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Resumo

Neste trabalho, estudamos hipersuperficies isoparamétricas em variedades produto de di-
mensao 4. Primeiramente, caracterizamos e classificamos as hipersuperficies isoparameétricas
com curvaturas principais constantes nos espacos produto le x@é, em que @31, é uma forma
espacial com curvatura seccional constante ¢;, para ¢; € {—1,0,1} e ¢; # co. Mostramos
que tais hipersuperficies sdo dadas por conjuntos abertos de uma hipersuperficie produto,
em que um dos fatores é uma curva de curvatura constante, ou de uma estrutura diagonal
em H? x R?, construida a partir de horocirculos em H? e retas em R?.

Em seguida, classificamos as hipersuperficies em Q2 x R que possuem as trés curvat-
uras principais constantes distintas, em que neste caso ¢ € {—1,1}. Mostramos que tais
hipersuperficies sdo cilindros sobre superficies isoparamétricas de Q2 com duas curvaturas
principais distintas e ndo-nulas. Também provamos que as hipersuperficies com curvaturas
principais constantes em Q2 x R so isoparamétricas. Além disso, fornecemos uma condicio
necesséria e suficiente para uma hipersuperficie isoparamétrica em Q2 x R ter curvaturas
principais constantes.

Finalmente, descrevemos a evolucdo pelo fluxo da curvatura média de hipersuperficies
isoparamétricas em variedades produto de dimensao 4. Mostramos que a evolucao de hiper-
superficies isoparamétricas de variedades Riemannianas pelo fluxo da curvatura média é
dada por uma reparametrizacao do fluxo por hipersuperficies paralelas em um curto es-
paco de tempo, desde que a unicidade do fluxo de curvatura meédia seja valida para os
dados iniciais e o espaco ambiente correspondente. Através deste resultado, descrevemos a
evolucao das hipersuperficies classificadas na primeira e segunda partes do trabalho. Tam-
bém descrevemos as evolucdes de hipersuperficies isoparamétricas em S? x S? e H? x H?,
classificadas por Urbano (2019) e Dong Gao, Hui Ma e Zeke Yao (2022), respectivamente,
e das hipersuperficies isoparamétricas em Q2 x R com g curvaturas principais constantes
distintas, g € {1, 2}, classificadas por Chaves e Santos (2019).

Palavras-chave: hipersuperficies isoparameétricas, espacos produto, hipersuperficies par-
alelas, curvaturas principais constantes, fluxo da curvatura média.



Summary

In this work, we study isoparametric hypersurfaces in product manifolds of dimension
4. First of all, we characterize and classify the isoparametric hypersurfaces with constant
principal curvatures in the product spaces le X QEQ, where le_ is a space form with constant
sectional curvature ¢;, for ¢; € {—1,0,1} and ¢; # co. We show that such hypersurfaces
are given as open subsets of either a product hypersurface, where one factor is a curve of
constant curvature, or a diagonal structure in H? x R?, constructed from horocycles in H?
and straight lines in R2.

Next, we classify the hypersurfaces in Q2 x R with the three distinct constant principal
curvatures, where in this case ¢ € {—1,1}. We show that such hypersurfaces are cylin-
ders over isoparametric surfaces of Q2 with two non-null distinct principal curvatures. We
also prove that the hypersurfaces with constant principal curvatures in Q2 x R are isopara-
metric. Furthermore, we provide a necessary and sufficient condition for an isoparametric
hypersurface on Q2 x R to have constant principal curvatures.

Finally, we describe the evolution by the mean curvature flow of isoparametric hyper-
surfaces in product manifolds of dimension 4. We show that the evolution of isopara-
metric hypersurfaces of Riemannian manifolds by the mean curvature flow is given by a
reparametrization of the flow by parallel hypersurfaces in a short time, as long as the
uniqueness of the mean curvature flow holds for the initial data and the corresponding am-
bient space. Through this result, we describe the evolution of the hypersurfaces classified
in the first and second parts of the work. We also describe the evolutions of isoparametric
hypersurfaces in S? x §? and H? x H?, classified by Urbano (2019) and Dong Gao, Hui Ma
and Zeke Yao (2022), respectively, and of isoparametric hypersurfaces in Q3 x R with g
distinct constant principal curvatures, g € {1, 2}, classified by Chaves and Santos (2019).

Keywords: isoparametric hypersurfaces, product spaces, parallel hypersurfaces, constant
principal curvatures, mean curvature flow.
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Introduction

A hypersurface M™ of a Riemannian manifold M+ is said to be isoparametric if it has
constant mean curvature as well as its nearby equidistant hypersurfaces (i.e., the correspon-
dent mean curvatures depend only on the distance to M). Equivalently, we say that M is
isoparametric if it is the level set of some isoparametric function defined on M. Following
Dominguez-Vazquez [15], the first notion of isoparametric surfaces appeared in 1919 in the
work of C. Somigliana [39], which deals with the relations between the Huygens princi-
ple and geometric optics. This study represented the beginning of an important research
line in Differential Geometry, namely the isoparametric hypersurfaces studied by renowned
mathematicians such as Beniamino Segre, Elie Cartan, and Tullio Levi-Civita.

When the ambient space is a space form, i.e., a simply connected complete Riemannian
manifold with constant sectional curvature, the previous definition of isoparametric hyper-
surface is equivalent to saying that the hypersurface has constant principal curvatures (see [7]
and [15]). However, in other ambient spaces of nonconstant curvature, the equivalence be-
tween isoparametric hypersurfaces and hypersurfaces with constant principal curvatures
may no longer be true. For instance, Q. M. Wang, in [43], found examples of isoparametric
hypersurfaces in complex projective spaces that do not have constant principal curvatures.
For more examples, we refer [12], [13] and [21]. Recently, A. Rodriguez-Vazquez, in [33],
found an example of a non-isoparametric hypersurface with constant principal curvatures.
Another example was given in [22].

In this thesis, we study isoparametric hypersurfaces in product manifolds of dimension
4. More precisely, we consider as ambient spaces the products @21 X QEQ, for ¢; € {—1,0,1}
and ¢1 # cg, and Q2 x R, for ¢ € {—1,1}, where Q" denotes denotes the unit n-sphere S", if
¢ =1, the n-dimensional Fuclidean space R”, if ¢ = 0, and n-dimensional hyperbolic space
H", if ¢ = —1. Furthermore, among other examples, we study the evolution by the mean
curvature flow of isoparametric hypersurfaces that appear in such ambient spaces.

This thesis has four chapters. Chapter 1 is devoted to a brief presentation of some facts
already known in the literature about Jacobi field theory and isoparametric hypersurfaces,
which will be very useful throughout this work.

In Chapter 2, we consider the Riemannian products of 2-dimensional space forms le X

22, with constant sectional curvatures ¢; and ca, respectively, with ¢; # co, where ¢; =1, 0
or —1, ¢ = 1, 2. Such a kind of ambient space was firstly considered in this context by
Urbano [41], where it was obtained, among other results, the classification of isoparametric
hypersurfaces in S? x S?, i.e., when ¢; = ¢3 = 1.

The case where ¢; = 1 and ¢ = 0, that is, when the ambient space is S? x R?, was
considered by Julio-Batalla in |25] where he obtained a complete classification of isopara-
metric hypersurfaces with constant principal curvatures. Using some ideas developed by
Urbano in [41], Julio-Batalla showed that if 3 is an isoparametric hypersurface in S? x R2,
with constant principal curvatures and unit normal N = Nj + No, then |Nj| and |Na| are
constant, where N7 and Ny denote the components of N in S? and R?, respectively. The



classification continues by showing that |[N;| = 1 and |[N3| = 0 or |[N;| = 0 and |Ny| = 1.
Thus, the hypersurface families obtained are S x R, S? x S'(r) (for » € R*), or S!(¢) x R?
(for t € (0,1]). Recently, and also following some of Urbano’s ideas and techniques, D. Gao,
H. Ma and Z. Yao [19] classified, among other results, the isoparametric hypersurfaces of
H? x H? and the hypersurfaces with at most two distinct constant principal curvatures. The
case of hypersurfaces of H? x H? with three distinct principal curvatures was also considered
under some additional conditions.

In this work, we extend and improve the results of [25] in the following sense. Considering
the ambient space Q2 x Q2 with ¢; € {—1,0,1} and ¢; # ¢z, we prove (see Theorem 2.1)

Theorem 0.1. Let ¥ be an isoparametric hypersurface in le X ng, with ¢; € {—1,0,1}
and c1 # ¢z, and unit normal N = N1+ No, where N1 and No denote the components of N
n le and sz respectively. Then the principal curvatures of X are constant if and only if

|N1| and |Na| are constant.

In addition to the converse of a result obtained by Julio-Batalla, which states that if |V |
and |Na| are constant, then 3 has constant principal curvatures, Theorem 0.1 also provides
the equivalence for the entire class of ambient spaces Q2 x QZ, with ¢; € {-1,0,1} and
c1 # co. To get this Theorem, we use the theory of Jacobi fields, based on the ideas
developed by Dominguez-Vazquez and Manzano in [16], to analyze the extrinsic geometry
of hypersurfaces parallel to . It is interesting to note that Jacobi field theory allows us
to obtain an alternative proof of Julio-Batalla’s result. Moreover, we obtain the following
general classification of isoparametric hypersurfaces with constant principal curvatures in

2 x Q2,, with ¢; € {~1,0,1} and ¢; # ¢, which includes the classification for S x R?

given in [25] (see Theorem 2.2):

Theorem 0.2. Let ¥ be an isoparametric hypersurface with constant principal curvatures
mn le X Qé, with ¢; € {—1,0,1} and ¢1 # ca. Then, up to rigid motions, ¥ is an open
subset of one of the following hypersurfaces:

a) Cl(kj) x Q% or Q% x C'(k;), where C'(k;) is a complete curve with constant geodesic
curvature Kj in ng

b) U(R3) C H? x R?, where ¥ : R? — H? x R? is an immersion given by

(s, u,v) = e % (afu),0) + (cosh(—b s),0,sinh(—bs), Vos)
(0.1)
+ (6, Po + W(ﬂ)),

where H? C L2 is given as the standard model of the hyperbolic space in the Lorentz
2 2
U
3-space L3, the curve a is given by a(u) = (2, U, —% . po € R, Vy and Wy are
constant orthogonal vectors in R? such that ||Wo|| = 1 and b = /1 — ||Vol|?, with

b+ {1,0}.

Remember that, besides the geodesics, the complete curves C 1(/€j) C ng with constant
geodesic curvature are given by: S!(t) C S? for ¢ € (0, 1); circles, horocycles or hypercycles
in H? (see for example [36]); and S'(r) C R? for » € R*. Regarding the hypersurfaces
given in Theorem 2.2.b), geometrically, ¥(R3) provides a hypersurface given as the union
of a family of geodesically parallel surfaces given by the products C!(1) x R, where C'(1) C
H? is a horocycle (see Remark 3). Furthermore, ¥(R?) is an extrinsically homogeneous
hypersurface, i.e., it is a codimension-one orbit of a subgroup of the group of isometries of
H? x R? (see Remark 4).
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Chapter 3 is devoted to the study of hypersurfaces with constant principal curvatures in
the product spaces Q3 x R, where Q2 denotes the unit sphere S? if € = 1, and the hyperbolic
space H? if ¢ = —1. Our main objective is to classify the hypersurfaces of Q2 x R that have
the three distinct constant principal curvatures. As a consequence, we will conclude that the
hypersurfaces of Q2 x R with constant principal curvatures are isoparametric. Furthermore,
we will provide a necessary and sufficient condition for the converse to hold.

In recent years, several geometers have dedicated themselves to the study of hypersur-
faces in the product spaces Q7 x R. In [40], Tojeiro locally classified the hypersurfaces of
QI x R that have a special field T" as a principal direction, and with that, he also obtained
the classification of hypersurfaces with constant angle. Given a hypersurface ¥ in Q2 x R,
the tangent field T" and the angle function 6 are defined by

Oy =T + cos(O)N,

where N is the unit normal field to ¥ and 0; is a unit field tangent to the second factor R.

In [8], Chaves and Santos classified the hypersurfaces in " xR and H" x R, n > 2, with
g distinct constant principal curvatures, g € {1,2,3}, where n > 4 if g = 3. Moreover, they
proved that such hypersurfaces are isoparametric in those spaces. Motivated by the results
of Chaves and Santos, in this work, we obtain the classification of the hypersurfaces with
constant principal curvatures when g = 3 and n = 3, that is, we classify the hypersurfaces
in Q2 x R that have the three distinct constant principal curvatures. In order to do that, we
show that if X is a hypersurface of Qg X R with three distinct constant principal curvatures,
then 6 is constant. Using this characterization, we obtain the following result (see Theorem
3.6):

Theorem 0.3. Let 33 be a hypersurface of Q2 x R with three distinct constant principal
curvatures. Then 32 is an open part of the following hypersurfaces:

a) S*(c1) x St(ez) x R, when e = 1;
b) St(c1) x H'(co) x R, when e = —1,

1 1 c
where ¢| # ca, — + — = € and the principal curvatures of ©3 are given by 0, L

Cc1 c2 Vel +c2

and

—cy
Vel teg

The theorem above complements the classification of the hypersurfaces of Q7 x R that
have g distinct constant principal curvatures, g € {1,2,3}, stated in [8, Theorem 6.1].
It is worth mentioning that the problem when g > 4 remains open. Furthermore, as a
consequence of Theorem 0.3 and Chaves and Santos classification mentioned above, we
show that (see Corollary 3.7)

Corollary 0.4. Let 333 be a hypersurface of Q2 xR with constant principal curvatures. Then
Y3 is isoparametric.

In the second Theorem of the Chapter 3 (Theorem 3.8), we obtained a necessary and
sufficient condition for an isoparametric hypersurface in Q2 x R to have constant principal
curvatures. In [16], Dominguez-Vazquez and Manzano, using Jacobi field theory, showed the
equivalence between being isoparametric and having constant principal curvatures is true
for hypersurfaces of homogeneous 3-manifolds with 4-dimensional isometry group, which
include the product spaces S? x R and H? x R. Besides that, a classification for such
surfaces is given and, in the case of product spaces, they showed that isoparametric surfaces
of Q% x R have constant angle function §. For dimension n = 3, using a similar approach
employed by Dominguez-Vazquez and Manzano, we show that

11



Theorem 0.5. Let ¥ be an isoparametric hypersurface of Q2 x R. Then ¥ has constant
principal curvatures if and only if 0 is constant.

We point out that Chaves and Santos [8] showed that an isoparametric hypersurface ¥ of
Q xR having T as principal direction has constant principal curvatures if and only if, ||T||
is constant. Therefore, Theorem 0.5 tells us that, at least for n = 3, we can improve Chaves
and Santos’ result, since we do not use the assumption of 7" being a principal direction. In
fact, since d; is an unit vector field, it follows that ||T'||> + cos(#)? = 1. Thus, Theorem 3.8
says that an isoparametric hypersurface in Q2 x R has constant principal curvatures if and
only if ||T|| is constant.

In Chapter 4, our goal is to study the evolution of isoparametric hypersurfaces of a Rie-
mannian manifolds by the mean curvature flow. Given a hypersurface M" of a Riemannian
manifold M+, we say that M evolves by the mean curvature flow (MCF) if there is a time-
dependent family of smooth hypersurfaces with M as initial data such that the velocity of
the evolution at each point of such family is given by the mean curvature vector field of the
correspondent hypersurface at that point. There is an extensive literature on the study of
MCF, mainly when the ambient space M"*! is the Euclidean space R"*!. However, cases
where the ambient space is a general Riemannian manifold and when the codimension is
greater than one have also been considered recently. We suggest the surveys [10,38] and
references therein for a good overview of the mentioned topics.

In [37] the authors showed that a hypersurface M™ of a space form QPT! is the ini-
tial data for a solution for the MCF given by a reparametrization of the flow of parallel
hypersurfaces if and only if M™ is an isoparametric hypersurface. In the sequence, the au-
thors showed in [37] that the MCF given in this way is reduced to an ordinary differential
equation, and provided explicit solutions. From such solutions, the exact collapsing times
of the singularities are provided. Following the ideas of [37|, a version of their results was
provided in [18], for a class of isoparametric hypersurfaces of the product spaces Q7 x R and
Q" x S!. Recently, the author in [28] also used a reparametrization of the flow by parallel
hypersurfaces of isoparametric hypersurfaces to consider the Weingarten flow in Rieman-
nian manifolds, which has as a particular case the MCF. In this case, it is important to
point out that, following [5], isoparametric hypersurfaces are defined in [28] as those whose
parallels have constant principal curvatures, thus including the case in which the ambient
spaces are space forms. For submanifolds with higher codimensions, the MCF with initial
data given by an isoparametric submanifold was considered in [30,31]|, when the ambient
space is a space form. For a class of ambient spaces (which includes the space forms with
non-negative curvature), the relation between singular Riemannian foliations in which the
leaves are isoparametric submanifolds (in the sense of [23]) with the MCF was investigated
in [2,3,29].

Here, we characterize reparametrizations of the flows by parallel hypersurfaces as the
unique solution for the MCF with isoparametric hypersurfaces as initial data in general
ambient spaces. Namely, for an ambient space given by a complete Riemannian manifold
such that the curvature and its covariant derivatives up to order 2 are bounded, and with
injectivity radius bounded from below by a positive constant, we prove that (see Theorem
4.3)

Theorem 0.6. Let M1 be a complete Riemannian manifold such that the curvature and
its covariant derivatives up to order 2 are bounded and the injectivity radius is bounded
Jrom below by a posilive constant. Let X" be a hypersurface of M™ 1 such that the solution
F X" x[0,T) — M™ of the MCF with initial data X" has bounded second fundamental
form on [0,T_] for all T_ < T. Then, ¥" is isoparametric if and only if F' is the flow by
parallels for some g < T. Moreover, suppose that [0,0) is the maximal interval where F is

12



a reparametrization of the parallel flow. If § < T then F(.,0) is a hypersurface that is not
1soparametric.

This result provides an extension to general ambient spaces of [18,37] and an extension
of [28] to general isoparametric hypersurfaces when the MCF is considered. Moreover, we
also supply an improvement of their results since we show that isoparametric hypersurfaces,
besides providing solutions of the MCF through their parallel hypersurfaces, uniquely de-
termined such evolution as initial data, that is, the flow is well described through the flow
by parallel hypersurfaces and the solution of an ordinary differential equation. A crucial
element for proving the theorem above is the use of a uniqueness theorem for the solution
of MCF for general ambient spaces. The compact case is provided by Lemma 3.2 in [24].
For the complete non-compact hypersurfaces, the uniqueness is obtained under conditions
on the curvature of the ambient space, and on the second fundamental form (see [9]).

We end Chapter 4 by describing the evolution by the mean curvature flow of isopara-
metric hypersurfaces in product manifolds of dimension 4, classified in Chapters 2 and 3.
Moreover, we also describe the evolutions of isoparametric hypersurfaces in S? x S? and
H? x H?, classified by Urbano (2019) and Dong Gao, Hui Ma and Zeke Yao (2022), re-
spectively, and of isoparametric hypersurfaces in Q3 x R with ¢ distinct constant principal
curvatures, g € {1, 2}, classified by Chaves and Santos (2019).

13



Chapter 1

Basic concepts and notations

Throughout this chapter, we will briefly establish the basic notations and concepts that
will be common in the remaining chapters. For a better reading of this work, specific
concepts will be introduced at the beginning of each chapter.

1.1 The ambient spaces

In this brief section, in order to establish some notations, we will define the ambient
spaces in which we will work throughout the thesis.
Let R™ be the m-dimensional Euclidean space with the canonical metric

ds® = da? + dad 4 ...+ da?,,
and L the m-dimensional Lorentzian space with the canonical metric
ds® = —dx? + das + ...+ da?,.

Let QF be n-dimensional space form of constant sectional curvature c. When ¢ = 0,
we have the n-dimensional Euclidean space R™. For ¢ # 0, we have the following cases: if
¢ > 0, QF will denote the n-dimensional sphere

1
S"(¢c) = {(331, oy Tnp1) ER™MH 2t v a2l 4+ a2l = } c R™,
c
and, if ¢ < 0, QF will denote the n-dimensional hyperbolic space
1
H"(¢c) = {(a:l7 ey Tpp1) ELMT —2f v a3+ a2, = c} c L

In particular, we have the unit sphere S"(1) = S™ if ¢ = 1, and the hyperbolic space
H"(—1) = H" if ¢ = —1. Thus, S® and H" will be considered as submanifolds of R**! and
L+ respectively, with the metric induced by such spaces.

In Chapter 2, we will consider the product space @31 X Qé, where le and QEQ are
two 2-dimensional space forms of constant sectional curvatures c¢; and co, respectively, with
¢i € {—1,0,1} and ¢; # c2, and in Chapter 3, we will consider the product space QI x R,
¢ # 0, with the metric induced by the ambient space, given by S” xR, if ¢ = 1, and H" x R,

ife=—1.

14



1.2 Jacobi field theory

In this section we shall present the notation, basic concepts and results of the Jacobi
field theory, which will be used in this work. This theory is an important tool to analyze
the extrinsic geometry of hypersurfaces equidistant to any hypersurface. In what follows,
we will give a brief description of this theory, following [4] and [15], where the reader can
find more details about it. .

Given a hypersurface X" of a Riemannian manifold M™*+! with unit normal vector field
N, let € be a positive real number and, for r € (—¢,¢), consider the application

9,30 o N

p = exp,(rN(p)), (1)

where exp,, : TI,M — M denotes the exponential map of M+ at p € X. For € > 0 small
enough, the map ®, is smooth and it parametrizes the parallel displacement of 3 at an
oriented distance r in the direction N. The parallel hypersurface ®,(3) will be denoted by
hI

Let v: 1 — M be a geodesic parametrized by arc length with0 € I C R, p=~(0) € &
and 4(0) = N(p). Let ¢: I — X be a smooth curve with ¢(0) = p and ¢(0) € 7,3, where &
denotes the tangent vector field of a smooth curve a. Observe that V(s,t) = ®.(c(s)) = vs(t)
is a smooth geodesic variation of v = g, where ¢(s) = v5(0) € ¥ and N oc¢(s) = 75(0) €
TCL(S)E for all s. This variation generates the Jacobi field £(s) = d%V(s, 0) determined by
the initial values

E0)=(0) eT,E and €(0) = —AE(0),

where A is the shape operator of ¥ and & denotes the covariant derivative of £ along v. A
Jacobi field & along v whose initial values satisfy these two conditions is called an »-Jacobi
field. When ¥, is a hypersurface, the main properties of 3-Jacobi field in relation to the
extrinsic geometry of X, are given as follows:

i) Ty Xr = {&(r) : € is a X-Jacobi field along ~};

ii) 4(r) provides a unit normal to 3, with corresponding shape operator A™ given by

ATE(r) = =€'(r).

In what follows, we describe another very interesting way to determine the shape operator
AT
For each r let us define the endomorphism D(r) : 4(r)* — 4(r)+ as follows. If Z € T,%
and ﬁy is the parallel transport along ~, then D is defined such that £ = D o ﬁvZ is the
Jacobi field along v with initial values £(0) = Z and &'(0) = —AZ. It follows that D is a
solution of N
D"+ R(D,%)y =0, D(0)=idpyx, D'(0)=-A4, (1.2)

where D’ and D" stand for the first and second covariant derivatives of the tensor field D,
respectively, and idr, s is the identity operator of T,3. Since ¥, is a hypersurface, then
D(r) is regular and we have that

A"(Do P,Z)(r) = AT(E(r)) = —€'(r) = —(D o P,Z)'(r) = —D'(r) P, Z.
Therefore, the shape operator of the parallel hypersurface M, associated to the unit normal

4(r) is given by
A" = —(D' o DY (r). (1.3)
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Consequently, by the Jacobi formula, the mean curvature of the hypersurface ¥, is given by

(det D)’

h(r) = ————%
(r) ndet D

(r). (1.4)

1.3 Isoparametric hypersurfaces

In this section, we introduce some known facts about isoparametric hypersurfaces of
Riemannian manifolds in general. For more details on this topic, the reader can look up the
reference [15].

We start by presenting the definition of isoparametric function. According to [15], this
definition was possibly introduced by T. Levi-Civita [27] in 1937.

Definition 1.1. Let (M, g) be a connected Riemannian manifold. A non-constant smooth
function f: M — R s called isoparametric if there exist smooth functions a,b: R — R
such that

() IVFI? = a(f) and (2) Af =b(f).

The smooth hypersurfaces ¥, = f~1(r) for r regular value of f are called isoparametric
hypersurfaces. Note that ||V f|| and Af are constant along the level sets of f. As we can
see in [15], the condition of the gradient of an isoparametric function f means, roughly
speaking, that its level sets are equidistant to each other. On the other hand, the condition
on the Laplacian of f has also a geometric meaning: the regular level sets of f have constant
mean curvature. These facts are summarized in the following theorem (see [15]).

Theorem 1.1. Let M be a Riemannian Manifold. Let f : M — R be an 1soparametric
map v € R a regular value for f, and X = f~1(r) the corresponding level hypersurface. Then
> is an isoparametric hypersurface. .

Conwversely, if 3 is an isoparametric hypersurface in M, then for each p € X3 there is an
open neighborhood U such that U is a reqular level set of an isoparametric map f:V — R,
for some open subset V of M.

Remark 1. An interesting fact that is used in the proof of the above theorem, and that we
will use later, is that the normal vector field N = % of the hypersurface ¥ = f~1(r) is a

geodesic field, that is, VNN =0.

Using the theorem above, we can establish the following definition of isoparametric
hypersurface, which is equivalent to the Definition 1.1.

Definition 1.2. An immersed hypersurface M of a Riemannian manifold M is called an
isoparametric hypersurface if, for each p € M, there exists an open neighborhood U of p in
M such that U and the nearby equidistant hypersurfaces to U have constant mean curvature.

When the ambient space is a space form, that is, a simply connected complete Rieman-
nian manifold with constant sectional curvature, the previous definition of isoparametric
hypersurface is equivalent to saying that the hypersurface has constant principal curva-
tures. This important result was obtained in 1938 by Cartan [7]. More precisely, Cartan
showed the following theorem, whose an alternative proof can be found in [15].

Theorem 1.2. Let ¥ be a hypersurface in a space form Q. Then ¥ is isoparametric if and
only if X has constant principal curvatures.
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In this work, we will use the classification of isoparametric surfaces in the 3-dimensional
space forms S® and H®. Such a classification is due to Cartan [7], and in addition to
the umbilical surfaces, such surfaces are given by certain products of curves of constant
curvature. Specifically, for future reference in this text, following the notation according
to [34] and [35], we will enunciate in a theorem the classification of isoparametric surfaces
with two distinct principal curvatures in the hyperbolic space H? and in the unit sphere S?
(see Theorem 1 in [35]).

Theorem 1.3. Let X2 be an isoparametric surface with two distinct principal curvatures in

3, with €2 = 1. Then X2 is an open subset of one of the following surfaces:

a) S'(c1) x St(ez), when e =1,
b) S'(c1) x H'(ca), when ¢ = —1,

1 1 c
where ¢; # c3, — + — = € and the principal curvatures of ¥° are given by !

C1 C2 Vel + ¢

and

—co
Vel + e

Unlike space forms, in arbitrary ambient spaces, the isoparametricity of a hypersur-
face and the constancy of the principal curvatures are, a priori, unrelated conditions. For
instance, examples of isoparametric hypersurfaces with nonconstant principal curvatures
were given in [12], [13], [21] and [43], and examples of non-isoparametric hypersurfaces with
constant principal curvatures, can be found in |22] and [33].
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Chapter 2

Isoparametric Hypersurfaces in

2 2
Qe x Qe

In this chapter, we consider the ambient space Qzl X Qé, where @gi is a space form with

constant sectional curvature ¢;, for ¢; € {—1,0,1} and ¢; # co. We aim to characterize and
classify the isoparametric hypersurfaces with constant principal curvatures in le X @zz, with
¢i € {—1,0,1} and ¢1 # co. For this, we combine the techniques of Dominguez-Vazquez and
Manzano [16], Urbano [41] and Julio-Batalla |25]. In [16], Dominguez-Vazquéz and Man-
zano provided the classification of the isoparametric surfaces and surfaces with constant
principal curvatures in E(k, 7), in [41], Urbano classified the homogeneous and isoparamet-
ric hypersurfaces in S? x S?, and in [25], Julio-Batalla obtained the classification of the
isoparametric hypersurfaces in S? x R? with constant principal curvatures. In addition, like
Dominguez-Vazquez and Manzano, we will use Jacobi field theory to describe the geometry
of the family of parallels hypersurfaces to a given one. This theory was briefly described in
the Section 1.2.

The content of this chapter is a joint work with Joao Paulo do Santos [17], entitled
"Isoparametric hypersurfaces in product spaces", to appear in "Differential Geometry and
its Applications".

2.1 Preliminary notions and results

Before stating and proving the main results of this chapter, we will briefly present some
background content in the product space le X sz.
For i = 1,2, we denote by (,); and L; the standard metric and the standard complex
structure in le_, respectively. If in is the 2-dimensional S? of curvature ¢; = 1, L; is given
by

L : TS? — TS?
v — Li(v) =p x v,
for p € %, v € T,S?, see [14]. When in is the hyperbolic space H? of curvature ¢; = —1,
as stated in Chapter 1, we will consider its standard Lorentzian model. In this case, the
3-dimensional Minkowski space L3 is endowed with the Lorentzian cross product X, defined

by
(a1, a2,a3) X (b1, b, bg) = (azby — asbs, azby — a1bz, arby — azby).
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In this model, L; is given by

L;: TH? —s TH?
v— L;j(v) =pXo,

for p € H2, v € T,H?, see [14] and [20]. Finally, if @21, is the space form R? of curvature
¢; =0, L; is defined by

L;: R* — R?
v — Li(Ql,QQ) = (—Q2,Q1)7

see [25].
It is easy to see that L; satisfies the following properties:

L} = —Id, and (L;(v),Li(w)) = (v,w). (2.1)

)

The Kahler 2-form associated to standard complex structure L; on Qgi is defined by
wi(v,w) = (L;(v), w);,

for all v,w € Tin. Observe that, since Qgi has dimension 2, it follows that dw; = 0, that
is, the Kéhler 2-form wj; is closed, which implies that Qi is a Kéhler manifold. It is well-
known that the Kdhler 2-form of a Riemannian manifold is closed if and only if its standard
complex structure is parallel with respect to the covariant derivative, see [26]. Thus, we
conclude that L; is parallel on Qgi.

We endow Qzl X Qé with the standard product metric, denoted by (,). Moreover, given
Y e T( 21 X QEQ), we write Y = Y% 4 YQ32, where the components Y and Y% of

Y are given as its tangent parts to Q2 and Q2,, respectively. We define on Q2 x Q2 the
complex strutures
J1=1L1+ Ly, Jp=Li— Lo,

and we denote by V and R its Levi-Civita connection and curvature tensor, respectively.
Note that, using (2.1), the complex structures J;, i = 1,2, satisfy

JP=—Id, and (J(Y),Ji(2)) =Y, Z),

)

for all Y, Z € T(Q% x ng). In addition, since L; is parallel on Q2 , we have that J;

C1 Ci? e
and Jo are parallel on Qzl X QEQ with respect to the Levi-Civita connection V, that is,
VJi = VJy; =0, and hence, le X QEQ is a kéhler manifold.
Now, let us consider the product structure P in Qzl X Qé defined by

P(Y% +y%) —y% - y%,
for any vector Y € T(Q2 x QZ). Note that P satisfies

P=—-J1Jy =—-JaJ;.

In fact, given Y € T(Q2 x Q2), we have that

C1
BB(Y) = R %+ ¥ %) = gy (L %) - Ly(y %)) = (13(r%) - 13(v %))
= v 4y = _py @ 4y @),

that is, P = —J1J2. Analogously, we obtain P = —JsJj.
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Moreover, the product structure P of @31 X Q§2 has the following properties:
P2=I(P+#1I), (PY,Z)=(Y,PZ), and (VyP)(Z)=0,

for any vector fields Y, Z € T(Q? x @32). Indeed, the first and second properties are

Cc1

immediate. For the third property, given vector fields Y, Z € T'( (2:1 X Qgg) and denoting by
V% and V% the Levi-Civita connection of le and Q2 , respectively, it follows that

c2?

(VyP)(Z)=VyPZ — PVyZ
= 2 2 Q2 2 Q2 2
- VYQ?J 1y %, P(Z% + z%2) — P (VYngl Z% + VYQQEQ ZQCQ)

_< Q2 @,y _ (v% 502 _ % 02
=V, ez (2% - 2% (VY@%IZ v 2%
2 2

QE? ZQEI _VQEQ ZQEQ

2 2
=V 2% vy 2% (v )
Y ¢c1 Y ¢ca

y¥a Y Y2
=0.

Let us write R in terms of P. Denoting by R“ the curvature tensor of Qgi, and using

the curvature tensor formula of a manifold of constant sectional curvature, it follows that
ﬁ(v’ W,Z,Y) = R (V@gl 7 W ’ 7@ 7 Y@gl) + R (VQEQ ’ W, ’ 7@, ’ YQ?;Q)

= { <VQ§1 , Yle >1 <WQ21 , Z@gl >1 _ <VQ21 ’ ZQZ1 >1 <WQ21 ’ Y@gl >1}
e (Ve )2, 20, - (v, 2%, (o YR,

for any vector fields V, W, Z,Y € T(Q? x Q2)). Note that for all T € T(QZ% x QZ2,), we have

p@ _PT+T g2 T-PT

2 2

Thus, we get

1 1

V@ Yy, = S(VLPY +Y), W, 7%y, = 5 (PW+W.2),

1 2 2
(V,PY —Y), (WY 7%:), =

(V% y ), = -5

1
D) (PW — W, Z).
Therefore,

R(V,W,Z,Y) = 2{<V,PY+Y><PW+W,Z> _ <VV,PY+Y><pV+V,Z>}
+C42{<V,PY—Y><PW—W,Z> - <W,PY—Y><PV—V,Z>}.

Let X3 C le X QEQ be an oriented hypersurface with unit normal vector N = Ny + No,
where N1 and No denote the components of N in le and ng, respectively, and Levi-Civita
connection V. We define in X2 a smooth function C' and a tangent vector field X by

C =(PN,N) and X =PN—CN. (2.2)

Observe that X is the tangential component of PN and |X|? = 1 — C2, which implies
-1<C<1.
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Let A be the shape operator of . Using the curvature tensor of le X ng, the Codazzi
equation of 3 is given by

VS(V.W,Z) — VS(W,V. Z) = R(V,W, Z,N), (2.3)

where

R(V,W,Z,N) = ‘Z{(V,PN+N><PW+ W, Z) — (W, PN + N)(PV + V,Z)}

+Z2{<V,PN—N><PW—W,Z> - (W,PN—N><PV_V’Z>}

C1

: {(V,X)(PW+W,Z> — (W, X)(PV +V, Z>}

n f{(V,X)(PW—W,Z) - <W,X><PV—V,Z>},

with VW, Z e TX.
In what follows, we are going to compute the gradient of the function C. Given Y € T'Y,
since P is parallel, we have

(VC,Y) =Y(C) =Y (PN, N)
= (VyPN,N) + (PN, VyN)
= (PVyN,N) + (PN, VyN)
= 2(PN,VyN) = —2(X + CN, AY)
= —2(X,AY) = —2(AX,Y),

which implies that the gradient of C' is given by

VC = -2AX.

2.2 Main results

We are now in a position to prove the main results of this chapter. Our first result char-
acterizes the isoparametric hypersurfaces with constant principal curvatures in the product
spaces Q2 x Q2 , for ¢; € {—1,0,1} and ¢ # cy.

c2?

Theorem 2.1. Let ¥ be an isoparametric hypersurface in le X Qé, with ¢; € {—1,0,1}
and ¢1 # ¢z, and unit normal N = N1+ No, where N1 and No denote the components of N
n le and Qé, respectively. Then the principal curvatures of ¥ are constant if and only if
|N1| and |Na| are constant.

Proof. Let X be an isoparametric hypersurface in le X Qé with ¢; € {—1,0,1} and ¢ # ca,
and unit normal N = N; + Ny. In order to prove Theorem 2.1, it is enough to show that
the principal curvatures of ¥ are constant if and only if the function C, given in (2.2),
is constant. In fact, as [N1|? = £ and |No|? = 15, it follows that |Ni| and |N| are
constant if and only if C' is constant.

In what follows, we will establish some relations between the function C' and the shape
operator of 3. Recall that the family of hypersurfaces parallel to % in the direction of
N is given by (1.1) and the parallel hypersurface at an oriented distance r is denoted by
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Y. We first observe that, since X is isoparametric and the product structure P is parallel,
the function C, defined on the family of parallel hypersurfaces, does not depend on the
displacement parameter r, once N(C) = 0. In fact, since C = (PN, N) and VyN = 0, we
have

N(C)=(VNyN,PN)+ (N,PVyN) = 0.

Let us recall that |C| < 1. Consider the open set
U={peX|C*p) <1}.

We can assume that U # @, otherwise C? = 1 on X. In this case, let us take in U the
following orthonormal frame

X N+ J,N N — J,N
B:{Blz _ NIN+ _ JIN — }

i—ar T aaro T ano)

where X = PN — CN.

Given p € %, let 4, be a geodesic of Q2 x Q, with 4,(0) = p and 4,(0) = N(p). By the
definition of X, we have that 44(r) is a normal vector to 3, at v4(r). Thus, we can extend
the unit normal N to U X (—¢€,€) by N(v4(r)) = 44(r), ¢ € U. Consequently, we also can
extend the fields B;.

Recall that a Jacobi field along -+, is a vector field § satisfying the Jacobi equation
§" + R(&,Yp)¥p = 0. For each j € {1,2,3}, take the Jacobi field §; along -y, with the initial
conditions

gj(O) = Bj and 55(0) = —ABJ'

where A is the shape operator of X associated with V.
Since these initial conditions are orthogonal to 4,(0), each Jacobi field &; is also orthog-
onal to N(v,(r)) = 4p(r) and, hence, it can be written as

§; = b1jB1 + by; By + b3; B,

for certain smooth functions b;; on (—e,e).

Let us observe that VyB; = 0, for all ¢ = 1,2,3. In fact, since N(C) = 0 and P is
parallel, we have VX = 0, which implies V  B; = 0. Furthermore, since J; is also parallel,
for i =1, 2, we conclude that VyB; = 0, j = 2, 3. Thus, we have, on the one hand,

On the other hand, if we denote by R the curvature tensor of in, we get

2 2
R(B1, N)N = R (B N\)Ny + R (B, Ny) Ny
_ 1
C8V1-C?

+ R®(X — PX,N — PN)(N — PN)>

(RCl (X + PX,N + PN)(N + PN)

=0,

since X + PX = (1 - C)(N+ PN) and X — PX = —(1+ C)(N — PN). Now, using the
curvature tensor formula of a manifold of constant sectional curvature, we get
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R(By, N)N = 01<<N1,N1>1B2 - (Bz,N1>1N1>
2
_allv 4PN
4
R(B3,N)N = 62<<N2,N2>2BS - <B3,N2>2N2>
_ 2
_ellN-PNIE
4
Therefore,
R(&,4p)p = R(&, N)N
= bljR(Bl, N)N + b2jR(BQ, N)N + b3jR(B3,N)N

c1||N + PN||? e||N — PN||? 9.
:bgj—lH 1 H Bg—i-bgj—Q” 1 || Bs ( 5)
a(l+C co(l1—-C
:szil( 5 )Bz+b3j72( 5 )B3.

Since ; is a Jacobi field, we have from (2.4) and (2.5) the following homogeneous linear
system of ordinary differential equations

1; =0, by +01boj =0, b5; + dabz; =0, (2.6)
where 6; = w and &y = 62(12_0).
In what follows, we describe the initial conditions of the system (2.6). Firstly, as £;(0) =
Bj, we get

b11(0) =1, b12(0) =0, b13(0) =0,
b21(0) = 0, b22(0) =1, b23(0) =0, (2.7)
b31(0) =0, b32(0) =0, bs3(0) = 1.

Secondly, let the shape operator of ¥ be determined by the relations AB; = 04,1 B1 +
0i2B2 + 04383, for certain smooth functions o;;. Since A is symmetric, we have o012 = 021,

013 = 031 and 032 = o93. Furthermore, taking into account that 5} = 61\75]- = —Ag;, we
obtain
11(0) = —o11, b5(0) = —0921, bVj5(0) = —0o31,
b9, (0) = =012, 9y(0) = =022, b3(0) = —023, (2.8)
31(0) = —013, 52(0) = —023, bgg(O) = —033.
With the initial conditions (2.7) and (2.8), the solution of system (2.6) is given by

bii(r) = —our +1,

bia(r) = —o12r,

bi3(r) = —o13r,

b21(r) = —01256, (1),

baa(r) = —02255, (1) + Cs, (1), (2.9)
bas(r) = —03255, (),

b31(r) = —0135s,(r),

b3a(r) = —03255,(7),

b33(r) = —0335s, (1) + Cs,(r),



where we consider the auxiliary functions

r if 9; =0, 1 if §; =0,
S (1) = \/iTi sinh(rv/'—d;) if §; <0, Cs,(r) = < cosh(ry/—d;) if 6; <0,
% sin(r/9;) if 6; > 0, cos(rv/6;) if 6; > 0.

for i € {1,2}.
For every r, the shape operator A, of ¥, with respect to the normal 4,(r) is given by
(1.3), where D(r) is a linear endomorphism of T, (.13, determined by the relations

D(r)Bj(vp(r)) = &(r),  D'(r)Bj(yp(r)) = &(r).

Considering the orthonormal basis {Bi1(vp(7)), B2(7p(7)), B3(7p(r))} of T, (y2r, the
matrix form of the operator D(r) is given by

bii(r) bia(r) bis(r)
D(r) = bai(r) baa(r) bas(r) |, (2.10)
bs1(r) bsa(r) bss(r)
From now on, our strategy is as follows. Firstly, we are going to get explicitly the

formulas of det D(r) and 4 (det D(r)) in terms of the functions b;; and its derivatives.
Secondly, we will apply such formulas to construct

f(r)= dir(det D(r)) + 3h(r)det D(r),

which vanishes identically on (—e¢,€), by equation (1.4). Finally, we will use the fact that
f =0 as well as its derivatives to obtain some algebraic relations between the components
of A on the basis {B;}>_, and the function C.

From (2.9), we have that

b11ba2bss = —0110220331 S5, (1) S5, (1) + 0110227 S5, (1) Cs, (1) + 01103375, (1) Cs, ()
— 011705, (1) Cs, (1) + 09203355, (1) Ss, (1) — 02255, (1) Cs, (1)
- 033S52 (T)C51 (7’) + 051 (T)C(SQ (T)7

bi2bagbs1 = —0210320131Ss,(1r)S5s, (),
bi3bsabo1 = —o310230121Ss, (1) S5, (1),
b31b22b13 = —0‘%30'22’/“551 (’r’)552

(r) + 073755, (r)Cs, (7),
byabasbiy = —011053755, (1) s, (r) + 05355, (1) S5, (),
b12b21b33 = —0'330'%27'551 (7”)552 (7”) + 0%27’351 (T’)052 (7’)

Thus, we obtain

det D(r) = b11bazbss + b12basbs1 + b13bsabar — ba1baabiz — b3abasbin — bssbi2bay
= 185,(7)Ss,(1)(—011022033 — 021032013 — 031032012
+ 033099 + 053011 + 05033)
+ 7S5, (r)Cs, (1) (011022 — ol,) + 7S5, (1)Cs, (r) (011033 — 053)
— 0117C5,(r)Cs, (r) + S5, (r) S5, (r) (022033 — 033) — 02255, () Cs, (7)
— 03355, (1) Cs, (1) + Cs, (1) Cs, (1)
= A178s,(r)Ss,(r) + A2rSs, (1)Cs, (1) + AsrSs, (1) Cs, (1)
+ AySs, (1)S5,(r) — 0117Cs, (r)Cs, (1) — 02255, (r)Cs, (1)
— 03355,(r)Cs, (1) + Cs, (r)Cs, (1),
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2
A = —det A, Ag = 011022 — 079,
_ 2 _ 2
A3—011033—013, A4—022033—023.

Now, taking into account that S; () = Cs, (1) and Gy, (r) = —0;Ss,(r), we obtain

d%(det D(r)) = A1 (S5,(r)Ss,(r) +rCs, (1) S5, (r) 4 755, (r)Cs, (1))
+ Ag (551 (T)C52 (7”) + TC51 (T)C@ (T) - T62S61 (T)S52 (T))
+ A3 (552 (T)C(ﬁ (T) + TC(SQ (T)C51 (T) - T(SlS(SQ (T)S(SI (T))
+ A4 (G5, (1) S5, (r) + 55, (1) Cs, ()

— 011 (051 (T’)052 (T) - T(SlS(h (T)C(Sz (’I“) - 7“52051 (T)S(b (T))
— 092 (G5, (r)Ci,y (1) — 0255, (1) S5, (7))
— 033 (Cs,(r)Cs, (1) — 6155, () S5, (1))

- 51551 (T)052 (T) - 52051 (T)S§2 (T)

Thus, the function f is given explicitly as

f(r) = A1(S5,(r)Ss, (1) + rCs, (r)Ss, (r) + 1S5, (r)Cs, (1)

+ 3rh(r)Ss, (r)Ss, (1“))
+ As (551 (r)Cs, (1) +1Cs, (1)Cs, (1) — 16255, (1) Ss, (1)
+ 3rh(r)Ss, (r)Cs, (r))
+ A3 (Ss,(r)Cs, (r) + 17Cs, (r)Cs, (1) — 70185, (1) S5, (1)
+ 3rh(r)Ss, (r)Cs, (1))

+ Ag(Cs,(r)Ss, (r) + Ss, (r)Cos, (1) + 3h(r)Ss, (r)Ss, ()
— o011 (C’(;1 (r)Cs,(r) — 15155, (1) Cs, (r) — r62Cs, (1) Ss, (1)
+ 3rh(r)Cs, (r)Cs, (1))

— 092(C5, (r)Cs, (1) — 6255, (r) S, () + 3h(r) S5, (1) Cs, (1))
— 033(Cs,(1)Cs, (1) — 6156, (1) S5, (r) + 3h(r) S5, (r)Cs, (1))

- 51551 (T)Clb (’I“) - 52051 (T)S(Sz (’I“) + 3h(7’)0§1 (T)C(b (T)

Taking the derivative in (2.12), we get

J'(r) = A1 (2C5, ()85, () + 283, (r)Ci (1) = 785, (r) S (r) (61 + 82)
+2rCy, (r)Cs, (r) + 3h(r) S5, (r)Ss, (r) + 3rh! (1) S5, (r) S, ()
+ 37A(1)C, (1) S, (r) + 3rh(1)S5, (1), (1))
+ Ay (2051 (r)Cs, (1) — 26285, (r)Ss, () — 7S5, (r)Cs, () (61 + 02)
— 2057Cl, (1) S, (r) + 3h(r) S5, (r)Cs, () + 3rh! (r) S5, () Cis, (1)
+ 37 (1)C, (1) Ciy (1) — 3827 (1)S5, (1) S5, (1))
+ A (2052 (r)Cs, () — 26185, (r) S5, (1) — 7S5, () Cs, () (61 + 62)
— 26,7Cl, (1) S, (r) + 3h(r) S, (r)Cs, () + 3rh/ (r) S5, (r)Cs, (r)
+ 37R(1)Ca, (r)Ci, (1) = 3817h(1) S5, (1) S5, (1))
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+ Ay (2051 (r)Ci, (1) — S5, (1) S, (1) (01 + d2) + 3K/ () S5, (r) S5, (7)

+ 3h(r)C, (1) S, (r) + 3h(7)S5, (1) (1))

= 011 ( = 20185, (1) i (1) = 202C', (1) S, (1) = 1Cs, (1) oy (1) (31 + 32)
+ 261627 S5, (r)Ss, () + 3h(r)Cs, (r)Cis, (r) + 3rh () Ci, (r)Cs, (r)

= 3017h(r)S5, (1) Ciny (1) = 30arh(r)Cs, (1) S5, (1)

— o2 (( = 85, (1) Ciy (1) (81 + 62) = 205C5, ()85, (1) + 31 (1) S5, () Cny ()
+ 3h(r)C, (1) Ci (1) = 382h(7)S5, (1) S5, (1))

— 33 (= S5,(r)Coy (1) (01 + 2) = 261Ci, ()85, () + 3K (1) S5, () ()
+ 3h(r)Ci, (1)Ci (1) = 381(1) S5, ()55, (1)

— C5,(r)Cis, () (81 + 82) + 2618255, (r)Ss, () + 3K () Ci, (r) s, ()

— 361 1(r) S5, (r)Cs, (r) — 362h(r)Cs, (r) S, (r).

As f =0, so is its derivative. Then, applying » = 0 in the derivative above, we obtain
the following relation:

0= f'(0) = 2(Ay + Az + Ay) — 90%(0) 4 3K/(0) — (61 + 02), (2.14)

where h(0) is the mean curvature of X.

Note that A;, §;, h(0) and h/(0), depend only, in principle, on the base point p €
Y. However, by assumption, ¥ is isoparametric and hence, h(0) and h'(0) are constants
throughout X, that is, they are independent of the chosen base point p € X of normal
geodesic 7.

Furthermore, observe that

9h*(0) = o) + 03y + 033 + 2(011022 + 011033 + T22033),
and
tr(A%) = oty + 09y + 033 + 2(07, + 03 + 033).
Thus, by the definitions of the functions A;, i = 1,...,4, in (2.11), we have 2(Ay + A3 +
Ay) — 9h2(0) = —tr(A?). Substituting in (2.14), we get
tr(A%) = 30 (0) — (61 + &2), (2.15)
where 61 + J9 = %(C(cl —c2) + 1+ ).

We are in position to prove the equivalence claimed in the statement of the theorem. If
¥ has constant principal curvatures p1, po, ps, then tr(A?) = p? + p3 + u3 is constant and
hence, C' is constant, since ¢1 # co.

Conversely, suppose C' is constant. Since the gradient of the function C' is given by
VC = —2A(X), then A(X) = 0. Therefore, 01; = 0j1 =0, for all j = 1,2,3. Thus, we have
Ay = Ay = A3 = 0 and we can rewrite (2.14) as

0 =244 — 9h%(0) + 3K (0) — (61 + 62),

and, as a consequence, we have that A4 is constant.
Moreover, as 01; = 051 = 0, the characteristic polynomial @4 of A is given by

Qa(N) = =23 4+ 3h(0)A% — Ay,

Therefore, since Ay is constant, it follows that the principal curvatures of 3 are constant. [
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Remark 2. It is worth mentioning that Theorem 2.1 holds in a more general setting, where
c1 # ¢ but not necessarily ¢; € {—1,0,1}. Adjusting the ambient spaces and their corre-
sponding complex structures for arbitrary values of ¢;, the computations and arguments in
the proof of Theorem 2.1 remain the same only with the assumption that c1 # co. In fact,
this hypothesis is used in equation (2.15) to show that if ¥ has constant principal curvatures,
then C' is constant. The converse holds, however, even if c; = ca.

Observe that Theorem 2.1 tells us that the converse of a result obtained by Julio-
Batalla [25] holds, that is, we proved that if | V1| and | V2| are constant, then 3 has constant
principal curvatures. In addition, the Jacobi field theory, used in the proof of Theorem 2.1,
allows us to obtain an alternative proof of Julio-Batalla’s result.

Our next result classifies the isoparametric hypersurfaces with constant principal cur-
vatures in the product spaces le X Qé, for ¢; € {—1,0,1} and ¢; # ca. As previously
mentioned, this classification includes the classification obtained by Julio-Batalla in the
product space S? x R2,

Theorem 2.2. Let ¥ be an isoparametric hypersurface with constant principal curvatures
n le X Qé, with ¢; € {—1,0,1} and ¢1 # ca. Then, up to rigid motions, ¥ is an open
subset of one of the following hypersurfaces:

a) Cl(kj) x QZ, or Q2 x C'(k;), where C'(k;) is a complete curve with constant geodesic
curvature Kj in sz.

b) U(R3) C H? x R?, where ¥ : R? — H? x R? is an immersion given by

U(s,u,v) = e (a(u),0) + (cosh(—bs),O,sinh(—bs), Vos)
) (2.16)
+ (07170 + WO’U),

where H? C L2 is given as the standard model of the hyperbolic space in the Lorentz
2

2’ 2
constant orthogonal vectors in R? such that ||[Wy|| = 1 and b = /1 — [|Vo||2, with
b# {1,0}.

Proof. Let ¥ be an isoparametric hypersurface in Q2 x Q2 with constant principal curva-
tures, where ¢; € {—1,0,1} and ¢; # co. By Theorem 2.1, we have that C' is constant. If
C =1 we have PN = N, and thus, N = (N1,0). If C = —1 we have PN = —N, and then,
N = (0, N2). In such cases, ¥ is an open subset of C*(k;) x @%2 or le x C1(k;), respectively,
where C!(k;) is a curve in ng of constant geodesic curvature &;.

2
u u
3-space L3, the curve o is given by a(u) = < u, —— |, po € R%, Vy and Wy are

In fact, let us suppose that N = (Ny,0), then ¥ is an open subset of C! x QEQ, where
C! is a regular curve in le. Let 1 be a parametrization by arc length of C!, with unit
normal vector n, = +=Ni. Let {e, ez, e3} a orthonormal frame in Cl x sz with e = ¢/
and {ez,e3} an orthonormal basis in Q2,. If we denote the shape operator of ¥ by A,

considering without loss of generality that N1 = n,,, we have

2

— NQC
A€1 = —VelNl = —Vw,lnw = /’ijﬂ)l = Iijel,
Aeg = —652]\71 = 0,
A€3 = _eegNl = 0.
Therefore, the geodesic curvature x; of C 1'is a principal curvature of ¥, which implies that

k; is constant. The case where N = (0, N) is analogous.
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From now on, we are going to prove that, if |C| < 1, the only remaining possibility is
the case when one ¢; is negative. Therefore, in what follows, let us assume that C' € (—1,1).
In this case, as in the proof of Theorem 2.1, let us consider the frame

B_{&_ X _hN+le3_hN—hN}

vi—or T aaro T ano

the function f given in (2.12) and its derivative given in (2.13). Again, taking derivative in
(2.13), we get
f(r) = A (6051 (r)Cs,(r) = 355,(r) S5, (r) (61 + b2) — rCs, (r)Ss, (r)(01 + b2)

— 185, (r)Cs, (1)(81 + 92) — 2017 S5, (1) Cs, (1) — 2627 Cs, (1) Ss, (1)
+ 6h'(r)Ss, (1)Ss, (1) + 6h(r)Cs, (r)Ss, (1) + 6h(r)Ss, (r)Cs, (1)
+ 3rh" (r)Ss,(r)Ss, (r) + 671 (1)Cs, (r)Ss, (r) + 671 (1)S5, (r)Cs, (1)

+ 6rh(r)Cs, (r)Cs, () — 3rh(r)Ss, (r)Ss, (r) (81 + 52))
+ AQ( — 3855, (1)Cs,(r) (01 + 02) — 662C5, (1) Ss, (1) — 1Cs, (1) Cys, (7)) (01 + 62)

+ 09785, (1) Ss, (1) (81 + 02) + 201027Ss, (1) Ss, (1) — 2027Cs, (1) Cs, (1)
+ 61/ (1) S5, (1) Cs, (1) + 6h(r)Cs, (r)Cs, (r) — 662h(1)Ss, (r)Ss, (r)
+ 3rh" (r)Ss, (r)Cs, (1) + 6rh' (r)Cs, (r)Cs, (r) — 6527k (1) S5, (1) Ss, (1)

— 3rh(r)Ss, (r)Cs, () (01 + 62) — 6d2rh(r)Cs, (T)552(T)>
+ g = 46185, (r) i, () — 305, (1) S, () (01 + 82) — i, () Ci, (1) (31 + 62)

— 10185, (1) S5, (r) (01 + d2) — 201C3, (1) S5, (r) + 61/ (r)Ss, (r)Cs, (r)
+ 6h(r)Cs,(r)Cs, (1) — 661h(r)Ss, (r)Ss, (r) + 3rh” (r)Ss,(r)Cs, (1)
+ 6rh/(r)Cs, (r)Cs, (1) — 6617k (1) Ss, (r)Ss, (r) — 6617h(r)Cs, (1) Ss, (1)

= 3rh(r) S5, (r)Ci, (1) (61 + )

+ Ay (= 20185, (r)Co, (1) = 282Cs5, (r) S (r) — Cis, (r) S (r) (61 + 82)

— S5, (r)Cs, (r) (01 + 02) + 3K (1) S5, (1) S5, (r) + 61 (1) Cis, (1) S, (7)

61 (r) S5, (r) iy (1) + 6h(1)Cis, (r) Ciy (1) = 3h(r) S5, (1) S5, () (61 + 62)

= 011(( = 3Cs,(1)C (r) (61 + 82) + 6610555, (r) S (r) + 61785, (1) sy (1) (61 + 62)

+ 921 Cy, (1) Ss, (1) (01 + d2) + 201027Cy, (1) Cys, (1) + 261621 Ss, (1) Cs, (1)
+ 61/ (r)Cs, (1) Cs, (1) — 651h(r)Ss, (r)Cs, (1) — 662h(1)Cs, (r)Ss, ()
— 3rh"(r)Cs, (r)Cs, (1) — 66171 (r)Ss, (r)Cs, (r) — 6621h (1)Cs, (1) Ss, (1)

+ 601057h(r) S, (r) S, (r) — 3rA(r)C, (1) Ci, (1) (31 + 82))

- 022( — Cs,(r)Cs, (1) (61 + d2) + 6256, (r) Ss, (r) (01 + 02) + 2016255, (1) Ss, (1)
—202C5, (1)Ci, (r) + 31" (1) Ss, (r)Cs, (1) + 61 (1) C5, (r) Cs, (1)

— 6820 (1) S5, (r)Ss, (r) — 3h(r)Ss, (1)Cs, (1) (81 + d2) — 652h(r)Cs, (r)Ss, (r))
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- 033( — Cs,(r)Cs, (r) (01 + 62) + 0156, () S5, (1) (81 + b2) 4 2610255, (1) S5, ()
— 251C5, (1) S5, () + 3K (r)S5, (r)Cs, () + 6K/ (r) s, () Cis, (1)
— 601 (1), (1), (1) = 601R(r)Cs, (1) S5, () — 3h(r)Cs, (r) S, (r) (61 + 62)

+ 0155, (r)Cs, (1) (61 + 02) + 62C%, (1) Ss, (r) (01 + 02) + 20162C5, (1) S, (1)
+ 2816255, (1)Cs, (1) + 3R" (r)Cs, (1) Cs, (1) — 6511 (1) Ss, (r)Cs, ()
— 68621 (1)Cs, (1)Ss, (r) + 65162h(r)Ss, (r)Ss, (1) — 3h(r)Cs, (1) Cs, (1) (51 + d2).

Now, applying » = 0 in (2.13) and in the second derivative above, we obtain the following

relations:
0= f'(0) = 2(Ay + Az + Ay) — 9R%(0) 4 3K/ (0) — (61 + 02), (2.17)
0= f"(0) = 6A; + 6h(0)(As + Az + Ay) — 18R/ (0)h(0) + 2011 (61 + J2) (2.18)
+ 209902 + 203301 + 3h”(0),
where the functions A;, i = 1,...,4, are given in (2.11).

Let us recall that as C' is constant we have 01; = 041 = 0 (since A(X) = —-VC/2 = 0),
which implies that A1 = Ay = A3 = 0. Moreover, since h(0) is the mean curvature of X, we

also conclude that
3h(0) = 092 + 033. (2.19)

Thus, we can rewrite (2.17) and (2.18) as follows:

0= 2(0‘220‘33 — 053) — 9h2(0) + 3h/(0) — ((51 + (52), (2.20)
0= 6h(0)(0’220‘33 — 0'53) — 18h,(0)h(0) + 209209 + 203301 + 3h”(0) (221)

Inserting the expression for 2(c92033 — 033) obtained from (2.20) into (2.21), and using
(2.19), we have that

2033(01 — 82) + 3h(0)(81 + d2) + 6h(0)d9 4 27h3(0) — 27R'(0)h(0) + 3" (0) = 0.

Note that (01 — 82) = 2(c1 — co + C(c1 4+ ¢2)) # 0, since C € (—1,1) and ¢ # co. Therefore
033 is constant and hence, from (2.19) and (2.20), we have that o99 and o293 are also constant.

On the other hand, we are going to use the Codazzi equation to compute X (o22),
X (023) and X (033), and for this, we will regard A as a (0, 2)-tensor, that is, A(B;, B;) =
(AB;, Bj) = (B;, ABj). Since each J; is parallel and A(X) = 0 (since VC = —2A(X)), we
have VxB; = 0 for all j = 1,2,3. In this way, since

X(oij) = X(A(B;, Bj)) = VA(X, Bi, Bj)
it follows from the Codazzi equation (2.3) that
c
X(022) = VA(B3, X, By) + Z1{<X,X><PB2 + By, Bo) — (Bo, X)(PX + X, By)}

+ 2{(X, X)(PBy — By, By) — (B2, X)(PX — X, By))

_ c1|| X7
= —C<ABQ, AB2> + <PAB2, ABQ> + 5
61(1 - 02)

2 2 2 2
= —C(03 + 033) + 099 — 093 +

1-C?
=) 10 - (14 O

2
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X(o2) = VA(By, X, Ba) + 7 {(X. X)(PBy + By, Bs) — (By, X)(PX + X, By))
+ (X X)PBy — By, By) — (Bo, X)(PX — X, By))
= —C<ABQ, AB3> + (PABQ, ABg>

—C (022023 + 023033) + 0220923 — 023033
= (1 —C)ogo3 — (1 + C)oggoss,

X(Ugg) = VA(BQ,,X, Bg) =+ %{<X,X><PB3 + Bg,B3> — (Bg,X)(PX —|—X, Bg>}

+ Z{(X, X)(PBy — By, By) — (B, X)(PX — X, By)}

_ co| X2
= —C(AB3,ABs) + (PABs, AB3) — —5
1-C?
= —C(033 + 033) + 033 — 033 — 62(2)
c? -1
Therefore,
2
61(120) +(1—C)ozy — (1 +C)o3y =0, (2.22)
2
-1
02(02) +(1- 0)033 - (14 C)ag?, =0, (2.23)
(1 — 0)022023 — (1 + 0)023033 = 0. (2.24)

Let us show that 093 = 0. Suppose by contradiction that 93 # 0. From (2.24), we have
(1—C)%02y — (1+C)%03; = 0. (2.25)

Now, multiplying (2.22) by 1 — C and (2.23) by 1+ C, we have
a(l-C)(1-C?)

2 +(1=C)%03, — (1 - C?)o3y =0, (2.26)
2 _
co(1 + C;(C 1) (1= C?)o2y — (1+ C)202 = 0. (2.27)

Adding (2.26) to (2.27) and using (2.25), we get
c1(1-0C)=c(1+0),

Since C' € (—1,1) and ¢; # cg, we have a contradiction. Therefore 093 = 0.
If 093 = 0, the system given by equations (2.22), (2.23) and (2.24) is reduced to

ca(l+C ca(l—-C
032——1(2 ) 0§3——2(2 ) (2.28)

Observe that the only possibility of solving (2.28) is to consider that one ¢; is negative
and the other is zero. Then, without loss of generality, let us assume from now on that
¢y = —1 and ca = 0. Thus, the previous computation shows us that o;; = 0, for ¢ # j
and o017 = o33 = 0. Therefore, we conclude that {B;, By, B3} must be a frame of principal
directions of X, with principal curvatures

:ul:oa /-1'2::& Y ,U?):O
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In what follows, we consider the case when po = % The shape operator A is given,

with respect to the frame B, by

0 0 O
A= 0 09292 0
0 0 O
Moreover, since
pp - X
T Vi-e?
_ 1 2
__;E%TEE(P<N' CPAQ
N S S 2nr 2
_xﬁtfﬁ@v CPN + C2N CAQ
_ 1 2
_;Tf%5(4xPN—CNy+Q—C)N)
_ 1 2
_;Tf?i(—cx+w1—C)N)
= —CBI + 1-— CQN,
PB, — P(J1N+J2N) - P(2L1(N1),0)
Y = —
V2(1+C) V2(1+C)
_ (2Li(M1),0) _ (JiN + JoN)
V2(1+0) V21 +0)
= BZ?
p, = PUN = 2N) _ P(0,2Ls(Ny))

V2(1=0C) V2(1=C)

(0, —2L2(N2)) (JiN — JaN)

21— C) V20 -0)

= _B37

the tangential component of the product structure PT is given, with respect to the frame
B, by

-C 0 0
pPT = 0 1 0
0 0 -1

Now, let us determine the Levi-Civita connection V of H? x R? in the frame B. Note
that
%BiBj =Vp,Bj+0iN.
Since P and J; are parallel and o1; = 0,1 = 0, we get 6313j =0, for i = 1,2,3.
Moreover, we have that

1 ~
Vp,By= — (Vg JIN — JobN)T
B, B3 2(1_0)( By J1 9N)
—4——£——{—JAB-+JAB)T
— 2(1_0) 1 2 2 2
1

= m(—()'ggleg — 0'23le3 + O'QQJQBQ + O'QgJQBg)T.
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Since g93 = 0 and

Ji(JIN + J,N)  —N — PN

J B == = ,
T rar0) 2010
Jo(JIN + Jo,N)  —PN—N

JoBy = -

V20 +C) 201+ 0)

it follows that Vp,Bs = 0, and hence, v B,Bs = 0. Analogously, we get

Vg, B;i =0, Vg,Bs =0, Vi, By =0,
Vp,Bi=—/155Bs, Vp,Bo = f%, Vip,B1 =0,
63333 = 0.

Note that By, B3] = [Ba, B3] = 0. Now, let A a function such that

1—
Bl(/\) = - TC, BQ()\) =0 and B3(/\) =0.

In this way, we have

1-C
[B1, ABs] :<Bl()\) + A 2) By=0 (2.29)
and [ABg, B3] = 0. Therefore, by Frobenius Theorem there is a parametrization ¥ : Q C
R3 — ¥, where Q is an open subset of R? with coordinates (¢, u, v), such that

U, =B;, U,=ABy and U, = Bs.

Now, we are going to construct the parametrization . Since ¥,, = Bs, B3 has no component
in H?, and Vp,B3 = 0, i.e., B3 is a geodesic field of H? x R2, when we integrate it with
respect to v, we have

U= (\I/H2 (t,u), B(t, u) + Bgv>,

where U is the component of ¥ in H2.
Before integrating with respect to the variable u, we first observe that By has no com-
ponent in R? and

~ PN+ N
Vp,By=VE,BF = — T
Therefore,
HQ HQ 2 o HQ H2 HQ HZ o 1
Vg2 B3 [P = (Vs B, Vi By >_72(1+0) <2<PN,N>+<PN,PN>+<N,N>>
1
=—(20+2)=1
2(1+0)( =1

that is, if ¢ is a curve parametrized by arc length, with ¢ = B%HIQ, then the geodesic
curvature kg of ¢ is k; = 1, and hence ¢ is a horocycle. Up to rigid motions, ¢ is given by

2 2

_ L 3
<p(u)—<1+ 5 2>€]L.
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Moreover, as ¥, :<\I’§2,Bu> = ADBs, then it follows that 8 does not depend on u.

Thus, ¥, = ABa = A(t) (u, 1, —u, 0, 0), once Ba(\) = Bs(A) = 0. When we integrate ‘I/]};112
with respect to u, we have

u? u?

U (1, u) = A<t>(2,u, —2) +A(),
where A(t) is a smooth curve in H2. Hence,

U(t,u,v) = ()\(t)a(u) + A(t), B(t) + Bgv), (2.30)

with a(u) = (%Q,U, 7“72)

Finally, we integrate B; = ¥; = <X(t)a(u)+A’(t), B’(t)). Since Vg, B = 0, B is also a
geodesic field of H? x R2. Therefore, B(t) = po + Vot. Considering v(t,u) = A(t)a(u) + A(t),
we have U, :<fyt,V0> = Bj, with Vy = Blle. It follows by the definition of B; that

2 2 2 _
IBE I = /155 As [lnll® + |1 BF 12 = 1, we get [lyl| = [|BI" || = /155
For any ug fixed, we note that

D, 2
Wt(tuo) = yu(t,uo) — | BY [*v(t, uo)

- a(uo>(A"<t> - HBWW)) T AY(E) — | BE PA).

Since 7(t,ug) is a geodesic in H?, ug is arbitrary and « does not depend on t, we have that
N'(0) = 1B IPA() =0 and  A"(t) ~ |BYIPA() =0,
and hence A(t) and A(t) are given by

A(t) = by cosh(wt) + ba sinh(wt),

A(t) = V; cosh(wt) + Vo sinh(wt), (2.31)

where w = «+||BE||, b; are real constants and V; orthonormal vectors. If A = (Aq, Ay, As),
using (vy,7v) = —1, it follows that

—1=(a+ A a+A)

= A {a, ) + 2\ {a, A) + (A, A)
u2 U2
= A2U2 + 2)\(—?A1 + AQU — ?Ag) — ].7

which implies
u2 U2
Mao? 4 2M(= 5 A1t Agu = - Ag) = 0.

Thus, we obtain the following polynomial equation in w:
(A = (Ay + A3))u? + 2A0u = 0,
that is,

A — (A1 + Ag) =0 and Ay =0. (2.32)
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If V1 = (1)11,1)12, 013) and V2 = (’1)21,7)22, 1)23), we have

A1 + Az = (v11 + v13) cosh(wt) + (v + vo3) sinh(wt),

2.33
Ay = v19 cosh(wt) + vag sinh(wt), ( )

and consequently, combining (2.31), (2.32) and (2.33) it follows that via = vee = 0, by =
v11 + v13 and by = w91 + v93. Now we know that the second coordinate of V7 and V5 is
zero. Then, writing Vi = (cosh(a1),0,sinh(a;)) and Vo = (sinh(aq),0, cosh(a)), we get
b1 = by = €. Thus, we conclude that

A(t) = ewttar)

A(t) cosh(wt + a1), 0, sinh(wt + a1)> .

From (2.29), it follows that

— =0.
w + 5

Thus, we obtain that w = —HB%FH, and therefore, using the linear change of variable

ai .
s =1+ —, we write
w

A(s) = e 1B ls,

) ) (2.34)
AGe) = cosh(- | B ), 0. (- B ) ).

Writing b = || B[] = /1 — || B¥*||2 = /T — [[Vo||? and Wy = Bs, when we replace (2.34)
in (2.30), we obtain the parametrization (2.16).
For the converse, suppose that 3 is parametrized by (2.16). Note that

_ —b<e_b5(a(u),6) + (sinh(—bs),O,cosh(—bs), —?)),

e (o (u),0),
(6, Wo).

Now, let us to find a unit normal vector field to X. Consider the position vector

W
v,
v,

oH = e "% (a(u),0) + (cosh(—bs),o,sinh(—b s),ﬁ).

Taking the cross product of e®*¥,, with \IIH2, we get
7bsu2
2

b H2 b efbsu2 —
e, U™ = — <sinh(—b s)+ ,e u,cosh(—bs) — 5 ,O),

that is, the normal vector takes the form

e~ bsq,2 —bs, 2
N=— <sinh(—b s)+ 5 ,e %, cosh(—bs) — 5 ,,uV0>,

where p is a real constant.
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It is easy to see that (N, ¥,) = (N, ¥,) = 0. Moreover, since

2

—bs, 2 —bs, 2
+b<cosh(—bs) . 2u > (cosh(—bs) - 2u ) — p|[Voll?
= b — be *u?(cosh(—bs) + sinh(—bs)) + be2%u> — u||Vo])?

~ —bs, 2 —bs, 2
N, ) = —b( sinh(=bs) + = ) ( sinh(=bs) + = ) + be 50>
2

= b— ul[Vol[?,
. ~ ) . b
it follows that (N, W¥,) = 0 if and only if u = TIE: Thus, we have
0
—bs, 2 —bs,,2
~ e u e u b
N = — | sinh(—bs) + ,e_bsu,cosh —bs) — ——, V>,
< o )T R

Finally, since

(N.N) :<Sinh(—bs) - eb;u2>2—|—<cosh(—bs) - 6b5“2>

2
b2
+e2bsy? 4
Vol [?
b2
[[Vol|?
_ 1

[Vol[*’

we conclude that an unit normal vector field N to X is given by
—bs N : b
N = —|[Voll( e (a(w),0) + (smh(—bs),O,cosh(—bs), W%) .
0
Denoting by D the covariant derivative in L3, we obtain

[)\I,SN = b||Vo]| <e_bsoz(u) + (cosh(—bs),O,sinh(—bs)>,6>

= b||Vp|| ¥,

Dy, N = —||Volle " (a’ (u), 0)
= —||Vo|[ W,

Dy, N = 0.

It follows immediately from the derivatives above and the parametrization ¥ that
(Dg, N, U™) = (Dg,N, U™y =0 and (Dg N, U™ = —b||Vp]|.

Therefore, since VyW = Dy W + (f)VVV, ‘IIHQ)\IJHQ, we get

Ve, N =0,
Vi, N = —[|Vo|[ Wy,
Vo, N =0,
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which implies that ¥ has principal curvatures uy = 0, po = ||Vo|| and ps = 0. Finally, since
. b
PN = —||Vo]] <eb8(a(u),()) + (Sinh(—bs), 0, cosh(—bs), _|VH2VO>>
0

and b= /1 — ||Vp]|?, it follows that

C = (PN, N)
2 2
_ 2( —2bs, 2 ps( W U B
= |[Vall <e u? + 2 ( = sinh(~bs) — - cosh( bs))

b2
— sinh®(—bs) + cosh®(—bs) — >

A
b2
= ”V‘J"QO - |V0||2>

=2|[Vo||* - 1,

1
which implies that ||Vp|| = ,/%C.

To conclude, let us show that 3 is isoparametric. Note that in this case, using (2.9), the
matrix D (2.10) is given by

1 0 0
D(r)= | 0 —sinh(y/=87r) + cosh(v/=d1r) 0 |,
0 0 1

1+ C -(1+C
since 011 — 012 — 013 — 032 — 033 — 0, 099 — +T, (51 = (;_) and (52 = 0. Thus,

we get
det D(r) = —sinh(\/—017) + cosh(v/—d17),

and consequently

(det D(r))" = —v/—61(cosh(y/—6817) — sinh(y/—817)).

Therefore, from (1.4), we obtain

(det D)’

3detD ")

—+/=681(cosh(y/=d17) — sinh(y/=&17))
3(—sinh(+/—617) + cosh(v/—617))

h(r) = —

1
= — V

that is, the mean curvature of the parallel hypersurfaces to ¥ is constant, and hence ¥ is
isoparametric. O

Remark 3. Following the notation established in the proof of Theorem 2.2, let us provide a
geometric description of the hypersurface given by the parametrization W. Note that a unit

normal vector to the horocycle
2 2
u u
= 1 _— _—
p(u) < + g 2>,
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s given by

Fizing u, v € R, let us consider in H? x R? the following geodesic parametrized by arc length
~v(s) = (cosh(ws)gp(u) + sinh(ws)n(u), g(v) + VOS),
where g(v) = po + Wov is a geodesic in R? with normal vector Vi. Since
' (5) = (w sinh(ws)p(u) + w cosh(ws)n(u), Vg>,

it follows that
L= [l/(s)lI* = w? + Vol

which implies w = £1/1 — ||Vp||? = £b. Considering w = —b, we get

-,

() = e~ (a(w),0) + <cosh(—bs), 0,sinh(—bs), Vos>
+ (67 po + WoU) .

Varying the parameters (s,u,v) € R3, the construction above provides exactly the parametriza-
tion . Therefore, the hypersurface W(R3) is the union of a family of geodesically parallel
hypersurfaces of H? x R?, given by products of horocycles in H? and straight lines in R2.

Remark 4. Another interesting property of the hypersurface W(R3) is its extrinsic homo-
geneity. A hypersurface of a Riemannian manifold M is called extrinsically homogeneous if
it 18 a codimension-one orbit of a subgroup of the group of isometries of M. Let us show in
this remark that U(R3) C H? x R? is a homogeneous hypersurface.

Following Dominguez-Vizquez and Manzano [16], we consider the family of complete
graphs ¥, C H? x R of constant mean curvature h, with 4h> — 1 < 0, called parabolic
helicoids. Considering the half-space model of H? = (R%, g) where

dx? + dy?
Ri:{(l’, y)7y>0}7 and Q:T7
such surfaces are parametrized in H> x R as
Bi(w,9) = (z, y, alog(y)), with = (2.35)
xz,y) = (x, y, alo , with a = ——. )
r(T,Y Y gy = (2h)2

Dominguez-Vizquez and Manzano showed that the parabolic helicoids are homogeneous sur-
faces. Now, if we consider the product ¥p x R C (H? x R) x R C H? x R?, we conclude
that X5, x R is a homogeneous hypersurface in H? x R?. Since a homogeneous hypersurface
1s 1soparametric and has constant princii)al curvatures (see for instance [15, Proposition
2.10]), it follows from Theorem 2.2 that X5, x R is congruent to either a product hypersur-
face as given in item a), or to U(R3), as in item b). A straightforward computation shows
that a unit normal to ¥, x R is given by N = Ny + Na, where N1 = (0, ay)/v1+ a? and
Ny = (=1,0)/vV1+a? Thus, for a # 0, we conclude that X, x R must be congruent to
U(R3), which shows that ¥(R3) is homogeneous.

We can go further and write the parametrization (2.16) using the half-space model of H?.
Recall that an isometry between the Lorentzian model and the half-space model is given by

1
(.Tl,xg,l‘g) — < 2 ) .

ry + a3’ 1 + 3
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Considering the first three coordinate functions of parametrization W

2

x1 = cosh(—bs) + %e*bs,
Ty = ue %,

w2
xs = sinh(—bs) — ?e*bs,

it follows that

( ) 1 > ( bs)
, = (u,e .
r1+x3 T1+ T3

Therefore, the parametrization (2.16) is rewritten as follows

U(s,u,v) = <u, €%, po + Wov + Vos) i

Applying an isometry Iy, v, such that

Two, v (U, e, po + Wov + VOS) = <u7ebs,62v + ||VOH€1S) ,

where {e1, ea} is the canonical basis of R?, we obtain

I iy © (s, 0) = (u, e, ||Volls,v)

1
Finally, making the change of variables s = 5 log(y), we have

%
IWo,VO © \Ij(yau>v) = u,y, || b0| log(y),v>
2.36
U,y &bg(y) v) : .
V1=|[Vol?

On the one hand, we know that the mean curvature of W(R?) is |[Vol|/3. On the other
hand, since the principal curvalures of ¥ x R are k1, k2 and 0, where k1 and k2 are the
principal curvatures of Xy, the mean curvature h of ¥, X R is given by h = 2h/3. Therefore,

2h = ||W| and, by FEquations (2.35) and (2.36), we conclude that

IW(),V() © \Il(yﬂ u?”) = (q)h(u7 y)7 U) :
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Chapter 3

Hypersurfaces of Q2 x R with
constant principal curvatures

In this chapter, we will consider the ambient space Q3 x R, where Q2 denotes the
unit sphere S if ¢ = 1, or the hyperbolic space H? if ¢ = —1. Our main objective is to
characterize and classify the hypersurfaces with three distinct constant principal curvatures
in Qg’ x R. We also show that the hypersurfaces with constant principal curvatures in
Q32 x R are isoparametric. At last, we provide a necessary and sufficient condition for an
isoparametric hypersurface of Qg’ X R to have constant principal curvatures.

The results presented in this chapter will compose a joint work with Fernando Manfio,
Joao Paulo dos Santos and Joeri Van der Veken.

The chapter is organized as follows. In Section 3.1, we will present some basic content
and results in the product space QF x R already known in the literature, and Section 3.2
will be devoted to the proof of the main results of this chapter.

3.1 Preliminary concepts and results

Let X" be a hypersurface in Q7 x R with unit normal N and let 0; be the coordinate
vector field of the second factor R. The orthogonal projection of 9, onto the tangent space
of 3™ will be denoted by T'. Also, let 6 be the angle function between N and J;. Then we
have the following decomposition

Oy =T + cosON.
Since 9 is a vector field of norm 1, it follows that
cos?(0) + ||T)? = 1.

In what follows, we will present the main equations that a hypersurface of Q7 x R
satisfies, as obtained in [11]. Such equations are important since they provide the necessary
and sufficient conditions for the existence of a hypersurface on QF x R, and they will be
used throughout the chapter. The description of the equations below follows the structure
according to [1].

We will denote by (,), R and V the metric, the curvature tensor and the Riemannian
connection of Q7 xR, respectively, and by V, R, A the Riemannian connection, the curvature
tensor and the shape operator of a hypersurface ¥" in Q7 xR, respectively. We will consider

R(X,Y)Z = VXVYZ - VYVXZ - V[X7y]Z
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We begin by presenting the Gauss and Codazzi equations.

Proposition 3.1. Let X" be a hypersurface of QF x R. The Gauss and Codazzi equations
of X" are given, respectively, by

(R(X,Y)Z, W) = 5<(X, WWY,Z) — (X, Z){(Y,W)

(X THZT)Y, W) + (Y, T) W, T) (X, Z) -
— (Y, T)(Z,T)(X, W) — (X, T)(W,T)(Y, 2))
+ (AX,WYAY, Z) — (AX, Z) (AY w),
Vx(AY) — Vy (AX) — A[X,Y] = ccos O(Y, T)X — (X, T)Y], (3.2)

where X, Y, Z, W € TY".

Proof. Let X" C QF x R be a hypersurface with unit normal vector denoted by N. In this
case, since X" is an isometric immersion in QF x R, its Gauss equation is given by

(R(X,Y)Z,W) =(R(X,Y)Z,W) + (B(Y,W),B(X, Z)) — (B(X,W), B(Y, Z)),

where B denotes the second fundamental form of X" and X, Y, Z, W € TX™. Note that,
since B(X1, X2) = (A(X7), X2)N, it follows that

(R(X,Y)Z,W) = (R(X,Y)Z,W) + (A(Y), W){A(X), Z) — (A(X), W)(A(Y), Z).

Let V@ and VR the Riemannian connections and R% and R® the curvature tensors of
QI and R, respectively. Then, since Q7 has constant sectional curvature €, we obtain that

(R(X,Y)Z,W) = (Y%, 2%) (X%, W) - (x% 70y we)),
and hence

(R(X,Y)Z,W) = 5(<YQ?,ZQ?><X(@?,W@?> _ <XQ?,ZQ?><YQ?,WQ?>)
— (A(Y), W)(A(X), Z) + (A(X), W)(A(Y), Z),

(3.3)

where the component Y@ of Y is given as its tangent part to Q.
Now, decomposing X € Q" x R into X = X@ + (X, T)9;, we have

(Y@?, Z@?><X‘@?,W@?) _ <XQ?’ ZQ?)(Y@?, W@?>
= (Y, Z)(X, W) = (X, Z)(Y, W) = (Y, 2){X, T){W.,T)
+ (X, )Y, T)Y (W, T) — (X, W)Y, T)(Z,T)
+ (Y, WHX, T)(Z,T),

and replacing this value in (3.3), we obtain
(R(X,Y)Z,W) = (Y, 2)(X, W) = (X, Z)(Y, W) = (Y, Z)(X, T)(W, T)
(X 2V, T)W,T) = (X WY, T)(Z,T) + (Y, W) (X, THZ,T))
— (A(Y), W)(A(X), Z) + (A(X), W)(A(Y), Z).

For the Codazzi equation, remember that for a hypersurface on a Riemannian manifold,
the Codazzi equation is given by

R(X,Y)N =VyAX — VxAY + A[X,Y].
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On the other hand, since N% = N — (N, 8;)9;, we get

R(X,Y)N = 5(<YQQ,NQ?>XQ? _ <X@?’NQ?>Y@?>

5(<Y (Y, 0,08, N — (N, 9,)8:)(X — (X,8,)9,)
— (X = (X,0)0, N = (N0))(¥ = (¥,9)0)))

g( YN, 0 (X — (X, 000%) + (X, 0) (N, 9) (Y — (Y, at>at))
- s( (Y, )N, 0 X + (X, BN (N, at>y)
- ecos(e)( Y, T)X + (X, T)Y).
Therefore, we conclude that
VxAY — Vy AX — A[X,Y] = e cos(6) (<Y, TVX — (X, T>Y).
O

We will now obtain two interesting properties that 7" and cos(f) satisfy and which will
be of great importance. First, observe that 0, is a parallel field in Q7 x R. Indeed, if v
and VR denote the Riemannian connections of Q7 and R, respectively, it follows that

O+ Vi =V

o 0+ Ve = Ve,
for X € T(Q? x R). Since X® = (X,0,)0;, we get
Vx0 = Vix aa,0 = (X,0,)V5,0; = 0.

Due to this fact, we have the following result.

Proposition 3.2. Let ¥ be a hypersurface of Q2 x R. Given X tangent to X", it holds
that

VxT = cos(0)AX, (3.4)
X(cos(0)) = —(AX,T). (3.5)

Proof. Since 0y is parallel in Q7 x R, we have that
0=Vx0 =Vx(T+cos()N) = VxT + cos(§)VxN + X(cos(9))N, (3.6)
for all X € T>™. Now, since
VxT =VxT+ (T,AX)N,
replacing this in (3.6), we have

0=VxT+ (T,AX)N — cos(0)AX + X (cos(6))N
=VxT —cos(0)AX + (T, AX) + X (cos(f))]N.

Therefore, once VxT —cos(0)AX is tangent to ¥ and [(T, AX )+ X (cos(#))]N is orthogonal,
it follows that

VxT —cos(0)AX =0, and (T,AX)+ X(cos(#))=0.
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We finish this section with some interesting results about hypersurfaces of Q7 x R,
which will be useful in the next section. The first result is due to Fernando Manfio and Ruy
Tojeiro [32], which classifies hypersurfaces when T" and cos(f) vanish identically.

Proposition 3.3. Let f: X" — QI x R be a hypersurface.
i) If T vanishes identically, then f(X) is an open subset of a slice QF x {t}.

i) If cos(0) vanishes identically, then f(X) is an open subset of a Riemannian product
M" 1 x R, where M™~! is a hypersurface of Q.

Using the Codazzi equation Joeri Van der Veken and Luc Vrancken [42] classify the
totally geodesic hypersurfaces in " xR, and in [6], also using the Codazzi equation, Giovanni
Calvaruso, Daniel Kowalczyk and Joeri Van der Veken show that this classification is also
obtained in H” x R. In short, they got the following

Theorem 3.4. Let f: 3" — QF x R be a totally geodesic hypersurface. Then f(3) is an
open part of a hypersurface Q7 x {to} for some ty € R, or of a hypersurface M™"! x R,
where M™~1 is a totally geodesic hypersurface of Q™.

3.2 Main results

As we pointed out before, in this section, we will present the proof of the main results of
this chapter. We start by characterizing, in terms of the angle function, the hypersurfaces of
Q2 x R that have constant and distinct principal curvatures. Through this characterization,
we provide an explicit classification of such hypersurfaces. Furthermore, we prove that the
hypersurfaces of Q2 x R with constant principal curvatures are isoparametric in those spaces.
We finish this section by showing that an isoparametric hypersurface of Q2 x R has constant
principal curvatures if and only if the angle function is constant.

Lemma 3.5. Let ¥ be a hypersurface of Q3 x R with three distinct constant principal
curvatures. Then cos(0) is constant on X.

Proof. Let ¥3 be a hypersurface of Q@3 x R with distinct constant principal curvatures p,
w2 and pg. Consider {eq, ea, es} a frame of orthonormal principal directions with p; being
the principal curvature associated to e;, ¢ = 1, 2, 3, that is,

Aei = pne1, Aez = poea, and  Aez = uzes,

where A denotes the shape operator of 33. Since T is tangent to X3, we can write
3
T=> b, (3.7)
i=1

where by, by, b3 : ¥3 — R are smooth functions. Furthermore, if V denotes the Levi-Civita
connection of X3, let us write

3
Veej =y wi(ei)er, (3.8)
k=1

where w;-“ are the connection forms of ¥3. With this notation and the hypothesis that j; are

constant functions, let us get the consequences of equations (3.1), (3.2), (3.4) and (3.5). In
what follows, we will use the indices 7, 7 and k for computations and n, m and [ for distinct
indices in {1, 2, 3} to stablish the consequences.
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We begin with the Codazzi equation (3.2) with X = e; and Y = e;, i # j. Using
equations (3.7) and (3.8) we have

ECOS(@) (bjei — biej) = ,U,jveiej - ,U,Z‘vejei - A(Veiej - Vejei)
3

=3 |mieohe) = piw(es) = s (es) + ot (e5)] en:
k=1

Thus, we get
3
> [(w — ) wf (i) = (i — ) wi () | ex = e cos(0) (bjei — bie;) .
k=1

Considering the coefficients of each principal direction we conclude that

(m — pm)wp(€n) = £c0s(6)bpm,
(i = ) win(en) = (sn — ) wy,(€m).

~

Consequently, there is a function € such that

e cos(0)bm,
wh(en) = —————, 3.9
( ) Hm — [Hn ( )
5(0)Q
Wl (en) = m. 3.10
( ) Hm — [ ( )

Now, from equations (3.4) and (3.7), we have

3 3
cos(0)unen, = Z en(bi)e; + Z biVe, €
i=1 i=1
3 3
= Z en(bi)ei + Z bipVe, er
i=1 k=1
3 3 3 ‘
= Z en(bi)e; + Z Z brwi,(en)e;
i=1 k=1 i=1
= Z en(b;) + Z brwy,(en) | €,
i=1 k=1
that is,
3
en(bn) = cos(0) upe, — Z brwy (en),
k=1

3 3
en(bm) = = Y bpwi(en) = Y _ by, (en).
k=1 k=1

Thus, using the equations (3.9) and (3.10), we conclude that

(by) [ 5( b b )] ) (3.11)
en(bn) = n— cos(8), .
: HE = Hn  Hm — Hn
Qb brbm >
en(bm) = € + cos(8). 3.12
( ) <:um — Hm — Hn ( ) ( )
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On the other hand, equation (3.5) supplies
en(cos(0)) = —pnby. (3.13)

Now we proceed with Gauss equation. In order to do that we compute the intrinsic
curvature of 3. Firstly, the bracket between principal directions is given by

lem, en] = 23: <wﬁ,(€m) - an(en)) €k

k=1
= wi(em)em —wi (en)en + (wfl(em) — wﬁn(en)) el

which enables to conclude that

3
B Z fn(en)ek> - ven (Zan(em)ek>
k=1

3
v.. (3
n (

R(em’ en)em = vemvenem - venvemem - v[em,en]em
w.
—wp'(em)Ve,, em + wi (en)Ve, €m — (wl em) — W (en)> Ve em

3

23: (em (en))exr +w (en)Vemek> Z ( ( m))ek + wﬂ(em)venek)

k=1 k=1
—wp'(em)Ve,, em + wi (en)Ve, €m — (w,ll(em) Sl (en)> Ve em

3
em en ek—l—E E w enwkem g en
=1

k=1 j=1

3
- Z wan(em)wi(en)ej - Zw?(em)wﬁz(em)ek
k=1

ol
w
—_

k=1 j=1
3 3
+ Y whnlea)wbilenler — Y (whiem) = whlen)) whi(ener.
k=1 k=1

Therefore, we have

3
(R(€m, en)em; en) = em(wy,(en)) + wan(en)wg(em) — en(wp,(em))
k=1

em) = wha(en) ) i (e1)

)
in(en w'(em) + em(wp,(en)) — an(em)w?(en) — en(wm(em))
)

+ (Wi (em))? + (Wi (en))? = wh(em)wm (1) + why (en)w (er)
cos?(6)0? o (€ cos(0)by, cos?(0)b?
ten( )

(ko = ) (g = Fom = fin — tm) (1 = fim)
L <5 cos(@)bn> n cos?(0)b2 cos?(0)b2, B cos?(6)Q?
" — Hm (:un - um)Q (:u’n - Mm)Q (Mn - ,Ufl)(,um - IU'TL)
cos?(0)Q?

(ttm = 1) (pom. — fin)’
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that is,

2 2 2 0 b2 2 2 2
(R(ems en)em, en) — cos*(6)2 cos”(6)b; cos (9)(bn+gm)
(Nm - Hl)(ﬂl - /~Ln) (Nl - Nm)(,“l - Nn) (Nn - Mm)
€ cos?(0)Q?
+ ——— (em(cos(0))b,y, + cos(8)en (b)) —
Hm — Hn ( ( ( )) ( ) ( )) (Mn_Ul)(Mm_Un>
€ cos?(6)Q?
+ ——— (e, (cos(0))b, + cos(0)e, (b)) + .
Hn — Hm (en(cos(6)) (O)en(bn)) (m — 1) (m — #in)
Now, using (3.11) and (3.13), we get
2 2 2(0\p2 2 2, 12
(R(ems en)em. en) — cos*(6)2 cos*(0)b; cos*(0)(b;, —|—§)m)
(ko = ) (= ) (= pan) (1 = pim) (Hn — )
B cos?(6)0? ( 1 B 1 ) B Elmb2, B eptnb?
(m = pn) N — 1) (o — f) 7 fom — B fin — Hm
2 b2 2
4 Ecos (0) [Mm_?f( . b: )]
Hm — Un KMl — Um  Hn — Um
-2 0 b2 b2
+ M |:Mn — 6( l + m ):|
Hn — HUm M — Hn Hm — Hn
_ 2 cos?(0)Q? cos?(0)b? 2 cos?(6) (b2 + b2)
(b — b)) (= b)) (= ) (. — i) (Hn — pm)?
e(pnb? — pumb2,) 9 cos?(0)b? 1 1
+ + ecos®(0) + -
[ — Hn ©) (ftn — pm) <(uz — ) (= un))
2 2 2 _ 2 2 2 4 12
_ 2cos(0)Q n e(pnbs, — umbs,) +ecos(6) + 2 cos”(0)(b;, + bm)'

(km — ) (= pin) Hm — Hn (ttn — pm)?
On the other hand, by Gauss equation (3.1), we have

(R(em, €n)em,en) = 6(<em,en)(en,em> —{em, em){en,en)
+ (em, T)(em, T)(en,en) + (en, T){(en, T){em, em)
— (en, TY{em, T){em, en) — <em,T>(en,T><en,em))
+ (Aem, en)(Aen, em) — (Aem, em){(Aey, en)
= (b, + b, = 1) = fimpin,
and therefore,

92 cos2(0)02 b2 — 2
cos (6) + 5(M bn :umbm) 42 COSQ(H) +
(tm — pa) (= fin) fim — Hn (Hn — Hm)

Consequently, from the above equation, we get:

2 cos?(0) (b2 + b2)

5 + ele + tmptn, = 0.

2 cos?(6)0? _ e(p1b? — pob3) n 2 cos?(0) (b2 + b2) + 2 cos?(6)
(13 — p1)(ps — p2) fia — i1 (2 — p11)? (3.14)
+ pip2 + 5b§,
2e02(0)08 _ clpabd —psh) | 2e0OE 1) L, a0
(2 — pu1) (3 — pur) [3 — fi2 (13 — p2)? (3.15)

+ popts + ebi,
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2c082(0)Q% _ e(mbf — pusb3) | 2cos?(0)(bF ?; b3) 4 2 cos?(6)
(2 = p1)(ps — p2) 3 — (3 — 1) (3.16)
+ paps + 8()3.

In what follows, we will eliminate €2 in the above equations. Replacing (3.14) in (3.15)
and (3.16), we get the following equations on the variables b%, b3 and b3:

[6#1(#3 — ji2) n 2c0s*(0) (ns —pi2) _ e(p2 — Ml)] bi

M2 — 1 (12 — p1)?
epa(pe — p3)  epapn — ) | 2c08*(0) (3 — pa)  2cos®(0)(p2 — 1) 1o
+ — — — + — 5 — — 3 5
fi2 — i 3 — M2 (2 — p1) (13 — p2) (3.17)
eps(pe — ) 2c08*(0)(p2 — 1) ] 2
+ - +e(pus — b
[ 3 — 2 (13 — p2)? (ks = p12) | B3
+ 2 cos®(0) (g — p2) — 26 cos®(0) (ua — pa) + papa(ps — p2) — paps(pe — pa) =0
and
Ful(ua — ) epr(p2 — ) N 2cos’(0) (3 — p1)  2cos*(0) (2 — Ml)} 32
M2 — 1 H3 — p1 (p2 — Ml)2 (3 — M1)2 !
epa(pn — p3) | 2c08*(0)(p3 — ) ] 2
+ + —e(p2 — b
{ 12 — (12 — 11)? (b2 = )| B2 (3.18)
_ 2 200 _
N Fﬂz(uz p1)  2cos”(6)(p2 2M1) (s _Ml)] b2
3 — fi1 (13 — 1)

+ 2e cos”(0) (ug — p1) — 2 cos”(0) (pa — p1) + papia(ps — p1) — paps(pz — pa) = 0.

Since ||T||?+cos(6)? = 1, writing t = cos?(f), we have b3 = 1—t—b3—b3. Then, substituting
such expression for b3 in (3.17) and (3.18), we obtain

epr(ps — 2 epz(pz — p1 2t(pu3 — 2t(p2 —
[u(u pe) _epslpe —p) | 2t(us u22)+ (12 “12)+5(u1—u3)}b?
H2 — i1 3 — 12 (12 — ) (13 — pi2)
epa(pe — p)  epa(pe —m)  eps(pe —pa) | 2t(ps — p2) 2
+ - - + 5 —cus — p2) | by
f2 — fi 13 — f2 13 — f2 (p2 — p1)
2t% (2 — ) <2(u1 —p2) | eps(pn — p2)
+ + +e(us — p2) +2e(p1 — p2) | t
(13 — p2)? (3 — p2)? 13 — f12
Ep3\p2 — M1
+ epalpa — ) + papz(ps — p2) + pops(pn — p2) +e(ps — p2) =0
3 — H2
and
epa(ps — ) epalpe —pa)  eps(pe —pa) | 2t(us — p1) 2
- - + 5 — (s — pn) | b7
p2 = i1 13— i1 13 — (12 — p1)
N [Euz(m — ) eslpp — ) | 2b(us — ) | 2H(pe — )
M2 — pa 3 — p (2 — p1)? (13 — p1)?
2t* (pg — 1)
—e(uz — ) — e(pz — ) [b3 + ————5~
? (p3 — p1)?
2 — U2 Eus -
< o 3 y Spalin — i) +e(ps — pr) + 2e(p1 — m)) t
(3 — 1) 3 —
Ep3 2 — H1
+ epaliz — 1) + pape(ps — p1) + paps(p — p2) +e(pus — pa) = 0,

w3 — H1
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that is, we obtain the following system of variables b3 and b3:

[21&(“2 — p3) + 2t (g — p1)® + Cn] 2 {275(#3 — p2) + 012] 9
2 2 + 2 b

(p2 — p1)?(p3 — p2) (p2 — p1)
n 2t (p2 — )

+aq 0,
(13 — p2)? t)=
[2t(u3 — )+ 021} [ (g — p1)> 4 2t(pe — p1)3 + 022] B2
(N2 - Ml Hz - Ml) (NB - M1)2 2
262 (g —

(M3 — pu1)?

Here, C11, Ci2, Co1 and Cag are real constants that depend on pi, po, us, € and ¢1(t) and
q2(t) are linear functions on the variable ¢, given by

_(2(p — p2) | eps(pa — p2)
a(t) = — )2 -
(pg — p12) [z — p2
ep3(pa — f11)
M3 — K2

+e(ps — p2) + 2e(p — ua)) t

+ + papa(ps — p2) + pops(pn — p2) +e(pus — p2)

and

(21 — p2) | epz(pn — p2)
q@(t) = >+
(ks — ) p3 =
L erslpz = )
M3 — 1
Then, b? and b3 are solutions of the linear system

2t*(p1 — pio)
L T
di1 dio b? _ (113 — p2)? q1(t)
do1  da2 b3 262 (1 — po2) ’
2 q2(t)
(M3 - Ml)

where d;; are the elements of the matrix of coefficients D= (dij), given by

2t(po — pi3)® + 2t (o — p1)® + Cny 2t(p3 — p2) + Chrz
D= (k2 = pn)?(ps — p2)? (2 —p)?
2t(pu3 — p1) + Cox 2t(p3 — p1)° + 2t(po — p1)° + Cao
(no — p1)? (2 — p1)* (3 — p1)?

+e(ps — ) + 2e(p1 — M2)) t

+ pipa(ps — pa) + paps(pn — p2) +e(ps — pa)-

Thus, we have
52 1 [ <2t(ﬂ3 — p11)% + 2t (g — p1)® + sz) <2t2(u1 — p2) — (u3 — p2)*q (t)>
' detD (p2 — p1)?(us — p1)? (u3 — p2)?

B <2t(u3 — pg) + C12> <2t2(m — pi2) — (p3 — m)%(ﬂ)]

(2 — p11)? (13 — p1)?
_ 1 [4t3(M1 — p2) ((g — 1) + (p2 — 1)) 43 (1 — p2) (2 — p3)
det D (2 — p1)?(p3 — pa)?(ps — p2)? (2 — p1)*(ps3 — pa)?

262 Coa(p1 — p2) — 2t(ps — p2)?q1 () (3 — p1)® + (p2 — p1)?) — Caz(ps — p2)?qu ()
_|_
(p2 — p1)?(p3 — 1) (p3 — p2)?
_ 2t°Cha(p — p2) — 2t(p3 — 1) (3 — p2)ga(t) — Cra(ps — m)zc}z(t)}

(2 — p1)*(p3 — pa)?
_ 463 (1 — p2) (s — 1) + (p2 — 1) + (2 — p3)?) + qs(t)
det D (g — pu1)2(p3 — pu1)>(p3 — pi2)? 7
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where g3(t) is a polynomial of degree 2, given by
g3(t) = 2t* (1 — p2)(Caz — Cha(pz — p2)?) — Coz(pz — p2) qu (t)
— 2t(u3 — p2)q1 () (13 — p1)* + (2 — m)?)
+ 2t (ug — 1) (3 — p2)®q2(t) + Cra (s — 1) (s — p2)*qa(t).

Now we consider the coefficient of degree 3. Since
(G =)+ G = )+ (= )

= 1203 (na — 1) — 12p3(13 — 117) + 8(p13 — 17) — 121 a2 — 1)
= (p2 — p1) (1203 — 12001 g — 1200003 + 83 + 863 — Ay o)
=2 — 1) (31 — p3)? + 3(u2 — p3)* + (w1 — p2)?)

it follows that

20 ) (30 = ) 30 = ) + o~ ) ) + (0

b = .
' det D(pa — p1)?(p3 — p1)? (s — pi2)?
Analogous computations provide
b= 1262 (i — p12)* (g1 — o) (i — pi3) + aa(t)
det D(pa — p1)?(p3 — p1)?(ps — pi2)?
where g4(t) is a polynomial of degree 2, given by
qa(t) = 2t*(p1 — p2)(Ci1 — Con (3 — p1)?) — Cra (p3 — 1) q2(t)
=2tz — 1)) (13 — p2)® + (k2 — m)°)
+ 2t(p3 — p12)* (13 — 1) @1 (8) + Con (3 — p12)* (3 — 1)1 (¢).

Y

Now we will compute the determinant of D. Note that
10 (= 2+ = ) ) G = )+ (e = )?)
(1 — p2)(p1 — ps)?(pe — ps)?
2t <C11(M3 — 1) 4+ Cr1(po — p1)? + Coo(pz — p2)® + Coo (2 — ,u1)3> + C11C9

det D =

" (i — 12) (i — 13212 — pia)?
4% (i — p13) (3 — pi2)

2t (Cm(#s — p1) + Car (g — M2)> + C12Ca1
" (11 — p2)? N (11 — p2)?
4t (po — ) <(M3 — p2)* + (3 — 1) + (p2 — M1)3>
(1 — p2)* (1 — p3)?(p2 — p3)?
2t (Cn(/ﬁza — 1) + Cri(pz — p1)? + Coa(uz — p2)* + Coz(p2 — M1)3>
(1 — p2)t (1 — p3)?(p2 — p3)?
2t(pn — p3)* (2 — p13)? (Clz(us — 1) + Can(ps — Mz))

(1 — M2)4(M1 - M3)2(M2 - N3)2
C11C2 + C12C21 (1 — p3)*(pa — p3)?
(1 — p2)* (1 — p3)?(p2 — p3)?

+
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As before we note that

4((#3 — o)+ (3 — p1)® + (p2 — m)3>

= 83 — p7) = 12p2(p3 — 1) + 1205 (13 — 1) — 121 a3z — 1)
= (ug — 1) (83 — 12p1p0 — dpapus + 1205 — 12p0p13 + 8p13)
=2(u3 — 1) (1 — p3)* + 3(u1 — p2)” + 32 — p13)*) -

Hence, we conclude that

262 (p1 — p3) (p1 — p2)? <(M1 — p3)* + 3(pu1 — p2)? + 3(p2 — M3)2> +qs5(t)

(1 — p2)* (1 — ps)? (e — ps)?

det D =

Y

where g5(¢) is a linear function given by
g5(t) = 2t (C'n(ﬂs — p1)” + Cripa — p1)® + Caa(us — pa2)® + Coa(pz — M1)3>

— 2t(u1 — p3)*(p2 — p3)? <C12(M3 — p1) + Co1 (3 — Mz))

+ C11092 — C12091 (1 — p3)*(pa — pi3)*.

Therefore,
, —2t3(p1 — po)? (3(M1 — u3)? +3(p2 — ps) + (u — M2)2> + q3(1)
»2 =
1 262 (py — pg) (1 — p2)? ((Ml — p13)% + 3(p1 — p2)? + 3(p2 — M3)2> +qs5(t)
and
b= 1263 (p1 — p2)* (1 — p13) (p2 — p13) + qa(?)

2t2(py — p3) (1 — p2)? ((Ml — p3)? 4+ 3(p1 — p2)? + 3(p2 — M3)2) + %(t).

Consequently, as b3 = 1 — t — b3 — b3, we have

, —2t3 (pg — p3)(p1 — p2)? (3(M1 — p2)? + 31 — p3)? + (p2 — M3)2) + gs(t)
b3 == )
2t2(py — p3) (1 — p2)? <(M1 — p13)% + 3(p1 — p2)? + 3(p2 — M3)2> + qs(t)

where gg(t) is given by

a6(8) = (1 — D)as() + 26201 — p13) g1 — 1o’ <(u1 = s 3 — 2)? + 3z — u3)2>
—q3(t) — qa(?).

In fact, the coefficient of ¢ is given by
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—2t%(p1 — p3) (1 — p2)? <(M1 — 13)” + 3(p1 — p2)® + 3(p2 — M3)2>

+ 263 (1 — pi)* <3(M1 — p3)? + (2 — p3)® + (1 — M2)2>

+126% (1 — pao) (11 — pa) (p2 — p13)

= 2 = |G )+ 30— ) )+ 3 ) g
— 3(u1 — p2) (1 — p3)* = 3(pa — pa) (2 — p3)® — (pa — pra)”

#6000 = ) = ) )
= =263 (1 — o)’ [(m — 3 — 1 + ) + 32 — i) <(u1 — ) (p2 — p3)
= (11 = p2)(p2 — p3) + 2(p1 — p2) (1 — uz))}
= —26*(pa — p13) (1 — pi2)’ [(m —n3)’ +3 ((ul — n3)(p2 — pi3)
= (p1 = p2) (p2 = p3) + 2(p1 — p2) (1 — us))}

= —2t%(pg — p3) (1 — p2)® (3(M1 — p2)”® + 3(p1 — p3)” + (2 — M3)2>-
Therefore, we conclude that

2 pi(t)
bi (t) Ok (3.19)
where p;(t) and ¢(t) are polynomials on the variable ¢, of degree 3 and 2, respectively.
Now we will calculate e (b?), e2(b3), e3(b3) and use (3.11) to find polynomial identities
on the variable t. Let us start with e;(b?). First, note that b; # 0 for all i € {1,2,3},
otherwise as the principal curvatures are distinct, by (3.19), it follows that ¢ is constant,
and with that, we would finish the proof of the lemma. Using (3.13) and (3.19), we have

2b1e1(b1) = 61(b%) — e <p1 (:)))
(Pr(t)a(t) —

q(
p1(t)d'(t))ei(t)

that is,

Now, using (3.11), we get

b3 b3 __m(@(H)q(t) = pi(t)q (1))
[m_€<u3—3m +M2—2M1>} a




which implies
pa (g3 — pa) (1 — p2) (P (8)q(t) — pr()q (8) = e(pa — pa)g* (003 + (1 — pa)g” ()b
+ (s — ) (2 — 1) ().
Thus, replacing (3.19) in the above equation, we conclude that
pa(pn = p2)(ps — 1) (P (8)g(t) — pr(8)q (1) — pa (g — o) (g1 — p13) 4> (t)
= e(p1 — p3)q(t)p2(t) +e(ur — p2)q(t)ps(t).

Observe that the left side of (3.20) is a polynomial on t of degree at most 4. On the other
hand, since

(3.20)

e — p3)a(t)pa(t) + el — p2)a(t)ps(t) = eq(t) [1%3(#1 — p2) (1 — p3)* (k2 — p3)
= 2% (1 — pa2) " (2 — 1) <3(u1 — p2)? + 3(p1 — p3)? + (n2 — u3)2>
= ) 0) + (i1~ ()|
= eq(t) [%3(#1 — p2)* (2 — pi3) <3(u1 = 13)® = 3(i = p2)? = (2 — u3)2>
= ) 0) + (i1~ ()|
= eq(t) [4753(;“ — pi2)* (p2 — p13)* (31 — 22 — p13)

T (i — prs)aat) + (i — u2>q6<t>] ,

we obtain a polynomial equation such that the coefficient of greatest degree, which is 5, is
given by

8e (31 —2pa—pi3) (1 —pi2) " (2 —pr3)* (pa —pu3) <(M1 —M3)2+3(u1—u2)2+3(u2—u3)2> - (3.21)

Now let us compute eg(b3). Following similarly to the previous case, we obtain

pa(pa — p2)(p2 — ps) (Ph(t)q(t) — p2(t)q (£)) — palpe — 1) (2 — ps)q” (t)

(3.22)
= e(p2 — p3)q(t)p1(t) +e(pz — p1)q(t)ps(t).

Note that the left side of (3.22) is a polynomial on ¢ of degree at most 4. Now, since
e(pa — p3)q()p1(t) + e(pz — pa)q(t)ps(t)

= <0(0)| — 260 ) = ) (3001 = ? + 3002 = 12)? + 1 o)
+ 2% (p2 — pi3) (p2 — ) (3(u1 — pi2)? + (1 — p3)® + (p2 — u3)2>
+ (p2 — p3)gs(t) + (p2 — Nl)%(t)]

= <00 |10 = ) (e = ) (o = 2)? = (12— g

+ (2 — p3)qs(t) + (p2 — Ml)%(t)],
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that is,
e(p2 — p3)q(t)p1(t) + e(p2 — p1)q(t)ps(t)

= eq(t) [4253(/“ — pi2)* (p2 = p3) (1 — p3) (1 — 2p2 + p3)

+ (n2 — p3)gs(t) + (p2 — Nl)%(t)] ,

we get a polynomial equation of degree 5 on variable ¢, such that the coefficient of ¢° is
given by

86(#1—2u2+u3)(u1—u2)7(u1—u3)2(u2—u3)((m—u3)2+3(u1—u2)2+3(u2—u3)2>- (3.23)

Finally, let us compute e3(b3). As before, we obtain

pa(pn — p3) (us — p2) (P (£)q(t) — p2(t)q' (£)) — paps — pa) (s — p3)q” (1)
= e(pz — p1)q(t)p2(t) + (s — p2)q(t)p1(t),

where the left side is a polynomial on ¢ of degree at most 4. Now, since

(3.24)

e(ps — m1)q()pa(t) + e(uz — p2)q(t)p1(t) = eq(t) [ —126% (1 — p2)* (1 — p3)* (2 — pa)
265 = ) o) (30 = g + 30— 0 + (i )
= )aae) + (i = st
= 200026 ) () (00 = ) = 30 = )+ o~ )?)
+ (3 — p1)qa(t) + (ps — /~L2)(J3(t)]
= eq(t) [4t3(u1 — p2)° (p3 — p2) (1 + 2p2 — 3pz)

+ (3 — 1) qa(t) + (p3 — Mz)%(t)] )

we have a polynomial equation of degree 5 on vaiable t, such that the coefficient of ¢° is
given by

8e<u1+2u23u3><muzmlm)(ugm)((mu3>2+3<mu2>2+3<mu3>2). (3.25)

Note that, if one of the coefficients (3.21), (3.23) or (3.25) does not vanish, we conclude
that ¢ is constant, and hence, cos(6) is constant.

Then, suppose by contradiction that the three coefficients vanish. As the principal
curvatures are all distinct, we have the following homogeneous linear system

3p1 — 22 — pz = 0, (3.26)
p1 — 242 + p3 =0, (3.27)
w1+ 2u0 — 3us = 0. (328)

From (3.26) and (3.27), we obtain that u; = p2 = p, and therefore, from (3.28), we conclude
that ps = w, which contradicts the fact that the principal curvatures are distinct. Thus, we
conclude the proof of the lemma. O
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In [8], and Santos classified the hypersurfaces in the product space QF x R, with ¢
distinct constant principal curvatures, g € {1,2,3}, with n > 4 when g = 3. In the next
result, we obtain the classification of the hypersurfaces of Q3 x R that have three distinct
principal curvatures.

Theorem 3.6. Let 33 be a hypersurface of Q2 x R with three distinct constant principal
curvatures. Then X3 is an open part of the following hypersurfaces:

a) St(c1) x St(ca) x R, when e = 1;
b) S'(c1) x H'(co) x R, when e = —1,

1 1 c1
where ¢ c2, — 4+ — = ¢ and the principal curvatures of ¥3 are given by 0, ——— and
17 €2 i iw princip f g N

Vel + e

Proof. Let X3 be a hypersurface of Q3 x R with three distinct constant principal curvatures.
By Lemma 3.5, cos(f) is constant. Since the principal curvatures are distinct, there is no
open €2 where T = 0, otherwise Q is part of a slice Q3 x {to}, to € R, which is totally
geodesic (see Proposition 3.3 and Theorem 3.4). Therefore by (3.5), by continuity, T is a
principal direction, with principal curvature associated equal 0.

Suppose that cos(f) # 0 on ¥. Then, from [8, Theorem 4.1], it follows that ¢ = —1
and ¥ is locally parametrized by f(p,s) = izs(p) + Bsdy, for some B € R, B > 0, where h,
is a family of horospheres in H3. Moreover, the principal curvature associated to the field

T is equal to 0, and the other two principal curvatures are both equal, depending on the

B
choice of orientation, to ——= or ———=——=. Thus, we have a contradiction with the

V1 + B2 V1+ BZ

agssumption that the three principal curvatures are distinct.

Therefore cos(f) = 0 on X. Then Y3 is an open part of a vertical cylinder over an
isoparametric surface in Q2 with two distinct non-zero constant principal curvatures. In
this case, the classification follows from the Theorem 1.3. O

Using the classification of the hypersurfaces in Q7 x R with constant principal curvatures
obtained by Chaves and Santos in [8], we prove Corollary 3.7.

Corollary 3.7. Let X3 be a hypersurface of Q2 x R with constant principal curvatures. Then
Y3 is isoparametric.

Proof. In [8, Theorem 6.1], Chaves and Santos classified the hypersurfaces with constant
principal curvatures when g € {1,2} and n > 2. In both cases, cos() is constant. Moreover,
if g = 3, i.e., all the principal curvatures are distinct, by Lemma 3.5, we obtain that cos(6)
is also constant.

Now, if T = 0, which is the case when g = 1, X2 is an open part of a slice. Once the
normal vector field of a slice is the geodesic vector field 0y, we conclude that the parallel
hypersurfaces to a slice are slices. Therefore ¥.3 is isoparametric, since each slice is totally
geodesic. If T # 0, since cos(#) is constant, it follows from [8, Corollary 3.4], that 2 is also
isoparametric. Thus, we conclude the proof of the corollary. O

In the last result of this chapter, we use the Jacobi field theory to obtain a necessary and
sufficient condition for an isoparametric hypersurface of Q2 x R to have constant principal
curvatures. In [8], Chaves and Santos showed that if ¥ is an isoparametric hypersurface in
QI x R having T as a principal direction, then ¥ has constant principal curvatures if and
only if ||T’|| is constant. Our result improves, at least for n = 3, their result, since we do
not use the assumption of T" being a principal direction.
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Theorem 3.8. Let ¥ be an isoparametric hypersurface of Q2 x R. Then ¥ has constant
principal curvatures if and only if 0 is constant.

Proof. Let ¥ be an isoparametric hypersurface in Q2 x R with unit normal N, and let
{e1, €2, e3} an orthonormal frame of principal directions with corresponding principal cur-
vatures ui, pe and us, respectively.

In order to prove Theorem 3.8, it is enough to show that the principal curvatures of X
are constant if and only if the function ||T|| is constant. In fact, as 9y = T + cos(f)N is a
unit vector field, it follows that 1 = ||T||? + cos?(#), and hence, 6 is constant if only if ||T|
is constant.

The family of hypersurfaces parallel to ¥ in the direction of N is given by (1.1) and
these hypersurfaces are denoted by X,. Given p € X, let vy, be a geodesic of Q3 x R with
7p(0) = p and 7,(0) = N(p). By definition of X,, the normal to ¥, at v,(r) is given by

Yp(T).-
For each i € {1,2,3}, consider the Jacobi field §& = DPF,, along ~y,, where P, is the
parallel transport of e; along ~, with P, (0) = e;, given by the following initial conditions

52(0) = €,
£(0) = —Ae; = —p4e;.

Denoting P, (r) = e;(r), we can write

3
= dij(r)e;(r)

J=1

where d;;(r) are the elements of the matrix that represents D(r), and from this, we see that

= dij(r)e;(r). (3.29)

Jj=1

Remember that, since ; is a Jacobi field along ~,, then &; satisfies the Jacobi equation

&' + R(&, Ap)Ap = 0.
As e;(r) is parallel for all i, taking the derivatives in (3.29), we have

3

T(r) =" dii(r)e;(r). (3.30)

J=1

Therefore, since

3 3
517’7]2 Z 627’7]7 ’Ypael sz 6377[) Vpael>el7

=1 j=11=1

w

it follows, from (3.30) and the Jacobi equation, that

d + Zdlﬂ (€5,%p)¥p, €1) = 0. (3.31)

Suppose, without loss of generality, that v, is parametrized by arc length and is given in
the form

() = <v@g<r|T|\r>,m(coswm),
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where yg3 and yr denote the component of v, in Q2 and R, respectively. Note that
Yo(r) = [IT[7qz + cos(0)0;.

Q3

3
Writing e; = e,° + (e;, 0¢)0;, where e;-QE is the component of e; in Q2, we have that

= N 3, Q2 . . Q3
(R(ej, 3p)ipr e1) = (R (e, [IT11Fgs)I Tz, € )
Q Q2 : Q? .
= (I o) = TIPS e i) ).
once Q2 has constant sectional curvature e. Furthermore, since

3
0= (e, N) = (ej, %) = (", [|TllFige) + (es, ) cos(9),

and
3 3
O = (e, %) + (e, O0) er, D),
we get
3, T, cos(6) 3 Q3
(€} A2) :_7]||T|| and (e, e) = 0, — TiTh,

with T = (e;,T"). Thus, we obtain

T;T, cos2(9))

(Res )i = T (- 17— DI

T-T;
_ |7 (cz-l - B (ITIP + cos2<e>>>

= e(|ITIPo; - T3Th),

and replacing this value in (3.31), we conclude that
3
i+ 3 a1 - 111 o
j=1

Hence, the elements d;; are solutions of the following linear system

diy diy dis diy dig di3 ||T|? — T? T, T\ Ty
5 dyy dyy | =—c| du daz dos ~TT1  ||T|?-T% —ToT;
gy dsy dig ds1 ds2 dss —T5Ty -5 ||T|)? — T3

Since £;(0) = e;, we have

di11(0) =1, di2(0) =0, di3(0) =0,
d21(0) =0, dyp(0)=1, d23(0) =0,
d31(0) =0, d32(0) =0, ds3(0) =1.
Thus,
11(0) df5(0) df3(0) |T|> =TF  TT» AVE
dy;(0) d5y(0) dy3(0) | = —¢ -TT1  ||T|?P-T3  —TT3 . (3.32)
31(0) d55(0) d33(0) ~T3Th —13Ty  ||T|)? — T3
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By (1.4), we can consider the function

Fr) = d%(det D(r)) + 3h(r) det D(r),

which vanishes identically. Note that

2

f(r)= %(det D(r)) + 3K/ (r) det D(r) + 3h(r)d%n

(det D(r)).

d
In what follows, we are going to obtain explicitly the formulas of %(det D(t)) |i=o and

d? ~
@(det D(t)) |i=o. First, taking into account that §& = Vn& = —puie;, we get
/11(0) = —H1, d/12(0) =0, /13(0) =0,
dél(o) =0, d/22(0) = U2, d'23(0) =0,
g’)l(o) = 07 52(0) = 07 déS(O) = — M3,

that is, D'(0) = —A. By Jacobi formula, we have

%(det D(r)) = det D(r)tr(D(r)"1D'(r)). (3.33)

Hence, at » = 0, we get

%(det D(r)) |r=0= —trA = —3h(0),

where h(0) is the mean curvature of ¥. Now, taking the derivative in (3.33), it follows that

2

d—(det D(r)) = j

03 —r(det D(r))tr(D(r)"'D'(r))

+ det D(r)tr <(D(7")_1)'D'(7") + D(fr)_lD”(t)> :

Since D(r)~!D(r) = Id, we obtain
(D(r)~!) = =D(r)"'D'(r)D(r)~".
This means that (D(0)~!) = A. Therefore, taking the trace in (3.32), we get
d2 2 2 "
£5(det D(®)) limo = (tr(A))? — (A7) + (D" (0))
= 9h(0)? — tr(A?) — 2¢||T)?.
In this way, at » = 0, we have that
F1(0) = —tr(A?) + 3K/ (0) — 2¢||T|>.
As f =0, so is its derivative. This shows that
tr(A%) = 31/(0) — 2¢||T| . (3.34)

By assumption, X is isoparametric and hence, h'(0) is constant throughout . Therefore, if
¥ has constant principal curvatures gy, pg and ps, then tr(A?) = p2 + u3 + p2 is constant,
and hence, ||T|| is constant.
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Conversely, if ||T|| is constant, from (3.34), we have that tr(A?) is constant. It easy to
see that the characteristic polynomial Q4 of A is given by

Qa(N) = =A% + 3h(0)X* — (1 pa + pajs + popz) A + det A.

Now, observe that

9h*(0) = 1§ + 3 + 113 + 2(pa 2 + paps + piapis)-

Thus, we have
9h*(0) — tr(A®) = 2(prp2 + papz + p2pa),
which implies
5 9h%(0) —tr(A?)
a 2
Notice that if 7' = 0, then ¥ is an open part of a slice Q2 x {to}, to € R, which is
totally geodesic, and hence, has constant principal curvatures. Thus, suppose that T # 0.
Since ||T'|| is constant it follows that cos(€) is constant, which implies that 7" is a principal
direction with correspondent principal curvature 0. This means that det A = 0. Therefore,
since ¥ is isoparametric, then h(0) is constant, and thus we conclude that the coefficients
of characteristic polynomial Q4 are real constants, and hence, > has constant principal
curvatures. O

Qa(\) = =23+ 3h(0)X A+ det A.
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Chapter 4

Solutions to the mean curvature flow

In this chapter, we describe the evolution by the mean curvature flow (MCF) of isopara-
metric hypersurfaces in product manifolds of dimension 4. We show that the evolution of
isoparametric hypersurfaces of Riemannian manifolds by the mean curvature flow is given
by a reparametrization of the flow by parallel hypersurfaces in a short time, as long as
the uniqueness of the mean curvature flow holds for the initial data and the corresponding
ambient space. Such a result is given in a general sense, not necessarily restricted to the
ambient spaces considered in this work, which has its own interest. Through this result, we
describe the evolution of the hypersurfaces classified in Chapters 2 and 3. We also describe
the evolutions of isoparametric hypersurfaces in S? x S? and H? x H?, classified by Urbano
(2019) and Dong Gao, Hui Ma and Zeke Yao (2022), respectively, and of isoparametric
hypersurfaces in Q3 x R with g distinct constant principal curvatures, g € {1,2}, classified
by Chaves and Santos (2019).

Part of the results of this chapter composes a joint work with Jodo Paulo do Santos and
Felipe Guimaraes [22], entitled "Isoparametric hypersurfaces of Riemannian manifolds as
initial data for the mean curvature flow".

4.1 An isoparametric hypersurface as initial data for MCF

Before stating and proving the main results and their applications, let us present some
short background content on the uniqueness of the mean curvature flow.

Let X" be a 2-sided hypersurface of a Riemannian manifold M"+1. The family of
hypersurfaces F' : ¥ x I — M"™t! 0 € I C R, is a solution to the mean curvature flow
(abbreviated as MCF) with initial data ¥, if

{ OF' (p,t) = h(p,t)N(p,t), (p,t) € X" x I; (41)
F(p,0)=peX. ’

Here, h(p,t) is the mean curvature and N(p,t) is a unit normal vector field of the hyper-
surface ¥y := F(X,1).

Remark 5. Observe that it is enough to ask for 2-sided hypersurface, since we only need a
well-defined normal vector field. In case the manifold M™ ' is orientable, such condition is
equivalent to ™ being an orientable hypersurface.

In order to characterize the evolution by the mean curvature flow of isoparametric hy-
persurfaces, we will need to understand the uniqueness of the MCF. It is well-known that
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it holds when the initial data is compact (as can be seen, for example, in [24, Lemma 3.2]).
As for the noncompact case, we will use the following result, which will be stated here in
the hypersurface case:

Theorem 4.1 (Chen-Yin [9]). Let (M™+1,§) be a complete Riemannian manifold of dimen-
ston n+1 such that the curvature and its covariant derivatives up to order 2 are bounded and

the injectivity radius 1s bounded from below by a positive constant, i.e., there are constants
C and § such that

(IR +|VR| + [V2R|)(p) < C, inj(M"*,p) >0,

forallp € MnHL. Let Fop: X" — M"HL pe an isometrically immersed Riemannian manifold
with bounded second fundamental form in M. Suppose Fy and Fy are two solutions to
the mean curvature flow on X" x [0,T] with the same Fy as initial data and with bounded
second fundamental forms on [0,T]. Then Fy = Fy for all (p,t) € ¥™ x [0,T].

In what follows, we will study the properties of hypersurfaces that have a particular
solution for MCF:

Definition 4.1. Let F : ¥" x[0,T) — M™1 be a solution to the MCF in M™*! with, initial
data X". We say that this solution is a reparametrization of the parallel flow (abbreviated
as RPF) in [0,0), 0 < 0 < T, with parameter € : [0,0) — R, €(0) =0 #f

F(p,t) = exp,(e(t)N(p)), (4.2)

for allt € [0,0), where expy, TPM — M denotes the exponential map of M at pE X, and
N is a unit normal vector field of the hypersurface 3.

Our first result is given by Lemma below, which provides a necessary condition for a
solution to the MCF to be an reparametrization of the parallel low. Lemma 4.2 has its
own interest since it extends to Riemannian manifolds the results of [37] for space forms.
Furthermore, the first part of Lemma 4.2 coincides with Proposition 1 [28] when the MCF
is considered, complementing it with the second part, since it provides the corresponding
ordinary differential equation concretely in terms of the endomorphism D presented in
Section 1.2. For completeness, we will present its entire proof.

Lemma 4.2. Let X" be a 2—sided hypersurface of M"H, such that X" is the initial data
of a solution F : ¥ x [0,T) — M"*! for the MCF. If F restricted to ¥ x [0,0) for some
0 <6 <T is a RPF with parameter € : [0,0) — R, then X is an isoparametric hypersurface
of ML, Moreover, € satisfies the ODE

(det D)’

/ —
¢ = - 9P ), (43
where D is a solution of (1.2), and the right-hand side of (4.3) is independent of p € X.

Proof. By hypothesis we have that F(p,t) = exp,(e(t)N(p)) satisfies

atF(pa t) = h(pvt)N(pa t)>

where N(-,t) and h(-,t) stand for the normal unit vector field and the mean curvature of
the hypersurface F(-,t), for t € [0,6), respectively. On the one hand, we have

OF(p,t)=¢€(t)(d expp)e(t)N(p) N(p).
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On the other hand, it follows from Gauss’s lemma that

(dexpy) ynip N (@) = N(p, 1)

for any p € X" and t € [0,0). Thus, €(t) = h(p,t) and the hypersurface ¥; = F(X,t) has
constant mean curvature € (¢). In particular, 3" is an isoparametric hypersurface.

Since €’(t) is the mean curvature of the hypersurface 3; = F(X,t) and the MCF is RPF
with parameter €, we have from (1.4) that

(1) = ne(t)) = - SV ),

where D is the solution of (1.2), which will be independent of the choice of p € X, once X
is isoparametric. ]

Lemma 4.2 says that if a solution of the MCF is given by an RPF, then the initial
hypersurface of this solution must be isoparametric. We will make use of it and Theorem
4.1 to obtain the Theorem 4.3 below, which supplies the characterization of the MCF when
the initial data is an isoparametric hypersurface, for a regular enough ambient space (in
the sense of Theorem 4.1). For this, we will need the following formula, which is a direct
consequence of the Riccati equation (see [33, Section 3]):

R (r) = Ric(3(r), 4(r)) + | Ay %, (4.4)

where ﬁE is the Ricci tensor of M.

Theorem 4.3. Let M"*! be a complete Riemannian manifold such that the curvature and
its covariant derivatives up to order 2 are bounded and the injectivity radius is bounded
from below by a positive constant. Let X" be a hypersurface of M™1 such that the solution
F:3" x[0,T) = M"* of the MCF with initial data X" has bounded second fundamental
form on [0,T_] for all T < T. Then, X" is isoparametric if and only if F is the flow by
parallels for some g < T. Moreover, suppose that [0,0) is the mazimal interval where F is
a reparametrization of the parallel flow. If § < T then F(.,0) is a hypersurface that is not
1soparametric.

Proof. Let ¥ be an isoparametric hypersurface of M+, Then the mean curvatures of its
nearby parallel hypersurfaces depend only on the parallel displacement > 0. In this case, if
D is a solution of (1.2), then the right-hand side of (1.4), which provides the mean curvature
of a parallel hypersurface of 3, depends only on r. Therefore the ODE

¢t =~ LUV oy

is well defined in a neighborhood of » = 0. Let € be a solution of such ODE, with ¢(0) = 0,
defined in [0,8) for some dy > 0 such that |e(t))| < 6, for all t € [0,8,) where & is the
uniform bound for the injectivity radius of M. Thus, proceeding as in the proof of Lemma
4.2, the family F : ¥" x [0,6) — M"*! given by F(p,t) = expy(,)(e(t)N(p)), where N is
a unit normal vector field of X", whose direction is given by the vector mean curvature,
is a solution of the MCF, with initial data given by 3". Since the ambient space satisfies
the conditions of Theorem 4.1 and " is isoparametric, it follows by equation (4.4) that
the second fundamental form is bounded for all ¢ € [0,9). Consequently, it follows from
Theorem 4.1 that F' = F in [0,6). The converse follows from Lemma 4.2.

Let [0,0) be the maximal interval where the solution of the MCF F': ¥"x[0,T") — M+l
is RPF. When ¢ < T, we firstly observe that F(.,d) is a regular hypersurface, since the F
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is defined at ¢t = §. Secondly, we claim that F'(X,d) is not a isoparametric hypersurface. In
fact, suppose by contradiction that F(X,d) is isoparametric. Then we can consider it as an
initial data for the mean curvature flow and, by the uniqueness, we will then extend F' as
RPF beyond 6, which contradicts the maximality of [0, ). O

Remark 6. Theorem 4.3 provides a refinement of Theorem 2.2 of [37] when the ambient
space 1s a space form. It assures that the unique solution for the MCF in a short time, with
mitial data being an isoparametric hypersurface, is given by the family of parallel hypersur-
faces provided by the parameter € arising as the unique solution of the ordinary differential
equation (4.3). Similarly, for Riemannian manifolds where being isoparametric is equivalent
to having constant principal curvatures as ambient spaces and when the MCF is considered,
the unique solution by parallel hypersurfaces given in Corollary 2 of [28], will be, in fact, the
unique solution to the MCF, as long as the conditions of Theorem 4.1 are satisfied (recall
that the author in [28] defines isoparamelric hypersurfaces as those with constant principal
curvatures).

4.2 Applications: evolution of isoparametric hypersurfaces in
product spaces

In this section, we will study the evolution of isoparametric hypersurfaces in the product
spaces Q2 x Q2 and Q2 x R. We highlight that these ambient spaces are homogeneous man-
ifolds and products of spaces of constant curvature. Therefore, they satisfy the conditions
of Theorem 4.1.

To study the evolution of such hypersurfaces, we will need the parallel surfaces and
curves given in the space forms. By (1.1), if ¥ is surface in Q2 or a curve in Qgi, then the
parallels to X are given by

®,(p) = Ce(r)p + Se(r)N(p), (4.5)

where p € ¥, N(p) is the unit normal to ¥ at p, and the functions S.(r) and C¢(r) are given
by

r ife=0, 1 ife =0,
Se(r) = < sinh(r) ife=—1, Ce(r) = S cosh(r) ife=—1, (4.6)
sin(r) ife=1, cos(r) ife=1.

Moreover, if ;1 denotes either a principal curvature or the curvature of ¥ (the last case when
Y is a curve), then a principal curvature or the curvature of the parallels to 3 are given by

[ty = eSe(r) + pCq(r)
' Ce(r) — puSe(r)

(4.7)
see [15].

4.2.1 On hypersurfaces of Q? x Q2

In this subsection, we will study the evolution of isoparametric hypersurfaces by the
MCF in the following ambient spaces: S? x R?, S? x H?, H? x R?, §? x S?, H? x H?.

We will start by considering the hypersurfaces classified by Theorem 2.2, i.e., when the
ambient spaces are given by le x Q2 , for ¢; € {—1,0,1} and c; # co.

c2?
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i) On hypersurfaces of S? x R?: The isoparametric hypersurfaces with constant
principal curvatures in S? x R? are of the form S x R, S? x S}(b) (for b € RT) or S'(a) x R?
(for a € (0,1]), where S'(r) is the circle with radius 7 € R (see also [25]). As was pointed
out previously, these hypersurfaces are characterized by a constant function C' defined as
C = (PN, N), where P is a product structure in S? x R? defined by P(v1,v2) = (v1, —v2)
and N is the unit normal. On these hypersurfaces, the function C' assumes the values 1 or
—1.

Let us take a look at each case separately.

First, for S x R, we have C' = —1 and the unit normal is of the form N = (0, N»), where
N, is the component of N in R? with |Na|? = 15€. Given v = (v1,v2) € T(S? x R), we have

An(v) = =V,N = —=VE Ny = —dNy(v) = 0,

where V is the Levi Civita connection of % x R2. Then, we have that S? x R is totally
geodesic and h = 0. Since we are in the conditions of Theorem 4.1, the flow is stationary,
ie., e(t) =0 for all t.

For S? x SY(b) (for b € R*"), we also have C = —1 and N = (0, N3). For any w =
(w1, ws) € T(S? x SL(b)), we get

N 1
An(w) = =VuN = =V, Ny = —dNp(wz) = Ty

Then, given an orthonormal basis {u1,uz,uz} in S? x S(b), with uy,us € TS? and u3 €
TSY(b), we have

1
An(w) = An(uz) =0 and Ay (ug) = —7us,

1
that is, the principal curvatures of S? x S'(b) are 0, 0 and — Moreover, from (4.5), the

displacement of S? x S!(b) in direction N at distance r is given by
P, (p, q) = exp(pq) ("N (p, q))
= <p7 q+ TNQ(Q)) (4.8)
=S* xS +r),

and from (4.7), the principal curvatures of the parallel hypersurface S? x S'(b+7) are given
by 0, 0 and —

. Thus, its mean curvature is given by h(r) = , which implies

— 300
that the MCF with initial data S? x S'(b) is given by @, (1), where € is the solution of the
ODE (4.3):

, 1
) — 49
“O="3w+ (4.9)
2t
that is, 3(e(t) + b)?> = K1 — 2t, where K is a constant. Therefore €(t) = 4/b? — 3 b

Finally, for S!(a) x R? with a € (0,1), we have C = 1 and the unit normal is of the
form N = (N1,0), where N is the component of N in S? with |N;|? = % For any
u = (u1,uz) € T(S'(a) x R?), we have

An(u) = =V N = —VE?Nl = —dNy(u1) = cot(pq)uq,

where 0 < ¢, < 7 and V is the Levi Civita connection of S x R2. Then, given an
orthonormal basis {v1, v, v3} in S'(a) x R?, with v; € TS'(a) and va,v3 € TR?, we have

Apn(v1) = cot(gg)vy and  An(ve) = An(vs) =0,
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that is, the principal curvatures of S'(a) xR? are 0, 0 and cot(¢,). By (4.5), the displacement
of S'(a) x R? in direction N at distance r is given by

) = ((cosr)p + (sinr) ().,

and from (4.7), its principal curvatures are 0, 0 and cot(¢, — r), and hence, its mean

t —
curvature is given by h(r) = W. Therefore, the MCF with initial data S'(a) x R?
with a € (0,1), is given by @, where € is the solution of the ODE (4.3):

€(t) = W (4.10)
that is, cos(¢, — €(t)) = cos(gba)e%. Note that when a = 1, we have that S' x R? is totally
geodesic, and therefore the MCF with initial data St x R? is stationary, i.e., e(t) = 0 for all
t.

ii) On hypersurfaces of S? x H?: Isoparametric hypersurfaces with constant principal
curvatures in S? x H? are of the form S'(a) x H? (for a € (0,1]) or S? x C1(k;) where S*(a)
is the circle with radius a and C!(k;) is a complete curve of constant geodesic curvature
in H?, that is, besides the geodesics, the complete curve Cl(/ij) C H? is either a circle, a
horocycle or a hypercycle. As in the previous case, these hypersurfaces are characterized by
a constant function C' defined as C' = (PN, N), where in this case P is a product structure
in S? x H? also defined by P(v1,v2) = (v1, —v2) and N is the unit normal. Moreover, on
these hypersurfaces, the function C also assumes the values 1 or —1.

The solution of the MCF with initial data S!(a) x H? is analogous to the case i) with
the same function €(t), so here we will present the ODE (4.3) of the MCF with initial data
SQ X Cl(li]’).

In this case, we have C'= —1 and the unit normal is of the form N = (0, N3), where Ny
is the component of N in H? with |Ng|? = % For any v = (v1,v2) € T(S* x Cl(k;)), we
have _

AN(U) = —VUN = —VEHQQNQ = —dNQ(UQ) = K/j'UQ,

where V is the Levi Civita connection of S? x HZ2. Thus, given an orthonormal basis
{u1,ug,uz} in S* x C(k;), with uy,ug € TS? and uz € TC'(k;), we have

AN(ul) = AN(UQ> =0 and AN<U3) = /ijUg,

that is, the principal curvatures of S* x C1(k;) are 0, 0 and k;, which implies that the mean
P
curvature is hy; = gj Moreover, using (4.5), the displacement of S? x C!(k;) in direction

N at distance r is given by
¢7'(p7 q) = eXp(p,q) (T’N(p, q))

— <p, (coshr)q + (sinh )Ny (Q)> '

Observe that when C!(k;) is a geodesic, we have hy; = 0, which implies that the flow is
stationary, i.e., €(t) = 0 for all ¢.

If C1(k;) is a horocycle, we have k; = 1, which implies that the principal curvatures of
S% x C!(k;) are 0, 0 and 1. From (4.7), the principal curvatures of the parallel hypersurfaces
to S? x C!(k;) at distance r are also given by 0, 0 and 1, and hence, its mean curvature is
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1
h(r) = 3 Therefore the MCF with initial data S* x C*(k;) is given by @), where € is the
solution of the ODE (4.3):

(t) = (4.11)

1

37
. 1

that is, e(t) = §t'

If C!(k;) is a hypercycle, it follows that the curvature x; is given by k; = tanh(¢a),
see [36]. Thus, it follows that the principal curvatures of S? x C!(k;) are 0, 0 and tanh(¢,),
and from (4.7), the principal curvatures of the parallel hypersurfaces to S? x Cl(k;) at
distance r are given by 0, 0 and tanh(¢, — r), and hence, its mean curvature is given by

tanh (¢, — C el . .
h(r) = M. Therefore, the MCF with initial data S x C!(k;) with C'(k;) being
a hypercycle, is given by @, where € is the solution of the ODE (4.3):

_ tanh (¢, — €(t))
3 ;

é(t)

that is, sinh(¢, — €(t)) = sinh(qba)e_%.

Finally, if C'(k;) is a circle, we have that the curvature r; is given by k; = coth(¢a),
see [36]. Thus, it follows that the principal curvatures of S? x C!(k;) are 0, 0 and coth(¢q).
From (4.7), the principal curvatures of the parallel hypersurfaces to S? x C1(k;) at distance
r are given by 0, 0 and coth(¢, — ), which implies that its mean curvature is given by

th(¢a — C e el . .
h(r) = w. Therefore, the MCF with initial data S* x C!(k;) with C'(k;) being
a circle, is given by @), where € is the solution of the ODE (4.3):

coth(pa — €(t))
3 )

(4.12)

€(t) =

that is, cosh(¢ — €(t)) = cosh(d)a)e_%.

iii) On hypersurfaces of H? x R?: In this case, if ¥ is an isoparametric hypersurface
with constant principal curvatures in H? x R?, then it follows that ¥ is an open part of one
of the following hypersurfaces:

a) Cl(k;) x R?, H? x R or H? x S(b) (for b € RT), where S!(b) is a circle with radius b
in R? and C'(k;) is a complete curve with constant geodesic curvature x; in HZ.

(4.13)

b) ¥(R3) C H? x R?, where ¥ : R? — H? x R? is an immersion given by

(s, u,v) = e "5(a(u),0)+ (Cosh(—b s),0,sinh(—bs), Vos)
) (4.14)
+ (0,290 + Wov),

where H? C L3 is given as the standard model of the hyperbolic space in the Lorentz

2’ 2
constant orthogonal vectors in R? such that ||[Wp|| = 1 and b = /1 — [[Vp][?, with
b# {1,0}.

Note that the solution of the MCF with the initial data being a hypersurface of item a)
is obtained analogously to cases i) and ii).

Now, let us provide the solution of the MCF with the initial data being the hypersurface
parametrized by (4.14). Remember that the unit normal vector field N to X is given by

2 2
u u
3-space L3, the curve « is given by a(u) = < U, —>, po € R?, Vy and Wy are

N = —||V]| <6_bs(a(u), 6) + (sinh(—bs),O,cosh(—bs), ||V1;||2V0>>’
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and the principal curvatures of ¥ are given by

n1 = 07 2 = Y s M3 = Oa

where the function C is defined by (2.2). Thus, the mean curvature of ¥ is given by

1
h=- % Note that, as N has a component in both factors, the displacement of X in

direction NV at distance r is given by
®,.(p, q) = exp(p,q) ("N (p; q))
= ((cost (IM3llrp + 5] sin 1307 V3 ).+ Ve
= (cosh (I|N1]|r) (e*bsa(u) + (cosh(—bs), 0, sinh(—bs)))

— HN1H_1|]V0H sinh (HNlHr)(e_bsoe(u) + (sinh(—bs), 0, cosh(—bs))),

brV;
po + Wov + Vs — " 0)
Vol

- (e‘bsa(u)(cosh(\%!\r) — sinh (|[Vo}r))

brV;
+ (cosh (—[|Vol|r — bs), 0,sinh (—||Vp||r — bs)), po + Wov + Vs — r 0)

Vol
= V60" a) ) + ( cosh (~[|Vplr — bs), 0.sink (~[Vol|r — bs). Vos)
S brV

Furthermore, as we saw in the proof of Theorem 2.2, the mean curvature of the parallel
1

hypersurfaces to X is also given by h(r) = 3 % In this way, the MCF with initial data

¥ is given by @), where € is the solution of the ODE (4.3):

ry L 1+ C
E(t)—?) 9 ’
1 /1
that is, e(t) = g\/%ct.

iv) On hypersurfaces of S? x S?: In this case, the isoparametric hypersurfaces were
classified in [41]. They are congruent to S'(a) x S%, a € (0,1], or to My, t € (—1,1), which
is defined as

M; ={(p,q) € > x S? 5 R3> x R®: (p, q)gs = t}.

The solution of the MCF with initial data S'(a) x S? is essentially the same as in the case
i), so here we will present the ODE 4.3 of the MCF with initial data M; for t € (—1,1).

In what follows, the products (,) are all in R?. In [41] it was provided the normal vector
field

1
and the mean curvature h; = 3\/% of M;. A straightforward computation, using the

coordinates of the normal given above, shows that the displacement of M; in direction N
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at distance r is given by

P, (p, q) = exp(p,q) (rN(p,q))

~ (o 5) (0 75) o (o ) o+ (0 3) =)
= (Pr(p.9), (P, q)) -

Since (P, (p,q), Qr(p,q)) = t cos (\@r) +v1 — t2sin (ﬁr), it follows that @, (M) = My,
where ¢(r,t) = tcos (vV2r) + v1 — £2sin (v2r).

The MCF with initial data M; is given by @), where € is the solution of the ODE
(4.3):

€(t) = hge(r))
V26(c(t), 5)
31— ¢(e(t), s)?
V2 <s cos (V2¢(t)) + V1 — s2sin (\/56(25)))

3\/1 — (s cos (v/2¢(t)) + V1 — sZsin (\/ﬁe(t)))z'

(4.15)

v) On hypersurfaces of H? x H?: The isoparametric hypersurfaces of H? x H? were
classified in [19]. Such hypersurfaces are also characterized by a constant function C' defined
as C = (PN, N), where P is a product structure in H? x H? defined by P (v, v2) = (v1, —v2)
and N is the unit normal.

Let us start with Mp, where Mr is of the form Mp = {(z,y) € H* x H? |z € I,y € H?},
whith T’ being a curve of H? with constant geodesic curvature. On this hypersurface, the
function C assumes the value 1 and the unit normal is of the form N = (Ny,0), where N;
is the component of N in H? with |N{|? = % Now, if kp denotes the curvature of ' in
H?2, then Mr has principal curvatures kr, 0 and 0, see Example 3.1 of [19]. Therefore the
mean curvature of Mt is given by h = %, and the solution of the MCF with initial data

M is also obtained analogously to case ii).
Now we will present the ODE 4.3 of the MCF with initial data Mf _; for ¢ € (0,1),
where the hypersurface My _, is parametrized by

U(t,u,v) = <cosh(\/5t)7(u) + sinh(v/ct)n(u),

(4.16)
cosh(v1 — ct)y(v) + sinh(v1 — ct)ﬁ(v)),
with unit normal vector field N given by
N = (\/1 — esinh(v/ct)y(u) + V1 — ccosh(y/ct)n(u),
(4.17)

— y/esinh(v1 — ct)5(v) — Vecosh(v1 — ct)ﬁ(v)),

where «v(u) and (v) are horocycles parametrized by arc length in H? i.e.,

2 2 2 2

u u v v
(14—, u,— | CcL3 A =(1+—=,v,—|cCL3
v(u) <+2,u,2)c , Av) <+2,v,2>c :
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with n, nn being its unit normal vector fields given, respectively, by
2 2 2 2
n(u) :( - %,—u,l - u2>7 n(v) :<U2,U,—1 + 1}2>7
see [19].

The hypersurface M{ _; has constant €' = 1 — 2c¢ and constant principal curvatures
0, V1 —c and /c (see example 3.6 of [19]), that is, its mean curvature is given by h, =
V1—c+/c

3
Moreover, if we write N = (N1, Np), since || N1||*> = 1 — ¢ and ||Ns||? = ¢, then the

displacement of M{ _; in direction N at distance r is given by

®,.(p, q) = exp(p,q) ("N (p; q))
= (cosh (V1 —cr)p+

sinh (v1 — er)Ny(p),

1—

o

1 .
cosh (v/cr)q + e sinh (\ET)N2(P)> (4.18)

= (cosh (Vet + V1 — er)y(u) + sinh (Vet + V1 — er)n(u),
cosh (V1 — ct — v/cr)y(v) + sinh (v/1 — et — ﬁr)ﬁ(v))

Since the principal curvatures of ®, (M7 _;) are the same as M{ _; (see Example 3.6
of [19]), it follows that the mean curvature of the parallel hypersurfaces to M{ _; is also

V1 —
given by h(r) = ?C)—F\ﬁ Thus, the MCF with initial data M{ _; is given by @),
where € is the solution of the ODE (4.3):
¢ (s) = \/1—;% (4.19)

that is, €(s) = (VI=c+ ﬁ)s

Now, let us analyze the case where M7, for ¢ € (0,1), is the initial data, where My, s
also parametrized by (4.16) and its unit normal vector field is also given by (4.17), where
in this case, n(v) is given by

see [19].
Moreover, the principal curvatures of M7 ; are given by 0, v/1 — ¢ and —4/c (see example

JI—c—
3.7 of [19]), and hence, the mean curvature of M{ _; is given by h, = g\/E Observe

1 1
that when ¢ = 3 we have that h1 = 0, and therefore, the flow is stationary. For ¢ # 2 the
2
displacement of MY in direction NV at distance r is also given by (4.18).

As in the previous case, the principal curvatures of ®, (M7 ;) are the same as M7, (see
Example 3.7 of [19]), which implies that the mean curvature of the parallel hypersurfaces

Vl-c—/c

to M is also given by h(r) = 3 . Therefore, the MCF with initial data M7 is
given by @), where € is the solution of the ODE (4.3):

_Vi-c—ye (4.20)

é(s) .
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that is, €(s) = (Vize= ﬁ)s

Finally, following the ideas of Urbano [41], we construct a class of isoparametric hyper-
surfaces with three distinct (constant) principal curvatures, which coincides with the family
of hypersurfaces M, (for 7 < —1), obtained in [19], and we provide the ODE (4.3) of the
MCF whose such hypersurface is the initial data.

Let

M ={(p,q) € H* x H? = L* x L? : (p, q)ys = —t},

for ¢ > 1. In this subsection all products will be taken in L3, Then it is easy to check that
M is a hypersurface of H? x H? with normal vector field

1
N(p,q) = ———————==(q —tp,p—tq).
(p,q) I D) (¢ —tp,p —tq)
Note that C' = 0. Let (v1,v2) € T(p7q)]\z and v(s) = (p(s), q(s)) : I — M, with v(0) = (p, q)
and 7/(0) = (v1,v2) , thus “V(,, )N = %Noy(sﬂszo, where 'V stands as the connection
in the lorentzian space, and

1
"V oo N = N SR ((v2,v1) — t(v1,v2)),

as H? is an umbilical hypersurface of I3 we have the following equation

1
Lv(m,vz)N = Hv(m,vz)N + a((v1,v2), N) = Hv(m,vz)N + m((vlv q)p; (v2, )q),

where BV stands as the connection in the hyperbolic space, and it follows that

A1) = e (e, 02) = (2, 00) % (01,000 (02,)0)-

We will need an orthonormal basis to calculate the mean curvature. Let w € TH? with
(w,w)ps = % such that (w,p)rs = (w,q)1s = 0, thus ((w, —w),N(pyq)> = (w,q) — t{w,p) —
(p, w) + t(q, w) = 0 and we have that (w, —w) € TM,. Using the same argument, we have
that (w,w) € TM,. A straightforward calculation shows that {(w, —w), (w,w), (¢g—tp, —p+
tq)} is an orthornormal basis of T' M;. Observe that

1 1 t+1
Alw, —w) = ——— (t(w, —w) + (v, —w)) = —=/ ——(w, —w),
(0, =0) = s (0 —0) 0, =0)) = 5 )
1 /t—1
A = —/—
(ww) = g ().
1
Alg—tp,—p+tg) = ———— ((p(1 = t2),q(t* = 1)) + ((£2 = Dp, (1 — t*)q)) = 0.
(q—tp,—p +tq) e ((p(1 = £%),q(t" = 1)) + (" = D)p, (1 = t*)q))
It follows that h; = 3 \/*[17# Observe that the displacement of M, in direction N at distance
r is given by
q)’l‘(pvq) exp(pq TN(pvq
r q—tp r LT p—w)
cosh — + ( sinh —= | ——=, ( cosh—= | ¢ + | sinh —= | ——=
= (e ) e (o 7g) S (oo g o (o J5) 2
= (Pr(p;9), @r(p,q))
(4.21)
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Since (P;(p,q), Qr(p, q)) = —tcosh (v/2r)+v—1 + t2sinh (v2r), it follows that <I>T(Z\Z) =
M (1), where ¢(r,t) =t cosh (v/2r) — /=1 + ¢?sinh (v2r).

The MCF with initial data M; is given by @), where € is the solution of the ODE
(4.3):

€ (1) = ho(e(t),5)
VBt s)
3V 1+ ¢(e(t), 5)2
V2 (s cosh (v2¢(t)) — v/—1 + s2sinh (\/ie(t)))

3\/—1 + (s cosh (v2¢(t)) — v—1 + s2sinh (ﬂe(t)))Q

(4.22)

4.2.2 On hypersurfaces of Q3 x R

In this subsection, we will study the evolution of isoparametric hypersurfaces by the
MCF in the ambient space Q3 x R, where Q2 denotes the unit sphere S? if e = 1, or the
hyperbolic space H? if ¢ = —1.

By Corolary 3.7, if ¥ is a hypersurface with constant principal curvatures in Q2 x R,
then X is isoparametric. Thus, by Theorem 3.6 and Theorem 6.1 of [8] (items (i) and (ii)), if
Y is an isoparametric hypersurface in Q2 x R with g constant distinct principal curvatures,
we have:

a) If g =1, then ¥ is an open part of a slice Q2 x {to}, for any to € R or an open subset
of a Riemannian product ¥? x R. In the latter case, if ¢ = 1, ¥? is a totally geodesic
sphere in S3, and if ¢ = —1, ¥? is a totally geodesic hyperplane in H?,

b) If g = 2, then ¢ = —1 and ¥ is locally parametrized by f(p,s) = hs(p) + Bsd, for
some B € R, B > 0, with ¥3 = X2 x I, where h; is a family of horospheres in H?, or
Y3 is an open part of a Riemannian product £2 x R. In the latter case, if ¢ = 1, ¥? is
a non-totally geodesic sphere in S, and if ¢ = —1, ¥? is an equidistant hypersurface
to a totally geodesic HZ, a horosphere, or a hypersphere in H?,

c¢) If g = 3, then ¥ is an open part of the following hypersurfaces:

i) SY(c1) x St(e2) x R, when ¢ = 1;
ii) S'(c1) x H(e2) x R, when ¢ = —1,

1 1 c
where ¢; # ¢, — 4+ — = ¢ and the principal curvatures of X2 are given by 0, !
C1

C2 Vet e

Ve +ea

Let us analyze each case separately.

In item a), since X is totally geodesic, the principal curvatures are all zero, and hence
h = 0, which implies that the flow is stationary, i.e., €(t) = 0 for all ¢.

In item b) we have two cases. First, we will deal with the case where ¥ is parametrized

by f(p,s) = hs(p)+ Bsoy, for some B € R, B > 0. It follows from [8, Theorem 4.1] that one
principal curvature is 0, and the other two are both equal, depending on the orientation, to

and

r— Without loss of generality, assume that the principal curvatures

(0] .
V14 B? V14 B?
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which implies that the mean curvature of ¥ is given by

of ¥ are 0 B and B
re ), —— and ——,
2B\/l + B2 V1+ B?

hp = ——2
B3Vt B2

In this case, since ¢ = —1 and the unit normal is N = (Ng, cos(#)), where Ng is the
component of N in Q2, the displacement of ¥ in direction N at distance r is given by

D, (p, q) = expy,q) (rN(p,q))

= (Cosh(l [ Tl|r)p +|IT|| sinh(||T||r)Ng, a +r 008(9)((1)> )

1 B
where COS(G) = \/ﬁ and HTH = HN@” = ﬁ’ see [32]

Moreover, it follows from [8, Proposition 3.1] that the principal curvatures of the parallel

B B
hypersurfaces to X at distance r are also given by 0, and , which implies
v S S 2 b
that its mean curvature is also given by h(r) = ~ =5 Lherefore the MCF with initial

3v1+ B
data X is given by @), where € is the solution of the ODE (4.3):

2B

dt) = ————,
(¥ 3v1+ B2

2Bt
3vV1+ B?

In what follows, we will simultaneously consider the remaining hypersurfaces in item
b) and the hypersurfaces in item c). Observe that in both cases, the hypersurface ¥ is a
cylinder over an isoparametric surface of Q2, i.e., 3 is of the form %2 x R, where ¥? is an
isoparametric surface in Q2.

Since ||T|| = 1, from (4.5), the displacement of %2 x R in direction N = (Ng,0) at
distance r is given by

that is, e(t) =

®,.(p, q) = exp(p,q) (rN(p,q))

- (Cg(r)p + S=(r)No(p), q) ;

where the functions Sc(r) and C¢(r) are given in (4.6). It follows that the evolution of ¥ is
reduced to the evolution of ¥:2 in Q2 that is, to the evolution of an isoparametric surface in
space form. Therefore the MCF with initial data X2 xR is given by Q1) (P, q) = (Per)(P), @),

where ® is given according to each ¥? C Q2, at the following propositions of [37]:
1. Proposition 2.5, when %2 C H? is a horosphere;

2. Proposition 2.6, when ¥? C H? is either a hypersphere or an equidistant hypersurface
to a totally geodesic H?;

3. Proposition 2.7, when %2 = S'(c;) x H'(c2) C H?;
4. Proposition 2.8, when ¥? C S? is a sphere (not totally geodesic);

5. Proposition 2.9, when X2 = S!(¢1) x S(e2) C S3.
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