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ABSTRACT Many applications could benefit from multi-hop communications through users’ mobile
devices. A key issue is how to incentivize users to cooperate in both routing and relay of messages by sharing
their device’s precious resources. Previousworks on the subject have either tackled cooperation in the relay of
messages alone or in both routing and relay functionalities. In the latter case, path selection is usually carried
out at the destination node, which renders significant delays because the selected path needs to be conveyed
all the way back to the source node before any data packet can be transmitted. This is certainly unsuitable in
mobile scenarios. This paper presents the performance of the ‘‘Tightness’’ strategy, which allows the routing
and relaying of messages ‘‘on-the-go’’, via per-hop reversed packet auctions. At each hop, the sender asks
for bids from potential relays according to a ‘‘budget’’ attached to the data packet, through which the auction
winner gets paid and can pay for others in subsequent auctions. The auction winner is chosen not only based
on bid value, but also on the estimated relay’s likelihood to deliver the packet to destination. Likewise,
each potential relay makes a bid considering its own chances to deliver the packet to destination. A fine is
also announced in every auction, that must be paid by all relays if the packet is not delivered to destination
within a ‘‘deadline’’ expressed in number of hops. The performance of the Tightness strategy is evaluated for
both static and mobile scenarios and compared to two baseline strategies according to different performance
metrics.

INDEX TERMS Auctions, cooperation, routing, wireless networks.

I. INTRODUCTION
A number of services and applications under today’s
ever-increasing mobile traffic demands could benefit from
multi-hop communications through mobile devices such as
smartphones, tablets, and wearable devices. In particular,
in many periods of the day, the owner of a mobile device does
not make any actual use of it, and the device just stays on a
table or in a pocket while its owner walks to school or work.
In other occasions, people gather in large-scale events, such
as concerts, games, and demonstrations, or visit theme parks
and zoos, while their devices stay idle for significant frac-
tions of time. So, what if these ‘‘idle times’’ were used to
perform useful work to benefit other mobile users while,
at the same time, the cooperative user would receive some
form of reward for sharing part of her device’s precious
resources (e.g., battery energy and bandwidth)? Examples of
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potential applications include coverage extension of Internet
access services [1], mobile data offloading [2]–[5] (and ref-
erences therein), phone-to-phone communications [6], [7], or
even wireless sensor networks [8], to name a few. In most
of these applications, however, network participants are
expected to act independently of each other and to make their
own decisions regarding cooperating in the network oper-
ation. Consequently, multi-hop networking through users’
devices remains a great challenge because users are most
likely to avoid relaying someone’s traffic if they do not
receive any rewards or compeling incentives for that. For
instance, in the context of device-to-device data offloading,
Rebecchi et al. [2] have argued that the issue of how to incen-
tivize users to cooperate in the offloading infrastructure is
a key aspect that has not received much attention in the
literature.

Given this fundamental problem, a number of works have
looked at ways to promote cooperation in the formation of
infrastructure-less multi-hop wireless networks, especially in
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the routing and packet forwarding tasks, which are some
of the key functions in the deployment of such networks.
In particular, some works have considered mechanisms based
on monetary compensation (in general, virtual transfers) to
incentivize nodes to participate in both routing (i.e., to find
least cost path to destination) and relay of messages [9]–[11],
or in the relay of messages alone [12]–[15]. The works
that have focused on the relay of messages alone implicitly
assume that nodes already cooperate in the running of an
underlying routing protocol (e.g., DSR or TORA). On the
other hand, all proposals that have tackled both routing and
relay of messages have mainly assigned the path selection
task to the destination node of the data packets. As a result,
the information about the selected path needs to be conveyed
all the way back to the source node before any data packet
is transmitted. Consequently, these approaches are generally
not well suited for operation in mobile networks, and they
have been mainly evaluated under static scenarios. Last, but
no least, some other approaches [15]–[17] have assumed
the existence of a control center that takes care of all the
routing/assignment decisions, which is clearly not in the spirit
of the application scenarios previously discussed.

Based on these observations, and other considerations,
we present the Tightness strategy to promote cooperative
routing and relaying of messages in multi-hop mobile wire-
less networks. A distinctive feature of theTightness strategy is
the fact that both routing and relay of messages are executed
‘‘on-the-go,’’ which means that it avoids the delay incurred
by path selection only at the destination node. To incentivize
nodes to cooperate, the Tightness strategy is based on per-hop
reversed auctions, by which potential relay nodes (sellers)
within range of the sender (buyer), make their bid to carry out
the forwarding task based on a ‘‘budget’’ value announced
by the sender. The bid values are created by following a
bidding strategy, and the sender selects the auction winner
according to its preference function (i.e., an utility function).
The sender immediately forwards the data packet once it
decides the auction winner, and the process repeats itself all
the way until the packet finally reaches its final destination
(this is what we denote as ‘‘recursive auctions’’). At each hop,
the auctionwinner retains some amount of the budget to itself,
and uses the remaining budget to run its own auction if it
needs the help of other nodes to forward the packet to its final
destination.

The core idea of the Tightness scheme relies on the fact that
the auction winner (i.e., the one indicated by the preference
function) is not only based on the minimum bid value (as it
is usually done in many auction-based solutions [11], [12]),
but also on the likelihood of a given relay node to deliver the
packet to its final destination. In other words, it also depends
on how ‘‘tight’’ a given relay node is in accomplishing its
mission (in terms of number of hops) if the repetitive bid-
ding process continues down a path starting from it (while
nodes may move around). Conversely, in order to increase

the chances of data delivery and to avoid a greedy behavior,
the bidding strategy also takes into account how likely the
relay node itself is in delivering the data packet if it wins
the auction. In our system model, all nodes that participate in
the routing and forwarding tasks should run the risk of paying
a fine if the packet is not delivered to its final destination.
Hence, together with the budget, a fine and a ‘‘deadline’’
(in terms of number of hops) are also announced in every
auction (the data source defines the deadline). The announced
fine is always smaller than the fines agreed upon in previous
hops, while the ‘‘deadline’’ is decremented every time the
packet is forwarded to someone else. This way, not only the
buyer (sender) tries to make the best decision with respect
to the best relay of its packet, but also the relays themselves
participate more aggressively (or not) in the announced auc-
tions depending on their own assessment of the risks in taking
the job. The association of a penalty (‘‘fine’’) to the packet-
delivery job constrained to a maximum number of hops has
not been considered in previous works.

The concept behind the Tightness strategy has been
introduced previously [18], which was originally designed
for a data offloading scenario within the context of the
Mobile Ad Hoc Networking Interoperability and Cooperation
(MANIAC) Challenge 2013 [19], [20]. However, its perfor-
mance has not been presented before and, in this paper,
we present a comprehensive evaluation of the Tightness strat-
egy for both static and mobile scenarios, under different
node speeds. Hence, different from proposals who assume a
2-connected topology for their solution to work (i.e., a topol-
ogy with at least two node-disjoint paths from any node to
destination) or other constraints on topology [13], [14], our
proposal does not require any assumption about the topology,
and the network scenario considers the possibility of both
channel errors and packet collisions under the operation of
an actual MAC protocol, the IEEE 802.11. The performance
study is based on discrete-event simulations carried out with
the ns-3 simulator [21]. For comparison purposes, two base-
line strategies are also investigated: one that prioritizes packet
delivery over budget gains (by applying shortest-path routing
regardless of the bid values), and a greedy one, where the auc-
tioneer always picks the relay node who issued the lowest bid
regardless of its likelihood of delivering the packet within the
deadline. All strategies are evaluated with respect to packet
delivery ratio, average budget per node, budget fairness, and
average number of hops needed for the packet to reach its
destination.

The remainder of the paper is divided as follows. Section II
describes the system model, auction rules, and the concept
of a credit clearance center. Section III presents the details
of the Tightness strategy and the adopted baseline schemes
used for performance comparison. Section IV describes the
simulation scenarios, and Section V presents the simulation
results. Section VI discusses related work, while Section VII
contains the conclusions of this work.
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FIGURE 1. Data offloading scenario. The nodes relay packets from one
source AP to a destination AP through multi-hop recursive auctions.

II. SYSTEM MODEL
A. AUCTION RULES
The scenario we consider in this paper assumes the data
offloading problem where a mobile operator wants to send
a portion of its traffic through an infrastructure-less multi-
hop network formed by its clients’ devices (we will use
the term ‘‘T2T network’’ for short, in a broad sense [4]).
Hence, all data packet transmissions initiate from one of the
operator’s access points (APs). The incentive for the opera-
tor is to decrease traffic through its backbone infrastructure
(decreased costs), while the incentive for customers is to
receive discounted monthly fees, for example, in the form
of some credit or virtual payment. The operator’s access
points (APs) offload data packets targeted to specific desti-
nation devices. In this paper, we assume that all data packets
have another AP as their destination (e.g., an AP that is the
actual Internet gateway, while the other APs are just part
of an extended distributed system for coverage extension
purposes). Therefore, the job of the mobile devices is to
deliver these packets to destination APs indicated by source
APs.1 Figure 1 depicts the application scenario for recursive
per-hop auctions to achieve multi-hop routing and relay of
messages. The lines connecting the devices indicate wire-
less connectivity, and the arrows indicate a path that a data
packet might take to traverse the network formed by mobile
devices.

A backbone AP initiates a data forwarding request by
sending a special MAC-level broadcast packet we name
Request For Bids (RFB). The AP’s RFB contains the follow-
ing information:

• Initial budget B0 of ‘‘credits’’ for the payment of nodes
involved in the successful delivery of the data packet to
its target destination;

• ‘‘Deadline’’ for packet delivery, translated into a maxi-
mum number of hops H0 allowed for a packet to traverse
the T2T network before reaching the target destination;

1Note that this assumption does not limit the application of our strategy.
The target destination could be any mobile device. In Section IV we also
consider mobile scenarios, and the only fixed nodes are the APs. Different
pairs of source/destination APs are used in simulations to create different
packet flows and possible paths.

• A fine F0 to be paid if the data packet is not delivered to
the destination within the ‘‘deadline’’ of H0 hops.

The initial values B0 and F0 depend on the application
scenario and the operator’s approach to reward participants
in the data offloading task (e.g., discounted monthly fees,
credits on mobile data plans, etc.). Therefore, similar to
previous works on incentive schemes [4], [22], [23], we do
not propose a specific technique to set up such values, and
we treat them as arbitrary. Certainly, the definition of these
values are key to motivate users to join the T2T network:
there should be enough credits to be shared among successful
forwarding nodes, and the fine should be set high enough to
inhibit reckless or greedy bidding behavior. Likewise, to set
up the deadline H0, the AP would need to take into account
the application’s requirements on maximum acceptable delay
per packet, and translate that into a number of hops. For
that, some parameters would likely be considered, such as
the number of participants in the network, coverage area,
link-layer transmission range, expected delay per auction
execution, mobility of nodes, etc. The study of the opti-
mal assignment for B0, F0, and H0 is out of scope of this
work.

Every node, neighbor to the source AP that receives the
RFB must participate in the auction by making a bid with
the sending of a bid packet. After waiting for a time interval
t0 long enough to receive the neighbors’ bids, the source
AP decides for the auction winner by always choosing the
node with the lowest bid bi ≤ B0, ∀i ∈ B, where B is
the set of nodes whose bids were received by the auctioneer
within the time interval t0. Note that this is the only case
when the auction winner is selected without using the pref-
erence functions to be defined later (from the point of view
of the operator, the lowest bid is always the best). Then,
the source AP forwards the packet to the auction winner.
From this point on, per packet hop-by-hop recursive auctions
are performed in order to forward each data packet towards
the destination AP. It is assumed that all nodes that accept
to join the per-hop auction application must comply to the
requirement that they must always send a bid as a response
to any received request for bids (RFB), regardless of their
individual assessment of how advantageous is their partici-
pation in the particular announced auction. Each device has
the freedom to deliver the packet to the destination AP either
via the T2T network or the provider’s infrastructure backbone
of APs (if within range, of course). Using any backbone AP
for delivery guarantees 100% packet delivery, but a node that
bypasses the T2T network by using the backbone must pay
a price equal to the initial maximum budget B0 (when the
packet was first introduced in the network).

Each node advertises its own maximum budget and fine in
its RFB, except for the maximum number of hops (‘‘dead-
line’’), which decreases from the original H0 every time the
packet is forwarded one hop. Also, some constraints must
be obeyed: in the n-th auction for a given packet, the fine
must always be smaller than or equal to the budget defined
in the RFB, i.e., Fn ≤ Bn. Likewise, the advertised fine,
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in every auction, must be smaller than or equal to the fine
agreed upon in the previous hop, i.e., Fn ≤ Fn−1, where n
indicates the nth auction for a given packet. After receiving
the bids, a node chooses the winner downstream node based
on its own strategy. A node that wins an auction is allowed to
drop the packet based on its own strategy. In order to avoid
routing loops, a device is not allowed to bid for a data packet
it has already forwarded once. An upstream node pays the
agreed budget to the chosen downstream node if the packet
is successfully delivered to the destination AP. Otherwise,
the downstream nodemust pay the agreed fine to the upstream
node if the data packet does not reach the AP destination
withinH0 hops (and then, successively, all the way upstream).
A node’s balance may be temporarily negative. It is assumed
that all nodes share connectivity information by executing
some underlying protocol for topology dissemination only
(notice that this is different from running a topology control
protocol, as it is done by COMMIT [13]).

B. THE CREDIT CLEARANCE CENTER
The virtual currency can be implemented using the idea
of a ‘‘Credit Clearance Center’’ (CCC) [22]–[25], which
is a server connected to the Internet that nodes can access
whenever they go online. All nodes in the (offline) T2T
network are assumed to have registered to the CCC prior
to participation. The CCC is responsible for the storage and
management of the nodes’ accounts, as well as the genera-
tion of private/public key pairs and certificates with unique
identifications for each node. Every packet auctioned by the
source node contains a header field that stores the signatures
of all nodes that are responsible for its relay to the destination,
including the source node. Additionally, this header contains
the packet ID, the destination IP address, a time stamp for the
packet’s first auction, and the values B0, F0, and H0.

At each hop, the n-th auctioneer generates a record for itself
about the number of hops the packet has traversed so far,
the budget and fine values (Bn, Fn) announced in its RFB,
as well as the bid value (O∗) and IP address of the auction
winner. The auction winner keeps a record of the agreed fine
(Fn), its winning offered bid (O∗), the number of hops the
packet has traversed so far, and IP address of the previous
node (auctioneer). This bookkeeping is repeated at each hop,
as the data packet advances to the target destination. Once the
destination receives the data packet successfully (i.e., within
the announced deadline H0), it sends the information embed-
ded in the packet to the CCC. In addition to the information
contained in every packet delivered successfully, the CCC
updates every nodes’s account as soon as it receives their own
records from packet transactions. This happens every time a
node accesses the CCC through the Internet (e.g., when the
node accesses the Internet through its operator, who happens
to run the CCC as well). The CCC can then consolidate each
node’s balance based on its records and the stored information
about each packet.

In case a data packet is delivered to the destination beyond
the deadline H0, the destination reports it to the CCC,

which applies the corresponding fines to the relay nodes.
In case a node decides to deliver the packet to the wrong
AP (as allowed by the rules), no fine is applied, but the node
who decides for this action is charged with the initial budget
B0 for not delivering it to the target destination. If a node
fails to relay a data packet because either 1) it realizes it
will not be able to deliver the packet within the deadline,
2) it does not have any neighbor around it; or 3) the packet
is lost due to channel errors (no ACK received), the node
registers the packet drop/loss, and the CCC applies the asso-
ciated fines to involved relay nodes after receiving this node’s
records. Finally, note that the payments and fines are not
applied immediately, but they happen off-line, in batches,
after a given time period of data collection (e.g., a day,
week or month-worth of participation).

III. AUCTION PARTICIPATION STRATEGIES
In Section II-A we presented the general rules for participat-
ing in the auctions, i.e., the rules by which any node, imple-
menting any strategy, should obey. In this section, we present
the specific strategies we propose for the devices to partici-
pate in the recursive auctions. Each strategy comprises three
sub-strategies: the bidding strategy, which defines how to set
the value of a bid for a givenRFB received from a neighboring
node, the budget-and-fine setup strategy, that defines how a
node, who just won an auction, sets the budget and fine values
of its own RFB, and the decision-making strategy, which
defines how an auctioneer picks the winner of its announced
RFB. Each of these sub-strategies can be specified in different
ways, according to different goals.

The first strategy we introduce is actually a class of strate-
gies that is based on the central idea of ‘‘tightness’’ with
respect to packet delivery within a given deadline, i.e., how
much ‘‘room’’ a node has (before reaching the deadline)
to absorb eventual bad forwarding decisions resulted from
the unpredictable outcomes of other downstream auctions.
Therefore, we actually present a set of ‘‘Tightness Strate-
gies,’’ and we differentiate them in this paper with respect to
the preference function used in the decision-making strategy
(the other two sub-strategies are kept the same, for the sake of
evaluation). The idea of the tightness strategy was introduced
previously [18]. For completeness, we reproduce the main
ideas in this paper, followed by presentation of the other two
new variations in the decision-making sub-strategy. Then, two
other strategies are introduced for purpose of performance
evaluation and comparison. These two strategies do not make
use of the ‘‘tightness’’ concept, and they differ with respect
to the bidding and decision-making strategies.

A. TIGHTNESS STRATEGIES
When a source access point (AP) announces its request for
bids (RFB), it announces the budget B0 along with a fine
F0 to be paid in case the data packet is not delivered to the
destination AP within the deadline H0 (measured in num-
ber of hops). Given that all nodes have access to topology
information (i.e., connectivity), let hci denote the number of
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hops (or ‘‘hop count’’) of the shortest path computed from
node i to the destination AP. Also, let pi denote the number
of hops traversed by a packet from the source AP to a given
node i in the network. A key metric in the tightness strategy
is the definition of a ‘‘tightness function’’ 1i for a node i in
the network, i.e., 1i measures how ‘‘tight’’ a node i is with
respect to making the deadline H0 imposed by the source
AP. In other words, given the deadline H0 announced by the
source AP, and the number pu of hops already traversed by the
data packet all the way to node i’s upstream node u (the one
who issues the RFB),1i measures the ‘‘surplus’’ or ‘‘deficit’’
(in number of hops) that node i possess with respect to the
deadline H0 if the data packet were forwarded through its
shortest path to the destination AP. In other words,

1i = (H0 − pu − 1)− hci, ∀i ∈ N (u), (1)

where N (u) is the set of nodes who are able to overhear the
RFB from node u, i.e., the neighbors of node u. Therefore,
if 1i < 0, node i cannot deliver the data packet within the
deadline (even if the data packet follows node i’s shortest path
to the destination AP). On the other hand, if 1i = 0, node i
needs exactly the number of hops contained in its shortest path
to the destination AP in order to make the deadline. This is a
‘‘tight’’ situation for node i, since it relies on the unpredicted
outcome of other downstream auctions for the packet to arrive
within the deadline. Finally, if 1i > 0, node i has a higher
chance to deliver the data packet within the deadline because
the packet may even deviate from its shortest path to the
destination AP, but it has a ‘‘surplus’’ of hops before the
deadline is up.

1) BIDDING STRATEGY
The rationale for making the bid value takes into account
the likelihood of fulfilling the task of delivering the packet
to destination within the deadline. Otherwise, a fine will
be paid to the operator. Hence, each node needs to assess
how likely it is to deliver the packet as compared to other
auction contenders (or competitors). For that, we first need to
determine the set N (u) of neighbors of the upstream node
u, the auctioneer. This set contains our competitors in the
upcoming auction, and it can be easily found because all
nodes have complete knowledge of the network topology. For
every node i ∈ N (u), we compute1i according to (1). Based
on the values of 1i, we create a subset S(u) ⊆ N (u) that
contains all nodes in N (u) such that 1i ≥ 0, i.e., the set
S(u) contains all nodes that are actually able to deliver the
packet within the deadline and, therefore, they are the ones
most likely to win the auction announced by node u (our
actual competitors). Observe that, we are assuming that node
uwill usually prefer not to pay a fine. Given S(u), we want to
estimate how competitive we are in terms of packet delivery
from the point of view of node u. It is reasonable to expect that
the likelihood of successfully delivering a packet will play
a key role in any decision making by any node. Therefore,
we choose to find out how competitive we are by using our
‘‘tightness function.’’ Specifically, we compute how ‘‘tight’’

we are with respect to the average tightness 1 of nodes in
S(u), defined as

1 =
1
|S(u)|

∑
i∈S(u)

(H0 − pu − 1)− hci

= (H0 − pu − 1)− hc, (2)

where |S(u)| is the cardinality of S(u), and hc is the average
optimal hop count over all i ∈ S(u), i.e., the average shortest
path to the destination AP computed for each node i ∈ S(u).
Once the average tightness 1 is found, we compute our
relative tightness cn, defined by

cn =
1n

1
, (3)

where the subscript n is used to identify ourselves. It is
important to mention that the above computation will only
happen if our tightness function is such that 1n > 0 and
|S(u)| > 0. Otherwise, we have specific rules for mak-
ing our bid (explained later). Observe that, if cn < 1 and
1n > 0, then our competitors are better positioned than
us (on average, with respect to a surplus of hop counts).
Therefore, there is a high chance that they become more
aggressive to win the bidding, since they may feel that they
can deliver the packet in time. At the same time, since cn < 1,
it means that we are running a higher risk on not having
the packet delivered to its final destination, compared to
others. Therefore, we may want to set a higher bid (closer
to the budget value Bu) because the risk should not be worth
taking it. In case cn ≈ 1, we have similar conditions than
other competitors and, therefore, we should try to win the
auction with a lower bid compared to previous case. However,
if cn > 1, it means that we are better positioned than the
average of our competitors. Therefore, we should strive to
win the bid by offering a very attractive price (closer to the
fine Fu).

In addition to cn, another important metric to take into
account is how 1n (the value of our tightness function)
compares to the biggest value of 1i for i ∈ S(u). This is
because, if 1n > 1max = maxi∈S(u)1i, it means that we
are the best choice for the upstream node u in terms of a
positive surplus of hop counts towards destination. Therefore,
we should strive to win the auction by becoming as aggressive
as possible in our bid (i.e., to set lower values for the bid to
make sure we win the auction). Otherwise, if 1n � 1max,
we should have very low expectations to win the auction and,
therefore, we should not make dramatic changes in our bid for
different values of cn. Based on that, we define the parameter
an that compares our tightness value with the best tightness
value in S(u), i.e.,

an =
1n

1max
. (4)

Given the array of values x = [cn an Bu Fu], where Bu and
Fu are the budget and fine values announced by the upstream
node u, respectively, and since Fu ≤ Bu (according to the
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FIGURE 2. Examples of offered bid curves O(cn) for different values of
the parameters an and cn, when Bu = 200 and Fu = 80.

auction rules), our offered bid O(x) is given by

O(x) = (Bu − Fu)
[
1−

1
1+ e−an(cn−1)

]
+ Fu, (5)

which means that Fu ≤ O(x) ≤ Bu because we opt for never
making a bid less than the announced fine Fu. Figure 2 shows
an example of the offered bid function for different values
of an when Bu = 200 and Fu = 80. Note that the logistic
function is centered at cn = 1 and the steepness of the curve
is controlled by an.
Finally, if 1n < 0, we discourage the upstream node

from choosing us by setting our bid equal to the budget Bu.
Likewise, if there is no competition, i.e., we are the only
node reachable by the upstream node, we set our bid to the
maximum value Bu (the auctioneer has no option), and if
1n = 0, it means that we are very ‘‘tight’’ and, therefore,
we should set our bid to Bu (high risk).

2) BUDGET-AND-FINE SET UP STRATEGY
Once an auction is won, the strategy to set the new values for
the budget Bn and fine Fn to be announced in an RFB is based
on a fixed rule. Given that an upstream node has paid a node
n an amount equal to the winning offerO∗, the budget Bn and
fine Fn values set by node n are given by

Bn = 0.95× O∗ and Fn = 0.4× Bn. (6)

The rationale for using this heuristic approach is the fol-
lowing: every auction winner should keep a fraction of its
winning offered bid to itself (its ‘‘payment’’) as part of
its reward to participate in the cooperative network. Then,
the remaining budget value is used to formulate the next
announced budget for that packet, since there should be
enough budget for downstream nodes to perform their own
auctions. Note that the propagated budget values should not
decrease too sharply along the route. Otherwise, a small
budget value would remain to the last nodes in the path.
This is why we propose that each auction winner should
keep only 5% of the received budget, while the remaining
95% of it is used to formulate the new announced budget.

But, given that downstream nodes can only bid values that are
equal or smaller than the announced budget, the auctioneer
may still keep some extra ‘‘credits’’ after the execution of its
auction.

Another consideration is that upstream nodes are more
distant from the target destination and, therefore, they should
receive a reward that is proportional to the early risk involved
in relaying a packet that may not be delivered successfully
by downstream nodes. On the other hand, downstream nodes
are closer to destination and, therefore, can have a better
assessment of how ‘‘tight’’ they are to deliver the packet to
destination because they are likely to have a more updated
topology information regarding the destination node. There-
fore, such nodes have less uncertainty regarding the likeli-
hood of packet delivery. Consequently, they should receive a
smaller compensation compared to upstream nodes. At the
same time, downstream nodes should not pay a high fine
due to bad decisions made by upstream nodes. Therefore,
if downstream nodes find themselves in a very tight condition
that prohibits them to deliver the packet within the deadline,
they should pay a fine that is proportionally smaller than the
ones paid by upstream nodes. The proposed fine value corre-
sponding to 40% of the announced budget seeks to balance
both encouragement to participate in the announced auction,
but also the need for careful bid making. Finally, the proposed
budget-and-fine setup strategy is very simple, which can be
easily and efficiently implemented, without incurring further
computational burden to nodes.

3) DECISION-MAKING STRATEGY
In order to determine who wins an auction, an auctioneer
considers both the bid bi and relative tightness ci of each
node i who has replied to the announced RFB within a given
time period (a timeout value is set after which a decision
is made). Let B denote the set of bidders that reply to the
announced RFB. The node to which the packet is relayed is
based on the outcome of a preference function P evaluated
on the set {(bi, ci)|i ∈ B}. The winner bidder is the one that
provides the largest P value, i.e.,

auction winner = argmax
i∈B

P(bi, ci). (7)

Notice that, for a given RFB, Fn ≤ bi ≤ Bn, and ci ≤ cmax,
where cmax depends on the largest1i for all i ∈ B. Therefore,
the auctioneer needs to compute ci for all i ∈ B in order
to decide the winner. In this work, two types of preference
functions are used, based on which three different strategies
are defined. The first preference function is based on a hyper-
plane, and the second is based on a Gaussian function.

a: HYPERPLANE PREFERENCE FUNCTION
the main motivation for a hyperplane as a preference function
is its simplicity and low computational complexity. Also,
by setting appropriate constant values, the plane can be tilted
to reflect a certain weight towards bi or ci in the decision-
making process. To define the hyperplane, we pick some
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points of interest and assign specific values to them. For
instance, the lowest preference should be given to bidders
with ci = 0 and bi = Bn, since these are nodes that
charge the most to relay a packet in a very tight condition
(no room for mistakes in the forwarding process). Hence,
we set Pn(0,Bn) = 0. On the other hand, the highest
preference should be given to bidders with ci = cmax and
bi = 0, i.e., they have a ‘‘surplus’’ of hops before reaching
the deadline (they are less tight), and they relay the packet for
free. Other interesting cases are Pn(0, 0), where the bidder is
‘‘tight,’’ but it relays for free, and Pn(Bn, cmax), where the bid
is maximum, but the bidder has the lowest tightness. Hence,
if we letPn(0, 0) = k1 andPn(Bn, cmax) = k2, wemay choose
0 < k1 < k2 to reflect our tendency to favor packet delivery
as opposed to increase our budget. The plane that intersects
these points define Pn(bi, ci), given by

P(bi, ci) = k2

(
ci
cmax

)
− k1

(
bi
Bn

)
+ k1. (8)

Notice that, the input values to the hyperplane are based
on the relative values ci/cmax and bi/Bn. Therefore, this
preference function is designed to work with any auction in
the network, regardless of the specific RFB and bid values.
Figure 3 shows an example of a hyperplane preference func-
tion with Bn = 20, cmax = 3, k1 = 2, and k2 = 3.

FIGURE 3. Preference function for Bn = 20, cmax = 3, k1 = 2, and k2 = 3.

b: GAUSSIAN PREFERENCE FUNCTION
For the second preference function, we want to investigate a
function that has a global maximum at a given local operating
point. For that, we use a two-dimensional Gauss-like function
because the operating point can be easily set up and we want
to have its shape modified according to specific bid and RFB
values of an auction (so, not only the operating point, but also
the shape of the function is modified in every auction). Hence,
P(bi, ci) is given by

P(bi, ci) =
1

2πσbσc
√
1− ρ2

exp

{
−

[
(bi − b∗)2

2σ 2
b (1− ρ

2)
−

−
2ρ(bi − b∗)(ci − c∗)

2σbσc(1− ρ2)
+

(ci − c∗)2

2σ 2
c (1− ρ2)

]}
, (9)

where (b∗, c∗) is the desired operating point, and σb, σc, and
ρ control the shape of the function. Hence, given a set of
n = |B| bid values, σ 2

b and σ 2
c are computed as

σ 2
b =

1
n− 1

n∑
i=1

(
bi − b∗

)2
, σ 2

c =
1

n− 1

n∑
i=1

(
ci − c∗

)2
,

(10)

i.e., σb and σc express the root-mean-square deviation from
the operating point (b∗, c∗). Likewise, borrowing from the
definition of correlation,

ρ =

∑n
i=1(bi − b

∗)(ci − c∗)
(n− 1)σbσc

, (11)

which gives an idea of how ‘‘correlated’’ the sets {bi} and
{ci} are, and define the shape of P(bi, ci). Figure 4 shows an
example of a preference function generated from data drawn
from one of the auctions performed in simulations.

FIGURE 4. Example of Gaussian preference function.

Observe that, for each auction, one operating point is cho-
sen, and all bids and tightness values are compared to the
optimal case in that particular auction. The auction winner
is the node whose bid and tightness values are closer to the
operating point. In simulations, we investigate two operating
points.

B. BASELINE STRATEGIES
In this section we define two baseline strategies for purposes
of performance evaluation. The first strategy is designed
to investigate what happens if the goal of every auction-
eer is to deliver the packet to the destination no matter
the values of the bids. In this case, the decision-making
strategy of every auctioneer is simply to use shortest-path
routing, i.e., to always relay the packet to the bidder in
the shortest path towards destination, regardless of its bid.
In addition, because the value of the bid is not taken into
consideration, it is assumed that each node has its own,
unknown, bidding strategy. To represent the collective behav-
ior of every node having its own bidding strategy, we make
every node to bid a value uniformly drawn from the interval
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TABLE 1. Table of symbols and definitions used in this work.

[Fu,Bu], where Fu and Bu are the fine and budget values
announced in the received RFB. Finally, the budget-and-fine
setup strategy follows the same one defined in Section III-A.
Henceforth, this strategy will be referred to as Shortest Path
strategy.

The other strategy we investigate assumes that every auc-
tioneer always relay the packet to the node whose bid is the
lowest among the nodes i ∈ B. Therefore, with this strategy,
we investigate what happens if every auctioneer is greedy, and
always want to increase its own budget regardless of packet
delivery. Similar to Shortest Path, we assume that nodes run
different bidding strategies that are collectively represented
by random values chosen in [Fu,Bu]. Finally, the budget-
and-fine setup strategy follows the same one defined
in Section III-A. Henceforth, this strategy will be referred to
as Lowest Bid strategy.

Finally, for ease of reference, Figure 5 presents a flowchart
describing the overall operation of an arbitrary node that
participates in the T2T network, and Table 1 summarizes all
variables used in the description of the strategies, along with
their corresponding definitions.

C. COMMENTS ON ENERGY CONSUMPTION
None of the strategies introduced previously considered the
energy level in the batteries of users’ devices as an input
parameter. Indeed, during certain periods of network oper-
ation, some nodes may participate in the auctions more
frequently than others as a result of their geographical prox-
imity to a data source or target destination, for instance.
Consequently, there can exist a heterogeneous drain of energy
battery among devices, which may affect network connectiv-
ity and, ultimately, its longevity. Therefore, one might argue
that the rate at which devices consume energy should be
taken into account not only when a bid is formulated, but also
when the auction winner is decided. However, accounting for
energy consumption in incentive schemes for packet forward-
ing is not an easy task.

FIGURE 5. Flowchart of operation of a general node in the T2T network.

Previous works on incentive schemes that considered
energy battery levels in the computation of payments and
routes (e.g., [8]–[10], [13]) have generally relied on a
two-step forwarding process: first, the target destination must
receive all required information (i.e., energy levels, neighbor-
hood information, etc.) from every node in the network in
order to compute the best route and associated payments to
relay nodes. Then, this information must be sent back to the
source node to start with the actual data packet transmission
over the selected route. Clearly, such solutions not only con-
sume extra energy due to the two-step forwarding process, but
they also become practically infeasible in mobile scenarios,
since 1) the selected route and payment information may
never reach the data source, or 2) there can be significant
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topology changes that invalidate the selected routes and asso-
ciated payments. Not surprisingly, the aforementioned works
dealt with static or semi-static topologies.

Additionally, we note that the vast majority of works
that have considered the battery’s energy level as a param-
eter in their incentive schemes have not addressed bat-
tery usage/network lifetime too. For instance, Anderegg and
Eidenbenz [9] considered minimum-energy routes, but they
did not present any results on battery usage. Zhong et al. [10]
took into account the nodes’ energy levels, but they only
focused on investigating the relation between energy con-
sumption and credit gains, i.e., they basically reported that
nodes who participate more actively in the network (and
earn more credits) are also the ones who spend more energy.
However, they did not address how fast their scheme drains
the nodes’ energy battery and, consequently, the extent of
network lifetime. Eidenbenz et al. [13] considered energy-
efficient paths, but they did not present any results concern-
ing battery usage/energy consumption, while Xu et al. [23]
considered the remaining energy of each node as a parameter
but they did not present any results concerning energy battery
usage.

In this paper, we opted for not considering the energy
level of users’ devices in the auction strategies because there
is an inherent trade-off between delivering a packet within
a given deadline and saving energy consumption (let alone
maximizing profits). In the one hand, the selection of nodes
that lead to shortest paths (to satisfy a deadline)may generally
incur faster energy depletion of their batteries, especially
if such nodes are ‘‘popular’’ due to their location in the
network. On the other hand, selecting the nodes that can
prolong network lifetime (by saving energy consumption)
may likely lead to routes that can make it hard to meet the
given deadlines (e.g., by selecting rarely used nodes due to
their unfavorable location in the network). Therefore, because
our work is based on per-hop auctions, achieving a good
compromise among all three goals in the long run, i.e., energy
efficiency, deadline fulfillment, and profitable (and fair) oper-
ation, becomes a very challenging problem.

IV. SIMULATION SCENARIOS
As presented in Section III-A there are many possibilities
to set up each sub-strategy in the ‘‘tightness strategies’’
class. Therefore, we focus on three specific setups, which are
defined according to the chosen decision-making strategy and
respective parameters. To differentiate them, the following
nomenclature is used:
• Tightness: this is the tightness strategy based on the
hyperplane preference function with parameters k1 = 2,
and k2 = 3, i.e., a slightly higher weight is given to
the ratio ci/cmax as opposed to bi/Bn (packet delivery
is considered more important than budget);

• Gauss: Gaussian preference function with operating
point (Fu, cmax), i.e., highest preference is given to the
bid that is the closest to the smallest possible value (the
announced fine Fu), and whose node has a tightness

value closest to cmax. This would locally maximize
the budget and the likelihood of deliverying the packet
within the deadline (surplus of hops before deadline is
reached);

• Gauss1: Gaussian preference function with operating
point (Fu, 1). In this case, the highest preference is given
to the bid that is the closest to Fu, but whose bidder has a
tightness value equal to the average tightness (cn = 1).
This is a more relaxed situation, where the surplus of
hops to destination is not considered so critical to make
a decision on the auction winner;

The performance of each of the considered strategies
(Tightness, Gauss, Gauss1, Shortest Path, and Lowest Bid)
is evaluated via discrete-event simulations based on the
ns-3 network simulator [21]. Ten topologies are used with
100 nodes forming the T2T network, and 32 other nodes act-
ing as Wi-Fi access points (APs) to the operator’s backbone.
All AP nodes are fixed located and evenly spaced surrounding
a terrain of 800 m × 800 m, which gives an overall net-
work density of 0.00021 nodes/m2. Such node density is less
than or about the same as the ones found in previous works
on this subject: 0.002 nodes/m2 [11], [22], 0.0004 nodes/m2

[8], [26], and 0.0002 nodes/m2 [8]. We chose this node
density2 to strike a balance between connectivity, sparsity,
and, more importantly, to insure some level of competition
among nodes in announced auctions. After all, the auction
strategies cannot be properly evaluated if there is low com-
petition among nodes to relay the data packets. Figure 6
depicts an example of a random topology used in simulations,
where the green lines indicate connectivity between nodes
(transmission range).

FIGURE 6. Example of random topology used in simulations. The green
lines indicate connectivity between nodes based on transmission range.

Two scenarios are investigated: static and mobile. In the
static scenario, one of the topologies is based on a grid of
nodes forming the T2T network, while the other topologies
are based on nodes randomly placed on the terrain. In the

2Incidentally, this node density corresponds to a number of users equiva-
lent to just 1% of the maximum capacity of a theme park as big as Universal
Studios Hollywood.
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mobile scenario, all nodes move according to the random
walk mobility model available in the ns-3 simulator. Three
mobile scenarios are investigated, based on three different
speeds: 0.5 m/s, 0.75 m/s, and 1.0 m/s. In all three scenarios,
nodes change direction every 10 m (randomly). The cho-
sen speeds reflect walking behavior, which is an appropriate
scenario for per-packet recursive auctions, and also because
the investigated strategies rely on the knowledge of net-
work topology (apart from Lowest Bid): topology information
becomes less reliable as mobility becomes too high. Note
that, when an auction happens, it incurs the announcement
of the auction (RFB), the wait for the reception of bids
from neighbors, the decision on auction winner, and data
packet transmission to the corresponding node. Incidentally,
most of previous works on incentive schemes for multi-
hop networks have generally considered static or semi-static
networks in order to evaluate their solution (see discussion
in Section VI). Few works have dealt with mobility. For
instance, Xu et al. [23] have considered node speeds within
the range [0.5, 2.5] m/s, while Buttyán and Hubaux [26] have
considered node speeds within the range [1.0, 3.0] m/s. For
topology dissemination among nodes, we use the scheme
embedded in the OLSR protocol [27]. We also use OLSR to
implement the Shortest Path strategy over the topology infor-
mation. Every simulation has a ‘‘warm-up’’ period of 30 s
before any auction happens, during which the nodes start
moving around and OLSR operates. This is to allow dissem-
ination of topology information before the beginning of any
auction.

As far as traffic generation is concerned, each AP node
offloads a total of 50 packets into the T2T network. But, each
AP only starts its auctions when its neighbor AP finishes the
auction of all 50 packets, i.e., AP nodes transmit consecu-
tively, one after the other. Also, each AP node has a fix des-
tination AP to which all of its 50 packets are addressed. The
destination AP is roughly located in the opposite direction
of the transmitting AP in the topology, so that the number
of hops to destination is maximized (to make the offloading
job more challenging). This traffic generation pattern aims
to provide a somewhat fair distribution of data flows in the
network, while avoiding location-specific interpretation of
results (one of the goals of this study is to understand fairness
issues between strategies).

The time interval between the issue of requests for bids
is 3.0 s. The auction timeout, i.e., the time interval that a
node waits before deciding for the winner of an RFB is
50 ms. Consequently, the next AP in sequence waits for 160 s
before issuing its first RFB (time for offloading all 50 packets
plus a guard interval of 10 s). The simulation is over once
every AP node finishes offloading all of its packets. This
happens after 5,200 seconds of network operation (simulated
time), which includes an extra time interval to guarantee
the relay of any packet still traveling in the network. Each
packet has an initial ‘‘deadline’’ (H0) of 10 hops, an initial
budget (B0) of 1000, and an initial fine (F0) of 400 (arbitrary
initial values are also used in [4], for instance). Finally, for

the MAC- and PHY-layer parameters, all network nodes
operate according to the IEEE 802.11g ad hoc mode in the
2.407 GHz frequency channel. All frames are transmitted at
1 Mb/s, and no RTS/CTS frames are used. Energy detection
threshold is set to -67.5785 dBm, while the CCA threshold
is set to -71.1003 dBm. Transmit power is 16.0206 dBm,
which corresponds to a transmit range of 150 m under the
Friis large-scale channel propagation model. No small-scale
fading was implemented, since we wanted to minimize the
occurrence of errors due to channel impairments (and have a
better idea of packet delivery by each strategy). But, errors
due to large-scale propagation effects (path loss) could still
occur, as well as packet collisions, especially with OLSR
broadcast messages or simultaneous bids (under CSMA/CA
operation, of course).

The strategies are investigated based on four performance
metrics: packet delivery ratio (PDR), defined as the ratio of
the number of packets delivered to destinations to the total
number of packets offloaded to the network; the relative
average budget (RAB), defined as the ratio of the average
accumulated budget per node to the initial budget announced
by every access point (i.e., B0 = 1000). In this case,
we compute a relative value because the initial budget is just a
symbolic value. Therefore, it makes more sense to understand
the average accumulated budget per node as a gain over
the announced budget per packet. The other two metrics are
fairness, defined according to Jain’s fairness index [28]

J (x0, x1, x2, . . . , xn) =

(∑n
i=0xi

)2
n
∑n

i=0x
2
i
, (12)

where xi is the final budget at node i; The idea of this metric
is to understand how fair each strategy is regarding budget
distribution among nodes. Finally, we investigate the average
number of hops (ANH) traversed by all packets that are
offloaded to the network (successfully transmitted or not).

V. SIMULATION RESULTS
In the following, we present simulation results divided into
two groups, according to node mobility: static and mobile
topologies.

A. STATIC TOPOLOGIES
Figure 7 presents the results for the relative average bud-
get (RAB) of all strategies. All tightness strategies perform
better than Shortest Path. In particular, Tightness and Gauss
present the best results, with RAB values of 12.20 and
12.17, respectively, while Gauss1 performs slightly worse,
with 11.74 RAB, but still better than Shortest Path with its
8.96 RAB. This indicates that, in the static scenario, the bell-
shaped preference functions (with operating points) are as
profitable as the hyperplane preference function. Tightness
provides a gain of 36.15% over Shortest Path, while Gauss1
also obtains good performance, with a 31.03% gain over
Shortest Path. Lowest Bid delivers poor performance, since
it always picks the node with the smallest bid, regardless of
its chances to deliver the packet at destination. These results
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FIGURE 7. Relative average budget of all strategies under static
topologies.

FIGURE 8. Packet delivery ratio (PDR) under static topologies.

indicate that one of the design goals of the tightness strategies
was achieved, which is that of incentivizing nodes to join
the T2T network by delivering high profits to those that
participate in the recursive auctions.

Figure 8 presents the results for packet delivery ratio
(PDR). Shortest Path, Tightness and Gauss deliver similar
performance, with 0.94, 0.929 and 0.928 PDR, respectively.
Gauss1 also shows competitive performance, with 0.91 PDR.
These results are very important, since they show that it is
possible to achieve packet delivery ratios as competitive as
those provided by Shortest Pathwhile, at the same time, guar-
anteeing higher RAB values per node. Also, it is interesting
to observe the low PDR variability between topologies in all
strategies (including the tightness strategies), as indicated by
the standard deviation in the graphs. This indicates that, in the
static scenario, and compared to budget results, all strategies
tend to lead to more stable routes toward destinations (in the
sense of PDR within the deadline), while budget accumu-
lation is more dependent on the type of topology. Finally,
as expected, Lowest Bid performs very poorly, delivering
almost no packets to destination. This is because it does not
aim to deliver the packets within the deadline, which leads to
an excessive number of packet drops.

Figure 9 depicts the average number of hops (ANH) tra-
versed by packets (successfully or not). Gauss and Tightness

FIGURE 9. Average number of hops per packet under static topologies.

deliver the best performance with similar results: 8.33 ANH.
Surprisingly, Shortest Path performs slightly worse than
Gauss and Tightness, with 8.69 ANH This result suggests
that introducing the deadline constraint into the bidding and
decision process (in terms of number of hops) has a clear ben-
efit to the overall ANH traversed by packets. In the tightness
strategies, the nodes themselves encourage (or discourage)
the reception of a packet through their bids, which take into
account how tight a node is to deliver the packet within the
deadline. Curiously, however, the request-for-bids strategy
used byGauss1 does not provide a good ANH. This is related
to the fact that Gauss1 uses the average tightness cn = 1 in
its operating point, as opposed to cmax used by Gauss. Thus,
Gauss1 prefers to relay the packet to a node that is as tight
as its neighbors (on average), and whose bid is close to Fu.
Consequently, it is prone to deliver the packet to someone that
is not so likely to deliver the packet to destination. Here, it is
important to remember that all nodes use the OLSR protocol,
which delivers a partial view of the network topology, since
the paths are computed over the multipoint relays only [27].
Therefore, not all nodes are known to everyone, and some
inaccuracies exist on shortest-path computation. Using the
tightness information for the bidding and decision process,
there is a reassurance of the best path since nodes may have
different topology information. As expected, Lowest Bid has
the poorest performance, with about 9.81 ANH.

Figure 10 shows the results for budget fairness among
nodes. Shortest Path achieves the best fairness with 0.69, sur-
passing Tightness with 0.579, Gauss with 0.578, and Gauss1
with 0.54. Again, Lowest Bid delivers the worst performance
with just 0.18. To understand these results, notice that, when
nodes follow tightness-based strategies, the auction winner is
generally a node whose bid value is close to the announced
fine Fu (one of the goals of the preference functions, as pre-
sented in Section III-A). Thus, because a winner node keeps
5% of its bid before setting up its own budget and fine values,
budget gains decay along a route towards destination: the
nodes close to the transmitting AP get higher gains than those
close to the destination AP. This is actually a reasonable
policy, since the nodes close to the transmitting AP assume
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FIGURE 10. Budget fairness under static topologies.

higher risks early on, with unpredictable outcomes, compared
to those close to the destination AP, which have a better
assessment of the likelihood of packet delivery within the
deadline. Under Shortest Path, the budget gains still decay
towards destination, since the budget-and-fine setup strat-
egy is the same. But, the bids of the nodes are randomly
distributed in [Fu,Bu], and the winner bid is always the
one on the shortest path towards destination. Consequently,
the winning bid is not necessarily close toFu, and this leads to
larger variations on budget gains for different packets towards
the same destination AP. This is why Shortest Path achieves
higher fairness compared to the other strategies.

It is clear from previous results that Lowest Bid performs
very poorly because it does not aim to deliver the packet
within the deadline. Therefore, it performs even worse under
mobile topologies. For this reason, in the following, we omit
the results for this strategy.

B. MOBILE TOPOLOGIES
Figure 11 shows the results for the relative average budget
(RAB) under mobility. Compared to the static case, the RAB
values of all strategies decrease as mobility increases,
as expected. The most significant decay in performance hap-
pens with Gauss1, whose RAB decays by 54.8% just by
starting moving at 0.5 m/s. Also, Tightness RAB decays
by 35.0%, while Shortest Path drops by 38.7%, and Gauss
by 39.6%. As a result, the difference between Tightness and
both Gauss and Gauss1 increase under mobility. In fact,
Tightness dominates RAB performance in all speed scenar-
ios. At 0.5 m/s, Tightness performance is 7.8% better than
Gauss, 44.3% better than Shortest Path, and 49.2% better
than Gauss1. As mobility increases, all tightness strategies
surpass Shortest Path (Gauss1 is a bit worse than Shortest
Path at 0.5 m/s). At the speed of 1.0 m/s, Tightness RAB
decreases to 5.73, which is about 92.93% higher than Shortest
Path (2.97 RAB), 16.94% higher thanGauss (4.90 RAB), and
70.54% better than Gauss1 (3.36 RAB).
It is interesting to notice that having a preference function

that focus on an operating (target) point does not necessarily
deliver the best RAB results undermobility. Instead, the plane

FIGURE 11. Relative average budget per node under mobility.
Performance of each strategy at (a) 0.5 m/s. (b) 0.75 m/s. (c) 1.0 m/s.

preference functionworks best. It is worth noting that both the
parameters and shape of the Gauss-like preference functions
depend on the specific bid and tightness values of a given
auction. Therefore, it seems that the ‘‘best’’ decisions are too
localized, which seems to reflect on the overall performance
as mobility increases. In the case of the plane preference
function, the parameters k1 and k2 are kept fixed in every
auction performed in the network (we can interpret the ratios
opi/Bn and ci/cmax as input variables to the plane). Therefore,
the same preference function is applied in every single auc-
tion. The plane does not define a specific ‘‘operation point,’’
based on which a maximum value can be drawn. It simply
picks the node whose bid and tightness values lead to the
maximum on the plane preference function.

VOLUME 9, 2021 36319



L. S. Brito, M. M. Carvalho: Per-Hop Reversed Packet Auctions for Cooperative Routing

FIGURE 12. Packet delivery ratio under mobility at different speeds.
Performance of each strategy at (a) 0.5 m/s. (b) 0.75 m/s. (c) 1.0 m/s.

The strength of the ‘‘tightness strategies’’ under mobility is
best appreciated if we look at the results for packet delivery
ratio (PDR) in Figure 12. Surprisingly, Tightness and Gauss
achieve better PDR than Shortest Path and Gauss1 when
nodes move at all speeds (0.5 m/s, 0.75 m/s and 1 m/s).
This is quite interesting, since it means that the ‘‘offered
price’’ dimension in the preference function has a posi-
tive impact on the achievable PDR. When nodes move at
0.5 m/s, Tightness achieves a PDR of 71.92%, while Shortest
Path reaches 60.10%, Gauss 63.80%, and Gauss1 33.36%.
In other words, Tightness and Gauss deliver 19.67% and
6.16% more packets than Shortest Path, respectively, while
Gauss1 is 44.49% worse than Shortest Path. When nodes
move at 0.75 m/s, the performance of all strategies degrades,

but Tightness and Gauss are 30.25% and 9.54% better than
Shortest Path, respectively. Still, Shortest Path is 85.81%
better than Gauss1. Finally, as nodes move at 1.0 m/s, per-
formance degrades across all strategies, but Tightness deliv-
ers 51.57% more packets than Shortest Path, while Gauss
becomes 16.41% better than Shortest Path. It is important
to remember that all the strategies rely on the informa-
tion provided by the OLSR protocol. Therefore, as mobility
increases, the routing tables at nodes become less reliable,
and stale topology control information is disseminated on the
network, which reflects on routing decisions (Shortest Path)
and tightness computations.

The PDR results also show that the choice of operation
point for the bell-shaped preference functions has a clear
impact on the final performance.Gauss is significantly better
than Gauss1 in both RAB and PDR metrics. This means that
relaying a packet to a neighbor whose tightness (ci) is closer
to the maximum possible value among competitors (cmax)
is better than relaying the packet to a node with average
tightness (ci = 1) (assuming that in both cases the offered
price is close to the minimum possible Fu). It is also worth
noting that, in spite of the lower PDR values obtained at
1.0 m/s (compared to Shortest Path), Gauss1 deliver higher
RAB value than Shortest Path at this speed (see Figure 11(c)).
This means that, althoughGauss1 have delivered less packets,
the nodes ended up accumulating higher profits. Under high
mobility, one should expect a higher reluctance from nodes
to participate in the T2T network, because of the likelihood
of higher losses in a less predictable and stable environment.
Therefore, it is reasonable to trade off PDR with RAB, since
the nodes are assuming higher risks (this is certainly not a
favorable situation to operators, but it is definitely better to
participant nodes in the T2T network—the prospect of some
profit under a harsh environment).

Figure 13 presents the results for the average number of
hops (ANH) traversed by successful packets in each strategy.
Tightness, Gauss, and Shortest Path present similar results,
with Tightness delivering the best performance across all
speeds. In spite of mobility, Tightness manages to deliver
packets within 1 to 1.5 hops away from the maximum num-
ber of hops allowed to destination (on average). Gauss1
deviates the most from other strategies, delivering slightly
higher ANH values, especially at low mobility (similar to the
static scenario). Asmobility increases, TightnessANHvalues
increase from 8.88 (at 0.5 m/s) to 9.11 (at 1.0 m/s), a 2.6%
variation. Gauss ANH values also increase with speed: from
9.07 (at 0.5 m/s) to 9.26 (at 1.0 m/s), which is a 2.09%
variation. Gauss1, however, is the only strategy whose ANH
values decrease as mobility increases: from 9.89 (at 0.5 m/s)
to 9.61 (at 1.0 m/s), a variation of −2.83%.

Lastly, Figure 14 presents the results on budget fairness
among nodes under mobility. Following the results on the
static scenario, Shortest Path has the best performance at
speeds of 0.5 m/s and 0.75 m/s, where it achieves an average
fairness of 0.73 and 0.74 respectively. This is roughly 20%
better than Gauss and Tightness in both scenarios. This is
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FIGURE 13. Average number of hops per packet. Performance of each
strategy at (a) 0.5 m/s. (b) 0.75 m/s. (c) 1.0 m/s.

because, when nodes follow the tightness strategies, the auc-
tion winners are those that bid values closer to the announced
fine Fu, as dictated by the bidding and decision strategies pre-
sented in Section III-A. Thus, because the winner node keeps
5% of its bid before setting up its own budget and fine values
(see the Budget-and-Fine set up strategy), the accumulated
budget drops fast as a packet moves forward along a route
(nodes that are closer to the AP gets more, since they assume
a task of high risk early on, of unpredictable outcome towards
destination, while nodes that are closer to destination have a
much better idea of the possible success in the forwarding of a
packet. Hence, they should be less rewarded, comparatively).
Under Shortest Path, however, the auction participants offer

FIGURE 14. Budget fairness under mobility. Performance of each strategy
at (a) 0.5 m/s. (b) 0.75 m/s. (c) 1.0 m/s.

random values within the interval [Fu,Bu], and the winner
node is always the one on the shortest path towards des-
tination. This leads to a higher variation of accumulated
budget along a route. Note that, nodes still obey the Budget-
and-Fine set up strategy under Shortest Path, but the winner
is no longer the one who bids a value close to the announced
fine.

As far as resilience to mobility is concerned, Tightness
presents the best performance, since its fairness varies by
only 26.7% as speed changes from 0.5 m/s to 1.0 m/s. Gauss
comes next, with a 38.3% variation, while Shortest Path has a
variation of 54.8%, and Gauss1 undergoes a 56.2% variation.
In fact, the performance decay of Shortest Path and Gauss1
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is accentuated when speed changes from 0.75 m/s to 1.0 m/s.
Such a significant drop in fairness is probably due to the low
PDR of Shortest Path in this scenario. At the speed of 1.0 m/s,
Tightness delivers the best performance, with an average
fairness of 0.44, against 0.37 of Gauss, 0.33 of Shortest Path,
and 0.21 of Gauss1.

VI. RELATED WORK
One of the key issues to fully realize cooperative multi-
hop communications is how to incentivize users to let
their devices work as packet relays to benefit others.
Buttyán and Hubaux [12] have tackled this problem earlier
by introducing a virtual currency named nuglets, by which
nodes can pay other nodes to forward their packets. Accord-
ing to their ‘‘packet purse’’model, a source node needs to load
a packet with sufficient nuglets to reach its destination. Each
forwarding node gets some nuglets from the packet in order
to cover its forwarding costs. A packet is discarded if it does
not contain enough nuglets to be forwarded. To control the
number of nuglets taken out from a packet, a sealed bid sec-
ond price auction is run at each hop: each bidder determines
the price for which it is willing to forward the packet, and
sends it to the forwarding node in a sealed form. The price is
obtained from two utility functions that are based on battery
level and number of nuglets in the node. It is assumed that
a bidding node has no information about the total number of
bidders participating in the auction, and the auction winner
is always the one with the lowest bid. Then, the forwarding
node puts the value of the second lowest bid in the packet
and sends it to the winner. For proper operation, this scheme
requires the use of routing algorithms that allow nodes to
have multiple entries in their routing tables with different
next hops to the same destination (e.g., TORA [29]). The
performance evaluation of the proposed approach has focused
on packet delivery ratio for different battery energy levels
over static topologies. Also, in spite of targeting cooperation,
the fairness in distribution of nuglets among nodes has not
been evaluated, and no indication has been given about the
achievable average gain of nuglets per node. Finally, this
solution did not target packet deliverywithin a given deadline.
Later, they proposed a set of deterministic rules to decide
whether a node forwards a packet without relying on auctions
at each hop [26]. Their mechanism is based on a counter of
nuglets that decreases if the node sends its own packet, and
increases if the node forwards a packet. The counter must
remain positive for the node to send its own packets.

Anderegg and Eidenbenz [9] have proposed AdHoc-VCG,
a reactive routing protocol for ad hoc networks where nodes
are selfish and require payments to forward data. The protocol
is designed to achieve truthfulness (also known as incentive
compatibility), i.e., the nodes reveal the true cost to for-
ward data (measured in terms of energy to relay a packet)
and cost efficiency. It consists of two phases: route discov-
ery and data transmission. During route discovery, a mini-
mum energy route is computed from source to destination
based on a weighted graph informed to the destination node.

The edge weights represent the payments a node has to
receive if it transmits a packet along that edge. The destina-
tion node computes the shortest path to it and all payments
needed to be made. Then, it sends this information back to
the source node. In the data transmission phase, the source
node sends the data packets with the electronic payments
over the shortest path. For analysis, this work has focused
on proving truthfulness and cost efficiency mathematically,
and provided some results on experiments with random static
topologies to analyze overpayment. However, the protocol
has not been analyzed under mobility, and its performance
has not been evaluated regarding packet delivery ratio and
individual node profit gains (as well as fairness in profit
distribution). Similar to [12], the protocol does not consider
packet delivery under a given deadline, and its route discovery
phase may stall network operation if routing paths change
frequently, as pointed by the authors themselves.

Zhong et al. [10] have showed that Ad-Hoc VCG is flawed
because it assumes that the transmitter knows the link cost
beforehand (i.e., the energy to relay a packet) when, in reality,
it needs the receiver’s feedback to estimate it. Hence, they
have showed that Ad-Hoc VCG does not handle cheating
appropriately and, consequently, it does not preserve incen-
tive compatibility. More importantly, they have showed that
there does not exist a forwarding-dominant protocol in wire-
less ad-hoc networks. This means that there does not exist a
protocol implementing both routing and forwarding such that,
under the protocol, nodes always forward packets, and that
following the protocol is a dominant action, i.e., no matter
what other nodes do, following the protocol always brings the
maximum utility. Based on this result, they have proposed the
Corsac on-demand routing protocol, which adheres to weaker
requirements than those for a forwarding-dominant protocol,
and uses cryptographic techniques to prevent cheating. Under
Corsac, a set of test signals with increasing power levels
(and associated costs) are sent between neighbors until they
reach the session destination. After receiving all link costs,
the session destination chooses the minimum power level for
each link and computes the lowest cost path (LCP) from the
source using Dijkstra’s algorithm. The LCP is sent back to
the source for the data transmission phase, along with the
payment information for each node in the LCP, which is
computed as a function of the link costs. Corsac assumes
a semi-static topology, ignores control overhead, and makes
assumptions on network connectivity.

Eidenbenz et al. [13] have proposed the COMMIT proto-
col, which improves over Ad-Hoc VCG and Corsac by allow-
ing the source of a session to act strategically, i.e., the source
of a session is no longer obligated to paywhatever the destina-
tion decides, and it can refuse a proposed path if, for instance,
the cost is too high. COMMIT relies on the existence of
an underlying periodic topology control protocol to simplify
the routing protocol and to reduce its message complexity.
It focuses on promoting cooperation for the establishment of a
path and packet forwarding, while it is assumed that all nodes
cooperate in the execution of the topology control algorithm.
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As opposed to Ad-Hoc VCG and Corsac [9], [10], the costs
used to compute routes are associated to nodes, and not links.
On the other hand, similar to Ad-Hoc VCG and Corsac,
the destination node is responsible for computing the lowest-
cost path and the payments to the source and intermediate
nodes. It also assumes that network topology is 2-connected,
i.e., there exist at least two node-disjoint paths from any
node to the destination. Moreover, it assumes no link failures
result from node mobility during the route discovery phase
and subsequent data session, before execution of another
round of its topology control protocol. In fact, routes of the
data sessions have to be recomputed from scratch after each
round of execution of the topology control protocol. It is also
assumed that nodes are willing to forward control packets
because of potentially large payoff. Both COMMIT and Cor-
sac assume that power levels are enough for communication,
and disregard the impact of interference between nodes and
channel errors. In spite of the theoretical results, the paper
does not present any performance evaluations, which makes
it hard to understand its actual limitations and performance.

Su et al. [14] have proposed the use of generalized second
price (GSP) auction in multi-path routing with selfish nodes.
They have adopted the Dynamic Source Routing (DSR) pro-
tocol [30] for route discovery andmaintenance and, therefore,
they have assumed that nodes cooperate in the running of an
underlying routing protocol. Their focus is on the formulation
of the payment scheme to the nodes, which is supposed to
produce less over-payment than VCG-based schemes. It is
assumed that each intermediate node incurs a per-packet cost
to forward traffic, and this cost is private to the node. Each
node’s bid is equal to the cost of the outgoing link. Then,
each node places an encrypted version of its bid in the route
request (RREQ) message, while the route reply message
(RREP) carries the network graph constructed at destination
based on the information gathered from the received RREQ
messages. Once the source receives the RREP messages,
it determines the fraction of traffic that must go through each
of the detected m node-disjoint least cost paths (LCP) by
solving an optimization problem that maximizes each node’s
utility and minimizes overall system cost, subject to certain
constraints given by a set of policies. In their analysis, the cost
of each link (i.e., the bid of each node) is randomly chosen
and, therefore, does not follow a specific formulation. Also,
the paper only considers static topologies and, therefore, does
not take into account the mobility of nodes and, consequently,
route partitions. In other words, their scheme relies on the
assumption that costs and node-disjoint paths are kept the
same throughout the network operation.

Zhou et al. [16] have proposed the optimal auction-based
multipath routing (OAMR) for wired networks where nodes
are selfish to carry other nodes’ flows. Hence, the source node
of any source-destination (SD) pair must pay for the band-
width provided by the intermediate nodes to carry its flows.
The bandwidth from the links on the transmission paths are
auctioned off to meet the communication requirements of the
SD pairs, and traffic is scheduled in such a way that cost

is minimized. To solve the problem, OAMR requires a con-
trol center in the network that collects routing requests with
corresponding bandwidth demands to solve the optimization
problem in a batching fashion. Because of its high complexity
and computational time, the authors have also proposed a
sequential auction-based multipath routing (SAMR) scheme
where bandwidth is auctioned off sequentially along the
transmission path.

Khairullah and Chatterjee [11] have looked at routing on
multi-channel cognitive networks based on combinatorial
auctions. In their model, secondary users (SUs) buy some
bandwidth from primary users (PUs) in order to trade it
among themselves for purposes of packet routing via repeated
bidding over multiple hops. At each hop, a transmitter (buyer)
picks the receiver (seller) who is able to sustain the bit rate
requirement and offers the minimum price to execute the
forwarding task. Each seller computes its bid based on the
number of channels it needs to combine to sustain the buyer’s
bit rate requirement. For that, the seller computes the capacity
of each available channel based on the measured signal-to-
interference and noise ratio (SINR). Since there can be mul-
tiple bundles of channels that satisfy the bit rate requirement,
the seller offers the one with minimum price. The total price
of each route is accumulated through the repeated bidding
process over all hops. The route with the minimum payment
is chosen as the optimal solution that satisfies the sender’s bit
rate requirement. Consequently, it requires the knowledge of
all auction outcomes, all the way to the destination, before
the data packet is actually transmitted. Note that it requires
not only the knowledge of network topology, but also the
SINR at each available channel, at each receiver, at each
hop. Because of that, the proposed algorithm assumes static
network topologies. Additionally, the assigned price to each
channel is treated as a given, from previous negotiations with
the PU (not treated in the paper). Therefore, the price of each
bid is simply the sum of pre-assigned prices of the chosen
bundle of channels.

Recently, Koutsopoulos et al. [15] have considered multi-
hop device-to-device (D2D) communications where social
network ties are leveraged by MNOs to achieve efficient
data transport. Their work is based on the D2D paradigm
of 4G+ technologies, where end-to-end path formation and
resource allocation (e.g., spectrummanagement) are centrally
controlled by the operator. However, data forwarding deci-
sions are left to the user, whose willingness to relay data
packets (i.e., the user benefit) is related to the strength of
his social ties. The problem is modeled as a constrained
minimum-cost problem on the communication graph, where
the constraints arise from the delivery probability derived
from the social network graph. We note that, although social
ties may increase one’s willingness to forward the packets,
a scheme for actual compensation (e.g., discounts, credits,
etc.) should supplement this approach, since regardless of its
social ties, all users will have to donate part of their precious
resources (battery life, storage, bandwidth, etc.) to the task of
data offloading.
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Along the lines of leveraging social interactions for pur-
poses of packet forwarding, Nunes et al. [17] have also
investigated D2D multi-hop communication through social
group meetings. They have argued that social-based solutions
like Bubble Rap [31], and similar ideas, have the draw-
back of relying on the community structure of mobile social
networks. Such communities are computationally expensive
to detect, especially in distributed environments, and they
depend too much on scenario-specific parameter tuning.
Their proposal, GROUPS-NET, is based on packet forward-
ing through the most probable ‘‘group-to-group’’ path, where
a group is defined as a group of people who are together,
in space and time, for some reason. In a group meeting the
message can be transmitted to all nodes. However, the mes-
sage must be forwarded to the next group and so on, until
it reaches a group to which the destination belongs. Their
solution relies on a centralized control plane at the base
station, who computes themost probable group-to-group path
P and returns it to the source node. Therefore, such a solution
(and similar ones) are not in the spirit of the one we propose
here, since they assume cooperation among nodes upfront.

Xu et al. [23] treated the relay of ‘‘bundles’’ in opportunis-
tic networks based on the store-carry-forward paradigm. They
adopted a single-copy mechanism, where only one node has
a copy of the message at any time. To promote cooperation,
a bargain game is proposed for every time a node encounters
a potential relay. But, the bargain game can happen only
between two nodes: the buyer (sender) and the potential seller
(relay), i.e., no concurrent competition amongmultiple relays
is allowed. They assume the existence of a Credit Clearance
Center (CCC) connected to the Internet to manage the virtual
currency. Each node registers itself to the CCC and gets a
digitally-signed receipt for each transaction of relay service,
which is submitted to the CCC. A node only gets paid after
the destination receives the bundle and submits an ACK to the
CCC. In spite of the promising performance, this work does
not specify how nodes can recognize relays along the time,
i.e., no specification is given about what types of messages
are exchanged (and when) for the nodes to announce them-
selves and perform a bargain through the alternative wireless
interface (e.g., Bluetooth).

Mai et al. [4] propose the ‘‘virtual bank with movement
prediction’’ (VBMP), which introduces slight modifications
to the bargain game model previously discussed [23] for
opportunistic networks. In particular, VBMP makes use of
GPS-based locations to estimate the encounter probabilities
between nodes. Hence, based on each neighbor’s encounter
probability with the destination node and their expected
revenue with the given transaction, the source node either
waits to transmit the information directly to the destination
node or to relay it to a subset of neighbors (as opposed to
a single relay as in [23]). The encounter prediction system
assumes a constant speed for the nodes, and disregards the
impact of channel propagation effects.

Feng et al. [22] proposed the incentive compatible
multiple-copy packet forwarding (ICMPF), which exploits

an evolutionary game framework to model the interac-
tions among nodes in an opportunistic network. Their work
assumes that an ‘‘attraction point’’ (AP) transfers multiple
copies of a data packet to mobile nodes to increase the
likelihood of successful delivered at destination. The nodes
are divided into different classes determined by social ties
and similar characteristics. Any node that receives a packet
decides to forward it or drop it according to a payoff function
that depends on the value of a virtual currency, a meeting
probability between nodes, and the cost of a packet trans-
mission. A credit clearance center (CCC) [23] manages the
virtual currency, and a node is only paid if its copy is the
first one to arrive at destination (i.e., all the other relays who
deliver the same copy later are not rewarded and have their
resources wasted). Unfortunately, the meeting probability
used in the cost function assumes a Poisson process of known
parameter, which is not a realistic assumption under arbitrary
mobility patterns. Moreover, the existence of an evolutionary
stable strategy is proved to networks with only 3 hops, and
its solution requires the knowledge of all utility functions
and exact actions adopted by all nodes in the network, which
leads to huge communication overhead, as pointed out by the
authors themselves. Because of that, an empirical distributed
solution is also proposed that still relies on the aforemen-
tioned Poisson assumptions.

In the context of delay-tolerant networks,
Seregina et al. [32] considered a network of two hops, where
source and destination are fixed, while the relays are mobile,.
The source node delivers multiple copies of a packet to relays
who approach it. The relays do not seek profit, and they only
accept the message if the reward proposed by the source
offsets the expected cost to deliver the message, as estimated
by the relays themselves when they meet the source. Only the
relay who first delivers the message to destination receives
the reward. Hence, every relay computes the average delivery
cost by estimating the probability of successful delivery at
destination. Such probability is dependent on the information
the source provides at the time they first meet. Three static
strategies are proposed based on whether the source tells
the relay how many other relays have already received the
message and at what times (i.e., by combining the avail-
ability or not of these information). Explicit expressions for
the probability of successful delivery are derived for the
particular case of exponential inter-contact times.

Umar et al. [8] addressed cooperation in wireless sensor
networks where the selfish behavior of nodes can degrade
end-to-end delay and lead to unfair energy consumption.
A base station (BS) is responsible for distributing ‘‘reward
scores’’ (RSc) to sensor nodes (i.e., values of a virtual cur-
rency) that are used to pay for the forwarding service of
other sensors. The BS distributes RSc to nodes according
to specific attributes computed for each node. Two rout-
ing protocols are employed concurrently: Dynamic Source
Routing (DSR) [30], for the basic routing functionality, and
OLSR [27] for control message dissemination and delivery of
‘‘scores’’ to nodes. To transfer data, a data source broadcasts
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a forward request, which is followed by the reception of ‘‘bar-
gaining scores’’ (BSc) computed from ‘‘individual bargain
scores’’ (IBSc) accumulated in each path. The source node
always picks the neighbor with the smallest BSc. This means
that the data transfer happens only after gathering all BScs
from all possible paths. Moreover, the bargaining may run
several times (a Rubinstein-Stahl game is employed), that
consumes resources and decreases the benefit of involved par-
ties at each run. Nodes are assumed to store their neighbors’
location, energy levels, and demand scores, which imposes
a significant control overhead. Also, because the definition
of a node’s neighbors is based on plain Euclidean distance,
no channel propagation effects are considered for link estab-
lishment. Given such constraints, the scheme is proposed for
static WSNs only.

VII. CONCLUSION AND FUTURE WORK
This paper presented a comprehensive performance evalua-
tion of the so-called Tightness strategy for cooperative routing
and relay of messages ‘‘on-the-go,’’ via per-hop reversed
packet auctions. At each hop, the sender of a data packet
(buyer) asks for bids from potential relays (sellers), according
to a budget value associated to the data packet, through
which the auction winner gets paid and can pay for others
in subsequent auctions. In addition to the budget, a fine is
also announced in every auction, which must be paid by all
relay nodes of a given packet if it is not delivered within
the announced deadline (expressed in number of hops). The
Tightness strategy uses the idea of estimating how ‘‘tight’’ a
node is to fulfill the job of delivering a packet to its destination
within the announced deadline. In other words, a node esti-
mates how much ‘‘room’’ it has (with respect to the deadline)
to absorb eventual bad forwarding decisions resulted from the
unpredictable outcomes of other downstream auctions. For
tightness computations, the nodes in the T2T network rely
on the sharing of topology information only. The ‘‘tightness’’
concept was used in the design of the bidding and decision-
making sub-strategies, which take as input parameters the
offered price and the relative ‘‘tightness’’ of the nodes.

The performance of the Tightness strategy was investigated
for two specific preference functions used in the decision-
making sub-strategy, according to different operating points
(leading to three preference functions). Both static andmobile
scenarios were investigated, for different node speeds, assum-
ing channel errors and realistic MAC activity (IEEE 802.11).
Two baseline strategies were also investigated for purposes of
performance comparison: one that prioritizes packet delivery
over budget gains (using shortest-path routing), and a greedy
one, that always pick the highest bid regardless of packet
delivery within the deadline. All strategies were evaluated
according to packet delivery ratio, average budget per node,
fairness on budget sharing fairness, and average number of
hops to destination.

The presented results have shown that, apart from the
Lowest Bid strategy, which delivered very low packet deliv-
ery ratios, all strategies proved to be very suitable for T2T

data offloading under recursive auctions. Overall, they have
provided consistent and positive results across all perfor-
mance metrics, in both static and mobile scenarios. Accord-
ing to the results, two of the proposed variations of the
Tightness strategy proved to be more effective than sim-
ply using shortest-path routing without taking into account
the nodes’ bids in the decision-making sub-strategy. In par-
ticular, the preference functions Hyperplane and Gaussian
(the one that prioritizes the lowest bid with the highest rel-
ative tightness) performed better than Shortest Path with
respect to average budget per node, average number of hops
to destination, and packet delivery ratio, especially under
mobility. This result indicates that the use of the tightness
concept in both bidding and decision-making sub-strategies
is beneficial for cooperative behavior and better overall per-
formance of T2T offloading under recursive auctions. This
happens because the nodes who perceive a ‘‘tight’’ condition
to deliver a packet within the announced deadline discourage
the auctioneer from choosing them by bidding high values.
As far as fairness in budget distribution among nodes is
concerned, the Tightness strategies delivered slightly lower
results than Shortest Path due to a higher variation of accumu-
lated budget along a route. However, the Tightness strategies
presented lower fairness variation across different mobility
scenarios.

We envisage many future directions for this work. One
such possibility is to allow multiple winners per auction
(e.g., by selecting the best l choices among m bids), so that
multiple replicas of the same data packet can follow different
paths to the target destination in order to increase the packet
delivery ratio. In this case, the sharing of the budget value
among the l auction winners should be addressed carefully,
so that enough budget remains to be shared among nodes over
different paths. Different strategies could be devised based on
the ranking of auction bidders with respect to the likelihood
of delivering the packet to the destination. Related to that,
applicable fines should also be treated: for instance, what
happens if multiple copies of the same data packet arrive at
destination, within the deadline, but at different time instants
due to the different paths taken? Should the nodes pertaining
to routes delivering late copies (within the deadline) pay a
fine or be rewarded somehow?

Another challenging research direction is the consideration
of the nodes’ battery energy levels as an input parameter for
the auction strategies. As discussed before, improving the
overall energy consumption (i.e., network lifetime) while sat-
isfying a given packet delivery deadline not only increases the
dimension of the decision problem, but also imposes a signif-
icant trade-off that demands careful design of the preference
(utility) functions. Moreover, considering the ‘‘on-the-go’’
routing nature of the proposed auction mechanism, it is
unclear whether the local knowledge of the bidders’ battery
energy levels, in a specific auction, can lead to better (energy-
wise) routes to the target destination. If not, how to ensure
timely and proper broadcast of the batteries’ energy levels
throughout the network?
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The adoption of delay-tolerant principles to scenarios
where the packet delivery deadline can be relaxed (or traded
somehow) so that network partitions can be better han-
dled is also a venue of future research, along with hybrid
operations based on that principle, i.e., different incentive
schemes could be used based on the need to use delay-
tolerant mechanisms at a given moment. Also, the design of
appropriate (or optimal) values for the budget B0, fine F0, and
deadline H0 are of interest, especially if a specific form of
incentive scheme is defined by the application, considering
the actual nature of the virtual currency (i.e., monthly dis-
counts, credits on mobile data plans, etc.), and considering
constraints over the possible range of values adopted by the
operator.

Last, but not least, a challenging problem is a mathemat-
ical analysis on whether the Tightness strategy converges to
optimal paths and, if so, under what conditions this is satis-
fied, so that one can understand the scope of its application
across different network scenarios. For this purpose, game-
theoretic approaches could be developed based on previous
works discussed in Section VI, or by looking at tools such
as non-classic algebra [33], [34] which might help studying
the strategy’s convergence properties and optimal behavior.
In any case, a key issue for analysis is the mobility of nodes.
As previously discussed, most of previous works have dealt
with static or semi-static networks because they rely on a
two-step forwarding process: first all needed information
(e.g., link costs, topology, etc.) is transferred to the desti-
nation node, who decides about the least-cost path(s) and
associated payments. Then, the selected route, and associated
payments, are sent back to the source node, who start the
actual data packet transmission and payments. In such cases,
one could possibly investigate the convergence and optimality
of selected paths because all needed information is known
at destination. In our case, however, an auctioneer does not
know, in advance, all possible bidders of any auction over any
path (and negotiated budget, fine, and bid values). In particu-
lar, due to mobility, an auctioneer cannot anticipate who will
participate in a given auction down a possible path, which
makes the problem particularly difficult to handle.

REFERENCES
[1] H. Luo, X. Meng, R. Ramjee, P. Sinha, and L. Li, ‘‘The design and

evaluation of unified cellular and ad-hoc networks,’’ IEEE Trans. Mobile
Comput., vol. 6, no. 9, pp. 1060–1074, Sep. 2007.

[2] F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella, R. Bruno,
and M. Conti, ‘‘Data offloading techniques in cellular networks: A sur-
vey,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 580–603,
2nd Quart., 2015.

[3] N. Jiang, L. Guo, J. Li,M. Ren, S. Cheng, andX. Guo, ‘‘Data dissemination
protocols based on opportunistic sharing for data offloading in mobile
social networks,’’ in Proc. IEEE 22nd Int. Conf. Parallel Distrib. Syst.
(ICPADS), Dec. 2016, pp. 705–712.

[4] L. Mai, D. Pan, H. Song, and C. Wang, ‘‘A T2T-based offloading
method: Virtual bank with movement prediction,’’ IEEE Access, vol. 6,
pp. 16408–16422, 2018.

[5] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and J. Crowcroft, ‘‘A survey
of opportunistic offloading,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2198–2236, 3rd Quart., 2018.

[6] E. Wang, Y. Yang, J. Wu, and W. Liu, ‘‘Phone-to-Phone communication
utilizing WiFi hotspot in energy-constrained pocket switched networks,’’
IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 8578–8590, Oct. 2016.

[7] F. S. Shaikh and R. Wismuller, ‘‘Routing in multi-hop cellular device-to-
device (D2D) networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 4, pp. 2622–2657, Jun. 2018.

[8] M. M. Umar, S. Khan, R. Ahmad, and D. Singh, ‘‘Game theoretic reward
based adaptive data communication in wireless sensor networks,’’ IEEE
Access, vol. 6, pp. 28073–28084, 2018.

[9] L. Anderegg and S. Eidenbenz, ‘‘Ad hoc-VCG: A truthful and cost-
efficient routing protocol for mobile ad hoc networks with selfish agents,’’
in Proc. 9th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2003,
pp. 245–259.

[10] S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang, ‘‘On designing incentive-
compatible routing and forwarding protocols inwireless ad-hoc networks,’’
Wireless Netw., vol. 13, no. 6, pp. 799–816, Dec. 2007.

[11] E. F. Khairullah and M. Chatterjee, ‘‘Combinatorial auction based routing
in multi-channel cognitive radio networks,’’ in Proc. IEEE 25th Annu.
Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2014,
pp. 1217–1222.

[12] L. Buttyán and J.-P. Hubaux, ‘‘Nuglets: A virtual currency to stimulate
cooperation in self-organized mobile ad hoc networks,’’ EPFL, Lausanne,
Switzerland, Tech. Rep. DSC/2001/001, Jan. 2001.

[13] S. Eidenbenz, G. Resta, and P. Santi, ‘‘The COMMIT protocol for truthful
and cost-efficient routing in ad hoc networks with selfish nodes,’’ IEEE
Trans. Mobile Comput., vol. 7, no. 1, pp. 19–33, Jan. 2008.

[14] X. Su, S. Chan, and G. Peng, ‘‘Generalized second price auction in multi-
path routing with selfish nodes,’’ in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Nov. 2009, pp. 1–6.

[15] I. Koutsopoulos, E. Noutsi, and G. Iosifidis, ‘‘Dijkstra goes social: Social-
graph-assisted routing in next generation wireless networks,’’ in Proc. Eur.
Wireless, 2014, pp. 1–7.

[16] H. Zhou, K.-C. Leung, and V. O. K. Li, ‘‘Auction-based schemes for
multipath routing in selfish networks,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Apr. 2013, pp. 1956–1961.

[17] I. O. Nunes, P. O. S. Vaz deMelo, and A. A. F. Loureiro, ‘‘Leveraging D2D
multihop communication through social group meeting awareness,’’ IEEE
Wireless Commun., vol. 23, no. 4, pp. 12–19, Aug. 2016.

[18] G. B. Kalejaiye, J. A. Rondina, L. V. Albuquerque, T. L. Pereira,
L. F. Campos, R. A. Melo, D. S. Mascarenhas, and M. M. Carvalho,
‘‘Mobile offloading in wireless ad hoc networks: The tightness strategy,’’
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 96–102, Jul. 2014.

[19] E. Baccelli, F. Juraschek, O. Hahm, T. C. Schmidt, H. Will, and
M. Wählisch, ‘‘TheMANIAC challenge at IETF 87,’’ IETF Journal, vol. 9,
no. 2, pp. 27–29, Nov. 2013.

[20] E. Baccelli, F. Juraschek, O. Hahm, T. C. Schmidt, H. Will, and
M. Wählisch, ‘‘Proceedings of the 3rd MANIAC challenge, Berlin, Ger-
many, July 27–28, 2013,’’ 2014, arXiv:1401.1163. [Online]. Available:
http://arxiv.org/abs/1401.1163

[21] The NS-3 Network Simulator. Accessed: Oct. 15, 2020. [Online]. Avail-
able: http://www.nsnam.org

[22] L. Feng, Q. Yang, and K. S. Kwak, ‘‘Incentive-compatible packet forward-
ing in mobile social networks via evolutionary game theory,’’ IEEE Access,
vol. 5, pp. 13557–13569, 2017.

[23] Q. Xu, Z. Su, and S. Guo, ‘‘A game theoretical incentive scheme for relay
selection services in mobile social networks,’’ IEEE Trans. Veh. Technol.,
vol. 65, no. 8, pp. 6692–6702, Aug. 2016.

[24] M. E. Mahmoud and X. Shen, ‘‘PIS: A practical incentive system for
multihop wireless networks,’’ IEEE Trans. Veh. Technol., vol. 59, no. 8,
pp. 4012–4025, Oct. 2010.

[25] F. Wu, T. Chen, S. Zhong, C. Qiao, and G. Chen, ‘‘A bargaining-based
approach for incentive-compatible message forwarding in opportunis-
tic networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012,
pp. 789–793.

[26] L. Buttyán and J.-P. Hubaux, ‘‘Stimulating cooperation in self-organizing
mobile ad hoc networks,’’ Mobile Netw. Appl., vol. 8, no. 5, pp. 579–592,
2003.

[27] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and
L. Viennot, ‘‘Optimized link state routing protocol,’’ in Proc. IEEE Nat.
Multi-Topic Conf. (INMIC), Dec. 2001, pp. 62–68.

[28] R. Jain, W. R. Hawe, and D.-M. Chiu, A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Computer System.
Eastern Res. Lab., Digit. Equip. Corp., Hudson, MA, USA, 1984.

36326 VOLUME 9, 2021



L. S. Brito, M. M. Carvalho: Per-Hop Reversed Packet Auctions for Cooperative Routing

[29] V. D. Park and M. S. Corson, ‘‘A highly adaptive distributed routing
algorithm formobile wireless networks,’’ inProc. INFOCOM, vol. 3, 1997,
pp. 1405–1413.

[30] D. B. Johnson and D. A. Maltz, ‘‘Dynamic source routing in ad hoc
wireless networks,’’ in Mobile Computing. Boston, MA, USA: Springer,
1996, pp. 153–181.

[31] P. Hui, J. Crowcroft, and E. Yoneki, ‘‘BUBBLE rap: Social-based forward-
ing in delay-tolerant networks,’’ IEEE Trans. Mobile Comput., vol. 10,
no. 11, pp. 1576–1589, Nov. 2011.

[32] T. Seregina, O. Brun, R. El-Azouzi, and B. J. Prabhu, ‘‘On the design of
a reward-based incentive mechanism for delay tolerant networks,’’ IEEE
Trans. Mobile Comput., vol. 16, no. 2, pp. 453–465, Feb. 2017.

[33] J. L. Sobrinho, ‘‘Algebra and algorithms for QoS path computation and
hop-by-hop routing in the Internet,’’ in Proc. IEEE Conf. Comput. Com-
mun., 20th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM),
Anchorage, AK, USA, 2001, pp. 727–735.

[34] J. L. Sobrinho, ‘‘An algebraic theory of dynamic network routing,’’
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, Oct. 2005.

LUCAS S. BRITO received the B.Sc. degree in net-
work engineering and the M.Sc. degree in automa-
tion and electronic systems engineering from the
University of Brasilia, Brazil, in 2011 and 2016,
respectively. He has worked as a Researcher at the
Brazilian Agriculture Research Company. He is
currently working in the information technology
industry.

MARCELO M. CARVALHO (Member, IEEE)
received the B.Sc. degree in electrical engineer-
ing from the Federal University of Pernambuco,
Brazil, in 1995, the M.Sc. degree in electrical
engineering from the State University of Camp-
inas, Brazil, in 1998, the M.Sc. degree in electrical
and computer engineering from the University of
California at Santa Barbara, USA, in 2003, and
the Ph.D. degree in computer engineering from
the University of California at Santa Cruz, USA,

in 2006. He is currently an Assistant Professor with the Department of
Electrical Engineering, University of Brasilia, Brazil. His research interests
include wireless networks, the Internet of Things, and multimedia commu-
nications. He is also a member of the ACM Society.

VOLUME 9, 2021 36327


