [44], [5] and [28].

Set Ω := {1, . . . , n}, let α ∈ Ω and let U be the stabilizer of α in G. We
know that U is a core-free maximal subgroup of G.

Let G ⩽ Sym(Ω) be a primitive group with socle N . Set K := U ∩ N .
Then

|G : U | = |UN : U | = |N : K|.
Moreover K�U , so U is contained in the normalizer NG(K). Since K�U ,
we have U ⩽ NG(K), and since U is maximal in G, either U = NG(K) or
NG(K) = G. In the latter case K�G, hence the fact that UG = {1} forces
K = {1}. This implies that either K = {1} or U = NG(K). We know that
K = {1} if G is primitive of type I or III, so we will discuss these cases
first.

If G is primitive of type I then the socle N of G is abelian and it is the
unique minimal normal subgroup of G, moreover N is complemented by
U , in other words G ∼= N ⋊ U . The action of U on N = Fd

p is Fp-linear,
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faithful and irreducible, hence U is an irreducible subgroup of GLd(Fp).
This is the affine case. In this case, G can be embedded in AGL(Fd

p) which
is a primitive subgroup of Spd with point stabilizer GLd(Fp).

If G is primitive of type III then the socle of G is N = A × B where
A,B are the two minimal normal subgroups of G, both nonabelian and
A ∼= AB ∩ U ∼= B. We know that U is a complement of both A and B,
hence A and B act regularly on Ω. The isomorphism A ∼= AB ∩ U ∼= B
is explicited as follows. For every a ∈ A, since G is a semidirect product
B ⋊ U , there is a unique ba ∈ B such that aba ∈ U . The map

f : A → B, a 7→ ba

is a group isomorphism since a1a2ba1ba2 = a1ba1a2ba2 ∈ U for every a1, a2 ∈
A and the inverse f−1 : B → A sends b ∈ B to the unique ab ∈ A such that
abb ∈ U . We can define an element σ ∈ Sym(Ω) as follows. Fix ω ∈ Ω.
Every element of Ω can be uniquely written as ωa where a ∈ A. Define
(ωa)σ := ω(af). We claim that af = σ−1aσ for all a ∈ A, proving that
B = σ−1Aσ. Indeed, if x ∈ Ω, then we can write x = ω(a∗f) for a unique
a∗ ∈ A and, if a ∈ A,

xσ−1aσ = (ω(a∗f))σ−1aσ = (ωa∗)σσ−1aσ = (ωa∗a)σ
= ω((a∗a)f) = ω(a∗f)(af) = x(af).

Therefore A and B are conjugate in Sym(Ω) via σ, hence G is properly con-
tained in ⟨G, σ⟩ ⩽ Sym(Ω) since A is normal in G but it is not normalized
by σ. Moreover

Bσ = CG(A)σ = CG(Aσ) = CG(B) = A,

hence σ normalizes A×B, in other words A×B is normal in ⟨G, σ⟩. This
implies that ⟨G, σ⟩ is not equal to Sym(Ω), since the only proper nontrivial
normal subgroup of Sym(Ω) is Alt(Ω) and Alt(Ω) is not a direct product
of two nontrivial subgroups. This implies that the primitive groups of type
III are not maximal in Sym(Ω) hence we may ignore them.

Assume now G is primitive of type II with nonabelian socle N = Tm =
T1 × . . .×Tm. Set H := NG(T1), C := CG(T1). We know that X := H/C is
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an almost-simple group with socle isomorphic to T1 and G embeds in the
wreath product X ≀ K, where K ⩽ Sm is the transitive group induced by
the action of G on the m direct factors of N . If m = 1 then T1 = N �G,
H = G and C = CG(N) = {1}, therefore G ∼= X is almost-simple and we
are in case (6) of the theorem. Assume now that m > 1. A subgroup of G
is called U -invariant if its normalizer in G contains U . For example, since
U ∩N is normal in U , it is U -invariant.

Now we will prove that U∩N is a maximal proper U -invariant subgroup
of N . It is clear that U ∩ N is a proper U -invariant subgroup of N . Now
assume by contradiction that U ∩ N < L < N where L is U -invariant.
In particular LU is a subgroup of G. We claim that U < LU < G,
contradicting the maximality of U . Indeed, if U = LU then L ⩽ U , a
contradiction, and if LU = G then L�G contradicting the fact that N is
a minimal normal subgroup of G.

We want to show that we are in one of the following cases.

• Twisted wreath product type. This case is defined by the fact that
U ∩ N = {1}, in other words G is a semidirect product N ⋊ U . The
corresponding primitivity degree is |N |.

• Product type. U is a conjugate of NG(Rm) where R is a proper non-
trivial subgroup of T , which is the intersection between T and a core-
free maximal subgroup of X. The corresponding primitivity degree is
|T : R|m.

• Simple diagonal type. U = NG(∆) where ∆ is a diagonal subgroup of
Tm, that is, a subgroup of the form

{(x, xϕ2, . . . , xϕm) : x ∈ T} ⩽ N = Tm

where ϕ2, . . . , ϕm are automorphisms of T . The corresponding primi-
tivity degree is |T |m−1.

• Diagonal type in product action. U = NG(∆1 × . . . × ∆l) where l
divides m, l > 1, lk = m and each ∆i

∼= T is a diagonal subgroup of
T k. The corresponding primitivity degree is |T |l(k−1).
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Call π1, . . . , πm the projections πi : Tm = T1 × . . . × Tm → Ti. Observe
that since N is a minimal normal subgroup of G and the normalizer NG(U∩
N) is a subgroup of G containing U , either U complements N in G or
NG(U ∩ N) = U . Define Ui := πi(U ∩ N) for i = 1, . . . ,m. The same
argument used in the proof of Lemma 3 shows that Ui

∼= Uj for every
i, j ∈ {1, . . . ,m}. If U1 ̸= T1 then, since U ∩N is contained in U1 × . . .×Um

and the latter is a proper U -invariant subgroup of N , U∩N = U1×. . .×Um

since U ∩N is a maximal proper U -invariant subgroup of N .

There are three possibilities for U1. In the following discussion we will
use Proposition 3.

Case 1. U1 = {1}.

This implies that Ui = {1} for every i, so U ∩ N = {1}. In other
words U complements N , so G = N ⋊ U and the primitivity degree is
n = |N | = |T |m. This is the so-called twisted wreath product type. We
know that G embeds in X ≀Sm where X = NG(T1)/CG(T1) is almost-simple
with socle isomorphic to T , in particular X embeds in Aut(T ) ⩽ Sym(T ).
Setting k = |T | = |T1 : U1|, we obtain that G embeds in Sk ≀ Sm with
product action of degree n = km.

Case 2. {1} < U1 < T1.

This implies that {1} < Ui < Ti for every i. Since U∩N = U1 × . . .×Um

and the Ui are pairwise isomorphic, the degree of the primitive action of G
is

n = |G : U | = |UN : U | = |N : U ∩N | = |Tm : U1 × . . .×Um| = |T1 : U1|m.

Let H := NG(T1), V := H ∩ U = NU(T1) and C := CG(T1).

We claim that U1 is a maximal proper V -invariant subgroup of T1. As-
sume by contradiction that U1 < R < T1 and R is V -invariant. Since
UN = G, the group U acts transitively on the m factors of N , hence
for each i ∈ {1, . . . ,m} there exists ui ∈ U such that T ui

1 = Ti. Set
R̃ := R ×Ru2 × . . .×Rum. Note that

U1 = (U ∩N) ∩ T1 = U ∩ T1,
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hence

Uui
1 = (U ∩ T1)ui = U ∩ T ui

1 = U ∩ Ti = (U ∩N) ∩ Ti = Ui.

Therefore Ui = Uui
1 < Rui. This implies that U ∩ N is properly contained

in R̃. Since U ∩ N is a maximal proper U -invariant subgroup of N , in
order to obtain a contradiction it is enough to prove that R̃ is U -invariant.
Let x ∈ U . Fix i ∈ {1, . . . ,m} and let j be such that T x

i = Tj. Then

Ruix ⩽ Tj = T
uj

1 , therefore Ruixu−1
j ⩽ T1. On the other hand uixu

−1
j belongs

to U and normalizes T1, therefore it belongs to H ∩ T1 = V . Since R is
V -invariant, we deduce that Ruixu−1

j = R, in other words Ruix = Ruj . This
implies that R̃x = R̃. This holds for every x ∈ U , hence R̃ is U -invariant.

We have V CT1 = H, since

H ⊇ V CT1 ⊇ V N = (H ∩ U)N = H ∩ UN = H ∩G = H.

This implies that V C/C is a core-free subgroup of X = H/C. Indeed,
since X is almost-simple, its unique minimal normal subgroup is T1C/C

and this is supplemented by V C/C since V CT1 = H.

We claim that V C is a maximal subgroup of H, which implies that
V C/C is a core-free maximal subgroup of the almost-simple group X =
H/C, therefore X is a primitive group of degree |X : V C/C|. First, note
that V C ̸= H because if this is not the case then T1 ⩽ H = V C = CV ,
therefore, being U1 ̸= {1}, and being T1 a simple group, we have

T1 = ⟨UT1
1 ⟩ ⩽ ⟨UCV

1 ⟩ = ⟨UV
1 ⟩ ⩽ U,

a contradiction. Assume the group M is such that V C ⩽ M < H, then
M ∩ T1 is a V -invariant subgroup of T1 and U1 ⩽ M ∩ T1. If T1 ⩽ M
then H = V CT1 ⩽ M and H = M , contradicting our assumption. Hence
U1 ⩽ M ∩ T1 ̸= T1. By maximality of U1 as proper V -invariant subgroup
of T1, we deduce that U1 = M ∩ T1, hence

M = M ∩H = M ∩ V CT1 = V C(M ∩ T1) = V CU1 = V C,

being U1 ⩽ V . This proves the claim.
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Since U1 ⩽ V C ∩T1 < T1, U1 is a maximal proper V -invariant subgroup
of T1 and V C ∩ T1 is V -invariant, we deduce that equality holds: U1 =
V C ∩ T1. Since H = V CT1, we have

|H/C : V C/C| = |H : V C| = |V CT1 : V C| = |T1 : V C ∩ T1| = |T1 : U1|.

We deduce that X = H/C is primitive of degree k = |T1 : U1| with point
stabilizer V C/C, hence X embeds into Sk. Moreover, U1C/C equals the
intersection between T1C/C and the core-free maximal subgroup V C/C of
H/C. Indeed, it is clear that U1C/C ⩽ T1C/C ∩ V C/C, however, using
that H = V CT1, we have

|T1C/C∩V C/C| = |T1C/C| · |V C/C|
|H/C|

= |T1| · |V C|
|H|

= |T1∩V C| = |U1| = |U1C/C|.

Now, G embeds into X ≀ K where K is a transitive subgroup of Sm

and X embeds into Sk, therefore G embeds into Sk ≀ Sm and looking at
the point stabilizers we deduce that the action of G is equivalent to the
product action of degree km = n induced by Sk ≀ Sm on {1, . . . , k}m.

Case 3. U1 = T1.

This implies that Ui = Ti for every i. For x = (t1, . . . , tm) ∈ N , let the
support of x be the set

supp(x) := {i ∈ {1, . . . ,m} : ti ̸= 1} ⊆ {1, . . . ,m}.

Let Ω1 be a minimal nonempty subset of {1, . . . ,m} such that U ∩ N
contains an element whose support is Ω1. Let

A := AΩ1 = {x ∈ U ∩N : supp(x) ⊆ Ω1}.

By minimality of Ω1, if x ∈ A and x ̸= 1 then supp(x) = Ω1. Moreover, it
is clear that A is a normal subgroup of U ∩N .

Fix i ∈ Ω1. We claim that for every s ∈ T there exists a unique gs,i ∈ A
such that πi(gs,i) = s and that the map fi : T → A defined by fi(s) := gs,i

is a group isomorphism whose inverse is πi|A. The uniqueness follows from
the fact that if g ∈ A is such that πi(g) = s then the element gg−1

s,i belongs
to A and πi(gg−1

s,i ) = 1, hence gg−1
s,i = 1 by minimality of Ω1. To prove
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the existence, we need to prove that πi(A) = Ti. Let Li := πi(A) ⩽ Ti.
Then Li ̸= {1} by definition of Ω1. Since Ti is a simple group, to show
that Li = Ti it is enough to show that Li is normal in Ti. If t ∈ Ti then,
since Ui = Ti, there exists u ∈ U ∩ N with πi(u) = t. If x ∈ A then,
since u ∈ N , x and xu have the same support, hence xu ∈ A. This implies
that πi(xu) ∈ Li and this exactly says that t−1πi(x)t ∈ Li. Now we prove
that fi is a group isomorphism. If g ∈ A then, letting s := πi(g), it is
clear that fi(s) = g, this proves that fi is surjective. If s, t ∈ T are such
that fi(s) = fi(t) then applying πi we find s = t, this proves injectivity.
Since πi(g1,i) = πi(1) = 1, it follows that fi(1) = g1,i = 1. If s, t ∈ T then
πi(gs,igt,i) = πi(gst,i) = st, it follows that fi(st) = fi(s)fi(t).

We deduce that A is a diagonal subgroup of TΩ1: indeed, setting k :=
|Ω1|,

A = {(s, ϕ2(s), . . . , ϕk(s)) : s ∈ T} ⩽ TΩ1

where ϕi = πi|A ◦ f1 ∈ Aut(T ) for i = 1, . . . , k.

The natural action of G on the m direct factors of N gives an action
of G on {1, . . . ,m}. We claim that Ω1 is an imprimitivity block for this
action. Assume Ω1 is the support of some x ∈ U ∩N . If g = nu ∈ G with
n ∈ N , u ∈ U , then Ω2 := Ωg

1 = Ωu
1 is the support of y := xu ∈ U ∩ N .

Assume Ω1 ∩ Ω2 ̸= ∅. We claim that Ω1 = Ω2. Let i ∈ Ω1 ∩ Ω2, so
that πi(x) ̸= 1 ̸= πi(y). Since Ti is simple, the conjugacy class of πi(x)
in Ti generates Ti and Z(Ti) = {1}. Since πi(y) ̸= 1 there exists t ∈ Ti

such that πi(x)t does not commute with πi(y). Since Ui = Ti, there exists
v ∈ U ∩ N such that πi(v) = t, therefore πi(xv) = πi(x)t. Moreover
supp(xv) = supp(x) = Ω1 and πi(xv) ̸= 1 being πi(x) ̸= 1. Up to replacing
x with xv, we may assume that πi(x) and πi(y) do not commute. If j ∈
Ω1 − Ω2 then πj(x) ̸= 1, πj(y) = 1, and if j ∈ Ω2 − Ω1 then πj(x) = 1,
πj(y) ̸= 1, therefore πj([x, y]) = 1 unless possibly if j ∈ Ω1 ∩ Ω2, where
[x, y] := x−1y−1xy ∈ U∩N . This says that supp([x, y]) ⊆ Ω1∩Ω2, therefore
Ω1 = Ω1 ∩Ω2 by minimality of Ω1, in other words Ω1 ⊆ Ω2. Since Ω2 = Ωu

1 ,
|Ω1| = |Ω2|, hence Ω1 = Ω2.

We claim that |Ω1| ≠ 1. If Ω1 has size 1, say Ω1 = {i}, then there exists
an element x ∈ U ∩ N such that πi(x) ̸= 1 and πj(x) = 1 for every j ̸= i.
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Since Ui = Ti, for every t ∈ Ti there exists u ∈ U ∩ N with πi(u) = t,
hence U ∩N contains the whole conjugacy class of x, so it contains the i-th
factor, being T a simple group. Since U acts transitively on the factors, U
contains N , a contradiction.

Assume the block system consists of l blocks Ω1, . . . ,Ωl, each of size k >
1. We have N = T kl. We may consider the normal subgroups AΩj

�U ∩N ,
j = 1, . . . , l, defined in the same way as for AΩ1 above. Note that the
group they generate is a direct product AΩ1 × . . . × AΩl

∼= T l. Moreover
this product equals U ∩ N . To prove this, fix g ∈ U ∩ N and, for every
j ∈ {1, . . . , l}, let xj ∈ AΩj

be such that there exists i = i(j) ∈ Ωj with the
property that πi(g) = πi(xj). We claim that g = x1 . . . xl. We need to show
that πr(g) = πr(x1 . . . xl) for all r = 1, . . . ,m = kl. Fix r ∈ {1, . . . ,m}
and let j ∈ {1, . . . , l} be such that r ∈ Ωj. By definition of xj, there exists
i ∈ Ωj with πi(g) = πi(xj), in other words πi(h) = 1 where h = g−1xj ∈
U ∩ N . If x is any element of AΩj

then πi(h−1xh) = πi(x), therefore
h−1xh = x being AΩj

� U ∩ N and being the restriction πi|AΩj
: AΩj

→ T

injective. This implies that h ∈ CU∩N(AΩj
), therefore πr(h) = 1, hence

πr(g) = πr(xj) = πr(x1 . . . xl).

We deduce that U ∩ N = AΩ1 × . . . × AΩl
, in particular U ∩ N ∼= T l.

Therefore

n = |G : U | = |UN : U | = |N : U ∩N | = |T |(k−1)l.

Now consider

Y := TΩ1 =
∏

i∈Ω1

Ti, H := NG(Y ), ξ : H → Aut(Y ), C := ker(ξ) = CG(Y ).

Observe that H is precisely the setwise stabilizer of the block Ω1, in par-
ticular H acts transitively on Ω1, therefore Y C/C is a minimal normal
subgroup of H/C.

Let A := AΩ1, V := U ∩ H. Note that since Y is a direct power of a
nonabelian simple group and A is a full diagonal subgroup of Y , we have
⟨AY ⟩ = Y . Now, the argument used in the proof of the case 1 < U1 < T1
with U1 replaced by A, T1 replaced by Y proves that V CY = H, Y ∩V C =
A, Y C/C is the unique minimal normal subgroup ofH/C and ξ(H) ∼= H/C
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is a primitive group of type II with point stabilizer the core-free maximal
subgroup V C/C. Moreover V C/C ∩ Y C/C = AC/C ∼= A, therefore H/C
is a primitive group of simple diagonal type. Now an application of the
embedding argument gives that G lies inside a wreath product H/C ≀ Sl ⩽
Sr ≀ Sl where r = |T |k−1 and we are in case (3) of the theorem.

Now assume there is only one block, l = 1. Then m = k > 1 and
U ∩N ∼= S, N ∼= Tm. In this case n = |T |m−1. Without loss of generality,
∆ := U ∩ N = {(s, . . . , s) : s ∈ T}. G is a subgroup of X ≀ Sm and
U = NG(∆). Note that (x1, . . . , xm)π ∈ X ≀ Sm normalizes ∆ if and only if

(s, . . . , s)(x1,...,xm)π ∈ ∆ ∀s ∈ T,

and this means sx1 = . . . = sxm for all s ∈ T . This implies that sxix
−1
j = s for

all s ∈ T and for all i, j ∈ {1, . . . ,m} and, since the xi are automorphisms
of T , we deduce the necessary and sufficient condition x1 = . . . = xm. This
implies that

U = NG(∆) ⩽ {(a, a, . . . , a)π : a ∈ Aut(T ), π ∈ Sm} ∼= Aut(T ) × Sm

hence G = N ·NG(∆) is contained in the group

{(a1, . . . , am)π ∈ Aut(T ) ≀ Sm : ai ≡ aj mod Inn(T ) ∀i, j},

which is an extension Tm.(Out(T ) × Sm) with point stabilizer isomorphic
to Aut(T ) × Sm. We are in case (5) of the theorem, the simple diagonal
type. This concludes the proof of O’Nan-Scott Theorem.



Chapter 2

Minimal coverings

In this chapter we present the content of the paper [2]. Specifically,
we give constructive proofs for our results concerning σ(G) for a family of
primitive groups G with a unique minimal normal subgroup N , isomorphic
to Am

n , with n divisible by 6 and G/N cyclic. This is a generalization of a
result of E. Swartz [40] concerning the symmetric groups.

2.1 The function σ(G)

Definition 5. A covering of a group G is a family of proper subgroups of G
whose union is G. The covering number of G, denoted σ(G), is the smallest
size of a covering of G. If G is cyclic then σ(G) is not well defined because
no proper subgroup contains any generator of G; in this case we define
σ(G) = ∞, with the convention that n < ∞ for every integer n.

Proposition 9. Let G a finite group. Then σ(G) > 2.

Proof. Suppose by contradiction that G = H ∪ K with H and K distinct
propers subgroups of G. Let h ∈ H−K. For all k ∈ K, hk ∈ H or hk ∈ K.
Since hk ∈ K implies h ∈ K, we have hk ∈ H. Then for all k ∈ K we
have k ∈ H, so K ⊆ H and therefore G = H, contradiction.

Proposition 10. If N �G, then σ(G) ⩽ σ(G/N).
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Proof. It suffices to observe that every covering of the quotient G/N gives
us a covering of G.

In particular, the above Proposition implies that

σ(G1 × . . .×Gn) ⩽ min{σ(G1), . . . , σ(Gn)}.

Proposition 11. If p is a prime number, then σ(Cp × Cp) = p+ 1.

Proof. A minimal covering of Cp × Cp must contain all the p+ 1 maximal
subgroups.

Lemma 4. Let G be a non-cyclic group. Write G =
n⋃

i=1
Hi, as a union

of n = σ(G) subgroups of G. For all i ∈ {1, . . . , n − 1} suppose that
|G : Hi| ⩽ |G : Hi+1|. Then |G : H1| < σ(G).

Proof. Since 1 ∈ H1 ∩ . . . ∩Hn, we have

|G| <
n∑

i=1
|Hi| =

n∑
i=1

|G|
|G : Hi|

⩽ n · |G|
|G : H1|

.

Therefore |G : H1| < n = σ(G).

Lemma 5. Let G a non-cyclic p-group. Then σ(G) = p+ 1.

Proof. Since any non-trivial proper subgroup of G has index at least p, by
Lemma 4, p+ 1 ⩽ σ(G).

If G is non-cyclic, G has a quotient isomorphic to Cp ×Cp, then σ(G) ⩽
σ(Cp × Cp) = p+ 1.

If |G| = pk with k ⩾ 2, we prove σ(G) ⩽ p + 1 by induction on k.
For k = 2, G is Cp × Cp and the result follows from Proposition 11. For
k ⩾ 3, if G is abelian the result is shown above, otherwise G/Z(G) is a
non-trivial non-cyclic p-group with |G/Z(G)| < |G|, since Z(G) is non-
trivial. By induction hypothesis, σ(G) ⩽ σ(G/Z(G)) = p + 1. Therefore
σ(G) = p+ 1.

Proposition 12. [9, Lemma 4] If (|H|, |K|) = 1, then σ(H×K) = min{σ(H), σ(K)}.
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Proposition 13. If G is a non-cyclic nilpotent group then σ(G) = p + 1,
where p is the smallest prime for wich the Sylow p-subgroup is non-cyclic.

Proof. Since G is the direct product of its Sylows p-subgroups, by Propo-
sition 12

σ(G) = min{σ(P ) : P is a Sylow p-subgroup of G}.

Therefore, by Lemma 5, σ(G) = p+ 1.

Tomkinson [41, Theorem 2.2] computed the covering number of solvable
groups. Recall that a chief factor of a group G is a quotient H/K where
K � G and H/K is a minimal normal subgroup of G/K. A subgroup L
of G is called a complement of a chief factor H/K of G if HL = G and
H ∩ L = K. In other words K ⩽ L and L/K is a complement of H/K in
G/K.

Example. Let p > 2 be a prime and G = ⟨a, b : a2p = b2 = 1, ab = a−1⟩,
the Dihedral group with 4p elements. Let H = ⟨a⟩ ∼= C2p and K = ⟨a2⟩ ∼=
Cp. The quotient H/K is a chief factor of G and the subgroups L1 = ⟨a2, b⟩
and L2 = ⟨a2, ab⟩ (isomorphic to the Dihedral group with 2p elements) are
complements of H/K in G. The minimal normal subgroups of G are also
chief factors of G. The subgroups H = ⟨a2⟩ ∼= Cp and N = ⟨ap⟩ ∼= C2 are
the minimal normal subgroups of G. H has p complements in G, they are
of the form ⟨ap⟩ · ⟨aib⟩, for i = 0, . . . , p− 1, and N has two complements in
G, they are L1 and L2.

Theorem 7 (Tomkinson). If G is a solvable non-cyclic group then σ(G) =
q + 1 where q is the order of the smallest chief factor of G with more than
one complement.

As a consequence, if G is a primitive solvable noncyclic group then either
σ(G) = σ(G/ soc(G)) or σ(G) = | soc(G)|+1. This is a consequence of the
following theorem of Gaschütz.

Theorem 8 (Gaschütz [21]). Let G be a solvable group acting faithfully and
irreducibly on an elementary abelian p-group V . Then every chief factor
of G has size strictly smaller than |V |.
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2.1.1 σ(G) for some groups

In this section we present tables that summarizes what is currently
known about covering numbers of symmetric groups, alternating groups
and projective linear groups of dimension 2. The reference for these tables
is [19].

Group Covering Number Citation
S3 4
S4 4
S5 16 [9]
S6 13 [1]
S8 64 [25]
S9 256 [25]
S10 221 [25]
S12 761 [25]
S14 3096 [36]
S18 36773 [40]

S6k, k ≥ 4 1
2

(
6k
3k

)
+

2k−1∑
i=0

(
6k
i

)
[40]

S2k+1, k ̸= 4 22k [34]

S2k, k ≥ 16 > 1
2

(
2k
k

)
[34]

Table 2.1: Covering numbers of symmetric groups.

Group Covering Number Citation
A5 10 [9]
A6 16 [8]
A7 31 [26]
A8 71 [26]
A9 157 [12]
A10 256 [34]
A11 2751 [12]
A4k+2 24k [34]

A18k+3, k > 0
6k−1∑
i=1

(
18k+3

i

)
+ (18k+3)!

6(6k+1)!3 [14]

An, n ≥ 12 ≥ 2n−2 [34]

Table 2.2: Covering numbers of alternating groups.
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Group Covering Number Citation
PSL(2, 5) 10 [9]
PGL(2, 5) 16 [9]
PSL(2, 7) 15 [8]
PGL(2, 7) 29 [8]
PSL(2, 9) 16 [8]
PGL(2, 9) 46 [8]
PΓL(2, 8) 29 [18]

PSL(2, q), PGL(2, q), q ≥ 8 even 1
2q(q + 1) [8]

PSL(2, q), PGL(2, q), q > 9 odd 1
2q(q + 1) + 1 [8]

Table 2.3: Covering numbers of 2-dimensional linear groups.

2.2 A sufficient condition for a covering to be minimal

Assume G is a finite group whose conjugacy classes of maximal sub-
groups are indexed by a set IG. For j ∈ IG, let Mj be the corresponding
conjugacy class of maximal subgroups of G. Let J be a subset of IG and
let C = ⋃

j∈J Mj be the union of the coonjugacy classes Mj. Assume
that C is a covering of G; that is,

⋃
M∈C M = G. Let Π be a subset of G

closed under conjugation and denote by Πj the subset of Π covered by the
conjugacy class Mj, so that Πj is closed under conjugation. If M,M ′ are
conjugate maximal subgroups of G and j ∈ J , then |M ∩ Π| = |M ′ ∩ Π|
and |M ∩ Πj| = |M ′ ∩ Πj|.

For a maximal subgroup M of G such that M ̸∈ C, let

cC,Π(M) :=
∑
j∈J

|M ∩ Πj|
|Mj ∩ Πj|

where Mj is any fixed member of Mj.

For simplicity of notation, let us denote cC,Π(M) by c(M).

Lemma 6 (Lemma 3.1 of [40]). Assume that the following conditions hold
for the covering C and the set Π defined above.

1. xg ∈ Π, for all x ∈ Π and g ∈ G, i.e. Π is closed under conjugation.

2. For every π ∈ Π, there is a unique member of C containing π.
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3. c(H) < 1 for every maximal subgroup H of G not in C.

Then C is a minimal covering of G, meaning that σ(G) = |C|. Moreover C
is the unique minimal covering of G consisting of maximal subgroups.

Proof. Assume that c(M) < 1 for all maximal subgroups not in C. Suppose
that B is another covering of the elements of Π, and let C ′ = C \(C ∩B) and
B′ = B \ (C ∩ B). The collection C ′ consists only of subgroups from classes
Mj, where j ∈ J , and we let aj be the number of subgroups from Mj in
C ′ . Similarly, the collection B′ consists only of subgroups from classes Mi,
where i /∈ J , and we let bi be the number of subgroups from Mi in B′.
Note that, since B is a different cover, for some i /∈ J , we have bi > 0.

By removing aj subgroups from class Mj from C, the new subgroups in
B′ must cover the elements of Π that were in these subgroups. Hence, for
all j ∈ J , if Mk denotes a subgroup in class Mk for each k,

aj|Mj ∩ Πj| ⩽
∑
i/∈J

bi|Mi ∩ Πj|,

which in turn implies that, for all j ∈ J ,

aj ⩽
∑
i/∈J

bi
|Mi ∩ Πj|
|Mj ∩ Πj

.

This means that:

|C ′| =
∑
j∈J

aj ⩽
∑
j∈J

∑
i/∈J

bi
|Mi ∩ Πj|
|Mj ∩ Πj|

=
∑
i/∈J

∑
j∈J

bi
|Mi ∩ Πj|
|Mj ∩ Πj|

=
∑
i/∈J

∑
j∈J

|Mi ∩ Πj|
|Mj ∩ Πj|

 bi =
∑
i/∈J

c(Mi)bi <
∑
i/∈J

bi = |B′|.

which shows that

|C| = |C ′| + |C ∩ B| < |B′| + |C ∩ B| = |B|.

Hence, any other cover of the elements of Π using only maximal sub-
groups has size strictly larger than the size of C. Therefore, C is a minimal
cover of the elements of Π, and it is the unique minimal cover of the ele-
ments of Π that uses only maximal subgroups.
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It is worth noting that, with the above result, the computation of σ(G)
for some families of groups existing in the literature (for example [34])
can be refined proving that for many of these groups there exists a unique
minimal covering consisting of maximal subgroups.

2.3 Proof of Theorem 1

2.3.1 The group Gn,m

Let G be a primitive monolithic group with non-abelian socle N = Sm,
and S a non-abelian simple group. For i ∈ {1, . . . ,m}, let Si be the
subgroup of N equal to

∏m
j=1 Uj where Ui = S and Uj = {1} for all j ̸= i

(coordinate subgroup), so that Si
∼= S for all i.

Let X := NG(S1)/CG(S1). The group X is an almost simple group with
socle S1CG(S1)/CG(S1) ∼= S1.

The minimal normal subgroups of Sm = S1 × . . .× Sm are precisely its
factors, S1, . . . , Sm. Since automorphisms send minimal normal subgroups
to minimal normal subgroups, it follows that G acts on the m factors of N .
Let ρ : G → Sym(m) be the homomorphism induced by the conjugation
action of G on the set {S1, . . . , Sm}.

Let K := ρ(G). K is a transitive permutation group of degree m. By
[5, Remark 1.1.40.13] G embeds in the wreath product X ≀ K. Let L be
the subgroup of X generated by the following set:

S ∪ {x1 · . . . · xm | ∃k ∈ K : (x1, . . . , xm)k ∈ G}.

Call πG : G → G/ soc(G) and πX : X → X/S the natural projections.

Lemma 7. X/S is cyclic and L = X. More precisely, assume that G/soc(G)
is cyclic and let g in G be such that πG(g) generates G/soc(G). Write
g = (x1, . . . , xm)δ with x1, . . . , xm ∈ X, and δ ∈ Sym(m) an m-cycle.
Then πX(x1xδ(1) . . . xδ(m−1)) generates X/S and |G| = |S|m ·m · |X/S|.

Proof. NG(S1)/ soc(G) is a subgroup of G/soc(G), hence cyclic, and it
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projects onto NG(S1)/S1CG(S1) = X/S. Thus X/S is cyclic.

Let x ∈ X be such that X/S = ⟨xS⟩. For i = 1, . . . ,m, write xi =
six

ki, where si ∈ S and ki ∈ N . Let k := ∑m
i=1 ki. Note that there exist

s′
1, . . . , s

′
m ∈ S such that

gm = (s′
1, . . . , s

′
m)(xk, . . . , xk).

Therefore (xk, . . . , xk) soc(G) generates G ∩ Xm/ soc(G). Since NG(S1) ⊆
Xm ∩ G, this implies that xkS = πX(xk) generates X/S, and the result
follows.

We may assume that there exists g ∈ G such that ⟨g soc(G)⟩ = G/ soc(G)
and g has the form (1, . . . , 1, x)δ where δ = (1 . . .m) ∈ K and x ∈ X is
such that X/S = ⟨xS⟩.

Indeed, let (x1, . . . , xm)δ ∈ G generateGmodulo soc(G), where x1, . . . , xm ∈
X and δ ∈ K is an m-cycle. Up to conjugate by a suitable element
of Sym(m) we may assume that δ is the m-cycle (1 . . .m). We want to
find y1, . . . , ym ∈ X such that ((x1, . . . , xm)δ)(y1,...,ym) = (1, . . . , 1, x)δ as
required. We have

((x1, . . . , xm)δ)(y1,...,ym) = (y−1
1 , . . . , y−1

m )(x1, . . . , xm)(y1, . . . , ym)δ−1
δ

= (y−1
1 x1, . . . , y

−1
m xm)(y2, . . . , ym, y1)δ

= (y−1
1 x1y2, y

−1
2 x2y3, . . . , y

−1
m−1xm−1ym, y

−1
m xmy1)δ.

It suffices to choose y1 = 1, y2 = x−1
1 , y3 = (x1x2)−1, . . . , ym = (x1 . . . xm−1)−1,

and x = x1 . . . xm.

Let n,m positive integers with n ⩾ 5, n ̸= 6, and S = An
∼= Si,

i = 1, . . . ,m. Since X = NG(S1)/CG(S1), X is isomorphic to a subgroup
of Aut(S) ∼= Sn then either X ∼= An (“even case”) or X ∼= Sn (“odd case”).
In the even case G ∼= An ≀Cm ([5, Definition 1.1.8 and Remark 1.1.40.13]).
The odd case is the group Gn,m and will be considered below.

Let G = Gn,m be the semidirect product Am
n ⋊ ⟨γ⟩ where

γ = (1, . . . , 1, τ)δ ∈ Sn ≀ Sm,
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with τ = (1 2) and δ = (1 . . .m).

For x1, . . . , xm ∈ An, the action of γ is given by

(x1, . . . , xm)γ = (x1, . . . , xm)(1,...,1,τ)δ = (x1, . . . , x
τ
m)δ = (xm

τ , x1, . . . , xm−1).

Observe that G is a generalization of the Symmetric Group Sn: if m = 1
then G = An ⋊ ⟨(1 2)⟩ ∼= Sn.

The group G is a primitive group of type II, meaning that G has a
core-free maximal subgroup and it admits precisely one minimal normal
subgroup, which is nonabelian: its socle, N = Am

n .

The element γ has order 2m. We will compute some powers of γ. For
this we use that δ−1 = (1 m m− 1 . . . 3 2). Note that,

γ2 = (1, . . . , 1, τ)δ · (1, . . . , 1, τ)δ = (1, . . . , 1, τ)δ(1, . . . , 1, τ)δm−1δ2

= (1, . . . , 1, τ)(1, . . . , 1, τ)δ−1
δ2 = (1, . . . , 1, τ)(1, . . . , 1, τ, 1)δ2 = (1, . . . , 1, τ, τ)δ2.

Analogously, for 1 ⩽ k < m, γk = (1, . . . , 1, τ, . . . , τ)δk, where the last k
corrdinates are equal to τ , and γm = (τ, . . . , τ).

We also have γ−1 = (τ, 1, . . . , 1)δ−1.

Now let’s calculate some useful conjugates of elements of group G. Let
xi, yi ∈ An, for 1 ⩽ i ⩽ m. Observe that

(x1, . . . , xm)γ−1 = (x2, x3, . . . , xm, x
τ
1).

For the element (x1, . . . , xm)γ ∈ G we have

((x1, . . . , xm)γ)γ = γ−1(x1, . . . , xm)γ · γ = (xm
τ , x1, . . . , xm−1)γ,
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and

((x1, . . . , xm)γ)(y1,...,ym)

= (y1, . . . , ym)−1(x1, . . . , xm)γ(y1, . . . , ym) · γ−1γ

= (y−1
1 x1, . . . , y

−1
m xm)(y1, . . . , ym)γ−1

γ

= (y−1
1 x1, . . . , y

−1
m xm)(y2, y3, . . . , ym, y

τ
1)γ

= (y−1
1 x1y2, y

−1
2 x2y3, . . . , y

−1
m−1xm−1ym, y

−1
m xmy

τ
1)γ.

For 1 ⩽ k < m, for the element (x1, . . . , xm)γk ∈ G, we have

((x1, . . . , xm)γk)γ = γ−1(x1, . . . , xm)γ · γk

= (τxmτ, x1, . . . , xm−1) · γk,

and, since (y1, . . . , ym)γ−k = (y1, . . . , ym)(γ−1)k

,

((x1, . . . , xm)γk)(y1,...,ym)

= (y1, . . . ym)−1(x1, . . . , xm)γk(y1, . . . , ym)

= (y−1
1 x1, . . . , y

−1
m xm)(y1, . . . , ym)γ−k · γk

= (y−1
1 x1, . . . , y

−1
m xm)(yk+1, yk+2, . . . , ym, y

τ
1 , y

τ
2 , . . . , y

τ
k) · γk

= (y−1
1 x1yk+1, . . . , y

−1
m−kxm−kym, y

−1
m−k+1xm−k+1y

τ
1 , . . . , y

−1
m xmy

τ
k) · γk.

About σ(G) we already know:

Theorem 9. [17, Theorem 1] Let m,n be positive integers, and let G =
Gm,n. Let α(x) denote the number of prime factors of the positive integer
x. The following holds:

(1) Suppose that n ⩾ 7 is odd and m ̸= 1 if n = 9. Then

σ(G) = α(2m) +
(n−1)/2∑

i=1

n
i

m

.
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(2) If n = 5, then

10m ⩽ σ(G) ⩽ α(2m) + 5m + 10m.

(3) Suppose that n ⩾ 8 is even. Then

1
2

 n

n/2

m

⩽ σ(G) ⩽ α(2m) +
1

2

 n

n/2

m

+
[n/3]∑
i=1

n
i

m

.

In particular, σ(G) ∼
(

1
2
(

n
n/2

))m
as n → ∞.

(4) If n = 6, then
σ(G) = α(2m) + 2 · 6m.

We will construct sets J , Π and C to apply Lemma 6 to determine the
value of σ(Gn,m) for n ⩾ 30 divisible by 6 and m ⩾ 2.

2.3.2 The set Π

For simplicity of notation, let us denote by [a1, . . . , ak] the conjugacy
class of Sn corresponding to the elements of cycle structure (a1, . . . , ak),
where the ai’s are positive integers and a1 + . . . + ak = n. Let I =
{−1, 1, 2, . . . , n/3 − 1}. As in [40], we define collections Bi, i ∈ I, as
follows.

B−1 := [n],
B1 := [1, n/2 − 2, n/2 + 1],

B2 :=
[2, n/2 − 1, n/2 − 1], if n/2 is even,

[2, n/2 − 4, n/2 + 2], if n/2 is odd,

Bi :=


[i, (n− i− 1)/2, (n− i+ 1)/2], if i is odd, 3 ⩽ i < n/3,
[i, (n− i)/2, (n− i)/2], if i is even, (n− i)/2 is odd, 4 ⩽ i < n/3,
[i, (n− i)/2 − 1, (n− i)/2 + 1], if i is even, (n− i)/2 is even, 4 ⩽ i < n/3.

Note that Bi ∩ An = ∅ for all i ∈ I.
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Let G = Gn,m be the group defined in Section 2.3.1, that is, G =
Am

n ⋊ ⟨γ⟩, where γ = (1, . . . , 1, τ)δ, τ = (1 2) and δ = (1 . . .m).

We define the set Πi for all i ∈ I as follows:

Πi = {(x1, x2, . . . , xm)γ ∈ G : x1x2 . . . xmτ ∈ Bi}.

Note that the sets Πi are pairwise disjoint as are the sets Bi.

Note that we did not define Π0 yet. Rather than defining a unique
Π0, we will define several sets, which we will call Π0,r, for every prime r
dividing m. For such r, let D1 be the conjugacy class of (n − 2)-cycles in
Sn, and let Di be the conjugacy class of n-cycles in Sn for i = 2, . . . , r. Let
ν := (1 . . . r). For all σ ∈ ⟨ν⟩, let

Π0,r,σ := {(x1, . . . , xm)γr ∈ G : xixi+rxi+2r . . . xi+m−rτ ∈ Dσ(i) ∀i = 1, . . . , r}.

Assume that either m is even or r ̸= 2. We define

Π0,r :=
⋃

σ∈⟨ν⟩
Π0,r,σ.

This is a disjoint union. Indeed, let σ1, σ2 ∈ ⟨ν⟩ with σ1 ̸= σ2 and assume
by contradiction that there exists (x1, . . . , xm)γr ∈ Π0,r,σ1 ∩ Π0,r,σ2. Since
σ1 ̸= σ2 and r is a prime, there exists i ∈ {1, . . . , r} such that σ1(i) = 1 and
j = σ2(i) ̸= 1. Since xixi+r . . . xi+m−rτ belongs to Dσ1(i) ∩Dσ2(i) = D1 ∩Dj,
we deduce that D1 = Dj, a contradiction. It follows that

|Π0,r| = r · |An|m−r ·
r∏

i=1
|Di|.

Assume now that m is odd. We will define Π0,2. Consider the conjugacy
class C of Sn consisting of the elements of cycle structure (p, n− p) where
p is a fixed prime number such that n/3 < p < 2n/3. Note that p exists
by Bertrand’s postulate (see [43]). In this case, we define

Π0,2 := {(x1, . . . , xm)γ2 ∈ G : x1x3 . . . xmτ · x2x4 . . . xm−1τ ∈ C}.

Note that
|Π0,2| = |An|m−1 · |C|.
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Definition 6. We define J to be the set of indices consisting of the elements
of I and the pairs (0, r) where r is a prime divisor of 2m. We also set

Π :=
⋃

j∈J

Πj.

The following proposition shows that every Πj is closed under conjuga-
tion, proving that condition (1) of Lemma 6 holds.

Proposition 14. For all i ∈ I, the sets Πi, i ∈ I, and Π0,r, where r is a
prime divisor of 2m, are closed under conjugation.

Proof. Fix i ∈ I. If (x1, . . . , xm)γ ∈ Πi, the element

((x1, . . . , xm)γ)γ = (τxmτ, x1, . . . , xm−1) · γ

belongs to Πi because

τxmτ · x1 . . . xm−1 · τ = (x1 . . . xmτ)τx−1
m τ ∈ Bi,

and if (y1, . . . , ym) ∈ Am
n , the element

((x1, . . . , xm)γ)(y1,...,ym) = (y−1
1 x1y2, y

−1
2 x2y3, . . . , y

−1
m−1xm−1ym, y

−1
m xmτy1τ)γ

belongs to Πi because

y−1
1 x1y2 · y−1

2 x2y3 · . . . · y−1
m−1xm−1ym · y−1

m xmτy1τ · τ = (x1 . . . xmτ)y1 ∈ Bi.

Since G is generated by Am
n and γ, this proves that Πi is closed under

conjugation.

We now prove that Π0,r is closed under conjugation. The following
argument can be applied to the case r = 2 when m is odd, so we will
assume that either m is even or r ̸= 2. Let (x1, . . . , xm)γr ∈ Π0,r,σ. Note
that

((x1, . . . , xm)γr)γ = (τxmτ, x1, . . . , xm−1)γr

and we have the following.

τxmτxrx2r . . . xm−rτ = (xrx2r . . . xm−rxmτ)τx−1
m τ ∈ Dσ(r) = Dσν−1(1)

xixi+rxi+2r . . . xi+m−rτ ∈ Dσ(i) = Dσν−1(i+1) ∀i = 1, . . . , r − 1.
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It follows that ((x1, . . . , xm)γr)γ ∈ Π0,r,σν−1 ⊆ Π0,r.

For (y1, . . . , ym) ∈ Am
n we have that ((x1, . . . , xm)γr)(y1,...,ym) equals

(y−1
1 x1yr+1, . . . , y

−1
m−rxm−rym, y

−1
m−r+1xm−r+1τy1τ, . . . , y

−1
m xmτyrτ) · γr.

Moreover, if 1 ⩽ i ⩽ r,

y−1
i xiyr+i·y−1

r+ixr+iy2r+i·. . .·y−1
m−r+ixm−r+iτyiτ ·τ = (xixi+rxi+2r . . . xi+m−rτ)yi

belongs to Dσ(i). This implies that Π0,r is closed under conjugation.

Note that to apply Lemma 6 it is not necessary for the sets Πi, i ∈ I,
and Π0,r, r any prime divisor of 2m, are conjugacy classes. Despite this,
we prove:

Proposition 15. For all i ∈ I, the sets Πi, i ∈ I, and Π0,r, where r is a
prime divisor of 2m, are conjugacy classes.

Proof. Let i ∈ I. Note that Bi ⊈ An, so there is z ∈ An such that zτ ∈ Bi.
It follows that π := (z, 1, . . . , 1)γ ∈ Πi. We prove that Πi is the conjugacy
class of π in G. Let (x1, . . . , xm)γ ∈ Πi, we will prove that this element
is conjugate to π in G. There exists a ∈ Sn with (x1 . . . xmτ)a = zτ .
If a ̸∈ An, then b = x1 . . . xmτa ∈ An and (x1 . . . xmτ)b = (x1 . . . xmτ)a,
so we may assume that a ∈ An. Set y1 := a and yi := xi . . . xmτaτ for
i = 2, . . . ,m. Then ((x1, . . . , xm)γ)(y1,...,ym) equals

(y−1
1 x1y2, y

−1
2 x2y3, . . . , y

−1
m−1xm−1ym, y

−1
m xmτy1τ)γ = (z, 1, . . . , 1)γ = π.

Now suppose that m is odd or m is even with r ̸= 2. We will prove that
Π0,r is a conjugacy class in G. Since Di ̸⊆ An for all i = 1, . . . , r, exist
x1, . . . , xr ∈ An such that xiτ ∈ Di for all i = 1, . . . , r, therefore

g = (x1, . . . , xr, 1, . . . , 1)γr ∈ Π0,r.

We will show that Π0,r is the conjugacy class of g. For this, it is sufficient
to show that |G : CG(g)| = |Π0,r|, because g belongs to Π0,r, which is closed
by conjugation, and |G : CG(g)| is the size of the conjugacy class of g in G.
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Let H = CG(g) and N = Am
n . We will initially show that HN < G.

Suppose by contradiction that HN = G. So there are h ∈ H, n ∈ N such
that hn = γ. It follows that

h = γn−1 = γn−1γ−1γ ∈ Nγ,

because N �G. Therefore h ∈ H ∩Nγ, i. e., H ∩Nγ ̸= ∅.

Consider then (y1, . . . , ym)γ ∈ H∩Nγ. We have ((x1, . . . , xr, 1, . . . , 1)γr)(y1,...,ym)γ

equals

(τy−1
m τyr, y

−1
1 x1yr+1, . . . , y

−1
r xry2r, y

−1
r+1y2r+1, . . . , y

−1
m−rym, y

−1
m−r+1τy1τ, . . . , y

−1
m−1τyr−1τ)γr

From the r + 1-th coordinate we get that yr = xry2r and from the r + 2-
th coordinate to the m − r + 1-th coordinate we get that yi = yi+r if
r + 1 ⩽ i ⩽ m− r. Then

x1τ = τy−1
m τyrτ = τy−1

m τxry2rτ = τy−1
m τxrymτ = (xrτ)τymτ ,

that is, x1 and xr are conjugate, and this implies that D1 = Dr, contra-
diction. Therefore HN < G.

Let us now calculate the order ofH∩N . For that consider (y1, . . . , ym) ∈
H ∩N . We have already seen that (x1, . . . , xr, 1, . . . , 1)γr)(y1,...,ym) equals

(y−1
1 x1yr+1, . . . , y

−1
r xry2r, y

−1
r+1y2r+1, . . . , y

−1
m−rym, y

−1
m−r+1τy1τ, . . . , y

−1
m τyrτ)γr.

Then for all 1 ⩽ i ⩽ r,
xiτ = y−1

i xiτyi.

This means that for 1 ⩽ i ⩽ r,

yi ∈ CSn
(xiτ).

Since the order of H ∩N is the number of choices for (y1, . . . , ym), we get
that

|H ∩N | =
r∏

i=1
|An ∩ CSn

(xiτ)| =
r∏

i=1

1
2|CSn

(xiτ)|.

Let’s now show that HN = N⟨γr⟩. First, HN ⊇ N⟨γr⟩ because g ∈ H.
Furthermore, N⟨γr⟩ is a maximal subgroup of G because it has prime index
r. Since HN < G, it follows that HN = N⟨γr⟩.
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Then
N⟨γr⟩
N

= HN

N
∼=

H

H ∩N
,

and as the order of N⟨γr⟩
N is 2m/r, we get that

|H| = (2m/r) · |H ∩N | = (2m/r) ·
r∏

i=1

1
2|CSn

(xiτ)|.

We deduce that

|G : H| = |G|
|H|

= 2m · |An|m

(2m/r) · (1/2)r · ∏r
i=1 n!/|Di|

= r·|An|m−r·
r∏

i=1
|Di| = |Π0,r|.

It follows that g ∈ Π0,r has |Π0,r| conjugated in G. Since Π0,r is closed by
conjugation, it follows that Π0,r is exactly the conjugacy class of g in G,
proving that Π0,r is a conjugacy class in G.

Now suppose m odd. It remains to be proven that Π0,2 is a conjugacy
class in G. Let x1 ∈ C ⊆ An, then g = (x1, 1, . . . , 1)γ2 ∈ Π0,2. Let
H = CG(g) and N = Am

n , let’s calculate |H∩N |. Let (y1, . . . , ym) ∈ H∩N ,
then ((x1, 1, . . . , 1)γ2)(y1,...,ym) equals

(y−1
1 x1y3, y

−1
2 y4, y

−1
3 y5, . . . , y

−1
m−2ym, y

−1
m−1τy1τ, y

−1
m τy2τ).

This implies,

x−1
1 y1x1 = y3 = . . . = ym = τy2τ = τy4τ = . . . = τym−1τ = y1.

Therefore x1y1 = y1x1, i. e., y1 ∈ CAn
(x1). By the equations above, the

choice of y1 determines the choice of all others yi. Therefore

|H ∩N | = |CAn
(x1)| = |An|

|C|
.

Now, if HN ̸= G then HN = N⟨γ2⟩. In fact, g ∈ H which implies that
N⟨γ2⟩ ⊆ HN and |G : N⟨γ2⟩| = 2 because G = N⟨γ⟩. Then N⟨γ2⟩ is a
subgroup of index 2 of G with N⟨γ2⟩ ⊆ HN ̸= G, therefore HN = N⟨γ2⟩.
Then the size of the conjugacy class of g in G is |G : H| which is

|G : H| = |G|
|H|

= 2 · |HN |
|H|

= 2 · |N |
|H ∩N |

= 2 · |An|m
|An|
|C|

= 2 · |An|m−1|C| > |An|m−1|C| = |Π0,2|.
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This contradicts the fact that Π0,2 is closed for conjugation. Therefore
HN = G.

Therefore, the size of the conjugacy class of g in G is

|G : H| = |G|
|H|

= |HN |
|H|

= |N |
|H ∩N |

= |An|m
|An|
|C|

= |An|m−1|C| = |Π0,2|.

This concludes the proof.

2.3.3 The covering C

For i ∈ I, i ̸= −1, define

Ei := {maximal intransitive subgroups of An whose orbits have size i and n−i},

and let

E−1 := {maximal imprimitive subgroups of An with 2 blocks}.

For all i ∈ I, let
Fi := {NSn

(M) : M ∈ Ei},
and define

E :=
⋃
i∈I

Ei, F :=
⋃
i∈I

Fi.

Note that {An} ∪ F is a covering of Sn, as observed in [40].

By [40, Lemma 5.2], for n ≡ 0 mod 6, n ⩾ 30 and i ∈ I, the only
subgroups in F that contain elements of Bi are the ones belonging to Fi,
so that the elements of

⋃
i∈I Bi are partitioned by the subgroups in F .

Moreover Ei and Fi are conjugacy classes of subgroups of Sn for all i ∈ I.

Let G = Gn,m be the group defined in Section 2.3.1, that is, G =
Am

n ⋊ ⟨γ⟩, where γ = (1, . . . , 1, τ)δ, τ = (1 2) and δ = (1 . . .m).

For i ∈ I, define

Mi := {H ⩽ G : H = NG(Ma1 × . . .×Mam), a1, . . . , am ∈ An,

M ∈ Ei, NSn
(M) ∩Bi ̸= ∅}.
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By [5, Proposition 1.1.44] and [27], H is a maximal subgroup of G supple-
menting the socle N = Am

n of G. Moreover, H ∩ N is conjugate to Mm

in N . It follows that |H| = 2m · |M |m and H has |G : H| = |An : M |m
conjugates in G.

For every prime divisor r of 2m, set

M0,r := {M0,r},

where M0,r = Am
n ⋊ ⟨γr⟩ is a normal subgroup of G of index r.

Let
C :=

⋃
j∈J

Mj.

The size of C equals the claimed value for σ(G) in the statement of Theorem
1.

Proposition 16. C is a covering of G.

Proof. Let g = (x1, . . . , xm)γk ∈ G where xi ∈ An for all i. If (k, 2m) ̸= 1
then g belongs to one of the α(2m) subgroups of G containing the socle,
now suppose that (k, 2m) = 1, in particular k is odd. For d ∈ {1, . . . ,m}
define τd to be τ if d > m− k, and 1 if d ⩽ m− k. Since k,m are coprime,
the set of numbers {1 + ik : i = 0, . . . ,m− 1}, reduced modulo m, equals
{1, . . . ,m}, so the following definition makes sense. Define b1 := 1 and

b1+ik := x1τ1x1+kτ1+k . . . x1+(i−1)kτ1+(i−1)k, i = 1, . . . ,m− 1,

where the subscripts are considered modulo m. Set

x := x1τ1x1+kτ1+kx1+2kτ1+2k . . . x1+(m−1)kτ1+(m−1)k.

Since x ≡ τ k mod An and k is odd, x ̸∈ An. Since {An} ∪ F is a covering
of Sn, there exists M ∈ E such that x ∈ H := NSn

(M). We claim that
(x1, . . . , xm)γk belongs toNG(M b1×M b2×. . .×M bm) ∈ C. This is equivalent
to saying that M b1 ×M b2 × . . .×M bm equals

(M b1 ×M b2 × . . .×M bm)(x1,...,xm)γk = (M b1x1 ×M b2x2 × . . .×M bmxm)γk

= M bm−k+1xm−k+1τ × . . .×M bmxmτ ×M b1x1 × . . .×M bm−kxm−k.
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That is, bm−k+ixm−k+iτb
−1
i ∈ H for i ∈ {1, . . . , k} and bixib

−1
i+k ∈ H for

i ∈ {1, . . . ,m − k}. This can be written as bdxdτdb
−1
d+k ∈ H for all d ∈

{1, . . . ,m}, equivalently,

ℓi := b1+ikx1+ikτ1+ikb
−1
1+(i+1)k ∈ H ∀i ∈ {1, . . . ,m}.

We have ℓi = 1 for i ̸= m− 1 and ℓm−1 = x. They all belong to H.

Proposition 17. The sets Mi, i ∈ I, are conjugacy classes of subgroups of
G.

Proof. A given subgroup in Mi is A
m
n -conjugate to H = NG(Mm) where

M ∈ Ei, so since every member of Ei is an An-conjugate of M , being
NSn

(M)An = Sn, we only need to show that Hγ = NG(M τ × Mm−1) is
Am

n -conjugate to H. This follows from the fact that M τ is An-conjugate to
M , being NSn

(M)An = Sn.

2.3.4 Maximal subgroups of Gn,m

We will now describe the maximal subgroups of G = Gn,m, the group
defined in Section 2.3.1, that is, G = Am

n ⋊ ⟨γ⟩, where γ = (1, . . . , 1, τ)δ,
τ = (1 2) and δ = (1 . . .m). A reference for the following discussion is
Chapter 1.

The maximal subgroups of G containing the socle N = Am
n = soc(G)

are the M0,r = Am
n ⋊ ⟨γr⟩, where r is any prime divisor of 2m.

Let U be a maximal subgroup of G not containing N , so that UN = G.
Observe that U ∩N ̸= {1}. Indeed, if by contradiction U ∩N = {1}, then
U ∼= G/N would be cyclic, generated by a coset uN , therefore the only
proper subgroup of G containing u would be U , and this contradicts the
fact that C is a covering of G whose members are not cyclic. Then U can
be of one of the following two types.

The first type is U = NG(U ∩N) where

U ∩N = M ×Ma2 × . . .×Mam, a2, . . . , am ∈ An,
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and M is the intersection between An and a maximal subgroup of Sn. In
this first case, U is called a maximal subgroup of product type (see [5,
Proposition 1.1.44, Definition 1.1.45]).

The second type consists of maximal subgroups of diagonal type (see [5,
Proposition 1.1.55]). Fix a partition {P1, . . . , Pk} of Ω = {1, . . . ,m} and
write

Pi = {aij : j = 1, . . . , ri}.
Given a collection of automorphisms φij of An, with i = 1, . . . , k and
j = 2, . . . , ri, let ∆φ be the set of m-tuples (x1, . . . , xm) ∈ Am

n with the
property that

xaij
= xφi,j

ai1
,

for all i, j. Then we set U to be the normalizer of ∆φ inG. If U supplements
N , there is in U an element u = (y1, . . . , ym)δ where each yi belongs to Sn

and it is easy to see that the partition P is stabilized by δ. If U is a maximal
subgroup of G, then we may assume that P is minimal, with respect to
the relation of refinement, among the nontrivial partitions stabilized by δ,
in other words

∆φ = {(y1, . . . , ym/t, y
φ1,2
1 , . . . , y

φm/t,2
m/t , . . . , y

φ1,t

1 , . . . , y
φm/t,t

m/t ) : y1, . . . , ym/t ∈ An}

where t is a prime divisor of m, φi,j is an automorphism of An for 1 ⩽ i ⩽
m/t, 2 ⩽ j ⩽ t, and the matrix (φi,j)i,j is denoted by φ. If U is a maximal
subgroup of G, supplementing the socle N , and of the form NG(∆φ) with
φ as above then U is called a maximal subgroup of diagonal type. If this
is the case, then U ∩N = ∆φ.

We now explicit two generators of G. Recall that the symmetric group
Sn is 2-generated, and

⟨(12), (12 . . . n)⟩ = Sn.

Therefore there exist x1, x2 ∈ An such that ⟨x1τ, x2τ⟩ = Sn (recall that
τ = (12)). For example, we can choose x1 = 1 and x2 = (12 . . . n)(12) for
n even, x2 = (12 . . . n) for n odd.

Proposition 18. Let x1, x2 ∈ An be such that ⟨x1τ, x2τ⟩ = Sn. Let αi =
(xi, 1, . . . , 1)γ for i = 1, 2. Then ⟨α1, α2⟩ = G.
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Proof. Suppose by contradiction that ⟨α1, α2⟩ ̸= G. Then ⟨α1, α2⟩ ⊆ H
where H is a maximal subgroup of G. The subgroup H is not one of the
M0,r subgroups since the elements α1, α2 have the permutation part γ.

Suppose that H is a maximal subgroup of product type, that is, H =
NG(M × Ma2 × . . . × Mam), a2, . . . , am ∈ An, and M is the intersection
between An and a maximal subgroup of Sn. Then, for i = 1, 2, M ×Ma2 ×
. . .×Mam equals

(Mxi ×Ma2 × . . .×Mam)γ = Mamτ ×Mxi ×Ma2 × . . .×Mam−1.

Therefore
amτ, xia

−1
2 , a2a

−1
3 , . . . , am−1a

−1
m ∈ NSn

(M).
Multiplying these elements starting from xia

−1
2 , we obtain that x1τ, x2τ ∈

NSn
(M), and therefore Sn = ⟨x1τ, x2τ⟩ ⊆ NSn

(M) < Sn, contradiction.

Suppose now that H is a maximal subgroup of diagonal type, say
NG(∆φ). We will use the notation used in the first part of this section.
If m = t, then

∆φ = {(y, yφ2, . . . , yφt) : y ∈ An)}.
Since αi ∈ NG(∆φ), for i = 1, 2 we have that (y, yφ2, . . . , yφt)αi equals

(y, yφ2, . . . , yφt)(xi,1,...,1)γ = (yxi, yφ2, . . . , yφtτ)δ = (yφtτ , yxi, yφ2, . . . , yφt−1)
for all y ∈ An. By the definition of ∆φ,

yφtτφ2 = yxi, ∀y ∈ An, i = 1, 2,
that is

φtτφ2 = xi, i = 1, 2.
This implies that x1 = φtτφ2 = x2, contradicting the fact that ⟨x1τ, x2τ⟩ =
Sn. If m/t > 1,
∆φ = {(y1, . . . , ym/t, y

φ1,2
1 , . . . , y

φm/t,2
m/t , . . . , y

φ1,t

1 , . . . , y
φm/t,t

m/t ) : y1, . . . , ym/t ∈ An}.
We have

(y1, . . . , ym/t, y
φ1,2
1 , . . . , y

φm/t,2
m/t , . . . , y

φ1,t

1 , . . . , y
φm/t,t

m/t )αi

= (yxi
1 , . . . , ym/t, y

φ1,2
1 , . . . , y

φm/t,2
m/t , . . . , y

φ1,t

1 , . . . , y
φm/t,tτ

m/t )δ

= (yφm/t,tτ

m/t , yxi
1 , . . . , ym/t, y

φ1,2
1 , . . . , y

φm/t,2
m/t , . . . , y

φ1,t

1 , . . . , y
φm/t−1,t

m/t−1 ).
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Since αi ∈ NG(∆φ), for i = 1, 2 we have

y
xiφ2,2
1 = y

φ1,2
1 , ∀y1 ∈ An, i = 1, 2,

that is
xi = φ1,2φ

−1
2,2, i = 1, 2.

This implies that x1 = x2, contradicting the fact that ⟨x1τ, x2τ⟩ = Sn.

2.3.5 Proof of Theorem 1

Let G = Gn,m = Am
n ⋊ ⟨γ⟩, where γ = (1, . . . , 1, τ)δ, τ = (1 2) and

δ = (1 . . .m). Our objective in this section is to prove our first Theorem:

Theorem. [2, Theorem 1] Let G = Gn,m, for n ⩾ 30 divisible by 6 and
m ⩾ 2. Denote by α(x) the number of distinct prime factors of the positive
integer x. Then

σ(G) = α(2m) +
1

2

 n

n/2

m

+
n/3−1∑

i=1

n
i

m

.

Moreover, G has a unique minimal covering consisting of maximal sub-
groups.

In the following discussion, we fix a subgroupM ofAn such thatNG(Mm)
is a maximal subgroup of G which supplements the socle N = soc(G), in
other words NG(Mm)N = G.

Lemma 8. NSn
(M)An = Sn, in particular NSn

(M) ⊈ An.

Proof. Let α ∈ Sn. If α ∈ An then α ∈ NSn
(M)An, so now assume that

α ̸∈ An. Then ατ ∈ An and so (α, . . . , α) = (ατ, . . . , ατ)(τ, . . . , τ) ∈ G,
being (τ, . . . , τ) = γm. By assumption, we can write (α, . . . , α) = nh,
where n = (a1, . . . , am) ∈ Am

n and h = (b1, . . . , bm)γk ∈ NG(Mm). It
follows that k = 0 and hence bi ∈ NSn

(M) for all i = 1, . . . ,m. Therefore
α = a1b1 ∈ AnNSn

(M).
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Lemma 9. Let g ∈ G and let r be a prime divisor of 2m. If either m is
even or r ̸= 2, then

|NG(Mm)g ∩ Π0,r| = r ·
(1

2 |NSn
(M)|

)m−r

·
r∏

i=1
|Di ∩NSn

(M)|.

If m is odd, then

|NG(Mm)g ∩ Π0,2| =
(1

2 |NSn
(M)|

)m−1
· |C ∩NSn

(M)|.

Proof. Since Π0,r is closed under conjugation, the size of NG(Mm)g ∩ Π0,r

equals the size of NG(Mm) ∩ Π0,r, therefore we may assume that g = 1.
Assume first that either m is even or r ̸= 2. We will compute |NG(Mm) ∩
Π0,r,σ| for each σ ∈ ⟨ν⟩ and sum all the contributions. Fix σ ∈ ⟨ν⟩. Let
(x1, . . . , xm)γr ∈ NG(Mm) ∩ Π0,r,σ, then M

m equals

(M × . . .×M)(x1,...,xm)γr = Mxm−r+1τ × . . .×Mxmτ ×Mx1 × . . .×Mxm−r .

So xm−r+1τ, . . . , xmτ ∈ NSn
(M) ∩ (Sn \ An) and x1, . . . , xm−r ∈ NSn

(M) ∩
An. Since NSn

(M) is not contained in An, the sets NSn
(M) ∩ An and

NSn
(M) ∩ (Sn \An) have the same cardinality. Since (x1, . . . , xm)γr ∈ Π0,r,

the xi’s must also satisfy the equations of the definition of Π0,r,σ. So for
each equation

xixi+r . . . xi+m−rτ ∈ Dσ(i),

where i = 1, . . . , r, we can freely choose the elements xi+r, . . . , xm−r+i, with

|NSn
(M) ∩ An| = 1

2|NSn
(M)|

choices for each, and only the elements xi, i = 1, . . . , r, need to be chosen
in order to satisfy the equation defining Π0,r,σ, which is xizi ∈ Dσ(i), where
zi = xi+r . . . xi+m−rτ ∈ NSn

(M). Since

Dσ(i)z
−1
i ∩NSn

(M) = (Dσ(i) ∩Nsn
(M))z−1

i ,

there are |Dσ(i) ∩ NSn
(M)| choices for each xi, i = 1, . . . , r, and the result

follows.
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Assume now that m is odd. Let (x1, . . . , xm)γ2 ∈ NG(Mm) ∩ Π0,2. Then
Mm equals

(M × . . .×M)(x1,...,xm)γ2 = Mxm−1τ ×Mxmτ ×Mx1 × . . .×Mxm−2.

So xm−1τ, xmτ ∈ NSn
(M) ∩ (Sn \ An) and x1, . . . , xm−2 ∈ NSn

(M) ∩ An.
Since NSn

(M) is not contained in An, we have 1
2 |NSn

(M)| choices for each
of xm−1 and xm. Now we can choose x2, . . . , xm−2 freely in NSn

(M) ∩ An

and we need to choose x1 in order to satisfy the equation that defines Π0,2,
which is x1t ∈ C, where t = x3x5 . . . xmτx2x4 . . . xm−1τ ∈ NSn

(M). We
can choose x1 freely in Ct−1 ∩ NSn

(M) = (C ∩ NSn
(M))t−1, so we have

|C ∩NSn
(M)| choices for x1. The result follows.

Corollary 1. Assume that either m is even or r ̸= 2. Then NG(Mm) ∩
Π0,r = ∅ if and only if NSn

(M) ∩ Di = ∅ for at least one i ∈ {1, . . . , r}.
Moreover, if m is odd and r = 2, then NG(Mm) ∩ Π0,2 = ∅ if and only if
NSn

(M) ∩ C = ∅.

Lemma 10. If i ∈ I, then |NG(Mm)∩Πi| =
(1

2 |NSn
(M)|

)m−1·|Bi∩NSn
(M)|.

Proof. Let (x1, . . . , xm)γ ∈ NG(Mm) ∩ Πi, then M
m equals

(Mm)(x1,...,xm)γ = (Mx1 × . . .×Mxm)γ = Mxmτ ×Mx1 × . . .×Mxm−1.

So xmτ ∈ NSn
(M) ∩ (Sn \ An) and x1, . . . , xm−1 ∈ NSn

(M) ∩ An. Since
NSn

(M) is not contained in An, the number of choices for xm is 1
2 |NSn

(M)|.
Now we can choose x2, . . . , xm−1 freely in NSn

(M) ∩ An and we need to
choose x1 in order to satisfy the equation that defines Πi, which is x1t ∈ Bi,
where t = x2 . . . xmτ ∈ NSn

(M). In other words, we can choose x1 freely
in Bit

−1 ∩NSn
(M) = (Bi ∩NSn

(M))t−1 so the number of choices for x1 is
|Bi ∩NSn

(M)|. The result follows.

Corollary 2. If i ∈ I, then NG(Mm)∩Πi = ∅ if and only if Bi ∩NSn
(M) =

∅.

The following proposition implies that condition (2) of Lemma 6 holds.

Proposition 19. Let π ∈ Π, then there is a unique L ∈ C such that π ∈ L.
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Proof. If π ∈ Π0,r for some prime r that divides 2m, then M0,r is the only
subgroup in C that contains π. This follows from Corollary 1 and the fact
that no subgroup in F has non-empty intersection with all sets D1, . . . , Dr,
because n-cycles do not belong to intransitive subgroups and (n−2)-cycles
do not stabilize partitions with 2 blocks.

Now suppose that π ∈ Πi for some i ∈ I. Then

π = (x1, . . . , xm)γ,

with x1 . . . xmτ ∈ Bi. In particular π ̸∈ M0,r for every prime r that divides
2m.

There is a unique H ∈ F such that x1 · · ·xmτ ∈ H and H = NSn
(M)

where M = H ∩ An ∈ E . Suppose that π = (x1, . . . , xm)γ belongs to
NG(Ma1 × . . .×Mam). Then Ma1 × . . .×Mam equals

(Ma1 × . . .×Mam)(x1,...,xm)γ = Mamxmτ ×Ma1x1 × . . .×Mam−1xm−1.

So, for i with 1 ⩽ i ⩽ m−1, aixia
−1
i+1 ∈ H and amxmτa

−1
1 ∈ H. Multiplying

all these elements starting from the i-th one, we have

aixixi+1 . . . xmτx1x2 . . . xi−1a
−1
i ∈ H,

which can be written as

(x1 . . . xmτ)x1...xi−1 = xixi+1 . . . xmτx1x2 . . . xi−1 ∈ Hai.

In particular x1 . . . xmτ ∈ Ha1. Since F is closed under conjugation, the
uniqueness of H implies that Ha1 = H, therefore a1 ∈ NSn

(H) = H, being
H a maximal subgroup of Sn. Now we can rewrite the above equations as

ai ∈ Hx1x2 . . . xi−1, ∀i = 2, . . . ,m.

It follows that Ma1 = M and Mai = Mx1...xi−1 for all i = 2, . . . ,m, hence
the only subgroup in C that contains π is

NG(M ×Mx1 ×Mx1x2 × . . .×Mx1...xm−1).

This concludes the proof.



2.3 Proof of Theorem 1 73

In order to conclude the proof of Theorem 1, we are left to show that
condition (3) of Lemma 6 holds, in other words that c(H) < 1 for every
maximal subgroup H of G not in C. This will be done in Proposition 20.
Its proof will make use of the following lemmas.

Lemma 11. For n ⩾ 30, the value of |Π0,2| is smallest when m is even.
Moreover, if g ∈ G, then

|NG(Mm)g ∩ Π0,2|
|Π0,2|

⩽
2n(n− 2)

|Sn : NSn
(M)|m .

Proof. We have

|D1| = n!
2(n− 2) , |D2| = (n− 1)!, |C| = n!

p(n− p) ,

and

|Π0,2| =



2|An|m−2|D1||D2| = 4|An|m

n(n− 2) , if m is even.

|An|m−1|C| = 4|An|m

2p(n− p) , if m is odd.

Note that
2p(n− p) < 2(2n/3)2 ⩽ n(n− 2),

being n/3 < p < 2n/3 and n ⩾ 30. So the value of |Π0,2| is smallest when
m is even.

We now prove the stated inequality. Since Π0,2 is closed under conjuga-
tion, we may assume that g = 1. By Lemma 9,

|NG(Mm) ∩ Π0,2|
|Π0,2|

=



|NSn
(M)|

|Sn|

m−2

· |D1 ∩NSn
(M)||D2 ∩NSn

(M)|
|D1||D2|

, if m is even.

|NSn
(M)|

|Sn|

m−1

· |C ∩NSn
(M)|

|C|
, if m is odd.

The inequality in the statement follows by using the fact that the size of the
intersection of any one of D1, D2, C with NSn

(M) is at most |NSn
(M)|.
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Lemma 12. If d is a divisor of n such that 2 ⩽ d ⩽ n/2 then (n/d)!d · d! ⩽
2(n/2)!2.

Proof. We do as in the proof of [33, Lemma 2.1]. Assume first that d ⩽ n/d.

(n/d)!d · d! ⩽ (n/d)!2 · 2 · ((n/d)! · d)d−2 ⩽ (n/d)!2 · 2 · ((n/d)! · n/d)d−2

⩽ (n/d)!2 · 2 · ((n/d)n/d)d−2 = (n/d)!2 · 2 · (n/d)2(n/2−n/d)

⩽ (n/d)!2 · ((n/d) + 1)2 · . . . · (n/2)2 · 2 = 2(n/2)!2,

where, in the fourth inequality, we used that r! ⩽ rr−1, for all r ⩾ 2.

Suppose now that d > n/d. Since 2 ⩽ n/d ⩽ n/2, exchanging the role
of n/d and d in the above inequality we obtain

d!n/d · (n/d)! ⩽ 2(n/2)!2.

If a > b ⩾ 2 are integers, then a!b · b! > b!a · a!, since

a!b−1 = (a · (a− 1) · . . . · (b+ 1))b−1 · b!b−1 ⩾
(
(b+ 1)(a−b))b−1 · b!b−1

> b(a−b)(b−1) · b!b−1 ⩾ b!(a−b) · b!b−1 = b!a−1.

Applying this to a = d, b = n/d we have

(n/d)!d · d! < d!n/d · (n/d)! ⩽ 2(n/2)!2.

This concludes the proof.

Lemma 13. Let H be a maximal subgroup of Sn such that H /∈ F and fix
i ∈ I, M ∈ Ei. Then either |H| ⩽ |NSn

(M)| or H ∩Bi = ∅.

Proof. By the O’Nan-Scott Theorem, the maximal subgroups of Sn are of
one of the following types: (1) primitive, (2) maximal intransitive, iso-
morphic to Sk × Sn−k for some k ∈ {1, . . . , n/2 − 1} and (3) maximal
imprimitive, isomorphic to Sa ≀ Sb for 2 ⩽ a, b < n with ab = n. If H is
intransitive then H ∼= Sk × Sn−k with n/3 ⩽ k < n/2, therefore

|H| ⩽ (n/3)!(2n/3)! ⩽ (n/3 − 1)!(2n/3 + 1)! ⩽ |NSn
(M)|
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if NSn
(M) is intransitive. On the other hand, if NSn

(M) is transitive, then
i = −1 and H ∩B−1 = ∅.

Now suppose that H is transitive. If H is imprimitive then |H| =
(n/d)!d · d!, where d is a divisor of n, d ̸= 1, 2, n. By Lemma 12, if NSn

(M)
is imprimitive, then

|H| = (n/d)!d · d! ⩽ (n/2)!2 · 2! = |NSn
(M)|.

If NSn
(M) is intransitive, then

|H| = (n/d)!d · d! ⩽ (n/2)!2 · 2! ⩽ (n/3 − 1)!(2n/3 + 1)! ⩽ |NSn
(M)|.

IfH is primitive then eitherH = An, in which caseH∩Bi = ∅, orH ̸= An,
in which case |H| < 4n by [37]. Since n ⩾ 30 we have

4n ⩽ (n/2)!2 · 2 ⩽ (n/3 − 1)!(2n/3 + 1)!

and the result follows.

We are now ready to prove that c(H) < 1 for every maximal subgroup
H of G not in C.

Proposition 20. Let H be a maximal subgroup of G not in C. Then c(H) <
1.

Proof. Assume H has product type. Then H is conjugate to NG(Mm)
whereM is the intersection between An and a maximal subgroup of Sn not
of the form An nor Sn/2 ≀ S2 nor Si × Sn−i, i = 1, 2, . . . , n/3 − 1, so that

|NSn
(M)| ⩽ (n/3)! (2n/3)!

by Lemma 12 and the fact that 2(n/2)!2 ⩽ (n/3)! (2n/3)! being n ⩾ 30.

If M is primitive, by [37] we have

|NSn
(M)| < 4n ⩽ 2(n/2)!2 ⩽ (n/3)! (2n/3)!.

Since Πj is closed under conjugation for all j ∈ J , we have

|H ∩ Πj| = |NG(Mm) ∩ Πj|, ∀ j ∈ J.
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We will use Stirling’s inequalities, which are valid for all k ⩾ 2:
√

2πk (k/e)k ⩽ k! ⩽ e
√
k (k/e)k.

Assume that either m is even or r ̸= 2. By Lemma 9 and the fact that
Π0,r ⊆ M0,r,

|H ∩ Π0,r|
|M0,r ∩ Π0,r|

=
r ·

(1
2 |NSn

(M)|
)m−r · ∏r

i=1 |Di ∩NSn
(M)|

r · |An|m−r · ∏r
i=1 |Di|

⩽

 |NSn
(M)|

|Sn|

m−r

·
r∏

i=1

|NSn
(M)|

|Di|
=
 |NSn

(M)|
|Sn|

m

· 2(n− 2)nr−1

⩽

(n/3)! (2n/3)!
n!

m

· 2nr ⩽ 2 ·
22/3

3

nm

·
ne2√n

3
√
π

m

.

By Lemma 11,

|NG(Mm) ∩ Π0,2|
|Π0,2|

⩽
2n(n− 2)

|Sn : NSn
(M)|m ,

so we have the above inequality also in the case r = 2 when m is odd.

According to the proof of [40, Lemmas 5.4, 5.5, 5.9, 5.10], the largest
value of ∑

i ∈ I

|Bi ∩NSn
(M)|

|Bi ∩NSn
(Mi)|

is obtained by substituting n = 30 in the expression

3n2 + 27n+ 54
4n2 − 9 ,

so it is less than 0.9925. By Lemma 13,

∑
i ∈ I

|H ∩ Πi|
|NG(Mm

i ) ∩ Πi|
=

∑
i ∈ I

(1
2 |NSn

(M)|
)m−1 · |Bi ∩NSn

(M)|(1
2 |NSn

(Mi)|
)m−1 · |Bi ∩NSn

(Mi)|

⩽
∑

i ∈ I

|Bi ∩NSn
(M)|

|Bi ∩NSn
(Mi)|

< 0.9925
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We obtain

c(H) =
∑

r∈P (2m)

|H ∩ Π0,r|
|M0,r ∩ Π0,r|

+
∑

i ∈ I

|H ∩ Πi|
|NG(Mm

i ) ∩ Πi|

< 2m ·
22/3

3

n

· ne
2√n

3
√
π

m

+ 0.9925

This is less than 1 since n ⩾ 30.

We now turn our attention to the maximal subgroups of G of diagonal
type and supplementing the socle N . Let H be such a subgroup. Recall
that H ∩N = ∆φ has order |An|m/t where t is a prime divisor of m.

We have

c(H) =
∑

r∈P (2m)

|H ∩ Π0,r|
|M0,r ∩ Π0,r|

+
∑

i ∈ I

|H ∩ Πi|
|NG(Mm

i ) ∩ Πi|

⩽ |H| ·
 ∑

r∈P (2m)

1
|Π0,r|

+
∑

i ∈ I

1
|NG(Mm

i ) ∩ Πi|

 .
Since HN = G, we have

C2m
∼=
G

N
= HN

N
∼=

H

H ∩N
,

hence

|H| = |H : H ∩N | · |H ∩N | = 2m · |∆φ| = 2m · (n!/2)m/t .

Assume first that either m is even or r ̸= 2. Since 2 ⩽ r ⩽ m,

|Π0,r| = r · |An|m−r ·
r∏

i=1
|Di| = r ·

(
n!
2

)m−r

· n!
n

·
 n!

2(n− 2)

r−1

= r · n!m
2m−1n(n− 2)r−1 ⩾

2 · n!m
2m−1nr

⩾
n!m

2m−2nm
.

By Lemma 11, the smallest value of |Π0,2| is when m is even, so the above
inequality for |Π0,r| holds in all cases.



2.3 Proof of Theorem 1 78

Fix Mi ∈ Ei for all i ∈ I. The smallest possible order of NSn
(Mi), i ∈ I,

is when Mi is imprimitive with two blocks, so

|NSn
(Mi)| ⩾ 2 (n/2)!2.

Since Bi ∩NSn
(Mi) ̸= ∅, by Lemma 10 we have

|NG(Mm
i ) ∩ Πi| =

(1
2 |NSn

(Mi)|
)m−1

|Bi ∩NSn
(Mi)| ⩾ (n/2)!2(m−1).

We deduce that

c(H) ⩽ 2m
(
n!
2

)m/t

·
 ∑

r∈P (2m)

2m−2nm

(n!)m
+

∑
i ∈ I

1
(n/2)!2(m−1)



⩽ 2m
(1

2(n/e)ne
√
n

)m/t

·
2m−1 mnm

(n/e)nm
+ n

(n/(2e))n(m−1)

 < 1

for m ⩾ 3 and n ⩾ 30, where we used the fact that t ⩾ 2 and t = 3 if
m = 3.

Now assume that m = 2. We will show that c(H) = 0 by proving that
H ∩ Π0,2 and H ∩ Πi are empty for all i ∈ I. We have H = NG(∆φ) where

∆φ = {(α, αφ) : α ∈ An},
for φ ∈ Aut(An) ∼= Sn, and

Π0,2 = {(x1, x2)γ2 : x1τ ∈ D1, x2τ ∈ D2} ∪ {(x1, x2)γ2 : x1τ ∈ D2, x2τ ∈ D1},
Πi = {(x1, x2)γ : x1x2τ ∈ Bi}, i ∈ I.

For i ∈ I we have that if (x1, x2)γ ∈ H ∩ Πi then

(α, αφ)(x1,x2)γ = (α, αφ)(x1,x2)(1,τ)δ = (αx1, αφx2τ)δ = (αφx2τ , αx1) ∈ ∆φ.

So φx2τφ = x1, equivalently (φx2τ)2 = x1x2τ which is false since
(φx2τ)2 ∈ An and x1x2τ /∈ An. Therefore H ∩ Πi = ∅ for all i ∈ I.

If (x1, x2)γ2 ∈ H ∩ Π0,2 then, for all α ∈ An,

(α, αφ)(x1,x2)γ2 = (α, αφ)(x1,x2)(τ,τ) = (αx1τ , αφx2τ) ∈ ∆φ.

So x1τφ = φx2τ , i.e. φ−1x1τφ = x2τ . This is a contradiction because
x1τ and x2τ are not conjugated in Sn by definition of Π0,2. Therefore
H ∩ Π0,2 = ∅.



Chapter 3

Pairwise generation

3.1 The function ω(G)

Definition 7. Let G be a finite group which can be generated by 2 elements.
The generating graph of G is the simple graph whose vertices are the el-
ements of G and two vertices are connected by an edge if together they
generate G. That is, for x, y ∈ G, x ̸= y, {x, y} is an edge if and only if
⟨x, y⟩ = G.

As an example, we present the generating graph of the Symmetric group
S3 and the Quartenion group Q8

S3

1

(123)

(23)

(12)

(13)

(132)

Q8

k

j

i

-k

-j

-i

-1

1

Definition 8. A complete graph is a simple graph in which each pair of
graph vertices is connected by an edge. A clique of a simple graph is a
complete subgraph and its clique number is the maximal size of a clique.
We denote by ω(G) the clique number of the generating graph of G. In
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other words, ω(G) is the maximal size of a subset S of G with the property
that ⟨x, y⟩ = G whenever x, y ∈ S and x ̸= y.

Note that ω(G) ⩾ 3 if |G| ⩾ 3. Indeed, if x, y are two distinct elements
of G different from 1 and such that ⟨x, y⟩ = G then {x, y, xy} is a clique
of size 3. There are groups that realize this lower bound, for example
ω(C2 × C2) = 3.

From the generating graph of the groups S3 andQ8 we see that ω(S3) = 4
and ω(Q8) = 3.

Let φ be Euler’s totient function and let π(n) be the number of distinct
prime divisors of n.

Proposition 21. ω(Cn) = φ(n) + π(n).

Proof. Let G := Cn and let Y := {g ∈ G : ⟨g⟩ = G}. Note that G has t
maximal subgroups, where t = π(n), call them Mi = ⟨xi⟩ for i = 1, . . . , t.
Clearly, Y ∪ {x1, . . . , xt} is a clique, so ω(G) ⩾ φ(n) + π(n). Now assume
X is a clique of G. Then of course |X ∩ Mi| ⩽ 1 for all i = 1, . . . , t hence
there exist yi ∈ Mi with ⟨yi⟩ = Mi for i = 1, . . . , t such that

X ⊆
G−

t⋃
i=1

Mi

 ∪ {y1, . . . , yt}.

Note that the elements of G that do not belong to the union
⋃t

i=1Mi are
precisely the generators of G, i.e. the elements g ∈ G such that G = ⟨g⟩.
Therefore ω(G) ⩽ φ(n) + t.

Let d(G) the minimal size of a subset S of G which generates G, i.e.
⟨S⟩ = G. The group G is called d-generated if d(G) ⩽ d.

Proposition 22. If G is a finite 2-generated group and N � G then either
G/N is cyclic or ω(G) ⩽ ω(G/N).

Proof. If X is a clique of G of size ω(G) then {xN : x ∈ X} is a clique
of G/N , for obvious reasons. This implies that ω(G) = |X| ⩽ ω(G/N)
unless there exist x, y ∈ X distinct such that xN = yN . In this case,
y−1x = n ∈ N hence G = ⟨x, y⟩ = ⟨x, n⟩ ⩽ N⟨x⟩ hence G/N is cyclic.
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3.2 ω(S × S)

Let S be a nonabelian simple group. We want to study ω(S × S). By
Proposition 22, we know that ω(S×S) ⩽ ω(S). It is natural to ask whether
ω(S × S) = ω(S). In this section we prove that

Theorem 10. ω(An × An) = ω(An) for n ∈ {5, 6, 7, 10} and for all n ⩾ 22
such that n ≡ 2 mod 4.

Let m = ω(S) and {x1, . . . , xm} be a clique of S. We want to find a
permutation σ ∈ Sym(m) such that

Tσ = {(xi, xσ(i)) : i = 1, . . . ,m}
is a clique of S × S. It is easy to show that the maximal subgroups of
S × S are of one of the following three types: M × S or S × M , where
M is a maximal subgroup of S, or {(x, xφ) : x ∈ S} where φ ∈ Aut(S).
Therefore Tσ is a clique if and only if the following condition is satisfied:
whenever i ∈ {1, . . . ,m}, if there exists φ ∈ Aut(S) such that xφ

i = xσ(i)
then xφ

j ̸= xσ(j) for every j ̸= i. This is equivalent to saying that, whenever
i ̸= j, the element (xi, xj) is not in the same Aut(S)-orbit as (xσ(i), xσ(j)).
Here Aut(S) acts on S × S by the rule (a, b)φ = (aφ, bφ).

In the following, with GAP [16] and Gurobi [22] we compute sets C
of elements of An for n ∈ {5, 6, 7} that are cliques for these groups (see
Appendix A.1), and try to construct sets Tσ that are cliques forAn×An. For
m = ω(S), we write the elements x1, . . . , xm of the clique C = {x1, . . . , xm}
in the order in which they appear.

In the case of S = A5, we have ω(S) = 8 and we choose

C = {(145), (235), (12354), (15342), (12453), (15423), (14235), (12345)},
σ = (12435)(678).

In this case, we can check with GAP that Tσ is a clique of A5 × A5.

In the case of S = A6 we have ω(S) = 11 and we choose

C = {(14)(2653), (12)(3456), (1425)(36), (1546)(23), (1352)(46),
(14653), (12536), (24635), (13452), (12346), (12456)},
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σ = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)(11).
In this case Tσ is a clique of A6 × A6 because xi and xσ(i) have distinct
orders unless i = 11.

In the case of S = A7 we have ω(S) = 27 and we choose

C = {(13642), (23745), (14657), (17)(26)(345), (12)(357)(46),
(15)(264)(37), (176)(24)(35), (152)(34)(67), (143)(27)(56), (13)(256)(47),
(127)(36)(45), (14)(25)(376), (1345276), (1634752), (1634257), (1632475),

(1234567), (1275364), (1536427), (1762534), (1723645), (1276534),
(1746253), (1643572), (1263745), (1653274), (1276534), (1742365)}.

Let σ be the permutation of order 2 defined by σ(i) := i+12 for 1 ⩽ i ⩽ 12
and σ(25) = 25, σ(26) = 27, σ(27) = 26. The reason Tσ is a clique of
A7 × A7 is that xi and xσ(i) have different orders if i ⩽ 24 and, for all
i ∈ {1, . . . , 7}, setting a = x25, b = x26, c = x27, we have

bai ̸= c, cai ̸= b, cbiτ ̸= b.

Here τ is any element of S7 such that c = bτ . Since CS7(x) = ⟨x⟩ for all
x ∈ {a, b, c}, this means that, for all ϕ ∈ Aut(A7) such that ϕ(a) = a

we have ϕ(b) ̸= c and ϕ(c) ̸= b, moreover for all ψ ∈ Aut(A7) such that
ψ(b) = c we have ψ(c) ̸= b.

In the case S = A10, we have (see [34])

σ(A10) = 210−2 =
10

1

 +
10

3

 + 1
2

10
5

 = 256.

In an unpublished paper, E. Swartz proved that σ(A10) = ω(A10). Since
σ(A10) = ω(A10), there exists a clique C = {x1, . . . , x256} of A10 such that
xi ∈ Hi −

⋃
j ̸=i

Hj, ∀ i ∈ {1, . . . , 256}, where H = {H1, . . . , H256} is the

minimal covering of A10 consisting of the maximal intransitive subgroups
(Sk ×S10−k) ∩A10 with k ∈ {1, 3} and the maximal imprimitive subgroups
(S5 ≀ S2) ∩ A10.

In the clique C there are
1
2

10
5

 = 126 elements of cycle structure (5, 5),



3.2 ω(S × S) 83

10
3

 = 120 elements of cycle structure (7, 3) and

10
1

 = 10 elements of

cycle structure (9, 1). We order the elements of C in the following way:

for 1 ⩽ i ⩽ 126, xi has cycle structure (5, 5),
for 127 ⩽ i ⩽ 246, xi has cycle structure (7, 3),
for 247 ⩽ i ⩽ 256, xi has cycle structure (9, 1).

Let σ be the permutation defined by σ(i) := i + 126 for 1 ⩽ i ⩽ 130 and
σ(i) := i− 130 for 131 ⩽ i ⩽ 256.

xi (5, 5) . . . (5, 5) (7, 3) . . . (7, 3) (7, 3) . . . (7, 3) (9, 1) . . . (9, 1)
i 1 . . . 126 127 . . . 130 131 . . . 246 247 . . . 256

σ(i) 127 . . . 252 253 . . . 256 1 . . . 116 117 . . . 126

The reason why Tσ is a clique of A10 × A10 is because xi and xσ(i) have
different cycle structures, so they are not conjugate in Aut(A10) ∼= S10, for
i = 1, . . . , 256.

We can repeat the above argument in the case n ≡ 2 mod 4, n ⩾ 22.
In this case, we have (see [34] and [39])

ω(An) = σ(An) = 2n−2 =
n

1

 +
n

3

 + . . .+
 n

n/2 − 2

 + 1
2

 n

n/2

.
Lemma 14. Let m1, . . . ,mt be positive integers, m = m1 + . . . + mt, and
assume that max{m1, . . . ,mt} ⩽ m/2. Let Aj, j = 1, . . . , t, be pairwise
disjoint subsets of Ω = {1, . . . ,m} such that |Aj| = mj for j = 1, . . . , t.
Then there exists a permutation σ of Ω such that σ(x) ̸∈ Aj for all x ∈ Aj,
for all j = 1, . . . , t.

Proof. Order the elements of Ω so that A1 = {1, . . . ,m1}, A2 = {m1 +
1, . . . ,m1 + m2} and so on. We can also assume that max{m1, . . . ,mt} =
m1. Define σ : Ω → Ω by setting σ(i) := i + m1 for all i = 1, . . . ,m − m1
and σ(i) := i−m+m1 for all i = m−m1 + 1, . . . ,m. Since m1 ⩽ m/2, we
have m−m1 ⩾ m1, so this permutation σ satisfies the requirement.

Let m = 2n−2. Order the clique C so that the first ℓ = 1
2
(

n
n/2

)
elements

have cycle structure (n/2, n/2) and the others follow grouped together
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according to their cycle structures. Since the maximum of 1
2
(

n
n/2

)
and

(
n
j

)
,

j odd, 1 ⩽ j ⩽ n/2 − 2 is at most m/2, we know that there exists a
permutation σ of {1, . . . ,m} as in Lemma 14, where of course the indices
i are partitioned according to the cycle structures of the xi’s. Then Tσ is
a clique because xi and xσ(i) have distinct cycle structures, so they are not
conjugate in Aut(An) ∼= Sn.

3.3 ω(GS)

Let S be a nonabelian simple group. Then S is 2-generated. This was
proved by Steinberg [38] for Chevalley groups, and by Aschbacher and Gu-
ralnick [4, Theorem B] for the other simple groups, using the classification
of the finite simple groups. It is also possible to show that the direct powers
Sm are not all 2-generated [10]. Therefore there exists a maximal n such
that Sn is 2-generated, call it δ(S). Set GS = Sδ(S). Proposition 22 implies
that ω(GS) ⩽ ω(Sk) for all k with 1 ⩽ k ⩽ δ(S).

δ(S) can be computed as follows. Consider the set U consisting of
pairs (x, y) of elements of S such that ⟨x, y⟩ = S. The group Aut(S) acts
naturally on U by (x, y)a := (xa, ya). This action is semiregular, in other
words its stabilizers are trivial. Indeed if a fixes (x, y) then xa = x and
ya = y so, being ⟨x, y⟩ = S, a must be the identity. In other words, the
Aut(S)-orbits of U have size | Aut(S)|. It is possible to prove that

δ(S) = |{(x, y) ∈ S × S : ⟨x, y⟩ = S}|
| Aut(S)| (see [10])

equals the number of Aut(S)-orbits of U .

For example, if S = A5, then δ(S) = 19 and ω(GS) ⩽ ω(S) = 8.

In [35] A. Lucchini and G. Niero wrote numerous programs in GAP
language to show how the clique number of An

5 decrease as n increase. The
result obtained is shown in the following Table:
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n ω(An
5 )

1, 2, 3, 4 8
5, 6 7 or 8
7, 8 7

9, 10, 11, 12, 13 6 or 7
14 5, 6 or 7
15 5 or 6
16 5
17 4 or 5

18, 19 4

Table 3.1: The clique number of An
5 .

This implies that ω(GA5) = 4.

The problem of understanding ω(GS) is quite open at the moment. We
could even ask whether it is true that ω(GS) is bounded above by a constant
for every nonabelian simple group S. In [30, Theorem 1.2] it is proved that,
denoting with m(S) the minimal index of a proper subgroup of S, we have
ω(GS) ⩽ C ·m(S) for all nonabelian simple group S, where C is an absolute
constant. In particular ω(GAn

) ⩽ C · n.

3.4 The Lovász Local Lemma

For the calculation of ω(Gn,m), we follow the same strategy used in [15].
We use the following very important result that was proved by Lovász and
Erdős in [13]. The formulation we use is taken from [3, Corollary 5.1.2]
(the“symmetric case”). Given an event E of a probability space, we denote
by P (E) its probability and by E its complement. As usual e denotes the
base of the natural logarithm.

Theorem 11 (Lovász Local Lemma). Let E1, E2, . . . , En be events in an
arbitrary probability space. Let (V,E) be a directed graph, where V =
{1, . . . , n} is the set of vertices, and assume that, for every i ∈ V , the
event Ei is mutually independent of the set of events Ej such that (i, j) /∈ E,
meaning that

P

Ei |
⋂

j∈S

Ej

 = P (Ei),
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for all nonempty subset S of {j ∈ V : (i, j) /∈ E}. Let d be the maximum
valency of a vertex of the graph (V,E). If for every i ∈ V

P (Ei) ⩽
1

e(d+ 1)
then P

(⋂
i∈V Ei

)
> 0.

First we prove the General Case. Recall that, if A,B are two events,
then P (A | B) = P (A ∩ B)/P (B) if P (B) > 0 and P (A | B) = 0 if
P (B) = 0. In the following proof we will use the following equalities,
which are easy to prove. If A,B,C are events, then

P (A | B ∩ C) = P (A ∩B | C)
P (B | C) ,

P (A ∩B | C) = (1 − P (A | C)) · (1 − P (B | A ∩ C)),
P (A ∩B) = (1 − P (A)) · (1 − P (B | A)).

Note that the third equality is a particular case of the second one.

Theorem 12 (The Local Lemma; General Case). Let E1, E2, . . . , En be
events in an arbitrary probability space. A directed graph D = (V,E)
on the set of vertices V = {1, 2, . . . , n} is called a dependency digraph for
the events E1, . . . , En if for each i, 1 ⩽ i ⩽ n, the event Ei is mutually
independent of all the events {Ej : (i, j) /∈ E}. Suppose that D = (V,E)
is a dependency digraph for the above events and suppose there are real
numbers x1, . . . , xn such that 0 ⩽ xi < 1 and

P (Ei) ⩽ xi

∏
(i,j)∈E

(1 − xj),

for all 1 ⩽ i ⩽ n. Then

P

 n⋂
i=1

Ei

 ⩾
n∏

i=1
(1 − xi).

In particular, with positive probability, no event Ei holds.

Proof. We first prove, by induction on s, that for any S ⊆ {1, . . . , n},
|S| = s < n, and any i /∈ S,

P

Ei |
⋂

j∈S

Ej

 ⩽ xi. (3.1)
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This is certainly true for s = 0. Assuming it holds for all s′ < s, we prove
it for s. Put S1 = {j ∈ S : (i, j) ∈ E}, S2 = S \ S1. Then

P

Ei |
⋂

j∈S

Ej

 =
P
(
Ei ∩

(⋂
j∈S1 Ej

)
| ⋂l∈S2 El

)
P
(⋂

j∈S1 Ej | ⋂l∈S2 El

) . (3.2)

To bound the numerator, observe that, since Ei is mutually independent
of the events {El : l ∈ S2},

P

Ei ∩
 ⋂

j∈S1

Ej

 |
⋂

l∈S2

El

 ⩽ P

Ei |
⋂

l∈S2

El

 = P (Ei) ⩽ xi

∏
(i,j)∈E

(1 − xj).

(3.3)

The denominator, on the other hand, can be bounded by the induction
hypothesis. Indeed, suppose S1 = {j1, j2, . . . , jr}. If r = 0, then the
denominator is 1, and 3.1 follows. Otherwise

P

Ej1 ∩ Ej2 ∩ . . . ∩ Ejr
|
⋂

l∈S2

El


=
1 − P

Ej1 |
⋂

l∈S2

El

 ·
1 − P

Ej2 | Ej1 ∩
⋂

l∈S2

El

 · . . .

. . . ·
1 − P

Ejr
| Ej1 ∩ . . . ∩ Ejr−1 ∩

⋂
l∈S2

El


⩾ (1 − xj1)(1 − xj2) . . . (1 − xjr

) =
∏

(i,j)∈E

(1 − xj). (3.4)

Substituting 3.3 and 3.4 into 3.2, we conclude that

P

Ei |
⋂

j∈S

Ej

 ⩽ xi,

completing the proof of the induction.

The assertion of the Theorem now follows easily, as

P

 n⋂
i=1

Ei

 = (1 − P (E1)) · (1 − P (E2 | E1)) · . . .

. . . ·
1 − P

En |
n−1⋂
i=1

Ei

 ⩾
n∏

i=1
(1 − xi),

completing the proof.
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Now we prove Theorem 11.

Proof. If d = 0, the events Ei are all independent from each other hence

P (
⋂

i∈V

Ei) =
∏
i∈V

(1 − P (Ei)) ⩾
∏
i∈V

(1 − 1/e) > 0.

Otherwise, by the assumption there is a dependency digraph graph (V,E)
for the events E1, . . . , En in which, for each i, |{j : (i, j) ∈ E}| ⩽ d. The
result now follows from Theorem 12 by taking xi = 1/(d+ 1) < 1 for all i
and using the fact that, for any d ⩾ 1, (1 − 1/(d+ 1))d > 1/e.

3.5 Proof of Theorem 2

Let G = Gn,m be the group defined in Section 2.3.1, that is, G =
Am

n ⋊ ⟨γ⟩, where γ = (1, . . . , 1, τ)δ, τ = (1 2) and δ = (1 . . .m). Our
objective in this section is to prove our second Theorem:

Theorem. [2, Theorem 2] Set G := Gn,m. For fixed m ⩾ 2, ω(G) is asymp-

totically equal to
(

1
2
(

n
n/2

))m
for n → ∞, n even, and ω(G)/σ(G) tends to

1 as n → ∞, n even.

Define

N = {NG(M ×Ma2 × . . .×Mam) : M ∈ F},

where F is the family of maximal imprimitive subgroups of An with 2
blocks, (Sn/2 ≀ S2) ∩ An, and a2, . . . , am ∈ An.

Note that if H ∈ N then H is conjugate to NG(Mm) in G, for some
M ∈ F . The subgroups of G contained in N are maximal in G by [5,
Proposition 1.1.44] and [27].

Let B be the set of n-cycles in Sn and let Π be the set of elements of
G of the form (x1, . . . , xm)γ with the property that x1 . . . xmτ ∈ B. Note
that these sets are precisely what are called B−1 and Π−1 in Section 2.3.
By Proposition 15, Π is a conjugacy class of G.
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For H ∈ N and K ⩽ G, define

C(H) = Π ∩H, fH(K) = |C(H) ∩K|
|C(H)| .

Let g ∈ G be such that H = (NG(Mm))g. By Lemma 10 and Proposition
15,

|C(H)| = |H ∩ Π| = |(NG(Mm))g ∩ Π| = |NG(Mm) ∩ Π|

=
(1

2 |NSn
(M)|

)m−1
· |B ∩NSn

(M)| = 2/n · (n/2)!2m.

Since H is a non-normal maximal subgroup of G, it is self-normalizing.

Since N is the conjugacy class of H in G,

l = |N | = |G : H| = (n!/2)m · 2m
(n/2)!2m · 2m = 1

2m

 n

n/2

m

< 2m(n−1).

Define the graph Γ whose vertices are the two-element subsets v = {H1, H2}
of N , with H1 ̸= H2. There is an edge between two vertices v and w if
v ∩ w ̸= ∅. Every vertex of Γ has valency

d = 2(l − 2) < 2m(n−1)+1.

Choose gH ∈ C(H) uniformly and independently, for all H ∈ N , and let
Ev be the event ⟨gH1, gH2⟩ ̸= G, equivalently ⟨gH1, gH2⟩ is contained in a
maximal subgroup of G. It is easy to see that the mutual independence
condition is satisfied (see also [15, Section 3]).

Our aim is to prove that P (Ev) ⩽ 1/(e(d + 1)) for every vertex v of Γ.
If this is true, then the Local Lemma implies that there exists a choice of
gH in each C(H), H ∈ N , with the property that ⟨gH1, gH2⟩ = G for all
H1 ̸= H2 in N , therefore these elements form a clique of the generating
graph of G, in other words ω(G) ⩾ |N |. This, together with item (3) of
Theorem 9, gives the claim of Theorem 2.

In the following discussion we will talk about the various types of max-
imal subgroups of G, which we described in Section 2.3.

Let M1 be the family of maximal intransitive subgroups of Sn, M2 the
family of primitive maximal subgroups of Sn different from An, Mj the
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family of maximal imprimitive subgroups of Sn with j blocks for j ∈ {3, 4},
M5 the family of maximal imprimitive subgroups of Sn with at least 5
blocks.

Let H be the family of all maximal subgroups of G not in N and J =
{1, 2, 3, 4, 5, 6}. We write H as the union H1 ∪ . . .∪ H6 where the Hj’s are
defined as follows. For j with 1 ⩽ j ⩽ 5, Hj is the subset of H consisting of
subgroups of the form NG(M ×Ma2 × . . .×Mam), where a2, . . . , am ∈ An,
NSn

(M) ∈ Mj and NSn
(M) ∩ An = M . H6 is the family of maximal

subgroups of G of diagonal type.

Fix a vertex v = {H1, H2} of Γ. For j ∈ J , let Ev,j be the probability
that ⟨gH1, gH2⟩ is contained in a member of Hj. We clearly have

P (Ev) ⩽
∑
j∈J

P (Ev,j).

Let [H] be the conjugacy class in G of a subgroup H of G and mHi
([H])

the number of different conjugates of H that contain a fixed element of
C(Hi), i = 1, 2. This is well defined since Π is a conjugacy class of G.

In the following sum, [H] varies over the set of conjugacy classes of
elements of Hj. Arguing as in [15] we have, for j ∈ J ,

P (Ev,j) ⩽
∑
[H]
mH1([H]) max

K∈[H]
(fH2(K)).

Let cv,j the number of conjugacy classes of subgroups in Hj such that there
exists H in such a class such that H ∩ C(H1) ̸= ∅ and H ∩ C(H2) ̸= ∅.
We deduce that

P (Ev,j) ⩽ cv,j · min
{i1,i2}={1,2}

(
max

H∈Hj ,K∈[H]
(mHi1

([H]) · fHi2
(K))

)
. (⋆)

Let sv,j be the number of subgroups H in Hj such that H ∩ C(H1) ̸= ∅
and H ∩ C(H2) ̸= ∅. Then

P (Ev,j) ⩽
∑

H∈Hj

fH1(H)fH2(H) ⩽ sv,j · max
H∈Hj

(fH1(H) · fH2(H)). (⋆⋆)

Lemma 15. Let v = {H1, H2} be a vertex of Γ. Then cv,2 ⩽ n for large
enough n, cv,j ⩽ 1 for j ∈ {3, 4}, cv,5 ⩽ 2

√
n and cv,6 ⩽ m · 2m.
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The bound cv,2 ⩽ n depends on the classification of finite simple groups.

Proof. Note that cv,j is less than or equal to the number of conjugacy classes
of subgroups in Hj. Also, if H ∈ H then we can write H = NG(H ∩ N)
and this allows to reduce to counting G-conjugacy classes of subgroups of
the form H ∩ N in N . Also note that if M and L are conjugate in An,
then NG(Mm) and NG(Lm) are conjugate in G by an element of the form
(c, c, . . . , c) ∈ Am

n such that M c = L. Therefore, for j with 1 ⩽ j ⩽ 5,
the number of conjugacy classes of subgroups in Hj is less than or equal
to the number of conjugacy classes of subgroups of Sn belonging to Mj.
Therefore, for j ̸= 6, we can use the bounds for cv,j calculated in [15,
Lemma 5]. In other words cv,2 ⩽ n for large enough n, cv,j ⩽ 1 for j ∈ {3, 4}
and cv,5 ⩽ 2

√
n.

It remains to bound cv,6. We will use the fact that if X ⩽ Y are finite
groups with Y acting on a finite set Ω, then denoting by uX the number
of X-orbits and by uY the number of Y -orbits of this action, we have
uY ⩽ uX ⩽ |Y : X| · uY . Since n is larger than 6, Aut(An) ∼= Sn, therefore
any two isomorphic diagonal subgroups ∆φ1, ∆φ2 of the socle N = Am

n are
conjugate in the group Sm

n ⋊ ⟨δ⟩, which contains G, via an element of Sm
n .

It follows that the number of G-classes of isomorphic diagonal subgroups
is at most the number of Am

n -classes, which is at most |Sn : An|m = 2m.
We know that the number of isomorphism classes of diagonal subgroups
equals the number of prime divisors of m (see Section 2.3). Therefore
cv,6 ⩽ m · 2m.

Lemma 16. Let v be a vertex of Γ and assume that 4 divides n. Then
sv,4 ⩽ 1.

Proof. Let v = {H1, H2} and let H ∈ H4. Write

H = NG(Rb1 × . . .×Rbm) ∈ H4, Hi = NG(Mai1
i × . . .×Maim

i ) ∈ N ,

for i = 1, 2, where each aij and each bj belongs to An, NSn
(Mi) is a maximal

imprimitive subgroup of Sn with 2 blocks for i = 1, 2 and NSn
(R) is a

maximal imprimitive subgroup of Sn with 4 blocks. Suppose that H ∩
C(Hi) = H ∩ Π ∩ Hi ̸= ∅ for i = 1, 2. We need to show that H is
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uniquely determined by these conditions, in other words, that each Rbj is
uniquely determined. By [15, Proof of Lemma 5], it is enough to prove
that B ∩NSn

(Maij

i ) ∩NSn
(Rbj) ̸= ∅ for i = 1, 2 and for j = 1, . . . ,m.

Fix i ∈ {1, 2} and let

h = (x1, . . . , xm)γ ∈ H ∩ C(Hi) = H ∩Hi ∩ Π.
Since h ∈ Π, by definition x1 . . . xmτ ∈ B. On the other hand, being
h ∈ H, Rb1 × . . .×Rbm equals

(Rb1 × . . .×Rbm)(x1,...,xm)γ = Rbmxmτ ×Rb1x1 ×Rb2x2 × . . . Rbm−1xm−1.

We deduce that bmxmτb
−1
1 ∈ NSn

(R) and bjxjb
−1
j+1 ∈ NSn

(R) for j =
1, . . . ,m − 1. Fix j ∈ {1, . . . ,m}. Multiplying everything starting from
the j-th term, we have

bjxjxj+1 . . . xmτx1x2 . . . xj−1b
−1
j ∈ NSn

(R).
It follows that the element x := xjxj+1 . . . xmτx1x2 . . . xj−1 belongs to
NSn

(Rbj). Since h ∈ Hi, the same argument shows that x belongs to
NSn

(Maij

i ). Furthermore

x = (xjxj+1 · · · xmτ) · x1 · · ·xmτ · (xjxj+1 · · ·xmτ)−1,

so x belongs to B. Therefore x ∈ B ∩NSn
(Maij

i ) ∩NSn
(Rbj).

Lemma 17. Let L ⩽ G and g ∈ Π, then the number of conjugates of L
containing g is at most nm.

Proof. We argue as in the proof of [6, Lemma 4]. Let a(L) the number of
conjugates of L containing g. Note that a(L) does not depend on g because
Π is a conjugacy class in G. Consider the set R of pairs (h,H) such that
h ∈ H ∩ Π and H is conjugated to L in G. On the one hand, since Π is
a conjugacy class of G, |R| = |Π| · a(L). On the other hand, since L has
|G : NG(L)| conjugates in G and |Lg ∩ Π| = |L ∩ Π| for all g ∈ G,

|R| = |G : NG(L)| · |L ∩ Π| ⩽ |G : L| · |L| = |G|.
Therefore |Π| · a(L) ⩽ |G| hence

a(L) ⩽ |G|
|Π|

= 2m · (n!/2)m

(n− 1)! · (n!/2)m−1 = nm.

This concludes the proof.
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Fix a vertex v = {H1, H2} of Γ and let i ∈ {1, 2}, H := Hi. By Lemma
17,

mH([K]) ⩽ nm, ∀ K ⩽ G.

We now bound fH(K) = |C(H) ∩ K|/|C(H)| for K ∈ Hj and P (Ev,j) for
j = 1, . . . , 6. Since Π is closed under conjugation, when bounding fH(K)
we may assume that H = NG(Lm) where L is a maximal imprimitive
subgroup of An with 2 blocks. As in Section 2.3, we will use Stirling’s
inequalities. By Lemma 10, C(H) = H ∩ Π has size

(2/n) · (n/2)!2m ⩾ (2/n)(n/(2e))nm.

(1) Case j = 1.
Let K ∈ H1 be a conjugate of NG(Mm) in G, where M is a maximal
intransitive subgroup of An. Notice that K ∩ Π = ∅ by Lemma 10,
because NSn

(M) is intransitive and hence it does not contain n-cycles.
Therefore fH(K) = 0, implying that P (Ev,1) = 0.

(2) Case j = 2.
Assume K is a maximal subgroup of G conjugate to NG(Mm) where
Mm = K ∩ N , M is the intersection between An and a primitive
maximal subgroup of Sn distinct from An. Since |M | ⩽ 4n by [37],
KN = G and K ∩N is conjugate to Mm, we have

|C(H) ∩K| ⩽ |K| = 2m · |M |m ⩽ 2m · 4mn.

Therefore, by Inequality (⋆) and Lemmas 15, 17,

P (Ev,2) ⩽ n ·mn · mn · 4mn

(n/(2e))mn
= m2n3 ·

(8e
n

)nm

.

(3) Case j = 3.
Assume K = NG(M ×Ma2 × . . .×Mam), M is a maximal imprimitive
subgroup of An with 3 blocks, and a2, . . . , am ∈ An. We will bound
the size of C(H) ∩ K. Let g ∈ C(H) ∩ K = H ∩ Π ∩ K, then
g = (x1, . . . , xm)γ, where x1 . . . xmτ ∈ B, and the fact that g ∈ H ∩K
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implies that

x1, . . . , xm−1, xmτ ∈ NSn
(L),

aixia
−1
i+1 ∈ NSn

(M), for i = 1, . . . ,m− 1,

where a1 = 1, and amxmτ ∈ NSn
(M).

We deduce that

x1 . . . xi ∈ NSn
(L) ∩NSn

(M)ai+1, ∀i = 1, . . . ,m− 1.

x1 . . . xmτ ∈ B ∩NSn
(L) ∩NSn

(M).

By induction, the number of choices for xi is |NSn
(L) ∩NSn

(M)ai+1|,
which is at most |NSn

(L) ∩ NSn
(M)|, for every i = 1, . . . ,m − 1.

Moreover, after choosing x1, . . . , xm−1, the number of choices for xm is
|B∩NSn

(L)∩NSn
(M)|, which is at most |NSn

(L)∩NSn
(M)|. Therefore

|C(H) ∩K| ⩽ |NSn
(L) ∩NSn

(M)|m.

The above discussion implies that, if B ∩NSn
(L) ∩NSn

(M) is empty,
then fH(K) = 0, so now we may assume that there is an element
σ ∈ B ∩ NSn

(L) ∩ NSn
(M). Then σ is an n-cycle normalizing L and

M . Let ∆ and ∆ be the blocks of L, i.e. the two orbits of ⟨σ2⟩, and
let B1, B2, B3 be the blocks of M , i.e. the three orbits of ⟨σ3⟩. Then
the six orbits of ⟨σ6⟩ are ∆ ∩ Bi, i = 1, 2, 3, and ∆ ∩ Bi, i = 1, 2, 3,
forming a partition P of {1, . . . , n} consisting of 6 blocks of size n/6.
Clearly, NSn

(L)∩NSn
(M) is contained in the stabilizer of the partition

P , which is isomorphic to Sn/6 ≀ S6, hence

fH(K) = |C(H) ∩K|
|C(H)| ⩽

|NSn
(L) ∩NSn

(M)|m
|C(H)| ⩽

n

2 ·
(n/6)!6 · 6!

(n/2)!2

m

.

Applying Stirling’s inequalities we have that this is at most nO(1)m(1/3)nm.

By Inequality (⋆) and Lemmas 15, 17, the same bound holds for
P (Ev,3).

(4) Case j = 4.
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Assume K is a maximal subgroup of G conjugate to NG(Mm) where
K ∩ N = Mm and M is a maximal imprimitive subgroup of An with
4 blocks. Since KN = G and K ∩ N is conjugate to Mm, |K| =
2m · |M |m, hence an application of Stirling’s inequalities gives

fH(K) ⩽ |K|
|C(H)| = 2m · ((n/4)!4 · 4!)m

2/n · (n/2)!2m
⩽ nO(1)m ·

(1
2

)nm

.

Therefore, by Inequality (⋆⋆) and Lemma 16, P (Ev,4) ⩽ nO(1)m(1/4)nm.

(5) Case j = 5.
Assume K is a maximal subgroup of G conjugate to NG(Mm) where
K ∩N = Mm and M is a maximal imprimitive subgroup of An with 5
or more blocks. By [6, Theorem 3], |M | ⩽ nO(1) · (n/(5e))n, and since
|K| = 2m · |M |m,

fH(K) ⩽ 2m · ((n/(5e))n · nO(1))m

2/n · (n/(2e))nm
⩽ nO(1)m ·

(2
5

)nm

.

By Inequality (⋆) and Lemmas 15, 17, the same bound holds for
P (Ev,5).

(6) Case j = 6.
Assume K = NG(∆φ) is a maximal subgroup of G of diagonal type,
so that |K| = 2m · |An|m/t where t is a prime divisor of m. Using t ⩾ 2
and Stirling’s inequalities,

fH(K) ⩽ |K|
|C(H)| = 2m(n!/2)m/t

(2/n)(n/2)!2m
⩽ nO(1)m ·

2
√
e√
n

mn

.

By Inequality (⋆) and Lemmas 15, 17, the same bound holds for
P (Ev,6).

We now finish the proof of Theorem 2 by showing that P (Ev) ⩽ 1
e(d+1)

for sufficiently large n. Recall that d ⩽ 2mn. The above discussion implies
that

P (Ev,j) ⩽ nO(1)m(2/5)nm
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for all j = 1, . . . , 6, and since

P (Ev) ⩽
6∑

j=1
P (Ev,j),

it suffices to show that nO(1)m(2/5)mn ⩽ (1/2)mn, which is true for large
enough n.



Appendix A

ω(G) for small groups G

As we discussed in the introduction, using GAP [16] and GUROBI [22],
it is possible to calculate ω(G) for groups G of small orders. We will discuss
some cliques and coverings of some small groups. The stated facts about
the symmetric groups are known.

A.1 Computing a clique for A5 with Gurobi

Using a GAP code, as used in [25] and [19] for the calculation of σ(G), we
can compute the value of ω(G). We will show an exemple of this calculation
for G = A5. We generate a file (”filename.lp”) on GAP. The first step is
read the file generated by GAP on Gurobi in the following way:

model=read("filename.lp"),

and optimize

model.optimize().

After optimizing, the command

model.getVars()
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shows the values of all the variables.

In many models, only a small portion of the variables have nonzero
values. In that case, it is usually more convenient to get a list of only the
variables that have nonzero values, as follows:

[v.varName for v in model.getVars() if v.x>1e-6].

This will generate a list, in which the values that appear are the elements
of G that form the clique.

For G = A5, on GAP, doing

el:=Enumerator(G);

The list obtained is

[el[3], el[16], el[39], el[52], el[54], el[57], el[58],

el[59]];

and, in this case, this elements form a clique. The elements are, re-
spectively, (145), (235), (12354), (15342), (12453), (15423), (14235), and
(12345).

A.2 The symmetric group S5

The minimal covering of S5 consists of A5 together with the intransitive
maximal subgroups S1 × S4 and S2 × S3. The number of copies of S1 × S4

in S5 is

5
1

 = 5 subgroups, and the number of copies of S2 × S3 in S5 is5
2

 = 10 subgroups. Therefore

σ(S5) = 1 +
5

1

 +
5

2

 = 16 = 25−1. (See [9])
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On the other hand, a clique of S5 is given by the set

C = {(1532), (1534), (1234), (142)(35), (123)(45), (135)(24), (12)(354),
(154)(23), (15)(243), (152)(34), (14)(235), (13)(245), (143)(25)},

and |C| = 13.

In [39] L. Stringer showed that this clique has maximal size. Therefore

ω(S5) = 13 < σ(S5) = 16 = 25−1.

A.3 The symmetric group S6

The unique minimal covering M of S6 is given by A6 and the two con-
jugacy classes (each of size 6) of maximal subgroups isomorphic to S5 (one
consists of intransitive subgroups, the other one consists of primitive sub-
groups), and

σ(S6) = 1 + 6 + 6 = 13. (See [1])
A maximal clique is given by the set

C = {(23)(456), (12456), (124356), (124536), (126)(34),
(13)(245), (135264), (145236), (15)(346), (152346), (16)(235)}.

In this case ω(S6) = 11 < σ(S6) = 13.

A.4 The symmetric group S8

A minimal covering of S8 is given by A8, the intransitive maximal sub-
groups of type S2 × S6 and the imprimitive maximal subgroups of type

S4 ≀ S2. The number of copies of S2 × S6 in S8 is

8
2

 = 28 subgroups, and

the number of copies of S4 ≀ S2 in S8 is
1
2

8
4

 = 35 subgroups. Let the set

of these subgroups be called M .

σ(S8) = 1 +
8

2

 + 1
2

8
4

 = 64. (See [25])
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Using the optimization method, we can prove that ω(S8) = σ(S8) = 64.

A maximal clique is given by the set

C = {(27)(35486), (12)(36847), (12458367), (12573648), (12586)(37),
(12647583), (12645738), (132)(475)(68), (135)(24)(678), (13724586),

(13)(25478), (13647258), (13762584), (13847256), (13268745),
(134)(26)(578), (13482756), (13856427), (138)(274)(56), (13286574),
(13672845), (14653782), (142)(38)(576), (14863)(25), (146)(253)(78),
(14862753), (14563278), (14)(276)(358), (147)(285)(36), (15372)(46),
(15)(236)(478), (15326478), (15368274), (162)(387)(45), (16753)(48),
(16783524), (16)(273)(458), (16273485), (16542738), (165)(283)(47),

(16428)(57), (167)(28)(354), (178)(23)(465), (17243)(586), (17324685),
(17825643), (17863254), (17)(256)(348), (17638254), (173)(264)(58),

(17546328), (175)(286)(34), (17453628), (18764532), (18435762),
(182)(35)(467), (185)(234)(67), (18623745), (18524376), (18256734),

(18)(254)(367), (18742653), (18754326), (18426375)}.

A.5 The symmetric group S9

L. Stringer [39] proved that

235 ⩽ ω(S9) ⩽ 244 < 256 = σ(S9),

and the value of σ(S9) comes from [25]. Let us see how she managed this.
We know that G = S9 has a minimal covering M of size 256 consisting of
A9 and all of the maximal intransitive subgroups,

σ(S9) = 1 +
9

1

 +
9

2

 +
9

3

 +
9

4

 = 256.

Let G := S9 and let X be a maximal clique of G, |X| = ω(G). Since
any two even permutations belong to A9, there is at most one element in
X which is a product of an odd number of disjoint cycles. Let a be the
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number of elements of type (3, 6) in X, let b be the number of elements of
“even” type, (1, 8), (2, 7) or (4, 5) in X and let c be the number of elements
which are product of 4 or more disjoint cycles in X, so that |X| = a+b+c.
We have

b ⩽ 1 +
9

1

 +
9

2

 +
9

4

 = 172.

Every element of type (3, 6) belongs to 4 imprimitive maximal subgroups

of G, and since there are precisely
|S9|

|S3 ≀ S3|
= 280 imprimitive maximal

subgroups, we obtain
a ⩽ 280/4 = 70,

which is less than

9
3

 = 84. An easy inspection shows that any element

of S9 which is a product of 4 or more disjoint cycles lies in at least 10
members of M , so since each member of M contains at most one element
of X, we deduce that

|X| + 9c = a+ b+ 10c ⩽ σ(G) = 256,

so |X| ⩽ 256 − 9c. We deduce that

|X| = a+ b+ c ⩽ 70 + 172 + 256 − |X|
9 .

Therefore ω(G) = |X| ⩽ 243.

Stringer also found a clique of size 235, proving that ω(G) ⩾ 235.

Using the optimization method, we can prove that 239 ⩽ ω(G) ⩽ 241.

A.6 The symmetric group S10

A minimal covering M of S10 is given by A10, the intransitive maximal
subgroups of type S1 × S9, the imprimitive maximal subgroups of type
S5 ≀ S2 and the maximal subgroups of type S3 × S7 with 1 not belonging
to the orbit of size 3. This last set partitions the elements of cycle type
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(3, 3, 4). The number of copies of S1×S9 in S10 is

10
1

 = 10, the number of

copies of S5 ≀S2 in S10 is
1
2

10
5

 = 126 subgroups and the number of copies

of S3 × S7 with 1 not belonging to the orbit of size 3 in S10 is

9
3

 = 84

subgroups. These subgroups could be our M .

σ(S10) = 1 +
10

1

 +
10 − 1

3

 + 1
2

10
5

 = 221. (See [25])

Using the optimization method, we can prove that ω(S10) = 191.
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[20] M. Garonzi, A. Maróti. “Covering certain wreath products with proper
subgroups.” J. Group Theory, vol. 14, no. 1, (2011), 103–125.



BIBLIOGRAPHY 105
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