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Resumo

MODELOS LOG-SIMÉTRICOS BIVARIADOS: PROPRIEDADES TEÓRICAS E ES-

TIMAÇÃO DE PARÂMETROS

A distribuição gaussiana bivariada tem sido a base da probabilidade e da estatística por

muitos anos. No entanto, esta distribuição enfrenta alguns problemas, principalmente dev-

ido ao fato de que muitos fenômenos do mundo real geram dados que seguem distribuições

assimétricas. Modelos log-simétricos bidimensionais possuem propriedades atrativas e po-

dem ser considerados boas alternativas para resolver este problema, pois possuem pro-

priedades estatísticas que podem torná-las preferíeis a distribuição guassiana. Nesta dis-

sertação, propomos novas caracterizações de distribuições log-simétricas bivariadas e suas

aplicações. Esta dissertação visa desenvolver importantes contribuições para a estatís-

tica probabilística, teórica e aplicada devido à flexibilidade e propriedades interessantes

dos modelos descritos. Teoricamente, uma distribuição é log-simétrica quando a var-

iável aleatória correspondente e sua recíproca têm a mesma distribuição (ver Jones 2008).

Uma caracterização de distribuições desse tipo pode ser construída tomando a função

logaritmo de uma variável aleatória simétrica. Portanto, distribuições log-simétricas são

usadas para descrever o comportamento de dados estritamente positivos. A classe desse

tipo de distribuição é bastante ampla e inclui grande parte das distribuições bimodais e

aquelas com caudas mais leves ou mais pesadas que a distribuição log-normal; ver, por

exemplo, Vanegas e Paula (2016). Alguns exemplos de distribuições log-simétricas são:
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log-normal, log-Student-t, log-logistic, log-Laplace, log-Cauchy, log-power-exponencial,

log-slash, harmonic law, Birnbaum-Saunders, e Birnbaum-Saunders-t; ver, por exemplo,

Crow e Shimizu (1988), Birnbaum e Saunders (1969), Rieck e Nedelman (1991), John-

son et al. (1994), 1995, Díaz-García e Leiva (2005), Marshall e Olkin (2007), Jones

(2008) e Vanegas e Paula (2016). Estudamos as principais propriedades estatísticas dos

modelos, no capítulo 1 apresentemos o modelo log-simétrico bivariado (BLS) proposto,

ademais neste capítulo as principais propriedades matemáticas, como representação es-

tocástica,função quantil, distribuição condicional, distância Mahalanobis, independência,

momentos, função de correlação, entre outras propriedades do modelo BLS são discuti-

das. No capítulo 2, propomos o método de máxima verossimilhança para a estimação

dos parâmetros das distribuições propostas. No capítulo 3, realizamos a simulação de

Monte Carlo para avaliar a performance dos estimadores de máxima verossimilhança, uti-

lizando o viés e o Erro Quadrático Médio, considerando vários cenários para diferentes

distribuições, o que mostrou bons resultados com valores próximos a zero. No Capítulo

4, realizamos a aplicação a um conjunto de dados reais refentes a fatigue, os dados são

baseados no artigo de Marchant et al. (2015), no qual ele propôs um modelo de regressão

multivariado Birnbaum-Saunders, realizamos a estimação dos parâmetros utilizando o

método de Máxima verossimilhança e usamos as seguintes váriaveis Von Mises stress (T1)

e die limetime (T2), para a estimação dos parâmetros extras utilizamos estimação per-

filada, além disso computamos os valores de critério de informação de Akaike (AIC) e

Bayesiano (BIC), para utilizarmos como critério de seleção de modelo. Os resultados são

vistos como favoráveis ao modelo log-Laplace

Palavras-Chaves: Modelos Log-Simétricos Bivariados, simulação de Monte Carlo,

método de máxima verossimilhança, software R.
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Abstract

The bivariate Gaussian distribution has been the basis of probability and statistics for

many years. Nonetheless, this distribution faces some problems, mainly due to the fact

that many real-world phenomena generate data that follow asymmetric distributions.

Bidimensional log-symmetric models have attractive properties and can be considered as

good alternatives to solve this problem. In this dissertation, we propose new characteri-

zations of bivariate log-symmetric distributions and their applications. This dissertation

aims to develop important contributions to probability, theoretical and applied statistics

due to the flexibility and interesting properties of the outlined models. We implemented

maximum likelihood estimation for the parameters of the distributions. A Monte Carlo

simulation study was performed to evaluate the performance of the parameter estimation.

Finally, we applied the proposed methodology to a real data set.

Keywords: Bivariate Log-symmetric Models, Monte Carlo simulation, maximum

likelihood method, R software.
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Introduction

Theoretically, a distribution is log-symmetric when the corresponding random variable

and its reciprocal have the same distribution (see Jones 2008). A characterization of

distributions of this type can be constructed by taking the logarithm function of a sym-

metric random variable. Therefore, log-symetric distributions are used to describe the

behavior of strictly positive data. The class of this type of distribution is quite broad

and includes a large portion of bimodal distributions and those with lighter or heav-

ier tails than the log-normal distribution; see e.g., Vanegas and Paula (2016). Some

examples of log-symmetric distributions are: log-normal, log-Student-t, log-logistic, log-

Laplace, log-Cauchy, log-power-exponential, log-slash, harmonic law, Birnbaum-Saunders,

and Birnbaum- Saunders-t; see e.g., Crow and Shimizu (1988), Birnbaum and Saunders

(1969), Rieck and Nedelman (1991), Johnson et al. (1994), 1995, Díaz-García and Leiva

(2005), Marshall and Olkin (2007), Jones (2008), and Vanegas and Paula (2016).

Another important feature of the log-symmetric class is that they are closed under scale

change and under reciprocity, according to Puig (2008), which are very desirable properties

for distributions that are used to describe strictly positive data, and log-symmetric models

allow you to model the median or the asymmetry (relative dispersion).

Furthermore, the log-symmetric class has statistical properties that might make it

preferable to the alternative distribution. For example, the two parameters of the log-

symmetric distribution are orthogonal and they can be interpreted directly
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as median and skewness (or relative dispersion, taking into account two parameters that

are interpreted as measures of position and scale, as stated by Vanegas and Paula (2016),

which are, in the context of asymmetric distributions, the ones that mean the most being

complete measures of location and shape, respectively. Several studies have been carried

out including the log-symmetric distributions proposed in Vanegas and Paula (2016).

Within this context, the main objective of the current work is to extend in a natu-

ral way the definition of univariate log-symmetric distributions to the bivariate case, to

study its main statistical properties, to propose the maximum likelihood method for the

estimation parameters and to show an application to real data. The remainder of this

work is organized as follows.

In Chapter 1 the bivariate log-symmetric (BLS) model is proposed. Moreover, in this

section, the main mathematical properties, as stochastic representation, quantile func-

tion, conditional distribution, Mahalanobis distance, independence, moments, correlation

function among others; of the BLS model are discussed. In Chapter 2, the maximum

likelihood estimator for the bivariate log-symmetric models is proposed. In Chapter 3 we

performed Monte Carlo simulation to evaluate the performance of the maximum likeli-

hood estimators. In Chapter 4 we apply the BLS models to a data set. Finally, we close

this chapter by presenting some concluding remarks.

2



Chapter 1

Bivariate Log-Symmetric Model

A continuous random vector T =

 T1

T2

 follows a bivariate log-symmetric (BLS) distri-

bution if its joint probability density function (PDF) is given by

fT1,T2(t1, t2; θ) = 1
t1t2σ1σ2

√
1 − ρ2Zgc

gc

 t̃12 − 2ρt̃1t̃2 + t̃2
2

1 − ρ2

, t1, t2 > 0, (1.1)

where

t̃i = log
[(
ti
ηi

)1/σi
]
, ηi = exp(µi), i = 1, 2,

where θ = (η1, η2, σ1, σ2, ρ) is the parameter vector with µi ∈ R, σi > 0, i = 1, 2;

ρ ∈ (−1, 1); Zgc > 0 is the partition function, that is,

Zgc =
∫ ∞

0

∫ ∞

0

1
t1t2σ1σ2

√
1 − ρ2 gc

 t̃12 − 2ρt̃1t̃2 + t̃2
2

1 − ρ2

 dt1dt2, (1.2)

and gc is a scalar function referred to as the density generator; see Fang et al. (1990). We
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cap. 1. Bivariate Log-Symmetric Model §1.0.

use, in this case, the notation T ∼ BLS(θ, gc).

In this work we prove that, when it exists, the variance-covariance matrix of a random

vector T ∼ BLS(θ, gc), denoted by KT , is a matrix function of the following dispersion

matrix (see subsections 1.1.7 and 1.1.8 below):

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

In other words, KT = ψ(Σ) for some matrix function ψ : M2,2 7−→ M2,2, where M2,2

denotes the set of all 2-by-2 real matrices.

Based on the references Saulo et al. (2017) and Vanegas and Paula (2016), Table 1.1

presents some examples of bivariate log-symmetric distributions.

Table 1.1: Partition functions (Zgc) and density generators (gc) for some distributions.

Distribution Zgc gc Parameter
Bivariate Log-normal 2π exp(−x/2) −

Bivariate Log-Kotz type πΓ(ζ/δ)
δλζ/δ xζ−1 exp(−λxδ) δ > 0, λ > 0, ζ > 0

Bivariate Log-contaminated normal 2π( 1√
ϑ2

+ 1
ϑ1

− 1)
√
ϑ2 exp(−1

2ϑ2x) + (1−ϑ1)
ϑ1

exp(−1
2x) 0 < ϑ1, ϑ2 < 1

Bivariate Log-Student-t Γ(ν/2)νπ
Γ((ν+2)/2) (1 + x

ν
)−(ν+2)/2 ν > 0

Bivariate Log-Pearson Type VII Γ(ξ−1)θπ
Γ(ξ) (1 + x

θ
)−ξ ξ > 1, θ > 0

Bivariate Log-hyperbolic 2π(ν+1) exp(−ν)
ν2 exp(−ν

√
1 + x) ν > 0

Bivariate Log-Laplace π K0(
√

2x) −

Bivariate Log-slash π
ν−1 2 3−ν

2 x− ν+1
2 γ(ν+1

2 , x
2 ) ν > 1

Bivariate Log-power-exponential 2ξ+1(1 + ξ)Γ(1 + ξ)π exp
(
−1

2 x
1/(1+ξ)

)
−1 < ξ ⩽ 1

Bivariate Log-Logistic π/2 exp(−x)
(1+exp(−x))2 −

Here, in the Table 1.1, Γ(t) =
∫∞

0 xt−1 exp(−x) dx, t > 0, is the gamma function,

K0(u) =
∫∞

0 t−1 exp(−t − u2

4t
) dt/2, u > 0, is the Bessel function of the third kind

(for more details on the main properties of K0, see appendix of Kotz et al. 2001); and

γ(s, x) =
∫ x

0 t
s−1 exp(−t) dt is the lower incomplete gamma function.

In Figures 1.1-1.9 some graphical sketches of the BLS PDF from Table 1.1 are pre-

sented.
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§1.0.

By using (1.1) it is clear that the random vector X =

 X1

X2

 , with Xi = log(Ti), i =

1, 2, has a bivariate elliptically symmetric (BES) distribution; see p. 592 in Balakrishnan

and Lai (2009). In other words, the PDF of X is as follows

fX1,X2(x1, x2; θ∗) = 1
σ1σ2

√
1 − ρ2Zgc

gc

 x̃1
2 − 2ρx̃1x̃2 + x̃2

2

1 − ρ2

, −∞ < x1, x2 < ∞, (1.3)

x̃i = xi − µi

σi

, i = 1, 2,

where θ∗ = (µ1, µ2, σ1, σ2, ρ) is the parameter vector and Zgc is the partition function

stated in (1.2). In this case, the notation X ∼ BES(θ∗, gc) is used.

A simple standard calculation shows that the joint cumulative distribution function

(CDF) of T ∼ BLS(θ, gc), denoted by FT1,T2(t1, t2; θ), is expressed as

FT1,T2(t1, t2; θ) = FX1,X2

(
log(t1), log(t2); θ∗

)
,

with FX1,X2(x1, x2; θ∗) the CDF of X ∼ BES(θ∗, gc). Except in the case of bivariate

normal, there is no single closed-form expression for the CDF of X.
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cap. 1. Bivariate Log-Symmetric Model §1.0.
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Figure 1.1: Bivariate log-normal PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0).
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Figure 1.2: Bivariate log-contaminated Normal PDF plot with parameters θ∗ =
(2, 2, 0.5, 0.5, 0) and ϑ1 = 0.9, ϑ2 = 0.3.
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Figure 1.3: Bivariate log-Student-t PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0) and ν = 3.
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cap. 1. Bivariate Log-Symmetric Model §1.0.
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Figure 1.4: Bivariate log-Pearson type VII PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0)
and ξ = 5, θ = 22.
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Figure 1.5: Bivariate log-hyperbolic PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0) and ν = 2.
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Figure 1.6: Bivariate log-slash PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0) and ν = 4.
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Figure 1.7: Bivariate log-power-exponential PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0)
and ξ = 0.5.
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cap. 1. Bivariate Log-Symmetric Model §1.1.
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Figure 1.8: Bivariate log-logistic PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0).
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Figure 1.9: Bivariate log-Laplace PDF plot with parameters θ∗ = (2, 2, 0.5, 0.5, 0).
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§1.1. Some basic properties of model

1.1 Some basic properties of model

In this section, some mathematical properties of proposed bivariate log-symmetric

distribution are discussed.

1.1.1 Characterization of the partition function Zgc

Proposition 1.1.1. The partition function Zgc (1.2) is independent of the parameter

vector θ. More precisely,

Zgc =
∫ ∞

−∞

∫ ∞

−∞
gc

(
z1

2 + z2
2
)

dz1dz2 = π
∫ ∞

0
gc(u) du.

Proof. The proof of the first identity follows by considering in (1.2) the following change

of variables (Jacobian Method):

z1 = t̃1, z2 = t̃2 − ρt̃1√
1 − ρ2 ,

where t̃i, i = 1, 2, are defined in (1.1).

On the other hand, by using integration in polar coordinates: z1 = r cos(θ), z2 =

r sin(θ), with r ⩾ 0 and 0 ⩽ θ ⩽ 2π in the identity Zgc =
∫∞

−∞
∫∞

−∞ gc

(
z1

2 + z2
2
)

dz1dz2,

we have

Zgc =
∫ 2π

0

∫ ∞

0
gc(r2)r drdθ.

Hence, by take the change of variables u = r2, du = 2rdr, the proof of the second identity

follows.

11



cap. 1. Bivariate Log-Symmetric Model §1.1. Some basic properties of model

1.1.2 Stochastic representation

Proposition 1.1.2. The random vector T = (T1, T2) has a BLS distribution if

T1 = η1 exp(σ1Z1),

T2 = η2 exp
(
σ2ρZ1 + σ2

√
1 − ρ2Z2

)
,

where Z1 = RDU1 and Z2 = R
√

1 −D2U2; U1, U2,R, and D are mutually independent

random variables, ρ ∈ (−1, 1), ηi = exp(µi), and P(Ui = −1) = P(Ui = 1) = 1/2, i = 1, 2.

The random variable D is positive and has PDF

fD(d) = 2
π

√
1 − d2

, d ∈ (0, 1).

Furthermore, the positive random variable R is called the generator of the elliptical random

vector X = (X1, X2). In other words, R has PDF given by

fR(r) = 2rgc(r2)∫∞
0 gc(u) du, r > 0.

Proof. It is well-known that (see Abdous et al. 2005), the vector X has a BES distribution

if

X1 = µ1 + σ1Z1,

X2 = µ2 + σ2ρZ1 + σ2
√

1 − ρ2Z2.

(1.4)

Since Xi = log(Ti), i = 1, 2, the proof follows.

12



§1.1. Some basic properties of model

1.1.3 Quantile function

Let T = (T1, T2) ∼ BLS(θ, gc) and p ∈ (0, 1). By using the stochastic representation of

Proposition 1.1.2, we obtain

p = P(T1 ⩽ QT1) = P
(
η1 exp(σ1Z1) ⩽ QT1

)
= P

(
Z1 ⩽ log

[(
QT1

η1

)1/σ1
])

and

p = P(T2 ⩽ QT2) = P
(
η2 exp(σ2ρZ1 + σ2

√
1 − ρ2Z2) ⩽ QT2

)
= P

(
ρZ1 +

√
1 − ρ2Z2 ⩽ log

[(
QT2

η2

)1/σ2
])

.

Hence, the p-quantile of T1 and the p-quantile of T2 are given by

log
[(
QT1

η1

)1/σ1
]
= QZ1 ⇐⇒ QT1 = η1 exp(σ1QZ1)

and

log
[(
QT2

η2

)1/σ2
]
= Q

ρZ1+
√

1−ρ2Z2
⇐⇒ QT2 = η2 exp(σ2QρZ1+

√
1−ρ2Z2

),

respectively.

1.1.4 Conditional distribution

Proposition 1.1.3. The joint PDF of Z1 and Z2, given in Proposition 1.1.2, is given by

fZ1,Z2(z1, z2) = gc(z2
1 + z2

2)
π
∫∞

0 gc(u) du, −∞ < z1, z2 < ∞.

13



cap. 1. Bivariate Log-Symmetric Model §1.1. Some basic properties of model

Moreover, the marginal PDFs of Z1 and Z2, denoted by fZ1 and fZ2, respectively, are

given by

fZ1(z1) =

∫ ∞

|z1|

2gc(w2)√
1−

z2
1

w2

dw

π
∫∞

0 gc(u) du and fZ2(z2) =

∫ ∞

|z2|

2gc(w2)√
1−

z2
2

w2

dw

π
∫∞

0 gc(u) du , −∞ < z1, z2 < ∞.

In particular, fZi
(zi |Zj = zj) (i ̸= j) and fZi

(zi), i, j = 1, 2, are even functions.

Proof. The proof of this result is technical and intermediate in the arguments of the proofs

developed in this work, so we decided not to put it. For more details on the proof, see

Propositions 3.1 and 3.2 of reference Saulo et al. (2022).

Definition 1.1.1. Let X and Y be two continuous random variables with joint PDF fX,Y ,

and marginal PDFs fX and fY , respectively.

• Let B be a Borelian subset of R. The conditional CDF of X given {Y ∈ B}, denoted

by FX(x |Y ∈ B), is defined as (for every x)

FX(x |Y ∈ B) = P(X ⩽ x |Y ∈ B) =
∫ x

−∞
fX(u |Y ∈ B) du, if P(Y ∈ B) > 0, (1.5)

where fX(u |Y ∈ B) is the corresponding conditional PDF given by

fX(u |Y ∈ B) =
∫

B fX,Y (u, v) dv
P(Y ∈ B) .

We write X |Y ∈ B to indicate that the random variable X follows the conditional

CDF (1.5) given {Y ∈ B}.
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• Let ε > 0, and suposse that P(y − ε < Y ⩽ y + ε) > 0. Abusing mathematical

notation, we define the conditional CDF of X given Y = y, denoted by FX(x |Y =

y), as (for every x)

FX(x|Y = y) = lim
ε→0+

P(X ⩽ x | y − ε < Y ⩽ y + ε),

provided that the limit exists. If the limit exists, there is a nonnegative function

fX(u|Y = y) (called the conditional PDF) so that (for every x)

FX(x |Y = y) =
∫ x

−∞
fX(u |Y = y) du.

At every point (x, y) at which fX,Y is continuous and fY (y) > 0 is continuous, the

PDF fX(u |Y = y) exists and it is expressed by (see Theorem 6, p. 109, of Rohatgi

and Saleh 2015)

fX(u |Y = y) = fX,Y (u, y)
fY (y) .

For simplicity, we write X |Y = y.

Lemma 1.1.4. If T = (T1, T2) ∼ BLS(θ, gc) then the PDF of T2|T1 = t1 is written as

fT2(t2 |T1 = t1) = 1
t2σ2

√
1 − ρ2 fZ2

(
1√

1 − ρ2 t̃2 − ρ√
1 − ρ2 t̃1

∣∣∣∣∣Z1 = t̃1

)
, (1.6)

where t̃i, i = 1, 2, are defined in (1.1), and Z1 and Z2 are as in Proposition 1.1.2.

Proof. If T1 = t1, then Z1 = log
[
(t1/η1)1/σ1

]
= t̃1. Thus, the conditional distribution of

T2 given T1 = t1 is the same as the distribution of

η2 exp
(
σ2ρt̃1 + σ2

√
1 − ρ2Z2

) ∣∣∣T1 = t1.

15
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Consequently,

FT2(t2 |T1 = t1) = P
(
η2 exp(σ2ρt̃1 + σ2

√
1 − ρ2Z2) ⩽ t2

∣∣∣T1 = t1
)

= P
(
Z2 ⩽

1√
1 − ρ2 t̃2 − ρ√

1 − ρ2 t̃1

∣∣∣∣∣Z1 = t̃1

)
.

Then, the Formula (1.6) of the conditional PDF of T2 given T1 = t1 follows.

Theorem 1.1.5. For a Borelian subset B of (0,∞), we define the following Borelian set:

Bρ = 1√
1 − ρ2 log

[(
B

η2

)1/σ2
]

− ρ√
1 − ρ2 t̃1, (1.7)

where t̃1 is as in (1.1). If T = (T1, T2) ∼ BLS(θ, gc) then the PDF of T1 |T2 ∈ B is

written as

fT1(t1|T2 ∈ B) = 1
t1σ1

fZ1(t̃1)
∫

Bρ
fZ2(w |Z1 = t̃1) dw

P
(
ρZ1 +

√
1 − ρ2Z2 ∈ B0

) ,
with Z1 and Z2 as in Proposition 1.1.2.

Proof. Let B be a Borelian subset of (0,∞). Notice that

fT1(t1 |T2 ∈ B) = fT1(t1)
∫

B fT2(t2 |T1 = t1) dt2
P(T2 ∈ B) .

Since fT1(t1) = fZ1(t̃1)/(σ1t1) and P(T2 ∈ B) = P
(
ρZ1 +

√
1 − ρ2Z2 ∈ B0

)
, where B0 is

given in (1.7) with ρ = 0, the term on the right-hand side of the above identity is

= 1
σ1t1

fZ1(t̃1)
∫

B fT2(t2 |T1 = t1) dt2
P
(
ρZ1 +

√
1 − ρ2Z2 ∈ B0

) .
By using the expression for fT2(t2 |T1 = t1) provided by Lemma 1.1.4, the previous ex-
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pression is

= 1
t1σ1σ2

√
1 − ρ2 fZ1(t̃1)

∫
B

1
t2
fZ2

(
1√

1−ρ2
t̃2 − ρ√

1−ρ2
t̃1

∣∣∣∣Z1 = t̃1

)
dt2

P
(
ρZ1 +

√
1 − ρ2Z2 ∈ B0

) ,

where t̃i, i = 1, 2, are as in (1.1). Finally, by applying the change of variable w =

(t̃2 − ρ t̃1)/
√

1 − ρ2, the above expression is

= 1
t1σ1

fZ1(t̃1)
∫

Bρ
fZ2(w |Z1 = t̃1) dw

P
(
ρZ1 +

√
1 − ρ2Z2 ∈ B0

) ,
in which Bρ is as in (1.7). Thus, we have completed the proof.

Corollary 1.1.6 (Gaussian generator). Let T = (T1, T2) ∼ BLS(θ, gc) and gc(x) =

exp(−x/2) be the generator of the bivariate log-normal distribution. Then, for each Bore-

lian subset B of (0,∞), the PDF of T1 |T2 ∈ B is given by (for t1 > 0)

fT1(t1|T2 ∈ B) = 1
t1σ1

ϕ
(

log
[(

t1
η1

)1/σ1
]) Φ

(
1√

1−ρ2
log
[(

B
η2

)1/σ2
]

− ρ√
1−ρ2

log
[(

t1
η1

)1/σ1
])

Φ
(

log
[(

B
η2

)1/σ2
]) ,

where we are adopting the notation Φ(C) =
∫

C ϕ(x)dx, for ϕ(x) = gc(x2)/
√

2π.

Proof. It is well-known that the bivariate normal distribution admits a stochastic rep-

resentation like as in (1.4), where Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) are independent.

Consequently, Z2|Z1 = z ∼ N(0, 1) and ρZ1 +
√

1 − ρ2Z2 ∼ N(0, 1). Further, a simple

algebraic manipulation shows that

∫
Bρ

fZ2(w |Z1 = t̃1) dw = Φ(Bρ),

where Bρ is the Borelian set defined in (1.7). Then, by applying Theorem 1.1.5, the proof

follows.
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Corollary 1.1.7 (Student-t generator). Let T = (T1, T2) ∼ BLS(θ, gc) and gc(x) =

(1 + (x/ν))−(ν+2)/2, ν > 0, be the generator of the bivariate log-Student-t distribution with

ν degrees of freedom. Then, for each Borelian subset B of (0,∞), the PDF of T1|T2 ∈ B

is given by (for t1 > 0)

fT1(t1|T2 ∈ B) = 1
t1σ1

fν

(
log
[(

t1
η1

)1/σ1
]) Fν+1

(√
ν+1

ν+t̃1
2

{
1√

1−ρ2
log
[(

B
η2

)1/σ2
]

− ρ√
1−ρ2

log
[(

t1
η1

)1/σ1
]})

Fν

(
log

[(
B
η2

)1/σ2
]) ,

where we are adopting the notation Fν(C) =
∫

C fν(x)dx, for

fν(x) =
Γ(ν+1

2 )√
νπ Γ(ν

2 ) gc(x2).

Proof. It is well-known that the bivariate Student-t distribution has a stochastic repre-

sentation like as in (1.4) (see Balakrishnan and Lai 2009), where Z1 = Z∗
1

√
ν/Q ∼ tν and

Z2 = Z∗
2

√
ν/Q ∼ tν , Q ∼ χ2

ν (chi-square with ν degrees of freedom) is independent of

Z∗
1 and ρZ∗

1 +
√

1 − ρ2Z∗
2 ; whereas Z∗

1 and Z∗
2 are independent and identically distributed

standard normal random variables.

Since, ρZ∗
1 +

√
1 − ρ2Z∗

2 ∼ N(0, 1), we have

ρZ1 +
√

1 − ρ2Z2 = (ρZ∗
1 +

√
1 − ρ2Z∗

2)
√
ν

Q
∼ tν .

Then

P
(
ρZ1 +

√
1 − ρ2Z2 ∈ B0

)
= Fν(B0).

On the other hand, if X =

X1

X2

 ∼ BES(θ∗, gc), by Remark 3.7 of Saulo et al. (2022),
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we have

√
ν + 1

(ν + r2)(1 − ρ2)

(
X2 − µ2

σ2
− ρr

) ∣∣∣∣∣∣ X1 − µ1

σ1
= r ∼ tν+1.

Equivalently,

P(Tν+1 ⩽ x) = P

√ ν + 1
(ν + r2)(1 − ρ2)

(
X2 − µ2

σ2
− ρr

)
⩽ x

∣∣∣∣∣∣ X1 − µ1

σ1
= r



= P

Z2 ⩽

√
ν + r2

ν + 1 x

∣∣∣∣∣∣Z1 = r

 , Tν+1 ∼ tν+1.

By taking x =
√

(ν + 1)/(ν + r2)w with r = t̃1, we reach at

P

Tν+1 ⩽

√√√√ ν + 1
ν + t̃1

2 w

 = P(Z2 ⩽ w |Z1 = t̃1).

So, differentiating the above identity with respect to w we have

√√√√ ν + 1
ν + t̃1

2 fν+1

√√√√ ν + 1
ν + t̃1

2 w

 = fZ2(w |Z1 = t̃1).

Hence,

∫
Bρ

fZ2(w |Z1 = t̃1) dw =
√√√√ ν + 1
ν + t̃1

2

∫
Bρ

fν+1

√√√√ ν + 1
ν + t̃1

2 w

 dw

= Fν+1

√√√√ ν + 1
ν + t̃1

2 Bρ

 .
Finally, by applying Theorem 1.1.5, the proof follows.
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1.1.5 The squared Mahalanobis Distance

The squared Mahalanobis distance of a random vector T = (T1, T2) and the vector

log(η) = (log(η1), log(η2)) of a bivariate log-symmetric distribution is defined as

d2(T , log(η)) = T̃1
2

− 2ρT̃1T̃2 + T̃2
2

1 − ρ2 , T̃i = log
[(
Ti

ηi

)1/σi
]
, ηi = exp(µi), i = 1, 2.

In what follows we derive formulas for the CDF and PDF of the random variable

d2(T , log(η)).

Proposition 1.1.8. If T ∼ BLS(θ, gc) then the CDF of d2(T , log(η)), denoted by

Fd2(T ,log(η)), is expressed as

Fd2(T ,log(η))(x) = 4
∫ √

x

0

[
FZ2

(√
x− z2

1

∣∣∣∣Z1 = z1

)
− 1

2

]
fZ1(z1) dz1 · 1(0,∞)(x) (1.8)

= 4
Zgc

∫ √
x

0

∫ √
x−z2

1

0
gc(z2

1 + z2
2) dz2

 dz1 · 1(0,∞)(x), (1.9)

where Zgc is as in Proposition 1.1.1.

Proof. Since T = (T1, T2) admits the stochastic representation given in Proposition 1.1.2,

there are Z1 and Z2 so that T̃1 = Z1 and T̃2 = ρZ1 +
√

1 − ρ2Z2. Then, a simple algebraic

manipulation shows that

d2(T , log(η)) = Z2
1 + Z2

2 . (1.10)

Hence, by using the law of total expectation we have (for x > 0)
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Fd2(T ,log(η))(x) = E[E(1{Z2
1 +Z2

2⩽x} |Z1)]

= E
[
E
(
1{|Z2|⩽

√
x−Z2

1 }

∣∣∣∣Z11{|Z1|⩽
√

x}

)]

=
∫ √

x

−
√

x

∫ √
x−z2

1

−
√

x−z2
1

fZ2(z2 |Z1 = z1) dz2

 fZ1(z1) dz1. (1.11)

Since fZ2(z2 |Z1 = z1) and fZ1(z1) are even functions (see Proposition 1.1.3), from

(1.11) the proof of the first equality (1.8) follows. The second equality (1.9) follows by

using in (1.11) the joint PDF fZ1,Z2 given in Proposition 1.1.3.

As fZ2(z2 |Z1 = z1) and fZ1(z1) are both even functions (see Proposition 1.1.3), the

proof of the first equality in (1.8) follows from (1.11). The second equality in (1.9) follows

by using the joint PDF fZ1,Z2 given in Proposition 1.1.3 in (1.11).

Proposition 1.1.9. If T ∼ BLS(θ, gc) then the PDF of d2(T , log(η)), denoted by

fd2(T ,log(η)), is written as

fd2(T ,log(η))(x) = π

Zgc

gc(x), x > 0,

where Zgc is as in Proposition 1.1.1.

Proof. The proof is immediate, it follows by differentiating (1.9) with respect to x and

then by using the following known formula (Leibniz integral rule):

d
dx

∫ b(x)

a(x)
h(x, y) dy = h(x, b(x))b′(x) − h(x, a(x))a′(x) +

∫ b(x)

a(x)

∂h(x, y)
∂x

dy.

Remark 1.1.10. • Gaussian generator. By taking gc(x) = exp(−x/2) and Zgc as in
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Table 1.1, and by applying Proposition 1.1.9, we get

fd2(T ,η)(x) = 1
2 exp

(
−x

2

)
= 1

2k/2Γ(k/2) x
(k/2)−1 exp

(
−x

2

)
, with k = 2.

But the formula on the right is the PDF of a random variable following the chi-

squared distribution with k degrees of freedom (χ2
k). Hence, d2(T , log(η)) ∼ χ2

2.

• Student-t generator. By taking gc(x) = (1 + (x/ν))−(ν+2)/2 and Zgc as in Table 1.1,

and by applying Proposition 1.1.9, we have

fd2(T ,η)(x) = Γ((ν + 2)/2)
Γ(ν/2)ν

(
1 + x

ν

)−(ν+2)/2

= 1
2

√
[d1(x/2)]d1 d

d2
2

[d1(x/2)+d2]d1+d2

(x/2)B(d1/2, d2/2) , with d1 = 2 and d2 = ν.

Here, B(x, y) = Γ(x)Γ(y)/Γ(x + y), x > 0, y > 0, is the beta function. Notice that

the formula on the second identity above is the PDF of a random variable 2X, where

X follows the F -distribution with d1 and d2 degrees of freedom (Fd1,d2). Hence, for

abuse of language, we write d2(T , log(η)) ∼ 2F2,ν.

1.1.6 Independence

Proposition 1.1.11. Let T ∼ BLS(θ, gc). If ρ = 0 and the density generator gc in (1.1)

satisfies

gc(x2 + y2) = gc1(x2)gc2(y2), ∀(x, y) ∈ R2, (1.12)

for some density generators gc1 and gc2, then T1 and T2 are statistically independent.
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Proof. When ρ = 0, by (1.12) the joint density of (T1, T2) satisfies

fT1,T2(t1, t2; θ) = f1(t1;µ1, σ1)f2(t2;µ2, σ2), ∀(t1, t2) ∈ (0,∞) × (0,∞),

and consequently Zgc = Zgc1
Zgc2

, where

fi(ti;µi, σi) = 1
tiσiZgci

gci
(t̃i

2), ti > 0, and Zgci
=
∫ ∞

−∞
gci

(zi
2) dzi, i = 1, 2,

and t̃i as in (1.1). A simple calculation shows that f1 and f2 are densities functions (in fact,

f1 and f2 are densities associated to two univariate continuous and symmetric random

variables; see Vanegas and Paula (2016). Then, from Proposition 2.5 of James (2004) it

follows that T1 and T2 are independent, and even more, that fi = fTi
, for i = 1, 2.

Remark 1.1.12. Notice that, in Table 1.1, the density generator of the bivariate log-

normal is the unique one that satisfies the condition (1.12).

1.1.7 Real moments

Proposition 1.1.13. Let X =

 X1

X2

 ∼ BES(θ∗, gc) and T =

 T1

T2

 ∼ BLS(θ, gc).

If the moment-generating function (MGF) of Xi, denoted by MXi
(si), i = 1, 2, exists,

then the real moments of Ti are

E(T r
i ) = ηr

i ϑ(σ2
i r

2), with ηi = exp(µi), i = 1, 2, r ∈ R,

for some scalar function ϑ, which is called the characteristic generator (see p. 32 in Fang

et al. 1990).

For example, when gc(x) = exp(−x/2) (Gaussian generator), ϑ(x) = exp(x/2), and

when gc(x) = (1 + (x/ν))−(ν+2)/2, ν > 0 (Student-t generator), ϑ don’t exists.

Proof. We only show the case i = 1, because the other one follows an analogous reasoning.
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Indeed, since the random variable X1 has a MGF MX1(s1), the domain of the charac-

teristic function φX1(t) can be extended to the complex plane, and

MX1(s1) = φX1(−is1).

Since X1 = log(T1), by using the above identity we get

E(T r
1 ) = E[exp(rX1)] = MX1(r) = exp(rµ1)MS1(σ1r)

= exp(rµ1)φS1(−iσ1r)

= exp(rµ1)φS1,S2(−iσ1r, 0), (1.13)

with

 S1

S2

 ∼ BES(θ∗0 , gc), θ∗0 = (0, 0, 1, 1, ρ); and φS1,S2(s1, 0) is the marginal charac-

teristic function. On the other hand, the characteristic function of the BES distribution

is given by (see Item 13.10, p. 595 in Balakrishnan and Lai 2009)

φS1,S2(s1, s2) = ϑ(s2
1 + 2ρs1s2 + s2

2), (1.14)

where ϑ is the characteristic generator specified in the statement of the proposition.

Finally, by using (1.14) in the right-hand side of (1.13), the proof follows.
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1.1.8 Correlation function

By using the stochastic representation (Proposition 1.1.2) of T =

 T1

T2

 and the law of

total expectation, we have

E(T1T2) = E(E(T1T2 |T1)) = E(T1E(T2 |T1))

= η1η2E
[
exp

(
(σ1 + σ2ρ)Z1

)
E
(

exp
(
σ2

√
1 − ρ2Z2

) ∣∣∣Z1
)]
,

where Z1 and Z2 are defined in Proposition 1.1.2.

Hence, from formula of moments (Proposition 1.1.13) we get the next formula for the

correlation function of T1 and T2:

ρ(T1, T2) =
E
[
exp

(
(σ1 + σ2ρ)Z1

)
E
(

exp
(
σ2

√
1 − ρ2Z2

) ∣∣∣Z1
)]

− ϑ(σ2
1)ϑ(σ2

2)√
ϑ(4σ2

1) − ϑ2(σ2
1)
√
ϑ(4σ2

2) − ϑ2(σ2
2)

,

where ϑ is a scalar function stated in Proposition 1.1.13.

It is a simple task to verify that, when gc(x) = exp(−x/2) (Gaussian genera-

tor), ρ(T1, T2) = [exp(σ1σ2ρ) − 1]/
[√

exp(σ2
1) − 1

√
exp(σ2

2) − 1
]
, and when gc(x) =

(1 + (x/ν))−(ν+2)/2, ν > 0 (Student-t generator), ρ(T1, T2) does not exist.

1.1.9 Other properties

If T =

T1

T2

 ∼ BLS(θ, gc) then, in analogy to stated by Vanegas and Paula (2016),

the following properties follow immediately as a consequence of the definition of the BLS

distribution:

(P1) The CDF of T is written as FT1,T2(t1, t2; θ) = FS1,S2

(
t̃1, t̃2; θ∗0

)
, with

S1

S2

 ∼

BES(θ∗0 , gc) and θ∗0 = (0, 0, 1, 1, ρ).
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(P2) The random vector

T∗
1

T∗
2

 = ([T1/η1]1/σ1 , [T2/η2]1/σ2) follows standard BLS distri-

bution. In other words,

T∗
1

T∗
2

 ∼ BLS(θ0, gc) with θ0 = (1, 1, 1, 1, ρ).

(P3)

c1T1

c2T2

 ∼ BLS(c1η1, c2η2, σ1, σ2, gc) for all constants c1, c2 > 0.

(P4)

Tc1
1

Tc2
2

 ∼ BLS(ηc1
1 , η

c2
2 , c

2
1σ1, c

2
2σ2, gc) for all constants c1 ̸= 0 and c2 ̸= 0.

Proposition 1.1.14. If T =

T1

T2

 ∼ BLS(θ, gc) then the random vectors (η1/T1, η2/T2)

and (T1/η1, T2/η2) are identically distributed.

Furthemore, (η1/T1, η2/T2) ∼ BLS(θ•, gc) and (T1/η1, T2/η2) ∼ BLS(θ•, gc), with θ• =

(1, 1, σ1, σ2, ρ).

Proof. By using the well-known identity for two random variables X and Y (see e.g. p.

59 of James 2004): for all a1 < b1 and a2 < b2,

P(a1 < X ⩽ b1, a2 < Y ⩽ b2) = FX,Y (b1, b2) − FX,Y (b1, a2) − FX,Y (a1, b2) + FX,Y (a1, a2);

with a1 = η1/w1, b1 = ∞, a2 = η2/w2 and b2 = ∞, for all (w1, w2) ∈ (0,∞)2, we get

P
(
η1

T1
⩽ w1,

η2

T2
⩽ w2

)
= 1 − FT2

(
η2

w2

)
− FT1

(
η1

w1

)
+ FT1,T2

(
η1

w1
,
η2

w2

)
. (1.15)

Since

P
(
T1

η1
⩽ w1,

T2

η2
⩽ w2

)
= FT1,T2(η1w1, η2w2), (1.16)
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by taking partial derivatives with respect to w1 and w2 in (1.15) and (1.16), we have that

the joint PDF of η1/T1 and η2/T2, and the joint PDF of T1/η1 and T2/η2, are related as

follows

f η1
T1

,
η2
T2

(w1, w2) = fT1
η1

,
T2
η2

(w1, w2) = 1
w1w2σ1σ2

√
1 − ρ2Zgc

gc

w̃2
1 − 2ρw̃1w̃2 + w̃2

2
1 − ρ2

,
with wi > 0 and w̃i = log(wi

1/σi), i = 1, 2. This completes the proof of proposition.
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Chapter 2

Maximum likelihood estimation

Let {(T1i, T2i) : i = 1, . . . , n} be a bivariate random sample of size n from the BLS(θ, gc)

distribution with PDF as given in (1.1), and let (t1i, t2i) be the correspondent observations

of (T1i, T2i). Then, the log-likelihood function for θ = (η1, η2, σ1, σ2, ρ), without the

additive constant, is expressed as

ℓ(θ) = −n log(σ1σ2) − n

2 log
(
1 − ρ2

)
+

n∑
i=1

log gc

 t̃1i
2 − 2ρt̃1it̃2i + t̃2i

2

1 − ρ2

, t1i, t2i > 0,

t̃ki = log
[(
tki

ηk

)1/σk
]
, ηk = exp(µk), k = 1, 2; i = 1, . . . , n.

In the case that a supremum θ̂ = (η̂1, η̂2, σ̂1, σ̂2, ρ̂) exists, it must satisfy the following

likelihood equations:

∂ℓ(θ)
∂η1

∣∣∣∣∣
θ=θ̂

= 0, ∂ℓ(θ)
∂η2

= 0, ∂ℓ(θ)
∂σ1

∣∣∣∣∣
θ=θ̂

= 0, ∂ℓ(θ)
∂σ2

∣∣∣∣∣
θ=θ̂

= 0, ∂ℓ(θ)
∂ρ

∣∣∣∣∣
θ=θ̂

= 0, (2.1)
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with

∂ℓ(θ)
∂η1

= 2
σ1η1(1 − ρ2)

n∑
i=1

(
ρt̃2i − t̃1i

)
G(t̃1i, t̃2i),

∂ℓ(θ)
∂η2

= 2
σ2η2(1 − ρ2)

n∑
i=1

(
ρt̃1i − t̃2i

)
G(t̃1i, t̃2i),

∂ℓ(θ)
∂σ1

= − n

σ1
+ 2
σ1(1 − ρ2)

n∑
i=1

t̃1i

(
ρt̃2i − t̃1i

)
G(t̃1i, t̃2i),

∂ℓ(θ)
∂σ2

= − n

σ2
+ 2
σ2(1 − ρ2)

n∑
i=1

t̃2i

(
ρt̃1i − t̃2i

)
G(t̃1i, t̃2i),

∂ℓ(θ)
∂ρ

= nρ

1 − ρ2 − 2
(1 − ρ2)2

n∑
i=1

(
ρt̃1i − t̃2i

)(
ρt̃2i − t̃1i

)
G(t̃1i, t̃2i), (2.2)

where we are denoting

G(t̃1i, t̃2i) = g′
c

 t̃1i
2 − 2ρt̃1it̃2i + t̃2i

2

1 − ρ2

/gc

 t̃1i
2 − 2ρt̃1it̃2i + t̃2i

2

1 − ρ2

, i = 1, . . . , n.

A simple observation shows that the likelihood equations (2.1) can be written as follows

n∑
i=1

t̃1i G(t̃1i, t̃2i)
∣∣∣∣∣
θ=θ̂

= 0,

n∑
i=1

(
t̃21i − t̃22i

)
G(t̃1i, t̃2i)

∣∣∣∣∣
θ=θ̂

= 0,

n∑
i=1

t̃2i

[
2ρt̃2i − (1 + ρ2)t̃1i

]
G(t̃1i, t̃2i)

∣∣∣∣∣
θ=θ̂

= −nρ̂(1 − ρ̂2)
2 .

Any nontrivial root θ̂ of the above likelihood equations is known as an ML estimate

in the loose sense. When the parameter value provides the absolute maximum of the

log-likelihood function, it is called an ML estimate in the strict sense.

In the following proposition we study the existence of the ML estimate ρ̂ when the

other parameters are known.
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Proposition 2.0.1. Let gc be a density generator satisfying the following condition:

g′
c(x) = r(x)gc(x), −∞ < x < ∞, (2.3)

for some real-valued function r(x) so that limρ→±1 r(xρ,i) = c ∈ (−∞, 0), where xρ,i =

(t̃21i − 2ρt̃1it̃2i + t̃22i)/(1 − ρ2), i = 1, . . . , n. If the parameters η1, η2, σ1 and σ2 are known,

then the equation (2.2) has at least one root on the interval (−1, 1).

Proof. Since g′
c(xρ,i) = r(xρ,i)gc(xρ,i), we have G(t̃1i, t̃2i) = r(xρ,i). Then, by using the

condition limρ→±1 r(xρ,i) = c < 0, from (2.2) we can easily see that

lim
ρ→1−

∂ℓ(θ)
∂ρ

= −∞ and lim
ρ→−1+

∂ℓ(θ)
∂ρ

= +∞.

So, by intermediate value theorem, there exists at least one solution on the interval

(−1, 1).

Remark 2.0.2. Notice that, in Table 1.1, the density generators of the Bivariate Log-

normal (or Bivariate Log-power-exponential with ξ = 0) and the Bivariate Log-Kotz type

(with δ = 1) satisfy the hypotheses of Proposition 2.0.1 with r(xρ,i) = −1/2 and r(xρ,i) =

(−λxρ,i + ξ − 1)/xρ,i−→ − λ as ρ → ±1, ∀i = 1, . . . , n, respectively. Then, Proposition

2.0.1 can be applied to guarantee the existence of an ML estimator ρ̂ of ρ in the loose

sense.

On the other hand, the density generators of the Bivariate Log-Kotz type (with δ < 1),

the Bivariate Log-Student-t, the Bivariate Log-Pearson Type VII and the Bivariate Log-

power-exponential (with ξ ̸= 0) satisfy the condition (2.3) with r(x) = (−λδxδ + ξ− 1)/x,

r(x) = −(ν+2)/2(1+ x
ν
), r(x) = −ξ/(θ+x) and r(x) = −x−ξ/(ξ+1)/2(ξ+1), respectively,

but in all these cases r(xρ,i) −→ 0 as ρ → ±1, ∀i = 1, . . . , n.

For the BLS model no closed-form solution to the maximization problem is known

or available, and an MLE can only be found via numerical optimization. Under mild

30



§2.0.

regularity conditions (Cox and Hinkley 1974 or Davison 2008), the asymptotic distribution

of ML estimator θ̂ of θ is easily determined by the convergence in law: (θ̂ − θ) D−→

N(0, I−1(θ)), where 0 is the zero mean vector and I−1(θ) is the inverse expected Fisher

information matrix. The main use of the last convergence is to construct confidence

regions and to perform hypothesis testing for θ (Davison 2008).
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Chapter 3

Monte Carlo simulation

In this chapter, we carry out a Monte Carlo (MC) simulation study to evaluate the per-

formance of the previously proposed maximum likelihood estimators for the BLS models.

We use different sample sizes and parameter settings, using the following distributions:

log-slash, log-power-exponential and log-normal.

The simulation scenario considers the following setting: 1,000 MC replications, sample

size n ∈ (25, 50, 100, 150), vector of true parameters (η1, η2, σ1, σ2) = (1, 1, 0.5, 0.5), and

ρ ∈ {0, 0.25, 0.5, 0.75, 0.95}. The extra parameters of the chosen distributions are assumed

to be fixed.

The performance and recovery of the ML estimators were evaluated through the empir-

ical bias and the mean square error (MSE), which are calculated from the MC replicates,

as shown below,

Bias(θ̂) = 1
N

N∑
i=1

θ̂(i) − θ, MSE(θ̂) = 1
N

N∑
i=1

(θ̂(i) − θ)2, (3.1)

where θ and θ̂(i) are the true value of the parameter and its respective ith estimate, and

N is the number of MC replications. The steps for the MC simulation study are described

in Algorithm 1.
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Algorithm 1. Simulation
1. Choose the BLS distribution based on Table 1.1 and define the value of the
parameters of the chosen distribution.
2. Generate 1,000 samples of size n based on the chosen model.
3. Estimate the model parameters using the ML method for each sample.
4. Compute the empirical bias and MSE.

The simulation results are shown in Tables 3.1, 3.2 and 3.3. It is possible to observe in

the simulations that the results produced for the chosen distributions were as expected.

As the sample size increases, the bias and MSE tend to decrease. In general, the results

do not seem to depend on the parameter ρ.

Table 3.1: Monte Carlo simulation results for the bivariate log-slash distribuition with ν = 4.

n ρ
MLE

η̂1 η̂2 σ̂1 σ̂2 ρ̂

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
25 0.0 0.0093 0.0138 0.0085 0.0145 -0.1040 0.0154 -0.1004 0.0143 -0.0053 0.0426

0.25 0.0078 0.0137 0.0096 0.0150 -0.1053 0.0148 -0.0988 0.0140 -0.0079 0.0412
0.50 0.0050 0.0126 0.0060 0.0133 -0.1008 0.0142 -0.1046 0.0149 -0.0145 0.0276
0.95 0.0072 0.0150 0.0064 0.0148 -0.1055 0.0151 -0.1048 0.0150 -0.0046 0.0007

50 0.0 0.0056 0.0067 0.0030 0.0071 -0.0967 0.0113 -0.0947 0,0110 -0.0065 0.0230
0.25 0.0053 0.0069 0.0017 0.0072 -0.0963 0.0114 -0.0968 0.0114 -0.0071 0.0230
0.50 0.0033 0.0065 0.0041 0.0073 -0.0959 0.0112 -0.0951 0.0111 -0.0013 0.0130
0.95 0.0060 0.0071 0.0066 0.0070 -0.0944 0.0109 -0.0938 0.0108 -0.0003 0.0002

100 0.0 0.0006 0.0037 0.0023 0.0034 -0.0955 0.0101 -0.0944 0.0098 0.0015 0.0122
0.25 -0.0016 0.0033 -0.0007 0.0035 -0.0929 0.0096 -0.0943 0.0098 -0.0056 0.0095
0.50 0.0003 0.0035 0.0023 0.0034 -0.0949 0.0100 -0.0962 0.0102 -0.0047 0.0066
0.95 0.0009 0.0036 0.0015 0.0035 -0.0955 0.0101 -0.0960 0.0102 -0.0012 0.0001

150 0.0 0.0034 0.0022 0.0033 0.0024 -0.0953 0.0098 -0.0941 0.0095 0.0050 0.0075
0.25 0.0000 0.0023 -0.0004 0.0022 -0.0933 0.0093 -0.0934 0.0094 -0.0045 0.0066
0.50 0.0027 0.0022 0.0038 0.0023 -0.0942 0.0095 -0.0932 0.0094 -0.0015 0.0039
0.95 0.0007 0.0023 0.0011 0.0023 -0.0936 0,0094 -0.0937 0.0094 -0.0006 0.0001
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Table 3.2: Monte Carlo simulation results for the bivariate log-power-exponential distribuition
with ξ = 0.3.

n ρ
MLE

η̂1 η̂2 σ̂1 σ̂2 ρ̂
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

25

0.00 0.0076 0.0174 0.0133 0.0173 -0.0466 0.0138 -0.0488 0.0139 -0.0038 0.0411
0.25 0.0048 0.0155 0.0076 0.0169 -0.0434 0.0079 -0.0432 0.0082 -0.0098 0.0399
0.50 0.0066 0.0170 0.0099 0.0192 -0.0436 0.0097 -0.0413 0.0101 -0.0047 0.0268
0.95 0.0108 0.0170 0.0113 0.0171 -0.0423 0.0095 -0.0431 0.0097 -0.0025 0.0006

50

0.00 0.0026 0.0083 0.0060 0.0084 -0.0735 0.0415 -0.0712 0.0418 0.0016 0.0192
0.25 0.0062 0.0090 0.0017 0.0081 -0.0572 0.0243 -0.0597 0.0258 0.0003 0.0181
0.50 0.0055 0.0085 0.0027 0.0076 -0.0452 0.0128 -0.0460 0.0125 -0.0026 0.0134
0.95 0.0062 0.0086 0.0068 0.0088 -0.0364 0.0047 -0.0358 0.0047 -0.0010 0.0003

100

0.00 0.0034 0.0044 0.0022 0.0043 -0.0475 0.0173 -0.0453 0.0175 0.0011 0.0107
0.25 0.0023 0.0041 0.0025 0.0042 -0.0331 0.0044 -0.0319 0.0044 0.0011 0.0088
0.50 0.0011 0.0045 0.0000 0.0041 -0.0313 0.0035 -0.0345 0.0035 -0.0058 0.0063
0.95 0.0034 0.0043 0.0027 0.0043 -0.0344 0.0041 -0.0344 0.0040 -0.0009 0.0001

150

0.00 -0.0002 0.0029 0.0038 0.0029 -0.0319 0.0020 -0.0318 0.0020 -0.0008 0.0066
0.25 0.0001 0.0028 0.0036 0.0026 -0.0300 0.0019 -0.0303 0.0019 -0.0018 0.0067
0.50 0.0050 0.0026 0.0027 0.0027 -0.0331 0.0036 -0.0347 0.0037 -0.0035 0.0041
0.95 0.0014 0.0029 0.0014 0.0029 -0.0306 0.0019 -0.0299 0.0018 -0.0002 0.0001

Table 3.3: Monte Carlo simulation results for the bivariate log-normal distribuition.

n ρ
MLE

η̂1 η̂2 σ̂1 σ̂2 ρ̂
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

25

0.00 -0.0007 0.0100 0.0034 0.0100 -0.0312 0.0182 -0.0265 0.0178 -0.0044 0.0411
0.25 0.0095 0.0107 0.0085 0.0101 -0.0336 0.0180 -0.0320 0.0220 -0.0151 0.0367
0.50 0.0120 0.0109 0.0159 0.0112 -0.0313 0.0205 -0.0282 0.0198 -0.0106 0.0252
0.95 -0.0013 0.0101 -0.0011 0.0100 -0.0289 0.0197 -0.0296 0.0199 -0.0026 0.0005

50

0.00 -0.0012 0.0051 0.0055 0.0050 -0.0394 0.0373 -0.0433 0.0387 0.0006 0.0187
0.25 0.0014 0.0053 0.0023 0.0050 -0.0445 0.0391 -0.0446 0.0387 -0.0014 0.0174
0.50 0.0023 0.0051 -0.0027 0.0052 -0.0370 0.0329 -0.0363 0.0338 0.0044 0.0114
0.95 0.0020 0.0051 0.0026 0.0051 -0.0151 0.0127 -0.0148 0.0125 0.0000 0.0002

100

0.00 0.0021 0.0025 0.0020 0.0024 -0.0043 0.0022 -0.0067 0.0021 0.0079 0.0096
0.25 -0.0025 0.0025 -0.0031 0.0025 -0.0063 0.0042 -0.0073 0.0039 0.0008 0.0091
0.50 -0.0019 0.0025 -0.0007 0.0023 -0.0035 0.0013 -0.0052 0.0013 0.0001 0.0057
0.95 0.0025 0.0024 0.0029 0.0024 -0.0061 0.0038 -0.0063 0.0039 -0.0001 0.0001

150

0.00 0.0000 0.0018 -0.0018 0.0016 -0.0101 0.0080 -0.0096 0.0081 -0.0024 0.0064
0.25 0.0003 0.0017 0.0001 0.0017 -0.0041 0.0027 -0.0035 0.0027 0.0016 0.0058
0.50 0.0000 0.0016 -0.0001 0.0017 -0.0088 0.0066 -0.0082 0.0064 -0.0021 0.0040
0.95 0.0013 0.0018 0.0016 0.0018 -0.0115 0.0100 -0.0118 0.0100 -0.0006 0.0001
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Chapter 4

Application to real data

In this chapter we will illustrate the proposed methodology and use a real data set to

apply the bivariate log-symmetric models. The data is based on the article by Marchant

et al. (2015), in which the authors proposed a multivariate Birnbaum-Saunders regression

model to describe fatigue data. The authors describes fatigue as the process of material

failure, which is caused by cyclic stress. Thus, fatigue is composed of crack initiation and

propagation, until the material fractures. The calculation of fatigue life is important for

determining the reliability of components or structures. Here, we consider the variables

Von Mises stress (T1, in N/mm2) and die lifetime (T2, in number of cycles). According

to Marchant et al. (2015), die fracture is the fatigue of metal caused by cyclic stress in

the course of the service life cycle of dies (die lifetime).

Table 4.1 provides descriptive statistics for the variables Von mises stress (T1) and

die lifetime (T2), including the minimum, median, mean, maximum, standard deviation

(SD), coefficient of variation (CV), coefficient of skewness (CS), and coefficient of kurtosis

(CK). We can observe in the variable Von mises stress, that the mean and median are

respectively 1.247 and 1.130, i.e. the mean is larger than the median, which indicates a

possitively skewed feature in the data distribution. The CV is 56.172%, which means a

moderate level of dispersion around the mean. Furthermore, the CS value confirms the
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skewed nature. The variable die lifetime has mean equal to 23.761 and median equal to

19.000. These values also indicate the positively skewed feature in the distribution of the

data. Moreover, the CV value is 71.967%, which shows us the moderate level of dispersion

around the mean. The CS confirms the skewed nature and the CK value indicates the

high kurtosis feature in the data distribution.

Table 4.1: Summary statistics for the indicated data set.

Variables n Minimum Median Mean Maximum SD CV CS CK
T1 15 0.243 1.130 1.247 2.430 0.700 56.172 0.209 -1.466
T2 15 6.420 19.900 23.761 74.800 17.100 71.967 1.631 2.495

Table 4.2 presents the ML estimates and the standard errors (in parentheses) for

the bivariate log-symmetric model parameters. This table also reports the log-likelihood

value, and the values of the Akaike (AIC) and Bayesian (BIC) information criteria. The

extra parameters were estimated using the profile log-likelihood. From Table 4.2, we

observe that the log-Laplace model provides better adjustment than other models based

on the values of log-likelihood, AIC and BIC.

Table 4.2: ML estimates (with standard errors in parentheses), log-likehood, AIC and BIC
values for the indicated bivariate log-symmetric models.

Distribuiton η̂1 η̂2 σ̂1 σ̂2 ρ̂ ν̂ Log-likehood AIC BIC
Log-normal 1.0362* 19.4824* 0.6536* 0.6210* -0.9390* - -58.117 126.23 129.78

(0.0175) (3.1239) (0.01192) (0.1133) (0.0305)
Log-Student-t 1.0188* 20.1932* 0.6111* 0.5508* -0.9514* 7 -57.915 125.83 129.37

(0.1339) (2.0685) (0.2220) (0.1881) (0.0207)
Log-Pearson Type VII 1.0211* 20.1218* 0.3712* 0.3362* -0.9502* ξ = 5 , θ = 22 -57.917 125.83 129.37

(0.1806) (3.2095) (0.0761) (0.0698) (0.0280)
Log-hyperbolic 1.0175* 20.1900* 0.6843* 0.6201* -0.9504* 2 -57.922 125.84 129.38

(0.1910) (3.2818) (0.0376) (0.0333) (0.0276)
Log-Laplace 1.0594* 20.9110* 0.7748* 0.6809* -0.9471* - -57.585 125.17 128.71

(0.0023) (0.0105) (0.2032) (0.1745) (0.0342)
Log-slash 1.0207* 20.1854* 0.5158* 0.4648* -0.9515* 5 -57.945 125.89 129.43

(0.1783) (3.1973) (0.1030) (0.0955) (0.0277)
Log-power-exponential 1.0298* 19.9461* 0.4516* 0.4154* -0.9432* 0.37 -57.984 125.97 129.51

(0.18445) (3.2182) (0.0935) (0.0852) (0.0294)
Log-logistic 1.0498* 18.8904* 0.7651* 0.7488* -0.9315* - -58.672 127.34 130.89

(0.1650) (3.0396) (0.1212) (0.1231) (0.0316)
∗ significant at 5% level.
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Concluding Remarks

In this paper, we have introduced a class of bivariate log-symmetric models, which is the

result of an exponential transformation on a variable that follows a bivariate symmetric

distribution. We have studied the main statistical properties, proposed the maximum

likelihood estimators for the model parameters. A Monte Carlo simulation study has been

carried out to numerically evaluate the maximum likelihood estimators. The simulation

results have showed the good performance for the estimators, obtaining empirical bias

values close to zero, as shown in Tables 3.1-3.3. We have applied the proposed models to

a real fatigue data set. The results are seen to be favorable to the log-Laplace model. As

part of future research, it will be of interest to propose bivariate log-symmetric regression

models. Furthermore, the study of some hypothesis and misspecification tests via Monte

Carlo simulation can be investigated. Work on these problems is currently in progress

and we hope to report these findings in future.
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