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Resumo Expandido

Um estudo sobre estimação não paramétrica de entropia dife-
rencial para a análise de dados financeiros

Resumo

Esta dissertação é composta por uma coletânea de quatro artigos que abordam a estima-

ção da entropia diferencial com aplicações em dados financeiros. A obtenção de um estimador

robusto e dotado de propriedades satisfatórias para tal medida mostra-se de suma importân-

cia para sua aplicação. Nesse contexto, os objetivos do presente estudo incluem realizar uma

revisão abrangente dos estimadores de entropia diferencial não paramétricos e propor aprimo-

ramentos na escolha e otimização de seu uso, visando encontrar um estimador mais adequado

para dados financeiros, os quais frequentemente apresentam distribuições com caudas pesadas

e mudanças de regimes.

Introdução

A entropia diferencial é uma medida de incerteza aplicada a distribuições contínuas, sendo

uma extensão da entropia de Shannon do caso discreto para o contínuo. Sua definição é dada

por H(X) = −E ln f(X), onde f representa a função de densidade de uma variável aleatória

contínua X (Cover e Thomas, 2006).
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A estimação da entropia depende da disponiblidade de um estimador da função de densidade

de probabilidade da distribuição populacional. Em geral, tal distribuição é desconhecida e,

por isso, métodos não paramétricos para sua estimação encontram-se disponíveis na literatura

(Beirlant et al., 1997).

Como os conceitos de variabilidade, risco e incerteza não são necessariamente sinônimos, a

aplicação dessa medida tem ganhado espaço em áreas como finanças (Zhou, Cai e Tong, 2013;

Ormos e Zibriczky, 2014). Tipicamente, dados financeiros são complexos, podendo ser gerados

por distribuições de caudas pesadas ou por uma mistura delas. Por isso, é preciso estudar as

propriedades estatísticas desses estimadores tradicionais nesse ambiente turbulento e, se for o

caso, propor estimadores mais apropriados para esse tipo de dados.

Nesse cenário, o presente estudo apresenta uma breve revisão da literatura sobre a estimação

não paramétrica da entropia diferencial - concentrando a atenção nos métodos mais conhecidos

e de fácil implementação computacional, como o da distância do vizinho mais próximo, o es-

paçamento amostral e o estimador por função kernel. Em seguida, considerando suas boas

propriedades estatísticas e sua possibilidade de escolha de uma função kernel que ainda não

foi testada na literatura, o estudo sugere uma melhoria no estimador kernel da entropia dife-

rencial. Experimentos computacionais foram implementados sob diversos cenários ao longo do

desenvolvimento deste trabalho para a observação empírica das propriedades estatísticas dos es-

timadores — em especial, viés, variância e erro quadrático médio. Esses cenários contemplam

diversas características das distribuições tais como cauda leve ou pesada, simétrica ou assimé-

trica, suporte truncado ou ilimitado, dentre outras. A aplicação é ilustrada com séries históricas

de registros diários de taxas de câmbio em relação ao dólar norte-americano e de preços de

ações negociadas em bolsas de valores.
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Metodologia

Basicamente, os estimadores não paramétricos da entropia diferencial se diferenciam de

acordo com o método para a obtenção de estimativas da função de densidade f(x). Entre esses

métodos destacam-se o da função kernel, do espaçamento amostral (histograma empírico), e o

da distância de vizinhos mais próximos. Dependendo de algumas condições de regularidade

da distribuição populacional, esses métodos apresentam boas propriedades estatísticas (Beirlant

et al., 1997). O problema é que dados reais — em especial os da área de finanças — podem ser

gerados por processos complexos, resultando em distribuições sem as condições de regularidade

que garantem as boas propriedades estatísticas desses estimadores.

Os estudos de Monte Carlo, que consideram cenários de amostragens de populações com

caudas leves ou pesadas, simétricas ou assimétricas, com suportes truncados ou ilimitados,

permitem comparar empiricamente a qualidade dos estimadores da entropia diferencial comu-

mente encontrados na literatura em termos do vício, do desvio padrão do estimador e do erro

quadrático médio.

Este trabalho também propõe uma melhoria metodológica do estimador da entropia dife-

rencial mediante utilização da função kernel de Pareto. Essa função apresenta a vantagem de

acomodar tanto a situação de amostragems de populações de caudas leves como pesadas. Além

disso, como consequência natural da escolha desse kernel, a estimativa do expoente de Pareto

para o cálculo da entropia propicia também uma indicação sobre o provável tipo de cauda po-

pulacional: pesada, leve ou muito leve (delta de Dirac).

Há outros elementos da teoria de informação que foram investigados neste trabalho, como a

entropia bivariada e a informação mútua, estando relatados em outras partes desta dissertação.
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Resultados

No estudo inicial, os estimadores baseados em Distâncias do Vizinho Mais Próximo (NN),

Espaçamentos de Amostra (SS) e no Estimador de Kernel usando a distribuição Gaussiana (KE)

foram comparados por meio de simulações de amostras provenientes de diferentes distribuições

- variando não apenas a família da distribuição, mas também os parâmetros e o tamanho da

amostra. Cada um desses cenários foi replicado 100 vezes - o viés, o desvio padrão e o Erro

Quadrático Médio (EQM) foram então computados. Os resultados desse experimento estão

resumidos na Tabela 1.

Tabela 1: Resumo dos resultados indicando qual foi o melhor estimador em cada cenário.

Distribuição Viés Desvio Padrão EQM

Normal NN KE KE

Caudas pesadas NN KE SS

Assimétricas NN KE SS

Beta — KE —

Com respeito ao aperfeçoamento do estimador da entropia diferencial com base na função

kernel de Pareto, foram realizadas simulações de Monte Carlo para comparar as propriedades

de estimadores de entropia baseados em kernel, empregando diferentes funções de kernel1,

e a escolha otimizada da largura de banda concentrou-se na estimativa de entropia, em vez

da estimativa da função de densidade. Os métodos de vizinho mais próximo e espaçamento

de amostra foram utilizados como referência. Um estudo para o caso bivariado também foi

realizado e seus resultados foram análogos aos observados no caso univariado. A Tabela 2

resume os resultados obtidos por essa análise.

1Os estimadores Pareto, Gaussian, Laplace e Cauchy são todos baseados no estimador kernel utilizando suas
respectivas distribuições como funções de kernel.
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Tabela 2: Resumo indicando qual o melhor e o pior estimador para cada medida.

Medida Melhor estimador Pior estimador

EQM Pareto NND and Gaussian/Laplace

Variância Pareto/Cauchy NND

Viés NND Cauchy and Gaussian/Laplace

Aplicações

Para ilustrar possíveis aplicações dessas medidas, foram analisados os retornos diários de

várias bases de dados financeiros reais. Essa análise incluiu as taxas de câmbio históricas2 de

vinte e três moedas de diferentes países - cujas informações são baseadas em dados coletados

pelo Federal Reserve Bank of New York - e valores de máximo diários de ações de algumas

empresas disponíveis no Yahoo Finance3, com informações provenientes do Yahoo Finance.

A seguinte expressão foi usada para calcular os retornos diários para cada conjunto de dados:

rt = ln(Xt)− ln(Xt−1), t = 1, ..., n,

onde o índice t indica o momento em que o retorno é calculado; e Xt, Xt−1 representam os

valores históricos nos momentos t e t− 1, respectivamente.

As Figuras 1 e 2 representam, respectivamente, o desvio padrão em relação à exponencial

da estimativa de entropia baseada em Kernel (usando a função kernel gaussiana) dos dados

históricos de taxa de câmbio4 e a evolução histórica de duas taxas de câmbio - real brasileiro

2O intervalo de tempo considerado para as taxas de câmbio históricas varia em cada caso de acordo com sua res-
pectiva disponibilidade - dados estão disponíveis em https://www.federalreserve.gov/releases/
h10/hist/.

3Os valores históricos das ações estão disponíveis em https://finance.yahoo.com/ e contemplam
um intervalo de cinco anos (de 21 de novembro de 2018 a 21 de novembro de 2023).

4Dados foram coletados em junho de 2023.
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e franco suíço5 - em relação ao dólar norte-americano (usando a função kernel de Pareto). A

Figura 3 representa a correlação total (com a função kernel de Pareto) entre diferentes ações

de empresas. Em todos os casos, os retornos diários foram considerados como a medida de

interesse.

Figura 1: Exponencial da entropia contra o desvio padrão de algumas taxas de câmbio.
A linha vermelha indica os valores correspondentes com distribuição normal.

Figura 2: Evolução histórica de taxas de câmbio.

A partir da da Figura 1 nota-se que algumas localidades formam aglomerados, enquanto

outras - tais como a moeda brasileira e a de Hong Kong - aparentam possuir comportamento
5Franco suíço (CHF): n = 13.260 observações de 5-Jan-1971 a 16-Nov-2023. Real brasileiro (BRL): n =

7.260 de 4-Jan-1995 a 13-Dec-2023.
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divergente. Observa-se também que o desvio padrão e a entropia não fornecem necessariamente

informações redundantes, destacando a importância do uso da entropia como medida de incer-

teza ou risco, especialmente quando a distribuição não possui segundo momento definido. A

Figura 2 demonstra como a utilização do estimador kernel com núcleo baseado na distribuição

de Pareto pode ser útil na detecção de diferentes regimes estocásticos na evolução histórica de

uma taxa de câmbio como, por exemplo, a crise energética dos anos 1970 (CHF) e o Plano Real

no início dos anos 1990 (BRL).

Figura 3: Correlação total de diferentes ações.

A análise da correlação total entre as empresas selecionadas, representada na Figura 3, for-

nece insights sobre suas inter-relações. A Apple Inc. demonstra uma maior dependência com a

Microsoft Corporation e a NVIDIA Corporation, enquanto as interações envolvendo a Samsung

Electronics e a Amazon.com exibem menores valores de correlação total.
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Conclusões

A partir dos resultados obtidos, destaca-se a influência da distribuição dos dados - especial-

mente no que tange ao comportamento de sua cauda - para a estimação da entropia diferencial.

A utilização de um estimador de kernel baseado no núcleo de Pareto mostrou-se como uma

ferramenta robusta para enfrentar as complexidades inerentes a tais distribuições. Além disso,

observou-se que diversas aplicações em contextos financeiros da medida de entropia podem ser

implemetadas para fornecer informações relevantes acerca dos dados para complementar - ou

até mesmo retificar - outras medidas de risco comumente utilizadas.
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Abstract

In financial risk, the conventional approach has typically linked risk to the variance of a variable,

such as the return of a stock or portfolio. By recognizing the constraints of this conventional

method and the need for various risk metrics, alternative measures have been developed to

address downside risk or extreme outcomes specifically. One such complementary metric is the

uncertainty measure, which enables us to capture and describe different aspects of risk, going

beyond traditional notions of variability alone. Obtaining a robust estimator with desirable

properties for entropy is crucial for its practical application. In particular, our study aims to

conduct a comprehensive review of non-parametric differential entropy estimators and then

propose adjustments regarding the choice and optimization of their use to find an estimator

with convenient properties for application in financial data, which are often characterized by

distributions with heavy tails. We also conducted real-data applications to illustrate the use of

the proposed measures.

Key-words: differential entropy; nonparametric differential entropy estimator; kernel density

estimator; heavy-tailed kernel; cluster analysis; stochastic regime.
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Chapter 1

Preface

1.1 Motivation

A financial portfolio is a compilation of investments where stakeholders grapple with decision-

making challenges based on associated risks. Traditionally, financial risk has often been linked

to the variability of certain variables, such as the return of a stock or portfolio.

Markowitz’s mean-variance model, which assumes that asset returns follow a normal dis-

tribution, has been acknowledged as a pioneering model for portfolio selection. However, this

assumption imposes limitations, as financial data can exhibit skewness, leptokurtosis, and fat

tails. Indeed, alternative metrics like Value at Risk (VaR), Conditional Value at Risk (CVaR),

and Drawdown have emerged to address these limitations, concentrating on downside risk or

extreme outcomes.

Continuing to explore innovative methods is crucial for developing effective risk manage-

ment strategies. An optimal risk management approach often involves leveraging diverse risk

metrics. We emphasize adopting a dynamic and comprehensive approach not strictly tied to a

specific distribution. Incorporating complementary measures, such as uncertainty, enhances the

robustness of this strategy.



§1.2. Entropy

1.2 Entropy

Differential entropy measures the uncertainty or randomness associated with a continuous prob-

ability distribution. Higher values correspond to a greater unpredictability or surprise in the

data. Differential entropy may assume negative values for certain distributions. Interpreting

negative differential entropy can be less intuitive; however, it is commonly viewed as an indi-

cation of how much the distribution diverges from an idealized uniform distribution.

Cover and Thomas (2006) define the differential entropy H(X) of a continuous random

variable X with density f(x) as:

H(X) = −E ln f(X) = −
∫
S

f(x) ln f(x)dx, (1.1)

where S is the support set of the random variable X .

In order to estimate its value, it is then necessary to estimate f(x). Silverman (1986) em-

phasizes that the non-parametric approach requires fewer stringent assumptions about the dis-

tribution of observations, enabling the data to articulate its inherent patterns without undue

constraints.

This study’s primary objective is to estimate the differential entropy H(X) through a non-

parametric approach by estimating the density function of the variable of interest. Numerous

studies have explored the application of entropy in portfolios and assets, with Zhou, Cai, and

Tong (2013) paper serving as a valuable reference.
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§1.3. Objectives

1.3 Objectives

Among different approaches, our study aims to offer a particular review of plug-in type estima-

tors for H(X). This class of estimators depends on a density estimator f̂(x), such as the kernel

density estimator (KDE), the nearest neighbor estimator (NNE), and the sample-spacings esti-

mator of order m (SSEm). Specifically, the first objective is to investigate how the plug-in esti-

mators behave for different population distributions: light-tailed or heavy-tailed, symmetrical or

skewed, and truncated or not-truncated distributions. We also consider different non-parametric

procedures, including Monte Carlo and Jackknife (leave-one-out point) methods. The second

one refers to kernel bandwidth optimization since the best choices for density and entropy esti-

mations may differ. Finally, the third objective is to suggest how our approach may be useful in

detecting different stochastic regimes in the historical evolution of real financial data.

This dissertation is organized as a collection of articles. Thus, the financial data used to

illustrate each analysis are described in their respective ones.
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Chapter 2

Non-parametric entropy estimation: an

initial study

2.1 Introduction

Numerous studies within the financial domain have integrated the concept of entropy into their

analyses. For instance, Ormos and Zibriczky (2014) delves into entropy as a measure of fi-

nancial risk. However, effectively applying this measure across various domains necessitates

acquiring a robust entropy estimator with favorable properties. In this context, the present study

aims to comprehensively review well-established non-parametric entropy estimators, particu-

larly those based on nearest neighbor distance, sample spacing, and Kernel Estimator.

Initially, we conducted computational experiments to empirically observe various aspects

of the estimators, mainly focusing on bias and mean squared errors. For this purpose, we

simulated multiple samples from distributions such as Normal, Beta, and other heavy-tailed

and asymmetrical distributions (see Section 2.2.1). Additionally, we implemented practical

applications (Section 2.2.2) of these estimators using real financial data, which validated their

performance and emphasized how estimation can provide valuable insights into the analyzed

data.
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2.2 Method

Let X be a continuous random variable with density f(x). Cover and Thomas (2006) define the

differential entropy h(X) as:

H(X) = −E ln f(X) = −
∫
S

f(x) ln f(x)dx.

Beirlant et al. (1997) provides an overview of various methods for non-parametric differ-

ential entropy estimation of a continuous random variable. In this study, three non-parametric

estimators will be considered, with the subsequent theory and properties based on their work:

• Estimates of entropy based on nearest neighbor distances

Singh et al. (2003) introduced a non-parametric estimator of entropy which is based on the

kth nearest neighbor distances between the n sample points - which provide a competing

estimator to that proposed by Kozachenko and Leonenko (1987).

In the present study, we will consider k = 1 and its applicability in only one dimension.

Let ρn,i = minj ̸=i,j≤n ||Xi −Xj||, then the nearest neighbor estimate is given by:

Hn =
1

n

n∑
i=1

ln(nρn,i) + ln(2) + γ,

where γ is the Euler constant. Singh et al. (2003) also established the asymptotic unbi-

asedness and consistency of the proposed estimator.

• Estimates of entropy based on sample-spacings

Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the corresponding order statistics of a i.i.d. real valued

random variables. The m-spacing estimate for fixed m is then given by:

Hm,n =
1

n

n−m∑
i=1

ln
( n
m
(X(i+m) −X(i))

)
− ψ(m) + ln(m),

5
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where ψ(m) = −(lnΓ(m))′ is the digamma function.

Beirlant et al. (1997) points out that the corresponding density estimate is not consistent,

which implies that there is an additional term correcting the asymptotic bias in Hn. Beir-

lant and van Zuijlen (1985) proved the consistency of Hn for uniform f . Under some

conditions, Hall (1984) apud Beirlant et al. (1997) proved its weak consistency, and sev-

eral authors studied and proved its asymptotic normality.

• Estimates of entropy based on Kernel Estimator

Let fn be a kernel density estimator given by:

fn =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where n is the number of observations in the data base, K is the Kernel function (which

satisfies the condition
∫∞
−∞K(x)d(x) = 1) and h is the smooth parameter.

For a non-negative Kernel function that satisfies the previous condition, it will follow at

once from the definition that fn will itself be a probability density and will inherit all the

continuity and differentiable properties of K (Silverman, 1986).

Ahmad and Lin (1976) apud Beirlant et al. (1997) proposed an entropy estimator:

Hn = − 1

n

n∑
i=1

lnfn(Xi).

They also showed its mean square consistency. Joe (1989) studied the entropy estimation

for multivariate probability density functions based on a kernel density estimate. Under

some conditions, the authors verified asymptotic bias and variance terms and observed

that non-unimodal kernels can reduce the estimator mean square error. Motivated by

this work, Hall and Morton (1993b) introduced different entropy estimators from Joe’s

and described their properties. They showed that the same interaction of tail behavior,

6



§2.2. Method

smoothness, and dimensionality also determines the convergence rate of Joe’s estimator.

They studied histogram and kernel estimators of entropy and, in each case, suggested

empirical methods for choosing the smoothing parameter.

Those estimators based on Nearest Neighbor Distances (NN), Sample-Spacings (SS), and

Kernel Estimator using the Gaussian smoothing kernel distribution (KE) were then compared

by simulating some samples from different distributions - varying not only the family distri-

bution but also the parameters and the sample size. We replicated each scenario 100 times

and computed the mean, the standard deviation, and the Mean Square Error (MSE). The Maxi-

mum Likelihood estimator (ML) was used as a reference to analyze the quality of the proposed

non-parametric estimators.

7
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2.2.1 Computational Experiments

Table 2.1: Normal distribution

Distribution Sample size Theorical value
Bias Standard deviation MSE

ML NN SS KE ML NN SS KE ML NN SS KE

N(0,0.2)

500

0.6142

0.0025 0.0002 0.0114 0.0138 0.0332 0.0753 0.0485 0.0334 0.0011 0.0056 0.0025 0.0013

1000 0.0019 0.0035 0.0094 0.009 0.0238 0.0575 0.036 0.0236 0.0006 0.0033 0.0014 0.0006

2000 0.0008 0.0035 0.0001 0.0034 0.0142 0.0379 0.0231 0.0142 0.0002 0.0014 0.0005 0.0002

N(0,1)

500

1.4189

0.0014 0.0048 0.0072 0.0098 0.0332 0.07 0.0442 0.0333 0.0011 0.0049 0.002 0.0012

1000 0.0008 0.0036 0.0069 0.0076 0.0205 0.0494 0.0326 0.0209 0.0004 0.0024 0.0011 0.0005

2000 0.0009 0.0007 0.0035 0.0049 0.0154 0.0347 0.0223 0.0153 0.0002 0.0012 0.0005 0.0003

N(0,5)

500

2.2237

0.0016 0.0006 0.0092 0.0093 0.0363 0.0698 0.0514 0.0368 0.0013 0.0048 0.0027 0.0014

1000 0.0006 0.0012 0.0063 0.0078 0.025 0.0582 0.037 0.0249 0.0006 0.0034 0.0014 0.0007

2000 0.0014 0.0019 0.0009 0.0026 0.0146 0.0351 0.0236 0.0146 0.0002 0.0012 0.0006 0.0002

N(-2,0.5)

500

1.0724

0.0037 0.0054 0.0124 0.0147 0.0333 0.0719 0.0462 0.0336 0.0011 0.0051 0.0023 0.0013

1000 0.0018 0.0016 0.0075 0.0086 0.0241 0.0519 0.0358 0.0245 0.0006 0.0027 0.0013 0.0007

2000 0.0006 0.0005 0.0035 0.0047 0.015 0.0389 0.0259 0.0148 0.0002 0.0015 0.0007 0.0002

Analyzing the values in Table 2.1 1 - relative to the Normal distribution - it is evident that

the NN estimator generally exhibits a more negligible bias than other estimators. On the other

hand, the KE estimator demonstrates superior results in terms of standard deviation and MSE

compared to other non-parametric estimators. In certain instances, the results surpass those the

ML estimator obtained.

Table 2.2 1 presents values for the Beta distribution. The KE estimator shows the most fa-

vorable measurements in terms of standard deviation and MSE. Regarding bias, none of the

suggested estimators seems to exhibit significantly superior performance compared to the oth-

ers.

From Table 2.3 1 - which represents the results for some heavy-tailed distributions - it can be

noticed that the Kernel estimator produces the smallest standard deviation values. The NN and

SS estimators yield the best results concerning bias and MSE, respectively. Similar patterns are

observed regarding some asymmetrical distributions (Table 2.4). Finally, Table 2.5 summarizes

the findings discussed thus far.
1The colored cells indicate - for the related column (Bias, Standard Deviation, and MSE) - which of the pro-

posed estimators presents the best results; when the text color is white, it indicates that the result of the estimator
was even better than the observed using ML estimator.
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Table 2.2: Beta distribution

Distribution
Sample

size

Theorical

value

Bias Standard deviation MSE

ML NN SS KE ML NN SS KE ML NN SS KE

Beta(5,5)

500

-0.4806

0.0189 0.019 0.0226 0.0125 0.0268 0.0642 0.0401 0.0281 0.0011 0.0044 0.0021 0.0009

1000 0.0136 0.0093 0.0089 0.0051 0.0186 0.0461 0.0294 0.0193 0.0005 0.0022 0.0009 0.0004

2000 0.012 0.0008 0.0022 0.0019 0.0128 0.0345 0.0224 0.0131 0.0003 0.0012 0.0005 0.0002

Beta(5,1)

500

-0.8094

0.0121 0.0122 0.0137 0.0699 0.0397 0.0828 0.0596 0.0399 0.0017 0.0069 0.0037 0.0065

1000 0.0094 0.0017 0.0036 0.0654 0.0265 0.0526 0.0373 0.0273 0.0008 0.0027 0.0014 0.005

2000 0.0086 0.0021 0.0038 0.0594 0.0163 0.0388 0.0243 0.0174 0.0003 0.0015 0.0006 0.0038

Beta(2,2)

500

-0.1251

0.0227 0.0085 0.0002 0.0093 0.0157 0.0718 0.0437 0.0181 0.0008 0.0052 0.0019 0.0004

1000 0.0264 0.0008 0.0031 0.0037 0.0113 0.0487 0.0284 0.0129 0.0008 0.0023 0.0008 0.0002

2000 0.0249 0.0017 0.0011 0.0048 0.0081 0.0349 0.0208 0.009 0.0007 0.0012 0.0004 0.0001

Beta(2,5)

500

-0.4845

0.0241 0.0011 0.0094 0.001 0.0284 0.0731 0.046 0.0299 0.0014 0.0053 0.0022 0.0009

1000 0.0176 0.0009 0.0032 0.0067 0.0188 0.0498 0.0322 0.0202 0.0007 0.0025 0.001 0.0004

2000 0.0195 0.0044 0.0049 0.0044 0.0134 0.0379 0.0238 0.014 0.0006 0.0014 0.0006 0.0002

Table 2.3: Heavy-tailed distributions

Distribution
Sample

size

Theorical

value

Bias Standard deviation MSE

ML NN SS KE ML NN SS KE ML NN SS KE

t(1)

500

2.531

0.0054 0.0139 0.0272 0.1439 0.0937 0.102 0.0852 0.0694 0.0087 0.0105 0.0079 0.0255

1000 0.0056 0.0024 0.0113 0.1102 0.062 0.0774 0.0655 0.0544 0.0038 0.0059 0.0044 0.0151

2000 0.0052 0.0029 0.0044 0.0808 0.0452 0.0555 0.0458 0.0372 0.0021 0.0031 0.0021 0.0079

t(4)

500

1.6818

0.0016 0.0102 0.0048 0.0212 0.0491 0.079 0.0587 0.0444 0.0024 0.0063 0.0034 0.0024

1000 0.0024 0.0081 0.0107 0.0201 0.0331 0.0513 0.0397 0.0309 0.0011 0.0027 0.0017 0.0013

2000 0.0003 0.0017 0.0025 0.0105 0.0273 0.041 0.0303 0.0233 0.0007 0.0017 0.0009 0.0006

t(8)

500

1.5475

0.0019 0.0083 0.0079 0.0199 0.0404 0.0751 0.0517 0.0369 0.0016 0.0057 0.0027 0.0017

1000 0.002 0.0051 0.0087 0.0122 0.0279 0.0503 0.0343 0.0255 0.0008 0.0025 0.0012 0.0008

2000 0.0015 0.0025 0.005 0.0104 0.0217 0.039 0.0275 0.0212 0.0005 0.0015 0.0008 0.0006

t(12)

500

1.5039

0.0011 0.0068 0.0183 0.0236 0.0365 0.0817 0.0575 0.0367 0.0013 0.0067 0.0036 0.0019

1000 0.0056 0.0101 0.0007 0.0063 0.0276 0.0593 0.0389 0.0253 0.0008 0.0036 0.0015 0.0007

2000 0.0013 0.0065 0.0019 0.0036 0.0181 0.0376 0.0246 0.0178 0.0003 0.0014 0.0006 0.0003

C(0,0.5)

500

1.8379

0.0075 0.0108 0.0066 0.1293 0.0761 0.1105 0.0925 0.0755 0.0058 0.0122 0.0085 0.0224

1000 0.0028 0.0055 0.0077 0.1078 0.0523 0.0649 0.0544 0.0471 0.0027 0.0042 0.003 0.0138

2000 0.0003 0.0034 0.0027 0.0797 0.0357 0.0504 0.0432 0.0374 0.0013 0.0025 0.0019 0.0077

C(0,1)

500

2.531

0.0023 0.0072 0.0131 0.1394 0.0701 0.0969 0.0822 0.0726 0.0049 0.0093 0.0069 0.0246

1000 0.0017 0.0068 0.0041 0.1013 0.048 0.0769 0.0668 0.0563 0.0023 0.0059 0.0044 0.0134

2000 0.0048 0.0066 0.0116 0.0879 0.0354 0.0556 0.0477 0.0403 0.0013 0.0031 0.0024 0.0093

C(0,2)

500

3.2242

0.0078 0.0011 0.0213 0.1489 0.0672 0.1145 0.0957 0.075 0.0045 0.013 0.0095 0.0277

1000 0.0067 0.0106 0.0138 0.1084 0.0544 0.0693 0.0597 0.053 0.003 0.0049 0.0037 0.0145

2000 0.0011 0.0069 0.0121 0.0854 0.034 0.0523 0.0437 0.0364 0.0011 0.0028 0.002 0.0086

C(-2,1)

500

2.531

0.8034 0.0101 0.0256 0.1504 0.0299 0.1037 0.0909 0.0764 0.6464 0.0108 0.0088 0.0284

1000 0.8048 0.0163 0.0226 0.1175 0.0194 0.0735 0.0635 0.0571 0.648 0.0056 0.0045 0.017

2000 0.8047 0.0017 0.0078 0.0851 0.0166 0.0505 0.0427 0.0348 0.6478 0.0025 0.0019 0.0084

9
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Table 2.4: Asymmetrical distributions

Distribution
Sample

size

Theorical

value

Bias Standard deviation MSE

ML NN SS KE ML NN SS KE ML NN SS KE

Exp(0.5)

500

1.6931

0.0009 0.0097 0.0112 0.0847 0.0475 0.0841 0.0608 0.0504 0.0022 0.0071 0.0038 0.0097

1000 0.0042 0.0024 0.0029 0.0797 0.0321 0.0566 0.0407 0.034 0.001 0.0032 0.0016 0.0075

2000 0.002 0.002 0.0034 0.0665 0.0245 0.0356 0.0275 0.025 0.0006 0.0013 0.0008 0.005

Exp(1)

500

1

0.003 <0.001 0.0095 0.0809 0.0467 0.0798 0.0621 0.0478 0.0022 0.0063 0.0039 0.0088

1000 0.0011 0.001 0.0047 0.074 0.034 0.053 0.039 0.0355 0.0011 0.0028 0.0015 0.0067

2000 0.0004 0.0053 0.0016 0.0695 0.0234 0.0398 0.029 0.0245 0.0005 0.0016 0.0008 0.0054

Exp(1.5)

500

0.5945

0.0003 0.0038 0.0038 0.0805 0.0494 0.0804 0.0588 0.0528 0.0024 0.0064 0.0034 0.0092

1000 0.0002 0.0045 0.005 0.0769 0.0346 0.0516 0.0388 0.0374 0.0012 0.0027 0.0015 0.0073

2000 0.0008 0.0035 0.0004 0.0689 0.0239 0.0395 0.0296 0.0246 0.0006 0.0016 0.0009 0.0053

Exp(5)

500

-0.6094

0.004 0.0004 0.0044 0.0849 0.0528 0.0863 0.0614 0.0571 0.0028 0.0074 0.0037 0.0104

1000 0.0053 0.0093 0.0113 0.0707 0.0345 0.0593 0.044 0.0371 0.0012 0.0036 0.002 0.0064

2000 0.0007 0.002 0.003 0.0691 0.0236 0.0426 0.0321 0.0246 0.0006 0.0018 0.001 0.0054

Gama(0.5,1)

500

0.0906

0.0052 0.0097 0.0078 0.3604 0.0716 0.0949 0.0784 0.0655 0.0051 0.009 0.0061 0.1341

1000 0.0149 0.0014 0.0024 0.3312 0.0603 0.0699 0.0617 0.0465 0.0038 0.0048 0.0038 0.1119

2000 0.0083 0.0034 0.0025 0.3195 0.0392 0.0454 0.0395 0.0347 0.0016 0.0021 0.0016 0.1033

Gama(3,0.5)

500

2.5407

0.0047 0.0006 0.0093 0.0061 0.0348 0.0758 0.0512 0.0355 0.0012 0.0057 0.0027 0.0013

1000 0.0033 0.0043 0.0001 0.0037 0.0236 0.0583 0.0366 0.0241 0.0006 0.0034 0.0013 0.0006

2000 0.0003 0.0026 0.0016 0.0002 0.0164 0.0369 0.0234 0.0169 0.0003 0.0014 0.0005 0.0003

Gama(9,0.5)

500

3.1726

0.0036 0.0058 0.0137 0.0125 0.0321 0.0665 0.044 0.0321 0.001 0.0044 0.0021 0.0012

1000 0.0015 0.0025 0.0063 0.0071 0.0222 0.0489 0.0341 0.0223 0.0005 0.0024 0.0012 0.0005

2000 0.0034 0.0021 0.0055 0.007 0.0157 0.0369 0.0239 0.0157 0.0003 0.0014 0.0006 0.0003

Gama(7.5,1)

500

2.3804

0.0003 0.0005 0.0081 0.0088 0.0331 0.077 0.0534 0.0336 0.0011 0.0059 0.0029 0.0012

1000 0.0017 0.0027 0.0047 0.0064 0.0224 0.0492 0.0328 0.0225 0.0005 0.0024 0.0011 0.0005

2000 0.0015 0.0015 0.0041 0.0049 0.0155 0.0381 0.0253 0.0153 0.0002 0.0014 0.0006 0.0003

Table 2.5: Summary indicating which was the best estimator in each scenario.

Distribution Bias Sd MSE

Normal NN KE KE

Heavy-tailed NN KE SS

Asymmetrical NN KE SS

Beta - KE -
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2.2.2 Financial examples

Entropy can be applied to financial data analysis to produce insights and contribute to decision-

making. It can be a helpful mechanism when used with other financial analysis techniques.

We analyzed the daily returns of some databases: historical exchange rates of twenty-three

countries’ currencies - which information is based on data collected by the Federal Reserve

Bank of New York (Table 2.62 shows those countries currencies); and some historical stock

values of some companies available in Yahoo Finance 3; to observe how the proposed non-

parametric estimators perform in a real financial data examples. The highest value observed for

each day of those periods was considered.

Table 2.6: Exchange rates currencies.

Country Monetary unit Country Monetary unit

Australia Dollar New Zealand Dollar

Brazil Real Norway Krone

Canada Dollar Singapore Dollar

China, P.R. Yuan South Africa Rand

Denmark Krone South Korea Won

EMU member countries Euro Sri Lanka Rupee

Greece Drachma Sweden Krona

Hong Kong Dollar Switzerland Franc

India Rupee Taiwan Dollar

Japan Yen Thailand Baht

Malaysia Ringgit United Kingdom Pound

Mexico Peso

2Venezuela data were not considered since its values were behaving very differently from other currencies.
3Adobe, Airbnb, Amazon, Apple, AstraZeneca, Chevron, Coca-Cola, Colgate - Palmolive, Disney, Eletrobrás,

Intel, Johnson & Johnson, Mc Donalds, Microsoft, Netflix, Nike, Nvidea, Petróleo Brasileiro (Petrobras), Pfizer,
SalesForce, Vale, Visa, and Walmart.

11
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The time interval considered for the historical exchange rates varies from each case accord-

ing to its respective availability; the Yahoo data has historical data from five years 4. Besides

comparing each estimator, the main point is to see if it is possible to identify some patterns or

clusters across different assets using the entropy estimation that could not be observed using

only the standard deviation measurement.

In this study, the following expression was chosen to compute the returns of each data:

rt = ln(Xt)− ln(Xt−1), t = 1, ..., n,

where the index t indicates the time where the return is calculated; and the Xt, Xt−1 represent

the exchange rates in time t and t− 1 respectively.

Figures 2.1 and 2.2 illustrate the values of standard deviation and the exponential value of

the entropy estimations 5 considering the daily returns for each data. The red line represents the

corresponding values for a Normal distribution population.

For the historical exchange rates data, some locations form clusters (like Australia, Japan,

Norway, New Zealand, Sweden, Emu, etc.). In contrast, others seem to behave very differently

(for example, Brazil and Hong Kong). On the other hand, the historical company stock values

behave more as expected (following the red line).

Figure 2.1 unveils additional scenarios where entropy estimations are similar while the stan-

dard deviation varies significantly and cases where the opposite occurs. This observation high-

lights the potential for misunderstandings in financial data analysis when relying solely on stan-

dard deviation computation – which can arise due to the lack of a well-defined second moment

in certain distributions. In contrast, entropy estimation measures uncertainty or volatility in the

data for most distributions, offering a more comprehensive perspective.

4Data was collected on 28/06/2023.
5In order to compute the SS estimator it was considered only the unique values and its spacings were multiplied

by the number of occurrences of each element; an adjustment was also made to compute the NN estimator in order
not to consider duplicated values when evaluating the minimum difference of a value concerning the rest of the
data.
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Figure 2.1: Entropy and standard deviation of some countries’ exchange rates.
The red line indicates the corresponding values with a normal distribution.

Figure 2.2 further illustrates that assets associated with various sectors (such as energy,

health, technology, customer service, etc.) may exhibit similar behavior despite their diverse na-

tures. This outcome is anticipated, considering the dataset comprises data from well-established

and reputable companies in the market.
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Figure 2.2: Entropy and standard deviation of some companies’ stock values.
The red line indicates the corresponding values with a normal distribution.

2.3 Data availability

Historical exchange rate data is available on https://www.federalreserve.gov/

releases/h10/hist/.

Historical stock values are available on https://finance.yahoo.com/.
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2.4 Conclusion

The Kernel estimator consistently yielded the smallest standard deviation values, and its Mean

Square Error results appeared reasonable. Additionally, we observed that the Sample-Spacings

(SS) and Nearest Neighbor (NN) estimators, designed for continuous random variables, en-

counter challenges when applied to real data with duplicated values (which can occur due to

rounding issues).

Moreover, while the literature often emphasizes that the quality of a Kernel-based density

estimate is mainly influenced by the smoothing parameter choice, with the choice of kernel

playing a minor role (Scott, 1992), this study revealed a connection between the population

distribution and the shape of the kernel function. Specifically, using a Gaussian Kernel yielded

better results in Normal distribution experiments. In essence, the distribution’s form can signifi-

cantly impact the outcomes of non-parametric estimators. While these results are less than ideal,

they underscore the need for adaptations in the Kernel estimator method to achieve improved

outcomes that are not contingent on the population distribution.

Finally, the importance of entropy estimation’s applicability becomes apparent through real

data examples. Standard deviation sometimes fails to offer insightful information about data

uncertainty or volatility. Therefore, entropy estimation proves valuable in revealing patterns

across various assets.
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Chapter 3

Pareto Kernel-based differential Entropy

Estimation: overview

3.1 Introduction

Entropy has been proven to be an exciting tool for good portfolio diversification since its theo-

retical requirements are not so stringent, and it can be applied to a large number of distributions.

Numerous studies have already explored this topic. For instance, Zhou, Cai, and Tong (2013)

conducted a comprehensive review on entropy and its practical applications in the context of

portfolios and asset pricing. Additionally, Ormos and Zibriczky (2014) delved into using en-

tropy to measure financial risk.

There are already existing non-parametric entropy estimation methods for continuous ran-

dom variables - some of which Beirlant et al. (1997) have made an overview. The Kernel-based

entropy estimator is a promising option due to its favorable properties. Nevertheless, it faces a

primary challenge related to the selection of bandwidth and kernel function. Typically, band-

width is determined to optimize data density estimation, and the kernel function used is often a

Gaussian distribution. This study seeks to introduce and empirically test a Kernel-based entropy

estimator that does not depend on these predefined choices, potentially leading to an entropy
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estimator with superior qualities.

For this purpose, Monte Carlo simulations were performed to compare some properties

of kernel-based entropy estimators employing different kernel functions. The optimization of

bandwidth choice focused on entropy estimation rather than density function estimation. The

nearest neighbor and sample-spacing methods were used as benchmarks. Finally, actual finan-

cial data was utilized to demonstrate the effectiveness of entropy as a metric for evaluating

portfolios. This was achieved by calculating the mutual information between various assets.

This measurement quantifies how much knowledge about the state of one asset reduces uncer-

tainty regarding the others. The historical values were sourced from an online database, and the

analysis considered a time horizon of five years.

3.2 Method

The study empirically compared the properties of several kernel-based entropy estimators utiliz-

ing different kernel functions - with the nearest neighbor and sample-spacing methods serving

as benchmarks. For the kernel-based estimators, the bandwidth was selected to optimize the

entropy estimate rather than the density function. Multiple Monte Carlo simulations were con-

ducted for univariate and bivariate random variables, considering the Student’s t-distribution

with varying degrees of freedom. This included distributions with heavy tails, such as the

Cauchy distribution (df = 1) and distributions with infinite variance (df = 2), as well as the

normal distribution (df = infinity). The theoretical entropy was also quantified. Subsequently,

each estimator’s bias, variance, and Mean Square Error (MSE) were computed.

3.2.1 Differential entropy definitions

Cover and Thomas (2006) provides the following definitions for entropy: let X be a continu-

ous random variable with density f(x) and X1, ..., Xn a set of random variables with density

f(x1, ..., xn) = f(x), the differential entropy of X and X1, ..., Xn is given respectively by:
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H(X) = −E ln f(X) = −
∫
f(x) ln f(x)dx,

H(X1, ..., Xn) = −
∫
f(x) ln f(x)dx.

3.2.2 Theoretical entropy for univariate and bivariate t-distribution

Student’s t with df degrees of freedom

H(X) =
df + 1

2

[
ψ

(
df + 1

2

)
− ψ

(
df

2

)]
+ ln

[√
dfB(

df

2
,
1

2
)

]
,

where ψ represents the digamma function and B is the Beta function.

Bivariate Student’s t with independent marginals and equal degrees of freedom (df )

H(X, Y ) = 2H(X) = (df + 1)

[
ψ

(
df + 1

2

)
− ψ

(
df

2

)]
+ 2ln

[√
dfB

(
df

2
,
1

2

)]
,

where ψ represents the digamma function and B is the Beta function.

3.2.3 Estimators for univariate random variables

Kernel-based entropy estimators

Let fn be a kernel density estimator given by:

fn =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where n is the number of observations in the data base,K is the Kernel function (which satisfies

the condition
∫∞
−∞K(x)d(x) = 1) and h is the smooth parameter.
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Ahmad and Lin (1976) apud Beirlant et al. (1997) proposed an entropy estimator:

Hn = − 1

n

n∑
i=1

lnfn(Xi).

Sampling-spacings based entropy estimator

Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the corresponding order statistics of a i.i.d. real valued

random variables. The first-order estimate is given by:

Hn =
1

n

n−1∑
i=1

ln
(
n(X(i+1) −X(i))

)
− ψ(1),

where ψ(m) = −(lnΓ(m))′ is the digamma function.

This can also be computed based on the empirical cumulative distribution function (this

modified sample-spacings method allows ties):

Hn =
1

n

n−1∑
i=1

ln
(
n

ci
(X(i+1) −X(i))

)
− ψ

(∑n
j=1 cj

n

)
,

where cj is the corresponding counting of the observation xj .

Entropy Estimation Based on Nearest Neighbor Distances

Singh et al. (2003) introduced a non-parametric entropy estimator that relies on the distances

to the kth nearest neighbors among the n sample points, offering an alternative to the method

proposed by Kozachenko and Leonenko (1987). For this study, we consider k = 1 and restrict

its application to one dimension.

The nearest neighbor then estimate is expressed as:

Hn =
1

n

n∑
i=1

ln(nρn,i) + ln(2) + γ,

where γ denotes the Euler constant and ρn,i = minj ̸=i,j≤n ||Xi −Xj||.
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3.2.4 Estimators for bivariate random variables

Bivariate Kernel entropy estimation

The extension for the bivariate case is given by:

f̂(x, y) =
1

nhxhy

n∑
i=1

K

(
x−Xi

hx
,
y − Yi
hy

)
,

where k(u, v) is a bivariate density function, and hx and hy are the bandwidths for the marginal

distributions of X and Y.

Independent marginals

When the marginals are independent, the joint differential entropy H(X, Y ) is given by:

H(X, Y ) = H(X) +H(Y ),

where H(X) and H(Y ) are the differential entropies of the individual marginal distributions.

3.2.5 Estimators used in the study

Regarding those types of estimators, six different approaches for each case - univariate and

bivariate case - were compared:

• Gaussian: differential entropy estimator based on the Gaussian kernel function;

• Laplace: differential entropy estimator based on the Laplacian kernel function;

• Cauchy: differential entropy estimator based on the Cauchy’s kernel function;

• Pareto: differential entropy estimator based on the Pareto’s kernel function;

• NND: differential entropy estimator based on the nearest neighbor distances;

• SS: differential entropy estimator based on the first-order sample-spacings.
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3.2.6 Mutual information

The mutual information I(X;Y ) between two random variables X and Y with joint density

f(x, y) quantifies the reduction in uncertainty (entropy) about X when Y is known. In other

words, it measures the amount of information that knowing the value of Y provides about X .

Cover and Thomas (2006) define its formula by:

I(X;Y ) =

∫
f(x, y)ln

(
f(x, y)

f(x)f(y)

)
dxdy

= H(X) +H(Y )−H(X, Y ).

Interpretation

The sign of mutual information reveals the nature of the association or dependence between

X and Y . Positive mutual information suggests a positive association, while negative mutual

information suggests a negative association. A value of zero indicates independence between

X and Y .

Normalized mutual information

The normalization of the mutual information proves valuable when comparing relationship

strengths across diverse variable pairs with varying individual entropies. Several normalization

methods are available, and in this study, we considered the following:

total correlation := τ(X, Y ) =
I(X, Y )

min(H(X), H(Y ))
;

This dimensionless metric ranges between 0 and 1. A value of 0 suggests negligible mutual

information relative to the individual entropies. In contrast, a value of 1 indicates that the mutual

information is maximally scaled concerning the minimum entropy of either X or Y .
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3.3 Results

3.3.1 Univariate distributions

The results of our experiment1 for univariate distributions are presented in Table 3.1 and illus-

trated in Figure 3.1.

Table 3.1: Comparison between different entropy estimators using multiple samples from Stu-
dent t-distributions.

df Measure Gaussian Laplace Cauchy Pareto NND SS

1

MSE 2.2172 0.7333 0.0104 0.01 0.0117 0.0094

Var 0.4316 0.2539 0.0082 0.0079 0.0117 0.0087

Bias 1.3363 0.6924 0.0466 0.0452 0.0072 0.0269

2

MSE 0.1453 0.0186 0.0038 0.0038 0.0072 0.0047

Var 0.0845 0.0111 0.0032 0.0033 0.0072 0.0044

Bias 0.2466 0.087 0.0242 0.0224 0.003 0.0175

4

MSE 0.0063 0.0027 0.0025 0.0021 0.0057 0.0032

Var 0.0048 0.0023 0.002 0.002 0.0057 0.0029

Bias 0.0387 0.0203 0.0223 0.0115 0.0053 0.0159

15

MSE 0.0014 0.0013 0.002 0.0013 0.0056 0.0026

Var 0.0012 0.0012 0.0012 0.0012 0.0056 0.0026

Bias 0.0114 0.0109 0.0278 0.0103 0.0042 0.0078

50

MSE 0.0012 0.0012 0.0019 0.0012 0.0053 0.0024

Var 0.0011 0.0011 0.0011 0.0011 0.0053 0.0024

Bias 0.0095 0.0099 0.0286 0.0096 0.002 0.0083

120

MSE 0.001 0.001 0.0018 0.001 0.0054 0.0024

Var 0.001 0.001 0.001 0.001 0.0054 0.0023

Bias 0.0086 0.0092 0.0283 0.009 0.0004 0.0097

Examining the Mean Squared Error (MSE), the Pareto estimator consistently outperformed

across all distribution scenarios. The NND estimator displayed elevated MSE values with larger
1In the univariate scenario, samples consisting of 500 observations were considered, and 500 Monte Carlo

simulations were conducted.
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degrees of freedom, while the Gaussian and Laplace estimators exhibited increased MSE for

smaller degrees of freedom.

Figure 3.1: Comparison of estimators for each degree of freedom.
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In terms of variance, the Pareto and Cauchy estimators consistently delivered favorable out-

comes across all distributions, contrasting with the NND estimator’s suboptimal performance

in most scenarios.

Concerning bias, the NND estimator consistently demonstrated minimal values across all

distributions. In contrast, the Cauchy estimator yielded less favorable results in most scenarios.

The Pareto and SS estimators displayed intermediate performance, closely trailing the NND

estimator.

Based on these considerations, it becomes evident that the Pareto estimator consistently

yields satisfactory results regardless of the distribution. Table 3.2 summarizes these analyses.

Table 3.2: Summary of each measure’s best and worst estimator - univariate scenario.

Measure Best Estimator Worst Estimator

MSE Pareto NND (high df ) and Gaussian/Laplace (small df )

Var Pareto/Cauchy NND

Bias NND Cauchy (high df ) and Gaussian/Laplace (small df )
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3.3.2 Bivariate distributions

Table 3.3: Comparison between different entropy estimators using multiple samples from bi-
variate Student t-distributions.

df Measure Gaussian Laplace Cauchy Pareto NND SS

1

MSE 12.5928 2.6337 0.1002 0.098 0.1021 0.1084

Var 7.9102 1.2547 0.0712 0.0691 0.0935 0.0705

Bias 2.1639 1.1743 0.1702 0.17 0.0927 0.1946

2

MSE 0.3399 0.1353 0.0517 0.0461 0.0854 0.0569

Var 0.162 0.0656 0.0288 0.0308 0.0854 0.0472

Bias 0.4217 0.264 0.1515 0.1234 0.0005 0.0983

4

MSE 0.0694 0.0372 0.0465 0.0285 0.0486 0.0315

Var 0.0385 0.0235 0.0191 0.0202 0.0486 0.0254

Bias 0.1756 0.117 0.1656 0.0915 0.0034 0.0776

15

MSE 0.0174 0.0177 0.0455 0.0178 0.0468 0.0246

Var 0.0123 0.0119 0.0118 0.012 0.0458 0.0214

Bias 0.0716 0.0766 0.1836 0.0759 0.0327 0.0563

50

MSE 0.014 0.0154 0.0459 0.0158 0.0447 0.0239

Var 0.0093 0.0093 0.0096 0.0098 0.0447 0.0187

Bias 0.0684 0.0781 0.1907 0.0776 0.0056 0.0723

The outcomes of our experiment 2 3 for bivariate distributions are outlined in Table 3.3

and depicted in Figure 3.2. In this context, the results are analogous to those observed in the

univariate scenario.

2In the bivariate scenario, samples comprised 100 observations, and 100 Monte Carlo simulations were per-
formed. Compared to the univariate experiment, computational and time limitations necessitated reducing the
number of simulations and sample sizes.

3For this experiment, for each df it was considered independent and identically distributed marginals in order
to make the samples simulations and to compute the entropy measures.
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Figure 3.2: Comparison values for bivariate random variables.
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3.4 Application

Mutual information in financial data analysis can offer valuable insights and enhance decision-

making processes. When employed alongside other financial analysis techniques, it becomes a

particularly beneficial tool for understanding complex relationships within the data.

The daily returns of selected databases were examined to analyze the practical application

of this concept using real financial data. This analysis included historical stock values4, with

information sourced from Yahoo Finance (refer to Table 3.4 for the illustrated abbreviation used

for each data). Each day’s analysis incorporated the highest observed value within that specific

timeframe.

Table 3.4: Abbreviation of each dataset.

Data Abbreviation

Apple Inc. aapl

Amazon.com, Inc. amzn

Intel Corporation intc

NVIDIA Corporation nvda

Microsoft Corporation msft

Samsung Electronics san

The following expression was used to compute the daily returns for each dataset:

rt = ln(Xt)− ln(Xt−1), t = 1, ..., n,

where the index t indicates the time where the return is calculated; and the Xt, Xt−1 represent

the historical values in time t and t− 1 respectively.

4Each historical data contains values from five years (Nov 21, 2018 - Nov 21, 2023).
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Figures 3.3 and 3.4 represent the mutual information and the total correlation, respectively,

computed across the daily returns from the datasets in Table 3.4.

Figure 3.3: Mutual information between different assets.

Analyzing total correlation and mutual information among the selected companies provides

insights into their interdependencies. Notably, Apple Inc. demonstrates relatively higher levels

of dependence on information when combined with Microsoft Corporation and NVIDIA Cor-

poration. While a total correlation of 0.09 and 0.08 might not be considered exceptionally high,

it does indicate a noteworthy level of shared information. Conversely, interactions involving

Samsung Electronics and Amazon.com show smaller values of total correlation, ranging from

0.03 to 0.05 - which may suggest a relatively lower degree of interdependence between those

assets and the other companies in the dataset.
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Figure 3.4: Total correlation between different assets.

3.5 Data availability

Historical exchange rate data and historical stock values are available on https://finance.

yahoo.com/.

3.6 Conclusion

The findings indicate that, among the non-parametric estimators explored in the study, the Ker-

nel estimator utilizing the Pareto Kernel function, optimized for the smoothing parameter with

a specific emphasis on entropy estimation, exhibited superior overall properties.
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Chapter 4

Differential Entropy Estimation with a

Paretian Kernel

4.1 Abstract

Differential entropy extends the concept of entropy to continuous probability distributions, mea-

suring the uncertainty associated with a continuous random variable. In financial data analysis,

accurately estimating differential entropy is pivotal for understanding market dynamics and

assessing risk. Traditional methods often fall short when dealing with the heavy-tailed distribu-

tions characteristic of financial returns. This paper introduces a novel approach to differential

entropy estimation employing a Paretian kernel function adept at handling tail heaviness’s intri-

cacies. By incorporating an additional smoothing parameter, the Pareto exponent, our method

offers flexibility in adjusting to light and heavy-tailed distributions. We compare our approach

against established estimators through a comprehensive Monte Carlo simulation, demonstrating

its superior performance in various scenarios. Applying our method to foreign exchange market

data further illustrates its practical utility in identifying stochastic regimes and enhancing finan-

cial analysis. Our findings advocate for integrating the Paretian kernel estimator into the toolkit

of financial analysts and researchers for a more nuanced understanding of market behavior.
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4.2 Introduction

Differential entropy, a measure of uncertainty in continuous probability distributions in infor-

mation theory, provides useful tools for analyzing financial data (Dionisio, Reis, and Coelho,

2008; Al-Yahyaee et al., 2019; Jaroonchokanan, Termsaithong, and Suwanna, 2022; Jizba and

Korbel, 2014; Xu, Shang, and Zhang, 2019; Zhang et al., 2020; Smerlak, 2016; Xian, He, and

Lai, 2016; Guo, Zhang, and Tian, n.d.; Jizba, Lavička, and Tabachová, 2021; Fernandes et al.,

2023).

It is often estimated using statistical nonparametric methods when the underlying population

distribution is unknown or complex (Beirlant et al., 1997; Chapeau-Blondeau and Rousseau,

2009; Govindan et al., 2007; Goel, Taneja, and Kumar, 2018).

Among the most widespread ones, the kernel density plugin-in estimator (KDE) of the dif-

ferential entropy is an approach where the probability density function for calculating entropy

is estimated by smoothing sample data points through a convenient kernel function. As an al-

ternative method, the k-nearest neighbor (K-NN) technique allows the estimation of differential

entropy by analyzing the distances between each data point and its nearest neighbors, inferring

density from these proximities. Finally, partitioning-type methods involve dividing the data

space and estimating probabilities in each segment to compute differential entropy. Generally,

they are competing estimators under some smoothness, tail, and peak conditions Beirlant et al.,

1997.

However, some issues arise when the underlying distributions are heavy-tailed. Regarding

the KDE plugin-in estimator, choosing a suitable kernel function depends on the adverse influ-

ence of tail behavior of the underlying population distribution (Hall, 1987; Hall and Morton,

1993a). The K-NN method can be sensitive to the tail behavior of the distribution because

the distances between a point and its k nearest neighbors can be quite large, which may lead

to higher bias. In partitioning methods, the spacing between samples within these partitions

can affect the accuracy of the entropy estimation. However, consistent estimates can be pro-
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duced from non-consistent spacing density estimates for large samples (Beirlant et al., 1997;

Wachowiak et al., 2005).

As heavy-tailed distributions are ubiquitous in financial data (Mandelbrot, 2003; Matsushita

et al., 2023), the improvement of the differential entropy estimation technique is of fundamental

importance. It is known that a heavy tail kernel may counteract the adverse influence of tail

behavior (Hall, 1987; Hall and Morton, 1993a). Therefore, this paper suggests a flexible KDE

plugin-in estimator of the differential entropy using a Paretian kernel function, where Pareto’s

exponent accommodates tail heaviness. Thus, our approach allows us to deal with light and

heavy tail situations.

We perform a Monte Carlo study to validate our results by considering the Student’s t dis-

tribution, which exhibits heavy or light tails depending on its parameter. We compare mean

squared errors, biases, and variances of KDE, K-NN, and sample spacing estimators.

We illustrate our method by analyzing daily US dollar prices in Swiss franc (CHF) and

Brazilian real (BRL) currencies collected by the Federal Reserve Bank of New York, identifying

different stochastic regimes using differential entropy estimates with Pareto’s kernel function.

The remainder of the paper is organized as follows. Our Paretian kernel entropy estimator

is introduced in Section 4.3. A Monte Carlo study is carried out in Section 4.4, which aims

to compare our method with KDE, K-NN, and sample spacing estimators as benchmarks. We

illustrate our approach in Section 4.5 using daily data from foreign exchange markets. Finally,

Section 4.6 concludes the study.

4.3 Paretian kernel entropy estimator

Letting X be a continuous real-valued random variable governed by a density function f , its

differential entropy is defined as

H(f) = −
∫ ∞

−∞
f(x) ln f(x)dx = −E[ln f(X)], (4.1)
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where f(x) ln f(x) ≡ 0 when f(x) = 0. However, in a practical situation where we estimate f

by f̂ , effectively we are dealing with the differential cross-entropy

H(f̂) = −
∫ ∞

−∞
f(x) ln f̂(x)dx = −E[ln f̂(x)], (4.2)

in which the expected uncertainty of f̂ is obtained over the underlying distribution. The dif-

ference between H(f) and H(f̂) coincides with the Kullback–Leibler divergence from f̂ to

f ,

DKL(f̂ , f) = H(f̂)−H(f) =

∫
R
f(x) ln

f(x)

f̂(x)
dx. (4.3)

Because DKL(f̂ , f) is a non-negative measure, the plug-in estimator H(f̂) always tend to over-

estimate H(f).

Now, given a random sample X1, . . . , Xn drawn from a population f , the kernel estimator

of f is

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (4.4)

where h > 0 is the smoothing bandwidth and K is a Kernel function. Thus, we can consider

the Kullback-Leibler loss as the empirical counterpart of (4.3), that is

D̂KL(f̂h, f) =
1

n

n∑
j=1

ln
f(Xj)

f̂h(Xj)
, (4.5)

where the optimal bandwidth ĥ can be found by minimizing (4.5) or, equivalently, minimize the

empirical cross-entropy

Ĥ(f̂h) = − 1

n

n∑
j=1

ln f̂h(Xj). (4.6)
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However, when x = Xi in (4.4), as K(0) does not depend on h, the bandwidth vanishes if we

try to minimize (4.6). Because of this, we consider the cross-validation loss function

CV (h) = − 1

n

n∑
j=1

ln

[
1

(n− 1)h

∑
i ̸=j

K

(
Xj −Xi

h

)]
, (4.7)

such that ĥ = argminh>0CV (h) (Duin, 1976; Hall, 1987). By following this approach, the

cross-validation estimate given by

Ĥ(fĥ) = CV (ĥ) (4.8)

is a consistent estimator of H(f) depending on the tail properties of the kernel K and the

underlying density f (Ivanov and Rozhkova, 1981; Hall and Morton, 1993a; Beirlant et al.,

1997).

One of the contributions of this paper is to show empirically how the cross-validation loss

function behaves depending on the tail properties of the kernelK with a heavy-tailed population

f . For this purpose, we consider the Gaussian and Laplace as light-tailed kernels, the Cauchy

as a heavy-tailed kernel, and the Pareto as a switchable light/heavy-tailed kernel (Table 4.1).

Table 4.1: Examples of light-tailed and heavy-tailed kernels, where u ∈ R.

Distribution Kernel Tail

Gaussian K(u) = 1√
2π

exp(−u2/2) light

Laplace K(u) = 1
2 exp(−|u|) light

Pareto Kα(u) =
α

2(1+|u|)α−1 [r]heavy (α ≤ 2)

light (2 < α < ∞)

Dirac delta (α = ∞)

Cauchy K(u) = 1
π(1+u2) heavy

The Pareto’s kernel is an interesting special case due to the exponent α. Here, we take

the Pareto’s exponent as an extra smoothing parameter, defining the cross-validation loss as
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CV (h, α) to get

(ĥ, α̂) = argmin
h>0,α>0

CV (h, α).

This is a flexible and versatile kernel that can be either heavy-tailed (α ≤ 2) or light-tailed

(α > 2). As α → ∞, the Pareto’s kernel approaches the Dirac delta function. Moreover, it

accommodates two different degrees of heaviness: (i)
∫
R uK(u)du = ∞ for α ≤ 1; and (ii)∫

R uK(u)du < ∞ and
∫
R u

2K(u)du = ∞, for 1 < α ≤ 2. Thus, the tail heaviness of Pareto’s

kernel is left to be data-driven.

Figure 4.1 depicts how the CV (h) function is influenced by the heaviness of the kernel

function when estimating H(f) of the Cauchy distribution. Discontinuities are observed when

using Gaussian and Laplace’s kernels, which are light-tailed. The opposite is observed with

Cauchy and Pareto’s (α = 1) kernels. To confirm that heavy-tailed kernels help to deal with a

heavy-tailed density f , we perform a Monte Carlo study in the next section.

4.4 A Monte Carlo Study

We performed 500 Monte Carlo replications to assess our suggested approach. In each one, we

generated a sample of 500 deviations from a Student’s t distribution with degrees of freedom

(ν) ranging from 1 to 100, and we computed differential entropy estimates using the kernel

functions from Table 4.1. We employ this distribution because it has heavier tails as ν decreases

(Cauchy if ν = 1) and the converse when ν increases (Gaussian if ν → ∞). When ν = 2, we

find a distribution with an undefined variance but a finite mean.

As a benchmark in this univariate study, we considered sample spacing (SS) and K-nearest

Neighbor (KNN) estimates of the Student’s t entropy H(f), given by

H(f) =
ν + 1

2

[
ψ

(
ν + 1

2

)
− ψ

(ν
2

)]
+ ln

[√
νB

(
ν

2
,
1

2

)]
,
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Figure 4.1: Cross-validation loss function CV (h) versus h to estimate the differential entropy of a Cauchy
distribution with scale parameter σ = 3 using light-tailed (Gaussian and Pareto) and heavy-tailed (Cauchy and
Laplace) kernel functions from samples of size n = 500. The dashed line indicates the true population entropy,
H(f) = ln(4πσ). Discontinuities occur when using a light-tailed kernel to estimate the entropy of this Cauchy
distribution.

where ψ means the digamma function and B is the beta function.

Table 4.2 shows the mean squared error, the variance, and the squared bias of the estimators

from the Monte Carlo replications. Pareto’s kernel generally offers the lowest mean squared

errors among the competing estimators for all ν, closely followed by the sample spacing and

Cauchy’s kernel entropy estimators. However, NND estimator performed poorly (Figure 4.2,

left). Figure 4.2 (right) illustrates how the average ᾱ evolves as a function of ν. As expected, α

increases as the distribution heaviness decreases (ν increases).
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Figure 4.2: Left: Mean squared errors (MSE) of kernel differential entropy estimates of a Student’s t distri-
bution with ν degrees of freedom from 500 Monte Carlo replications. Right: Average values of α for different
values of ν when using Pareto’s kernel from the univariate Monte Carlo experiments (Table 4.2).

4.5 Illustration

In our illustration, we aim to show how our approach may be useful in detecting different

stochastic regimes in the historical evolution of an exchange rate. Consider the following as an

example of a change in the exchange rate regime. In March 1973, several nations abandoned

efforts to maintain the system of fixed exchange rates, beginning a period of transition from

fixed to floating (market-determined) exchange rates between the US dollar and other major

currencies.

We choose additional examples involving the Swiss Franc (CHF) and the Brazilian Real

(BRL). Although the CHF is often referred to as a hard currency, on 15 January 2015, the Swiss

National Bank suddenly announced that it would no longer hold the CHF at a fixed exchange

rate against the euro. This resulted in a sharp drop in the rate from that day onwards (Matsushita

et al., 2020).

In contrast,the BRL commonly experiences different regimes. The first began when Brazil

implemented the Real Plan in 1993 as a monetary exchange rate-based stabilization policy,

where the central element was an exchange rate anchor to reduce chronic inflation. The BRL
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currency was introduced in July 1994 under an exchange rate band strategy until 13 January

1999, when the first real currency crisis occurred. Just after that, the real-dollar rate was let

to be market-determined. The BRL experienced a log-periodic bubble (28 May 2002 - 14 Jan

2003), possibly because of uncertainties in the Brazilian presidential election and the economic

policy to be adopted by Lula, the elected president (Matsushita et al., 2006). Other factors

occurred, such as the impeachment of President Dilma Roussef, the period of austerity during

Michel Temer’s short government, and the transition to Jair Bolsonaro’s government, marking

the country as a rollercoaster of economic and monetary policies.

Now, ignoring such historical facts, we apply our approach to detect them using only our

data-driven approach with the following differential entropy estimation through the Pareto ker-

nel. Given a time series of exchange rates {Pt}, we obtain the log-return as usual, Xt =

lnPt/Pt−1, where t is a time index varying from 2 to n, where n denotes the sample size. In our

illustration, we divided the time series of returns exactly into blocks of size b, so that n = b×m.

We deal with m time series of size b. For each block, using Pareto’s kernel, we calculate the

differential entropy with the estimated α, and we classify the block according to its magnitude.

From Table 4.1. A heavy-tailed kernel occurs if lnα ≤ ln 2. Empirically, we find it reasonable

to classify ln 2 < lnα ≤ ln 5 as the light-tailed kernel case and lnα > 5 as an approximation

of the Dirac’s delta kernel.

The interpretation is straightforward. Price movements are random and unpredictable in

perfectly efficient markets because they instantly incorporate all available information, leaving

no room for predictable patterns or arbitrage opportunities. When α is high, the kernel function

at a certain point Xt depends almost nothing on the other sample points of the data block. We

interpret it as economic efficiency because of a high degree of randomness in the data series in

measuring entropy. At the opposite extreme, a small parameter (α ≤ 2 ) means that the kernel

function at a certain point Xt depends on almost all the other sample points of the block. We

interpret it as a lack of economic efficiency, with a high degree of dependence on the entropy

estimation. Thus, smaller α’s are related to turbulent periods, while higher α means regular
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periods with smaller tails. Interestingly, higher/lower α does not imply more or less uncertainty

or volatility because it is a kernel’s parameter.

The data sets employed in this illustration were taken from the Federal Reserve website

(http://www.federalreserve.gov/releases/H10/hist/). They refer to a currency value

in US dollar terms collected by the Federal Reserve Bank of New York from a sample of market

participants. We ignore gaps from weekends and holidays, concentrating our analysis on trading

days.

We choose b = 60, which gives m = 221 and 121 for the CHF and BRL data, respectively.

Figure 4.3 shows the BRL/USD and CHF/USD time series of exchange rates (CHF from 5-

Jan-1971 to 16-Nov-2023 and BRL from 4-Jan-1995 to 13-Dec-2023). Interestingly, although

the kernel types are obtained from blocks of log returns (Figure 4.4), we may find a general

picture consistent with some known historical facts that affected price movements. Figure 4.5

depicts differential entropy estimates against sample variances from each data block. It shows

that some entropies estimated with low α (heavy tail kernel) are further away from the Gaussian

line. However, we also find blocks with small variances and entropies with small α. It reinforces

that tail heaviness, uncertainty, and volatility are not synonymous, which must be considered

when measuring financial risks.

Table 4.3 lists the heavy-tailed blocks (13 CHF and 21 BRL blocks), which align with some

facts described at the beginning of this section. Finally, Figure 4.6 shows differential entropy

estimates against estimated values of lnα, revealing the existence of three kernel types. The

heavy-tailed case is established theoretically because the Pareto distribution has no variance

when lnα ≤ ln 2. Classifying lnα > 5 as an approximation of Dirac’s delta kernel is reasonable

because a cluster of points is formed after lnα = 5.
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Figure 4.3: Historical evolution of foreign exchange rates against the US dollar. Swiss franc (CHF): n =
13, 260 observations from 5-Jan-1971 to 16-Nov-2023. Brazilian real (BRL): n = 7, 260 from 4-Jan-1995 to
13-Dec-2023. We find Pareto’s kernel types suggesting different regimes generally coherent with known historical
facts such as the 1970s energy crisis (CHF) and the Real Plan in the early 1990s (BRL).

4.6 Conclusion

This study underscores the crucial role of tail behavior in estimating differential entropy, es-

pecially within financial data analysis. Our findings advocate adopting a Paretian kernel-based

estimator as a robust tool that accommodates the complexities inherent in financial distributions.

This method enhances the accuracy of differential entropy estimation and provides a nuanced

understanding of financial market dynamics through the lens of entropy. Future research could

explore integrating this approach with other financial modeling techniques to further unravel

the intricate behaviors of markets and enhance risk assessment methodologies. Emphasizing

the adaptability and efficacy of the Paretian kernel, our research contributes to the advancement

of statistical tools in financial analysis.
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Figure 4.4: Log returns from data shown in Figure 4.3, with the Pareto’s kernel types suggesting different
stochastic regimes.

Figure 4.5: m estimated differential entropies versus sample variances calculated for each block of size b = 60,
where m = 221 for CHF and m = 121 for BRL data. The red line refers to the Gaussian differential entropy given
by H(f) = 0.5 ln(2πσ2) + 0.5
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Table 4.2: Estimating differential entropy of an univariate Student’s t distribution with ν de-
grees of freedom: Mean squared error (MSE), variance (V[Ĥ(f̂)]), squared bias (B2) from 500
Monte Carlo replications of different kernel entropy estimators, and NND and SS estimators as
benchmarks.

ν measures Gaussian Laplace Cauchy Pareto NND SS

1
MSE 0.412719 0.641096 0.011115 0.010730 0.011699 0.009152
V[Ĥ(f̂)] 0.087178 0.218827 0.008426 0.008142 0.011698 0.008751
B2 0.325541 0.422269 0.002689 0.002587 0.000001 0.000401

2
MSE 0.109086 0.020924 0.003946 0.003965 0.007454 0.004392
V[Ĥ(f̂)] 0.052868 0.011148 0.003133 0.003244 0.007418 0.004269
B2 0.056218 0.009776 0.000813 0.000721 0.000036 0.000123

3
MSE 0.022403 0.005356 0.003139 0.002872 0.006675 0.003738
V[Ĥ(f̂)] 0.013795 0.003496 0.002342 0.002416 0.006642 0.003671
B2 0.008608 0.001860 0.000797 0.000456 0.000033 0.000067

4
MSE 0.006678 0.002625 0.002320 0.002006 0.006418 0.003446
V[Ĥ(f̂)] 0.005023 0.002214 0.001868 0.001890 0.006396 0.003155
B2 0.001655 0.000411 0.000452 0.000116 0.000023 0.000292

5
MSE 0.003356 0.002017 0.002174 0.001735 0.006271 0.003170
V[Ĥ(f̂)] 0.002538 0.001702 0.001561 0.001586 0.006261 0.003021
B2 0.000818 0.000316 0.000613 0.000149 0.000010 0.000149

10
MSE 0.001600 0.001521 0.002097 0.001493 0.005846 0.002784
V[Ĥ(f̂)] 0.001462 0.001411 0.001411 0.001404 0.005846 0.002678
B2 0.000138 0.000109 0.000686 0.000089 0.000000 0.000106

15
MSE 0.001310 0.001307 0.001986 0.001304 0.005027 0.002321
V[Ĥ(f̂)] 0.001212 0.001210 0.001247 0.001218 0.005024 0.002251
B2 0.000097 0.000097 0.000739 0.000086 0.000002 0.000071

20
MSE 0.001305 0.001279 0.001939 0.001271 0.005441 0.002608
V[Ĥ(f̂)] 0.001227 0.001198 0.001210 0.001197 0.005421 0.002451
B2 0.000078 0.000081 0.000729 0.000074 0.000020 0.000158

50
MSE 0.001217 0.001225 0.001942 0.001224 0.005545 0.002572
V[Ĥ(f̂)] 0.001164 0.001160 0.001195 0.001162 0.005531 0.002433
B2 0.000052 0.000065 0.000747 0.000063 0.000014 0.000138

100
MSE 0.001098 0.001105 0.001820 0.001102 0.005222 0.002311
V[Ĥ(f̂)] 0.001049 0.001042 0.001061 0.001041 0.005220 0.002201
B2 0.000050 0.000063 0.000759 0.000062 0.000003 0.000110
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Figure 4.6: m estimated differential entropies versus estimated lnα for each block of size b = 60, where
m = 221 for CHF and m = 121 for BRL data. We find three clusters of α discriminated by dashed vertical
lines: lnα ≤ ln 2 (heavy-tailed kernel), ln 2 < lnα ≤ 5 (light-tailed kernel) and we consider lnα > 5 as an
approximation of the Dirac’s delta kernel.
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Table 4.3: Blocks with differential entropies estimated with heavy-tailed kernel

Swiss franc (CHF)
block period α H(f)

1 1971-01-05 — 1971-03-31 0.21 -8.35
2 1971-04-01 — 1971-06-24 1.50 -4.99
3 1971-06-25 — 1971-09-27 1.80 -4.72
4 1971-12-28 — 1972-03-21 0.95 -4.44
5 1972-03-22 — 1972-06-14 0.29 -5.03
6 1972-12-08 — 1973-03-07 1.75 -3.81
7 1979-08-23 — 1979-11-20 1.34 -3.49
8 1987-01-29 — 1987-04-23 1.75 -3.50
9 1993-01-15 — 1993-04-12 1.81 -3.36

10 1996-05-16 — 1996-08-09 0.68 -3.91
11 2001-05-18 — 2001-08-13 1.51 -3.58
12 2014-12-30 — 2015-03-26 1.37 -3.14
13 2021-03-31 — 2021-06-23 1.92 -4.16

Brazilian real (BRL)
block period α H(f)

1 1995-03-29 — 1995-06-21 0.44 -4.52
2 1995-09-18 — 1995-12-13 0.32 -6.43
3 1995-12-14 — 1996-03-18 0.22 -5.93
4 1996-03-19 — 1996-06-11 0.30 -6.34
5 1996-06-12 — 1996-09-05 0.27 -5.08
6 1996-12-04 — 1997-03-03 0.29 -6.49
7 1997-03-04 — 1997-05-27 0.30 -6.53
8 1997-05-28 — 1997-08-20 0.31 -6.69
9 1997-08-21 — 1997-11-17 0.36 -6.23

10 1998-02-17 — 1998-05-11 0.44 -6.97
11 1998-08-05 — 1998-10-29 1.58 -5.22
12 1998-10-30 — 1999-01-28 0.22 -4.56
13 1999-10-15 — 2000-01-10 0.43 -3.60
14 2000-06-30 — 2000-09-25 0.53 -4.44
15 2002-05-31 — 2002-08-23 1.72 -2.38
16 2007-06-05 — 2007-08-28 1.90 -3.09
17 2012-08-30 — 2012-11-27 1.34 -4.41
18 2016-06-30 — 2016-09-23 1.35 -3.28
19 2017-03-23 — 2017-06-15 1.44 -3.24
20 2018-08-27 — 2018-11-21 1.26 -3.15
21 2020-02-11 — 2020-05-05 1.01 -2.84

44



Chapter 5

Final Considerations

The Gaussian Kernel estimator consistently demonstrated favorable outcomes, especially when

sampling from light-tailed populations. However, challenges were observed with the Sample-

Spacings (SS) and Nearest Neighbor (NN) estimators when dealing with real data containing

ties. Additionally, while the literature often emphasizes the smoothing parameter’s influence

on Kernel-based density estimates, this study revealed a connection between the population

distribution and the kernel function’s shape. Despite these findings indicating the need for

adaptations in the Kernel estimator method, its general applicability remains valuable. It is an

alternative measure to the standard deviation, which may not always provide insightful infor-

mation about data uncertainty.

We introduce a groundbreaking approach to estimating differential entropy in financial data

analysis, which is critical for understanding market dynamics and assessing risk. Traditional

methods often struggle with the heavy-tailed distributions characteristic of financial returns. We

propose a novel estimator that employs a Paretian kernel function adept at handling the com-

plexities of tail heaviness. Among the non-parametric estimators studied, our Kernel estimator

utilizing the Pareto Kernel function stood out for its superior overall properties, particularly

when optimized for the smoothing parameter focused on entropy estimation of light or heavy-

tailed distributions. Thus, our approach improves upon existing techniques by incorporating an
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additional smoothing parameter, the Pareto exponent, which allows for enhanced flexibility in

adjusting to light and heavy-tailed distributions.

Through Monte Carlo simulations, we have demonstrated the superior performance of our

approach against established estimators across different scenarios. Furthermore, applying our

method to foreign exchange market data underscores its practical utility in identifying stochastic

regimes, offering a more nuanced understanding of market behavior. Our findings strongly

advocate for the integration of the Paretian kernel estimator into the toolkit of financial analysts

and researchers, proposing a significant shift towards more accurate and adaptable tools in

financial analysis.

Subsequent studies may investigate integrating this approach with other financial modeling

techniques to uncover complex market behaviors and improve risk assessment methodologies.
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