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Resumo

O ntmero de cobertura de um grupo finito nao ciclico GG, denotado por o(G), é o menor
inteiro positivo k tal que G é uma uniao de k subgrupos préprios. Se G é um grupo 2-
gerado, seja w(G) o tamanho maximo de um subconjunto S de G com a propriedade de
que quaisquer dois elementos distintos de S geram G. Uma vez que qualquer subgrupo
préprio de G pode conter no maximo um elemento de tal conjunto S, w(G) é no méximo
0(G). Para uma familia de grupos primitivos G com um tnico subgrupo normal minimo
N isomorfo a uma poténcia direta do grupo alternado A,, e G/N ciclico, calculamos o(G)
para n divisivel por 6 e m pelo menos 2. Este resultado é uma generalizacao de um
resultado de E. Swartz relativo aos grupos simétricos, que corresponde ao caso m = 1.
Para a familia de grupos primitivos G' acima, também provamos um resultado relativo a
geracao 2-a-2: para m fixo e pelo menos 2 e n par, calculamos assintoticamente o valor
de w(G) quando n vai para o infinito e mostramos que w(G)/o(G) tende para 1 quando
n tende para infinito.

Palavras-chave: Grupo de Permutacao, Grupo Primitivo, Cobertura, Geracao de
grupo.

Titulo: Coberturas e Geracao dois a dois de alguns grupos primitivos
de tipo entrelacado



Abstract

The covering number of a finite noncyclic group G, denoted o(G), is the
smallest positive integer k£ such that GG is a union of k£ proper subgroups. If
G is 2-generated, let w(G) be the maximal size of a subset S of G with the
property that any two distinct elements of S generate G. Since any proper
subgroup of G can contain at most one element of such a set S, w(G) is
at most o(G). For a family of primitive groups G with a unique minimal
normal subgroup N isomorphic to a direct power of the alternating group
A, and G/N cyclic, we calculate o(G) for n divisible by 6 and m at least 2.
This is a generalization of a result of E. Swartz concerning the symmetric
groups, which corresponds to the case m = 1. For the above family of
primitive groups GG, we also prove a result concerning pairwise generation:
for fixed m at least 2 and n even, we calculate asymptotically the value of
w(G) when n goes to infinity and show that w(G)/o(G) tends to 1 as n
tends to infinity.

Keywords: Permutation group, Primitive group, Covering, Group gen-
eration.
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Introduction

In this work, all groups are assumed to be finite. A covering of a group
G is a family of proper subgroups of G whose union is G and the covering
number of GG, denoted (@), is the smallest size of a covering of G. This
interesting invariant was introduced by J. H. E. Cohn in [9] and it was later
studied by many authors. Note that there always exist minimal coverings
consisting of maximal subgroups. If G is cyclic then o(G) is not well defined
because no proper subgroup contains any generator of (G, in this case we
define o(G) = oo, with the convention that n < oo for every integer n.

A simple graph T is a pair (V, E') where V' is a set, whose elements are
called vertices, and FE is a set of subsets of V' of size 2, whose elements
are called edges. If {z,y} € E, we say that x and y are connected by an
edge. The graph I is called complete if {z,y} € E for every two distinct
elements x,y of V. A subgraph of the simple graph I' = (V| F) is a graph
A = (W, F) where W is a subset of V' and F is a subset of F, and such
that whenever x,y are two distinct elements of W, we have {z,y} € F if
and only if {z,y} € E (in other words, for us all subgraphs are induced
subgraph). A clique of a simple graph I' is a complete subgraph of I", and
the clique number of I' is the maximal size of a clique of I', where by “size”
of a graph we mean the size of its vertex set.

If G is a group, denote by d(G) the minimal size of a subset S of G
which generates G, i.e. (S) = G. For example, G is cyclic if and only
if d(G) < 1. The group G is called d-generated if d(G) < d. If G is a
2-generated group, the generating graph of G is the simple graph whose
vertices are the elements of G' and two vertices z,y are connected by an
edge if and only if (z,y) = G. We denote by w(G) the clique number of
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the generating graph of G. In other words w((G) is the maximal size of a
subset S of G with the property that (x,y) = G whenever z,y € S and
x # y. Since any proper subgroup of GG can contain at most one element
of such a set S, we have

w(G) < o(G).

It is very natural to ask whether equality occurs for some families of groups.
In general, equality doesn’t hold, for example w(A;) = 8 and o(A4;5) = 10.
A clique of the generating graph of A; of maximal size is

C = {(145), (235), (12354), (15342), (12453), (15423), (14235), (12345)}.

A covering of Aj of size 10 is given by (any) four point stabilizers and the
six Sylow 5-subgroup normalizers.

The following approach is due to Eric Swartz. Using GAP (a system for
computational discrete algebra [16]) and GUROBI (a linear programming
solver [22]), it is possible to calculate w(G) for groups G of small orders.
The approach of calculating the function o for groups of (relatively) small
order was followed in [25], where the covering number of Sy was calculated
(among other things, see below for more information).

e GAP formulates the problem,
e GUROBI solves it.

The general idea is the following.
G={91,--,9n}, n=|G|,
M := {maximal subgroups of G},
Iy ={ie{l,...;n} : gge M} VM e M.
The linear optimization problem is the following. The variables are x; €
{0,1}.
Maximize Y- ;| x; subject to >, v; < 1 for all M € M.

The interpretation is the following: we are looking for a clique C' of
maximal size in the generating graph of GG. Let us interpret the variables
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x; as follows.

The condition Y ez, ; < 1 means exactly that no two distinct elements of

C can belong to M, and this must hold for every M € M. Of course, this
is the definition of C' being a clique, and we have

xl:{l lfgiEC,

The GAP and GUROBI code used in [25] and the GAP code used in [30]
(to compute the value 0(S14)) can be found in the Reference. Furthermore,
in [19, Section 5.2] can be found a pseudocode that provide both upper and
lower bounds for the covering number.

Let us now recall some results about o(.S,), 0(A4,), w(S,) and w(A4,).

In [34] A. Mar6ti obtained an exact formula for o(95,) for odd n # 9
and o(A,) for n =2 mod 4.

Theorem (A. Mardéti, 2005). Letn > 3, and let S,, and A,, be the symmetric
and the alternating group, respectively, on n letters.

(1) We have o(S,,) = 21 if n is odd unless n = 9, and o(S,) < 272 if

n 18 even.

(2) If n # 7,9, then o(A,) = 2"2 with equality if and only if n = 2
mod 4.

In [25] L.-C. Kappe, D. Nikolova-Popova, and E. Swartz proved the
following.

Theorem (L.-C. Kappe, D. Nikolova-Popova, E. Swartz, 2016). o(Sg) =
2971 In particular, Mardti’s formula o(S,) = 2"1 holds for all odd
integers m > 3. Moreover o(Ss) = 64, o(Sy) = 221, o(S1) = 761,
O'(Mlg) = 208, and 5316 < O'(Jl) < 5413.

In [6] S. R. Blackburn proved that o(S,) = w(S,) if n is odd and suffi-
ciently large.
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Theorem (S. R. Blackburn, 2006). For all sufficiently large odd integers n,
w(S,) =21,

Later in [39] L. Stringer proved the following.
Theorem (L. Stringer, 2008). Let n be a positive integer larger than 2.

(1) If n is odd and different from 5, 9 or 15, then w(S,) = 2" 1.

(2) w(Ss) = 13 < 16 = 271 = o(S;), and 235 < w(Sy) < 244 < 256 =
29-1 = O’(Sg).

(3) If n =2 mod 4 and n is different from 6, 10, 14 or 18, then w(A,) =

22,

(4) w(Ag) = 11 < 16 = 262,

It is not known wheter w(S15) equals o(Si5) or not. In un unpublished
paper, E. Swartz proved the following.

Theorem (E. Swartz, unpublished). We have w(A1g) = 256 = 2%, w(Ay;) =
2734, w(Mia) = 144, w(My) = 771, w(J1) = 5121, w(Jy) = 907 and
w(Sy) € {240, 241},

In the next tables we show some values of these invariants calculated
for symmetric and alternating groups G of small order.

G [S; Sy S5 Sg S; S5 So  Sio
o(G) |4 4 16 13 64 64 256 221
w(@) [ 4 4 13 11 64 64 191

Table 1: Comparing ¢(G) and w(G) for some symmetric groups.

with
240 < w(Sy) < 241.

G |As As As A7 As Ay Ay An
o(G)| 5 10 16 31 71 157 256 2751
wG |5 8 11 27 71 125 256 2734

Table 2: Comparing ¢(G) and w(G) for some alternating groups.
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We also want to mention that w(G) was calculated in [29] when G =
PSL(2, q) with ¢ odd and when G is a Suzuki group Suz(q).

About w(S,,) for even n, F. Fumagalli, M. Garonzi and A. Maréti [15]
proved the following result.

Theorem (F. Fumagalli, M. Garonzi, A. Maréti, 2022). If n is even then
o(S,) and w(S,) are asymptotically equal to %(n%)

This, together with S. R. Blackburn’s result mentioned above, implies
that the quotient w(S,)/c(S,) tends to 1 as n tends to infinity, without
restrictions on the parity of n.

The alternating and symmetric groups are examples of a broad family
of groups called primitive groups. Let H < G, the normal core of H in GG
is defined by

He= (\ H= () g 'Hy.
geG geqG

A group G is called primitive if it admits a maximal subgroup with trivial
normal core. If M is a maximal subgroup of G then G /M is a primitive
group, since its subgroup M /Mg is maximal and it has trivial normal core.
A normal subgroup NN of G is called a minimal normal subgroup of G if N #
{1} and N does not properly contain any nontrivial normal subgroup of G.
Recall that any minimal normal subgroup of G is isomorphic to a direct
power of a simple group. The socle soc(G) of a group G is the subgroup
of G generated by the minimal normal subgroups of G. A group with a
unique minimal normal subgroup is called monolithic. If G is primitive,
then either G is monolithic or it contains precisely two minimal normal
subgroups (See Theorem ).

Recall that the Frattini subgroup of G, denoted ®(G), is the inter-
section of all the maximal subgroups of G. For a general GG, we have
o(G) = o(G/P(G)) and, if G is 2-generated, w(G) = w(G/P(G)). Indeed,
generation can be determined modulo ®(G) and we can lift a covering
consisting of maximal subgroups.

A subdirect product of a family of groups {Xji,...,X,} is a subgroup
H of X7 x ... x X, such that the restrictions to H of the projections
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milg : H — X; are surjective. Observe that G/® (@) is a subdirect product
of primitive groups, each of which is a quotient of G, since denoting with
A the family of all maximal subgroups of G, the natural map
G — H G/MG
Me#

has kernel equal to ®(G). Therefore the study of ¢(G) and of w(G) when G
is a primitive group is crucial for the understanding of the general behaviour
of these invariants.

Note that if N is a normal subgroup of a group G then o(G) < o(G/N).
Indeed, every covering of G/N can be lifted to a covering of G. If there
exists N < G with o(G) = o(G/N) then we may consider as well the
quotient G/N instead of G. This leads to the following definition.

Definition. A finite noncyclic group G is called o-elementary if o(G) <
o(G/N) for every non-trivial normal subgroup N of G.

This definition was given in [11] but there such groups were called “o-
primitive”. The terminology “o-elementary” was used in [19]. For example,
any finite nonabelian simple group is o-elementary (for obvious reasons)
and the symmetric group S,, is o-elementary for all n > 3, n # 4. More
generally, if G is a noncyclic finite group such that every proper quotient
of GG is cyclic, then G is o-elementary. This is an interesting notion for the
following reason: if GG is any finite non-cyclic group, there exists N < G
such that o(G) = o(G/N) and G/N is o-elementary. To see this, consider
the family F consisting of the normal subgroups N of G with the property
that o(G) = o(G/N) and let N be a member of F of maximal order. Then
0(G) = o(G/N) and of course o(G/N) is o-elementary. An immediate
consequence of this is the following observation: if we denote by ¢ the
class of all finite noncyclic groups and by .% the class of all o-elementary
groups, then

{0(G) : Ge¥}={o(G) : Ge S}
An interesting open question is the following: are there infinitely many
natural numbers not belonging to the above set?

The o-elementary groups were studied by E. Detomi and A. Lucchini in
[11]. They conjectured that:
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Conjecture (E. Detomi, A. Lucchini, 2008). Fvery non-abelian o-elementary
group 1s primitive and monolithic.

This was confirmed in [19, Theorem 4.5] for o-elementary groups G with
o(G) < 129.

This conjecture suggests that it makes sense to consider primitive mono-
lithic groups that are o-elementary and to compute o(G) for such groups G.
Note that deciding whether a primitive monolithic group G is o-elementary
is hard in general, but it is certainly true if G/soc(G) is cyclic. In other
words, every primitive monolithic group G with G/soc(G) cyclic is o-
elementary. So, this is the first case to consider.

Let us consider a primitive monolithic group G, with N = soc(G) =
Ty x...xT, =T" where T; =T fori =1,...,m, T anon-abelian simple
group, and G/N is cyclic. Since every proper quotient of G is cyclic, G is a
o-elementary group. Let now n, m be positive integers with n > 5 and sup-
pose that T = A,, i. e., soc(G) = A]". Define X = Ng(T1)/Cq(T7). This
is a group isomorphic to a subgroup of Aut(7) containing an isomorphic
copy of T" as a normal subgroup. If n # 6, then Aut(A4,,) = S, therefore
either X = A, (“even case”) or X = 5, (“odd case”). In the even case
G = A, C,,, and these groups have been studied in [20] by M. Garonzi
and A. Maréti obtaining lower and upper bounds for o(G) and its exact

value in the case n = 2 mod 4. The odd case is the group G, ,, and will
be defined below.

Let G = G, be the semidirect product A} x(y) wherey = (1,...,1,7)J €
SplSp, with7=(12)and § = (1...m). If x1,...,2,, € A,,, we have

(1, xm) = (T, X1, ooy Tip1).

The group G, is a generalization of the Symmetric Group S, if m =1

then G = A, x {(12)) 2 S,,.

In [17] M. Garonzi obtained an exact formula for o(G) when n is odd
with some exceptions, and an asymptotic formula when n is even.

Theorem (M. Garonzi, 2013). Let m,n be positive integers, and let G =
Gmn- Let a(x) denote the number of prime factors of the positive integer
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x. The following holds:

(1) Suppose that n > 7 is odd and m # 1 if n = 9. Then
(n=1)/2 [\ ™
o(G)=al2m)+ > (z) :
i=1
(2) If n =5, then
10" < o(G) < a(2m) + 5™ + 10™.

(3) Suppose that n > 8 is even. Then

(; (n%))m < o(G) < a(2m) + (; (n%))m ., [ji/:? (?)m

In particular, o(G) ~ (%( " ))m as n — oo.

(4) If n =6, then
o(G)=a(2m)+2-6™.

In 2016, E. Swartz calculated o(S,) when n is divisible by 6 (see [10]),
which corresponds to the group G, ,, when m = 1.

Theorem (E. Swartz, 2016). Let n =0 mod 6, n > 24. If o(S,) denotes
the covering number of S,, then

- E ()

o(Sis) = ;(198) + i (18) = 36773.

i=0, i#2 \
In each of these cases, the minimal covering using only mazximal subgroups
1S unique.

Moreover,

Inspired by this result, we investigated the value of o(G) where G =
Gpm, n is divisible by 6 and m > 1. The first main results of this thesis
concern this covering number, and it was published in [2]. We obtained an
exact formula for ¢(G) when n > 30 and divisible by 6 and m > 2.
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Theorem 1 (J. Almeida, M. Garonzi, 2023). Let G = Gy, for n > 30
divisible by 6 and m > 2. Denote by a(x) the number of distinct prime
factors of the positive integer x. Then

o () E

Moreover, G has a unique minimal covering consisting of maximal sub-
groups.

We now consider the problem of determining the clique number of the
generating graph of such groups. The fact that G, ,, is 2-generated can be
proved directly or with the help of the following theorem of A. Lucchini
and F. Menegazzo [31].

Theorem (A. Lucchini, F. Menegazzo, 1997). If G is noncyclic finite group
with a unique minimal normal subgroup N, then d(G) = max{2,d(G/N)}.

This result implies that, if G is a primitive monolithic group and G/ soc(G)
is cyclic, then d(G) = 2. So, in this case too, the first case to consider is
the one in which G/N is cyclic, and we have seen that, if IV is a direct
power of an alternating group, then G must be one of the two types of
groups discussed above (the even type and the odd type). As in Theorem
1, we concentrate on the odd type. Let G := G,,,, and assume n is even.
Two explicit generators of G,,,, are a; = (x;,1,...,1)y for i = 1,2, where
x1,T9 € Ay and (r17,297) = S, (see Section 2.3.4 for more details).

The second main result of this thesis, published in [2], is the following. It
gives an asymptotic formula for w(G) when n is even and tends to infinity.

Theorem 2 (J. Almeida, M. Garonzi, 2023). Set G := G, ,,. For fized
m > 1, w(G) is asymptotically equal to

2a))

for n — oo, n even. Moreover w(G)/o(G) tends to 1 as n — oo, n even.
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This is a generalization of [I5, Theorem 1], which deals with m = 1.
Note that the second statement of the theorem follows from the first one
using item (3) from M. Garonzi’s theorem above. Specifically, we achieve
the above asymptotic formula by proving that, if n is sufficiently large,
then

(il s errcam () E )

It would be interesting to investigate exactly how large n should be for the
lower bound to hold for all m > 1 (the upper bound always holds). This
would settle the question of whether w(G)/o(G) tends to 1 as |G| — oc.

A coclique of a graph I' is an empty subgraph of I', i.e. a full subgraph
without edges.

Definition. The chromatic number of the generating graph of G, denoted
by x(G), is the least number of colors needed to color the vertices of the
graph in such a way that the endpoints of each edge recewve different colors.

Observe that a coloring as above corresponds to writing the vertex set
as a union of cocliques. This means that x(G) is the “coclique covering
number” of GG, i.e. the smallest number of cocliques (of the generating
graph) whose union is G. We have

w(G) < X(G) < a(G),

where the first inequality follows from the fact that the intersection between
a clique and a coclique has size at most 1 and the second inequality follows
from the fact that the proper subgroups of G are cocliques of the generating
graph. It is very natural to ask whether equalities among w(G), x(G), o(G)
occur for some families of groups, at least asymptotically.

In [30] A. Lucchini and A. Maréti proved:

Theorem (A. Lucchini, A. Maréti, 2009). Let G be a 2-generated finite
group with Fitting height at most 2, in other words there exists a nilpotent
normal subgroup N of G such that G/N is nilpotent. Then w(G) = x(G).
Moreover, if G is noncyclic, then w(G) = o(G).
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In the case of Suzuki groups Suz(q) where ¢ = 22" M. S. Lucido
[32] calculated o(Suz(q)), and A. Lucchini and A. Maréti [29] calculated

w(Suz(g)) and x(Suz(q)).
w(Suz(q)) = ¢'/2,  x(Suz(q)) = *(P+1)/2—1,  o(Suz(q)) = ¢*(¢*+1)/2.
Note that x(Suz(q)) = o(Suz(q)) — 1.

About linear groups, A. Lucchini and A. Maréti [29] the following result:

Theorem (A. Lucchini, A. Maréti, 2009). Let ¢ > 9 be an odd prime power.
Let G be any of the groups PSL(2,q), SL(2,q). Then w(G) = x(G) =
o(G) = (q(g+1)/2) + 1.

And in [7], J. R. Britnell et al. proved the following:

Theorem (J. R. Britnell, A. Evseev, R. M. Guralnick, P. E. Holmes, A.
Maréti, 2008). Let G be any of the groups (P)GL(n,q), (P)SL(n,q). Let
b be the smallest prime factor of n, and let N(b) be the number of proper
subspaces of V. =T} of dimensions not divisible by b. If n > 12, then

(@ — d) + (NB)/2).

)

1n

w(@Q) =3

Il
~.

S
—

We have seen that, in general, o(G) and w(G) are not equal, however
it is still interesting to ask whether the quotient w(G)/o(G) tends to 1
when |G| tends to infinity. In general, this is false: in [30] A. Lucchini and
A. Maroti show an interesting example of a family of groups G for which
w(G)/o(G) tends to 0. However, it is reasonable to expect that w(G)/o(G)
tends to 1 when G varies in the family of nonabelian simple groups. This
was conjectured by S. R. Blackburn in [6]:

Conjecture (S. R. Blackburn, 2006). Let G vary in the family of nonabelian
simple groups. Then w(G)/o(G) tends to 1 when |G| — oo.

Of course, in order to attack this conjecture, it makes sense to prove it
for G varying in specific families F of simple groups. In [7] the authors
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show that Blackburn’s conjecture holds for projective special linear groups.
In [11], F. Fumagalli, M. Garonzi and P. Gheri proved the conjecture for
the family of alternating groups of composite degree.

Combining [15] and [6] we see that w(S,)/c(S,) — 1if n — oco. It is
natural to expect that S. R. Blackburn’s conjecture should hold for more
general families of groups, for example the monolithic primitive groups.
For instance, it is natural to expect that w(Gpm)/0(Gpm) tends to 1 for
fixed m and for n — oo. We did this for n even. In the case n odd, this is
very probably true.



Chapter 1

Preliminaries

In this chapter we present definitions and results that are important
throughout the text.

1.1 Primitive groups

Let G be a finite group acting on the set X, and denote the action by
(x,g) — x9. Such action is said to be transitive if for every x,y € X there
exists g € G such that x9 =y. For x € X, we define

Stabg(x) ={g e G: 29 =2} <G
the stablizer of z and
O¢(z)={2? :1ge G} C X

the G-orbit of x. Equivalently, the action is transitive if X is the unique
orbit.

Giving an action of G on X is equivalent to giving a group homomor-
phism
v : G —Sym(X)
g— Yy: X —X
x — 7.



1.1 Primitive groups 22

The kernel of this homomorphism is

Ker(y)={9€ G :v,=1idx} ={9€ G:vy(x) =2,V € X}
={geG: 9=z Ve e X} =) G,.
reX
The kernel of the action is by definition equals to the kernel of the corre-
spondent homomorphism G — Sym/(X). An action is said to be faithful if
it has trivial kernel.

A partition of X is a family P = {B,..., By} of non-empty proper
subsets of X such that By U...U B, = X and B; N B; = & whenever
i # j. The trivial partitions of X are {X} and {{z} : v € X}. We say
that G stabilizes the partition P if B € P for every g € G and for every
i€ {l,...,k}. An example of stabilized partition is given by the G-orbits,
and such partition is not {X} if the action of G is intransitive. Assume
now that the action of G on X is transitive and that it stabilizes a partition
P = {By,...,B;}. Then G acts on P by (B;,g) — BY, and this action
is transitive. In fact, if B;, B; € P and © € B;, y € B, then there exists
g € G such that 29 = y, so y € B{ N B;. But B and B; are members of
the partition P, so the fact that B N B; # @& implies that BY = B;.

The action of G on X is said to be primitive if it is transitive and
no nontrivial partition of X is stabilized by G, in other words for every
partition P of X that is not trivial and for every g € G we have

{BY : BeP}#7P.

Since the partition consisting of the orbits is always stabilized, in the defi-
nition of primitive action the assumption that the action is transitive is su-
perfluous unless | X| = 2, and in this case the trivial action (z, g) — 29 =z
does not stabilize nontrivial partitions since all partitions are trivial. If the
action of G on X is not primitive and P is a G-invariant partition of X,
then the parts of P are called blocks of imprimitivity.

Lemma 1. Let the group G act transitively on the set X, and assume | X| >
2. Such action is not primitive if and only if there exists a subset A of X
such that |A| > 2 and whenever g € G, either A9 = A or AYNA = @.
Such an A is called tmprimitivity block for the action of G on X.
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Proof. Let us assume that the action is not primitive, and let P be a
nontrivial G-invariant partition. Since this partition is not trivial, there
exists A € P such that |A| > 2 and A # X. Since the partition is stabilized,
the claim follows. Conversely, let us assume that there exists A as in the
statement. Then the family {AY : g € G} is a partition of X stabilized by
G. ]

Ezample. Consider X = {1,2,3,4,5,6}, 0 = (123456) € Sg and G =
(o) < Sg, as a permutation group of degree 6. Since 02 = (135)(246)
and 03 = (14)(25)(36), X has precisely two G-invariant partitions, namely
{{1,3,5},{2,4,6}} and {{1,4},{2,5},{3,6}}. As the following picture
shows, the cycle (123456) acts as a 2-cycle on the first partition and as a
3-cycle on the second.

1 9
\ P
}\ =
5] 6 4 /@/\ 6

A group G acting on X is called faithfully primitive on X if its action
on X is faithful and primitive. In this case, the cardinality of X is called
a primitivity degree of G.

Proposition 1. /5, Proposition 1.1.2] Let G be a group acting on a set X
and x € X. If the action is transitive, then there is a bijection between

{block Bof X:x€ B} —{H<G:Stabg(z) < H }

which preserves containments.

Proof. Given a block B in X such that x € B, then G = {g € G :
BY = B} is a subgroup of G and the stabiliser Stabg(x) is a subgroup of
Gp. Conversely, if H is a subgroup of G containing Stabg(x) then the set
B = {a" : h € H} is a block and # € B. These are the mutually inverse
bijections required. ]
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Let H < (G, the normal core of H in G is defined by

Hq = () HY.
geG
Theorem 3. /7, Theorem 1.1.5] Let G be a group. The following conditions
are equivalent:

1. G possesses a faithful transitive permutation representation with no
nontrivial blocks;,

2. there exists a core-free mazimal subgroup of G.

Proof. 1 implies 2: Suppose that there exists a transitive G-set X with
no non-trivial blocks and consider any x € X. The action of G on X
is equivalent to the action of G on the set of right cosets of Stabg(z) in
G (see [24, Theorem 1.10]). The kernel of this action is the normal core
(Stabg(z))e and, by hypothesis, is trivial. By Proposition 1 if H is a
subgroup of G containing Stabg(z), there exists a block B = {2" : h € H}
of X such that x € Band H = Gp = {g € G : BY = B}. Since G
has no non-trivial blocks, either B = {z} or B = X. If B = {z}, then
Stabg(x) = H and if B = X, then H = G. Hence the stabiliser Stabg(x)
is a core-free maximal subgroup of G.

2 implies 1: If U is a core-free maximal subgroup of GG, then the action
of G on the set of right cosets of U in G is faithful and transitive. By
maximality of U, this action has no non-trivial blocks by Proposition 1. [

The primitivity degrees of an abstract group G are the indices of the
maximal subgroups of G with trivial normal core.

Definition 1. We say that a group is primitive if it admits a faithful prim-
itiwe action. Equivalently, G is primitive if and only if there exists a max-
imal subgroup M of G with Mg = {1}.

Lemma 2. Let G be a group.

1. Let N<G. If N< H <G, then (H/N)g/x = Ha/N.
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2. If M is a mazimal subgroup of G, then G /Mg is primitive.

Proof. 1.

(H/N)gyx = (N (H/N)*™ = | H/N = () H’)/N = Hg/N.
gNeG/N geG geG
2. Since M is maximal in G, M /Mg is maximal in G/Mg. By the pre-
vious item, (M/Ma)a/m, = Ma/Mg, that is, M /Mg has trivial core
in G/MG

[]

Let H, K < GG. We say that H is a supplement of K in G, or that H
supplements K in G, if HK = G. We say that H is a complement of K in
G, or that H complements K in G, if H supplements K and HNK = {1}.
Note that if K <G and H complements K in G, then G/K = H, and G
is isomorphic to the semidirect product K x H given by the conjugation
action of H on K.

A nontrivial subgroup N of a group G is called a minimal normal sub-
group if it is normal and for any normal subgroup K of GG such that K < NN,
either K = N or K is trivial.

The socle of a group G, denoted by soc(G), is the subgroup generated
by the minimal normal subgroups of G. If soc(G) is a minimal normal sub-
group of G, then it is the unique minimal normal subgroup of G. A group
admitting a unique minimal normal subgroup is usually called monolithic.
The next theorem was proved by R. Baer and in this result the primitive
groups are classified in terms of their socle.

Theorem 4. [5, Theorem 1.1.7] Let G be a finite group.

1. G is primitive if and only if there exists a proper subgroup U of G
such that UN = G whenever N is a nontrivial normal subgroup of G.

2. Let G be a primitive group. Assume that M is a core-free maximal
subgroup of G and that N is a nontrivial normal subgroup of G. Then
Co(N) N M = {1}, moreover either Co(N) = {1} or Cg(N) is a
manimal normal subgroup of G.
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3. If G 1s a primitive group and M 1is a core-free maximal subgroup of
G, then exactly one of the following statements holds:

(a) soc(@G) is an abelian minimal normal subgroup of G complemented
by M. In this case G is called affine or primitive of type I.

(b) soc(G) is a nonabelian minimal normal subgroup of G supple-
mented by M. In this case G s called primitive of type II.

(c) G admits precisely two minimal normal subgroups A, B and soc(QG)
A x B. Moreover A and B are nonabelian, A = Cg(B), B =
Cc(A), M complements both A and B in G and A= ABNM =

B. In this case G s called primitive of type III.

Proof. 1. If G is primitive and M is a core-free maximal subgroup of G
then M does not contain any nontrivial normal subgroup of G and
M < MN < G for all N <G, therefore MN = G for all {1} # N 4G.
Conversely if G is a finite group and the proper subgroup U of G
satisfies UN = G whenever N is a nontrivial normal subgroup of G
then let M be a maximal subgroup of G containing U. We have Mg =
{1}, because otherwise, since Mg <G, we would have G = UMg < M,
a contradiction. So G is primitive.

2. Let G be primitive and let M be a core-free maximal subgroup of G.

If N is a nontrivial normal subgroup of G then Cg(N) is the kernel
of the conjugation action G — Aut(N), hence Cq(N) < G, therefore
MNCe(N)<M, so M is contained in the normalizer Ng(MNCg(N)).
But N is also contained in such normalizer, hence G = M N < Ng(MN
Ce(N)) which implies that M N Ce(N) S G. Since Mg = {1}, we
deduce that M N Cq(N) = {1}. If Ca(N) # {1} then, since G is
finite, there exists a minimal normal subgroup X of G contained in
Ca(N). Since Mg = {1} we have XM = G. By Dedekind’s law

Cg(N) = Cg(N) NG = Cg(N) NXM = X(Cg(N) ﬂM) = X.
This implies that Cz(N) is a minimal normal subgroup of G.

3. Let G be primitive and let M be a core-free maximal subgroup of G.
If G admits three distinct minimal normal subgroups A, B, C then
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B, C are contained in Cg(A) being AN B = {1} and ANC = {1}
and this contradicts the fact that Cg(A), if nontrivial, is a minimal
normal subgroup of G. This proves that G admits at most two minimal
normal subgroups.

Assume first that G contains only one minimal normal subgroup, call
it N. Since M is a core-free maximal subgroup, MN = G. If N is
nonabelian then G is a primitive group of type II and Cg (V) = {1}.
Assume now that N is abelian. Then N < Cg(N) and, since Cg(N) is
a minimal normal subgroup of G, we deduce that Cs(N) = N. This
implies that M NN = M N Cg(N) = {1}, in other words M is a
complement for N in G hence G is a primitive group of type L.

Finally assume that G contains precisely two minimal normal sub-
groups, A and B. Clearly soc(G) = Ax B. The fact that ANB = {1}
implies that A < Cg(B) and B < Cg(A), so since Cg(A) and Cg(B)
are minimal normal subgroups of G, we deduce that A = Cg(B)
and B = Cg(A). In particular A and B are nonabelian. Moreover
MﬂA:Mﬂcg(B) = {1} and MﬂB:MﬂCG(A) = {1}, so M
complements both A and B in G. By Dedekind’s law,

A(ABNM)=ABNAM = ABNG = AB,
B(ABNM)=ABNBM =ABNG = AB,
therefore
A=ZA/IANB=AB/B=B(ABNM)/B= ABNM,
B=B/ANB=AB/A=A(ABNM)/A= ABnN M.
It follows that A= ABNM = B.
O

Since we focus on monolithic primitive groups with non-abelian socle, we
are interested in primitive groups of type II. According to Baer’s Theorem,
the socle of a primitive group of type II is a non-abelian minimal normal
subgroup. A non-abelian minimal normal subgroup N of a finite group G
is a direct product of copies of a non-abelian simple group S, i. e., there is
a positive integer m with N = S™ [23, Chapter I, Theorem 9.12].
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Proposition 2. Let G be a finite group. The following are equivalent.

1. G is primitive of type II.

2. There exists a minimal normal subgroup N of G such that Cg(N) =
{1}

3. There exists a nonabelian minimal normal subgroup N of G such that,
up to isomorphism, N < G < Aut(N), where N is embedded in
Aut(N) via the natural conjugation action G — Aut(N).

Proof. By Baer’s theorem, (1) implies (2). If (2) holds then the conjugation
action G — Aut(N) has kernel Cg(N) = {1}, so (3) follows. If (3) holds

then any element of the centralizer C¢(IV) is an automorphism of N fixing
N pointwise, hence Cg(N) = {1} and (2) follows.

We are left to prove that (2) implies (1). The Frattini subgroup of G is
nilpotent, however N is not nilpotent being a direct product of nonabelian
simple groups. Since every subgroup of a nilpotent group is nilpotent,
this implies that there exists a maximal subgroup M of G not containing
N. In particular N is not contained in the normal core Mg of M in G.
The intersection N N Mg is normal in G and contained in N, so since
N is a minimal normal subgroup, N N Mgz = {1}. This implies that
Mg < Cg(N) = {1}, hence Mg = {1}. Moreover, N is the unique minimal
normal subgroup of G since any other minimal normal subgroup would be
contained in Cg(N) = {1}. This proves that G is primitive of type II. [J

Definition 2. A group G is said to be almost-simple if it admits a nonabelian
simple normal subgroup S such that Cq(S) = {1}. In this case, S coincides
with the socle of G.

For n > 5, S,, is an almost simple group. In fact, for n > 5, A, is a
nonabelian simple normal subgroup of S,, such that Cg (A4,) = {1}.

If G is an almost-simple group with socle S, then the canonical map
G — Aut(S) is injective, therefore G can be thought of as a subgroup
of Aut(.S) containing the isomorphic copy of S which is the image of the
canonical map S — Aut(S). In other words, we may assume that S <G <
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Aut(S). This shows that the group G is almost-simple if and only if there
exists a nonabelian simple group S such that G is isomorphic to a subgroup
of Aut(S) containing S (where we identify S with a subgroup of Aut(S)
via the canonical map S — Aut(S)). In particular, if S is a nonabelian
simple group, then Aut(.S) is almost-simple.

By Proposition 2, an almost simple group is a primitive group of type
I1.

Definition 3. Let H and K be two groups and K < S,,. The wreath product
H ! K s the semidirect product H" x K, where H" is the direct product
of n copies of H, and K acts on H" by permuting the coordinates. More
specifically, m € K acts on H" by

(hi,.. .y hy)™ = (hip-1, ooy hyp1)
foreach h, e H,i=1,...,n.
Let’s show that this action is a group action. If 7,7 € K, defining
t; = h;z—1 we have
Lir—1 = hi7*17r*1 - hi(ﬂ'T>_17
then

((h1yo o h)™)" = Mgy oo he)" = (Magery 15 o Bgery1) = (B, oo )™
The subgroup H" is said to be the base of the group H ! K. Note that
H1K| = |H|"|K].
The following result is due to Frobenius.

Theorem 5 (Embedding Argument). Let H be a subgroup of the finite group
G, let x1,...,x, be a right transversal for H in G, and let & be any homo-
morphism with domain H, say & : H — X. Then the map

f: G—=EH)LS,,

T = (S(xlxxl_wl)a e af(xnxx;;»Wv
where m € S, 1s the unique permutation that satisfies x;x € Huxiyp for
alli = 1,...,n, s a well-defined homomorphism with kernel equal to the

normal core of ker & in G, in other words ker f = (ker §)q.
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Proof. Since x; € Hx; the permutation corresponding to the identity is 1
hence f(1) = 1. Now let 2,y € G and assume z;zx;," € H, vyz;." € H for
alli € I = {1,...,n}, then applying the second to im we find z;,yz;,~ € H

for all i € I, so xoyx;,t = (vww, ) (2 yr;,t) € H. It follows that the

1T
permutation corresponding to xy is 77 and

fzy) = (Elzizyay))ierm = (E(zwa, )E(Timyry)y) JiermT
= f(z) - 7 (E(inyz;))iernT = [(2) - (E(ziyz;"))ierm = [(2) f(y).

f(x) = 1if and only if the permutation 7 corresponding to x is the identity
and z;zz; ' € ker¢ for all 4 € I, in other words = € x; !(ker &)x; for all
1 € I. Since ker € < H, the conjugates of ker £ in GG are precisely the groups
z; (ker €)z; for i € I. This proves that ker f = (ker &)g. O

Proposition 3. Let G be a finite group. Then the following are equivalent.

1. G is primative of type I1.

2. There exists an almost-simple group X with socle S and a transitive
group K < S, such that G is isomorphic to a subgroup of X ' K
containing S™ and the restriction of the natural projection G — K is
surjective.

Proof. Assume (2) holds. Let S = soc(X), a nonabelian simple group.
Then N = 5™ is a minimal normal subgroup of G since S is simple and K
acts transitively on the components. We are left to check that Cg(N) =
{1}. If g € Cg(N) then of course the permutational part of g is trivial
since g must fix all the direct factors of N. So g has type (z1,...,x,) and
z; is an element of X centralizing S, so since Cx(S) = {1} we deduce that
x; = 1 for all 7.

Assume (1) holds. Let N = T x...x T, be the socle of G, where the T}’s
are pairwise isomorphic nonabelian simple groups. Denote by R the first
factor, R :=T; x {1} x ... x {1}. Let H := Ng(R) and C := Cg(R) < H.
Note that since R = 7T) is a nonabelian simple group, R N C' = {1}.
We claim that X := H/C is an almost-simple group with socle RC'/C.
Clearly RC/C' is a normal subgroup of H/C and RC/C = R/RNC = R
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is nonabelian simple. We are left to show that Cp/c(RC/C) is trivial.
Assume that h € H is such that hC' centralizes RC/C, in other words
hCrC = rChC for all r € R, then h™lrthr €¢ RNC = {1} for all r € R
and this implies that A € (', in other words hC = C.

We now apply the embedding argument to the natural homomorphism
¢ H— Aut(R).

Note that ker(§) = C, £(H) = H/C = X and the conjugates of C' in G are
precisely the centralizers of the direct factors of N, therefore an element
belongs to the normal core ker(§)q if and only if it centralizes all of the
factors, in other words ker(¢)s = Cq(IN) = {1}. The group K is the image
of the homomorphism G — S,,, given by the conjugation action of G on the
direct factors of N, which is transitive being N a minimal normal subgroup

of G. []

Proposition 4. Let S a non-abelian simple group and write S™ = Sx...x .S,
the direct product of n copies of S, for some positive integer n. Then the
minimal normal subgroups of S™ are the N; = {1} x ... x {1} xS x {1} x
... {1}, where only the i-th coordinate is equal to S, for eachi=1,... n.

Proof. For each 1 = 1,...,n, the subgroups N; are normal in S”. Indeed,
given s = (s1,...,8,) € S"and x = (1,...,2;,...,1) € N;, we have
= (1,...,27",...,1) € N,.

Furthermore, the subgroups N; are minimal normal in S™. If there is
K; < N; with K; <57, the subgroup K < S formed by the elements of
the ¢-th coordinate of K; is such that K is normal in the simple group S.
Then either K = {1} or K = S and then either K; = {1} x ... x {1} or
K, = N;,.

Let N be a minimal normal subgroup of S” different from the N;. Then
NNN; = {1} foralli = 1,...,n. Since N and N; are normal in S",
we have [N, N;] < NN N; = {1}, and then N centralizes all the NN; and
N < Z(58") ={1} x...x{1}, a contradiction. Therefore, the only minimal
normal subgroups of S™ are the N;, 1 =1,...,n. ]
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Proposition 5. /5, Proposition 1.1.20] Let S be a non-abelian simple group
and write S" = S X ... x S, for the direct product of n copies Si,...S, of
S, for some positive integer n. Then Aut(S™) = Aut(S) ! Sym(n), where
Sym(n) is the symmetric group of degree n.

We are interested in the maximal subgroups of a primitive group of type
II.

Definition 4. Let G = [1/_, S; be a direct product of groups. A subgroup
H of G s said to be diagonal if each projection m7; : H — S; i =1,...,n,
18 injective. If each projection m; - H — S; is an isomorphism, then the
subgroup H 1s said to be a full diagonal subgroup.

A reference for the following discussion is [0, Remark 1.1.40].

Let G be a primitive monolithic group with non-abelian socle N = 5™,
and S a non-abelian simple group. For i € {1,...,m}, let S; be the
subgroup of N equal to ITjL; U; where U; = S and U; = {1} for all j # i
(coordinate subgroup), so that S; = S for all &. Let H be a maximal
subgroup of G such that N & H, then HN = G. Suppose that NNH # &.
Since N is the unique minimal normal subgroup of G and H is a maximal
subgroup of G not containing N, H = Ng(N N H).

In the following let X := Ng(S51)/Cq(S1). X is an almost simple group
with socle S1C¢(S1)/Ca(S1) = Si. There are two possibilities for the
intersection N N H:

1. Product type. Suppose the projections H — S; are not surjective.
Then there exists a subgroup M of S such that Nx (M) supplements
S in X and there exists elements as, ..., a, € S such that

HNN=Mx M* x ...x M,

2. Diagonal type. Suppose the projections H — .5; are surjective. Then
there exists an H-invariant partition A of {1,...,m} into blocks for
the action of H on {1,...,m} such that

HNN= J[ (HNN)™,
DeA
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and for each D € A the projection (H N N)™ is a full diagonal sub-
group of [T;ep S;.

1.2 Maximal subgroups of the Symmetric Group

A subgroup G of S, is typically classified according to its action on
X ={1,...,n}. If Pisa property of a group action, for example transitive,
a subgroup G of S, is called P if its natural action on X = {1,... ,n} is
P. We will use the word intransitive to mean not transitive.

Observe that if G < S, is intransitive then it has more than one orbit
on X, and letting O be one of them, GG is contained in

Stabg (O) ={g € S, : O = O} = Sym(O) x Sym(X \ O).

This is called a maximal intransitive subgroup of S,,. We will see such
a subgroup is maximal in S, unless |O] = |X \ O|. For this we use a
reformulation of Jordan’s Theorem [12, Theorem 13.9].

Proposition 6. Let G < S, act primitively on X = {1,...,n}. If G con-
tains a transposition then G = S,,. If G contains a 3-cycle then G = A,
or G =25,.

Proposition 7. Let O be a nonempty proper subset of X = {1,...,n} and
let G := Stabg, (O). Then G is a mazximal subgroup of S, unless n is even
and |O] =n/2.

Proof. We study the maximality of GG inside S,,. If GG is not maximal then
it is properly contained in K < S,, which therefore is transitive on X. If
K is primitive then it contains a 2-cycle, moving 2 elements of O or of
O := X \ O, and Jordan’s Theorem implies that K = S,,.

Suppose now that K is imprimitive, let B be a nontrivial block for K.
Then B is a nontrivial block for G, therefore BNO is either empty or a block
for G and BNO is either empty or a block for GY. Since GY = Sym(0) is
primitive on O and G° = Sym(O) is primitive on O, we deduce that either
|IBNO| < 1or BNO = O, furthermore either [BNO| < 1or BNO = 0.
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Assume BN O = {a}, BN O = {B}, then B = {«, 5}. If there exists
v € O — B then g = (ay) € G and BY = {f3,7}, a contradiction, and
similarly O — B = @&, so X = B and n = 2, this contradicts the fact that
B is nontrivial.

Assume BN O = {a}, B 2 O. Then B = {a} U O, however this is a
contradiction because, since B is a nontrivial block, there exists 5 € O— B,
hence there exists ¢ € G such that ag = B (being GY = Sym(0O)) so
B9 = {3} U O is not disjoint from B and not equal to B.

We are left with the case in which one of BN O and BN O is empty,
say BN O = @. Then B = O. Since K is transitive, there exists k € K
that takes an element of O to an element of O, hence B¥ C O. But then
BY = B*NO is a block for GY = Sym(0), of size at least 2, hence B* = O.

This proves that if O is a proper subset of X and G = Stab(O) <
Sym(X) is not a maximal subgroup then |X| > 2 and |O| = |O|. In other
words G has type S, x S, with 2a = n. ]

Indeed, such subgroup is not maximal if n > 2: it is contained in an
imprimitive wreath product S,/ 152, the stabilizer of a partition with two
parts of size n/2, which, as we will see, is a maximal subgroup of S,,.

If a,b > 1 and ab = n, then the full wreath product S, S, embeds
into S,, as an imprimitive subgroup. To see this, it is enough to check that
Sq 1Sy acts faithfully and imprimitively on the set {1,...,a} x {1,...,b},
which is a set of size ab = n, by the rule

This action is imprimitive admitting B; = {1,...,a} x {j} as a block
system, 7 = 1,...,b. Indeed,

B(xl ..... Tp)o — B — B.

J J Jo:
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The block system consists of b blocks of size a. The kernel of the action

consists of the elements (z1,...,z3)0 € S, 15, such that
(i, )7 = (i, jo) = (i, 7)),
for all (¢,5) € {1,...,a} x {1,...,b}. This implies that z; = ... =2, =1

and o = 1, that is, the action is faithful. Therefore S, S, embeds into S
as an imprimitive subgroup.

Proposition 8. Actually S,1.Sy is a maximal imprimitive subgroup, meaning
that it 1s not properly contained in any imprimitive subgroup of S,. More-
over, every mazximal imprimitive subgroup is conjugate in the symmetric
group to S, 1 Sp.

Proof. Assume G < S, acts transitively and imprimitively on X = {1,... n}.
This means that there is a nontrivial imprimitivity block B for G, let
a=|B|. Let H=Gp ={g € G : BY = B}, the setwise stabilizer of B.
Observe that G acts transitively on the set of blocks {BY : ¢ € G} with
H as point stabilizer, so |G : H| equals the number of translates of B, call
it b. Since the translates of B partition X we have ab = n. Of course we
have a homomorphism

£:H — Sym(B) = 5,

induced by the action of H on B. By Theorem 5 we deduce a homomor-
phism
f:G—=EH)1S, < SalSh

with kernel the normal core of ker(¢) in G. Observe that if h € ker(&) then
h fixes B pointwise, and if h € ker(£)? then ghg™! € ker(§) so h fixes BY
pointwise. This implies that (ker(§))s = {1} hence f is injective. This
means that G embeds in the wreath product S,1S,. On the other hand
such wreath product embeds in S,, as an imprimitive subgroup with blocks
of size a. This proves that the stabilizers in S, of the partitions consisting
of b blocks of size a, i.e. the maximal imprimitive subgroups of .5, with
blocks of size a, are isomorphic to wreath products S, ¢ .Sj. ]

Similarly, the maximal imprimitive subgroups of A, with b blocks of
size a are isomorphic to the intersection between A, and the maximal
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imprimitive subgroups of S,, with b blocks of size a, in other words, with
abuse of notation, they are of the form A, N (S, 5).

Consider the wreath product G = 5,,1.5,,. We have seen that it admits a
faithful imprimitive action of degree nm. Consider now the product action
of G, that is, the action of G on {1,...,n}™ given by

T1yeeesOm )T
( m) = (alﬁflalﬂ'il’ ceey amwflO_mﬂfl).

(@1, .. an)
We show that this action is transitive.

Given (ay,...,am,) € {1,...,n}" if (o1,...,0m) € (S,)™, we have

(a1, am)(o1,...,om)(1) = (a101, ..., anom),
and
{1,....n}" C{(a101, ..., am0n) : 0; € Sp, } € Og((ay, ..., an))
={(a1,...,ap)? g€ G} C{1,...,n}™

Also this is a faithful action. Moreover the stabilizer of (i,4,...,7) is iso-
morphic to S,_1 1 Sy Indeed, if (oq,...,04)7 € Stabg((i,...,7)) then
(12017y -+ i Omz) = (1,...,1), that is, izor, = @, forall k = 1,... m. Since
7 only permutes the coordinates, we have io, = ¢, for all k =1...,m, that

is, o € Stabg (7). Then (o1,...,0,)7 € Stabg (i) 1 S;, = Sp—11Sm,. Using
the same calculations, it is proved that Stabg (i) 1S, C Stabg(i,...,1).

For the following observe that if A, B are subgroups of G such that AB
is a subgroup of G then |AB: A| = |B: AN B|.

Lemma 3. Assume that n > 5 and m a positive integer. Then G = S, 1.5,
1s a primitive group of type II with degree n™.

Proof. Since n > 5, A, is the only proper normal subgroup of S5, then
N = (A,)™ is a non-Abelian normal subgroup of G. We will show that
N is a minimal normal subgroup of G. Let N;, N;, as in Proposition 4,
minimal normal subgroups of N with ¢ # j. The permutation (ij) € S,, is
such that Ni(ij) = N;. Let {1} # K < N with K <G. Since K is normal
in N there exists ¢ with N; < K. Since K J G, we have K9 = K, for all
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g € G. Let g =1(ij). We have N; < K, for all j. Then K = N and N is
a minimal normal subgroup of G. We will now show that Cg (V) = {1}.
Let g = (01,...,0m)7 € Cg(N). Since g must centralize all elements of
N of the form (1,...,1,a,1,...,1), we must have 7 = 1. Then Cg(N) <
Syt and Ca(N) < Con(A)) = (Cs,(Ayn))™ = ({1})™. Therefore A} is a

minimal normal subgroup of G with trivial centralizer. By proposition 2,
GG is a primitive group of type II.

We are left to show that M := .5, 115,, is a core-free maximal subgroup
of G. It is clearly core-free because A" is the unique minimal normal
subgroup of G and M does not contain it. We also have

(n!)™m!
G:M|= =n".
| = = Dy "
We need to show that M is a maximal subgroup of G.

Let K = (5,-1)" < B := (S,)™. We claim that M = Ng(K). The

inclusion M < Ng(K) is clear since K < M. Now

B No(K) = Np(K) = Nsp(Sy,) = (Ns, (Ss))" = S1ty = K,

since S,,_1 is maximal and not normal in .5,,. It is clear that the permuta-
tional factor Sy, is contained in Ng(K), therefore G = BS,, < B - Ng(K)
hence G = B - Ng(K). Therefore

|G - Ne(K)| = [B- Na(K) : No(K)| = |B: BN Ng(K)|
=|B:K|=|B:MNB|=|BM: M|=|G: M|
Since M < Ng(K), it follows that M = Ng(K).

Let H be a maximal subgroup of G containing M. We claim that
H = M. This follows if we can show that H N B = K. Indeed, assuming
HNB = K, since HN B I H we have that that H < Ng(HNB) = Ng(K)
and Ng(K) # G being K not normal in G. Since H is maximal in G, we
deduce that H = Ng(H N B) = Ng(K) = M. Therefore it is enough to
show that H N B = K. The inclusion K C H N B is clear.

We are left to prove that HN B C K. Write B= B; X ... x B, and
Ri={1} x...x {1} x B; x {1} x ... x {1}
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fori € {1,...,m}. G acts transitively on I' = {Ry, ..., R,,} by conjugation
with kernel equal to B. Since H > M and G = BM, we have G =
BH, hence H acts transitively on I'. Let m; : B — R; be the canonical
projections, i € {1,...,m}. Fixi,5 € {1,...,m} and let h € H be such
that R = R;. Composing the conjugation by h, v, : HNB — H N B,
with the canonical projection we find a surjective homomorphism

HNB- " HnB %% (HNB)
whose kernel is ker(m;|gnp). The isomorphism theorem implies that

m(Hﬂ B) = Wj(Hm B)

Since m;(K) = S,,_; is a maximal subgroup of B; = S, and K < HN B,
we have m;(K) < m(H N B) < B; therefore either m;(H N B) = m;(K) or
mi(H N B) = B;. In the first case

10 B < 11 Im(H N B)| = 11 [m(K)| = (n— 1))™ = |K]

i=1 i=1
hence H N B = K being HNB > K.

Now assume that m;(H N B) = B; for alli € {1,...,m}.

Let i € {1,...,m}. We claim that H N R; < R;. If y € H N R; then
m;(y) = 1 for every j # i. If r € R; then, being m;(H N B) = B;, there
exists © € H N B such that m;(z) = m;(r). Since x,y,r are m-tuples and
y € R;, the fact that m;(z) = r implies that r—lyr = z7lyx € H. This
proves the claim.

But since H N R; contains K N R; = S,_1, H N R; is nontrivial and it is
not the alternating group A,,, hence H N R; = R;, in other words R; < H.
This holds for every i € {1,...,m}, hence B < H. This contradicts the
fact that H # HB = G. The proof is completed. ]

We now state the O’Nan-Scott Theorem.

Theorem 6 (O’Nan-Scott Theorem). If G is any proper subgroup of Sy,
other than A,, then G is a subgroup of one or more of the following sub-
groups.
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1. An intransitive group Sy X S,, where n =k + m.
An imprimaitive group Sy S,, where n = km.
A primitive wreath product Sy 1S, where n = k™.

An affine group AGLy(p) = Fl x GLy(F,) where n = p?.

A group of shape T™.(Out(T') x S,,) where T is a non-abelian simple
group, acting on the cosets of a subgroup Aut(T) X S,,, where n =
|T|m—1'

6. An almost-simple group acting on the cosets of a core-free marimal
subgroup of index n.

Note that this theorem does not say that the groups listed are maximal
in 5,. But certainly every maximal subgroup of S,, is of one of the types
listed.

Now we will prove O’Nan-Scott Theorem.

Proof. This proof follows the line of [11], [5] and [28].

Set Q:={1,...,n}, let a € Q and let U be the stabilizer of o in G. We
know that U is a core-free maximal subgroup of G.

Let G < Sym(€2) be a primitive group with socle N. Set K := U N N.
Then
G:U|=|UN:U|=|N:K|

Moreover K <U, so U is contained in the normalizer Ng(K). Since K <U,
we have U < Ng(K), and since U is maximal in G, either U = Ng(K) or
Ng(K) = G. In the latter case K <G, hence the fact that Ug = {1} forces
K = {1}. This implies that either K = {1} or U = Ng(K). We know that
K = {1} if G is primitive of type I or III, so we will discuss these cases
first.

If G is primitive of type I then the socle N of G is abelian and it is the
unique minimal normal subgroup of G, moreover N is complemented by
U, in other words G = N x U. The action of U on N = Fg is [F)-linear,



1.2 Maximal subgroups of the Symmetric Group 40

faithful and irreducible, hence U is an irreducible subgroup of GL4(IF,).
This is the affine case. In this case, G can be embedded in AGL(FZ) which
is a primitive subgroup of S,« with point stabilizer GL4(IF),).

If G is primitive of type III then the socle of G is N = A x B where
A, B are the two minimal normal subgroups of G, both nonabelian and
A= ABNU = B. We know that U is a complement of both A and B,
hence A and B act regularly on 2. The isomorphism A = ABNU = B
is explicited as follows. For every a € A, since G is a semidirect product
B x U, there is a unique b, € B such that ab, € U. The map

f:A—= B, a—b,

is a group isomorphism since ajasby, by, = a1b4,a9b,, € U for every aj, as €
A and the inverse f~! : B — A sends b € B to the unique a; € A such that
apb € U. We can define an element o € Sym(€2) as follows. Fix w € Q.
Every element of {2 can be uniquely written as wa where a € A. Define
(wa)o = w(af). We claim that af = o lac for all a € A, proving that
B = o7 'Ac. Indeed, if x € Q, then we can write z = w(a*f) for a unique
a* € Aand, if a € A,

rvo tao = (w(a*f))o tao = (wa*)oo tao = (wa*a)o
= w((a’a)f) = wla"f)(af) = z(af).

Therefore A and B are conjugate in Sym(£2) via o, hence G is properly con-
tained in (G, o) < Sym(£2) since A is normal in G but it is not normalized
by o. Moreover

B? = Cg(A)” = Ca(A7) = Cg(B) = 4,

hence o normalizes A X B, in other words A X B is normal in (G, o). This
implies that (G, o) is not equal to Sym(€2), since the only proper nontrivial
normal subgroup of Sym(€2) is Alt(€2) and Alt(£2) is not a direct product
of two nontrivial subgroups. This implies that the primitive groups of type
IIT are not maximal in Sym(€2) hence we may ignore them.

Assume now G is primitive of type II with nonabelian socle N =T =
Ty x...xT,. Set H := Ng(T1), C := Cg(T1). We know that X := H/C'is
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an almost-simple group with socle isomorphic to 7} and G embeds in the
wreath product X ! K, where K < S, is the transitive group induced by
the action of G on the m direct factors of N. If m =1 then T} = N <G,
H = G and C = Cg(N) = {1}, therefore G = X is almost-simple and we
are in case (6) of the theorem. Assume now that m > 1. A subgroup of G
is called U-invariant if its normalizer in G contains U. For example, since
U N N is normal in U, it is U-invariant.

Now we will prove that UNN is a maximal proper U-invariant subgroup
of N. It is clear that U N N is a proper U-invariant subgroup of N. Now
assume by contradiction that U " N < L < N where L is U-invariant.
In particular LU is a subgroup of G. We claim that U < LU < G,
contradicting the maximality of U. Indeed, if U = LU then L < U, a
contradiction, and if LU = G then L < G contradicting the fact that NV is
a minimal normal subgroup of G.

We want to show that we are in one of the following cases.

o Twisted wreath product type. This case is defined by the fact that
UNN = {1}, in other words G is a semidirect product N x U. The
corresponding primitivity degree is |N].

e Product type. U is a conjugate of Ng(R™) where R is a proper non-
trivial subgroup of 7', which is the intersection between 7" and a core-
free maximal subgroup of X. The corresponding primitivity degree is
T : R|™.

e Simple diagonal type. U = Ng(A) where A is a diagonal subgroup of
T™, that is, a subgroup of the form

{(z,2%,.. ., a%) : 2€ Ty N=T"

where ¢o, ..., ¢, are automorphisms of T'. The corresponding primi-
tivity degree is |T'|™1.

e Diagonal type in product action. U = Ng(A; x ... x A;) where [
divides m, [ > 1, [k = m and each A; = T is a diagonal subgroup of
T*. The corresponding primitivity degree is |T'|'*=1.
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Call 7, ..., m, the projections m; : T =17 x ... x T,, — T;. Observe
that since N is a minimal normal subgroup of G and the normalizer Ng(UN
N) is a subgroup of G containing U, either U complements N in G or
Ne(UNN) = U. Define U; := m(UNN) for i = 1,...,m. The same
argument used in the proof of Lemma 3 shows that U; = U; for every
i,7 €{1,...,m}. If Uy # Tj then, since UNN is contained in Uy X ...x Uy,
and the latter is a proper U-invariant subgroup of N, UNN = Uy x...xU,,
since U N N is a maximal proper U-invariant subgroup of V.

There are three possibilities for U;. In the following discussion we will
use Proposition 3.

Case 1. Uy = {1}.

This implies that U; = {1} for every ¢, so U N N = {1}. In other
words U complements N, so G = N x U and the primitivity degree is
n = |N| = |T|™. This is the so-called twisted wreath product type. We
know that G embeds in X5, where X = Ng(711)/Cq(T1) is almost-simple
with socle isomorphic to 7', in particular X embeds in Aut(7) < Sym(7).
Setting k = |T'| = |11 : Uy|, we obtain that G embeds in Sj 1 S, with
product action of degree n = k™.

Case 2. {1} < Uy < T7.

This implies that {1} < U; < T; for every i. Since UNN = Uy X...x Uy,
and the U; are pairwise isomorphic, the degree of the primitive action of G
is

n=|G:U|=|UN:Ul=|N:UNN|=|[T": U x...xUp|=|Ty:U|"™

Let H := Ng(Ty), V := HNU = Ny(T}) and C := Ca(Th).

We claim that U; is a maximal proper V-invariant subgroup of 7;. As-
sume by contradiction that U7 < R < T; and R is V-invariant. Since
UN = G, the group U acts transitively on the m factors of N, hence
for each i € {1,...,m} there exists w; € U such that T} = T;. Set
R:= R X R" x ... x R". Note that

Uy=({UNN)NT, =UNT,,
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hence
Ui=UnT)"=0NnT"=U0UNnT,=UNN)NT; =U,.

Therefore U; = Uy < R". This implies that U N N is properly contained
in R. Since U N N is a maximal proper U-invariant subgroup of N, in
order to obtain a contradiction it is enough to prove that R is U-invariant.
Let x € U. Fixi € {1,...,m} and let j be such that T." = T;. Then
R LTy = T,", therefore Ruwu; < 7. On the other hand uia:uj_l belongs
to U and normalizes T}, therefore it belongs to H N77 = V. Since R is
V-invariant, we deduce that R%“*% L= R, in other words R“* = R"%. This
implies that R* = R. This holds for every x € U, hence R is U-invariant.

We have VC'T) = H, since
HOVCThDOVN=(HNU)N=HNUN=HNG=H.

This implies that VC/C is a core-free subgroup of X = H/C. Indeed,
since X is almost-simple, its unique minimal normal subgroup is T7C/C
and this is supplemented by VC/C since VCT; = H.

We claim that V' is a maximal subgroup of H, which implies that
VC/C is a core-free maximal subgroup of the almost-simple group X =
H/C, therefore X is a primitive group of degree | X : VC/C|. First, note
that VC' # H because if this is not the case then 7Y < H = VC = CV,
therefore, being Uy # {1}, and being 77 a simple group, we have

Ty = (U") < (UFY) = (U)) < U,

a contradiction. Assume the group M is such that VC' < M < H, then
M N Ty is a V-invariant subgroup of 77 and Uy < M NTy. If Ty < M
then H = VCT) < M and H = M, contradicting our assumption. Hence
Ui < M NTy # T;. By maximality of U; as proper V-invariant subgroup
of T, we deduce that Uy = M N T3, hence

M=MNH=MnVCLH =VCMNTy)=VCU, =VC,

being U; < V. This proves the claim.
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Since U; < VO NTy < Ty, Uy is a maximal proper V-invariant subgroup
of Ty and VC NT;j is V-invariant, we deduce that equality holds: U; =
VC NTy. Since H = VT, we have

We deduce that X = H/C' is primitive of degree k = |13 : U;| with point
stabilizer VC'/C, hence X embeds into Si. Moreover, U;C/C equals the
intersection between T1C/C and the core-free maximal subgroup VC/C' of
H/C'. Indeed, it is clear that U;C/C < T1'C/C NV C/C, however, using
that H = VC'Ty, we have

‘ney/el-fve/el  In-|va
[H/C| |H|

T.C/CNVC/C| = — |TiNVC| = |U)| = |U:C/C.

Now, G embeds into X ! K where K is a transitive subgroup of 5,,
and X embeds into Sk, therefore G embeds into S; ! S, and looking at
the point stabilizers we deduce that the action of G is equivalent to the
product action of degree k™ = n induced by Sk ¢S, on {1,... k}™.

Case 3. Uy =1T;.

This implies that U; = T; for every i. For x = (t1,...,t,) € N, let the
support of x be the set

supp(z) :={ie{l,....m} : t; A1} C{1,...,m}.

Let ©; be a minimal nonempty subset of {1,...,m} such that U N N
contains an element whose support is €2;. Let

A=Ag, ={x€UNN : supp(z) C N}

By minimality of €, if x € A and x # 1 then supp(z) = ;. Moreover, it
is clear that A is a normal subgroup of U N N.

Fix ¢ € {2;. We claim that for every s € T there exists a unique g,; € A
such that m;(gs;) = s and that the map f; : T'— A defined by f;(s) := gs,
is a group isomorphism whose inverse is m;|4. The uniqueness follows from
the fact that if g € A is such that m;(g) = s then the element gg;i1 belongs
to A and ﬂi(gg;il) = 1, hence gg;} = 1 by minimality of ;. To prove
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the existence, we need to prove that m;(A) = T;. Let L; := m(A) < T;.
Then L; # {1} by definition of €2;. Since 7; is a simple group, to show
that L;, = T; it is enough to show that L; is normal in T;. If ¢t € T; then,
since U; = T;, there exists u € U N N with m(u) = t. If x € A then,
since u € N, z and z* have the same support, hence " € A. This implies
that m;(2") € L; and this exactly says that ¢t 'm;(x)t € L;. Now we prove
that f; is a group isomorphism. If g € A then, letting s := m;(g), it is
clear that f;(s) = g, this proves that f; is surjective. If s,t € T are such
that f;(s) = f;(t) then applying m; we find s = ¢, this proves injectivity.
Since m;(g1,;) = mi(1) = 1, it follows that fj(1) = g1, = 1. If s,t € T then
i(si9ti) = mi(gsti) = st, it follows that fi(st) = fi(s)fi(t).

We deduce that A is a diagonal subgroup of T%: indeed, setting k :=
|Ql‘7
A={(s,6a(s),.. . 6(s)) : s €T} <T™

where ¢; = m;ja0 f1 € Awt(T) fori =1,... k.

The natural action of G on the m direct factors of N gives an action
of G on {1,...,m}. We claim that €y is an imprimitivity block for this
action. Assume {2; is the support of some x € U N N. If g = nu € G with
n € N, u € U, then Qy := Qf = QY is the support of y := 2% € UN N.
Assume 1 N Qy # @. We claim that ©Q; = Qy. Let ¢ € Q1 N Oy, so
that m;(x) # 1 # m(y). Since T; is simple, the conjugacy class of m;(z)
in T; generates T; and Z(T;) = {1}. Since m;(y) # 1 there exists t € T;
such that m;(z)" does not commute with m;(y). Since U; = T;, there exists
v € UN N such that m;(v) = t, therefore m;(z?) = m;(z)!. Moreover
supp(z¥) = supp(z) = € and 7;(z") # 1 being m;(z) # 1. Up to replacing
x with ¥, we may assume that m;(z) and m;(y) do not commute. If j €
Qy — 9 then 7Tj<33) 7é 1, 7Tj(y) =1, and lfj € s — Q1 then Wj(l’) =1,
7;(y) # 1, therefore 7;([z,y]) = 1 unless possibly if j € €Q; N Qy, where
[z, y] := 7'y~ lzy € UNN. This says that supp([z, y]) C Q1NQy, therefore
27 = Q1N Qs by minimality of €2, in other words €21 C €. Since 2y = QY
|Q1‘ = |Q2‘, hence Ql == QQ.

We claim that || # 1. If Qq has size 1, say ; = {i}, then there exists
an element x € U N N such that m;(z) # 1 and 7;(z) = 1 for every j # i.
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Since U; = T;, for every t € T; there exists u € U N N with m;(u) = t,
hence U NN contains the whole conjugacy class of x, so it contains the i-th
factor, being T" a simple group. Since U acts transitively on the factors, U
contains NN, a contradiction.

Assume the block system consists of [ blocks €24, ..., €);, each of size k >
1. We have N = T*. We may consider the normal subgroups Aq, JUNN,
j = 1,...,l, defined in the same way as for Ap, above. Note that the
group they generate is a direct product Ag, x ... x Ag, = T'. Moreover
this product equals U N N. To prove this, fix ¢ € U N N and, for every
Jj€{l,..., 1}, let x; € Ag, be such that there exists i = i(j) € €2; with the
property that m;(¢g) = mi(z;). We claim that g = x; ... x;. We need to show
that m.(9) = m-(zy...27) forall r = 1,....m = kl. Fixr € {1,...,m}
and let j € {1,...,l} be such that r € Q;. By definition of z;, there exists
i € Q; with m;(9) = m(z;), in other words 7;(h) = 1 where h = g~ lz; €
UNN. If z is any element of Aq, then mj(h~'zh) = m;(x), therefore
h™'zh = z being Ao, <U N N and being the restriction 7|4, : Ao, = T
injective. This implies that h € Cynn(Ag,), therefore m,(h) = 1, hence
. (9) = mp(x;) = (21 ... 2p).

We deduce that U NN = Aq, X ... x Ag,, in particular U N N = T'.
Therefore

n=|G:Ul=|UN:Ul=|N:UnN|=|T|*

Now consider

YV =T%" = [ T;, H:=NgY), &:H — Aut(Y), C:=ker(¢) = Cq(Y).
ey

Observe that H is precisely the setwise stabilizer of the block €2y, in par-

ticular H acts transitively on €y, therefore Y'C/C is a minimal normal
subgroup of H/C.

Let A := Agq,, V := U N H. Note that since Y is a direct power of a
nonabelian simple group and A is a full diagonal subgroup of Y, we have
(AY) =Y. Now, the argument used in the proof of the case 1 < Uy < T}
with U replaced by A, T7 replaced by Y proves that VCY = H, YNV C =
A, Y (C'/C is the unique minimal normal subgroup of H/C and £(H) = H/C
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is a primitive group of type II with point stabilizer the core-free maximal
subgroup VC/C'. Moreover VC/CNYC/C = AC/C = A, therefore H/C
is a primitive group of simple diagonal type. Now an application of the
embedding argument gives that G lies inside a wreath product H/C 1 .S; <
S, 1S where r = |T|F~! and we are in case (3) of the theorem.

Now assume there is only one block, [ = 1. Then m = k > 1 and
UNNX=S, N=T™ In this case n = |T|™"!. Without loss of generality,
A:=UNN ={(s,...,s) : s €T} G isasubgroup of XS, and
U = Ng(A). Note that (z1,...,2,)7 € X 1S, normalizes A if and only if

(s,...,s)@on)T e A VseT,

and this means s** = ... = s%» for all s € T'. This implies that s%%i ' = sfor
all s € T and for all 4,7 € {1,...,m} and, since the z; are automorphisms
of T', we deduce the necessary and sufficient condition 1 = ... = x,,. This
implies that

U= Ng(A) <{(a,a,...;a)7t : a € Aut(T), 7 € S;,} = Aut(T) x Sy,
hence G = N - Ng(A) is contained in the group
{(a1,...,ap)m € Aut(T) 1Sy, : ai=a; mod Inn(T) Vi, j},

which is an extension T".(Out(T) x S,,) with point stabilizer isomorphic
to Aut(7") x S,,. We are in case (5) of the theorem, the simple diagonal
type. This concludes the proof of O’Nan-Scott Theorem. ]



Chapter 2

Minimal coverings

In this chapter we present the content of the paper [2]. Specifically,
we give constructive proofs for our results concerning ¢(G) for a family of
primitive groups GG with a unique minimal normal subgroup N, isomorphic
to A, with n divisible by 6 and G/N cyclic. This is a generalization of a
result of E. Swartz [10] concerning the symmetric groups.

2.1 The function o(G)

Definition 5. A covering of a group G is a family of proper subgroups of G
whose union is G. The covering number of G, denoted o(G), is the smallest
size of a covering of G. If G is cyclic then o(G) is not well defined because
no proper subgroup contains any generator of G; in this case we define
0(G) = oo, with the convention that n < oo for every integer n.

Proposition 9. Let G a finite group. Then o(G) > 2.

Proof. Suppose by contradiction that G = H U K with H and K distinct
propers subgroups of G. Let h € H—K. Forall k € K, hk € H or hk € K.
Since hk € K implies h € K, we have hk € H. Then for all £k € K we
have k € H, so K C H and therefore G = H, contradiction. ]

Proposition 10. If N < G, then o(G) < o(G/N).
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Proof. Tt suffices to observe that every covering of the quotient G/N gives
us a covering of G. []

In particular, the above Proposition implies that
o(Gy X ... x Gp) <min{o(Gy),...,0(Gp)}.

Proposition 11. If p is a prime number, then o(C, x C,) = p + 1.

Proof. A minimal covering of C), x C}, must contain all the p + 1 maximal
subgroups. ]

Lemma 4. Let G be a non-cyclic group. Write G = |J H;, as a union
i=1
of n = o(G) subgroups of G. For all i € {1,...,n — 1} suppose that

|G : Hz| < ’G : HiJrl" Then ’G : H1| < O'(G)
Proof. Since 1 € HyN...N H,, we have
" v |G G|
G| < H;| = <n-
Therefore |G : Hi| < n = o(G). O

Lemma 5. Let G a non-cyclic p-group. Then o(G) =p+ 1.

Proof. Since any non-trivial proper subgroup of GG has index at least p, by
Lemma 4, p+ 1 < o(G).

If G is non-cyclic, G has a quotient isomorphic to C, x C,, then o(G) <
o(C, xCp) =p+1.

If |G| = p* with & > 2, we prove o¢(G) < p + 1 by induction on k.
For k = 2, G is C, x C, and the result follows from Proposition 11. For
k > 3, if G is abelian the result is shown above, otherwise G/Z(G) is a
non-trivial non-cyclic p-group with |G/Z(G)| < |G|, since Z(G) is non-
trivial. By induction hypothesis, 0(G) < 0(G/Z(G)) = p + 1. Therefore
o(G)=p+1. O

Proposition 12. [0, Lemma 4] If (|H|, |K|) = 1, then o (Hx K) = min{c(H), o (K)}.
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Proposition 13. If G is a non-cyclic nilpotent group then o(G) = p + 1,
where p is the smallest prime for wich the Sylow p-subgroup is non-cyclic.

Proof. Since GG is the direct product of its Sylows p-subgroups, by Propo-
sition 12

0(G) = min{o(P) : P is a Sylow p-subgroup of G'}.
Therefore, by Lemma 5, o(G) = p + 1. O

Tomkinson [11, Theorem 2.2] computed the covering number of solvable
groups. Recall that a chief factor of a group G is a quotient H/K where
K <G and H/K is a minimal normal subgroup of G/K. A subgroup L
of G is called a complement of a chief factor H/K of G if HL = G and
HNL =K. In other words K < L and L/K is a complement of H/K in
G/K.

Ezample. Let p > 2 be a prime and G = (a,b: a® =0* = 1,0’ = a™ 1),
the Dihedral group with 4p elements. Let H = (a) = Cy, and K = (a?) =
C,. The quotient H/K is a chief factor of G and the subgroups L; = (a?, b)
and Lo = (a?, ab) (isomorphic to the Dihedral group with 2p elements) are
complements of H/K in G. The minimal normal subgroups of G are also
chief factors of G. The subgroups H = (a*) = C, and N = (a?) = Cy are
the minimal normal subgroups of G. H has p complements in (G, they are
of the form (a”) - (a'd), for i = 0,...,p—1, and N has two complements in
(G, they are L and Lo.

Theorem 7 (Tomkinson). If G is a solvable non-cyclic group then o(G) =
q + 1 where q is the order of the smallest chief factor of G with more than
one complement.

As a consequence, if GG is a primitive solvable noncyclic group then either
0(G) = 0(G/soc(G)) or o(G) = |soc(G)|+ 1. This is a consequence of the
following theorem of Gaschiitz.

Theorem 8 (Gaschiitz [21]). Let G be a solvable group acting faithfully and
irreducibly on an elementary abelian p-group V. Then every chief factor
of G has size strictly smaller than |V|.
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2.1.1 o(G) for some groups

In this section we present tables that summarizes what is currently
known about covering numbers of symmetric groups, alternating groups
and projective linear groups of dimension 2. The reference for these tables

is [19].

Group Covering Number | Citation
Ss 4
Sy 4
Sy 16 [9]
Se 13 [1]
Ss 64 [25]
So 256 [25]
Sto 221 [25]
S12 761 [25]
S14 3096 [36]
Sis 36773 [40]
1(6k 2Rt
S, k > 4 5(%)*% (%) | 0]
Sapi1, b # 4 2% [34]
Sop, k > 16 > (%) [34]

Table 2.1: Covering numbers of symmetric groups.

Group Covering Number Citation
As 10 [9]
Ag 16 [8]
Az 31 [26]
Ag 71 [26]
Ag 157 [12]
Al 256 [34]
A 2751 [12]
EVINT . 24 [34]

6k—1

v k>0 |5 (%57) + i | (1
A, n>12 > on—2 [3]

Table 2.2: Covering numbers of alternating groups.
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Group Covering Number | Citation
PSL(2,5) 10 (]
PGL(2,5) 16 (]
PSL(2,7) 15 (8]
PGL(2,7) 29 8]
PSL(2,9) 16 (8]
PGL(2,9) 46 [5]
PT'L(2, 8) 29 [18]
PSL(2,q), PGL(2,q), ¢ > 8 even tq(g+1) €]
PSL(2,q), PGL(2,q), ¢ > 9 odd sqlg+1)+1 [8]

Table 2.3: Covering numbers of 2-dimensional linear groups.

2.2 A sufficient condition for a covering to be minimal

Assume G is a finite group whose conjugacy classes of maximal sub-
groups are indexed by a set Ig. For j € Ig, let M, be the corresponding
conjugacy class of maximal subgroups of G. Let J be a subset of I and
let C = Ujes M; be the union of the coonjugacy classes M;. Assume
that C is a covering of G that is, Upsje¢c M = G. Let II be a subset of G
closed under conjugation and denote by II; the subset of IT covered by the
conjugacy class M, so that II; is closed under conjugation. If M, M’ are
conjugate maximal subgroups of G and j € J, then |M NII| = |M' N1]|

For a maximal subgroup M of G such that M ¢ C, let

\MﬂHj|
cen(M) =3
jeq IM; N 1L

where M is any fixed member of M.
For simplicity of notation, let us denote ce (M) by c¢(M).

Lemma 6 (Lemma 3.1 of [10]). Assume that the following conditions hold
for the covering C and the set II defined above.

1. 29 €11, for all x € Il and g € G, i.e. 11 is closed under conjugation.

2. For every w € I, there s a unique member of C containing 7.
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3. ¢(H) < 1 for every maximal subgroup H of G not in C.

Then C is a minimal covering of G, meaning that o(G) = |C|. Moreover C
15 the unique minimal covering of G consisting of maximal subgroups.

Proof. Assume that ¢(M) < 1 for all maximal subgroups not in C. Suppose
that B is another covering of the elements of I, and let C' = C\ (CNB) and
= B\ (CNB). The collection C’ consists only of subgroups from classes
M, where j € J, and we let a; be the number of subgroups from M; in
C’ . Similarly, the collection B’ consists only of subgroups from classes M;,
where i ¢ J, and we let b; be the number of subgroups from M; in B'.
Note that, since B is a different cover, for some i ¢ J, we have b; > 0.

By removing a; subgroups from class M; from C, the new subgroups in
B’ must cover the elements of IT that were in these subgroups. Hence, for
all j € J, if M} denotes a subgroup in class M, for each k,

aj| My N IL| < 320 0o M; N 11,
idJ
which in turn implies that, for all 7 € J,

|M; L
< b;
@ < %} M, N 1L
This means that:
‘M ﬂHJ| ,|Miﬂnj‘

C'| = a; < b; ————
‘ ‘ jEZJ] j;]z%;] |MﬂH‘ %]]%;] ‘Mjﬂnﬂ

| M; N 1L )
= S b =Y e(My)b; < b = |B).
i) (jeJ | M; NI ey i¢]
which shows that

IC| =|C'|+|CnB|<|B|+|CnB| =8|

Hence, any other cover of the elements of II using only maximal sub-
groups has size strictly larger than the size of C. Therefore, C is a minimal
cover of the elements of II, and it is the unique minimal cover of the ele-
ments of II that uses only maximal subgroups. ]
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It is worth noting that, with the above result, the computation of ¢(G)
for some families of groups existing in the literature (for example [341])
can be refined proving that for many of these groups there exists a unique
minimal covering consisting of maximal subgroups.

2.3  Proof of Theorem 1

2.3.1 The group G,

Let G be a primitive monolithic group with non-abelian socle N = 5™,
and S a non-abelian simple group. For i € {1,...,m}, let S; be the
subgroup of N equal to [T/, U; where U; = S and U; = {1} for all j # i
(coordinate subgroup), so that S; = S for all i.

Let X := Ng(51)/Cs(S1). The group X is an almost simple group with
socle S1C¢(S1)/Ca(S1) = 5.

The minimal normal subgroups of S = 57 x ... X §,, are precisely its
factors, Si,...,S,. Since automorphisms send minimal normal subgroups
to minimal normal subgroups, it follows that G acts on the m factors of N.
Let p : G — Sym(m) be the homomorphism induced by the conjugation
action of G on the set {S1,..., .}

Let K := p(G). K is a transitive permutation group of degree m. By
[0, Remark 1.1.40.13] G' embeds in the wreath product X ¢ K. Let L be
the subgroup of X generated by the following set:

SU{zy-...-xp | Fk e K (xq,...,2p)k € G}

Call 7 : G — G/soc(G) and 7x : X — X/S the natural projections.

Lemma 7. X/S is cyclic and L = X . More precisely, assume that G /soc(G)
is cyclic and let g in G be such that mg(g) generates G/soc(G). Write
g = (r1,...,Zp)0 with x1,...,x, € X, and § € Sym(m) an m-cycle.
Then mx (T1251) - - - Tm-1)) generates X/S and |G| = [S|™-m - |X/S|.

Proof. Ng(51)/soc(G) is a subgroup of G/soc(G), hence cyclic, and it
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projects onto Ng(S1)/S1C6(S1) = X/S. Thus X/S is cyclic.

Let x € X be such that X/S = (xS). For i = 1,...,m, write x; =
s;z¥. where s; € S and k; € N. Let k := > k;. Note that there exist
S1y...,s € S such that

m

g = (s, ... s )@k ).

Therefore (2%, ... 2%)soc(G) generates G N X™/soc(G). Since Ng(S;) C
X™ N G, this implies that 2*S = 7x(2*) generates X/S, and the result
follows. []

We may assume that there exists ¢ € G such that (gsoc(G)) = G/ soc(G)
and ¢ has the form (1,...,1,2)0 where 6 = (1...m) € K and z € X is
such that X/S = (x95).

Indeed, let (x1, ..., 2,)0 € G generate G modulo soc(G), where x1, ..., x,, €
X and 0 € K is an m-cycle. Up to conjugate by a suitable element
of Sym(m) we may assume that § is the m-cycle (1...m). We want to
find y1,...,ym € X such that ((z1,...,2,)0)W¥) = (1,....1,2)0 as
required. We have

((x1, ... ,xm)é)(yl """ Ym) — (it D) (@, ) (v, ,ym)5_1(5
= (YT Y @) (Y2, s Yy Y1)O

= (Y, Y2, Y5 023, - - s Yo 1T 1Yy Y T Y1)

It suffices to choose y; = 1,92 = 271, 43 = (2122) "L, o Y = (21 .. 1) F,
and xr = x1...2,,.

Let n,m positive integers with n > 5, n # 6, and S = A, = 5,
i=1,...,m. Since X = Ng(51)/Cq(S1), X is isomorphic to a subgroup
of Aut(S) = S, then either X = A, (“even case”) or X = 5, (“odd case”).
In the even case G = A, C,, ([9, Definition 1.1.8 and Remark 1.1.40.13]).
The odd case is the group G, ;, and will be considered below.

Let G = G, be the semidirect product A} x () where

7:(17"'7177)56571257717
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with 7= (12) and § = (1...m).
For zq,...,z, € A,, the action of ~ is given by

(1, xy) = (21, ... ,xm)(l"“’l’ﬂé = (z1,..,27)° = (@m , T15 . Tpe1)-

Observe that G is a generalization of the Symmetric Group S,,: if m =1
then G = A, x ((12)) = 5,,.

The group G is a primitive group of type II, meaning that G has a
core-free maximal subgroup and it admits precisely one minimal normal
subgroup, which is nonabelian: its socle, N = A™.

The element v has order 2m. We will compute some powers of v. For
this we use that 61 = (1 mm — 1...3 2). Note that,

YV=1,...,1,7)6-(1,...,1,7)0 =(1,...,1,7)6(L,...,1,7)0" 1§
=(1,....,,n)1,..., 1,7 8 =(1,...,1,7)1,..., 1,1, )8 =(1,...,1,7,7)5.
(

Analogously, for 1 < k < m, ~* 1,...,1,7,...,7)0%, where the last k
corrdinates are equal to 7, and " = (7,...,7).

We also have v~ = (7,1,...,1) 7%,

m

Now let’s calculate some useful conjugates of elements of group G. Let
i,y € Ay, for 1 <7 < m. Observe that

(21,. .. ,xm)fl = (1,3, ..., T, T]).

For the element (x1,...,x,)y € G we have

((5517 cee 7xm)7)7 - 7_1(1'17 s axm)ry Y= (mea Liyeeey $m—1)%
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and
(@1, ..., Lp)ry)Wrbm)
= (W1, Ym) (@)Y ) YT
= (yy ey, -y ) (g, ,ym)7_1’y
= (1 w1 Yo ) (Y2, Y3, Y Y1)
= (1 "2, Y5 ' 02Y3s s Y1 T 1Yy Yy T ) Y-
For 1 < k < m, for the element (z1,...,2,,)7" € G, we have

((x1, ... ,xmhk)V = fy_l(:cl, e T fyk

= (TTmT, Ty oy Tp1) - fyk,

and, since (y1, .. . ,ym)V_k = (y1,. .. ,ym)(fl)k,

((‘rl; e ,xm)’yk>(y13"'aym)

= (Y1, . .ym)*l(xl, . ,xm)vk(yl, ey Ym)

_ _ —k
= (yl 1'1717"'7ym1xm)(yl7"'7ym),y ’Yk
= (yl_lxla R 7y7;1xm)(yk+lv Yk425 -+ 5 Ym, y{? y%-) SR 7y]7<:-) ) fyk
= (U " T1YRA 1 - Yo kT kY Y1 T k19T 5 -+ U ) - 7"

About o(G) we already know:

Theorem 9. [/7, Theorem 1] Let m,n be positive integers, and let G =
Gmn. Let a(x) denote the number of prime factors of the positive integer
x. The following holds:

(1) Suppose that n > 7 is odd and m # 1 if n = 9. Then

=1 ?

w6 =aem+ x (1)
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(2) If n =5, then

10" < 0(G) < a(2m) + 5™ + 10™.
(3) Suppose that n > 8 is even. Then

(; (n?Z))m <o(G) < a(2m) + (; <n7/12>)m . [jﬁ (?)m

In particular, o(G) ~ @( y ))m as n — 0o.

(4) If n =6, then
o(G) =a2m)+2-6™.

We will construct sets J, II and C to apply Lemma 6 to determine the
value of 0(G,, ;) for n > 30 divisible by 6 and m > 2.

2.3.2 The set I1I

For simplicity of notation, let us denote by [aq,...,ax] the conjugacy
class of S, corresponding to the elements of cycle structure (aq,...,az),
where the a;’s are positive integers and a1 + ... +ax = n. Let [ =
{-1,1,2,....,n/3 — 1}. As in [10], we define collections B;, i € I, as
follows.

B_1 = [n],

By i=[1,n/2 —2,n/2 + 1],
B, {[2,n/2 —1,n/2—1], ifn/2is even,
2,n/2 —4,n/2+2], ifn/2isodd,
li,(n—i—1)/2,(n—i+1)/2], ifiisodd, 3<i<n/3,
Bi = {[i,(n—1)/2,(n —1)/2], if i is even, (n —14)/2 is odd,
[

4<i<n/3,
i,(n—14)/2—1,(n—1)/2+ 1], ifiiseven, (n—1i)/2 is even, 4

i <n/3.

NN

Note that B, N A,, = @ for all i € I.
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Let G = G, be the group defined in Section 2.3.1, that is, G =
A" % (), where y = (1,...,1,7)0, 7= (12) and d = (1...m).

We define the set II; for all ¢ € I as follows:
I = {(x1, 29, ..., x)y €G : T129...2,,T € B;}.
Note that the sets II; are pairwise disjoint as are the sets B;.

Note that we did not define Iy yet. Rather than defining a unique
11y, we will define several sets, which we will call Iy ,, for every prime r
dividing m. For such r, let Dy be the conjugacy class of (n — 2)-cycles in
Sy, and let D; be the conjugacy class of n-cycles in S, for i = 2,...,r. Let
v:=(1...r). Forall o € (v), let

Hopo = {(z1,...,2m)7 € G @ TiZTigpTigor .. Tigm—rT € Doy Vi=1,...,1}.
Assume that either m is even or r # 2. We define

HO,T = U HO,T,U'

o€(v)

This is a disjoint union. Indeed, let 01,09 € (1) with 01 # 09 and assume
by contradiction that there exists (x1,..., %)Y € Hoye, N 1o,q,. Since
01 # 09 and r is a prime, there exists ¢ € {1,...,r} such that o1(i) = 1 and
J = 09(i) # 1. Since 2,24, . . . Tiyp—r7 belongs to D, ;N Dy, = DiN Dy,
we deduce that Dy = D;, a contradiction. It follows that

Mo, | = |4, 1T D1}

Assume now that m is odd. We will define Iy 2. Consider the conjugacy
class C' of S,, consisting of the elements of cycle structure (p,n — p) where
p is a fixed prime number such that n/3 < p < 2n/3. Note that p exists

by Bertrand’s postulate (see [13]). In this case, we define
oo := {(x1,... )YV € G Ty BT - ToTy .. Ty T € O
Note that

o] = [Aa™"-|C).
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Definition 6. We define J to be the set of indices consisting of the elements
of I and the pairs (0,1) where r is a prime divisor of 2m. We also set

jet
The following proposition shows that every II; is closed under conjuga-
tion, proving that condition (1) of Lemma 6 holds.
Proposition 14. For all @ € I, the sets 11;, i € I, and Ily,, where r is a

prime divisor of 2m, are closed under conjugation.

Proof. Fix i € I. If (x1,...,x,)Yy € I1;, the element
(1, s xm)Y) = (TTT, X1, oo, Tpe1) - Y

belongs to II; because

TTpT *T1 .o Ty - T = (27 .. .a:mT)m’#T € B;,
and if (y1,...,ym) € A", the element
(@1, - ) )0 = (g ry, vy " 02y, - Yo A Tm—1Yms Y T TLT )Y
belongs to II; because
YTy Y ey Y T Y Y T TT - T = (21 ... 2T € B

Since G is generated by A" and +, this proves that II; is closed under
conjugation.

We now prove that Ily, is closed under conjugation. The following
argument can be applied to the case »r = 2 when m is odd, so we will
assume that either m is even or r # 2. Let (21,...,2,)Y" € ly,,. Note
that

(1, ..y z)Y") = (TZmT, 1, oo oy Tp1)Y

and we have the following.

-1
Ty TL T2y - Ty T = (Tp T2 - . Ty Ty T) ™ 7 € Doy = Dy
TiTigrLTitor « o« Tigm—rT € Da(i) = Dau—l(i—H) Vi = 1,...,mr—1.
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It follows that ((x1,...,zy)Y")Y € o, p-1 C I,

For (y1,...,ym) € A™ we have that ((z1,...,2,)7")¥¥) equals

1 ~1 1 ~1 r
(Y1 " Z1Yr 415 - s Ymer Y Ymer i A Tt A TYLT s« oy Y Ten TYpT) =Y

Moreover, if 1 <17 < r,

—1 ~1 ~1 :
Yi TillriYrpiTrsi¥2rit - YmorsiTmr i TYT T = (TiTisrTivor - - Tigm—rT)"

belongs to Dy(;). This implies that Il is closed under conjugation. ]

Note that to apply Lemma 6 it is not necessary for the sets II;, ¢ € I,
and Ily,, r any prime divisor of 2m, are conjugacy classes. Despite this,
we prove:

Proposition 15. For all ¢ € I, the sets 11;, i € I, and Ily,, where r is a
prime divisor of 2m, are conjugacy classes.

Proof. Let i € I. Note that B; € A,, so there is z € A, such that z7 € B;.
It follows that 7 := (z,1,...,1)y € II;. We prove that II; is the conjugacy

class of m in G. Let (z1,...,2,)Yy € II;, we will prove that this element
is conjugate to 7w in G. There exists a € S, with (z1...x,7)" = 27.
Ifa € A, then b = 2,...2,7a € A, and (21...2,7)" = (v1...2,7)%,
so we may assume that a € A,. Set y; := a and y; := ;... x,,7a7 for

i=2,...,m. Then ((z1,...,2mn)7)¥ ¥ equals
(yl_lxly% 92_1372%; <o 7yr7Ll—1xmflym7 y;lemTle)’y = (Za 17 ey 1)7 =T.

Now suppose that m is odd or m is even with r # 2. We will prove that
I, is a conjugacy class in G. Since D; € A, for all 7 = 1,...,r, exist
x1,...,2. € A, such that ;7 € D, for all i = 1,...,r, therefore

g:(ﬂjl,...,l‘r,l,...,l)’fGHO’T.

We will show that IIj, is the conjugacy class of g. For this, it is sufficient
to show that |G : Cg(g)| = |11y, |, because g belongs to Il ., which is closed
by conjugation, and |G : Cg(g)| is the size of the conjugacy class of g in G.
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Let H = Cg(g) and N = A”. We will initially show that HN < G.
Suppose by contradiction that HN = G. So there are h € H, n € N such
that hn = . It follows that

h=an"'=n"'y"!v e Ny,
because N J G. Therefore h € HN Nv,i. e., HN Ny # &.

Consider then (y1, ..., ym)y € HONv. Wehave ((z1,...,2,,1,...,1)y")@rtm)y

equals

~1 1 ~1 1 1 ~1 1 )
(Tym TYrs Y1 T1Yr+1y - -5 Yr TrlY2rs Y 1Y2r+1s - s Y Yms Y—r 1 TYLT s - o o 5 Yy 1 TYr—17

From the r + 1-th coordinate we get that y, = x,vy-, and from the r + 2-
th coordinate to the m — r 4+ 1-th coordinate we get that vy, = v, if
r+1<i:<m—r. Then

—1 —1 -1 TYmT
TAT = TYp TYT = Ty TEY2T = Tl TTYmT = (2,7)7"7,

that is, 1 and x, are conjugate, and this implies that D; = D, contra-
diction. Therefore HN < G.

Let us now calculate the order of HNN. For that consider (y1,...,yn) €
H N N. We have already seen that (z1,...,2,,1,...,1)y") ¥ equals

~1 ~1 -1 -1 ~1 -1 r
(Y1 T1Yrt1s -5 Yy TrY2r, Yp 1 Y2415 -« s YmerYms Ymer i A TYLT s« o s Yy TYrT )Y

Then for all 1 < i <7,
BT = Yy LTy

This means that for 1 <7 < r,
Y; - an(l‘i’r).

Since the order of H N N is the number of choices for (y1,...,ym), we get

that . r 1
[HNN|= 11140 Cs, (zim)| = 11 5

i=1 i=1
Let’s now show that HN = N(y"). First, HN D N(v") because g € H.
Furthermore, N (~") is a maximal subgroup of G because it has prime index

r. Since HN < G, it follows that HN = N(y").

|Cs, (iT)].
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Then
N{(H") B HN . H

N ~ N HNN
and as the order of % is 2m/r, we get that

r]
|H| = (2m/r)-|[HNN| = (2m/r) - _[[12|csn(m)|.
We deduce that
|G| 2m - |An‘m _ r
G:H| = - =7 |Ap|"" D;| = |y,
| | |H|  (2m/r) - (1/2)" - Ti_yn!/|D;] e[ An| Zl;ll‘ | = [To|

It follows that g € Ily, has |IIj,| conjugated in G. Since Il, is closed by
conjugation, it follows that IIy, is exactly the conjugacy class of g in G,
proving that Il , is a conjugacy class in G.

Now suppose m odd. It remains to be proven that 1l is a conjugacy
class in G. Let z; € C C A,, then g = (z1,1,...,1)7* € Tlps. Let
H = Cg(g) and N = A" let’s calculate |[HNN|. Let (y1,...,ym) € HNN,
then ((x1,1,...,1)y?)W¥m) equals

(Y1 213, U3 " Yas U3 Y - - s Yo Yim A TYLT, Y TYT).

This implies,

:Cl_lylxl =Y3 = ... =Yy = TY2T = TYsT = ... = TYm—1T = Y1.
Therefore z1y; = y1x1, 1. e., y1 € Cy, (x1). By the equations above, the
choice of y; determines the choice of all others y;. Therefore
A

HNN| = = )
‘ M | ‘CAn(x1)| |C‘

Now, if HN # G then HN = N(~?). In fact, g € H which implies that
N{+*) C HN and |G : N{y?)| = 2 because G = N(v). Then N(?) is a
subgroup of index 2 of G with N(v*) C HN # G, therefore HN = N(~?).
Then the size of the conjugacy class of g in G is |G : H| which is
G| _2-|HN| _ 2-|N| _ 2-|A,"

AT H CJHON]

|G : H| =

— 2. |4, C] > |4, = [T,
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This contradicts the fact that Ilp, is closed for conjugation. Therefore
HN = (.

Therefore, the size of the conjugacy class of g in G is

|G| _ [HN]| V] |[An|™ .
G:H| = = = = = |A,|" | C| = |yl
This concludes the proof. ]

2.3.3 The covering C

For i € I, i # —1, define
&; »= {maximal intransitive subgroups of A, whose orbits have size i and n—i},
and let
&_1 = {maximal imprimitive subgroups of A, with 2 blocks}.
For all © € I, let
Fi :={Ng (M) : M € &},

and define
E=UG&, F:=UUEF.

iel iel
Note that {4, } U F is a covering of S, as observed in [10].
By [10, Lemma 5.2], for n = 0 mod 6, n > 30 and i € I, the only
subgroups in F that contain elements of B; are the ones belonging to JF;,

so that the elements of U;c; B; are partitioned by the subgroups in F.
Moreover &; and F; are conjugacy classes of subgroups of S, for all 7 € I.

Let G = G, be the group defined in Section 2.3.1, that is, G =
A % (), where y = (1,...,1,7)0, 7= (12) and d = (1...m).

For ¢ € I, define

Mi :{HéG IH:N(;(Mal X ...XMam), al,...,ameAn,
M €&, Ngn(M)ﬂBl 75@}
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By [5, Proposition 1.1.44] and [27], H is a maximal subgroup of G supple-
menting the socle N = A™ of G. Moreover, H N N is conjugate to M™
in N. It follows that |H| = 2m - |[M|™ and H has |G : H| = |A, : M|™
conjugates in G.

For every prime divisor r of 2m, set

MO,T = {MO,T}a
where My, = A" x (v") is a normal subgroup of G of index r.
Let
C .= U Mj.
jeJ

The size of C equals the claimed value for o(G) in the statement of Theorem
1.

Proposition 16. C is a covering of G.

Proof. Let g = (z1,...,2,)7" € G where z; € A, for all i. If (k,2m) # 1
then g belongs to one of the a(2m) subgroups of G containing the socle,
now suppose that (k,2m) = 1, in particular k is odd. For d € {1,...,m}
define 7y to be 7if d > m — k, and 1 if d < m — k. Since k, m are coprime,

the set of numbers {1+ik : i =0,...,m — 1}, reduced modulo m, equals
{1,...,m}, so the following definition makes sense. Define b; := 1 and
Ditik *= TITIT14kTI4k - - - D1 (= DR TL4 (= k> t=1,...,m—1,

where the subscripts are considered modulo m. Set

L= L1 X1+kT1+kL1+2kT1+2k - - - L14(m—1)kT1+(m—1)k-

Since z = 7% mod A, and k is odd, # € A,,. Since {A4,} U F is a covering
of S, there exists M € & such that x € H := Ng (M). We claim that
(z1,...,2,)7" belongs to Ng(M" x M x...x M") € C. This is equivalent
to saying that M® x M" x ... x M’ equals
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That is, by—k+iTm—ki7b; - € H for i € {1,...,k} and ba;b. Y, € H for
i € {1,...,m — k}. This can be written as byrs74b; ., € H for all d €
{1,...,m}, equivalently,

l; = bl—!—ikxl—l—ile—&—ikbl_i(iH)k eH Vi € {1, - ,m}.
We have ¢; =1 for i # m — 1 and ¢,,_1 = x. They all belong to H. ]

Proposition 17. The sets M;, i € I, are conjugacy classes of subgroups of
G.

Proof. A given subgroup in M; is A™-conjugate to H = Ng(M™) where
M € &;, so since every member of & is an A,-conjugate of M, being
Ns (M)A, = S,, we only need to show that H? = Ng(M7™ x M™™1) is
A"-conjugate to H. This follows from the fact that M7 is A,-conjugate to
M, being Ng (M)A, = S,. O]

2.3.4 Maximal subgroups of G,,

We will now describe the maximal subgroups of G = G, ,,, the group
defined in Section 2.3.1, that is, G = A" x (), where v = (1,...,1,7)4,
7 =(12)and § = (1...m). A reference for the following discussion is
Chapter 1.

The maximal subgroups of G' containing the socle N = A" = soc(G)
are the My, = A" x (y"), where r is any prime divisor of 2m.

Let U be a maximal subgroup of G not containing /N, so that UN = G.
Observe that U NN # {1}. Indeed, if by contradiction U N N = {1}, then
U = G/N would be cyclic, generated by a coset ulN, therefore the only
proper subgroup of G' containing v would be U, and this contradicts the
fact that C is a covering of G whose members are not cyclic. Then U can
be of one of the following two types.

The first type is U = Ng(U N N) where

UNN=MxM"?x...x M as,...,a, € A,,
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and M is the intersection between A, and a maximal subgroup of S,. In
this first case, U is called a maximal subgroup of product type (see [J,
Proposition 1.1.44, Definition 1.1.45)).

The second type consists of maximal subgroups of diagonal type (see [5,
Proposition 1.1.55]). Fix a partition {Py,..., P} of Q@ = {1,...,m} and
write

PZ':{CLZ’]’ . ]: 1,...,7’2'}.
Given a collection of automorphisms ¢;; of A,, with ¢ = 1,...,k and
Jj = 2,...,ri, let A, be the set of m-tuples (z1,...,2,) € A} with the
property that
Tayy = Tays

for all 7, j. Then we set U to be the normalizer of A, in G. If U supplements
N, there is in U an element v = (y1, ..., Ym)d where each y; belongs to S,
and it is easy to see that the partition P is stabilized by d. If U is a maximal
subgroup of GG, then we may assume that P is minimal, with respect to
the relation of refinement, among the nontrivial partitions stabilized by 9,
in other words

Ay ={W1, - Ymyts it yf{%”, T ,yf{%t’t) DYl Ymye € A}
where ¢ is a prime divisor of m, ; ; is an automorphism of A,, for 1 <@ <
m/t, 2 < j < t, and the matrix (p; ;);; is denoted by . If U is a maximal
subgroup of GG, supplementing the socle N, and of the form Ng(A,) with
@ as above then U is called a maximal subgroup of diagonal type. If this
is the case, then UNN = A,.

We now explicit two generators of G. Recall that the symmetric group
S, is 2-generated, and

(12),(12...n)) = S,.

Therefore there exist x1, o € A, such that (z17,2o7) = S, (recall that
7 = (12)). For example, we can choose ;1 = 1 and zy = (12...n)(12) for
n even, ro = (12...n) for n odd.

Proposition 18. Let x1,z9 € A, be such that {(xiT,297) = S,. Let o; =
(i, 1,..., 1)y fori=1,2. Then (a1, as) = G.
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Proof. Suppose by contradiction that (aj,as) # G. Then (a1, as) C H
where H is a maximal subgroup of G. The subgroup H is not one of the
M, subgroups since the elements oy, ap have the permutation part .

Suppose that H is a maximal subgroup of product type, that is, H =
Ng(M x M x ... x M), as,...,a, € A,, and M is the intersection
between A, and a maximal subgroup of S,,. Then, for i = 1,2, M x M x
... X M% equals

(M* x M® x ... x M*)" = M x M* x M* x ...x M1
Therefore
AT, Tily ', aga3 ", . . ., Gp_1a,} € Ng (M).
Multiplying these elements starting from x;a; !, we obtain that x17, 297 €

Ng. (M), and therefore S,, = (z17, 297) C Ng (M) < S,,, contradiction.

Suppose now that H is a maximal subgroup of diagonal type, say
Ng(A,). We will use the notation used in the first part of this section.
If m = ¢, then

Ay =A{(y, v, ..., ¥") y € An)}.
Since a; € Ng(A,), for i = 1,2 we have that (y, y*>, ..., y#)% equals
(y, 4?2, . .. ’ng(%l,---’lh = (y",y*2, . .. ’y%ﬁ)é = (yP7, Yy PR, R
for all y € A,,. By the definition of A,

yrrer =yt Yy e Ay, i=1,2,
that is
OiTPo = x4, = 1,2.

This implies that z7 = ;79 = 9, contradicting the fact that (xi7, zo7) =
Sp. Em/t > 1,

Ap={W1,e Ym U1 yf,b”%t’z, T C ,y;f{;t/t’t) LYl Ymyt € At
We have

Y1 Y UL, - ,y:;”%”, T S ,y:f{%t’t)ai

— (yifl, C. 7ym/t7 yfm, cey yf,:/lém, - ,yfl’t, L. 7y;i7t/t,t7')5

- (y:;”/’f’ﬂ, Yt e Y YL ,y:;"/lt/t’Q, 7 ST yi%ff’t)
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Since o € Ng(A,), for i = 1,2 we have
yfi‘pl? - y<1p172? \V/yl € An7 1= 17 27

that is
T; = 901,28057%7 1, = 1, 2.
This implies that x; = x9, contradicting the fact that (z17,z97) = S,. [

2.3.5 Proof of Theorem 1

Let G = G = A % (), where v = (1,...,1,7)d, 7 = (1 2) and
9 = (1...m). Our objective in this section is to prove our first Theorem:

Theorem. /2, Theorem 1] Let G = Gy, for n > 30 divisible by 6 and
m > 2. Denote by a(x) the number of distinct prime factors of the positive
integer x. Then

o () E

Moreover, G has a unique minimal covering consisting of maximal sub-
groups.

In the following discussion, we fix a subgroup M of A,, such that Ng(M™)
is a maximal subgroup of G which supplements the socle N = soc(G), in
other words Ng(M™)N = G.

Lemma 8. Ng (M)A, = S, in particular Ng, (M) € A,.

Proof. Let a € S,,. If a € A,, then o € Ng (M)A, so now assume that
a & A,. Then ar € A, and so («,...,a) = (ar,...,a1)(7,...,7) € G,
being (7,...,7) = ™. By assumption, we can write («,...,a) = nh,
where n = (ay,...,a,) € A™ and h = (by,...,bp)Y* € Ng(M™). It
follows that £ = 0 and hence b; € Ng (M) for all i = 1,...,m. Therefore

a = aib EAnNSn(M) []
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Lemma 9. Let g € G and let r be a prime divisor of 2m. If either m is
even or v # 2, then
m-—r

1 T
N N, =7+ (5 INs, (DI} - IT 1D 0\ Ns, (A1),

i=1
If m is odd, then

m—1

1
INo(M™)! N Tlga| = (5 N5, (A0)]) 10N Ns, (M),

Proof. Since Iy, is closed under conjugation, the size of Ng(M™)? N1y,
equals the size of Ng(M™) NIy, therefore we may assume that g = 1.
Assume first that either m is even or r # 2. We will compute |Ng(M™) N
Iy, »| for each o € (v) and sum all the contributions. Fix o € (v). Let
(1, xm)y" € Ng(M™) N1y, s, then M™ equals

(M x ... x M)@retm)y™ — fEm—raaT s s MET 5 M x . x M

SO Tpy—yp 1Ty« ooy TyT € Ng (M) N (S, \ An) and xq, ..., 2p— € Ng (M) N
A,. Since Ng (M) is not contained in A,, the sets Ng (M) N A, and
Ng (M)N(S,\ A,) have the same cardinality. Since (x1,...,zy)y" € o,
the z;’s must also satisfy the equations of the definition of Ily,,. So for
each equation

TiZTitr - Tigm—rT € Do(i)a

where i = 1,...,r, we can freely choose the elements x;,, ..., T, _,;, With
1
[Ns, (M) N An| = 5| Ns, (M)

choices for each, and only the elements z;, = 1,...,r, need to be chosen
in order to satisfy the equation defining Ily,.,, which is x;2; € Dy ;), where
2 = Zisy o Tizm—rT € Ng (M). Since

D,z ' N Ng, (M) = (Dyi NN, (M))z;!

]

there are |D,(;) N Ng, (M) choices for each z;, i = 1,...,7, and the result
follows.
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Assume now that m is odd. Let (z1,...,2m,)7* € Ng(M™)N1yz. Then
M™ equals

So xy 17T, x,T € Ng (M) N (S, \ An) and xq,..., 2,2 € Ng (M) N A,.
Since Ng, (M) is not contained in A, we have |Ng, (M)]| choices for each
of x,,—1 and z,,,. Now we can choose zy, ..., Z,_2 freely in Ng (M) N A,
and we need to choose x; in order to satisfy the equation that defines IIj o,
which is 1t € C, where t = x3x5... 2,722y ... Tp1T € Ng, (M). We
can choose z; freely in Ct™t N Ng, (M) = (C'N Ng, (M))t™!, so we have
|C'N Ng, (M)| choices for x1. The result follows. O

Corollary 1. Assume that either m is even or r # 2. Then Ng(M™) N
Iy, = @ if and only if Ng, (M) N D; = @ for at least one i € {1,...,7}.
Moreover, if m is odd and r = 2, then Ng(M™) NIy, = @ if and only if
Ngn(M) NC=g.

Lemma 10. Ifi € I, then |Ng(M™)NIL,| = (& |Ns, (M)|)"™ | BiANs, (M)].

Proof. Let (z1,...,2,)y € Ng(M™)NI1l;, then M™ equals
(M) @m)¥ = (MO %o M) = M7 x M™ x ... x M®m1,

So x, 7 € Ng,(M)N (S, \ A,) and zy,...,x,1 € Ng (M) N A,. Since
Ng, (M) is not contained in A, the number of choices for z,, is 5| Ng, (M)].
Now we can choose xa, ..., 2,1 freely in Ng (M) N A, and we need to
choose z1 in order to satisfy the equation that defines II;, which is 1t € B;,
where t = x5... 2,7 € Ng (M). In other words, we can choose z; freely
in Bit71 N Ng (M) = (B; N Ng (M))t~! so the number of choices for z; is
|B; N Ng,(M)|. The result follows. O

Corollary 2. Ifi € I, then Ng(M™)N1l; = @ if and only if BN Ng (M) =
.
The following proposition implies that condition (2) of Lemma 6 holds.

Proposition 19. Let 7w € 11, then there is a unique L € C such that m € L.
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Proof. It m € 11y, for some prime r that divides 2m, then My, is the only
subgroup in C that contains 7. This follows from Corollary 1 and the fact
that no subgroup in F has non-empty intersection with all sets D1, ..., D,,
because n-cycles do not belong to intransitive subgroups and (n — 2)-cycles
do not stabilize partitions with 2 blocks.

Now suppose that © € II; for some ¢ € I. Then

T=(T1,...,%Tm)7,

with ;... 2,7 € B;. In particular m & M, for every prime 7 that divides
2m.

There is a unique H € F such that zy---x,,7 € H and H = Ng (M)
where M = HN A, € £ Suppose that 7 = (x1,...,2,,)7 belongs to
Neg(M*™ x ... x M%), Then M* x ... x M equals

(M x ... x M) Tes@m)V — DomenT o MOTL 5 Jfom—1Tme1,

So, for i with1 <7< m—1, aixia;}l € H and ammeal_l € H. Multiplying
all these elements starting from the ¢-th one, we have

-1
AQiTiTiy] .« . Ty TL1T ... Tj_1Q; € H,
which can be written as

)Ilu-xi—l

(1 ... xpT = XTig1 ... Ty TE1Xo ... € HY.

In particular z; ...z, 7 € H*. Since F is closed under conjugation, the
uniqueness of H implies that H* = H, therefore a; € Ng (H) = H, being
H a maximal subgroup of S,,. Now we can rewrite the above equations as

a; € Hrixo ... x;q, Yi=2,...,m.

It follows that M* = M and M% = M* %=1 for all ¢« = 2,...,m, hence
the only subgroup in C that contains 7 is

Na(M x M™ x M2 x ... x MT-om-1),

This concludes the proof. ]
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In order to conclude the proof of Theorem 1, we are left to show that
condition (3) of Lemma 6 holds, in other words that ¢(H) < 1 for every
maximal subgroup H of G not in C. This will be done in Proposition 20.
Its proof will make use of the following lemmas.

Lemma 11. For n > 30, the value of |Ilys| is smallest when m is even.
Moreover, if g € G, then

|N0(Mm)g N HOQ‘ < Qn(n - 2)

o T Sn s Ns, (M)
Proof. We have
n! n!
D= Do| = (n — 1)! Ol=—1
’ 1’ 2(71—2)’ | 2| (n )7 ‘ ’ p(n_p)7
and A ™
2| A" 2| Dy || Dy| = ’nl, if m is even.
n(n —2)
ozl = 44"
A" O = ———, if m is odd.
2p(n —p)
Note that

2p(n —p) < 2(2n/3)* < n(n — 2),

being n/3 < p < 2n/3 and n > 30. So the value of |IIj 5| is smallest when
m 1S even.

We now prove the stated inequality. Since Il is closed under conjuga-
tion, we may assume that ¢ = 1. By Lemma 9,

[No, M)\ [DLNNg, (M)||DyN N, (M)]
e : , if m is eve:
INg(M™) NTys| |50l | D1[[ D]
[To | v ™! Ng (M
(‘ S )‘) .lCﬂ A )l, if m is odd
S| C|

The inequality in the statement follows by using the fact that the size of the
intersection of any one of Dy, Dy, C' with Ng (M) is at most |Ng, (M)|. O
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Lemma 12. If d is a divisor of n such that 2 < d < n/2 then (n/d)!?-d! <
2(n/2)1%.

Proof. We do as in the proof of [33, Lemma 2.1]. Assume first that d < n/d.
(n/d)-d' < (n/d)*-2-((n/d)! - d)¥* < (n/d)* -2 ((n/d)!-n/d)*>
< (n/d)2 2+ ((nfd)" Y12 = (n/d)12 - 2 (1 /d)202/
< (n/d)? - ((n/d) +1)?-...- (n/2)*-2=2(n/2)
where, in the fourth inequality, we used that r! < ", for all » > 2.

Suppose now that d > n/d. Since 2 < n/d < n/2, exchanging the role
of n/d and d in the above inequality we obtain

A" (n/d)! < 2(n/2)".
If @ > b > 2 are integers, then a!® - bl > bl® - !, since
" t=(a-(a—1) ... -(b+1)"" o0 > ((b+ 1)(“4’))%1 - plot
S pa=D)O=1) b=l > pila=b)  pip=1 _ pa=1,
Applying this to a = d, b = n/d we have
(n/d) - d! < d™?. (n/d)! < 2(n/2)1%.
This concludes the proof. [

Lemma 13. Let H be a mazimal subgroup of S, such that H ¢ F and fiz
iel, M €&, Then either |H| < |Ng,(M)| or HNB; = @.

Proof. By the O’Nan-Scott Theorem, the maximal subgroups of .S, are of
one of the following types: (1) primitive, (2) maximal intransitive, iso-
morphic to Sy x S,_j for some k € {1,...,n/2 — 1} and (3) maximal
imprimitive, isomorphic to S, ¢ Sp for 2 < a,b < n with ab = n. If H is
intransitive then H = S x S, with n/3 < k < n/2, therefore

|H| < (n/3)!(2n/3)! < (n/3 — 1!(2n/3 + 1)! < |Ng, (M)|
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if Ng (M) is intransitive. On the other hand, if Ng (M) is transitive, then
1=—1land HNB_; = @.

Now suppose that H is transitive. If H is imprimitive then |H| =
(n/d)\?-d!, where d is a divisor of n, d # 1,2,n. By Lemma 12, if Ng (M)

is imprimitive, then
|H| = (n/d)!? - d! < (n/2)!*- 2! = |Ng, (M)].
If Ng (M) is intransitive, then
|H| = (n/d)!"-d! < (n/2)1”-2! < (n/3 — 1)!(2n/3 + 1)! < |Ng,(M)].

If H is primitive then either H = A,,, in which case HNB; = @, or H # A,,
in which case |H| < 4" by [37]. Since n > 30 we have

4" < (n/2)? -2 < (n/3 —1)!(2n/3 + 1)!

and the result follows. []

We are now ready to prove that ¢(H) < 1 for every maximal subgroup
H of G not in C.

Proposition 20. Let H be a maximal subgroup of G not in C. Then c¢(H) <
1.

Proof. Assume H has product type. Then H is conjugate to Ng(M™)
where M is the intersection between A,, and a maximal subgroup of .S, not
of the form A, nor S,/ 0.9 nor S; x S,,_;, i =1,2,...,n/3 — 1, so that

[Ns,(M)| < (n/3)! (2n/3)!
by Lemma 12 and the fact that 2(n/2)!* < (n/3)! (2n/3)! being n > 30.
If M is primitive, by [37] we have
|Ng (M)| < 4™ < 2(n/2)!* < (n/3)! (2n/3)!.
Since II; is closed under conjugation for all j € J, we have

|HNIL| = [Ng(M™)N1IL|, VjelJ



2.3 Proof of Theorem 1 76

We will use Stirling’s inequalities, which are valid for all £ > 2:
Vork (k/e)* < k! < eV (k/e).

Assume that either m is even or r # 2. By Lemma 9 and the fact that
HO,?” g MO,T7

[HNMy,| 7> (3 INs,(M)[)™ " - TIi—y | D; 0 N, (M)]
|M0,r N HO,T| e | Ap | Ty | Dy
|Ns (M)\)m_r | Ns, (M) (|N5 (M)|)m .
< n . H n — n -2(n—2)nr
( | S -1 |Dil S

< ((n/?))! (zn/s)!)m.w <o (223/3)%. (nGQ\/ﬁ)m'

n! 3 3T

By Lemma 11,

‘Ng(Mm) N H0’2| < 2n(n — 2)
[To.z| 180 Ns, (M)

so we have the above inequality also in the case r = 2 when m is odd.

According to the proof of [10, Lemmas 5.4, 5.5, 5.9, 5.10], the largest
value of

<1 |Bi N Ng, (M,;)|

is obtained by substituting n = 30 in the expression

3n? + 27n + 54
4n2 -9
so it is less than 0.9925. By Lemma 13,

s N o (o INs (M)
i INe(M) NG| & (5 INs, (M)

m—1

)" - |Bi N Ns, (M)
m—1

)" |BiN Ng, (M;)]

|B; N Ng, (M)

< < 0.9925
i1 |Bi N N, (M;)]
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We obtain
|4 N o, [H N 1L
reP(2m) |M0,7“ A Hoﬂ"| iel |NG(MZm) A Hl|

92/3\ " 2 m
<2m-[( ) e \/ﬁ] +0.9925

c(H) =

3 3/
This is less than 1 since n > 30.

We now turn our attention to the maximal subgroups of G of diagonal
type and supplementing the socle N. Let H be such a subgroup. Recall
that H NN = A, has order |A,|™/" where t is a prime divisor of m.

We have
|H N 1_[0,7"| |H N H2|

c(H) = m
repm) | Mor Noy| 7 [Ne(M") N 11|

1 1
<|H[-| X + > m :
(reP(Qm) ol €1 [Na(M™) N Hz‘)
Since HN = (G, we have

HN , H
N  HNN’

2

G
sz & 7]\7 —
hence

|H| = |H : HON|-|HON| =2m-|A,| =2m - (n!/2)™"

Assume first that either m is even or r # 2. Since 2 < r < m,

r n\"" n! n! -l
H r = . Anm_r' DZ — . P « — . -
Mo | =l T = (5) 2 (52

i=1 n n—2
r.-nl™ 2. nlm n!m

- 2m—1n(n _ 2)r—1 = om—1pr = 2m—2nm'

By Lemma 11, the smallest value of |IIj 4| is when m is even, so the above
inequality for |II,| holds in all cases.
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Fix M; € & for all i € I. The smallest possible order of Ng (M;), i € I,
is when M; is imprimitive with two blocks, so

|Ng, (M;)] = 2 (n/2)!1%.
Since B; N Ng, (M;) # @, by Lemma 10 we have
1 m—1 )
Na(M™) A TL| = (2 |NS7L(Mi)\> B, Ny (M)| > (n/2)20n.
We deduce that

nl\™/t 2m !
o() < 2m ('3 ( o) ()" ﬂ%(n/m!“‘(m”)

reP(2m)

<2 (on/erevi) " (2m it )“

for m > 3 and n > 30, where we used the fact that t > 2 and ¢t = 3 if
m = 3.

Now assume that m = 2. We will show that ¢(H) = 0 by proving that
H NIy and H N1I; are empty for all i € I. We have H = Ng(A,) where

A, ={(a,a”) € A},
for ¢ € Aut(A4,) = S, and
Iyo = {(z1,22)7* : 217 € Dy, 297 € Do} U{(21,22)7y* : 217 € Dy, 297 € Dy},
I; = {(z1,22)y : myzoT € By}, 1€ 1.
For ¢ € I we have that if (x1,z9)y € H N1I; then
(0, )27 — (@, @) @e)(L03 — (21 q#227)) — (o#527 o71) € A,

So pxaT = w1, equivalently (pwze7)? = zym97 which is false since
(pxa7)? € A, and z1297 ¢ A,,. Therefore HNII; = @ for all i € I.

If (z1,79)7y? € H NIy then, for all a € A,,
(2, 0)Pm1" — (a0, a#)(@m0) (a7 o) € A,

So x1TY = @xoT, ie. @ lxiTp = wor. This is a contradiction because
17 and 97 are not conjugated in S, by definition of IIp,. Therefore
HNll, = @. ]



Chapter 3

Pairwise generation

3.1 The function w(G)

Definition 7. Let G be a finite group which can be generated by 2 elements.
The generating graph of G is the simple graph whose vertices are the el-
ements of G and two vertices are connected by an edge if together they
generate G. That is, for v,y € G, x # y, {x,y} is an edge if and only if
<$, y> =G.

As an example, we present the generating graph of the Symmetric group
S3 and the Quartenion group (Jg

Ss Qs
(12) P4
008
1 (2 13)
a%) () VY

Definition 8. A complete graph is a simple graph in which each pair of
graph vertices 1s connected by an edge. A clique of a simple graph is a
complete subgraph and its clique number is the maximal size of a clique.
We denote by w(G) the clique number of the generating graph of G. In
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other words, w(QG) is the maximal size of a subset S of G with the property
that (z,y) = G whenever x,y € S and x # y.

Note that w(G) > 3 if |G| > 3. Indeed, if =,y are two distinct elements
of G different from 1 and such that (x,y) = G then {z,y,xy} is a clique
of size 3. There are groups that realize this lower bound, for example

W(CQ X 02) = 3.

From the generating graph of the groups S3 and Qg we see that w(S3) = 4
and w(Qs) = 3.

Let ¢ be Euler’s totient function and let w(n) be the number of distinct
prime divisors of n.

Proposition 21. w(C),) = ¢(n) + w(n).

Proof. Let G :== C,, and let Y := {g € G : (g) = G}. Note that G has t
maximal subgroups, where ¢t = 7(n), call them M; = (x;) for i = 1,... t.
Clearly, Y U {x1,...,2:} is a clique, so w(G) = ¢(n) + m(n). Now assume
X is a clique of G. Then of course | X N M;| < 1 for all i =1,...,¢ hence
there exist y; € M; with (y;) = M; for i = 1,...,t such that

¢
X C (G— UMZ> U{yr, ..., ye)
i=1

Note that the elements of G that do not belong to the union Ul_; M; are
precisely the generators of GG, i.e. the elements g € G such that G = (g).
Therefore w(G) < p(n) + t. O

Let d(G) the minimal size of a subset S of G which generates G, i.e.
(S) = G. The group G is called d-generated if d(G) < d.

Proposition 22. If G is a finite 2-generated group and N < G then either
G/N is cyclic or w(G) < w(G/N).

Proof. If X is a clique of G of size w(G) then {xN : x € X} is a clique
of G/N, for obvious reasons. This implies that w(G) = |X| < w(G/N)
unless there exist z,y € X distinct such that tN = yN. In this case,
y~ 'z =n € N hence G = (x,y) = (z,n) < N(z) hence G/N is cyclic. [
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3.2 w(S xS)

Let S be a nonabelian simple group. We want to study w(S x S). By
Proposition 22, we know that w(Sx.S) < w(5). It is natural to ask whether
w(S x S) =w(S). In this section we prove that

Theorem 10. w(A, x A,) = w(A,) forn € {5,6,7,10} and for all n > 22
such that n =2 mod 4.

Let m = w(S) and {z1,...,2,} be a clique of S. We want to find a
permutation o € Sym(m) such that

T, = {(zi50)) : i=1,...,m}

is a clique of § x §. It is easy to show that the maximal subgroups of
S x S are of one of the following three types: M x S or S x M, where
M is a maximal subgroup of S, or {(x,z%) : x € S} where ¢ € Aut(S).
Therefore T, is a clique if and only if the following condition is satisfied:
whenever ¢ € {1,...,m}, if there exists ¢ € Aut(S) such that =} = 2,
then x% # x,(;) for every j # i. This is equivalent to saying that, whenever
i # j, the element (x;,z;) is not in the same Aut(S)-orbit as (24, Zs(j))-
Here Aut(S) acts on S x S by the rule (a,b)? = (a¥, b%).

In the following, with GAP [10] and Gurobi [22] we compute sets C
of elements of A, for n € {5,6,7} that are cliques for these groups (see
Appendix A.1), and try to construct sets T, that are cliques for A, x A,. For
m = w(S), we write the elements x1, ..., z,, of the clique C' = {x1, ..., 2}
in the order in which they appear.

In the case of S = Aj, we have w(S) = 8 and we choose
C = {(145), (235), (12354), (15342), (12453), (15423), (14235), (12345)}.
o = (12435)(678).
In this case, we can check with GAP that T} is a clique of A; x As.

In the case of S = Ag we have w(S) = 11 and we choose

C = {(14)(2653), (12)(3456), (1425)(36), (1546)(23), (1352)(46),
(14653), (12536), (24635), (13452), (12346), (12456)},
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o = (1,6)(2,7)(3,8)(4,9)(5,10)(11).

In this case T, is a clique of Ag X Ag because z; and z,(; have distinct
orders unless 7 = 11.

In the case of S = A7 we have w(S) = 27 and we choose

C = {(13642), (23745), (14657), (17)(26)(345), (12)(357)(46),
(15)(264)(37), (176)(24)(35), (152)(34) (67), (143)(27)(56), (13)(256)(47),
(127)(36)(45), (14)(25)(376), (1345276), (1634752), (1634257), (1632475),

(1234567), (1275364), (1536427), (1762534), (1723645), (1276534),
(1746253), (1643572), (1263745), (1653274), (1276534), (1742365)}.

Let o be the permutation of order 2 defined by (i) :=i4+12 for 1 < i < 12
and 0(25) = 25, 0(26) = 27, 0(27) = 26. The reason T, is a clique of
A7 x A7 is that x; and x,(; have different orders if 7 < 24 and, for all
ie{l,..., T}, setting a = wa5, b = wog, ¢ = x97, We have

b = ¢, cai # b, e =+ b.

Here 7 is any element of S7 such that ¢ = b7. Since Cs (z) = (z) for all
xr € {a,b,c}, this means that, for all ¢ € Aut(A7) such that ¢(a) = a
we have ¢(b) # ¢ and ¢(c) # b, moreover for all b € Aut(A;) such that

Y(b) = ¢ we have (c) # b.

In the case S = Ay, we have (see [34])

10 10 1/10
Aq) = 21972 = - = 256.
o(Ay) (1)+(3>+2(5) 56

In an unpublished paper, E. Swartz proved that o(Ajp) = w(Aj). Since
0(A1p) = w(Ayp), there exists a clique C' = {1, ..., 2956} of Ajp such that
v, € Hi— |JH;, Vie{l,.. . 256}, where H = {Hy,..., Hos} is the
minimal CO\j/Zring of Ay consisting of the maximal intransitive subgroups
(Sk x S10-1) N Ao with k € {1,3} and the maximal imprimitive subgroups
(S50.52) N Aqp.

1/10
In the clique C there are 5 ( . ) = 126 elements of cycle structure (5, 5),
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10 10
N 120 elements of cycle structure (7,3) and L) = 10 elements of

cycle structure (9,1). We order the elements of C' in the following way:

for 1 <7< 126, x; has cycle structure (5, 5),
for 127 < i < 246, x; has cycle structure (7, 3),
for 247 < i < 256, x; has cycle structure (9, 1).

Let o be the permutation defined by o(7) := i + 126 for 1 < 7 < 130 and
o(i) 1= i — 130 for 131 < i < 256.

2 15,5 G @3- )3 173 O,1)]...[(9,1)

? 1.0 126 | 127 |...] 130 | 131 |...| 246 | 247 |...| 256

o(7)| 127 |...] 252 | 253 |...| 256 1 |...] 116 | 117 |...| 126

The reason why T, is a clique of Ajg x Ajg is because z; and x,(; have
different cycle structures, so they are not conjugate in Aut(Ajg) = Sy, for
i=1,...,256.

We can repeat the above argument in the case n = 2 mod 4, n > 22.

In this case, we have (see [34] and [39])
n n n 1({n
A) =0(A,) =2"2= — .
<) =7t (1) (3) o+ (o) 2l
Lemma 14. Let my,...,m; be positive integers, m = mq + ... + my, and
assume that max{my,...,m} < m/2. Let A;, j = 1,...,t, be pairwise

disjoint subsets of Q@ = {1,...,m} such that |Aj| = m; for j =1,... 1.
Then there exists a permutation o of Q0 such that o(x) & A; for all x € A;,
forallj=1,... 1.

Proof. Order the elements of € so that Ay = {1,...,my}, Ay = {my +
1,...,my + mso} and so on. We can also assume that max{my,...,m;} =
my. Define o :  — Q by setting 0(i) ;=i +my foralli =1,...,m —my
and 0(i) :=i—m+my foralli =m—my+1,...,m. Since m; < m/2, we
have m — my; > my, so this permutation o satisfies the requirement. O

Let m = 2772, Order the clique C so that the first £ = %(7:/12) elements

have cycle structure (n/2,n/2) and the others follow grouped together
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according to their cycle structures. Since the maximum of %(7;}2) and (?),
jodd, 1 < j < n/2 — 2 is at most m/2, we know that there exists a
permutation ¢ of {1,...,m} as in Lemma 14, where of course the indices
1 are partitioned according to the cycle structures of the x;’s. Then T} is
a clique because x; and x,(;y have distinct cycle structures, so they are not
conjugate in Aut(4,) = S,.

3.3 w(GS)

Let S be a nonabelian simple group. Then S is 2-generated. This was
proved by Steinberg [35] for Chevalley groups, and by Aschbacher and Gu-
ralnick [1, Theorem B] for the other simple groups, using the classification
of the finite simple groups. It is also possible to show that the direct powers
S™ are not all 2-generated [10]. Therefore there exists a maximal n such
that S™ is 2-generated, call it §(.S). Set Gg = S°). Proposition 22 implies
that w(Gs) < w(S*) for all k£ with 1 < k < §(S).

d(S) can be computed as follows. Consider the set U consisting of
pairs (z,y) of elements of S such that (z,y) = S. The group Aut(S) acts
naturally on U by (z,y)* := (z% y*). This action is semiregular, in other
words its stabilizers are trivial. Indeed if a fixes (z,y) then z* = z and
y* = y so, being (z,y) = S, a must be the identity. In other words, the
Aut(S)-orbits of U have size | Aut(S)|. It is possible to prove that

| Aut(S)|

5(S)

equals the number of Aut(S)-orbits of U.
For example, if S = Aj, then 6(5) = 19 and w(Gs) < w(S) = 8.

In [35] A. Lucchini and G. Niero wrote numerous programs in GAP
language to show how the clique number of A7 decrease as n increase. The
result obtained is shown in the following Table:
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n w(AD)
1,2,3,4 8
5,6 7or8
7,8 7
9,10,11,12,13 | 6or 7
14 5,6 or7
15 Dorb
16 5
17 4orb
18,19 4

Table 3.1: The clique number of A?.

This implies that w(G4,) = 4.

The problem of understanding w(Gg) is quite open at the moment. We
could even ask whether it is true that w(Gg) is bounded above by a constant
for every nonabelian simple group S. In [30, Theorem 1.2] it is proved that,
denoting with m(S) the minimal index of a proper subgroup of S, we have
w(Gg) < C-m(S) for all nonabelian simple group S, where C'is an absolute
constant. In particular w(Gy,) < C - n.

3.4 The Lovasz Local Lemma

For the calculation of w(G), ), we follow the same strategy used in [15].
We use the following very important result that was proved by Lovasz and
Erdés in [13]. The formulation we use is taken from [3, Corollary 5.1.2]
(the “symmetric case”). Given an event E of a probability space, we denote
by P(FE) its probability and by E its complement. As usual e denotes the
base of the natural logarithm.

Theorem 11 (Lovész Local Lemma). Let Fy, Es, ..., E, be events in an
arbitrary probability space. Let (V,E) be a directed graph, where V =
{1,...,n} is the set of vertices, and assume that, for every i € V, the
event E; is mutually independent of the set of events E; such that (i, j) ¢ E,
meaning that

P (E N EJ) = P(E;),

jes
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for all nonempty subset S of {j € V : (i,j) & E}. Let d be the mazimum
valency of a vertex of the graph (V, E). If for everyi eV

1
P(E;) < ————
(£:) e(d+1)
then P (niEV E) > 0.

First we prove the General Case. Recall that, if A, B are two events,
then P(A | B) = P(AN B)/P(B) if P(B) > 0 and P(A | B) = 0 if
P(B) = 0. In the following proof we will use the following equalities,
which are easy to prove. If A, B, C are events, then
P(ANB|C)

P(B|C)
P(ANnB|C)=(1-P(A|C))-(1-P(B|ANCQ)),
P(ANB)=(1—-P(A))-(1—P(B|A)).

Note that the third equality is a particular case of the second one.

Theorem 12 (The Local Lemma; General Case). Let Fi, Es, ..., E, be
events in an arbitrary probability space. A directed graph D = (V, E)
on the set of vertices V.= {1,2,...,n} is called a dependency digraph for
the events Fq, ..., E, if for each i, 1 < i < n, the event E; is mutually
independent of all the events {E; : (i,7) ¢ E}. Suppose that D = (V, E)
15 a dependency digraph for the above events and suppose there are real
numbers x1,...,x, such that 0 < x; < 1 and

P(E) <z I[ (1—xy),
(i,))€FE

P(A|BNC) =

foralll <1< n. Then

P (n E) > 11— =),

In particular, with positive probability, no event E; holds.

Proof. We first prove, by induction on s, that for any S C {1,...,n},
S| =s <mn,and any i ¢ 5,

P (E N E]) < = (3.1)

jes
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This is certainly true for s = 0. Assuming it holds for all s < s, we prove
it for s. Put S; ={je S:(i,j) € E}, Sy =5\ 51. Then

) _ P (B N (Njes, Ej) | Nies, E1)
P (Njes, Ej | Mies, E1)

To bound the numerator, observe that, since E; is mutually independent
of the events {E; : | € Sy},

PlEn(NEB)INE)<P(B]NE)=PE) <o T 0-2)

JES leSsy leSy (1,J)eE
(3.3)

The denominator, on the other hand, can be bounded by the induction
hypothesis. Indeed, suppose S1 = {j1,j2,...,75-}. If r = 0, then the
denominator is 1, and 3.1 follows. Otherwise

P (E | N E; (3.2)

jeSs

P(EﬁmEhm...m@| N El)
€S,

- (1_P<EJ1‘ ﬂ Ell)) ) (1_P<EJ2 ‘?ﬁm ﬂ E))
€Sy lesS,y

....(1—P<EjT\Ejlm...ﬂEjr_lﬂ ﬂEl))

€Sy

> (1 =) (1 —xp) ... (1 =) :(_l_)TE(l—xj)- (3.4)

Substituting 3.3 and 3.4 into 3.2, we conclude that
jes
completing the proof of the induction.

The assertion of the Theorem now follows easily, as

P(ﬁ&)=@—P@m~ﬂ—PwﬂEm~~

(1—P(En|rﬁlEi)) > 11— ),

=1

completing the proof. []
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Now we prove Theorem 11.

Proof. If d = 0, the events E; are all independent from each other hence
P( E) =111 - P(E)) = [[(1—1/e) > 0.
eV eV eV

Otherwise, by the assumption there is a dependency digraph graph (V, F)
for the events Fy, ..., E, in which, for each i, [{j : (i,j) € E}| < d. The
result now follows from Theorem 12 by taking z; = 1/(d+ 1) < 1 for all i
and using the fact that, for any d > 1, (1 —1/(d+ 1)) > 1/e. O

3.5 Proof of Theorem 2

Let G = G, be the group defined in Section 2.3.1, that is, G =
A % (), where v = (1,...,1,7)6, 7 = (1 2) and § = (1...m). Our
objective in this section is to prove our second Theorem:

Theorem. [2, Theorem 2] Set G := G, . For fized m > 2, w(G) is asymp-

totically equal to (%(n%))m forn — oo, n even, and w(G)/o(G) tends to
1 asn — oo, n even.

Define
N ={Ng(M x M® x ...x M) : M e F},

where .%# is the family of maximal imprimitive subgroups of A, with 2
blocks, (S,/2092) N Ay, and ag, ..., a, € Ay.

Note that if H € N then H is conjugate to Ng(M™) in G, for some
M € %. The subgroups of G contained in N are maximal in G by [5,
Proposition 1.1.44] and [27].

Let B be the set of n-cycles in S,, and let II be the set of elements of
G of the form (z1,...,z,)y with the property that z;...z,7 € B. Note
that these sets are precisely what are called B_; and II_; in Section 2.3.
By Proposition 15, II is a conjugacy class of G.
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For H €¢ N and K < G, define
[C(H) N K]
|C(H)|
Let g € G be such that H = (Ng(M™))Y. By Lemma 10 and Proposition

15,

CH)=I1InH  fuK)=

[C(H)| = [H NI = [(Ne(M™))? 011} = [Ne(M™) N 11|
1 m—1
— (5N OD1) BN, (M)] = 2/n - (n/2)
Since H is a non-normal maximal subgroup of G, it is self-normalizing.

Since N is the conjugacy class of H in G,

| m, m
|| = |G ] = Qm—l(") < gni-)

(n/2)12m . 2m — 2m\n/2

Define the graph I" whose vertices are the two-element subsets v = { Hy, Hs}
of N, with Hy # H,. There is an edge between two vertices v and w if
vNw # @. Every vertex of I' has valency

d=2(l—2) < 2mn-DFL

Choose gy € C(H) uniformly and independently, for all H € N, and let
E, be the event (gp,, gm,) # G, equivalently (gm,,gm,) is contained in a
maximal subgroup of GG. It is easy to see that the mutual independence
condition is satisfied (see also [15, Section 3]).

Our aim is to prove that P(E,) < 1/(e(d + 1)) for every vertex v of T
If this is true, then the Local Lemma implies that there exists a choice of
gg in each C(H), H € N, with the property that (gg,, gg,) = G for all
H, # H, in N, therefore these elements form a clique of the generating
graph of G, in other words w(G) > |N|. This, together with item (3) of
Theorem 9, gives the claim of Theorem 2.

In the following discussion we will talk about the various types of max-
imal subgroups of GG, which we described in Section 2.3.

Let M be the family of maximal intransitive subgroups of S,,, My the
family of primitive maximal subgroups of S, different from A,, M; the
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family of maximal imprimitive subgroups of S,, with j blocks for j € {3,4},
M the family of maximal imprimitive subgroups of S, with at least 5
blocks.

Let H be the family of all maximal subgroups of G not in A and J =
{1,2,3,4,5,6}. We write H as the union H; U...UHs where the #,’s are
defined as follows. For j with 1 < j < 5, H,; is the subset of H consisting of
subgroups of the form Ng(M x M® x ... x M%), where as,...,a, € A,
Ng, (M) € M; and Ng,(M)N A, = M. Hg is the family of maximal
subgroups of G of diagonal type.

Fix a vertex v = {H;, Ho} of I'. For j € J, let E, ; be the probability
that (gm,, gm,) is contained in a member of H;. We clearly have

P(Ev) < Z P(Evyj)'
jed
Let [H] be the conjugacy class in G of a subgroup H of G and my,([H])
the number of different conjugates of H that contain a fixed element of
C(H;), i =1,2. This is well defined since II is a conjugacy class of G.

In the following sum, [H] varies over the set of conjugacy classes of

elements of H;. Arguing as in [15] we have, for j € J,
PUEL;) < S () i (1)

Let ¢, ; the number of conjugacy classes of subgroups in #; such that there
exists H in such a class such that H N C(H;) # @ and H N C(H,y) # 2.
We deduce that

P(E.) <y min( max (o, (H]) - Jn,(K)) . ()

Let s, be the number of subgroups H in H; such that H N C(H;) # @
and H NC(Hy) # @. Then

P(Bvj) < 20 fo(H) fu,(H) < $uj - max (fo, (H) - fr,(H)). ()
HeH,; J

Lemma 15. Let v = {Hy, Hy} be a vertex of I'. Then c,o < n for large
enough n, ¢, ; <1 for j € {3,4}, ¢,5 < 2¢/n and ¢, < m - 2.
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The bound ¢, » < n depends on the classification of finite simple groups.

Proof. Note that c, ; is less than or equal to the number of conjugacy classes
of subgroups in H,. Also, if H € H then we can write H = Ng(H N N)
and this allows to reduce to counting G-conjugacy classes of subgroups of
the form H N N in N. Also note that if M and L are conjugate in A,,
then Ng(M™) and Ng(L™) are conjugate in G by an element of the form
(¢,c,...,c) € A" such that M¢ = L. Therefore, for j with 1 < j < 5,
the number of conjugacy classes of subgroups in H; is less than or equal
to the number of conjugacy classes of subgroups of S, belonging to M;.
Therefore, for j # 6, we can use the bounds for ¢,; calculated in [15,

Lemma 5]. In other words ¢, 2 < n for large enough n, ¢, ; < 1for j € {3,4}
and ¢, 5 < 2¢/n.

It remains to bound c,s. We will use the fact that if X <Y are finite
groups with Y acting on a finite set {2, then denoting by ux the number
of X-orbits and by wy the number of Y-orbits of this action, we have
uy <ux < |Y @ X|-uy. Since n is larger than 6, Aut(A4,) = S, therefore
any two isomorphic diagonal subgroups A, , A, of the socle N = A" are
conjugate in the group S/ x (0), which contains G, via an element of S
It follows that the number of G-classes of isomorphic diagonal subgroups
is at most the number of A"-classes, which is at most |S, : A,|" = 2™.
We know that the number of isomorphism classes of diagonal subgroups
equals the number of prime divisors of m (see Section 2.3). Therefore
Cog < M- 2™, []

Lemma 16. Let v be a vertex of I' and assume that 4 divides n. Then
Su,4 < L.

Proof. Let v = {Hy, Ho} and let H € Hy. Write
H = Ng(R" x ... x R') € Hy, H;= Ng(M" x...x M) €N,

for i = 1,2, where each a;; and each b; belongs to A,,, Ng, (M;) is a maximal
imprimitive subgroup of S, with 2 blocks for i = 1,2 and Ng (R) is a
maximal imprimitive subgroup of .S,, with 4 blocks. Suppose that H N
C(H;)) = HNIINH; # @ for i = 1,2. We need to show that H is
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uniquely determined by these conditions, in other words, that each R% is
uniquely determined. By [I5, Proof of Lemma 5], it is enough to prove

that BN Ng, (M;”)N Ng (R%) # @ fori=1,2 and for j =1,...,m.
Fix i € {1,2} and let
h=(x1,...,2)y€ HNC(H;) = HN H; N 1L

Since h € II, by definition z;...x,7 € B. On the other hand, being
he H, R" x ... x R equals

We deduce that byz,7by' € Ng, (R) and bja;b;), € Ng, (R) for j =
1,....,m—1. Fix j € {1,...,m}. Multiplying everything starting from
the j-th term, we have

-1
bjxjxj—&—l T T . .. xj_lbj € NS,,L(R)-

It follows that the element x := z;x;41...2,72122... ;-1 belongs to
Ns (RY). Since h € H;, the same argument shows that z belongs to
Ns, (M;”). Furthermore

xTr = (xjxj—l—l c. Qjm'r) Sy LT (xjxj—i—l . xm,r)fl’

so x belongs to B. Therefore x € BN Ng (M;”) N Ng, (R%). O

Lemma 17. Let L < G and g € 11, then the number of conjugates of L
containing g 1S at most nm.

Proof. We argue as in the proof of [0, Lemma 4]. Let a(L) the number of
conjugates of L containing g. Note that a(L) does not depend on g because
IT is a conjugacy class in GG. Consider the set R of pairs (h, H) such that
h € HNII and H is conjugated to L in G. On the one hand, since II is
a conjugacy class of G, |R| = |II| - a(L). On the other hand, since L has
|G : Ng(L)| conjugates in G and |LY NII| = |[L NI for all g € G,

[Rl = |G = Na(L)| - |[LOT| < |G- L] - |L] = |G-
Therefore |II| - a(L) < |G| hence

2m - (n!/2)™
o1y <161 2m ()
I (n—1)! (n!/2)m-1
This concludes the proof. ]

=nm.
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Fix a vertex v = {Hy, Ho} of I' and let i € {1,2}, H := H;. By Lemma

17,

my([K]) <nm, VK <G.

We now bound fy(K) = |C(H) N K|/|C(H)| for K € H; and P(E, ;) for
j =1,...,6. Since II is closed under conjugation, when bounding fy(K)
we may assume that H = Ng(L™) where L is a maximal imprimitive
subgroup of A, with 2 blocks. As in Section 2.3, we will use Stirling’s
inequalities. By Lemma 10, C(H) = H N1I has size

(1)

(2)

(2/n) - (n/2)1" = (2/n)(n/(2¢))"".

Case j = 1.

Let K € H; be a conjugate of Ng(M™) in G, where M is a maximal
intransitive subgroup of A,. Notice that K NIl = @ by Lemma 10,

because Ng, (M) is intransitive and hence it does not contain n-cycles.
Therefore fy(K) =0, implying that P(FE,1) = 0.

Case j = 2.

Assume K is a maximal subgroup of G conjugate to Ng(M™) where
M™ = K N N, M is the intersection between A, and a primitive
maximal subgroup of S,, distinct from A,. Since |M| < 4™ by [37],
KN =G and K N N is conjugate to M™, we have

(C(H)YN K| <|K|=2m - |M|™ < 2m - 4™,

Therefore, by Inequality () and Lemmas 15, 17,

mn - 4™ e\ ™M
P(Evg) <n-mn-——r——— = Zp3. () )
(n/(2e))m" n

Case j = 3.

Assume K = Ng(M x M x ... x M%), M is a maximal imprimitive
subgroup of A, with 3 blocks, and as,...,a,, € A,. We will bound
the size of C(H)N K. Let g € C(H)NK = HNIINK, then
g = (x1,...,2)7y, where zy ... x,7 € B, and the fact that g € HN K
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implies that
X1y Tyy1, TyT € Ng (L),
a;w;a; € N, (M), fori=1,...,m—1,
where a; = 1, and a,,z,,7 € Ng, (M).
We deduce that
xy...2; € Ng (L) N Ng (M)aji, Vi=1,...,m—1.
ry...x,T € BN Ng (L)N Ng (M).

By induction, the number of choices for z; is |Ng (L) N Ng (M)a;11],
which is at most |Ng (L) N Ng (M)|, for every i = 1,...,m — 1.
Moreover, after choosing x1, ..., x,,_1, the number of choices for x,, is
|BNNg, (L)NNg (M)|, which is at most |Ng (L)NNg, (M)|. Therefore

The above discussion implies that, if BN Ng, (L) N Ng, (M) is empty,
then fy(K) = 0, so now we may assume that there is an element
o € BN Ng (L)N Ng (M). Then o is an n-cycle normalizing L and
M. Let A and A be the blocks of L, i.e. the two orbits of (¢?), and
let By, Bo, B3 be the blocks of M, i.e. the three orbits of (¢3). Then
the six orbits of (6% are ANDB;, i = 1,2,3, and AN B;, i = 1,2, 3,
forming a partition P of {1,...,n} consisting of 6 blocks of size n /6.
Clearly, Ng (L)NNg, (M) is contained in the stabilizer of the partition
P, which is isomorphic to S, /s 1 Ss, hence

CHNK Ng (L) Ng (M)[™ n n/6)16.61\"
g = LKL D000 2 ((0/01% 0"
|C(H)] |C(H)] 2\ (n/2)!

Applying Stirling’s inequalities we have that this is at most n®M™(1/3)".

By Inequality (*) and Lemmas 15, 17, the same bound holds for
P(E,3).

(4) Case j = 4.
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Assume K is a maximal subgroup of G' conjugate to Ng(M™) where
KNN=Mm"and M is a maximal imprimitive subgroup of A, with
4 blocks. Since KN = G and K N N is conjugate to M™, |K| =
2m - |[M|™, hence an application of Stirling’s inequalities gives

LI L

) S fe@] = o /2

2
Therefore, by Inequality (++) and Lemma 16, P(E, 4) < n®Wm(1/4)mm.
(5) Case j = 5.

Assume K is a maximal subgroup of G conjugate to Ng(M™) where
KNN = M"and M is a maximal imprimitive subgroup of A,, with 5
or more blocks. By [6, Theorem 3], |M| < n®WY - (n/(5¢))", and since
| K| = 2m - |M|™,

fu(K) < 2m - ((n/(5¢))" - nO(l))m < nOWLm <2>nm.

2/n - (n/(2e))" D

By Inequality () and Lemmas 15, 17, the same bound holds for
P(E,5).

(6) Case j = 6.

Assume K = Ng(A,) is a maximal subgroup of G of diagonal type,
so that |K| = 2m-|A,|™" where t is a prime divisor of m. Using ¢ > 2
and Stirling’s inequalities,

K| 2m(n!/2)™" nOm . 27\/E mn
i) S96m) = @fn)my2)en S (ﬁ) '

By Inequality (¥) and Lemmas 15, 17, the same bound holds for
P(E,g).

We now finish the proof of Theorem 2 by showing that P(E,) < FES)) d1+1)

for sufficiently large n. Recall that d < 2"". The above discussion implies
that

P(E, ) < n?0m(2/5)"
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forall j =1,...,6, and since
6
P(EU) < z%P(EU,j)a
j=

it suffices to show that n®W™(2/5)m™ < (1/2)™", which is true for large
enough n.



Appendix A

w(G) for small groups G

As we discussed in the introduction, using GAP [16] and GUROBI [22],
it is possible to calculate w(G) for groups G of small orders. We will discuss
some cliques and coverings of some small groups. The stated facts about
the symmetric groups are known.

A.1 Computing a clique for A5 with Gurobi

Using a GAP code, as used in [25] and [19] for the calculation of o(G), we
can compute the value of w(G). We will show an exemple of this calculation
for G = A;. We generate a file ("filename.lp”) on GAP. The first step is
read the file generated by GAP on Gurobi in the following way:

model=read("filename.lp"),

and optimize

model.optimize ().

After optimizing, the command

model .getVars ()
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shows the values of all the variables.

In many models, only a small portion of the variables have nonzero
values. In that case, it is usually more convenient to get a list of only the
variables that have nonzero values, as follows:

[v.varName for v in model.getVars() if v.x>le-6].

This will generate a list, in which the values that appear are the elements
of G that form the clique.

For G = As, on GAP, doing
el :=Enumerator(G) ;
The list obtained is

[el[3], el[16], el[39], el[52], el[54], el[57], el[58],
el[5911;

and, in this case, this elements form a clique. The elements are, re-

spectively, (145), (235), (12354), (15342), (12453), (15423), (14235), and
(12345).

A2 The symmetric group Sj

The minimal covering of S5 consists of A5 together with the intransitive
maximal subgroups S7 x Sy and S5 x S3. The number of copies of 57 x Sy

5
in Sy is <1> = 5 subgroups, and the number of copies of S5 x S3 in S5 is

5
(2) = 10 subgroups. Therefore

o(S5) =1+ (f) + (;) =16 =2°"". (See [J])
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On the other hand, a clique of S5 is given by the set

C = {(1532), (1534), (1234), (142)(35), (123)(45), (135)(24), (12)(354),
(154)(23), (15)(243), (152)(34), (14)(235), (13)(245), (143)(25)},

and |C| = 13.
In [39] L. Stringer showed that this clique has maximal size. Therefore

w(S5) =13 < 0(S5) =16 =271,

A.3  The symmetric group Sg

The unique minimal covering .# of Sg is given by Ag and the two con-
jugacy classes (each of size 6) of maximal subgroups isomorphic to S5 (one
consists of intransitive subgroups, the other one consists of primitive sub-
groups), and

o(S¢) =1+6+6=13. (See [1])

A maximal clique is given by the set

C = {(23)(456), (12456), (124356), (124536), (126)(34),
(13)(245), (135264), (145236), (15)(346), (152346), (16)(235)}.

In this case w(Sg) = 11 < o(Sg) = 13.

A4 The symmetric group Sg

A minimal covering of Sy is given by Ag, the intransitive maximal sub-
groups of type Sy x Sg and the imprimitive maximal subgroups of type

S, 1S5, The number of copies of Sy x Sg in Sy is (i) = 28 subgroups, and

1/(8
the number of copies of S, 1Sy in Sy is 3 ( 4) = 35 subgroups. Let the set

of these subgroups be called .Z .

o(Ss) =1+ @ + ;@ = 64. (See [29])
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Using the optimization method, we can prove that w(Sg) = o(Ss) = 64.

A maximal clique is given by the set

C = {(27)(35486), (12)(36847), (12458367), (12573648), (12586)(37),
(12647583), (12645738), (132)(475)(68), (135)(24)(678), (13724586),
(13)(25478), (13647258), (13762584), (13847256), (13268745),
(134)(26)(578), (13482756), (13856427), (138)(274)(56), (13286574),
(13672845), (14653782), (142 (14863)(25), (146)(253)(78),
(14862753), (14563278), (14) ( )(36), (15372)(46),
(15)(236)(478), (15326478), (15368274), (162)(387)(45), (16753)(48),
(16783524), (16)(273)(458), (16273485), (16542738), (165)(283)(47),
(16428)(57), (167)(28)(354), (178)(23)(465), (17243)(586), (17324685),
(17825643), (17863254), (17)(256)(348), (17638254), (173)(264)(58),
(17546328), (175)(286)(34), (17453628), (18764532), (18435762),
(182)(35)(467), (185)(234)(67), (18623745), (18524376), (18256734),
(18)(254)(367), (18742653), (18754326), (18426375)}.

)(38)(576),
(276)(358), (147)(285
)

A5 The symmetric group Sy

L. Stringer [39] proved that
235 < w(Sy) < 244 < 256 = o(.y),

and the value of o(Sg) comes from [25]. Let us see how she managed this.
We know that G = S9 has a minimal covering .# of size 256 consisting of
Ag and all of the maximal intransitive subgroups,

10+ () )

Let G := Sy and let X be a maximal clique of G, |X| = w(G). Since
any two even permutations belong to Ag, there is at most one element in
X which is a product of an odd number of disjoint cycles. Let a be the
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number of elements of type (3,6) in X, let b be the number of elements of
“even” type, (1,8), (2,7) or (4,5) in X and let ¢ be the number of elements
which are product of 4 or more disjoint cycles in X, so that | X| =a+b+c.

We have 0 0 0
b<1 = 172.
(1) + )+ () =17

Every element of type (3,6) belongs to 4 imprimitive maximal subgroups

|So]
‘53253|

of GG, and since there are precisely = 280 imprimitive maximal

subgroups, we obtain
a < 280/4 = 70,
which is less than 5] = 84. An easy inspection shows that any element

of Sy which is a product of 4 or more disjoint cycles lies in at least 10
members of .Z, so since each member of .Z contains at most one element
of X, we deduce that

X|+9c=a+b+ 10c < o(G) = 256,
so | X| < 256 —9c. We deduce that

256 — | X|

X =a+bte<T0+1724 =

Therefore w(G) = | X| < 243.

Stringer also found a clique of size 235, proving that w(G) > 235.

Using the optimization method, we can prove that 239 < w(G) < 241.

A.6  The symmetric group St

A minimal covering .#Z of Sy, is given by Ay, the intransitive maximal
subgroups of type S; x Sy, the imprimitive maximal subgroups of type
S5 1Sy and the maximal subgroups of type S3 x S7 with 1 not belonging
to the orbit of size 3. This last set partitions the elements of cycle type
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1
(3,3,4). The number of copies of S; x Sy in Sy is ( 10) = 10, the number of

1,10
copies of 5515 in Sy is 5 ( 5 ) = 126 subgroups and the number of copies

9
of S3 x S7 with 1 not belonging to the orbit of size 3 in Sj; is (3) = &4
subgroups. These subgroups could be our .Z.

o(Su) =1+ (110) " (103‘ 1) +;(150) = 221, (See [27])

Using the optimization method, we can prove that w(Sip) = 191.
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