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Resumo

Neste trabalho estudamos a existéncia e a concentracao de solugbes para uma classe de
equacoes quaselineares. Mais precisamente, estudamos a seguinte classe de problemas

—div (a (P|VulP) | VuP~2Vu) + V(2)b (JulP) [ulP~2u = f(u) in RV, p
{ u € WHP(RN) n WHY(RYN), (Fe)

onde 1 <p<qg< Ne N >2. Estas solugoes se concentram em torno do ponto de minimo
do potencial V' quando € — 0 e possuem decaimento exponencial. Consideramos a funcgao
f com trés tipos diferentes de condigoes de crescimento: exponencial critica, subcritica e
critica. Aqui usamos métodos variacionais e a técnica de Del Pino e Felmer’s [26] para
superar a perda de compacidade .



Abstract

In this work we study the existence and concentration of the solutions for a class of quasi-
linear equations. More precisely, we study the following class of problems

{ —div (a (P|VulP) | VuP~2Vu) + V(2)b (JulP) [ulP~2u = f(u) in RV, P

u e WHP(RN) N Wha(RN),

where 1 < p < g < N and N > 2. These solutions concentrate around the minimum point
of potential V' as ¢ — 0 and have exponential decay at infinity. We consider the function f
with three different types of growth: critical exponential, subcritical and critical. Here we
use variational methods and Del Pino and Felmer’s technique [26] in order to overcome the
lack of compactness.
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Introduction

In this work we are going study the existence and concentration of solutions for the
following class of problems:

—div (a (e?|VulP) |VuP~2Vu) + V(2)b (|ulP) [ulP~?u = f(u) in RV,
{ (a (" Vul?) V| ) + V()b ([uf?) [ul fu) ")

u e WIP(RN) N WL(RN),

where 1 < p < ¢ < N and N > 2. The hypotheses on the functions a and b are the
following:

(a1) the function a is of class C! and there exist constants kq, ko > 0 such that
kit? +t1 < a(tP)tP < kot? + 1, for all ¢ > 0;
t
(a2) the mapping ¢ — A(tP) is convex on (0,00), where A(t) = / a(s)ds;
0

a(tP)

ta—p

(a3) the mapping t — is nonincreasing for ¢ > 0;

ag) if 1 < p < ¢qg <2 < N the mapping ¢t — a(t) is nondecreasing for ¢ > 0. If
p q
2 < p < ¢ < N the mapping t — a(t?)tP~2 is nondecreasing for ¢ > 0.

(b1) The function b is of class C! and there exist constants k3, k4 > 0 such that

kstP 4+t < b(tP)tP < kqt? + ¢,  for all ¢ > 0;

t
(b2) the mapping t — B(t?) is convex on (0,00), where B(t) = / b(s)ds;
0

b(#?)

ta—p

(bs) the mapping t — is nonincreasing for ¢ > 0.

by) if 1 < p < ¢qg <2 < N the mapping t — b(t) is nondecreasing for ¢ > 0. If
p
2 < p < ¢ < N the mapping t — b(t?)tP~2 is nondecreasing for ¢ > 0.

Using (a3) and (bs) we can prove that there exists a positive real constant v > I such that

1 1
—a(t)t < A(t) and —b(t)t < B(t), for allt>0. (0.0.1)
Y 7
The conditions on V are as follows:
(V1) There is Vo > 0 such that

0< Vo <V(2), forall ze RV,

11



(V3) There exists a bounded domain © ¢ RY, such that

= inf inf .
R U

Such class of problems arises from applications in physics and related sciences, such as
biophysics, plasma physics and chemical reaction, as it can be seen for example in [37], [38]
and [63]. For example, we can cite a particular case of (P.):

a—p

Problem 1: Let a(t) =1+t » and b(t) =1+ ¢'7 . In this case we are studying problem

—Apu — Agu+ V(@) (|ulP2u + [u|f?u) = f(u) in RY.

The Problem 1 from a general reaction—diffusion system: w; = div(DuVu) + g(x,u),
where Du := [|[Vu[P~2 4 |Vu|92]. In such applications, the function u describes a concen-
tration, the term div(DuVu) corresponds to the diffusion with a diffusion coefficient Du
and g(-,u) is the reaction and relates to source and loss processes. Usually, in chemical
and biological applications, the reaction term g(-,u) is a polynomial of u with variable
coeflicients.

In order to illustrate the degree of generality of the kind of problems studied here,
with adequate hypotheses on the functions a and b, in the following we present more some
examples of problems which are also interesting from the mathematical point of view and
have a wide range of applications in physics and related sciences.

Problem 2: Let a(t) = 7" and b(t) = ¢"7". In this case we are studying problem
—eIAu+ V(z)|ul%u = f(u) in RY

and it is related to the main result showed in [9], [11], [12] in the case p = 2. In [5], [8], [45]
the author have studied the case 1 < ¢ < N.

Problem 3: Let a(t) = 1 + —L— and b(¢) = 1. In this case we are studying problem

p=2
(1+t) P

P |Vu|P~2Vu
p—2

(1+ er|Vulp) »

—e? div(|VulP?Vu) — div < ) + V(@) |ulf"u = f(u) in RV,

Problem 4: Let a(t) =1 +t % +—1_ and b(t) =1 +t"7 . In this case we are studying

p=2
(1+t) P

problem

| Vu|P~2Vu

p—2

(1+e|Vulp)'5

—ePApu — €?Aju — div ( > + V(@) (|u|P2u + |u|?%u) = f(u) in RV,

The interest in the study the class of p&q equations has increased because of the generality
of the involved differential operators, see for example [48], [49], [56], [57]. Indeed [48] and [49]
characterize the continuous spectrum of double-phase equations. On the other hand [56]
and [57] deal, respectively, with the classes of Laplacian-like operators on Riemannian
manifolds, and the existence of blow-up phenomena for A-Laplacian operators.

The concentration of solutions is motivated by the great interest in quantum mechanics,
which, for instance, is the study of the nonlinear Schrodinger equation

Z-E%‘f — —E2AV 4 (V(z) + E)¥ — f(¥) for all € RY, (NLS)

12



where € > 0. Knowledge of the solutions for the elliptic equation
—EAu+V(z)u= f(u) in RY (NLS1)

has a great importance in the study of standing-wave solutions of (NLS). The behavior
of the solutions, of the above equation, when ¢ — 0 has great physical interest since it
describes the transition from quantum to classical mechanics, being called semiclassical
states.

In [51], by a mountain pass argument, Rabinowitz proves the existence of positive
solutions of (INVLS1), for € > 0 small, whenever

Voo = liminf V(z) > inf V(z) =~ > 0. (R)
|z| =00 zERN
Later Wang [61] showed that these solutions concentrate at global minimum points of V()
as € tends to 0. Wang also noted that the concentration of any family of solutions with
energy uniformly bounded can only occur in a critical point of V.
In [26], del Pino and Felmer proved the existence of solutions, which are concentrated
around local minimum of V' by introducing a penalization method. More precisely, they
assume that there is an open and bounded set Q compactly contained in RY such that

0<y= xleIIgN Vi) < Wy = iggV(zz) < min V(zx).

After this excellent paper [26], many authors have used the penalization method with
different differential operators. There are more than four hundred quotes, which makes it
almost impossible to cite all. However, this method has been little applied to show the
existence of nodal solutions that concentrate at minimum points of potential V. For exam-
ple, [9] and [12] with Laplacian operator, [8], [11] with Laplacian operator and nonlinearity
of exponential type, [4], [31], [32] and [45] with p-Laplacian operator, [27] with quasilinear
operator —Au— A(u?)u, [36] with Laplacian operator and the nodal solutions concentrating
on lower dimensional spheres, [52] with Laplacian operator and V' with critical frequency.

As can be seen in [6], [34] and [30], p&q problems are generalizations of (R). However,
as can seen below, we show that the arguments found in [26], [51] and [61] cannot be used
directly. But before that, we are going to report some results on p&q problems type. There
are interesting papers on such class of problems. We start with some problems in a bounded
domain. For example, in [34] the author shows existence and multiplicity of solutions for
a critical p&q problem considering nonlinearity of concave and convex type. The critical
case with discontinuous nonlinearities was studied in [35]. In [15] and [24], the existence
of solutions using non-variational methods is shown, such as sub-supersolutions and the
principle of comparison.

Now we comment some results in RY. Existence results was studied in [23] and [30].
In [5] the authors studied concentration results in Orlicz-Sobolev spaces with subcritical
nonlinearity and the potential satisfying the local condition introduced by Del pino and
Felmer [26]. In [6] was showed the existence and concentration results with subcritical
nonlinearity and the potential satisfying the global condition introduced by Rabinowitz [51](
see also [61]).

This work is divided into three chapters and three appendices. In Chapter 1 we study
existence and concentration of nodal solutions of (P.) with exponential critical growth. For
this ¢ = N and the nonlinearity f is assumed to be a C'(R) odd function with critical
exponential growth at +oo, that is, f behaves exp(ag|t|N\V=1), for some o > 0.

More precisely, we assume the following growth conditions in the origin and at infinity
for the function f: R — R of C! class:

13



(f1)
lim I'(s)

= 0.
|s| 0 |s] V=2

(f2) There exists ag > 0 such that the function f satisfies

f(t)

=0 fi >
o exp(alt VN T) Sy p(aty T

and

i 1) = oo for a < ay,
t—o00 eXp(a‘t]N/N—l) _ SN—Q(Oé,t)
N-2 Oék
where Sy_o(a,t) = Z ﬁ|t|Nk/(N—1)'
k=0

(f3) There exists § > ~yp such that
0<OF(s) < f(s)s, for s#0,
where F(s) = / f(t)dt and v > 0 was given in (0.0.1);
0

f(s)

(f1) s+— N1 is nondecreasing in s > 0.

(f5) There exist 7 > N and 7 > 1 such that
sgn(t)f(t) = 7t

for all ¢ # 0.

In the last years, the research to find positive or nontrivial solutions for critical expo-
nential elliptic problem has been made for many authors. For example [1], [2], [3], [8], [21],

[25], [34], [41], [42], [46], [47], [53] and references therein.

However, the research to find nodal solutions for critical exponential elliptic problem
has been made for few authors. In [10] the authors establish the existence and multiplicity
of multi-bump nodal solutions for the class of problems involving the Laplacian operator.
In [50] was studied existence of infinitely many sign-changing solutions for elliptic problems
with critical exponential growth in bounded domain. In [11] and [12] the authors showed

existence and concentration of solution using the penalization method.

Our arguments were strongly influenced by [10], [11], [12] and [50]. Below we list what

we believe that are the main contributions of our chapter.

(i) As well-known, in order to overcome the difficult provoked by the exponential critical
growth, it is sufficient to have some control on the norm of the minimizing sequence.
We obtain such control using a solution of a problem in a bounded domain, as can be

seen in Lemma 1.2.3.

(ii) Since the operator considered in this paper is not linear and nonhomegenous, some
results that can be found in the papers above mentioned cannot be repeated here.
For example, Lemma 1.2.2, Lemma 1.2.3, Lemma 1.2.4 , Lemma 1.2.5.

(iii) In this work we consider a large class of quasilinear operators that includes all oper-

ators considered in the papers above mentioned.

14



The main result of the Chapter 1 is the following:

Theorem 1. Suppose that a, b, f and V satisfy (a1) — (a4), (b1) — (ba), (f1) — (f5) and
(V1) — (V) respectively. Then, there are eg > 0 and 7 > 1 such that (P:) has a nodal
solution we € WHP(RN)NWEN(RYN), for every € € (0,¢y) and for every T > 7*. Moreover,
if P} is the mazimum point of we and P? is the minimum point of w., then fori = 1,2, we
obtain

lim V(P?) = V.

e—0

Moreover, there are positive constants C and o such that
> +exp <—a > ] ,

In Chapter 2 we prove existence and concentration results for a family of nodal solutions
for a (P.) with subcritical growth. We also show that each nodal solution changes sign
exactly once in R and has a exponential decay at infinity. Here we use variational methods
and Del Pino and Felmer’s technique [26] in order to overcome the lack of compactness.

We would like to quote more articles that are directly related to the arguments that
are used in this work. In [58] the author considers a strongly resonant Neumann problem
driven by a general nonhomogeneous differential operator. In [59] the author proves the
existence of at least two nontrivial solutions of a semilinear Robin problem, whose reaction
makes difficult the direct application of variational methods on the energy functional of
the problem. Then, the author passes to a suitable subspace where such techniques are
applicable, using the Lyapunov-Schmidt reduction method. Finally, in [60] the authors use
a classical variational approach based on the critical points theory to prove the existence
of at least one nontrivial weak solution of a double phase Dirichlet problem. Here the
differential operator of the problem is the sum of two r-Laplacian-type operators with
variable exponents.

For this chapter the nonlinearity f is assumed to be a C*(R) odd function satisfying

(f1)

1

€

2
z — P
€

(=) < c[exp(—a :

for all € € (0,¢) and for all z € RY.

f'(s)

11m
5|0 |s]972

(f2) There exists ¢ <71 < ¢* = ]\?—]fq such that

(f3) There exists 6 € (yp,q*) such that

0<0F(s) < f(s)s, for s#0,
where F(s) = / f(t)dt and v > 0 was given in (0.0.1);
0

f(s)

s9—1

(fa) s+

is nondecreasing in s > 0.

Our arguments were strongly influenced by [4], [11], [12], [26], [27], [36], [52]. Below we
list what we believe that are the main contributions of our chapter.
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(i) In this work we consider a large class of quasilinear operator that includes all operators
considered in the papers above mentioned.

(ii) Since the operator considered in this paper is not linear and nonhomegenous, some
results that can be found in the papers above mentioned cannot be repeated here.
For example, Lemma 2.2.2, Lemma 2.3.3, Lemma 2.5.1 and Lemma 2.5.4.

The main result of the chapter is the following:

Theorem 2. Suppose that a, b, f and V satisfy (a1) — (asa), (b1) — (ba), (f1) — (fa)
and (Vi) — (V) respectively. Then there is g > 0, such that (P.) has a nodal solution
we € WEP(RN) N WHYRY), for every € € (0,¢9). Moreover, if P} is the maximum point

of we and P2 is the minimum point of we, then for i = 1,2, we obtain

lim V(P! = V.

e—0

Moreover, there are positive constants C and « such that
> + exp <—a > ] ,

In Chapter 3 we prove existence and concentration results for a family of positive so-
lutions for a (P.) with critical growth. We use Mountain Pass Theorem and Del Pino
& Felmer’s arguments [26] associated to Lions’s Concentration and Compactness Princi-
ple [39] in order to overcome the lack of compactness. For this chapter the nonlinearity f
is assumed to be a C'(R) function satisfying

(f1)

1
€

2
z — P
€

w(2)] < c[exp(—a :

for all e € (0,¢) and for all z € RV,

f(s)

11m =
|s|—=0 |s[71

(f2) There exists ¢ <71 < ¢* = ]\q,—N such that

—q
lim 1(s)

$|r—1

=0.

[sl—=oc |
(f3) There exists 6 € (yp,q*) such that
0 <0F(s) < f(s)s, for s> 0,
where F(s) = /05 f(t)dt and v > 0 was given in (0.0.1);

f(s)

sa—1

(f1) s+— is nondecreasing for s > 0.
(f5) There exist 7 € (¢, ¢*) and A > 1

f(s)>Xxs"! Vs>o0.

In this chapter is strongly influenced by the articles above. Below we list what we
believe that are the main contributions of our paper.

16



(7) Unlike [6], [23] and [30], we show existence and concentration result considering the
local potential introduced by Del Pino and Felmer [26].

(74) Unlike [5], we are considering the critical nonlinearity.

(13i) Since the operator is not homogeneous, some estimates are different and more delicate
than some estimates that can be found in [26] and [51] . For example, see Lemma
3.2.4, Proposition 3.3.1, Lemma 3.3.7 and all the Lemmas of Section 3.5.

(iv) In order to overcome the lack of compactness provoked by the critical growth, it is
very common to use the Talenti’s function (see [55]) to have some control on the
minimax level, as can be seen in [20, Lemma 1.1]. The lack of homogenity of the p&q
operator does not allow to use this argument. We overcome this difficulty using the
solution of a problem in a bounded domain, as can be seen in Lemma 3.2.5.

The main result in the Chapter 3 is the following:

Theorem 3. Suppose that a, b, f and V satisfy (a1) — (a3), (b1) — (b3), (f1) — (f5) and
(Vi) — (Va) respectively. Then there are eg > 0 and \* > 1 such that (P) has a positive
solution we € WIP(RN)NWI(RN), for every e € (0,¢) and for every A > X*. In addition,
if P. is the mazimum point of w., then

lim V(P.) = Vg.

e—0

Moreover, there are positive constants C and « such that

z— P.

lwe(z)] < Cexp (—a

)

In both chapters we will use the technique used in [26], by del Pino and Felmer, and
that autonomous problem has a ground-state solution, in other words solutions related
to minimax level. Moreover, by arguments found in [6], which are related to the Moser
iteration method [43], we can prove the exponential decay to solutions find here. In chapter
1 and 3 we need to prove the existence of ground-state solution of an auxiliary problem in
bounded domain, these results are in Appendix A. The proof the technical results can be
find in Appendix B. In the Appendix C is reserved for classic results that we will not prove.

In order not to go back to the Introduction and to make the chapters independent, we
will state again, in each chapter, the main results, as well as the hypotheses on the functions
a, b, Vand f.

It is worth mentioning that all chapters are in articles that have been submitted for
publication in specialized journals. The Chapter 2 was recently published in the jour-
nal Communications on Pure and Applied Analysis (see http://www.aimsciences.org/
article/doi/10.3934/cpaa.2020227)

for all € € (0,¢) and for all z € RV,
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Notation

In this work we use the following notation:

¢ and C; with i =0, 1, 2,...

—

supp f
Bg(z)
a.e.

Al

A1 CcC A2

ou ou
V’LL = (axl, ceny M)

N Ou

Au= >

i=1 3301

Apu = div (|[Vu|P~2Vu)

= div(Vu)

18

(possibly different) positive constants;

weak convergence;

strong convergence;

support of the function f;

open ball of radius R centered at z;

almost everywhere;

measure of the set A;

A; strongly included in A, i.e., A is com-
pact and A; C As;

gradient of the function wu;

Laplacian of u;

p-Laplacian of u.



Chapter 1

Existence and concentration of
nodal solutions for a critical
exponential p& N equation

In this chapter we show existence and concentration of nodal solutions of the quasilinear
problem

—div (a (P|VulP) | VuP~2Vu) + V(2)b (JulP) [ulP~2u = f(u) in RV,
u € WH(RN) 0 WLN(RN), (P.)
ut #0and v~ # 0 in RY,

where € > 0,1 <p < N, N > 2, ut(z) := max{u(z),0} and v~ (z) := min{u(z),0}. Notice
that, in this case we have

u=ut+u and |ul =u" —u".

We show that such solutions changing of sign exactly once.
We say that a function v € WHP(RN) 0 WHN(RVN) is nodal solution of (P.) if u* # 0
in RN and

/a(ep\Vu]p)ep\Vu]p_QVqu dz + / V(2)b(JulP)|uP~2uv dz = /f(u)v dz,
RN RN RN

for all v € WIP(RY) N WLV (RY). The hypotheses on the functions a, b, f and V are the
following:

(a1) the function a is of class C! and there exist constants kq, ko > 0 such that
kitP + Y < a(tP)tP < kot? + Y, for all t > 0;
t
(a2) the mapping ¢t — A(tP) is convex on (0,00), where A(t) = / a(s)ds;
0

a(tP)

tN-p

(a3) the mapping t — is nonincreasing for ¢ > 0;

(aq) if 1 < p <2< N the mapping t — a(t) is nondecreasing for ¢t > 0. If 2 < p < N the
mapping ¢ — a(t?)tP~2 is nondecreasing for ¢ > 0.
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As a direct consequence of (a3) we obtain that the map a and its derivative a’ satisfy

(N—p)a

a(t)t <
P

(t) for all t > 0. (1.0.1)

Now if we define the function hA(t) = a(t)t — %A(t), using (1.0.1) we can prove that the

function h is decreasing. Then, there exists a positive real constant v > % such that

Lot < A@), forall ¢ > 0. (1.0.2)
Y

(b1) The function b is of class C! and there exist constants k3, k4 > 0 such that
kst? +tN < b(tP)tP < kgt? +tV, for all t > 0;
¢
(b2) the mapping ¢t — B(t?) is convex on (0, 00), where B(t) = / b(s)ds;
0

b(tP)

tN=p

(bs) the mapping ¢ — is nonincreasing for ¢ > 0.
(by) if 1 < p <2< N the mapping ¢t — b(t) is nondecreasing for ¢t > 0. If 2 < p < N the
mapping t + b(tP)tP~2 is nondecreasing for ¢ > 0.

Using the hypothesis (b3) and arguing as (1.0.1) and (1.0.2), we also can prove that
there exists v > % such that

1
—b(t)t < B(t), forallt>0. (1.0.3)

~y
The nonlinearity f is assumed to be a C!'(R) odd function with critical exponential
growth at +oo, that is, f behaves as exp(ag|t|N\V=1), for some ag > 0. More precisely,

we assume the following growth conditions in the origin and at infinity for the function
f:R — R of class C':

(f1)
lim I'(s)

|s|—0 |s] V=2

=0.

(f2) There exists ap > 0 such that the function f satisfies

ft)

im
t=00 exp(aft|N/NT1) — Sy (e 1)

=0 for a > o

and #6
= f < R
e exp(a‘t’N/Nfl) — Sy_a(a,t) o0 Ior & < o
N-2 (,Yk
where Sy_s(a, t) = Z ﬁme/(N_l)'
k=0

(f3) There exists 6 > ~p such that

0<0F(s) < f(s)s, for s#0,

where F(s) = / f(t)dt and v > 0 was given in (1.0.2);
0
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f(s)

(f1) s+— N1 is nondecreasing in s > 0.

(f5) There exist » > N and 7 > 1 such that
sgn(t)f(t) > 7]t~
for all ¢ # 0.

Before we give the main result, we need to put some hypotheses on the potential V € C(RY).

(V1) There is Vj > 0 such that

0<Vy <V(2), for all z € RY,

(Va) There exists a bounded domain 2 C RY such that

0<Vo=infV inf V(2).
<Vo=BEVE) < BLVE)

The main result is the following:

Theorem 1. Suppose that a, b, f and V satisfy (a1) — (a4), (b1) — (ba), (f1) — (f5) and
(V1) — (V2) respectively. Then, there are ¢ > 0 and 7* > 1 such that (P.) has a nodal
solution we € WIP(RN) N WLN(RN), for every € € (0,¢) and for every 7 > 7*. Moreover,
if P! is the maximum point of w. and P? is the minimum point of we, then for i = 1,2, we
obtain

lim V(P?!) = Vj.

e—0

Moreover, there are positive constants C' and « such that

Yoo 22

The plan of the chapter is the following: In Section 1.1, we study an auxiliary problem
obtained by Del Pino and Felmer’s technique. In Section 1.2 and Section 1.3, we show
existence and concentration of nodal solutions of the auxiliary problem. The proof of
the main result is in Section 1.4. In Section 1.5, we show that the nodal solutions have
exponential decay. In a appendix we study a problem in bounded domain.

1
€

2
z — P:
€

we(2)] < c[exp(—a :

for all € € (0, €g) and for all z € RV,

1.1 Variational framework and an auxiliary problem

To prove Theorem 1, we will work with the problem below, which is equivalent to (P:) by
change variable z = ex, which is given by

{ —div (ea (|VulP) [VuP~2Vu) + V(ez)b (JulP) [ulP~?u = f(u) in RY, (P)
u e WIP(RN) A WY (RY), ‘

where e >0, N >2and 1 <p < N.
In this work, we use the following version of the Trudinger-Moser inequality in the whole
Euclidean space RY, which is due to do O [44].
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Proposition 1.1.1. If N > 2, a > 0 and u € WHV(RY), then

/ {exp(a|u]%) - SN,Q(a,u)] dr < 0.
RN
1

Moreover, if HVquN <1, |lullpy < K < o0 and @ < ay = Nwl_ |, then there exists a

constant C = C(N, K, «), which depends only on N, K and «, such that

/ [exp(aM%) — SN_Q(Oé,'LL):| dx < C,
RN

where wy_1 is the (N — 1)-dimensional measure of (N — 1) sphere.

To obtain solutions of (P.), consider the following subspace of W1?(RN) | WLN(RY)
given by

W, = {v e WHPRM) n WLV (RN / V (ex)b(|v|P)|v|Pdx < —i—oo},
RN
which is a Banach space when endowed with the norm

[ull = llullip + ull,~,

where )

lallm = </ |Vu\mdx+/ V(ex)]u\md:v> " form > 1.
RN RN

We first notice that, by (fi) and (f2): given £ > 0, ¢ > 0 and a > 1 there exists
Ce¢, C¢ > 0 such that

f(s)s < €[s|N + Cels|? {exp(a]s\%) — Sn-a(a, s)} for all s € R, (1.1.1)

and
F(s) < %’S’N + Cels| {exp(aM%) — SN_Q(OC,S):| for all s € R, (1.1.2)

for more details see Appendix B. Since the approach is variational, consider the energy
functional associated J. : W, — R given by

Jo(v) :;/A(ywyp) dw—l—;/V(ex)B(\v\p) do — /F(v)dx.

RN RN RN
By standard arguments, one can prove that J. € C*(W,R). Let § be the number given in
0 1%
(f3), and let n, 5 > 0 be constants satisfying 5 > max{ 7 il , N — 1} and | {]\(777)2 = FO,
P n n
where Vy appears in (V;). Then, using the above numbers, we define the function of C!

class given by

f(s) if sl <3,

Vi .
grsrms if s>,

1%
5 151" 2

5 , if s<-—mn.
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Here we are defining the function f in (-7, —2) and (Z,7) such that f is of class C'!. Note
that by (f1) and given £ > 0, we get

sV < (V= 1)Y%fs|¥2 if s <,

(N - 1)20|s|N2 if s>,

f'(s) < (1.1.3)

(N—l)‘;O|S|N_2, if s<-—n.

\

We now define the function

9(2,5) := xa(2)f(s) + (1 = xa(2)) f(s),
and the auxiliary problem

—div (ea (|VulP) |VuP~2Vu) + V(ex)b (|ulP) [ulP~?u = g(ex,u) in RY,
u e VV6 (Peaux>

where xq is the characteristic function of the set 2. It is easy to check that (f1) — (f1)
imply that g is a Carathéodory function and for z € RY, the function s — g(ex,s) is of
class C' and satisfies the following conditions, uniformly for z € RV:

g(ex, s)
=0

ls|=0 |s]N-1 : (91)
g(ex,s) Sf(s),Vs>0andx€RN, (g92)
0 < 0G(ex,s) < g(ex,s)s, Vexr € Q and Vs # 0, (93)i

and )
0 < NG(ex,s) < g(ex,s)s < EV(em)]s]N, Vex ¢ Q and Vs # 0, (93)ii

where G(ex, s) :/ g(ex,t)dt.
0
For each z € RY, the function

s — gii‘?_’f ) is nondecreasing for s > 0. (94)

Remark 1. Note that, for z = ex, if uc is a nodal solution of (P.,,,) with |uc(z)| < 3 for
every ex € RV \ Q, then u(z) is also a nodal solution of (P.).

1.2 Existence of ground state nodal for the auxiliary problem

In this section we adapt some arguments found in Alves & Figueiredo [7], Alves & Soares [12]
and Bartsch, Weth & Willem [18] to establish the existence of ground state nodal solution
for problem (P, )-

Hereafter, let us denote by I the functional

L(v) _;/A(ywp) d:):—l—;/V(ex)B(Mp) d — /G(ex,v)dw,
RN RN RN
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which is well defined for v € W, and by N, the Nehari manifold associated given by
/\/E:{uewezu;éo and Ié(u)u:O}.

Since g is C!, the functional I, is of C! class. As we are looking for nodal solutions, we
also define the following set

NE = {u eWe:ut#0 and I'(ub)u® = 0},
where
ut(2) = max{u(z),0} and u” (2) = min{u(z),0}.
The main result in this section is:

Theorem 1.2.1. Let a satisfying (a1)—(a4), b satisfying (b1)—(by), V satisfying (V1)—(Va)
and f satisfying (f1) — (fs). Then, there is 7% > 1 such that (P,,,) has a nodal solution

1 p2 )
ue € We, for every > 1. Moreover, if T is the mazximum point of ue and == is the
minimum point of ue, then for i =1,2, we obtain

lim V(P!) = Vp.
e—0
We begin with some information on the functional I, in A; and in N

Lemma 1.2.2. The functional I, satisfies the following conditions:

(i) There is C > 0 such that

I(u) > C [ lall?, + el Yy }  YueN. and¥ e> 0.

(i) There exists p > 0 such that ||u| > p for all u € N and ||w*|| > p for all w € NF.
Proof. Since u € N, and (1.0.2), (1.0.3), (g3) hold we have that
1 1 1
L) = 10 - () = (- 5) [ a0vapvep ds

py
RN

+ <1 — > /V ex)b(|u|P)|ulP dx + / (ex,u)u — 0G(ex,u)| dx,

py
RN \ Q.

which implies, from (a1), (b1) and (g3);;, that

Lu) > <1—é>R[[k1|Vu|p+|Vu\N] do

<1 _ ;) /v(ex)[kg\u|p + |u|N)] do — = / (IVulY + V(ex)|u|V] dz

RN

Opy
—p

In order to prove (ii). Suppose by contradiction that there is a sequence (u,) in N,
such that u, — 0 in W,. Then, from (a1), (b1) and (1.1.1), there exists C; > 0 such that

Then the item (7) holds because 8 > 7

Crllunll + uall ] < & / unl¥ i Ce [ fu? [exp (VY1) = Sy afar )]
RN
< ), + C / ual? [exp (s Y/¥) — S (et )] dee
RN
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By Holder’s Inequality with s’, s > 1, Sobolev embeddings and Proposition 1.1.1, there are
C5,C3 > 0 such that

Colllunlly p + lunllT ]

N/N-1 ([ |tn] NN
<l oo (salland ™ (20) ) = Sv-a s | o

]RN

1/s

< Cslunl|?.

Then, there exists Cy > 0 such that Cy < [Ju,||7". But the last inequality is impossible
for ¢ > N. Therefore, since N7 C N, the second item is proved. O

From Lemma 1.2.2 is well defined the real number

de = inf I.. (1.2.1)
N

Moreover, from [17, Lemma 4.2, Lemma 4.3], for u € W, with u® # 0, there exist unique
t,s > 0 such that tu® + su™ € N*. At this point, we can finally prove the existence of
u € N in which the infimum of I, is attained on M.

Now we consider the problem

{ —kaApu — Anu 4 Voo (kauP~2u + |u|¥N 72u) = |u|" in Q, (P,)

u € Wol’N(Q),

where 7 is the constant which appears in the hypothesis (f5) and V, is a positive constant.
We have associated to problem (P,) the functional I, : I/VO1 N (Q) = R, given by

1 1 1
I.(u) = p/[k2|Vu]p+Vook:4|up] da:+N/ (VN + Vao|u| V] dac—r/\u|rdx
Q Q Q

and the Nehari manifold
N, ={ue Wol’N(Q) cu# 0 and I.(u)u =0}

and the set
NE={ue Wol’N(Q) : ut # 0 and I’ (u)u™ = 0.

From Appendix A, there exists w, € N such that
I(w,) =¢ and I (wF)=0,
where

cr = ini I,. (1.2.2)
N

— N
o > (TTN >/\wr\”d9&, (1.2.3)
Q

Lemma 1.2.3. The value d, := injf[ 1. satisfies

€

r—op N
< .
o< | ) 5o

Moreover,
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Proof. Note that by the hypotheses (a1), (b1) and (f5), we have

/ o[V P) [Vt Pdz + / V(ex)b(jwiP) w Pz < / (ko VWP + Vioka[wit|?] do
RN RN Q

b [ IV o Vit M de = [ utrae < [ swdote < [ gtenutyuids

Q Q Q RN
where Va := maxV(z). This inequality implies that I’(wF)wE < 0, then there exist

z€Q
t,s € (0,1) such that tw;} + sw; € NE. Using (a1), (b1), (g3) and (f5), we obtain

tP
do < L(twF + swo) < p/ (ko V|7 + Viokauit ] do

0
P
+Z (k2| Vw, [P+ Vioka|w, 7] dx—i—/ [V N + Vo w |V] da

p
/ IVw, [N + Vo wy [V] d /|w+]”da:—s /|w |"dz.

Since t,s € (0,1 ), p < N and I’ (wF)wE = 0, we get

"
de < IL(twS +sw;) < p/ [ka|Vw, [P + Vo ky|w, P] da

0
Sp _ _ tp N + N
—i—p/ (k2| Vw, [P+ Vioka|w, |P] do + / [V, | + Ve w,F|V] da
sP N +|r T —r
2 190 + Vel 1] i e — T [ fuy e
0 0

P t" sP s"
< { —7':| /\wﬂrdx—i— [ —T:| /]w;rdac

p r p r

Q Q
D r

< max [S—Ts] /|wr\rd:z.

s>0 p r

Q

Using (1.2.3) and by some straight forward algebric manipulations, we have

sP s"| ¢ Nr r—p cr N
(r—N) |pr?/—=P) | (r — N)

and the result follows. O

Since 7 is the parameter which appears in the hypothesis (f5) we have that following
result.

Lemma 1.2.4. Let (u,) C NE be a minimizing sequence for d., then there exists 7% > 1
such that

lim sup ||u, || VNV < Z—N if T > 71"
n—00 &%)

Proof. First notice that by (a1), (b1), (1.0.2), (1.0.3), (g3); and (g3);;, we obtain

1
de = Ic(uy) — 5Ié(un)un + o,(1)
111 ) N
(= 5= %) mind bbb [l + fanl ] + 000
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Using the estimate on the value d. obtained in Lemma 1.2.3, we get

r—p e N1 1 1 1 . -1
ol # iy < [ 22| N (L= fe Y mint k| onl)

Setting

_ _ —r/p
_ (r—p) NP1 1 1\ . . av 1" M)
T# := max {1, {(r ) p] [(m 9 ﬁ) min{1, kl,kg}mm{l, {23115_12&0} } :

Therefore, if 7 > 7%, we can conclude that

N-1

1 N N N N . an

on [unll™ < lunlliy + llunlltn < unllf , + llunllt y < ming 1, | —5x—— +on(1).
ag

2 N-1

The last inequality implies
1 N an N-1
rllll < | 52— | routa)
2 (&%)

since N > 2 this completes the proof. ]

Lemma 1.2.5. If (u,) C N is a minimizing sequence for d., then there exists s' > 1 such
that

liminf/\u,ilqsldw > 0.
Qe

Proof. We know from (ay), (b1) and (1.1.1) that there exists a constant C7 > 0 such that
Calllenf, + lunll¥y] < Ce [ fun [exp (afun¥/¥1) = Sy-a(a )] da
Qe

Using Lemma 1.2.4, Proposition 1.1.1, a = 3 and choosing s > 1 close to 1 we obtain a
positive constant Cy > 0 such that

1/s

N/N—-1
exp soz||unHN/N_1 M — SN_a SozHunHN/N_l, Un dx < (Cs.
[Jun | [[unl

RN

Therefore, by Sobolev embeddings, Holder’s Inequality with s’, s > 1 for s close to 1 and
(1.1.1), we deduce that

1
Cilllenlf + lunl¥n) < Ca | [ ez ) +0,(0).
Qe
Consequently, using Lemma 1.2.2 the result follows. ]
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Existence of nodal solution for the auxiliary problem

We are going to show that the infimum of I, on N is attained by some u. € N, considering
the cases 2 <p< Nand 1 <p<2<N.

Lemma 1.2.6. If 2 < p < N, then the functional I, is sequentially weakly lower semicon-
tinous in We. Moreover, the level d. is attained for some u. which is a nodal solution for
problem (P,,.)

Proof. Firstly we prove that the functional I, is sequentially weakly lower semicontinous in
We. For this let us consider (u,) C W, such that u,, — u in W, and Q. := e €. From (as)
and (b2) it follows that

/A(|Vu|p)d:n§hminf/ AV |?) da, (1.2.4)

Q. n—-+o0o Q.

/V(ex)B(|u|p)dx§liminf/ V(ex)B(|un|?) dz. (1.2.5)
. n—-+00 Q.

Moreover, by Sobolev embeddings, we get

/F(u)dx: lim F(uy)dx. (1.2.6)
Qe

n—-+o0o Q.

Now we are going to prove that

1 P PY\oP) do — v
Lana, )= [ v, VANVER) 4 V(B0 L, FO)

S
is a strictly convex functional in W,(RV\€2,), where F(s) = / ft)dt.
0

Observe that I.” (v)(w,w) is well-defined for v,w € W(RY), for 2 < p < N. Then, for
v, w € We(RV\Qe), w # 0, we have

Lo, 0w w) = p [ TPVl (ToV)ds
RN\ Q.
+ (-2 / a([Vo )| VolP 4 (VoVw)2de
RN\ Q.
+/ a(|Vu|P)|Vu|P~2|Vw|*dx
RN\ Q.
bop [ Vi (Pl s
RN\ Q.
b =) [ Vi@l )
RN\ Q.
+ / V(ex)b(]v\p)\v]p_Q\wde—/ f(v)w?dz.
RN\ Q.

RN\ Q.

Using (2.1.1), (a4) and (bs), we deduce that

fnn ) = [ (Vv TuPde+ [ V(o) op s
’ ) RN\Q, RN\Q,

N -1
B JrM\a.

Volv| N 2w?dz.
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Since we also have 8 > N — 1, we finally get to Ié’RN\Q (v)(w,w) > 0. By convex analysis

it follows that I gn\q, is weakly lower semicontinuous.
From Lemma 1.2.2, there exists a bounded minimizing sequence (uy,) in N for d. and
1. is coercive on J\fei. Hence, there exist v, uy,us € We such that

up, = v, wl —uy, u, —ug in W
Since the transformations v — v* and v — v~ are continuous from L"(RY) in L"(RY) (see
Lemma 2.3 in [22] with suitable adaptations), we have that v* =wu; > 0 and v~ = up < 0.
By the Lemma, 1.2.5, we conclude that v* # 0, and therefore v = v+ + v~ is sign-changing,
this implies that there exist ¢,s > 0 such that u, = tv™ + sv™ € NF. we have the

U = tvT +sv” € ./\/'ei. Moreover, there exists a unique pair (¢, s,) of positive constants
such that

I (tyv" + 8,07 ) = max I (tv" + sv7).
t,s>0

Since I, is sequentially weakly lower semicontinous in W, and (u,) in N, we have
de < IL(ue) = I(tvt + sv7) < liminf I (tu; + su,,)
n—-+00
< . + — < . + — — . — .
< 17111348_1015) I (tu, + su, ) < nll)l_’I_loo I(u) +u,) nll)l_’I_loo I (up) = de

O]

Lemma 1.2.7. For 1 <p <2 < N, the level d. is attained for some u. € ./\fgi. Moreover,
ue 18 a nodal solution for problem (Pe,,.).

Proof. From Lemma 1.2.2, there exists a bounded minimizing sequence (u,) in NF for d,
and I, is coercive on ./\/;i. Hence, there exist v, uy, us € W, such that

Uy — U, u;‘;éul, U, — uz in We.

Since the transformations v — vt and v — v~ are continuous from L"(RY) in L"(RY) (see
Lemma 2.3 in [22] with suitable adaptations), we have that v = u; > 0 and v~ = ug < 0.
By the Lemma 1.2.5, we conclude that v # 0, and therefore v = v+ 4+ v~ is sign-changing,
this implies that there exist t,s > 0 such that u, = tv™ + sv™ € ./\fei. we have the
ue = tot + sv” € NE.

On the order hand, using Sobolev embedding, we have

lim [ f(u)udde = [ f(oF)vEda.
Jremse]

n—-+o0o

Then, using Fatou’s Lemma and (g3);; we obtain that

/ [Vt ) Vo P + V(e)b(|o* [P) o] do < / glex, v5 )t da,
RN RN
that is, I'(vF)v* < 0. Thus, ¢, s € (0,1].
Now, let us observe that assumptions (as), (bs) and (g4) imply the following monotonic-
ity conditions:
1

1
t— —A(t) — Na(t)t is increasing for ¢ € (0, 4+00),
p

1 1
t— —B(t) — Nb(t)t is increasing for ¢ € (0, +00),
p

1
t— Ng(ex,t)t — G(ex, t) is increasing for t € (0, +00),
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Hence,

L) < [ (CAVEOR) - eV PIThp)

R
(RO RN
+ [ V(ex) | =B(jtv"|P) — =b(|tv™|P)|tv™ |P | dx
P N
RN

1
+/ <Ng(e:v,tv+)tv+ - G(ex,tvﬂ) dx

RN

n—-+00

< tmint | [ (SAGTP) - Ga(VuPIvaP ) da
RN P
+ [ Vi) (2B - bt ) do
p n N n n
RN

1
- Yyt + — mi +
+/<Ng(e:n,un)un G(em,un)> dx %gl}rg‘le(un)
RN

Using the same arguments as above one can immediately prove that I.(sv™) < I.(v7).
Then, using that g is and odd function and u, € N, it follows that

de < I(ue) = I.(tv™) + I(sv™) < liminf I (u,) = dk.

n—-+o00
L]

Remark 2. Note that Lemma 1.2.7 is true for all 1 < p < N, however the arguments used
i Lemma 1.2.6 are new for nonhomogeneous operators.
Proof of Theorem 1.2.1

Proof. The existence follows by Lemma 1.2.6 and Lemma 1.2.7. The proof that I/(u¢) =0
and that u,. has exactly two nodal domains or equivalently it changes sign exactly once can
be seen in [17, pages 1230-1232]. O

1.3 Concentration results

In order to prove the concentration result, we consider the limit problem

—div (a(|VulP)|[VulP~2Vu) + Vob(|ulP)[u[P~?u = f(u) in RN
(Pr)
w e WhP(RN) 0 W (RN)

which the functional associated Iy is given by

Rotw) = = [ [AQVuP) + VoB(ullde — [ Fluyda,
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and by the corresponding Nehari manifold is given by
Ny = {u e WH(RN) n WY (RN )\{0}; I{;, (u)u = 0}.

We also define
cy, = inf Iy;.
Vo NVO Vo
We define the Palais-Smale compactness condition. We say that a sequence
(up) € WEP(RN)N W LN (RY) is a Palais-Smale sequence at level ¢y, for the functional Iy
if
Iy, (un) — ey,

and
114, (un) | = 0 in (WHP(RY) n WHY(RY)).

If every Palais-Smale sequence for Iy, has a converging subsequence in W1? RMHNW LN (RN,
then one says that Iy, satisfies the Palais-Smale condition ((PS)e,, for short).

The next result shows that problem (PL) has a solution that reaches cy;.

Lemma 1.3.1. (A Compactness Lemma) Let (uy,) C Ny, be a sequence satisfying Iy, (un) —
cvy- Then there exists a sequence () C RY such that (v,) has a convergent subsequence in
WhP(RN) N WEN(RY), where vy () := un (@ + §n). In particular, there exists a minimizer
for cy.

Proof. Applying Ekeland’s Variational Principle (see Theorem 8.5 in [62]), we may suppose
that (uy) is a (PS)e,, for Iy;. From Lemma [6, Lemma 2.3] we can assume that, up to a
subsequence, u, — u weakly in W1P(RN) 0 WLV (RY) and I (u) = 0.

If u # 0, then w is a ground state solution of the limit problem (Py;), that is, Iy, (u) =
¢y, In fact, using arguments found in [6, Lemma 2.3], we have that

Vi, (z) = Vu(z) ae in RY and Iy, (u) = 0. (1.3.1)
Then, by (1.0.2), (1.0.3) and the Fatou’s Lemma,

0< o [ 1AQVAP) + Vo] de — 5 [ la(Vul?) TP + VaB(ul )P ds
RN RN

< liminfd / [A(VunlP) + VoB(Junl?)) da

n—-+0o00 P

RN
1
—g | (V)| Vunl” + VoB(lun ) |un|"] da
RN
Hence, if u € Ny,
1 / . . 1 / .
cvy < Iy (u) — glVo (uw)u < lﬁgigof Iy, (up) — glvo(un)un = ngr—ir-loo Iy, (up) = ¢y

By (1.3.1), (a1), (b1) and Lebesgue’s theorem we conclude that u, — u in WP(RY) N
WLN(RN). Consequently, Iy, (u) = cp and the sequence (7,,) is the sequence null.
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If u = 0, then in this case we cannot have u,, — u strongly in WHP(RV) n WLV (RY)
because cy, > 0. Hence, using [6, Proposition 2.1], there exists a sequence (,) C RY such
that

vy — v in WHP(RN) n WY (RY),

where vy, (2) 1= un(z + yn). Therefore, vy is also a (PS).,, sequence for Iy, and v # 0.
It follows from the above arguments that, up to a subsequence, (v,) converges strongly in
WLP(RN) N WEN(RN) and the proof is complete. O

Proposition 1.3.2. Let e, — 0 and (u,) C N, be such that I, (u,) — cv,. Then there ex-
ists a sequence (J,) C RN such that (v,) has a convergent subsequence in
WLP(RN) N WHN(RY), where v, (x) = un(x + §n). Moreover, up to a subsequence,
Yn — Yy € Q, where yy = €nGn.

Proof. Since cy;, > 0, from Lemma [8, Proposition 5], there exist a sequence (f,) C RY and
constants R and (8 such that

n—oo

liminf/ | un, |NZ g > 0,
BR(?jn)

and then, up to a subsequence, v, — v Z 0 in W'P(RN) n WLV (RN). Let ¢, > 0 be such
that 0, = t,v, € Ny, then, since v, € N, we obtain

€n
ey < IVo(ﬁn) < e, (0n) < I, (vp) = Ien(un) =cy + On(l)a (1'3-2)

which implies that

IV() (’Dn) — Cyy-
From (1.3.2) and since (v,) is bounded in WP(RY) N WHN(RY), we obtain that (t,) is
bounded. As a consequence, the sequence (%) is also bounded in WHP(RN) n WLN(RN)
which implies, up to a subsequence, ¥, — ¥ weakly in WhP(RV) 0 WLN(RY). We can
assume that t, — tg > 0, and this limit implies that © £ 0. From Lemma 1.3.1, v,, — 0 in
WhP(RN) N WLV (RN), and so v, — v in WEP(RN) n LN (RN),

To conclude the proof of this proposition, we consider y, := €,7,. Our goal is to show
that (y,) has a subsequence, still denoted by (y,), satisfying y, — y for y € Q. First of
all, we claim that (y,) is bounded. Indeed, suppose that there exists a subsequence, still
denote by (yn), verifying |y,| — co. From (a1), (b1) and (V}) we have

/ [k:l\an\p + ]an]N] dx + Vj / [k3|vn|p + |vn|N] dx < /g(enx + Yn, Un ) Updex.
RN RN RN
Fix R > 0 such that Bg(0) O Q and let X'z, ) be the characteristic function of Br(0).
Since Xp,(0)(ex + yn) = 0n(1) for all @ € Bg(0) and v, — v in WLP(RN) 0 WELN(RY),
then
/ XB ., 0) (€ + yn)g(ex + Yn, vn)vndr = 0y (1).
RN
By definition of fwe obtain that

/ (k1| Von P + [V, |N] dz + Vo / [ks|vp [P + v, [N ] d2 < / f(vp)vpdx + 0,(1)

RN RN RN\Bg(0)

Yo N
5 /\vn\ dx + o, (1).

RN

IN
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It follows that v, — 0 in WHP(RNM) N W LN (RY), obtain this way a contradiction because
cv, > 0. Hence (y;,) is bounded and, up to a subsequence,
Yn — 7 € RY.

Arguing as above, if § ¢ Q we will obtain again v, — 0 in WP(RY) 0 WHY(RY), and
then 7 € Q. Now if V(y) = Vp, we have 5§ € 9 and consequently 7 € Q. Suppose by
contradiction that V (y) > Vp, then

eve = Iy () < ; / A(VEP)dz + ; / V(@) B([0P)dz — / F()da.
RN RN RN

Using the fact that ,, — v in WHP(RM) n WV (RY), from Fatou’s Lemma we obtain that

¢y, < liminf B / AV |)dz + ]13 / Vet + yn) B([5 P dz / F('ﬁn)daﬁ]
RN RN RN

Therefore, since (u,) € N,,

cy, < liminf I (tpuy) < liminf I, (uyn) = cv;,
n—oo n—oo

obtaining a contradiction. O

Lemma 1.3.3. Let (¢,) be a sequence such that €, — 0 and for each n € N, let (u,) C N
be a nodal solution of problem (P, ) such that I. (uf) — cy,. Then (vi,) converges

uniformly on compacts of RN, where v1 ,(2) = wt(z + J1.,) and vo,(x) == uy, (T + Gon)-
Moreover, given £ > 0, there exist R > 0 and ng € N such that

[vi,nllLoe @M\ BR(0) <& for all n>ng and i=1,2,
where (J1,n,) and (§2,,) were given in Proposition 1.3.2.

Proof. Adapting some arguments explored in [6, Lemma 5.5], we have that the sequences
(v1,) and (va,,) are bounded in L%°(R¥Y) and there exist R > 0 and ng € N such that

[vinll Lo @M\ BR(oy) <& forall n>mng and i=1,2.

Then, for any bounded domain ' C R¥, from (g1) and (g2) and continuity of V there
exists C' > 0 such that

V (en2)|unlP~! — g(enz,u,)| < C, forall n€N.

Hence,
[V (en) [un P71 — glenm, up)| < C + |Vu,|P, for all n € N.

Considering ¥(z) = C, we get that ¥ € L'(Q') with ¢ > ;25 N. From [28, Theorem 1], we
have
V| € Lig,(RY)

loc

Therefore, for all compact K C € there exists a constant Cy > 0, dependent only on C, N, p
and dist(K, 9§Y') such that
||vunHoo,K < C'0-

Then,

\un\clo,u(RN) <(C, forall neN and 0<v <1.

From Schauder’s embedding, (u,) has a subsequence convergent in Cloo’;'(RN ). O
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Lemma 1.3.4. Given € > 0, the nodal solution ue of problem (P,

€aux

) satisfies
li_l}(l) Ic(ue) = 2cy.

As a consequence

li_r)r(l) I(uf) = ey, and ll_r}(l) I (u;) = cy,.

Proof. Consider zy € Q such that V(zg) = Vy. Let us now consider R > 0 and set
Q1, Q2 € OBRr(z0) such that |@Q1 — Q2| = 2R. If necessary, take R small enough such
that B(Q;, R/4) C Q. Taking ¢; : RN — R such that ¢; = 1 in B(Q;, R/4) and 1; = 0 in
RVM\B(Q;, R/2).

For i = 1,2, let w; € WHP(RNV) n WLV (RY) be a ground-state positive solution (see
Lemma 1.3.1) of the problem
—div(a(|Vul?) VulP 72 Vu) + V(Qi)b([ul) (JulPu) = f(u) in RY

which satisfies
Cvoy = Iyvoy(w;) = inf sup Iy (o) (tv),
ViQo) V(QZ)( ) vEWH\0 tZE) V(QZ)( )

where
Toian() =5 [ AToP) + QOB ds = [ Giler, ).
RN RN

Then, we consider the function we g, : RN — R be given by

We @, () = Yiex)w; <x — Qi) e W,

€

and t.; > 0, such that ¢, ;w g, € N.. By the construction, we have
We 1= te1We @, — te2Weqy € NE.

By supp(we,g,) N supp(we,g,) = 0, once B(Q1, R) N B(Q2, R) = 0, and w;, for i = 1,2, are
positive solutions then

supp(w, ) N supp(W, ) = 0, WS =t 1weq, and W, = —tcQ,WeQ, -

Then
L(we) = I(w}) + Ic(w,) and I/(w)w; = 0.

Hence
Ie(ue) < I(we) = I(w)) + I(w; ). (1.3.3)

Therefore, with a direct computation we have

I (ue) < I(We) = I(W) + (W, ) = cv(Q,) + cv(@y) + 0c(1).

Finally, taking R — 0 in the last inequality and using the continuity of the minimax
function (see [13], [51]) we get

limsup Ic(ue) < 2cy,.
e—0
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Now let t= > 0 be such that tFu* € Ay,. Then,
2ev, < Iy (tEul) + Ty (toug ) < Te(trul) + Le(toug ) < Le(ul) + Ie(ug) = Te(ue).

Hence we have proved that

lim I (ue) = 2cy;.
Eg% (ue) Cvo

On the other hand, we know that cy, < Iy, (tFul) < I (tFuF) < I.(uF). Therefore,
ey < lirgriiglf I (u).

Assume by contradiction that at least one inequality is strict, then arguing as above we
obtain
2cy, < lin;iglf (Ie(uf) + Ic(uy)) = Ic(ue) = 2cy,.
€

O]

Lemma 1.3.5. Let (e,) be a sequence such that €, — 0 and for each n € N, let (u,) C N
be a solution of problem (P,,,). Then, there are 6* > 0 and ng € N such that for vy ,(x) :=

€auzx

ut(x + J1n) and van(z) == uy, (2 + G2.n), we have
vin(z) > 0%, forall x € Br(0) and n > ng

and
von(z) < —6%, for all x € Br(0) and n > ny,
where R >0, (§1,n) and (§2.n,) were given in Proposition 1.3.2.

Proof. Suppose by contradiction that ||v; /| fee @™\ Bg(0)) = 0, for i =1 or i = 2. Then by
Lemma 1.3.3, we have [|v; || poo@ny — 0. It follows from (f1) that

;
|f(vin)| < ?O\viyn\Nfl for n sufficient large. (1.3.4)
Thus,
/ a(|V0inl?) Vi Pz + / V(ent + yin)b([0in[?) [vin P
RN RN

= f(vi,n)vi,ndx + On(l)
RN

%
< o [ fvinl Ve + on(1),

2 Jr~
which implies from (a;) and (b;1) that,

luz ., — 0,

which is a contradiction with Lemma 1.3.4. O

We are now ready to show the concentration result.
P2
e

1
Lemma 1.3.6. If Pf is the mazimum point of ue and 1s the minimum point of u., then

lim V(PY) =V, fori=1,2.

e—0
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Proof. We first notice that using Lemma 1.3.5 there exist 6* > 0 and ng € N such that

vin(gh) = max v10(2) = wl(gh + J1n) > b (z) > 8%, for all n > ng, for all x € Bg(0)

and

van(qn) = Zlélﬁ% va.n(2) = Uy (@2 +Ton) < uy, (x) < —6%, for all n > ng, for all x € Bg(0).

We claim that ¢, i = 1,2 is bounded, otherwise using Lemma 1.3.3 and 1.3.5, there exists

R* > 0 such that [[vipn|| L@y By < %*, which implies that |v;,(¢%)| < %*, where we

obtain a contradiction. Then, P! = €,q;, + ¥i,» implies

lim P! = lim v, =7; €

n—4oo " n——+o0o

Hence from continuity of V' it follows that

lim V(P.)=V(#) > V.

n——+o0o n
We claim that V (y;) = Vp. Indeed, suppose by contradiction that V' (y;) > V. Using the
same arguments of Proposition 1.3.2, we have that v;, — ¥; in W1P(RY) N WYV (RY) and
~ 1 ~ 1 _ ~ ~
ey, = Iy () < p / A(|V;|P)dx + 5 / V(y;)B(|v;|P)dx — /F(vi)dx.
RN RN RN

Using that 0;, — v; in WHP(RY) N WHN(RY) and from Fatou’s Lemma, we obtain

1 1
oy, < liminf | / (V5o + / Vet + yion) B(TinlP)de — / F@)de |
RN RN RN

and therefore

.. + .. +
ey < hnnilor.}f I, (tinu,) < hnnilor.}f I, (u;;) = cy.

This contradiction shows that V (y;) = Vp for i =1, 2. O

Lemma 1.3.7. Let {e,} be a sequence of positive number such that €, — 0 as n — oo and
let (x,,) C Qe, be a sequence such that ul (x,) > T >0 or u_ (zn) < =T < 0 for each
n € N and for some Y positive constant, where ue, is a solution of (P,,.).Then,

lim V(z,) =W

n—oo
where T, = €Ty,
Proof. Up to a subsequence,
Tn — T € Q.
From Lemma 1.3.4 we have that u € N,
I, (ul) = ey,
and there exists a positive constants such that

luf | <C, VneN and for some C > 0.
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Setting v, (2) = ul (2 + ), we have [|v || < C and v, = v in WHP(RY) n WLV (RY).
Recalling that

vp(0) = ul (2,) > T >0,

we conclude that v # 0.
Fix t,, > 0 verifying v,, = t,v, € Ny, for each n € N. Hence

cvy < Iyy(Un) < I, (thvn) < I, (vn) = 1o, (u;t) = cy, +on(1).
Thus Iy, (v,) — cy, with {v,} C Ny,. By Lemma 1.3.1, we have
Uy =0 in WYPRMNWEYRY) and Iy, (D) = ey, (1.3.5)

Since v # 0, by Lemma 1.3.1 we have y, = 0, for n € N. Moreover, recalling that V is
continuous, we have

lim V() = V(@).

n—0o0

We claim that V(Z) = V. Indeed, suppose by contradiction that V(z) > V;, then

_ 1
ey, = Iy, (0) < p/

RN

ulP ! T)B(|v]P)dx — v)dx
AP+ [ V@B - [ F@)a

RN

and by (1.3.5) and Fatou’s Lemma

1 1
oy < liminf[ / AV, P)da + ~ / V(ens + Tn) B([5n|P)dz — / F(’ﬁn)da:]
n=oo | P JRN D JrN RN
1 1
< liminf[ / AV, |P)da + / V(ent + 7)) B(|byon|[P)da
n=oo | P JRN D JrN
— G(epr + 7, tnvn)daz}
RN
— i + o +y _
= hnrgloréf I, (thu,) < hnrggf I, (u,)) = ¢y,
which leads an absurd. Consequently le V(Z,) = Vo and the lemma is proved. O

Lemma 1.3.8. If mT is given by

mT = sup {rggx ue s ue € NE is a solution of (Peaw)}

€

and if m_ is given by

m, = sup {%gn uc s ue € NE s a solution of (Peauz)} ,

€

then there exists € > 0 such that the sequences (mX) are bounded for all e € (0,€). Moreover,
we have
lim mE = 0.
e—0
Proof. Suppose, by contradiction, lir% m, = 400 or liII(l) m_ = —oo, then there exist u,. a
€E—> €E—

solution of (P,,,,) in N and T > 0 such that

maxul > 7T >0
0
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or

maxu, < =Y <0.

€

Thus there exists {€,} C RT with €, — 0 and there exists a sequence {z,,} C 92, such
that

ul () 2T >0 or u_ (z,) < -7 <0.
Thus, by Lemma 1.3.7, we have

lim V(%) = Vo,

n—oo

where T, = €,x,, and {Z,,} C 9. Hence, up to a subsequence, we have T, — T in 992 and
V(%) = Vi, which does not make sense by (V3). Hence, there exists € > 0 such that (m)
is bounded, for all € € (0, ).

We have now to prove that hn[l)m = 0. Then, suppose by contradiction that there

exists § > 0 and a sequence {e,} C R satisfying
mg >8>0
or
me, < —0<0.

Thus, there exists u, a solution of (P,

€aux

) in NE such that

m:; ~3 < maxu;: < m+
or
m. < minu, <m. + .
e, no2
Hence,
0 ) )
725—7<m+—7<maxu+
2 2~ 2 GIoh
inu, < ‘+5< 5+5 0
min u m — < — 2 _Z
n 9 2 2

€n

and then there exists a sequence (z,,) C 99, , such that

0
or
_ 1)
ug, (15,) < ~5
Repeating the above arguments, we will get an absurd. Thus, the proof is finished. ]
Proof of Theorem 1.2.1
Proof. The proof is a consequence of Subsections 1.2 and 1.3. O
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1.4 Proof of Theorem 1

Proof. Let u. be a solution of (P, ). By Lemma 1.3.8, there exists € > 0 such that

ImZ| < % for all € € (0,€), then (uc — #)4(z) = 0 for a neighborhood from <. Hence,

(ui; g)ﬁ e WyP(RN\Q,) N Wy M (RM\Q) and the function (u, — )% € WHP(RN) N
WHY(RY), where

0if r € Q.,
(ue — Dy (z) if z€ RM\Q..
Using (ue — 4)% as test function. Then, by (a1), (b1) and (g3)i;, we have
0 < [ a(VupITia - D pds
RN\Q.

Y%

- \ue\“] (e — )% )2da

T / Vob(Juel?) el 2 —

_ o Vo, nea]m, T
b [ |Vtemum g - R 2| - Dide=o

RM\Q.

The last equality implies

(ue — g)i =0, aein z € RV\Q..
Hence, u, < ¥ for z € RV\Q..
Since we can assume m_ < —37 for € € (0,€), working with the function (u. + 2)*
it is possible to prove that u, > —% for z € RN\Q,. This fact implies that |u.| < % for
z € RN\, and by Remark 1 the result follows. O

Finally, we are going to prove the exponential decay. First technical results.

1.5 Exponential decay
Lemma 1.5.1. Consider M,a > 0 and ¢(x) := M exp(—«|x|). Then

i) — div(a ([VY[?) [VIP2Vy)

= ar! [_Poa”la’(a%p)iﬁ?pl + a(aPyP)yr <(N]a:_\ 2 -alp- 1)>] 7

(V—1) —a(N — 1)) a(aPyP)aP~ P,

|z

i) — div(a (IV]P) |[V72V) > (

Proof. Note that

9
8:&'

(x) = M exp(—ala]) 5 -(~ala]) = M exp(=alel) (o) T = ~a >

8.%'2'
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which implies V4| = o). Then

N9
—div(a (|[VY[P) [VY[P2Vy) = — 21 Ox;

81/1]

Q70 [7ulr 2"

= P! é@i [a (aPyP) qpp—lxi]

|z|
_ p—1 N / 9 —1 i 0 1%
= o (@) o (e o a(ar) o (o )]
=aP~! Zg:l [a’ (aPypP) app¢2p2(§iij‘ + a(aPyP) <W¢pl + (p— 1)¢p72 g;i ‘3;:'”

_ ! [_paerla,(apwp)pr—l + aaPyP)pr! <(N_1) —a(p - 1)>} ;

]
this proves the first item.
To show item ii) we are going to use (1.2) and item 7). Hence we have

—d/ (aPYP) PP > (N;p)a(apwp)’

and
—pa? T (PP )Pt > —apP I (N — p)a(afyP).
Consequently, by item i),
—div(a (|VYP) [V [P2Vy)

(N -1)
|z

> ol [—a(N — p)a(aPyP)ypPt + ( —a(p— 1)> a(apwp)wl}

N -1
= <( 2] ) —a(N — 1)> a(aPyP)aP~LyP—1L,
x
Corollary 1.5.2. Since V(z) > Vy in RN, then for a > 0 small enough we have
%
—div(a (VY P) [VY[P2VY) + ksVouP ! + Z‘WH >0 in RV,
Proof. Using (a;) and Lemma 1.5.1 we obtain that
—div(a (VY P) [VYP?VY) > —a(N = 1a(aPy?)a P~
> —a(N — 1) (kaa? 1Pt 4 oV TN
= —a(N —1DkyaP 1Pt — (N — 1)V LNt
Moreover, since Vg > 0 and a > 0 is small enough we conclude that
k3Vo — a(N — Dkea?™! >0,
and
% —a(N = 1)1 > 0.
Consequently
1%
~div(a (IVP) [VEP2V9) + ksVou? ™ + 29N > 0 in RY.
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Let us now relate the nodal solution u, to the exponential function ¢ for small e.

Lemma 1.5.3. Let ue be the solution found in Theorem 1.2.1 and v1 ((x) := ul (z + §1.¢)
and va () = u_ (x + Yo,c) given in Proposition 1.3.2. Setting ¢; . := max{|v; | — 1,0} for
1=1,2, then for e > 0 small enough, we have

_ _ \% _
[ alVod Vo2V Ve do ko [ ol e dot 50 [ o de <o,
RN RN RN

Proof. From Lemma 1.3.3, Lemma 1.3.4 and hypothesis (f1), there exist pg > 0 such that
€ > 0 small enough,
Pviel) _ 3

i [N71 T 4

Vo, forall |z| > po.

Since 1(z) := M exp(—alz|) for € RY, we can find M > 0 such that if M > M, then
Yic = max{|vi| —¥,0} = 0 in B, (0) and p;c € WIP(|lz| > po) N WEN(|z| > po).
Therefore, the above inequality and (b;),

/ (V0o ) Vs [P V0r, Vor . das + Vi / (hslonel” " pre + lonel¥ o] da
RN RN

P)|vi e

< /a(|Vvi,€|p)|Vvi,6|p_2Vv¢76V<p¢,6 dx + / V(ex + yie)b(|vie p_2vi7€<pi7€ dz

RN RN
R1% -
< [ i do <50 [ ¥ e
RN RN

and the lemma is proved. ]

Finally we are going to show the exponential decay for the functions w..

Proposition 1.5.4. There are ¢g > 0 and C' > 0 such that

z
) +exp (—a

Proof. From [30, Lemma 2.4], we have that

1

€

2
€

jue(2)] < c[exp(—a :

>], for all z € RV,

(a(lzP)|zP~%x — allyP) [y~ 2y, 2 —y) 2 0, ¥V 2,y € RY.
Consider vy ¢(x) := ul (z + J1,¢), v2.e(z) := u_ (¥ + 2,c) and the set
A ={zeRY :|z| > py and |Vie| — 1 >0},

where 1 is the function is given by Lemma 1.5.1, (y1,) and (y2,) are given by
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Proposition 1.3.2. Then, using Corollary 1.5.2 and Proposition 1.5.3, we obtain

0> [ (al(90) Vs P2, — VPV V6, ) d

RN
B B v B B
+%k3/ (‘vi,e|p 1_ |u}|p 1) Pie dz + ZO / (|Ui,e|N 1 W\N 1) Pie dz
RN RN
B B v B B
> Voks / (lielP™ = [[P~1) T da + ZO / (lvi et = IV s ed
RN RN
= Voks [ (o™ = [0 (foe] - )
Ai
Vo _ _
22 [ o = ) (fe] - w)d > 0
Ai

Then |A?| = 0, for i = 1,2 and consequently
[v1,e(@)] + [v2,e(2)| < 2M exp(—alz]), V [z = po.

Considering = z — y;  and using Lemma 1.3.6 there exists a constant C' > 0 satisfying

) (o5

> exp (—a ‘qé‘) < Cexp <—a

z— P! +eq

€
z — P! )
for all |z — @i ¢| > po and for € > 0 small enough.

Now we are going to show the inequality (1.5.1) holds, for all z € RY. Since (y;.)
converges, it follows that

2= VYie
€

uf(2)] < 2M exp (—a

(1.5.1)

7
€

€

< 2M exp <—a £

B . 1 + .
!zIZpo—!yz-,E!—po—’y:E>po—lyz’e‘—>—oo as € — 0.
Then, there exists ¢y > 0 such that
z— P} z — P?

ﬂ, V zeRY and V €€ (0,¢).

)+ e (~a

uc()| < C [exp (—a

O
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Chapter 2

Existence and concentration of
nodal solutions for a subcritical
p&q equation

In this chapter we prove existence and concentration results for a family of nodal solutions
for a general quasilinear equation with subcritical growth. More precisely, we study the
existence and concentration of nodal solutions to the following quasilinear equation

—div (a (P |VulP) e’ |VuP~2Vu) + V(2)b (JulP) [ulP~?u = f(u) in RY,
(Pe)
u € WHP(RN) 0 WHI(RY),

where € >0, 1 <p<qg< N, N>2and ut #0, u~ #0 in RY and
u"(z) := max{u(z),0} and u” () := min{u(z),0}.

We show that such solutions changing of sign exactly once. We say that a function
u € WHP(RN) n WH4(RN) is nodal solution of (P.) if u* # 0 in RY and
/a(ep\Vu]p)ep|Vu]p2Vqu dz + / V(2)b(JulP)|uP~2uv dz = /f(u)v dz,
RN RN RN

for all v € WIP(RN) N W14(RY). The hypotheses on the functions a,b, f and V are the
following:

(a1) the function a is of class C 1 and there exist constants k1, ko > 0 such that

kit? 11 < a(tP)tP < kot? +19, for all ¢ > 0;

t
(a2) the mapping ¢t — A(tP) is convex on (0, 00), where A(t) = / a(s)ds;
0

a(tP)

ta—p

(a3) the mapping t — is nonincreasing for t > 0;

(ag) if 1 < p <2< N the mapping ¢ — a(t) is nondecreasing for ¢ > 0. If 2 < p < N the
mapping t +— a(tP)tP~2 is nondecreasing for t > 0 .
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As a direct consequence of (a3) we obtain that the map a and its derivative a’ satisfy

(q—p)
p

a(t)t < a(t) for all t > 0. (2.0.1)

Now if we define the function h(t) = a(t)t — %A(t), using (2.0.1) we can prove that the
function h is nonincreasing. Then, there exists a positive real constant v > % such that

Lot < A@), forallt > 0. (2.0.2)
-

(b1) The function b is of class C! and there exist constants k3, k4 > 0 such that
kstP 4+t < b(tP)tP < kqt? +t9,  for all ¢ > 0;
t
(b2) the mapping t — B(tP) is convex on (0,00), where B(t) = / b(s)ds;
0

b(tP)

ta—p

(bs) the mapping ¢ is nonincreasing for ¢ > 0.

(by) if 1 < p <2< N the mapping ¢t — b(t) is nondecreasing for ¢t > 0. If 2 < p < N the
mapping t + b(tP)tP~2 is nondecreasing for ¢ > 0.

Using the hypothesis (b3) and arguing as (2.0.1) and (2.0.2), we also can prove that
there exists v > % such that

lb(t)t < B(t), forallt>0. (2.0.3)
v

The nonlinearity f is assumed to be a C*(R) odd function satisfying

(f1)
f'(s) _

5|0 |s]972

(f2) There exists ¢ <7 < ¢* = ]\?—]jq such that

fls) _

S|7‘—1 -

|s|—o0 |
(f3) There exists 6 € (yp,q*) such that
0<OF(s) < f(s)s, for s#0,

where F(s) = / f(t)dt and v > 0 was given in (2.0.2);
0

f(s)

s9—1

(fa) s+

is nondecreasing in s > 0.

The condition on potential V' are:
(V1) There is V > 0, such that

0< Vo <V(2), for all ze RV,
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(V3) There exists a bounded domain © ¢ RY, such that

0<Vo=infV inf V(z).
<Vo=BEVE) < BLVE)

The main result is the following:

Theorem 2. Suppose that a, b, f and V satisfy (a1) — (as), (b1) — (ba), (f1) — (fa)
and (V1) — (V3) respectively. Then there is ¢y > 0, such that (P.) has a nodal solution
we € WHP(RN) N WLI(RY), for every e € (0, ¢p). Moreover, if P! is the maximum point of

we and Pg is the minimum point of we, then for ¢ = 1,2, we obtain

lim V(P! = V.

e—0

Moreover, there are positive constants C' and «, such that
>—|—exp<—a ﬂ, vV zeRVN.

To prove Theorem 2, we will work with the problem below, which is equivalent to (FP)
by the change of variable z = ex, which is given by

z— P!

€

2
z — P:

€

() < C [exp (—a

for all € € (0, ¢).

—div (ea (|VulP) [VuP~2Vu) + V(ez)b (JulP) [ulP~?u = f(u) in RY,
(Fe)
u € WHP(RN) n Wha(RY),
where e >0, 1l <p<g< N and N > 2.

The plan of the paper is the following: In the section 2.1, we define an auxiliary problem.
In section 2.2, we prove some results to auxiliary problem and we show existence of nodal
solution for this auxiliary problem. The concentration of nodal solution of auxiliary problem
is showed in section 2.3. The existence of one nodal solution of the original problem is
showed in section 2.4. The exponential decay of the nodal solution of the original problem
is proved in section 2.5.

2.1 Variational framework and an auxiliary problem

In order to obtain solutions of (P.), consider the following subspace of W12(RN) W L4 (RN),

We = {v e WHPRN) n W(RY) : / V(ex)b(|v|P)|v|Pdx < +oo},
RN
which is a Banach space when endowed with the norm

lull = llullp + lull1g,

where )

w|l1,m = </ |Vu\mdx+/ V(ex)|u|mdx) " , form > 1.
RN

RN
Since the approach is variational, consider the associated energy functional
Je : We = R given by

Jo(v) _1/A(yvu|p) dx—l—;/V(ex)B(Mp) do — /F(v)dx.

p
RN RN RN
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By standard arguments, one can prove that J, € Cl(We, R). Let 6 be the number given in

0 \%

L1 ,q — 1} and @ = —07 where Vj
ne B

(f3), n, 8 > 0 be constants satisfying 5 > max { 7

appears in (V7). Using the above numbers, we define the function
fls) if sl <3,

Y,
fy= ¢ 7
E|s|q72s, if s<-—n.

B

q-1 if s>mn,

\

Here we are defining the function f in (—7, —2) (4,n) such that fis C! class. Note that
by (f1), given £ > 0, we get

(glslr2 < (q—D)%[s|72 if |s| <1,

) (a-D)2ps2 if s>,
f(s) < B (2.1.1)

Vi _ .
<q—1>g|s|q 20 if s< .

Now we define

9(2,5) = xa(2)f(s) + (1 = xa(2)) f(s),
and the auxiliary problem

{ —div (ea (|VulP) |VuP2Vu) + V(ez)b (|ulP) [ulP~?u = g(ex,u) in RY,

u e W67 (Peaua:)

where xq is the characteristic function of the set . It is easy to check that (f1) — (f1)
imply that g is a Carathéodory function and for € R, the function s — g(ex,s) is of
class C! and satisfies the following conditions, uniformly for z € RV:

glex,s) _
sl—0 [slat (91)
g(ex, s)
=0 92
|s| =00 ’S‘r_l ( )
0 < 0G(ex,s) < g(ex,s)s, Vexr € Q and Vs # 0 (93)
and .
0 < qG(ex,s) < g(ex,s)s < BV(ex)|s|q, Vexr ¢ Q and Vs # 0, (93)ii
where G(ez, s) :/ g(ex, t)dt.
0
The function
g\(sjf,j) is nondecreasing for each z € RY and for all s # 0. (g94)
Remark 3. Note that, for z = ex, if u. is a nodal solution of (P, ) with

lue(2)| < 4 for every ex € RV \ Q, then uc(z) is also a nodal solution of (P.).
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2.2 Existence of ground state nodal for the auxiliary problem

In this section we adapt some arguments found in Alves & Figueiredo [7] and Alves &
Soares [12], Bartsch, Weth & Willem [18] to establish the existence of ground state nodal
solution for problem (P, ).

Hereafter, let us denote by I. the functional

1 p 1 €x v|P) dx — ex,u)dx
fe<v>=pR[A<|W|>dx+pR[v< VB (jof?) d R{G( u)d

and by N, the Nehari manifold associated given by
/\/‘E:{UEWGZU#O and Ié(u)uzO}.

Since ¢ is C', the functional I, is C' class. Since we are looking for nodal solutions, we
also define the following set

NE = {u eEWe:uF#0 and I'(uF)ut = O},
where
u™(2) = max{u(z),0} and v () = min{u(z),0}.
The main result in this section is:

Theorem 2.2.1. Let a satisfying (a1) — (aq), b satisfying (b1) — (by) and V' such that
(V1) — (Va) hold. Then there is €g > 0, such that (P,,,) has nodal solution ue € We, for

€aux

o Pl . . P2 . . .
every € € (0,€g). Moreover, if == is the mazimum point of ue and == is the minimum point
of ue, then for1=1,2, we obtain

lim V(P!) = V.

e—0
We begin with some information on the functional I, in A; and in N

Lemma 2.2.2. (i) There is C > 0, such that

L(w) = C | ulff, + l[ull?, ] ,VueN andV e > 0.

(i) There exists p > 0 such that ||u| > p for all u € N and ||w*|| > p for all w € NF.

(iii) There is p1 > 0, such that,

0<p< [y,
Qe

for all uw € N* and for all € > 0, where Q := e~ 'Q.

Proof. Since u € N, and (2.0.2), (2.0.3), (g3) holds, we have that

L) = L(u) —%<Ié(u),u> > <pl7 _ é) /a(yvu|p)|vu|p da
RN
<pl'y - ;) /V(ex)b(!u|p)|u|p dx + % / [9(ex,u)u — 0G(ex,u)] dx.
RN RN\ Q.
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Since g(ex, s)s > 0, from (ay), (b1) and (g3):i, we obtain

L) > (1—;) [aivup + (9 az

RN
1 1 1
+ (== V(ex)[ks|ul? + |ul? dx—/qu—i-Vex ul?] dz.
(- - 5) [ Veoltalup + i ao - 5 [197 4 Vi)lul?
RN RN
Now the result follows because 5 > Oy .
0 —p

In order to prove (ii), suppose, by contradiction, that there is a sequence
(up) in N such that u, — 0 in W.. Then, from (a1), (b1), (g1) and (g2), given § > 0,
there exist C' > 0 and Cs > 0 such that

Clllunllfp + lunllfy] < /a(IVunl”)IVunlpdfv +/V(6x)b(|un\p)!un|pdw
RN RN

< 5/|un|qdm+05/|un|de.
RN RN

Using Sobolev embeddings we get
Cllull* < flul"

But the last inequality is impossible because ¢ < r. Moreover, since ./\/'ei C N, the second
item is over.

In order to prove (iii), from (a1), (b1), (91), (g2) and Sobolev embeddings, for all § > 0
given, there are C,Cs > 0 such that

Cllt|?, + u]e,] < / o(|[VaE )|Vt Pz + / V(ex)b(|u* ) [u* P da
RN RN

1
5/]ui]qd:v+05/]ui|rdw+6 / V(ex)|u*|9dz.
Qe Qe RN\ Q.

IN

Now the result follows by item (i2) and from arbitrariness of J and because
s> 1 O

From Lemma 2.2.2 we have well defined the real number

de = inf I.. (2.2.1)
N

Moreover, from [17, Lemma 4.2, Lemma 4.3] , for u € W, with the u* # 0, there exist
and are unique ¢, s > 0 such that tut 4+ su™ € N. At this point, we can finally prove the
existence of v € N in which the infimum of I, is attained on NZ*.

Existence of nodal solution for the auxiliary problem

We are going to show that the infimum of I, on N is attained by some u. € N, considering
thecases2<p<qg< Nandl<p<g<2<N.

Lemma 2.2.3. If 2 < p < q < N, then the functional I. is sequentially weakly lower
semicontinous in We. Moreover, the level d. is attained for some ue which is a nodal
solution for problem (P.,,.)
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Proof. Firstly we prove that the functional I, is sequentially weakly lower semicontinous in
W,. For this let us consider (u,) C W, such that u,, — u in W, and Q. := ¢ €. From (as)
and (by) it follows that

/A(\Vu]p)d:rgliminf/ A(|Vun|P) da, (2.2.2)
. n—-+00 Q.
/V(ex)B(\u]p)dargliminf/ V(ex)B(|un|?) dz. (2.2.3)
Q. n—-+oo Q.

Moreover, by Sobolev embeddings, we get

/ F(u)dxr = lim F(uy,) dx. (2.2.4)
Qe

n——+oo Q.

Now we are going to prove that

1 P PY\uP) do — v
I gv\q, (V) = p/RN\QE (A(IVv|P) + V(ex) B(|v[P)vP) d /RN\Qe F(v)

S
is a strictly convex functional in W.(RM\Q,), where F(s) = / Ft)dt.
0

Observe that I.”(v)(w,w) is well-defined for v,w € W (RY), for 2 < p < ¢ < N. Then,
for v,w € W, (RV\Q,), w # 0, we have

Lpma, " )(w,w) = p / o/ (|Vol?) Vo[~ (VoTw)?da
RN\Q,
+ (p2)/ a(|VolP)|[Vo|P~H(VoVw)2de
RN\ Q.
+/ a(|VolP)|Vo|P~2 | Vw|?dz
RN\ Q.
+op / V (ex)V (Jo]?)[o]22~ (vw)2dz
]RN\QE
-2 / V(ex)b([uf?) o (vw)2dz
N\(Z€

i /RN\QG V(ex)b(joP)[ol""*w]*dx / f (v)w?dz.

RN\Q,

Using (2.1.1), (a4) and (bg), we deduce that

€

fena @) = [ (Vv A TuPde+ [ Vool lop s
’ ¢ RN\Q, RN

N-—-1
B Jrna.

Volv| N 2w?dz.
Therefore from (b;), we have

Hamo @@w) = [ a( 0oVl Vot [ Vi)l ?ufds
’ € RN\ Q. RN

€

_ Nl / V(ea)b([of?) o2 wde.
B JrM\q.
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Since we also have 8 > N — 1, we finally get to Ié’RN\Q (v)(w,w) > 0. By convex analysis

it follows that I gn\q, is weakly lower semicontinuous.
From Lemma 2.2.2, there exists a bounded minimizing sequence (uy,) in N for d. and
1. is coercive on J\fei. Hence, there exist v, uy,us € We such that

Up = v, wl —up, u, —ug in We.

Since the transformations v — v+ and v — v~ are continuous from L"(RY) in L"(RY) (see
Lemma 2.3 in [22] with suitable adaptations), we have that v = u; > 0 and v~ = ug < 0.
By item (iii) of Lemma 2.2.2, we conclude that v* # 0, and therefore v = v + v~ is
sign-changing, this implies that there exist t,s > 0 such that u, = tv™ 4+ sv™ € NF. we
have the u, = tv™ + sv™ € /\/ei. Moreover, there exists a unique pair (¢, s,) of positive
constants such that

I (tyvT + 8,07 ) = max I(tv" + sv™).
t,s>0

Since I, is sequentially weakly lower semicontinous in W, and (u,) in N:F, we have
de < I(ue) = I(tvt + sv7) < liminf I.(tu; + su,,)
n—-+o0o

< . Jr — < . Jr — — . — .
< l:lgilg)lg(tun + su, ) < nETOO I(u) +u,) nll}lloo I (up) = de

O]

Lemma 2.2.4. For 1 < p < q < 2 < N, the level d¢ is attained for some ue € ./\/;i.
Moreover, u. is a nodal solution for problem (P.,,.).

Proof. From Lemma 2.2.2, there exists a bounded minimizing sequence (u,,) in N for d.
and I, is coercive on /\/ei. Hence, there exist v, u1, us € W, such that

Up = v, wl =y, u, —uy in We.

Since the transformations v — v* and v — v~ are continuous from L"(R") in L"(RY) (see
Lemma 2.3 in [22] with suitable adaptations), we have that v = u; > 0 and v~ = ug < 0.
By item (iii) of Lemma 1.2.2, we conclude that v* # 0, and therefore v = v + v~ is
sign-changing, this implies that there exist ¢, s > 0 such that u. = tv™ + sv~™ € NF. we
have the u. = tvT + sv~ € NE.

On the order hand, using Sobolev embedding, we have

lim fwHutde = [ f(vF)vTda.
[

n—-+o0o

Then, using Fatou’s Lemma and (g3);; we obtain that

/ [a(|Vvi\p)]Vvi\p+V(ex)b(|vi]p)|vi]p] dx < /g(ex,vi)vidx,
RN RN
that is, I/(v)v* < 0. Thus, ¢, s € (0,1].
Now, let us observe that assumptions (as), (bs) and (f4) imply the following monotonic-

ity conditions:

1 1
t — —A(t) — —a(t)t is increasing for ¢ € (0, +00),
p q

1 1
t — —B(t) — =b(t)t is increasing for ¢ € (0, +00),
p q

1
t — —g(ex,t)t — G(ex,t) is increasing for ¢ € (0, +00),
q
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Hence,

L(tv") < /(;A(\V(tvﬂlp)—;a(lv(tﬂ)\p)lv(tv*)lp) dx
RN

+ / V(ex) (;Buwﬂp) _ ;b(|tv+|p)|tv+|p> da

RN
1 gyt +
+ —g(ex,tv")tv" — G(ex,tv™") | dx

q
RN

IN

n—-+00

imint | [ (1A<Wu:p>—1a<rwmp>rwz|p) da
p q
RN

+ [ vien (SBut) - ot Pt ) da

RN

n—-+0o0o

1
+ / (qg(eaz,u,‘f)u;’{ - G(em,uj)) dr| = liminf I (u}).
N

Using the same arguments as above one can immediately prove that I.(sv™) < I.(v7).
Then, using that g is and odd function and u, € N, it follows that

de < I(ue) = I.(tv™) + I(sv™) < liminf I (u,) = dk.

n—-+o00
O
Remark 4. Note that Lemma 2.2.4 is true for all 1 < p < N, however the arguments used
i in Lemma 2.2.3 is new for nonhomogeneous operators.
Proof of Theorem 2.2.1

Proof. The existence follows by Lemma 2.2.3 and Lemma 2.2.4. The proof that I/(u¢) =0
and that u,. has exactly two nodal domains or equivalently it changes sign exactly once can
be seen in [17, pages 1230-1232]. O

2.3 Concentration results

In order to prove the concentration result, we consider the limit problem

{ —div (a(|VulP)|[VulP~2Vu) + Vob(|ulP)[u[P?u = f(u) in RN (PL)
WEr(RN) N Whe(RY) L

whose associated functional is given by

1 p P)dx — u)dx
Rolw) = 3 [ 1AQVaP)+ VoB(ullde — [ Pl
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by the corresponding Nehari manifold is given by
Ny = {u € WH(RN) n WH(RM)\{0} : I (w)u = 0}.

We also define
cy, = inf Iy,.
Vo NVO Vo
We define the Palais-Smale compactness condition. We say that a sequence
(up) € WEP(RN) 0 WH4(RN) is a Palais-Smale sequence at level cy, for the functional
Iy, it
Iy, (up) — ey,

and
114 (un) || = 0 in (WHP(RY) n WHI(RN))'.

If every Palais-Smale sequence of Iy, has a strong convergent subsequence, then one says
that Iy, satisfies the Palais-Smale condition ((PS)c,, for short).

The next result shows that problem (Pr,) has a solution that reaches cy.

Lemma 2.3.1. (A Compactness Lemma) Let (u,) C Ny, be a sequence satisfying
Iy (un) — cv,. Then, there exists a sequence (§i,) C RN such that, up to a subsequence,
O (2) = up(z + §n) converges strongly in WP (RN)NWL4(RN). In particular, there exists
a minimizer for cy;.

Proof. Applying Ekeland’s Variational Principle (see Theorem 8.5 in [62]), we may suppose
that (upn) is a (PS)ey, for Iy,. From Lemma [6, Lemma 2.3], going to a subsequence if
necessary, we have that u, — u weakly in W5HP(RY) N WL¢(RY) and I (u) = 0.

If w # 0, then w is a ground state solution of the limit problem (Py,), that is,
Iy, (u) = cy,. In fact, using arguments found in [6, Lemma 2.3], we have that

Vi, (z) = Vu(z) ae in RY and Iy, (u) = 0. (2.3.1)
Then, by (2.0.2), (2.0.3) and the Fatou’s Lemma,

0< o [1AQVAP) + Vo] de — 5 [ la(Vul?) TP + VoB(ul)lup] ds
RN RN

< liminfd / [A(VunlP) + VoB(Junl?)) da

n—-+0o00 P

RN
1
—g | (V)| Vunl” + VoB(lun ) |un|"] da
RN
Hence, if u € Ny,
1 / . . 1 / .
cvy < Iy (u) — EIVO (uw)u < lﬁgigof Iy, (up) — glvo(un)un = ngr—ir-loo Iy, (up) = ¢y

By (2.3.1), (a1), (b1) and Lebesgue’s theorem we conclude that u, — u in WP(RY) N
WH4(RYN). Consequently, Iy, (u) = cp and the sequence (¥,) is the sequence null.
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If w = 0, then in this case we cannot have u, — u strongly in WHP(RY) 0 Wha(RY)
because cy, > 0. Hence, using [6, Proposition 2.1], there exists a sequence (,) C RY such
that

vy = v in WHWPRN) n WhRN),

where v, = up(z + §,). Therefore, v, is also a (PS)CV0 sequence of ICVO and v Z 0.
It follows form above arguments that, up to a subsequence, (v,) converges strongly in
WLP(RN) N WL4(RN) and the proof of the lemma is over. O

Proposition 2.3.2. Let ¢, — 0 and u,, € N, be such that I, (u,) — cy,. Then there
exists a sequence (§,) C RY such that v, (x) = uy(x + §,) has a convergent subsequence in
WEP(RN) N WH(RN). Moreover, up to a subsequence, y, — 7 € Q, where Yy, = €pijn.

Proof. Since cy, > 0, from Lemma [6, Proposition 2.1], there exists a sequence (f,) C RV
and constants R and [ such that

liminf/ | up |9> E, for some §> 0.
Br(

n—o0

Rr(Un)

Thus, if v,(x) = u,(x + §,), up to a subsequence, v, — v # 0 in WIP(RN) n WL(RN).
Let ¢, > 0 be such that

B = tavn € Ny (2.3.2)
Then, since v, € N, we obtain
vy < Iy (Un) < I, (0n) < Ie, (0n) = Ie, (un) = cy, + on(1), (2.3.3)

which implies
Ivo(f)n) — Cyp and (17n) C NVO-

Since (vy,) is bounded in WP (RM)NWL4(RY), from (2.3.3), we get that (t,) is bounded.
As a consequence, the sequence (Un) also is bounded in
WLP(RN) N0 WH4(RY), thus for some subsequence, @, — @ weakly in
WLP(RY) N WH4(RY) and we can assume that t, — to > 0, and this limit implies
that o # 0. From Lemma 2.3.1, v, — @ in W?(RY) n WhH4(RV), and so, v, — v in
WLP(RN) N WLa(RN).

To conclude the proof of the proposition, we consider ¥, = €,%,. Our goal is to show
that (y,) has a subsequence, still denoted by (y,), satisfying y, — y for g € Q. First of
all, we claim that (y,) is bounded. Indeed, suppose that there exists a subsequence, still
denote by (yy), verifying |y, | — co. Note that from (a;) and (b1) we have

/ [k1|Vo,|P + Vo, |1 dx + W / [ks|on|P + |vp]?] do < /g(enaz + Yn, Up)Upde.

RN RN RN
Fix R > 0 such that Br(0) D Q and let X', be the characteristic function of Bg(0).
Since Xp,,(0)(ex +yn) = on(1) for all z € Br(0) and v, — v in WIP(RN) N WH4(RY), then

/ XB,0) (€T + Yn)g(ex + Yn, vn)vndr = 0n(1).
RN
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By definition of fwe obtain that

/ [k1|Vop|P + [V, |?] dz + Vo / [ks|vn|P + |vp Y] dx < / f(vn)vndx + on(1)
RN RN RN\BR(0)

< 3 [ lode + 0,(1),
RN

It follows that v, — 0 in WLP(RY) N WH4(RY), obtain this way a contradiction. Hence
(yn) is bounded and, up to a subsequence,

yn—>y€RN.

Arguing as above, if 7 ¢ Q , we will obtain again v,, — 0 in WHP(RY) N W14(RN), thus
7y € Q. If V(y) = Vo, we have i ¢ 0 and consequently 7 € Q. Supposing by contradiction
that V(y) > Vo, we have

~ 1 - 1 ~ ~
o = (@) < 7 / AVl e+ / V@) B (o) — /F(v).
RN RN RN
Using again the fact that ©,, — v in WHP(RN) 0 WH4(RY), from Fatou’s Lemma
o] ~ 1 - -
ey < hrr_1>1nf [ / A(|Vo,P)dx + = / V(enz + yn)B(|0n|P)dz — / F(vn)}
pRN pRN RN

that is, since (u,) € N,,,
cy, < liminf I (tpuy) < liminf I, (un) = cv;,

obtaining a contradiction. O

Lemma 2.3.3. Let (e,) be a sequence such that €, — 0 and for each n € N, let (u,) C N
be a nodal solution of problem (P.,,) such that I (uF) — cy,. Then (viy,) converges

Caux
uniformly on compacts of RN, where v1,(x) = u} (z + G1.n) and von(z) := uy, (T + o).
Moreover, given & > 0, there exist R > 0 and ng € N such that

[vinll oo @M\ BR(oy) < €& for all n>ng and i=1,2,

where (J1,n) and (G2,n) were given in Proposition 2.5.2.

Proof. Adapting some arguments explored in [6, Lemma 5.5], we have that the sequences
(v1,,) and (va,,) are bounded in L%°(R¥Y) and there exist R > 0 and ng € N such that

Hvi,nHL‘X’(RN\BR(O)) <&, forall n>np and 7 =1,2.

Then, for any bounded domain ' C R¥Y, from (g1) and (g2) and continuity of V there
exists C' > 0 such that

V (en2)|un|P~! — g(enz,u,)| < C, forall n€N.

Hence,
[V (en)|un P~ — glenm, un)| < C + |Vu,|P, forall neN.
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Considering ¥(z) = C, we get that ¥ € LY(Q') with t > p%lN. From [28, Theorem 1], we
have
|Vu,| € L3S (RY)

loc

Therefore, for all compact K C ' there exists a constant Cy > 0, dependent only on C, N, p
and dist(K, 0') such that
||vunHoo,K < C'0-
Then,
|un|0loo,cu(RN) <C, forall neN and 0<v <1

From Schauder’s embedding, (u,) has a subsequence convergent in C’loo’s (RM). O

Lemma 2.3.4. Given € > 0, the nodal solution ue of problem (P,,,,) satisfies

€aux

li_r)r(l) I (ue) = 2cy,.

As a consequence

. + _ . — _
lg% I(ul) =cy, and lg% I(u.) = cy,.

Proof. Consider zp €  such that V(zg) = V). Now let us consider R > 0 and set
Q1, Q2 € 0BRr(z0) such that |Q1 — Q2| = 2R. If necessary, take R small enough such
that B(Q;, R/4) C Q. Taking ¢; : RNV — R such that ¢; = 1 in B(Q;, R/4) and v¥; = 0 in
RY\B(Qi, R/2).

For i = 1,2, let w; € WYP(RY) n W4(RN) be a ground-state positive solution (see
Lemma 2.3.1) of problem

—div(a(|Vul?)[VulP7?Vu) + V(Qi)b(|ulP) (JulPu) = f(u) in RY

which satisfies

Cyign = Ivon(wi) = _inf sup Iy g, (tv),
v@) = Iv@twi) = | o suplvg(tv)

where
1

Iy (g)(v) = 5 / [A(|Vo[P) + V(Qi)B(|v|P)] d — / F(v)dz.

RN RN
Consider the function we g, : RY — R be given by

we,@, (7) = Yi(ex)w; (x - Qi) ew,

€

and t.; > 0, such that ¢, ;w g, € N.. By the construction, we have
We 1= te1We,Qy — Le2We,Qy € ./\/;i.

By supp(we,g,) N supp(we,g,) = 0, once B(Q1, R) N B(Q2, R) =0, and w;, for i = 1,2, are
positives then

supp(w; ) N supp(W, ) = 0, WS =te1weq, and W, = —tcQ,WeQ, -

Then
I(w,) = IE(WS_) + I.(w;) and



Hence
L(u) < L(w.) = (@) + L.(w?). (2.3.4)

Now with a direct computation we have

I(ue) < Ie(we) = L(w]) + (W, ) = cv(Qi) + V() T 0e(1).
Finally, taking R — 0 in the last inequality and using the continuity of the minimax

function (see [13], [51]) we get

lim sup I (ue) < 2cy,.
e—0

Now let t= > 0 be such that tFu € Ay,. Then,
2cy, < Iy (tEud) + Ty (tug) < Le(tdud) + Le(toug) < Le(ul) + Le(ug) = Ie(ue).
Hence we have proved that

lij% I (ue) = 2cy,.

On the other hand, we know that cy, < Iy, (tFuF) < I (tFuF) < I (u}). Therefore,
ey, < liminf I (ud).
e—0

Assume by contradiction that at least one inequality is strict, then arguing as above we
obtain
2cy;, < liminf (Le(ul) + Ie(u?)) = I(ue) = 2cy;.
€

O]

Lemma 2.3.5. Let (e,) be a sequence such that €, — 0 and for each n € N, let (u,) C
J\/’i be a solution of problem (P, ). Then, there are 6* > 0 and ny € N such that for

€aux

V10 (2) == uf (x4 G15) and von(x) == uy, (x + Yo.n), we have
vin(z) > 6%, forall x € Br(0) and n > ng

and
von(z) < —6%, for all x € Br(0) and n > ny,

where R >0, (§1,n) and (§2,n,) were given in Proposition 2.3.2.

Proof. Suppose by contradiction that ||v; | zec@®™\By(0)) = 0, for ¢ = 1 or i = 2. Then by
Lemma 2.3.3, we have ||v; || oo~y — 0. It follows from (f1) that

|f(vin)| < ?\vm\q*l for n sufficient large. (2.3.5)

Thus,
/ a(|V0inl?) Vi Pz + / V(ent + yin)b([vin[?) [vin P
RN RN

F(Vim)vindx + 0p(1)
RN

Yo
2 Jr

IN

Vi n|Tdz + 0,,(1),
N
which implies from (a;) and (b1) that,
iz w0,

which is a contradiction with Lemma 2.3.4. O
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Lemma 2.3.6. Fori= 1,2, we have

lim V(P!) = Vp.

e—0

Proof. We first notice that using Lemma 2.3.5 there exist §* > 0 and ng € N such that

v1.0(q)) == nelﬂ%)f\(f v10(2) =l (g + 1n) > ub(z) > 8, for all n > ng, for all x € Bg(0)

and

va.n(q2) = Zl'élﬂi{% va.n(2) = Uy (@2 +Ton) < uy, (z) < —06%, for all n > ng, for all = € Bg(0).

We claim that ¢, i = 1,2 is bounded, otherwise using Lemma 2.3.3 and 2.3.5, there exists
R* > 0 such that [|vin| peo@n\pg.) < %*, which implies that |v;,(¢%)] < &, where we
obtain a contradiction. Then, Pjn = enql, + Yi.n implies

lim P’ = lim yi, =7, €.
n—o+too ©n n—>+ooyl’n Yi

Hence from continuity of V' it follows that

lim V(P.)=V(#) > V.

n——+o0o "

We claim that V(gy;) = V. Indeed, suppose by contradiction that V(y;) > Vy. Using the
same arguments of Proposition 2.3.2, we have that v;,, — v; in WP(RY) N WH4(RY) and

1 1
ey = I (31) < p/A(\vw)de/V(yi)B(m\P)d:g— /F(Ei)dx.
RN RN RN

Using that 0;, — 9; in WYP(RY) N W14(RY) and from Fatou’s Lemma, we obtain

1 - 1 ~ ~
v, < liminf | / (Vi) + / V(ent + i) B([sn|?)de — / F(@i)de | |
RN RN RN

and therefore

ey < linrgio%f I, (tinul) < linni)gf I, (uF) = cy,.

This contradiction shows that V (y;) = Vp for i =1, 2. O

Lemma 2.3.7. Let {e,} be a sequence of positive number such that €, — 0 as n — oo and
let (xn) C Qe, be a sequence such that ul (x,) > T > 0 or u_ (z,) < =T < 0 for each
n € N and for some Y positive constant, where ue, is a solution of (P,,,). Then,

Jim V(z,) =V
where T, = €Ty,
Proof. Up to a subsequence,
Tp =T EQ
From Lemma 2.3.4 we have that ul € N,

Ien(uj;) — CVps
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and there exists a positive constants such that
luf | <C, VneN and for some C > 0.

Setting vy, (2) := ul (z + z,), we have [jv,|| < C and v, — v in WIP(RY) 0 Why(RY).
Recalling that

vn(0) = ul (z,) > T >0,

we conclude that v # 0.
Fix t,, > 0 verifying v,, = t,v, € Ny, for each n € N. Hence

vy < vy (Un) < I, (tnvn) < e, (vn) = I, (uy) = cvy + on(1).
Thus Iy, (v,) — cy, with {v,} C Ny,. By Lemma 2.3.1, we have
Uy =0 in WYPRM) N WUYRY) and Iy, (D) = cy,. (2.3.6)

Since v # 0, by Lemma 2.3.1 we have y, = 0, for n € N. Moreover, recalling that V is
continuous, we have

lim V(z,) = V(7).

n—o0

We claim that V(z) = V{. Indeed, suppose by contradiction that V(z) > Vj, then

vo = v, (0 / A(|VolP)dx + - / V(zZ)B(|v|P) da:—/ F(v)dx
RN

and by (2.3.6) and Fatou’s Lemma

n—oo

1 1
cy, < Iiminf[/ A(\Vﬂn\p)daz—i—/ V(enx—i—xn)B(ﬁn\p)da:—/ F('ﬁn)dx]
D JmrN D JrN RN

1 1
< liminf [/ A(|Vt,on|P)dx + / V(enx + Tpn) B(|thvn||P)dx
noo | P JRN D JrN
—/ G(epr + 7, tnvn)d:c}
= hnIgloI.}fI (thu )<hnH_l>£fI (u)) = ey,
which leads an absurd. Consequently le V(Zy) = Vo and the lemma is proved. O

Lemma 2.3.8. If mT is given by

mt = sup {rggxue uc € N* is a solution of ( GQW)}

€

and if m_ is given by

m, = sup {r{r)l{iznuE ue € NF s a solution of ( eauz)} ,

€

+

€

then there exists € > 0 such that the sequences (mZ) are bounded for all e € (0,€). Moreover,
we have

lim mi 0.
e—0
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Proof. Suppose, by contradiction, liH[l) mt = +oo or limm_ = —oo, then there exist u. a
€E—

e—0
solution of (P.,,.) in N and T > 0 such that

€aux

maxul >T >0 or maxu_ < -7 <0.

€ €

Thus there exists {¢,} C RT with ¢, — 0 and there exists a sequence {z,} C 99, such
that

ub () >T >0 or wu_

€n

(xn) < =T <0.
Thus, by Lemma 2.3.7, we have

lim V(z,) = Vb,

n—oo

where T,, = €,z,, and {Z,,} C 9. Hence, up to a subsequence, we have Z,, — T in 992 and
V(%) = Vb, which does not make sense by (V3). Hence, there exists € > 0 such that (mZ)
is bounded, for all € € (0,€).

We have now to prove that lgr(l) mei = 0. Then, suppose by contradiction that there

exists § > 0 and a sequence {e,} C R satisfying
mjn >0>0
or
me, < —0<0.
Thus, there exists u., a solution of (P,,,) in N such that

)
+ +

— — < maxu' <m
2 AR, v

_l’_

€n

m

or
m, < minu_ <m_ + =
n 8Qen n n 2
Hence,
o 0 o
—=0—-<ml — - <maxu],
2 2 2 0
inu, <mg + 5 < 5+5 0
min u m < —0+_-=—C
en 2 2 2

€n

and then there exists a sequence (z,,) C 99, , such that

0
ug, (@n) 2 3
or
_ 1)
ug, () < —3
Repeating the above arguments, we will get an absurd. Thus, the proof is finished. O
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2.4 Proof of Theorem 2

Proof. Let u. be a solution of (P, ). By Lemma 2.3.8, there exists € > 0 such that
Im%| < 4, for all € € (0,€), then (uc — )4 (x) = 0 for a neghborhood from . Hence,

(ue — Dy € WyP(RN\Q) N Wy I(RN\Q,) and the function (u. — 2)% € WWP(RN) N
WH4(RYN), where

0if z € Q.
(ue — Dy (z) if z€ RM\Q..

Using (ue — 4)% as test function. Then, by (a1), (b1) and (g3)i;, we have

0 < / ([ Vuel) |V (e — )3 P

RN\ Q.
[ p p—2 ‘/0 q—2 L/NPRY)
+ Vob(|uel?) |ue[P~= — g\ue\ ((ue = 5)3) dz
RN\Q,
[ P p—2 VO q—2 n N
+ / V(ex)b(Jue|P)|ueP~ — E!uel ]2(11E — §)+d$ <0
RNM\Q,
The last equality implies
ue—ﬁ * =0, aein z € RV\Q..
( 2 + ’

Hence, ue < 3 for z € RM\ Q..

Since we can assume m_ < —# for € € (0,€), working with the function (ue + 2)*,
it is possible to prove that uc > —% for z € RN\Q,. This fact implies that |u.| < ¥ for
z € R¥\Q, and by Remark 3 the result follows. O

2.5 Exponential decay
Lemma 2.5.1. Consider M,a > 0 and ¢¥(x) = M exp(—alx|). Then

i) = div(a ([VY[P) [VIP2Vy)

= P! [—pap+1a'(ap1/1p)¢2p_l +a(aPyP)yr! <(N’x_‘1) —alp - 1)>] ’

i) = din(a (Fu) [F0-270) > (B2~ afa = 1) afargmyar o,
Proof. Note that
Ti-(a) = Mexp(—ala]) - (<ala]) = Mexp(—alel)(~a) T = —aTti(a),
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which implies |V¢| = at). Now we show the item ).

’L

—div(a (V9P [VUP2VY) = 2 . [ (7o) 19u-25Y |
=1

— 1 1% 9 -1

= o Z[ (@07) g (@) ) (w1
N 9 z,

— oP 12 [a (aPP) aPpy?P— 20% ﬁﬂ

+ap 1Z|: apwp <|$“ | zwp 1 ( _1)¢p28¢%>:|

Ox; ||

=t |pertia @y aternyet (N2 —atp- )|

To show ii) we will use (1.2) and item 7). By (1.2) we have
—d (aPYP)aPyP > —Ma(aﬂb”),
p

where we get
—pa? ! (aPyP)p? Tt > —aypP " (g — p)a(aPyP).
Consequently, by i),

~div(a (V) [VHP2V) > (Nl ol 1>) a(aPP)ar=lyr1,

Corollary 2.5.2. Since V(z) > Vo in RN then, for small a > 0,
%
—div(a (|VYIP) [VY[P2Ve) + ksVoyP ! + Z%q—l >0 in RV,

Proof. Using (a;) and Lemma 2.5.1 we obtain that

—div(a (|VY[P) [VYIP2VY) > —a(q — Da(aPyP)aP 1Pt
> —a(g—1) (ka? 1y 4 oty
—a(q = Dkaa? P! — a(g — 1)a? yo !

Moreover, since Vy > 0 and a > 0 is small we can conclude that
k3Vo — alqg — 1)koa?™1 >0,

and

% —a(g—1a?t >0.

Consequently

Vi
—div(a (|VUP) [VYP2VY) 4 ksVou? ! + Z%q—l >0 in RV,
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Now let us relate the nodal solution u. to the exponential function 1 for small e.

Proposition 2.5.3. Let wu. be the solution found in Theorem 2.2.1 and
vie(x) = ul (z + 1) and va(x) = u (x + Yo.) given in Proposition 2.3.2. Setting
@i = max{|vie| — 1,0} fori=1,2, then for € >0 small enough, we have

_ _ Vo _
/a(lvvi,elp)lvvi,e\p Vi Vi do + ksVp / Vie P e dz + vy / |Vie] T pie da < 0.
RN RN RN

Proof. From Lemma 2.3.3, Lemma 2.3.4 and hypothesis (f1), there exist py > 0 such that
€ > 0 small enough,

. 3
{;(Iv‘q_!i < Vo, forall [a] = po.
i€

Since () := Mexp(—alz|) for z € RY, we can find M > 0 such that if M > M,
then ¢;  := max{|v; | — 1,0} = 0 in B, (0) and ¢; € WHP(|z| > po) N Whi(|z| > po).
Therefore, the above inequality and (b1),
/a(\VUz‘,e\p)\VUi,e!p_ZVvi,eV%,e dx +Vy / [KslvieP " pie + |vie| T pie] da
RN RN
< / a(|Vv; e [P)| Vi e[P2Vv; Vi o da + / V(€x + y5,e)b(|vi.e|P) i e [P 25 epse da
RN RN
3Vo _
< [t do < B0 [l tode
RN RN
O

and the lemma is proved.

Finally we will show the exponential decay for functions ..

Proposition 2.5.4. There are ¢g > 0 and C' > 0 such that

)esp(-a

1

€

2
z — P
€

))

juelz)] < c{exp(—a :

for all z € RN

Proof. From [30, Lemma 2.4], we have that
(allzP)[[P~2z — a(lyP)ly[P~2y,x —y) > 0, V 2,y € RY.
Consider vy ¢(x) = ul (z + J1,¢), v2.e(z) := u_ (x + Ya,) and the set
A i={z e RN :|2| > py and |vi| —¢ >0},

where 1 is the function is given by Lemma 2.5.1, (y1,) and (y2,) are given by
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Proposition 2.3.2. Then, using Corollary 2.5.2 and Proposition 2.5.3, we obtain

0> / (a(|V0ie[P) Vi P72V oie — a(| VY P) [ VYIPT2V, Vi) do

RN

+‘/0k3 / (|Ui,e

_ _ \% _ _
Pl P g e da + ZO / (Joiel®™! = 9971 g d

RN RN
B B i B B
> Voks / (JviePt = |pP~Y) p*dz + ZO / (lviel ™" = []77") @5 ed
RN RN
~ Voks / (o6l = [P0 (Jos ] — v)da

Al

\Z
+ (Joiel " = [T (|vie| — ¥)dz > 0.

4
Al

Then |A?| = 0, for i = 1,2 and consequently
[v,e(@)] + [v2,e(2)] < 2M exp(—alz]), V [z = po.

Considering = z — y; . and using Lemma 2.3.6 there exists a constant C' > 0 satisfying

) (o5

> exp (—a ‘qé‘) < Cexp <—a

z— P! +eq

€
z — P! )
for all |z — @i ¢| > po and for € > 0 small enough.

Now we are going to show the inequality (3.5.1) holds, for all z € RY. Since (yi.)
converges, it follows that

2= Yie
€

uF(2)] < 2M exp (—a

(2.5.1)

7
€

€

< 2M exp <—a £

B . 1 + .
!zIZpo—!yz-,E!—po—’y:E>po—lyz’e‘—>—oo as € — 0.
Then, there exists ¢y > 0 such that
z— P} z — P?

uc()| < C [exp (—a

)+ e (~a

ﬂ, V zeRY and V €€ (0,¢).

O
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Chapter 3

Existence and concentration of
positive solutions for a critical p&q
equation

In this chapter we are concerned with a class of problems, named p&¢q problems type. More
precisely, we show existence and concentration results of positive solutions for the critical
problem given by

—div (a (?|VulP) e’ |VulP~2Vu) + V(2)b ([uP) [ulP~?u = f(u) + |[u|? ~2u in RY,
(Pe)
u € WHP(RNV) N WHI(RY),

where € > 0,1 < p < ¢ < N and N > 2. We say that a function u € W1P(RN)nWL¢(RN)
is positive solution of (P.) if u > 0 in RV and
/epa(|Vu]p)|Vu|p_2VuVU dx + / V (2)b(|ulP)|ulP2uv do = /[f(u)v + u? " )dz,
RN RN RN

for all v € WIP(RN) N W14(RY). The hypotheses on the functions a,b, f and V are the
following:

(a1) the function a is of class C'!' and there exist constants ki, ko > 0 such that

kit? 419 < a(tP)tP < kot? + 19, for all ¢ > 0;

a(tP)

ta—p

(a2) the mapping t — is nonincreasing for ¢ > 0;

(ag) if 1 < p <2 < N the mapping ¢ — a(t) is nondecreasing for ¢t > 0. If 2 < p < N the
mapping t — a(tP)tP~2 is nondecreasing for ¢ > 0.
As a direct consequence of (az) we obtain that the map a and its derivative o’ satisfy

dtye < ;p)a(t) for all ¢ > 0. (3.0.1)

Now if we define the function h(t) = a(t)t — %A(t), using (3.0.1) we can prove that the
function h is decreasing. Then, there exists a positive real constant v > % such that

1
;a(t)t < A(t), forallt>0. (3.0.2)

The hypotheses on the function b are the following:
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(b1) The function b is of class C! and there exist constants k3, k4 > 0 such that
kst? + 19 < b(tP)tP < kyt? + 19, for all ¢ > 0;

b(tP)
ta—p

(be) the mapping t — is nonincreasing for ¢ > 0.

(bs) if 1 < p <2< N the mapping ¢t — b(¢) is nondecreasing for ¢t > 0. If 2 < p < N the
mapping t — b(t?)tP~2 is nondecreasing for ¢ > 0.

Using the hypothesis (b2) and arguing as (3.0.1) and (3.0.2), we also can prove that
there exists v > % such that

1
;b(t)t < B(t), forallt>0. (3.0.3)

The nonlinearity f is assumed to be a C' function with the following hypotheses:

(f1)

£(s) _
[s|—0 [ ]!
(f2) There exists ¢ <1 < ¢* = ]\?—]jq such that
f(s)

= 0.

|s|+o00 | 8|71

(f3) There exists 8 € (yp,q*) such that

0<0F(s) < f(s)s for s>0,
S
where F(s) = / f(t)dt and v > 0 was given in (3.0.2);
0

(fa) s+— % is nondecreasing for s > 0.
s
(f5) There exist 7 € (g, ¢*) and A > 1

f(s) > A7t Vs >0.

Before we give the main result, we need to put some hypotheses on the potential
V e C(RM).

(V1) There is Vp > 0 such that

0<Vy <V(2), for all z € RV,
(Vo) There exists a bounded domain Q C RY such that

= inf inf .
R U
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The main result is the following:
Theorem 3. Suppose that a, b, f and V satisfy (a1) — (a3), (b1) — (b3), (f1) — (f5) and
(V1) — (V2) respectively. Then there are ¢g > 0 and A* > 1 such that (P) has a positive
solution w, € WHP(RN)NWLI(RN), for every € € (0, ¢g) and for every A > \*. In addition,
if P, is the maximum point of w,, then
lim V(P,.) = V.

e—0

Moreover, there are positive constants C' and « such that

z— P.

lwe(2)] < Cexp (—a

)

This chapter is organized as follows. In Section 3.1 we define an auxiliary problem using
the penalization argument introduced by Del Pino and Felmer [26]. The existence of solution
for the auxiliary problem was showed in Section 3.2. In order to show the concentration
result, in Section 3.2 we studied the autonomous problem. The concentration result was
showed in Section 3.3. In Section 3.4 we showed that the solutions of the auxiliary problem
are solutions of the original problem. In Section 3.5 we showed the exponential decay
of these solutions. To conclude the paper, we showed in an appendix the existence of a
problem in a bounded domain that was important to overcome the lack of compactness.

for all € € (0, ¢p) and for all z € RY.

3.1 Variational framework and an auxiliary problem

To prove Theorem 3, we will work with the problem below, which is equivalent to (P.) by
change variable z = ex, which is given by

{ —div (ea (|VulP) |VuP~2Vu) + V(ez)b (JulP) [ulP~2u = f(u) + |[u|? ~2u in RV,

ue WWP(RN) N WH(RN), (Fe)

where € >0, N >2and 1 <p <q < N.
In order to obtain solutions of (P.), consider the following subspace of W1P(RY) N WL4(RY)
given by

W, = {v e WPRM) nwhyRN) - / V(ex)b(|v|P)|vPdx < Jroo}7
RN
which is a Banach space when endowed with the norm
lull = llullip + [lullg,
where

1
ull1,m = (/ |Vu\mdx+/ V(em)]u\mdaﬁ> " , form > 1.
RN RN

Since the approach is variational, consider the energy functional associated Je : W, — R
given by
1 1 1 T
J(w) == [ A(|Vv]P)dz+ ~ | V(ex)B(|v|P)dx — [ F(v)de — — [ vi dz,
p N q N

p
RN RN
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where u; = maz{u,0}. By standard arguments, one can prove that J. € C1(W,,R). As
we are interested in nonnegative solutions we can assume that f(s) =0 for s <0.

8 Vopy
@—-p1) q

, 1}, where 0 was given

fo+nt W

Let 8 be a positive number satisfying 5 > max {
q

in (f3) and Vj appeared in (V7). From (f4), there exists n > 0 such that

q—1 B’
Then, using the above numbers, we define the function of C! class given by
0 if s<0,
foy= | f&+s7if 0<s <,
1%
?Ols]q_Qs if s>n

We now define the function

9(z,8) = xa(2)[f () + (s 1 + (1 = xa())f(s),

and the auxiliary problem

{ —div (ea (|VulP) |VuP~2Vu) + V(ez)b (|ulP) [ulP~?u = g(ex,u) in RY,

= WE; (Peauz>

where xq is the characteristic function of the set . It is easy to check that (f1) — (f1)
imply that g is a Carathéodory function and for z € RY™, the function s — g(ex,s) is of
class C' and satisfies the following conditions, uniformly for z € RV:

g(ex, s)
=0
RECETE (6)
glex,s) < f(s)+ 5771 Vs>0and z € RN (g92)
0 < 0G(ex,s) < g(ex,s)s, Vexr € Q and Vs > 0 (93)
and .
0 < qG(ex,s) < g(ex,s)s < BV(ew)\s\q, Ver ¢ Q and Vs > 0, (93)ii

where G(ex, s) —/ g(ex, t)dt.
0
The function

g(ex,s)

o1 is nondecreasing. (94)

Remark 5. Note that, for z = ex, if ue is a positive solution of (P,,,) with |uc(z)| <
for every ex € RN \ Q, then u.(x) is also a positive solution of (P.).

NS

3.2 Existence of ground state for the auxiliary problem

Hereafter, let us denote by I. : W, — R the functional given by
1

I(v) =— A(|VulP)dz + 1/ V(ex)B (|v|P) dx — G(ex,v)dz.
D JrN P JrN RN
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We denote by N: the Nehari manifold of I, that is,
Nz = {u € W\ {0} : (I(u),u) = 0}
and define the number b, by setting

be := ule%g I (u).

Using (f1), (f2) and (g2) we have: for every £ > 0 there exists C¢ such that

lg(ex, s)| < €|s|971 + Cels|" "t + 5|9 forallz € RY, s € R.

Then, by definition of g and (3.2.2), there is r. > 0 such that
|ul]| > 7. >0 for all u € N..

The main result in this section is:

(3.2.1)

(3.2.2)

(3.2.3)

Theorem 3.2.1. Let a satisfying (a1) — (a3), b satisfying (b1) — (b3), f satisfying (f1)— (f5)
and V' such that (V1)—(Va) hold. Then, there is \* > 1 such that (P,,,) has positive solution
ue € WHP(RN)NWLYRN), for every X > \*. Moreover, if % is the maximum point of u.

then
lim V(P) = V.

e—0

In order to use the Mountain Pass Theorem [14], we define the Palais-Smale compactness
condition. We say that a sequence (u,) C W¢ is a Palais-Smale sequence at level ¢ for the

functional I, if
I(uy) — ¢ and |[I(u,)]| — 0 in (W),

where

¢:= inf max I.(n(t)) >0 and T :={ne C([0,1],X):n(0)=0, I(n(1)) < 0}.

nel'te(0,1]

If every Palais-Smale sequence of I, has a strong convergent subsequence, then one says

that I. satisfies the Palais-Smale condition ((PS) for short).
Lemma 3.2.2. The functional I. satisfies the following conditions

(i) There are o, p > 0 such that

Ie(u) > o, if Jlull=p

(i1) For any u € C§°(Q, [0,00)), we have

tlggo I (tu) = —o0.

Proof. Using (ay), (b1) and (3.2.2) we obtain

min{kl,kg} 1 § C 1 *
I(u) > —2 20yl = llf, > [ JulPde — =5 [ [ul"de — = [ u|? da.
p q p r q
RN RN RN
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By Sobolev embeddings, choosing ¢ > 0 appropriate and taking ||u|| < 1 there are positive
constants C1, Cy, (s, such that

I(w) = C [JJulf, + llul

1q] = Collull” = Csllull ™" > Cullull? = Coflull" — Cslull*".

Then the item (i) follows.
Now we show that the item (i) holds. Consider a positive function w € C§°(€2), t > 0
and using (a1), (b1), (f3) and Sobolev embedding, we have

tr po Tt o
Le(tw) < P max{kz, ka w7, + EHwHLq s [w[* dz
Q.

this proves the second item.
O

Hence, there exists a Palais-Smale sequence (u,) C We at level ¢.. Using (az2), (b2) and
(f1), it is possible to prove that

ce =be= inf supI.(tu),
ueWe\{0} tzg (tu)

where b, was defined in (3.2.1).
In order to prove the Palais-Smale condition, we need to prove the next lemma.

Lemma 3.2.3. Let (uy,) be a (PS)q sequence for I., then the sequence (uy,) is bounded We.
Moreover, for each & > 0 there exists R = R(§) > 0 such that

limsup/ [a(|Vun|P)|Vup|P + V(ex)b(|un|P)|un Pldz < €.
RN\BR(0)

n—oo

Proof. Since (uy) is a (PS)4 sequence for functional I, then using (3.0.1), (3.0.3), (¢;) and
(gi;) we have that

on(1) +d + on(DJun] = Ie(un)—%lé(un)un
L L p p T Uy [P |un|P] dz
(m—H)RZ (Tl Frf? + (14 V()] bl )
1

3 [[Vu|? 4+ V(ex)|ul!] dx
RN

11 . 1
<m - 9> (mm{khk?)}”unnll),p + <1 - ﬁ) Hu"’%q> :

Then, arguing as the [6, Lemma 2.3] , we can concluded that (u,) is bounded in W,.
Let ng € C®(RY) such that nr(z) = 0 if x € Bg/2(0) and ng(x) = 1 if = ¢ Bg(0),

C
with 0 < ng(x) < 1 and |Vngr| < R where C' is a constant independent of R. Since the

sequence (1gruy) is bounded in We, and fixing R > 0 such that Qe C Br/5(0) we obtain, by
definition of the functional I,

/ [a<Wun\p>Wun\p VDl | = Lem i + [ et uaunnnc
RN\ Br(0) RN
- / Un |V [P) |V P2V, Virde + o0, (1).
]RN
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Using (g3)i; we estimate
1
(1 - ) / [a(\Vun\p)]Vun]p + V(ex)b(|un |P)|un|P | dx
B/ JeN¥\BR(0)
< [ o190 ) Vo P [T+ 00 (1),
RN
As (uy,) is bounded in W, and |Vng| < = Passing to the limit in the last estimate, we get

lim sup / (|t ?) [Vt + V (e2)b(un ) [P}z < €.
RN\Bg

n—oo
for some R sufficiently large and for some fixed £ > 0. O

In the next result we show that the functional I. satisfies the Palais-Smale condition
for some levels. For this work we are denoting by S the best Sobolev constant for the
embedding of D™4(RY) into L9 (R™), that is, the largest positive constant S such that

S (/RN yu|q*dx>

Lemma 3.2.4. The functional I. satisfies the Palais-Smale condition at any level

d< (1 - 1) sN/a,
0 q*
1

1
Proof. Let (u,) C W, be a Palais-Smale sequence at level d < 7 *) SN/a for the
q

functional I.. Arguing as Lemma [6, Lemma 2.3] we have that (u,) is bounded in W-.
Then by Sobolev embeddings we deduce, up to a subsequence, that

a9
E3

’ < / |Vul?dz for every u € WhH4(RVN). (3.2.4)
RN

Uy — u weakly in W,

Vun(z) = Vu(z) a.e in RY,

up — u strongly in Lfoc(RN) for any p < s <q*,
un(z) = u(z) for a.e xRN,

(3.2.5)

Using the same kind of ideias contained [6, Lemma 2.3], we may conclude that u is a
critical point of I.. From Lemma 3.2.3 and for each £ > 0 given there exists R > 0 such
that

lim sup / [a(|Vun|P) | Vun|P + V(ex)b(|un|P)|un [Pldz < €.
e RN\Br(0)

This inequality, (a1), (b1), (f1), (f2), (g2) and the Sobolev embeddings imply, for n large
enough, there exists a positive constant C such that

/ g(ex, up)updr| < Cq (5 + &9 4 5‘1*/’1) . (3.2.6)
RN\BRr(0)

On the other hand, taking R large enough, we suppose that

g(ex,u)udx| < &. (3.2.7)

RN\Br(0)
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Therefore, by (3.2.6) and (3.2.7),

/ glex, up)undz = / glex, w)u dz + on(1). (3.2.8)

RN\BR(0) RN\Br(0)
We claim that
/ g(ex, up)updr = / g(ex,u)u dx + o,(1). (3.2.9)
Br(0O)N(RN\Q,) Br(0)NRN\Qe)
Indeed, we have, in view of the definition of g,

gl un)un < f(un)un + (3)" + Pt for any o € RN\

Since the set Br(0) N (RV\€) is bounded we can use the above estimate, (f1), (f2), (3.2.5)
and Lebesgue’s Theorem to conclude that the convergence (3.2.9) holds.
Finally, we now prove the following convergence

/Iunlq*dwzfluq* dz + on(1). (3.2.10)
Qe Qe

Since (u,) is bounded in W, and using the Lions’s Concentration Compactness Principle
[39], we may suppose that

|Vu,|?— u and [un |9 — v.
Then we obtain an at most countable index set I', sequences (z;) C RY and (u;), (v;) C
(0,00), such that
> |Vul? + Zulﬁxi, v = \u|q* + ZVi5l'i and Syf/q* < i, (3.2.11)
i€l ier

for all © € I', where ¢,, is the Dirac mass at x; € RYN. Thus it is sufficient to show that
{2 }ier NQe = 0. Then, we suppose by contradiction that z; € . for some ¢ € I'. Consider
R > 0 and the function vg = 9 (x; — ), where ¢ € C§°(R¥,[0,1]) is such that ¢ = 1 in
Bgr(zi), ¥ = 0 in RN\ Bag(z:), VY| < 2, where R > 0 will be chosen in such way that
the support of v is contained in Q.. Then, as (¥ guy,) is bounded and I’ (uy,)Yruy, = 0,(1),

/ Una|Vun|P) | Vun P2V, - Vipg d:U+/ Yra(|Vup|P)|Vu|P dx
RN RN

+ /RN YRV (ex)b(|un|P)|un|P dz = /RN [z, up)Yruny, d:l:—i—/RN l/JR\un]q* dx + o, (1).

Note that, using (a1), (b1) and that the function f has subcritical growth, we have

lim [lim / Una(|Vun |P) [V P2Vl - Vipg dl’:| =0,
N

R—0 |[n—o0 Jp
li li np np =Y,
tin | i [ V(ep(funlPlun P d| =0

and
lim [lim f(x,un)wRund:z] = 0.

R—0 |n—o0 JpN
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Therefore, by (a1) again,

/¢R|Vun|qda:§ /|un\q*1/13d$+0n(l).
RN RN

Since 1 has compact support and letting n — oo in the above expression, we see that

vrdp < [ dady
RN RN
which implies
Wi < v
0
From this inequality and (3.2.11) one easily sees that SN/¢ < 1;. As 3 > (QL) and
q\v —pvy

SN/4 < y; we have, by previous arguments,

1 0 — py 1 1 1 .

1 1 -
Qe

Hence, taking the limit and using (3.2.11), we get

11 11 11\
SO Vo= [ 2 - — )y > (2 — /q
Cc = <9 q*>§wR<$z)Vz (9 q*> v = <€ q*>5

which does not make sense. Thus we obtain the convergence (3.2.10).
Therefore

€

AV

/g(ex, Up Uy, dT = /g(eazju)u dx + on(1). (3.2.12)
RN RN
Finally, we prove that, up to a subsequence, u, — w in W,. Since I/(un)u, = o,(1),
Il(u) =0, (3.2.12) and Fatou’s Lemma we have
0 < /[a(|Vun|p)|Vun|P—a(|Vuyp)|Vu|P] d$+/V(€fﬂ) [b(|un|?)[unl” = b(Jul?)[ul?] dz
RN RN
+ / [g(ex, u)u — g(ex, up)uy] dx = o,(1).
RN

Then, using (aq) and (b1), we obtain ||u, —u|| = 0,(1), that is, the sequence (u,) converges
strongly to u. O

Let us now consider the following problem

{ —kaApu — Agu + Voo (ka|uP~2u + |u|972u) = |u|™ in Q, (Py)

ue W),

where 7 is the constant which appears in the hypothesis (f5) and V4 is a positive constant.
We have associated to problem (Ps) the functional

1 1 1
Fot) = 5 [ Rl Dl + Vikalul?) do -+ [ (Val? + Vaclult) do =~ [ fufda
Q Q Q
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and the associated Nehari manifold
Noo = {ue Wy i(Q) : u+#0and I’ (u)u = 0}.

From Appendix A there exists w, € I/VO1 () such that

Ino(wr) = Cooy Iio(wy) =0

Coo > <T_q) /\wTrda:. (3.2.13)
7q
RN

Since A is the parameter which appears in the hypothesis (f5) we have the following result.

and

1 1
Lemma 3.2.5. There exists \* > 1, such that if A > \*, then c. < (9 - *>SN/‘7.
q

Proof. First of all, by the hypotheses (a;), (b1) and (f5), we obtain

/a(|Vpr)]VwT|pdx+/V(ex)b(|w7]p)|w7pdx < /[kg\VwT|”+Vook4|wT|p] dx
RN RN Q

+/[\Vw7|q+Voo|wT]q] da::/|w7]7dx§/f(w7)w7dx§ /g(ex,wT)wde,
Q Q

Q RN

where V., := max V(). This inequality implies that I’(w¥)wE < 0, and then there exists

e
t € (0,1) such that tw, € N.
Using (a1), (b1) and (f5), we obtain
ce < I (tw;)

tP t4 A
< p/[kg]VwT\p+Vook4]wT\p] d:z:+q/[]VwT\q+Voo\wT\q] dx—TtT/\wTde.
Q Q Q

Since t € (0,1), p < q and I, (w;)w, =0, we get
ce < Ie(th)

tP tP A
< p/[k2waT\P+vmk4\wT\p] dx—i—p/[VwT\q—l—Voo\wT]q] da:—tT/|wT]de
T
Q Q

Q
tp tT p T
[ - )\} / |w|"dx < max [S - )\8} / |w,|"dx.
p T s>0 | p T
Q Q

Using (3.2.13), we have

P T _
ce < max TN | e < i —
s>0 | p 7| (t—2¢q) pAP/(7=p) | (T —q)

By some straight forward algebric manipulations, we get

o < T—Pp Cood
T pa/=p) | (1 —¢q)°

(t—p)/p
Then, if we choose A > \* := max {1, [E:_Q’;;(q{iqe) Sc,gjq} } in the hypothesis (f5),

the proof is complete.
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Proof of the Theorem 3.2.1

Proof. The proof is a consequence of Lemma 3.2.2, Lemma 3.2.4 and Lemma 3.2.5. O

The Autonomous Problem

In order to prove the concentration result, we consider the following problem
~div (a(|Vul?) [ Vul"2Vu) + Vob([ul?)|ul—2u = f(u) + |ul™ ! in RN
{ u € WEP(RN) n WHe(RN)
which the functional associated Iy is given by

hw:=;/wwwwwﬁwmm—/me—;/mﬁm
RN RN RN

and the corresponding Nehari manifold is given by
No = {u € WHP(RYN) n WHY(RM)\{0}; I (u)u = 0}.

We also define
Ccy — 1j\I/1’§ Io.

Using the same arguments of prove of Lemma 3.2.5, we conclude that
1 1
co < ( - >SN/q. (3.2.14)
0 gx
The next result allows to show that problem (F) has a solution that reaches cj.
Lemma 3.2.6. Let (u,) C Ny be a sequence such that Io(u,) — co. Then there are a

sequence (y,) C RN and constants R,n > 0 such that

lim sup / |un|Tdz > n. (3.2.15)
n—oo
Br(yn)

Proof. Suppose that (3.2.15) is not satisfied. Since (u,,) is bounded in WP(RN¥)NWL4(RY)
we have, by in [40, Lemma 2.1],

lim / |up|’dx =0 for all s € (q,q").

n—o0
RN

Hence, from (f1) — (f3),
RN

Since we also have (g3) and that I} (u,)u, = 0,(1), we get

/ un|? dx = / [a(|Vup|P)|[Vup|Pdx + Vob(|un|P)|un|P] dz + on (1) :=1
RN RN
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We claim that [ > 0. Indeed, if the claim is not true then, by (a;) and (b1), we have ¢g =0
which is a contradiction. Therefore

n—00
RN

lim /yunW*dx =1>0. (3.2.16)

By definition of the constant S, we have
/ |Vuy,|tdz
S < al

R
a/q*

/ |7 da:

]RN

Thus, using (3.0.2), (3.0.3) and (f3), we deduce that

<19/, (3.2.17)

1 1 1 .
co + on(1) = Io(uy,) — élo(un)un > <9 - q*> / lun|? dx + o (1).
RN

1 1

Using (3.2.16), (3.2.17) and that ¢o > 0, we obtain ¢o > (9 - *> SN/4 which is a contra-
q

diction with (3.2.14). 0

Now we are ready to show that the problem (Fp) has a solution that reaches c¢g.

Lemma 3.2.7. (A Compactness Lemma) Let (u,) C Np be a sequence satisfying
Io(un) — co. Then there exists a sequence (§,) C RN such that, up to a subsequence,
V() = un(z + Yn) converges strongly in WHP(RN) 0 WHa(RN).

In particular, there exists a minimizer for cg.

Proof. Applying Ekeland’s Variational Principle (see Theorem 8.5 in [62]), we may suppose
that (uy) is a (PS),, for In. Since (u,) is bounded in WP (RN )NWL4(RY) we can assume,
up to subsequences, that u, — u in WHP(RN) n WL4(RN).

Using arguments found in [6, Lemma 2.3], we have that

Vg (z) = Vu(z) ae in RY and Ij(u) =0. (3.2.18)
Then, by (3.0.2), (3.0.3) and the Fatou’s Lemma,
1 1
0<2 / [A(Vul’) + VoB(|ul”)] dz — 5 / [a(IVulP)[Vul” + Vo B(|ul?) [ul?] dx

RN RN

< liminfd / [A(Vunl?) + VoB(JunlP)] da
p

n—-+o0o
=2 [ a(Vun|")[Vun|[” + VoB(Jun|?) |un|*] dz

Hence, if u € N,

1 .
— Iy (up)upn | = ngrfm Ip(uy) = co.

>

1
co < Ip(u) — glé(u)u < %gigof [Io(un)
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By (3.2.18), (a1), (b1) and Lebesgue’s theorem we conclude that u, — u in WP(RY) N
WH4(RY). Consequently, Io(u) = cp and the sequence (¥,) is the sequence null.

If u = 0, then in that case we cannot have u, — u strongly in WHP(RN) 0 Wha(RY)
because cy;, > 0. Hence, using Lemma 3.2.6, there exists a sequence {y,} C RY such that

vy, — v in WHWP(RN) nWhRY),

where v, := u,(x + yn). Therefore, (v,) is also a (PS)., sequence for Iy and v #Z 0. It
follows from the above arguments that, up to a subsequence, (v,) converges strongly in
WLP(RN) N WL4(RY) and the proof is complete. O

3.3 Concentration results

In this section we prove some technical results in order to show the concentration result.

Proposition 3.3.1. Let ¢, — 0 and (u,) C N, be such that I, (u,) — co. Then there
exists a sequence (§p,) C RN such that v, (x) := un(x +§,) has a convergent subsequence in
WEP(RN) N WL4(RN). Moreover, up to a subsequence, y, — y € 0, where y, = €pijn.

Proof. Since V satisfies (V1) and ¢y > 0, we repeat the same arguments in Lemma 3.2.6 to
conclude that there exist positive constants R and § and a sequence (g,) C RY such that

n—oo

liminf/ | up 9> 3 > 0.
Br(fn)

Since the sequence (uy) is bounded in WP(RY) N WH4(RY) we immediately obtain, up
to a subsequence, v, — v # 0 in WHP(RN) N WH4(RY), where v, (7) := up(z + ). Let
t, > 0 be such that

T = tnvn € No. (3.3.1)
Then, since u,, € N,, we have
co < In(vy) < I, (0p) < I, (v) = I, (upn) = co + on(1), (3.3.2)

which implies that Iy(0,) — co, as n — +o0.

From boundedness of (v,) and (3.3.2), we obtain that (¢,) is bounded. As a conse-
quence, the sequence () is also bounded in W1P(RY) N WH4(RY) which implies, up to a
subsequence, ¥, — ¥ weakly in WLHP(RY) 0 Wha(RN).

Note that we can assume that ¢, — tg > 0. Then, this limit implies that v £ 0. From
Lemma 3.2.7, we conclude that v, — © in W'P(RY) 0 WH4(RY) and this implies that
vp — v in WEP(RY) 0 Wha(RY).

To conclude the proof of this proposition, we consider ¥, := €,¥y,. Our goal is to show
that (y,) has a subsequence, still denoted by (y,,), satisfying y, — y for y € Q. First of
all, we claim that (y,) is bounded. Indeed, suppose that there exists a subsequence, still
denote by (yy), verifying |y,| — oo. From (a;), (b1) and (V1) we have

[ talTenl? 4+ Vot do Vo [ ol + foulV o < [ glens + g vo)vnd

RN RN RN
Fix R > 0 such that Br(0) D Q and let X'z, be the characteristic function of Bg(0).
Since Xp,,(0)(ex +yn) = on(1) for all z € Br(0) and v, — v in WIP(RN) N WHI(RY), then

/ XBR(O)(ex + yn)g(ex + Yn, Un)vnd$ = On(l)'
]RN
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By definition of fwe obtain that

/ [k1|Vop|P + [V, |?] dz + Vo / [ks|vn|P + |vp Y] dx < / f(vn)vndaz + on(1)
RN RN RN\BRr(0)

Yo 4
5 /|Un| dz + o, (1).

RN

IN

It follows that v, — 0 in WIP(RY) N WH4(RY), obtain this way a contradiction because
cop > 0.
Hence (yy,) is bounded and, up to a subsequence,

yn—>y€RN.

Arguing as above, if 7 ¢ Q we will obtain again v, — 0 in WHP(RN) N WH4(RY), and
then 7 € Q. Now if V(y) = Vo, we have 3§ € 9Q and consequently 3 € €. Suppose by
contradiction that V' (y) > Vp. Then, we have

1 1 .
co = Io(@) < * / A(VP)de + - / V@) B(5P)dz — / F()dz — / W17 da
pRN pRN RN RN

Using the fact that v, — v in WYP(RY) N Wh4(RY), from Fatou’s Lemma we obtain
.. 1 - 1 - - JU—
co < hnilnf [ / A(|Vo,|P)dx + — / V(enz + yn)B(|on|P)dx — /F(vn)d:c - / [0, |7 d:z.]
pRN pRN RN RN

Since u, € N,, this implies that

co < liminf I, (tpu,) < liminf I, (u,) = co,
n—oo n—oo

obtaining a contradiction. O

Lemma 3.3.2. Let (€,,) be a sequence such that €, — 0 and (u,) C N, a solution of prob-
lem (Pe,..)- Then (v,) converges uniformly on compacts of RN, where

€aux

Un () = up(x + gpn). Moreover, given § > 0, there exist R > 0 and ng € N such that

anHLOO(]RN\BR(o)) <& for all n > ny,
where (gy) is the sequence of Proposition 3.5.1.

Proof. Note that v, is a solution of problem

{ —div (a (Vo ]?) [VouP=2V0,) + V(e + )b ([val?) [va]? 200 = glex + yn, v) in RY,
v, € We,

where y,, = €,7,. Adapting some arguments explored in [6, Lemma 5.5], we have that the
sequence (vy,) is bounded in L>(R¥") and there exist R > 0 and ng € N such that

an”LOO(RN\BR(o) <&, forall n>ng.

Then, for any bounded domain Q' C RY, from (g1) — (g2) and continuity of V' there exists
C > 0 such that

\V(ex + yn)vE™t — g(ex + yn,vn)| < C, for all n € N.
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Hence,
[V (ex + yn)vE™! — glex 4 yn,vn)| < C + |Vu,|P, for all n e N.

Considering ¥(z) = C, we get that ¥ € LY(Q') with t > 524 N. From [28, Theorem 1], we
have
IVonll € Lis.(RY).

Therefore, for all compact K C €' there exists a constant Cy > 0, dependent only on C, N, p
and dist(K,09Q'), such that
’vvn|oo,K S C’0~

Then,
|Un‘cl(>0’5(RN) <C, forall neN and 0<v<1.
From Schauder’s embedding, (v,) has a subsequence convergent in Cloo’c” (]RN ). ]

Lemma 3.3.3. Given € > 0, the solution ue of problem (P, ) satisfies

€aux

21_13(1) I (ue) = cy.

Proof. Consider zy € Q such that V(z9) = Vj. Let us now consider R > 0 and set Q) €
OBR(z0). If necessary, take R small enough such that B(Q, R/4) C Q. Taking ¢ : RN — R
such that ¢ = 1 in B(Q, R/4) and ¥ = 0 in RN\ B(Q, R/2).

Let wy € WHP(RY)NWL4(RY) be a ground-state positive solution of the problem (Pp)
which satisfies cg = Io(wo) (see Lemma 3.2.7). Then, we consider the function w, : RY — R
be given by
we(x) 1= Yi(ex)wy (:L" - @> e We

€
and t. > 0, such that t.w. € N.. Then, with a direct computation, we have

I (ue) < I(tewe) = co + 0e(1).

Finally, taking R — 0 in the last inequality and using the continuity of the minimax
function (see [13], [51]) we get
lim sup I (ue) < co.

e—0
Let t.o > 0 be such that t.gu. € Ny. Then,
(&) S IO(te,Oue) S Ie(te,()ue) S Ie(ue)
and the proof is complete. O

Lemma 3.3.4. Let (¢,) be a sequence such that €, — 0 and for each n € N, let (uy,) C N,
be a solution of problem (P, ). Then, there are 6* > 0 and ny € N such that, for
Un(2) = up(x + ), we have

vp(x) > 0%, for all x € Br(0) and n > ny,

where R > 0 and (yy,) were given in Lemma 3.3.2.
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Proof. Suppose, by contradiction, that |[us|| e (jo|<r) = [UnllLoo (je—gn|<r) — 0- By Lemma
3.3.2, we have [|vy||foomny — 0. It follows from (f1) that
g —1 Yo q—1 ;
|f(vn) +of ] < ?|Un| for n sufficient large. (3.3.3)

Thus,
/ a(|Von|P) [VolPdz + / V(ent + yn)b(|on?)[on[Pdz
RN RN

= f(vn)vpdz 4 0,(1)
RN

Yo
2 Jr~

IN

[un|?dz + 0n(1),
which implies from (aq) and (b1) that,
luz I, — 0,
which is a contradiction with Lemma 3.3.3. O
We are now ready to show the concentration of the ground state solution.

Lemma 3.3.5. If % 18 the maximum point of ue, then

lim V(F) = Vo.
Proof. We first notice that using Lemma 3.3.4 there exist 6* > 0 and ng € N such that

Un(qn) == max Un(2) = un(qn + Un) > un(x) > 6%, for all n > ng, for all x € Br(0).
z€R

We claim that (gy,) is bounded, otherwise using Lemma 3.3.2 and 3.3.4, there exists R* > 0
such that [[vn| oo @M\ By < which implies that |v,(gn)] < %,
contradiction.

Then, P, = €nqn + yn, which implies

* .
%, where we obtain a

ngr-ir—loo Pﬁ" - ngl—ﬁl—loo Un=VE 2

Hence from continuity of V' it follows that

lim V(P,)=V(y) = W.

n—-+o00

We claim that V(y) = V. Indeed, suppose by contradiction that V() > Vy. Then, we
have

1 - 1 - - 1 -
co = Io(®) < /A(]Vv[p)dx—l—/V(y)B(\v[p)dx— /F(v) - / W17 da
pRN pRN ]RN RN

Using that 7, — v in WIP(RY) N WH4(RY) we obtain, from Fatou’s Lemma,

1 - 1 - - 1 S
¢o < lim inf [/A(\an\p)dm+ ! / Viens + yn) B[0PV dz — /F(vn) 1 / 5,7 dm],
RN RN RN RN
and therefore
co < liminf I, (tpu,) < liminf I, (u,) = co.
This contradiction shows that V(y) = ;. O

79



Lemma 3.3.6. Let {e,} be a sequence of positive numbers such that €, — 0 as n — o0
and let (zy,) C Qe, be a sequence such that u., (x,) > T > 0 for some constant Y, where
for each n € N, uen is a solution of (P,,,). Then,

i V@) = Vi
where T, = €pTn.
Proof. Up to a subsequence,
T = T € Q.
From Lemma 3.3.3 we have that
I, (ue,) — co,
and there exists a positive constant C such that

e, | <C, ¥YneN | for some C > 0.

Setting vy,(2) 1= ue, (2 + x,), we have ||v,]| < C and v, — v in W'P(RN) 0 Whe(RV).
Recalling that

Un(0) = ue, (zp) > T >0,

we conclude that v # 0.
Fix t, > 0 verifying v, = t,v, € Ny, for each n € N. Hence,

co < Ip(vn) < I, (tnvn) < Ic(upn) = co + on(1).
Thus, Iy(v,) — co, with {v,} C Ny. By Lemma 3.2.7, we have
U =0 in WWPRN) N WH(RY) and Ih(D) = co. (3.3.4)
Moreover, recalling that V' is continuous, we have
'rzh—}Igo V(z,) =V (7).

We claim that V(Z) = Vj. Indeed, Suppose by contradiction that V(z) > Vj, then

co = Ip(v / A(|Vo|P)dx + - ! /N V(z)B(|v|P)dx —/ v)dr — / 5|9 da.
R RN

Thus, by (3.3.4) and Fatou’s Lemma, we have

1 1 1 *
cp < liminf [ /A(\Vﬁn\p)dx + - /V(enz + Tp) B(|op|P)dx — /F(ﬁn)da: - */ v
nee | pJRN D JrN RN q° JrN

|

n—oo

1 1
< liminf { / A(|Vton|P)dz + - / V(enz +Fn) B(|ton|[P)dz — / Glens +7, tnvn)d:r]
P JrN P JrN RN

= liminf I, (t,u,) < liminf I, (u,) = co,
n—oo

n—oo

which leads a absurd. Consequently li_>m V(z,) = Vo. O
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Lemma 3.3.7. If m. is given by m, = sup{%lgx ue : 18 a solution of (P.,,.) } , then there
exists € > 0 such that the sequence (m¢) is bounded for all € € (0,€). Moreover, we have
lir% me = 0.

e—

Proof. Suppose, by contradiction, lin% me = 400, then there exist u. a solution of (F,,,)
€—>
in V. and T > 0 such that

mSXUGZT>O

Thus there exists {€,} C RT with €, — 0 and there exists a sequence {z,,} C 9, such
that

Ue, () > YT > 0.
Thus, by Lemma 3.3.6, we have

lim V(z,) =W,

n—oo

where T, = €,x,, and {Z,,} C 9. Hence, up to a subsequence, we have T, — T in 092 and
V(z) = Vo, which does not make sense by (V2). Hence, there exists € > 0 such that (m,) is
bounded, for all € € (0,€).

Suppose by contradiction that there exists § > 0 and a sequence {¢,} C R* satisfying

Mme, > 6 >0

Thus, there exists u, a solution of (P,,, ) such that

)
men—§<maxu€n§men.
Hence,
1) 5 6< 5<
—=0—=<mMm,, — = <maxu
2 2 2 T, M

and then there exists a sequence (z,,) C 99, , such that

Repeating the above arguments, we will get an absurd. Thus, the proof is finished. O

3.4 Proof of Theorem 3

Proof. Let u, be a solution of (P,,,). By Lemma 3.3.7, there exists € > 0 such that m. < 2
for all € € (0,€), then (uc — )4 (x) = 0 for a neighborhood from 0Q.. Hence, (u. — 3) €

Wy P(RN\Q,) N Wy 4(RN\Q,) and the function (ue — D e WHPRN) n Wh(RY), where
0if z € Q,

My (=
(e = 5)5(@) { (e — D)4 (z) if & € RN\Q,.
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Using (ue — 4)% as test function. Then, by (a1), (b1) and (g3)i;, we have

0 < / (| Vuel) |V (e — D)3 P
RN\Q,

,
o [ -3

2 (o~ D2 P

[ |Vlemum = R B~ Jyide =0
RN\Q,

The last equality implies

(ue — g)j_ =0, a.cin z e RM\Q..
This implies that |uc| < ¥ for z € RV\Q,, and by Remark 5 the result follows. O

3.5 Exponential decay

Finally, we are going to prove the exponential decay. First technical results

Lemma 3.5.1. Consider M, > 0 and ¢(x) := M exp(—«a|x|). Then

i) = div(a ([VY[?) [VIP2 V)

=t [—partiatarnyir 4 afargmyr (N2 —ar- ).

ii) — div(a (|VY|P) [V [P2Ve) > <(N‘x_’ b _ alq — 1)> a(aPyP)aP~Lyr=L,
Proof. Note that
() = Mexp(—ala) - (<ala)) = Mexp(—alel)(~a) % = —a Tt v(a),

which implies V| = a1p. Then

—div(a (|V[P) [V [P—>Vy) = % 0 [a(lwl”) !W\p‘ﬂ’b]
=1 8371 81‘1
= ap—lg:l ﬁii [ (apdjp) P~ 1|9;z’]

a(aryr)

= a1 3 o (@) 2 (et
~ Ox; |z|

8 1 X
om ()]

81/} D, /P <|‘T|2 1 p— 1 -1 p—2a¢xi>:|
e R G o i Py

— o [‘pap+1a'(apwp)w2p1 + a(aPyryyr-t <(N|x_ Yoot 1))} |

=P 1 % [ (aPyP) app¢2p 2
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this prove the first item.
To prove the item i) we are going to use (1.2) and the item 7). Hence we have

—a' (aPYP)aPyYP > Wa(ap¢p)7

and consequently
—pa? e (@PyP ! > g — pla(a?y?).
Therefore, by the item 1),

—div(a (|V[P) |[V|P2V)

(V-1
||

> 0 |—alg = ppa(areryirt+ (S oo = 1)) afarunyr

= (B - ata- ) alarumar e,
O]
Corollary 3.5.2. Since V(z) > Vy in RN, then for a > 0 small enough we have
—div(a (|VYP) [VYP2VY) 4 ksVou? ™! + %/ﬂ*l >0 in RY.
Proof. Using (a;) and Lemma 3.5.1 we obtain that
—div(a (|VY[P) [VYIP2VY) > —a(g = Da(aPyP)a?~ P~
> —a(g—1) (kea?lyprt 4 @t 1yr1)
= —alg— Dkea? 1Pt —a(q — 1)a? Tyt
Moreover, since Vg > 0 and a > 0 is small enough, we concluded that
k3Vo — a(g — 1)kea?™t >0
and
% —a(qg—1)att >0.
Consequently
—div(a (|VYIP) [V [P2Ve) + ksVoyP 1 + %wq* >0 in RV,
O]

Let us now relate the positive solution v, to the exponential function 1 for small e.

Lemma 3.5.3. Let u, be the solution found in Theorem 3.2.1 and ve(x) := uc(x+Ye) given
in Proposition 3.5.1. For For ¢ = max{v. — 9,0} and € > 0 sufficient small, we have

/ [V ) [V P2V 0V, de + ksVi / P, dar + % / (0|7, da < 0.
RN RN RN
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Proof. From Lemma 3.3.2, Lemma 3.3.3 and hypothesis (f1), there exist pg > 0 such that
€ > 0 small enough,

f(ve) + vg*_l

<
|U€|q_1 B

3
ZVO’ for all |z| > po.

Since 1(z) := M exp(—a|z|) for z € RN, we can find M > 0 such that if A > M, then

@e 1= max{|v; | — 1,0} = 0 in B,,(0) and ¢ € WP (|z| > po) "Wh4(|z| > py). Therefore,
the above inequality and (b),

/a(Vve\p)]Vve\p_2Vv€Vgoe dz +Vj / [kg]velp_lgoe + |vﬁ|q_1<p€] dz
RN RN

< /a(Vv€|p)Vve\p_QVvEVgoE dx + / Vex + ye)b(|v€|p)|v€|p_2v6g0E dx
RN RN

3V _
< /f(ve)soe da < TO / |ve| 7 peda
RN RN
and the lemma is proved. O

Finally we are going to show the exponential decay for the functions ..

Proposition 3.5.4. There are ¢g > 0 and C' > 0 such that

ue(2)] < Cexp(—a :

- P
D, for all z e RN,
€

Proof. From [?, Lemma 2.4], we have that
(alloP)al~22 — a(lyP)lyP g,z — y) > 0, ¥ 2,y € RY.
Consider v(z) := uc(z + g.) the set
A:={zeR":|z|>py and |v|—v >0},

where 9 is the function is given by Lemma 3.5.1, (¥,) is given by Proposition 3.3.1. Then,
using Corollary 3.5.2 and Proposition 3.5.3, we obtain

ozu/@mvmwnvmwQVW—wmvwwﬂv¢W2vmww>¢z

RN
p—1 p—1) 5 Vo q—1 q—1y >
+Voks [ (Jue"™" = [0lP=) @dz+ 5 [ (jud™ = [p*7) ¢da
RN RN
p—1 p—1\ 5 Vo q—1 q—1y >
> Voks [ (Joel”™" = [0I"Y) @da + == [ (o™ = [0") ¢dee
RN RN
= VOkB/ (|Ue|p_1 - W}|p_1) (Ue - @Z))dx
A

+% (lve 9™ = 1|7 (ve — )da > 0.
A

84



Then |A| = 0 and consequently
ve(z) < M exp(—alzl]), V |z| > po.

Considering * = z — g and using Lemma 3.3.5 there exists a constant C' > 0 satisfying

)t o525

— P, — P
D exp (—a Jgel) < Cexp (a :
€ €

2 — Ye
€

2z — P + €qe
€

fue(2)] < M exp (—a

. (3.5.1)

< M exp <a

for all |z — g.| > po and for € > 0 small enough.
Now we are going to show the inequality (3.5.1) holds, for all z € R™. Since (y.)
converges, it follows that

1
]z\Zpo—\y}]:pO—@>pg—M—>—oo as € — 0.
€ €

Then, there exists ¢g > 0 such that

z— P.

lue(2)| < Cexp <—a

), V zeRY and V €€ (0,¢).
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Chapter 4

Appendix A

In this appendix we show the existence of a nodal solution for auxiliary problem (F,)
and of a positive solution for auxiliary problems (Ps,). The auxiliary problems (P,) and
(P ) are used in the chapters 1 and 3, respectively.

Problem (P,)

In this appendix we show the existence of nodal solution for the problem

{ —koApu — Anu + Vio (ka|uP~2u + |ulVN~2u) = |u|""2u in Q, )

ue WyN(Q),

where r is the constant that appears in the hypothesis (f5) and V4 is a positive constant.
We have associated to the problem (P,) the functional

1 1 1
I.(u) = - / [ko| VulP + Vookg|u|P] dx + N/ [|Vu|N + Voo‘u|N] dx — . / |u|"dx
P Q Q Q
and the set
NE = {u e WY (Q)| ut # 0 and I’ (u)u™ = 0}
Then, we can prove that there exists w, € N such that
I;(w,) = ¢, :=inf I, and I (w,)=0. (4.0.1)

N

Lemma 4.0.1. For each u € WOI’N(Q) such that u™ # 0, there exists a unique pair (t,s) €
(0, +00) x (0,+00), such that tut + su™ € NF..

Proof. Note that if u* € WOIN(Q)\{O} and v > 0, we have

I + p—r
) _ 2 /[kg\vui\uvoomuiyp} d
v p
Q
N N N 1
+ /[|Vui| + Vao|u™| ]dm—/|ui|rdx.
N r
Q Q
Then,
1 I, 1
lim r() =400 and lim () = —/|u|rdx < 0.
y—=0 AT Y=+ AT T
Q
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Consequently, there exists ¢, s € (0,400) such that

I.(tu™) :=sup I, (yu™) and I.(su”):=supL.(yu~).
v=>0 v=>0

This implies that
IL(tu® + su”)(tut + su™) = IL(tuN)tu™ + I.(su”)su™ =0

f(t)

In order to show the unicity of ¢ and s, consider f(s) = s" and note that TN is nonde-

creasing in t > 0, see [17]. O
Lemma 4.0.2. The following properties hold:
1/N

(i) There exists py, > 0 such that / \Vut|Ndx > pr, for all u € NF;
Q

(ii) There exists a constant Cyr > 0 such that I,(u) > Cy / \Vu|Ndz, for all u € N,
Q

Proof. Using that I (u)u®™ = 0 and by Sobolev embeddings there exists C' > 0 such that

/ [VuVde < / [kl VP + Vaokalu™ '] dar + / [Vt Y + Vaolu®|V] da
Q Q Q
r/N

= /]ui]Tda:SC /\Vui\Ndx
Q Q

Since r > N, the item (7) follows.
To verify the second assertion observe that

L(u) = I(u) — ~I'(uw)u > <; - i) /[k2|Vup + Vickalul?] da
Q

L1 N N L1 N
- — — > — — — .
+<N r)/“Vu + Vaolul ]da:_< T)/Wu! dx
Q Q

O]

Proposition 4.0.3. There exists w, € WOI’N(Q) such that w, is a solution of (P,) and
I (w,) = inif I
N

Proof. Let (u,) be a minimizing sequence for I, in N'F, i.e, a sequence {u,} C N;* such that
I (upn) = ¢ + 0p(1). Note that, by Lemma 4.0.2, (uy,) is a bounded sequence in W&’N(Q).
Then there exists u, € Wol’N(Q) such that, up to a subsequence, u, — u, in W(}’N(Q).
Arguing as in Lemma 2.3 in [22], it is possible to show that v — v* is a continuous function
of W& N (Q) into itself, from which it follows that u¥f — u¥ in W& N(Q). Moreover, by
Sobolev embeddings,

(4.0.2)

ut(z) — uf(z) forae z €.

{ ulr — ut strongly in L*(Q) for any 1< s < +oo,
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First we are going to show that u;® # 0. In fact, if u;* = 0 then, using the Lemma 4.0.2
and that I/ (u,)ur = 0 for all n € N, we have the following contradiction

o < [ 1tV < [ g pds = ou(1),
Q Q

It follows from Fatou’s Lemma that
/|Vu,ﬂf|pdx < liminf/ |VutPdz and /|qujf|Ndx <lim inf/ |Vut|Ndz.
n—o00 n—00
Q Q Q Q

Therefore, using compact embedding and Lemma 4.0.1 we get

cr < I(tuf + su; ) <liminf[ I.(tu)) + I (su,, ) ] < liminf[ I.(u)) + I (u;,) ]

n—o0 n—0o0

= liminf I, (up,) + 0p(1) = ¢;.
o0

n—

Considering w, = tu;” + su, , we obtain I,(w,) = ¢, and using a Deformation Lemma [35,
Proof of Theorem 1.1], we conclude that I/ (w,) = 0. O

Problem (P,,)

Finally, we show existence of positive solution for the problem

{ —kaApu — Agu + Vooka|u|P?u 4+ Voo lul?%u = |u|"2u in Q (Po)

u=0 on 09,

where Q is a bounded domain in R, ks, k4, Vi are positive constants and 7 is the constant
which appears in the hypothesis (f5). We have associated to problem (Px) the functional

1 1 1
Lo () = p/[k2|Vu]p+Vook4|up] dm+q/[\Vu|q+Voo|u]q] dz — T/|u|fdx
Q Q Q

and the Nehari manifold
Noo = {u e W39(Q) : u+#0and I’ (u)u = 0}

Lemma 4.0.4. For all u € Wy '(Q)\{0} there exists a unique t, € (0,+00), such that
tu € Nuo.

Proof. Note that if u € W&’Q(Q)\{O} and t > 0, we have

p—T a7

1
Lo(tu) = &7 /[kg\vuyuvoomuyp] do + /[|vuyq+vooyu\q] dr — /|urdx
T
Q Q

q

Then,

Too(t It 1
lim (tu) =+o0 and lim (tu) = —/|u|7dx < 0.
T
Q

t—0 t7 t—+o00 t7

Consequently, there exists ¢, € (0, +00) such that I (t,u) = sup I (tu) and t,u € N.

>0
In order to show the unicity of t,, consider f(t) = ¢ and note that % is increasing,

see [17]. O
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Lemma 4.0.5. The following properties hold:
1/q

(i) There exists pr > 0 such that /|Vu]qu > pr, for all u € Noo;
Q

(ii) There exists a constant C > 0 such that Ino(u) > C; / |Vulldz, for all u € N.
Q

Proof. By Sobolev’s embeddings, there exists C' > 0 such that

/\Vu|qda:§/[k2|Vu\p+Vook4]u|p] dx—l—/[|Vu|q+Voo\u|q] dx:/|u|7dx
Q Q Q Q
T/q

<C /\Vu]qu
Q

Since T > ¢, the item (i) follows.
To verify the second assertion observe that

1 1 1
Io(u) = Ino(u) — ;I(’)O(u)u > (p — T> /[k2|Vu|p + Vooka|ulP] dx
Q

1 1
4 (1 - 1) /[|Vu\q + Violul?] da > ( - ) / Vul9da.
q T q T
Q Q

O]

Proposition 4.0.6. There exists u, € Wol’q(Q) such that ur is a solution of (Ps) and
Ino(ur) = /i\r/lf I.

Proof. Let (u,) be a minimizing sequence for I, in No. By Lemma 4.0.5, we conclude

that (u,) is bounded in Wol’q(Q). Then there exists u, € Wol’q(Q) such that, up to a
1 17q

subsequence, u, — u, in W;,"?(2) and

. s < *
{ up — u strongly in L*(Q) for any 1<s<¢*, (4.0.3)

up(x) = u(x) for a.e x €.
Since T € (q,¢*) we have, by Lemma 4.0.5 again, that u # 0. Hence,

Coo < Ino(tyu) < liminf I (tyuy) < liminf Ing(uy) + 0p(1) = coo-

n—o0 n—oo

Considering u, = t,u we have I (u;) = ¢; and using Implicit Theorem and arguing as
in [16, Lemma 2.5.17] we conclude that I (u,) = 0. O
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Chapter 5

Appendix B

Lemma 5.0.1. From (f1) and (f2) we obtain that: given & > 0, ¢ > 0 and o > 1 there
exists C¢ > 0 such that

f(s)s < €ls|Y + Cels|? [exp(als|¥T) — Sy-a(a,5)|, for alls € R
and
1o 1 Gysle N
F(s) < N‘S‘ + C¢|s|? |exp(als|¥-1) — Sy_a(a, s)|  for all s € R.
Proof. Note first the since (f;) holds, then for every & > 0 there exists 6 > 0 such that
[ <els" ¥ gl <o (5.0.1)

On the other hand, from (f2), we obtain for every £ > 0 and some a > 1 there exists R > 0
such that
N
£(5) < € [exp(als| =) = Sy-a(ars)| , ¥ |s| = R
Choosing R > max{1,d} and ¢ > 0 we obtain
[s]9!
f(s) S 5 Rq_]_

From above inequality and the continuity of the function on [§, R] there exists C; > 0 such
that

{exp(a]s\%) — Sy-a2(c, s)} , ¥V |s| > R.

|s|a—t N
fls) < € {exp(a!s]l\ffl) - SN_Q(a,s)} L Oy, V|8 >0
Since max |1 — e } > 0 we can concluded that there exists C¢ > 0 such
t>4 exp(als|N-1)—Sn_s(a,s)
that N
£(s) < Cels|a! [exp(a|s|m) — Sn_a(a, s)} Y |s| > 4. (5.0.2)
Then, by (5.0.1) and (5.0.2), the result follows. O

In the proof of the next lemma, we adapted some arguments found in [6].

Lemma 5.0.2. Let (e,) be a sequence such that €, — 0 and for each n € N, let (u,) C
NZE C N, be a solution of problem (P,,,). Then (v,) converges uniformly on compacts
of RN where v; () := v (x + §in) for i = 1,2. Moreover, given & > 0, there exist R > 0
and ng € N such that

[Un| oo M\ BR(0Y) < & for all n > n,

where (§in) are given in Proposition 1.3.2 (or 2.53.2 or 3.3.1).
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Proof. Observe that in the chapter 1, when ¢ = N and f has exponential growth we have,
by Lemma 1.2.4,

/f(uf)ufdmﬁ{/|qud;E—|—C§/|uf\q [exp(a]uﬂ%)—SN_g(a,uf) dzx.
RN RN RN

Applying Holder’s inequality for s to closed 1 and Proposition 1.1.1 a = 3ag, we have
[ sttar <€ [ juVas
RN

RN

/

1/s N/N-1 1/s
! Un — Un
| [rlan) | [ lewlsatun ¥ (F) )= Sw-aallun NV ) o
J ] ]

RN

1/s
gg/mg\NdHCg /|un\qs/da:
RN RN

On the other hand, in the chapters 2 and 3 we have, from the growth conditions of function

s
f(t) <&+ Cet TV > 0. (5.0.3)

For simplicity we will work with (5.0.3) and we will consider (;n) = (yn)-
Let us now Ry > 0 and consider n € C®°(RY) with 0 <7 < 1, |Vn| < 4/Ry and

[ 0if 2] < Ro/2,
n(z) —{ 1if [1] > Ro. (5.0.4)

Defining 1y, (z) := n(x — yn), then 0 <7, <1 and |V,n| < 4/Ry. For each n € N and for
L >0, let

up ,(x) = (5.0.5)
L, uf(z)> L.

and
+ + ~1), +
FLn "= 7731(“1:,71)q(W iy
with v > 1 to be determined later. Taking zztn as a test function, we obtain I} (u)zfn =0
and then

q | (ut ‘I(”’_l)uinq_la Vot P) Vet P2 Vut v, de + (ujE )q(w_l)nqa(|Vui|p)|Vuf|pdx
Ln n ‘In n n n Ln n n

RN RN

n

4l =) [ k)00 bl V)V PV vk do

RN

[ Va1 Vo = [ gtens gk, )10 Vs,
RN RN
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Using (a1), (b1) and (5.0.3) we obtain

[ OOtk D+ (9 = 1) [ (O VY P+ [V o

RN RN

T dx

Vo / 7t (i )IOD [ P + [u 9] < € / 7 ()10 Utz + C / 7l (u )10 D]t
RN RN RN

+‘g) i (ug )"0Vl dz — g / (uz,) 70 Vgt al| Vg 1) Vg [P Vg Vigodar
RN RN

Then for a & > 0 sufficiently small and using (a;) we have the following the inequality

[ O gk Dt (9 = 1) [ (O DV P+ [V, o

RN RN

_ Vo (B—1 _
#ik [t 0 Va5 (P50 [t )00 Do
RN RN
< Ce [t 0O de g [ )00 D el VPV + [V O
RN RN
Moreover, using Young’s Inequality we obtain for each & > 0,
q / () O Dt | Vi [P V| + [V |17 Vi Jd

RN

< gk /(ufn)q”_l)n?fp(lvﬁ|77n)p_1(uff|v?7n|)dw+q/(Uf,n)qw_l)(|VUflﬁn)q_1(Uf\Vﬁn|)de
RN RN

< ko€ / ()"0 [V [Pdz + gk Ce / (g )"0 P [P |V [P dee
]RN

RN
+E [ ()00 VgV tdn + oCe [ (k)00 1V s
RN RN
Choosing & > 0 sufficiently small we obtain C; > 0 such that

[ Ol (Ve + [ (i )0 VgV P+ [V o

RN RN

T / i ()10 [y Pz + / n ()10 W1z < ¢y / i (uF, )10V [ d
RN RN RN
el / (uE 1O Vg2 | |V Pz + Cy / (u )10 (9 1z

RN RN

(5.0.6)
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Note that, again by Young’s Inequality and by

(P (i, )10 < ()P (g, PO o (), ) 7O,

v

we obtain for each &; > 0 such that

J R e e e A O N L

RN RN

40, [t OVl <& [k, )0t (507
RN RN

—|—C / p('v i‘p (quc,n)q(vfl)‘urilyqnvnn‘qu

Then using (5.0.6), (5.0.7) and choosing &; > 0 sufficiently small, there exists Cy > 0 such
that

/(Ufn)q”_l)m‘iﬂvug” Vg |[9]da + /(Ufn)q”_l)ﬁﬁ[lvﬁ,nlp+ Vur,|%dz
RN RN

+ / i (ug )" Dy P+ Jusy ) de < Co /[(ujﬁn)p”_l)lﬁ\p + (ug,) 0 Vg || V| da
RN RN

+Cy [t )

RN

(5.0.8)
We now consider the function uy, ,, := nnuﬁ(uf )71 Then there exists C3 > 0 such that

[ 19 Jrde < a0 [ 0D @Ol + a0 [ ()10 Vit
RN RN RN

Ld9(y— 1) / (uE 1OV VuE  1da
RN

< Gz / [z PO D P+ ()10 iz | 9]V |Ydee

RN

+C37q/ i (ug,,) "0 Vg | de
RN
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Hence there exists Cy > 0 such that for all v > 1 we have

”UL n”Lq *(RN) < S/ ’vuL n‘qu
RN

< Oy / [(ud POVt P+ (af, )10 D 9| Vi 9d (5.0.9)
RN

Oy / nd (w1 D] | de
RN

where S is the best Sobolev constant of the embedding W14 (RY) — L4 (RY),
Now we can prove that exists ng € RY and R > Ry > 0 such that

*2

Uy € LqT(\:U—gjn| > R), Vn>np.

*2

In fact, considering v = n (5.0.9), using Holder’s Inequality and that uicn < uf we

obtain a constant C5 > 0 such that

~d + 1 2(e*~ + ((¢*—
I8Z Iz ey < Ca7® / o el (o LR M K U R

]RN
+Cyt 0" =1y < Oy / | D E Pdr + Oy / luF |7 da
RN RN RN
q*;q 9
q q
* P % P *
40t [ @tz e < ot | [ 5 da [ b da
RN RN
+q* + g I
q q||77; a*
4y [ 117 d Oy e o 1 o 5
RN
b .,

Note that p < =¢* < ¢*. Then from interpolation inequality, we have
q

/\ _0 )
H H < C4'7qHui”Lp(]RN H'U,%Hjl:lq RN) + C4fYqHu’rj:lH%q*(RN)
(5.0.10)
n LZ 7‘1
+C47qH“Ln La* (RN) lun ”Lq “(RN/Br(yn))’

q—p
¢ —p
no € RY and R > Ry > 0 such that

where 0 =

< 1. Moreover, since v, — v in W, then, for every £ > 0, there exist

[ | Lo @ /By <& V0> no. (5.0.11)
Therefore, using (5.0.11) in (5.0.10) we obtain

1
2

FIE ey O lluE | L oy <00, (5.0.12)

UL n %q*(RN) < C47q”ui||Lp RN) HU

RY) (RYN)
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Using Fatou’s Lemma in the variable L, we finally obtain that
a/q*
1 + a2 P 1 ~t g
e lup| @ dx < hLHilogf§”uL,n”L‘1*(RN) < 0. (5.0.13)
T—yn|>R

Now we are going to consider n € C®°(RY) with 0 <75 < 1, |Vn| < 4/Ry and

| 0if |z| < Ry,
(z) = { 1if || > 2R, (5.0.14)

Defining 1, (x) := n(x — ), then 0 < n, < 1 and |Vn,| < 4/Ry. Using the same arguments

in (5.0.9) and that ’dfn < u we have, for R > 2Ry, that

||ﬂfn”%q*(ﬂw) < Oyt / [(uin)p(v—l)mﬂp + (Ujﬁn)qw_l)wyﬂﬂq]|V77n|qdl‘

|z—gn|>R

+Cyy1 / i (ug )0 Vg | da < Cay? / [y [P+ Jutze | ]| Vg | e

|1F—iﬂn|221% |1F—iﬁz\251{

+Cyy / |7 ~de.

[z—gn|>R

(5.0.15)
t—1 *\2 * *
Choosing v = vy = ¢*—— with t = (Zi) = qi*qi > 1 and using Holder’s
qt 9(¢*—q)  qq —q
inequality, we obtain
p(t—1) t—1
qt t
~ +|¢* +|q*
I ey <Crf | [ il womp| [ s
lz—yn|ZR lz—Fn|>R
— t—1 1 Y0P
t t q*
q + 20t +1t(g*—q) q +q*
+Cyvp |u,, | =T dx luy, [ TVdz | < Csyg |u,, |1 dx
_\xfﬂn\ZR |z—Yn|>R |z—Yn|>R
_ 09 Y049 1
q* q* ) t
* * (q*)
O / E|de |+ O / hE | da / | T de
|z—Fn|2R lz—yn|=R lz—yn|=R

Arguing as in (5.0.11) and using (5.0.13) and the interpolation inequality as in (5.0.10) we
have that

. ol e + 197
HUL,anLq*(RN) < Csv {”“n ”L’Z(L(RN/BR(@L)) +2||un HLq?‘(RN/BR@"))}
qil,,E(1970
< 306'}/0 ||un ||Lq* (RN /Br(yn))

= C’ngIU?zEHqLZO* (RN /Br(@n))"
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Observe that

a
*

”uL n| %’Z(’]k’yo N e =
; (RY/Br(yn))

|uL,n S ||A ||Lq (]RN

|z—7n|>R

< Ol 1T @ /B

Consequently, applying Fatou’s lemma in the variable L,

1

135 | a0 @ By < < O 2o & /B

Repeating the arguments from (5.0.15) for v =42, ..., 7, with m € N, we deduce that

11 in: 7:'711
L= Lo i—
lill e @y <O 200wl @B

MS

which implies, once that Z —— < 0o and Z —= < o0, that

1=0 q'yo =0 70

Q=

||u7:'|L:HL°°(RN/BR(§n)) <7 [Hu;lz:”iq* (RN /Br (7)) + ||u7:‘z:||%q* (RN /Br(@n))

Considering the change of variable z = x — ¥, and that v,, — v in W, then there are R > 0
and ng € N such that

[0 || oo @Y/ BR(o)) < 2 Y n > ng.

N[y

Thus the proof is complete. O
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Chapter 6

Appendix C

Theorem 6.0.1 (dominated convergence theorem, Lebesgue). Let (f,) be a sequence of
functions in L' that satisfy

(a) fn(x) — f(z) a.e on Q,
(b) there is a function g € L such that for all n, |f,(z)| < g(z) a.e on Q.
Then f € L' and ||f, — f|| — 0.
Proof. See [19]. O
Theorem 6.0.2 (Fatou’s lemma). Let (f,) be a sequence of functions in L' that satisfy

(a) for alln, f, >0 a.e,

(b) sup [ fn < .
For almost all x € Q we set f(x) = linr_1>inf fn(z) < +o00. Then f € L' and
fdx < liminf/fnda:.
n—oo

Proof. See [19]. O

Theorem 6.0.3 (Holder’s inequality). Assume that f € LP and g € LY with1 < p < co.

Then fg € L' and
1/p ) 1/p’
Jisalas < ([1reas) " ( fraar)

Proof. See [19]. O

Theorem 6.0.4. Let (fy,) be a sequence in L, and let f € L, be such that || f,, — fl|, = 0.
Then, there exist a subsequence (fy,,) and a function h € L, such that

(a) fn,(x) = f(z) a.e on Q,

(b) |fn,(x)] < h(x) VkeEN, aeon Q.

Proof. See [19]. O
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Theorem 6.0.5 (Sobolev embedding theorem). 1. Case 2 = RV :
If 1<p< N then W'P(RN) — L5(RYN), Vs e [p, p*],

If p=N then WHP(RN) < L3(RYN), Vs € [p, +00),

If p>N then WHP(RN) — L2(RN).
2. Q) is an with bounded open set of class C':

If 1<p< N then WHP(Q) — L5(Q), Vse[l, p*,
If p=N then WIP(Q)— L3(Q), Vse€[l, +00),

If p>N then WHP(Q) — L®(RY).
Proof. See [19]. O

Theorem 6.0.6 (Rellich-Kondrachov). . Suppose that Q is bounded and of class C*. Then
we have the following compact injections:

If 1<p<N then WHP(Q) < L5(Q), Vse€[l, p*),
If p=N then WHP(Q) < L5(Q), Vs € [l, +00),

If p>N then WLP(Q) < C(Q).
Proof. See [19]. O
Definition 6.0.1 (Palais-Smale sequence). We say that a sequence (u,) C V is a Palais-
Smale sequence at level ¢ for ( (PS). for short) the functional I if
I(u,) — ¢

and

I (wn)|] = 0 in (V).

Definition 6.0.2 (Palais-Smale condition). If every Palais-Smale sequence of I has a strong
convergent subsequence, then one says that I satisfies the Palais-Smale condition ((PS) for
short).

Theorem 6.0.7 (Mountain pass theorem). Suppose that V' is a Banach space and a func-
tional I € CY(V') that satisfies the condition (PS).. Assume that

1) 1(0) = 0;
2)3p>0, a>0: |lu|=p=I(u) > q;
3) deeV: ||lu| >pandI(e) <O0.

where

= inf I(n(t)) >0
¢ = inf max (n(t))

and
I':={n € C([0,1], X) : n(0) =0, I(n(1)) <O0}.

Then ¢ is a critical value.

Proof. See [14] or [54]. O
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