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RESUMO

Título: Aprendizagem por Reforço Profunda Aplicada ao Controle de Potência nas Comu-
nicações D2D
Autor: Lucas Baião Pires
Orientador: Menezes, Leonardo R. A. X.
Programa de Pós-Graduação em Engenharia Elétrica
Brasília, 28 de junho de 2021

O rápido avanço da digitalização do mundo, juntamente com as novas aplicações e ser-
viços suportados pelo 5G, trazem a necessidade de se aumentar a eficiência espectral dos
sistemas de comunicações móveis. Uma das propostas para atingir este objetivo, e também
habilitar diversas aplicações da Indústria 4.0, são as comunicações D2D. Neste trabalho, são
apresentados estudos sobre a viabilidade e desempenho de técnicas de aprendizagem por
reforço no controle de potência de dispositivos nas comunicações D2D.

A fim de obter soluções mais adaptativas, e capazes de aprender com o ambiente em que
atuam, optou-se por explorar técnicas de aprendizagem por reforço, que são parte da família
de algoritmos de aprendizagem de máquina, e que são capazes de encontrar soluções para
diversos problemas utilizando experiências adquiridas, sem a necessidade de uma base de
dados anterior ao processo de treinamento.

Neste trabalho, exploraram-se duas técnicas de ações discretas, que seguem diferentes
paradigmas, e uma técnica de ações contínuas. Para cada uma delas, são discorridas as
teorias que as compõem, bem como os processos de decisão markovianos desenvolvidos
para a implementação destas. Os desempenhos das soluções são avaliados e comparados
entre si, bem como a capacidade de adaptação de cada uma das soluções. Os resultados
foram obtidos por meio de um simulador computacional de interferências, desenvolvido ao
longo do trabalho.

As principais contribuições deste trabalho são as proposições de algoritmos baseados em
aprendizagem profunda por reforço para o aumento da eficiência espectral do sistema, jun-
tamente com a satisfação dos requisitos de qualidade de serviço do usuário primário, por
meio do controle de potência de transmissão na comunicação D2D no modo inband under-

lay. Além disso, são feitas diversas análises dos algoritmos propostos, para entendimento do
comportamento dessas soluções.

Palavras-chave: aprendizagem por reforço, comunicação D2D, aprendizagem profunda, 5G.



ABSTRACT

Title: Deep Reinforcement Learning Applied to Power Control in D2D Communications
Author: Lucas Baião Pires
Supervisor: Menezes, Leonardo R. A. X.
Graduate Program in Electrical Engineering
Brasília, June 28th, 2021

The fast digitalization advancement in the world, along with the new applications and
services supported by 5G, brings the need to increase the spectral efficiency for the mobile
communications systems. One of the propositions for helping achieve this goal, and enabling
diverse applications in Industry 4.0, is D2D communications. This work presents studies on
the performance and the viability of reinforcement learning techniques applied to device
power control in D2D communication.

In order to achieve more adaptable solutions, and capable of learning with the environ-
ment they act upon, it was opted on exploring reinforcement learning techniques, which are
members of the machine learning algorithms family, and are able to find solutions, for diverse
problems, using acquired experiences, without requiring a database, prior to the training.

In this work, two discrete-action techniques were explored, which are based upon differ-
ent paradigms, and one continuous-action technique. For each one of them, it was presented
their fundamental theories, as well as the developed markovian processes for their imple-
mentation. The solutions’ performances are evaluated, along with their adaptation capaci-
ties. The results were obtained through a computational interferences simulator, developed
throughout this work.

The main contributions from this work are the proposed deep reinforcement learning-
based algorithms for enhancing the system spectral efficiency, while satisfying the primary
user QoS requirements, through the transmit power control in inband underlay D2D com-
munication. Furthermore, this work provides in-depth analysis on the proposed algorithms,
for a better understanding on the solutions’ behaviours.

Keywords: reinforcement learning, D2D communication, deep learning, 5G.
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INTRODUCTION

The year of 2020 was marked by the COVID-19 pandemic [1, 2]. The social distancing,
lockdowns and movement constraints caused by the pandemic, lead society to a great ad-
vance into digitalization. Just between Q3 2019 and Q3 2020, the mobile traffic grew 50
percent [3].

By the end of 2020, the number of 5G subscriptions, with 5G-capable devices, grew to
220 million. LTE subscriptions also increased to above 4.5 billion. In 2026, 8.8 billion mo-
bile subscriptions are expected. 5G adoption is predicted to be significantly faster than that
of Long Term Evolution (LTE), accounting for over 40 percent of all mobile subscriptions in
2026, and carrying more than half of the world’s mobile data traffic [3].

The expected growth on the number of connected devices and bandwidth-hungry appli-
cations presents a challenge for the Fifth Generation of Mobile Communications (5G) [4].
The International Telecommunication Union - Radio Sector (ITU-R) has envisioned 5G to
deliver higher performance and support a broader range of applications, when in comparison
to its predecessor, the LTE system. 5G is expected to offer users 20 Gbps peak data rates.
The spectral efficiency should be improved to 3 times higher than what LTE achieves. The
system must also be able to deliver 1 ms over-the-air latency, for real-time response appli-
cations. Additionally, 5G should also support connection densities of 106 users/km2, e.g.,
massive Machine-to-Machine (M2M) communications [5].

Besides the growth on the number of users, the increase in mobile traffic will also be
boosted by new services, using new technologies such as Virtual Reality (VR) and Aug-
mented Reality (AR), which generate large amounts of traffic [3].

In Release 13, the 3rd Generation Partnership Project (3GPP) standardized the access
for Internet of Things (IoT) and M2M applications in LTE, with the proposed Narrow Band
IoT (NB-IoT) and enhanced Machine Type Communications (eMTC), also called Cat-M,
technologies [6]. By 2023, 14.7 billion M2M connections are expected, corresponding to
half of the global connected devices. Nearly half of these connections will be from connected
home applications, e.g. home automation, security, tracking applications. Connected car
applications will grow the fastest from 2018 to 2023, e.g., fleet management, in-vehicle
entertainment systems, emergency calling, Internet, vehicle diagnostics, navigation [7]. Six
billion IoT connections are expected by 2026 [3].

IoT has been divided into three primary use cases: Massive IoT, Broadband IoT and
Critical IoT.

Massive IoT is intended for wide-area cases, where large numbers of low-cost, low-

1
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complexity devices, with long battery power and low throughput, are connected, consuming
vast amount of services. Some examples of devices are sensors, wearables, trackers and
meters. Broadband IoT is similar to Massive IoT, but requires higher throughput, lower
latency and larger data volumes [3].

Critical IoT refers to wide- and local-area use cases, where low latency and high relia-
bility are required. These requirements will be made possible by the advanced time-critical
communication capabilities of 5G New Radio (NR). Some example cases are advanced cloud
gaming, cloud-based AR/VR, cloud robotics, autonomous vehicles, and real time coordina-
tion and control of machines and processes [3].

5G is designed to also enable the implementation of the Industry 4.0, which will de-
pend on advanced industrial automation and artificial intelligence, applied not only to the
production plants, but to the whole supply chain [3].

Two proposed solutions for improving the system’s spectral efficiency are Device-to-
Device (D2D) communication and network densification [8].

D2D communication consists of devices talking to each other, directly, without having
their signals travel the system’s infrastructure [8].

Network densification refers to reducing the network cell size, and increasing the number
of cells. This leads to an increased number of resources, higher data rates, lower power
consumption and lower latency [8].

In this work, we focus on D2D communication. This type of communication comes into
play as part of the solution for improving spectral efficiency and helping enable the numerous
upcoming IoT applications [8].

1.1 D2D COMMUNICATION

D2D communication makes it possible for devices to communicate directly, mostly when
in proximity, which usually enables high quality transmissions [9]. Additionally, D2D is
supposed to enable a wide range of services, such as the 3GPP Proximity Services (ProSe)
and a variety of IoT applications.

This type of communication has a number of modes. When focusing in spectral efficiency
enhancement, D2D communication in underlay mode is the most interesting of modes, for
this purpose [8, 10]. In underlay mode, the network Mobile User Equipment (MUE) shares
its allocated resources with the devices performing D2D communication. Therefore, multi-
ple devices are able to transmit using the same resources.

However, this spectrum reusage has its expenses. In order to be viable, it must happen in
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such a way the MUE Quality of Service (QoS) is not violated, since the MUE is the primary
customer, who owns the resource during the communication. Hence, power control and
interference coordination techniques must be employed, in order to guarantee high quality
for the high priority users, while enabling D2D communication, when possible.

1.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a family of machine learning algorithms, that are able
to learn through experience and provide solutions to problems where finding analytical solu-
tions would prove to be very difficult or impractical [11].

RL algorithms learn how to act through trial and error processes, by interacting with
the environment. It is different from supervised learning, since it does not require previously
acquired data for the training process. It is also different from unsupervised learning, because
it requires some knowledge from the engineer. The engineer’s knowledge is passed to the
algorithm in the form of a reward function, which is a real-valued signal, that measures the
quality of the RL algorithm actions. In the training process, the algorithm is supposed to try
and achieve high rewards. Thus, the reward is fundamental for the learning process and it
shapes the solution’s behaviour [11].

When interference mitigation and power control techniques are discussed, the expecta-
tions orbit around solutions that are able to deal with a great variety of dynamic situations.
Analytical models for such complex conditions may be impractical to obtain. In such cases,
machine learning algorithms, such as reinforcement learning, may thrive and assist in achiev-
ing satisfactory solutions.

1.3 MOTIVATION AND GOALS

During the past decades, the machine learning and Artificial Inteligence (AI) fields have
been largely driven by the progress achieved by deep learning [12, 13, 14, 15]. Deep learning
refers to Neural Network (NN)s with multiple hidden layers [16]. By increasing the number
of hidden layers, the NN is able to represent functions with increasing complexity. It was not
long ago, RL methods that were able to leverage the power of deep learning were invented
[17, 18], giving birth to what is called Deep Reinforcement Learning (DRL).

Given the present opportunities for D2D communications and the benefits it may bring,
this work proposes and studies DRL-based power control techniques, designed to increase
the system spectral efficiency, while providing high QoS for the MUE. The main goal is
to evaluate these techniques’ performances, and practicability, in the inband D2D underlay
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communication.

In this work, three DRL algorithms are explored. They serve as the core for the proposed
power allocation frameworks. It is desired to compare different RL paradigms, as well as
different application strategies, and see how they translate to the power allocation problem.
This work seeks to evaluate not only the algorithms’ general behaviour, but also their actions
in specific controlled scenarios. Additionally, this work aims to provide a condensed base of
knowledge on the topics of D2D communication, reinforcement learning, neural networks
and deep reinforcement learning.

1.4 RELATED WORKS

The idea of exploring RL in underlay D2D communication has already been applied
by other works. In [19, 20], Q-Learning multi-agent schemes are proposed for power con-
trol. The works present interesting concepts, but the proposed Markovian Decision Process
(MDP)s are limited, since they must be compatible with tabular Q-Learning, a RL method
that is not able to handle a continuous-states space. Furthermore, they do not present the
MUE availability, therefore not verifying if the proposed solutions do satisfy the QoS re-
quirements.

Deep Q-Learning (DQL) for D2D underlay communication is explored in [21], where an
algorithm for both resource and power allocation is proposed. The work presents interesting
results, but it also fails in verifying the primary user SINR requirements validity, by only
presenting the increase in the system spectral efficiency.

Zhang et al, in [22], proposes an interesting DQL-based solution for joint resource and
power allocation. It takes a different approach from what is discussed here. It suggests a
scheme that optimizes only the current situation, instead of trying to generalize for a wide
range of scenarios. The work takes care of verifying the effects on the interference suffered
by the BS.

Besides RL, other optimization methods are also applied to the problem of power alloca-
tion in underlay D2D communication. In [23], an analytical algorithm is developed. Chen et
al, in [24], applies particle swarm optimization to the problem.

DRL is also applied to other D2D communication scenarios. Nguyen et al, in [25],
applied DQL to power control in D2D overlay communication. The approach focuses on
maximizing energy efficiency. Xu et al, in [26], applies Deep Deterministic Policy Gradient
(DDPG) to power control in Vehicle-to-Vehicle (V2V) communications, in a scenario where
the vehicles share the same resources, and no primary user is considered. Nguyen et al, in
[27], proposes a DDPG-based scheme for power allocation in V2V that tries to maximize en-
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ergy efficiency while satisfying the V2V pairs QoS, with no primary user considered. Zhang
et al, in [28], applies DDPG to joint mode selection and power control in D2D communica-
tion.

To the best of the author’s knowledge, this is the first work to compare three different
DRL techniques, applied to D2D underlay communication. It is also the first to propose
actor-critic and continuous-actions space algorithms to solve this problem, while approach-
ing it with solutions that generalize for a wide range of scenarios. Furthermore, this is one
of the few works that focuses on spectral efficiency improvement while rigorously satisfying
the primary user QoS requirements.

1.5 OUTLINE

Chapter 2 lays down the reinforcement learning concepts. It brings the base theories,
problems formalizations, different algorithms and paradigms.

Chapter 3 presents the theoretical background for neural networks. It goes from the basic
processing unit, the neuron, to more advanced architectures and the optimization methods
applied in the training process.

Chapter 4 speaks about deep reinforcement learning and how the deep NNs fit into the RL
context. It presents three different algorithms and discusses the main benefits of combining
deep learning and reinforcement learning together.

Chapter 5 goes deeper into D2D communication concepts and context. It presents all the
formulations made on the D2D underlay use case and the simulated system model. At last,
the proposed DRL-based algorithms are presented, along with implementations.

Chapter 6 presents the computational simulations that were performed during this work,
along with their methodology. The simulations results are also presented and discussed in
the chapter.

Chapter 7 brings the final thoughts on the work, along with the last comments on the pro-
posed solutions and their results. A section with future works suggestions ends the chapter.
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REINFORCEMENT LEARNING

RL is a machine learning field where the algorithm is not told how to act, but it must find
out by itself, in order to maximize a numeric reward signal [11]. In the most challenging
cases, the method must find solutions to maximize the long term reward, which may lead to
planning on taking smaller short term rewards. In order to find these near-optimal solutions,
the algorithm performs trial-and-error search, exploring the problem and discovering the
rewards.

In this chapter, the fundamental theory for understanding the reinforcement learning con-
cepts discussed in this text are laid down. We begin by discussing how reinforcement learn-
ing problems are formalized as markovian decision processes. Next, the basic concepts of
rewards, returns and value functions are described. On the sequence, we talk about the very
useful Belmann equations and optimal policies. At last, we describe some classic reinforce-
ment learning methods to obtain near-optimal policies.

2.1 MODEL-FREE AND MODEL-BASED RL

RL algorithms may be designed so the agent learns, or has access to, the environment’s
model. This model is a function which predicts the state transitions and rewards [29].

When the agent learns a model of the environment, it is able to plan ahead, seeing the
outcomes of a range of possible choices, and making its decisions based upon them. When
this approach is possible, it has proved to achieve remarkable results [30].

However, it is often not possible to have a ground-truth model of the environment. In this
case, the agent would have to learn the model by experience, which creates challenges. The
biggest challenge is that bias in the model might be exploited by the agent, making it so the
agent performs well with respect to the learned model, but behaves sub-optimally in the real
environment [29].

Algorithms that rely on knowing/learning a model of the environment are called model-

based. The algorithms that do not depend on an environment model are called model-free.

Model-free algorithms are usually easier to implement and tune, besides having an infe-
rior sample efficiency in comparison to model-based methods. They are also more popular
and more extensively developed [29]. In this work, we focus on the model-free family of
algorithms.

6
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2.2 MARKOVIAN DECISION PROCESS

Reinforcement Learning is a goal-directed approach to machine learning [11]. The re-
inforcement learning problem is formalized as a Markovian Decision Process (MDP) [11].
This formalization was created so precise theoretical statements can be made.

The learner interacts with the environment, trying to discover the actions that maximize
a numerical reward signal.

 Agent

  Environment

State, Reward

       st, rt

Action

   at-1

Figure 2.1 – Reinforcement Learning flow.

The learner is called agent. According to its observation o ∈ OOO, the agent takes an
action a ∈ AAA, which changes the environment state. The environment returns a reward
r ∈ RRR, which measures the quality of the agent’s action. OOO and AAA are called observation-

and action- spaces, respectively.

The environment may be partially or fully observable to the agent. In the first case, the
agent’s observation o will be different from the real environment state s ∈ SSS, whereas in the
latter case, o = s. SSS is the state-space. Across the literature, s is used to denote both the
agent’s observation as well as the environment state. So, from now on, we will treat these
terms interchangeably, and use only the s notation.

The agent maps the perceived state to an action by using a policy. The policy is defined
by its parameters θ. The policy might be given by a deterministic function:

a = µθ(s) (2.1)

It may also be stochastic:
a ∼ πθ(.|s) (2.2)

where π is a probability density function (p.d.f.).
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The state transitions are ruled by a transition law, which may also be deterministic:

st+1 = f(st, at), (2.3)

or stochastic:
st+1 ∼ P (·|st, at), (2.4)

where P is a p.d.f..

The MDP and the agent, by interacting, produce a sequence of states, actions and re-
wards. This sequence is called a trajectory τ :

τ = (s0, a0, r1, s1, a1, r2, · · · ), (2.5)

where st, at, rt represent the state, action and reward on step t, respectively.

The MDP dynamics are defined by the state-transition probabilities p, as p : SSS×AAA×SSS →
[0, 1],

p(s′|s, a) = P{st = s′|st−1 = s, at−1 = a}. (2.6)

The probability of occurrence of a state s′ depends only on the preceding state s, and the
preceding action a. Therefore, the MDP is said to have the Markov Property [11].

2.3 REWARDS AND RETURNS

At each step, the environment passes a reward signal to the agent. This signal is very
important, since it translates, numerically, the optimization objective. The agent seeks to
maximize the reward’s expectation, which means it will not necessarily look forward for
maximizing short-term rewards, but to maximize the cumulative long-term reward series.

A sequence of interactions between agent and environment is called episode. If the en-
vironment has a terminal state, T , the episodes have finite duration. On the contrary, if there
are no terminal states, the episode will go on indefinitely.

Episodes are not related to one another. So, when one episode ends, another episode
begins in an state that is independent from the previous episode.

The episodes end on the same terminal states, but with different trajectories [11]. There-
fore, it is interesting to measure how different the episodes were and which trajectory is
better. The return, G, is a measurement based on the episode rewards.
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The simplest return is given by the summation of the episode rewards:

Gt =
∞∑
k=0

rt+k+1 (2.7)

If the environment has no terminal state, the return in (2.7) might explode. Therefore, a
more well-behaved expression is more popular, which is the discounted return:

Gt =
∞∑
k=0

γkrt+k+1,

0 ≤ γ ≤ 1

(2.8)

where γ is called discount factor. Note that Gt may be rewritten, in a recursive way. This
will prove to be useful in the coming results.

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·

Gt = rt+1 + γ(rt+2 + γrt+3 + · · · )

Gt = rt+1 + γGt+1

(2.9)

2.4 VALUE FUNCTIONS

In Reinforcement Learning, in order to evaluate policies, we use the so-called value

functions. The main value functions are presented next. From here on, we will use π to refer
to policies, in general.

2.4.1 State-Value Function

The state-value function, also called V -function, measures how good it is for the agent to
be in a state s, while following a policy π. Formally, it is the expected return, when starting
in s and following π thereafter. Note that the value-function of a terminal state is 0.

vπ(s) = Eπ [Gt|st = s] = Eπ

[
∞∑
k=0

γkrt+k+1|st = s

]
,∀s ∈ SSS. (2.10)

2.4.2 Action-Value Function

When we wish to measure how good it is for the agent to take an action a, given the
environment is in state s, we use the action-value function, also calledQ-function. Formally,
this function is the expected return from when action a is taken, while the environment is on
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state s, and policy π is followed thereafter.

qπ(s, a) = Eπ [Gt|st = s, at = a] = Eπ

[
∞∑
k=0

γkrt+k+1|st = s, at = a

]
. (2.11)

2.5 BELLMAN EQUATIONS

Value functions satisfy a recursive relationship, similar to (2.9). Looking at the state-
value function, (2.10), for any policy π, and any state s, the following condition holds:

vπ(s) = Eπ[Gt|st = s]

= Eπ[rt+1 + γGt+1|st = s]

= Eπ[rt+1 + γvπ(st+1)|st = s],

(2.12)

which is called the Bellman equation for vπ [11]. This equation expresses how the value of
a state and its successor states relate to each other. It averages over all the possible actions,
states and rewards, given initial state s, and states that vπ(s) must be equal to the discounted
value of the next state, vπ(s′), plus the expected reward for the trajectory.

Similarly, we have the Bellman equation for qπ(s, a),

qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ[rt+1 + γGt+1|st = s, at = a]

= Eπ[rt+1 + γqπ(st+1, at+1)|st = s, at = a].

(2.13)

2.6 OPTIMAL POLICIES AND OPTIMAL VALUE FUNCTIONS

In reinforcement learning, we wish to find the policy which will achieve the best return in
our environment. A policy π is said to be superior to another policy π′ if vπ(s) > vπ′(s),∀s ∈
SSS. Therefore, the optimal policy π∗ is defined by

vπ∗(s) = v∗(s) ≥ vπ′ ,∀π′,∀s ∈ SSS. (2.14)

(2.14) states that there may be more than one optimal policy. However, all of them will
have the same value function, v∗(s), which is called the optimal state-value function [11].
The optimal policy may also be defined by

v∗(s) = max
π

vπ(s), ∀s ∈ SSS. (2.15)
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The optimal policies also have the same optimal action-value function, q∗ [11], defined
as:

q∗(s, a) = max
π

qπ(s, a),∀s, a ∈ SSS,AAA. (2.16)

This function calculates the expected return for taking action a, in state s, and following
the optimal policy afterwards. We can write q∗ as function of v∗, as follows:

q∗(s, a) = E[rt+1 + γv∗(st+1)|st = s, at = a]. (2.17)

Since v∗ still is a function value, it may also be written using the Bellman equation.
Additionally, knowing that multiple optimal policies share the same value function, v∗ is not
bound to any specific policy. The Bellman equation for v∗ is called the Bellman optimality

equation, and is defined as follows

v∗(s) = max
a∈AAA

qπ∗(s, a)

= max
a

Eπ∗ [Gt|st = s, at = a]

= max
a

Eπ∗ [rt+1 + γGt+1|st = s, at = a]

= max
a

E[rt+1 + γv∗(st+1)|st = s, at = a].

(2.18)

In a similar fashion, we obtain the Belmann optimality equation for q∗,

q∗(s, a) = E[rt+1 + γmax
a′

q∗(st+1, a
′)|st = s, at = a] (2.19)

2.7 TEMPORAL-DIFFERENCE LEARNING

Temporal-Difference (TD) learning is a family of methods to find optimal policies. It
combines ideas from Monte Carlo methods and dynamic programming [11]. TD learning
methods are able to learn from the experience, without having a model of the environment’s
dynamics. It updates its estimates based, partially, on other estimates it already has, without
waiting for the final outcome. This property is called bootstraping.

The simplest way to estimate vπ, using TD, would be to make the update

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)], (2.20)

where V (s) is the estimate of vπ(s) and α is the step size parameter. The α parameter
affects how fast the algorithm converges. High values of α may cause divergence, while
small values may cause the algorithm to take too long to converge [11]. In this approach,
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the method updates its estimates looking only one step ahead, since the target for its update
is rt+1 + γV (st+1), giving it the name of one-step TD. This quantity, used on the update, is
called TD error, and is denoted by:

δt = rt+1 + γV (st+1)− V (st). (2.21)

The reader may notice that δt denotes the error between V (s) and its approximation
rt + V (st+1).

2.8 EXPLORATION AND EXPLOITATION

Reinforcement Learning control methods, in order to explore the action space, they must
act in a non-optimal way, so they may find the optimal actions. This is called exploring.
When the method decides to act by taking the optimal actions, they are said to be exploiting.
How to choose between exploring and exploiting is a dilemma. In reinforcement learning,
there are two categories of methods, on-policy and off-policy methods, that will approach
this dilemma differently [11].

On-policy methods try to improve the policy that is used to make decisions. They learn
action values not for the optimal policy, but for a near-optimal policy that still explores.
During learning, this near-optimal policy is improved and approaches the optimal policy.

Off-policy methods attempt to improve a different policy from the one used to generate
the training data. These methods use one exploratory policy, to generate behavior, and opti-
mizes another policy, that becomes the optimal policy. The policy being learned is called the
target policy, and the other one is called the behaviour policy.

A commonly used exploratory policy is the ε-greedy policy. It consists of choosing a
random action, arandom, for exploration, with probability ε, and choosing the action that is
known to return the largest action value, q(s, a), with probability 1− ε. The policy is defined
as follows:

π(s) =

 arandom with probability ε
arg max

a
q(s, a) with probability 1− ε , (2.22)

where 0 ≤ ε ≤ 1. When ε is close to one, the policy has a high probability of returning
random actions, encouraging exploration. As ε decreases and approaches 0, the policy de-
creases the probability of returning random actions, and increases the probability of optimal
actions, that maximize the action value function q(s, a). Employing these optimal actions is
the exploitation process.
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2.9 SARSA

Sarsa is an on-policy TD control method. It consists of learning an action-value function.
In an on-policy method, we must estimate qπ(s, a) for the policy π for all states s and actions
a. In order to do this, we can apply the one-step TD method to obtain Q(s, a), which is
the estimate of the value function qπ(s, a). The estimation is performed by applying the
following recursive update:

Q(st, at)← Q(s, a) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]. (2.23)

In this case, the TD error is rt+1 + γQ(st+1, at+1)−Q(st, at).

The update is done after every transition from a nonterminal state. If st+1 is terminal, then
Q(st+1, at+1) is zero. The update is a function of the tuple (st, at, rt+1, st+1, at+1), hence the
name Sarsa.

2.10 Q-LEARNING

Q-Learning is an off-policy control method, that approximates the optimal value func-
tion, q∗, regardless of the followed policy. The update is defined by

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)]. (2.24)

As long as all state-action pairs are visited and updated, the policy being followed will not
affect the algorithm convergence. This simplifies the analysis and enabled early convergence
proofs [11].

Algorithm 1: Q-Learning for estimating π ≈ π∗ [11].
Algorithm parameters: step size α ∈ (0, 1], small ε > 0, number of episodes M
Initialize Q(s, a) ∀s, a ∈ SSS,AAA, arbitrarily except that Q(terminal, ·) = 0
for episode = 1, M do

Initialize s
for step = 1, terminal step do

Choose a from s using policy derived from Q (e.g., ε-greedy)
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmaxaQ(s′, a)−Q(s, a)]
s← s′

end
end

The classical approach for estimating the optimal action value function, using Q-Learning,
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is to initialize a table with arbitrary action values for every state-action pair. As the agent
visits the state-action pairs, the corresponding table values are updated. Figure 2.2 illustrates
such table, where si, ai ∈ SSS,AAA are all the possible states and actions, respectively. This
approach makes it necessary for the use of discrete environment states and discrete actions.
In order to apply Q-Learning to continuous states, additional techniques are needed [17, 31].

s
a

...

a0 a1 ...

Q(s0, a0)

Q(s1, a0)

Q(s0, a1)

Q(s1, a1)

s0

s1

Figure 2.2 – Illustration of a Q-values table.

Discrete states and actions may prove to be impractical for many control applications, in-
curring in information loss and less precise control. Depending on the discretization degree,
the number of states and actions may become too large, increasing the size of the table.

A very large table would be expensive to store and it would cause the state-action visiting
process to take too long, slowing the learning process.

2.11 CONCLUSION

In this chapter, we discussed the fundamental concepts of reinforcement learning. We in-
troduced the MDP formulation, as well as the basic concepts of returns and value functions.
We described the Bellman equations, and how they are used to formulate the presented rein-
forcement learning algorithms, that are used to obtain near-optimal policies.

Although RL algorithms are powerful, there are still some steps to take before we apply
them to complex situations, such as power control in D2D communications. Nowadays,
RL has been combined with neural networks, resulting into Deep Reinforcement Learning
(DRL). A family of algorithms that are capable of solving diverse complex problems with
high problem abstraction and easy-to-implement continuous state space solutions [32, 33,
34].

The next chapter presents neural networks. It is the missing piece before heading to
DRL.
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NEURAL NETWORKS

As defined by Haykin, in [35], "a NN is a massively parallel distributed processor made up
of simple processing units that has a natural propensity for storing experiential knowledge
and making it available for use."

NNs are machines, that seek to model the brain’s working mechanism, in order to perform
tasks or functions of interest. It is usually implemented by software, in digital computers.
Similar to the brain, artificial NNs have a basic processing unit, called neuron. The network is
able to learn with information, and store the acquired knowledge into interneuron connection
strengths, called synaptic weights [35].

In the past decades, artificial NNs have achieved many breakthroughs in diverse fields.
Some examples of these are Natural Language Processing (NLP) [12], image classification
[13], autonomous vehicles [14], health care [15], and many others.

In this chapter, we will cover the basics of this topic, so the reader may follow this work’s
coming subjects. We begin by introducing the NN’s primary processing unit, the neuron, and
explaining the computation it performs. Next, we present a classic neural network architec-
ture and describe its features. At the last part of the chapter, we discuss classical optimization
techniques, and how they are applied in order to make the networks learn with data.

3.1 NEURONS

Similar to the neuron of a human brain, the neuron of artificial neural network is the
fundamental processing unit. The neurons and its connections constitute the neural network.
A neuron is pictured in Figure 3.1. There is also a simpler, more practical neuron represen-
tation, seen in Figure 3.2. It is called the architectural graph, and it is a partial definition of
the neuron, used to describe the layout of neural networks.

The connections between neurons, also called synapses, are characterized by numeric
weights. A signal xkj ∈ R at the input of synapse j connected to neuron k is multiplied
by weight wkj ∈ R. The synaptic signals are multiplied by the weights and added. This
constitute a linear combiner. The resulting signal is passed to an activation function. The
activation function may introduce non-linearity to the neuron, making it suitable for dealing
with non-linear problems. The activation function may also limit the neuron’s output, so it
assumes only finite values. This process is depicted by Figure 3.1.
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Mathematically, the linear combiner output is given by

vk =
m∑
j=1

wkjxkj. (3.1)

The neuron’s output is defined as

yk = φ(vk + bk), (3.2)

where φ is the activation function, and bk is an arbitrary bias term.

3.1.1 Activation Functions

We will define some of the most common activation functions.

At first, we have the sigmoid activation function [35]. It is defined by

φ(ν) =
1

1 + exp(−aν)
. (3.3)

The sigmoid function is a "S"-shaped function. The a parameter defines the function’s
slope. Its values are limited by 0 ≤ φ(ν) ≤ 1. The function plot can be seen in Figure 3.3.

−10.0−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

sig
m
oi
d(
x)

a=.5
a=1
a=10

Figure 3.3 – Sigmoid function for different values of a.

Next, there is the hyperbolic tangent, or tanh, activation function [35]. It is described by

φ(ν) = tanh(ν) =
sinh(ν)

cosh(ν)
=
eν − e−ν

eν + e−ν
. (3.4)

The tanh function’s output is limited by−1 ≤ φ(ν) ≤ 1. The biggest difference between
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the sigmoid and tanh functions is their output ranges. A drawback present in these functions
is that their saturations may cause gradient-based learning to be difficult [36]. The tanh
function plot is displayed on Figure 3.4
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Figure 3.4 – Hyperbolic tangent function plot.

Another activation function is the Rectified Linear Unit (ReLU) function [36].The math-
ematical definition is

φ(ν) = ν+ = max(0, ν). (3.5)

Its output is characterized by assuming the same value as the input, if the input is positive,
or zero otherwise. A good characteristic of this function is its low computational cost, and the
simplicity in differentiating it. One problem with this function is that the networks will not
learn, via gradient-methods, on examples where their activation is zero. The ReLU function
plot is seen on Figure 3.5.
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Figure 3.5 – ReLU function plot.

The last activation function to be presented is the softmax function [16]. It is defined as
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follows:
φ(νi) =

exp(νi)∑
j exp(νj)

. (3.6)

This function takes an input of real numbers, and generates a probability distribution
based on it. Therefore, we have that ∑

j

φ(νj) = 1. (3.7)

Most generally, the softmax function is used on the output of classifiers, in order to
represent the probability distribution over different classes. It is rarely used inside the model
itself.

The choice of which activation function to use depends on the purpose the neural network
is serving.

3.2 FEEDFORWARD NEURAL NETWORKS

The neurons of a network, and signal flows inside the network, may be disposed accord-
ing to different architectures. In this section, we will describe the most common architecture,
the feedforward neural network.

In a feedforward neural network, the neurons are disposed in layers [35]. We have an
input layer of source nodes, that projects onto another layer, called the hidden layer. The
hidden layer nodes may project onto other hidden layers, or onto the output layer. The net-
work may have zero, one, or more than one hidden layers. Therefore, this kind of NN is also
called Multilayer Perceptron (MLP). Adding more hidden layers may enable the network to
extract higher-order statistics from its input [35].

Computing the NN’s output is performed only in one direction, from the input layer to
the output layer, and it is called a forward pass. All the neurons in one layer connect to all
the neurons in consecutive layers. This means there are weighted links among these neurons.
A MLP illustration is given by Figure 3.6.

The goal of a MLP is to approximate some function f ∗. The network defines a mapping
y = f(x; θ), where θ is the set of parameters, or weights, of the NN. The NN learns the θ
that results on the best approximation of f ∗.

The MLP may be seen as series of composed functions [36]. For example, f(x) =

f (n)(f (n−1)(· · · f (2)(f (1)(x)))), where f (1) is the output of the first layer of the network, f (2)

is the output of the second layer of network, and so forth. The number of layers, n, defines
the depth of the model. That explains the terminology deep learning, when referring to NNs.
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Figure 3.6 – MLP illustration.

The final layer of the NN is called the output layer, while the first layer is the input layer.

During training, the NN parameters are updated in order to approximate f(x) to f ∗(x).
The inputs x are presented to the network along with the corresponding output, or label,
y ≈ f ∗(x). The training specifies how the output layer should behave for each input. The
outputs of the other layers are not specified by the training data. In the training process, the
learning algorithm decides by itself how the other layers should behave. Since the desired
input for these layers is not known, or is not defined by the training data, these layers are
called hidden layers.

The MLP operations may be represented as matrix operations. The output of layer n is
given by

yyy
(n)

1×M(n) = φ
(
xxx
(n)

1×N(n) ·www
(n)

N(n)×M(n)

)
. (3.8)

In (3.8), xxx1×N(n) is the n-th layer input vector. For hidden layers and the output layer,
xxx(n) = yyy(n−1). For the input layer, the input vector will be the same as the NN’s.

The n-th layer weights matrix is given by www(n)

N(n)×M(n) , which represents the connections
between the nodes on layer n and n − 1. When there are no connections between certain
nodes, the weight for the link between them is simply zero valued.

The n-th layer output vector is denoted by yyy(n)
1×M(n) . It is the outcome of the activation

function, φ, over the result of the linear combination of the layer inputs and weights. We
assume that all neurons in a layer have the same activation function.

N (n) denotes the n-th layer input vector size, and M (n) denotes number of neurons in the
layer.
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The MLP’s output is obtained by performing the operation in (3.8) from the input layer
to the output layer, consecutively, in the forward direction.

There are other very important, and promising, architectures. Convolutional neural net-
work is an architecture widely used in image classification [13, 37]. Long-short term mem-
ory is a successful architecture on time-series forecasting [38] and NLP [39]. Transformer
is another architecture, that has recently taken over the NLP field by storm, due to its great
capabilities [12, 40].

These architectures will not be elaborated upon, because they are out of this work’s
context. However, the reader is encouraged to read about them. In this work, we mainly use
the MLP architecture.

3.3 GRADIENT-BASED LEARNING

3.3.1 Steepest descent method

Most machine learning algorithms make use of gradient-based optimization [36]. It con-
sists of minimizing, or maximizing, an objective function. In our case, in deep learning, we
wish to minimize an objective function, which will be called loss function, L(x; θ). In deep
learning, we wish to solve the problem

min
θ
L(x; θ)

L(x; θ∗) ≤ L(x; θ),∀θ
(3.9)

which translates to finding a set of NN optimal parameters θ∗ that minimizes the loss func-
tion.

Given a function with multiple inputs, f(xxx), the partial derivative of this function, ∂
∂xi
f(xxx),

measures the change on f caused by variable xi at point xxx. The gradient of f , denoted by
∇xxxf(xxx), is a vector containing all the partial derivatives of f .

∇xxxf(xxx) =

(
∂f(xxx)

∂x1
,
∂f(xxx)

∂x2
, · · · , ∂f(xxx)

∂xi

)
(3.10)

In order to minimize f , we may use the directional derivative, so we may find the direc-
tion in which f decreases the fastest [36]:

min
uuu,uuuTuuu=1

uuuT∇xxxf(xxx)

= min
uuu,uuuTuuu=1

||uuu|| · ||∇xxxf(xxx)|| cos θ,
(3.11)
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where uuu is a unit vector, or the direction, and θ is the angle betweenuuu and the gradient vector.
Since uuu is a unit vector, ||uuu|| = 1. Ignoring factors that do not depend on uuu, the problem
in (3.11) reduces to minuuu cos θ. Therefore, we wish to find uuu so that cos θ = −1. This
means the direction opposite to the gradient’s direction is the direction in which f decreases.
Moving in this direction, in order to find the minimum value of the function, is known as the
method of steepest descent, and is described as follows:

xxx′ = xxx− α∇xxxf(xxx), (3.12)

where α is the learning rate, which determines the step size on the minimizing direction. Ap-
plying the same method to minimize the loss function L(x, θ), we arrive at the optimization
step:

θ′ = θ − α∇θL(x, θ). (3.13)

3.3.2 Stochastic Gradient Descent

Usually, the loss function may be decomposed in a sum over training examples, as fol-
lows [36]:

J(θ) = E[L(xxx,yyy, θ)] =
1

m

m∑
i=1

L(xxx(i), yyy(i), θ), (3.14)

where J(θ) is the resulting loss function. We approximate the loss expectation by a summa-
tion over the losses for the m inputs and outputs in the dataset.

When taking the gradient of J(θ), we obtain

∇θJ(θ) =
1

m

m∑
i=1

∇θL(xxx(i), yyy(i), θ). (3.15)

This operation has a computational cost of O(m). When the dataset grows to the size of
billions of examples, it may become impractical to compute (3.15).

The advantage of Stochastic Gradient Descent (SGD) relies on it approximating the gra-
dient of an expectation. The approximation may be computed using small sets of data, called
minibatches, of size m′. Therefore, the estimate of the gradient is

ggg =
1

m′
∇θ

m′∑
i=1

L(xxx(i), yyy(i), θ). (3.16)

The method update is given by:

θ ← θ − αggg, (3.17)
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where α is the learning rate.

SGD is not guaranteed to find the global minimum, but is capable of finding low values
of the cost function in reasonable time. It has proven to be quite useful on deep learning,
since it provides a scalable way of training nonlinear models on large datasets [36].

There are many more optimizers applied to deep learning. Some of the most famous
are Adam [41], AdamW [42] and RMSprop [43, 44], which are more complex than SGD.
We will not elaborate further on these optimizers, since this would be out of work’s scope.
Throughout this work, we used Adam and AdamW optimizers for our deep learning models.
This choice was made after empirical experiments that indicated the results obtained with
them were good.

3.4 BACK-PROPAGATION

Back-propagation is the technique for implementing gradient descent in weight space for
a NN [35]. The idea is to compute the partial derivatives of a function F (θ,xxx), with respect
to all network parameters θ, for an input vector xxx. In our case, we wish to obtain the gradient
of the total loss function,∇θJ(θ), so we may update θ and minimize the loss function [36].

We will not present the demonstration for the back-propagation algorithm, since it is
extensive. This method is very famous, and widely used in deep learning. Therefore, the
reader may easily find references about it in the literature [35, 36].

3.5 CONCLUSION

In this chapter, we covered the basic concepts of artificial neural networks. We presented
the neuron, the network basic processing unit, and a more complex structure, the MLP, which
is the result of a multitude of connected neurons. At last, we discussed optimization methods
for updating the NN’s parameters, and making the network learn.

Neural networks are very powerful and versatile. We saw that, in deep learning, by just
adding nodes and layers to a network, it is possible to increase it’s non linearity. Further-
more, these structures are able to learn with sampled data approximate functions, making
them good candidates for function approximators for the policies and value functions in RL.
Neural networks also work with continuous values, a great advantage over the discrete tab-
ular representations we saw in Chapter 2, enabling us to work with continuous states and
action spaces.

Deep Reinforcement Learning comes from combining Deep Learning and Reinforcement
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Learning. With the knowledge of reinforcement learning, seen in Chapter 2, and neural
networks, we are ready to proceed to this new topic, in the next chapter.
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DEEP REINFORCEMENT LEARNING

In the past decade, deep learning has proven to be capable of extracting high-level features
from raw data, achieving breakthroughs in computer vision [13, 37], and speech recognition
[45, 46]. However, employing deep learning along with RL presents several challenges [17].

The first challenge is that most deep learning applications require large amounts of man-
ually labeled data, for supervised learning. On the other hand, RL algorithms must learn
from a scalar reward signal that is usually sparse, noisy and delayed [17]. The delay between
action and reward may be long, which may be more complex than the direct input-output
mapping found in supervised learning. There is also the issue of deep learning algorithms
assuming the data samples to be independent, while in RL we often find sequences of highly
correlated states. Additionally, in RL, the data distribution often changes according to the
algorithm’s learning, which may be problematic since deep learning methods usually as-
sume a fixed data distribution. Fortunately, there are techniques that are able to handle these
problems, and still leverage the benefits of deep learning on reinforcement learning.

4.1 DEEP Q-LEARNING

The DQL algorithm revolves around the idea of implementing the Q-Learning algorithm,
leveraging the power of deep learning, in order to approximate the optimal value function,
q∗, with the Bellman equation given in (2.19), by a parametrized function approximator
Q(s, a; θ) ≈ q∗(s, a).

In our case, the function approximator will be a neural network with parameters θ, and
this network will be called a Deep Q-Network (DQN). The DQN will be trained by mini-
mizing the loss functions Li(θi), that changes on every i-th iteration,

Li(θi) = Es,a∼p(·)[(yi −Q(s, a; θi))
2]

yi = Es′∈SSS[r + γmax
a′

Q(s′, a′; θi−1)|s, a],
(4.1)

where yi is the target for the i-th iteration. We can see in (4.1) that the targets depend on the
parameters θi−1, which contrasts with supervised learning, where the targets are fixed before
the beginning of the training.

Differentiating (4.1), we have

∇θi(θi) = Es,a∼p(·);s∈SSS[(r + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi))∇θiQ(s, a; θi)]. (4.2)
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Instead of calculating the expectation on (4.2), it is common practice to optimize the
loss function by stochastic gradient descent. If θ is updated after every time-step, and the
expectations are replaced by single samples from the transitions probabilities distribution p,
then we obtain the Q-learning algorithm [17].

Seeking to mitigate the problems of correlated data and non-stationary distributions,
DQL uses an experience replay mechanism, which randomly samples previous transitions,
smoothing the training distribution over many past behaviours.

The experience replay stores the agent’s experience at each time step et = (st, at, rt, st+1),
in a finite memory buffer D = e1, e2, · · · , eN , pooled over many episodes, called replay

memory. During training, Q-learning updates are applied to mini-batches of experiences,
sampled from D. After experience replay, the agent selects an action according to an ε-
greedy policy.

at = (st)

Neural Networks

st
Environment

parameters , -

Replay memory
st, at, rt+1, st+1

Figure 4.1 – Deep Q-Learning illustration.

An additional improvement to DQL is to use a separate network for generating the targets
yi in the Q-Learning update [47]. After every E updates, the Q network is cloned to a Q̂ tar-
get network, that generates the update targets yi. This feature contributes to the algorithm’s
stability, in comparison to traditional Q-learning, where an update that increases Q(st, at)

frequently increases Q(st+1, at) as well, for all a, also increasing the target yi, which may
lead to oscillations or divergence of the policy. Using an older set of parameters, to generate
the targets, causes a delay between the moment of the update and the moment on which the
update affects yi, making divergences more unlikely. We denote the target network parame-
ters by θ−. Figure 4.1 illustrates the DQL algorithm.

It is also beneficial to clip the error term r + γmaxa′ Q(s′, a′; θ−)−Q(s, a; θi) between
−1 and 1. This feature also contributed for the algorithm’s stability [47].
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The DQL algorithm is presented in Algorithm 2.

Algorithm 2: Deep Q-Learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ−

for episode=1, M do
Initialize s
for t = 1, terminal step do

Observe s and choose a using an ε-greedy policy
Take action a; observe r and s′

Store transition et = (s, a, r, s′) in D
Sample random minibatch of transitions ei = (si, ai, ri, sj+1) from D
if episode terminates at step i+ 1 then

yi = ri
end
else

yi = ri + γmaxa′ Q̂(s′, a′; θ−)
end
Perform a gradient descent step on (yi −Q(si, ai; θ))

2 with respect to θ
Every E steps reset Q̂ = Q

end
end

4.2 POLICY OPTIMIZATION AND VALUE OPTIMIZATION

Up until now, we focused on algorithms that learn by performing value optimization.
Value optimization algorithms focus on learning approximators of the optimal value func-
tions, such as the optimal action-value function, q∗, or the optimal state-value function, v∗.
This optimization often is off-policy, since the training data is collected at any point during
training, regardless of the policy used to obtain it [29]. The resulting policy is equivalent to
choosing the actions that maximize the approximated value function, for each state s.

The other optimization family is called policy optimization. These methods represent
the policy explicitly as a function πθ(a|s). The policy parameters, θ, are optimized directly
by gradient optimization performed on the objective function, or an approximation, J(πθ).
Usually, these are on-policy algorithms, since they perform the policy update only with the
data acquired by that policy [29]. Policy optimization algorithms may also make use of value
function approximations, leveraging them to enhance the quality of its updates.

In comparison to value optimization, policy optimization algorithms tend to be more
stable, since they optimize the policy directly based on the objective function. In value
optimization, the policy performance is indirectly optimized, since the algorithm trains a
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function approximator to satisfy a self-consistency equation [29]. Function approximation,
bootstrapping and off-policy training, all contribute to a divergence in value optimization
methods [11]. However, value optimization methods are substantially more sample efficient,
and may benefit of data acquired by different policies, which is quite useful when dealing
with the exploration-exploitation dilemma [32, 48].

Currently, some of the most acknowledged, high-performance, state-of-the art, algo-
rithms are DeepMind’s Agent 57 [48], which is a value optimization algorithm, and Ope-
nAI’s PPO [33, 34, 49], which is a policy optimization algorithm. In the next sections,
we will go through two popular policy optimization algorithms: REINFORCE [50] and
A2C/A3C [18].

4.3 POLICY GRADIENT

We consider a stochastic, parameterized policy, πθ. In contrast with value optimization
algorithms, now we wish to maximize our objective function

J(πθ) = Eτ∼πθ [Gt(τ)], (4.3)

where Gt(τ) is the finite-horizon undiscounted return, given by

G(τ) =
T−1∑
t=0

rt+1

τ = (s0, a0, r1, s1, a1, · · · , sT−1, aT−1, rT−1, sT , rT ),

(4.4)

where τ is the trajectory.

We intend to optimize the policy by gradient ascent,

θk+1 = θk + α∇θJ(πθ)|θk , (4.5)

where ∇θJ(πθ) is called the policy gradient, which is key for optimizing policy gradient

algorithms.

In order to numerically compute the policy gradient, we need to derive the gradient an-
alytical expression and use a Monte Carlo estimate of the gradient’s expected value, from a
finite number of interactions between agent and environment.

In order to derive the analytical expression, we begin by defining the probability of a
trajectory.

P (τ |θ) = p0(s0)
T−1∏
t=0

p(st+1|st, at)πθ(at|st), (4.6)

28



where p0(s0) is the initial state s0 probability of occurrence.

We also make use of the log-derivative trick, which is based on the derivative of log f(x),

d

dx
log f(x) =

1

f(x)

d

dx
f(x). (4.7)

Applying the logarithm function to (4.6), we arrive at the log-probability of a trajectory,

logP (τ |θ) = log p0(s0) +
T∑
t=0

(log p(st+1|st, at) + log πθ(at|st)) . (4.8)

For the next steps, we use the fact that the gradients of p0(s0), p(st+1|st, at) and G(τ),
with respect to θ, are zero. By differentiating (4.8), we obtain the grad-log-prob of a trajec-

tory,

∇θ logP (τ |θ) = ∇θ log p0(s0) +
T−1∑
t=0

(∇θ log p(st+1|st, at) +∇θ log πθ(at|st))

=
T−1∑
t=0

∇θ log πθ(at|st).

(4.9)

Now, by making use of (4.3), (4.7) and (4.9), we may derive the expression for the policy
gradient:

∇θJ(πθ) = ∇θEτ∼πθ [G(τ)]

= ∇θ

∫
τ

P (τ |θ)G(τ)dτ

=

∫
τ

∇θP (τ |θ)G(τ)dτ

=

∫
τ

P (τ |θ)∇θ logP (τ |θ)G(τ)dτ

= Eτ∼πθ [∇θ logP (τ |θ)G(τ)]

= Eτ∼πθ [
T−1∑
t=0

∇θ log πθ(at|st)G(τ)].

(4.10)

Since (4.10) is an expectation, we may approximate its value by

ĝ =
1

|τττ |
∑
τ∈τττ

T−1∑
t=0

∇θ log πθ(at|st)G(τ), (4.11)

where τττ = τ0, τ1, · · · , τN−1, is the set of trajectories experienced by the agent while using
the same policy πθ.
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The expression in (4.11) is the simplest version of the policy gradient. If we manage to
represent the policy πθ as a p.d.f., it is possible to estimate∇θ log πθ(a|s), using Monte-Carlo
methods.

According to (4.10), the log-probabilities of all actions are scaled according to G(τ),
which is the return with respect to all the rewards in trajectory τ . However, it is desirable
that the actions log-probabilities are scaled according only to the actions consequences. This
means we should compute the returns based on the rewards that come after the action is
taken. Therefore, we will now express the return as follows:

Gt(τ) =
T−t−1∑
k=0

γkrt+k+1. (4.12)

Applying (4.12), the expression for the policy gradient, which is called reward-to-go

policy gradient [29], becomes

∇θJ(πθ) = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)Gt(τ)

]
. (4.13)

By removing the past rewards influence on the returns calculation, the number of tra-
jectories needed for approximating the policy gradient is reduced, because the past rewards
increases the amount of noise and variance added to the returns [29].

If we calculate (4.11) for only one trajectory at a time, over many episodes, we obtain
the REINFORCE algorithm [11, 50], which is a Monte-Carlo policy optimization method.
The method’s procedural description is presented in Algorithm 3.

Algorithm 3: REINFORCE [50].
Initiate a differentiable policy parameterization π(a|s, θ)
Initiate step size α > 0
Initiate policy parameters θ
for episode=1, M do

Generate a trajectory τ = s0, a0, r1, · · · , sT−1, aT−1, rT , sT , following π(a|s, θ)
Set∇θJ(πθ) = 0
for step=1, T do

Gt(τ) =
∑T−t−1

k=0 γkrt+k+1

∇θJ(πθ) = ∇θJ(πθ) +Gt(τ)∇θ log(πθ(at|st))
end
θ = θ + α∇θJ(πθ)

end
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4.4 BASELINES IN POLICY GRADIENTS

It is possible to expand the result in (4.13), to include a comparison of the return value to
an arbitrary baseline function b(s), which depends only on the state st, as follows [11, 29]:

∇θJ(πθ) = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st) (Gt(τ)− b(st))

]
. (4.14)

A common choice of baseline function is the approximation of the on-policy value func-

tion, V π(st). This choice reduces the variance in the sample estimate for the policy gradient.
It contributes for a faster and more stable policy learning [29].

V π(st) might be approximated by a NN, with parameters ψ by minimizing the following
mean-squared-error objective function:

Est,G(τ)∼πk
[(
V π
ψ (st)−G(τ)2

)]
, (4.15)

where πk is the policy at epoch k.

4.5 ACTOR-CRITIC ALGORITHMS

Methods that learn approximations to both policy and value functions are often called
actor-critic methods. The actor refers to the learned policy and the critic refers to the learned
value function [11].

Up until now, the policy gradients we have seen have taken upon the form

∇θJ(πθ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Φt

]
, (4.16)

where Φt could have been

Φt = G(τ),

Φt = Gt(τ),

Φt = Gt(τ)− b(st).

(4.17)

Another two forms that Φt may assume are the approximation of the on-policy action-

value function, Qπ(st, at), and the so-called advantage function, Aπ(st, at), given by

Aπ(st, at) = Qπ(st, at)− V π(st). (4.18)
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The advantage function compares the performance of action at with the other actions, on
average, for the current policy, for state st [29]. A popular algorithm that makes use of the
advantage function is the Asynchronous Advantage Actor-Critic (A3C) algorithm [18].

A3C is an asynchronous algorithm, which means it executes multiple agents in parallel,
on multiple instances of the environment, making the agent’s trajectories decorrelated. The
parallelism’s effect is similar to what is achieved by the experience replay mechanism, in
DQL. In terms of realization, A3C may be run in a computer’s multiple processing threads.

Besides employing the concepts found on the REINFORCE algorithm, and the advantage
function, A3C also employs an entropy-based technique for improving exploration and avoid
premature convergence to suboptimal policies. From information theory, the entropy H of a
random variable X , with possible outcomes x1, · · · , xn, is given by

H(X) = −
n∑
i=1

P (xi) logP (xi). (4.19)

The technique consists of adding the entropy to the objective function [18, 51]. The gra-
dient of the objective function at step t, including the entropy regularization term, becomes

∇θ (log πθ(at|st)A(at, at) + βH(πθ(st))) . (4.20)

The A3C procedural algorithm is given in Algorithm 4 [18].

The A3C algorithm inspired its synchronous version, Advantage Actor-Critic (A2C). In
this algorithm, the updates are performed after all the actors have finished their experiencing
process, and averaging over all the actors observations. In comparison to A3C, A2C is more
effective on Graphics Processing Unit (GPU), and is faster than a Central Processing Unit
(CPU) -based A3C implementation when using larger policies [52].
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Algorithm 4: A3C - pseudocode for each actor-learner thread [18].
Assume global shared parameters vectors θ and ψ and global shared counter T = 0
Assume thread-specific parameter vectors θ′ and ψ′

Initialize maximum step counter tmax
Initialize thread step counter t = 1
while t < T do

Set∇θJactor(πθ) = 0
Set∇ψJcritic(Vψ) = 0
Set θ′ = θ
Set ψ′ = ψ
Set tstart = t
while st is not terminal or t− tstart < tmax do

Perform at ∼ πθ′(at|st)
Observe reward rt and new state st+1

t = t+ 1
T = T + 1

end
if st is terminal then

R = 0
end
else

R = Vψ(st)
end
for i ∈ {t− 1, · · · , tstart} do

R = ri + γR
∇θJactor(πθ) = ∇θJactor(πθ) +∇θ′(log πθ′(ai|si)Aπθ′ (ai, si) + βH(πθ′(si)))
∇ψJcritic(Vψ) = ∇ψJcritic(Vψ) +∇ψ′(R− Vψ′(si))

end
Perform asynchronous update of actor’s parameters θ with∇θJactor(πθ)
Perform asynchronous update of critic’s parameters ψ with∇ψJcritic(Vψ)

end
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4.6 GENERALIZED ADVANTAGE ESTIMATION

General Advantage Estimate (GAE) is a more sophisticated and promising method for
estimating the advantage function. It significantly reduces the variance, while maintaining a
tolerable level of bias on the policy gradient estimation [53].

Let us consider the TD residual of V with discount γ,

δVt = rt + γV (st+1)− V (st), (4.21)

where 0 ≤ γ ≤ 1.

The sum of k of these δ terms is denoted by

Â
(k)
t =

k−1∑
l=0

γδVt+l. (4.22)

GAE(γ, λ) is defined as the exponentially-weighted average of these k-step estimators:

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l, (4.23)

where 0 ≤ λ ≤ 1.

The λ parameter controls the tradeoff between bias and variance on the advantage esti-
mator [53]. Although λ and γ affect the bias-variance compromise, they have different roles
and function well with different values ranges. The γ parameter scales the V function, which
is independent from the λ parameter. By taking γ < 1, bias is introduced into the policy gra-
dient estimate, despite of the V function’s accuracy. Taking λ < 1 will introduce bias to
the policy gradient estimate only when the V function has a low accuracy. Therefore, it has
been found that the best values for λ are much lower than the best values for γ, since the γ
parameter is more likely to introduce bias to the estimator than the λ parameter, for a value
function with considerable accuracy [53].

4.7 DEEP DETERMINISTIC POLICY GRADIENT

So far, the discussed DRL methods have been dealing only with discrete action spaces.
However, interesting tasks, such as physical control tasks, have continuous real valued action
spaces. A possible approach to continuous action spaces would be the discretization of the
action space. This method is limited by the curse of dimensionality: the number of degrees
of freedom causes the number of actions to increase exponentially [54]. Furthermore, the
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discretization method has great impact on the algorithm’s performance.

Deep Deterministic Policy Gradient (DDPG) is a DRL algorithm designed to deal with
problems that demand high dimensional continuous action spaces. It combines the actor-
critic concept with the off-policy learning applied by DQL. DDPG is model-free, easy to
implement and scale to difficult problems and larger networks [54].

Up until now, when discussing policy gradient methods, only stochastic policies have
been considered. However, it is also possible to work with deterministic policies, as men-
tioned in Equations 2.3 and 2.4, respectively. DDPG is based on Deterministic Policy Gra-
dient (DPG) [55].

The DDPG algorithm has an actor, represented by the deterministic policy function
µ(s, θ), where θ is the policy network’s parameters set, and a critic, which learns the ac-
tion value function Q(s, a) using the Bellman equation (2.13),

Q∗(s, a) = Es′∼P
[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
. (4.24)

For the critic, similar to DQL, the loss function is the Bellman equation error (4.1).
Therefore, DDPG is an off-policy algorithm, since the Bellman equation does not depend on
a particular policy. This fact allows DDPG to also use an experience replay buffer, in order
to learn from decorrelated samples.

In order to improve stability and convergence, the algorithm also makes use of target
networks, Q− and µ−, for both critic and actor, respectively, for calculating the target values.
However, the target networks updates are done differently from DQL. They are performed
once per main networks update, by applying soft updates:

θ− ← (1− ξ)θ− + ξθ

ψ− ← (1− ξ)ψ− + ξψ
(4.25)

where 0 < ξ ≤ 1, ψ is the actor network’s parameters and ψ− is the target network parame-
ters. ξ is usually close to zero.

Since it is desired to find a policy µθ(s) that maximizes the action-value functionQψ(s, a),
assuming Q is differentiable with respect to action, the actor’s objective function becomes

∇Jθ(µθ) = E [Qψ(s, µθ(s))] , (4.26)

which is proved to be the off-policy deterministic policy gradient [29, 54, 55]. Gradient
ascent is applied to maximize (4.26).

The exploration is performed by adding stochastic noise to the actor network’s outputs,
e.g., Ornstein-Uhlenbeck [54], Gaussian Noise [29]. Therefore, in exploration, the actions is
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given by
a(s) = µθ(s) +N , (4.27)

where N is the stochastic noise. The noise may be chosen to suit the environment.

Algorithm 5: Vanilla DDPG [54].
Randomly initialize critic Qψ and actor µθ networks, with weights ψ and θ,
respectively

Initialize target networks Q− and µ− with weights θ− ← θ, µ− ← µ
Initialize replay buffer D
for episode=1,M do

Receive initial observation state s1
for t=1,T do

Select action at = µθ(st) +N according to the current policy and
exploration noise

Execute action at and observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in D
Sample a random minibatch of N transitions (si, ai, ri, si+1) from D
Set target yi = ri + γQ−(si+1, µ

−(si+1))
Update the critic by minimizing the loss L = 1

N

∑
i(yi −Qψ(si, ai))

2

Update the actor policy using the sampled policy gradient

∇Jθ(µθ) =
1

N

∑
i

∇θQψ(si, µθ(si))

Update target networks with (4.25)

θ− ← (1− ξ)θ− + ξθ

ψ− ← (1− ξ)ψ− + ξψ

end
end

4.8 PARAMETER SPACE NOISE FOR EXPLORATION

In order to increase exploration, besides employing noise on the action space, it is also
possible to input noise on the actor’s parameters space, which corresponds to the policy NN’s
parameters [56, 57]. This is formulated as

θ̃ = θ +N (000, σ2III), (4.28)

where θ̃ represents the perturbed parameters,N (000, σ2III) is a stochastic noise with zero mean
and σ2 variance.

Different layers within a NN may have different sensitivities to the added noise. Addi-
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tionally, choosing the value for the scaling factor σ is not trivial. In order to solve both of
these problems, [57] proposes Adaptive Scaling.

It is not possible to perfectly understand the effects the noise addition may cause on a
neural network. Furthermore, as training progresses, the NN moves from a random initial-
ization around zero towards a complex non-linear mapping from input space to output space.
Therefore, it is easier to approach this problem by moving it to the action space.

This trick makes it possible to measure the perturbation effect in the more comprehensive
action space. By using this approach, we may adapt σ according to:

σk+1 =

ασk if d(µ(s), µ̃(s)) ≤ δ,

1
α
σk otherwise,

(4.29)

where d(µ(s), µ̃(s)) defines a distance measure between µ(s) and µ̃(s), δ ∈ R+ is a distance
threshold value, and α ∈ R+ defines the change rate on the current scaling value σk. In other
words, (4.29) means that σk increases if the distance between policy and perturbed policy is
smaller than δ, and it decreases otherwise.

There is no practical way to compute the distance between two policies[57]. There-
fore, the estimated expected distance is used, by randomly sampling states mini-batches
s1, · · · , sM :

E [d(µ, µ̃)] ≈ 1

M

M∑
i=1

d (µ(si), µ̃(si)) (4.30)

At last, d(·, ·) must still be defined. There are multiple choices for the distance measure-
ment, and it depends on the DRL algorithm, as well as the properties one wishes to achieve
with it. It ends up being a design choice.

For DDPG, the proposed distance measurement is [57]:

d(µ, µ̃) =

√√√√ 1

|A|

|A|∑
i=1

E [(µ(s)i − µ̃(s)i)2], (4.31)

where E[·] is estimated using a mini-batch of states sampled from the replay buffer D, |A| is
the number of continuous actions, and µ(s)i denotes the i− th action selected by µ.
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Algorithm 6: Parameter Space Noise Exploration with Adaptive Scaling [57]
Define DRL algorithm A, e.g., DDPG
Initiate σ0, δ, α ∈ R+

Define distance measure d(·, ·)
Initiate intervals Ttrain, Tadapt ∈ R+

Initiate A and µ = µθ
Initiate µ̃ for exploration
Initiate µ̄ for noise adaptation
for episode=1, · · · ,M do

Perturb θ̃ ← θ +N (0, σ2
k) and obtain µ̃

for t = 1, · · · , T do
Sample an action at = µ̃(st)
Execute action at and observe the new state st+1

if t mod Ttrain = 0 then
Execute training step of A

end
if t mod Tadapt = 0 then

Perturb θ̄ ← θ +N (0, σ2
k) and obtain µ̄

Estimate dk ← E[d(µ(s), µ̃(s)]
if dk ≤ δ then

σk+1 ← ασk
end
else

σk+1 ← 1
α
σk

end
k ← k + 1

end
end

end
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4.9 CONCLUSION

In this chapter, we covered some key DRL algorithms. We presented DQL, which lever-
ages the computing power of neural networks in order to improve upon the traditional Q-
Learning algorithm. DQL is able to deal with high-dimensional continuous state spaces
with simple and direct implementations, which is a great advantage on previous classic RL
methods.

Next, we explore policy optimization algorithms, another paradigm in reinforcement
learning, different from the value optimization techniques that have been presented so far,
which leads us to the REINFORCE algorithm. On the sequence, the actor-critic algorithms
are presented, which are a family of methods that makes use of both value- and policy-
optimization concepts. We talk about GAE, which is a method for estimating the advantage,
a scalar quantity that is key on the A3C/A2C algorithms.

Policy optimization algorithms have a stronger analytical convergence, when compared
to value-optimization algorithms. Both paradigms have their own pros and cons, and com-
parisons between them are still debated by the community. That motivates this work to
explore both of them, in the upcoming chapters.

Both DQL and the presented actor-critic algorithms are suited for discrete action-spaces.
DDPG moves into the realm of continuous action spaces. By employing concepts from
the previous methods, DDPG is able to deal with high-dimension continuous action space
problems.

At last, a new exploration paradigm is presented. So far, the exploration concerned only
the action space, mainly by introducing stochastic elements to it. Parameter space noise
comes into play as a new tool for improving exploration for DDPG.

The DRL concepts in this chapter constitute the foundation for the power allocation
frameworks that will be presented in the next chapter.

39



SYSTEM MODEL AND PROBLEM
FORMULATION

In this chapter, we explain D2D communication and its concepts, and go over different use
cases. Afterwards, we present our system model and the optimization problem we wish to
solve, concerning the inband-underlay use case. Next, the DRL-based optimization frame-
works are presented in-depth. We explain all the algorithms, their implementations, and
designs.

5.1 D2D COMMUNICATION

D2D communication allows close devices to communicate directly among themselves,
often with high quality, due to the proximity between them [9]. Figure 5.1 presents an
example of D2D communication.

BS

PAIR 1

D2D Communication link

PAIR 2

Figure 5.1 – Two device pairs performing D2D communication.

In the last decade, D2D communication has been available through technologies that
use the unlicensed spectrum, e.g., Bluetooth, RFID, Zigbee, and others [8]. However, in
Releases 12 [58] and 13 [6], the 3GPP introduced ProSe, a wide range of applications that
will be using licensed spectrum, and provided via D2D communication.

ProSe is thought to enable applications for commercial/social use, network offloading,
public safety and consistency of user reachability and mobility [58]. Release 13 included
Vehicle-to-Everything (V2X) communication under the umbrella of ProSe [6].
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5.1.1 D2D classifications

D2D is classified into two categories: inband and outband D2D [10, 8].

• Inband: refers to D2D communication under licensed spectrum. This category is
further divided into two categories: overlay and underlay [10, 8].

– Underlay: D2D communication with shared spectrum resources. This means
the devices performing D2D communication will be sharing the resource with a
Mobile User Equipment (MUE), which is the cellular user. This D2D mode may
provide enhanced spectral efficiency, due to the resources re-use. It brings chal-
lenges on interference management and resource allocation. Interference man-
agement methods may be applied, but at the expense of additional overhead at
the base station [8, 10].

– Overlay: D2D communication with reserved spectrum resources. This scheme
presents the advantages of reduced interference, since the D2D devices now have
their own separate spectral bands to communicate. It also allows better schedul-
ing and power control. However, the portion of the spectrum allocated for D2D
communication may be inefficiently used, leading to poor resource utilization
and system throughput [8, 10].

• Outband: D2D communication in unlicensed spectrum. This type of communica-
tion requires device compatibility. Since the communication happens in unlicensed
spectrum, the interference problem becomes more complex [10]. Additionally, co-
ordinating the communication over different bands is also challenging [8]. Outband
communication may be divided into two categories: controlled and autonomous com-
munication.

– Controlled: the interface between radio interfaces, e.g, Bluetooth, ZigBee, Wi-Fi
Direct, is controlled by the network. The BS may prioritize particular transmis-
sions, in order to enhance QoS. Consequently, this mode increases the system’s
spectral efficiency, at the expense of a larger signaling overhead [8].

– Autonomous: the D2D communication is controlled by the devices involved in
it. This approach lessens the workload of the network and does not need major
BS changes during deployment. The resource allocation is performed by the D2D
devices, reducing the signaling overhead [8].

5.1.2 Challenges in D2D communication

The main challenges in D2D communications are network discovery, network security,
interference management, mobility and mode selection [8, 10].
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5.1.2.1 Network discovery

Network discovery refers to devices discovering other devices that are able to establish
direct connection [8]. The devices share their location/distance, channel state, device ID, and
other informations, with each other. This information is used to determine the feasibility of
the communication [8].

The discovery process may be performed with the assistance of a centralized network
entity, such as the BS. The devices inform the network about their intent to communicate,
and the BS initiates the exchange of essential information to begin the communication [8].
This type of discovery process has been called centralized [8] or network centric discovery
[10].

There is also distributed [8], or device centric [10], discovery. In this process, the devices
locate each other without the involvement of the BS. They send control signals in order to
locate other devices. This scheme presents difficulties of synchronization and interference.
We can find studies, comparing discovery schemes, in [59, 60, 61].

5.1.2.2 Network security

Network security refers to the techniques employed to protect the communication from
attacks. D2D communication must deal with threats, faced both by both cellular and ad-
hoc wireless networks, that affect authentication, confidentiality, integrity and availability.
Therefore, D2D communications must be safe when the devices exchange information with
the cellular network, and must offer security, in direct proximity communications, that is
independent from the cellular network [8, 10, 62]. We can find studies about D2D commu-
nications security in [63, 64].

5.1.2.3 Interference management

Interference is one of the major impairments affecting D2D communication. It can com-
promise the devices Signal-to-Noise-Ratio (SINR)a, along with the quality of the transmis-
sions [10].

In outband communication, the D2D links suffer interference from each other, as well
from other devices, using the same unlicensed spectrum, that are not part of the cellular
network [62].

In inband communication, the D2D links suffer interference from each other, as well as
the MUE [62].

In order to deal with these problems, interference-aware resource management is often
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proposed. The resource management is usually treated as an optimization problem, with
transmit power and QoS constraints. Power allocation, transmission scheduling and mod-
ulation and coding schemes are all part of resource management, and may be optimized in
order to mitigate interference [62]. The reader may find interference management studies in
[65].

5.1.2.4 Mobility

Most of the research related to D2D communication has focused on static users. There-
fore, it is needed for more research concerning dynamic situations, with mobile devices [62].

When mobility is concerned, topics such as interference handling, handover and multi-
hop communication become important investigation subjects [62]. Evaluating users mobility
patterns and the impact caused by them on communication reliability is also a key challenge
[10]. The reader may find more about mobility in D2D communication in [66, 67, 68].

5.1.2.5 Mode selection

Mode selection refers to the choice the devices have between using the cellular network
or communicating directly, using D2D communication [62]. It is also extended for choosing
between outband, inband-underlay and inband-overlay modes [8].

The decision on mode selection may be motivated by objectives such as low latency, low
transmit power, high QoS, and high spectral efficiency [62].

Mode selection studies are found in [8, 69, 70].

In this work, we focus on power allocation schemes for enhancing spectral efficiency and
mitigating interference, in the inband-underlay scenario. These schemes will be presented
on the following sections.

5.2 SYSTEM MODEL

In our model, we consider a single cell, in which D2D communication users and MUEs
coexist, sharing the same resource (inband-underlay mode). The users are pedestrians, that
may walk or stay still. The D2D devices are grouped in transmitter-receiver pairs. We denote
the set of MUEs byMMM = {1, · · · ,M} and the set of D2D pairs byNNN = {1, · · · , N}. All the
devices are distributed randomly inside the BS coverage area. The coverage area is assumed
to be circular.

We study D2D communication over the uplink transmission, where MUEs and D2D users
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share the same Resource Block (RB). This means the D2D pairs transmit at the same time
the MUE is transmitting to the BS. The resource is allocated to the MUE, and, consequently,
there is only one MUE per RB. The set of available RBs is denoted by KKK = {1, · · · , K}.
In this situation, there are two types of interference we must deal with. Interference 1 is the
interference suffered by the BS, caused by the D2D transmitters, impacting the MUE’s QoS.
Interference 2 is the interference on the D2D receivers. It comes from the MUE, as well as
the other D2D transmitters. It impacts the D2D pairs’ QoS. Figure 5.2 illustrates the studied
scenario.

MUE

BS

DUE RX
DUE TX

DUE RX

DUE TX

Communication link
Interference 1

Interference 2

Figure 5.2 – D2D inband-underlay communication scenario.

We assume different RBs are accessed by orthogonal signals, allowing us to treat each
RB independently, similarly to what is done in [19].

We measure the devices SINR, in order to calculate the system spectral efficiency and
QoS. The SINR obtained by the i-th D2D user, on the k-th RB, is given by

γdik =
pdik · g

dii
k

σ2 + pmk · gmik +
j 6=i∑
j∈RRRk

p
dj
k · g

dji
k

, i = 1, 2, · · · , N (5.1)

where pdik and pmk denote the i-th D2D pair’s transmitter transmission power and the MUE
uplink transmission power, respectively, both sharing the k-th RB. Both transmission powers,
per RB, are superiorly bounded by pmax, which means pdik , p

m
k ≤ pmax,∀i,m ∈ NNN,MMM . RRRk

is the set of D2D pairs sharing the k−th RB. The channel gain between the i-th D2D pair
devices, on the k-th RB, is given by gdiik . The channel gain between the MUE and the i-th
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D2D pair receiver, on the k-th RB, is given by gmik . At last, the channel gain between the
j-th D2D pair transmitter and the i-th D2D pair receiver, on the k-th RB, is denoted by gdjik .
The noise power is depicted as σ2. We also need to know the MUE SINR, on the k-th RB,
which is

γmk =
pmk · gm0

k

σ2 +
∑
j∈RRRk

p
dj
k · g

j0
k

(5.2)

Following the established convention, the channel gains between the MUE and the BS,
and between the j-th D2D transmitter and the BS, both on the k-th RB, are given by gm0

k and
gj0k , respectively.

5.3 PROBLEM FORMULATION

It is desired to maximize the D2D pairs’ spectral efficiencies while maintaining the MUE
QoS at a minimum desired level. For the sake of simplicity, RB allocation is given and fixed.
Therefore, the optimization problem can be written as:

max
ppp

K∑
k=1

{
log2 (1 + γmk ) +

∑
i∈RRRk

log2

(
1 + γdik

)}
γmk ≥ τ0

0 ≤ pdik ≤ pmax,∀i, k

(5.3)

where ppp = (pd1k , · · · , p
di
k , · · · , p

dN
k ),∀k, i ∈ KKK,NNN , and τ0 is the minimum MUE SINR level

requirement. This means that, in order for the communication process to be considered
successful, the MUE SINR must satisfy γmk ≥ τ0.

The optimization problem in (5.3) translates to finding the set of transmission powers,
for each D2D pair on the k-th RB, which will maximize the capacity for the MUE and the
D2D pairs, while satisfying two restrictions. The power allocator is supposed to solve the
optimization problem at the beginning of every time slot. The restrictions are the minimum
MUE SINR, τ0, and the maximum transmission power level, pmax.

The MUE is assumed to have perfect channel knowledge and to always transmit with the
necessary amount of power, limited to pmax, in order to obtain a SINR level of τ0 +τ1, where
τ1 is a safety margin. It has been show that the problem in (5.3) is NP-hard and, in general,
non-convex [71, 72]. In order to solve this problem, we resort to DRL-based frameworks.

The transmission delay on D2D- and device-to-BS- communications is considered to be
much smaller than the time slot duration. Hence, we neglect prediction error due to this delay
and assume that, once the nodes have completed channel measurements, this information will
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also be available to the other nodes in the network.

At the beginning of time slot t, the D2D transmitter i0 learns the channel gains to its
receiver i1, gdiik . The BS informs the channel gain between itself and i1 and it also gives
information on the MUE: the channel gain gm0

k between MUE and itself, the MUE current
SINR γmk , and the MUE position coordinates cm.

Transmitter i0 also exchanges information with the other D2D transmitters j0 ∈NNN, j 6= i.
It updates the other devices on the channel gain gi0k between itself and the BS, along with
its own SINR γdik and the position coordinates ci for itself and its receiver. The other D2D
transmitters j0 also provide the equivalent information, γdjk , g

j0
k , cj , about themselves. All the

channel gains are considered to be perfect estimations. Figure 5.3 illustrates the information
exchange between devices.

BS

Figure 5.3 – Information exchange between devices at the beginning of time slot t.

5.4 DRL-BASED POWER ALLOCATION SCHEMES FOR D2D COM-
MUNICATION

The problem in 5.3 is simplified by decomposing it into K-parallel sub-optimal prob-
lems, each problem being solved for each RB. The RBs are considered to be independent
from each other, which means there is no interference between them. We consider that, at
the power allocation stage, the RBs allocation is already defined. In order to determine the
power allocation for all RBs, we must run the DRL power allocation schemes for each RB.

Inspired by [19, 57, 72], we propose two different DRL schemes for D2D power allo-
cation: centralized learning-centralized execution and centralized learning-distributed exe-

cution, for solving the problem in (5.3). The schemes modeling, along with the designed
MDPs, illustrations, network architectures and pseudocode algorithms are presented in the
following sections.
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5.4.1 Centralized Learning-Distributed Execution

This scheme was thought for the discrete action spaces algorithms, i.e., DQL and A2C.
These algorithms suffer the curse of dimensionality, i.e., the number of discrete actions in-
creases exponentially with the number of degrees of freedom. If a centralized agent was to
control N D2D transmitters, the actions space would have a size of |AAA| = LN , where L is
the number of transmit power levels. Besides requiring ever larger NNs to represent such
problem, exploring such a large action space becomes impractical.

In order to mitigate this problem, this scheme was developed. This concept has already
been tested in [73]. Centralized-Learning Distributed-Execution (CLDE) is a multi-agent
DRL scheme where, as the name states, the learning/training process is centralized, while
execution is performed in a distributed way. It is similar to what is presented in [72]. The
agents are the D2D transmitters. By having one agent per D2D transmitter, they action space
size now becomes |AAA| = L, which is a practical size.

In multi-agent RL, the state transitions depend on all agents’ joint actions. Multi-agent
learning still needs more research and improvements on theoretical guarantees. There is an
extensive effort on further developing this theory [74, 75, 76, 77].

In this approach, the agents are assumed to be partially homogeneous. According to [77],
homogeneous agents have common reward functions, that aligns all agents’ interests. Ad-
ditionally, in the case of large populations, the agents play an interchangeable role, and can
hardly be distinguished from each other. In our case, we call the agents partially homoge-
neous, because they share only the same penalty. The positive rewards are given individually,
according to each agents’ spectral efficiency, as we will see up ahead. However, the agents
are similar, with the same set of states and actions, and indistinguishable from each other,
i.e., if their places are switched, they should act in similar, if not in equal, manner. With this
in mind, we conclude all agents may benefit from each others’ accumulated experience, and
train them all based on the same set of joint accumulated experiences.

In order to leverage the agents’ homogeneity, a centralized learning scheme is proposed.
As illustrated by Figure 5.4, the agents interact with the environment and store their experi-
ences in a common experience storage. During training, the central NNs receive a batch of
experiences, from the common storage, which they are trained upon. Notice that this batch
contains experiences from all agents. After training, identical copies from the trained NN are
transmitted to the agents. Despite having copies from the same NN, the agents still take dif-
ferent actions, because their local states are different. The centralized training, as well as the
storage of the central NNs, may be executed at a network entity with enough computational
power, such as the BS or even at the cloud [78].

Similar to [72], we define the state of agent i, on time slot t, as sit ∈ SSS, which is composed
of the information agent i has. Agent i’s action on time slot t is defined as ait ∈ AAA.
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When using DQL, the common experience storage is a central experience replay memory,
where all agents store their experiences. The experiences are the tuples (sit−1, a

i
t−1, r

i
t, s

i
t)∀i ∈

NNN . These experiences are used for training the central NNs.

When using A2C, the experience, denoted in Figure 5.4, becomes the actions log-probabilities
along with the estimated value functions, which are estimated by the critic, the obtained dis-
tributions entropies and rewards.

The common experience storage is a simple buffer, where the all agents’ experiences are
stored. Following every episode, the experiences are used for training, and discarded after
the policy update, due to the on-policy nature of A2C.

The A2C-based scheme is fully detailed in Algorithm 8.

5.4.1.1 States

The CLDE solutions build their states based on the devices information exchange de-
picted in Figure 5.3. The states are composed by:

• Devices coordinates: All D2D devices and MUE 2-D position coordinates at the mo-
ment the transmission happens. Given the number of D2D devices N , this information
demands 4 ∗N + 2 input nodes on the NNs.

• Devices SINRs: All D2D devices and MUE SINR levels in the previous transmission,
which is the previous time slot. This information requires N + 1 input nodes.

• Channel gains: The channel gain for: the channel between D2D transmitter and re-
ceiver; all the channels from D2D transmitters to the BS; the channel between MUE
and BS. These are perfect estimation of the channel gains at the moment the transmis-
sion happens. This information requires 2 +N network input nodes.

The total required network input nodes is 4N + 2 +N + 1 + 2 +N = 6N + 5.

5.4.1.2 Actions

For DQL and A2C, the actions setAAA is composed by discrete power levels. Considering
|AAA| > 1, the setAAA is given by

AAA =
{
P1, P2, · · · , P|AAA|

}
, (5.4)

where Pi is a discrete power level. It is important to notice the choice of discrete power
levels has great impact on the algorithms performance.
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5.4.1.3 Reward

The proposed reward function, for the CLDE algorithms, is

Ri
k =


α1([γ

m
k ]dB − [τ0]dB), if γmk < τ0

γdik , if γmk ≥ τ0 and γdik ≤ 10

10 + α2[γ
di
k ]dB, if γmk ≥ τ0 and γdik > 10,

(5.5)

where τ0 is the minimum MUE SINR threshold, [·]dB = 10 log10(·), and α1, α2 ∈ R+ are
arbitrary constants for changing the function slopes.

The first term in (5.5) is the penalty for violating the MUE QoS requirement, translated as
a SINR threshold. Note that this penalty depends solely on the MUE SINR. Therefore, when
the requirement is not fulfilled, all agents receive the same penalty. This is for encouraging
the agents to cooperate in order to deliver a good QoS to the primary user.

The other reward terms are valid when γmk > τ0. They are the actual bonuses from the
reward function and they are given individually. In this way, some competition among the
agents is promoted for when the MUE QoS is already guaranteed.

Since a SINR follows γ ≥ 0, the second term of the reward connects the other two
terms, keeping the function’s continuity. The log function is applied in order to keep the
reward function absolute values from becoming very large. Overall, (5.5) was designed to
be continuous, monotonically non-decreasing and to not have flat/constant spots. Constant
value reward functions, such as the one seen in [19], performed poorly in this work first
attempts.

5.4.1.4 Neural Networks

For DQL, the central NNs are the main and the target networks. The i-th agents’ NNs are
copies from the central main network. The target NN has the same architecture as the main
NN, it serves as reference for the main NN, and it is updated with the main NN’s weights θ
every E time steps. After training, only the main NN remains, for making the new decisions,
while the target NN is no longer used. The training is performed online, i.e., the policy is
updated after every time step.

Both the main and target NNs are MLPs. Figure 5.6 illustrates such architecture. The
input layer length, for this network, is |xxx| = 6N + 5. The output layer has a length of |yyy| =
|AAA|, where yyy is an array representing the NN’s output. The NNs output yyy is the approximation
of the state-value function, Q(s, a). The centralized training-distributed execution scheme’s
DQL version is fully detailed in Algorithm 7.
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For A2C, the central NNs are the central actor and critic networks. The i-th agent’s NNs
are copies of the central actor and critic networks. The actor outputs the agent’s action,
and the critic outputs the value function, which serves as a scaling factor for the calculated
returns, during training. The training is not online. This means the networks are updated at
the end of episodes, based only on the experiences acquired during the episode.

Both networks are MLPs. The actor follows the same architecture as the DQL networks.
The critic differs only in its output layer, that has a length of |yyy| = 1, which means only one
output node. The critic returns a continuous real value, which is an approximation of the
state value function, V (s).

5.4.2 Centralized Learning-Centralized Execution

Centralized-Learning Distributed-Execution (CLCE) is a fully centralized, mono-agent
scheme. A single central agent controls the transmit powers of all D2D transmitters. DDPG
is able to handle such scheme. Since it is designed for dealing with high-dimensional contin-
uous actions spaces, DDPG does not present the curse of dimensionality problem. Thanks to
its continuous outputs, a central DDPG agent, controling N D2D transmitters, would have
an actions space of sizeAAA = N , which is a practical value.

Figure 5.5 illustrates the CLCE scheme. The Central Experience Storage is the experi-
ence replay memory, where transitions (st−1, at−1, rt, st) are stored. The Central NNs are
the actor and critic networks.

5.4.2.1 States

The CLCE scheme states are quite similar to the CLDE states. However, they are all
passed to a single agent. They are composed by:

• Devices coordinates: All D2D devices and MUE 2-D position coordinates, at the
moment of the transmission. Given the number of D2D devices N , this information
demands 4N + 2 input nodes on the NNs.

• Devices SINRs: All D2D devices MUE SINR levels in the past transmission. This
information requires N + 1 input nodes.

• Channel gains: The channel gain for: the channel between D2D transmitters and re-
ceivers; all the channels from D2D transmitters to the BS; the channel between MUE
and BS. These are perfect estimates of the channel gains at the moment of the trans-
mission. This information requires 2N + 1 network input nodes.

The total required input nodes is 4N + 2 +N + 1 + 2N + 1 = 7N + 4.
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5.4.2.2 Actions

Given N agents, the actions space will be given by

AAA = P1, P2, · · · , PN , (5.6)

where Pi is the i− th D2D transmitter continuous real transmit power, and |AAA| = N .

5.4.2.3 Reward

The proposed reward, for CLCE, is actually quite simpler than (5.5):

Ri
k = α1 min([τ0]dB, [γ

m
k ]dB) + α2

1

N

N∑
i=1

[γdik ]dB, (5.7)

where min(·, ·) is the minimum function,

min(a, b) =

a, if a ≤ b

b, otherwise.
(5.8)

The first term is for encouraging the algorithm to provide only the required MUE SINR
level, while also serving as penalty for when the MUE SINR is low. The second term is the
average of the D2D transmitter SINRs and it encourages the agent to increase the transmit-
ters’ power levels. The log operations maps SINRs that satisfy 0 ≤ γ ≤ 1 to negative values,
serving as penalty, while also keeping high SINR values into a smaller range of values.

The reward in (5.7) was chosen over (5.5), for CLCE, because it provided better perfor-
mances for this scheme.

5.4.2.4 Neural Networks

For CLCE DDPG, the actor NN is a MLP, as illustrated by Figure 5.6. Its input size is
|xxx| = 7N + 4 and its output size |yyy| = N . The critic network is also a MLP, but with a slight
difference. This NN inputs are the state st and the action at. However, at is input directly
into the NN’s first hidden layer [54]. The input layer size is |xxx| = 7N + 4. The first hidden
layer size is N1 + |AAA|, as depicted by Figure 5.7. The output size is |yyy| = 1
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5.5 SCHEMES ILLUSTRATIONS
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Figure 5.4 – Centralized learning-distributed execution scheme illustration.
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Figure 5.5 – Centralized learning-centralized execution scheme illustration.
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5.6 NETWORK ARCHITECTURE ILLUSTRATIONS
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Figure 5.6 – Illustration of an MLP with M layers, and a variable amount of nodes per layer.
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Figure 5.7 – DDPG critic NN illustration. The action input is inserted directly at the first
hidden layer.

5.7 ALGORITHMS
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Algorithm 7: DQL-based centralized learning-distributed execution
set number of agents N
set number of episodes M
set number of steps in an episode T
initialize experience replay memory D
initialize ε, εmin, δ, B
for episode = 1, M do

for t=1,T do
initialize states sequence ssst := (s1t , · · · , sNt )
for i = 1, N do

generate a random number x ∈ (0, 1]
if x < ε then

select random action ait
else

select ait := arg max
a

Q(sit, a
i
t; θ)

end
execute ait

end
if ε > εmin then

ε := ε− δ
end
RRRt := (R1

t , · · · , RN
t )

aaat := (a1t , · · · , aNt )
ssst+1 := (s1t+1, · · · , sNt+1)
store all transitions (ssst, aaat, rrrt, ssst+1) inDDD
sample random mini-batches of transitions (snj , a

n
j , R

n
j , s

n
j+1) fromDDD

if episode terminates at step j + 1 then
yj := Rn

j

else
yj := Rn

j + γmax
a′

Q′(φj+1, a
′; θ−)

end
perform a gradient step on (yj −Q(φj, aj; θ))

2 with respect to θ
if t mod B = 0 then

Q′ = Q
end

end
end
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Algorithm 8: A2C-based centralized learning-distributed execution
set number of environments E
set number of agents N
set number of episodes M
set number of steps in an episode T
set actor learning rate αA ≥ 0
set critic learning rate αC ≥ 0
randomly initialize actor and critic parameters θA, θC
for episode = 0,M − 1 do

for environment = 0, E − 1 do
for t = 0, T − 1 do

for n = 0, N − 1 do
gather and store data (snt , ant , rnt , s

′
nt) by acting

end
end
for n = 0, N − 1 do

for t = 0, T − 1 do
calculate predicted V̂ π(snt) using the critic
calculate the advantage Âπn(snt , ant) using GAE
calculate V π

tar(snt) using trajectory data
calculate entropies H(πθ(snt))

end
end

end
calculate critic loss:

Lcrit(θC) = 1
NT

∑N−1
n=0

(∑T−1
t=0

(
V̂ π(snt)− V π

tar(snt)
)2)

calculate actor loss for each agent:
for n = 0, N − 1 do

Lnpol(θA) =
∑T−1

t=0

(
Âπn(snt , ant) log πθA(ant |snt) + βH(πθ(snt))

)
end
calculate actor loss:
Lpol(θA) = 1

N

∑N−1
n=0 L

n
pol(θA)

update critic parameters θc with respect to Lcrit(θc)
update actor parameters θa with respect to Lpol(θa)

end
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Algorithm 9: DDPG-base centralized-learning centralized-execution
set number of D2D pairs N
set number of episodes M
set number of steps in an episode T
initialize experience replay memory D
initialize parameters noise process Np
initialize actions noise process Na
initialize critic Qψ and actor µθ networks, with parameters ψ and θ, respectively
initialize target networks Q− and µ− with parameters θ− ← θ and ψ− ← ψ
initialize µ̃ for exploration, and noise adaptation, with parameters θ̃ ← θ
initialize σk = σ0 and k = 0
for episode=1, · · · ,M do

perturb θ̃ ← θ +Np(0, σ2
k) and obtain µ̃

for t = 1, · · · , T do
sample an action at = µ̃(st) +Na

end
execute action at and observe new state st+1

store transition (st, at, rt, st+1) in D
if t mod Ttrain = 0 then

sample a random minibatch of E transitions (st, at, rt, st+1) from D
set target yi = ri + γQ−(si+1, µ

−(si+1))
update critic by minimizing the loss L = 1

E

∑
i(yi −Qψ(si, ai))

2

update actor using the sampled policy gradient

∇Jθ(µθ) =
1

N

∑
i

∇θQψ(si, µθ(si))

update target networks with (4.25)

θ− ← (1− ξ)θ− + ξθ

ψ− ← (1− ξ)ψ− + ξψ

end
if t mod Tadapt = 0 then

Estimate dk ← E[d(µ(s), µ̃(s)]
if dk ≤ δ then

σk+1 ← ασk
end
else

σk+1 ← 1
α
σk

end
k ← k + 1

end
update Na

end
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SIMULATIONS AND RESULTS

The results were obtained through a computational simulator, developed during this work.
The software was developed using the Python programming language [79]. The deep learn-
ing was implemented with the PyTorch library [80]. The software was developed by the
author and its code is available on GitHub [81].

In this chapter, we explain the performed simulations, the parameters choices and their
implementations. Afterwards, we go over the obtained results presentations and discussions.

6.1 CHANNEL MODELS

In our simulations, we considered two channel models: the Body Area Network (BAN)
[82] and the Wide Area Wireless World Initiative New Radio II (WINNER II) [83] C2 chan-
nel models. These models were chosen in order to bring the simulations closer to a realistic
urban scenario.

The BAN model is proposed in the ITU-R journal. It describes scenarios where the
devices are on the vicinities of the human body. These scenarios are described with more
depth in [83]. We chose to apply the off-body, office scenario, in order to simulate IoT
devices close to the human body. The channel loss, for the 2.4 GHz frequency, is given by

L = L0(d0) + 10npl log(d/d0) + ∆Lls + ∆Lss, (6.1)

where L0(d0) is the mean path loss at the reference distance d0, npl is the path loss exponent,
∆Lls and ∆Lss are the large-scale and small-scale fading components, respectively.

The model’s large-scale fading is modeled as a log-normal distribution [84], with log-
mean µL and log-standard deviation σL.

The small-scale fading follows a Nakagami distribution [84] with a shape parameter mL

and scale parameter ΩL.

The channel parameters are given in Table 6.1. The mean path loss is displayed in Fig-
ure 6.1. The large-scale and small-scale distributions may be seen in Figures 6.2 and 6.3,
respectively.

The second channel model we adopted was the WINNER II C2 [82]. This model de-
scribes an urban scenario, where the base station is clearly above the surrounding building
heights, and the buildings height and density are mostly homogeneous. We consider the
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Table 6.1 – BAN channel parameters.

Parameter Value
Environment Office

d0 1 m
L0(d0) 32 dB
npl 1.71
µL 0 dB
σL 1.2 dB
mL 0.9
ΩL 1

Table 6.2 – WINNER II C2 NLOS channel parameters.

Parameter Value
A1 (45.9− 6.55 log10(hBS)) log10(d)
A2 34.46 + 5.83 log10(hBS)
A3 23
µls 0 dB
σls 8 dB
µss 0 dB
σss 4 dB

non-line-of-sight (NLOS) scenario.

The general WINNER II channel path loss expression is given on the format

L = A1 log10(d) + A2 + A3 log10(fc/5) + ∆Lls + ∆Lss, (6.2)

where A1 is a fitting parameter that included the path-loss exponent, A2 is the intercept and
A3 describes the path loss frequency dependency. The carrier frequency is denoted by fc,
and may vary from 2 to 6 GHz. ∆Lls and ∆Lss are, respectively, the large- and small-scale
fading components.

The large-scale fading component is defined by a log-normal distribution with zero log-
mean µls and log-standard deviation σls. The small-fading component is not defined by
the model. Since it is a NLOS scenario, we decided to model the small-fading component
following a Rayleigh distribution [84], with mean µss and standard deviation σss.

For the C2 NLOS scenario, the channel loss is given in Table 6.2, where hBS is the BS
height, and d is the distance between transmitter and the loss measurement spot.

The model path loss is presented in Figure 6.1. Figures 6.2 and 6.3 present the large- and
small- scale fading components, respectively.
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Figure 6.1 – Path losses.

Figure 6.2 – Large scale fadings.
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Figure 6.3 – Small scale fadings.

6.2 SIMULATIONS METHODOLOGY

All results were produced with a computational interferences simulator, as mentioned
before. The software is responsible for randomly positioning the devices, generating the
channels, and calculating the devices SINRs, as well as other metrics. The calculations
results are used for obtaining the states and rewards values. The states are passed to the algo-
rithms, that use this information to define the D2D transmission power levels. The rewards
are used for the loss functions calculations, that are used in the algorithms training stages. In
fewer words, the simulator truly acts as the environment in Figure 2.1.

Throughout the results, presented in this work, the environment parameters remained
unchanged. Table 6.3 presents such parameters. The training parameters, for all algorithms,
are displayed in Tables 6.4, 6.5 and 6.6.

After testing different power level sets, the chosen power values for the CLDE algorithms
were

AAA = [−90,−40,−30,−20,−10, 0],

where the values are in dBW.
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Parameter Value

Number of MUEs 1
Carrier frequency fc 2.4 GHz
BS radius 1000 m
BS antenna height 25 m
BS gain 17 dBi
Minimum D2D initial pair distance 1.5 m
Maximum D2D initial pair distance 15 m
Devices height 1.5 m
Devices gain 4 dBi
Maximum devices transmit power 10 dBW
Noise power -146 dBW
MUE SINR threshold τ0 6 dB
MUE SINR margin τ1 6 dB

Table 6.3 – Environment parameters.

Parameter Value

Training steps 4 · 104

Replay buffer size |D| 104

Batch size 128
Return discount factor γ 0.5
NN hidden layers size 64
NN number of hidden layers 2
Activation function ReLU
Optimizer Adam [41]
Optimizer learning rate 2 · 10−4

Target NN update interval 50
ε-greedy initial value 1
ε-greedy minimum value 0.01
ε-greedy decay 5 · 10−5

Reward parameter α1 2.0
Reward parameter α2 0.1
Devices position distribution Uniform

Table 6.4 – DQL training parameters.
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Parameter Value

Number of environments 4
Return discount factor γ 0.5
Entropy discount β 0.01
Training steps 2 · 104

NN hidden layers size 64
NN number of hidden layers 2
Activation function ReLU
Optimizers Adam [41]
Actor optimizer learning rate 2 · 10−4

Critic optimizer learning rate 2 · 10−3

GAE λ 0.95
Reward parameter α1 2.0
Reward parameter α2 0.1
Devices positions distribution Uniform

Table 6.5 – A2C training parameters.

Parameter Value

Replay buffer size |D| 2 · 104

Batch size 128
Return discount factor γ 0.9
Training steps 3 · 104

Soft update parameter ξ 0.05
Initial parameters space noise σ0 0.1
Parameters space noise adaptation coefficient α 1.01
Parameters space noise adaptation interval Tadapt 5
Target NNs update interval Ttrain 1
Actions space noise mean µNa 0
Actions space noise initial scale σNa 4
Actions space noise minimum scale σNa 10−3
NN hidden layers size 64
NN number of hidden layers 2
Activation function ReLU
Optimizers AdamW [42]
Actor optimizer learning rate 2 · 10−4

Critic optimizer learning rate 2 · 10−3

GAE λ 0.95
Reward parameter α1 10.0
Reward parameter α2 1.0
Devices positions distribution Normal N (0, 450)

Table 6.6 – DDPG training parameters.
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6.3 MODELS CONVERGENCE

In this section, the rewards curves obtained in training are displayed, in order to show
the algorithms convergence. Figures 6.4, 6.5 and 6.6 exhibit the curves. All the curves were
obtained for the two D2D pairs case.

The plots show that all proposed algorithms have well behaved convergences. Through-
out the training process, the rewards functions converge and remain at defined regions.

In all figures, the bands around the plotted curves stand for the 95% confidence interval,
assuming the average estimated values are distributed following a normal distribution. For
each calculated average, 100 simulations were run, during the training process, in order to
obtain the results.

Figure 6.4 – DQL training rewards.
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Figure 6.5 – A2C training rewards.

Figure 6.6 – DDPG training rewards.
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6.4 NUMBER OF D2D PAIRS

In this section, the results show the influence of the amount of D2D pairs on the algo-
rithms’ average performance, so we may have a better overview on the solutions’ behaviour.
The algorithms are also compared to two random-based power control algorithms, in order
to guarantee the proposed solutions learning capabilities and prove they are capable of bet-
ter performances than the ones resulted from random power allocation. For each number
of D2D pairs, for each algorithm, 10000 simulations were run in order to obtain the plotted
averages.

The two random algorithms are called Discrete- and Continuous- random. In discrete-
random, the transmitters choose their transmission powers from a discrete set of transmission
power values, following a discrete uniform distribution. In a similar way, in the continuous-
random strategy, the transmitters select a transmission power value from a range of continu-
ous values, following a continuous uniform distribution.

Figure 6.7 exhibits the average MUE SINR according to the number of D2D pairs. It is
noticeable the CLDE solutions, DQL and A2C, are not able to maintain a high MUE QoS
level, as the average MUE SINR decreases as the number of D2D pairs increases. The CLCE
solution, DDPG, was able to maintain a high and constant average MUE QoS, despite the
increase on the number of D2D pairs.

The DQL algorithm failed to provide good MUE SINR levels when the number of D2D
pairs was greater than two. This happened because the algorithm failed to converge for these
conditions and was unable to find reasonable power allocations.

The MUE SINR directly affects the MUE availability, which is shown in Figure 6.8.
The MUE availability stands for the percentage of times the MUE SINR stood above the
minimum requirement.

The CLDE solutions were able to maintain the availability around 80% up till two D2D
pairs, having a noticeable performance drop from this point on, specially the DQL algorithm.
DDPG was able to keep high and stable MUE availability levels, around 100%. Both random
algorithms performed poorly. The discrete-random algorithm was able to outperform the
continuous one due to the discrete power values set, which has a more controllable and
restricted set of options. The continuous-random algorithm picks its power values from a
continuous range of values, which provides much more freedom, and bad choices, when in
comparison with the discrete values set.

Figure 6.9 displays the average D2D SINR versus the number of D2D pairs. Both CLDE
solutions provide similar results up until two D2D pairs. From there on, the DQL algorithm
provides around 10 dB more D2D SINR than the A2C one. This difference shows the A2C
algorithm acts in a more controlled way, transmitting with smaller power levels than the
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DQL one.

By comparing Figures 6.9 and 6.8, it is perceived that the D2D SINR increase is ac-
companied by a decrease in MUE availability. This is explained by the agents transmitting
at power levels that are not optimal and higher than what they should be. Therefore, this
behaviour is not desired, since it impairs the MUE QoS.

The same critic applies to the random-algorithms. Both solutions act by choosing high
and inappropriate transmission power levels, providing high D2D SINRs at the expense of
the MUE SINR.

The DDPG goes in the opposite way, by providing low average D2D SINRs and guar-
anteeing high QoS for the MUE. This was caused by the low transmission power values
employed by the agents.

Figure 6.11 shows the average rewards versus the number of D2D pairs. At first, it is
important to notice the distinguished behaviour by the DDPG and continuous random solu-
tions when in comparison to the other curves. This happened because their reward function
is different from the other algorithms’.

The A2C algorithm presents an almost constant reward curve, and the DQL presents a
decreasing one. Both random algorithms present low reward values due to their disregard
to the MUE SINR. All the CLDE solutions provide higher average rewards than the ones
obtained by the random algorithms. The DDPG solution rewards are explained by the high
praise its reward function gives to high MUE SINR levels.

In conclusion, all the DRL-based power control solutions were able to surpass random
schemes, which goes to show their learning capabilities. The CLDE solutions presented more
aggressive behaviours, by transmitting with higher power levels, culminating into higher
D2D SINRs and lower MUE SINRs. In contrast, the DDPG had a more conservative be-
haviour, by transmitting with smaller power levels, providing MUE QoS at the expense of
lower D2D SINRs.
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Figure 6.7 – MUE SINR comparison.

Figure 6.8 – MUE availability comparison.

67



Figure 6.9 – D2D SINR comparison.

Figure 6.10 – Rewards comparison.
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Figure 6.11 – Rewards comparison. The continuous random curve was removed for better
resolution.

6.5 CONTROLLED EXPERIMENTS

In the last section, the results provided knowledge on the algorithms’ behaviour. How-
ever, these results were obtained by averaging the measurements over a number of episodes.
Therefore, these results provide macro, general informations, across many situations.

In order to obtain more in-depth insights on the algorithms’ behaviour, controlled exper-
iments are presented here, along with their results. These experiments are scenarios with
expected outcomes. By comparing the algorithms actions with the expected outcomes, it is
possible to evaluate the solutions’ performance and adaptability in these scenarios.

In all experiments, there are two D2D pairs, one MUE and the BS. For Experiment 1 and
Experiment 2, the obtained measurements were the MUE and D2D SINRs, transmit powers,
and the MUE availability. In this case, the availability corresponds to the binary interference
indicator Ik.

6.5.1 Experiment 1

In this experiment, the D2D pairs begin close to the BS and move to the cell’s edge during
the episode. In contrast, the MUE starts at the cell’s edge and moves to the cell’s center,
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close to the BS. Figure 6.12 displays the devices initial positions and Figure 6.13 shows
the devices trajectories. The distance between the D2D transmitters and their respective
receivers stays constant at 5 meters, throughout the whole experiment. Figure 6.14 displays
the MUE transmission power in Experiments 1 and 2.

The expected outcome for this experiment is for the D2D transmitters to remain turned
off in the initial moments. As the pairs move away from the BS and the MUE approaches
the BS, the D2D agents are expected to similarly increase their transmission power levels,
since the further distance mitigates the interference on the BS and both pairs are equidistant
to the BS. The power levels chosen by the agents might still differ due to different fadings
experienced by the channels. The average availability, across the episodes, is expected to be
close to one.

6.5.1.1 DQL

This section contains the discussions about the results obtained with the DQL algorithm
in Experiment 1.

Figure 6.15 presents the MUE SINR throughout Experiment 1. As time passes, it in-
creases due to the MUE getting closer to the BS. Around 225 s, the SINR drop matches the
instant one of D2D transmitters raises its transmission power level, as can be seen in Figure
6.16.

Figure 6.16 shows the D2D pairs SINR during Experiment 1 and Figure 6.17 displays
the transmission powers employed by the D2D transmitters. The results show the devices
begin the experiment by transmitting at -40 dBW. Near 225 s, one of the devices raises its
transmit power to -20 dBW. In this moment, the D2D pairs are further away from the BS and
the MUE is closer to the BS, when in comparison to the beginning of the experiment.

Figure 6.18 exhibits the MUE availability in the course of Experiment 1. At the be-
ginning, the availability is zero and it increases as the time passes and the devices change
positions. Around 250 s the availability quickly drops, in an instant device 0 has already
increased its transmit power. This happened because of the fast fading channels. Throughout
the episode, the average availability was 76.28%.

By looking at the results obtained with the DQL algorithm, it is possible to say the
solution acted partially as expected. The agents wait until they are further away from the BS,
and the MUE is closer to the BS, before raising their transmit power. However, their initial
transmit power should be lower. While close to the BS, at the experiment’s beginning, they
chose the -40 dBW power level, instead of the lower -90 dBW, which is considered turned
off. This would have avoided the initial low MUE availability. Only one of the devices raised
its transmit power level, when it was expected that both devices would do it in a similar way.
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6.5.1.2 A2C

In this section, the results obtained with the A2C algorithm, for Experiment 1, are dis-
cussed.

Figure 6.19 shows the MUE SINR, throughout the experiment. It presents a similar
behaviour to what has been seen previously, for the DQL solution.

The D2D SINRs, displayed in Figure 6.20, reflect the employed transmission powers
that Figure 6.21 presents. The devices kept alternating between the -40 dBW and -30 dBW
power levels. It was not possible to define a clear power allocation pattern for the algorithm.

Figure 6.22 exhibits the MUE availability during Experiment 1. It begins at zero and
increases as the D2D pairs get away from the BS and the MUE approaches the BS. The
average availability was 74.57%.

The A2C solution was not able to provide the expected power allocation. Instead of
turning off at the experiment’s initial moments, and increasing the transmit powers as the
experiment progressed, the agents kept alternating between two power levels, without a clear
action pattern. However, they were able to achieve an average MUE availability that is close
to the one achieved by the DQL solution.

6.5.1.3 DDPG

This section deliberates on the results obtained by the DDPG solution in Experiment 1.
This solution clearly acts differently when in comparison to the previous ones

Figure 6.23 displays the MUE SINR. Right from the start, the MUE SINR already is
above the minimum threshold of 6 dB, and it increases according to the devices motion.

Figure 6.24 presents D2D SINRs, during the experiment. They begin at lower levels and
increases as time passes, matching the devices power control behaviour, which is seen in
Figure 6.25. Both devices begin transmitting at low power levels, around -90 dBW, which is
considered turned off, and increase their power levels similarly. A possible explanation for
the difference in power levels is the different channel fadings. Although the final transmit
powers are very low, around -50 dBW and -70 dBW, they are still close to the LTE minimum
transmit power specification [85].

Despite employing such low transmit powers, the D2D devices were still able to achieve
decent SINR levels, surpassing 10 dB. The algorithms’ policy resulted on a average MUE
availability of 100%, as depicted by Figure 6.26.

The DDPG solution partially fulfilled the expectations. Both the D2D transmitters begun
with really low power levels and, similarly, increased the transmit powers as the D2D pairs
got further away from the BS and the MUE got closer to the BS. However, the algorithm

71



could have employed higher power levels towards the end of the experiment, since the other
solutions, A2C and DQL, were able to transmit at higher power levels, and achieve higher
D2D SINRs without compromising the MUE QoS.

Figure 6.12 – Devices original positions in Experiments 1 and 2.

72



Figure 6.13 – Devices trajectories in Experiment 1.

Figure 6.14 – MUE transmission powers in Experiments 1 and 2.
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Figure 6.15 – MUE SINR for DQL in experiment 1.

Figure 6.16 – D2D SINR for DQL in experiment 1.
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Figure 6.17 – D2D transmission powers for DQL in experiment 1.

Figure 6.18 – MUE availability for DQL in experiment 1. Average availability of 0.7628.
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Figure 6.19 – MUE SINR for A2C in experiment 1.

Figure 6.20 – D2D SINR for A2C in experiment 1.
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Figure 6.21 – D2D transmission powers for A2C in experiment 1.

Figure 6.22 – MUE availability for A2C in experiment 1. Average availability of 0.7457.
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Figure 6.23 – MUE SINR for DDPG in experiment 1.

Figure 6.24 – D2D SINR for DDPG in experiment 1.
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Figure 6.25 – D2D transmission powers for DDPG in experiment 1.

Figure 6.26 – MUE availability for DDPG in experiment 1. Average availability of 1.0.
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6.5.2 Experiment 2

In this experiment, the devices begin at the same start positions as in Experiment 1, which
is depicted by Figure 6.12. However, the trajectories are now slightly different. The MUE
and the D2D pair 1 have the same motion as in Experiment 1, while D2D pair 0 stands still
the whole time. The idea is to check if the agents are able to acknowledge their distinguished
cases and act accordingly. Figure 6.27 presents the new devices trajectories.

The expected outcome for this experiment is for D2D transmitter 0 to apply low transmit
power levels, or even to remain completely shut down for the whole experiment, while D2D
transmitter 1 increases its transmitter power as it distances itself from the BS and the MUE
approaches the BS. The average availability, across the experiments, is expected to be close
to 100%.

6.5.2.1 DQL

In Experiment 2, the DQL solution had a bad performance. Throughout the whole exper-
iment, the MUE SINR remained below the minimum threshold, as depicted by Figures 6.28
and 6.31.

Both D2D pairs had high SINRs, at the expense of the MUE QoS. Similar to what hap-
pened on Experiment 1, both devices begun transmitting with -40 dBW and, towards the end
of the experiment, device 0 increased its transmit power to -20 dBW, around 300 s. This
effect is felt on all devices’ SINRs, as depicted by Figures 6.28 and 6.29.

The solution did not behave as expected. Both D2D transmitters should have chosen
the -90 dBW power level from the start. As time passes, device 0 should have increased
its transmit power, as it moved further away from the BS. Device 1 should have kept at -90
dBW power level, as it remained close to the BS.

6.5.2.2 A2C

Despite acting differently from the DQL solution, A2C also had a poor performance in
Experiment 2. By looking at Figures 6.32 and 6.35, it is possible to see the that the solution
fails to provide the minimum MUE SINR requirement.

The agents keep interchanging between the -40 dBW and -30 dBW power levels, without
a clear pattern. Therefore, the solution did not act as expected.
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6.5.2.3 DDPG

The DDPG algorithm was able to satisfy the MUE QoS requirement throughout the
whole experiment, as Figures 6.36 and 6.39 show.

The power allocation strategy is depicted by Figure 6.38. In the experiment’s beginning,
both D2D agents transmit at -90 dBW, which is a very low power level. As Device 1 gets
further away from the BS, it increases its transmit power to -40 dBW, a much higher power
level, while Device 0 keeps its transmit power at really low levels. This is reflected by Figure
6.37, which shows the D2D SINRs.

In the end, the DDPG algorithm was able to achieve a high average MUE availability of
99.857%, as presented by Figure 6.39, while providing a 60 dB SINR to Device 1.

The DDPG solution performed according to the expectations. Device 1 raised its power
level as its distance to the BS increased, while Device 0 kept its transmit power at really
low values, since it stood next to the BS during the whole experiment. Therefore, it was
expected for Device 1 to have high SINR levels and for Device 0 to have a low SINR. The
MUE achieved a good QoS for almost the whole experiment.

6.5.3 Conclusions on Experiments 1 and 2

Experiments 1 and 2 provided interesting results in order to evaluate the algorithms’ per-
formances in controlled scenarios. It was possible to confirm the CLDE solutions performed
poorly in these scenarios, despite achieving interesting macro results, as presented in Section
6.4, such as high D2D SINR and MUE availability, up to two D2D pairs.

On the other hand, DDPG presented low D2D SINR in Section 6.4, but proved to be much
more adaptable and coherent in Experiments 1 and 2, providing very high MUE availability
and good D2D SINR levels. Therefore, it is decided the DDPG solution, among the presented
algorithms, had the best performance in the experiments.
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Figure 6.27 – Devices trajectories in Experiment 2.

Figure 6.28 – MUE SINR for DQL in Experiment 2.
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Figure 6.29 – D2D SINR for DQL in Experiment 2.

Figure 6.30 – D2D transmission powers for DQL in Experiment 2.
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Figure 6.31 – MUE availability for DQL in Experiment 2. Average availability of 0%.

Figure 6.32 – MUE SINR for A2C in Experiment 2.
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Figure 6.33 – D2D SINR for A2C in Experiment 2.

Figure 6.34 – D2D transmission powers for A2C in Experiment 2.

85



Figure 6.35 – MUE availability for A2C in Experiment 2. Average availability of 0%.

Figure 6.36 – MUE SINR for DDPG in Experiment 2.
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Figure 6.37 – D2D SINR for DDPG in Experiment 2.

Figure 6.38 – D2D transmission powers for DDPG in Experiment 2.

87



Figure 6.39 – MUE availability for DDPG in Experiment 2. Average availability of 0.99857.

6.6 DDPG ON DETERMINISTIC CHANNELS

In this experiment, DDPG was tested on similar conditions to Experiment 1, but in a
environment where the channels’ gain are composed only by the deterministic pathlosses.
Figure 6.40 depicts the channel losses from both devices to the BS. It is possible to see that
both devices experience similar channel conditions.

The fadings were removed in order to observe if the algorithm would allocate the same
transmission power levels to both transmitters. Figure 6.41 shows the allocated transmission
powers. The results show the devices transmission power levels differ in about 20 dBW. This
goes to show that the DDPG algorithm does not provide fairness.

The lack of fairness may be explained by the reward function. The proposed reward
function for DDPG, which is defined in (5.7), focuses only on maximizing the sum of the
devices SINR, and it is not concerned about fairness.
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Figure 6.40 – Channel to BS.

Figure 6.41 – Devices transmission powers.
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6.7 SPECTRAL EFFICIENCY

The final results show the spectral efficiency provided by the algorithms. The main ob-
jective of such algorithms is, indeed, to improve this metric and help the mobile communica-
tion systems achieve the expectations that were drawn for 5G, while guaranteeing acceptable
levels of QoS to the primary user.

Figure 6.42 shows the average system spectral efficiencies, provided by the algorithms,
according to the number of D2D pairs. The system spectral efficiency is the sum of all
devices spectral efficiencies.

Despite the high spectral efficiencies obtained with DQL, A2C and the random algo-
rithms, these solutions provide poor MUE QoS, as already presented by Figure 6.8. There-
fore, these algorithms are not suited for the task at hand.

On the other hand, DDPG provides significant gains on spectral efficiency, while guar-
anteeing high SINR levels to the MUE. For only one D2D pair, the algorithm is able to
increase the average system spectral efficiency from 4.07 bps/Hz to 7.01 bps/Hz, which is an
improvement of 72%. As the number of D2D pairs increase, the improvement on the spec-
tral efficiency decreases, since the algorithm lowers the D2D transmit powers accordingly,
in order to keep satisfying the MUE QoS requirement. This is verified as the DDPG curve
approaches the "No D2D communication" curve.

Figure 6.43 portrays the spectral efficiency obtained in Experiment 1. This is a very
favorable scenario for D2D communication and it goes to highlight the possible spectral
efficiency gains this type of communication may provide, along with the proposed DDPG-
based power control algorithm.

During the system spectral efficiency peak, the proposed algorithm was able to improve
this metric from 7.01 bps/Hz to 32.90 bps/Hz, which is a 369% increase. This improvement
really shows the potential of combining D2D communications with DRL-based techniques.
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Figure 6.42 – Average System Spectral efficiencies.

Figure 6.43 – Spectral efficiencies for DDPG in Experiment 1.
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6.8 CONCLUSIONS

This chapter presented the simulations methodology along with the obtained results. The
simulations’ goal was to evaluate the proposed DRL-based algorithms and obtain not only
macro-results, but also in-depth knowledge on the solutions’ behaviours.

The proposed DRL-based solutions had better performances than random allocation al-
gorithms, which goes to show all algorithms were able to achieve degrees of knowledge
on the task at hand. The CLDE solutions provided aggressive solutions, that provided high
D2D SINR and poor MUE availability. The CLCE solution went on the opposite way, being
conservative with the power allocation and providing high QoS to the primary user.

Experiments 1 and 2 evaluated how the algorithms would perform in controlled scenar-
ios. Despite showing ability to adapt to the experiments, the CLDE solutions were note able
to able to achieve good performances and failed to deliver acceptable levels of MUE avail-
ability. On the other hand, the CLCE algorithm provided high MUE and D2D SINR levels,
acting in adaptable and coherent ways, achieving the best performance among the proposed
solutions.

Although DDPG had satisfying performances, it is still very conservative and allocates
very low power levels to D2D transmitters. There is still room for improvement in this area,
in order to have the algorithm make more optimal decisions.

By evaluating all the obtained results, the DDPG-based algorithm is considered to be the
best among the proposed solutions. It is able to provide high MUE availability, along with
high system spectral efficiency gains.
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CONCLUSIONS

This work investigated the application of DRL-based techniques to the power allocation
problem in inband underlay D2D communication.

At first, fundamental concepts were introduced, in order to ease the understanding on
the presented topics. The base theory concerning reinforcement learning was presented.
The problem formalization as a markovian decision process, diverse RL algorithms and
paradigms were elucidated.

Another important discussed topic was neural networks. This work presented the base
theory, as well as more advanced architectures, along with optimization methods for training.
With these topics clarified, it was possible to explore the field of this work’s main tool, deep
reinforcement learning.

D2D communication, in inband underlay mode, was studied in a scenario envisioned to
approximate reality, by making use of the WINNER II and ITU-R BAN channel models,
simulating IoT devices, performing D2D communication, in an urban environment. During
transmission, the devices could move in pedestrian speeds, or stay still. The transmission
happened at uplink times.

The three proposed power control solutions were based on: DQL, which is an off-policy
value-optimization algorithm, A2C, an on-policy actor-critic-optimization algorithm, and
DDPG, an off-policy actor-critic-algorithm. The first two solutions, which make use of DQL
and A2C, respectively, output discrete-value actions, and were employed under a multi-agent
scheme, in order to avoid the curse of dimensionality. DDPG could be applied in a single-
agent centralized scheme, since its continuous-value actions nature enables this approach.
All these techniques were evaluated in the proposed scenario, and compared among them-
selves.

The obtained results show that the multi-agent solutions tend to behave more aggres-
sively, easily violating the MUE QoS. These solutions also tend to choose actions that have
good average returns. This behaviour has a negative impact on the solutions’ adaptability,
making them act poorly on some of the experiments.

On the other hand, the single-agent solution, implemented using DDPG, was inclined to
satisfy the MUE SINR requirements, at the expense of the quality of D2D communication,
which is a desired outcome. Therefore, on average, this solution presents smaller SINR val-
ues for the D2D pairs. Additionally, the central agent solution was able to react accordingly
in the majority of the experiments, which goes to show the adaptability of this solution.

It is important to highlight that discrete-value actions algorithms have access to a much
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smaller array of action options, when in comparison to continuous-value actions algorithms.
The choice of the action options set has a great influence in the algorithms performance, and
the process of defining such set is a complex problem by itself. It is also important to notice
that, although continuous-value algorithms are better suited to this works’ subject, there are
problems where discrete-value algorithms are better equipped to deal with, such as situations
where the actions are inherently discrete, e.g., most of video-games [47].

Based on this work’s results, it has been concluded that the DDPG solution has proven to
be the most reliable, consistent and adaptable, among the tested algorithms. It is able to en-
hance the system’s spectral efficiency, while satisfying the primary user’s QoS requirement.
The solution displays promising possibilities for improvements.

FUTURE WORKS

According to this work’s results, continuous-value DRL-based techniques are a promis-
ing field for the power control problem in D2D underlay communication. Therefore, oppor-
tunities for improvement, along with new experiments, were identified. It is suggested:

• experimenting with other states and rewards functions, different from what is done in
this work. These design choices have a great impact on the algorithms’ behaviour and
may be the easiest feature to improve upon;

• testing other acclaimed continuous-value actions methods, such as the ones proposed
in [49, 86, 87]. Different algorithms may perform better, or worse, than the solutions
presented in this work;

• experimenting with other RL paradigms, such as model-based algorithms. DeepMind
has achieved great success with this approach [30, 88, 89].

• testing for multiple RBs. In this work, the simulations were performed considering
only one RB. When multiple resource blocks are concerned, the transmission power
constraints become more complex, since the agents must decide upon how much power
to allocate on each RB, without violating the maximum transmit power restriction.
This is an interesting problem and may be implemented by expanding upon this work’s
contributions.

• trying out these solution in more complex simulators, such as full fledged system sim-
ulators or network simulators.

• experimenting with multiple applications requirements. In this work, the MUE QoS
requirement remained the same across all experiments. It would be interesting to test
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with dynamic QoS requirements, in order to test the solutions adaptability. This vari-
able could be incorporated to the design by altering the rewards and the states defini-
tions.
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