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Abstract

Nesta dissertacao, sera apresentado um estudo sobre o principio do méximo para
escalares e fibrados vetoriais sobre variedades compactas e algumas aplicagoes sobre o
fluxo de Ricci, tendo como objetivo final demonstrar importantes resultados obtidos em
1982 por Richard Hamilton. Iremos introduzir o fluxo de Ricci, calcular as equagoes de
evolugao de importantes objetos geométricos, demonstrar a existéncia e unicidade local
do fluxo e procurar compreender os obstaculos para existéncia para todo tempo. Por fim,
comentaremos o principal resultado do artigo de Richard Hamilton, que afirma que toda
variedade Riemanniana de dimensao 3 compacta e sem bordo com curvatura de Ricci
estritamente positiva admite uma métrica com curvatura seccional positiva constante e,
portanto, ¢ difeomorfa & esfera tridimensional (caso seja simplesmente conexa) ou ao quo-
ciente da esfera por algum grupo finito de isometrias agindo livremente na variedade. Os
resultados apresentados apareceram em artigos publicados e esta dissertacao é majoritari-
amente baseada nos artigos de 1982 e de 1984 de Richard Hamilton, nas notas sobre o
fluxo de Ricci de Petter Topping e no livro de Bennet Chow e Dan Knopf sobre o fluxo

de Ricci, assim como seus volumes subsequentes.



Abstract

In this dissertation, we will provide a study of the maximum principle both for scalars
and for vector bundles on compact manifolds, as well as an introduction to the Ricci flow,
with the goal of proving some important results due to Richard Hamilton, obtained in
1982 in his first paper on the Ricci flow. We shall introduce the Ricci flow, compute several
evolution equations for some important geometric entities, prove short time existence and
uniqueness of the Ricci flow and try to understand what are the obstacles for long time
existence. Finally, we comment on Hamilton’s main result from his seminal 1982 paper,
that says that every three-dimensional closed Riemannian manifold with strictly positive
Ricci curvature admits a metric with constant positive sectional curvature and, therefore,
is diffeomorphic to the three dimensional sphere (if it’s simply connected) or a quotient
of the sphere by a finite group of isometries acting freely on it. All these results appeared
in published papers and this dissertation is mainly based on Hamilton’s 1982 and 1984
papers, Peter Topping’s lecture notes on the Ricci flow and Bennet Chow’s and Dan

Knopf’s book on the Ricci flow and its sequels.
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Chapter 1

Introduction

The search for a canonical metric on a given manifold has always been a central ques-
tion in differential geometry and this usually provides deep implications regarding the
topology of the manifold. In dimension two, the Uniformization Theorem, for instance,
shows that if a manifold is compact, then we always have a metric with constant curva-
ture, which in turn gives us a complete topological classification of such manifolds. If the
dimension of the manifold is 3 or higher, the search for an analogous result has been a

big question in modern mathematics.

In this direction, W. Thurston introduced, in the late 70s, the Geometrization Con-
jecture, which basically says that every closed 3-manifold can be canonically decomposed
into pieces such that each admits a unique geometric structure, i.e., a complete locally
homogeneous Riemannian metric. The famous Poincaré Conjecture, which says that ev-
ery simply connected closed 3-manifold is homeomorphic to the 3-sphere, is a corollary of

the Geometrization Conjecture.

With the bold aim of proving the Poincaré Conjecture, Richard Hamilton introduced
the Ricci flow in his seminal 1982’s paper [14]. The Ricci flow is a geometric evolution
equation in which one starts with a Riemannian manifold (M", go) and evolves its metric

in the direction of the Ricci tensor by the equation

0
—g=—2Ri
; Ric,



which is a nonlinear reaction diffusion equation for metrics (often called heat-type equa-
tion), motivated by the harmonic heat flow introduced by Eells and Sampson in 1964
([18]). After Hamilton’s 1982 paper, a lot of innovations based on his work and sub-
sequent papers have greatly impacted the field of geometric analysis. For example, the
pinching estimates for 3-manifolds with positive Ricci curvature show that the eigenvalues
of the curvature tensor become closer to each other as the curvature becomes large during
the evolution of the flow. Another curvature estimate, due to Hamilton and Ivey, proves
that the solutions that form singularities in dimension 3 must have nonnegative sectional
curvature, which enables a detailed analysis of the formation of singularities in dimension
three. Another application worth mentioning is the Li-Yau-Hamilton-type differential
Harnack Inequality, which provides an a priori estimate for an expression which involves
the curvature, its first and second spatial derivatives. For a good presentation of several

results, see for example [3].

After a systematic development of the subject, a lot due to Hamilton himself, the Ge-
ometrization Conjecture was proved (and, therefore, the Poincaré Conjecture) by Grisha
Perelman in his papers [24], [23] and [22|, where he showed that the Ricci flow can be
seen as a gradient flow for a certain functional. In his 1982’s result, Hamilton showed
that in the case of strictly positive Ricci curvature the Ricci flow develops a singularity

simultaneously everywhere in the manifold as we approach a maximal time, which is finite.

One of the most important techniques when studying the Ricci flow is the maximum
principle, which provides a lot of the estimates needed to prove the central results regard-
ing the Ricci flow. The maximum principle was already a great tool to study second order
elliptic and parabolic PDEs. However, in [14| and [12] Hamilton showed that one could

still use the maximum principle on sections of vector bundles over compact manifolds.

With the Ricci flow, Hamilton introduced a very general method to study geometric
evolution equations. Based on Hamilton’s approach, not only mathematicians started
working on Ricci flow, but also on other geometric flows, such as the curve shortening

flow and mean curvature flow, with contributions by Huisken, Ecker, Grayson, Hamilton



himself and others (for a brief introduction to these results, see Appendix C). In the fol-
lowing decades, the Ricci flow was widely used (and is still used) to study the topology,

geometry and complex structure of manifolds.

In this dissertation, we aim to provide an introduction to the Ricci flow, discussing
some of the most used techniques and a few classical results obtained with the use of
this geometric flow. The work is organized as follows. In Chapter 2, we state important
concepts from Riemannian Geometry and Lie algebras in order to provide the necessary

background for the rest of the work.

In Chapter 3, we present evolution equations for several geometric quantities, such
as the metric and its inverse, the Riemann, Ricci and scalar curvatures, the Levi-Civita
connection and the volume form. Besides, we prove short-time existence for the Ricci

flow, following DeTurck’s work [9], which simplified Hamilton’s original argument.

Chapter 4 is dedicated to the maximum principle, one of the central techniques on
Hamilton’s work on the Ricci flow. In his second paper regarding the Ricci flow, [12],
Hamilton introduced the maximum principle on vector bundles, based on Weinberger’s
maximum principle for systems (see [29]). In this chapter, we present the maximum prin-
ciple for scalars and for vector bundles, as well as key concepts from convex analysis that

are necessary to understand the second one.

Finally, in Chapter 5 we deal with the Ricci flow on closed 3-manifolds with initially
positive Ricci curvature. In his first paper on the Ricci flow, Hamilton proved that
applying the Ricci flow to such a manifold, after a rescaling of the metric in order to keep
the volume constant, one gets a limit metric which is smooth and has constant positive
sectional curvature, which implies that the initial manifold is diffeomorphic to a quotient
of S by finite groups of isometries acting freely on it. We prove some of the results
that enabled Hamilton to prove his main theorem, but by using more recent techniques,
developed after Hamilton’s paper which are equivalent to his arguments. One essential

result is to show that the only obstacle to continue the flow is the curvature becoming



unbounded. After that, we obtain upper and lower estimates for the curvature, which
enables us to prove that the sectional curvatures approach each other as we evolve the
flow. In the end of the chapter, we make a brief comment on the normalized Ricci flow

(rescaling the metric), which enabled Hamilton to complete the proof of his main result.



Chapter 2

Preliminary Results

In this chapter, we aim to give a brief introduction to some results that will be useful
for us in the following chapters. We will assume some familiarity with the basic concepts
from Riemannian Geometry, such as the definition of a manifold, a Riemannian metric
and basic properties of the curvatures. The majority of the results in here can be found

in [4],[5], [7], [16], [20], [21], [25] and [28].

Let {z'} be local coordinates in a neighborhood U of p € M. In U, the vector fields

{5} form a local basis of TM and {dz'} form a dual basis for 7*M. Then we may write

the metric in local coordinates as g = g¢;;dz’ ® da?, where we have used the Einstein

summation convention (which will be used throughout the whole dissertation).

Definition 2.0.1. We define the (3,1)-Riemann curvature tensor, denoted by Rm,

as follows
Rm(X, Y)Z = VXVyZ — VYVXZ — V[X,y}Z.
The components of the (3,1)-tensor Rm are given by

o o\ o 0
fim (a_ a_) oot = g

We also define the (4,0)-Riemann curvature tensor by taking the inner product with an-



other vector field. Then its components are given by
Rijr = gsz%

Definition 2.0.2. If P C T,M is a 2-plane, then the sectional curvature of P is
defined by K(P) = g(Rm(ey, es)es, e1), where {e1, es} is an orthonormal basis of P. This

definition is independent of the choice of such a basis.

Definition 2.0.3. The Ricct tensor, denoted by Ric, is defined as the trace of the
Riemann curvature tensor Ric(X,Y) = trace(Z — Rm(Z,X)Y). Its components are

given by

Rj R@c<8]8k> ZRW

The scalar curvature, denoted by R, is the trace of the Ricci tensor, i.e.,
R = giniju
where g = (g~1);; is the inverse of the metric.

It is also important to define the covariant derivative of a tensor. If « is an

(r,s)-tensor, we define its covariant derivative by:

T

Vxa(i,....Y,) =Vx(a(Vi,....Y;)) = > a(,...,VxY;,...,Y;).
i=1
Hence, we may consider the covariant derivative as
V : C«oo(®r,sM) — COO((X)T—H’SM),
where Va(X, Z1,...,Z,) = Vxa(Zy,...,Z,).

Our first results, which will be important for many calculations later on, are the
Bianchi identities. If R;;x; are the components of the Riemann Curvature tensor on a given

coordinate system, R;; are the components of the Ricci tensor on this same coordinate
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system and R is the scalar curvature, then the first and the second Bianchi identities

are:

Riji + Rjga + Riiji = 0 (2.1)

and

ViRjkim + VjRiitm + Vi Rijim = 0. (2.2)

The twice contracted second Bianchi identity is
29"V ;R = ViR. (2.3)

Definition 2.0.4. Let (M™, g) be a connected Riemannian manifold. We say that (M", g)

is an Einstein manifold if
Ric = fg,

where f: M — R is a function.
Using the Bianchi identities, one can prove the following result.

Theorem 2.0.1. Let (M", g) be an FEinstein manifold. Then, if n > 3, we get that f is

a constant. In particular, if n = 3, then M3 has constant sectional curvature.

We would also like to introduce the Lie derivative, which, in a certain sense, measures
the lack of invariance of a tensor with respect to a family of diffeomorphisms generated

by a vector field.

Definition 2.0.5. Let a be a tensor and X a complete vector field generating a global
1-parameter group of diffeomorphisms ;. The Lie derivative of o with respect to X is
defined by

Lxo = lii%%(a — (1) v), (2.4)

where (@), = (p; ') TrM — T7

»t(p) M.

Now, since we defined the Riemann curvature as the commutation of covariant deriva-

tives acting on vector fields, we may also express the commutation of covariant derivatives



acting on tensors in terms of the curvature. This is given by the Ricci identities:
T
(Vzvj - V]vl) O{kl.“kr = — Z R;?klakl~~-kl—lmkl+1~~-kr7 (25)
=1
where « is a (s,r)-tensor. In particular, if « is a 2-tensor, then
Vivj'Oékl — V]Viakl = —Rfjkapl — Rfjlakp. (26)

Throughout this dissertation, it will be more convenient to do our computations in
local coordinates rather than in an orthonormal moving frame. This is mostly due to the
fact that the Ricci flow evolves the metric, so we can choose a fixed coordinate system. If
we were doing our computations on a moving frame, we would have to take into account
the evolution of the moving frame if we want it to remain orthonormal. Besides, since
the majority of our equations are tensorial, we can always choose geodesic coordinates

centered on a given point to do our calculations.

Now we define the so called Kulkarni-Nomizu product, which will be used to give

a particularly useful decomposition of the Riemann curvature tensor.
Definition 2.0.6. Let S?M = T*M ®5T*M be the bundle of symmetric 2-tensor. Then
we define the Kulkarni-Nomizu product ® acting on S2M x S*M by

(0 ® B) i = bk + arBiu — qirBi — ajBin.

This gives us the following decomposition for the Riemann tensor:

Rm:%(ﬂGQH

S (Rico g) +W,

n—2

where Ric = Ric — %g is the trace-free part of the Ricci tensor and W is the Weyl

tensor, which is defined implicitly by the expression above.
Proposition 2.0.1. If n=3, the Weyl tensor is identically zero.

Proof. For a simple proof of this result, see [14]. ]

10



Then, by the proposition above, we have the following expression, which relates the
Riemann curvature tensor and the Ricci tensor on dimension 3:

R
Rijii = Ragjr + Rjrga — Rivgj — Rjuga — §(gz‘lgjk — GikGiji)- (2.7)

This last expression will be extremely important to prove that the Ricci flow preserves

certain quantities, such as positive Ricci curvature.

In order to prove short-time existence for the Ricci flow, we will have to calculate
the principal symbol of Ric(g(t)). To do so, we define the linearization of a nonlinear

differential operator.

Definition 2.0.7. Let F : C®(E) — C>(E) be a nonlinear differential operator
F(p,0*u), where E,E are vector bundles over M, p € M and u € C*®(E). Then the

linearization of F' at u is the linear operator

Py = %F(p, o*U(t)) o (2.8)

where U(t) € C®(F) for all t, U(0) = u and U'(0) = v.

Now we state a result that shall be used in this dissertation, the famous Bonnet-
Myers theorem, in which one assumes bounds on the Ricci tensor and gets information

on the topology of the manifold.

Theorem 2.0.2. Let (M", g) be a complete Riemannian manifold. If there is a constant
k > 0 such that Ric > (n — 1)k > 0, then M™ is compact and diam(M, g) < it

In the rest of this chapter, we introduce the concept of a Lie algebra and provide a
few details on the identification of tensor spaces and Lie algebras. This identification will

be useful to us in Chapter 5 when trying to get a better grasp of the evolution equation

of the Riemann curvature tensor under the Ricci flow.

Definition 2.0.8. A Lie algebra G over a field K is a vector space over K together with
a bi-linear map, called the Lie bracket, |-,-] : G x G — G satisfying:

1. [v,v] =0 forallv e g,

11



2. u, [v,w]] + [w, [u,v]] + [v, [w,u]] =0 for all u,v,w € G. (Jacobi identity)

Now suppose G has an inner product (,) and {¢®} is an orthonormal basis for G. We

defined the structure constants cf‘y‘ﬁ for the Lie bracket with respect to {p®} by
%, ¢°] = 57"
Since our basis is orthonormal, we have
c5” = ([¢", 71, ¥").

Using properties 1 and 2 of the Lie bracket, it is easy to check that the structure constants

are fully anti-symmetric.

A special case of a Lie algebra arises when we have a vector space V' and consider
E = End(V), the algebra of operator endomorphisms of V. Then E can be made into a
Lie algebra over R by defining the bracket

X,Y]=X Y-Y-X.

In this case, the Lie algebra is called the general Lie algebra gl(V). If V = R", then
we have, for instance, the general linear Lie algebra gl(n,R) of all n x n real matrices.
Furthermore, the special linear Lie algebra sl(n,R) is the set of real matrices of trace 0
and is a subalgebra of gl(n, R). More important to us will be the special orthogonal Lie

algebra so(n,R) = {X € sl(n,R); X7 = —X}, i.e., the set of skew-symmetric matrices.
Now we consider a real n-dimensional vector space V' with an inner product (,). Let

{ea}n_; be an orthonormal basis for V. Consider the tensor space V ® V| which is the

space of the linear applications defined by

TRy :z— (Y, 2)T, (2.9)

12



for any x,y € V. We may endow the tensor space V ® V' with an inner product
(r®@y,u®v) = (r,u)y,v).
Then {e, ® eg} forms an orthonormal basis for V ® V. In fact,
(ea ® e, ey ® en> = (€a; 67) (e, 677> = 52527

which shows that this basis is actually orthonormal.

Let E,p be the matrix with 1 in the (o, ) — th entry and 0 in the other entries.
Then E,pEx, = 0grEqy,;. We consider the following identification gl(n,R) =2 V ® V, where

Eu.p ~ eq ® eg. Since any matrix A € gl(n,R) can be written as

A = Z CLagEag,
aB

where a,p € R, under this identification the inner product on gl(n,R) can be given by

(A,B) = <aaﬁEocBa bwnEvn>

= Z apbyn(Eag, Eyn)

a,B,7,m

= Z (apbyn(ea @ €5, €4 ® €y)

a,B,7,m

= Z aaﬂbwégég

a,B,7,m

et Z aanban — tT(ATB)

a777

for any A, B € gl(n,R).

Define the second exterior power of V, denote by A’V =V ® V/Z, where Z is the

ideal generated by = ® x for every x € V. We define the linear transformation

T Ay :z— (y,z)x — (z,2)y, (2.10)

13



for all x,y € V and observe that x Ay = —y A . We also define the inner product on
A%V by
<$Ay7UAv> = (x,u)(y,v)—(x,v)(y,u). (211)

With respect to this inner product, {e, Aes}a<s forms an orthonormal basis for the vector

space A%2V. Using the linear transformation above, we may identify
A’V > s0(n) = R™,

(

where m = %_1) This can also be seen by mapping e, Aeg to the skew-symmetric matrix

E.p — Ego. With this identification, the inner product on so(n) is given by

1
(A,B) = 5tr(ATB). (2.12)
In fact, if A = Zaag o — Fpo) and B = Zb)‘" Ey, — E,)), with aqg, by, € R, then
a<f A<n

1 1
(A, B) =) tapbes = 5tr(ATB) = —5tr(AB),

a<f

If we look at A = Z aag(Eap — Ega) = (012, ..., A(m—1)m), We may identify so(n) with
a<f

R™ m = "("271), with the Euclidean product.

A particular case of the above formulation is when n = 3 and V = R3. Then

A?V = 50(3) 2 R3, where the Lie Bracket in R? is given by the usual cross product.

Finally, we consider the dual space AV*. Let {w®} be the dual basis to {e,}. Then

we define w® A w? by
w* AwP(ey, €)= w(ey)w (e,) — w(e,)w’(e,) = 6005 — 0003

The inner product on this space is given by (2.11), but now it is applied to dual vectors,

14



ie.,
(W AP W Aw™) = (W W) WP W) — (W, W) (WP, w).
Then we define the Lie Bracket
(W A WP W AW = anw? AW + 60" AW — S AW — da,w™ Aw.
Any ¢ € A2V* can be written as

1
p = 5 Zﬂ: (paga)a VAN w*B = Z @agwa VAN w'B, (213)

a<f

where ¢, = ¢(eq, e3). Then the definition of the Lie bracket above enables us to define
the components of the bracket, with respect to this basis, by

[907 w]aﬁ = Spomw'yﬁ - ¢a’y§0'yﬁa (2'14)

for any ¢,1 € A?V*. We identify A*V* to so(n) by considering w® A w” + E,5 — Egq,.
With this identification, the inner product in so(n) is given by

1
<A7 B> = §t7’<ATB),
for all A, B € so(n), just like we did it above.

Now suppose {¢®} is an orthonormal basis for A?V*, with structure constants cg‘ﬁ ,
and suppose {0, } is an orthonormal basis for A2V dual to {¢®}. Then the corresponding

structure constants for this dual basis are given by
[0, 08] = €50

G 2 3 27/ * Y
Identifying AV with A*V*, we get that c); = .
We now consider a Lie algebra G endowed with an inner product (,). Let {¢“} be a

15



basis of G and let C’ﬁﬁ denote its structure constants. Also, let {¢*} denote the basis
algebraically dual to {¢}, so that ¢7(p”) = d,5. Let L be a symmetric bilinear form on

G*. Then we may regard L as the element of G ®¢ G whose components are given by

Laﬂ = L(@Za (102)

Furthermore, we may define an operation # on G ®¢G, which is commutative, bi-linear

and is given by
(L#M )ap = CLECY L5 Mee. (2.15)
Then we define the Lie algebra square L” € G ®g G of L by
(L#)ag = (L#L)ap = C°CF Los Le.

Now we prove a result that will soon be useful for us.

Lemma 2.0.3. If L >0, i.c., if for every u € G, L(u,u) > 0, then L* > 0.

Proof. Let {¢®} be a basis for G such that L is diagonal in this basis, so that L,z = dapLaa-
Then for v = v%¢}, in G*, we get

L* (v,v) = (Uacgé)(UﬁC?)L%L&E = (Uacgé)QLwLéé-

Therefore, L# > 0. [

Remark. (,) on G defines a metric isomorphism G — G* by v — (v, ). Hence we are

able to consider L : G — G as a self-adjoint endomorphism.

In chapter 5, we will study the case when V = TM", where M" is a Riemannian
n(n —1)
2
particular, we consider the case when n = 3 and M?3 is a closed manifold. We would like to

manifold. Then AT, M = A*R" 2 s0(n) = R™ for each p € M™, where m = .In

get an expression for the # operator. Let {e;} be a globally defined orthonormal moving
frame and {w"*} be the dual frame to {e;}, so that w¥(e;) = 6i. Then the dimension of

A*TM? is m = 3 and we may write a basis {6*} of A2T'M?® by

16



0 0 O
1
1o = ~ L
-1
0 7 0
—1
0 O %
2= ey her~ 0 0 0
\/53 1 1 )
7 0 O
1
0 7 0
3 — ~ | =L
8 \/561/\62 \/5 O O )
0 0 0

where the matrices above are just the normalized versions of Fo3 — F39, Fi3 — F3; and
Ey9— FEs;. Note also that when n = 3, the Lie algebra bracket on s0(3) with inner product
being just the Euclidean inner product corresponds to the cross product on R3. Then,

using equation (2.15), we may compute the Lie algebra square:

#
a b c df —e* ce—bf be—cd
b d e|l =|ce—=bf af —c* bc—ae
c e f be —cd bc—ae ad—b?

since ([07,67],0%) = C7; is fully alternating in ¢, j, k and the Lie structure constants are

given by

if (afy) is a positive permutation of (123)

SiL Sk

if (a37) is a negative permutation of (123) (2.16)

0 for all the other cases.

\

Therefore, the matrix (B#) is just the adjoint matrix of B :

B# = det(B)(B™")". (2.17)
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Chapter 3

Short Time Existence for the Ricci Flow

In this chapter, we will prove that a solution for the Ricci flow always exists on a short
time interval, regardless of the initial metric g(0). Given a smooth family of metrics g(¢),
we can compute the variations of the Levi-Civita connection and its associated curvature
tensors. First, we will consider a general variation % gij = Vij, where v is any symmetric
2-tensor. Note that if v = —2Ric, then we have the Ricci flow. After that, we shall see
that the Ricci tensor can be seen as a nonlinear-partial differential operator on the space

of positive definite symmetric (2,0)-tensors, i.e., Riemannian metrics on M.

Inspired by that, we will calculate the linearization of the Ricci Tensor and its principal
symbol. This will allow us to prove that the Ricci flow is not strictly parabolic. Motivated
by that, we will introduce the Ricci DeTurck flow, that modifies the Ricci Flow into a
strictly parabolic equation, which has a solution on a short interval because of the theory
of parabolic PDEs. Finally, we will show that using the solution to this modified flow,
we get a unique solution to the original Ricci flow. The variation formulas below can be

found in [1] and the results on the Ricci flow can be found in [14], [9], [5] and [28].
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3.1 Variation Formulas

As mentioned above, we will consider the following differential equation for a smooth

family of metrics g(¢) on M™

o’ v (3.1)
g<0) = 9o,

where v is any symmetric 2-tensor on M.

First, we recall that, although a connection is not a tensor, the difference of two
connections, say V! and V%, is a tensor. In fact, if f € C°°(M) and X,Y are vector fields

over M, then

(Vi = Vi) (fX) = VR(fX) - Vi(fX)
=Y (f)X + fVEX — Y (/)X — fVLX = f (Vi — V%) (X).

In particular, if we take the limit t — %, it is not difficult to see that %V is a tensor.

Lemma 3.1.1. Let g(t) be a family of metrics such that g(t) solves (3.1). Then the
inverse of the metric, g~'(t), evolves by

o0 .. o
= ik jlv )
ot 9 9 Ukl

Proof. Just remember that d; = ¢*g;;. This gives us

0 . .
O ik ik
= (_8759 >gkz+9 Vkl,

consequently

d J ; ;
59] = (ag k) g’ = —g9"* grvm.

]

Lemma 3.1.2. For a solution g(t) of (3.1), the variation of the Christoffel symbols is

given by

9
— I =

1
ot —gkl (Vﬂ)jl + Vjvil — Vﬂ]ij) .

2
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1

Proof. Recall that in local coordinates {x;}, if 9; = %, we have Ffj = 59’“1 (0igj1 + 059 —

If we take geodesics coordinates centered at p € M, then
I}5(p) = 9ig;e(p) = Vo,0;(p) = 0
In particular, if A is a 2-tensor, then
(ViA)(9;,0k)(p) = 0:i(A(9;, 0k))(p) — A(V:i0;(p), Ok) — A0}, ViOk(p)),

so V; A, = 0;Aj at p. Thus, we obtain

0 1/0
al“fj(p) =3 (agkl) (0igjt + 094 — 01945) (p)

0 0 0

g" (8 0tggl + 0; atgil - 31@91']‘) (p)
1

= 59“ (Vivji + Vv — Vivg) (p).

019ij) -

Since both sides of the above expression are components of a tensor (as we stated in

the beginning of the section), this equation is valid for any p € M in any coordinate

system.

]

Lemma 3.1.3. If g(t) is a solution to equation (3.1), then the evolution of the Riemann

curvature tensor Rm is given by

O pi

5 Rign =597 (Vi oy + ViVivy — ViV,

— VjVivkp - Vijvip + Vjvpvl-k).

Proof. In local coordinates {z;}, we have the formula

= 0T, — O;T), + 5T, — TH T

wk Jp’

then we can apply the same reasoning as in Lemma 3.1.2 to infer:

8 8 0

0
8 zgk a at ]k a] atFlk + = ot (ng) Fip

0 0 0
pr ey = e, - 2 ().
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Using geodesic coordinates centered at p € M, the Christoffel symbols vanish at p and we

get from Lemma 3.1.2

1
%(p) =V {lep (Vjvrp + Vi, — vajk)]
1
— Vj |:§glp (V,-vk,, -+ Vkvl-p — vaik):| .

Since V,g'"(p) = 0, the result follows.
[

Remark. If we commute the derivatives in Lemma 3.1.3 and use the Ricci identities

(2.6), we can also write

0 1
aRijk = églp(vivkvjp + Vi Vypvir — ViV — ViVivy, — Rivg — R vkg).

Lemma 3.1.4. The evolution of the Ricci tensor Ric is given by

0 1
aRjk = §glm (VleUkm + Vlevjm — Vlevjk — Vjvkvlm) . (32)

Proof. Using Lemma 3.1.3,

0 1

&Ri]k ziglm (lejUkm + Vlvkvjm — Vlevjk)
1
+ §glm (=V,iVivim — ViVivg, + V,; Vo) .

Note that since we have a summation over [ and m and v is symmetric, the last two

terms vanish. Hence, the result follows. n

Remark. Recall that the divergence of a (2,0)-tensor v is given by
(6v)y, = n — (divo)y = —g”" Vv,
and denote the Lichnerowicz Laplacian of a (2,0)-tensor by

(Apv)jr = Avjp + 297 R . vrp — 9% Rjpvge — 9% Ripvjq- (3.3)
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If we denote the trace of v by
Voi=1rg(v) = g™y, (3.4)

then it is possible to write the evolution of the Ricci tensor in the form

0

g L A0+ VYV 4 5(00) + Ta(00),). (3.5)

Ry = =3

In fact, it follows from (3.2) that

0

1
aifie =3

2gpq (VoVivrp + Vo Vv, — Vi Vv — ViVivg,) .

Then the third term is already the Laplacian —%(Av) k- Also, for the first two terms, we
would like to commute the derivatives ¢ <+ j and ¢ <> k. One can do this by using the

Ricci identity, then one gets

0 1 1
5y bk = = SAUK + 59" (ViVqip + ViVvj,) = vjvkv
1 T
- 5 (RquUTP + qupvk”) 2gpq ( gkjVrp T qupvﬂ’)
1 1 1
=5 [Avjk + "Ry, vk + 9" qupv]r] — §VijV — §Vj(5v)k;

1 1 ., .,
- Evk((sv)j - égpq(qukUTp + Rl vrp)-

This implies that

0

1
@Rﬂ“ = — 5 [Avj, + V; ViV + V;(0v)i + Vi(dv),]

2
1 T T T
2 g™ [qupvkr + qupvﬂ (quk + quj)vrp} .

We observe that g™ R}, v, = g% g" Rykjsvrp = 9% g RyjkqUrp. Now, since there is a

summation over s,r,p and ¢, we interchange s and ¢ as well as r and p. Then

pq T — P9 ST
g qu;jvrp_g g quksvpr~
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In addition, we observe that

r rs rs rs
gququUkr =g gququsUrk =—g gquqjspUrk =—g stvrk: = _gquijqk-

In the same way, we get

pq T — __Pq .
9P Ry ek = — 9" Ripvjq.

This shows that equation (3.5) holds.

Lemma 3.1.5. For a solution g(t) of (3.1), the evolution of the scalar curvature function
R is given by

0 :
aR = —AV + VV,, — (v, Ric),

where V' is given by (3.4).

Proof. Since R = ¢g/* Rj,, we just have to use Lemmas 3.1.1 and 3.1.4:

0 0 . e

. 1 .
= _gl]gklvilek + §9Jk9lm (ViVj0km + ViVeim — ViVvje — Vi Vi) -

Remember that there is a summation over 7, j, k, [ and m. So we can interchange indexes
and write

0 g 1 ., .
@R =—g7g" (v Rj1) + 59]]6911 (ViVup + ViV — ViV, — V,; Vi)

. 1 ..
= —g9g" (v Rj1) + 59”9“ (ViVjvi + ViV — ViV — V;Viog)
= —g7¢" (v Rj1 + ViVjom — ViVivj)
where we used that v and g are symmetric several times. Finally, this last equality gives

us

%R = —(v, Ric) — AV + div(divo).
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Lemma 3.1.6. The volume element du of (M, g(t)) evolves by

where V' is given by (3.4).

Proof. We consider oriented local coordinates. Then

= \/det(g)dzy N -+ N dz,.

Hence, we get

0 0

atdu (%( det(g))dzy A -+ - Ndz,, = 2\/7(% (det(g))dxy A -+ Ndxy,
= 1;tr( -9 )det( Ydxzy A - AN dx
1/ ,.0 1, .
—3 (gjagij) dp = B (gjvij) dp
V
- Ed/“’lﬁ
where we have used (3.1) and (3.4). O

Corollary 3.1.6.1. For a compact manifold M, the total scalar curvature fM Rdp evolves

i ([, 1) = [, (5107 = i)

Proof. This is a direct consequence of the two lemmas above and Stokes” Theorem. [

by

If we choose v to be
v = —2Ric (3.6)
then V' = —2R and we say that g(¢) satisfies Ricci flow, i.e.,

£0(t) = ~2Ric(y 1), (3.7

9(0) = 9o-
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In this section, we will suppose that we have a solution for the Ricci flow on a short
time interval [0, ), for some £ > 0. Later in this chapter, we shall prove this fact. The
next proposition is a direct consequence of the results above, in the particular case where

v is given by (3.6).
Proposition 3.1.1. Suppose g(t) is a solution of the Ricci flow. Then, we have
1. The Levi-Civita connection I'(t) of g(t) evolves by

0
afkj = —g" (ViRj + V;Ry — ViRyj) (3.8)

2. The (3,1)-Riemann curvature tensor Rm(t) of g(t) evolves by

0
ERi]k = glp[ — ViVijp - Vikajp + Vivajk + VjVZ-Rkp (3 9)

+ V,;ViRi, — V,;V, R,

3. The Ricci tensor Ric(t) of g(t) evolves by

0

ERM = AR]k + Vjka — gpq<quijp + qukij), (310)

4. The scalar curvature R(t) of g(t) evolves by

0 .
5= 208 - 2¢°* g"1V Y ; Ry, + 2| Ric|?, (3.11)

5. The volume form du(t) of g(t) evolves by

0

—du = —Rdpu. 3.12

il 7 (3.12)
By applying some curvature identities, we will obtain more useful forms of the equa-

tions above. In fact, we shall see that in dimension n > 2, the Riemann curvature, the

Ricci curvature and the scalar curvature all satisfy reaction-diffusion equations (often

called heat-type equations).
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Proposition 3.1.2. The Scalar Curvature under the Ricci flow (3.7) evolves by

%R: AR + 2|Ric|?. (3.13)

Proof. Using the contracted second Bianchi identity (2.3), we get
VkR = QgﬂVIRik.

Applying this to (3.11), we get

0
5L =2AR = g™V, V, R+ 2| Ricl|?
= AR + 2|Ric|*.
O
Proposition 3.1.3. Under the Ricci flow, the Ricci tensor evolves by
0 pa s pa
ERjk = ALRjk = AR]k + 2gMg pjk'qus —2g ijqu, (314)

where Ay, is defined by (3.3).

Proof. We just have to use the contracted second Bianchi identity again in (3.5). Then

0
aRjk :ALRjk + V]VkR — gpq(Vijqu + Vkvajq)

1 1
= ALRjk + VijR — Vj<§ka) — Vk(aij) = ALRjk,
where we used that R is a scalar function in the last equality. O

Remark. The presence of the Riemann tensor (Rm) in equation (3.14) is a big obstacle
to showing that nonnegative Ricci curvature is preserved. Therefore, we would like to get

a better understanding of the contribution of the Riemann tensor to the evolution of the

Ricci tensor.

Since the Weyl tensor W = 0 in dimension n = 3, we get the following
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Proposition 3.1.4. In dimension n = 3, the Ricci tensor of a solution to the Ricci flow

evolves by

0

5 Tk = ARy + 3RRyy — 67 Ry Ry + (2|Ric|* — R*)g;s. (3.15)

Proof. We just have to write the Riemann tensor Rm as a combination of the Ricci tensor

Ric. Then it follows from (2.7) that

26"9"° Rpjir Rys = 2979 [Rprgjk + Rjkgpr — RprGjr — Rjrgpk — g(gprgjk — GpkGir )| Fgs
= 269" Ry Rysgji + 297 9"° gpr Rys Rji. — 29797 gjr By Rys
—29"9" gpi Rjr Bys — 979" Gprgin Ros R + 979" gprgjr Res R
= 2|Ric|’ g, + 29% Rys Rjx. — 29" R Ryj — 29" Rjr Ry
— 9" Rysgin R + Ry R

= (2|Ric|* — R*)gjx + 3Ri;R — 49" Rjp Ry,

where we used the fact the the Ricci tensor is symmetric and since there is a summa-
tion over p, ¢, r and s on —2¢" R, R;; — 29"° R, Ry, we can add those terms together.
Substituting this in equation (3.14) yields the formula in (3.15).

m

We would also like to check if the Riemann curvature tensor satisfies a reaction-

diffusion equation.

Proposition 3.1.5. Under the Ricci flow, the (3,1)-Riemann curvature tensor evolves by

9 l l l [ l l
— R\ — ARY. 4+qP (R". —9R" R 2RV R" Y — RPR!.
o7 ik = ARiug™ (R, By — 200 Rig, + 2R3, Riyy) — RURy, 3.16)
— RUR, . — RIR., + R,R!

ipk P ijk”

Proof. Using the second Bianchi identity (2.2) and the fact that Ré-qk = " Rjokm, We

have

ARi]k = gpqvpquijk = gpqvp(_viRl‘qk - Vle )

J qik
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Now commuting the covariant derivatives, from (2.5) we get

l l T [ T [ T l
AR’L]k :gpq[ - VZVpRqu + Rpinqu + Rpiqu’I‘k‘ + RpikquT
[ r l T [ T l
- Rpir jqk vjvaqik - Rp 'iquk - Rpj Rirk
T l l r
o Rpijiqr‘ + Rpj iqk}'

Observe that in the terms —R!, " and Réj tak» We have switched the indexes r and

[, this is why this terms have different signs. Applying the second Bianchi identity again,

we have

gpqvaé‘qk :gpqglm<_kaqup = Vi Rjgpr) = gpqglm(kaqjmp = Vi Ryjip)

= ViR} = V' Ry,

where we used the fact that Ré-qk = ¢"R;m and the fact that ¢ is a parallel tensor.

l

Doing the same computation for VR ;,, we can rewrite

ARZ’jk == VinRé- + V,-Vlek + VijRé — vjleik

)

+ g [Ry;

R+ R,

piq

Rl + Ry R, — RL R

jqr pir~ “jqk

— R R, — R, R — R R, + R R

pji* rak pjg i iqr pjr- Vigk

By the first Bianchi identity, we know that

R, R ,—R.R  =—RR

pij* “rqk pjitrqk T ijp* trqk:

Then AR, can be written as

AR}, =~V ViR, + V;V'Ry, + V;V, R, — V,;V'Ry,

?,

RIR .+ RiR, .+ ¢"[ — R, R + R R}

tjp* rak Jar
_ pl r __ pr l l r ]
Rpir jak Rpijiqr + Rpj igk] "

Regarding the equation above, observe that since we are contracting on g"?, we have

Pq DT I pgpl r
g Rpikqur_g RpjT iqk
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and

9" R, R = g™ R} ..R!

pir+ “jqk iqr-

Finally, considering formula (3.9) and rewriting

¢"(V;ViRip — ViV;Ryp) = g% (RY Ry + RE Rip),

ik

we get

0
_Rl'jk - Vikaé’ - VJ’VZRik + Vilejk + Vjkaé + 9" (R Ryp + R, Rig)

ot ) ijk iJp

= AR}, + g™ (R, Rl — 2R, R

ijp* rqk pik=Yjqr

+2R, R ) — R'R, ., — R'R]

ir* Yiqk ipk

- glqupR{'l

ijp

l
+ RLRY

ijk>

where we interchanged the indexes p and q on the last two terms since there is a contraction

on gP4.

As a direct corollary we get

Corollary 3.1.6.2. Under the Ricci flow, the (4,0)-Riemann curvature tensor satisfies

the following reaction-diffusion equation:

0
—Rij =ARji + g™ (RT R,gu — 2R,

at iJp pikquTl + QRP"ZR;qk)

(3.17)
— (RY Ryjus + RS Ripr + Ry Rijpi + R} Rijip) -

Proof. Just remember that Ry = glng‘k,. Hence,

0 0 m m J ..
&Riﬂcl = E(le z‘jk) = (_2le)szk +glm(&szk)7

then the result follows from Proposition 3.1.5.
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We define the (4,0)-tensor B by
Bijkl = _gprgquiquerls = _RZURZHC (318)
Note that B satisfies
Bijii = Bjur = Bhij- (3.19)
Proposition 3.1.6. Under the Ricci flow, the (4,0)-Riemann curvature tensor evolves by
0
— Rijui =ARqji + 2(Bijri — Bijix + Birji — Baj)

ot (3.20)
— (RYRyjut + RYRipry + R Rij + R, Rijip)

Proof. First we see that
20" R Rjgri = =297 9" Riprs Rjqir = 2Bigji
and
20" Rpin R . = 299" Ripri Rjger = —2Biyjis.
Then using the first Bianchi identity in the second term of (3.16) , we get

9 R Regkl =977 Rijpr Rsqrr = 979" Rypji Rsqr
- gpqgrs(_Rrjip - Rm'pj)(_Rsqu - Rslqk)

= —Bjir + Bjur + Biji — Bijue = 2Biji — 2Bijuk.-

Substituting this into equation (3.17), the proposition follows.
O

Remark. Although the tensor B does not satisfy the first Bianchi identity, if we define
the tensor C' by

Cijer = Bijii — Bijik + Bikji — Biji,
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then C satisfies the Bianchi identity. Similarly, although Bjy # —Biju, we get Chin =

—Cijk-

3.2 The Linearization of the Ricci Curvature

In this section, we consider the Ricci tensor Ricy as a nonlinear partial differential

operator on the metric g, i.e.,
Ric: C®(SyT*M™) — C®°(SyT*M™),

where C>(S;T*M™) denotes the space of positive definite symmetric (2,0)-tensors (i.e.,

Riemannian metrics) and C'°(ST*M™) is the space of symmetric (2,0)-tensors.

First we introduce the concept of parabolicity of linear differential operators on vector
bundles. Let E be a smooth vector bundle over a closed manifold M™. Let v € C*(F) be
a smooth section of E. Locally we may write v = v, for some local frame {e,}. Then

we consider

ov

g

5 = L),

where L is a linear second order differential operator L : C*(F) — C*(F) that may be

given locally, in terms of coordinates {z‘} on M™ and the local frame {e,}, by

; 0 0 o,
_ (i B pi a 8
L(v) (%5 5 5d + b‘w@miv + cqU ) Ca-

Definition 3.2.1. Let 11 : T*M — M be the bundle projection over M™ and 11*(E)
a vector bundle over T*M whose fibre at (p,§) € T*M is E,, i.e., (II'(E)) ¢ = Ep
Thus, we define the principal symbol of L, denoted by o(L) : II"(E) — II*(E), at
(p, &) € T*M as

o(L)(p, v = (agsi&0”) o

0
We say that a—: = L(v) is strictly parabolic if there exists A\ > 0 such that, for any fibre
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metric,
(o(L)(p, &)v,v) = NEPJo]?
V(p,€) € T*M and v € C®(E).
As we mentioned above, the Ricci curvature is nonlinear. In order to calculate its prin-

cipal symbol, first we need to compute its linearization, which is defined in the following

way.

Definition 3.2.2. Let E and F' be vector bundles over M™. For a nonlinear differential
operator F(z,0%u) : C*(E) — C*®(F), its linearization at v € C®(E) is defined to

be the linear operator
d
P =—Fz, 8'“((](3))) ,
ds 50
where U(s) € C*(E), U(0) =u and U'(0) = v.

For the Ricci curvature, we shall denote its linearization by
DRic: C®(ST*M) — C(S;T*M),
given by

(DRic)yv = d%Ric(g(s))

s=0
where g(s) is a family of metrics such that g(0) = g and ¢’(0) = v, which is the directional
derivative of Ric in the direction of the variation of the metric. We may denote F =

—2Ric. Then we have

Proposition 3.2.1. The linearization of the differential operator
E = —2Ric: C®(SyT*M™) — C®(SyT*M™)
can be written as
(DE,)i; = g™ (ViVjom — ViVivy — ViViva + ViVivyg) . (3.21)

Proof. From the definition of linearization of a nonlinear differential operator on vector
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bundles, we have

d
DE,v = =2(DRic)yv = —2d—Ric(g(s))
s

s=0

Since g(s) is a family of metrics with ¢(0) = ¢ and

7(0) = < gls)

—= ’U’
s=0

one sees that we can use the evolution equation for the Ricci tensor and equation (3.2)

yields
d . L
(DEyv)i; = —2£R20(9(3)) = —259 (=ViVjvu + ViVivj + Vi Vv — ViViy) .
s=0
Hence, the result follows. O

Now we are ready to compute the principal symbol of DFE.

Corollary 3.2.0.1. The principal symbol of the linear differential operator DE in the
direction £ = (&1, ...,&) 1S

o(DE(g)€)vi; = g™ (&&vm + &y — Ei&rvin — Eebjva) - (3.22)

In particular, the Ricci Flow s not strictly parabolic.

Proof. As previously defined, we just have to replace V; by the variable ; to get (3.22),

since our equation is tensorial. Now considering equation (3.22), we may assume that

|€|| = 1 and, since o is a tensor, we can choose coordinates at a point such that
9ij = 0ij,
¢=1(1,0,...,0).
Then

g (DE(g)) (§)vij = Uij + 52‘1(5]'7; (Uu + V22 + ...+ Unn) — (5i1v1j — (53'11)1,'.
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So we get

[0 (DE(9)) (€)viglyy = vaz + e+ Vi,
0 (DE(9)) (€)vi)y = 0, i k # 1,
(o (DE(9)) ()] = vue, i £ 1 and I # 1.

In particular,

* *k k

* 0 0
(vij) =

* 0 0

are eigenvectors of o with eigenvalue 0. This shows that the Ricci flow cannot be strictly

parabolic. [

3.3 Short Time Existence

The lack of strict parabolicity of the Ricci flow is our motivation to consider the modi-
fied Ricci flow (Ricci-DeTurck flow). First we rewrite the linearization of the Ricci tensor

as

. 0
(DEg) i = —2[D (Ric(g)) v];, = —2%]%]-;c
= Avj — V; (¢""V o) — Vi (97"V up;) + ViV (6"04p)
+ 2gqugjkvrp — g™ Rjpvkg — P Ripvjq.

Now we define the 1-form H = H(g,v) given by
H, — g 1 pq
k= gPIV v — §Vk (g"vpq) - (3.23)

We observe that V' = gPlv,, is a scalar function, so V;V,V = V,V;V. Then we may

write

—2 [D (RZC(g)) U]jk = A’Z}jk - VJHk - VkHJ + Sjk, (324)
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where S = S(g,v) is the symmetric 2-tensor defined by
Sii = 29" Ry jpvrp — 9™ Rjpvng — 97 Ripjq- (3.25)
We check that S involves no derivatives of v. Also, note that we may rewrite H as

1
Hy = §gpq (Vpugr + Veupe — Vitpg)

= "9k [D (T'g) v],

pq’

where D (I'y) : C®(ST*M"™) — C*®°(SoT*M™ @ TM™) denotes the linearization of the

Levi-Civita connection and is given by

[D(Ty) 0]}, = =T (3.26)

%)

when 559lie0 =

V.

Now we fix a background metric § (we could always consider § = go, our initial metric

on the manifold) and consider its Levi-Civita connection ffj We define a vector field

W =W(g,T) by
Wk = g7t (Th, = T%,) (3.27)

Using the fact that the difference of two connections is a tensor, we get that W &

X (M™) is globally well-defined. If we define P = P(I") := Ly g, we see that P is a second

order partial differential operator on g since W contains order one derivatives of g.

Since

(ﬁwg)ij = ViWkgkj + VjWkgik + kak(gij)a

we can consider a geodesic frame and write
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Then
(ewa)y = Vi (7 (T =) + V5 (57 (T3 = Th)) -

This, together with equation (3.26), shows that the linearization of P in v is
[DP(U)]]k = ka] + Vij + lem (329)

where Tj;, appears when we take % of gP? and is a linear first order expression in v, so it
will not be important for our purpose. Also, note that T is fixed, so it vanishes when we
take % of this expression.

This leads us to consider the modified Ricci operator
Q = —2Ric+ P : C*(SeT*M"™) — C*°(SoT*M™). (3.30)

Proposition 3.3.1. @ is an elliptic operator.

Proof. From (3.24),
—2 [D (RZC(Q)) v]jk = AUjk - V]Hk - VkH] + Sjk,

where Hj, and Sj; are given by (3.23) and (3.25). Then it follows from (3.29) that the

linearization of () is given by
DQ(v) = Av + U,

where Uy, = Sji + T}y, is a first order operator on g. This implies that the principal symbol
of DQ(v) is given by

o [DQ(&)v] = [¢[*v, (3.31)

which shows that () is elliptic. O
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This construction leads us to define the Ricci-DeTurck flow on M"™ by

0
agij = _2Rij + VZW + Vj”,
(3.32)

g<0) = 9o,

where W is the 1-form g-dual to the vector field defined in (3.27). In particular,
W; = gipnW"* = gjng™ (F];q - FZ%) (3.33)

depends on ¢(t), T'(t) and the fixed background connection I.

Proposition 3.3.2. The Ricci-DeTurck flow, defined in equation (3.32), is strictly parabolic.
Moreover, there exists an ¢ = £(go) > 0 such that (3.32) has a unique solution g(t) for
t€0,¢).

Proof. Equation (3.31) shows that the Ricci-DeTurck flow is strictly parabolic. Since M
is compact, it is a standard result from PDE theory that for any smooth initial metric
go, there exists and € > 0, depending on go, such that a unique solution ¢(t) to (3.32)
will exist on [0,¢). For a brief discussion of the existence an uniqueness of solutions to

parabolic partial differential equations on vector bundles, see Appendix A. O

If t € [0,¢), it is clear that the family of vector fields W(t) is well defined. Then we

consider the following family of maps

2 0up) = ~W(01(p). )

¢0 = Zd7

(3.34)

Vp e M", Yt € [0,¢), where ¢, : M — M for each t.

The next lemma says that (3.34) always has a unique solution in [0, £).

Lemma 3.3.1. If{X;:0<t<T < oo} is a continuous time-dependent family of vector
fields on a compact manifold M™, then there exists an one-parameter family of diffeomor-
phisms

{¢e : M" — M":0<t<T < o0}
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defined on the same interval such that

9 6(p) = Xilon(p)),
$o(p) = p,

Vp e M», vt € [0,T).

Proof. We assume there is ¢ty € [0,7") such that the solution exists for all ¢ € [0, ] and
p € M"™. Let t; € (to,T) be given. If we prove that ¢, exists for all ¢ € [tg, 1], the lemma
follows since t; is arbitrary. For po € M™ given, we consider local coordinates (U, x) and

(V. y) such that py € z(U) and ¢y, (po) € y(V).

If p=2(q) € x(U) and ¢(p) € y(V), then 2¢,(p) = X;(¢(p)) is equivalent to

S oouesta) = | Faet)]

for ¢ € U such that ¢; o z(q) € y(V'), where y, ! represents the differential of y~!. Setting
2=y tog,oxand F, = y;'X, 0z, we get %zt = Fi(z). Hence, our system is locally
equivalent to a nonlinear ODE in R". So for all p € x(U) such that ¢ (p) € y(V), a

unique solution exists for ¢ € [to, ty + €] for some € > 0.

Since X is uniformly bounded on M™ X [ty, 1], there exists an gy > 0, independent of
p € M™and of t € [ty,t;], such that there exists a unique solution ¢;(p) for ¢ € [to, to+<o].
We see that this still holds for the flow starting at ¢y, ., so a simple iteration proves the

lemma.

]

As a corollary, we get a unique solution for (3.34). Now we are ready to prove the

existence of solutions to the Ricei flow.

Proposition 3.3.3. Let (M™, go) be a closed Riemannian manifold and let Ric denote its
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Ricci curvature tensor. Then the evolution equation

0 .
579(8) = —2Ric(g(1)), (3.35)
g(O) = Yo,

has a solution for a short time [0,¢€), for some € > 0.

Proof. Let g(t) be a solution to (3.32) and let ¢; be a unique solution for (3.34) on
M x [0,¢). We consider the family of metrics given by

g(t) = oig(t), tel0e) (3.36)

We have g(0) = id*g(0) = go. In addition,

o 0.0, L
ag(t) = ot (¢rg9(t)) = s (¢t+sg(t + S)) . = i;o

Grsg(t+s) — ¢ig(t + s)

brys9(t + S) — ¢rg(t)

¢t9(t+8> drg(t)

= lim + lim
5—0 S s—>0 S
* —1O * o
?—10 :S_Id
- 1y 2k )(())mt(&u)

= =0 (Lwwg(t)) + 67 (=2Ric(g(1)) + Lwwg(?))
= —2¢; Ric(g(t)) = —2Ric(¢{g(t)) = —2Ric(g(t)),

where we used (3.32), (3.28) and in the last equality we used the invariance of the Ricci
tensor under the family of diffeomorphisms ¢;. This shows the existence of the solution

g(t) for the Ricci flow (3.35) for ¢t € [0, ¢). O

3.4 Uniqueness of the Ricci Flow

In order to prove uniqueness for the Ricci flow, Hamilton [14] used the sophisticated
Nash-Moser Theorem. This was used because the Ricci flow is weakly parabolic, due to
its invariance under diffeomorphisms. In this dissertation, we will follow the argument

introduced by Hamilton in [13]. To do so, we need to define the harmonic map flow,
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firstly introduced by Eells and Sampson in [18§].

Let f: M™ — N™ be a smooth map between two Riemannian manifolds (M™", g)
and (N™ h). We already know that the derivative of f, df, is an element of the vector
bundle C*(T*M"™ @ f*T'N™), where f*T'N™ is the pullback bundle over M™.

Now let {z'} and {y®} be local coordinates on M™ and N™, respectively. We shall also
denote the Levi-Civita connections of g and h respectively by I'(¢); and T'(h)} ;. Thus,

P S ) L .
df = (df); <dm®a—ya)—aﬂ (dm@aya).

We may also induce the following connection

by
] are
(f F)ZB = Ori (T'h o f)lg
Thus we get
V(df) = (Vdf)§da' @ da? @ o
Q.o W ay*
where

0 ofe or« ofb ETal

Hence we may define the harmonic map Laplacian with respect to the domain

metric g and codomain metric h as the trace

Agnf =1trg(V(df)) € C=(f"TN™).
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In components, we get (A, f)" = g7 (Vdf)3, i.e

[ o2f of7 of*ofs
Bonl)' = g7 [T s O (o ) 29T (3a)

Now we are ready to define the harmonic map flow.

Definition 3.4.1. Given a diffeomorphism fo : M™ — N™, the harmonic map flow

1S given by

0
50 = Bonf (3.38)

f(0) = fo (3.39)

Eells and Sampson ([18]) showed that this is a parabolic equation, so we have a unique
solution on a short time interval. The following lemma gives us a useful way to rewrite

the Laplacian operator.

Lemma 3.4.1. Let f: (M™,g) — (N™, h) be a diffeomorphism of Riemannian mani-
folds. Then

(Bgnf) () = [(F7) 91 (=D(f )" 9)ag + T(h)as) (f(p)).

Proof. For simplicity, let x = (f~!)*g. Then, considering local coordinates {z‘} and {y®}
on M™ and N™, respectively, we shall compute the Christoffel symbols of k.

0 0 0
F(f*ﬁ)f}@ =V (fir)gs= (f ) (Vf*(aii)f*(%))
N A afeaft o
=™ (grmrags * TV G
(o of*offo(f )"\ o
B (8xi8xﬂ' oy? (F))as dxt dxd Oy ) Oxk’

Now this gives us

ok Of7T 0
(L7 %)) ork  Oxida (T(k)as Oxt Oxd~
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Multiplying it by (f*#)¥ and using that

Ofe 8
v = (2O (3.40)
we get
» o2 7 ofY
—k (D (k)]s = (fK)7 (_axing - <F(f*m))?ja—£k> : (3.41)

Now, we recall that x = (f~!)*g. Therefore, substituting (3.41) and (3.40) into (3.37)

gives us

(AN = ((F79)" |~ (W) 9) Ly + (D)) .

so the lemma follows. ]

We then consider the case where M = N. The idea is to combine the Ricci flow with
the harmonic map flow. Let us recall that the diffeomorphisms ¢;, defined by (3.34),

satisfy the following equation

0 .
E(bt =-—Wog¢p, =g" (—F’;q + F’;q> )
Hence it follows from Lemma 3.4.1 and the fact that § = (¢;)*g that
a _.pq Fk fwk o —1\*x=\Pq Fk fwk — A
E(bt =9 <_ Pq + pq) - (<¢t ) g) <_ Pq + pq) - g(t),g(bt'

This implies that the DeTurck diffeomorphisms satisfy the harmonic map flow. We

are finally ready to prove uniqueness of the Ricci flow.

Proposition 3.4.1. Under the same conditions of Proposition 3.3.3, the Ricci flow has

a unique solution for a short time interval.

Proof. We have already proved existence of solutions to the Ricci flow. Now, suppose

that we have two solutions for the Ricci flow, g1(¢) and g2(t), such that g1(0) = g2(0). Let
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¢¢ be the solution to the harmonic map flow with respect to g;(t) and g, with ¢} = id
and i = 1,2. Then ¢,(t) = (¢}).91(t) and go(t) = (¢?).72(¢) are both solutions of the
Ricci-DeTurck flow with

91(0) = (¢p)-71(0) = (id)g1(0) = (67).72(0) = g2(0).

Since we have a unique solution for the Ricci-DeTurck flow, we get that g1(t) = go(?)
as long as both exist. However, this implies that ¢} and ¢? are both solutions to the same

autonomous ODE
9 i
57 (90 ) = =W (9} (p), 1)
i = 1,2, generated by the same vector field
wh = (g:)™ <F];q - fl;Q) .
Thus, ¢; = ¢? for all times ¢ where both are well defined. In particular,

gi(t) = (¢0)" 91 (t) = (¢})"92(t) = Ta(t),

and we have uniqueness for the Ricci flow. O]
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Chapter 4

The Maximum Principle

The Maximum Principle has been one of the techniques most used in the field of
Geometric Analysis in the past decades. In this chapter, we provide an overview of the
Maximum Principle in the scalar case and on Vector Bundles. The results in this chapter

can be found in [12], [6] and [8].

4.1 The Scalar Case

For future comparison, we will start with the first and second derivative test, from
differential calculus. Let u : (0,1) x [0,7) — R be a C? function satisfying the following
inequality

82

—u(x,t) —

97 (z,t) >0, (4.1)

au

on a region £ = (0,1) x (0,7). The function u cannot attain a local maximum on any

interior point (zg,%y) € E because otherwise we would have for (z¢,ty) € E :

62

wu(xo,to) S 0
0

au(%,to) =0,

a contradiction with (4.1). This basic idea will guide us through the following results.
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We start with a closed Riemannian manifold M™ and a family of Riemannian met-
rics g(t), t € [0,T"), on M. Also, let X (t) = X; be a familly of smooth vector fields on M.

We say that a C? function u : M" x [0,7) — R is a supersolution of

%v = Ay,v+ (X, Vo) (4.2)
in (p,t) e M™ x [0,7T) if
0
(D) = Agulp,t) + (Xe, Vu) (p, t). (4.3)

ot

Analogous to that, we say that u is a subsolution if

%u(p, 1) < Agulp,t) + (X0, Vi) (p, 1), (4.4)

where A, = ¢"’V,V; is the Laplacian on the metric g(t).

Theorem 4.1.1. Let g; and X; as above, t € [0,T). Let u: M"™ x [0,T) — R be a C*
function, where M™ is a closed Riemannian manifold. Suppose that there exists a € R

such that u(p,0) > «, Vp € M and that u is a supersolution of (4.2) at every point
(p,t) € M x [0,T) where u(p,t) < a. Then u(p,t) > « for all (p,t) € M x [0,T).

Proof. We define the auxiliary function

H=u—a+ct+c¢,

for any € > 0. Since u is a supersolution of 4.2 at every point where u < o, we get

%H:%u—i—gzAu+<Xt,Vu>—i—azAH—i—(Xt,VH)—i—a, (4.5)

at those points. Moreover, H(p,0) > ¢ since u(p,0) > a.

We claim that H(p,t) > 0 for all p € M and all ¢ € [0,T). In fact, suppose that there
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exists a point (py,t1) € M x [0,T) such that H(p;,t;) < 0. Let us consider the function
F:[0,T)—R

given by F(t) := inf,epr H(p, t).

Since M is compact, this infimum is always attained. Now F' is obviously continuous,
F(0) > 0 and F(t;) < 0. Therefore there must be a first time t, € (0,%;] such that
F(ty) = 0. Let pg € M be such that F(ty) = H(po,to). Thus H(po,to) = 0 gives us

u(po,to) = a—e(l+ty) < a,

so u is a supersolution at (pg, to). Since H is a C? function and (py, ty) is a point and time

where H attains its minimum among all p € M and all ¢ € [0, ¢], that is,

H<p07 2(:0) = MIE[%)%O] H7

we have the following conditions on its derivatives

0

—H(po,t9) <0
8t (pO’ O) — bl
V H (po,to) =0,

AH(po, to) Z 0

Combining this with (4.5) implies

0
0> aH(po,to) Z AH(po,to) + <X, VH>(p0,t0) + e Z g > O,

which is a contradiction. Hence our claim holds. It follows from the definition of H that
u(p,t) +et+e > aforall p e M and all t € [0,T). Since € > 0 is arbitrary, this proves
the theorem. O

Remark. This is the simplest case of the scalar maximum principle and it s, basically,

the original heat equation since Vu vanishes at local maximum and minimum.

Now we consider the heat equation with a linear reaction term. Let 5 : M" x[0,T) —
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R be a given function and consider the following equation

%v = Ayv + (X, Vo) + P.

We define supersolution and subsolution in the same way as before, i.e., v is a super-

solution of the equation above if

%U > Ay v+ (X, Vo) + fo

and a subsolution if

%v < Ayv + (X, Vo) + Bu.

Proposition 4.1.1. Let u : M™ x [0,T) — R be a C* function, where M™ is a closed

Riemannian manifold, satisfying

%u > Ag,u~+ (X¢, Vu) + fu. (4.6)

Suppose that for each T € [0,T), there exists a constant 0 < C(7) < 0o such that B(p,t) <
C(7) V(p,t) € M x [0,7]. If u(p,0) >0 Vp € M, then u(p,t) >0 V(p,t) € M x [0,T).

Proof. We start by defining the auxiliary function J(p,t) = e~ “u(p,t), for each 7 €
(0,7T), where C(7) is defined as in the hypothesis. Thus,

%J = —C(T)J -+ GC(T)t%U Z AgtJ + <Xtvv‘]> + (ﬂ - C<T>)J

Now, fix an arbitrary 7 € (0,7"). Suppose there exists a point (pg,to) € M x [0,7) such
that J(po,to) < 0. Therefore, on a neighborhood U € M x (0,7) of (po,ty) we have
J(p,t) < 0. This yields

0

ST 00 = Dy T(p,8) + (X0, V) (0, ),

Y(p,t) € U since f— C(7) < 0in M x [0, 7].
By hypothesis u(p,0) > 0. Hence, using Theorem 4.1.1, we get that J > 0in M x [0, 7],
which says that « > 0 in M x [0, 7]. Since 7 € (0,7') is arbitrary, the result follows. [

Finally, we are ready for our main result. Now we would like to consider a non-linear
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reaction term. This is the most common case when we are studying the evolution of
geometric quantities under the Ricci flow or the mean curvature flow.

We consider the following semi-linear heat equation

%v = Ay v+ (X, Vo) + F(v), (4.7)

where F' : R — R is a locally Lipschitz function. We define supersolution and subso-

lution in the same way as before: u is a supersolution of (4.7) if

%u > Ag,u~+ (Xy, Vu) + F(u)

and a subsolution if

%u < Agu+ (X, Vu) + F(u).

Theorem 4.1.2. Let u : M™ x [0,T) — R be a C* function and a supersolution for
(4.7) on a closed manifold. Suppose that there exists a constant Cy such that u(p,0) > C4
Vp € M and let ¢y be the solution of the initial value problem

0
&Qﬁl = F(¢1)7

Then u(p,t) > ¢1(t) Yp € M and ¥t € [0,T) where ¢1(t) exists. Analogously, if u is a
subsolution of (4.7) and u(p,0) < Cy ¥p € M, where Cy € R is a constant. Let ¢o(t) be

the solution of the initial value problem

0

—¢py=F

ot ¢2 (¢2)7

¢2(O) - Cg.
Then u(p,t) < ¢o(t) Yp € M and Vt € [0,T) where ¢o(t) exists.
Proof. For the first part, we have

o= 61) 2 Ayl = 01) + (X, Vil = 60)) + Flu) — F(6n),

where v — ¢; > 0 when ¢ = 0. Let 7 € (0,7") be arbitrary. Since M is compact, given
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7 € (0,7), there exists 0 < C(7) < oo such that |u(p,t)] < C(7) and || < C(7) Vp € M
and Vt € [0,7]. Now since F' is locally Lipschitz, there exists 0 < L(7) < oo such that
|F(u) — F(¢1)| < L(7)|u — ¢1|, Yu, ¢1 such that |u(p,t)| < C(7) and |¢1| < C(7) Vp € M
and Vt € [0, 7]. Therefore,

0

E(U — 1) = Ay (u— 1) +(Xe, Vi(u — ¢1)) — L(1)sgn(u — é1)(u — ¢1),

because

[F(u) = F(¢1)] < L(7)|u — ¢4

implies
|F(¢1) — F(u)| < L(1)sgn(u — ¢1)(u — ¢1),

and therefore

Fu) = F(¢1) = =|F(é1) = F(u)| > =L(7)sgn(u — ¢1)(u — ¢1).

If 5 := —L(1)sgn(u—¢1), then 5(p,t) < L(7) and u(p,0) — ¢1(0) > 0. Therefore it follows
from Proposition 4.1.1 that u — ¢; > 0 V(p,t) € M x [0,T) where ¢;(t) exists.

Now, for the second part, we have

0
5792 =) 2 B, (P2 = u) + (Xe, Vi(d2 — w)) + F¢2) - Flu),
with ¢9 —u > 0 at t = 0. Then, the result is totally analogous to the first part. O

4.2 The Maximum Principle for Vector Bundles

In 1986, Hamilton ([12]) introduced the maximum principle for systems, which says
that given a heat-type equation for sections of a vector bundle over a manifold, if the
solution is initially in a closed convex subset, invariant under parallel translation, and if
the ODE associated to the PDE preserves the subset, then the solution of PDE remains
in the subset for positive time. This result is given in details in Theorem 4.2.14. In 2004,

Bennet Chow and Peng Lu ([6]) presented a more general maximum principle. In their

49



paper, the subsets are time-dependent.

We shall introduce the techniques that are needed to prove Chow and Lu’s result,
formulate the vector bundle that we will need, present the result and prove it. This

section is mainly based on the theory developed in [§].

4.2.1 Spatial Maximum Functions and Its Dini Derivatives

Definition 4.2.1. Let f(t) be a function defined on (a,b). The upper Dini derivative

15 the limsup of forward difference quotients:

+ _
D1 ) iy LD =10

the lower Dini derivative is the liminf of the same quotients:

ﬂ(t) := lim inf Jt+h) = f(t)

dt h—0+ h

We may also define the upper converse Dini derivative by

L1 ) — iy LS00

and the lower converse Dini derivative by

d_f, .
ot

f{t) = f(t—=h)
- :

We say that f(¢) is right upper semi-continuous at 7 if

limsup f(t) < f(7).

t—7t

Similarly, f(t) is left lower semi-continuous at 7 if

liminf f(t) > f(7).

t—1—

Finally, we say that f(¢) is right upper semi-continuous (resp. left lower semi-continuous)
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if it is right upper semi-continuous (resp. left lower semi-continuous) at t for all ¢ € (a, b).

+
For instance, if e < 0o then f is right upper semi-continuous.
Lemma 4.2.1. Assume f : [0,T) — R is right upper semi-continuous and left lower
arf

semi-continuous, with f(0) < c. [fﬁ <0, Vvt € [0, T) where f(t) > ¢, then f(t) < c for
allt € [0,7).

Proof. Given € > 0, let f.(t) .= f(t) — e — et. Let ty € (0,T] be defined by
to =sup{r € [0,T]; f-(t) < c,Vt €[0,7)}.

Since f.(0) = ¢c—e < c and f; is right upper semi-continuous, we get ¢ty > 0. Suppose that
to < T for some € > 0. First we observe that f.(ty) = c. In fact, since f. is right upper

semi-continuous and left lower semi-continuous and tq < 7T, we have

¢ <limsup f-(t) < fo(to)

t—toT
and

¢ > liminf f.(t) > f-(to),

t—to™

which implies the equality.

Then we can consider a sequence {t;} C [0,7T], t; \ to such that f.(t;) > ¢ = f-(to).

Thus,
fe(ti) — fe(to)  f(ti) — f(to)

0< = — €.
ti — to ti —to
Therefore,
d+ t;) — f(t
— f(to) > liminfM >¢e > 0.
dt 1—00 tz — to

d+
Since f(tg) = ¢+ e + ety > ¢, we get that gf(to) < 0 by hypothesis, which is a contra-
diction. Hence ty = T for all € > 0. Therefore f.(t) < ¢Vt € [0,7T). If we let ¢ — 0, we

prove the lemma. O]

The following result is a direct consequence of the lemma above.
Corollary 4.2.1.1. If f : [0,T) — R is right upper semi-continuous and left lower
atf

semi-continuous and s <0,Vtel0,T), then f(t) is nonincreasing on [0,T).
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The next result shows that under certain conditions, exponential growth preserves

f=<o.

Corollary 4.2.1.2. Let f : [0,T) — R be right upper and left lower semi-continuous
d+
with f(0) < 0. If there exists ¢, 0 < ¢ < oo such that ) <cf(t) Vt € [0,T) where

dt
f(t) >0, then f(t) <0Vt e[0,T).

Proof. Consider e~ f(t). Then we have

d+ +

et _—ad et
A (1) = () = e ()

= [ S r0 - ef(0)] <0,

Vt € [0,T) where f(t) > 0. Then it follows from Lemma 4.2.1 that e~ f(¢) < 0Vt € [0,T).
Since e~ > 0, the result follows.

]

Now, let S be a topological space and let g : S x[0,7) — R be a function. We define

the spatial maximum function f : [0,7') — R relative to g by

f(t) =supg(s,t).
seS

The following lemma will be useful to help us characterize when an ODE preserves a

closed convex set and when a PDE preserves a set that is closed and convex in each fiber.

Lemma 4.2.2. If S is a sequentially compact topological space and if g and % are con-

tinuous in s and t, then f is locally Lipschitz and

af

o (t) = sup {%(s,t); s € S satisfies g(s,t) = f(t)} :

Proof. First, since S is sequentially compact, we get that ¢ is uniformly Lipschitz in ¢ on
S x [0,T — €] for every € > 0, therefore f is locally Lipschitz. Now, let (¢;) be a sequence

of times such that ¢;,,; <t; and t; — t with

) = S S

QF
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Since S is compact, for each i € N we get s; € S such that

g(si,ti) = f(ti).

Also, we can find a subsequence such that s; — s, for some s, € S. Then

9(Seo, ) = lim g(s;, ;) = }g}}o f(ti) = f(1).

1—00
Hence, we get, using the Mean Value Theorem,

+ A . t) — .
ﬂ(t) — llm g(S’HtZ) g(S(X)?t) S llm g(SZ)tl) g(sl7t) — llm _(SZ'7T/L'),

for some 7; € [t,t;], where the inequality follows from g(soo,t) = sup,csg(s,t) > g(si,t).

Now, since s; — sS4, and 7; — t, we have

99 dg
li L \%0 1) = 7 007t7
i Gy (507i) = g (5oe: )
because % is continuous on both variables by hypothesis. Then d;—tf(t) < %(sm,t) for

some S € S with f(t) = g(5c0, t)-
On the other hand, let sy € S such that g(so,t) = f(¢) and

dg

a(so,t) = sup {@(s,t); s € S satisfies g(s,t) = f(t)} :

ot

Let (d;) be a sequence of positive real numbers such that d;11 < §;, 6; — 0 and

drf flE+96)— f(t) . g(so,t+6;) — g(so,t) Og
v — > — <
7 (t) ihm 3 ihm 5, t(so,t).
Then —d;tf (t) > —g?(so,t) > %?(5007 t) and the lemma follows. [l

4.2.2 Convex Sets and Support Functions

In this section, we introduce important properties of convex sets, which are going to

be useful for our maximum principle.
Definition 4.2.2. A set I' C R* is a cone with vertex u € R¥ if, for every w € T', we
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have u+t(w —u) € I', Vt € [0, 00).

In what follows, J C R* is a closed convex set. We state the next lemma, which is a

classical result and will help us in dealing with half-spaces containing a given convex set.

Lemma 4.2.3. (i) For any w ¢ J, there exists a unique v € 0J such that d(w,v) =
inf,e;d(w,z) = d(w, J).

(i1) Let J(t),t € [0,T], be a continuous family of convex sets. Given w ¢ J(t), let v(w,t)

be the point defined by w and J(t) as in (i). Then v is a continuous function of (w,t).
Proof. See |2], Theorem 5.2 on page 132. ]

Lemma 4.2.4. Givenw ¢ J and v € 0J such that d(w,J) = d(v,w), the half-space

H, = {z e R (z—v,w—v) <0}
contains J and w ¢ H,. Hence any convex set is equal to the intersection of a family of
half-spaces.

Proof. See [2], Theorem 5.2 on page 132. O

Definition 4.2.3. Given v € 0J, the tangent cone C,J of J at v is the intersection of

all closed half-spaces containing J and with v on the boundary of the half-space.
Remark. Observe that this definition only makes sense for convex sets.

Lemma 4.2.5. If I' is a closed convex cone with vertex u, then I' is an intersection of

half-spaces with u contained on their boundaries.

Proof. The result follows from the fact that Vw ¢ I', there exists a half-space H,, contain-
ing I with u € 0H,, and w ¢ H,. In fact,Vw € I' it follows from Lemmas 4.2.3 and 4.2.4

that there is a unique v € JI' closest to w. Let
H={zeR(z—v,w—nr)<0}.

Then H, is a closed half-space with I' C H and w ¢ H. Also, it is clear that v € OH. The
ray R = {u+t(v—u);t >0} isin I'. If u ¢ OH, then for some ¢ sufficiently close to 1,

u+t(v —u) €I is closest to w than v, a contradiction. Hence u € 0H. ]
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Lemma 4.2.6. The tangent cone C,J is the smallest closed convex cone with vertex v

containing J.
Proof. 1t follows directly from the lemma above and the definition of a tangent cone. [J

Definition 4.2.4. A linear function | : R¥ — R is a support function for J atv € 0.J
of
(1) |l| = sup Il(z) =1;
z,|z|=1
(i) l(w) < I(v), Yw € J.
Definition 4.2.5. Given a support function | for J at v € 0J, define the associated
closed half-space H; C R* by

H = {we R (w) <I(v)}.

Remark. H; is the closed half-space whose boundary is equal to the hyperplane passing
through v and perpendicular to Ny, where N is the outward unit normal to 0J at v. Also,

(17) says that J C H,.

From now on, let H be any closed half-space of R¥. For every v € 9H, the unit outward

normal is the same and will be denoted by Ny.
Definition 4.2.6. The linear function I : R¥ — R associated to a half-space H C R*
is defined by

lg(w) = (w, Ng), (4.8)

for all w € R*.

Lemma 4.2.7. Let v € 0J and let H be a closed half-space containing J, with v € OH.

Then the linear function ly is a support function for J at v.

Proof. We have that lg(w) < lg(v) Yw € H, in particular Yw € J. Also, |ly| < 1 and
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Given v € 0.J, let

SyJ = "set of support functions of J at v”

and

H,J = "set of closed half-spaces containing J with v on their boundaries".

If we define ¢ : S,J — H,J by ¢(l) .= H, and ¢ : H,J — S, J by ¥(H) = ly, then it
is clear that ¢! = ¢ and ¢)~! = ¢. The next lemma offers a criterion for a vector to be

in the tangent cone.
Lemma 4.2.8. For any v € 0J, we have X € C,J if and only if (X) < (v), VI € S, J.
Proof. In fact, it is easy to check that X € C,J is equivalent to any of the following
1. X e H VH € H,J,
2. lg(X) <lg(v), VH € H,J;
3. I(X) <l(v),Vle S,
O

Corollary 4.2.8.1. For every w ¢ J, there exists v € 0J and H € H,J such that w ¢ H
and

dw,J)=d(w,H) =lg(w—v) = (w— v, Ny).

Proof. Tt follows directly from Lemmas 4.2.3 and 4.2.4. O

Let s : R¥ — [0, 00) be the distance function to J :

Lemma 4.2.9. Ifw ¢ J, then

s(w) =sup{l(w—v);ve€dJ andl € S,J}. (4.9)
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Hence, s(w) is a convex function. Moreover, the supremmum is attained and s(w) is a

continuous function of w.

Proof. Let o(w) = sup {l(w —v);v € dJ and | € S, J}. From Corollary 4.2.8.1, Jvy € 9.J
and Hy € H,J such that w ¢ Hy and

s(w) =d(w,J) = d(w, Hy) = lp,(w— 1) < o(w).
On the other hand, for any v € 0J and H € H,J, we have J C H, so
lg(w—v)=dw, H) <dw,J)=s(w).

Hence o(w) < s(w) and the equality follows. Since [ is convex for every I € S,J, s(w) is

also convex.

Lemma 4.2.10. Let J C R* be a closed convex set.

(i) The function s is C' on R¥ — J. For w ¢ J, let v € 8J be the unique point such that
s(w) = d(w,v). Then the gradient Vs(w) is equal to the unit vector pointing in the

direction from v to w.

(i) For w ¢ J, define the closed convex set J = s~ ([0, s(w)]). Then d.J is C* and the

gradient Vs(w) is equal to the unit outward normal to J at w.

(iii) Let J(t), t € [0,T], be a continuous family of convex sets. Given w ¢ J(t), let
s(w,t) == d(w, J(t)) be the distance function. Then the gradient Vs(w,t) is a con-

tinuous function of (w,t).

Proof. In order to prove (i), consider a Euclidean coordinate system {y;} on R¥ such that

the origin is in v and the positive ¥, axis is in the direction from v to w. Then
J C {(ybayk) € Rkvyk < O} = H_.
Moreover, w = (0, ...,0,7), for some gr > 0. If y ¢ H_, then

d(y, H-) = s(y) < d(y,0),
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Le,ify=(y1,..., ),
Ye < s, uk) S VYT

Therefore, s(yi, ..., yx) is differentiable at (0,...,0,7x) and its gradient is given by
Vs(0,...,0,7) = (0,...,0,1).

This proves (i).

Item (i4) follows directly from (7); we just have to observe that J is the s(w)-neighborhood
of J.

Finally, using Lemma 4.2.3, v(w, t) is continuous on (w,t). Then w — v(w,t) is contin-

uous. Since
w— v(w,t)

Vs(w,t) =

‘w - U(w7t)|’

the result (7i7) follows. O

4.2.3 Vector Bundle Formulation

Let m: E" — M™ be a rank r real vector bundle over a closed manifold M. Consider a
family of Riemannian metrics on M, g(t), t € [0,T), a fixed bundle metric h on E and

time dependent connections

V(t) =V : C®(E) — C®(E @ T*M),
compatible with h, i,e,

X(h(u,v)) =h <vtxu,v> +h <vtxv, u> :

for all vector fields X € T'M", sections u,v € C*(E) and time t € [0,7"). In coordinates,

we may consider a local basis {v;} of FE and, therefore, for any section u € C*(F) we
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T
can write u = E u'v;, where u® are smooth functions on M. Hence, we get the following
' i=1
expression

r

V} <i u’@-) = Z (X(ui)vi + uiv;vi> :

i=1

We may also define V(t) = V' : C® (E® T*M) — C® (E ® T*M ® T*M) by

Vi (@0©§) = (Vo) @€ +00 Vit

for all X € TM, £ € T*M and ¢ € C*(FE), where V' is the Levi-Civita connection on
M™ with respect to g(t).

Then we may define the time-dependent bundle Laplacian A(t) acting on sections

of £:
A =1tr,V (Vo). (4.10)

The Laplacian at (p,t) € M x [0,T) can be expressed as follows. Let v : [0,0] — M

be a differentiable curve on M. We say that a section v(s) € E, () is parallel along v if

vi(s),v(s) = 0.

For every ~ : [0,b] — M and vector vy € E, (), there exists a unique parallel section
v(s) € Eys) along y(s) with v(0) = vy (we call it a parallel lift on v(s)). Given a vector
uy € By, po € M, we can extend ug to a section u of E over the normal neighborhood
B,(po) C M, of py, where p is the injectivity radius of py € (M", ¢(t)). In fact, for every
geodesic 7y starting at pg, parallel translate ug along ~ using the connection V'. This gives

a well-defined section u on B,(po).
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Given any X, € T}, M, since u is a parallel section we have that

(V;Ou> (po) =0

and the diagonal part of the second covariant derivative also vanishes:

(ﬁiou) (po) = 0.

In fact, let v : [0 — M be the constant speed geodesic with v(0) = py and

_L]
7 | Xol
7' (0) = Xo. Then we get:

since u is parallel along v and v is a geodesic.

Now consider a basis {v;(po) }i_; of E,,. We extend this basis to a basis of local sections
v;, defined on a neighborhood U of py, by parallel transport along geodesics emanating

from pg. If u € C*®°(E), then we may write, on U,

,
u = g u'v;,
i=1

where v’ : U — R. Given Xy € Tp, M, let v denote the constant speed geodesic with

~v(0) = pp and 7/(0) = X,. Let X =+ along ~. Since
VxX =0 and Vxv; = 0 along 7,

we have

Vix(Ou=Vx (Vxu) — (VxX)u = X(X(u))o;.

Choosing {e;}j_; C Tp,M an orthonormal frame of tangent vectors at py and taking

X = ej, we have



as we expected. Now that we understand the Laplacian A, we would like to consider

heat-type equations for sections of E. Suppose that u(t) € C*(E), t € [0,T), satisfies

% = A%u—l—ﬁx(t)u—i—F(u,t), (4.11)

where X () is a time dependent vector field on M and F' : E x [0,T) — FE is a fiber-
preserving map for each ¢t € [0,7).
We may consider the system of ODE on E, related to (4.11), for each p € M :

du
a = Fp(ua t)v (412)

where F), == F :E,x[0,T) — E,.

E,x[0,T)

Definition 4.2.7. Let K C E be a subset of E and denote K, = K N E,, forp € M. We
say that K s invariant under parallel translation if for every differentiable curve
v :[0,0] — M and vector v € Ky, the unique parallel section v(s) € Ey ), s € [0,0],

along v(s) with v(0) = v is contained in K.

Remark. The mazimum principle for the scalar case (Theorem 4.1.2) basically says that
solutions to the associated ODE give bounds for the solutions to the PDE. We wish to gen-
eralize this result to systems. The analogue, for systems, of the initial pointwise bounds
a1 < u(p,0) < g, is the requirement that the initial data lies in a closed subset K C F
which 1s invariant under parallel translation in E with respect to Vt, vVt € 10,T), and is

convex in each fiber, i.e., K, = K N E, is a convexr subset of E,, Vp € M.

If, for instance, E = M x R s the trivial line bundle, invariance under parallel
translation is the same as [c1, o] being independent of p € M. Convexity in the fibers

corresponds to [c1,c2] C R being convexr.

Remark. If M = [0,1] and T = oo, let K = M x R* be a higher rank trivial vector
bundle. Suppose u : [0,1] x [0,00) — R¥ is a solution of the heat equation % = Au and
the values at 0 and 1 are fized, uw(0) = a and u(1l) = b. Then the heat equation smooths

out (or averages) the function u to the linear function us(s) = (1 — s)a + sb ast / oc.
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Intuitively, this is why we need K to be conver in each fiber.

In applications to the Ricci flow, we are going to consider vector bundles of the form
E =V ®g V, where V is a vector bundle and ®g is the symmetric tensor product. Let
Endgsa (V) be the bundle of self-adjoint endomorphisms of V. Thus, using the metric on
V, we may identify V with V* and E = Endga (V).

Now let uy € E,, for some py € M. For a given path v : [0,1] — M with v(0) = po,
let u(t) be the parallel lift of v such that u(0) = ug. Let wy € V,,, be an eigensection of
up with eigenvalue \g € R, i.e., up(wy) = Aowo, using our identification E = Endga(V).
Let w : [0,1] — V be the unique parallel lift of v such that w(0) = wy. We claim that w
is an eigensection of u with the same eigenvalue Ag. Indeed, V. (u(w) — Agw) = 0 since u
and w are parallel lifts. Furthermore, (u(w) — Aw) (0) = 0, then u(w) = Aow Vt € [0, 1].

Now let r :== rank(V') and, given ug € E,,, let

denote the ordered eigenvalues of ug. Let
[':= {(A177AT>€RT7AIZZAT} (413)

Under these conditions, the following is true.
Lemma 4.2.11. Suppose that G : I' — R is a function, where I is given by (4.13).
Given ¢ € R, let

K. ={ue E;GM\(u),....,\(u)) <c}. (4.14)

Then K. C E is invariant under parallel translation.

Proof. According to the construction above, let wy,...,w, € V, be unit eigensections of

u € F, corresponding to Ay > --- > A, so that

U = zr:)\awaééwa.

a=1
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Given any path v : [0,1] — M with v(0) = p, let @y, : [0,1] — V" be the parallel lift of
~ with @,(0) = w,. Then w = Z Alig ® W, is a parallel lift of v with @(0) = u. Hence

a=1
Ao(W) = Ag(u) for a =1,...,r and the lemma follows. O

4.2.4 Understanding when ODEs preserve convex sets

d
Now we consider a solution u(t) of a given ODE %u(t) = F(u,t). Suppose that the

initial value u(0) = wq is inside a closed convex set J C R¥. We would like to understand
when solutions to the ODE remain in J. The basic idea, when J is independent of time,
is that if the vector field F, which drives the ODE, points into J at the boundary 9.J, then
J is preserved under the ODE, i.e., the solution to the ODE remains in .J. This is the
content of the next result. We say that the solution for the ODE % = F(u,t) preserves
the set J if u(ty) € J for some t, implies u(t) € J for all ¢ > ¢, such that the solution

exists.

Proposition 4.2.1. Let J C R* be a closed convex set and let F : R* x [0,T) — R* be

a continuous function which is locally Lipschitz in R*¥. The ODE
du
— = F(u,t 4.15
= Flu1) (4.15)
preserves J if and only if
v+ F(v,t) € Cy,J,
Yo € 0J and ¥Vt € [ty, T'), which is equivalent to

[(F(v,1)) <0,

Yo e dJ, t € [ty,T) and V1l € S, J.

Proof. Assume the ODE preserves J, we want to prove that I[(F(v,t)) < 0Vv € dJ, t €
[to, T) and VI € S, J. Suppose lo(F (vo, tg)) > 0 for some vy € dJ, to € [0,T) and [y € S, J.
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Let u(t) be a solution of (4.15) with u(ty) = vy. Then

d d

O] = hiGgutt) = b(F(w.t)) >0

This implies that if ¢ > ¢, is close enough to ¢, then lo(u(t)) > lo(vo). Hence, u(t) ¢ H,
and u(t) ¢ J. Therefore, u(t) € J for all t € [ty,T") implies

[(F(v,1)) <0,

Yo e dJ, t € lty,T) and VI € S, J.

In order to prove the converse, let uy € J, ty € [0,7) and t; € (to,T). Consider a
solution wu(t) to (4.15), with ¢ € [to,t1] and u(ty) = wg. Then, there exists R > 0 such
that u(t) € Bg(0), Vt € [to, t1]. Let Jgr = J N Bg(0), a convex and compact set. We will
prove that u(t) € Jg Vt € [to, t1], which clearly proves the converse. First, we introduce

the following definition. The space of support functions for J is
S(J)={(v,l);veallesS,J}.
Claim: If J is compact, then S(J) is compact. In particular, Sgp = S(Jg) is compact.

In order to prove the claim, let (v;,l;) C S(J) be any sequence. Since 0.J is com-
pact, there exists a subsequence of (v;), which will still be represented by (v;), such that
V; = Voo € O.J, for some vo,. Since the unit sphere S¥~1(0) C R* is compact, there exists
a further subsequence such that the outward unit normal vectors N; of [; converge to
some N, € SF1(0). Then l; — o, where lo(w) == (w, N). Since I, is the limit of a
sequence of support functions, we get that |l..|=1. Moreover, since J C H;, ¥i € N and
H,_ = lim H;, we have J C H,_. Hence, (vs,ls) € S(J) and S(J) is compact. This

proves the claim.

Now, if w € Bgr(0) — J, since uy € J N Bg(0), we have

d(w,J) = d(w, Jg) = sup{l(w —v);v € OJg,l € S, Jr}.
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Define g : Sk X [to,t1] — R by g(v,l,t) = l(u(t) — v). Let s(t) = d(u(t),J). Then,
whenever s(t) > 0, by our choice of R we have

s(t) = sup g(v,l,t) = sup I(u(t) —v),
(’U,Z)ESR (’U,Z)ESR

because u(t) € Bg(0). We also have

& 1(u(t) —v)) = (%) = U(F(u(t), 1))

Hence, from Lemma 4.2.2, whenever s(t) > 0 we get

%s(t) = sup {{(F(u(t),t)); (v,1) € S with l(u(t) —v) = s(t)}.

Then we consider (v,l) € Sr with respect to which the above supremum is taken. We

have
Uu(t) —v) = d(u(t),v) = s(1),

with v € 0J and [ € S,J. By the assumption, we have I(F(v,t)) < 0. Since |I| = 1, this

implies that for (v,l) € S as above,

L(F(u(t),t)) =l(F(u(t),t) — F(v,t)) + I(F(v,t))
< |F(u(t),t) — F(v,t)| < cd(u(t),v) = es(t),

provided that s(t) > 0, where we have used that F is locally Lipschitz in the first entry.
d+

Then %s(t) < ¢s(t) whenever s(t) > 0 1in [ty, t1]. Since s(to) = 0, it follows from Corollary

4.2.1.2 that s(t) = 0 Vt € [to, t1], i.e., u(t) € Jr Vt € [to,t1]. Since t; € [to, T) is arbitrary,

it follows that u(t) € J Vt € [to,T). O

Remark. The condition v + F(v,t) € C,J shows that F(v,t) should be thought of as

based at v.

Now, we let our set J to depend on time. Let J(t) C R* ¢ € [0,T), be a family of

time-dependent closed sets of the Euclidean space. We define the space-time track of
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L:={(vt)eR* xRyve J(t),0<t<T}.

Definition 4.2.8. Given (v,t) € L, we define the set of forward looking directions
DL as the set of all w € RF such that for all decreasing sequences of real mumbers
hi — 0, there exists a subsequence (h;;) and a sequence of vectors w;, € R¥ converging to

w such that
v+ hiw, € J(t 4 hyy),
1.e.,
(v,t) + hy; (wi;, 1) € L.
Example. Given a <b, let J(t) ={v € Rjat <v <bt}, t € [0,00). Then
DoonL = [a,b]

since a(t+h;;) < v+ hyw;; < b(t+hy,) for sufficiently big i, where w;; — 0 and h;; — 0.
Lemma 4.2.12. If J(t) is convex for each t, then the set D, L C R¥ is convex.

Proof. Let w,x € D, L. Let (h;) C R be an arbitrary sequence such that h; \, 0. Then

there exists a subsequence of (h;), still represented by (h;), and w; — w such that
v+ hw; € J(t+ hy).

Also, there exists a further subsequence (h;) and x; — z such that
v+ hix; € J(t+ hy).

Observe that, for all € € [0, 1], we have

v+ hi[(1 = e)w; +exy] = (1 =€) (v + hiw;) + (v + hiz;) € J(t + hy)
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since J(t + h;) is convex. Also, since (1 — &)w; + ex; — (1 — €)w + ex, it follows that
(1—-e)w+ex € DyyL,

Ve € [0,1].
[

Lemma 4.2.13. Let u(t) be a solution to (4.15) with u(ty) € J(to) for some 0 < to < T.
Suppose that there exists a ty € [0,T), with ty > to, such that u(ts) & J(ts). Also, suppose
that F(v,t) € DL, for all (v,t) € OL and t < T. Moreover, let t, € [to,t2) such that
u(ty) € J(t1) and u(t) ¢ J(t), Yt € (t1,t2]. Finally, let

s(t) = d(u(t), J(t)). (4.16)

Then, s(t) is right continuous and left lower semi-continuous on (tq,ts).

Proof. First, we will prove that s(¢) is lower semi-continuous (LSC). Suppose ¢ € (1, t2)
and let (#;) be a sequence of times with ¢; — ¢. For each i € N, there exists v; € J(¢;)
such that d(u(t;),v;) = s(%;), since J(t;) is closed. Consider a subsequence (%;,) of (%;)
such that

lim s(t;,) = liminf s(Z;).
j—00 1—00
Since L is also closed, there exists a subsequence (v;;) that converges to an element of

J(t). Let vo = limu;;. Then,

liminf s(t;) = lim s(f;,) = lim d(u(t;,), v;,) = d(u(t), vso)

1—+00 Jj—o0 J j—00

> s(t).

So s(t) is lower semi-continuous.

In order to prove that s(t) is right continuous, we only need to prove that it is right
upper semi-continuous on [t1,ts]. Since ¢; is such that (u(t1),t;) € £ and (u(t),t) ¢ L
Vit € (t1,to], then (u(ty),t1) € OL. Let v, = u(ty). For any t € (t1,t,) there exists a
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vy € J(t) such that s(t) = d(u(t),v;) and (vy,t) € L, because u(t) ¢ J(t).
By hypothesis, F(v,t) € D, L. Given t € [t1,t2), let (h;) be a sequence such that
h; 0 and

lim s(t + h;) = limsup s(7).

100 Tttt

By definition, we get a subsequence of (h;) such that v,+h,w; € J(t+h;) and w; — F(vy, t),
where the subsequence is still represented by (h;). Then

s(t+ hy) < d(u(t+ hi), v + hiw;).
If we let i — 0o, we get

limsup s(7) = lim s(t + h;) < d(u(t),ve) = s(t).

Tttt 100

]

Proposition 4.2.2. Let J(t) C R¥, 0 <t < T, be a family of nonempty closed convex sets
such that L is closed in RF x [0,T). Consider the ODE (4.15), where F : R* x [0,T) —
R* is continuous in (u,t) and locally Lipschitz in u. Then the following conditions are

equivalent:

(i) For any initial time to € [0,T) and any solution of the ODE (4.15) such that u(ty) €
J(to), the solution u(t) € J(t) for allt € [to,T).

(ii) F(v,t) € DL, V(v,t) € OL and t < T.

Proof. First we prove that (i) implies (ii). Consider any (vg,ty) € OL and u(t) a solution
to (4.15) with u(tg) = vo. Then, (i) implies that u(ty +t) € J(to +t), Vt € [0,T — tg).
This implies that for every sequence h; € R with h; — 07, we get

to + hz) — u(to) du

u
E = ( hz — %(to) = F(Uo,to)

and

vo + W F; = U(to + hl) S J(to + hl)
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This proves that F'(to, vo) € D(vy,10)L-

Now, we prove that (i) implies (i) : . We will argue by contradiction. Suppose that
u(t) is a solution of (4.15) with u(ty) € J(tp). Assume there exists ¢; < ty such that
u(ty) € J(t1) and u(t) ¢ J(t) for all ¢t € (t1,t2]. Then s(t1) = 0 and s(t) > 0, Vt € (t1,to].

d+
Claim: d_ts(t) < ¢s(t) for t € (t1,t2). This will imply that s(t) = 0 for ¢ € [t1,t3) by

Corollary 4.2.1.2, which is a contradiction.

In order to prove our claim, we consider
S(t) ={(v,l);vedJ(t)and | € S, J(t)}.

Since

s(t)= sup g(v,1,t),
(w)ES(?)

where g(v,1,t) = l[(u(t) — v), there exist v; € 0J(t + h;) and [; € S,,J(t + h;) such that
g(vi, i, t + h) = s(t+ hy) = |u(t + h;) — vyl
There also exist vy € 0J(t) and I € S, J(t) such that
G(Voo, loo, t) = |u(t) — vso|.

Hence, we compute

d+5 7 g(vzal17t+hi) g(”ooaloo’t)
oA 3
~ lim Li(u(t + hy) — v;) — loo(u(t) — voo) (4.17)
o Li(u(t 4 hy) —u(t) 4+ L(u(t) — v;) — loo(u(t) — vs0)
- zlgglo h

From (i), F(Voo,t) € D(vy 1)L, so there exists a subsequence (h;;) and a sequence of Fj,
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with F, = F(vs,t) such that
Voo T hijﬂj € J(t + h’ij);

so that I;, (v + hi, Fi; —v;,) < 0. Let us denote (hy,) by (h;). Then it follows from (4.17)

that
—: < limsupl; (u( * hs) —ult) — E) + lim sup (Vs + vi)

d i—00 hz 1—00 hz

+ lim sup hl(lz — o) (u(t) — voo)

1—00 7
t+ hy) — ult
<t MRl pue). )~ Flos)
71— 00 4

< clu(t) — vso| = es(t),

where we used the fact that |l;| = 1 and

(li = loo) (u(t) = voo) = Li(u(t) — voo) — |u(t) — veo| < 0.

This ends the proof. O
We are finally ready to prove our main theorem.

Theorem 4.2.14. Under the vector bundle formulation described in Subsection 4.2.3, let
K(t) C E be a family of subsets which are invariant under parallel translation with respect
to V(t), for each t € [0,T). We require K,(t) :== K(t) N E, to be closed and convexr and

the space-time track

T ={(v,t) e ExR;ve K(t) andt € [0,T)}
also to be closed in E x [0,T). Assume that F(u,t) : E x [0,T) — E is continuous in
(u,t) and locally Lipschitz in u. Suppose that for any p € M and initial time to € [0,T),
any solution u(t) of

which starts in Kp(to), will remain in Ky(t) for t € [to,T). Then the solution u(t), t €
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[0,T), of the PDE

% = Au+ Vxpu + F(u,t) (4.18)

will remain in K(t) for allt € [to,T'), provided u(ty) € K(to).

Proof. Given u € E, = 7 %(p), let d(u, K,(t)) denote the distance from u to K,(t) with
respect to the metric h. Let u(p,t) be a solution to (4.18) with u(p,0) € K(0) Vp € M
and let

s(t) = sup d(u(p,t), K,(t))

be the maximum distance from w(t) to the set K(t). We shall argue by contradiction.
Suppose there exist py € M and ty € (0,7") such that u(ps, t2) ¢ K(t2). Since T is closed,
there exists a time ¢; > 0 such that u(p,t1) € K(t1) Vp € M and for any t € (t1,t2], we
can find a p € M such that u(p,t) ¢ K(t). So we have s(t;) = 0 and s(t) > 0Vt € (1, ta].
We then make two claims.

Claim 1: s(¢) is left lower semi-continuous and right continuous on [ty, t5].

Claim 2: s(t) grows at most exponentially:

d's

— () < Os(t)

for all t € (t1, 5] and for some constant C' < co.
If our claims are true, the result will follow. In fact, since s(t;) = 0, from

Corollary 4.2.1.2 we get that s(t) = 0, Vt € (1, 2], which is a contradiction.

Now, we prove our first claim. First, we prove that s(t) is lower semi-continuous. Since
s(t1) = 0 and s(t) > 0Vt € (¢, 1], s(t) is obviously lower semi-continuous at ¢;. Now con-

sider an arbitrary ¢ € (¢1,t]. Thus, s(¢) > 0. Fix p € M such that s(¢) = d(u(p, t), Kz(t)).
Since T is closed, we get an & > 0 such that u(p, t) ¢ K;(t) for every t € (t —e,t + ¢).

Restricting ourselves to £, we may apply Lemma 4.2.13 to conclude that d (u(p, .), K5(.))
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is lower semi-continuous at ¢. Thus, if t; — 0, we get

liminf s(f + ¢;) > liminf d (u(p,t + t;), Kz(T + ¢;))

1—00 1—00

> d(u(p, 1), K5()) = s(f).

This proves that s(t) is lower semi-continuous at ¢ and, therefore, on [ty, t5].

Now we prove that s(t) is upper right semi-continuous, which will be sufficient to prove
its right continuity since we have already proved that s(t) is lower semi-continuous and,

in particular, lower right semi-continuous.

Again, let ¢ € [t;,t2) be an arbitrary time. Also, consider ¢; — 07. We shall prove

that there is a subsequence of t;, also denoted by ¢;, such that

lim s(t +t;) < s(t).

1—00

In fact, by considering a subsequence if necessary, we may assume the existence of

lim; o $(t + ;). Then, for each 7, let p; € M be such that

Since M™ is compact, we may assume that p; — ps € M", again by passing to a subse-
Y

quence if necessary. Then, let vy, € K, (t) such that

d (u(poo, 1), K () = d(u(pec; 1), vso),

whose existence is guaranteed by the fact that K,_(t) is closed.
Now, since s(t +t;) >0, T, =T N(E, x [0,T]) is invariant under parallel translation

and T is closed, it follows that (ve,t) € 07, . If follows from our hypothesis and from
Proposition 4.2.2 that D, 77,., # 0. Then we get (v +tiw;) € Ky (t+1;) with w; — w
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for some w € E,_ . This implies that
d (u(poo, t 4 1;), Voo + tiw;) > d (u(poo, t + t;), Kp (T + 1)) - (4.19)

Since u(p, t) is continuous in p and K,(¢ + ¢;) is invariant under parallel translation with

respect to V(¢ + t;) for all p € M, we may consider

d (u(poo, t+ti), Kp (T + tz))

arbitrarily close to d (u(p;, t + t;), Kp, (f + t;)) when i is large enough.

7

So the right hand-side of (4.19) goes to the limit of s(t+t;). However, the left hand-side

approaches

d(u(poo, 1), Vo) = d (u(poo,f),Kpoo (f)) < s(¥).

Hence,
lim s(t + t;) < s(t)

1—00

and we have proved the upper right semi-continuity of s(¢). This proves the first claim.

In order to prove the second claim, let

be the set of support functions of K,(t) at v € 0K,(t) and let
Sp(t) ={(v,1);v € OK,(t) and | € S, K,(t)}
be the set of all support functions of K, (t). Let

R(t) = U Sp(t),

peEM
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which is a subset of E ® E*. Define

g(v, 1, p,t) = l(u(p,t) —v),

for (v,l,p) € R(t) and t € [t1,t5]. Then, for t € (¢1,t3] we may write s(t) as

s(t) =sup o sup A(ulp,t) —v)p = sup g(v,l,p,t).
pEM | (v,1)ESH(t) (v,l,p)ER(E)
Let t € (t1,1t2) be fixed and consider (h;) a sequence of real numbers such that h; N\, 0

and

dts . s(t+h;) —s(t)
R R S

Then by Corollary 4.2.8.1 we have sequences (p;) C M, (v;), with v; € 0K, (t + h;) and
li € Sy, K,,(t + h;), such that

g(viv li7pi7t + hz) = S(t + hl)

Since M is compact and T is closed, we get a subsequence of p;, still represented by p;, such
that p; = peo € M, for some po,. Also, from the equality above and since lim s(t+h;) < s(t)
and s(¢) is right continuous, we get that s(t+ h;) is uniformly bounded. This implies that
the sequence v; does not diverge, so we get subsequences such that v; — v € 0K,_(?)

and l; =l € S, K, (t) C (E,.)".

By the continuity of g and the right-continuity of s(¢), the first claim gives us

$(t) = g (Voo, loos Poos 1) = loo ((Poo, t) — Vo) - (4.20)
50 dt [ h l
dts ~ lim g(vi, li; pi t + i)h—g(voo, 00; Poos )
e i (4.21)
i (ulpi t + hi) — i) = oo (U(Poos ) — Veo)
= lim :
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For each i € N, let ; € 0K, (t) and I; € Si-K,, (t) be such that

d (u(pi 1), K, (t) = Li (u(pi, t) = 07) = |u(pi,t) — Tl (4.22)

Now let U;(t) be the solution to the ODE in E,, restricted to [to, to + €).

d;f = F(U,t), (4.23)
Ui(t) =, (4.24)

where € > 0 is independent of ¢. Define F; € E,, by

Ui+ hiFy = Ui(t + hy). (4.25)
Note that U;(t + h;) € K,,(t + h;) by our hypothesis. Thus

l; (0 + hiF, — v;) < 0. (4.26)

It follows from (4.23) and (4.25) that if we let i — oo, then

Uit + h) — Uy(t)  dU;

Fi— F(.0) - -

(t)] — 0.

Passing to a subsequence if necessary, we get 7; — U € K, (t) and l; = loo. We claim

that Ts = Vee.

From (4.22), letting ¢ — oo we have

[u(poc, ) = Tocln = Lo (U(Poo, 1) = Too) = d (u(Poo, 1), Ky (1))

= ’u(pooat) - Uoo‘a

by (4.20). Since K,_(t) is convex, v, € 0K,_(t) is the unique point in K,,_(t) closest
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t0 U(Poo, ), SO Voo = Uso. Using (4.21), we have

d+S . u(pi,t + hz) — u(pl-, t) lz(ﬁz + th — Ui)
dt zg& {Z ( h; i)+ h;

However, since |l;| = 1 for each i € N we get

Liu(ps, t) = vi) < fulps, t) = viln = d(u(pi, 1), Ky, (1))

< 5(t) = d (u(poo, 1), Koo (1)) = loo (t(poc; 1) = Vo) ,

where we used the fact that s(t) is defined as a supremum of those distances. From (4.20),

we also get that (vVeo, loo, Poo) € R(t) satisfies
loo(u(pooa t) - Uoo) = S(t>‘

Consider the parallel translation of v, and [, along geodesics emanating from p., with
respect to g(t). Then (v (p), loo(p),p) € R(t), for p in a neighborhood of p,. Since I is
linear, Au(peo,t) € B, and loo(u(t) — vs) is a real-valued function in a neighborhood of

Pso Which achieves a local maximum at p.,, we have

0=V (loo(u(p, 1) = Vo0)) (Poo) = loo (Vtt(poo;, 1))

and

>

02>

(loo(u(t) = 1)) (poo) = b (Dupoc, 1))

Hence, from (4.26), since [;(7; + h;F; — v;) < 0 and L;(u(pi, t) — 0;) < loo(U(Poos ) — Vo),

we have
d+S . u(pi,t -+ hz) — u(pl-, t) ll(ﬁl -+ th — Ui)
27 . _ I
dit e {l’ ( hi i) hi
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Hence, since we are assuming that w is a solution of (4.18), we get

%(t) S loo (Au(pooa t) + vX(t)u<poovt) + F (u(pooa t)7t) - F(Eom t))
— 1 (Au(poo,t)> oo (Ve t(poo: £)) + Lo (F (t(poo, £), ) — F(Tog, )
S |lOO||F(u(poovt)vt) - F(Uomt”

< Clu(poo, ) = Tooln = €lt(pao ) — vaoln = e5(0),

where we used the fact that [ (Au(poo,t)) < 0 and [ (vx(t)u(poo,t)) = 0 at poo,
llso] = 1 and F(u,t) is Lipschitz in u. This proves the second claim and, therefore, the

theorem. O
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Chapter 5

Three-Manifolds with Positive Ricci

Curvature

Our goal in this chapter is to prove a result on long time existence of the Ricci flow.
We will start by explaining a formulation which enables us to write the evolution of the
Riemann curvature tensor in a particularly nice form. After that, we will use the discussion
about Lie algebras on Chapter 2 to understand more about this evolution equation. This
will make it possible to get local and, later on, global estimates for the curvature tensor.
These estimates will show that the family of metrics g(t), t € [0,T), which is a solution
to the Ricci flow, converges uniformly to an Einstein metric. In the end of the chapter,
we make a brief comment on what would be the next steps to prove Hamilton’s main

theorem from his first paper [14], using the important results obtained in this chapter.

5.1 Uhlenbeck’s Trick

Now we would like to simplify the evolution equations of curvatures, in order to

understand them better. In particular, we shall find a nice form for equation (3.20):

0
&Rijkl =AR;ju + 2(Bijii — Bijik + Birji — Bijk)

— (RVRyjut + RY Ripet + R Rijy + R, Rijip).-
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With this goal in mind, we will consider an orthonormal frame (with respect to the initial
metric gg) and evolve it in a way that it remains orthonormal. The idea of evolving a frame
field to compensate for the evolution of g(¢) has a more abstract formulation and is due to
Karen Uhlenbeck. The Uhlenbeck’s trick gives us a particularly nice form for the evolution

equation above. We now present the formulation. We start with the following motivation:

Let (M",g(t)) be a solution to the Ricci flow 2¢(t) = —2Ric(g(t)) and let {el},
a=1,...,n, be alocal orthonormal frame field w.r.t gy defined on an open set U C M™.

Consider the following ODE system in 7),M, for each p € M :

d .
Eeam t) = Ric(eq(p, 1)), (5.1)

ea(p,0) = €5 (p),

where the Ricci tensor in the metric g(t) is regarded as a (1,1)-tensor, Ric : TM" —
TM™. Since (5.1) is a system of n ODE’s with an initial value, there exists a unique

solution as long as the solution g(t) of the Ricci flow exists.

Lemma 5.1.1. Assume g(t) is a solution of the Ricci flow and e,(p,t) is a solution of
(5.1) for each a = 1,....,n. If {€2(p)} is orthonormal for each p € M, then {e.(t)} is

orthonormal for each t.

Proof. We just have to see that

0 0 0 0
a(g(ea, ep)) Z(EQ)(% ey) + g(aem ey) + g(€q, 5

= —2Ric(e,, ep) + g(Ric(e,), ep) + g(eq, Ric(ep))

61,)

= —2Ric(e,, ep) + Ric(eq, ep) + Ric(eq, ep) = 0.

Then g(eq(t), es(t)) = golel, €5) = dap, Vt.
Il

0
Let (M" g(t)), t € [0,T), be a solution to the Ricci flow pri —2Ric(g(t)) with
g(0) = go. Let V' be a bundle over M™ such that (¢), : V, — T,M™ is a vector space
isomorphism for each p € M™, depending smoothly on p € M™. Define h = (10)*(go)-

Then ¢ : (V,h) — (TM™, go) is a bundle isometry.
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Suppose we evolve the isometry ¢y by

0
—(t) = Ricyu) o ¢,
ot " (5.2)

t(0) = 1.

For each p € M", (5.2) is a system of linear ordinary differential equations. Hence
there exists a unique solution for ¢ € [0,7"). Furthermore, i(t) remains a smooth bundle

isomorphism for all ¢t € [0,7). In fact, we get more.

Proposition 5.1.1. For each t € [0,T) the solution (t) : (V,h) — (T'M,g(t)) of (5.2)

s a bundle isometry.

Proof. We will prove that «(t) is an isometry by showing that A is the pullback of g(t) via
(t), i.e., h = (c(t))*(g(t)), ¥t € [0,T). Since h is fixed and ¢(0) is an isometry, it suffices to
show that (¢(t))*(g(t)) remains constant in time. Let p € M™ and X,Y € V, be arbitrary.
Then

% ((t*9)(X,Y)) —% [9(e(X), u(Y))]

= —2Ric(t(X),1(Y)) + g(Ric(v(X)), (Y)) + g(¢(X), Ric(.(Y))) = 0,

as we required. Therefore ¢(t) remains an isometry.

O

Now we may define connections on V' by the pull-back of the Levi-Civita connections

V() on M™ :
D(t) = u(t)*V(t) : CX(TM™) x C®(V) — C=(V),
where for each X € C**(TM") and & € C*(V), we have
D(#)(X,€) = (D(1)x (&) = (" V)x(&§) = Vx (e(§))-

We can also define connections on tensor product bundles of TM™, V' and their

dual bundles T*M"™ and V*, using the usual product rule, as it was done on Section 4.2.3
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of the previous chapter. These connections will be denoted by
Vi :C¥(TM™") x C* (VT M) — C*(VTM®T*M),

and are given by

Vp(X,E® ) = (Vx(1(§))) @ ¢+ £ ® Vxo,

for all X € TM, £ € C*(V) and ¢ € T*M. Any other connection on tensor product
bundles of the above mentioned bundles will also be denoted by Vi,. Now we pull-back

the Riemann curvature tensor to V. For an arbitrary p € M and &, 7, o, B € V,,, we define

(*Rm)(t) € C®(A2V @4 A2V) by
(L"Rm)(&,n, o, B) == Rm (¢(§),¢(n), (), (B)) - (5.3)

Consider local coordinates {z*}, k = 1,...,n, on an open set U C M" and let {e,}
be a basis of sections of V restricted to U. Then we define the components of ¥ of

() (@) = (V,h) — (TM™, g(t)) by

Accordingly, the components R.q of t* Rm are given by

R(t)apea = (t"Rm)(eq, €y, €c, €q)(t) = Z R (5.4)

1,9,k l=1

Now we would like to understand how the evolution equation for *( Rm) relates to

the evolution equation of Rm. First, we define the Laplacian acting on tensor product

bundles of (TTM™, g(t)) and (V,h).

Af = trg(V o D(8) = D g7 (Vp)i(D(1));,

ij=1
where (V});(£) = V5(1(€)). Then we get the following result.

Proposition 5.1.2. Let g(t) be a solution of the Ricci flow and u(t) a solution of (5.2).
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Then V(1) = 0 and *Rm, defined as in (5.3), evolves by

0
aRabcd = AL Ruped + 2(Baped — Babde + Bacva — Badne), (5.5)

where Bapeq = —h®h' lRaebecidl~

Proof. First, we recall from (5.2) that 2:* = R... Then

0 R
aRabcd = Z e (chideed Riw)

id k=1
= (Rpe) e g Rag + o (RE,0") e Riga

+ oty (R tgRigua + ttjte (Ro ) Rigia

+ B A Ry + 2(Biji — Bijir + Birji — Buk)

— (R Rpjta + B Ripa + R} Rijpi + By Rijy)]
=Lk [A*Ryju + 2(Bijiw — Bijus + Bikjt — Bujr)] -

The last equality follows from the fact that (RY t™)ili5,Riji = ] iF, RP R ;5 and the

a

respective equalities for the other terms. Now, we note that V% (:) = 0. In fact, consider

t(t) as an element of C*°(V* @ T'M). Then, by definition,
U(Vp)x§) = Vi (u(§) = (Vp)x(u(&)) = (Vp)xt)(€) + 1((VD)x¢),
which implies that (V%) xe =0 for all X € V},, Vp € M. Then we get from (5.4) that
AtDRabcd = L;LgblzbldAtRijkl

and the proposition follows. O

5.2 The Structure of the Evolution Equation for the
Curvature

In order to get a better grasp of the evolution equation for the Riemann tensor, we

look more closely at the structure of the Riemann curvature operator. In order to so, it
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is better to look at Rm as the operator on 2-forms
Rm : N°T*M — N*T*M
defined for all u € A2T*M by
[Rm(u)]ij == —g" 9" Rijhiting.
If we define the inner product on A2T*M as
(u,v) = gikgjluijvkla (5.6)
then Rm is self adjoint:

<Rm(u),v> = gikgjlgkpglqRijklupqvkl = _gikgjlgpkgquklij'Uklupq
= gpkgql<_gik9leklijvkl)upq = gpkgql [Rm(v>]klupq

= (Rm(v),u).
Now we consider the operator
Rm? = Rmo Rm : N°T*M — N*T*M
given in local coordinates by
(Rmz(u))ij = gkmglngpqusRijperqklumn- (5.7)
Considering equation (5.5), we would like to get more information about the last term
2(Baped — Babde + Bacba — Badbe)-

In order to do so, we consider A2T » M as a Lie algebra, for each p € M". In what follows,

we explain this formulation.

If we fix p € M™, we may introduce in A?T » M™ a Lie algebra structure. In fact, given
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u,v € /\QT;]\/[ " we define their Lie bracket by
[u, U]ij = gkl(uikvlj — vikulj). (58)

Let {e;} be a local orthonormal frame field on M and let {w'} be a dual basis for

{e;}. Then, as it was explained in Chapter 2, any 2-form u may be naturally identi-

fied with an anti-symmetric matrix (u;;), whose entries are the components of u, i.e.,

u= Zuijwi Awj. For each p € M", this gives a Lie algebra isomorphism between
i<j

g = (/\2T;M, [,]) and so(n), exactly as we explained in Chapter 2. The inner prod-

uct on G is defined as in (5.6). Hence formula (5.8) corresponds to
[w, v];; = (uv — vu);. (5.9)

If we take local coordinates {x'} around p € M then {dz' Adx’;1 < i< j<n}isa

basis for G. Moreover, the structure constants C((Z .q))(m) (see Chapter 2) are defined by
[da? A da?, dx” A dx®] = Z C’((Z%)(m)dxi A da?.
(i)
Since

1 1
dz? A dx? = i(dxp ® dz? — dz? @ da?) = 5(5£5lq — 030P)dr* @ da',

we can use (5.8) to get an explicit formula for the structure constants:
TSs 1 ™SS EEYA T SS EEYA
ClmD = LM (6251 — 8192) (0755 — 075) — (655 — 0157) (600 — )]

(i7)
1

= 1 Lo7870; — g 38; — g SI8; + g7o1S] — g0}

+ 0T8T + gTPOR0Y — 1830

1 s S S S T T
=1 {gq (0705 — 0707) + g*°(6; 07 — 6767)

+ g7 (5308 — 696) + g"*(51% — 678%)].
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Therefore, the definition of the Lie algebra square (see Chapter 2) gives us
(Rm#)iﬂd = C((Z'q)L(TS)C((Z;;)’(wy)quuerswy- (510)

Now we are able to write the evolution of the Riemann curvature tensor in a way

which enables us to apply the maximum principle.

Theorem 5.2.1. Let g(t) be a solution of the Ricci flow. Then the curvature (*(Rm)
defined in equation (5.3) evolves by

O Bm) = Ap(i* Rm) + (" Bm)? + (1 Bm)*. (511)

Proof. First, we look at equation (5.7) and use the first Bianchi identity to see that

(Rmz)ijkl = gpqgrsRijpqurlk = gpqgrs(_Ripsj - Risjp)(_qurl - qukr)
= gpqgrs(Rpijs + ijis)(erkq + Rrqu)

= (R

pij

— R

pji)(Rfkl - Rflk)
= —Bijir + Biji + Bjur — Bjin

= 2(Biju — Bijr)

; — T P
since Bijr = — R Ry

On the other hand, since the structure constants are fully antisymmetric, i.e., anti-

symmetric in (i), (pq) and (rs), we get that

TS R uv _qr s s R Uv _qs (ST T
RiquuC(3y) "™ = —H2 g (6767 — 630%) + —E g™ (6757 — 6767)
R uv r S S R uv S T T
+ %gp ((51-5? — 5;15]) + %gi” (53(% —0; 5?).
Then, since we are adding on p and q and Ry, = —Rgpuw, We get
rs 1 T S s S T T
R O " = 5 Ruguo [97 (6765 — 0367) + g7 (8157 — 667)]
and
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Rpguo Ry CT8" " = Rygu Rrsuny g™ (0765 — 6367).

From (5.10), (Rm*)iju = C’((Zg))’(m)c((z;;)’(wy)quuerswy, we get
(Rm®)ijit = Roquo Rrswyg™ (0705 — 6767) 9" (376}, — 67 63,)

_ pr pv T v T v T v
- Rlvi grk — tlkvitlyrl T lijirk + Rkvj irl

= —Biirj + Byiij + Bijki — Bjui
= 2(Bikji — Bujk)

since Bijr = Bjik = Brij-

Then pulling back by the bundle isomorphism ¢ defined in (5.2), the theorem follows
by using Proposition 5.1.2.
O

Our aim is to apply the maximum principle for systems in order to study equation

(5.11) by considering the associated ODE

d
—B=DB?+ B*
dt e

where B is a self adjoint linear transformation in Sym?(A*R™).

Let (M",g) be a Riemannian manifold and let {e;} be an orthonormal moving frame
on an open subset U C M"™. Then {e;} defines a dual frame {w'} such that wi(e;,) = oF
and {w' A w’},; gives a basis on A*TU. Therefore, given p € U, we get a Lie algebra

isomoprhism
©p s NPT,M" — N’R",

which takes an ordered basis (W' A w?,...,w™ D AwW") to B = (Bi,...,5mn), an ordered

n(n—1)
2

basis of A2R™, where m = . From now on, let us denote the ordered basis {w’Aw’ };<;
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of A2T,M™ by {6* = Hfjwi Awl 1 <i<j<n},. Let R denote the space of self ad-

joint linear transformations in Sym?(A?R") that obey the 1°¢ Bianchi identity.

Let B be a solution of

d
—B =DB?+B*
i e
B(0) € R,

which is the ODE that corresponds to (5.11). Using the basis /3, we may represent B by a
n x n matrix Bg defined by B(8;) = 5;(Bgs)ij, where Bg is symmetric. Also, the structure

constants for AT, M = A*R™ = so(n), Cj, on the basis 3 are given by
185, Bk] = Bi(Cls)iji-
Finally, if we define by ) to be the following transformation
B~ Q= B?+ B*,
then @ is given by
(@Q8)ij = (Bg)ir(Bs)rj + (Cs)ipg(Cs)jrs(Bs)pr(Bs)gs-

Now, we consider the case when n = 3 and M? is a closed manifold. Equation (2.17)
from Chapter 2 gives us an expression for the # operator. Therefore, if the matrix B is

diagonal, i.e.,

a 0 0
B=10 g 0],
0 0 v
then
By 0 0
Bf =10 ay 0
0 0 ap
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Now we identify Rm with the following quadratic form B on A2TM?3 :
B(e; Nej, e Neg) = (R(es, ej)er, er).
Thus, considering the matrix (B,,), related to B, given by
(R(ei,ej)ex, e) = queg’jefk (5.12)
on each fiber A?T,M? of A*T'M?, and evolving {e;} so that it remains orthonormal (Uh-

lenbeck’s trick) we get that the PDE (5.11) corresponds to the ODE

d
B = B* 4 B¥, (5.13)

satisfied by B in each fiber.

If we choose {e;} so that B(0) is diagonal at p € M? with eigenvalues A\(0) > u(0) >
v(0), then, by uniqueness of solution to (5.13), the elements outside the diagonal remain

0. In particular, B(t) remains diagonal. Therefore, equation (5.13) is given by

A0 0 A2+ v 0 0

d

|0 o= 0  24+x 0 , (5.14)
0 0 v 0 0 v+ M\

a system in R3. Hence

d
TA— ) =N =’ == (A=) (A +p =)
i (5.15)

=) = = == (=) (v =),

Let (0,7] be an interval where a solution of (5.14) exists. Then the inequality A(t) >
p(t) > v(t) is preserved for all ¢ € (0,77 . In fact, we either have strict inequality for all
times or the equality holds for all ¢t € (0, 7. In case of strict inequality, (5.15) gives A\ — p

and 1 — v in terms of exponentials.
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We may define the greatest eigenvalue of Rm, A, as

A(B) = max B(v,v).

lv|=1

Similarly, we define the smallest eigenvalue, v, and (u + v) by

v(B) = minpy=1B(v,v)

(u+v)(B) = min (B(v1,v1) + B(va,v9)) .

[v1|=[v2]|=1,{v1,v2)=0

Proposition 5.2.1. With regard to the definitions above, X\ : R — R is a convex function
and v and (u+ v) are concave functions. Moreover, the eigenvalues A, p and v are twice

the sectional curvatures, i.e.

A = 2Ry393,
p= 2R1313,
v = 2R212.

Proof. Let B, N € R and let 6 € [0, 1] be arbitrary. Then
0B(v,v) + (1 = 0)N(v,v) < OX(B) + (1 — 0)A(N).

Considering the maximum of the left-hand side over all |v] = 1, we get that X is a convex

function. In the same way, we have for v :
0B(v,v) + (1 —0)N(v,v) > 0v(B) + (1 — O)v(N).

Now, considering the minimum of the left-hand side over all |v| = 1, we prove that v is

concave. The same reasoning applies to prove that (u + v) is concave.

Finally, observe that A = Bj;. Then equation (5.12) implies

1pl
Bllﬁijﬂlk - Rijkl-
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Since we already know the structure constants by (2.16), we get

1 1
A——=—— = Ry,
V22 2

which gives us A = 2Rs303. The other eigenvalues follow by a totally analogous reasoning.

O
Therefore, the Ricci tensor may be regarded as the matrix
W+ v 0 0
, 1
Ric = 3 0 N+ v 0 ) (5.16)
0 0 AX+up

Recalling Definition (2.0.6), where we defined the trace-free part of the Ricci tensor,

we write the trace-free parts of Rm and Ric for later reference:

ON—p—v 0 0
. 1 .
Rng 0 2 — A — v 0 = —2Ric. (5.17)
0 0 2v—A—p

5.3 Local Estimates

In this section, we will provide two estimate results for 3-manifolds with positive Ricci
curvature. The first one shows that a comparison of the curvatures is preserved and the
second one shows that it actually improves it. This second result shows that a solution
to the Ricci flow on a closed 3-manifold with positive Ricci curvature is nearly Einstein

at any point where the scalar curvature is large.

First, we will introduce a few results for the Ricci flow as a direct consequence of the
maximum principle for systems introduced in Chapter 4. Again, let A(t) > u(t) > v(t) be
the eigenvalues of Rm of a solution to the Ricci flow (M3, g(t)) on a closed 3-manifold.
Also, recall that these eigenvalues are twice the sectional curvature. Finally, throughout

this section, let £ = Sym?(A*TM?3).
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Proposition 5.3.1. Let (M3, g(t)), t € [0,T), be a solution to the Ricci flow on a closed
3-manifold, such that the scalar curvature att = 0 Ry, > Cy, for some constant Cy. Then

Rywy > Co for allt € [0,T).

Proof. Let
K'={P € E;X(P)+ p'(P) +V'(P) > Co}. (5.18)

We see that K* is closed, invariant under parallel translation by Lemma 4.2.11 and since
A(t) + p(t) + v(t) is convex (the trace is actually linear), it follows that K* is convex in

each fiber. When we consider the associated ODE, we know that

d
E)\ = )\2 + uv,
d 2
h=n + v, (5.19)
d
p7i V2 + .
Therefore,
d 1
A ptv) = 5((A+u)2+(AJru)2Jr(;mLu)2) >0

Then it follows that K is preserved by the ODE for each p € M. By the maximum
principle for systems (Theorem (4.2.14)), the Ricci flow preserves Ry > Co.
[

Proposition 5.3.2. Let (M3, g(t)), t € [0,T), be a solution to the Ricci flow on a closed
3-manifold such that Ric(gy) > 0. Then Ric(g(t)) > 0 for allt € [0,T) .

Proof. First, we note that the smallest eigenvalue of Ric is p + v. So, if we prove that

v > 0 is preserved, the result follows. Hence, let us define
K'={Pe E;V/'"(P)>0} ={PeE;,—(P)<0}

K is closed, invariant by parallel translation from Lemma 4.2.11 and since —v! is convex
(because v' is concave), K] is convex for each p € M. Looking at the associated ODEs

(5.19), we consider the following options:
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(i) »(0) =0 and p(0) > 0 : then %I/(O) = A0)u(0) >0, so v(t) > v(0) = 0;

(i) »(0) > 0 and 4(0) > 0 : then %V(O) — 02(0) 4 A0)u(0) > 0, 50 v(t) > ¥(0) > 0:

(i) A(0) = u(0) =v(0) =0: then A(t) = p(t) =v(t) =0 for all t € [0,T);

(iv) v(0) = 1(0) = 0 and A(0) > 0 : then A(t) > 0 for all ¢ € [0, 7).

Therefore, Ric > 0 is preserved.

]

Lemma 5.3.1. Let (M3,g(t)), t € [0,T), be a solution to the Ricci flow on a closed
3-manifold such that the initial metric gy has strictly positive Ricci curvature. If there

exists a constant 0 < C' < oo such that A\(0) < C(u(0) + v(0)), then
A(t) < C(u(t) + v(t)). (5.20)

Proof. Since A > u > v, it is true that A\ > %(u + ) > 0, by hypothesis. Considering the
A

w+v

@ og( 2 )_M+y<d)\ 1 A d(/HV))

associated ODEs (5.19), we may look at log(

). Then we have

dt v A dtp+v  (p+v)2dt

1 d\ d
~ s (G =g +0)

Moy [Tt v) =202 4 At o w)

1

= m [)\2V + N4 4 op® — A= N — A\ — )\21/]
20, _ 20, _

I G e L GtV

Ap+v) -

Y

since v(t) < A(t) and p(t) < A(t).

Let A(P) > u(P) > v(P) denote the eigenvalues of

P e (NT*M? @5 N*T*M?),,.
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Define K' C (A?T*M? @5 A2°T*M?3), by
K' = {P;\(P) — C(V'(P) + u'(P)) < 0}.
It follows from Lemma 4.2.11 that K* is invariant under parallel translation. Now, since

A(P) — C(MP) + 1'(P)) = max PWU,U)+C  max _ (—=P(V,V)— P(W,W))

|U]=1 VI=IW|=1,(V,W)=0

is a convex function, the set K* is convex in each fiber. Moreover, K* is closed. Then
t

d A

it follows from — log(————) <0 that if 0 < C < oo is sufficiently large so that
dt ut+ vt

B(0) € K° Vp € M3, then B(t) remains in K', where B € (A*T*M? @g AN*T*M?), is

the quadratic form that corresponds to Rm(g(t)), given by (5.12). From the maximum

principle (Theorem (4.2.14)), since by our hypothesis A\(0) < C(u(0) 4+ v(0)), it follows

that A(t) — C'(v(t) + p(t)) < 0 and the lemma follows. O

Corollary 5.3.1.1. Let (M3 g(t)), t € [0,T), be a solution of the Ricci flow on a closed
3-manifold M?> such that Ric(gy) > 0. Let

Rin(t) = inf R(p,t).

peEM?3

Then there exists B > 0, depending only on gy, such that at all points of M?3,

Ric(g(t)) = 26°R(t)g(t) = 26°R(t)ming(t),

for allt €]0,T).

Proof. From the Lemma (5.3.1) and equation (5.16), we can find C' > 0 depending on gy
such that the following holds Vp € M3 :

ptv o A Adpu+v >Rmm

Ric > A .
= I=5c9="6c 97 6c Y

1
Considering 23% = Yok the result follows. O

The following theorem proves that the metric is nearly Einstein at points where the

scalar curvature is large enough. This shows that the upper and lower estimates get better
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as R — oo.

Theorem 5.3.2. Let (M3, g(t)) be a solution to the Ricci flow on a closed 3-manifold such
that the initial metric go has strictly positive Ricci curvature. Then there exist positive

constants 0 < 1 and C depending only on go such that

A—v C
<

. 21
Atp+rv = A+p+v) (5:21)

v
Remark. Before we prove our theorem, we observe that e 15 invariant under
w4+ v

C
m tends tOO@SR:)\+/L+V—>OO.

Therefore, equation (5.21) shows that A tends to v, which is the smallest eigenvalue. Since

homotheties of the metric g(t), while

A > > v, this actually shows that, at points where the scalar curvature R goes to oo, the
eigenvalues all approach each other. Further ahead, we will clarify what happens on the

manifold as a whole.

Proof. We may assume that A\(B) > v(B) for B(t) € (A*T*M? @5 A*T*M?),,, where B
is the quadratic form corresponding to Rm(g(t)), given by (5.12). Now we calculate, for
the associated ODEs (5.19),

ilog()\—y):)\—u—l—y

dt
and p 1
08O it v) =5 [V 2 A i A
N )\+,llt+1/ (v + ) + M =v) + (A +v)°]

Let 0 < § < 1 be a constant that will be chosen later. Hence,
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d A—v d
%10g<()\+u+,/)1—6) = E[log()\—y)—(1—5)10g(>\+,u+y)]

:A_M+V_u_&ﬂw+m+ﬁm—u%MA+m2

Atp+v
:5(A—g+y)—%[u(qu,u)+>\(u—y)+(>\—|—y)2—|—(u—)\—y)()\+,u+y)]
:5()\—u+u)—%[u(u—i—u)—l—)\(u—y)—l—uﬂ
<O y) = (=85

since v < p. Let 0 < C' < 0o such that A(0) < C(u(0) + v(0)), where C' depends only on
the initial metric go. By our hypothesis, Ric(g(0)) > 0. Hence, using Lemma 5.3.1, we get

Adv—pu<A<2CH.

Since
2p o _ptv >u+{
p+A+rv T p+A+v T 3N
we get
H >M+’/‘
pw+A+v 6
Therefore,

1 Shtv 1
Atpu+v = 6A T 6C

Then we choose ¢ > 0 small enough so that

in order to get
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Now we define the set
K' = {P;\(P) — v(P) — C[\(P) + u(P) + v(P)]'° < 0}.

Following the same reasoning as before, we get that K* is invariant under parallel transla-
tion, closed and convex in each fiber. Then, by the maximum principle (Theorem 4.2.14)
, the result follows. In particular, if Ric(go) > 0, then there exist constants 0 < Cy < oo

and & > 0 such that

A(Rm) — v(Rm)
R1-0 < Co.

]

In his 1982’s paper [14], Hamilton proved the following result, which follows from the

theorem above.

Corollary 5.3.2.1. There exist constants 6 > 0 and C' < oo depending only on gy such

that )
4 212 _
|Riel” g3 (5.22)

Rz~

where Ric is the trace-free part of the Ricci tensor.

Proof. Observe that

w+v—2X\ 0 0
1 1
Ric— -Rg = — —
ie—ghg=¢ 0 A+v—2u 0
0 0 A p—2v
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Hence,

|Ric — LRy 1
= — 22+ N4+ v =20+ N+ p— 2v)?
1
= A2 2 B —6(\ A
X071 (60X + p® + 1%) — 6(Au+ A + )]
1
— )\_ 2 - 2 )\_ 2
=Pt v A=)
B 120+ p+v)?
3()\—V)2 1 -5
< =
_12(A+u+u)2_4CR ’
where § = 26.

5.4 Estimating the Gradient of the Scalar Curvature

In the previous section, we obtained estimates that compare curvatures at the same

point, which tells us

vature goes to oo somewhere in our manifold. Since these estimates are punctual, this is
not enough to conclude that the sectional curvatures approach each other everywhere. In
this section, we shall obtain an estimate on the gradient of the scalar curvature, which

enables us to compare sectional curvatures at different points. As a motivation, according

to Theorem 2.0.1, if

that the sectional curvatures approach each other if the scalar cur-

g is an KEinstein metric on a manifold M", then Ric = fg for some

function f on M™. Besides, we have

ViR = V(97 Rij) = Vi(g” fgij) = nVif.

On the other hand, the contracted second Bianchi identity gives us the following

So if n > 2, then (n — 2)Vf = 0 implies that f = £ is constant.

n
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Now, if we consider a solution (M3, g(t)) of the Ricci flow on a closed 3-manifold,

equation (5.22) can be written as

Ric — 1 Rg|? .
% < CR. (5.23)

The right-hand side is small when the scalar curvature is large, so g(¢) is getting closer to
an Einstein metric. Our calculation above shows that R should be close to being constant.
Therefore, it is natural to expect that we will be able to get a bound on |VR|. In fact,
this is exactly what happens. In order to prove this result, first we have to obtain several

evolution equations, and that is what we shall do in the next lemmas.

Lemma 5.4.1. If (M™, g(t)) is a solution of the Ricci flow, then the evolution of |V R|*
s given by

0
E\VR\Q = A|VR|*> = 2|VVR|* + 4(VR,V|Ric|?). (5.24)
Proof. We recall the evolution equation for the scalar curvature (equation (3.13)):

0
—R = AR+ 2|Ric|*.
(%R + 2|Ric|

Hence
0 2 _ 0 4 : 12
a|VR| == (9"V:RV,R) = 2Ric(VR,VR) + 2(VR,V (AR + 2|Ric[?)).
Now we recall the Bochner-Weitzenbock formula (see [20], Lemma 3.4 on page 27):
A|VR|* = 2|VVR|* + 2(VR,AVR) + 2Ric(VR,VR).

Comparing the terms, the lemma follows. O

Lemma 5.4.2. Let (M™,g(t)), with t € [0,T), be a solution of the Ricci flow such that

R(0) > 0. Then the following holds for all t € [0,T) :
d (|VR]? VR IVR|?\ |* .|VRJ?
— =A -2
ot ( R ) ( R RV &

4
—92 = =

R

(VR,V|Ric|?).
(5.25)

| Ric|* +
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Proof. We already know that R > 0 is preserved. Now, using the evolution equation for

R and Lemma 5.4.1, we get

o (IVR]? 1 2 2 : 12
- =— A -2 4
8t< - > = [AIVR]? —2[VVR] + 4(VR, V|Ric’)]

VR
-

(AR +2|Ricf?)

Now we recall that for any smooth functions u and v, we have

U Au  uAv 2 2u 9
A (—) =— ——— — —(Vu,Vu) + EWM )

v v V2 V2

Hence,

2 2 4 2 2
9 (|VR| ) A (|VR\ ) ., (|VRy _ (VIVRP.VR)  |VVR >

ot \ R R R3 R? R
2 . 4 ‘
- ﬁ|VR|2|RZC|2 + E(VR, V|Ric|?)

R R4 R3 R2
2 , 4 .
— ﬁ|VR|2‘RZC|2 + }—z<v3, V|Ric|?)

() e ()

_ <\VR|2) op (yVRy4 _ (VIVRP.VE) yVVRP)

2
2 4
- §|VR|2|RZ'0|2 + E(VR, V|Ric|?).

0
Lemma 5.4.3. If (M™,g(t)) is a solution of the Ricci flow, then
9 2 2 12
&R = AR" — 2|VR|* + 4R|Ric| (5.26)
and
0 .
E‘Rid? = A|Ric]* — 2|V Ric|* + 4R"R7* Ry, (5.27)

Proof. The first equation follows from the evolution equation of R since

%}32 =2R (AR + 2|Ric|*)

= AR? — 2|VR|? + 4R|Ric|*.
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On the other hand, using the evolution equation for the Ricci tensor (3.14), we get

d, .. 9, . .y
§|R@C|2 :a(g Tg"RixRj1) = 2Rijg" R Rj + 29" Ry Rin Ry
+ g7 g" (AL Ric)i Ry + g7 g™ Rix (AL Ric) ;i
= 4dtry(Ric®) + 2(Ric, A Ric)
= A|Ric]* — 2|V Ric|* + 4R" R R,
since the term 4tr,(Ric?) is cancelled by the last term of equation (3.14). O
Corollary 5.4.3.1. If (M3, g(t)) is a solution of the Ricci flow on a 3-manifold, then

1 1 1
9 |Ric|* — =R* | =A ( |Ric|* — =R*) — 2 ( |VRic|*> — =|VR)?

2
— 8try(Ric®) + ;R\Rz’c\z — 2R3

Proof. In dimension 3, we may use the fact that the Weyl tensor vanishes (see Chapter
2) to write the Riemann tensor in terms of the Ricci tensor. Then, equation (5.27) can

be written as
E|ch| = A|Ric|* — 2|V Ric|* — 2R’ — 8tr,(Ric’) + 10R| Ric|".

The result follows from this. O]

In order to prove our main result of this section, we would like to show that the term

4
E(VR, V|Ric*) on the evolution equation of @ (equation (5.25)) can be controlled.
R|? 1
In fact, this term will be eliminated by computing the evolution of VE] + | Ric|* — §R2.
This is what we shall do in the next results.
Lemma 5.4.4. In dimension n = 3, we have
- L) |VRie]* - LR >0 (5.29)
37 3 - '

Proof. First, we define a (3,0)-tensor X by
1
Xijk = viRjk - ggjkviR
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and a (1,0)-tensor Y by
Yk = ngXZJk
Observe that using the second contracted Bianchi identity, we get

- - 1 .. 1 1
Y = 9" Xiji = g ViR, — ggngkViR = §VkR - 555V¢R-

Then
v, - ViR
6
and
V2= VR
36 '

In any dimension n, we have the following estimate for a (2,0)-tensor Z :
2o 1 2
2P = X (tr, 2.
n
Hence

1 o
g’YF < ’X|2 = glpgjsgleiijpsl
o 1 1
= g"g’*g" (ViRjk — ggjkviR> <VpRsz - ggslva>
ip js ki 1 1 1
=9%9"9" | ViR V,Rg — ggjkviRvasl — ggslvaviRjk + §gjkgslviRva
2 2 2 3 2
= VRicP — 2 VAP + 2 VR
1
= |VRic|” ~ 5|VE[".

Then we get

(1+ 3—16)\VR|2 ~ 37 \vR) (5.30)

2
|VRZC’ > =108

Wl

and the result follows.

101



Corollary 5.4.4.1. If (M3, ¢(t)) is a solution of the Ricci flow on a 3-manifold, then

0 1 1 2

= (|Rie> = Z|R)? ) <A (|Ric]> - S|R]?) — |V Ric|’
o6 (5.31)

— StTg(RiCB) + gR’RZC’Z — 2R3

Proof. This is a direct result. We just have to use Corollary 5.4.3.1 and substitute the
inequality (5.29) into equation (5.28). O

Now, let us consider equation (5.25) again. On a 3-manifold with positive Ricci cur-

vature, we have |Ric| < R. Also, the following holds:
|V|Ric?| < 2|V Ric||Ric|.

4
Then, if we consider (5.30) and the term §<VR’ V|Ric|*) on (5.25), by applying the

Cauchy-Schwarz inequality we get

| Ric|

4 4
EWR’ V|Ric|?) < i IVR||V|Ric|*| <8|VR||VRic|

108
<8\ 5 IV Ric|> < 8V3|VRic|*.

Now we consider

=t = +1 - =

|VR|?

which will provide an upper bound for ~

Lemma 5.4.5. If (M3, g(t)) is a solution of the Ricci flow on a 3-manifold whose Ricci

curvature s initially positive, then

B VR
SV <AV —2R|V =5
o’ =2V R’ (R)

> |Ric|?

-2 0 VR[> — |V Ric|?

2
+ %8@ +1) (gRyRicyQ — 8try(Ric®) — 2R3> :
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Proof. Using Lemma 5.4.4, we have that

|VRic|” — —\VR| \Vch\

- 37

By Corollary 5.4.4.1, we get

9 2 Lipn 2 Lion 2 . |2
_ — < — _ -
T (]ch] B\R] ) <A <\ch\ 3]R\ 37|Vch’
26
— 8try(Ric®) + §R|Rz'c|2 — 2R3

)

and by Lemma 5.4.2 we get

2

o (VRPN _ \ (IVR] VR |VR|2 2 2
a( I )A( 7 —2R\V 7 | Ric|” + R<VR,V\R@C\ ).
Hence, we have
0 |VR|? VR |VR|2 2 <VR, V|Ric|?)
V<A ) 22 Yo
7 <8 (I50) et (7)o amer o223

1 2
+ %7(8\/5 +1) [A(\Rz’aﬁ - §R2) — ﬁvmcﬁ — 8try(Ric®) + §R|Rz’c|2 — 2R}

2|R 4
— AV — 'R’;" [VR]? - (8V3 +1)|VRic]” + - (VR, V|Ric])
2R
<yy_2 Z;' IVR? — (83 + 1)|VRic|? + 8V/3|VRic?,
so the lemma follows. O

We will show that the term
26 .19 .3 3
W = §R|ch| — 8try(Ric’) — 2R”,

which appears in the evolution of V' is small when the metric is close to an Einstein metric

because of Corollary 5.4.3.1.

Lemma 5.4.6. On a 3-manifold of positive Ricci curvature, one has

1
W< ?R (|Ric|2 — §R2> :
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Proof. First, let X := —8(Ric — 3 Rg, Ric*). Then X = {R|Ric|? — 8try(Ric*) and W can

be written as
2 Lo
W = X + 6R(|Ric|” — §R ).
Now let us define a (2,0)-tensor Y by Y := Ric* — § R*g. We note that

1

1 1
anMRM—gW%:w“Om—§&m>O@+§&M)

Then we may use Cauchy-Schwarz to estimate X. Since

1 1 1 1 1
(Ric — = Rg, Ric* — ~R?g) = try(Ric*) — gRyRic]Q - §R2trg(Ric) + —R*3

3 9 27
. 1 , 1 1 X
= tr,(Ric*) — gR]R’LCF — §R3 + §R3 =5

we have
I R |
X < 8|Ric — gRg| |Ric + gRg|.
Now since Ric > 0, we get X < 2R (|Ric|> — $R?) . Finally,

W=X+6R (lRic|2 — %RZ)

32 18 1 50 1
<|=4+=)R||Ric>*—=R?*) = =R [ |Ric|> — =R?).
—(3+3) (’ el = 3 > 3 <| el =3

]

We now introduce a result that will be used later and will be needed for the main

result of this section.

Lemma 5.4.7. Let (M™,g(t)), with t € [0,T), be a solution of the Ricci flow, where M™

s a closed manifold. If there are to > 0 and p > 0 such that
inf R(pa tO) =P

peEM™

then g(t) becomes singular in finite time.
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Proof. The proof is a straightforward application of the Maximum Principle. In fact, from

equation (3.13), we have

0 2
—R = AR+ 2|Ric]> > AR+ = R*.
ot n

Then we may consider the solution of the corresponding ODE

t)==r?
"t ==,
T<t0) =p> 07
which is given by
pn
t) = .
r(t) n—2p(t —ty)

Since R(p,ty) > p, it follows from the maximum principle (Theorem (4.2.14)) that for all
peM"

R(p,t) > inf R(p,t) > r(t

(p,t) > inf R(p,t) 2 r(t)

as long as the solution r(t) exists. However, if we let ¢ = to + 22, then
p

limr(t) = oo,

t—t
then
lim R(t) = oo.
t—t
Hence, g(t) becomes singular for some ¢ < ¢. O

Finally, we are ready to prove our theorem.

Theorem 5.4.8. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-manifold

with g(0) = go. If Ric(go) > 0, then there ewist constants 3,5 > 0 depending only on go

such that for any 5 € [0, ], there exists a constant C' > 0 depending only on B and go
such that

R 2 _
|VR3| <BR™2+CR.
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Remark. Here, the left-hand side is scale invariant. On the other hand, the right-hand

side is small when the scalar curvature is large.
Proof. We may use Lemmas 5.4.5 and 5.4.6 to write

1
2V < AV —|VRic| + g(S\@jL 1)%OR (|Rz’c|2 _ ng)

ot
74003 + 925R ( 1 )

= AV — |VRic|” + 3 |Ric|> — 532

Now, using equation (5.23), we get a slightly better estimate

9
5V <AV - IV Ric|> + CR*™,

where C' and v = g depend only on gg. It follows directly from (3.13) that

%Rzﬂ = A(R*™) = (2—=7)(1 —v)R™|VR|* + 2(2 — 7)R""|Ric|?.

Now let 8 be such that

and recall that

VR[> < 3|VRic|*.

Then, for any 5 € [0, (], we get

% (V = BR*™) <A (V = BR*) + [B(2 —7)(1 —y) R |VR[* — |VRic|’]

+ CR* —2B(2 — y)R' 7| Ric|*.

Observe that the second term is non-positive because of the constants that we have chosen.

For the rest of the terms, we see that

CR** —28(2 —v)R'""|Ric|> < CR** — CR*7",
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where C' is a constant. For R large enough this term is dominated by the second term,

which is negative. Therefore we can get a uniform upper bound C] for it. Hence, we have

% (V=BR*) <A(V-BR7)+Cy

From the maximum principle for the scalar case (Theorem (4.1.2)) we get
V —BR*7T < Cit + .

On the other hand, (3.13) implies that

o 2
—R> AR+ =R~
gt AT

From Lemma 5.4.7, this means that there is a time 7' < oo at which the solution becomes

singular. Thus,

2
% <V< ﬁRQi’Y + CyT + Cs.

Let C := CiT + Cs. This proves the theorem. O

5.5 Long-Time Existence and Finite Time Blow Up

We already know that on a compact manifold M"™ with an initial metric go, there exists
a unique solution ¢(t) of the Ricci flow with ¢(0) = go on a short time interval. Hence,
there must be a maximal time interval [0,7), with 0 < 7" < oo, on which the solution
exists. In this section, we would like to understand what happens if T < oco. In fact, we

shall prove that if the maximum curvature remains bounded, then T" = cc.

First, we need to obtain some derivative estimates of the curvature, due to Bernstein,

Bando and Shi (see, for example, [26] and [27]).

Lemma 5.5.1. If (M"™, ¢(t)) is a solution of the Ricci flow, then we have the following

evolution equation for the square of the norm of its curvature tensor

0 o
&|Rm|2 = A|Rm[* — 2|VRm|* + 49" g% gP% g9 R, spq( Bijki — Bijir + Birji — Buji),
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where Bij = —RZinsz- In particular, we have
0
a|Rm|2 < A|Rm|* = 2|VRm|* + C|Rm/?,

where C' depends only on n.

Proof. We know that the (4,0)-Riemann curvature tensor evolves by

0
— Rijit =ARiji + 2(Biji — Bijik + Birji — Bujk)
ot

— (R Ryjia + R Ripis + R} Rijp + R} Rijip)-
Then we can check that

a 0 oo ri _S)

§|Rm|2 =5 (gmgs]gpkgqurquRz‘jkl) = 29" 9% g"" " Ryspy [ARijia + 2(Bijis — Bijir. + Birjt — Bajr)]
— 29" 9% ¢"* 9% Ry spq (R Ronjit + R Rivrt + Ry Rijot + R" Rijiom)
+ ngjgpkgql(gtTgimRtm)RrquRijkl + 2g”gpkgql(gtsgijtm)Rmquijkl

+29" g% g (99" Rim) Rropg Rigit + 297 9" 9 (9" 9™ Rim) Ry spq i
Since the last four terms cancel out with

—29"' 9™ §"" 9% Ry spg (R} Rt + Ry Ryt + By Rijmi + B Rijiem),
we get
9 20 (i sipkoal ri _sj pk_ql
E‘Rm‘ :& ( g7 g™ g? RrquRijkl) =29"9" 9" 9" Rrspq [Aszkl + 2<Bijkl — Bijir + Birji — Bz’ljk)] .
Since

A|Rm|2 = 29rigsjgpkgqumquRijkl + 2|VRm|2,

the lemma follows. O

Corollary 5.5.1.1. If (M™,g(t)), with t € [0,T), is a solution of the Ricci flow on a
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compact manifold and

Z(t) = sup |Rm(p,?)|

7t )
peln 9(p;t)

then there exists C' > 0 depending only on the dimension n such that

Z(t) <2Z(0)
for all t within 0 < t < min{T,%}. This result is known as the Doubling-Time
Estimate.

Proof. By Lemma 5.5.1, Z(t) is Lipschitz on t and satisfies

3
2 _CZ _Cp

dt — 27 27

where C' depends only on the dimension n. To see this, just drop the Laplacian and the
gradient terms on the lemma (we can do this because Z(t) is defined as the supremum of

Rm over the manifold, for each time ¢). Then we get

1
2() < <
700 2
as long as t € [0,7") satisfies t < %(0). If we choose C as &, then we have the result. [

Corollary 5.5.1.2. If (M",go) is a Riemannian manifold such that |[Rm(go)lys, < K,
then the unique solution of the Ricci flow with g(0) = go ewists at least for t € [0,<],

where C > 0 s a constant depending only on n.

Proof. In order to obtain this result, we just have to combine the Doubling Time Estimate

and Theorem 5.5.4. O

Theorem 5.5.2. Let (M",g(t)) be a solution of the Ricci flow, where M™ is a closed

manifold. For any a > 0 and m € N, suppose there exists a constant K > 0 such that

|Rm(p,1)| <K,

g(pvt) -
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Vp e M™ and t € [0, ], then there exists a positive constant Cy, depending only on m,n

and mazx{a, 1} such that

Cn K
<

9(p;t) +3

V™ Rm(p,t)]

Vpe M™ and t € (0, £].

Proof. Although this result is essential to our goal in this dissertation, its proof is very
long and technical. In order to provide a better reading experience, we provide the proof

of this theorem in Appendix B. ]

Remark. We observe that these estimates do not hold when t = 0. This is actually
expected since bounds on an arbitrary curvature tensor do not necessarily tell us any-
thing about its derivatives. However, the Bando-Bernstein-Shi (BBS) estimates (Theorem
(5.5.2) ) show that after the flow starts, the derivatives of the curvature tensor instantly

begin to be brought under control.

Corollary 5.5.2.1. Let (M™, g(t)) be a solution of the Ricci flow, where M™ is compact.
If there are f > 0 and K > 0 such that

[Bm(p,t)] < K,

Vp e M and ¥t € [0,T], where T > %, then there exists, for each m € N, a constant C,,

depending only on m,n and min{(,1} such that
IV"Rm| < C, K17,

Vp € M and vt € ["M21 7).

Proof. First, let By = min{3,1}. We fix t; € [B—Ig, T, set To = to— % and t = t —T}. Now,
let g(¢) solve the Ricci flow equation with g(0) = ¢(7p). By the uniqueness of solutions
to the Ricci flow, given 7 € [0, 2], we have g(f) = g(¢). Hence, |Rm(p,?)|; < K by the

hypothesis, for all p € M™ and ¢ € |0, %]
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Using theorem 5.5.2, let & = ;. Then we get constants C,, depending only on m and

n such that

mK
t

V" Rin(p, Dy <

Y

v[3

Vp € M and # € (0,2]. When 7 € [2%, %] we have

m
m —m —-m
2 o= —-_m

w[3

t

Then, if t = %, we have

25C,, m
IV Rm(p, o), < ( 2om ) gy
By

Vp € M". Since t; is arbitrary in [%, T, our proof is completed. n

Before we can state another gradient estimate, we need a few results. Here, we will
work with a half-open interval [0,T") since the application we are interested in is to help

us understand what are the obstacles to long-time existence of the Ricci flow.

Lemma 5.5.3. Let M™ be a closed manifold. For 0 <t < T < oo, let g(t) be a one-
parameter family of metrics on M"™ depending smoothly on space and time. If there exists

a constant C < oo such that

Vp € M", then

e “g(p,0) < g(p,t) < e“g(p,0),

Vp € M and t € [0,T). Moreover, ast /T, g(t) converges uniformly to a continuous
metric g(T') such that

e “g(p,0) < g(p,T) < e“g(p,0),
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Vp e M".

Proof. Let p € M™ and t, € [0,7) be arbitrary. Also, consider an arbitrary vector

v e T,M". Since |A(u,u)| < |A|, for any 2-tensor A and any unit vector u, we get

log (g(p, to)(v,v))‘ _

9(p,0)(v,v)

to

[ S tostatp )0t

to O t
:/ (P, D) 0)
0

)
g(p,t)(v,v)
- /“’ 29(p,t)(v,v)

vl
Thus, the uniform bounds follow from considering the exponential of the inequality above.

dt

0 v to
9P\ o] ol o

0
— < (.
atg(p,t)‘dt <C

In particular, this shows that the metrics ¢(t) are all uniformly equivalent. Therefore, we

have

0

— dt <C
ot? =Y

9(0)

(p,1)

r

for some C' > 0. Observe that now we are taking the norm with respect to the fixed metric

9(0). Let us define

o, T) = g(p,0) + / 2 g(p. 1.

This integral is well defined because our family of metrics is smooth and the bound above
tells us that the integrand is absolutely integrable with respect to the norm induced by
g(0). Thus

dt — 0
g(0)

l9(p, 1) = 9(p, T)ly0) < /0 (p.1)

ot
as t — T for each fixed p € M. The convergence above is uniform due to the compactness
of M. Therefore g(T') is continuous. The last bound of the lemma follows directly just
by taking the limit on e=“g(p,0) < g(p,t) < e“g(p,0). This shows that g(T) is positive
definite and, therefore, g(t) converges to a continuous Riemannian metric g(7"), uniformly

equivalent to g(0). O
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Corollary 5.5.3.1. Let (M"™, g(t)) be a solution of the Ricci flow. If there exists K > 0
such that |Ric| < K on [0,T], then

e 2K g(p,0) < g(p,t) < e*g(p,0),

Vp € M™ and ¥t € [0,T].

Proof. Just remember that %g = —2Ric. Then, for an arbitrary t, € [0,T"), we have

/to
0

to to
%g(p’ t>‘ dt = / |—2Ric(g(t))] dt < / 9OKdt < 2KT.
0 0

]

We have just shown that there is a limit metric g(7"), which is continuous. Now, in
our result on the long-time existence of the Ricci flow, we will need to show that this limit
metric is actually smooth. To do so, we need to make sure that the spatial derivatives of
g(t) are controlled when we are approaching the time 7". This is the content of our next

two results, that follow from Theorem 5.5.2.

Proposition 5.5.1. Let (M", g(t)) be a solution of the Ricci flow on a compact manifold

with a fized background metric § and a connection V. If there exists K > 0 such that

[Bm(p,t)]y < K

Vp € M™ and ¥t € [0,T], then for every m € N, there ezists a constant C,, that depends

onm,n, K,T,go = g(0) and the pair (g, V) such that

Vp € M™ and ¥t € [0,T].

Proof. Similarly to Theorem (5.5.2), we provide a proof for this proposition in Appendix
B. O

Corollary 5.5.3.2. Let (M™, g(t)) be a solution of the Ricci flow on a compact manifold
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with a fized background metric § and a connection V. If there exists K > 0 such that
[Rm(p,t)]y < K

Vp € M™ and ¥t € [0,T], then for every m € N, there ezists a constant C!  that depends

on m,n, K,T, gy = g(0) and the pair (g, V) such that
V" Ric(p, )| < Cp,,

Vp € M™ and ¥t € [0,T].

Proof. This is a result established in the proof of Proposition 5.5.1. In order to check the
proof in details, see Appendix B. O

Now we state and prove a theorem that shows that the only obstacle to long-time

existence of the Ricci flow is the curvature becoming unbounded.

Theorem 5.5.4. If gy is a smooth metric on a compact manifold M™, the Ricci flow with
9(0) = go has a unique solution g(t) on a maximal time interval t € [0,T), with T < oo.

Moreover, if T < oo, then

lim (sup | Rm(p, t)]) = . (5.32)

Proof. Let us define

Z(t) == sup |Rm(p,t)|.

peEM™

We already know that there exists a unique solution g(t) of the Ricci flow satisfying the
initial condition ¢(0) = go on a short time interval [0,¢). First, we will prove the claim

that the limsup of Z(t) goes to oo.

Suppose that the solution exists on the maximal finite time interval [0, T"), with 7" < oo.
We claim that
sup Z(t) = 0. (5.33)

0<t<T
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Suppose by contradiction that there is a constant K > 0 such that

sup Z(t) < K.

0<t<T

We will show that, given this condition, we are able to define the flow beyond T. Consider
local coordinates {z'} on an open set U C M" around an arbitrary point p € M"™. Let
7 € (0,7) be also arbitrary. Using Lemma 5.5.3, we get a continuous limit metric g(7")

that can be written as

T
9i;(p. T) = 955(p, 7) — 2/ Rij(p, t)dt.

Let o be any multi-index with |a] = m € N. Then it follows from Proposition 5.5.1

and Corollary 5.5.3.2 that 2 g;; and 2 R;; are uniformly bounded on U x [0,7). Thus

(%gzj) (p.T) = (%gij) (p,7) — Q/TT (%RO (p, t)dt.

This shows that our limit metric is smooth. Moreover,

‘ (%gij) (p,T) — (%gzj) (p, 7)

for some constant C' < co. So g(7) — ¢(T") uniformly in any C™ norm as 7 T

< C(T —7)

Due to the smoothness of ¢(T"), we know that there is a unique solution of the Ricci
flow, g(t), with g(0) = g(T) on a short time interval [0,%). Since g(7) — ¢(T") smoothly,

we have that

g(t), te|0,7)
g(t) =
gt=1T), te[l,T+E)

is a solution of the Ricci flow with ¢(0) = go. This is a contradiction with the fact that T’

is maximal. Hence, if T' < oo, then (5.33) holds.
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Suppose (5.32) is false, i.e., suppose there exists Ky < 0o such that

lim (sup |Rm(p, t)]) < K.

t/‘T peMn
Then, there exists a sequence t; T such that Z(t;) < Ky. Using the doubling-time
estimate of Corollary 5.5.1.1, we get a constant C' = C(n) > 0 such that

Z(t) < 2Z(t:) < 2K,,

YVt € |t;, min{T,t; + K%}) Since t; T, we get a large enough index iq such that
ti, + K% > T. Thus

sup Z(t) < 2Ky,

tiO <t<T

which contradicts the claim (5.33), previously established on this proof. This completes
the proof of the theorem.
O

Corollary 5.5.4.1. Any solution (M3, g(t)) of the Ricci flow on a compact manifold whose
Ricci curvature is initially positive exists on a maximal time interval 0 <t < T < oo and

the following holds

lim | sup |Rm(p,t = 00.
lim (Mp [Rn(p >|>
Proof. In order to obtain this result, we just have to combine Theorem 5.5.4 and Lemma

5.AT. O

Now we obtain new global estimates for the curvature.

Proposition 5.5.2. Let (M3, g(t)) be a solution of the Ricci flow on a compact manifold
whose Ricci curvature is initially positive. Then the solution becomes singular at some

T < 00. Moreover, it obeys the following a priori estimates:

1. Let Rypin(t) = inf R(p,t) and Rpq.(t) = sup R(p,t). There exist positive constants
peM? peEM3
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C and a depending only on gy such that

(5.34)

for all times 0 <t < T. In particular, e —last ST

x

2. Forp € M? and t € [0,T), let A(p,t) > u(p,t) > v(p,t) denote the eigenvalues of
the curvature operator at (p,t). Then for any ¢ € (0,1), there exists T. € [0,T) such
that

1 t) > (1 — Mp, t 0
min v(p.) 2 (1-¢) | max A 0)| >

for all times t € [T.,T). In particular, the solution eventually attains positive sec-

tional curvature everywhere.

Proof. Lemma 5.4.7 tells us that the solution becomes singular at some time 7' < oco.
Additionally, since our dimension is n = 3, we know Ric completely determines Rm.
Therefore, we have c|Ric| < |Rm| < C|Ric| for some positive constants ¢ and C. So it

follows from Theorem 5.5.4 that

lim <sup | Ric(p, t)|) = 00. (5.35)

t /T peM3

Theorem 5.4.8 provides positive constants A, B and « such that

A2R372a 4 BZRmam-

max

IVR|* <

DN | —

Using equation (5.35), the fact that |Ric|> < R* and R > 0, we are able to find a 7 € [0,T)
such that

IVR| < ARzaS

vt € (1,T). Now, for t € (1,T) fixed, there exists p(t) € M? such that R,,q.(t) = R(p, 1),

because M? is compact.
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Consider the geodesic ball B(p, L), where L < oo is given by

for a given €.
If v is a minimizing geodesic from p to p € B(p, L), we have the following estimate

max-*

3_g A
Ros — R(p) < / [VRIds < ARbSL < SRS
v

This gives us a lower bound on B(p, L) :

Al 1 \°
> Ropae (1 — = . 5.36

Since R — oo as t — T, it follows that there exists ¢ € (7,T) depending on A, « and ¢

such that
R > (1 —¢)Rmaz (5.37)

on B(p, L), vVt € [t,T). We shall prove that for ¢ > 0 small enough, B(p, L) is actually
all of M3. Since from (5.36) we already have our estimate on B(p, L), this will prove the

first item.

From Corollary 5.3.1.1, we get a constant 5 > 0 that depends only on gy such that

Ric > 28°Ry,

then equation (5.37) implies that

Ric > 28%*(1 — €) Ruaxg (5.38)

holds for all points of B(p, L). We first observe that if v is a geodesic emanating from
p with length I(y) < L, then the estimate above holds for all points in . Moreover, it
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is a consequence from the proof of Bonnet-Myers’ theorem (see, for example, [4]) that in
a complete manifold (M™, g), if Ric > (n — 1)Hg along a geodesic of length at least T
where H > 0 is a constant, then this geodesic has conjugate points. Finally, we choose

e € (0,1) so that

which is always possible.

Now we suppose there exists py € M3 such that py ¢ B(p,L). Then let v be the
minimizing geodesic starting at p and connecting it to pg, so that d(p, py) = I(); whose
existence is guaranteed because M? is compact, hence complete. Since py is not in B(p, L),

we know that 7 intersects the boundary of B(p, L). Let p; be that point of intersection.

Then the length of v from p to py is L > T and, from our observation above

B (1 - €>Rmam
and estimate (5.38), it follows that v has a conjugate point within B(p, L). However, this

contradicts the fact that + is a minimizing geodesic from p to py. Therefore, we must have
po € B(p, L). Since py € M3 is arbitrary, it follows that M? = B(p, L) and this proves the

first item.

Now, for our second item, we use Theorem 5.3.2. Since we have positive constants C

and 0 < 1, depending only on gg, such that
v> A= C\+pu+v)0,
Vp € M3, we get the pointwise inequality

>1—-3CR°>1-3CR:

min*

(5.39)

>R

Then, let p,q € M3 and 1 > 1 > 0 be given. By (5.35), (5.37) and (5.39), there exists
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T, € [t,T) such that

Vo) 2 (1= A1) 2 R, 1)

> Lo g > Lo a0 - (g,

Vt € [T,,,T). If we take the infimum over p € M? and the supremum over ¢ € M?3, the

claim follows. O

In particular, we may conclude that g(¢) approaches an Einstein metric uniformly as

t /T

Corollary 5.5.4.2. If (M3, g(t)), with t € [0,T), is a solution of the Ricci flow on a

compact manifold with strictly positive Ricci curvature at t = 0, then

, | Ric|?
lim | sup 5 = 0.
t T peM3 R

Proof. Just apply the estimate of Theorem 5.3.2 in the form of equation (5.22). Thus,

there are positive constants C' and 6 such that

o i .
L =
Since Ryaq(t) — oo and % — last /T, the result follows from Proposition (5.5.1).

O

After having established long time existence for the Ricci flow and having showed that
g(t) approaches an Einstein metric uniformly as ¢ goes to the maximal time 7', we would
need to define the normalized Ricci flow, which is just a rescale of g(t) in order to keep
the volume of (M", ¢g(t)) equal to 1. After that, one can show that this new flow exists
for all time and asymptotically approaches an Einstein metric. Then one would need to
prove some of the results already established in this dissertation for this normalized Ricci
flow. Using these results, one can show that this convergence is exponential in every C*

norm. Therefore, every compact 3-manifold with initially strictly positive Ricci curvature
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admits a metric with constant positive sectional curvature. For more details, we refer the

reader to [14], [12] and [5].
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Appendix A

Existence Theory for Parabolic PDEs

In this appendix, we will present the existence results for PDEs used throughout the
text. This is mainly based on [28]. Consider a vector bundle 7 : E — M, where M is
a Riemannian manifold, with a fixed bundle metric h. We are interested in the following

type of PDEs:

9
ot = M) (A1)

u(p, 0) = uo(p),
where u : M x [0,T) — FE is a section of £ and L : C*°(F) — C*(FE) is a differential

operator.

First, we fix some notation.
1. x=(x1,...,2,) E R", z; € R,
2. a=(ag,...,a,) EN" o €N,

3. |al=a; + -+ ay,

(e79)

o .01
4. % =af" ...

We use 0% to denote the derivative operator of order |a| such that if u : R” — R is a

function, then

olely,

% _
O = G o
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Now let L be a linear differential operator. Then, using the multi-index notation

above, we may write
L(u) = Z L,0%u,

where k is the order of L and L, € Hom(E, E). For instance, if M = R", E = R" x R,
and k = 2, then

L(u) =Y a;0'0u+ Y bid'u+ cu,
i,j i

where a;j, b;, ¢ : R® — R are smooth functions.

Definition A.0.1. We say that the second order operator L is elliptic if the coefficients

a;j are uniformly positive definite, which means that there exists some X > 0 such that
ai;&&; > AEf,

V¢ € R™ (or, in the case of vector bundles, for all sections in E ).
Definition A.0.2. We say that equation (A.1) is parabolic if L is elliptic.

Remark. In chapter 3, we defined strict parabolicity using the principal symbol of the
operator. We observe that these definitions are equivalent and the word strict (sometimes

we also use strong) is used to distinguish it from more general definitions.

The Ricci flow mainly gives us non-linear PDEs. Hence, we need to know what
it means for a non-linear PDE to be parabolic. To do so, we define the linearization of
the non-linear operator L, which has already been done in Chapter 3. For this kind of
equation, we say that 2u = L(u) is parabolic if 2u = [DL(v)]u is parabolic. Then we

get the following result, which will be used in all existence proofs in this dissertation.

Theorem A.0.1. If equation (A.1) is (strictly) parabolic at uy (L being linear or non-
linear), then there exists a solution on a time interval [0,¢), for some € > 0, which is

unique as long as it exists.
This is a classical result on the theory of parabolic PDEs. See, for example, [19].
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Appendix B

Proof of Some Results

In this Appendix, we prove two technical results that were not proved in the text.
Theorem 5.5.2 shows that if we have bounds on the Riemann curvature tensor, then the
Ricci flow provides us bounds on its derivatives as soon as we apply it to our mani-
fold. Proposition 5.5.1, in the other hand, shows that if the Riemann curvature tensor is
bounded with regards to the metric g(¢), then the higher order derivatives of ¢(t) with

respect to a fixed background metric g are also bounded.

Before we begin our proof, let us consider a simple problem, that will be useful on
our next calculations. If Q(¢) is a 1-parameter family of (1,0)-tensor fields on a solution

(M™, g(t)) of the Ricci flow, then we have

5, 9 [0 N
avin =5 <a—xin - Fiij)
0
— vi(aQ)j + (ViRY + VR — V*R;;)Qy.

Hence, using the evolution equation of ¢!, we get

0 d , . .
EWQF =5 (9% 9"'ViQ; Vi Q1)
) o
= 2V'QVi(5Q); + 2V'Q (ViR] + Vi Ry = V' Ryj) Qs
+ 2R*V,Q'V,.Q; + 2RI'V'Q,;V,Q,.

The point here is that when we compute the time derivative of a quantity such as [VQ|?,
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we have to take into consideration how the metric and its Levi-Civita connection evolve.

Finally, we just introduce a notation convention for the theorem. Consider two tensors,
A and B, on a Riemannian manifold. Then we denote by A x B any quantity obtained

from A ® B by one or more of the following operations:

1. Summation over pairs of matching upper and lower indices;

2. Contraction on upper indices with respect to the metric;

3. Contraction on lower indices with respect to the inverse of the metric;

4. Multiplication by constants that depend only on n, rank(A) and rank(B).
Furthermore, (A*)*¥ will denote any k-fold product A x - - * A.

Theorem B.0.1. Let (M", g(t)) be a solution of the Ricci flow, where M™ is a closed

manifold. For any o > 0 and m € N, suppose there exists a constant K > 0 such that

|Rm(p, )] <K,

g(p.t)

Vp e M™ and t € [0, ], then there exists a positive constant C,, depending only on m,n

and maz{a, 1} such that

Cn K
<

g(pvt) t% ’

V™ Rm(p,t)|

Vpe M" and t € (0, &].

Proof. We will apply complete induction on m. First, let m=1. Then, we see

that the evolution equation for |V Rm/|? is

%NRmP = 2(V (%Rm) , VRm) + VRic* Rm x VRm + Ric x [(VRm)*]?,

using the notation introduced above and the evolution equations for |[VQ|? previously
described. Now, we want to understand V(%Rm). Before that, we must understand

how the commutator [V, A] acts on a tensor. Let A be any tensor. The technique for
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commuting derivatives gives us the following:

= 97 ([Vi, ViIV;A+ ViV VA = ViV;VA) = g7 ([Vi, ViV A + Vi([Vi, V,]A)) .

Thus, using the formula for commuting covariant derivatives, we see that [V, A] is of the
form

[V,AJA=Rm+«VA+V(Rmx*A)=RmxVA+ VRmx A.
Using the second Bianchi identity, we have
[V,A]A = Rm*VA+ VRicx* A.
Then, using formula (3.20) and replacing the instances of Rc with Rm, one gets
\% (%Rm) =V (ARm + (Rm)**) = AVRm + Rm x VRm.
Since A|A]2 = A((A4, A)) = (AA, A) +2(VA,VA) for any tensor, we conclude that

%WRmF = AIVRm|* = 2|V?Rm|* + Rm x (VRm)*. (B.1)

To obtain a good estimate for |[VRm/|*> from the equation above, we must control two
possible difficulties. The first one is the term Rm % (VRm)** and the other is the fact
that, a priori, we have no control on |VRm/|? at ¢ = 0. With this goal in mind, we

introduce a new quantity:
F =t|VRm|* + B|Rm|?,

where [ is a constant that will be chosen later.

At t = 0, we get an upper bound F' < SK?2. Also, when ¢ is small, the term Rm *

(VRm)*?, obtained by differentiating |V Rm|?, can be compensated by a new term we get
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when we differentiate | Rm/|*, —26|V Rm/|?. Taking the derivative of F, we get

a _ 2 a 2 a 2

atF = |VRm|" +1 <8t|VRm| ) + 58t(|Rm| )
= [VREm|* + t (A|[VRm[> — 2|V’Rm|* + Rm * (VRm)**) + 8 (A|Rm|* — 2|V Rm/|* + (Rm)**)
= AF + (1 =2B8)|VRm|* + tRm x (VRm)** — 2t|V*Rm|* + 3(Rm)*

< AF + (1 =28+ cit|Rm|)|[VRm|* + e8| Rm|?,

where ¢; and ¢, depend only on the dimension n. Since |[Rm| < K for all ¢ € [0, #] by the

hypothesis, we get

%F < AF -+ (1 +ca— 26)’VR77”L‘2 + CQ/BK?’.

Let 8 be any constant such that g > H% (note that 5 depends only on n and «). Then,

0
aF < AF + ¢,BK3,

vt € [0, #]. Using the maximum principle, we have

sup F(p,t) < BK? + co K%t < (1 4 coa) BK* < C1°K?,
peEM

vt € [0, %], where C is a constant again depending only on n and «. Thus,

F K
VRm| <4/ < (“;11 ,

for 0 <t < %. This proves the case m=1.

Now we prove the inductive step. Suppose that |V/Rm| is estimated for all

1 <7 <m. Let 1 <k < m. First, we see that

%\kamP = 2% (V*Rm) ,V*Rm) + Ric* (V*Rm)*. (B.2)
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Now we need to calculate 2 (V¥Rm). In fact, by formulas (3.20) and (3.8), we get

k-1
% (VERm) = V* (%Rm) +Y VI (VRicx V¥ Rm)
7=0

k
= V" (ARm + (Rm)**) + Z V'Rm % V¥~ Rm

J=1

k
= VEARmM + Z VYV Rm + V¥~ Rm.
j=0

Similar to what we did in the case m—1, we shall substitute VFARm by AV*Rm and

add a compensation term. For any tensor A, we have
k
[VE,AJA = VFAA - AVFA =) "V Rm « V¥ A,
5=0

Hence,

k
% (V*Rm) = AVFRm + > " VI Rm « V"~ Rm.

J=0

Finally, we get from (B.2) and A|A]? = A((4, A)) = (AA, A) +2(VA,VA) that

k
%ykamP = 2(AV*Rm + > VI Rm x V¥ Rm, V*Rm) + Ric  (V*Rm)**
=0 ) (B.3)
= AIV*Rm[* = 2]V*" Rm|* + > VI Rm « V¥~ Rm « V*Rm.

j=0
Now, if £ = m, we get
0 m 2 m 2 - j m—j m
o[V Bmf? < AV Rl + > " Cong V/ Rm||[V™ 7 Rm| |V R,
j=0

where C,,,; depends only on j,m and n, VO < j < m.

Using the inductive hypothesis, we can estimate |V™ 7 Rm| for all 0 < j < m and
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|V/Rm| for all 0 < j < m. Thus, we have

Clm—
\vamF < AV Rm[? 4 (Coo + Coam) K|V ™R + (Z ijcz ~J

(m 7)

> K?V™Rm|

11

< AIV™Rm|* + K (C,’nlvamP + f—mmK|VkRm|> :

vt € (0, ], where C' and C, depend only on m and n. Now, if we regard the term in
parenthesis as an incomplete square, we get a new constant C,,, also depending only on

m and n, such that
9 m 2 m 2 Val m 2 K2
§|V Rm|* < A|V™Rm|* 4+ C,, K [ [V"Rm|* + ) (B.4)
Analogous to the case m = 1, we define a new quantity

m-=1
—Em—k;'tm FIVmR Rm)?.
- !

WE

G = t"|V"Rm|* + B

=
Il

Defined like this, we observe that G satisfies
G < Bp(m — 1)K

when ¢ = 0. Using equation (B.3), we see that there are constants C}, by the inductive

hypothesis, such that for any 1 < k < m, we have

CLK3
tk 7

%yv’meP < AIVFRm|? = 2I]VF Rm|? +

(B.5)

Vt € (0, %]. We observe that we retained the term —2|V*™ Rm| on (B.5), although the

same term was dropped on (B.4). This term will be helpful further on the proof. Now,
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we compute the evolution equation for G.

0 o m—1|vm 2 m 0 m 2 - (m - 1)' m—k—1|vm—k 2
5, G = mt" V" R + t (atw Rm|)+5m;(m_k_1)!t V™ Rm)

- (m — 1)' m—k 0 m—k 2
+6mz(m—k¢)!t gV Bl
k=1
_ K2
<mt™ VT Rm|? +t™ {A|VmRm|2 +CnK <|vam|2 + W)]
(m — 1)' m—k—1|vm—k 2
+6m;(m_k_l)!t V™% Rm|

- (m_l)' m— m— m— am—ng
+ﬁmzﬁt FIAIVTFRm? — 2|V '““Rm]Q—i—tm—_k .

oy
~—

Then we get

) _ _
5C <AG + C,, Kt™ |V Rm|* + mt™ V" Rm|* + C,,K®

= (m — 1)' m— m— ral m—k— m—
+6mZ—(m_,€)! (=24 |V Rm)? + O K A+ (m = k)Y R

which gives us the estimate

%G < AG+ (Cp Kt +m — 28,,) " [V Rm)|* + (@n + Bmdn) K,

where

— (m—1)1—
Cm = Z mcm_k
k=1

In the estimate above, the terms —QEZ:B!!tm_ﬂVm_k“Rm\z compensate the terms

(m —1)!

m(m — k’ + 1)tm_k|Vm_k+1Rm|2
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" (m— m—1) e (e
Z Em ; (m k‘)tm (k—1) |vm kRm|2 Z2§ )'tm k|v (k I)Rm|2 _
k=2 ’

= —1)!
—k+1 tm—k m—(k—1) 2 2 (m tm—k m—(k—1) 2
Z { = ]H ) S(m =k 1)V Rm| R IV Rm|

 (m —1)!
_ Z m—)tm—k|vm—(k—1)Rm|27
(m —k)!
k=2
which is a nice term for our estimate. This is why we work with G, not |V™Rm/? directly.

(Crnatm)

5 we have

Now, if we choose (,, >

9 N\ s
aGgAGJr(CerﬁCm)K

Vvt € [0, £]. Also, we observe that 3,, depends only on n,m and a. Since G' < 3, (m—1)!K?
at t = 0, the scalar case of the maximum principle gives us

sup G(p,t) < Bm(m — 1)1K? + (6m + Bmﬁm) K3t

peEM

< “D)IK?+ (T o VK3
< Bn(m — 1)K +(Cm+ﬂm0m)KK

— [Bnm = !+ (€ + ) 0] K2

for 0 <t < &. Thus, if C,, = \/ﬁm(m -+ (ém + ﬂm@m) a, we get

|G K

. This proves the inductive step and, therefore, the theorem.

I3

for0<t<

=2

Finally, we prove Proposition 5.5.1.

Proposition B.0.1. Let (M", g(t)) be a solution of the Ricci flow on a compact manifold

131



with a fized background metric § and a connection V. If there exists K > 0 such that
[Rm(p,t)]y < K

Vp € M™ and ¥t € [0,T], then for every m € N, there ezists a constant C,, that depends

on m,n, K,T, gy = g(0) and the pair (g, V) such that

V"(p,t)|, < Cn,

Vp e M™ and ¥t € [0,T].

Proof. First, we use the compactness of M" to get a finite atlas in which we have uniform
estimates on the derivatives of the local charts. Then, we fix one of these charts, ¢ :
U C M™ — R". Now, since the pair (g, V) is fixed, we only need to prove that for each
m € N, we can find a constant C,,, depending on m,n, K,I" and gy so that the following

holds
0™ g(p,t)] < C,

Vp € U and Vt € [0,T), where |.| = |.|5 is taken with respect to the Euclidean metric
0 in U. Also, we shall regard I' as a tensor in U, being the difference of the Levi-Civita
connection on g and the background flat metric in U. As expected, we will complete our

proof by induction on m.

In what follows, C' will be a generic constant that may change from line to line, but
it will always depend only on m,n, K,T" and ¢o. Let 5 = B(K,T) so that 0 < § <
min{KT,1}.

Using Corollary 5.5.3.1, we get uniform pointwise estimates for g(t) on (0,7]. Now, we
shall estimate the first derivatives of the metric, i.e., the case m = 1.

o ( 0 o (0 0
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Since |[Rm(p,t)|, < K by hypothesis, we have
0 . ,
E@g = 2|0Ric| < 2|V Ric| + CK|T|. (B.6)

Additionally, we know from equation (3.8) that

0
al—fj = —gkl (VZ'R]'[ + VjRil - VlRij) .

This gives us another estimate:

0
—I' < ic| .
‘at ‘ < C'|VRic|

Now, Corollary 5.5.2.1 says that there exists a constant B = B(m,n, K, ) such that
|V Ric| < B holds on (%, T). Furthermore, since |I'| is bounded on [0, %] by some constant

A= A(K, B, qgo), we see that

D) <A+ BO@ - D)< (B.7)

Vp € M and Vt € [0,T).
Then, since |V Ric| is bounded on |0, %] by some D = D(K, (3, g0), (B.6) gives us

991 < || + CD L+ 2B+ )T - L) < 0
K K
by the maximum principle.
Now, we prove the inductive step. Let a = (aq,...,a,) be any multi-index with

|a| = m. Then, since

o (ol olel
~—(=—gi) =—-2(==—R; ),
ot (axagf) (axa J)
we just need a bound for |0®Ric|. We first consider the case m = 2. Then

0:0; Ry =V,;V Ry + [Pfjvakl + T8V Ry + TV Ry + T, Vi Ry + I‘?lViRkp]

+ [Fq I qu + T qu + FZT?qup + kaF?lRPQ} + [airi‘)kRpl + aiF?lep} :

ip~ gl ip~ gk
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Then, considering the general case, we see that

m m—1
0™ Ric| <> C;|T'||V™ " Ric| + Y C; [0'T| [0" "~ Ric] . (B.8)
=0 =1

Now, by Corollary 5.5.2.1 and using our estimate on |I'|, (B.7), we get

+C Emj C i K777 < C.

=0

Z }F’| |Vm_’R7Lc| < C sup [Z }Vm_iRic|
0<

i=0 <t<% Li=0

For the other term on B.8, we may apply the inductive step, i.e., suppose that |0,07¢|
(equivalently |0P Ric|) has been estimated for all 0 < p < m — 1. Then (B.8) implies that
we have bounds for |0°T'|, with 1 <4 < m — 2. So we just need to estimate |0™'T'| and

our proof is done. Using (3.8) again, we see that

Q o e ) = o gr’?.
ot \ Oxpr ... Qxpm—1" Y OxPr ... OQxpm-1 \ Ot Y

8m—1

QP .. Qxpm—

[—gkl (ViRj + V;Ry — VZRij)] .

Hence, using the inductive hypothesis and Corollary 5.5.3.1, we have

m—1

<CY 0" (g ] |0V Ric|
=0
m—1

<CY o] |0'V Ric| (B.9)
=0

9 am
Zom1r
8156

m—1

<) |9'VRic|,
=0

1

since g being bounded implies that ¢~ is bounded and the same is true for the derivatives

of each one because

ik

— _gjpgkq

6_.%9 83:2 Ipa:

Similarly to what we did in (B.8), we get

i i—1
|0'VRic| <> C; || [V Ric| + Y " C7; |'T| |07 Ric|,

§=0 j=1
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where éj and @j depend only on p and n. Finally, we apply this to (B.9) to get

o m—1 [/ i ' e -1 .
'&8 T SC; (;WHV“ Jch\+;\aﬂr]|a Jch|>.

Since all the terms on the right-hand side have already been bounded, we get a bound on

| 20711 | and therefore, |0™~'T'| < C' + CT and this completes the proof.
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Appendix C

The Maximum Principle and Other

(zeometric Flows

In this Appendix, we briefly introduce the curve shortening flow (CSF) and the mean
curvature flow (MCF), with the aim of showing how the maximum principle and the ideas
developed by Hamilton can be used in other geometric flows. In fact, the CSF can be seen
as the one dimensional case of the MCF. However, it is interesting to study both cases
separately. In particular, we observe the similarity between the results for the Ricci flow
presented in this work and the results for the curve shortening flow in this appendix. The

work presented in here is mainly based on [17], [11], [10] and [15].

Definition C.0.1. A one-parameter family of embedded curves {T'y C R?},c; moves by
curve shortening flow if the normal velocity at each point is given by the curvature vector,

i.e., if we consider embeddings v = (., t) : St x I — R? with Ty = v(S*,t), then

%fy(m,t) — w(z, )N(z,8), (C1)

where Kk is the curvature of the curve and N 1is its inward pointing unit normal vector.

Remark. FEquation (C.1) can also be written as

o _
ot~ 952
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where s is the arc length of . This is almost the heat equation, but the arc length depends

on (z,t) in a nonlinear way, so the curve shortening flow is actually a nonlinear PDE.
Theorem C.0.1. Let vy : S' — R? be an embedded curve. Then there exists a unique

smooth solution ~y : S* x [0,T) — R? of the curve shortening flow

Oy = 027,

7(0) =70,

defined on a maximal time interval [0,T'). Besides, the maximal existence time is charac-

terized by

sup |k(z,t)| = oo.
S1x[0,T)

Proof. For a comprehensive proof of this result, with the use of the Maximum Principle,

see [15]. O

Proposition C.0.1. Let the closed curve y(t) be a solution to the CSF and let L(t) be

the length of the solution at time t, given by

L(t) = / @B,

Then

d
—L(t) = — ’d
Gl == [ wds

that is, the curve shortening flow is the gradient flow of the length functional. Therefore,

it shortens curves in the fastest way possible.
Proof. See [10], Lemma 3.1.2. O

Proposition C.0.2. Let the closed curve y(t) be a solution to the CSF and let A(t) be

the area enclosed by the solution at time t, then

d
L A@) = —on,
o (1) T
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; — A(0)
In particular, A(t) = A(0) — 27 and T < 5>,
Proof. See [10], Lemma 3.1.7. O

Proposition C.0.3. If {T'; C R?} evolves by the curve shortening flow, then its curvature

evolves by
_ 3
Ry = Rgs + K )

where s denotes arc length.
Proof. See [10], Lemma 3.1.6. O

Corollary C.0.1.1. Convezity is preserved under curve shortening flow, .e., if K > 0 at

t =0 then k>0 for allt € [0,T).

Proof. See [10]. This is a direct consequence of the proposition above and the maximum
principle. In fact, if Ky, () = minr, k is positive at ¢ = 0, then it is nondecreasing in

time and satisfies

min(t) 2 ————5—=-
fomin(t) 2 77 2tk2 . (0)

]

Theorem C.0.2. There exist constants C,,(K,T) < oo such that if {Ty C R?*} is a

solution of the curve shortening flow with

sup |i] < K.
te[0,T)
then
Cm
sup [0 k| < —.
I t2
Proof. For a proof using the maximum principle, see [15]. ]

Theorem C.0.3. IfI' C R? is a closed embedded curve, then the curve shortening flow

{Ti}eepory with Lo =T exists until T = %:) and converges for t — T to a round point,
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i.e., there exists a unique point xo € R? such that the rescaled flows
T} = ATy -2 ap)

converge for X — oo to the round shrinking circle {0B /5 }ie(—o0,0)-

Proof. See [11]. O

Now we state some results regarding the mean curvature flow. Consider a closed
surface M"™ = M]', n > 2, which is uniformly convex and embedded in R"™. Let Fyy : U C
R™ — M, be a local chart to M. Then we say that a family of hypersurfaces M (t) C R"

evolves by the mean curvature flow if there exist local charts satisfying

%F(x,t) =ANF(X,t)=—H(x,t)v(z,t), (C.2)

F(.,0) = K, (C.3)

where A, is the Laplace-Beltrami operator on the manifold M;, given by F(.,t), H(.,t) is

the mean curvature of M, and v(.,t) is the outer unit normal on M,.

Theorem C.0.4. The evolution equation C.2 has a solution M; for a short time with any

smooth closed initial surface M = My at t = 0.
Proof. See [|17]. O

Lemma C.0.5. The metric of My satisfies

2H]'Lz'j,

agzj = -

where h;; are the coefficients of the second fundamental form A(t) of M;.

Proof. See [17], Lemma 3.2. O
Lemma C.0.6. The unit normal to M, satisfies %V =VH.

Proof. See [17], Lemma 3.3. O

Proposition C.0.4. The mean curvature of M; satisfies

o
—H = AH + |A]?H.
T + [A]
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Proof. See [17], Corollary 3.5. O

Remark. Observe that H satisfies a heat-type equation and we have the following estimate

0 1.
—H>AH +~-H°. 4
ot * n (C-4)

Then, if H(xz,0) > 0 VYo € M™, then we can consider ¢(t) solution of the associated ODE

#(0) = 50), (5
2(0) = Hypin(0) > 0, (C.6)

The maximum principle says that H(x,t) > ¢(t) as long as the solution exists. There-

fore,

Hmin(o)
V1 2H2,,(0)

H(z,t) > > 0.

Inspired by Hamilton’s approach, Huisken studied the eigenvalues of the second fun-
damental form for the MCF, showed that we have bounds on the gradient of the mean
curvature and for the higher derivatives of A, proved that the mean curvature becomes
constant as t — T, T being a maximum time interval for the existence of the mean curva-
ture flow. Finally, with the help of the maximum principle, Huisken proved the following

result.

Theorem C.0.7. Let n > 2 and assume that My is uniformly convex, i.e., the eigenval-
ues of its second fundamental form are strictly positive everywhere. Then the evolution
equation (C.2) has a smooth solution on a finite time interval [0,T) and M; converges to
a single point ast — T. The normalized version of the flow has a solution for all positive

time and My converges exponentially to a sphere of area A(0) in any C*—norm.
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