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Abstract

In the last decade, we havewitnessed amyriad of astonishing successes
in Deep Learning. Despite those many successes, we may again be
climbing a peak of in�ated expectations. In the past, the false solution
was to “add computation power on problems”, today we try “piling
data”. Such behaviour has triggered a winner-takes-all rush for data
among a handful of large corporations, raising concerns about privacy
and concentration of power. It is a known fact, however, that learning
from way fewer samples is possible: humans show a much better gen-
eralisation ability than the current state of the art arti�cial intelligence.
To achieve such a feat, a better understanding of how generalisation
works is needed, in particular in deep neural networks. However, the
practice of modern machine learning has outpaced its theoretical
development. In particular, “traditional measures of model complexity
struggle to explain the generalization ability of large arti�cial neural
networks” [Zha+16]. ¿ere is yet no established new general theory of [Zha+16] Zhang et al., Understanding deep

learning requires rethinking generalization.learning which handles this pseudo-paradox. In 2015, Na ali Tishby
and Noga Zaslavsky published a seminal theory of learning based
on the information-theoretical concept of the bottleneck principle
with the potential of �lling this gap. ¿is dissertation aims to investig-
ate the e�orts using the information bottleneck principle to explain
the generalisation capabilities of deep neural networks, consolidate
them into a comprehensive digest and analyse its relation to current
machine learning theory.
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Resumo Extendido

Na última década, assistimos estupefatos umamiríade de sucessos em
Aprendizagem Profunda (Deep Learning (DL)). Apesar de tamanho
sucesso, talvez estejamos subindo um pico de expectativas in�adas.
No passado, incorremos no erro de tentar resolver problemas com
maior poder computacional, hoje estamos fazendo o mesmo tent-
ando usar cada vez mais dados. Tal comportamento desencadeou
uma corrida por bases de dados de treinamento entre grandes cor-
porações, suscitando preocupações sobre privacidade e concentração
de poder. É fato, entretanto, que aprender com muito menos dados
é possível: humanos demonstram uma habilidade de generalização
muito superior ao estado-da-arte atual em Inteligência Arti�cial.

Para atingir tal capacidade, precisamos entender melhor como
o aprendizado ocorre em Deep Learning. A prática tem se desen-
volvido mais rapidamente que a teoria na área. Em particular, Zhang
et al. demonstraram que modelos de deep learning são capazes de
memorizar rótulos aleatórios, ainda assim apresentam alto poder de
generalização [Zha+16]. A atual teoria de aprendizado de máquinas [Zha+16] Zhang et al., Understanding deep

learning requires rethinking generalization.não explica tal poder de generalização em modelos superparametriz-
ados.

Em 2015, Na ali Tishby e Noga Zaslavsky publicaram uma teoria
de aprendizado baseado no princípio do gargalo de informação (in-
formation bottleneck) [TZ15a]. Tal teoria sucitou interesse e descon- [TZ15a] Tishby and Zaslavsky, ‘Deep learning

and the information bottleneck principle’.�ança pela academia, tendo vários de seus artigos primordiais sido
contestados em artigos posteriores. Esta dissertação visa investigar
esforços esparços do uso do princípio do gargalo para explicar a ca-
pacidade de generalização de redes neurais profundas e consolidar
tal conhecimento em um compêndio deste novo desenvolvimento
teórico denominado Teoria do Gargalo de Informação (Information
Bottleneck ¿eory (IBT)) que mostre seus pontos fortes e fracos e
oportunidades de pesquisa.

a busca dos fundamentos
Nesta investigação, partimos de uma discussão �losó�ca sobre o que
é inteligência e o que signi�ca aprender (Capítulo 2) e, passo a passo
(Capítulos 3 a 5), mostramos em que fundamentos a teoria vingente de
aprendizado de máquinas (Machine Learning¿eory (MLT)), assim
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como a emergente (Information Bottleneck¿eory (IBT)) se apoiam.
Pudemos assim perceber que ambas teorias se baseiam em um con-
juntomuito similar de premissas. Amaior diferença é que Information
Bottleneck¿eory (IBT) assume o uso de variáveis aleatórias discretas
de espaços �nitos. Entretanto, tal limitação não é signi�cativa, uma vez
que pesquisas já demonstraram que é possível tornar o erro de quant-
ização arbitrariamente pequeno conquanto haja memória para tanto
[Ris86; HVC93]. Além disso, Information Bottleneck ¿eory (IBT)[Ris86] Rissanen, ‘Stochastic complexity and

modeling’.

[HVC93] Hinton and Van Camp, ‘Keeping
the neural networks simple by minimizing
the description length of the weights’.

não invalida nenhum resultado de Machine Learning¿eory (MLT),
pelo contrário, apresenta uma nova narrativa que nos permite con-
ciliar os resultados teóricos com os fenômenos observados, quando
medimos complexidade como a quantidade de informação nos pesos
de um modelo, e não a sua quantidade de parâmetros.

Essa investigação nos permitiu sintetizar o desenvolvimento teórico
em Teoria da Informação (Information¿eory (IT)) e Machine Learn-
ing¿eory (MLT) emuma abodagemque denominamosPAC-Shannon
(Capítulo 6) em que partimos dos teoremas fundamentais de Shan-
non em Information ¿eory (IT) e provamos limites para erro de
generalização em aprendizado.

explicando a nova teoria
Tishby propôs que vejamos aprendizado como um problema de codi-
�cação (Capítulo 7). Nessa perspectiva, os dados de entrada contém
informação de um alvo, uma variável rótulo, a qual não temos acesso;
o problema de aprendizado é encontrar o codi�cador-decodi�cador
que explique nossos nossos dados de treinamento; o conjunto de da-
dos (dataset) de treinamento é a de�nição da tarefa (padronagem
estrutural dos dados) que se quer aprender. Em Information Bottle-
neck¿eory (IBT), generalização não depende do espaço de hipóteses
do modelo, mas apenas dos limites de compressibilidade do data-
set. Limites esses de�nidos pelos teoremas de Shannon (Capítulo 5).
Enquanto Teoria do Aprendizado de Máquina (MLT) é agnóstica à
distribuição dos dados e modelo-dependente, Information Bottleneck
¿eory (IBT) é agnóstica ao modelo e distribuição-dependente. Esta
perspectiva, se relaciona perfeitamente com a teoria algorítimica da
informação (complexidade de Kolmogorov-Chaitin) (Seção 5.8.1).

Essa visão de informação como medida de complexidade, nos
permite analisar o treinamento enquanto ele acontece. Ou seja, para
aqueles que se sentem desconfotáveis com o fato da teoria corrente ver
modelos como uma caixa-preta, onde só se analisa a entrada e a saída,
medidas de informação nos permitem entender o que ocorre durante
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o treinamento. Essa análise leva à surpreendente conclusão de que o
aprendizado tem duas fases distintas: uma fase de ajuste e outra de
compressão. Primeiro, na fase de ajuste, o modelo memoriza os dados,
minimizando rapidamente o erro e usando muita informação que
é peculiar apenas ao dataset utilizado e não à variável-alvo; na fase
posterior de compressão, o modelo tenta esquecer o máximo possível
sobre os dados de entrada enquanto mantém a informação sobre o
alvo, reduzindo a quantidade de informação no modelo.

pontos fortes e fracos e de oportunidade em ibt
Partindo do princípio do gargalo de Teoria da Informação demon-
stramos a coesão interna desta narrativa alternativa (Capítulo 8), e
mostramos o embasamento teórico de práticas em Aprendizagem
Profunda, como o uso de Entropia Cruzada como função custo na
otimização de modelos; e seus fenômenos, como a generalização
de modelos superparametrizados e períodos críticos de aprendiz-
ado [ARS17](Capítulo 9). [ARS17] Achille et al., Critical Learning

Periods in Deep Neural Networks.A Information Bottleneck¿eory (IBT), entretanto, está longe de
ser um desenvolvimento teórico completo. Falta de rigor, de�nição
e objetivos claros em alguns dos seus artigos cientí�cos primeiros
deram razão ao ceticismo e até discrédito em que a teoria passou a
ser vista. O trabalho de Achille e Soatto (Capítulos 8 e 9) foi menos
ambicioso em suas alegações e mais rigoroso, resolvendo alguns dos
problemas da apresentação inicial da teoria, mas não se propõe a ser
completo. A presente dissertação também presta a esse papel de dar
um pouco mais de rigor e clareza aos princípios assumidos, mas há
ainda muito o que se desenvolver:

Formulação PAC: seria possível criar uma formulação PAC que de-
penda apenas de β, uma vez que esse parâmetro representa um
único limite (є, δ).

Novas estratégias de otimização: se o treinamento tem duas fases
como preconiza Information Bottleneck ¿eory (IBT), isso nos
permite usar estratégias de otimização diferenciadas para cada
uma.

Transferência de Aprendizado: se, em Information Bottleneck ¿e-
ory (IBT), complexidade depende apenas da compressibilidade
do dataset e de um nível desejado de performance e gener-
alização (β), podemos analisar a complexidade de datasets e
montar uma topologia de tarefas com a predição da similar-
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iedade (distância) entre datasets e relacionar tais resultados
teóricos com resultados empíricos como os obtidos por Zamir
et al. [Zam+18].[Zam+18] Zamir et al., ‘Taskonomy:

Disentangling task transfer learning’.

Processos ergódicos: os princípios de teoria da informaçãonão requerem
amostragem independentes e identicamente distribuídas, mas
apenas que sejam processos ergódicos.

Conexão commecânica estatística: a área de Mecânica Estatística
já se desenvolve em Física há mais de um século. A conexão
de aprendizado de máquina com teoria da informação permite
a exploração de resultados nessa área de Física (como �zeram
[CS18; Cha+19a]).[CS18] Chaudhari and Soatto, ‘Stochastic

Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

[Cha+19a] Chaudhari et al., ‘Entropy-SGD:
Biasing gradient descent into wide valleys’.

Em resumo, a presente dissertação foi capaz de estabelecer que
Information Bottleneck ¿eory (IBT) está longe de ser uma teoria
rigorosa e completa, mas que é uma interessante teoria emergente que
apresenta ainda muitas oportunidades de pesquisa e merece atenção.
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Notation

¿is section provides a concise reference describing notation used throughout this document.

numbers and arrays
a ≡ a A scalar (integer or real) or, in most cases, a vector

a⌢b a concatenated with b

A A matrix

In Identity matrix with n rows and n columns

indexing
ai Element i of vector a , with indexing starting at 1

Ai , j Element i j of matrix A

linear algebra operations
A⊺ Transpose of matrix A

det(A) Determinant of A

calculus
∇x y Gradient of y with respect to x

∂y
∂x

Derivative or partial derivative of y with respect to x

∫ f (x)dx De�nite integral over the entire domain of x

∫S f (x)dx De�nite integral with respect to x over the set S

xix



xx contents

sets
A A set

℘(A) ¿e powerset (the set of subsets) of A

{, }n ¿e set containing n  or s

{, . . . , n} ¿e set of all integers between  and n

a ∈ A a is a member of the set A

B ⊂ A B is a subset of the set A

A ∩B ¿e intersection of A and B

A ∪B ¿e union of A and B

A ¿e complement of A

∣A∣ ¿e cardinality of A

datasets and distributions
We use the word example for an outcome drawn from a distribution and the word sample for a
set of such examples. A dataset is a sample.

pdata ¿e data generating distribution

p̂data ¿e empirical distribution de�ned by the training set

S A sample, i.e. a set of training examples

xi ¿e i-th example (input) from a dataset

W(i) ¿ematrixW of weights in the i-th layer of a network

yi ¿e target associated with xi for supervised learning



contents xxi

functions
f ∶ A→ B ¿e function f with domain A and range B

f ○ g Composition of the functions f and g , f (g(⋅))

f (x; θ) ≡ fθ(x) A function of x parametrised by θ

logb x ¿e logarithm base b of x

log x = log x If no base is speci�ed, the base 2 is assumed

σ(x) A nonlinear activation function

x+ Positive part of x , i.e.,max(, x)

1[condition] is the indicator function and is  if the condition is true,  other-
wise

probability theory
Ω A experiment or sample space

ω An outcome (an example)

A An event

A�B ¿e events A and B are independent

X A random variable

X�Y ¿e random variables X and Y are independent

P(A ∣ B) ¿e probability of an event A given the event B happened

P(X = ai) ≡ PX ≡
p(ai) ≡ pi ≡ p

A probability distribution over a random variable (discrete or
continuous de�ned by the context)

a ∼ p An example a drawn from distribution p

EX∼p[x] ≡ EpX ≡
⟨X⟩p

Expectation of x w.r.t. p(x) , i.e.∑k
i= xi pi = xp+xp+⋯+xk pk

σ( f (x)) Variance of f (x) under p(x)

N (x; µ, σ) Gaussian distribution over x with mean µ and variance σ
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information theory
H[X] ¿e entropy of a random process X (bits)

DKL(p∥q) Kullback-Leibler divergence of distribution p and q

H[X∣Y] ¿e conditional entropy of a random process X given Y . (bits)

R[X] ≡ Rate[X] ¿e rate of a transmission of X (bits)

Hp,q[X] ¿e cross-entropy of X between its true distribution p and a
modelled distribution q (bits)

C[X;Y] ¿e capacity of a channel between X and Y (bits)

I[X;Y] ¿emutual information between X and Y (bits)

Tδ(X) ≡ Tє(X) ≡ Aδ
X ¿e typical set of X
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1
Introduction

‘As far as the laws of math-
ematics refer to reality,
they are not certain, and
as far as they are certain,
they do not refer to real-
ity.’

—Albert Einstein

In his acceptance speech for the Test-of-Time award in NeurIPS 2017,1 1Conference on Neural Information Pro-
cessing.Ali Rahimi2 started a controversy by frankly declaring ‘Machine learn-
2Research Scientist, Google.ing has become alchemy’ [Rah18, 12’10”]. His concerns on the lack of

[Rah18] Rahimi, Ali Rahimi NIPS 2017 Test-of-
Time Award Presentation Speech.
url: https://youtu.be/x7psGHgatGM

theoretical understanding of machine learning for critical decision-
making are rightful: ‘We are building systems that govern healthcare
and mediate our civic dialogue. We would in�uence elections. I would
like to live in a society whose systems are built on top of veri�able,
rigorous, thorough knowledge and not on alchemy.’

¿e next day, Yann LeCun3 responded: ‘Criticising an entire com- 3Deep Learning pioneer and 2018 Tur-
ing award winner. https://www.facebook.com/
yann.lecun/posts/10154938130592143munity (. . .) for practising “alchemy”, simply because our current theor-

etical tools have not caught up with our practice is dangerous.’
Both researchers, at least, agree upon one thing: the practice of

machine learning has outpaced its theoretical development. ¿at is
certainly a research opportunity.

1.1.1 A Tale of Babylonians and Greeks

Figure 1.1: Richard Feynman, Nobel laureate
physicist.4

4Except when otherwise stated, all images
were created by the author.

Richard Feynman (Figure 1.1) used to lecture this story [Fey94]: Baby-

[Fey94] Feynman,¿e Character of Physical
Law.

lonians were pioneers in mathematics; Yet, the Greeks took the credit.
We are used to the Greek way of doingMath: start from themost basic
axioms and build up a knowledge system. Babylonians were quite the
opposite; they were pragmatic. No knowledge was considered more
fundamental than others, and there was no urge to derive proofs in a
particular order. Babylonians were concerned with the phenomena,
Greeks with the ordinance. In Feynman’s view, science is construc-
ted in the Babylonian way. ¿ere is no fundamental truth. ¿eories
try to connect dots from di�erent pieces of knowledge. Only as sci-
ence advances, one can worry about reformulation, simpli�cation and

1

https://youtu.be/x7psGHgatGM
https://www.facebook.com/yann.lecun/posts/10154938130592143
https://www.facebook.com/yann.lecun/posts/10154938130592143
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ordering. Scientists are Babylonians; mathematicians are Greeks.
Mathematics and science are both tools for knowledge acquisition.

¿ey are also social constructs that rely on peer-reviewing. ¿ey are
somewhat di�erent, however.

Science is empiric, based on facts collected from experience.
When physicists around the world measured events that corrobor-
ated Newton’s “Law of Universal Gravitation”, they did not prove it
correct; they just made his theory more and more plausible. Still, only
one experiment was needed to show that Einstein’s Relativity ¿eory
was even more believable. In contrast, we can and do prove things in
mathematics.

In mathematics, knowledge is absolute truth, and the way one
builds new knowledge with it, its inference method, is deduction.
Mathematics is a language, a formal one, a tool to precisely commu-
nicate some kinds of thoughts. As it happens with natural languages,
there is beauty in it. ¿e mathematician expands the boundaries of
expression in this language.

In science, there are no axioms: a falsi�able hypothesis/theory is
proposed, and logical conclusions (predictions) from the theory are
empirically tested. Despite inferring hypotheses by induction, there
is no in�uence of psychology in the process. A tested hypothesis is
not absolute truth. A hypothesis is never veri�ed, only falsi�ed by
experiments [Pop04, p. 31-50]. Scienti�c knowledge is belief justi�ed[Pop04] Popper, A Lógica da Pesquisa

Cientí�ca. by experience; there are degrees of plausibility.
Understanding the epistemic contrast between mathematics and

science will help us understand the past of Arti�cial Intelligence (AI)
and avoid some perils in its future.

1.1.2 ¿e importance of theoretical narratives

Science is a narrative of howwe understandNature [GS18]. In science,[GS18] Gleiser and Sowinski, ‘¿e Map and
the Territory’. we collect facts, but they need interpretation. ¿e logical conclusion

from the hypothesis that predicts some behaviour in nature gives a
plausiblemeaning to what we observed.

To illustrate, take the ancient human desire of �ying. ¿ere have
always been stories of men strapping wings to themselves and attempt-
ing to �y by jumping from a tower and �apping those wings like birds
(see Figure 1.2) [Far16]. While concepts like li , stability, and control[Far16] Farrington, ¿e blitzed city : the

destruction of Coventry, 1940. were poorly understood, most human �ight attempts ended in severe
injury or even death. It did not matter howmuch evidence, howmany
hours of seeing di�erent animals �ying, those ludicrous brave men
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experienced; themeaning they took from what they saw was wrong,
and their predictions incorrect.

Figure 1.2: “A way of �ying”, Francisco Goya,
1815–1820, Amsterdam, Rijksmuseum.

¿ey did not die in vain5; Science advances when scientists are 5¿ose “researchers” deserved, at least, a Dar-
win Award of Science. ¿e Darwin Award is
satirical honours that recognise individuals
who have unwillingly contributed to human
evolution by selecting themselves out of the
gene pool.

wrong. ¿eories must be falsi�able, and scientists cheer for their fail-
ure. When it fails, there is room for new approaches. Only when we
understood the observations in animal �ight from the aerodynamics
perspective, we learned to �y better than any other animal before.
Science works by a “natural selection” of ideas, where only the �ttest
ones survive until a better one is born. Chaitin also points out that an
idea has “fertility” to the extent to which it “illuminates us, inspires
us with other ideas, and suggests unsuspected connections and new
viewpoints” [Cha06, p. 9]. [Cha06] Chaitin, Meta Math! ¿e Quest for

Omega.Being a Babylonian enterprise, science has no clear path. One of
the exciting facts one can learn by studying its history is that robust
discoveries have arisen through the study of phenomena in human-
made devices [Pie]. For instance, Carnot’s �rst and only scienti�c [Pie] Pierce, An Introduction to Information

¿eory: Symbols, Signals and Noise.work [Kle74] gave birth to thermodynamics: the study of energy, the

[Kle74] Klein, ‘Carnot's contribution to
thermodynamics’.

conversion between its di�erent forms, and the ability of energy to do
work; i.e. the science that explains how steam engines work. However,
steam engines came before Carnot’s work and were studied by him.
Such human-made devices may present a simpli�ed instance of more
complex natural phenomena.

Another example is Information¿eory. Several insights of Shan-
non’s theory of communication were generalisations of ideas already
present in Telegraphy [Sha48]. New theories in arti�cial intelligence [Sha48] Shannon, ‘A mathematical theory of

communication’.
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can, therefore, be developed from insights in the study of deep learn-
ing phenomena.66Understanding human intelligence using ar-

ti�cial intelligence is a �eld of study called
Computational Neuroscience.

1.1.3 Bringing science to Computer Science

Despite the name, Computer Science has beenmoremathematics than
science. We, computer scientists, are very comfortable with theorems
and proofs, not much with theories.

Nevertheless, AI has essentially become a Babylonian enterprise, a
scienti�c endeavour. ¿us, there is no surprise when some computer
scientists still see AI with some distrust and even disdain, despite its
undeniable usefulness:

• Even among AI researchers, there is a trend of “mathiness”
and speculation disguised as explanations in conference pa-
pers [LS18].[LS18] Lipton and Steinhardt, Troubling

Trends in Machine Learning Scholarship.

• ¿ere are few venues for papers that describe surprising phe-
nomena without trying to come up with an explanation. As if
the mere inconsistency of the current theoretical framework
was unworthy of publication.

While physicists rejoice in �nding phenomena that contradict
current theories, computer scientists get ba�ed. In Natural Sciences,
unexplained phenomena lead to theoretical development. Some be-
lieve they bring winters, periods of progress stagnation and lack of
funding in AI.77¿is seems to be Yann LeCun’s opinion: ‘Why

[Rahimi’s position is] dangerous? It is exactly
this kind of attitude that lead the ML com-
munity to abandon neural nets for over 10
years, despite ample empirical evidence that
they worked very well in many situations.’How-
ever, due to all possible alternative explana-
tions (lack of computational power, no avail-
ability ofmassive annotated datasets), it seems
harsh or simply wrong to blame theorists.

Arti�cial Intelligence has been through several of the aforemen-
tioned “winters”. In 1957, Herbert Simon8 famously predicted that

8Herbert Simon (–) received the Tur-
ing Award in , and the Nobel Prize in Eco-
nomics in .

within ten years, a computer would be a chess champion [RND10,

[RND10] Russell et al., Arti�cial Intelligence.

section 1.3]. It took around 40 years, in any case. Computer scientists
lacked understanding of the exponential nature of the problems they
were trying to solve: Computational Complexity ¿eory had yet to be
invented.

Machine Learning¿eory (computational and statistical) tries to
avoid a similar trap by analysing and classifying learning problems ac-
cording to the number of samples required to learn them (besides the
number of steps). ¿e matter of concern is that it currently predicts
that generalisation requires simpler models in terms of parameters. In
total disregard to the theory, deep learning models have shown spec-
tacular generalisation power with hundreds of millions of parameters
(and even more impressive over�tting capacity [Zha+16]).
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1.2 problem

Figure 1.3: Source: https://xkcd.com/1838/.
Reprinted with permission.

In the last decade, we have witnessed a myriad of astonishing suc-
cesses inDeep Learning. Despite thosemany successes in research and
industry applications, we may again be climbing a peak of in�ated
expectations. If in the past, the false solution was to “add compu-
tation power” on problems, today we try to solve them by “piling
data”(Figure 1.3). Such behaviour has triggered a winner-takes-all
competition for who owns more data (our data) amidst a handful of
large corporations, raising ethical concerns about privacy and con-
centration of power [O’N16].

[O’N16] O’Neil,Weapons of Math Destruction:
How Big Data Increases Inequality and
¿reatens Democracy.

Nevertheless, we know that learning from way fewer samples is
possible: humans show a much better generalisation ability than our
current state-of-the-art arti�cial intelligence. To achieve such needed
generalisation power, we may need to understand better how learning
happens in deep learning. Rethinking generalisation might reshape
the foundations of machine learning theory [Zha+16]. [Zha+16] Zhang et al., Understanding deep

learning requires rethinking generalization.

1.2.1 Possible new explanation in the horizon

In , Tishby and Zaslavsky proposed a theory of deep learning
[TZ15b] based on the information-theoretical concept of the bot- [TZ15b] Tishby and Zaslavsky, ‘Deep learning

and the information bottleneck principle’.tleneck principle, of which Tishby is one of the authors. Later, in
2017, Shwartz-Ziv and Tishby followed up on the Information Bottle-
neck ¿eory (IBT) with the paper ‘Opening the Black Box of Deep
Neural Networks via Information’, which was presented in a well-
attended workshop9, with appealing visuals that clearly showed a 9Deep Learning: ¿eory, Algorithms, and Ap-

plications. Berlin, June 2017 http://doc.ml.

tu-berlin.de/dlworkshop2017“phase transition” happening during training. ¿e video posted on
Youtube [Tis17a] became a “sensation”10, and received a wealth of

[Tis17a] Tishby, Information ¿eory of Deep
Learning.
url: https://youtu.be/bLqJHjXihK8

10By the time of this writing, this video asmore
than ,  views, which is remarkable for an
hour-long workshop presentation in an aca-
demic niche. https://youtu.be/bLqJHjXihK8

publicity when well-known researchers like Geo�rey Hinton11, Samy

11Another Deep Learning Pioneer and Turing
award winner (2018).

Bengio (Apple) and Alex Alemi (Google Research) have expressed
interest in Tishby’s ideas [Wol17]. they are called formal languages.

[Wol17] Wolchover, New¿eory Cracks Open
the Black Box of Deep Learning.

I believe that the information bottleneck idea could be very
important in future deep neural network research.

—Alex Alemi

Andrew Saxe (Harvard University) rebutted Shwartz-Ziv and
Tishby claims in ‘On the Information Bottleneck ¿eory of Deep
Learning’ and was followed by other critics. According to Saxe, it was
impossible to reproduce [ST17]’s experiments with di�erent paramet- [ST17] Shwartz-Ziv and Tishby, ‘Opening

the Black Box of Deep Neural Networks via
Information’.ers.

https://xkcd.com/1838/
http://doc.ml.tu-berlin.de/dlworkshop2017
http://doc.ml.tu-berlin.de/dlworkshop2017
https://youtu.be/bLqJHjXihK8
https://youtu.be/bLqJHjXihK8
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Has the initial enthusiasm on the IBT been unfounded? Have we let
us “fool ourselves” by beautiful charts and a good story?

1.2.2 Problem statement

¿e practice of modern machine learning has outpaced its the-
oretical development. In particular, deep learning models present
generalisation capabilities unpredicted by the current machine learn-
ing theory. ¿ere is yet no established new general theory of learning
which handles this problem.

IBT was proposed as a possible new theory with the potential of
�lling the theory-practice gap. Unfortunately, to the extent of our
knowledge, there is still no comprehensive digest of IBT nor an ana-
lysis of how it relates to current Machine Learning¿eory (MLT).

1.3 objective
¿is dissertation aims to investigate to what extent can the emer-
gent Information Bottleneck¿eory help us better understand Deep
Learning and its phenomena, especially generalisation, presenting its
strengths, weaknesses and research opportunities.

1.3.1 Research Questions

1. What are the fundamentals of IBT? How do they di�er from the
ones from MLT?

2. What is the relationship between IBT and current MLT? How
di�erent or similar they are?

3. Is IBT capable of explaining the phenomena MLT already ex-
plains?

4. Does IBT invalidate results in MLT?

5. Is IBT capable of explaining phenomena still not well under-
stood by MLT?

6. What are Information Bottleneck¿eory’s (IBT) strengths?

7. What are Information Bottleneck¿eory’s (IBT) weaknesses?

8. What has been already developed in IBT?

9. What are Information Bottleneck ¿eory’s (IBT) research op-
portunities?
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1.4 methodology
Scope: Given that IBT is yet not a well-established learning theory,
there were two di�culties that the research had to address:

a) ¿ere is a growing interest in the subject, and new papers are
published every day. It was essential to select literature and
restrain the analysis.

b) Early on, the marks of an emergent theory in its infancy mani-
fested in the form of missing assumptions, inconsistent nota-
tion, borrowed jargon, and seeming missing steps. Foremost,
it was unclear what was missing from the theory and what
was missing in our understanding.

An initial literature review on IBT was conducted to de�ne the
scope.12 We then chose to narrow the research to Information Bot- 12Not even the term IBT is universally adopted.

tleneck¿eory’s (IBT) theoretical perspective on generalisation,
where we considered that it could bring fundamental advances. We
made the deliberate choice of going deeper in a limited area of IBT
and not broad, leaving out a deeper experimental and application
analysis, all the work on Information-¿eoretic Learning (ITL)13 13ITL makes the opposite path we are taking,

bringing concepts of machine learning to in-
formation theory problems.[Pri10] and statistical-mechanics-based analysis of SGD [CS18;

[Pri10] Principe, Information theoretic learn-
ing: Renyi’s entropy and kernel perspectives.

[CS18] Chaudhari and Soatto, ‘Stochastic
Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

Cha+19b]. From this set of constraints, we chose a list of pieces of

[Cha+19b] Chaudhari et al., ‘Entropy-sgd:
Biasing gradient descent into wide valleys’.

IBT literature to go deeper (Appendix A).

Background analysis: In order to answer research questions 1 to 4,
we discuss the epistemology of Arti�cial Intelligence to choose
fundamental axioms (de�nition of intelligence and the de�nition
of knowledge) with which we deduced from the ground up MLT,
Information ¿eory (IT) and IBT, revealing hidden assumptions,
pointing out similarities and di�erences. By doing that, we built
a “genealogy” of these research �elds. ¿is comparative study was
essential for identifying missing gaps and research opportunities.

IBT literature digest: In order to answer research questions 5 to 9, we
�rst dissected the selected literature (Appendix A) and organised
scattered topics in a comprehensive sequence of subjects.

IBT analysis: In the process of the literature digest, we identi�ed res-
ults, strengths, weaknesses and research opportunities.

1.5 contributions
In the research conducted, we produced three main results that, to
the extent of our knowledge, are original:
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IBT Digest and Analysis: ¿e dissertation itself is the main expected
result: a comprehensive digest of the IBT literature and a snap-
shot analysis of the �eld in its current form, focusing on its
theoretical implications for generalisation.

PAC-Shannon: Wepropose an Information-¿eoretical learning prob-
lem di�erent fromMinimum Description Length (MDL) pro-
posed by [HVC93] for which we derived bounds using Shan-[HVC93] Hinton and Van Camp, ‘Keeping

the neural networks simple by minimizing
the description length of the weights’. non’s ¿eorems 6.3 to 6.6. ¿ese results, however, are only in-

dicative as they lack peer review to be validated.

Layers reduce the e�ective hypothesis space: We present a critique
on Achille’s explanation [Ach19; AS18a] for the role of layers[Ach19] Achille, ‘Emergent Properties of Deep

Neural Networks’.
url: https : / / escholarship . org / uc / item /
8gb8x6w9

[AS18a] Achille and Soatto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’.

in Deep Representation in the IBT perspective (Section 9.5.2),
pointing out a weakness in the argument that, as far as we know,
has not yet been presented.We then propose a counter-intuitive
hypothesis that layers reduce the model’s “e�ective” hypothesis
space. ¿is hypothesis is not formally proven in the present
work, but we try to give the intuition behind it (Section 9.5.2).
¿is result has not yet been validated as well.

1.6 dissertation preview and outline
¿e dissertation is divided into two main parts (Part I and Part III),
with a break in the middle (Part II).

1. Background (Part I)

• Chapter 2–Arti�cial Intelligence:¿e chapter de�nes what
arti�cial intelligence is, presents the epistemological dif-
ferences of intelligent agents in history, and discusses their
consequences to machine learning theory.

• Chapter 3 — Probability ¿eory: ¿e chapter derives pro-
positional calculus and probability theory from a list of de-
sired characteristics for epistemic agents. It also presents
basic Probability ¿eory concepts.

• Chapter 4—Machine Learning¿eory:¿e chapter presents
the theoretical framework of Machine Learning, the PAC
model, theoretical guarantees for generalisation, and ex-
pose its weaknesses concerning Deep Learning phenom-
ena.

• Chapter 5 — Information ¿eory: ¿e chapter derives
Shannon Information from Probability ¿eory, explicates

https://escholarship.org/uc/item/8gb8x6w9
https://escholarship.org/uc/item/8gb8x6w9
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some implicit assumptions, and explains basic Informa-
tion¿eory concepts.

2. Intermezzo (Part II)

• Chapter 6 — Information-¿eoretical Epistemology: ¿is
chapter closes the background part and opens the IBT
part of the dissertation. It shows the connection of IT
and MLT in the learning problem, proves that Shannon
theorems can be used to prove PAC bounds and present
the Minimum Description Length (MDL) Principle, an
earlier example of this kind of connection.

Information �eory

2nd Law

1st LawSTL

PAC-Bayes

PAC

Machine Learning �eory

Information �eoretic Learning

MDL

PAC-Shannon

Information Bottleneck �eory

IB-method

IB and RL

IB and DL

Arti�cial Intelligence

ConnectionismSymbolism

Language

Logic Bayesian Inference

Epistemology
Intelligence

Rationalist
View Knowledge Sceptical

View

Math Science

Figure 1.4: IBT “genealogy” tree.

3. ¿e emergence of a theory (Part III)

• Chapter 7 — IB Principle: Explains the IB method and
its tools: Kullback-Leibler divergence (DKL) as a natural
distortion (loss) measure, the IB Lagrangian and the In-
formation Plane.

• Chapter 8 — IB and Representation Learning: Presents
the learning problem in the IBT perspective (not speci�c
to Deep Learning (DL)). It shows how some usual choices
of the practice of DL emerge naturally from a list of de-
sired properties of representations. It also shows that the
information in the weights bounds the information in the
activations.

• Chapter 9 — IB and Deep Learning:¿is chapter presents
the IBT perspective speci�c to Deep Learning. It presents
IBT analysis of Deep Learning training, some examples of
applications of IBT to improve or create algorithms; and
the IBT learning theory of Deep Learning. We also explain
Deep Learning phenomena in the IBT perspective.

• Chapter 10 — Conclusion: In this chapter, we present a
summary of the �ndings, answer the research questions,
and present suggestions for future work.

We found out that IBT does not invalidate MLT; it just interprets
complexity not as a function of the data (number of parameters) but
as a function of the information contained in the data. With this
interpretation, there is no paradox in improving generalisation by
adding layers.
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Furthermore, they both share more or less the same “genealogy”
of assumptions. IBT can be seen as particular case of MLT. Never-
theless, IBT allows us to better understand the training process and
provide a di�erent narrative that helps us comprehend Deep Learning
phenomena in a more general way.



Part I

BACKGROUND





2
Arti�cial Intelligence

‘I visualise a time when we
will be to robots what dogs
are to humans,. . .
. . . and I am rooting for
the machines.’

—Claude Shannon

¿is chapter de�nes arti�cial intelligence, presents the epistemolo-
gical di�erences of intelligent agents in history, and discusses their
consequences to machine learning theory.

2.1 artificial intelligence
De�nition 2.1. AI is the branch of Computer Science that studies gen-
eral principles of intelligent agents andhow to construct them [RND10]. [RND10] Russell et al., Arti�cial Intelligence.

¿is de�nition uses the terms intelligence and intelligent agents, so
let us start from them.

2.1.1 What is intelligence?

Despite a long history of research, there is still no consensual de�ni-
tion of intelligence.1 Whatever it is, though, humans are particularly 1For a list with 70 de�nitions of intelligence,

see [LH07].proud of it. We even call our species homo sapiens, as intelligence was
an intrinsic human characteristic.

In this dissertation:

De�nition 2.2. Intelligence is the ability to predict a course of action
to achieve success in speci�c goals.

13
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2.1.2 Intelligent Agents

Under our generous de�nition, intelligence is not limited to humans.
It applies to any agent2: animal ormachine. For example, a bacteria can2An agent is anything that perceives its envir-

onment and acts on it. perceive its environment through chemical signals, process them, and
then produce chemicals to signal other bacteria. An air-conditioning
can observe temperature changes, know its state, and adapt its func-
tioning, turning o� if it is cold or on if it is hot — intelligence exempts
understanding. ¿e air-conditioning does not comprehend what it is
doing. ¿e same way a calculator does not know arithmetics.

2.1.3 A strange inversion of reasoning

¿is competence without comprehension is what the philosopher
Daniel Dennett calls Turing’s strange inversion of reasoning3. ¿e idea3In his work, Turing discusses if computers

can “think”, meaning to examine if they
can perform indistinguishably from the way
thinkers do.

of a strange inversion comes from one of Darwin’s 19th-century critics
( MacKenzie as cited by Dennett):

In the theory with which we have to deal, Absolute Ignorance is
the arti�cer; so that we may enunciate as the fundamental prin-
ciple of the whole system, that, in order to make a perfect and
beautiful machine, it is not requisite to know how to make it.
¿is proposition will be found, on careful examination, to express,
in condensed form, the essential purport of the [Evolution] ¿e-
ory, and to express in a few words all Mr Darwin’s meaning; who,
by a strange inversion of reasoning, seems to think Absolute
Ignorance fully quali�ed to take the place of Absolute Wisdom
in all of the achievements of creative skill.

—Robert MacKenzie

Counterintuitively to MacKenzie and many others to this date, intelli-
gence can emerge from absolute ignorance. Turing’s strange inversion
of reasoning comes from the realisation that his automata can perform
calculations by symbol manipulation, proving that it is possible to
build agents that behave intelligently, even if they are entirely ignorant
of the meaning of what they are doing [Tur07].[Tur07] Turing, ‘Computing Machinery and

Intelligence’.

2.2 dreaming of robots
2.2.1 From mythology to Logic

¿e idea of creating an intelligent agent is perhaps as old as humans.
¿ere are accounts of arti�cial intelligence in almost any ancient myth-
ology: Greek, Etruscan, Egyptian, Hindu, Chinese [May18]. For ex-[May18] Mayor, Gods and Robots: Myths,

Machines, and Ancient Dreams of Technology. ample, in Greek mythology, the story of the bronze automaton of
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Talos built by Hephaestus, the god of invention and blacksmithing,
�rst mentioned around 700 BC.

¿is interest may explain why, since ancient times, philosophers
have looked formechanicalmethods of reasoning. Chinese, Indian
and Greek philosophers all developed formal deduction in the �rst
millennium BC. In particular, Aristotelian syllogism, laws of thought,
provided patterns for argument structures to yield irrefutable conclu-
sions, given correct premises. ¿ese ancient developments were the
beginning of the �eld we now call Logic.

2.2.2 Rationalism: ¿e Cartesian view of Nature

In the 13th century, the Catalan philosopher Ramon Lull wanted to
produce all statements the human mind can think. For this task, he
developed logic paper machines, discs of paper �lled with esoteric
coloured diagrams that connected symbols representing statements.
Unfortunately, according to Gardner, in a modern reassessment of

Figure 2.1: Example of one of Lull’s Ars
Magna’s paper discs.

his work, “it is impossible, perhaps, to avoid a strong sense of anti-
climax” [Gar59]. With megalomaniac self-esteem that suggests psy-

[Gar59] Gardner, Logic machines and
diagrams.

chosis, his delusional sense of importance is more characteristic of
cult founders. On the bright side, his ideas and books exerted some
magic appeal that helped them be rapidly disseminated through all
Europe [Gar59].

Lull’s work greatly in�uenced Leibniz and Descartes, who, in the
17thcentury, believed that all rational thought could be mechanised.
¿is belief was the basis of rationalism, the epistemic view of the
Enlightenment that regarded reason as the sole source of knowledge.
In other words, they believed that reality has a logical structure and
that certain truths are self-evident, and all truths can be derived from
them.

¿ere was considerable interest in developing arti�cial languages
during this period. Nowadays, they are called formal languages.

If controversies were to arise, there would be no more need
for disputation between two philosophers than between two ac-
countants. For it would su�ce to take their pencils in their hands,
to sit down to their slates, and to say to each other: Let us calcu-
late.

—Gottfried Leibniz

¿e rationalist view of the world has had an enduring impact
on society until today. In the 19thcentury, George Boole and others
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developed a precise notation for statements about all kinds of objects
in Nature and their relations. Before them, Logic was philosophical
rather thanmathematical.¿e name of Boole’smasterpiece, “¿e Laws
of ¿ought”, is an excellent indicator of his Cartesian worldview.

At the beginning of the 20th century, some of the most famous
mathematicians, David Hilbert, Bertrand Russel, Alfred Whitehead,
were still interested in formalism: they wanted mathematics to be
formulated on a solid and complete logical foundation. In particular,
Hilbert’s Entscheidungs Problem (decision problem) asked if there
were limits to mechanical Logic proofs [Cha06].[Cha06] Chaitin, Meta Math! ¿e Quest for

Omega. Kurt Gödel’s incompleteness theorem (1931) proved that any lan-
guage expressive enough to describe arithmetics of the natural num-
bers is either incomplete or inconsistent.¿is theorem imposes a limit
on logic systems. ¿ere will always be truths that will not be provable
from within such languages: i.e. there are “true” statements that are
undecidable.

Alan Turing brought a new perspective to the Entscheidungs Prob-
lem: a function on natural numbers that an algorithm in a formal
language cannot represent cannot be computable [Cha06]. Gödel’s
limit appears in this context as functions that are not computable, i.e.
no algorithm can decide whether another algorithm will stop or not
(the halting problem). To prove that, Turing developed a whole new
general theory of computation: what is computable and how to com-
pute it, laying out a blueprint to build computers, andmaking possible
Arti�cial Intelligence research as we know it. An area in which Turing
himself was very much invested.

2.2.3 Empiricism: ¿e sceptical view of Nature

Figure 2.2: David Hume, Scottish Enlighten-
ment philosopher, historian, economist, lib-
rarian and essayist.

¿e response to rationalism was empiricism, the epistemological
view that knowledge comes from sensory experience, our perceptions
of the world. Locke explains this with the peripatetic axiom4: “there is4¿is citation is the principle from the Peripat-

etic school of Greek philosophy and is found
in¿omas Aquinas’ work cited by Locke. nothing in the intellect that was not previously in the senses” [Uzg20].

[Uzg20] Uzgalis, ‘John Locke’.
url: https://plato.stanford.edu/archives/
spr2020/entries/locke/

Bacon, Locke and Hume were great exponents of this movement,
which established the grounds of the scienti�c method.

David Hume, in particular, presented in the 18th century a radical
empiricist view: reason only does not lead to knowledge. In [Hum09],

[Hum09] Hume, Tratado da natureza
humana. Hume distinguishes relations of ideas, propositions that derive from

deduction andmatters of facts, which rely on the connection of cause
and e�ect through experience (induction). Hume’s critiques, known

https://plato.stanford.edu/archives/spr2020/entries/locke/
https://plato.stanford.edu/archives/spr2020/entries/locke/
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as the Problem of Induction, added a new slant on the debate of the
emerging scienti�c method.

From Hume’s own words:

¿e bread, which I formerly eat, nourished me; that is, a
body of such sensible qualities was, at that time, endued with
such secret powers: but does it follow, that other bread must also
nourish me at another time, and that like sensible qualities must
always be attended with like secret powers? ¿e consequence
seems nowise necessary.

—David Hume

¿ere is no logic to deduce that the future will resemble the past.
Still, we expect uniformity in Nature. As we see more examples of
something happening, it is wise to expect that it will happen in the
future just as it did in the past. ¿ere is, however, no rationality5 in 5In the philosophical sense.

this expectation.
Hume explains thatwe see conjunction repeatedly, e.g. “bread” and

“nourish”, and we expect uniformity in Nature; we hope that “nourish”
will always follow “eating bread”; When we ful�l this expectancy, we
misinterpret it as causation. In other words, we project causation into
phenomena. Hume explained that this connection does not exist in
Nature. We do not “see causation”; we create it.

¿is projection is Hume’s strange inversion of reasoning [Hue17]: [Hue17] Huebner, ¿e Philosophy of Daniel
Dennett.We do not like sugar because it is sweet; sweetness exists because

we like (or need) it. ¿ere is no sweetness in honey. We wire our
brain so that glucose triggers a labelled desire we call sweetness. As
we will see later, sweetness is information. ¿is insight shows the
pattern matching nature of humans. Musicians have relied on this for
centuries. Music is a sequence of sounds in which we expect a pattern.
¿e expectancy is the tension we feel while the chords progress.When
the progression �nally resolves, forming a pattern, we release the
tension. We feel pattern matching in our core. It is very human, it can
be bene�cial and wise, but it is, stricto sensu, irrational.

¿e epistemology of the sceptical view of Nature is science: to
weigh one’s beliefs to the evidence. Knowledge is not absolute truth
but justi�ed belief. It is a Babylonian epistemology.

In rationalism, Logic connects knowledge and good actions. In
empiricism, the connection between knowledge and justi�able actions
is determined by probability. More speci�cally, Bayes’ theorem. As
Jaynes puts it, probability theory is the “Logic of Science” [Jay03]. 6 6¿eBayes’ theorem is attributed to the Rever-

end¿omas Bayes a er the posthumous pub-
lication of his work. By the publication time,
it was an already known theorem, derived by
Laplace.
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2.2.4 ¿e birth of AI as a research �eld

Figure 2.3: Claude Shannon, father of “in-
formation theory”.

In 1943, McCulloch and Pitts, a neurophysiologist and a logician,
demonstrated that neuron-like electronic units could be wired to-
gether, act and interact by physiologically plausible principles and per-
form complex logical calculations [RND10]. Moreover, they showed

[RND10] Russell et al., Arti�cial Intelligence.

that any computable function could be computed by some network of
connected neurons [MP43]. ¿eir work marks the birth of Arti�cial

[MP43] McCulloch and Pitts, ‘A logical
calculus of the ideas immanent in nervous
activity’.

Neural Networks (ANNs), even before the �eld of AI had this name. It
was also the birth of Connectionism, using arti�cial neural networks,
loosely inspired by biology, to explain mental phenomena and imitate
intelligence.

¿eir work inspired John von Neumann’s demonstration of how
to create a universal Turing machine out of electronic components,
which lead to the advent of computers and programming languages.
Ironically, these advents hastened the ascent of the formal logicist
approach called Symbolism, disregarding Connectionism.

In 1956, John McCarthy, Claude Shannon (who invented Inform-
ation¿eory, Figure 2.3), Marvin Minsky and Nathaniel Rochester
organised a 2-month summer workshop in Dartmouth College to
bring researchers of di�erent �elds concernedwith “thinkingmachines”
(cybernetics, information theory, automata theory). ¿e workshop
attendees became a community of researchers and chose the term
“arti�cial intelligence” for the �eld.
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Figure 2.4: ¿e Blind Men and the Elephant.

It was six men of Indostan
To learning much inclined,

Who went to see the Elephant
(¿ough all of them were blind),

¿at each by observation
Might satisfy his mind

—John Godfrey Saxe,

¿e Blind Men and the Elephant [Sax16]
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2.3 building intelligent agents
2.3.1 Anatomy of intelligent agents

Like the blind men in the parable, an intelligent agent shall model her
understanding of Nature from limited sensory data.

Nature
Agent

Sensors

KB

Actuators Actions

Perceptions

Facts

Decisions

Figure 2.5: Anatomy of an Intelligent Agent.
Inspired by art in [RND10].

¿us, an agent perceives her environment with sensors, treat sens-
ory data as facts and use these facts to possibly update her model
of Nature, use the model to decide her actions, and acts via her ac-
tuators. In a way, agents continually communicate with Nature in a
perception/action conversation (Figure 2.5).

¿e expected result of this conversation is a change in the agent’s
Knowledge Base (KB), therefore in her model and, more importantly,
her future decisions. ¿e model is an abstraction of how the agent
“thinks” the world is (her “mental picture” of the environment). ¿ere-
fore, it should be consistent with it: if something is true in Nature,
it is equally valid,mutatis mutandis, in the model. A Model should
also be as simple as possible so that the agent can make decisions that
maximise a chosen performance measure, but not simpler. As the
agent knows more about Nature, less it gets surprised by it.

¿is rudimentary anatomy is �exible enough to entail di�erent
epistemic views, like the rationalist (mathematical) and the empiricist
(scienti�c); di�erent approaches to how to implement the knowledge
base (it can be learned, therefore updatable, or it can be set in stone
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from an expert prior knowledge); and also from how to implement it
(a robot or so ware).

Noteworthy, though, is that the model that transforms input data
into decisions should be the target of our focus.

2.3.2 Symbolism

Symbolism is the pinnacle of rationalism. In the words of ¿omas
Hobbes, one of the forerunners of rationalism, “thinking is the manip-
ulation of symbols and reasoning is computation”. Symbolism is the
approach to building intelligent agents that does just that. It attempts
to represent knowledge with a formal language and explicitly connects
the knowledge with actions. It is competence from comprehension. In
other words, it is programmed.

Even though McCulloch and Pitts work on arti�cial neural net-
works predates Von Neumann’s computers, Symbolism dominated AI
until the s. It was so ubiquitous that symbolic AI is even called
“good old fashioned AI” [RND10]. [RND10] Russell et al., Arti�cial Intelligence.

¿e symbolic approach can be traced back to Nichomachean
Ethics [Ari00]: [Ari00] Aristotle, Aristotle: Nicomachean

Ethics.

We deliberate not about ends but means. For a doctor does
not deliberate whether he shall heal, nor an orator whether he
shall persuade, nor a statesman whether he shall produce law
and order, nor does anyone else deliberate about his end. ¿ey
assume the end and consider how and by what means it is to be
attained; and if it seems to be produced by several means, they
consider by which it is most easily and best produced, while if it
is achieved by one only they consider how it will be achieved by
this and by what means this will be achieved, till they come to
the �rst cause, which in the order of discovery is last.

—Aristotle

¿is perspective is so entrenched that Russell et al., p. 7 still says:
“(. . .) Only by understanding how actions can be justi�ed can we under-
stand how to build an agent whose actions are justi�able”; even though,
in the same book, they cover machine learning (which we will address
later in this chapter) without noticing it is proof that there are other
ways to build intelligent agents. Moreover, it is also a negation of com-
petence without comprehension. It seems that even for AI researchers,
the strange inversion of reasoning is uncomfortable (Chapter 1).

All humans, even those in prisons and under mental health care,
think their actions are justi�able. Is that not an indication that we
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rationalise our actions ex post facto? We humans tend to think our
rational assessments lead to actions, but it is also likely possible that
we act and then rationalise a erwards to justify what we have done,
fullheartedly believing that the rationalisation came �rst.

Claude Shannon’s¿eseus

A er writing what is probably the most important master’s disserta-
tion of the 20th century and “inventing” Information ¿eory, what
made possible the Information Age we live in today, Claude Shannon
enjoyed the freedom to pursue any interest to which his curious mind
led him [SG17]. In the s, his interest shi ed to building arti�cial[SG17] Soni and Goodman, A mind at play:

how Claude Shannon invented the information
age. intelligence. He was not a typical academic, in any case. A lifelong

tinkerer, he liked to “think” with his hand as much as with his mind.
Besides developing an algorithm to play chess (when he even did not
have a computer to run it), one of his most outstanding achievements
in AI was ¿eseus, a robotic maze-solving mouse.77Many AI students will recognise in¿eseus

the inspiration to Russel and Norvig’s Wum-
pus World [RND10]. To be more accurate, ¿eseus was just a bar magnet covered with

a sculpted wooden mouse with copper whiskers; the maze was the
“brain” that solved itself [Kle18].[Kle18] Klein,Mighty mouse.

url: https://www.technologyreview.com/s/
612529/mighty-mouse/ “Under themaze, an electromagnetmounted on amotor-powered

carriage can move north, south, east, and west; as it moves, so
does ¿eseus. Each time its copper whiskers touch one of the
metal walls and complete the electric circuit, two things happen.
First, the corresponding relay circuit’s switch �ips from “on” to
“o�,” recording that space as having a wall on that side. ¿en
¿eseus rotates ○ clockwise and moves forward. In this way, it
systematically moves through the maze until it reaches the target,
recording the exits and walls for each square it passes through.”

— Klein.

Symbolic AI problems

Several symbolic AI projects sought to hard-code knowledge about
domains in formal languages, but it has always been a costly, slow
process that could not scale.

Anyhow, by , there were already programs that could solve any
solvable problemdescribed in logical notation [RND10, p.4]. However,[RND10] Russell et al., Arti�cial Intelligence.

hubris and lack of philosophical perspective made computer scientists
believe that “intelligence was a problem about to be solved8.”8Marvin Minsky, head of the arti�cial intelli-

gence laboratory at MIT () ¿ose in�ated expectations lead to disillusionment and funding
cuts9 [RND10].¿ey failed to estimate the inherent di�culty in slating9Sometimes called winters.

https://www.technologyreview.com/s/612529/mighty-mouse/
https://www.technologyreview.com/s/612529/mighty-mouse/
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informal knowledge in formal terms: the world has many shades of
grey. Besides, complexity theory had yet to be developed: they did not
count on the exponential explosion of their problems.

2.3.3 Connectionism: a di�erent approach

¿e fundamental idea in Connectionism is that intelligent behaviour
emerges from a large number of simple computational units when
networked together [GBC16]. [GBC16] Goodfellow et al., Deep Learning.

It was pioneered by McCulloch and Pitts in 1943 [MP43]. One
[MP43] McCulloch and Pitts, ‘A logical
calculus of the ideas immanent in nervous
activity’.

of Connectionism’s �rst wave developments was Frank Rosenblatt’s
Perceptron, an algorithm for learning binary classi�ers, or more spe-
ci�cally threshold functions:

y =
⎧⎪⎪⎨⎪⎪⎩

 ifWx + b > 
 otherwise

(2.1)

whereW is the vector of weights, x is the input vector, b is a bias, and
y is the classi�cation. In neural networks, a perceptron is an arti�cial
neuron using a step function as the activation function.

(a) Building in Harare, Zimbabwe, is mod-
elled a er termitemounds. Photo byMike
Pearce..

(b) Cathedral termite mound, Australia.
Photo by Awoisoak Kaosiowa, 2008.

Figure 2.6: Biomimicry of termite technique
achieves superior energy e�ciency in build-
ings.

See Figure 2.6b, termites self-cooling mounds keep the temper-
ature inside at exactly ○C, ideal for their fungus-farming; while
the temperatures outside range from 2 to ○C throughout the day.
Such building techniques inspired architect Mike Pearce to design a
shopping mall that uses a tenth of the energy used by a conventional
building of the same size.
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From where does termites intelligence come?

Individual termites react rather than think, but at a group
level, they exhibit a kind of cognition and awareness of their
surroundings. Similarly, in the brain, individual neurons do not
think, but thinking arises in their connections.

—Radhika Nagpal, Harvard University [Mar16].[Mar16] Margonelli, Collective Mind in the
Mound: How Do Termites Build ¿eir Huge
Structures?.
url: https://www.nationalgeographic.com/
news / 2014 / 8 / 140731 - termites - mounds -

insects-entomology-science/

Such collective intelligence happens in groups of just a couple of
million termites. ¿ere are around 80 to 90 billion neurons in the
human brain, each less capable than a termite, but collectively they
show incomparable intelligence capabilities.

1943: ANN invented 1986: Backpropagation 2009: Deep Learning

1995: SVMs1970: ANN discredited

McCulloch & Pitts

Minsky & Papert

Rumelhart, Hinton
& Williams

Hinton

Vapnik

Figure 2.7: A brief history of connectionism. Adapted from [Tis20].

In contrast with the symbolic approach, in neural networks, the
knowledge is not explicit in symbols but implicit in the strength of
the connections between the neurons. Besides, it is a very general and
�exible approach since these connections can be updated algorithmic-
ally: they are algorithms that learn: the connectionist approach is an
example of what we now call Machine Learning.

2.3.4 Machine Learning

Look at Figure 2.8. Is this a picture of a cat? How to write a program
to do such a simple classi�cation task (cat/no cat)? One could develop
clever ways to use features from the input picture and process them
to guess. ¿ough, it is not an easy program to design. Worse, even if
one manages to program such a task, how much would it worth to
accomplish a related task, to recognise a dog, for example? For long,

Figure 2.8: Is this a cat?

this was the problem of researchers in many areas of interest of AI:
Computer Vision (CV), Natural Language Processing (NLP), Speech
Recognition Speech Recognition (SR); much mental e�ort was put,
with inferior results, in problems that we humans solve with apparent
ease.

¿e solution is an entirely di�erent approach for building arti�cial
intelligence: instead of making the program do the task, build the
program that outputs the program that does the task. In other words,

https://www.nationalgeographic.com/news/2014/8/140731-termites-mounds-insects-entomology-science/
https://www.nationalgeographic.com/news/2014/8/140731-termites-mounds-insects-entomology-science/
https://www.nationalgeographic.com/news/2014/8/140731-termites-mounds-insects-entomology-science/
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learning algorithms use “training data” to infer the transformations
to the input that generates the desired output.

Types of learning

Machine Learning can happen in di�erent scenarios, which di�er in
the availability of training data, how training data is received, and
how the test data is used to evaluate the learning. Here, we describe
the most typical of them [MRT12]: [MRT12] Mohri et al., Foundations of Machine

Learning.

• Supervised learning:¿emost successful scenario.¿e learner
receives a set of labelled examples as training data and makes
predictions for unseen data.

• Unsupervised learning:¿e learner receives unlabelled train-
ing data and makes predictions for unseen instances.

• Semi-supervised learning:¿e learner receives a training sample
consisting of labelled and unlabelled data and makes predic-
tions for unseen examples. Semi-supervised learning is usual in
settings where unlabelled data is easily accessible, but labelling
is too costly.

• Reinforcement learning:¿e learner actively interacts with the
environment and receives an immediate reward for her actions.
¿e training and testing phases are intermixed.

2.3.5 Deep Learning

¿e s have been an AI Renaissance not only in academia but also
in the industry. Such successes are mostly due to Deep Learning (DL),
in particular, supervised deep learning with vast amounts of data
trained in Graphical Processor Units (GPUs). It was the decade of DL.

“Deep learning algorithms seek to exploit the unknown struc-
ture in the input distribution to discover good representations,
o en at multiple levels, with higher-level learned features de�ned
in terms of lower-level features.”

— Joshua Bengio [Ben12] [Ben12] Bengio, ‘Deep learning of representa-
tions for unsupervised and transfer learning’.

¿e name is explained by Goodfellow et al.: “A graph showing the
concepts being built on top of each other is a deep graph. ¿erefore the
name, deep learning” [GBC16]. Although it is a direct descendant of [GBC16] Goodfellow et al., Deep Learning.
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the connectionist movement, it goes beyond the neuroscienti�c per-
spective in its modern form. It is more a general principle of learning
multiple levels of compositions.

¿e quintessential example of a deep learning model is the deep
feedforward network or Multilayer Perceptron (MLP) [RND10].[RND10] Russell et al., Arti�cial Intelligence.

x

x

x

x

Input
layer

h()


h()


h()


h()


Hidden
layer 1

h()


h()


h()


Hidden
layer 2

ŷ

ŷ

Output
layer

De�nition 2.3. Let,

x be the input vector {x, . . . , xm}

k be the layer index, such that k ∈ [, l],

W(k)
i , j be the matrix of weights in the k-th layer, where

i ∈ [, dk−], j ∈ [, dk] andW(k)
,∶ are the biases

σ be a nonlinear function,

aMultilayer Perceptrons (MLPs) is a neural network where the input
is de�ned by:

h() = ⌢x , (2.2)

a hidden layer is de�ned by:

h(k) = σ(k)(W(k) ⊺h(k−)). (2.3)

¿e output is de�ned by:

ŷ = h(l). (2.4)

Deep Learning is usually associated with Deep Neural Networks
(DNNs), but the network architecture is only one of its components:

1. DNN architecture
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2. Stochastic Gradient Descent (SGD) — the optimiser

3. Dataset

4. Loss function

¿e architecture is not the sole component essential to current
Deep Learning success. ¿e SGD plays a crucial role, and so does the
usage of large datasets.

A known problem, though, is that DNNs are prone to over�t-
ting (Section 4.3). Zhang et al. show state-of-the-art convolutional
deep neural networks can easily �t a random labelling of training
data [Zha+16]. [Zha+16] Zhang et al., Understanding deep

learning requires rethinking generalization.

2.4 concluding remarks

Arti�cial Intelligence

ConnectionismSymbolism

Epistemology
Intelligence

Rationalist
View Knowledge Sceptical

View

Math Science

Language

Figure 2.9: In this chapter we derived the
need for a language from a philosophical ax-
iom de�ning intelligence.

¿is chapter derived the need for a language from the de�nitions of
intelligence and intelligent agents. An intelligent agent needs language
to store her knowledge (what she has learned) and with that to com-
municate/share this knowledge with its future self and with other
agents.

We claim (without proving) that a language can be derived from a
de�nition of knowledge: an epistemic choice. We claim that mathem-
atics and science can be seen as languages that di�er in consequence of
di�erent views on what knowledge is and gave historical background
on two epistemic views, Rationalism and Empiricism (Sections 2.2.2
and 2.2.3).

We gave historical background on Arti�cial Intelligence (AI) and
showed that di�erent epistemic views relate to AImovements: Symbol-
ism and Connectionism. We gave some background on basic AI con-
cepts: intelligent agents, machine learning, types of learning, neural
networks and deep learning, showing that DL relates to Connection-
ism and, hence, to science and an empiricist epistemology. Previously
(Section 1.1.3), we have discussed that Computer Science generally
relates to the rationalist epistemology. We hope this can help us better
understand our research community.

2.4.1 Assumptions

1. A de�nition of intelligence (Section 2.1.1)

2. An epistemic choice on the de�nition ofKnowledge (Sections 2.2.2
and 2.2.3)
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Probability ¿eory

‘A wise man proportions
his belief to the evidence.’

—David Hume

In this chapter, propositional calculus and probability theory are de-
rived from a list of desired characteristics for sceptical agents.

3.1 from language to probability
3.1.1 Formal Languages

We, as intelligent agents, do not know how Nature is; we only know
how we perceive it. Our ideas are mental pictures of how we imagine
Nature. Like in the story of the blind men and the elephant (Sec-
tion 2.2.4), how do we know that our model is the same as someone
else’s? Communicating. We need to communicate with each other to
check if our mental picture of Nature, our model, is consistent with
the experience of others.1 1Wecan take this idea further and think that at

any moment, we need to communicate with
our past selves to check if new evidence is
consistent with our prior model.

We use language to describe Nature. However, natural languages,
like English, German, Portuguese, are ambiguous, and we need con-
textual clues and other information to more clearly communicate
meaning. To avoid this, an intelligent agent uses formal language.

A formal language is a mathematical tool created for precise com-
munication about a speci�c subject. For example, arithmetic is a
language for calculations. Chemists have a language that represents
the chemical structures of molecules. Programming languages are
formal languages that express computations. In a nutshell, a formal
language is a set of words (strings) whose letters (symbols) are taken
from an alphabet and are well-formed according to a speci�c set of
rules, grammar. Let L =< Σ,Φ > be a formal language where:

Σ = {S, S,⋯, Sn} is an alphabet, (3.1)
Φ = Φ ∪Φ ∪⋯ ∪Φk is a set of operations, the grammar, (3.2)

29
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and:

Φ is the set of unary operations,
Φ is the set of binary operations,
⋯
Φk is the set of k-ary operations.

A formal language allows a quantitative description of a state of know-
ledge and de�nes how this state can be updated on new evidence.22An inference method de�nes the rules for

updating knowledge. With this de�nition, we can also think that a formal language
is what Sowinski calls a realm of discourse, i.e. all the valid formed
strings3 that one can derive; everything one can say about Nature.3Strings, words, sentences, propositions,

formulae are names used interchangeably
through the literature. Interestingly, formal languages allow us to manipulate representa-

tions of the environment without dealing with their semantics. ¿ey
are the basis of “Turing’s strange inversion”, (see Section 2.1.3) by doing
allowed operations on strings, computers can compute at a superhu-
man speed and accuracy without ever comprehending what they are
doing.

3.1.2 From Rationalism to Propositional Calculus

Rational Agents can form representations of a complex world, use
deduction as the inference process to derive updated representations,
and use these new representations to decide what to do. In other
words, rational agents are the consequence of the epistemological
view of rationalism.

When a rational agent establishes a particular statement’s truth
value, all statements formed in her knowledge base from that state-
ment instantly feel that update. ¿erefore, a rational agent cannot
hold contradictions.

Desiderata fora rational language Wewant to build a language
for rational agents with the following desired characteristics:

I. knowledge is absolute; a sentence4 can be either true or false;4A sentence can be either a single symbol or a
string formed with several symbols according
to the grammar.

II. unambiguous, a constructed sentence can only have one mean-
ing;

III. consistent; a language without paradoxes, i.e. whatever path
chosen to derive a sentence truth value will lead to the same
assignment;
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IV. minimal; uses the most reduced set of symbols possible.

Let LR =< ΣR , ΦR > be the formal language built from these con-
straints, where sentences are either axiom symbols or compounded
sentences formed using special symbols called operators, each oper-
ator denoting one operation, ϕ ∈ ΦR.

It is possible to prove that LR only needs one operator [Sow16; [Sow16] Sowinski, ‘Complexity and stability
for epistemic agents: ¿e foundations and
phenomenology of con�gurational Entropy’.Jay03]: NAND (or XOR), and it is also equivalent to Propositional

[Jay03] Jaynes, Probability ¿eory: ¿e Logic
of Science.

Calculus.5 In other words, Logic is the language that emerges from our

5Proposition is synonym to sentence and Pro-
positional Calculus is also known as Sentential
Calculus.

desiderata, from rationalism. Logic is the language of mathematics.
A point worth mentioning is that using Logic as an agent formal

language means the implicit acceptance of the constraints above.

3.1.3 From Empiricism to Probability ¿eory

¿e constraints that lead to Logic are very restrictive to use in the real-
world; rational language has a comparatively small realm of discourse.
Hume would say that it is only helpful for relations of ideas, talking in
the abstract, and not formatters of facts, talking about reality.

A realm of discourse to talk about reality needs at least the em-
piricist perspective where knowledge is justi�ed belief, and that one
should weigh her beliefs to the evidence.¿e quantity that speci�es to
what degree we believe a proposition is true is constrained by other
beliefs, i.e., previous experience and evidence gathered.

Sceptical Agents In the sceptical agent, the one derived from the
empiricist epistemology (authors have called these agents epistemic
agents [Cat08], idealised epistemic agents [Sow16] or robots [Jay03]), [Cat08] Caticha, Lectures on Probability,

Entropy, and Statistical Physics.beliefs are not independent of each other [Cat08], they form an inter-
connected web that is the agent’s knowledge base. ¿e update mech-
anism, its inference method, follows the principle of minimality, i.e. it
tries to minimise the change in the knowledge base.

Desiderata for a sceptical language As we did for rational
agents, let us state a set of desired characteristics for the language of
science, LS =< ΣS , ΦS > 6: 6 [Sow16; Cat08; Jay03] also present this same

idea of deriving probability theory from de-
siderata.I. Knowledge is a set of beliefs, quanti�able by real numbers

and dependent on prior evidence [Sow16; Cat08; Jay03]: Let
Si ∈ ΣS be sentences about the world. Given any two statements
S, S, the agent must be able to say that S is more plausible
than S, or that S is more plausible than S or that S and S are
equally plausible. ¿us we can list statements in an increasing
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plausibility order. Real numbers can represent this transitive
ordering.77We are implicitly assuming that the language

we are building has in�nite statements. A fur-
ther discussion on this continuity assumption
can be found in [Sow16, p. 26].

Let b be a measure of degrees of belief in S given some previous
knowledge (or axiom) K:8

8Using (S∣K) in a function is a notation abuse
that we accept to explain the idea better. b ∶ ΣS → R (3.3)

b ∶ S ↦ b(S∣K) (3.4)

Here we capture that plausibility (degrees of belief) is not a
function of a sentence, but a relation between a sentence and a
given assumed prior knowledge K.

II. “Common sense:”
¿e plausibility of compound sentences should be related by
some logical function to the plausibility of the sentences that
form them.We already showed that a minimal rational language
has only one operator. Here, instead of using theNAND operator,
for amatter of familiarity, let us use the almostminimal language
with the operators NOT (¬) and AND (∧). In this setting, we are
saying there are such functions f and g that [Sow16]:[Sow16] Sowinski, ‘Complexity and stability

for epistemic agents: ¿e foundations and
phenomenology of con�gurational Entropy’. b(¬S∣K) = f [b(S∣K)] (NOT)

b(S ∧ S∣K) = g[b(S∣K), b(S∣S), b(S∣K), b(S∣S)] (AND)

III. Consistency:¿e functions f and g must be consistent with
the grammar Φ (production rules). Consistency guarantees that
whatever path used to compute the plausibility of a statement
in the context of the same knowledge web (the same set of con-
straints) must lead to the same degree of belief.

(a) Beliefs that depend onmultiple propositions cannot depend
on the order in which they are presented.

(b) No proposition can be arbitrarily ignored.

(c) Propositions that are identical must be assigned the same
degree of belief.Figure 3.1: Andrey Kolmogorov, Soviet math-

ematician.
Such desiderata have a name; it is known as Cox’s axioms, and one

can derive the Sum Rule and the Product Rule (see Section 3.4) from
them, therefore, also the Bayes’ ¿eorem (Section 3.9), and reverse-
engineer Kolmogorov’s Axioms of Probability ¿eory (that will be
seen in Section 3.4, Figure 3.1) [Sow16; Jay03; Cat08; TD15].[Jay03] Jaynes, Probability ¿eory: ¿e Logic

of Science.

[Cat08] Caticha, Lectures on Probability,
Entropy, and Statistical Physics.

[TD15] Terenin and Draper, ‘Cox’s ¿eorem
and the Jaynesian Interpretation of Probabil-
ity’.

In other words, Probability ¿eory is the language that emerges
from our desiderata, from empiricism. ‘Probability theory is the
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Logic of Science’ [Jay03], and our measure b is usually called probab-
ility P.

Again, here we explicit that by using Bayesian inference to build
and communicate concepts of the world (models), we are assuming
Cox’s axioms above.

3.1.4 Assumptions and their consequences

Let us take this opportunity to explore what some assumptions mean
to human intelligence in particular. It is indisputable9 that humans are 9Unless you are an economist.

not rational, neither sceptical agents. ¿e whole idea of imagining an
epistemic agent is a consequence of addressing intelligence without
human complexities.

However, are humans irrational because of biology or psychology?
Are we irrational for lack of will, or could it be that Nature wires the
human brain in a way that prevents us from following these axioms?
Here we argue that biology has an important role. Researchers have
found, for instance, that visual acuity can be permanently impaired if
there is a sensory de�cit during early post-natal development [Wie82]. [Wie82] Wiesel, ‘Postnatal Development

of the Visual Cortex and the In�uence of
Environment’.Futhermore, if the human brain is not exposed to some samples in its

infancy, it will never achieve the accuracy level if it had experienced
them, regardless of experiencing those examples later. In other words,
human beliefs depend on the order in which pieces of evidence are
presented, contradicting Cox’s axiom IIIa.

3.2 formalizing probability theory
We derived Cox’s axioms from a list of desired properties of the lan-
guage for sceptical agents. We also know that it is possible to derive
Kolmogorov’s Axioms (which will be de�ned soon in Section 3.4)
from those axioms. In the next sections, we will use the Kolmogorov
Axioms to formalise Probability theory.

Several concepts in the following sections are relations of ideas,
notmatters of fact. For example, the probability of an event E, P(E),
can be computed by marginalisation (as we will show in Section 3.8),
but as discussed before, there are no beliefs in a vacuum. In reality,
there is only the probability of an event E given some background
knowledge K. ¿is change of epistemological perspective is essential
to be remembered now that we will expose the idealised development
of Probability ¿eory.
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3.3 experiments, sample spaces and events
¿e set of possible outcomes of an experiment is the sample space Ω.
Let us use the canonical experiment of rolling a dice. In this experi-
ment, the sample space is:

Ω = { , , , , , }

An outcome or realisation is a point ω ∈ Ω:

ω =
Ω = {ω = ,⋯, ω = } .

An Event is something that can be said about the experiment, e.g. “¿e
dice rolled to an odd number”. It is a true proposition. Nevertheless,
easier than writing so much, we denote events with letters. Events are
subsets of Ω (see Figure 3.2a).

A = {a = , a = , a = }
A ⊂ Ω

We say that A, A,⋯ are mutually exclusive or disjoint events if
Ai ∩A j = ∅,∀i ≠ j. For example, A is the event “the dice rolled to the
value 5” and B is the event “the dice rolled to an even number”. In this
case, A and B are disjoint (see Figure 3.2b).

A

(a) An event A.

A

B

(b) Disjoint events A and B:
A ∩ B = ∅.

A1

A3

A2

A4

(c) A partition of Ω:
⋃
i
A i = Ω.

Figure 3.2: Events, disjoint events and parti-
tions.

A partition of Ω is a sequence of disjoint events (sets) Ai (see Fig-
ure 3.2c), where:

A, A,⋯Ai s.t. (A ∪ A ∪ A⋯ =
∞
⋃
i=
Ai) = Ω (3.5)

3.4 kolmogorov’s definition of probability
De�nition 3.1 (Kolmogorov’s Axioms). A function P ∶ ℘(Ω) → R
that maps any event A to a real number P(A) is called the probability
measure or a probability distribution if it satis�es Kolmogorov’s
axioms [Was13]:[Was13] Wasserman, All of statistics: a concise

course in statistical inference.
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Axiom 1. P(A) ⩾ ,∀A

Axiom 2. P(Ω) = 

Axiom 3. If A and B are disjoint, i.e. A�B,

P(A ∨ B) = P(A) + P(B) (Sum Rule)

Visually, we can represent the probability of an event A, P(A), as
the proportion of the sample space the event occupies. To di�erentiate
events from their probabilities, we will shade the area of the event.

P(A)

(a) Axiom 1:
P(A) ⩾ 

(b) Axiom 2:
P(Ω) = .

A

B

(c) Axiom 3: A ∩ B =
∅ Ô⇒ P(A ∨ B) =
P(A) + P(B).

(d) P(∅) = .

BA

(e) B ⊂ A →
P(B) ⩽ P(A).

(f) P(Ā) =  − P(A).

Figure 3.3: Kolmogorov’s Axioms and their
direct consequences.

Directly from the Kolmogorov Axioms, one can derive [Jay03] [Jay03] Jaynes, Probability ¿eory: ¿e Logic
of Science.other properties (see Figures 3.3a to 3.3c):

P(∅) =  (3.6)
B ⊂ A Ô⇒ P(B) ⩽ P(A) (3.7)

 ⩽ P(A) ⩽  (3.8)
P(Ā) =  − P(A). (3.9)

3.5 joint event
P(A,B)

Figure 3.4: Joint event (A, B).

De�nition 3.2. A joint event (A, B) is the set of outcomes where:

(A, B) = ω ∈ Ω ∶ (ω ∈ A ∩ B)

¿erefore,
P(A, B) = P(ω ∈ Ω ∶ (ω ∈ A ∩ B))

P(A, B) ≡ P(B, A) ≡
P(A ∧ B) ≡ P(A ∩ B).

When talking about events as propositions, it is straightforward to
use logic notation P(A∧B), but whenwe start to use random variables
(Section 3.10), we will adopt the shorthand notation P(A,B).
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3.6 independent events
De�nition 3.3. Events A and B are independent (A�B) if:

A ≠ ∅, B ≠ ∅ Ô⇒ P(A) > , P(B) >  (3.10)
P(A, B) = P(A ∧ B) = P(A) ⋅ P(B) (3.11)

(Product Rule)

Disjoint events cannot be independent, since (from (3.10)) P(A)⋅
P(B) > , but as disjoint events (Figure 3.2b) P(A ∧ B) = P(∅) = ,
leading to contradiction.

Independence can be assumed or derived by verifying:

P(A ∧ B) = P(A) ⋅ P(B). (3.12)
(Independent variables)

3.7 conditional probability

P(A∣B) =

As we have explained before (Section 3.1.3), the plausibility of an
outcome or a set of outcomes depends on a web of interconnected
prior beliefs. So, what exists are probabilities conditional to a given
prior assumption.

De�nition 3.4. If P(B) >  then the conditional probability of A
given B is:

P(A∣B)≜P(A, B)
P(B)

(3.13)

P(A, B)≜P(A∣B) ⋅ P(B) (3.14)

Except if P(A) ≡ P(B), P(A∣B) ≠ P(B∣A). Also, P(A∣B) = P(A) ⇐⇒
A�B.1010Venn diagrams are not helpful to see that the

events are independent, as it all depends on
the areas of intersection and the sizes of A
and B, which are tricky to estimate without
computational help.

3.8 marginal probability
¿eorem 3.1. Let A,⋯, Ak be a partition of Ω. ¿en, for any event B,

P(B) =
k
∑
i=
P(B∣Ai) ⋅ P(Ai) (3.15)

Proof. 11 De�ne Ci = (B, Ai). Let C,⋯Ck be disjoint and B =
k
⋃
i=
Ci .11Remember: (B, A) ≡ (B ∩ A).

¿erefore:
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B

A1 A2

A3A4

C1

C4 C3

C2 Figure 3.5: An event B, a partition A i over Ω,
and C i = (B, A i).

P(B) ≜ P(
k
⋃
i=
Ci)

Sum Rule= ∑
i
P(Ci) (3.16)

≜∑
i
P(B, Ai)

3.13=
k
∑
i=
P(B∣Ai) ⋅ P(Ai)

(Law of Total Probability)

3.9 bayes’ theorem
¿eorem 3.2 (Bayes’ theorem). Let A,⋯, Ak be a partition of Ω s.t.
P(Ai) > ,∀i then, ∀i = ,⋯, k:

P(Ai ∣B) =
P(B∣Ai) ⋅ P(Ai)
∑i P(B∣Ai) ⋅ P(Ai)

(3.17)

Proof. From equations 3.13, 3.14 and 3.15:

P(Ai ∣B)
3.13= P(Ai , B)

P(B)
3.14= P(B∣Ai) ⋅ P(Ai)

P(B)
(3.18)

3.15= P(B∣Ai) ⋅ P(Ai)
∑k

i= P(B∣Ai) ⋅ P(Ai)
(3.19)

We call P(Ai) the prior of A, and P(Ai ∣B) the posterior probab-
ility of A.

3.10 random variables
De�nition 3.5. A random variable is a mapping X ∶ Ω → R that
assigns a real number X(ω) to each outcome ω, ω ↦ X(ω).

X

X(    )

X:      

Figure 3.6: Random variable.

Given a random variable X, the probability of an outcome x can
be expressed as:

P(X = x) = P(X−(x)) = P({ω ∈ Ω ∶ X(ω) = x}) (3.20)
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Several works on Probability ¿eory choose to start by de�ning
random variables, rarely mentioning sample spaces, events or the
connection with logical propositions.

¿is usual approach is, nevertheless, confusing. Beyond the fact
that random variables are not variables, but functions, nor random,
they model uncertain events; it is hard to grasp what random variables
are without understanding their reasons for being.

¿e di�erence between a random variable X and its “realisation”
is the di�erence between a distribution and a sample from that dis-
tribution. In particular, a random variable X is “formalised” in terms
of a function from the sample space to some result space, typically
R. ¿e realisation of a random variable is “what you get” when an
experiment is run, and you apply X to events that happened.

3.10.1 Notation abuse

If a random variable is a function, how can we write P(X = ) or
P(X > )? Such confusion is due to some notation abuse that became
standard in works on probability theory. It is not easy to grasp it
initially, but the explanation was already stated at (3.20). P(X = x) is
a shorthand for P(X−(x)).

Technically, a random variable is a function. In practice, it is just
a mathematical tool to help us associate propositions with numbers.
It is called a random variable because the notation abuse treats the
function as a variable.

To help clear up such confusion, let us recap a little the notation
we have established before:

In the canonical experiment of rolling a dice, instead of writing
the proposition “¿e dice will roll to number 4.” plausibility is 

 , it is
easier to assign a letter to the proposition, or as we called the event.
Let us use event D to represent the proposition. ¿en, we can use
P(D) = 

 . Now, we are going one step further; instead of using the
event D we use the random variable D, in italic, and say P(D = ) = 

 .
Notice the di�erence between a random variable and an event:1212An event can be seen as a special kind of ran-

dom variable. I.e., a random variable D is the
truth function (also known as the indicator
function) over an event D:

D = 1D

¿at is the reason one can say that “random
variables de�ne events.”

D could assume any value (even D = , which is outside of our sample
space). Would it not be easier then to use an index to the event letters,
i.e. D to value 4, and D to value 1, etc.? Not really.

Besides providing this shorter notation, the mapping of the ran-
dom variable allows us to manipulate events as numbers: for example,
we can chart probability distributions using random variables, which
we cannot cope with events.
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3.11 probability distributions
De�nition 3.6. A probability distribution of a discrete random vari-
ableX orprobabilitymass function (pmf) is a function p ∶ Ω → [, ]
that provides the probabilities of occurrence of di�erent possible out-
comes in an experiment (sample space):

p(x) = P(X = x), (pmf)

If X is continuous, P(X = x)→ , therefore we need to use inter-
vals in this case.

0 25 50 75 100
X

0.00

0.02

0.04

0.06

P
(X

)

pdf

pmf

Figure 3.7: Probability mass function, prob-
ability density function, and probability of an
interval (hatched area).

De�nition 3.7. A probability distribution of a countinous random
variable X in an interval A, or probability density function (pdf) is
a function p(x) that measures the probability of randomly selecting
a value within the interval A = [a, b], as the area under its curve for
the interval A:

P(A) = P[a ⩽ X ⩽ b] = ∫ b

a
p(x) dx , and: (3.21)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p(x) ⩾ ,∀x
∫
R

p(x) dx =  (pdf)

Now that we explained what distributions are,13 here we highlight 13In this dissertation, we will use P(X) to ex-
press the probability of a random variable, and
p(x) to represent a pmf or pdf of the random
variable outcomes.

some useful distributions:

3.11.1 Statistical model

A statistical model is a function pθ(x) ≡ p(x∣θ) representing the
relationship between a parameter14 θ and potential outcomes x of a 14In this dissertation we are interested in

vector-valued θ.random variable X. In practice, we usually de�ne a statistical model
of a stochastic process for which we do not know the real distribution.
¿erefore, the parameter θ has to be inferred from the observed data.

3.11.2 Uniform distribution

X ∼ Uniform(a, b), if:

p(x) =
⎧⎪⎪⎨⎪⎪⎩


b−a x ∈ [a, b]
 x ∉ [a, b]
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3.11.3 Normal distribution
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Figure 3.8: Uniform distribution.
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Figure 3.9: Gaussian distribution, also known
as the normal.
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Figure 3.10: Exponential distribution.

X ∼ N (µ, σ), if:

p(x) = 
σ
√
π

exp
⎧⎪⎪⎨⎪⎪⎩
− 
σ

(x − µ)
⎫⎪⎪⎬⎪⎪⎭
,

x ∈ R

where µ ∈ R (mean) and σ >  (standard deviation). We say that X
has a standard Normal distribution if µ = , σ = .

3.11.4 Exponential distribution

X ∼ Exp(λ), if:

p(x; λ) =
⎧⎪⎪⎨⎪⎪⎩

λe−λx x ≥ ,
 x < .

where λ >  is the rate parameter of the distribution.

3.12 joint distributions
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Figure 3.11: A chart of a joint distribution.

De�nition 3.8. Given a pair of discrete random variables X and Y ,
we de�ne the joint mass function by p(x , y) = P(X = x ,Y = y).

De�nition 3.9. Given a pair of continuous random variables X and
Y , we de�ne the joint density function by p(x , y), where:

i. p(x , y) ⩾ 

ii. ∫∫ ∞
−∞ p(x , y) dxd y = 

iii. ∀A ⊂ R ×R, P((X,Y) ∈ A) = ∫∫A p(x , y) dxd y.

3.13 expectancy, variance and covariance
De�nition 3.10. ¿e expected value ormean of X is:

E(X) = ⟨X⟩ =∑∫
x

x p(x) dx = µ = µX (3.22)

¿eorem 3.3. Let X,⋯,Xn be random variables and a,⋯, an be con-
stants, then from the Sum Rule:

E(∑
i

aiXi) =∑
i

ai(E(Xi)) (3.23)
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¿eorem 3.4. Let X,⋯,Xn be independent random variables, then
from the Product Rule:

E(∏
i

Xi) =∏
i
E(Xi) (3.24)

De�nition 3.11. Let X be a random variable with mean µ. ¿e vari-
ance of X is de�ned by:

σ = σX = E(X − µ) (3.25)

assumming this expectation exists. ¿e standard deviation is σ.

De�nition 3.12. Let X and Y be random variables with means µX and
µY , and with standard deviations σX and σY . ¿e covariance between
X and Y is de�ned as [Was13, p.74]: [Was13] Wasserman, All of statistics: a concise

course in statistical inference.

Cov(X,Y) = E((X − µX)(Y − µY)) (3.26)

and the correlation as:

ρ = ρX,Y = ρ(X,Y) = Cov(X,Y)
σXσY

(3.27)

¿eorem 3.5. ¿e covariance satis�es:

Cov(X,Y) = E(XY) −E(X)E(Y). (3.28)

3.14 independent sampling

Figure 3.12: An i.i.d. sample (le ) and a biased
sample (right). Adapted from [MP18].

A sample is a set of examples15 drawn from a distribution. One 15In this dissertation, an element of a sampling
is called an example.common assumption in Machine Learning¿eory is that examples

are identically and independently distributed — i.i.d.¿is means that
the probability of obtaining a �rst training example. (x, y) does not
a�ect which (x, y) will be drawn in the following observation.

¿e i.i.d. assumption is useful wherever a census of the population
of interest, knowing all possible values, is unfeasible. In this usual case,
data analysis is carried out using a sample to represent the population.
When the sample is i.i.d., each example in the population has the same
chance of being observed (Figure 3.12 — le ).

If there is a constraint on which examples of the population are
sampled, we say that the sample is biased (Figure 3.12 — right).
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3.15 concluding remarks
¿is chapter derived Logic from the de�nition of knowledge as abso-
lute truth and Probability ¿eory from knowledge as justi�ed beliefs
(Sections 3.1.2 and 3.1.3). To remind that our de�nition of knowledge
is the basis for the Bayesian perspective of probability and that infer-
ence methods are languages, we can say (and prefer) that we derived
Bayesian inference as the language of science. We proved what we
claimed in the previous chapter (Chapter 2).

We needed to de�ne formal languages (Section 3.1.1) and assume
desiderata for the languageswewanted to build formally (Sections 3.1.2
and 3.1.3).We called rational agents the epistemic agents that use Logic
as its inference method, and sceptical agents use Bayesian inference.

We found out that the desiderata for the sceptical language are
equivalent to Cox’s axioms (Section 3.1.3). From Cox’s axioms, it is
possible to derive Kolmogorov’s axioms of Probability ¿eory. Which
made us conclude that Bayesian inference is the language of science.1616Our de�nition of knowledge hinted at a

Bayesian perspective of knowledge. From the derivation, we did a basic Statistics review (in�uenced
by [Was13]). Many essential topics were le out from this short review[Was13] Wasserman, All of statistics: a concise

course in statistical inference. chapter, where the focus was to present the concepts that we will use
later on in this dissertation.

3.15.1 Assumptions

Epistemology
Intelligence

Rationalist
View Knowledge Sceptical

View

Math Science

Language

Logic Bayesian Inference

Figure 3.13: ¿is chapter derives Logic as the
language ofMathematics, in which knowledge
is absolute; and Bayesian inference as the lan-
guage of Science, in which knowledge is justi-
�ed belief.

1. A de�nition of intelligence (Section 2.1.1);

2. A epistemic choice on the de�nition ofKnowledge (Sections 2.2.2
and 2.2.3);

3. A de�nition of formal language;

4. Common assumptions of the epistemic agent language:

a) consistency (Section 3.1.3, Item III and Section 3.1.2, Item III);

b) minimality (Section 3.1.2, Item IV).

5. Assumption of the rational agent language:

a) knowledge is absolute, a set of true or false sentences (Sec-
tion 3.1.2, Item I);

b) the languagemust be unambiguous (Section 3.1.2, Item II).

6. Assumption of the sceptical agent language:
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a) Knowledge is a set of beliefs, quanti�able by real numbers
and dependent on prior evidence (Section 3.1.3, Item I);

b) Common sense: ¿e plausibility of compound sentences
should be related by some logical function to the plausibil-
ity of the sentences that form them (Section 3.1.3, Item II).

Aswe have settled that our focus isDeep Learning, which relates to
the sceptical agent, we will abstain from keeping the rational language
assumptions in our analysis and assume an epistemic agent is sceptical.





4
Machine Learning ¿eory

‘Mathematics operates in-
side the thin layer between
the trivial and the intract-
able.’
—Andrey Kolmogorov

In which we present the theoretical framework of Machine Learning,
the PAC model, theoretical guarantees for generalisation, and expose
criticism due to its lack of explanation on Deep Learning phenomena.

¿is chapter is in�uenced by the online lecture Statistical Learning
¿eory - a Hitchhiker’s Guide (NeurIPS 2018) [STR18], the online lec- [STR18] Shawe-Taylor and Rivasplata, Statist-

ical Learning ¿eory - a Hitchhiker’s Guide
(NeurIPS 2018).
url: https://youtu.be/m8PLzDmW-TY

ture series Statistical Learning ¿eory [Mel18] and the bookMachine

[Mel18] Mello, Statistical Learning ¿eory.
url: https://youtu.be/KTrRap4Spd0

learning: a practical approach on the statistical learning theory [MP18].

[MP18] Mello and Ponti,Machine learning: a
practical approach on the statistical learning
theory.

4.1 motivation
As already discussed, learning is inferring general rules to perform a
speci�c task by observing limited examples. ¿erefore, the learning
algorithm must perform well in the sample already seen and, more
importantly, in previously unseen examples.

How can we prove that an algorithm learned? We may know its
performance in the given sample, but does it translate to any sample?
Can we guarantee bounds to the error in an unknown distribution of
examples even if we have just a limited sample of it? Can we bound the
number of samples needed (sample complexity) to ensure accuracy
on unseen examples? How does the sample complexity grow? ¿ese

Figure 4.1: Chervonenkis (Le ) and Vapnik
(Right).

are the kind of questions that motivated the development of Machine
Learning¿eory (MLT). ¿is research �eld started in Russia by the
name of Statistical Learning¿eory (SLT), during the late s, with
the work of Vapnik and Chervonenkis (see Figure 4.1). In , Leslie
Valiant proposed the Probably Approximately Correct (PAC) frame-
work to bring ideas from the Computational Complexity ¿eory to
learning problems, giving birth to the �eld of Computational Learn-
ing ¿eory (CoLT). We will also limit our overview of MLT to the
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context of supervised binary classi�cation problems. ¿is limitation
is not a de�ciency of the theory but a mere choice of scope for this
dissertation.

4.2 the learning problem
¿e goal of learning is to understand Nature from experience, coming
up with a theory, a tested hypothesis. A concept c is an idealised

Figure 4.2: A concept c is an idealised input
to output mapping, X ↦ Y .

function that maps an instance of the problem xi from the input space
X (also known as problem space) to a solution yi of the output space
Y (also known as label space). ¿e convention is that labels are binary,
Y = {−,+}, therefore, we can assign the true label to the presence of
the element, c ⊂ X .

We imagine there is a particular distribution D = P(X,Y) in
nature, from which P(X), the distribution of examples, and P(Y ∣X),
the learning task, derive. ¿en, even knowing nothing about D, we
want to discover P(Y ∣X), given a sample of (x , y) ∼ P(X,Y).

4.2.1 ¿e learning problem setting

Supervised learning has three main components (see Figure 4.3):

P(X,Y)

P(X) P(Y|X)

𝐴: 𝑋!×𝑌!→ Θ

ℎ(𝑥, 𝜃)

Nature

Problem Generator Task Supervisor

Learning Algorithm

Hypothesis

𝑥"!

𝑥#

.𝑦#

𝑦#

𝑥#

𝑥"! 𝑦"! Training Time

Test Time

Figure 4.3: Learning problem setting.

1. A generator of vectors randomly draw from a probability dis-
tribution P(X), x ∼ P(X), x ∈ X ,1 which represent instances of1In Chapter 5, we will useAX to represent the

domain of X to emphasise that the domain is
�nite; it is an alphabet. Here we use X to re-
member that this domain possibly is in�nite.

the problem2;

2P(X = x i) = PX(x i) = ∑ j PXY(x i , y j) ∴
PX is just a consequence of P(X,Y) ∴ x ∼
PX ≡ x ∼ PXY .
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2. A task supervisor that knows the concept and returns an output
vector yi for every input vector xi :

yi = c(xi), yi ∼ P(Y ∣ X = xi). (4.1)

3. A learning algorithmA, which is the functional that given a
sample of n inputs and n outputs of a task {(x, y),⋯, (xn , yn)},
selects a hypothesis h from the hypothesis space3H: 3Hypothesis spaces will be explained in Sec-

tion 4.2.3.

A ∶ (X × Y)n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sn

→ H. (4.2)

¿e problem of learning is choosing from the hypothesis space the
one hypothesis that best approximates the concept. ¿e selection is
based on a training set of n i.i.d. observations drawn according to the
unknown distribution D = P(X,Y).

4.2.2 Assumptions

¿e common assumptions are as follows [MP18; VLS11]: [MP18] Mello and Ponti,Machine learning: a
practical approach on the statistical learning
theory.

[VLS11] Von Luxburg and Schölkopf,
‘Statistical learning theory: Models, concepts,
and results’.

i. ¿ere is no assumption on D = P(X,Y): it can be any arbitrary
joint probability distribution on X × Y .

ii. D = P(X,Y) is unknown at the training stage: learning would
be trivial if not.

iii. D = P(X,Y) is �xed:¿ere is no “time” parameter, meaning that
the ordering of examples in the sample is irrelevant.

iv. I.i.d. sampling: examples must be sampled in an identically in-
dependent manner.

v. Labels may assume non-deterministic values: due to noise or
label overlap.

4.2.3 Hypothesis spaces

¿eproblem setting relies on the idea of a hypothesis space (also known
as a hypothesis class). A hypothesis space is the set of all hypotheses4 a 4We can also say that the hypothesis space is

the language de�ned by the learner.functional learning algorithmA can generate. In the same hypothesis
spaceH, hypotheses di�er by their parameter vector θ. Choosing a
hypothesis hi is choosing its parameter θ i .

h ∶ X ×Θ → Y , (4.3)
h(x) = p(y ∣ x ∧ θ), θ ∈ Θ. (4.4)
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Figure 4.4: Di�erent hypothesis spaces solu-
tions for the same sample.

Di�erent learners will constraint the input space X di�erently (see
Figure 4.4). Some algorithms are more complex than others, meaning
they can express more di�erent functions.55We also use the term capacity to describe

this characteristic of learning algorithms to
generate more complex hypotheses. We usually callHall the hypothesis space of all possible functions.

However, generalisation only happens if a learner chooses a subset of
Hall where to search for the hypothesis. ¿e need for this constraint
in generalisation, a bias, was proved by Mitchell: “biases are [. . . ]
critical to the ability to classify instances that are not identical to the
training instances”. An intuitive argument for this is straightforward;
if any function were allowed, the learner would be able to choose
the function that “memorises” the sample, which would certainly not
generalise to other cases.

4.2.4 Learning as error minimisation

Choosing from the hypothesis space, the one hypothesis h that best
approximates the concept, which we will call hBayes, can be seen as an
optimisation problem where we want to minimise the error of the
approximation:

Absolute error Let loss ℓ ∶ Y × Y → R be a measure of the error
between the perfect output y of the supervisor and the obtained output
ŷ of the hypothesis.¿e risk is the expected loss. Find θ∗ which
minimises the risk.

RD(θ) = E(ℓ(x , y, h(x , θ)), (x , y) ∼ D, θ ∈ Θ (4.5)
θ∗ = argmin

θ∈Θ
R(θ) (4.6)

h(x , θ∗) = hBayes = argmin
h∈Hall

R(h) (4.7)

¿e risk RD is also called the absolute (or out-of-sample or theoretical)
error of the hypothesis.6 Nevertheless, there is one crucial caveat: the6R, R(θ) and R(h) are used interchangeably

in this dissertation. choice of the loss metric is arbitrary, which curbs any objective,
metric independent, interpretation of the results.



bias-variance trade-off 49

Empirical error ¿e underlying di�culty of risk minimisation
is that we are trying to minimise a quantity we cannot evaluate: if
P(X,Y) is unknown, we cannot directly compute the risk R(h) (ab-
solute error). However, we can compute the risk of the hypothesis on
the training sample:

R̂S(h) = 
n

n
∑
i=

(ℓ(xi , yi , h(xi)), (x , y) ∼ S (4.8)

With this empirical risk R̂S that we can evaluate, we �nd the hy-
pothesis that minimises it. Given a sample S = {(x, y),⋯, (xn , yn)},
a hypothesis spaceH, and a loss function ℓ, we de�ne hH as the func-
tion:

hH = argmin
h∈H

R̂S(h) (4.9)

According to the law of large numbers (Section 4.5.3), if the sample
is large enough, by induction, a hypothesis generated optimising R̂S
is close to R. However, it is essential to notice that we still have to
discuss at which rate does R̂S converge to R with regards to the the
sample size.

4.3 bias-variance trade-off
When we de�ne a subset ofH ⊂ Hall where to look for our hypothesis,
we impose a constraint to the choice, a bias. Besides, the subset H
can be larger or smaller; for example, the hypothesis space of Neural
Networks is much larger than the one of Perceptrons and also covers
itHNN ⊃ HPerceptron.

Perceptron Neural Network

Figure 4.5: Bias and variance errors.

Accordingly, we can distinguish two kinds of errors due to this
constraint:
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• Variance error: represents how far a classi�er hi is from the
best classi�er in H, hH. With a strong bias (small hypothesis
space), any hypothesis hi is expected to be closer to hH, there is
less variance in the hypothesis space (see Figure 4.5 Perceptron).
Finding the best hypothesis in a larger hypothesis space is more
laborious and, therefore, takes more resources (time and ex-
amples) than in a smaller one (see Figure 4.5 Neural Network).

• Bias error: represents how far the classi�er hH is from the best
classi�er hBayes. With larger, more complex, higher-order, hypo-
thesis spaces we expect hH to be closer to hBayes (see Figure 4.5
Neural Network).

¿ese two errors compound the generalisation gap, ∆(hi):

∆(hi) = R(hi) − R(hBayes) (4.10)
= (R(hi) − R(hH))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Variance Error

+ (R(hH) − R(hBayes))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bias Error

(4.11)

Machine learning practitioners will recognise here what is called
over�tting and under�tting:

x

y

Under�tting

x

y

Truth

x

y
Over�tting

Figure 4.6: Example of under�tting and over-
�tting in a regression problem.

• Over�tting: bias error is small, but variance error is large; High
variance is a consequence of �tting to random noise in the
training data, rather than the intended outputs.

• Under�tting: bias error is signi�cant, but variance error is
small; ¿e bias error comes from wrong assumptions in the
learning algorithm. Strong bias can cause an algorithm to miss
relevant relations between inputs and outputs.

It is easy to notice that these two errors are con�icting: the more
substancial the bias, the smaller is the H ⊂ Hall, smaller is the vari-
ance error, but the more signi�cant is the bias error; and vice-versa
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(Figure 4.7). ¿is trade-o� is the central paradigm of Machine Learn-
ing ¿eory [Slo02], its crucial challenge, and has di�erent names [Slo02] Slonim, ‘¿e information bottleneck:

¿eory and applications’.under�tting-over�tting, precision-complexity, and performance-prediction
trade-o�. ¿e goal of machine learning algorithms is to come up

Error

Complexity

Variance Error Bias Error

Generalisation
Gap

Figure 4.7: Generalisation gap.

with the simplest model that explains the data, but not simpler.

¿ere are many more complicated explanations possible than
simple ones. ¿erefore, if a simple explanation happens to �t

your data, it is much less likely this is happening just by chance.

— Avrim Blum [Blu07]

4.4 the pac learning model
Up to this point in the chapter, we have described MLT following
Statistical Learning¿eory (SLT). Now we will revisit some of what
we already explained with the formalism of the PAC model. ¿e PAC

Figure 4.8: Leslie Valiant received the Turing
Award in 2010.

model was proposed by Leslie Valiant (see Figure 4.8) in  [Val84].

[Val84] Valiant, ‘A theory of the learnable’.

¿e lack of citation to Vapnik and Chervonenkis literature is an indic-
ation that the overlap of CoLT and STL was reinvented. As expected,
CoLT looks at the learning problem from a computational perspective,
while SLT from a statistical one.

“¿e PAC framework deals with the question of learnability for a
concept classC and not a particular concept” [MRT12], where a concept

[MRT12] Mohri et al., Foundations of Machine
Learning.

class is a set of concepts ci . ¿e PAC model classi�es concept classes
in terms of their complexities to achieve an approximate solution;
sample complexity, the number of examples needed, computation
complexity, the number of iterations needed.

In the PAC framework, a concept classC is learnable if there is an
algorithm capable of generating, with polynomial time and examples,
a general function (the hypothesis h) that with high con�dence (−δ),
has an arbitrarily small error є in any given instance of the problem.

Probably Aproximately Correct
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

con�dence ⩾ (−δ) tolerance ⩽ є h(⋅)=c(⋅)

If with absolute certainty, the hypothesis “imitates” the concept,
i.e. there is no error; we can say that there was learning:

∃h ∈ H ∶ Prx∼D[c(x) ≠ h(x)] = → learning. (4.12)
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Nevertheless, this de�nition is too restrictive. For instance, if c /⊂ H,
there is no way for any h to perfectly imitate c. So let us rede�ne
learning with new relaxed constraints to the absolute error:

Prx∼D1[c(x)≠h(x)] = RD(h) (4.13)
∃h ∈ H ∶ RD(h) ⩽ є,  < є < 

 → learning. (4.14)

Allowing some tolerance to error, however, is still not su�cient. On
one side, a hypothesis does not need to be equal to the concept to be
consistent to the sample, i.e. to correctly predict every example of
the sample. In the �gure Figure 4.9, the hypothesis was lucky, and
there is no di�erence between the hypothesis and the concept for the
particular sample, even though they are di�erent maps of X .

Figure 4.9: ¿e concept versus the hypo-
thesis.

On the other side, it is possible that the sample:

Sn = {(x, y),⋯, (xn , yn)} ∼ Dn (4.15)

is unlucky, and is a set of bad examples for the learning algorithm,
an uninformative sample, making it impossible for the hypothesis to
imitate the concept for all x ∈ X . In this unlucky case, learning would
be impossible. Hence, we relax the constraints once more:

∃h ∈ H,  < є < 
 ,  < δ <


 ∶

PrS∼Dn[RD(h) > є] < δ → learning. (4.16)

Nevertheless, if achieving such thresholds demands an unreasonable
amount of data and time, can we say that learning has happened?
What is a reasonable amount of time and examples?

Let d be a number such that representing any vector x ∈ X costs
at most O(d) (e.g. X = Rd), and size(c) the computational cost of
representing a concept c ∈ C.

De�nition 4.1. A concept class C is PAC-learnable if there is a learn-
ing algorithm A and a polynomial function poly(⋅, ⋅, ⋅, ⋅, ) such that
for any  < є < 

 and any  < δ <

 , for any distribution D on X and

for any target concept c ∈ C, the following holds for any sample size
n ⩾ poly( є ,


δ , d , size(c)) [MRT12]:[MRT12] Mohri et al., Foundations of Machine

Learning.

PrS∼Dn[RD(h) ⩽ є] ⩾ ( − δ). (4.17)

If A further runs in poly( є ,

δ , d , size(c)), then C is said to be e�-

ciently PAC-learnable. When such an algorithmA exists, it is called
a PAC-learning algorithm for C [MRT12].
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4.5 pac bounds
As we stated before, one of the main goals of MLT is to guarantee
bounds to the error and the number of samples needed (sample com-
plexity) in learning problems. Here we present some of these guar-
antees as examples of how this theoretical development allows us to
make claims on unknown distributions and unseen examples.

4.5.1 Guarantees for �nite hypothesis spaces — consistent case

¿eorem 4.1 ([Hau88], �nite space, consistent case). Let H be a �-
nite hypothesis space,A a learning algorithm that returns a consistent
hypothesis h, i.e. R̂S(h) = , for any hypothesis h ∈ H and unknown
distribution D = P(X,Y).
Let ∣S∣ = n, then, ∀n ⩾ :

Pr [∃h ∈ H ∶ RD(h) > є] ⩽ ∣H∣e−єn (4.18)

Proof. Let hbad(bad = , ..., k) be all hypotheses in the spaceHbad ⊂ H
where ∀hbad ∈ Hbad ∶ RD(hbad) > є, then:

¿e chance of a bad hypothesis to correctly predict an example is:

Prx j∼S{1[(c(x j)≠hbad(x j))] = ∅} ⩽ ( − є) (4.19)

Prx j∼S[Rx j(hbad) = ] ⩽ ( − є) (4.20)

¿erefore, the probability that a bad hypothesis will predict all
examples correctly in the training sample Sn is:

Prx∼S[Rx(hbad) = ]∧ (4.21)
Prx∼S[Rx(hbad) = ]∧ (4.22)

⋯
Prxn∼S[Rxn(hbad) = ] ⩽ ( − є)⋯( − є)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

(4.23)

Pr[(R̂S(h) = ) ∧ (RD(h) > є)] ⩽ ( − є)n (4.24)

We said there are k bad hypotheses, then, the probability of any of
these bad hypothesis predicting all the training sample correctly is:

Pr [h ∈ Hbad ∶ (R̂S(h) = ) ∧ (RD(h) > є)]∨ (4.25)
Pr [h ∈ Hbad ∶ (R̂S(h) = ) ∧ (RD(h) > є)]∨ (4.26)

. . .

∨Pr [hk ∈ Hbad ∶ (R̂S(hk) = ) ∧ (RD(h) > є)] ⩽
k
∑

( − є)n (4.27)

Pr [∃h ∈ H ∶ (R̂S(h) = ) ∧ (RD(h) > є)] ⩽ k( − є)n (4.28)
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Finally, as these bad hypotheses belong toHbad ⊂ H, k < ∣H∣, therefore,
we get the theoretical error of h given a precision tolerance of є, and
sample complexity of n examples:

Pr [∃h ∈ H ∶ RD(h) > є] ⩽ ∣H∣( − є)n (4.29)
( − x) ⩽ e−x ,  ⩽ x ⩽  Ô⇒

Pr [∃h ∈ H ∶ RD(h) > є] ⩽ ∣H∣e−єn

From the PAC framework:

Pr [∃h ∈ H ∶ RD(h) > є] < δ (4.30)

¿erefore, Haussler theorem gives us a lower bound on the con�dence:

δ > ∣H∣e−єn ⩾ Pr [∃h ∈ H ∶ RD(h) > є] (4.31)

We can rewrite the Haussler theorem to bound the number of
examples needed for learning:

¿eorem 4.2 ([Hau88], �nite space, consistent case: sample complex-
ity). A learning algorithm A can learn a concept c from a class of
concepts C with n < 

є(ln ∣H∣ + ln 
δ) training examples.

Proof.

δ > ∣H∣e−єn (from (4.31))

e−єn < δ
∣H∣

(4.32)

−єn < (ln δ − ln ∣H∣) (4.33)
єn < (ln ∣H∣ − ln δ) (4.34)

n < 
є
(ln ∣H∣ + ln 

δ
) (4.35)

n ∈ O( 
є
(ln ∣H∣ + ln 

δ
)) (sample complexity)

Strangely, the sample complexity upper bound does not depend
on C or D but depends logarithmically on the size ofH [Hau88].[Hau88] Haussler, ‘Quantifying inductive

bias: AI learning algorithms and Valiant’s
learning framework’.
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4.5.2 No free lunch theorem

Is a universal concept class learnable? Let X = {, }d , the
space of Boolean vectors of size d. A universal concept class Ud has
all subsets of X , i.e. contains all possible classi�cations for a given
instance space X .

∣Ud ∣ = ∣X ∣ = (d) (4.36)
∣H∣ ⩾ ∣Ud ∣ (4.37)

∣H∣ ⩾ (d) (4.38)

From ¿eorem 4.2 ([Hau88], �nite space, consistent case: sample
complexity):

n ∈ O( 
є
(ln ∣H∣ + ln 

δ
)) (4.39)

n ∈ O( 
є
(d ln() + ln 

δ
))∴ (4.40)

n ∈ O(d ;

є
; ln


δ
) (4.41)

¿erefore, the sample complexity is not polynomial to d, and Ud is
not PAC Learnable. Moreover, the “no free lunch” theorem [WM97] [WM97] Wolpert and Macready, ‘No free

lunch theorems for optimization’.states there is no universal concept, therefore, no universal learning
algorithm for all tasks. Speci�cally, averaged over all possible data
generating distributions, every classi�cation algorithm achieves the
same error when classifying previously unknown points.

4.5.3 Guarantees for �nite hypothesis spaces — inconsistent case

Usually, there is no hypothesis inH consistentwith the training sample
due to the stochastic nature of the supervisor or due to the concept
class being more complex than the hypothesis class used by the learn-
ing algorithm.

To derive bounds for this inconsistent case, we will use the “law
of large numbers”.

Law of large numbers ¿e law of large numbers states that the
mean of random variables ξi , drawn i.i.d. from some probability dis-
tribution P, converges to the mean of P itself when the sample size
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goes to in�nity.

for n →∞,

n

n
∑
i=
ξi → E(ξ), ξi ∼ P. (4.42)

Based on the fact that a statistic7 of random variables can be7Remember: A statistic is a function of ran-
dom variables that does not depend on para-
meters. treated itself as a random variable, we can make the loss function

ℓ(x , y, h(x)) be the random variable ξ from above. From what we
can conclude that for a �xed h, the empirical risk converges to the
theoretical risk as the sample size goes to in�nity:

for n →∞,

R̂S(h) = 
n

n
∑
i=

(ℓ(xi , yi , h(xi))→ E(ℓ(x , y, h(x)) = R(h). (4.43)

Chernoff-Hoeffding inequality Moreover, we can use the fam-
ous Cherno�-Hoe�ding’s inequality to bound the approximation of
the risk:

Pr
⎛
⎝

RRRRRRRRRRR


n

n
∑
i=
ξi −E(ξ)

RRRRRRRRRRR
⩾ є

⎞
⎠
⩽ e(−nє)

(Cherno�-Hoe�ding’s inequality)

Pr (∣R̂S(h) − R(h)∣ ⩾ є) ⩽ e(−nє) (4.44)

Unfortunately, this bound only holds for a �xed-function h which
does not depend on the training data, but our hypothesis certainly
does depend. ¿e reason for such constraint is intuitive. If we let the
hypothesis space convey all possible functions and do not restrict
our hypothesis to be independent of the training data, we can always
generate a function that “memorises” the given sample and has no
empirical error. Such function will most certainly not generalise well
and invalidate the bound.

Vapnik and Chervonenkis solved this conundrum by using the
Union bound.

Union bound Even if we are not allowed to select a hypothesis from
the space using training data, the bound still holds for any hypothesis
took at random. Also, if we enumerate all the functions inH, using
the fact that it is �nite, the bound still holds for each hypothesis:

Pr (∣R̂S(h) − R(h)∣ >є ∨
∣R̂S(h) − R(h)∣ >є ∨⋯

⋯∨ ∣R̂S(h∣H∣) − R(h∣H∣) >є) ⩽
∣H∣

∑ e(−nє) (4.45)
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∴Pr [∃h ∈ H ∶ ∣R̂S(h) − R(h)∣ > є] ⩽
∣H∣

∑ e(−nє) (4.46)

Pr [∃h ∈ H ∶ ∣R̂S(h) − R(h)∣ > є] ⩽ ∣H∣e(−nє) (4.47)

¿eorem 4.3 ([Hau88], �nite space, inconsistent case). Let H be a
�nite hypothesis class. ¿en, for any  < δ < 

 , with a probability at
least  − δ, the following inequality holds [MRT12]: [MRT12] Mohri et al., Foundations of Machine

Learning.

∀h ∈ H, R(h) ⩽ R̂S(h) + є

R(h) ⩽ R̂S(h) +
√

ln ∣H∣ + ln /δ
n

(4.48)

Proof.

Pr [∃h ∈ H ∶ ∣R̂S(h) − R(h)∣ > є] < δ (from PAC)

Pr [∃h ∈ H ∶ ∣R̂S(h) − R(h)∣ > є] ⩽ ∣H∣e(−nє) (from (4.47))

∴δ > ∣H∣e(−nє) (4.49)

Assuming δ = ∣H∣e(−nє), we have:

e(−nє) = δ
∣H∣

(4.50)

−nє = ln δ − ln∣H∣ (4.51)

є = ln ∣H∣ + ln  − ln δ
n

(4.52)

∴є > → є = +
√

ln ∣H∣ + ln /δ
n

(4.53)

By de�nition, R(h) ⩾ R̂S(h), thus:

Pr [∃h ∈ H ∶ (R(h) − R̂S(h)) > є] < δ (4.54)
Pr [∀h ∈ H ∶ (R(h) − R̂S(h)) ⩽ є] ⩾  − δ (4.55)

¿erefore, with probability at least  − δ:

∀h ∈ H, R(h) ⩽ R̂S(h) + є (4.56)

∀h ∈ H, R(h) ⩽ R̂S(h) +
√

ln ∣H∣ + ln /δ
n

(from (4.53))

∀h ∈ H, R(h) ⩽ R̂S(h) +O (
√
log ∣H∣;

√
/n;

√
log /δ)

We can rewrite ¿eorem 4.3 ([Hau88], �nite space, inconsistent
case) to bound the sample complexity:
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¿eorem 4.4 ([Hau88], �nite space, inconsistent case: sample com-
plexity). A learning algorithmA can learn a concept c from a class of
concepts C with n ⩽ ln ∣H∣+ln 

δ
є training examples.

Proof. from (4.53),

є ⩽
√

ln ∣H∣ + ln /δ
n

∴ n ⩽ ln ∣H∣ + ln /δ
є

4.5.4 Guarantees for in�nite hypothesis space — inconsistent case

It can be argued that for our use in machine learning, there is no need
for guarantees for in�niteH due to the nature of computer hardware
and their memory limitations, which already discretise the hypothesis
spaces. Anyway, we will give a general idea of this case.

One of the most striking insights of Vapnik and Chervonenkis
is the idea of the shattering coe�cient (N ). Let us take a look at the
bound from ¿eorem 4.3 ([Hau88], �nite space, inconsistent case):

∀h ∈ H,

R(h) ⩽ R̂S(h) +
√

ln ∣H∣ + ln /δ
n

(�nite hypothesis space, inconsistent case)

¿e ln ∣H∣ relates to d, the size of the representation of the hypothesis
space. Another remark worth mentioning is that in the union bound,
we just added the probabilities of each hi ∈ H without considering
where P(h j) ∩ P(hk), j ≠ k.

h j hk

Figure 4.10: Pr(h j) ∩ Pr(hk) is summed twice in the union bound.

In reality, there are several di�erent h ∈ H that provide the same
map x ∈ S → y ∈ {−,+}. ¿erefore, the e�ective size ofH is smaller
than ∣H∣. Using a symmetrisation trick [VLS11, section 5.2], Vapnik[VLS11] Von Luxburg and Schölkopf,

‘Statistical learning theory: Models, concepts,
and results’. and Chervonenkis showed that there are at most n e�ectively dif-

ferent hypotheses. In the PAC framework, ∣Y ∣ = , so if a pattern is a
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set {y,⋯, yn}, there are ∣H∣ = n di�erent patterns, thus, e�ectively
di�erent hypotheses.¿is number, however, can be even smaller; for
example, a certain yk , k < n can, for example, only accept a speci�c
value, yk = +.

¿e shattering coe�cient is a growth function, i.e. it measures the
number of e�ectively distinct hypotheses as the sample size n grows.
It is a capacity measure of a hypothesis class.WheneverN (H, n) = n,
there exists a sample of size n on which all possible separations of the
patterns can be achieved by some h ∈ H.

We can now rewrite ¿eorem 4.3 ([Hau88], �nite space, incon-
sistent case) as:

∀h ∈ H,

R(h) ⩽ R̂S(h) +
√

lnN (H, n) + ln /δ
n

(4.57)

Another capacity measure is the famous VC dimension.8 8Named a er Vapnik and Chervonenkis.

VC(H) = max{n ∈ N∣N (H, n) = n for some Sn} (4.58)

A combinatorial result relates the growth behaviour of the shattering
coe�cient with the VC dimension:

¿eorem 4.5 (Vapnik, Chervonenkis, Sauer, Shelah bound).

If VC(A) = d ,∀n ⩾ , N (H, n) ⩽
d
∑
k=

(n
k
) ⩽ (єn

d
)

d

4.6 minimum description length
MinimumDescription Length (MDL) is anMLT principle proposed by
Hinton andVanCamp [HVC93]. It will be presented later (Section 6.5) [HVC93] Hinton and Van Camp, ‘Keeping

the neural networks simple by minimizing
the description length of the weights’.as it relates to Information¿eory.

4.7 pac-bayes
For a long time, MLT was divided between Bayesian inference and
PAC learning. In 1997, Shawe-Taylor and Williamson �rst presented
a theorem of PAC guarantees for Bayesian algorithms (algorithms
that minimise the risk using a prior probability for the data and hypo-
thesis) [STW97].¿is bridge allowed tighter PAC bounds for learning [STW97] Shawe-Taylor and Williamson, ‘A

PAC analysis of a Bayesian estimator’.algorithms that take advantage of informative priors. Here we give
PACBayes bounds for �nite hypothesis spaces (formore, see [McA99]

[McA99] McAllester, ‘Some PAC-Bayesian
¿eorems’.and [McA13]).

[McA13] McAllester, ‘A PAC-Bayesian
Tutorial with A Dropout Bound’.
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4.7.1 PAC Bayes Guarantees for �nite hypothesis spaces — consistent case

¿eorem 4.6 (Preliminary ¿eorem 1 [McA99]). Let H be a �nite
hypothesis space,A a learning algorithm that returns a consistent hypo-
thesis h, i.e. R̂S(h) = , for any hypothesis h and unknown distribution
D = P(X,Y), any ∣S∣ = n ∶ n ⩾ . For any probability distribution P
assigning a nonzero probability to every hypothesis in the �nite hypo-
thesis spaceH, with con�dence  − δ over the selection of the sample of
n instances the following holds true:

Pr [h ∈ H ∶ (R̂S(h) = ) ∧ (RD(h) > є)] ⩽
ln 

P(h) + ln

δ

n
(4.59)

Proof. ¿is proof is very similar to the one in ¿eorem 4.1 ([Hau88],
�nite space, consistent case). From (4.28):

Pr [h ∈ H ∶ (R̂S(h) = ) ∧ (RD(h) > є)] ⩽ ( − є)n , (4.60)

But we also know that:

Pr [h ∈ H ∶ (R̂S(h) = ) ∧ (RD(h) > є)] ⩽ P(h)δ (4.61)
( − x) ⩽ e−x ,  ⩽ x ⩽  Ô⇒

e−єn < P(h)δ (4.62)

є <
ln 

P(h) + ln

δ

n

4.7.2 PAC Bayes Guarantees for �nite hypothesis spaces — inconsistent case

¿eorem 4.7 (Preliminary¿eorem 2 [McA99]). LetH be a �nite hy-
pothesis space,A a learning algorithm that returns a hypothesis h given
a sample ∣S∣ = n ∶ n ⩾  from the unknown distribution D = P(X,Y).
Given a probability distribution P assigning nonzero probability∀h ∈ H,
with con�dence ( − δ) the following holds:

∀h ∈ H, R(h) ⩽ R̂S(h) +

¿
ÁÁÀ ln 

P(h) + ln

δ

n
(4.63)

Proof. As in ¿eorem 4.3 ([Hau88], �nite space, inconsistent case),
we need to apply the union bound over the Cherno� bound:

Pr [h ∈ H ∶ (R̂S(h) = ) ∧ (RD(h) > є)] ⩽ e(−nє), (4.64)
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But we also know that:

Pr [h ∈ H ∶ (R̂S(h) = ) ∧ (RD(h) > є)] ⩽ P(h)δ (4.65)

e(−nє) < P(h)δ (4.66)

є <

¿
ÁÁÀ ln 

P(h) + ln

δ

n

4.8 critiques on mlt
¿is dissertation aims to present an emergent new theory for under-
standing Deep Learning. In this context, we should �rst ask ourselves:
Is anything wrong with the currentMLT? Do we really need a new
theory?

Truth be told: we did not cover current MLT in this chapter which
aimed to be an introductory overview of the subject. ¿ere are many
topics in active development beyond what was presented here: Struc-
tural Risk Minimisation, Rademacher complexity, Uniform Stability,
for example.

With this caveat, here we digest some of the critiques on the cur-
rent state of MLT in two parts, one for general critiques and another
for critiques speci�c to the case of Deep Learning.

4.8.1 General critiques

No assumption on D = P(X,Y) (see 7.2.1, assumption i): One
of the assumptions of classical learning theory is that “there are no
assumptions on D = P(X,Y)”. Although this assumption means that
MLT bounds guarantee approximation to any arbitrary distribution;
distributions of practical interest are the ones found in Nature. ¿ese
practical distributions have some peculiar characteristics that physi-
cists know about [LTR17]: Low polynomial order, locality, symmetry, [LTR17] Lin et al., ‘Why does deep and cheap

learning work so well?’.among others.

Absence of the notion of “time”(see 7.2.1, assumption iii): One
of MLT assumptions on P(X,Y) is that it is �xed; there is no “time”
parameter. Several practical uses of machine learning are in data
streams where it is common to have one observation a�ecting the
probability of the future ones [MP18]. [MP18] Mello and Ponti,Machine learning: a

practical approach on the statistical learning
theory.

Identically Independent sampling (see 7.2.1, assumption iv):
One of the assumptions of Machine Learning is that the datasets are
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sampled i.i.d. ¿is sampling assumption is o en violated in practice;
for example, a machine learning medical application may use data
from one hospital to train a model that will be applied worldwide.

¿e violations are, of course, of practical reasons. However, up to
what point can we say that a particular dataset is i.i.d.? Let us think
over the problem of facial recognition. Taking photos at random in a
university is not i.i.d because the people that goes to the university is
a limited set of the whole population. If we use random images on the
Internet, we may only get the kind of picture people chose to display, a
bias of intention. ¿ere is always some bias in any dataset: a selection,
intention bias or technical bias (due to the image capture device).

Arbitrary Loss metrics In MLT learning setting, the choice of the
loss function is arbitrary, which curbs any objective,metric-independent
interpretation of the results.

Black-box analysis In MLT, the model is treated as a black-box
[AB16] (as cited by [ST17]), i.e. the analysis is based only on the input[AB16] Alain and Bengio, ‘Understanding

intermediate layers using linear classi�er
probes’.

[ST17] Shwartz-Ziv and Tishby, ‘Opening
the Black Box of Deep Neural Networks via
Information’.

and the output of the model.

4.8.2 In speci�c for Deep Learning

Vacuous bounds Machine Learning ¿eory cannot explain deep
neural networks generalisation performance. According to MLT, the
deep learning generalisation gap is in O(∣θ∣ log ∣θ∣), where ∣θ∣ is the
number of parameters of the network [KT08]. ¿ese bounds are vacu-[KT08] Kakade and Tewari, VC Dimension of

Multilayer Neural Networks, Range Queries.
url: https : / / ttic . uchicago . edu / ~tewari /
lectures/lecture12.pdf

ous by orders of magnitudes [Zho+19; Zha+16]. However, deeper and

[Zho+19] Zhou et al., ‘Non-vacuous
Generalization Bounds at the ImageNet Scale:
a PAC-Bayesian Compression Approach’.

[Zha+16] Zhang et al., Understanding deep
learning requires rethinking generalization.

larger networks consistently show better generalisation performance
than smaller ones.

“Inexplicable” phenomena Deep Learning (DL) has several phe-
nomena with no de�nitive explanation, stemming from a single nar-
rative. For example:

• Generalisation with the addition of layers: as we explained in
this chapter, the current MLT expects models with fewer para-
meters to generalise better; that is not what happens in DL.
Moreover, Zhang et al. showed that the hypothesis space ofDNN
is large enough to allow convergence to random labels [Zha+16].

• Disentanglement of semantic factors: the representation of the
input in deep layers usually disentangle semantic factors, i.e.

https://ttic.uchicago.edu/~tewari/lectures/lecture12.pdf
https://ttic.uchicago.edu/~tewari/lectures/lecture12.pdf
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di�erent semantic factors are not strongly correlated in the
representation;

• Superconvergence: Smith and Topin present that overall train-
ing time can be shortened and better accuracy achieved by
cyclical learning rates [ST19]. Howard and Ruder propose a [ST19] Smith and Topin, ‘Super-convergence:

Very fast training of neural networks using
large learning rates’.slight variation of the method, slanted triangular learning rates,

and achieve even better performance [HR18]. ¿is supercon-
[HR18] Howard and Ruder, ‘Universal Lan-
guage Model Fine-tuning for Text Classi�ca-
tion’.
url: http://arxiv.org/abs/1801.06146

vergence phenomenon is not well studied, and there are only a
few conjectures on why it does happen.

• Critical Learning Periods: Achille et al. show that “similar to
humans and animals, deep arti�cial neural networks exhibit
critical periods during which a temporary stimulus de�cit can
impair the development of a skill” [ARS17]. ¿is �nding ques- [ARS17] Achille et al., Critical Learning

Periods in Deep Neural Networks.tions the assumption that the order in which a model experi-
ences evidence does not a�ect learning.

4.9 concluding remarks
¿is chapter summarises basic concepts from Machine Learning ¿e-
ory (MLT). We derived some fundamental theorems of classic MLT

and PAC-Bayes (Section 4.7). We formalised the learning problem
setting and made explicit its assumptions (Section 4.2.2), which we
will add to our list:

Epistemology
Intelligence

Knowledge Sceptical
View

Science

Language

Bayesian Inference

PAC-Bayes

PAC STL

Machine Learning �eory

Figure 4.11: In this chapter we show how
MLT is built from a set of speci�c assump-
tions (Item 4) using the Bayesian inference
language.

4.9.1 Assumptions

1. A de�nition of intelligence (Section 2.1.1)

2. Knowledge is a set of beliefs, quanti�able by real numbers and
dependent on prior evidence (Section 3.1.3, Item I);

3. Assumption of the sceptical agent language (Bayesian infer-
ence):

a) Common sense: ¿e plausibility of compound sentences
should be related by some logical function to the plausibil-
ity of the sentences that form them (Section 3.1.3, Item II).

b) consistency (Section 3.1.3, Item III and Section 3.1.2, Item III)

c) minimality (Section 3.1.2, Item IV)

4. MLT speci�c assumptions for the learning problem:

http://arxiv.org/abs/1801.06146
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a) No assumption on D = P(X,Y);

b) D = P(X,Y) is unknown;

c) D = P(X,Y) is �xed: no “time” parameter.

d) Independent sampling;

e) Labels may assume non-deterministic values (h can be
stochastic, but can also be deterministic);

f) Learning is an optimisation problem in the hypothesis
space.

4.9.2 Revealing the implicit assumptions

Our derivation allowed us to expose implicit assumptions of MLT.
For example, although some may argue that MLT is agnostic of a fre-
quentist or Bayesian view, we disagree. We claim that MLT requires a
Bayesian view and refer to the fact that we derived it from a Bayesian
de�nition of Knowledge. Another point we would like to highlight is
that MLT assumes that there is no importance of the order of experi-
ences, i.e. it assumes consistency (Items 3b and 4d):

i. A belief in a statement can not depend on the path used to arrive at
it. In other words, it does not matter the order in which evidence
is presented.

ii. No evidence can be arbitrarily ignored.

iii. Statements known to be identical must be assigned the same
degree of belief.

Symbolic AI guarantees that their agents follow such assumptions
by construction. However, on the other hand, we know humans do
not follow these assumptions, and the whole point of conceptualising
rational agents was to study a simpli�ed form of intelligence.

For humans,

i. the order in which we experience pieces of evidence matter. Hu-
mans and other animals have critical learning periods [Wie82];[Wie82] Wiesel, ‘Postnatal Development

of the Visual Cortex and the In�uence of
Environment’.

ii. we forget or suppress past experiences;

iii. we can change our mind even in the absence of new evidence.
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What about Deep Neural Networks? ¿ere is nothing by con-
struction that forces DNNs to be consistent. Recently, Achille et al.
observed critical learning period phenomena in DNNs as well [ARS17]. [ARS17] Achille et al., Critical Learning

Periods in Deep Neural Networks.¿erefore, we conjecture:

Conjecture 1. A complete learning theory of Deep Learning (DL) has
to address time and its e�ect on the cost of changing a belief.

4.9.3 On the critiques

Most of the general critiques in Section 4.8.1 are not problems of
current MLT but choices.

Speci�c to Deep Learning, Zhang et al. challenge current MLT

concept of generalisation based on the expressivity of themodel [Zha+16]. [Zha+16] Zhang et al., Understanding deep
learning requires rethinking generalization.¿ey show that the expressivity of neural networks is su�cient to �t

random labels easily and even memorise an entire dataset. Random-
ising labels is a data transformation that does not a�ect the general-
isation performance in current MLT generalisation bounds.

CurrentMLT sample complexity and generalisation bounds, based
on the size of the hypothesis space, focus research attention onmodels
architectures. One of the strongest critiques to the theory has for a
long time been the lack of non-vacuous bounds for DNNs. Recently,
however, Dziugaite and Roy proved such bounds [DR17]. ¿ey did [DR17] Dziugaite and Roy, ‘Computing Non-

vacuous Generalization Bounds for Deep
(Stochastic) Neural Networks with Many
More Parameters than Training Data’.
url: http://auai.org/uai2017/proceedings/
papers/173.pdf

so, however, using PAC-Bayes and exploring the “�atness”/location
of minima found by SGD, proving that at least the optimiser has
a role in DL generalisation. Besides, we will show that there is an
information-theoretical interpretation for the “�atness” of SGD local
minima.

Nevertheless, without disregarding the immense contribution of
‘ComputingNonvacuousGeneralization Bounds forDeep (Stochastic)
Neural Networks with Many More Parameters than Training Data’,
the paper does not pretend to solve conceptual problems in MLT.

Understanding Deep Learning, indeed, requires rethinking gen-
eralisation. A new learning theory may make di�erent choices and
bring a new narrative that uni�es explanations for Deep Learning
phenomena. We will show that, despite its weaknesses, Information
Bottleneck¿eory (IBT) presents a new narrative worth exploring.

http://auai.org/uai2017/proceedings/papers/173.pdf
http://auai.org/uai2017/proceedings/papers/173.pdf




5
Information ¿eory

‘Only through communic-
ation can human life hold
meaning.’

—Paulo Freire

¿is chapter derives Shannon Information from Probability ¿eory,
explicates some implicit assumptions in the usage of Shannon Inform-
ation, and explains basic Information¿eory concepts.

5.1 from probability to information
In Section 2.3.1, we exposed that an agent updates its model of the
environment from sensory data, experience. We have also shown how
this update happens; a sceptical agent proportions her beliefs to the
evidence according to Bayes’ theorem.

¿e amount of this update on knowledge is not uniform. Some
experiences are more valuable than others, i.e. some evidence will
produce a more considerable change in the agent’s knowledge, leading
to a greater impact in her future actions.We say that those experiences
are more informative.

De�nition 5.1. Information is what changes belief [Sow16; Cat08]. [Sow16] Sowinski, ‘Complexity and stability
for epistemic agents: ¿e foundations and
phenomenology of con�gurational Entropy’.

[Cat08] Caticha, Lectures on Probability,
Entropy, and Statistical Physics.

Let us say that an agent’s prior belief in a statement S is P(S).1A er

1P(S) is in fact P(S∣K), but we supress it to
reduce the clutter.

experiencing some evidence e, her posterior set of beliefs is updated
to incorporate the evidence, P(S∣e).2 ¿e prior and the posterior are

2Here we are talking about events: P(S∣e) is a
short hand for P(S∣{e} ∧ K).

related by the product rule (Section 3.6) [Sow16]:

P(S∣e)
´¹¹¹¹¹¸¹¹¹¹¹¹¶
Posterior

= P(e∣S)
P(e)

⋅ P(S)
´¸¶
Prior

(5.1)

We shall call this ratio by which prior and posterior are related as
the likelihood (L):

67
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¿is update procedure can be generalised to a set of experiences.
Consider a sequence of experiences: E = {et}T

p(S∣e)→ p(S∣e ∧ e)→ ⋯→ p(S∣e ∧ e ∧⋯ ∧ eT)

But according to the Cox axiom Section 3.1.3 and Item III, an agent
may partition her experiences in any way she chooses, and this does
not a�ect her �nal belief [Sow16]. ¿erefore3:[Sow16] Sowinski, ‘Complexity and stability

for epistemic agents: ¿e foundations and
phenomenology of con�gurational Entropy’.

3We have already ( Section 3.1.3) delved a little
on the implications of the indi�erence to the
order of evidence which is also an indi�erence
in sequential versus simultaneous updating.

L(e; S) = Posterior
Prior

= P(S∣e)
P(S)

= P(e∣S)
P(e)

(5.2)

P(S∣e) = L(e; S) ⋅ P(S). (5.3)

Simply by observing equation 5.2, we can conclude that if information
(i) is what changes belief, information and likelihood must be related
to one another:

iS(e) = f (L(e; S)). (5.4)

Moreover, if an experience does not change a belief (L(e; S) = ),
it contains no information: f () = .

We also hope that when the likelihood changes by an in�nites-
imal amount, information does not change discontinuously, so f is
continuous.

¿e information gathered from independent eventsmust re�ect
the commutativity of Cox’s axiom III IIIa.

Let L = L(e; S) and L = L(e; S), information must satisfy the
functional constraints [Sow16]:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (L ∧L) = f (L) + f (L)
f () = 
f is continuous.

¿is functional form can be solved, and its solution is [Cat08]:[Cat08] Caticha, Lectures on Probability,
Entropy, and Statistical Physics.

f = A ⋅ lnL(e; S)∴
iS(e) = A ⋅ lnL(e; S). (5.5)

From equations 5.5 and 5.2,

iS(e) = A ⋅ ln P(S∣e)
p(S)

(5.6)

iS(e) = A ⋅ lnP(S∣e) − A ⋅ ln p(S). (5.7)
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¿e constant A allows us to use any base b in the logarithm:

A = 
ln b

→ iS(e) = logb P(S∣e) − logb P(S). (5.8)

We can argue that the amount of information gained by the agent
about the world is equivalent to some amount of hidden information
h that was revealed to the agent by the event e.

Hence, iS(e) = −∆h(e), from eq. 5.7:

iS(e) = logP(S∣e) − logP(S) (5.9)

iS(e) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(− logP(S∣e)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

h(S∣e)

) − (− logP(S)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

h(S)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

iS(e) = −∆h(e). (5.11)

Delightfully, our de�nition of hidden information that reduces
the uncertainty of the agent, and emerged from our de�nition of
information,

h(S) = − logP(S) (5.12)

is equivalent to Shannon’s self information4: 4Also known as the Shannon information con-
tent of an outcome [Mac02] or Hartley’s in-
formation.

I[S] = − log p(s) (5.13)

In Information ¿eory (IT), self-information is de�ned as the
entropy contribution of an individual message (or symbol); in other
words, howmuch an individual event can attain uncertainty reduction.
¿is uncertainty reduction is what we derived.

Shannon’s information can be derived from probability theory.

5.2 shannon’s mathematical theory of communication
Information ¿eory (IT) has an identi�able beginning: Shannon’s
 paper ‘A mathematical theory of communication’ was a giant
leap towards understanding communication and de�ning informa-
tion.5Despite his acknowledging of the in�uence from previous works 5In a rare piece of collaboration, Shannon

asked his lunchroom table colleagues at Bell
Labs to come up with a snappier name than
binary digit. Bigit was considered, but John
Tukey’s proposal, bit, was chosen [SG17].

by pioneers such Harry Nyquist and Ralph Hartley, it was Shannon’s
unifying vision that revolutionised communication and provided a
blueprint for the information age [A +01]. His theory de�nes un-

[A +01] A ab et al., Information ¿eory: In-
formation ¿eory and the Digital Age.
url: http : / / web . mit . edu / 6 . 933 / www /

Fall2001/Shannon2.pdf

breachable limits, the laws of information [Sto15]:

[Sto15] Stone, Information theory: a tutorial
introduction.

i. ¿ere is an upper limit, the channel capacity, to the amount of
information that can be communicated through a channel;

http://web.mit.edu/6.933/www/Fall2001/Shannon2.pdf
http://web.mit.edu/6.933/www/Fall2001/Shannon2.pdf
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ii. Noise reduces the channel capacity;

iii. ¿ere is an encoding that allows lossless communication trough
a noisy channel.

¿e idea of transmitting information with zero error through a
noisy channel is not intuitive, and its theoretical proof was an unex-
pected result. In the following sections, we will explain the concepts
of IT that allow us to comprehend these laws of information.

5.2.1 ¿e communication problem setting

Shannon deliberately chose not to deal with fuzzy concepts as intelli-
gence or meaning:

¿e fundamental problem of communication is that of repro-
ducing at one point either exactly or approximately a message
selected at another point. Frequently, the messages have mean-
ing; that is, they refer to or are correlated according to some sys-
tem with certain physical or conceptual entities. ¿ese semantic
aspects of communication are irrelevant to the engineering
problem. ¿e signi�cant aspect is that the actual message is one
selected from a set of possible messages.

—Claude Shannon, [Sha48][Sha48] Shannon, ‘A mathematical theory of
communication’. Conceptually, this setting can be explained as follows (Figure 5.1):

6
6s is the intended message. One can think
about it as the meaning or the semantics.

Figure 5.1: ¿e communication problem set-
ting.

¿e Source S:

1. selects a message s from a set of possible messages AS.77AS is the alphabet or the set of possible out-
comes of the random variable S.

2. ¿e encoder x encodes the message s into a string of symbols
x, the signal; and
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3. transmits this string of inputs x through a noisy channel p(y∣x , η).

In the Destination:

1. ¿e decoder Y ∶= p(y∣x , η) receives a string of symbols y,

2. decodes the string y into the most probable message ŝ.

5.3 information
¿e reason for communication is to change another agent’s beha-
viour. In other words, communication either a�ects the conduct of the
recipient, or it is like it has never happened [Sha48, p.100]. We have
already established (Section 5.1, de�nition 5.1) that information is what
changes belief ; thus, changes an agent’s conduct. So, communication
is transmitting information.

Noteworthy, information is independent of the encoding or the
chosen channel. ¿us, one can use any language (English, Portuguese,
music, images, dance) and any transmission medium (letter, tele-
graphy, microwaves) that the transmitted information remains the
same.

To simplify, Shannon constrained semantics to the act of choosing
a message from a set of �nite possibilities. A source (a person, a
machine or a phenomenon) that always sends the samemessage never
surprises the receiver, and the message carries no information. On
the contrary, a source that sends symbols at random is impossible to
predict, and, therefore, every message carries maximal information.

¿erefore, information is a measure of freedom of choice in selecting
the message [SW49, p.100]. In other words, it is a measure of surprisal [SW49] Shannon and Weaver,¿eMathemat-

ical ¿eory of Communication.or uncertainty reduction.
In the aforementioned famous paper, Shannon limited to say that

mathematically, if the set of possiblemessagesAS is �nite, any function
of the size of this set f (∣AS∣) is a measure of information and that the
logarithmic function is a natural choice. We shall expand on this idea.

5.3.1 A guessing game

Imagine a number from 1 to 1000. Let us assume that you picked the
number at random. ¿us, each number in the range had the same
chance of being chosen, 

 . How many questions are needed to
guess the number correctly? Well, it depends on what are the allowed
answers. One could ask:

Figure 5.2: Branching factor of 10 to �nd 246.• How many hundreds the number have?
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• ¿en, how many tens the number have?

• ¿en, how many units?

In this case, the number of questions needed is three, the height
of the tree in Figure 5.2, because we allowed each answer to be a digit;
therefore, the branching factor b of the decision tree was 10. It is easy
to notice that the tree’s height is logb().

It is now clear what Shannonmeant by saying that the logarithmic
function was the natural measure of information. ¿e logarithm will
give the decision tree’s height (number of questions) based on the
number of possible answers (the logarithmbase).¿e branching factor
is just a measurement unit and can be chosen arbitrarily.

¿e smallest branching factor is 2, a bit. So, one bit is the amount
of information that resulted from choosing between two equally likely
options.

To solve the same guessing game with bits, i.e. with yes or no
questions, one proceeds with a binary search, and in the worse case it
will need log() =

log()
log()

≈ . ∴  questions.
How about if the choice was among not equally likely options?

Let us examine the simplest case of an unfair coin, which turns heads
% of the time.X?

P(X = H) = % P(X = T) = %

Here, we expect the outcome to be heads, so if it turns tails, we
get surprised. Before the coin �ip, we were 25 certain (our belief
measure) that the experiment would turn tails. If it turns tails, our
certainty reaches 100, growing by a factor of 

. = . So it is reason-
able to think that our uncertainty of the tails outcome decreased by
a factor of 4 as well. We were 75 certain that the experiment would
turn heads. If it in fact turns heads, our uncertainty of the heads out-
come decreased by a factor of 

. ≈ .. How do we transform this
uncertainty reduction factor8 to a measure in bits? In other words,8 MacKay call this factor Occam’s

factor [Mac02]. how do we measure in bits the information gained by unveiling an
outcome?

Notice that 1 bit is the amount of information that reduces uncer-
tainty from 2 possible states to 1, a factor of 2. Also, 2 bits of informa-
tion reduce the uncertainty from the 4 possible representable states
with 2 bits to 1, a factor of 4. So, if an outcome has probability p(x):

 factor =  bit

 factor =  bits
⋯

n factor = n bits
∴ x factor = log(x) bits


p(x)

factor Ô⇒ log


p(x)
bits = − log p(x) bits

If the factor is a measure of the reduction in freedom of choice, the
factor is the information gained by knowing the experiment’s outcome.
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¿us, this factor is known as self-information or information content
of an outcome9: 9Information theory magnitudes are func-

tions of the probabilities randomvariables and
not directly of a random variable. To address
this di�erence, we opt to use square brackets
instead of parenthesis.

De�nition 5.2. ¿e information content, self-information, sur-
prisal, or Shannon information of a particular outcome x of an
experiment is de�ned as:

I[x] = h[x] = − log p(x) (5.14)
(information content of outcome)

As we already had derived in Section 5.1.

5.3.2 Entropy

In practice, however, we are not usually interested in the information
of a particular outcome, but in how surprised, on average, we will
expect to be with the entire set of possible outcomes.

De�nition 5.3. ¿eentropyH[X] of a random variableX is de�ned to
be the average Shannon information content of its possible outcomes:

H[X]≜Ep


log p(x)
= − ∑

x∈AX

p(x) log p(x) bits/symbol. (5.15)

Entropy can be seen in two ways10: 10Wewill constrain our explanations of Inform-
ation¿eory to the discrete case. It can be ar-
gued that if we are interested in models that
computers will use, some quantisation will al-
ways happen.

1. as the quantity of information “produced” by the source [SW49,

[SW49] Shannon and Weaver,¿eMathemat-
ical ¿eory of Communication.

p.18].

2. as a measure of uncertainty or lack of pattern.

Average information shares the same de�nition as Entropy; therefore,
to know whether a quantity is information or Entropy depends on
whether it is given or taken [Sto15]. In other words, uncertainty re- [Sto15] Stone, Information theory: a tutorial

introduction.duced is information gained, and vice-versa. If a random variable X is
very uncertain, it has high Entropy. If we are told the outcome of the
variable X = x j, we have been given information equal to the uncer-
tainty we had. ¿us, receiving an amount of information is equivalent
to having the same amount of Entropy taken away.

5.4 the source
In the problem setting proposed by Shannon, the source generates
a message, symbol by symbol. ¿e choice of each symbol depends
on the “preceding choices as well as the particular symbols in ques-
tion” [SW49, p.10].
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Amathematical model that follows this description is known as
a stochastic process. A stochastic process can represent any discrete
source. “Conversely, any stochastic process may be considered a dis-
crete source” [SW49].[SW49] Shannon and Weaver,¿eMathemat-

ical ¿eory of Communication.

De�nition 5.4. A stochastic (or random) process is a set of random
variables indexed by a variable i ∈ N (usually representing time):

Si , i ∈ N (5.16)
(Stochastic Process)

In the original formulation, Shannon modelled the source as a
stochastic process indexed by time. He thought the source as an entity
that emits a speci�c rate, amount of information (bits) per period
(seconds):

RS≜
H[S]
TS

bits
second

(5.17)

where TS is the average time in seconds of transmitting a symbol. For
simpli�cation sake, from now on we will just say that the source rate
is:

RS = H[S] bits/symbol or H[S] bits/transmission (5.18)

5.4.1 Markov chains

More speci�cally, Shannon proposed using a special kind of stochastic
process called an ergodic Markov chain to model the source.

De�nition 5.5. An order-kMarkov chain is a stochastic process that
satis�es the following property:

P(Si ∣Si−, Si−,⋯, Si−k) = P(Si ∣Si−, Si−,⋯, S) (5.19)

¿e ergodicpropertymeans statistical homogeneity [SW49]: its statist-
ical properties can be deduced from a single, su�ciently long, random
sample of the process.

An order-k ergodic Markov chain is a process with a memory of k
states. By modelling the source as an ergodic Markov chain, Shannon
showed that his theory not only works for phenomena that can be
modelled as i.i.d. random variables.¿e source can behave like a chain
of random variables {S}, each representing an outcome s ∈ AS that
are dependent on each other, as long as the sequence produced is
longer than the number of symbols needed to the Markovian process
achieve its stability.
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5.5 data compression: encoder/decoder
An encoder transforms information into data. For example, the same
information can be transformed into an audio �le with spoken English,
a piece of writing in Portuguese, or even an image. ¿ese encodings
represent the information uniquely and di�er in the amount of data
(bits) they use (Figures 5.3a to 5.3c).

(a) A 360 kB PNG colored im-
age of a cat.

(b) A 27 kB JPG grayscale im-
age of a cat.

(c) A 4.9 kB SVG duotone im-
age of a cat.

Figure 5.3: Di�erent representations of a cat
and their encoding sizes in bits.

‘ What’s in a name?

¿at which we call a rose,

by any other word

would smell as sweet.’
— William Shakespeare,

Romeo and Juliet (act.2, sce.2)

An analogy with natural languages can better explain this idea.
Languages encode ideas into words in di�erent ways. For example,
while in English “to be” is universal, Portuguese has two di�erent verbs:
“ser” and “estar”; the �rst for permanent, unchanging cases; the second
for temporary situations such as mood or weather. At the same time,
similar or identical meanings appear in unrelated languages [Zas+18].

[Zas+18] Zaslavsky et al., ‘E�cient compres-
sion in color naming and its evolution’.¿us, a message in a natural language can be translated (encoded)

to another language, and both messages will hardly have the same
number of words, characters, or size in bits:

Sn = {S,⋯, Sn}
encoding∶ X(S)
ÐÐÐÐÐÐÐÐ→ {X,⋯,Xk} = Xk . (5.20)

Xk = {X,⋯,Xk}
decoding∶ X−(X)
ÐÐÐÐÐÐÐÐÐ→ {S,⋯, Sn} = Sn . (5.21)

Besides, some symbols are more important in a message: “Mst
nglsh spkrs wll ndrstnd ths phrs wtht vwls11”. Here we created code- 11“Most English speakers will understand this

phrase without vowels”.words for words in English that a receiver can understand by the
context (and certainly if she has a codebook12). 12A codebook is a dictionary that relates words

in the source alphabet, AS to words, codes, in
the encoder alphabet AX .

Shannon’s source coding theorem is about encoding messages
e�ciently, a form of data compression [Sto15]. Here we present some

[Sto15] Stone, Information theory: a tutorial
introduction.

de�nitions that will help us understand the theorem later.

De�nition 5.6. A (n, k) block code, also known as a codebook, is a
set of n codewords represented by a sequence of k bits:

{Xk(),Xk(), ...,Xk(n)}, Xk(i) ∈ Ak
X , n ∈ N. (5.22)
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De�nition 5.7. Let Sn be a block of n random variables, representing
consecutive symbols Si ∈ AS emitted by the source. A binary block
encoder X is a function:

X ∶ An
S → {, }k (5.23)

that “translates” the block of source symbols (the message) into a code
Xk of k bits, using a (∣An

S ∣, k) code:

X(Sn) = {x,⋯, xk} = x ∈ {, }k (5.24)

De�nition 5.8. ¿e rate RX of a binary block encoder is:

RX = R(n,k) =
log ∣An

S ∣
k

= n
k
log ∣AS∣

bits
symbol

(5.25)

Shannon’s source coding theorem (Section 5.5.6) is essentially
about data compression. ¿e encoding process yields inputs with a
speci�c distribution P(X).¿e shape of this distribution13 determines13¿e relationship between information (en-

tropy) and the shape of the distribution is cru-
cial for the IBT perspective. its entropy H[X] and, therefore, how much information each input

carries [Sto15].
[Sto15] Stone, Information theory: a tutorial
introduction.

(a) Loss of information. (b) Waste of resources (bits).

Figure 5.4: Entropy of the source vs. coding
capacity.

Shannon proved a relation between the source’s entropy and its
optimal encoding (this relation will be shown in Section 5.5.6). ¿e
source’s entropy is a lower bound on theminimumbits/symbol needed
to encode it.¿e intuition is simple, imagine the Entropy of the source
as a “tube “(see Section 5.5). ¿e capacity of the tube is the rate of
bits/symbol we expect from the source. ¿e encoder is a connection
to the tube.

If we use fewer bits than the entropy to encode it, we lose informa-
tion (see Figure 5.4a). Conversely, if we use more bits than the entropy,
we are wasting resources (see Figure 5.4b).

5.5.1 An encoding example

Let us use an example to illustrate better this crucial concept in IT14.14¿is example is inspired by A Short Intro-
duction to Entropy, Cross-Entropy and KL-
Divergence [Gé18]
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Imagine building a weather station that sends the moment weather
condition to a distant control room. Also, there are eight weather
conditions in whichwe are interested. In this case, amessage transmits
one symbol from AS.

AS = {w,w,w,w,w,w,w,w} (5.26)

How can we encode these weather conditions?

w0 w1 w2 w3

w4 w5 w6 w7

Figure 5.5: A weather station. Inspired by
[Gé18]

5.5.2 Raw bit content

¿e �rst idea is to enumerate AS in binary, using 3 bits/symbol.

AX = {x = , x = , x = , x = ,
x = , x = , x = , x = } (5.27)

¿is encoding provides a model of the source that has maximum

0

0

0

0

00 011 1

1 1

1

1

000 001 010 011 100 101 110 111

Figure 5.6: Largest encoding = Maximum en-
tropy.

entropy (all outcomes are equiprobable, thus have the same encoding
size)15:

15¿e probability distribution that produces
maximum entropy is the uniform distribution
(Section 3.11.2)

p(xi) =


∣AX ∣
,∀i ∈ [, ] (5.28)

H[X] = −
∣AX ∣

∑


∣AX ∣
log


∣AX ∣

(5.29)

= log ∣AX ∣. (5.30)

Is this a good encoding?
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5.5.3 Maximum Entropy Principle

If all information we have is how many weather conditions are there,
the size of the source alphabet, the best model is the one that conveys
this information and has maximum Entropy, i.e. it makes no further
assumptions. ¿is maximally entropic model has the worst-case scen-
ario for the average number of questions needed to �nd out which
outcome is the right one:

P(S) = {p = 
 , p = 

 , p = 
 , p = 

 ,
p = 

 , p = 
 , p = 

 , p = 
} (5.31)

In this case, that encoding (5.27) is indeed a good option. Notice
that the encoding process yields a speci�c distribution P(X), which de-
termines its entropy H[X] and, therefore, how much information per
symbol it carries [Sto15]. ¿e maximum entropy is obtained with this[Sto15] Stone, Information theory: a tutorial

introduction. equiprobable distribution, the uniform distribution (Section 3.11.2).
Let us assume now that another information about the source is

given.¿eweather station is in the Atacama desert, and P(S′) = {p =
%, p = %, p = %, p = %, p = %, p = %, p = %, p = %}.
With this new information about the source. Can we do better? Sure.

p0=75% p1=15% p2=5% p3=1%

p4=1% p5=1% p6=1% p7=1%

bits/message ?

Figure 5.7: A weather station in the Atacama.
Inspired by [Gé18]

First, let us calculate the lower bound (maximum e�ciency) of
the bits/symbol rate of the source encoding, RX = H[S′]:

H[S′] = . log 
.

+ . log 
.

+ . log 
.

+ (. log 
.

)

≈  bits
symbol

(5.32)
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We know that theoretically we cannot have an encoding with less
than 1 bit/symbol in average. But we can improve from 3 bits/symbol
(see Figure 5.6)16,17: 16Any distribution that is not uniformwill lead

to an average tree height that is smaller that
the uniform distribution. ¿e uniform distri-
bution is the worst case.

17In Chapter 4, we used X to represent the
domain of X, here we use AX to represent the
same domain to emphasise that the domain
is �nite; it is an alphabet.

0
0

0

0

0

0 0

1

1

1

1

11

0 10 110 11100 111010

1

111011 11110 11111

Figure 5.8: ¿e probability distribution of the
source determines an encoding.

AX′ = {x′ = , x′ = , x′ = , x′ = ,
x′ = , x′ = , x′ = , x′ = } (5.33)

¿e average encoding size per message symbol in X′ is:

. ⋅  + . ⋅  + . ⋅  + . ⋅  + . ⋅ 

≈ . bits
symbol

(5.34)

5.5.4 Cross-Entropy

¿is average encoding size per message symbol has a special name:
the Cross-Entropy. It is evident the similarity of the de�nition of
Cross-Entropy and Entropy. If our model q of the real distribution p
is absolute right (p = q), the Cross-Entropy is equal to the Entropy
Hp,q = Hp. If not (as it is in most cases), Hp,q > Hp.

In our the Atacama weather station example, the cross-entropy
between the real distribution p = p(s) and the encoding distribution
q = p(x) was 1.5 bits/symbol. So, we can say the e�ciency of the
encoding X(s) is information

data = H[S]
Hp ,q[S] =


. ≈ %. We calculated Hp,q

knowing the sizes of each possible si .
Let us use another example, imagine that we transport the weather

station from the Atacama to London, where the probability distribu-
tion of the weather is P(S′′) = {p = %, p = %, p = %, p =
%, p = %, p = %, p = %, p = %} ∴ H[S′′] ≈ ., and
keep using the same encoding. ¿e encoding will be much less e�-
cient. ¿e average size of a message symbol in this situation is:

Hp,q[S′′], p = P(S′′), q = P(X′) (5.35)
= . ⋅  + . ⋅  + . ⋅  + . ⋅  + . ⋅ 

≈ . bits
symbol

(5.36)

¿e e�ciency of the encoding is ./. = .%.

De�nition 5.9. Cross-entropy is the average number of bits needed
to encode data coming from a source S with distribution p(s) when
using model q(s).

Hp,q[S] = −∑
s∈AS

p(s) log q(s) (5.37)
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p0=5% p1=5% p2=10% p3=15%

p4=15% p5=20% p6=20% p7=10%

bits/message ?

Figure 5.9: ¿e the Atacama’s weather station
in London. Inspired by [Gé18]

5.5.5 KL Divergence (or Relative Entropy)

¿e amount by which the Cross-Entropy and the Entropy diverge is
the KL Divergence:

De�nition 5.10. ¿e relative entropy or Kullback–Leibler diver-
gence between two probability distributions p(s) and q(s) that are
de�ned over the same alphabet AS is:

DKL(p∣∣q) =∑
s

p(s) log p(s)
q(s)

= ES log
p
q

(5.38)

DKL(p∣∣q) = Hp,q[S] −Hp[S] (5.39)

In our example:

DKL(pthe Atacama∣∣qLondon) = Hp,q[S′′]
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≈.

−Hp[S′′]
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

≈.

≈  bits
symbol

(5.40)

5.5.6 Shannon’s source encoding theorem

Now that we understand how the source encoding works, let us take
a moment to appreciate the geniality of Shannon. Here, we show
how he demonstrated the size of the optimal encoding without ever
explaining which encoding is that in the �rst place.

¿eorem 5.1 (Shannon’s st Law). ¿e optimal binary encoding Xk =
(X,⋯, Xk), Xi ∈ {, }, of a n-symbolsmessage Sn = (S,⋯, Sn), where
Si ∈ AS are i.i.d. ∼ p(s) has an expected size k ≈ nH[S] for su�ciently
large n.



data compression: encoder/decoder 81

An obsessive observant reader may have no-
ticed that we are here considering the source
as an i.i.d. stochastic process, instead of a sta-
tionary ergodic process.¿is is the same proof
stated by Shannon [Sha48] and others [CT06;
Mac02]. A proof for ergodic �nite alphabet
sources can be found in ‘¿e Basic ¿eorems
of Information¿eory’ [McM53].

Proof. A one-to-one mapping Sn ↦ Xk is invertible. If we enumerate
all elements of Sn in binary, we will need k bits. ¿us, with absolute
certainty:

k ⩽ log⌈∣Sn∣⌉ = log⌈n log ∣AS ∣⌉ = n log ∣AS∣ +  bits (5.41)

Can we do better? We know from statistics that most possible out-
comes are unlikely. In other words, there is a small set of very likely
outcomes that are most probable. So let us use this property of Nature.

Figure 5.10: ¿e typical set of sequences Sn .

We will divide all sequences Sn into two sets: the typical set (T(n)
є )

and its complement, the atypical set (¬ T(n)
є ), which can be seen in

Figure 5.10.

De�nition 5.11. ¿e typical set T(n)
є with respect to p(s) is the subset

of sequences Sn = (S,⋯, Sn), Si ∈ AS, where:

⎧⎪⎪⎨⎪⎪⎩

P(T(n)
є ) = ∑Sn∈T(n)

є
P(Sn) >  − є, for su�ciently large n

P(S(n) ∈ T(n)
є ) ≈ p(si),∀i .

(5.42)

In other words, for a sequence of n i.i.d. random variables S ≡
(S,⋯, Sn), each drawn from p(s), the outcome m = (s,⋯, sn) is
almost sure to belong to the typical set T(n)

є , if n is large, and the
probability of any outcome is almost the same.

Let us put aside that we do not know the size of the typical set,
∣T(n)

є ∣.
We know that:

∣T(n)
є ∣ ≪ ∣¬T(n)

є ∣ < ∣Sn∣, (5.43)

P(T(n)
є ) ≫ P(¬T(n)

є ), (5.44)

E(k) = ⌈P(T(n)
є ) log ∣T(n)

є ∣ + P(¬T(n)
є ) log ∣¬T(n)

є ∣⌉. (5.45)

¿erefore, from (5.41) we can predict that:

E(k) ≪ n log ∣AS∣ +  bits (5.46)

Now, we need to �nd ∣T(n)
є ∣. For this, we will use the Asymptotic

Equipartition Property (AEP), formalised bellow [CT06]: [CT06] Cover and ¿omas, Elements of
Information ¿eory.

¿eorem 5.2 (AEP). If S,⋯, Sn are i.i.d. sampled from the same distri-
bution p(s), then:

− 
n
logP(S,⋯, Sn)→ H[S] in probability. (5.47)
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Proof. From the theorem de�nition, Si are independent. ¿en from
the Product Rule (eq. 3.11):

− 
n

n
∑
i=
logP(S,⋯, Sn

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Sn

) eq.3.11= − 
n
log(

n
∏
i=
���

�: p(s)
P(Si)) (5.48)

= 
n

n
∑
i=
− log p(s) (5.49)

From the weak law of large numbers:

n →∞,

n

n
∑
i=
ξi → E(ξ) (5.50)

¿erefore, using the fact that a statistic of a random variable is a ran-
dom variable, let ξ = − logP(Si) [CT06] and using (5.15) and (5.50):[CT06] Cover and ¿omas, Elements of

Information ¿eory.

n →∞,

n

n
∑
i=

(− logP(Si))→ Ep(− log p(s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H[S]

(5.51)

∴ − 
n
logP(Sn)→ H[S] (5.52)

Now that we proved ¿eorem 5.2 (AEP), let us use it to de�ne
∣T(n)

є ∣:

− 
n
logP(Sn)→ H[S] in probability (5.53)

P(Sn)→ −n(H[S])∴ (5.54)
−n(H[S]+є) ⩽ P(Sn) ⩽ −n(H[S]−є) in probability (5.55)

We also know that:

 =∑
Sn
P(Sn) (5.56)

 ⩾ ∑
Sn∈T(n)

є

P(Sn) (5.57)

 ⩾ ∣T(n)
є ∣ P(Sn) (5.58)

From (5.55):

 ⩾ ∣T(n)
є ∣ −n(H[S]+є) (5.59)

∴ ∣T(n)
є ∣ ⩽ n(H[S]+є) (5.60)
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¿is upper bound to ∣T(n)
є ∣ is all we need to prove ¿eorem 5.1 (Shan-

non’s st Law).

E(k) = ⌈P(T(n)
є ) log ∣T(n)

є ∣

+����
��:є

P(¬T(n)
є ) ���

���:
∣Sn∣ = n log ∣AS∣

log ∣¬T(n)
є ∣ ⌉ (5.61)

≃ ⌈( − є) log n(H[S]+є) +����
��:є′nєn log ∣AS∣ ⌉ (5.62)

≃ ⌈( − є)[n(H[S] + є)] + є′n⌉ (5.63)
≃ ⌈n(H[S] + є − єnH[S] − є) + n(є′)⌉ (5.64)

≃ ⌈n(H[S] +
��

���
���:

є′′
є − єH[S] − є ) + n(є′)⌉ (5.65)

≃ ⌈n(H[S] + є′′ + є′)⌉ = ⌈n(H[S] + ε)⌉ (5.66)
∴

E(k) ≃ nH[S]

We proved that the average information per symbol of the coding
generated by the optimum encoder has the same average information
per symbol as the source, H[S] bits

symbol . Due to this property, it is quite
common to talk about H[X] as the entropy of the source.

5.5.7 Typical Set

We de�ned the typical set and discovered some of its properties in
the proof of the source coding theorem, but we le one behind. We
only needed the upper bound for ∣T(n)

є ∣, let us now derive its lower
bound. From (5.55) and the typical set de�nition (5.42):

∑
Sn∈T(n)

є

−n(H[S]−є) ⩾  − є (5.67)

∣T(n)
є ∣−n(H[S]−є) ⩾  − є (5.68)

∣T(n)
є ∣ ⩾ ( − є)n(H[S]−є) (5.69)

¿erefore, from (5.69) and (5.60) we can derive:

( − є)n(H[S]−є) ⩽ ∣T(n)
є ∣ ⩽ n(H[S]+є) (5.70)

∣T(n)
є ∣→ nH[S] (5.71)

With that, we can list some useful properties of T(n)
є :

1. almost all probability is concentrated in the typical set, by de�n-
ition (5.42) ;
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2. elements in the typical set are nearly equiprobable (5.55);

3. the number of elements in the typical set is nearly H[S] (5.71).

Going back to ¿eorem 5.2 (AEP):


n
log( 

P(Sn)
) → H[S]

H[S] − є ⩽ 
n
log( 

P(Sn)
) ⩽ H[S] + є (5.72)

We can think of the middle term as the Entropy of a sample size
n. ¿us a typical sample gives us an amount of information close to
the average information from the source, H[S]18.18¿is insight reminds us of the sample com-

plexity, discussed in Chapter 4

5.6 the channel: data transmission
¿e channel is simply the medium used to transmit the signal x from
the encoder to the decoder19. It may be anything from a band of radio19x ↦ y

frequencies, an electrical wire, a beam of light, or a postal service. As
we did before, we can also think the channel as a “tube” which carries
information (see Section 5.5).2020¿is de�nition of a discrete channel covers

the deterministic case where y = f (x).
In most cases, the usage of a channel is de-
termined by the period in which it is being
used. ¿us, some prefer to de�ne the capacity
in bits/second.

De�nition 5.12. Mathematically, a discrete channel is the conditional
probability

p(y∣x), y ∈ AY , x ∈ AX . (5.73)

5.6.1 Noiseless Channel Capacity

De�nition 5.13. ¿e operational capacity of a channel is the max-
imum rate of bits per transmission that the medium is physically
capable of transmitting. It is, in fact, just a number of bits per trans-
mission. We can think of it as the maximum entropy it is capable of
transmitting in the absence of noise:

Coperational = R =max
p(x)

log ∣AX ∣ bits/usage. (5.74)

5.6.2 ¿e noisy channel

All practical communications, however, are noisy [Sto15]. Noise re-[Sto15] Stone, Information theory: a tutorial
introduction. duces the rate at which information can be communicated reliably.

Shannon proved that information could be communicated, with ar-
bitrarily small error, at a rate limited only by the channel capacity.

To understand how noise a�ects the channel capacity, we need to
understand the concepts of conditional entropy, joint entropy and
mutual information.
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Figure 5.11: A noisy channel.

5.6.3 Conditional Entropy

¿e residual uncertainty we have about a random variable given that
we already know the outcome of another random variable is the con-
ditional entropy21: 21In the communication setting, we usually

want to know the residual information in Y
that is not from X, H[Y ∣X], which we call
noise.De�nition 5.14. ¿e conditional entropy or equivocation H[X∣Y]

of X given Y is:

H[X∣Y]≜ ∑
y∈AY

p(y) [∑
x∈AX

p(x∣y) log 
p(x∣y)

] (5.75)

= − ∑
x y∈AXAY

p(x , y) log p(x∣y) (5.76)

5.6.4 Joint Entropy

We have de�ned the entropy of a single random variable in (5.15).
Now, we extend the de�nition to a pair of random variables. As the
pair can be seen as a single vector-valued random variable, there is
nothing new in this de�nition [CT06, p.15]. [CT06] Cover and ¿omas, Elements of

Information ¿eory.

De�nition 5.15. ¿e joint entropy H[X,Y] of a pair of discrete ran-
dom variables (X,Y) with joint distribution p(x , y) is de�ned as:

H[X, Y] ≜ −E logP(X,Y) (5.77)
= − ∑

x∈Ax

∑
y∈Ay

p(x , y) log p(x , y). (5.78)

5.6.5 Mutual Information

De�nition 5.16. ¿emutual information I[X;Y] between two vari-
ables, such as a channel input X and output Y , is the amount of in-
formation obtained about one random variable through observing
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the other random variable.

I[X;Y] =∑
i
∑

j
p(xi , y j) log

p(xi , y j)
p(xi)p(y j)

bits (5.79)

= H[X] −H[X∣Y] (5.80)
= H[Y] −H[Y ∣X] (5.81)
= H[X] +H[Y] −H[X,Y] (5.82)
= H[X,Y] − [H[X∣Y] +H[Y ∣X]] bits (5.83)

H[X] H[Y]

H[X,Y]

H[X] H[Y]

H[X∣Y]

H[X] H[Y]

H[Y ∣X]

I[X;Y] = I[Y ;X]

H[X]
H[ X|Y ]

H[Y]H[ Y| X ]

I [ X;Y ]

Figure 5.12: Relationship between informa-
tion measures in a channel.

For a visual understanding of these measures, see Figure 5.12. ¿e
mutual information can also be seen as a measure of the mutual
dependence between the two variables, as the mutual information
is the same as the Kullback–Leibler divergence between the joint
distribution and the product of the variables marginal distributions:

I[X;Y] = DKL(p(x , y)∣∣p(x)p(y)). (5.84)

5.6.6 Data Processing Inequality

We cannot increase information by applying a deterministic function
to the data, nor decrease information if the deterministic function is
invertible.

¿eorem 5.3 (DPI). Let three random variables form the Markov chain
X → Y → Z, implying:

p(x , y, z) = p(z∣y)p(y∣x)p(x). (5.85)

No processing of Y , deterministic or random, can increase the informa-
tion that Y contains about X:

I[X;Y] ⩾ I[X;Z] (5.86)

Proof. We refer to [CT06, th.2.8.1] for proof.[CT06] Cover and ¿omas, Elements of
Information ¿eory.

¿eorem 5.4 (reparametrisation invariance (RI)). Let X → Y → Z
form a Markov Chain, then functions of the data Y cannot increase the
information about X, i.e. I[X;Y] ⩾ I[X; g(Y)].

Proof. Z = g(Y) ∴ I[X; g(Y)] = I[X;Z]. By the Data Processing
Inequality (DPI) property:

I[X;Y] ⩾ I[X;Z] (5.87)
I[X;Y] ⩾ I[X; g(Y)] (5.88)
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5.6.7 Noisy channel capacity

Given that in a noisy channel Y = X + η, where η is the noise in the
channel, from the mutual information de�nition:

I[X;Y] = H[Y] −H[Y ∣X] (5.89)
= H[Y] −H[(X + η)∣X]. (5.90)

If X is known, the uncertainty from X is none:

I[X;Y] = H[Y] −H[η∣X] (5.91)

By de�nition, η and X are independent, therefore:

I[X;Y] = H[Y] −H[η] (from (5.89))
∴ H[Y ∣X] = H[η] (5.92)

De�nition 5.17. ¿e information capacity or e�ective capacity of a
noisy channel is de�ned as:

C =max
p(x)

I[X;Y] (5.93)

=max
p(x)

(H[Y] −H[Y ∣X]) bits/transmission. (5.94)

=max
p(x)

(H[X] −H[X∣Y]) bits/transmission. (5.95)

¿e information capacity can be derived theorem from Shannon’s
noisy channel theorem (5.7).

5.7 shannon’s noisy channel theorem
In his second and, perhaps, most crucial theorem, Shannon proved
that provided H[X] ⩽ C, the average error (є), when averaged over
all possible encoders approaches to zero (є → ) as the length of the
input x increases. ¿erefore, there must exist at least one encoder that
produces an error as small as є [CT06, p. 198].

¿eorem 5.5 (Shannon’s nd Law). All rates below capacity C are achiev-
able. Speci�cally, for every rate R < C, there exists a sequence of (nR , n)
codes with maximum probability of error λ(n) → . Conversely, any
sequence of (nR , n) codes with λ(n) → must have R ⩽ C.

Once again, Shannon proved with a counterintuitive argument.
He demonstrates there is an encoder that produces an arbitrarily small
error without showing how to �nd this encoder.

Instead of proving the theorem (for which we refer to [Mac02] [Mac02] MacKay, Information ¿eory,
Inference, and Learning Algorithms.
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and [CT06]), let us give an intuitive explanation of the proof.

[CT06] Cover and ¿omas, Elements of
Information ¿eory.

Consider n uses of the channel as our block usage.¿ere are ∣AX ∣n
possible inputs x and ∣AY ∣n possible outputs y in the block usage. We
want to prove that for any y, it is possible to derive an unique message
that generated it.

If n is large, any particular x ∈ Xn is very likely to produce an
output in a small subspace of the output alphabet, the typical output
set, given x. So, it is possible to �nd a non-confusable subset of the
input sequences that produce disjoint output sequences.

Figure 5.13: ¿e need to restrict to the subset
of typical inputs.

Take x ∼ p(Xn). Recall ¿eorem 5.1 (Shannon’s st Law), the total
number of typical output sequences y is nH[Y] (see Figure 5.13 (B)),
all sequences being almost equiprobable. For any sequence x, there
are about nH[Y ∣X] probable sequences (see Figure 5.13 (A)).

Now we restrict ourselves to the subset of the typical inputs, such
that the corresponding typical output sets are disjoint. We can expect
the number of non-confusable inputs to be:

∣Aє
X→Y ∣ ⩽

nH[Y]

nH[Y ∣X] = 
n(H[Y]−H[Y ∣X]) = nI[X;Y] (5.96)

¿e maximum value of this bound is achieved by the process X
that maximises I[X;Y]. ¿erefore, nmaxp(x) I[X;Y] is the maximum
amount of bits that can be transmitted in n usages of the channel,
which proves the �rst law of information (see Section 5.2):

Cnoisy channel =max
p(x)

I[X;Y]. (5.97)

We can rewrite (5.97) as:

Cnoisy channel =max
p(x)

(H[X] −H[η]), (5.98)

which states that noise reduces channel capacity. So, this is also a proof
for the second law of information (Section 5.2).

5.8 beyond shannon’s information
Even before Shannon’s ‘A mathematical theory of communication’,
other information measures have been de�ned and studied. In this
section we will expose two other notions of information that we will
use further in the dissertation: Algorithmic information and Fisher
information.

5.8.1 Algorithmic information (Kolmogorov-Chaitin complexity)

Developed independently by Chaitin, Solomono�, and Kolmogorov
in the s, algorithmic information (most commonly known as
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Kolmogorov complexity) of an object (e.g. a message) is the length
of the shortest program capable of producing the object as an out-
put [Sto15]. [Sto15] Stone, Information theory: a tutorial

introduction.For example, in this de�nition the string:
’T6ucFndKEjTyqIGYuXUKqI6fJ6HBRL’
is more complex than
’abcabcabcabcabcabcabcabcabcabc’. We can express both in the Py-
thon programming language as an example:

‘ ‘ T6ucFndKEjTyqIGYuXUKqI6fJ6HBRL ’ ’

versus

‘ ‘ abc ’ ’ * 1 0

If the object is compressable (shorter program), it has more regularity.
¿us, there is a relation between complexity and compressibility.

5.8.2 Fisher Information

Let Pθ denote a family of parametric distributions on a space X with
probability mass or density function given by pθ.

De�nition 5.18 (Fisher information). ¿e Fisher information IX(θ)
of a random variable X w.r.t. the parameter θ is the matrix:

[IX(θ)]i j ∶= Eθ [∇θ i log pθ(X) ⋅ ∇θ j log pθ(X)⊺] (5.99)

= Eθ [
∂ℓ
∂θ i

⋅ ∂ℓ
∂θ j

⊺
] , (5.100)

where ℓ(x∣θ) = log p(x∣θ) is o en called the score function.

¿e Fisher information measures the overall sensitivity of the
functional relationship p to changes of θ by weighting the sensitivity
at each potential outcome x w.r.t pθ(x) [Ly+17] [Ly+17] Ly et al., A Tutorial on Fisher

Information.A common simpli�cation of the Fisher Information Matrix (FIM)
is to reduce it to the diagonal:

[IX(θ)]i ∶= Eθ [∇θ i log pθ(X)] (5.101)

5.8.3 Occam factor

¿ere are countless problems in science that require that given a
limited dataset, preferences be assigned to alternative hypotheses of
di�erent complexities. ¿eOccam’s razor is the principle that states a
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preference for simple theories. Although it is o en advocated for aes-
thetic reasons, MacKay gave a Bayesian explanation for its empirical
success that does not depend on any bias towards beauty [Mac02].[Mac02] MacKay, Information ¿eory,

Inference, and Learning Algorithms. Consider evaluating the plausibility of two alternative theories
H and H, in the light of given evidence C (Figure 5.14). Simple
modelsmake precise predictions, while complexmodels are capable of
making a greater variety of predictions. Hence, ifH is more complex,
it must spread its predictive capability more thinly over the data space
D thanH. ¿us, where the gathered data C is compatible with both
theories, the simplerH will be more probable thanH.

P(D|H1)

D

P(D|H2)

c

Figure 5.14: Comparing modelsH andH .

P(H∣D)
P(H∣D)

= P(H)
P(H)

P(D∣H)
P(D∣H)

(5.102)

∴ P(H) = P(H), (5.103)
P(H∣D)
P(H∣D)

= P(D∣H)
P(D∣H)

(5.104)

Quantifying Occam’s razor We already established that we can
rank models based by evaluating the evidence P(D∣Hi) (5.104):

P(D∣Hi) = ∫ P(D∣w ,Hi)P(w∣Hi)dw (5.105)

Taking for simplicity the one-dimensional case and applying Laplace’s
method, we can approximate the evidence by multiplying the peak of
P(D∣Hi) by σw∣D (approximating the shaded areas in Figure 5.14) [Mac02]:

P(D∣Hi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Evidence

≃ P(D∣wMP,Hi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Best-�t likelihood

×P(wMP∣Hi)σw∣D
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Occam’s factor

(5.106)

¿e Occam’s factor is the amount by which the accessible volume of
Hi ’s hypothesis space collapses when data arrive. ¿is relates to how
we measure information (Section 5.3.1).¿eOccam’s factor log is a
measure of the amount of information we gain about the model’s
parameters when data arrive.

¿e Occam’s factor is the basis of MacKay’s Evidence Framework.
¿e connection was no surprise given that we derived Information
from the Bayesian interpretation of Probability (Section 5.1).

5.9 concluding remarks
¿is chapter derived the informationmeasure from its de�nition and
then summarised information-theoretical concepts.
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5.9.1 Assumptions

1. A de�nition of intelligence (Section 2.1.1)

2. Knowledge is a set of beliefs, quanti�able by real numbers and
dependent on prior evidence (Section 3.1.3, Item I);

3. Bayesian inference assumptions:

Epistemology
Intelligence

Knowledge Sceptical
View

Science

Language

Bayesian Inference

Shannon’s 2nd Law

Information �eory

Shannon’s 1st Law

Figure 5.15: In this chapter we show how IT
is built from a set of speci�c assumptions
(Item 5) using the Bayesian inference language.
Similarly to what was done with MLT in the
last chapter.

a) Common sense (Section 3.1.3, Item II);

b) Consistency (Section 3.1.3, Item III);

c) Minimality (Section 3.1.2, Item IV).

4. MLT speci�c assumptions for the learning problem:

a) No assumption on D = P(X,Y);

b) D = P(X,Y) is unknown;

c) D = P(X,Y) is �xed: no “time” parameter.

d) Independent sampling;

e) Labels may assume non-deterministic values (h can be
stochastic, but can also be deterministic);

f) Learning is an optimisation problem in the hypothesis
space.

5. IT-speci�c assumptions:

a) Information is what changes belief;

b) AS and AX are �nite sets;

c) Sampling from an ergodic stochastic process and sampled
data is typical;

d) Labels may assume non-deterministic values (an encoder-
/decoder can be stochastic or deterministic).

5.9.2 ¿e �rst comparison between MLT and IT

At this point, we have not yet expressed the Machine Learning Prob-
lem as an Information¿eory problem. Still, asMLT and IT both share
Bayesian inference as the basis they do not invalidate each other. Both
may have found the same truths by di�erent paths.

¿e main di�erences in IT from MLT assumptions are Items 5b
and 5c. In Chapter 6, we will see that the �rst is not a problem at
all. ¿e ergodic process sampling, in its turn, is a less constrained
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assumption than the i.i.d. sampling in MLT. For simpli�cation sake,
we may assume that both sample i.i.d.
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6
Information-¿eoretical Machine
Learning: An Epistemology

‘Understanding is Com-
pression’

—Gregory Chaitin,
Meta Math! ¿e Quest for Omega, p.65

¿is chapter discusses an Information-¿eoretical Machine Learning
(ITML)1 perspective not speci�c to the Information Bottleneck (IB) 1We call ITML to di�erentiate from IBT and

ITL.Principle.

6.1 learning as a conversation with nature

T D T̂

Nature Epistemic Agent

“Law of Nature” UnderstandingObservations

Figure 6.1: An understanding for a law of
nature.

Imagine some “Law of Nature” (T)2,3 an epistemic agent can com- 2T for Truth or ¿eorem.

3¿is chapter expands the idea of science as a
conversation with Nature from [GS18]

prehend.4 T explains the relationship among observations in D. We

4If the epistemic agent can comprehend T,
H[T] can �t in the �nite epistemic agent
“mind”.

can think of learning as communication between Nature and the
epistemic agent.

We assume learning is possible, i.e. T is encoded in the observed
data D. T̂ is what the epistemic agent understand about T through
D, i.e. a representation of T in the agent’s “mind”. T̂ is the agent’s

95
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understanding.

T̂ ∶= U(D) (T̂ is an understanding of T through D)

In this scenario, D is an expression of T.

E(T) =∶ D (D is an expression of T)

As we do not know the smallest representation size of T, H[T],
we do not know if the T → D channel capacity (CD = I[D;T]), is
enough to noiseless transmit T through D. ¿erefore, we have to
admit that the encoding of T into D is lossy.5 ¿us, E is stochastic,5A lossy encoder or noisy channel are in prac-

tice the same. and the understanding of the agent shall be stochastic as well:

E(T) = P(D∣T), (6.1)
U(D) = Q(T̂∣D). (6.2)

While T̂ is only in the epistemic agent mind, it has no practical
importance for other agents. ¿e agent will need to encode T̂ into an
agreed (n, k) language/code to communicate with other agents.

A hypothesis h is the epistemic agent’s attempt to represent the
compressed description of the observation in hermind into the agreed
language X, h ∶= X(T̂). Without loss of generality, we can assume that
any agent mind has the same size in bits and, as a consequence, X(T̂)
is a lossless encoding. ¿erefore,6 h ∶= T̂.6 lossless → T̂ = X−(X(T̂)). ¿erefore, by

RI, H[X(T̂)] = H[T̂] and for all practical
purposes h ∶= T̂.

T D D̂

Nature Epistemic Agent

Theorem PredictionData

P(D|T) Q(h|D)

h
Q(D|h)

hypothesis

Figure 6.2: A hypothesis is the encoded un-
derstanding of a law of nature.

Moreover, h is falsi�able, as any agent can use h to predict D̂ ∶=
Q(D∣h).¿eQ(h, D) distribution contains the understanding of the
epistemic agent of the “LawofNature” (Q(h∣D)) and the expression of
this understanding (the predictionQ(D∣h)). In other words,Q(D,H)
de�nes an encoder (understanding) - decoder (expression).77InMachine Learning, the understanding hap-

pens during training and the expression in test
time. If other epistemic agents have competing hypothesis (h j, hk , . . .),

how should we select the best hypothesis?
¿e best hypothesis is the one that on average describes D with

H[D] bits. Any hypothesis that take less bits than H[D] cannot per-
fectly reconstruct D (under�tting). Any hypothesis that uses more
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T D
Nature Epistemic Agent

Theorem PredictionData

P(D|T) Q(T|D) Q(D|T)

Theory

!T!,# "D
Figure 6.3: A theory is a tested hypothesis that
predicts the law of nature within a margin of
error and a level of con�dence.

thanH[D] bits is adding spurious correlations to the data (over�tting)
and might not generalise well.

Besides selecting the best model among the available competitors,
the epistemic agent wants to transform her winning hypothesis into
a theory that works within a tolerance of error (є) and margin of
con�dence (δ):

Pr [1T̂є, δ(D)≠T(D) ⩽ є ] ⩾ ( − δ). (6.3)

In reality, unfortunately, she can access only a sample Sn of the
true distribution of the data P(D∣T). How con�dent can agents be in
the performance of h in future data if they can only access the error
of h in the sample (past) data?

6.2 pac-shannon
¿is section will use Shannon’s theorems to give PAC bounds to the
information-theoretical learning setting presented in the previous
section.

We recognise that:

1. ITML setting is equivalent to MDL (which will be described in
Section 6.5);

2. using information in the weights as a measure of complexity
was already discussed by other authors ( [Tis20; Ach19; SST10]); [Tis20] Tishby, ¿e Information Bottleneck

View of Deep Learning: Why do we need it?.
url: https://youtu.be/utvIaZ6wYuw

[Ach19] Achille, ‘Emergent Properties of Deep
Neural Networks’.
url: https : / / escholarship . org / uc / item /
8gb8x6w9

[SST10] Shamir et al., ‘Learning and general-
ization with the information bottleneck’.

and also that

3. Shamir et al. has presented the �rst PAC formulation of IBT [SST10].

Yet, to the extent of our knowledge, the speci�c PAC formulation we
are about to describe is an original contribution of this dissertation.8

8¿erefore, we took the liberty of naming it
PAC-Shannon.

Recall ¿eorem 5.1 (Shannon’s st Law):

¿eorem 5.1 (Shannon’s st Law). ¿e optimal binary encoding Xk =
(X,⋯, Xk), Xi ∈ {, }, of a n-symbolsmessage Sn = (S,⋯, Sn), where

https://youtu.be/utvIaZ6wYuw
https://escholarship.org/uc/item/8gb8x6w9
https://escholarship.org/uc/item/8gb8x6w9
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Si ∈ AS are i.i.d. ∼ p(s) has an expected size k ≈ nH[S] for su�ciently
large n.

We can rewrite it as:

¿eorem 6.1 (st Shannon PAC formulation). Let X = x ∼ P(X) and
Sn = {x, .., xn} , x ∼ P(X),

Pr [(H[Sn]
n

−H[X]) > є] < δ (6.4)

¿e same for ¿eorem 5.5 (Shannon’s nd Law):

¿eorem 5.5 (Shannon’s nd Law). All rates below capacity C are achiev-
able. Speci�cally, for every rate R < C, there exists a sequence of (nR , n)
codes with maximum probability of error λ(n) → . Conversely, any
sequence of (nR , n) codes with λ(n) → must have R ⩽ C.

Let us rewrite this theorem in parts. First, we use Q to denote our
hypothesis Q = h ∶ X × Θ → Y . We also assume that X ≡ AX and
Y ≡ AY are �nite. In Information-theoreical terms, Q is an encoder
of the alphabet AX to the alphabet AY . If all rates bellow capacity
C = I[X;Y] are achievable9,10,9Remember that the Shannon theorem only

states there exists such encoder, but nothing
has to say about how to �nd it.

10Weuse thewordRate for rate here to di�eren-
tiate from the risk R symbol, which is already
widespread in the MLT community.

∃Q ∶ Rate(Q) ⩽ I[X;Y]

¿e theorem also says that this encoder has maximum probability
of error λ(n) → . From that we can infer that the expected error of
Q, R(Q), is arbitrarily small.

∃Q ∶ Rate(Q) ⩽ I[X;Y], R(Q) < є

Now we can summarize this in a theorem statement:

¿eorem 6.2 (nd Shannon PAC formulation). Let two discrete ran-
dom variables (from �nite spaces) represent X, the input, and Y , the out-
put of a stochastic mapping Q(X,Y) (lossy encoder/channel). (X,Y) ∼
P(X,Y), P is unknown and let r represent the information rate ofQ (the
expected number of bits it needs to represent a symbol of the alphabet
AX).

∀r ∶ r ⩽ I[X;Y], (6.5)
∃Q ∶ Rate(Q) = r, R(Q) < є (6.6)
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6.2.1 Shannon guarantees

Let D ∼ P(D) represent observable data and Sn a sample of n obser-
vations from D. We assume that the hypothesis h is parametrised
by W. Let a learning algorithm A ∶ D → W ,A ∶= Q(W ,D) gen-
erate the hypothesis via W. By reparametrisation invariance (RI),
H[h(W)] = H[W]. If h trained with the sample Sn achieves training
error εSn(h). What is the expected out-of-sample error of h, εD(h)? D Q(W∣D)// W

hypothesis

Q(D∣W) // D̂

(X,Y) //W // (X, Ŷ)
For simpli�cation sake, let us assume the supervised case where

D = (X,Y) and Y ∈ {, }.11 By ¿eorem 6.2 (nd Shannon PAC

11Similar to MLT problem setting.

formulation),

∃hShannon ∶= Q(D∣w∗) ∶ Rate(hShannon) = IP(D)[W;D], and (6.7)
εD(hShannon) = RD(hShannon) < є (6.8)

Let us remember that hShannon ∈ HQ is the theoretical optimalQ⋆(X∣W)→
Ŷ . Also, in Section 5.7, we saw that the channel capacity I[W;D]
de�nes the number of non-confusable inputs/mappings (or the num-
ber of confused mappings limited to a certain є margin), I[W;D]

Eq. (5.71). We then call Hδ
Q the typical hypothesis space of h and

we know that its cardinality can be computed:

Rate(Q∗) = I[W;D] (6.9)

∣Hδ
Q∣ = ∣AY ∣

I[W ;D] = I[W ;D] (6.10)

Serendipitously, we purposely did not restrict our hypothesis, but
Eq. (6.10) produced for us the cardinality of the hypothesis space of
the solutions within a tolerance error and con�dence.

Using ¿eorem 4.3 ([Hau88], �nite space, inconsistent case), we
can already give an upper bound to the out-of-sample error of h:

є(h) ⩽

√
ln I[W ;D] + ln /δ

n
(6.11)

≈
√

I[W;D] + const. + ln /δ
n

(6.12)

∴ n ⩽ I[W;D] + ln /δ
є

(6.13)

We get a non-vacuous bound as long as O (I[W;D]) < O (log n).
Unfortunately, we cannot access the true I[W;D]; we only access its
empirical approximation Ĩ[w;D].



100 information-theoretical machine learning

Let us see if we can at least bound the true mutual information
between W and D. Let us choose the DKL as a loss function.1212For reasons that will be clear in the next

chapters.

RD(h) = E(ε(h)) (6.14)
= EW ,D [DKL(P(W ,D)∥Q(W ,D))] (6.15)

= EW ,D [log P(W ,D)
Q(W ,D)

] (6.16)

= −EW ,D [log Q(W ,D)
P(W ,D)

] (6.17)

= −EW ,D [logQ(W ,D) −����
���:

const.
logP(W ,D) ] (6.18)

≈ −EW ,D [logQ(W ,D)] + k = I[W;D] + k (6.19)
RSn = −EW ,Sn [logQ(W , Sn)] = Ĩ[w;D] (6.20)
O (∣RSn(h) − RD(h)∣) = O (∣Ĩ[w;D] − I[W;D]∣) (6.21)

From ¿eorem 6.1 (st Shannon PAC formulation),

Pr(∣Ĩ[w;D] − I[W;D]∣ > є) < δ (6.22)

Now we can follow [Hau88] steps as we did in Section 4.7.[Hau88] Haussler, ‘Quantifying inductive
bias: AI learning algorithms and Valiant’s
learning framework’. ¿eorem 6.3 (PAC Shannon, �nite space, consistent case). LetA be a

learning algorithm that returns a consistent hypothesis h, i.e. R̂S(h) =
, for any hypothesis h and unknown distribution D = P(X,Y). Let
∣S∣ = n, then, ∀n ⩾ N:

Pr[h ∈ H ∶ RD(h) > є] < e−єn+Ĩ[w;D] (6.23)

Proof. Let h be parametrised by W and the empirical mutual inform-
ation of the weights w.r.t the available sample Sn be Ĩ[w;D]. From
Eq. (6.22), let us call hbad a consistent hypothesis that does not gener-
alises andHbad the space of all possible bad hypotheses.

Pr (∣Ĩ[w;D] − I[W;D]∣ > є) < δ ∴ (6.24)
Pr [R(h) =  ∧ ∣Ĩ[w;D] − I[W;D]∣ > є] =  − δ (6.25)
ES[R(h) =  ∧ ∣Ĩ[w;D] − I[W;D]∣ > є] = ( − δ)n (6.26)
ED[R(h) =  ∧ ∣Ĩ[w;D] − I[W;D]∣ > є] = ∣Hbad∣( − δ)n (6.27)

(6.28)

Fortunately, we know how to �nd the cardinality ofHbad. Ĩ[w;D] is
our channel capacity, i.e. the number of typical di�erent encodings
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(or transformations) we can have. Every transformation of an input
X can lead to ∣AY ∣ values. ¿erefore, ∣Hδ

D∣ ≈ 
I[W ;D] and ∣Hδ

Sn ∣ ≈ Ĩ[X;Y] .
Consequently, ∣Hbad∣ = 

∣Ĩ[w ;D]−I[W ;D]∣ . From where we follow:

ED[R(h) =  ∧ ∣Ĩ[w;D] − I[W;D]∣ > є] = ∣Hbad∣( − δ)n (6.29)
= ∣Hbad∣ e−єn (6.30)

є < e−єn+∣Ĩ[w ;D]−I[W ;D]∣ (6.31)

As we already said, I[W;D] is intractable, but we still can get a bound:

є < e−єn+Ĩ[w ;D] (6.32)

¿eorem 6.4 (PAC Shannon, �nite space, consistent case: sample
complexity). A learning algorithmA can learn task with:

n < 
є
(Ĩ[w;D] + ln 

δ
)

training examples.

Proof.

δ > e−єn+Ĩ[w ;D] (6.33)

ln δ > −єn + Ĩ[w;D] (6.34)

єn < Ĩ[w;D] − ln δ (6.35)

n < 
є
(Ĩ[w;D] − ln δ) (6.36)

n ∈O ( 
є
(Ĩ[w;D] − ln δ)) (6.37)

¿eorem 6.5 (PAC Shannon, �nite space, inconsistent case). Let
A be a learning algorithm that returns an inconsistent hypothesis h,
i.e. R̂S(h) > , for any hypothesis h and unknown distribution D =
P(X,Y). Let ∣S∣ = n, then, ∀n ⩾ N:

є <

¿
ÁÁÁÀĨ[w;D] + ln 

δ
n

(6.38)
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Proof. Using the Cherno�-Hoe�ding inequality and the union bound
as ¿eorem 4.1 and Section 4.7, we have:

Pr[w ∈W ∶ ∣Ĩ[w;D] − I[W;D]∣ > є] < e−nє (6.39)

Pr[w ∈W ∶ ∣Ĩ[w;D] − I[W;D]∣ > є] = 
∣Hδ

Q∣
δ (6.40)

e−nє < ∣Hδ
Q∣−δ (6.41)

ln − nє < − ln ∣Hδ
Q∣ + ln δ (6.42)

є <

√
ln ∣Hδ

Q∣ + ln 
δ

n
(6.43)

є <

¿
ÁÁÀ ln Ĩ[w ;D] + ln 

δ

n
(6.44)

є <

¿
ÁÁÀĨ[w;D]��

�* 
ln  + ln 

δ

n
(6.45)

¿eorem 6.6 (PAC Shannon, �nite space, inconsistent case: sample
complexity). A learning algorithmA can learn task with:

n <
Ĩ[w;D] + ln 

δ
є

(6.46)

training examples.

Proof.

є <
Ĩ[w;D] + ln 

δ
n

(6.47)

n <
Ĩ[w;D] + ln 

δ
є

(6.48)

6.3 “reals” are not really a problem
A possible weakness of the proposed ITML perspective is that we lim-
ited the space of the data D to a �nite set (discrete random variable).

Foremost, there is a mathematical argument [Cha06, pp. 99–116][Cha06] Chaitin, Meta Math! ¿e Quest for
Omega. against the physical existence of a “continuum”: a er all, some real

numbers are uncomputable [Tur36].13 Similarly, in Section 6.1, we
[Tur36] Turing, ‘On Computable Numbers,
with an Application to the Entscheidungs-
problem’.

13Another remark is that no physical quant-
ity has ever been measured with more than
twenty digits of precision [Cha06, p. 92].
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argued that there was no pointing in learning a concept that could
not �t the �nite epistemic agents’ minds.

MLT, however, is agnostic to the unknown distribution, hence, it
can be a continuous function. Bayes’ rule is the same for probability
mass functions (pmfs) and probability density functions (pdfs) a er
all [Mac02; Val00]. However, when models use continuous random [Mac02] MacKay, Information ¿eory,

Inference, and Learning Algorithms.

[Val00] Valpola, ‘Bayesian Ensemble
Learning for Nonlinear Factor Analysis’.

variables, there is no sense in choosing “themost probable model”: the
probability of a continuous random variable tends to zero at any single
point. Only a nonzero range has a nonzero probability. As [Val00]
puts it: “(⋯) a high density per se is not important, but the overall
probability mass in the vicinity of a model is.”

Rissanen gave a more formal version of this justi�cation. He no-
ticed that we could always choose a (n, k) code such that the quantisa-
tion error of the real distribution is within a margin of error. Imagine
the dataset S(n) is sampled from a continuous distribution D = f (x)
and there is a uniform distribution encoder (raw bit encoder) U(D)
that encodes D into a code of k bits.

U(x) = f (x)
k (6.49)

H[U(S(n))] = −
xn

∑
x
log

k

f (x)
= −n(log f (x) − log k) (6.50)

Pr [(H[U(Sn)]
n

−H[U(x)]) ⩽ log

k > є] < δ (6.51)

¿is is Shannon’s argument that for su�ciently large n and we
can always digitise the sample to a desired small tolerance of error є,
¿eorem 6.1 (st Shannon PAC formulation).

6.4 information measures the complexity of tasks
In Section 6.2, we proved that information measures the complexity
of a task. ¿e information-complexity relation, however, was already
presented in [Ris86; HVC93], and goes back to [WB68] (according [Ris86] Rissanen, ‘Stochastic complexity and

modeling’.

[HVC93] Hinton and Van Camp, ‘Keeping
the neural networks simple by minimizing
the description length of the weights’.

[WB68] Wallace and Boulton, ‘An Informa-
tion Measure for Classi�cation’.

to [Mac02; Val00]).
In our setting, Nature is a “supervisor” who knows the true distri-

bution of the data P(D) and send us a message D (the observations).
¿e message D implicitly carries the intrinsic pattern P(D) that gov-
erns it. Our epistemic agent comes up with an hypothesis hi that
predicts observations Q(D∣hi).
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6.4.1 Minimal Description Length Principle

Supose there is a supervisor (sender) who wants to transmit a given
data (D) to a receiver.¿e supervisor will use a model to compress the
data, but will also need to send the mis�t bits of the model prediction
to the data.

¿e Minimum Description Length Principle [Ris86] asserts that[Ris86] Rissanen, ‘Stochastic complexity and
modeling’. the best model for a data distribution minimises the combined cost of

describing themodel and describing themis�t between themodel and
the data.14 Pθ(D) = P(D∣θ) determines the probability of the observa-14Now we give the proper attribution to this

idea already presented in Sections 6.1 and 6.2. tion D. Imagine there a statistical model of the real Pθ parametrised
by w, P(w∣θ). ¿e supervisor send a message with:

1. L(θ) bits pertaining which model h(w) to use;

2. L(D∣θ) bits corresponding to the dataD predicted by themodel,
which can be further subdivided onto:

a) Parameter block: L(w∣θ) = − logP(w∣θ)δw;

b) Data mis�t block: L(D∣w , θ) = − logP(D∣w , θ)δD.

�

Id Parameters Block Mis�t Block

L(h�) L(w∗� �h�) L(D �w∗� , h�)
L(h�) L(w∗� �h�) L(D �w∗� , h�)
L(h�) L(w∗� �h�) L(D �w∗� , h�)

Figure 6.4: Comparing hypotheses with the
minimum description length principle. Adap-
ted from [Mac02].

¿ere is a clear tradeo� between the parameter block and the
data mis�t (see Figure 6.4): models with fewer parameters (large
δw) have smaller parameter blocks but do not �t the data as well
and therefore have larger mis�t blocks; conversely, over parametrised
models (small δw) have larger parameter blocks, but smaller mis�t
blocks. ¿e optimal description minimises the combined length of
the parameter and data mis�t blocks (Figure 6.4, h).

Correspondence to Bayesian inference

¿us,Rissanen’s complexity is15 L(D, θ) = L(θ)+L(D∣θ). In a Bayesian15Also known as Stochastic Complexity.

interpretation, the length L(θ) for di�erent h de�nes an implicit prior
P(θ) over alternative hypotheses [Mac02]. If there is no bias towards[Mac02] MacKay, Information ¿eory,

Inference, and Learning Algorithms.
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one or another hypothesis, P(θ) = −L(θ) is uniform and the identi�er
for the model has the same “cost” L(θ). Likewise, L(D∣θ) de�nes the
density P(D∣θ) that relates to the evidence for each hypothesis.

In other words, message lengths can be mapped onto posterior
probabilities:

L(D, θ) = − logP(θ) − log(P(D∣θ)δD) (6.52)
= − logP(D∣θ) + const. (6.53)

As a consequence, MDL has always a Bayesian model comparison
interpretation, and vice-versa.

6.5 minimum description length learning
Using theMDLprinciple, [HVC93] proposed an information-theoretical [HVC93] Hinton and Van Camp, ‘Keeping

the neural networks simple by minimizing
the description length of the weights’.machine learning framework.

Notice that in the MDL coding scheme (Section 6.4.1), to send the
value of δw which is arbitrarily small, we will need an encoding that
can lead to arbitrarily long messages.

¿e bits-back argument

To avoid this potential peril, Hinton and Van Camp propose the
following coding scheme where a decodable message is obtained
without encoding δw:

1. ¿e sender computes a distribution Q(W∣D, θ) based on ob-
servations of D.16 16We will explain how to compute this distri-

bution later.

2. ¿e sender draws a random sample w from Q(W∣D, θ) and
encode it with P(w∣θ).

3. ¿e sender encodes D using P(D∣w , θ).

¿e trick is that in the second step, instead of using random bits to
choose w from Q(W∣D, θ), the sender can use a secondary message
as the random bits. So, a long communication, we can say that on
average the cost (or length) of the messages are:

L(w∣θ) +L(D∣w , θ) − ’bits back’ (6.54)
L(w∣θ) +L(D∣w , θ) − L(w∣D, θ) (6.55)

− logP(w∣θ)δw − logP(D∣w , θ)δD − logP(w∣D, θ)δw (6.56)
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− logP(w∣θ)��δwP(D∣w , θ)δD
P(w∣D, θ)��δw

(6.57)

− logP(D∣θ)δD (6.58)

− logP(D∣θ)����
�: const.− log δD (6.59)

(6.60)

¿us the proposed coding scheme yields the optimal description
length. ¿e only missing step is how the sender computes the distri-
bution Q.

For that, [HVC93] proposes using the Kullback-Leibler diver-[HVC93] Hinton and Van Camp, ‘Keeping
the neural networks simple by minimizing
the description length of the weights’. gence (DKL) as a loss function:

ℓ = DKL(Q∣∣P) (6.61)

to approximate the parametric Q to the real P. ¿is method for para-
metric approximation of posterior pdfs was called ensemble learning
and is more commonly known as variational learning.

6.5.1 Shannon, Kolmogorov-Chaitin and Rissanen complexities

Let us remind ourselves that Shannon’s information measures the
expected number of bits needed for encoding a random variable D,
i.e. the entropy Hp[D] is the expected length of D in bits using the
optimal encoder p.

From Eq. (5.55):

−n(H[D]+є) ⩽ P (S(n)) ⩽ −n(H[D]−є) (6.62)
−H[D] <−(H[D]+є/n) ⩽ P (D) ⩽ −(H[D]−є/n) < −H[D]+ (6.63)
−L∗(D) ⩽ P (D) ⩽ −L∗(D)+ (6.64)

However, one can use a non-optimal encoder q for which the
expected length is Hp,q(D). Each encoder/decoder q can be seen as a
“program” that ouputs an average number of bits L(D∣q) = Lq(D) =
Hp,q(D). ¿e minimum program that outputs D orminimum descrip-
tion length of D is L∗(D) = Lp(D) = Hp,p(D) = Hp(D).

In Section 5.8.1, we mentioned the algorithmic information per-
spective where Kolmogorov-Chaitin complexity (KC) measures the
length of the shortest computer program P which is capable of produ-
cing the data D. ¿erefore,

P(D) = −KC(D) (6.65)
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A well-known algorithmic information result is that KC is not
computable due to the halting problem [Tur36; Cha06].¿erefore, we [Tur36] Turing, ‘On Computable Numbers,

with an Application to the Entscheidungs-
problem’.

[Cha06] Chaitin, Meta Math! ¿e Quest for
Omega.

cannot know if a learning algorithm that halts when �nding the best
P(D) = −KC(D) will ever halt. ¿is relates to the fact that the Shan-
non information needed to describe a continuous random variable is
in�nite.

Con�rming Mitchel’s theorem [Mit80], a bias on P is needed. [Mit80] Mitchell, ¿e Need for Biases in
Learning Generalizations.Either P(D) is binned into a probability mass function (therefore,

biased by its precision δD), or P(D) is a statistical model, i.e. it is a
“family” of functions identi�ed by a parameter vector θ, P(D∣ θ).17 17In this our conversation, θ was the truth T.

¿e �rst case leads to Shannon Information as a complexity meas-
ure (where the prediction should ensemble all encoder/decoders qi

weighted by their posterior probabilities P(D∣qi)). ¿e second case,
to the idea of stochastic complexity developed by Rissanen [Ris86] [Ris86] Rissanen, ‘Stochastic complexity and

modeling’.(where instead of averaging over all possible programs, the prediction
assumes the best encoder/decoder P(D) = P(D∣q∗)).

Shannon’s entropy, Kolmogorov-Chaitin’s complexity, and Ris-
sanen’s Stochastic complexity are di�erent but related task complexity
measures.

6.6 concluding remarks
Information �eory

2nd Law

1st LawSTL

PAC-Bayes
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Machine Learning �eory

Information �eoretic Learning

MDL

PAC-Shannon

Arti�cial Intelligence

ConnectionismSymbolism

Language

Logic Bayesian Inference
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Figure 6.5: ITML applies IT to explain ma-
chine learning.

¿is chapter presented the information-theoretical perspective of
learning and provided a bridge of this perspective to Machine Learn-
ing¿eory (MLT).

¿e previous chapter (Chapter 5) had already shown that inform-
ation is a measure of change in belief which is also the description
length of the data (using the expected negative logarithm of its distri-
bution); therefore, a measure of the data structure or lack of pattern.
Any learning method derived from IT can be translated to a Bayesian
interpretation by a change of scale [Val00]. Prior probabilities trans-

[Val00] Valpola, ‘Bayesian Ensemble
Learning for Nonlinear Factor Analysis’.

late to a coding scheme that is needed to “decode” the data. In other
words, information is a measure of complexity of a task. We related
this Shannon Information complexity to Kolmogorov-Chaitin com-
plexity and Rissanen’s Stochastic complexity.18

18We will also show that Fisher information is
the stochastic complexity for isotropic Gaus-
sian distributions (Section 8.7).

In the context where learning is a conversation with Nature (Sec-
tion 6.1), we used Shannon’s theorems to demonstrate that information
measures the complexity of the task.MLT and ITML are two sides of the
same coin. If inMLT we make no assumptions on the task and depend
on the hypothesis space, ITML does not assume any hypothesis space
but is task-dependent. Either way, learning is about �nding patterns
in data, and the best hypothesis to describe the data regularities is
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also the one that compresses it the most.
We presented theMDL framework which was the �rst Information-

¿eoretical Machine Learning (ITML) proposed method. And showed
from the correspondence of MDL with Bayesian inference.1919¿is relation was expected since we already

had shown the correspondence of IT and
Bayesian inference. ¿erefore, even before introducing IBT, we can conclude that any-

thing that is explainable by it can be explained in current MLT. If so,
what is the purpose of IBT? A er all, according to [Mac02], MDL “has[Mac02] MacKay, Information ¿eory,

Inference, and Learning Algorithms. no apparent advantage” beyond as a “pedagogical tool”. Why would
IBT be any di�erent?

¿e purpose of IBT (and MDL) is to bring a new narrative. Take a
look at the transition from Figure 6.1 to Figure 6.2. If two hypotheses
generate the same result, do they represent the same understanding?
In practice, yes, they do and we can address them mathematically. 2020Remember that Shannon decided not to ad-

dress meaning in his theory. But if we think of understanding as meaning, not necessarily.
¿is other “philosophical” interpretation is understandingly not

addressed by the literature. We will, nevertheless, indulge ourselves
with some digression. Take, for example, the Lorenz’ Ether ¿eory
(LET) and Einstein’s Special Relativity ¿eory (SR).21 ¿ere is simply21Lorentz ether theory describes a universe in

which light moves through a medium called
ether. ¿e problem is that the ether can be
seen as a mathematical construct that can not
bemeasured or observed. It is used to facilitate
predictions calculations. ¿ose predictions in
the movement of light can be measured. Ein-
stein’s Special Relativity describes a new geo-
metry of a universe that has no ether. However,
it uses Lorentz mathematical construct to do
so.

no way of distinguishing LET or SR experimentally, but there is a
philosophical distinction between the two [Sza11] (as cited by [Dal]).

[Sza11] Szabó, ‘Lorentzian ¿eories vs.
Einsteinian Special Relativity — A Logico-
empiricist Reconstruction’.

[Dal] Dale, Are Lorentz aether theory and spe-
cial relativity fully equivalent?.
url: https://physics.stackexchange.com/q/
525808

In this example, we can return the same question:What is the purpose
of Special Relativity ¿eory?

Meanings are not part of the truth we �nd in Nature but represent
the ideally noiseless encoding of our understanding that we create for
other epistemic agents to decode. In this sense, just as the sweetness
in honey (Section 2.2.3), meaning is projected. It is improbable that
the decoded understanding in two “epistemic minds” are the same
and di�erent narratives are capable of sparking di�erent analogies
and connections.

https://physics.stackexchange.com/q/525808
https://physics.stackexchange.com/q/525808


Part III

THE EMERGENCE OF A THEORY





7
¿e Information Bottleneck
Principle

As we already discussed (Section 5.2.1), Shannon intentionally le out
from information theory1 issues of meaning or relevance, and focused 1Which Shannon has always referenced as

Communication¿eory.on the problem of transmitting information.
Contrarily, Tishby et al. argue in [TPB99] that lossy source com- [TPB99] Tishby et al., ‘¿e Information

Bottleneck Method’.pression provides a natural quantitative approach to the matter of
relevance and, therefore, they use Information¿eory itself to address
relevance.

¿is chapter will present the Information Bottleneck Principle,
the foundation of the emergent theory subject of this dissertation.
¿e IB principle approach is related to Rate-Distortion ¿eory (RDT).

Figure 7.1: Na ali Tishby.

Hence, �rst we will brie�y overview RDT as Tishby et al. describe
it [TPB99; Slo02]. ¿en, we will formally present the IB Principle, its

[Slo02] Slonim, ‘¿e information bottleneck:
¿eory and applications’.

problem setting and analytical solution, and show how it can be seen
as a particular case of Rate-Distortion¿eory.

7.1 rate-distortion theory: relevance through a dis-
tortion function
We know fromEq. (5.97) that for any rate R ⩽ H[X] there will be a loss
in the reconstructed signal. Rate-Distortion¿eory (RDT) addresses
the problem of determining the rate R that should be communicated

111
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over a channel so that the source (input signalX) can be approximately
reconstructed without exceeding an expected distortion.

7.1.1 ¿e Rate-Distortion ¿eory (RDT) problem

Problem setting

1. Let the discrete random variable X denote the source of vectors
randomly drawn from a probability distribution p(x);

2. Each vector x ∼ p(x) is amessage (signal) you want to transmit
among a set of possible messages AX , i .e . x ∈ AX ;

3. Let another discrete random variable Z denote2 a compressed2¿is compressed representation of X is usu-
ally denoted by Z,T or X̂ representation of X ;

4. ¿is representation is de�ned by a channel p(z∣x), a stochastic
mapping between each message x ∈ AX to each code z ∈ AZ;

5. ¿e rate R is the channel capacity, i.e. the average number of
bits per element x ∈ AX needed to specify a compressed element
(code) z ∈ AZ.

6. Let d ∶ AX × AZ → R+ be a function that denotes the distor-
tion measure between X and its representation Z. Examples
of distortion measures are the mean square error, dMSE(x; z) =
⟨(x − z)⟩ or the Hamming distortion (probability of error)
dH(x , z) = 1[x≠z].

X channelÐÐÐÐÐ→ Z Problem Statement

Given the problem setting above, the RDT problem3 is to �nd the
3First de�ned by Shannon [Sha48]. minimal number of bits per symbol (rate R) that should be commu-

nicated over a channel so that the source X can be approximately
reconstructed via a representation Z without exceeding an expected
distortion D, de�ned by the distortion function d(x; z).

7.1.2 Understanding the RDT problem

¿e core of the RDT problem is the need for a good compressed rep-
resentation of a message. From Eq. (5.97), any rate I[Z;X] ⩽ H[X]
will imply a loss in the reconstructed signal, an expected distortion,
⟨d(x; z)⟩.
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As we have seen in Section 5.7, low values of I[Z;X], calculated
based on the joint distribution p(x , z) = p(x)p(z∣x), imply compact
representations, i.e. ∣AZ∣ is small. In the extreme, all messages are
translated to the same code: ∣AZ∣ =  and I[Z;X] = . Contrastingly,
high values of I[Z;X] imply low compression. In the extreme,Z simply
copies X: I[Z;X] = H[X] and ∣AZ∣ = ∣AX ∣.

Suppose we can compress the input data to any amount of inform-
ation from  to H[X]. What will de�ne the relevance of information
is the additional constraint of the problem: the distortion measure.
Given such function, the partitioning of X de�ned by p(z∣x) has the
expected distortion:

⟨d[x; z]⟩p(x ,z) =∑
x ,z

p(x)p(z∣x)d[x; z] (7.1)

Consequently, we are assuming that the de�nition of relevance
is part of the problem setting. In other words, RDT is agnostic on
any arbitrary choice of the distortion function. ¿is choice, never-
theless, determines the relevant features of the signal4 and should be 4¿e same can be said of a learning algorithm

loss function in MLT, which determines what
is relevant to be learned.somehow related to the task we want to perform with the input. ¿us,

an arbitrary distortion function is, in fact, an arbitrary feature
selection [TPB99]. [TPB99] Tishby et al., ‘¿e Information

Bottleneck Method’.As we will see further (Section 7.2), Tishby et al. [TPB99] propose
a way to cope with this potential pitfall.

7.1.3 RDT as a variational problem

De�nition 7.1. ¿e rate-distortion function, denoted by R(D) is
de�ned as:

R(D) ≡ min
p(z∣x)∶ ⟨d(x;z)⟩ ⩽ D

I[Z;X]. (7.2)

¿erefore, R(D) is the minimum achievable rate among all nor-
malised conditional distributions, p(z∣x), for which the distortion
constraint is satis�ed. ¿e rate-distortion function is a non-increasing
convex function of D in the distortion-compression plane [CT06] (see [CT06] Cover and ¿omas, Elements of

Information ¿eory.Figure 7.2).5

5We will explain what β means later.
¿eregion above the curve corresponds to all achievable distortion-

compression pairs, while below the curve is the non-achievable region.
Let {D, IX} be a distortion-compression pair, if it is in the achievable re-
gion, there is a representation Z with a compression level I[Z;X] = IX

and an expected distortion of at most D. If it is in the non-achievable
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0

R(D)

< d(x;z) >

R=
I [

Z;
X

] Rate-distor tion
region

Non-achievable
region

Figure 7.2: ¿e rate-distortion function
R(D) in the distortion-compression plane.

region, there is no such representation Z. ¿is limit on the achievabil-
ity of representations is a direct consequence of Shannon’s laws (5.2).

Instead of solving the minimisation problem in (7.2) exactly, the
problem is usually approximated by the following Lagrangian relaxa-
tion functional:

F[p(z∣x)] = I[Z;X] + β⟨d(x; z)⟩p(x ,z), (7.3)

under the normalisation constraint∑z p(z∣x) = ,∀x ∈ AX.

¿eorem 7.1. ¿e solution of the variational problem [TPB99][TPB99] Tishby et al., ‘¿e Information
Bottleneck Method’.

∂F
∂p(z∣x)

= , (7.4)

for normalised distributions p(z∣x) is given by the exponential form

p(z∣x) = p(z)
Z(x , β)

exp(−β d(x; z)), (7.5)

where Z is the normalisation factor (partition function). ¿e Lagrange
multiplier β is positive and

∂R
∂D

= −β. (7.6)

¿is is an implicit solution6 as p(z) on the right-hand side of6Implicit solution means a solution in which
dependent variable is not separated. Eq. (7.5) depends on p(z∣x)7.
7p(z) = ∑x ,z p(z∣x) p(z)

7.2 the ib principle: relevance through a target vari-
able
¿e problem of extracting what is relevant from data depends on a
suitable de�nition of relevance. ¿e main weakness of the RDT ap-
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proach is that it addresses relevance through a distortion function
that is not related to a speci�c task at hand.

¿e IB Principle, suggested by Tishby et al. [TPB99] introduces
an alternative approach: de�ning a “target” variable is simpler and
more direct than de�ning a distortion measure.

For example, in speech compression8, any compression beyond 8By the time of [TPB99] publication, Tishby
was working on speech-related problems.the signal’s entropy cannot be perfectly reconstructed; it is a lossy

compression. On the other hand, a transcript has orders of magnitude
lower entropy than the acoustic waveform, which means that for the
task of understanding what has been transmitted, it is possible to
compress the signal much further without losing any information
about meaning [TPB99].

Y

360 kb 5 kb

X Z Ŷ
Bo�leneckSource PredictionTarget

encoder decodermeaning

p(x,y) q(z|x) q(y|t)

Figure 7.3: ¿e IB problem setting.

In many situations, we have access to an additional variable that
determines what is relevant. If we want to recognize cats in pictures,
maybe we do not need a 360 kb picture as depicted on the le in
Figure 7.3; the 5 kb representation on the right may su�ce. ¿e exact
representation would not be su�cient for the task of recognizing the
breed of the cat, in any case. Relevance is task-dependent.

7.2.1 ¿e IB Problem Setting

De�nitions

1. Let X be a random variable that denotes the Source 9 of mes- 9¿eIBproblem is a one-shot coding problem,
the operations are performed letterwise [ZE-
ASS20].sages x ∈ AX;

2. Let Y be a random relevant variable (or Target) that de�nes
the intended meaning p(y∣x) of the message x;

3. LetZ be an informationbottleneck variable, the representation,
that obeys the Markov chain Y ↔ X ↔ Z;

4. Let the conditional p.d.f p(z∣x) be the encoder, i.e. a stochastic
mapping from each value of x ∈ AX to a codeword z ∈ AZ;



116 the information bottleneck principle

5. I [Z;X] is the rate (or compression level) of the encoder, and
re�ects how much the bottleneck representation Z compresses
X;

6. Let the conditional p.d.f p(y∣z) be the decoder, i.e. a stochastic
mapping from each value of z ∈ AZ to a prediction ŷ ∈ AY ;

7. I[Z;Y] is the relevant information that the compressed repres-
entation Z keeps from the label variable Y ;

Assumptions

i. ¿e random variables X, Y and Z, are discrete;

ii. AX, AY and AZ are �nite sets;

iii. X and Y are dependent, and the joint distribution P(X = x ,Y =
y) = p(x , y) is known;

iv. ¿e source X is an ergodic process10; therefore x ∼ p(x) are not10¿e ergodic property means statistical homo-
geneity [SW49]: its statistical properties can
be deduced from a single, su�ciently long,
random sample of the process.

necessarily mutually independent.

v. ¿e encoder and the decoder are stochastic mappings. Hence, act
like noisy channels.1111Notice that given the Markov chain Y ↔

X ↔ Z, due to reparemetrisation invari-
ance ( ¿eorem 5.4 (reparametrisation invari-
ance (RI))), a deterministic mapping of the
data does not throw out information, i.e. let
f ∶ AX → AY be deterministic, I[ f (X);Y] =
I[X;Y].

Y
target

channelÐÐÐÐÐ→ X
signal

channelÐÐÐÐÐ→ Z

Problem statement

¿e information bottleneck problem consists of �nding an encoder
p(z∣x) that produces a codebook Z that compress X as much as pos-
sible, i.e. I [Z;X] is minimal, while keeping the relevant information
of X for predicting Y , I[Z;Y]. In other words, the representation Z
acts like a bottleneck that "squeezes" the relevant information that X
contains about the target Y in a compressed form, hence the name
"information bottleneck".

7.2.2 Relation to other Information ¿eory Problems

Connections between problems allow extending ideas from one setup
to another. In this regard, the IB problem is closely related to other
coding problems like the Indirect or theRemote Source-coding problem,
also known as the CEO Problem, and the privacy funnel problem [ZE-
ASS20].[ZEASS20] Zaidi et al., ‘On the Information

Bottleneck Problems: Models, Connections,
Applications and Information ¿eoretic
Views’.
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7.2.3 Relation to Minimum Su�cient Statistics

In the IB problem, the target variable is what wewant to predict.Y acts
as a parameter of X and Z�Y . ¿us, the representation Z is a statistic
of X.

For Z to be a su�cient statistic of X w.r.t. Y , it must preserve all
relevant information in X, I[Y;X] = I[Z;X]. In other words, no other
statistic of X can provide any additional information as to the value
of Y then Z does.

¿e representation isminimal if it is the smallest among all pos-
sible representations.

¿erefore, we can say that the information bottleneck is the prob-
lem of �nding theminimum su�cient statistics of the random variable
X w.r.t Y , and therefore, IB Lagrangian gives the minimum approxim-
ately su�cient statistic.

7.3 the ib curve
As in RDT, the compactness of the representation is measured by
I[Z;X]. ¿e distortion upper bound constraint, however, is replaced
by a lower bound constraint over the relevant information, I[Z;Y] [SST10]. [SST10] Shamir et al., ‘Learning and general-

ization with the information bottleneck’.

De�nition 7.2. ¿e IB Curve or relevance-compression function is the
functional that expresses the IB problem [GBNT03]: [GBNT03] Gilad-Bachrach et al., ‘An

Information ¿eoretic Tradeo� between
Complexity and Accuracy’.R(IB)(IY) = min

p(z∣x)∶ I[Z;Y] ⩾ IY
I[Z;X], (7.7)

or alternatively:

I(IB)Y (R) = max
p(z∣x)∶ I[Z;X] ⩽ R

I[Z;Y], (7.8)

where the random variables form a Markov chain Y ↔ X ↔ Z and
the minimisation is over all the normalised conditional distributions
p(z∣x)∣∑x p(z∣x) =  for which the constraint is satis�ed.

A straightforward observation is that the Markovian relation char-
acterises p(z) and p(y∣z) through [Slo02] [Slo02] Slonim, ‘¿e information bottleneck:

¿eory and applications’.
⎧⎪⎪⎨⎪⎪⎩

p(z) = ∑x ,y p(x , y, z) = ∑x p(x)p(z∣x)
p(y∣z) = 

p(z) ∑x p(x , y, z) = 
p(z) ∑x p(x , y)p(z∣x).

(7.9)

7.3.1 ¿e information plane

Moreover, the plane where the horizontal axis corresponds to I[Z;X]
and the vertical axis to I[Z;Y], named information plane (see Fig-
ure 7.4) is the natural equivalent to the distortion-compression plane
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in Rate-Distortion¿eory (Figure 7.2). Let the pair R, IY denote some
levels of compression and relevant information, respectively. If this
pair is located below the curve, some compressed representation Z has
a compression level R = I[Z;X] and relevant information IY = I[Z;Y].
¿e points laying on the IB Curve are the optimal representations for
a certain level of relevant-information (or precision) IY or a certain
level of compression (or complexity) R.

R = I [X;Z]

Rate-distor tion
region

Unachievable
region

 I Y =
 I 

[Z
;Y

]

IB Limit

Z*=(R, max I[Z;Y]) 
or (min I[X;T], IY)

Compression Complexity

Precision

Figure 7.4: ¿e IB Curve, R(IB)(D), in the in-
formation plane. Inspired by ‘An Information
¿eoretic Tradeo� between Complexity and
Accuracy’ [GBNT03].

7.4 the ib lagrangian
¿e Lagrangian relaxation of the IB functional is also a variational
problem:

L(IB)β [p(z∣x)] = I[Z;X] − βI[Z;Y], (7.10)

where β is the Lagrangian multiplier attached to the constrained
relevant information [TPB99].[TPB99] Tishby et al., ‘¿e Information

Bottleneck Method’. At β = , no feature of the signal is relevant, and all messages are
quantised (compressed) to a single point. At β =∞, the solution is
pushed toward arbitrarily detailed quantisation (no compression). ‘By
varying the (only) parameter, β, one can explore the tradeo� between
the preserved meaningful information and compression at various
resolutions’ [TPB99].

Unlike the RDT problem (Section 7.1.3), in the IB problem, the
constraint on the meaningful information is nonlinear in the mapping
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p(z∣x), and it is a much harder variational problem. Notably, there
is an analytical solution for IB Lagrangian (Eq. (7.10)). However, for
the sake of clarity, before deriving this exact solution, we will show
how IB can be seen as a particular case of RDT. ¿is development will
further help us to derive the analytical solution more directly.

7.5 ib problem as a particular case of the rdt problem
From the Data Processing Inequality (DPI) (Section 5.6.6),

I[X;Y] ⩾ I[Z;Y]. (7.11)

¿erefore, we can consider that the relevant information of X not
captured by the representation Z is a natural choice for the expected
distortion, as it represents a distortion in bits.

⟨d[x; z]⟩ = I[X;Y] − I[Z;Y] ⩾  (7.12)

From this de�nition, we can derive the following theorem:

¿eorem 7.2. If ⟨d[x; z]⟩p(x ,z) = I[X;Y] − I[Z;Y], then
d[x; z] = DKL(p(y∣x) ∣∣ p(y∣z)).

Proof.

⟨d[x; z]⟩p(x ,z) = I[X;Y] − I[Z;Y]

=∑
x ,y

p(x , y) log p(x , y)
p(x)p(y)

−∑
z,y

p(z, y) log p(z, y)
p(z)p(y)

. (7.13)

Since p(a, b) = p(b∣a)p(a), we have:

=∑
x ,y

p(y∣x)p(x) log p(y∣x)���p(x)
��
�p(x) p(y)

−∑
z,y

p(y∣z)p(z) log p(y∣z)���p(z)
��
�p(z) p(y)

.

(7.14)

From Eq. (7.9) :

=∑
x ,y

p(y∣x)p(x) log p(y∣x)
p(y)

− ∑
z,y,x

p(y∣x)p(z∣x)p(x)���p(z)
��
�p(z)

log
p(y∣z)
p(y)
(7.15)

=∑
x ,y

p(y∣x)p(x) log p(y∣x)
p(y)

− ∑
z,y,x

p(y∣x)p(z, x) log p(y∣z)
p(y)

.

(7.16)
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From the normalisation constraint,∑z p(z∣x) = :

=���
∑z p(z∣x)
 ⋅∑

x ,y
p(x)p(y∣x) log p(y∣x)

p(y)
− ∑

z,y,x
p(y∣x)p(z, x) log p(y∣z)

p(y)
(7.17)

=∑
z,x

p(z∣x)p(x) [∑
y

p(y∣x) log p(y∣x)
p(y)

] −∑
z,x

p(x , z) [∑
y

p(y∣x) log p(y∣z)
p(y)

]

(7.18)

=∑
z,x

p(x , z) [∑
y

p(y∣x)(log p(y∣x)
p(y)

− log p(y∣z)
p(y)

)] (7.19)

=∑
z,x

p(x , z) [∑
y

p(y∣x)(log p(y∣x)���p(y)
��
�p(y) p(y∣z)

)] (7.20)

=Ep(z,x)DKL( p(y∣x) ∣∣ p(y∣z) ). (7.21)

¿erefore

⟨d[x; z]⟩p(x ,z) = ⟨DKL( p(y∣x) ∣∣ p(y∣z) )⟩p(x ,z) (7.22)
d[x; z] = DKL( p(y∣x) ∣∣ p(y∣z) ) (7.23)

7.6 information bottleneck solution
¿eorem 7.1 characterises the general form of the optimal solution to
the rate-distortion problem. As we showed that the IB problem could
be seen as a particular case of the RDT problem, the IB solution is
straightforward:1212¿e analytical solution to the IB problem

is sometimes called the self-consistent equa-
tions. ¿eorem 7.3. ¿e analytical solution of the variational problem

∂L(IB)β [p(z∣x)]
∂p(z∣x)

= , (7.24)

for normalised distributions p(z∣x) is given by the exponential form
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(z∣x) = p(z)
Z(x ,β) exp(−β DKL( p(y∣x) ∣∣ p(y∣z) )),

p(z) = ∑x ,y p(x , y, z) = ∑x p(x)p(z∣x)
p(y∣z) = 

p(z) ∑x p(x , y, z) = 
p(z) ∑x p(x , y)p(z∣x).

(7.25)

where Z is the normalisation factor (partition function). ¿e Lagrange
multiplier β is positive and

β = ∂I[Z;Y]
∂I[Z;X]

. (7.26)

Proof. Apply d[x; z] = DKL( p(y∣x) ∣∣ p(y∣z) ) to ¿eorem 7.1.
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7.7 concluding remarks

IB-method

Epistemology
Intelligence

Knowledge Sceptical
View

Science

Language

Bayesian Inference

Shannon’s 2nd Law

Information �eory

Shannon’s 1st Law

Figure 7.5: ¿e IB method uses Shannon laws
to de�ne an unreacheable compression region
in the information-plane.

In this section, we presented the Information Bottleneck (IB) Problem
(Section 7.2.1) and the IB Lagrangian (Section 7.4), with its correspond-
ing analytical companion, the information plane (Section 7.3.1).

¿e exciting aspect of the IB Problem is that it uses the “help” of a
relevant variable to de�ne the distortion measure. ¿erefore, we have
a task-speci�c distortion measure (loss function). In opposition to
MLT and RDT, which are loss-function-agnostic, in the IB method, the
Kullback-Leibler divergence (DKL) of the true distribution p and the
model q emerges as the natural choice (Section 7.5).

Despite the similarities with the supervised learning problem
(Section 4.2.1), the IB Problem assumes knowledge of the distribution
P(X,Y), and it is not yet in the realm of Information-¿eoretical
Machine Learning.





8
Information Bottleneck and
Representation Learning

‘Weknow the past, but can-
not control it.
We control the future, but
cannot know it.’

—Claude Shannon

¿is chapter presents the idea of using the IB principle for representa-
tion learning in general, not speci�c for Deep Learning, which will
be the subject of Chapter 9.

In Section 8.1, we showwhy to learn representations. In Section 8.2,
we discuss how to characterise a good representation. Section 8.6
presents the two levels of representation in learning, which will help
us understand what to represent.

In Section 8.3, we �nally present the IB Learning problem, its dif-
ference to the IBmethod, how to �nd good representations with it, and
its strengths and weaknesses as a representation learning framework.
Finally, we close the chapter with Section 8.10 that brings evidence
that the IB framework can predict bounds on human learning.

8.1 representation learning
In our human experience, we know that a good representation of data
is crucial for accomplishing tasks. ¿e Hindu-Arabic numeral system
advantages, for example, are so manifest that it has been adopted
almost everywhere.

In the history of Machine Learning, good representations have
always played a central role. In its �rst years, before trying to solve a
task, researchers would feature engineer: use their knowledge of the
problem in hand to encode the data into a representation easier for
computers to learn the task.

¿e goal of designing features is to separate explanatory factors of
variation behind the high dimensional observed data. ¿e challenge
is that many of the “factors of variation” in�uence every piece of data

123
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we can observe [GBC16].[GBC16] Goodfellow et al., Deep Learning.

Consider the problemofObject Classi�cation1; each pixel depends
1“What object does this picture represent?” Ob-
ject Classi�cation is the task of assigning a
category (a label) for an image.

on di�erent factors: the viewing angle of the picture, the object’s pose,
the quality and calibration of the lens, the conditions of lightning,
unrelated background objects.

Over time, it became clear that the success of machine learning
was so heavily dependent on appropriate features that �nding them
should also be part of the process of learning itself. ¿erefore, rep-
resentation learning or feature learning is a set of techniques that
allows a machine to learn features and use them to perform a speci�c
task. Learned representations o en result in better performance and

X
input

encoderÐÐÐÐÐ→ Z
features

decoderÐÐÐÐÐ→ Ŷ
output

�exibility, allowing amore straightforward adaptation of an AI system
to new tasks, with theminimal human intervention [GBC16]. Further-
more, the recent success of Deep Learning, which is one of many ways
to learn representations, has shown the power of this encoder-decoder
scheme.

8.2 desiderata for representations
What are good representations of the data? A good representation
makes a subsequent learning task easier [GBC16]. Achille and Soatto [AS18a]

Figure 8.1: Alessandro Achille.

[AS18a] Achille and Soatto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’.

present a mathematical de�nition using information theory.

task : In supervised learning, we want to �nd the stochastic condi-
tional distribution p(y∣x) of a target variable Y that we refer as
the task:

Y ∶= P(Y ∣X = x)

representation : Z is a representation of X if it can be fully described
by the stochastic conditional p(z∣x):

Z ∶= P(Z∣X = x)

su�cient: Z is a su�cient representation of X w.r.t Y if Y → X → Z
form a Markov chain2 and:2Note that Y ≠ Ŷ . Here, the Markov chain

is from the unknown target variable Y to the
representation Z through the input. See Fig-
ure 8.4. I[Z;Y] = I[X;Y].

minimal: Z has the smallest amount of information among all the
su�cient representations of X. ¿is means there is an encoding
from X to Z that keeps only relevant information3:3Minimal representations are generally

equated to low-dimensional data. However,
as we have exposed in Chapter 5, a high
dimensional representation can have little
information. ¿us, for example, sparse
representations that force most of its bits to be
zero are high-dimensional low-informational
representations.

∃ X ↦ Z ∣ I[Z;X] = I[Z;Y] = I[X;Y] (8.1)
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invariant: to the e�ect of nuisances (noise).4 Let η be a nuisance for

4Nuisances are factors of variation that a�ect
data, but are otherwise irrelevant for the task.

the task Y . If η does not have information about Y , there should
not be information of η in the representation Z , the classi�er
could �t spurious correlations:

η ⊥ Y ⇒ I[η;Y] = 
⇒ I[Z; η] =  (8.2)

maximally disentangled: information lies on components of the
representation Z and not in the correlations of them. ¿en,
mathematically, let TC denote the total correlation, a.k.a.multi-
information.

TC(Z) =DKL(p(z)∣∣
n
∏

i
p(zi)), (8.3)

TC(Z) = Ô⇒ z � z � ⋯ � zn . (8.4)

¿is desiderata for representations corresponds directly with our
goals for learning algorithms. We want our models to predict the task
correctly (su�ciency). Simultaneously, we want them to generalise to
out-of-sample examples (invariance to nuisance factors).

accuracy↔ su�ciency
generalisation↔ invariance/minimality
explainability↔ disentanglement

Figure 8.2: Correspondence of desired properties of learning algorithms and representations.

Another desired characteristic, albeit o en forgotten, is that we
want our models to be explainable.5 ¿is characteristic relates to dis- 5Disentanglement and minimality also sim-

plify the subsequent inference (decoding).entangling the underlying causes (factors) of the observed data (max-
imally disentangled) [GBC16].

Although disentanglement may be an abstract characteristic not
very well de�ned, Achille and Soatto [AS18a] propose a simpli�cation
by de�ning it as the total correlation of the representation features.

¿e only property of the desiderata that still does not correspond
with learning algorithms isminimality. However, it is straightforward
that a small su�cient representation has a smaller chance of con-
taining spurious correlations, and it is more likely to generalise well.
Minimal su�cient representations have no spurious factors that do
not explain the variability of the observed data. As we will show, a
representation is invariant only if it is also minimal.
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8.2.1 Invariant if minimal

¿eorem 8.1 ( [Ach19], Proposition 2.4.1). Let η be a nuisance for the
target Y and let Z be a su�cient representation of the input X w.r.t Y .
Suppose that Z depends on η only through X ( i.e. , η → X → Z). We
also consider that X has all information about Y ; therefore, we can say
that it is a deterministic function of Y and nuisances X ∶= f (Y ; η).

To say that Z is invariant if and only if it is minimal implies that
I[Z; η] = I[Z;X] − I[X;Y]:

∀ Z ∣ I[Z;Y] = I[X;Y],
I[Z;X] = I[X;Y]⇐⇒ I[Z; η] = ,

I[Z; η] = I[Z;X] − I[X;Y].

¿is equality holds up to a small residual є:

I[Z; η] = I[Z;X] − I[X;Y] − є,  ⩽ є ⩽ H[Y ∣X] (8.5)

Proof.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Y , η → X → Z (by de�nition)

I[Z;Y , η] ⩽ I[Z;X] (DPI)

I[Z;Y , η] = I[Z; η] + I[Z;Y ∣η] (chain rule)

I[Z; η] +����
�: I[Z;Y]

I[Z;Y ∣η] ⩽ I[Z;X] (η�Y)

I[Z; η] ⩽ I[Z;X] −����:
I[X;Y]

I[Z;Y] (Z su�ciency)
I[Z; η] = I[Z;X] − I[X;Y] − є, є ⩾  (є lower bound)

Now we only need to prove the upper bound for є:

є = I[Z;X] − I[Z; η] − I[X;Y]
= I[Z;Y , η] − I[Z; η] − I[X;Y] (X ∶= f (Y ; η))
=����I[Z; η] + I[Z;Y ∣η] −����I[Z; η] − I[X;Y] (chain rule)

=�����:
H[Y]

H[Y ∣η] −H[Y ∣η;Z] −H[Y] +H[Y ∣X] (η�Y)
=��

�H[Y] −H[Y ∣η;Z] −��
�H[Y] +H[Y ∣X]

⩽ H[Y ∣X] (є upper bound)

I[Z; η] = I[Z;X] − I[X;Y] − є,  ⩽ є ⩽ H[Y ∣X]

As a consequence of this proposition, it is possible to construct
invariant representations, which will generalise well, by reducing the
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amount of information the representation Z contains about the input
X while keeping I[Z;Y], the amount of information we need for the
task. As H[Y] ≪ H[X] the compressibility of the input determines
generalisation. ¿us, it is independent on the hypothesis space of the
learning algorithm.

8.3 ibt learning problem: learning approximately min-
imal sufficient disentangled representations
We have discussed what constitutes a good representation. ¿is sec-
tion is about �nding such representations. For that, we will adjust the
IB Problem Setting (Section 7.2.1) for supervised learning.6 6For consistency with Chapter 4, we will re-

peat some de�nitions in this section.

Y

360 kb 5 kb

X Z Ŷ
Problem /
Message

Solution /
Prediction

Label /
Target

encoder 
/channel

decoder

Representation 
/ Bo�leneck

meaning
/ task

η
Noise

Figure 8.3: ¿e IBT Learning Problem is the
adaptation of the IB Problem to the learning
setting.

8.3.1 De�nitions

1. Let X be the random variable that denotes the generator (or
source) of instance vectors x of the learning problem (messages),
randomly drawn from a probability distribution P(X),
x ∼ P(X), x ∈ AX;

2. Let Y be a random relevant variable (the Target) which repres-
ents the solution y for the problem x, i.e. the intended meaning
p(y∣x) of the message x,
y ∼ P(Y), y ∈ AY ;

3. A task supervisor knows the task distribution P(Y ∣X) and
returns an output vector yi for every input vector xi7: 7Notice that here y i is not the label but a vec-

tor that represents the probability of each la-
bel.yi ∶= p(y∣xi);
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4. Let Z be a bottleneck random variable that denotes a com-
pressed representation of the input X that is su�cient w.r.t. Y
and obeys the Markov chain Y ↔ X ↔ Z;

5. Let the stochastic conditional distribution q(z∣x) be an en-
coderof input instances into representations,
z ∶= q(z∣x).

6. Let the stochastic conditional distribution q(y∣z) be a decoder
of representations into solutions of the problem,
ŷ ∶= q(y∣z).

7. A learning algorithm A, which is the functional that given
a dataset Dn = {(x, y),⋯, (xn , yn)} of n inputs and outputs
of the task, selects a hypothesis h = q(y∣z)

decoder
○ q(z∣x)

encoder
from the

hypothesis spaceH:

A ∶ (X × Y)n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dn

→ H. (8.6)

8.3.2 Assumptions

i. ¿e random variables X, Y and Z, are discrete;

ii. Y → X → Z form a Markov-chain;

iii. AX, AY and AZ are �nite sets;

iv. No assumption on D = P(X,Y).

v. D = P(X,Y) is unknown at the training stage.

vi. D = P(X,Y) is �xed: the ordering of examples in the sample is
irrelevant.

vii. X is i.i.d. sampled.88We could use an ergodic process, but for sim-
pli�cation we will use i.i.d. sampling.

viii. ¿e encoder and the decoder are stochasticmappings.9
9Notice that given the Markov chain Y ↔
X ↔ Z, due to reparemetrisation invari-
ance ( ¿eorem 5.4 (reparametrisation invari-
ance (RI))), a deterministic mapping of the
data does not throw out information, i.e. let
f ∶ AX → AY be deterministic, I[ f (X);Y] =
I[X;Y].

ix. the distortion measure between X and its representation Z is
I[X;Y] − I[Z;Y] = DKL(p(y∣x)∣∣p(y∣z)).10

10¿is assumption is not strictly required, as
it can be derived. ¿e only reason to keep it
here is to make the comparison of di�erent
problem settings easier.

x. the entanglement of a random variable Z is de�ned as total cor-
relation of its components [AS18b].

[AS18b] Achille and Soatto, ‘Information
Dropout: Learning Optimal Representations
¿rough Noisy Computation’.
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8.3.3 Problem statement

Given the problem setting above, the IBT learning problem is to �nd
the encoder p(z∣x) and decoder p(y∣z) such that:

1. the encoder maximises the compression of the input X into the
representation Z while preserving the maximum information
about the “meaning” Y . In other words, the encoder that gen-
erates minimal su�cient disentangled representations of the
input.

2. the decoder is trivial as a result of the characteristics of the
representation.

3. ¿e selection is based on a training set of n i.i.d. observations
drawn from the distribution P(X,Y).

8.3.4 IBT learning as a variational problem

Finding the encoder for minimal su�cient disentangled represent-
ations is equivalent to �nding a distribution p(z∣x) that solves the
following constrained optimisation problem:

q(z∣x) ∶=argmin
p(z∣x)

I[Z;X] (8.7)

s.t.  ⩽ I[X;Y] − I[Z;Y]
 ⩽ TC(Z).

¿is nonlinearly constrained optimisation problem11 is very similar 11Prior to the publishing of [Ale+16], there
was no known algorithm to minimise the IB
Lagrangian for discrete X and Y with large
state spaces or non-Gaussian continuous joint
distribution.

to the IB Problem (Section 7.2). It just adds the total correlation con-
straint and assumes no knowledge over P(X,Y). Tishby et al. [TPB99]

[TPB99] Tishby et al., ‘¿e Information
Bottleneck Method’.

proposed solving the IB problem using a relaxed minimisation, the
IB Lagrangian:

min
p(z∣x)

I[Z;X]

s.t. I[Z;Y] ⩽ I[X;Y]
Ô⇒

min I[Z;X] + β(����I[X;Y] − I[Z;Y]),
min I[Z;X] − βI[Z;Y].

(8.8)

Let us also apply a Lagrangian relaxation to our representation
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learning problem:

L = I[Z;X] + β(I[X;Y] − I[Z;Y]) + γTC(z), (8.9)

Let β− = 
β
, (8.10)

γ′ = γ
β

(8.11)

L =
��

���
���

��: H[Y∣Z]

(I[X;Y] − I[Z;Y]) + β−I[Z;X] + γ′TC(z), (8.12)
L = H[Y ∣Z] + β−I[Z;X] + γ′TC(z). (8.13)

Let us denote pθ(z∣x) (encoder) and pθ(y∣z) (decoder) the unknown
conditional distributions we want to estimate12, parametrised by θ.12pθ(y∣x) = ∑ pθ(z∣x)pθ(y∣z)

p(y∣x , θ∗) = p(y∣x) ¿en, rewriting the Lagrangian as a per sample loss function, we
have:

H[Y ∣Z] ≈ E(x ,y)∼p(x ,y)[Ez∼pθ(z∣x) − log pθ(y∣z)] (8.14)
I[Z;X] = Ex∼p(x)DKL(pθ(z∣x)∣∣p(z)) (8.15)
TC(z) = DKL(p(z)∣∣∏ j q(z j)) (8.16)

L̂ = 
n

n
∑Ez∼pθ(z∣x i) − log pθ(yi ∣z)

+ β−DKL(pθ(z∣xi)∣∣p(z))
+ γ′DKL(p(z)∣∣∏ j pθ(z j)). (8.17)

¿e second and third terms of the loss are intractable, as we need to
know p(z) to compute, which is an unknown of our problem. Achille
and Soatto, however, prove that if β− = γ′, and we assume a factorised
unknown distribution, the Lagrangian can be solved [AS18b].[AS18b] Achille and Soatto, ‘Information

Dropout: Learning Optimal Representations
¿rough Noisy Computation’.

L̂ = 
n

n
∑Epθ(z∣x i) − log pθ(yi ∣z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥ(p,pθ)

+β−DKL(pθ(z∣xi)∣∣pθ(z)), (8.18)

pθ(z) =∏
j

pθ(z j). (8.19)

L̂ = Ĥ(p, pθ) + β−DKL(pθ(z∣x)∣∣pθ(z)) Activations IB (8.20)

Where Ĥ(p, pθ) is the cross-entropy, and the second term is a
regulariser that penalises the transfer of information from X to Z.
In other words, the regulariser penalises complexity measured as
I[Z;X].¿e usage of cross-entropy loss and this kind of regularisers is
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widespread in practice. Nevertheless, Achille gave theoretical ground
for such choices13 [Ach19]. 13¿e reference constraint their �ndings to

DNNs optimised with SGD. We regard the
result more general than that.

[Ach19] Achille, ‘Emergent Properties of Deep
Neural Networks’.
url: https : / / escholarship . org / uc / item /
8gb8x6w9

Minimising the standard IB Lagrangian assuming the activations
are independent, i.e. q(z) =∏i q(zi) is equivalent to enforcing disen-
tanglement. Practitioners already adopt this independence assump-
tion on the grounds of simplicity since the actual marginal p(z) is
incomputable. Higgins et al. also empirically observed that using a
factorised model results in "disentanglement" [Hig+17]. Because of [Hig+17] Higgins et al., ‘beta-VAE: Learning

Basic Visual Concepts with a Constrained
Variational Framework’.the previous propositions, we can assume the activations are indeed

independent and ignore the TC term.14
14¿is insight allowed Alemi et al.; Achille
and Soatto independently develop basic-
ally the same algorithm for estimating mu-
tual information for any distribution using
DNNs [Ale+16; AS18b].

Corollary 1. Any learning algorithm that:

• assumes a stochastic p(y∣x);

• uses a DKL-equivalent loss (for example the cross-entropy loss or
the logistic loss);

• and a regularisation term that penalises the amount of informa-
tion of the input stored in the model,

is learning a minimal su�cient disentangled representation and, in fact,
solving the IB learning problem.

8.4 the ib achille’s heel
Achille and Soatto noticed a problem with the Activations IB, it is
incomputable:

• Z is a representation of yet not observed future data;

• During training, a valid minimisation of I[Z;X] would be to
memorise the indexes of each label;

• During testing, once the weights are �xed, the network is not a
stochastic mapping;

• ¿e only other way to compute IB would be with the true dis-
tribution P(X,Y), but that is unknown in our problem setting.

¿is realisation is very important. Many of the critiques on IBT (that
we will see in Section 9.3.4) are due to not addressing it. Achille
and Soatto not only acknowledged the problem but also proposed a
solution (Section 8.6). To explain how they arrive on that, we �rst need
to explain how they analised the cross-entropy loss in an information-
theoretical perspective.

https://escholarship.org/uc/item/8gb8x6w9
https://escholarship.org/uc/item/8gb8x6w9
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8.5 rethinkinggeneralisation: cross-entropyandover-
fitting
In previous sections, we derived the cross-entropy loss (Eq. (8.20))
from a list of desired properties for representations(Section 8.2). We
also showed that generalisation relates to the compressibility of the
input(Section 8.2.1).

Zhang et al. demonstrates that the expressivity of DNNs is enough
to �t random labels [Zha+16].¿us, at least for DNNs, generalisation is[Zha+16] Zhang et al., Understanding deep

learning requires rethinking generalization. more not over�tting than not under�tting. ¿is characteristic may be
the case for other learning techniques as well. In this section, we will
keep rethinking generalisation on this new information-theoretical
perspective and try to elucidate how cross-entropy loss relates to
over�tting and memorisation.

Classical MLT assumes that we select a hypothesis h parametrised
by θ. Conceptually, we already rethought generalisation as determined
only by the compressibility of the input (Section 8.2.1). In this sense,
the task is determined by the training dataset only.15 ¿us, instead15 Achille de�nes the task as the dataset

distribution for which we only have one
sample [Ach19]. of a parametrised model, we will assume a parametrised unknown

distribution P(D∣θ). In this context [AS18a]:
[AS18a] Achille and Soatto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’. ¿eorem 8.2. Given D = (X,Y), D ∼ P(X,Y ∣θ), and a representation

W of θ, s.t. Y ∣X ↔W↔ θ form a Markov-chain [AS18a]:

Hp,q[D∣W] = Hp[D, θ] + I[θ;D∣W] +DKL(p ∥ q) − I[D;W∣θ]

Proof. Notice that the output weight W of the training process can
be seen as a random variable (that depends on the stochasticity of the
initialisation, training steps, and the data); i.e. W is a representation
of the dataset D and we can talk about I[W;D].

First, we show that minimising Hp,q[y∣x] is equivalent to minim-
ising Hp,q[x , y]

minHp,q[y∣x ,w] = minHp,q[D∣W]. (8.21)

When a learning algorithmoptimises the cross-entropy loss, it is e�ect-
ively just minimising the KL-divergence, as the �rst term (entropy) is
a constant:

from (5.39)
minHp,q[y∣x ,w] = min (����

��Hp[y∣x ,w] +EDKL(p(y∣x , θ)∣∣q(y∣x ,w))) .
(8.22)
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¿e same happens in the minimisation of the cross-entropy of the
joint dataset:

from (5.39)
minHp,q[x , y∣w] = min (����

��Hp[x , y,w] +DKL(p(x , y, θ)∣∣q(x , y,w)))
(8.23)

Here, we show that the divergence of y∣x is the same as the divergence
of joint distribution x , y, a step that was assumed by Achille and
Soatto:

DKL(p(x , y)∣∣q(x , y)) = Ep log
p(x , y)
q(x , y)

(8.24)

= Ep log
p(y∣x)p(x)
q(y∣x)p(x)

= Ep [log p(y∣x)p(x) − log q(y∣x)p(x)]

(8.25)

= Ep [log p(y∣x) +�����log p(x) − (log q(y∣x) +�����log p(x))] (8.26)

= Ep [log p(y∣x) − log q(y∣x)] = Ep log
p(y∣x)
q(y∣x)

(8.27)

= DKL(p(y∣x)∣∣q(y∣x)) (8.28)

¿erefore we can say that a learning algorithm minimises Hp,q[D∣W].

from (5.39)
Hp,q[D∣W] = Hp[D,W] +DKL(P(D, θ) ∥ Q(D,W)) (8.29)

To prove that:

Hp,q[D∣W] = Hp[D∣θ] + I[θ;D∣W] +EDKL(p ∥ q) − I[D;W∣θ],

we just need to prove that:

Hp[D∣W] = Hp[D, θ] + I[D∣W; θ] − I[D;W∣θ]. (8.30)

¿is equivalence is clear with the help of the following Venn dia-
grams16: 16Our assumptions guarantee that all inform-

ation measures in the diagram are positive,
thus there is no problem in using the Venn
diagram in this case.

D W

θ
=

D W

θ
+

D W

θ
−

D W

θ

Hp[D∣W] = Hp[D∣θ] + I[D∣W; θ] − I[D;W∣θ]
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Let us examine the cross-entropy decomposition:

Hp,q[D∣W] = Hp[D∣θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
intrinsic error

+ I[θ;D∣W]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
su�ciency

+DKL(p ∥ q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e�ciency

− I[D;W∣θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
memorisation

intrinsic error: Hp[D∣θ] relates to the intrinsic error that we would
�nd even if we knew pθ;

su�ciency: I[θ;D∣W] measures how much information of θ was
compressed in the weights;

e�ciency: DKL(p ∥ q) measures the e�ciency17 of the representa-17It relates to generalisation, as additional bits
of information can correlate to noise. tion, i.e. the number of additional bits we need to represent the

input with q(w∣D) instead of using pθ (see Section 5.5.4);

memorisation: I[D;W∣θ] is the last and only negative term. It relates
to over�tting and measures how much information about the
dataset unrelated to θ is memorised in the weights.

¿e optimiser will try to increase memorisation because it is the only
negative term. ¿us, Achille and Soatto propose a naïve method to
eliminate this proneness to over�tting: adding back the memorisation
term in the loss¿us, [AS18a].[AS18a] Achille and Soatto, ‘Emergence

of Invariance and Disentangling in Deep
Representations’. L(W) = Hp,q[D∣W] + I[D;W∣θ] (8.31)

To calculate I[D;W∣θ] true distribution, pθ is needed. Nevertheless,
we are just trying to approximate pθ with q during training. Hence
we are presented with the chicken-egg problem. Rather, one can add a
Lagrangian multiplier to upper bound I[D;W∣θ]:

L(W) = Hp,q[D∣W] + β−I[D;W] Weights IB (8.32)

Remarkably, this has the same form as the IB Lagrangian, Eq. (7.10).
When β = , (8.32) reduces to the Evidence Lower Bound (ELBO) loss
used in variational inference [Ach19, p. 53].[Ach19] Achille, ‘Emergent Properties of Deep

Neural Networks’.
url: https : / / escholarship . org / uc / item /
8gb8x6w9 8.6 two levels of representation

Some criticism on IBT derive from a lack of rigour in explaining the
fundamentals (see Section 9.3.4).

¿e crucial problem in MLT is that we want to predict the beha-
viour (bound) of learning algorithms in future data while we can only
access past performance.

¿is dichotomy translates to representation learning by two inter-
twined but di�erent representations:

https://escholarship.org/uc/item/8gb8x6w9
https://escholarship.org/uc/item/8gb8x6w9
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P(X,Y)

P(X) P(Y|X)

𝐴: 𝑋!×𝑌!→ 𝑊

ℎ: 𝑝 𝑦 𝑧 ∘ 𝑝(𝑧|𝑥)

Nature/ Dataset /Task

Problem Generator
/ Source

Task Supervisor /
Intended Meaning

Learning Algorithm

Hypothesis /
Encoder-decoder

𝑥"!

𝑥#

1𝑦#

𝑦#

𝑥#

𝑥"! 𝑦"!

𝐷 → 𝑊 → ℎ: 𝑃(𝑌|𝑋)

𝑋 → 𝑍 → 5𝑌

1

2

Training Time

Test Time

Figure 8.4: Two levels of representation in
the learning setting.

1. the representation of a dataset (past data), a function that can
be stored in memory for the later accomplishment of the task.
It needs to keep useful information for future decisions without
squandering resources in remembering spurious correlations
or one-time events.

2. the representation of an input example (current data): which
need to keep the essence of the scene at hand;

Borrowing the terminology of Deep Learning, Achille; Achille
and Soatto call these two levels of representation of information in the
weights and information in the activations, respectively [Ach19; AS19]. [AS19] Achille and Soatto, Where is the

Information in a Deep Neural Network?.Several IBT papers do not address this di�erence. In particular,
someof the seminalwork [TZ15a; ST17; Tis17b].How canweminimise

[TZ15a] Tishby and Zaslavsky, ‘Deep learning
and the information bottleneck principle’.

[ST17] Shwartz-Ziv and Tishby, ‘Opening
the Black Box of Deep Neural Networks via
Information’.

[Tis17b] Tishby, Information ¿eory of Deep
Learning.
url: https://youtu.be/FSfN2K3tnJU

the information in the activations while we cannot access future data?
¿ere is a missing step.

Notice that we now have two Lagrangians. ¿e original (Sec-
tion 8.3.4) and this new Lagrangian emerged from eliminating over-
�tting.

X
input

ÐÐÐÐÐ→ Z
activations

ÐÐÐÐÐ→ Y
label

minL(W)
q(Z∣X)

= Hp,q[Y ∣Z] + β−I[Z;X] Activations IB

D
dataset

ÐÐÐÐÐ→ W
weights

ÐÐÐÐÐ→ P(Y ∣X)
real distribution

minL(W)
q(D∣W)

= Hp,q[D∣W] + β−I[W;D] Weights IB

https://youtu.be/FSfN2K3tnJU
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Intuitively, there is a strong connection between information in the
weights and information in the activations. I[Z;X], which measures
the complexity of the activations representation, can be de�ned by
the amount of weight in the network: low or zero weights will connect
to the activations that are not in the optimal activation representation
z∗, which minimises I[Z;X].

In ‘Emergence of Invariance and Disentangling in Deep Repres-
entations’, Corollary C.8, Achille and Soatto have proved that indeed
there is a bound:

I[Z;X] ⩽ I[W;D] (8.33)

As Ĩ[w;D] can be calculated, this development allows one to regularise
the training explicitly. ¿is explicit regularisation is what ‘Inform-
ation Dropout: Learning Optimal Representations ¿rough Noisy
Computation’, Information Dropout proposes [AS18b].[AS18b] Achille and Soatto, ‘Information

Dropout: Learning Optimal Representations
¿rough Noisy Computation’. Besides, even without calculating the information in the weights

one can control it by injecting noise, which can be modulated from
zero, no e�ect in the rate of the encoder, to the capacity of the channel,
which leaves the encoder with no information le .

We know the past but cannot control it.
We control the future but cannot know it.

—Claude Shannon

8.7 shannon vs. fisher information
We still have the problem that to calculate I[X;Y], we need to know
P(X,Y). We can, however, bound the amount of information using
Fisher Information Section 5.8.2. We use:

I[X;Y] =DKL(P(X,Y)∥P(Y)P(X)) (8.34)
=EXDKL(P(Y ∣X)∥P(Y)), (8.35)

to rewrite Eq. (8.32)(Weights IB) as:

L(W) = Hp,q(D∣W) + β−DKL

⎛
⎜⎜⎜
⎝
Q(W∣D)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
training output

∥ P(W)
´¹¹¹¸¹¹¹¶
�xed prior

⎞
⎟⎟⎟
⎠

In other words, I[W;D] is the divergence of the encoderQ(W∣D)
and the expected prior averaging all possible datasets, i.e. the un-
known distribution. If we change the assumption Section 8.3.2, Item iv,
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and assume that the unknown distribution is an isotropic Gaussian18, 18An isotropic Gaussian is one where the cov-
ariance matrix is represented by Σ = λI.the information in the weights whenW∗ is minimal, is given by:

DKLQ(W∣D)P(W) = 

(log ∣Fn∣ +

��
��log λI +

�
�
�W
∗

λI
) ,

where the cancelled terms are the ones that do not depend onQ(W∣D)
and can be ignored, log ∣F∣ is the log-determinant of Fisher Inform-
ation Matrix of the weights, and n is the number of samples in the
dataset.

¿is assumption is quite interesting as it gives us an analytical and
fast calculation of a bound to I[W;D]:

I[Z;X] ⩽ I[W;D] ⩽ log ∣F(W∗)∣ (8.36)

Even if the unknown distribution P(D) is not an isotropic gaussian,
we can think that near optima, it approximates one. We can arrive at
the same result by approximating the Hessian with a Taylor expansion.

8.8 connection to variational autoencoders
Achille and Soatto show how the previous development relates with
VariationalAuto-encoders (VAEs) [AS18b]. VariationalAuto-encoders
(VAEs) [KW14] aim to reconstruct, given a training dataset D = xi , [KW14] Kingma andWelling, ‘Auto-Encoding

Variational Bayes’.
url: http://arxiv.org/abs/1312.6114a latent variable z. ¿e paper proposes that this can be thought as

generating z through some unknown generative process pθ(x∣z). In
practice, this is done by minimising:

L = 
N

N

∑Ez∼pθ(z∣x i) − log pθ(yi ∣z) +DKL(pθ(z∣xi)∣∣∏i pθ(zi)).

¿isminimisation is performed through sampling using SVGB [KW14].
It is clear by the formulation that VAE is equal to Eq. (8.32)(Weights
IB) where β = .

8.9 connection to pac-bayes
Achille and Soatto also relate their work with PAC-Bayes [AS18b].
From [McA13, ¿rm 2], [McA13] McAllester, ‘A PAC-Bayesian

Tutorial with A Dropout Bound’.

∀(�xed)λ > /, p(w), q(w∣D),
ED[Ltestq(w∣D)] ⩽


N( − 

λ)
(Hp,q(y∣x ,w) + λLmaxED[DKL[q(w∣D)∣∣p(w)]) (8.37)

http://arxiv.org/abs/1312.6114
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where Lmax is the maximum per-sample loss function.¿e right-hand
side (RHS) coincides, modulo a constant, with Eq. (8.32) if we use
q(w) instead of p(w). Since

ED[DKL[q(w∣D)∣∣q(w)]]
=ED[DKL[q(w∣D)∣∣p(w)]] −DKL[q(w)∣∣p(w)] (8.38)
⩽ ED[DKL(q(w∣D)∣∣p(w))], (PAC-Bayes)

the sharpest PAC-Bayes upper bound to the test error is obtained
when p(w) = q(w), in which case, Eq. (PAC-Bayes) reduces (modulo
a constant) to the IB Lagrangian of the weights. Unfortunately, the
marginal q(w) of the weights is not tractable, as already stated. To
circumvent this problem, we consider instead that the sharpest PAC-
Bayes upper bound that can be obtained using a tractable factorised
prior p(w) = q̃(w) =∏i q(wi).1919¿is assumption is also made in the MDL

framework.

8.9.1 Relation to Dziugaite and Roy bounds

We notice that this relation was independently explored by Dziugaite
andRoy, whoworked on the hypothesis that SGD�nds good solutions
only if they are surrounded by a large volume of good solutions [DR17],[DR17] Dziugaite and Roy, ‘Computing Non-

vacuous Generalization Bounds for Deep
(Stochastic) Neural Networks with Many
More Parameters than Training Data’.
url: http://auai.org/uai2017/proceedings/
papers/173.pdf

if so, the expected error rate of a classi�er drawn at random from this
volume should match that of the SGD solution. ¿eorem 4.7 (Prelim-
inary ¿eorem 2 [McA99]) bounds the expected error of a classi�er
chosen from a distribution Q in terms of the DKL divergence from a
prior P, and if the volume of good solutions is large, and not too far
from the mass of P, we obtain a good bound.

¿ey use SGD to optimise the PAC-Bayes bound on the error rate
of a stochastic neural network, i.e. a DNN that represents a stochastic
mapping p(y∣x). ¿e objective function is the sum of

• the empirical surrogate20 loss averaged over a random pertuba-20¿e surrogate loss is the logistic loss, which
is di�erentiable. tion of the SGD solution;

• a generalisation error bound that acts as a regulariser.

Recall Corollary 1:

Corollary 1. Any learning algorithm that:

• assumes a stochastic p(y∣x);

• uses a DKL-equivalent loss (for example the cross-entropy loss or
the logistic loss);

http://auai.org/uai2017/proceedings/papers/173.pdf
http://auai.org/uai2017/proceedings/papers/173.pdf
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• and a regularisation term that penalises the amount of informa-
tion of the input stored in the model,

is learning a minimal su�cient disentangled representation and, in fact,
solving the IB learning problem.

From this, we can say that Dziugaite and Roy are solving an in-
stance of the IB learning problem.

Moreover, their objective can be written as [DR17, sec. 6]:

minEW∼NL(W, S) + [w −w]⊺ diag(s)[w −w] (8.39)

where s is the score function. In other words, they are calculating the
diagonal of the Fisher Information Matrix as a regularizer.

8.10 evidence of the ib limit in a human learned task
Zaslavsky et al. [Zas+18] had the sagacious idea of using the IBmethod [Zas+18] Zaslavsky et al., ‘E�cient compres-

sion in color naming and its evolution’.to analyse anthropological evidence.
We have already established that intelligent agents, whether arti�-

cial or biological, need language to represent a complex environment.
Natural languages re�ect di�erent solutions to this problem. ¿e cur-
rent most accepted theory in Anthropology and Linguistics suggest
that while languages vary to accommodate language-speci�c needs
(due, for example, to variations in the environment), they evolve into
e�cient representations [Zas+18]. Although not explicit in [Zas+18],
it is evident that the evolution of natural languages can be seen as a
learning process for the task of e�cient communication by a society.

¿e paper analyses natural languages in the context of colour
naming. It is based on theWorld colour Survey (WCS), “a large colour-
naming database obtained from informants of mostly unwritten lan-
guages spoken in pre industrialised cultures that have had limited con-
tact with modern, industrialised society” [LB09]. Assuming that each [LB09] Lindsey and Brown, ‘World Color Sur-

vey color naming reveals universal motifs and
their within-language diversity’.
url: https://www.pnas.org/content/106/47/
19785

colour of WCS corresponds to a speci�c meaning; it formulates the
problem of colour naming in an information-theoretical perspective
analogous to the IB problem setting [TPB99]:

[TPB99] Tishby et al., ‘¿e Information
Bottleneck Method’.With that formulation, it is possible to calculate the IB limits

and analyse the di�erent languages colour-naming solutions in this
framework:

In Figure 8.6, it is possible to see evidence that languages e�-
ciently compress ideas into words by optimising the tradeo� between
complexity and accuracy of the lexicon according to the IB principle.

https://www.pnas.org/content/106/47/19785
https://www.pnas.org/content/106/47/19785
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Figure 8.5: Adapted from [Zas+18]

Figure 8.6: Di�erent languages (blue circles)
achieve near-optimal compression (IB curve
in black) [Zas+18]. Reproduced with permis-
sion.

¿is analysis corroborates the current theory on human language
evolution. Furthermore, the drive for information-theoretical e�-
ciency explains why human languages categorise colour as they do
and may also apply to learning in general.

¿e hypothesis is that languages evolve to become more e�cient
in a tradeo� between conciseness (complexity, generalisation) and
precision. ¿e prediction capability is just an expected consequence
of an e�cient representation of meaning. ¿e conciseness of the rep-
resentation of knowledge, given an acceptable error margin, is a proxy
of the agent’s intelligence. ¿e IB limit is an epistemic limit that is
valid for machines, humans and aliens.

8.11 concluding remarks

Information �eory
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PAC-Shannon

Figure 8.7: In this chapter we derived a learn-
ing formulation from a set of desired proper-
ties for representations that relates to the IB
principle.

¿is chapter presented the IBT as a general representation learning
theory (not speci�c to Deep Learning). ¿e bulk of this chapter is
based on works by Stefano Soatto and Alessandro Achille and their
proli�c research group [AS18a; Ach19; AS19; AS18b]. ‘Emergence of
Invariance and Disentangling in Deep Representations’, in particular,
has been one of the biggest in�uences in this dissertation. It was
presented in the same workshop21 where Tishby presented IBT for the

21Deep Learning: ¿eory, Algorithms, and Ap-
plications. Berlin, June 2017 http://doc.ml.

tu-berlin.de/dlworkshop2017

�rst time.
Achille and Soatto accomplishments in this chapterwere threefold:

http://doc.ml.tu-berlin.de/dlworkshop2017
http://doc.ml.tu-berlin.de/dlworkshop2017
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1. It explained the emergence of invariance (generalisation) and
disentanglement in the proposed learning setting.

2. It addressed one of the weaknesses of IBT: the confusion about
past and future data. MLT provides rigorous guarantees for fu-
ture performance (test time) based on the past data (training
time). Conversely, several of the initial IBT papers were not clear
with what is happening during training and how it is di�erent
in test time.

3. It showed the crucial role of noise and how it can be controlled
in favour of generalisation.

4. It demonstrated that the information in the weights, despite
being di�cult to measure, can be bounded by the Fisher in-
formation Matrix:

I[Z;X] ⩽ I[W;D] ⩽ log ∣F(W∗)∣ ⩽ log ∣F(W)∣

Noteworthy, the Deep Learning setting does not seem to corres-
pond to the conditions of Corollary 1, as [Zha+16] has shown that
Deep Learning converges even in the absence of a regulariser in the
loss function.

8.11.1 Assumptions

1. MLT assumptions

2. Information is what changes belief.

3. IBT for Representation Learning assumptions:

i. ¿e random variables X, Y and Z are discrete;

ii. Y → X → Z form a Markov-chain;

iii. AX, AY and AZ are �nite sets;

iv. No assumption on D = P(X,Y).

v. D = P(X,Y) is unknown at the training stage.

vi. D = P(X,Y) is �xed: the ordering of examples in the
sample is irrelevant.

vii. X is is i.i.d. sampled.

viii. ¿e encoder and the decoder are stochasticmappings.
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ix. the loss function is in the form of a IB Lagrangian ( Corol-
lary 1), i.e. L(W) = Hp,q[D∣W]+ β−I[D;W] has a regular-
iser term that penalises the memorisation of the dataset.

We took the liberty to add the assumption that constrains the problem
to �nite alphabets (discrete randomvariables). Unfortunately, with few
exceptions, the literature on IBT does not underscore this constraint
nor, alternatively, demonstrate why one can use di�erential entropy.2222For example, Alemi et al. use di�erential

entropy but do not address the fact that the
IB Principle restrain itself to discrete random
variables [Ale+16].



9
¿e Information Bottleneck and
Deep Learning

‘Great claims require great
evidence.’

—Carl Sagan

¿is chapter presents IBT for Deep Learning, the context where all
IBT papers focus. All previous chapters brought concepts needed to
understand this chapter. In chronological order, the research from
which Chapter 7 is based was published almost 20 years earlier than
the contents presented in Chapter 8, which were published more or
less simultaneously as the contents of this chapter.

9.1 deep learning in the ibt perspective
In MLT, the analysis of learning algorithms is based on a hypothesis
space. ¿is choice may have biased the Deep Learning community fo-
cus on architectures. For many, Deep Learning (DL) and Deep Neural
Networks (DNNs) are interchangeable names.

¿e IBT perspective has a holistic view of Deep Learning (DL)
where each of its components has a role.

9.1.1 Deep Neural Network in IBT

IBT assumes that DNN layers are random variables that form aMarkov
chain from the target variable to the prediction. Each layer is a rep-
resentation Zi of the input at a di�erent “resolution”/abstraction (Sec-
tion 7.4).¿ese representations act like bottlenecks in the input-output
channel. ¿us, each bottleneck de�nes a unique encoder/decoder
scheme. Y // X encoder//

channel

Zi
bottleneck

decoder // Ŷ

143
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Figure 9.1: A Deep Neural Network as a
Markov-chain in the Information Bottleneck
perspective.

9.1.2 SGD in IBT

One of the most contentious topics in IBT is the assumption that
q(z∣x) and q(y∣z) are stochastic. Noise plays a very important role in
training [HVC93; AS18a; KSW15]. In IBT, noise reduces capacity and,[HVC93] Hinton and Van Camp, ‘Keeping

the neural networks simple by minimizing
the description length of the weights’.

[AS18a] Achille and Soatto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’.

[KSW15] Kingma et al., ‘Variational Dropout
and the Local Reparameterization Trick’.
url: https : / / proceedings .

neurips . cc / paper / 2015 / file /

bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf

therefore, the size of the typical hypothesis space (as it will be shown
in Section 9.5.2).

Counter-intuitively, Chaudhari and Soatto prove (with theory and
extensive empirical evidence) that SGD performs variational inference
for a di�erent loss than the one used to compute the gradients and that
this loss has a regulariser term that is equivalent to the information
bottleneck principle (Corollary 1) [CS18].

[CS18] Chaudhari and Soatto, ‘Stochastic
Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

9.1.3 Loss function in IBT

¿e IB Principle (Chapter 7) provides compelling grounds for the use
of theKullback-Leibler divergence (DKL) as the canonical loss function.
It is equivalent by a constant to the cross-entropy loss, which became
ubiquitous in DL (as shown in Section 8.5).

9.2 literature
We are using the name Information Bottleneck ¿eory (IBT) as an
“umbrella” to designate the work that relates to our selected literat-
ure (Appendix A). Frankly, the designation has not been adopted
consistently. Nonetheless, we can identify three kinds of literature:

1. IB-based analysis of Deep Learning

https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
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2. IB-Deep Learning applications

3. IB-based theory of Deep Learning

We will detail each kind of literature in the following sections.

9.3 ib-based analysis of deep learning
9.3.1 Opening the black-box: the information plane

One of the critiques on current MLT is on its choice of treating the
models as black-boxes (Section 4.8.1). ¿is choice allows MLT to be
more general, independent of the class of hypothesis. At the same time,
the current theory provides little guidance for what happens during
training, letting the community �gure out many possible competing
explanations.

¿ere is nothing wrong with the choice. It may be an advantage
in most cases. But in the case of Deep Learning, where there are still
many phenomena with no clear winner explanation and where there
is a growing demand for understanding why DNNsmake this or that
choice, a di�erent choice may help.

¿is is what motivated Shwartz-Ziv and Tishby [ST17], according [ST17] Shwartz-Ziv and Tishby, ‘Opening
the Black Box of Deep Neural Networks via
Information’.to Tishby himself [Tis20]. Shwartz-Ziv and Tishby propose using the

[Tis20] Tishby, ¿e Information Bottleneck
View of Deep Learning: Why do we need it?.
url: https://youtu.be/utvIaZ6wYuw

mutual information between the activations in di�erent layers and
the input. Despite being a measure di�cult to calculate, it has the
potential of “opening the black-box”, i.e. it allows in Tishby’s words to
see training with an “X-Ray” [Tis20]

9.3.2 Information Plane and Deep Learning

Shwartz-Ziv and Tishby hypothesis was that the information-plane
(Section 7.3.1) could be their “X-Ray” [ST17]. To overcome the di�-

Figure 9.2: ¿e plot of the norm of mean
and standard deviation of the layers weight
gradients as a function of training epochs
shows two distinct phases. (Reproduced from:
[ST17])

culty of calculating the mutual information1, they created a synthetic 1By the time of their paper, there was no
known algorithm to calculate the mutual in-
formation for discreteX andY with large state
spaces or non-Gaussian continuous joint dis-
tribution. Eventually, [Ale+16] and [AS18b]
independently invented such algorithm us-
ing the variational formulation of the IB Lag-
rangian (Section 9.4.1).

https://youtu.be/utvIaZ6wYuw
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dataset for which they knew in advance the usually unknown distribu-
tion P(X,Y), added a noisy layer to guarantee the stochasticmapping22A kind of test-time augmentation, a common

practice in ML that injects noise to a test in-
put, by generating transformed versions of it
with slightly di�erent ŷ i in di�erent runs of
the model for the same x i ., and combines the
predictions of these versions.

and calculated the mutual information during training with a binning
strategy.

¿e result was visually appealing (Figure 9.2). It clearly shows a
phase transition during training (Figure 9.3).

Figure 9.3: ¿e information planes for di�er-
ent architectures show the amount of inform-
ation in the layers during SGD optimisations.
It is possible to see in all images that there is
a fast �tting phase where the model rapidly
obtain information about the target variable
by memorising the input. Most of the training
time, however, is spent in a compression phase
where the model tries to forget as much as pos-
sible of the input while keeping the relevant in-
formation of the target variable (Reproduced
from: [ST17]).

9.3.3 IBT’s main thesis

In Tishby’s words, IBTmain thesis can be summed up as “learning is
forgetting”3. More speci�cally, deep learning has two distinct training3An observation that was made longer before

by Chaitin in [Cha06]. phases:

Fitting Phase: When the DNN rapidly (in terms of epochs) over�ts to
the training data;

Compression Phase: When the DNN compresses the amount of in-
formation, forgetting as much it can about the input, while
keeping the relevant information about the target;

In statistical mechanics, phase transitions relate to abrupt changes
in the properties of a system at the macroscopic level, in the same
way as seen in Figure 9.2. With that in mind, Shwartz-Ziv and Tishby
claim that the compression phase can be described by Focker-Plank
di�usion equations from Physics. ¿is was indeed later corrobored by
Chaudhari and Soatto [CS18; Cha+19a], but Shwartz-Ziv and Tishby
failed to support the claim that DNNs can be seen as physical systems.

9.3.4 Criticism to IBT’s main thesis

Shortly a er its publication, Shwartz-Ziv and Tishby [ST17] were[ST17] Shwartz-Ziv and Tishby, ‘Opening
the Black Box of Deep Neural Networks via
Information’. challenged by Saxe et al. [Sax+18], who claimed that they could not

[Sax+18] Saxe et al., ‘On the Information
Bottleneck¿eory of Deep Learning’.

replicate the experiment and argued that the binning procedure to
estimate mutual information was inexact. Due to the fact that the
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activation function can be an invertible transformation (determin-
istic mapping) of the input, by reparametrisation invariance (RI), the
true mutual information between I[X;ZL] is provably in�nite for con-
tinuous distributions and constant (i.e. equal to H[X]) for discrete
ones.¿ey also point out that a user-selected binning strategy leads to
arbitrary values of mutual information in the plotted results. Overall,
Saxe et al. refute Shwartz-Ziv and Tishby results.

Other authors followed their reservations in di�erent degrees:
Goldfeld et al. [Gol+19] agree that Shwartz-Ziv and Tishby’s I[X;ZL] [Gol+19] Goldfeld et al., Estimating Informa-

tion Flow in DNNs.
url: https : / / openreview . net / forum ? id =
HkxOoiAcYX

estimates do not directly measure compression of the true mutual
information. Chelombiev et al. [CHO19] explore several estimation

[CHO19] Chelombiev et al., ‘Adaptive
Estimators Show Information Compression
in Deep Neural Networks’.

schemes and were able to measure compression but with several
caveats.

¿is relates to one of the weaknesses of IBT: lack of rigour that
even Tishby admits [Tis20]: ‘I would not call [IBT] a proven rigorous [Tis20] Tishby, ¿e Information Bottleneck

View of Deep Learning: Why do we need it?.
url: https://youtu.be/utvIaZ6wYuw

theory.’ If, on one hand, their spectacular claims have driven much
interest to the subject, on the other it generated an equivalent dose of
suspicion and scrutiny. As Carl Sagan once said, ‘great claims require
great evidence’.

Some IBTpapers failed to point out that the IBPrinciple is ill-posed
for deterministic functions. ¿erefore, there is a missing argument
of why and in which conditions we can see the function of the activ-
ations as a stochastic mapping. Bayesian interpretations may justify
parameter noise, but activation noise has no such theoretical ground.

Published as a conference paper at ICLR 2019

Figure 4: Critical periods in DNNs are traced back to changes in the Fisher Information.
(Left) Trace of the Fisher Information of the network weights as a function of the training epoch
(blue line), showing two distinct phases of training: First, information sharply increases, but once
test performance starts to plateau (green line), the information in the weights decreases during a
“consolidation” phase. Eventually less information is stored, yet test accuracy improves slightly
(green line). The weights’ Fisher Information correlates strongly with the networks sensitivity to
critical periods, computed as in Figure 1 using both a window size of 40 and 60, and fitted here to
the Fisher Information using a simple exponential fit. (Center) Recalling the connection between
FIM ad connectivity, we may compare it to synaptic density during development in the visual cortex
of macaques (Rakic et al., 1986). Here too, a rapid increase in connectivity is followed by elimina-
tion of synapses (pruning) continuing throughout life. (Right) Effects of a critical period-inducing
blurring deficit on the Fisher Information: The impaired network uses more information to solve the
task, compared to training in the absence of a deficit, since it is forced to memorize the labels case
by case.

hyperparameters of the optimization can change the shape of the critical period: In Figure 3 (Bottom
Left) we show that increasing weight decay makes critical periods longer and less sharp. This can be
explained as it both slows the convergence of the network, and it limits the ability of higher layers
to change to overcome the deficit, thus encouraging lower layers to also learn new features.

3 FISHER INFORMATION ANALYSIS

We have established empirically that, in animals and DNNs alike, the initial phases of training
are critical to the outcome of the training process. In animals, this strongly relates to changes
in the brain architecture of the areas associated with the deficit (Daw, 2014). This is inevitably
different in artificial networks, since their connectivity is formally fixed at all times during training.
However, not all the connections are equally useful to the network: Consider a network encoding
the approximate posterior distribution pw(y|x), parameterized by the weights w, of the task variable
y given an input image x. The dependency of the final output from a specific connection can be
estimated by perturbing the corresponding weight and looking at the magnitude of the change in the
final distribution. Specifically, given a perturbation w0 = w + �w of the weights, the discrepancy
between the pw(y|x) and the perturbed network output pw0(y|x) can be measured by their Kullback-
Leibler divergence, which, to second-order approximation, is given by:

Ex KL( pw0(y|x) k pw(y|x) ) = �w · F �w + o(�w2),

where the expectation over x is computed using the empirical data distribution Q̂(x) given by the
dataset, and

F := Ex⇠Q̂(x)Ey⇠pw(y|x)[rw log pw(y|x)rw log pw(y|x)T ]

is the Fisher Information Matrix (FIM). The FIM can thus be considered a local metric measuring
how much the perturbation of a single weight (or a combination of weights) affects the output of
the network (Amari & Nagaoka, 2000). In particular, weights with low Fisher Information can be
changed or “pruned” with little effect on the network’s performance. This suggests that the Fisher
Information can be used as a measure of the effective connectivity of a DNN, or, more generally, of
the “synaptic strength” of a connection (Kirkpatrick et al., 2017). Finally, the FIM is also a semi-
definite approximation of the Hessian of the loss function (Martens, 2014) and hence of the curvature
of the loss landscape at a particular point w during training, providing an elegant connection between
the FIM and the optimization procedure (Amari & Nagaoka, 2000), which we will also employ later.

5

Figure 9.4: Information in the weights drop
abruptly and the model keeps improving in
test-time. ¿e amount of information in the
weights measured by Achille et al. corrobor-
ates with Tishby’s thesis (Section 9.3.3). Repro-
duced from [ARS17].

https://openreview.net/forum?id=HkxOoiAcYX
https://openreview.net/forum?id=HkxOoiAcYX
https://youtu.be/utvIaZ6wYuw
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In time, Tishby’s conjectures and intuitions were corroborated by
others �ndings. In special, Stefano Soatto and his research group not
only observed the �tting-compression phases (Figure 9.4) but also
proved a crucial missing step: information in the activations of future
data is bounded by the information in the weights during training,
where stochasticity can be explained [AS18b] (Section 8.6).[AS18b] Achille and Soatto, ‘Information

Dropout: Learning Optimal Representations
¿rough Noisy Computation’. Besides, to prove this theoretical result, they created a variational

method (equivalent toDeepVariational InformationBottleneck (DVIB),
Section 9.4.1) for estimating mutual information using Deep Learn-
ing4, obtaining more accurate mutual information measurements. In4Deep Learning helping to understand deep

learning. another venue, Chaudhari et al. corroborated the statistical mech-
anics’ intuition for the behaviour of SGD with experimental res-
ults [Cha+19a].[Cha+19a] Chaudhari et al., ‘Entropy-SGD:

Biasing gradient descent into wide valleys’.

9.4 ib-based deep learning applications: training and
algorithms

9.4.1 Deep Variational Information Bottleneck (DVIB)

A common criticism on IBT was related to di�culties in calculating
mutual information (Section 9.3.4). DVIB not only describes a loss
metric that takes advantage of IB properties but also de�nes state-of-
the-art approximations of I [Z;X] and I[Z;Y] [Ale+16].[Ale+16] Alemi et al., ‘Deep variational

information bottleneck’. Tishby and Zaslavsky already envisioned using the IB to train
DNNs [TZ15a]. Tishby, however, wanted IBT to be seen as IB-based

[TZ15a] Tishby and Zaslavsky, ‘Deep learning
and the information bottleneck principle’. analysis tool. Subsequently, he believed that IB-based applications

“miss the point” that IBTworks even if you do not know anything about
the IB [Tis20].[Tis20] Tishby, ¿e Information Bottleneck

View of Deep Learning: Why do we need it?.
url: https://youtu.be/utvIaZ6wYuw Still, Alemi et al. considered the idea of using the IB in training

appealing as it de�nes a good representation in terms of the trade-o�
between a conciseness and predictive power. ¿ey noticed, however,
that the main drawback in using it in practice was that calculating the
mutual information is challenging. ¿e proposed method solves this
drawback.

Curiously, the proposed method is equivalent to the variational
inference presented in ‘Information Dropout: Learning Optimal Rep-
resentations ¿rough Noisy Computation’ [AS18b]. ¿is similarity
was noticed by the authors themselves that despite not citing [AS18b]
in the �rst version, cited it in subsequent versions. Despite of the
concurrent idea development, the organisation and clear focus made
DVIB the prefered reference for using the IB objective to estimate
information measures.

https://youtu.be/utvIaZ6wYuw
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DVIB became essential to evaluate the claims of Tishby that, during
training, DNNs experience two distinct phases, �t and compression.

Deep Variational Information Bottleneck Method

Let us formulate a variational IB:

θ∗ = argmax
θ

I[Z;Y ∣θ] s. t. I[X;Z∣θ] ⩽ Ic . (9.1)

RIB(θ) = I[Z;Y ∣θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(A)

− βI[Z;X∣θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(B)

(9.2)

where θ is the set of parameters of the network. ¿is IB Lagrangian
formulation has two parts (A and B). Notice that

I[Z;Y] = Hp[Y] −Hp[Y∣Z], (A)

where p(y∣x) and p(x) are unknown, whichmakes partA intractable.
Let q(y∣z) be the variational approximation, our decoder, which will
be another DNN with its own parameters, which is tractable.

DKL (p∥q) ⩾ → Hp ⩾ Hq (9.3)

∴I[Z;Y] ⩾
��

��*
constant

Hp[Y] −Hq[Y∣Z] (9.4)
⩾ −Hq[Y∣Z] = ∑

x ,y,z
p(y∣z)p(z∣x)p(x) log q(y∣z).

(9.5)

And now part B:

I[Z;X] = DKL(p(z∣x)//p(z)). (B)

But p(z) might be di�cult to calculate. So, let r(z) be a variational
approximation of this marginal. Since DKL(p//r) ⩾ ,

I[Z;X] ⩽ DKL(p(z∣x)//r(z)) (9.6)
⩽ ∑

x ,y,z
p(y∣z)p(z∣x)p(x) log q(y∣z)∴ (9.7)

I[Z;Y] − βI[Z;X] ⩾ ∑
x ,y,z

p(y∣z)p(z∣x)p(x) log q(y∣z)

− β ∑
x ,y,z

p(y∣z)p(z∣x)p(x) log q(y∣z) = L. (9.8)

Approximating L empirically:

L ≈ 
N

N

∑

[∑ p(z∣xn) log q(yn∣z) − βp(z∣xn) log

p(z∣xn)
r(z)

] . (9.9)

Which can be solved using the reparametrisation trick [KSW15]. [KSW15] Kingma et al., ‘Variational Dropout
and the Local Reparameterization Trick’.
url: https : / / proceedings .

neurips . cc / paper / 2015 / file /

bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf

https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
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9.4.2 Information Dropout

‘Information Dropout: Learning Optimal Representations¿rough
Noisy Computation’ establishes links between di�erent and seemly
unrelated research topics as dropout, variational auto-encoders and
optimal representations through the IB principle. Its theoretical devel-
opment is not being the paper focus, is itsmost important contribution
to IBT. In this sense, the method that names the paper is just a way to
empirically support their interesting theoretical claims (Chapter 8).

Nevertheless, the technique is a generalisation of the well-known
Dropout method. Chaudhari and Soatto theoretically suggest that
noise intrinsic to the architecture (dimensionality reductions, dropout,
small mini-batches, etc.) is better for generalisation than noise in
the dataset [CS18]. In this sense, there are research opportunities in[CS18] Chaudhari and Soatto, ‘Stochastic

Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

exploring Information Dropout and other forms of controlling the
information in the weights with the injection of noise. In areas like
NLP, where data-augmentation is challenging, Information Dropout
may play an important role.

¿e emergent properties of representations, the generalisation of
dropout and the connection to variational autoencoders are surpris-
ing results that should be of interest to researchers in representation
learning (Section 8.8).

9.4.3 Transferability metrics

To this day, transferability is measured experimentally or inferred sub-
jectively by experts according to tasks “proximity” [Zam+18]. Given[Zam+18] Zamir et al., ‘Taskonomy:

Disentangling task transfer learning’. an analytical transferability measure obtained directly from the data
in a cost-e�ective way, with experimentally proved prediction ability,
automatic selection of source tasks as feature extractors for target
tasks (auto-DL) is a simple search in the topology of learning tasks.

¿is illustrates the importance of building such a topology. In
other words, we want to know:

– What is the complexity of a learning task?

– How far or close are two tasks?

– How di�cult it is to transfer from one task to another?

Intuitively, the complexity of a learning task is related to its best
expected out-of-sample error.
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Given a �xed architecture, the amount of information in theweight
measures how much “memorisation” was used to �t the model. High
information in the weights suggests more di�cult tasks. ¿e Fisher
Information Matrix (FIM) measures the resilience of the loss due to
perturbation in the weights (Figure 9.5). If a weight acceptsmore noise
(i.e. it can be perturbed without a signi�cant change in the model
error), it is less important, and there is no need to “memorise” it. Also,
this amount of noise has a direct correspondence to generalisation
(Section 9.5.1). Using this intuition, Achille et al. uses the diagonal
of the FIM as an embedding that represents the task itself. Since the
FIM can be too noisy when trained from a few examples, the diag-
onal of the FIM is used as it is considered a more simple and robust
representation [Ach+19]. [Ach+19] Achille et al., ‘Task2Vec: Task

Embedding for Meta-Learning’.Di�erent choices of �xed architectures, however, produce FIMs

that are not comparable. To address this, a standard “probe” network
pre-trained on ImageNet is used. ¿e FIM of the probe represents the
canonical task t from which other tasks are compared. ¿e embed-
ding of a new task ti is obtained by re-training only the classi�er layer
p(y∣z), which usually can be done e�ciently, and then computing the
FIM for the feature extractor parameters.

Transferability (or �ne-tuning gain) from a task ta to a task tb is
the di�erence in expected performance between a model trained for
task b from a �xed initialisation, t, and the performance of a solution
to ta �ne-tuned for tb:

Df-t (ta → tb) =
E [ℓa→b] −E [ℓb]

E [ℓb]
, (9.10)

where expectations are taken over all training, ℓb is the �nal test
accuracy obtained by training task b from initialisation, and ℓa→b is
the error when starting from a solution to task a �ne-tuned for task
b. Hence, transferability depends on the similarity between two tasks
and the complexity of the �rst. Indeed, the fact that pre-training in
ImageNet has become a de facto standard is due to its high complexity.

9.5 ib-based deep learning learning theory
In Section 8.11, we concluded with a seemly missing step of IBT in
the context of Deep Learning: the fact that Corollary 1 requires an
information-limiting regulariser in the loss function, which is not
explicitly present in many DLmodels that converge. In this chapter,
however, we presented thework of Chaudhari and Soatto who showed
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that even if there is no explicit regulariser, the use of SGD guarantees
it is implicitly there.

Another assumption of IBT learning is that the task is a stochastic
mapping between the input and output. In the context of Deep Learn-
ing, with its large datasets, this is hardly a limitation.

An important theoretical discussion speci�c to Deep Learning
that has not been addressed yet is about the role of layers. ¿is will be
the subject of Section 9.5.2.

9.5.1 A new narrative

According to Goodfellow et al. [GBC16], Deep Learning success is[GBC16] Goodfellow et al., Deep Learning.

ascribed to several pleasant features for which our current understand-
ing is largely empirical. Here, we use Information Bottleneck¿eory’s
(IBT) most crucial strength, its narrative, to give theoretical ground
to some DL phenomena.

Generalisation power despite a huge number of parameters
As we have already shown in Section 6.2, the complexity of a task
relates to the amount of information needed to describe it. In this
sense, even if the network has a nominal capacity that relates to the
parameters, its e�ective capacity is the mutual information I[X;Y]
(or I [X;Y ∣W]). ¿is interpretation of complexity does not invalidate
the complexity-performance trade-o� in MLT.

Generalisation despite expressiveness–overfitting For high-
capacity models, generalisation has to do more with over�tting than
under�tting. We have shown that the loss function that emerges from
a de�nition of good representations (Section 8.2), has an implicit
over�tting term that can be neutralised (Section 8.5).

To neutralise the e�ect of over�tting, the loss needs a regulariser
term that penalises the model for keeping information about the train-
ing dataset. Even if this term is not explicitly added to the loss function,
Chaudhari and Soatto shows that it is implicitly there [CS18].[CS18] Chaudhari and Soatto, ‘Stochastic

Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’. Deep Learning bias for disentangled representations ¿is

happens because the implicit regulariser term in SGD is in a form
that is equivalent to the assumption that the representation has zero
multi-information, i.e. no correlation between its components. ¿is
property relates to disentanglement.55In IBT, disentanglement is de�ned as this

property.
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Figure 9.5: Information in the weights ex-
plain the preference of SGD for �at minima.
In regions of �at minima, the e�ect of noise
(dashed line) is minimal.

Scarcity of bad minima encountered by SGD optimisation
It is a known fact that SGD optimisation tends to �nd “�at minima”,
regions in the weight space where small perturbations in the value
of the weight leads to similar small error (Figure 9.5) [HS97; Mac92]. [HS97] Hochreiter and Schmidhuber, ‘Flat

minima’.

[Mac92] Mackay, ‘¿e Evidence Framework
Applied to Classi�cation Networks’.

Mackay already explained, via Bayesian inference, that this relates to
small information in the weights (amount of information a�ects the
curvature of the space) [Mac92].

¿is explanation is consistent with IBT perspective. As we have
already shown, the information in the weights is bounded by the
Fisher information in the weights that measures the curvature of the
weight space. Another interesting implication of this information in-
terpretation is that due to the AEP all local minima have approximately
the same chance of being found in the weights typical space.6 6We use this property to show that layers help

to �nd local minima, Section 9.5.2.

critical-learning periods Critical-learning periods are time win-
dows of early development during which sensory de�cits can lead to
permanent skill impairment. ¿ese are well-documented phenomena
in humans, and other animals [Wie82]. Surprisingly, Achille et al. [Wie82] Wiesel, ‘Postnatal Development

of the Visual Cortex and the In�uence of
Environment’.show that DNNss exhibit such critical periods as well [ARS17] . ¿is

[ARS17] Achille et al., Critical Learning
Periods in Deep Neural Networks.

�nding questions the assumption that the order in which a model
experiences evidence does not a�ect learning.

In their experiments, Achille et al. used the Fisher Information
Matrix (FIM) of the weights to measure information in the network.
¿ey caused sensory de�cits by blurring input images and noticed that
such de�cits cause the information in the weights to grow and remain
higher even a er they are removed. ¿is de�cit may be attributed to
forcing the network to memorise the labels.

¿e IBT explanation for such phenomena is due to the training
phase transition [ST17]. In the �rst phase, the networkmoves towards [ST17] Shwartz-Ziv and Tishby, ‘Opening

the Black Box of Deep Neural Networks via
Information’.high-curvature regions of the loss landscape, while in the second

phase, the curvature decreases, and the network eventually converges
to a �at minimum.

Analysing Figure 9.6, we can see that networks more a�ected by
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Figure 4: Critical periods in DNNs are traced back to changes in the Fisher Information.
(Left) Trace of the Fisher Information of the network weights as a function of the training epoch
(blue line), showing two distinct phases of training: First, information sharply increases, but once
test performance starts to plateau (green line), the information in the weights decreases during a
“consolidation” phase. Eventually less information is stored, yet test accuracy improves slightly
(green line). The weights’ Fisher Information correlates strongly with the networks sensitivity to
critical periods, computed as in Figure 1 using both a window size of 40 and 60, and fitted here to
the Fisher Information using a simple exponential fit. (Center) Recalling the connection between
FIM ad connectivity, we may compare it to synaptic density during development in the visual cortex
of macaques (Rakic et al., 1986). Here too, a rapid increase in connectivity is followed by elimina-
tion of synapses (pruning) continuing throughout life. (Right) Effects of a critical period-inducing
blurring deficit on the Fisher Information: The impaired network uses more information to solve the
task, compared to training in the absence of a deficit, since it is forced to memorize the labels case
by case.

hyperparameters of the optimization can change the shape of the critical period: In Figure 3 (Bottom
Left) we show that increasing weight decay makes critical periods longer and less sharp. This can be
explained as it both slows the convergence of the network, and it limits the ability of higher layers
to change to overcome the deficit, thus encouraging lower layers to also learn new features.

3 FISHER INFORMATION ANALYSIS

We have established empirically that, in animals and DNNs alike, the initial phases of training
are critical to the outcome of the training process. In animals, this strongly relates to changes
in the brain architecture of the areas associated with the deficit (Daw, 2014). This is inevitably
different in artificial networks, since their connectivity is formally fixed at all times during training.
However, not all the connections are equally useful to the network: Consider a network encoding
the approximate posterior distribution pw(y|x), parameterized by the weights w, of the task variable
y given an input image x. The dependency of the final output from a specific connection can be
estimated by perturbing the corresponding weight and looking at the magnitude of the change in the
final distribution. Specifically, given a perturbation w0 = w + �w of the weights, the discrepancy
between the pw(y|x) and the perturbed network output pw0(y|x) can be measured by their Kullback-
Leibler divergence, which, to second-order approximation, is given by:

Ex KL( pw0(y|x) k pw(y|x) ) = �w · F �w + o(�w2),

where the expectation over x is computed using the empirical data distribution Q̂(x) given by the
dataset, and

F := Ex⇠Q̂(x)Ey⇠pw(y|x)[rw log pw(y|x)rw log pw(y|x)T ]

is the Fisher Information Matrix (FIM). The FIM can thus be considered a local metric measuring
how much the perturbation of a single weight (or a combination of weights) affects the output of
the network (Amari & Nagaoka, 2000). In particular, weights with low Fisher Information can be
changed or “pruned” with little effect on the network’s performance. This suggests that the Fisher
Information can be used as a measure of the effective connectivity of a DNN, or, more generally, of
the “synaptic strength” of a connection (Kirkpatrick et al., 2017). Finally, the FIM is also a semi-
definite approximation of the Hessian of the loss function (Martens, 2014) and hence of the curvature
of the loss landscape at a particular point w during training, providing an elegant connection between
the FIM and the optimization procedure (Amari & Nagaoka, 2000), which we will also employ later.

5

Figure 9.6: Information in the weights grow
in the event of a sensory de�cit and remains
higher even a er the de�cit is removed.

the de�cit converge to relative sharper minima.
During the �rst phase, with a sensory de�cit, the network is ob-

liged to cross regions of high curvature in the loss geometry in order
to achieve a certain performance before eventually entering a �at-
ter region of the loss surface and ending up trapped in the higher
curvature region.

The role of layers in deep learning ¿is will be explained in a
section of its own (Section 9.5.2)

9.5.2 ¿e role of layers in deep learning

Why do we need multiple layers in a neural network? ¿is question
is fundamental in Deep Learning, and still, there is no de�nitive an-
swer. A feedforward network with a single layer can represent any
function [GBC16]. Also, Leshno et al. [Les+93] (as cited by [GBC16])[GBC16] Goodfellow et al., Deep Learning.

[Les+93] Leshno et al., ‘Multilayer feedfor-
ward networks with a nonpolynomial activ-
ation function can approximate any function’.
url: https : / / www . sciencedirect . com /

science/article/pii/S0893608005801315

demonstrated that shallow networks with recti�ed linear units as ac-
tivation functions have universal approximation properties. When
confronted with these facts, the usual answer for the need for depth
is that these results require an infeasible large layer or do not address
e�ciency. Another common answer is that layers provide levels of
abstraction and a paramount composability property, i.e. stacking
layers allow a network to represent functions of increasing complex-
ity [GBC16]. ¿ese answers seem correct but, at the same time, some-
what qualitative and vague.

https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://www.sciencedirect.com/science/article/pii/S0893608005801315
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¿is section will try to advance the discussion by answering the
need for depth in Neural Networks with an Information Bottleneck
perspective. Shwartz-Ziv and Tishby have provided an explanation
based in Physics [ST17]. Here we will not use such correspondence. [ST17] Shwartz-Ziv and Tishby, ‘Opening

the Black Box of Deep Neural Networks via
Information’.

¿e IBT perspective and its weakness

We have already established that a DNN optimised with SGD solves
an IB problem. In this view, the body of the network is an encoder that
compresses the inputX into a representation Z. In the IBT perspective,
training a DNN is �nding the encoder that minimises I[Z;X], while
keeping I[Z;Y]:

Q(Z∣X) ∶= argmin
p(z∣x)

I[Z;X]

s.t. I[Z;Y] ⩾ IY

Corollary 2 (Bottlenecks promote invariance [AS18a]). Assume a
Markov chain of layers:

X → Z → Z,

and that there is a bottleneck between Z and Z (for example, if
dim(Z) > dim(Z) or noise has been added between to the chan-
nel Z → Z via dropout7). ¿en, if Z is su�cient, it is more invariant 7Dimensionality reduction can be seen as a

form of noise.to nuisances than Z (see Section 8.2.1).

Corollary 3 (Stacking increases invariance [AS18a]). Assume aMarkov
chain of layers:

X → Z → Z → ⋯→ ZL ,

and that ZL is su�cient of X w.r.t. Y . ¿en, by DPI:

I[ZL;X] ⩽ I[Zi ;X],∀i ∈ {⋯L − },

therefore ZL is more insensitive to nuisances than all preceding layers
and generalises better.

In other words, Achille and Soatto argue that stacking layers
improve generalisation [AS18a] is a direct consequence of DPI. [AS18a] Achille and Soatto, ‘Emergence

of Invariance and Disentangling in Deep
Representations’.A possible weakness of this argument is that it only shows that

in the multi-layered scenario, the last layer is more compressed and
invariant to nuisances than the earlier layers. It does not contradict
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that a single-layered network could achieve the same level of com-
pressibility of the input as the last layer in the multi-layered scenario.
To illustrate our argument, imagine two networks, A and B, where A
has 3 layers that reduce the dimensionality to a certain size s, and B
has 4 layers where the last reduces the dimensionality to the same size
s. ¿e aforementioned corollary nothing has to say about comparing
A and B, B did not stack a layer on A.

Inserted Stacked

CA B

Figure 9.7: Adding Layers to a network (A)
by inserting (B) or stacking (C).

Now, if C is a network that stacks a layer on A, the last layer of
C has a lower dimension than s and therefore noise was added, then
you can compare A and C with Corollary 3. In this case, C has with
certainty more noise than A, but that is only a consequence of the
�nal amount of noise in the channel represented by C an not on how
this noise was added. ¿eir argument reduces to the realisation that
stacking layers is a guaranteed way of adding noise to the network and,
therefore, of channel capacity reduction. ¿e explanation nothing has
to say to the di�erence on how the noise is added, i.e. if B has any ad-
vantage over A by the fact that it has an additional layer in the middle,
inserting layers, without changing the last layer dimensionality. In
other words, we still have the question: Does inserting layers improve
generalisation?88We will leave this discussion for future work.

Besides, according to Achille and Soatto, the above corollary
does not simply imply that the more layers, the merrier, as there is
the assumption that one has successfully trained the network (ZL is
su�cient). For Achille and Soatto, a successfully trained network
becomes increasingly di�cult as the network grows. A higher com-
plexity seems straightforward because stacking layers increases the
number of computations per batch.

Proposed hypothesis

Wewill here lay out a new hypothesis and provide its intuition without
a formal proof9.9We will try to provide such proof in future

work.
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By pure logic, it is evident that the complexity of an algorithm that
searches for the best possible hypothesis will depend on the size of the
hypothesis space. Stacking layers, therefore, increases the complexity
of the algorithm as it certainly increases the hypothesis space size,
∣HQ∣. Counter-intuitively, however, we argue that stacking layers also
decreases the “typical” hypothesis space size, ∣Hδ

Q|. In other words,
despite increasing the number of all possible functions generatable
by the algorithm, stacking layers decreases the number of probable
functions generatable by the algorithm.

Figure 9.8: ¿e hypothesis spaceHQ and the
typical hypothesis spaceHδ

Q .

Hypothesis 1 (Layers reduce the typical hypothesis space). In the
IBT perspective, a neural network is a Markov chain where each layer
acts as a random variable. ¿e algorithm can be seen as a stochastic
mapping Q, a lossy encoder-decoder (Q = Q(ZL∣X) ○Q(Ŷ∣ZL)). ¿e
cardinality of hypothesis space of this algorithm is ∣HQ∣, but only a subset
Hδ

Q ⊂ HQ contains the typical and most probable hypotheses. Stacking
layers is a guaranteed way of adding noise to the channel/lossy encoder.
Noise reduces the capacity of this channel and change the algorithm.¿e
cardinality of the new hypothesis space is exponentially greater than the
original, ∣HQ′ ∣ = ∣HQ∣szL+ , in the number of bits added in the weights
(szL+). ¿e cardinality of the new typical hypothesis space, however, is
exponentially smaller than the original, ∣Hδ

Q′ ∣ =
∣Hδ

Q ∣
ηZL+

, in the number
of bits of noise added in the channel. ¿erefore, the new algorithm
generates a smaller number of probable mappings and the chance of
�nding a good solution in the same number of steps increases.

¿is hypothesis lacks formality and validation by peer review.
Anyway, here we explain its intuition.

Let Q represent a neural network in the IBT perspective in a
supervised image classi�cation task, i.e.Y = {, } andX = sx , where
sx represent the size in bits of the input images, therefore X is �nite:

Q ∶ X → Y (9.11)
Q = Q(ZL∣X) ○Q(Y∣ZL) (9.12)

¿e cardinality of the hypothesis spaceHQ of Q is:

∣HQ∣ = ∣Y ∣∣HQ(ZL ∣X)∣ = sw , (9.13)

where sw represent the size in bits of the set W of weights of the
network and ∣HQ(ZL ∣X)∣ represents Q(ZL∣X) space cardinality, i.e. the
number of possible mappings X → ZL.
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Q(Z | X) Q(Y | Z)

Figure 9.9: A deep neural network.

However, not all ∣HQ∣ possible Q mappings are probable. Futher-
more, there is a subset Hδ

Q ⊂ HQ that is typical10 according to the10¿e typical set of Q is the joint typical set of
Q(X,Y).

AEP [CT06, th. 7.6.1]:
[CT06] Cover and ¿omas, Elements of
Information ¿eory. Pr(Hδ

Q) =  − δ, δ →  (9.14)
Pr(hi ∈ Hδ

Q) ≈ −nI[X;Y],∀i (9.15)

A neural network evaluates a sequence of one input at a time, so n = .
¿e cardinality of the typical hypothesis space is:

∣Hδ
Q∣ =


Pr(hi ∈ Hδ

Q)
= IQ[X;Y] (9.16)

Now, let Q′ be a network with a stacked ZL+ layer.
¿e cardinality of the hypothesis space of Q′ is ∣HQ′ ∣ = sw+szL+ ,

therefore:

∣HQ′ ∣ = ∣HQ∣szL+ , i.e. (9.17)

the cardinality of the hypothesis space increases exponentially in the
number of added bits in the weights of the network.

Let us see what happens with the cardinality of the typical hypo-
thesis space.

∣Hδ
Q′ ∣ =


Pr(hi ∈ Hδ

Q′)
= IQ′ [X;Y] (9.18)

As Q′ adds a layer, it adds noise, therefore, it reduces the channel
capacity:

IQ′[X;Y] < IQ[X;Y], (9.19)
Pr(hi ∈ Hδ

Q′) > Pr(hi ∈ Hδ
Q), (9.20)

∣Hδ
Q′ ∣ < ∣Hδ

Q∣. (9.21)
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Not only ∣Hδ
Q′ ∣ < ∣Hδ

Q∣, but it can be shown that it is also exponentially
smaller. Using the rational of Section 5.7, using ZL as input and ZL+ as
output, ∣Hδ

Q′ ∣ is the number of non-confusable inputs in the ZL → ZL+
mapping, therefore:

∣Hδ
Q′ ∣ =

H[ZL]

H[ZL+ ∣ZL]
= IQ[X;Y]

ηZL+
(9.22)

=
∣Hδ

Q∣
ηZL+

, (9.23)

where ηZL+ is the number of bits of noise added in the ZL+ layer.
¿erefore, the typical hypothesis space reduces exponentially on the
number of bits of noise added.

During training, an SGD algorithm searches a good mapping q ∈
HQ in a certain number of steps. Not all possible mappings are equally
probable. ¿e AEP property is a direct consequence of the weak law
of large numbers that states that there is a small subset Hδ

Q ⊂ HQ

that represent the mappings that are most probable of happen. ¿e
solutions found by the SGD at each of its step aremost likelymappings
from this typical hypothesis space and all mappings of this subset
have approximately the same chance of being found. By stacking
layers, we change the hypothesis space toHQ′ . ¿e cardinality of the
typical hypothesis space ofHQ′ , ∣Hδ

Q′ ∣ is exponentially smaller than
the cardinality of the original hypothesis space. ¿erefore, there is a
smaller number of probable mappings and the chance of �nding a
good solution in the same number of steps increases.

9.6 concluding remarks
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Figure 9.10: IBT’s genealogy tree.

¿is chapter presented the IBT for Deep Learning, showing that it was
initially envisioned as an analysis tool to comprehend what happens
during training. We also explained why it was received with criticism.

Most of the questions in regards to the lack of rigour were already
previously addressed in Chapter 8. In this chapter, we closed the last
missing step by showing that even in the absence of an explicit regu-
lariser in the loss function, it is implicitly added by SGD (Section 9.1.2).
¿e acknowledgement of two distinct phases during training may
lead to the development of phase-speci�c training strategies.

Moreover, we demonstrated the power of IBT narrative by giving
coherent explanations for several Deep Learning phenomena. For
that we did not increase our list of assumptions.
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9.6.1 Assumptions

1. MLT assumptions:

a) D = P(X,Y) is unknown at the training stage.

b) D = P(X,Y) is �xed: the ordering of examples in the
sample is irrelevant.

c) X is is i.i.d. sampled.

2. Information is what changes belief.

3. IBT for Representation Learning assumptions:

i. D = P(X,Y) = P(Y ∣X)P(X), where P(Y ∣X) is a stochastic
mapping.

ii. ¿e random variables X, Y and W are discrete;

iii. Y → X →W form a Markov-chain during training;

iv. AX, AY and AW are �nite sets;



10
Conclusion

Our goal was to investigate to what extent the emergent Informa-
tion Bottleneck ¿eory (IBT) can help understand generalisation and
other Deep Learning Phenomena. In this chapter, we summarise our
�ndings.

10.1 generalisation in ibt
Foremost, we presented information in the weights as a measure of
complexity, a measure with no apparent paradox between general-
isation and the number of parameters (Chapter 6). ¿is measure of
complexity is model-independent; it is a measure of task complexity.
As the task, in our context, is de�ned by the unknown distribution
of the data P(X,Y), information/complexity is only a measure of the
compressibility of the input data, i.e. a measure of its underlying struc-
tural pattern or its randomness. ¿is perspective beautifully relates to
the Kolmogorov-Chaitin complexity (KC) of algorithmic information
theory.

Section 8.5 revealed the over�tting term in the cross-entropy loss
decomposition.¿e cross-entropy loss emerged naturally from a wish-
list for representations. We shed light to Achille and Soatto insight
of neutralising the over�tting term, leading to a loss function in the
IB-Lagrangian form [AS18a]. ¿is insight is the linchpin of IBT’s view- [AS18a] Achille and Soatto, ‘Emergence

of Invariance and Disentangling in Deep
Representations’.point on generalisation.

¿e last missing step was �lled in Chapter 9, where we acknow-
ledged Chaudhari et al. demonstration that even if a deep learning
model omits such regulariser term in its loss function, SGD implicitly
adds the regulariser term [CS18; Cha+19a]. [CS18] Chaudhari and Soatto, ‘Stochastic

Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

[Cha+19a] Chaudhari et al., ‘Entropy-SGD:
Biasing gradient descent into wide valleys’.

Another original consequence of theWeights-IB is that each value
of the IB parameter β corresponds to a maximum (є, δ) tuple of the

161



162 conclusion

PAC tolerance and con�dence margins.

10.2 answers to research questions
1. What are the fundamentals of IBT? How do they di�er from
the ones from MLT?We have shown that IBT is based on IT

and the IBmethod. IT and MLT share most assumptions (Sec-
tion 5.9.2), and it is possible to bridge both subjects. MDL is an
example of such bridge (Section 6.5). In terms of assumptions,
the main di�erence is that the IB Principle (Chapter 7) assumes
discrete random variables from �nite spaces. Rissanen and Hin-
ton and Van Camp have shown, however, that such a limitation
is not signi�cative, because it is possible to make the quant-
isation error arbitrarily small with enough resources [Ris86;[Ris86] Rissanen, ‘Stochastic complexity and

modeling’. HVC93].

[HVC93] Hinton and Van Camp, ‘Keeping
the neural networks simple by minimizing
the description length of the weights’.

2. What is the relationship between IBT and currentMLT? Are
they redundant? ¿e IB Principle uses Shannon’s theorems
to de�ne unreachable levels of tolerance-con�dence, i.e. for a
certain desired margin of tolerance є, it de�nes the maximum
con�dence δ it is possible to reach and vice-versa. If inMLT, bias
and variance are two con�icting objectives that the learning
algorithm tries to minimise; IBT is a single-sided optimisation
problem [Slo02] for a certain value of β (of course there is still[Slo02] Slonim, ‘¿e information bottleneck:

¿eory and applications’. the matter of choosing β). IBT is model-agnostic, distribution-
dependent, i.e. generalisation is determined by the compress-
ibility limits of the data and does not depend on the choice of
a model class (in this way, it is similar to Rissanen’s Stochastic
Complexity [Ris86]). MLT is loss function agnostic, while the
whole purpose of the IB Principle is to give a task-speci�c dis-
tortion measure.

3. Is IBT capable of explaining the phenomenaMLT already ex-
plains? Yes, given the acceptance of an arbitrarily small quant-
isation error.

4. Does IBT invalidate results inMLT? Instead of invalidatingMLT

results, IBT gives new meaning to them.¿e pseudo-paradox
evinced by Zhang et al. [Zha+16] of over parametrised models[Zha+16] Zhang et al., Understanding deep

learning requires rethinking generalization. that generalise well is solved by IBT’s conclusion that the com-
plexity relates to the amount information in the parameters and
not to amount of the data, the parameters themselves.
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5. Is IBT capable of explaining phenomena still not well under-
stood byMLT? As already mentioned, IBT “rethinks” generalisa-
tion (Chapter 8) relating complexity to the data itself, instead
of the model. ¿is new paradigm provides a common narrative
that allows us to give a theoretical explanation for phenomena
that were only empirically understood (Section 9.5.1).

10.3 strengths, weaknesses, threats and opportunities
¿is section answers research questions 6 to 9.

10.3.1 Strengths

narrative: IBT is capable of connecting seemly unrelated phenom-
ena (Section 9.5.1) and practices (Section 8.11) in a coherent
narrative.

analysis: the usage of information measures during training “opens
the black-box” of DNNs [ST17], allowing us to identify two dis- [ST17] Shwartz-Ziv and Tishby, ‘Opening

the Black Box of Deep Neural Networks via
Information’.tinct phases in training.

model-independent/distribution-dependent: instead of depending
on an user-de�ned model class, IBT depends only on the un-
known data distribution, which is the task itself.

task-dependent loss: the IB Principle shows that a user-de�ned loss
de�ne what is relevant in the optimisation. Instead, IBT relies
on the relevance variable (the target), de�ned by the task itself.

10.3.2 Weaknesses

discrete random variables in �nite spaces: ¿e IBPrinciple assumes
discrete random variables in �nite spaces. However, Rissanen
and Hinton and Van Camp have already demonstrated that this
is hardly a problem.

IB is ill-posed for deterministic functions: if a DNN is considered
an invertible deterministic function [JSO18], the information [JSO18] Jacobsen et al., ‘i-RevNet: Deep

Invertible Networks’.in the activations is constant for discrete random variables (and
in�nite for continuous random variables). ¿is observation
seems to contradict IBT. We have shown (Chapter 6), however,
that the network can be an invertible function as long as we con-
sider the weights as our random variable and the information
in the weights will bound the information in the activations
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(Chapter 8). Still, the stochastic mapping assumption during
training is an overlooked consideration.

Markovian assumption: Another overlooked consideration is the
Markovian assumption. IBT lacks a rigorous assessment of this
assumption during training to show when it happens and why
it is su�cient.

lack of rigour: IBT was presented without clear objectives: was it an
analysis tool or a general theory? Also, it did not initially ex-
plain the relation between the information in the weights, for
which there is a Bayesian ground, and the information in the
activations, for which there is no such ground.¿e same lack of
rigour can be seen in the overlooking of important assumptions
(the Markovian assumption, for example).

10.3.3 ¿reats

discredit : IBT claims drove much attention.¿e lack of rigour, unfor-
tunately, turned a natural suspicion into discredit. In Tishby’s
opinion, “[the critiques] are throwing the baby with the bathwa-
ter.” However, the critiques were hardly unjusti�ed. In time, a
corpus of literature is corroborating with IBT’s perspective and
building its rigour. It is di�cult to change the �rst impression,
in any case.

fragmentation : IBT literature is still very fragmented.

10.3.4 Opportunities

PAC reformulation: In the PAC formulation, there is a margin of
tolerance є and a con�dence measure δ. ¿e IB β uni�es those
into a unique (є, δ) limit. With that in mind, it is possible to
create a PAC formulation that depends uniquely on β.

New optimisation strategies: ¿e realisation of the fact that there
are two distinct phases in training, where the macroscopic stat-
istics abruptly change (Figure 9.2) may lead to the use of di�er-
ent optimisation strategies for each phase of the training.

Transfer Learning: If in IBT complexity depends uniquely on the
compressibility of the input and the desired performance-generalisation
level (β), it is possible to analyse the complexity of datasets
and build a topology of learning tasks (as in [Ach+19]) where[Ach+19] Achille et al., ‘Task2Vec: Task

Embedding for Meta-Learning’.
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there is a theoretical prediction of task similarities. ¿ere is
also an opportunity to relate this theoretical result to empirical
�ndings like ‘Taskonomy: Disentangling task transfer learn-
ing’ [Zam+18]. [Zam+18] Zamir et al., ‘Taskonomy:

Disentangling task transfer learning’.

Ergodic processes: We saw that information theory does not require
i.i.d. sampling (Chapter 5). We are not aware of any theoretical
development in MLT that exploits this property.

Connections to Statistical mechanics: ¿e area of Statistical Mech-
anics has been developed for more than a century. With the
connection of machine learning and information theory, there
is much to gain in exploiting �ndings in Statistical Mechanics
in the learning realm (as did Chaudhari et al. [CS18; Cha+19a]). [CS18] Chaudhari and Soatto, ‘Stochastic

Gradient Descent Performs Variational
Inference, Converges to Limit Cycles for
Deep Networks’.

[Cha+19a] Chaudhari et al., ‘Entropy-SGD:
Biasing gradient descent into wide valleys’.

10.4 concluding remarks
¿is dissertation was a “Greek endeavour” (Section 1.1.1): it tried to
“connect the dots” and give ordinance to IBT Babylonian enterprise.

We found that IBT neither invalidates nor contradicts MLT, but
rather conciliates MLT with Deep Learning Phenomena. IBT main
weakness is its lack of rigour, a gap that is being �lled with time.
Interestingly, this weakness can be ascribed to a lack of assumptions
de�nition, i.e. a lack of choice.¿e same kind of choice for whichMLT

is in instances criticised for (Section 4.8).
¿e present dissertation revealed that IBT, far from being rigorous

and complete, is an emerging theory with a compelling narrative and
many open opportunities for research.
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