
Universidade de Brasília

Instituto de Ciências Exatas

Departamento de Matemática

On the Maximum Principle and the

Ricci Flow

Autor: Lucas Lavoyer de Miranda 1

Orientadora: Keti Tenenblat

Brasília

2020

1O autor foi bolsista do CNPq e da CAPES durante a elaboração deste trabalho.





Ficha catalográfica elaborada automaticamente, 
com os dados fornecidos pelo(a) autor(a)

dL414o
de Miranda, Lucas Lavoyer
   On the Maximum Principle and the Ricci Flow / Lucas
Lavoyer de Miranda; orientador Keti Tenenblat. -- Brasília,
2020.
   147 p.

   Dissertação (Mestrado - Mestrado em Matemática) --
Universidade de Brasília, 2020.

   1. Geometria Diferencial. 2. Fluxo de Ricci. 3. Princípio
do Máximo. 4. Ricci Flow. 5. Maximum Principle. I.
Tenenblat, Keti, orient. II. Título.



Agradecimentos

Agradeço primeiramente à minha família; em especial meus pais, Waldemiro e Ana

Cláudia, e meu irmão, Léo, pelo apoio constante em toda a minha vida e por sempre

terem incentivado meus estudos.

Agradeço à Brenda; pelo companheirismo, incentivo e carinho ao longo de todo esse

processo, o que certamente tornou a caminhada muito mais fácil.

Aos amigos da Doze e da Confra, pela amizade irrestrita; muito obrigado.

Agradeço também aos colegas do MAT, tanto de graduação quanto de mestrado, pela

companhia durante as aulas, estudos e discussões, que contribuíram substancialmente em

minha formação. Em particular, agradeço ao Valter, pelas discussões incessantes sobre o

fluxo de Ricci e vários outros assuntos, sem as quais esta dissertação não seria possível.

Agradeço à toda equipe do MAT-UnB, em especial aos professores João Paulo dos

Santos, Jaqueline Mesquita e João Carlos Pádua, pela contribuição ímpar que trouxeram

para a minha trajetória.

Por fim, agradeço à minha orientadora, Keti Tenenblat, por ter me dado a chance de

estudar sob sua orientação ainda como aluno de graduação, em forma de uma iniciação

científica. Praticamente tudo que sei sobre Geometria Diferencial veio de orientações,

conversas e sugestões da professora Keti. Obrigado também por ter aceitado este tema

desafiador e estimulante como minha dissertação de mestrado, pelo incentivo total e pela

confiança. Levarei, de nossas conversas, inúmeros ensinamentos extremamente valiosos,

que vão muito além da Matemática.

To do Mathematics is to be, at once,

touched by fire and bound by reason,

Jordan Ellenberg



Abstract

Nesta dissertação, será apresentado um estudo sobre o princípio do máximo para

escalares e fibrados vetoriais sobre variedades compactas e algumas aplicações sobre o

fluxo de Ricci, tendo como objetivo final demonstrar importantes resultados obtidos em

1982 por Richard Hamilton. Iremos introduzir o fluxo de Ricci, calcular as equações de

evolução de importantes objetos geométricos, demonstrar a existência e unicidade local

do fluxo e procurar compreender os obstáculos para existência para todo tempo. Por fim,

comentaremos o principal resultado do artigo de Richard Hamilton, que afirma que toda

variedade Riemanniana de dimensão 3 compacta e sem bordo com curvatura de Ricci

estritamente positiva admite uma métrica com curvatura seccional positiva constante e,

portanto, é difeomorfa à esfera tridimensional (caso seja simplesmente conexa) ou ao quo-

ciente da esfera por algum grupo finito de isometrias agindo livremente na variedade. Os

resultados apresentados apareceram em artigos publicados e esta dissertação é majoritari-

amente baseada nos artigos de 1982 e de 1984 de Richard Hamilton, nas notas sobre o

fluxo de Ricci de Petter Topping e no livro de Bennet Chow e Dan Knopf sobre o fluxo

de Ricci, assim como seus volumes subsequentes.



Abstract

In this dissertation, we will provide a study of the maximum principle both for scalars

and for vector bundles on compact manifolds, as well as an introduction to the Ricci flow,

with the goal of proving some important results due to Richard Hamilton, obtained in

1982 in his first paper on the Ricci flow. We shall introduce the Ricci flow, compute several

evolution equations for some important geometric entities, prove short time existence and

uniqueness of the Ricci flow and try to understand what are the obstacles for long time

existence. Finally, we comment on Hamilton’s main result from his seminal 1982 paper,

that says that every three-dimensional closed Riemannian manifold with strictly positive

Ricci curvature admits a metric with constant positive sectional curvature and, therefore,

is diffeomorphic to the three dimensional sphere (if it’s simply connected) or a quotient

of the sphere by a finite group of isometries acting freely on it. All these results appeared

in published papers and this dissertation is mainly based on Hamilton’s 1982 and 1984

papers, Peter Topping’s lecture notes on the Ricci flow and Bennet Chow’s and Dan

Knopf’s book on the Ricci flow and its sequels.
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Chapter 1

Introduction

The search for a canonical metric on a given manifold has always been a central ques-

tion in differential geometry and this usually provides deep implications regarding the

topology of the manifold. In dimension two, the Uniformization Theorem, for instance,

shows that if a manifold is compact, then we always have a metric with constant curva-

ture, which in turn gives us a complete topological classification of such manifolds. If the

dimension of the manifold is 3 or higher, the search for an analogous result has been a

big question in modern mathematics.

In this direction, W. Thurston introduced, in the late 70s, the Geometrization Con-

jecture, which basically says that every closed 3-manifold can be canonically decomposed

into pieces such that each admits a unique geometric structure, i.e., a complete locally

homogeneous Riemannian metric. The famous Poincaré Conjecture, which says that ev-

ery simply connected closed 3-manifold is homeomorphic to the 3-sphere, is a corollary of

the Geometrization Conjecture.

With the bold aim of proving the Poincaré Conjecture, Richard Hamilton introduced

the Ricci flow in his seminal 1982’s paper [14]. The Ricci flow is a geometric evolution

equation in which one starts with a Riemannian manifold (Mn, g0) and evolves its metric

in the direction of the Ricci tensor by the equation

∂

∂t
g = −2Ric,
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which is a nonlinear reaction diffusion equation for metrics (often called heat-type equa-

tion), motivated by the harmonic heat flow introduced by Eells and Sampson in 1964

([18]). After Hamilton’s 1982 paper, a lot of innovations based on his work and sub-

sequent papers have greatly impacted the field of geometric analysis. For example, the

pinching estimates for 3-manifolds with positive Ricci curvature show that the eigenvalues

of the curvature tensor become closer to each other as the curvature becomes large during

the evolution of the flow. Another curvature estimate, due to Hamilton and Ivey, proves

that the solutions that form singularities in dimension 3 must have nonnegative sectional

curvature, which enables a detailed analysis of the formation of singularities in dimension

three. Another application worth mentioning is the Li-Yau-Hamilton-type differential

Harnack Inequality, which provides an a priori estimate for an expression which involves

the curvature, its first and second spatial derivatives. For a good presentation of several

results, see for example [3].

After a systematic development of the subject, a lot due to Hamilton himself, the Ge-

ometrization Conjecture was proved (and, therefore, the Poincaré Conjecture) by Grisha

Perelman in his papers [24], [23] and [22], where he showed that the Ricci flow can be

seen as a gradient flow for a certain functional. In his 1982’s result, Hamilton showed

that in the case of strictly positive Ricci curvature the Ricci flow develops a singularity

simultaneously everywhere in the manifold as we approach a maximal time, which is finite.

One of the most important techniques when studying the Ricci flow is the maximum

principle, which provides a lot of the estimates needed to prove the central results regard-

ing the Ricci flow. The maximum principle was already a great tool to study second order

elliptic and parabolic PDEs. However, in [14] and [12] Hamilton showed that one could

still use the maximum principle on sections of vector bundles over compact manifolds.

With the Ricci flow, Hamilton introduced a very general method to study geometric

evolution equations. Based on Hamilton’s approach, not only mathematicians started

working on Ricci flow, but also on other geometric flows, such as the curve shortening

flow and mean curvature flow, with contributions by Huisken, Ecker, Grayson, Hamilton
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himself and others (for a brief introduction to these results, see Appendix C). In the fol-

lowing decades, the Ricci flow was widely used (and is still used) to study the topology,

geometry and complex structure of manifolds.

In this dissertation, we aim to provide an introduction to the Ricci flow, discussing

some of the most used techniques and a few classical results obtained with the use of

this geometric flow. The work is organized as follows. In Chapter 2, we state important

concepts from Riemannian Geometry and Lie algebras in order to provide the necessary

background for the rest of the work.

In Chapter 3, we present evolution equations for several geometric quantities, such

as the metric and its inverse, the Riemann, Ricci and scalar curvatures, the Levi-Civita

connection and the volume form. Besides, we prove short-time existence for the Ricci

flow, following DeTurck’s work [9], which simplified Hamilton’s original argument.

Chapter 4 is dedicated to the maximum principle, one of the central techniques on

Hamilton’s work on the Ricci flow. In his second paper regarding the Ricci flow, [12],

Hamilton introduced the maximum principle on vector bundles, based on Weinberger’s

maximum principle for systems (see [29]). In this chapter, we present the maximum prin-

ciple for scalars and for vector bundles, as well as key concepts from convex analysis that

are necessary to understand the second one.

Finally, in Chapter 5 we deal with the Ricci flow on closed 3-manifolds with initially

positive Ricci curvature. In his first paper on the Ricci flow, Hamilton proved that

applying the Ricci flow to such a manifold, after a rescaling of the metric in order to keep

the volume constant, one gets a limit metric which is smooth and has constant positive

sectional curvature, which implies that the initial manifold is diffeomorphic to a quotient

of S3 by finite groups of isometries acting freely on it. We prove some of the results

that enabled Hamilton to prove his main theorem, but by using more recent techniques,

developed after Hamilton’s paper which are equivalent to his arguments. One essential

result is to show that the only obstacle to continue the flow is the curvature becoming
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unbounded. After that, we obtain upper and lower estimates for the curvature, which

enables us to prove that the sectional curvatures approach each other as we evolve the

flow. In the end of the chapter, we make a brief comment on the normalized Ricci flow

(rescaling the metric), which enabled Hamilton to complete the proof of his main result.
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Chapter 2

Preliminary Results

In this chapter, we aim to give a brief introduction to some results that will be useful

for us in the following chapters. We will assume some familiarity with the basic concepts

from Riemannian Geometry, such as the definition of a manifold, a Riemannian metric

and basic properties of the curvatures. The majority of the results in here can be found

in [4],[5], [7], [16], [20], [21], [25] and [28].

Let {xi} be local coordinates in a neighborhood U of p ∈ M. In U, the vector fields

{ ∂
∂xi
} form a local basis of TM and {dxi} form a dual basis for T ∗M. Then we may write

the metric in local coordinates as g = gijdx
i ⊗ dxj, where we have used the Einstein

summation convention (which will be used throughout the whole dissertation).

Definition 2.0.1. We define the (3,1)-Riemann curvature tensor, denoted by Rm,

as follows

Rm(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

The components of the (3,1)-tensor Rm are given by

Rm

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
:= Rl

ijk

∂

∂xl
.

We also define the (4,0)-Riemann curvature tensor by taking the inner product with an-
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other vector field. Then its components are given by

Rijkl = glmR
m
ijk.

Definition 2.0.2. If P ⊂ TpM is a 2-plane, then the sectional curvature of P is

defined by K(P ) := g(Rm(e1, e2)e2, e1), where {e1, e2} is an orthonormal basis of P. This

definition is independent of the choice of such a basis.

Definition 2.0.3. The Ricci tensor, denoted by Ric, is defined as the trace of the

Riemann curvature tensor Ric(X, Y ) := trace(Z 7→ Rm(Z,X)Y ). Its components are

given by

Rjk = Ric

(
∂

∂xj
,
∂

∂xk

)
=

n∑
i=1

Ri
ijk.

The scalar curvature, denoted by R, is the trace of the Ricci tensor, i.e.,

R = gijRij,

where gij = (g−1)ij is the inverse of the metric.

It is also important to define the covariant derivative of a tensor. If α is an

(r,s)-tensor, we define its covariant derivative by:

∇Xα(Y1, . . . , Yr) := ∇X (α (Y1, . . . , Yr))−
r∑
i=1

α (Y1, . . . ,∇XYi, . . . , Yr) .

Hence, we may consider the covariant derivative as

∇ : C∞(⊗r,sM) −→ C∞(⊗r+1,sM),

where ∇α(X,Z1, . . . , Zr) := ∇Xα(Z1, . . . , Zr).

Our first results, which will be important for many calculations later on, are the

Bianchi identities. If Rijkl are the components of the Riemann Curvature tensor on a given

coordinate system, Rij are the components of the Ricci tensor on this same coordinate
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system and R is the scalar curvature, then the first and the second Bianchi identities

are:

Rijkl +Rjkil +Rkijl = 0 (2.1)

and

∇iRjklm +∇jRkilm +∇kRijlm = 0. (2.2)

The twice contracted second Bianchi identity is

2gij∇iRjk = ∇kR. (2.3)

Definition 2.0.4. Let (Mn, g) be a connected Riemannian manifold. We say that (Mn, g)

is an Einstein manifold if

Ric = fg,

where f : M −→ R is a function.

Using the Bianchi identities, one can prove the following result.

Theorem 2.0.1. Let (Mn, g) be an Einstein manifold. Then, if n ≥ 3, we get that f is

a constant. In particular, if n = 3, then M3 has constant sectional curvature.

We would also like to introduce the Lie derivative, which, in a certain sense, measures

the lack of invariance of a tensor with respect to a family of diffeomorphisms generated

by a vector field.

Definition 2.0.5. Let α be a tensor and X a complete vector field generating a global

1-parameter group of diffeomorphisms ϕt. The Lie derivative of α with respect to X is

defined by

LXα := lim
t→0

1

t
(α− (ϕt)∗α), (2.4)

where (ϕt)∗ = (ϕ−1
t )∗ : T ∗pM −→ T ∗ϕt(p)M.

Now, since we defined the Riemann curvature as the commutation of covariant deriva-

tives acting on vector fields, we may also express the commutation of covariant derivatives
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acting on tensors in terms of the curvature. This is given by the Ricci identities:

(∇i∇j −∇j∇i)αk1...kr = −
r∑
l=1

Rm
ijkl
αk1...kl−1mkl+1...kr , (2.5)

where α is a (s,r)-tensor. In particular, if α is a 2-tensor, then

∇i∇jαkl −∇j∇iαkl = −Rp
ijkαpl −R

p
ijlαkp. (2.6)

Throughout this dissertation, it will be more convenient to do our computations in

local coordinates rather than in an orthonormal moving frame. This is mostly due to the

fact that the Ricci flow evolves the metric, so we can choose a fixed coordinate system. If

we were doing our computations on a moving frame, we would have to take into account

the evolution of the moving frame if we want it to remain orthonormal. Besides, since

the majority of our equations are tensorial, we can always choose geodesic coordinates

centered on a given point to do our calculations.

Now we define the so called Kulkarni-Nomizu product, which will be used to give

a particularly useful decomposition of the Riemann curvature tensor.

Definition 2.0.6. Let S2M = T ∗M ⊗S T ∗M be the bundle of symmetric 2-tensor. Then

we define the Kulkarni-Nomizu product � acting on S2M × S2M by

(α� β)ijkl := αilβjk + αjkβil − αikβjl − αjlβik.

This gives us the following decomposition for the Riemann tensor:

Rm =
R

2n(n− 1)
(g � g) +

1

n− 2

(
R̊ic� g

)
+W,

where R̊ic = Ric− R
n
g is the trace-free part of the Ricci tensor and W is the Weyl

tensor, which is defined implicitly by the expression above.

Proposition 2.0.1. If n=3, the Weyl tensor is identically zero.

Proof. For a simple proof of this result, see [14].
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Then, by the proposition above, we have the following expression, which relates the

Riemann curvature tensor and the Ricci tensor on dimension 3:

Rijkl = Rilgjk +Rjkgil −Rikgjl −Rjlgik −
R

2
(gilgjk − gikgjl). (2.7)

This last expression will be extremely important to prove that the Ricci flow preserves

certain quantities, such as positive Ricci curvature.

In order to prove short-time existence for the Ricci flow, we will have to calculate

the principal symbol of Ric(g(t)). To do so, we define the linearization of a nonlinear

differential operator.

Definition 2.0.7. Let F : C∞(E) −→ C∞(Ẽ) be a nonlinear differential operator

F (p, ∂ku), where E, Ẽ are vector bundles over M, p ∈ M and u ∈ C∞(E). Then the

linearization of F at u is the linear operator

Pv =
d

dt
F (p, ∂kU(t))

∣∣∣∣
t=0

, (2.8)

where U(t) ∈ C∞(E) for all t, U(0) = u and U ′(0) = v.

Now we state a result that shall be used in this dissertation, the famous Bonnet-

Myers theorem, in which one assumes bounds on the Ricci tensor and gets information

on the topology of the manifold.

Theorem 2.0.2. Let (Mn, g) be a complete Riemannian manifold. If there is a constant

k > 0 such that Ric ≥ (n− 1)k > 0, then Mn is compact and diam(M, g) ≤ π√
k
.

In the rest of this chapter, we introduce the concept of a Lie algebra and provide a

few details on the identification of tensor spaces and Lie algebras. This identification will

be useful to us in Chapter 5 when trying to get a better grasp of the evolution equation

of the Riemann curvature tensor under the Ricci flow.

Definition 2.0.8. A Lie algebra G over a field K is a vector space over K together with

a bi-linear map, called the Lie bracket, [·, ·] : G × G −→ G satisfying:

1. [v, v] = 0 for all v ∈ G,

11



2. [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 for all u, v, w ∈ G. (Jacobi identity)

Now suppose G has an inner product 〈, 〉 and {ϕα} is an orthonormal basis for G. We

defined the structure constants cαβγ for the Lie bracket with respect to {ϕα} by

[ϕα, ϕβ] = cαβγ ϕγ.

Since our basis is orthonormal, we have

cαβγ = 〈[ϕα, ϕβ], ϕγ〉.

Using properties 1 and 2 of the Lie bracket, it is easy to check that the structure constants

are fully anti-symmetric.

A special case of a Lie algebra arises when we have a vector space V and consider

E = End(V ), the algebra of operator endomorphisms of V. Then E can be made into a

Lie algebra over R by defining the bracket

[X, Y ] := X · Y − Y ·X.

In this case, the Lie algebra is called the general Lie algebra gl(V ). If V = Rn, then

we have, for instance, the general linear Lie algebra gl(n,R) of all n × n real matrices.

Furthermore, the special linear Lie algebra sl(n,R) is the set of real matrices of trace 0

and is a subalgebra of gl(n,R).More important to us will be the special orthogonal Lie

algebra so(n,R) = {X ∈ sl(n,R);XT = −X}, i.e., the set of skew-symmetric matrices.

Now we consider a real n-dimensional vector space V with an inner product 〈, 〉. Let

{eα}nα=1 be an orthonormal basis for V. Consider the tensor space V ⊗ V, which is the

space of the linear applications defined by

x⊗ y : z 7→ 〈y, z〉x, (2.9)
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for any x, y ∈ V. We may endow the tensor space V ⊗ V with an inner product

〈x⊗ y, u⊗ v〉 = 〈x, u〉〈y, v〉.

Then {eα ⊗ eβ} forms an orthonormal basis for V ⊗ V. In fact,

〈eα ⊗ eβ, eγ ⊗ eη〉 = 〈eα, eγ〉〈eβ, eη〉 = δγαδ
η
β,

which shows that this basis is actually orthonormal.

Let Eαβ be the matrix with 1 in the (α, β) − th entry and 0 in the other entries.

Then EαβEλη = δβλEαη. We consider the following identification gl(n,R) ∼= V ⊗ V, where

Eαβ ∼ eα ⊗ eβ. Since any matrix A ∈ gl(n,R) can be written as

A =
∑
αβ

aαβEαβ,

where aαβ ∈ R, under this identification the inner product on gl(n,R) can be given by

〈A,B〉 = 〈aαβEαβ, bγηEγη〉

=
∑
α,β,γ,η

aαβbγη〈Eαβ, Eγη〉

=
∑
α,β,γ,η

aαβbγη〈eα ⊗ eβ, eγ ⊗ eη〉

=
∑
α,β,γ,η

aαβbγηδ
γ
αδ

η
β

=
∑
α,η

aαηbαη = tr(ATB).

for any A,B ∈ gl(n,R).

Define the second exterior power of V, denote by Λ2V = V ⊗ V/I, where I is the

ideal generated by x⊗ x for every x ∈ V. We define the linear transformation

x ∧ y : z 7→ 〈y, z〉x− 〈x, z〉y, (2.10)
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for all x, y ∈ V and observe that x ∧ y = −y ∧ x. We also define the inner product on

Λ2V by

〈x ∧ y, u ∧ v〉 = 〈x, u〉〈y, v〉 − 〈x, v〉〈y, u〉. (2.11)

With respect to this inner product, {eα∧eβ}α<β forms an orthonormal basis for the vector

space Λ2V. Using the linear transformation above, we may identify

Λ2V ∼= so(n) ∼= Rm,

where m = n(n−1)
2

. This can also be seen by mapping eα∧eβ to the skew-symmetric matrix

Eαβ − Eβα. With this identification, the inner product on so(n) is given by

〈A,B〉 =
1

2
tr(ATB). (2.12)

In fact, if A =
∑
α<β

aαβ(Eαβ − Eβα) and B =
∑
λ<η

bλη(Eλη − Eηλ), with aαβ, bλη ∈ R, then

〈A,B〉 =
∑
α<β

aαβbαβ =
1

2
tr(ATB) = −1

2
tr(AB).

If we look at A =
∑
α<β

aαβ(Eαβ − Eβα) ∼= (a12, . . . , a(m−1)m), we may identify so(n) with

Rm, m = n(n−1)
2

, with the Euclidean product.

A particular case of the above formulation is when n = 3 and V = R3. Then

Λ2V ∼= so(3) ∼= R3, where the Lie Bracket in R3 is given by the usual cross product.

Finally, we consider the dual space Λ2V ∗. Let {ωα} be the dual basis to {eα}. Then

we define ωα ∧ ωβ by

ωα ∧ ωβ(eγ, eη) := ωα(eγ)ω
β(eη)− ωα(eη)ω

β(eγ) = δγαδ
η
β − δ

η
αδ

γ
β .

The inner product on this space is given by (2.11), but now it is applied to dual vectors,
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i.e.,

〈ωα ∧ ωβ, ωγ ∧ ωη〉 = 〈ωα, ωγ〉〈ωβ, ωη〉 − 〈ωα, ωη〉〈ωβ, ωγ〉.

Then we define the Lie Bracket

[ωα ∧ ωβ, ωγ ∧ ωη] = δαηω
β ∧ ωγ + δβγω

α ∧ ωη − δαγωβ ∧ ωη − δβηωα ∧ ωγ.

Any ϕ ∈ Λ2V ∗ can be written as

ϕ =
1

2

∑
α,β

ϕαβω
α ∧ ωβ =

∑
α<β

ϕαβω
α ∧ ωβ, (2.13)

where ϕαβ := ϕ(eα, eβ). Then the definition of the Lie bracket above enables us to define

the components of the bracket, with respect to this basis, by

[ϕ, ψ]αβ := ϕαγψγβ − ψαγϕγβ, (2.14)

for any ϕ, ψ ∈ Λ2V ∗. We identify Λ2V ∗ to so(n) by considering ωα ∧ ωβ 7→ Eαβ − Eβα.

With this identification, the inner product in so(n) is given by

〈A,B〉 =
1

2
tr(ATB),

for all A,B ∈ so(n), just like we did it above.

Now suppose {ϕα} is an orthonormal basis for Λ2V ∗, with structure constants cαβγ ,

and suppose {σα} is an orthonormal basis for Λ2V dual to {ϕα}. Then the corresponding

structure constants for this dual basis are given by

[σα, σβ] = cγαβσγ.

Identifying Λ2V with Λ2V ∗, we get that cγαβ = cαβγ .

We now consider a Lie algebra G endowed with an inner product 〈, 〉. Let {ϕα} be a
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basis of G and let Cαβ
γ denote its structure constants. Also, let {ϕ∗α} denote the basis

algebraically dual to {ϕα}, so that ϕ∗α(ϕβ) = δαβ. Let L be a symmetric bilinear form on

G∗. Then we may regard L as the element of G ⊗S G whose components are given by

Lαβ := L(ϕ∗α, ϕ
∗
β).

Furthermore, we may define an operation # on G⊗SG, which is commutative, bi-linear

and is given by

(L#M)αβ := Cγε
α C

δξ
β LγδMεξ. (2.15)

Then we define the Lie algebra square L# ∈ G ⊗S G of L by

(L#)αβ := (L#L)αβ = Cγε
α C

δξ
β LγδLεξ.

Now we prove a result that will soon be useful for us.

Lemma 2.0.3. If L ≥ 0, i.e., if for every u ∈ G, L(u, u) ≥ 0, then L# ≥ 0.

Proof. Let {ϕα} be a basis for G such that L is diagonal in this basis, so that Lαβ = δαβLαα.

Then for v = vαϕ∗α in G∗, we get

L#(v, v) = (vαCγδ
α )(vβCεξ

β )LγεLδξ = (vαCγδ
α )2LγγLδδ.

Therefore, L# ≥ 0.

Remark. 〈, 〉 on G defines a metric isomorphism G −→ G∗ by v 7→ 〈v, 〉. Hence we are

able to consider L : G −→ G as a self-adjoint endomorphism.

In chapter 5, we will study the case when V = TMn, where Mn is a Riemannian

manifold. Then ∧2TpM ∼= ∧2Rn ∼= so(n) ∼= Rm for each p ∈Mn, where m =
n(n− 1)

2
. In

particular, we consider the case when n = 3 andM3 is a closed manifold. We would like to

get an expression for the # operator. Let {ei} be a globally defined orthonormal moving

frame and {ωk} be the dual frame to {ei}, so that ωk(ei) = δik. Then the dimension of

∧2TM3 is m = 3 and we may write a basis {θk} of ∧2TM3 by
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θ1 =
1√
2
e2 ∧ e3 ∼


0 0 0

0 0 1√
2

0 −1√
2

0

 ,

θ2 =
1√
2
e3 ∧ e1 ∼


0 0 −1√

2

0 0 0

1√
2

0 0

 ,

θ3 =
1√
2
e1 ∧ e2 ∼


0 1√

2
0

−1√
2

0 0

0 0 0

 ,

where the matrices above are just the normalized versions of E23 − E32, E13 − E31 and

E12−E21. Note also that when n = 3, the Lie algebra bracket on so(3) with inner product

being just the Euclidean inner product corresponds to the cross product on R3. Then,

using equation (2.15), we may compute the Lie algebra square:


a b c

b d e

c e f


#

=


df − e2 ce− bf be− cd

ce− bf af − c2 bc− ae

be− cd bc− ae ad− b2


since 〈[θi, θj], θk〉 = Ck

ij is fully alternating in i, j, k and the Lie structure constants are

given by

Cγ
αβ =


1√
2

if (αβγ) is a positive permutation of (123)

−1√
2

if (αβγ) is a negative permutation of (123)

0 for all the other cases.

(2.16)

Therefore, the matrix (B#) is just the adjoint matrix of B :

B# = det(B)(B−1)T . (2.17)
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Chapter 3

Short Time Existence for the Ricci Flow

In this chapter, we will prove that a solution for the Ricci flow always exists on a short

time interval, regardless of the initial metric g(0). Given a smooth family of metrics g(t),

we can compute the variations of the Levi-Civita connection and its associated curvature

tensors. First, we will consider a general variation ∂
∂t
gij = vij, where v is any symmetric

2-tensor. Note that if v = −2Ric, then we have the Ricci flow. After that, we shall see

that the Ricci tensor can be seen as a nonlinear-partial differential operator on the space

of positive definite symmetric (2,0)-tensors, i.e., Riemannian metrics on M.

Inspired by that, we will calculate the linearization of the Ricci Tensor and its principal

symbol. This will allow us to prove that the Ricci flow is not strictly parabolic. Motivated

by that, we will introduce the Ricci DeTurck flow, that modifies the Ricci Flow into a

strictly parabolic equation, which has a solution on a short interval because of the theory

of parabolic PDEs. Finally, we will show that using the solution to this modified flow,

we get a unique solution to the original Ricci flow. The variation formulas below can be

found in [1] and the results on the Ricci flow can be found in [14], [9], [5] and [28].
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3.1 Variation Formulas

As mentioned above, we will consider the following differential equation for a smooth

family of metrics g(t) on Mn

∂

∂t
gij = vij,

g(0) = g0,

(3.1)

where v is any symmetric 2-tensor on M.

First, we recall that, although a connection is not a tensor, the difference of two

connections, say ∇t and ∇t0 , is a tensor. In fact, if f ∈ C∞(M) and X, Y are vector fields

over M, then

(
∇t0
Y −∇

t
Y

)
(fX) = ∇t0

Y (fX)−∇t
Y (fX)

= Y (f)X + f∇t0
YX − Y (f)X − f∇t

YX = f
(
∇t0
Y −∇

t
Y

)
(X).

In particular, if we take the limit t→ t0, it is not difficult to see that ∂
∂t
∇ is a tensor.

Lemma 3.1.1. Let g(t) be a family of metrics such that g(t) solves (3.1). Then the

inverse of the metric, g−1(t), evolves by

∂

∂t
gij = −gikgjlvkl.

Proof. Just remember that δil = gikgkl. This gives us

0 =

(
∂

∂t
gik
)
gkl + gikvkl,

consequently
∂

∂t
gij =

(
∂

∂t
gik
)
gklg

jl = −gikgjlvkl.

Lemma 3.1.2. For a solution g(t) of (3.1), the variation of the Christoffel symbols is

given by
∂

∂t
Γkij =

1

2
gkl (∇ivjl +∇jvil −∇lvij) .
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Proof. Recall that in local coordinates {xi}, if ∂i = ∂
∂xi
, we have Γkij = 1

2
gkl (∂igjl + ∂jgil − ∂lgij) .

If we take geodesics coordinates centered at p ∈M, then

Γkij(p) = ∂igjk(p) = ∇∂i∂j(p) = 0.

In particular, if A is a 2-tensor, then

(∇iA)(∂j, ∂k)(p) = ∂i(A(∂j, ∂k))(p)− A(∇i∂j(p), ∂k)− A(∂j,∇i∂k(p)),

so ∇iAjk = ∂iAjk at p. Thus, we obtain

∂

∂t
Γkij(p) =

1

2

(
∂

∂t
gkl
)

(∂igjl + ∂jgil − ∂lgij) (p)

+
1

2
gkl
(
∂i
∂

∂t
gjl + ∂j

∂

∂t
gil − ∂l

∂

∂t
gij

)
(p)

=
1

2
gkl (∇ivjl +∇jvil −∇lvij) (p).

Since both sides of the above expression are components of a tensor (as we stated in

the beginning of the section), this equation is valid for any p ∈ M in any coordinate

system.

Lemma 3.1.3. If g(t) is a solution to equation (3.1), then the evolution of the Riemann

curvature tensor Rm is given by

∂

∂t
Rl
ijk =

1

2
glp(∇i∇jvkp +∇i∇kvjp −∇i∇pvjk

−∇j∇ivkp −∇j∇kvip +∇j∇pvik).

Proof. In local coordinates {xi}, we have the formula

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp,

then we can apply the same reasoning as in Lemma 3.1.2 to infer:

∂

∂t
Rl
ijk =∂i

∂

∂t
Γljk − ∂j

∂

∂t
Γlik +

∂

∂t

(
Γpjk
)

Γlip

+ Γpjk
∂

∂t

(
Γlip
)
− ∂

∂t
(Γpik) Γljp − Γpik

∂

∂t

(
Γljp
)
.
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Using geodesic coordinates centered at p ∈M, the Christoffel symbols vanish at p and we

get from Lemma 3.1.2

∂

∂t
Rl
ijk(p) =∇i

[
1

2
glp (∇jvkp +∇kvjp −∇pvjk)

]
−∇j

[
1

2
glp (∇ivkp +∇kvip −∇pvik)

]
.

Since ∇ig
lp(p) = 0, the result follows.

Remark. If we commute the derivatives in Lemma 3.1.3 and use the Ricci identities

(2.6), we can also write

∂

∂t
Rl
ijk =

1

2
glp(∇i∇kvjp +∇j∇pvik −∇i∇pvjk −∇j∇kvip −Rq

ijkvqp −R
q
ijpvkq).

Lemma 3.1.4. The evolution of the Ricci tensor Ric is given by

∂

∂t
Rjk =

1

2
glm (∇l∇jvkm +∇l∇kvjm −∇l∇mvjk −∇j∇kvlm) . (3.2)

Proof. Using Lemma 3.1.3,

∂

∂t
Rl
ljk =

1

2
glm (∇l∇jvkm +∇l∇kvjm −∇l∇mvjk)

+
1

2
glm (−∇j∇kvlm −∇j∇lvkm +∇j∇mvlk) .

Note that since we have a summation over l and m and v is symmetric, the last two

terms vanish. Hence, the result follows.

Remark. Recall that the divergence of a (2,0)-tensor v is given by

(δv)k := n− (divv)k = −gij∇ivjk,

and denote the Lichnerowicz Laplacian of a (2,0)-tensor by

(∆Lv)jk := ∆vjk + 2gqpRr
qjkvrp − gqpRjpvqk − gqpRkpvjq. (3.3)

21



If we denote the trace of v by

V := trg(v) = gpqvpq, (3.4)

then it is possible to write the evolution of the Ricci tensor in the form

∂

∂t
Rjk = −1

2
[(∆Lv)jk +∇j∇kV +∇j(δv)k +∇k(δv)j] . (3.5)

In fact, it follows from (3.2) that

∂

∂t
Rjk =

1

2
gpq (∇q∇jvkp +∇q∇kvjp −∇q∇pvjk −∇j∇kvqp) .

Then the third term is already the Laplacian −1
2
(∆v)jk. Also, for the first two terms, we

would like to commute the derivatives q ↔ j and q ↔ k. One can do this by using the

Ricci identity, then one gets

∂

∂t
Rjk =− 1

2
∆vjk +

1

2
gpq (∇j∇qvkp +∇k∇qvjp)−

1

2
∇j∇kV

− 1

2
gpq
(
Rr
qjkvrp +Rr

qjpvkr
)
− 1

2
gpq
(
Rr
qkjvrp +Rr

qkpvjr
)

= −1

2

[
∆vjk + gpqRr

qjpvkr + gpqRr
qkpvjr

]
− 1

2
∇j∇kV −

1

2
∇j(δv)k

− 1

2
∇k(δv)j −

1

2
gpq(Rr

qjkvrp +Rr
qkjvrp).

This implies that

∂

∂t
Rjk =− 1

2
[∆vjk +∇j∇kV +∇j(δv)k +∇k(δv)j]

− 1

2
gpq
[
Rr
qjpvkr +Rr

qkpvjr + (Rr
qjk +Rr

qkj)vrp
]
.

We observe that gpqRr
qkjvrp = gsrgpqRqkjsvrp = gsrgpqRsjkqvrp. Now, since there is a

summation over s, r, p and q, we interchange s and q as well as r and p. Then

gpqRr
qkjvrp = gpqgsrRqjksvpr.
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In addition, we observe that

gpqRr
qjpvkr = grsgpqRqjpsvrk = −grsgpqRqjspvrk = −grsRjsvrk = −gpqRjpvqk.

In the same way, we get

gpqRr
qjpvrk = −gpqRkpvjq.

This shows that equation (3.5) holds.

Lemma 3.1.5. For a solution g(t) of (3.1), the evolution of the scalar curvature function

R is given by
∂

∂t
R = −∆V +∇p∇qvpq − 〈v,Ric〉,

where V is given by (3.4).

Proof. Since R = gjkRjk, we just have to use Lemmas 3.1.1 and 3.1.4:

∂

∂t
R =

(
∂

∂t
gjk
)
Rjk + gjk

(
∂

∂t
Rjk

)
= −gijgklvilRjk +

1

2
gjkglm (∇l∇jvkm +∇l∇kvjm −∇l∇mvjk −∇j∇kvlm) .

Remember that there is a summation over i, j, k, l and m. So we can interchange indexes

and write

∂

∂t
R =− gijgkl (vikRjl) +

1

2
gjkgli (∇l∇jvki +∇l∇kvji −∇l∇ivjk −∇j∇kvli)

= −gijgkl (vikRjl) +
1

2
gijgkl (∇l∇jvik +∇l∇ivjk −∇l∇kvij −∇j∇ivkl)

=− gijgkl (vikRjl +∇i∇jvkl −∇k∇ivjl) ,

where we used that v and g are symmetric several times. Finally, this last equality gives

us
∂

∂t
R = −〈v,Ric〉 −∆V + div(divv).
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Lemma 3.1.6. The volume element dµ of (M, g(t)) evolves by

∂

∂t
dµ =

V

2
dµ,

where V is given by (3.4).

Proof. We consider oriented local coordinates. Then

dµ =
√
det(g)dx1 ∧ · · · ∧ dxn.

Hence, we get

∂

∂t
dµ =

∂

∂t
(
√
det(g))dx1 ∧ · · · ∧ dxn =

1

2
√
det(g)

∂

∂t
(det(g))dx1 ∧ · · · ∧ dxn

=
1

2

1√
det(g)

tr

(
g−1 ∂

∂t
g

)
det(g)dx1 ∧ · · · ∧ dxn

=
1

2

(
gij

∂

∂t
gij

)
dµ =

1

2

(
gijvij

)
dµ

=
V

2
dµ,

where we have used (3.1) and (3.4).

Corollary 3.1.6.1. For a compact manifold M, the total scalar curvature
∫
M
Rdµ evolves

by
∂

∂t

(∫
M

Rdµ

)
=

∫
M

(
1

2
RV − 〈Ric, v〉

)
dµ.

Proof. This is a direct consequence of the two lemmas above and Stokes’ Theorem.

If we choose v to be

v = −2Ric (3.6)

then V = −2R and we say that g(t) satisfies Ricci flow, i.e.,

∂

∂t
g(t) = −2Ric(g(t)), (3.7)

g(0) = g0.
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In this section, we will suppose that we have a solution for the Ricci flow on a short

time interval [0, ε), for some ε > 0. Later in this chapter, we shall prove this fact. The

next proposition is a direct consequence of the results above, in the particular case where

v is given by (3.6).

Proposition 3.1.1. Suppose g(t) is a solution of the Ricci flow. Then, we have

1. The Levi-Civita connection Γ(t) of g(t) evolves by

∂

∂t
Γkij = −gkl (∇iRjl +∇jRil −∇lRij) , (3.8)

2. The (3,1)-Riemann curvature tensor Rm(t) of g(t) evolves by

∂

∂t
Rl
ijk = glp[−∇i∇jRkp −∇i∇kRjp +∇i∇pRjk +∇j∇iRkp

+∇j∇kRip −∇j∇pRik],

(3.9)

3. The Ricci tensor Ric(t) of g(t) evolves by

∂

∂t
Rjk = ∆Rjk +∇j∇kR− gpq(∇q∇jRkp +∇q∇kRjp), (3.10)

4. The scalar curvature R(t) of g(t) evolves by

∂

∂t
R = 2∆R− 2gjkgpq∇q∇jRkp + 2|Ric|2, (3.11)

5. The volume form dµ(t) of g(t) evolves by

∂

∂t
dµ = −Rdµ. (3.12)

By applying some curvature identities, we will obtain more useful forms of the equa-

tions above. In fact, we shall see that in dimension n ≥ 2, the Riemann curvature, the

Ricci curvature and the scalar curvature all satisfy reaction-diffusion equations (often

called heat-type equations).
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Proposition 3.1.2. The Scalar Curvature under the Ricci flow (3.7) evolves by

∂

∂t
R = ∆R + 2|Ric|2. (3.13)

Proof. Using the contracted second Bianchi identity (2.3), we get

∇kR = 2gil∇lRik.

Applying this to (3.11), we get

∂

∂t
R =2∆R− gpq∇q∇pR + 2|Ric|2

= ∆R + 2|Ric|2.

Proposition 3.1.3. Under the Ricci flow, the Ricci tensor evolves by

∂

∂t
Rjk = ∆LRjk = ∆Rjk + 2gpqgrsRpjkrRqs − 2gpqRjpRqk, (3.14)

where ∆L is defined by (3.3).

Proof. We just have to use the contracted second Bianchi identity again in (3.5). Then

∂

∂t
Rjk =∆LRjk +∇j∇kR− gpq(∇j∇pRqk +∇k∇pRjq)

= ∆LRjk +∇j∇kR−∇j(
1

2
∇kR)−∇k(

1

2
∇jR) = ∆LRjk,

where we used that R is a scalar function in the last equality.

Remark. The presence of the Riemann tensor (Rm) in equation (3.14) is a big obstacle

to showing that nonnegative Ricci curvature is preserved. Therefore, we would like to get

a better understanding of the contribution of the Riemann tensor to the evolution of the

Ricci tensor.

Since the Weyl tensor W = 0 in dimension n = 3, we get the following
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Proposition 3.1.4. In dimension n = 3, the Ricci tensor of a solution to the Ricci flow

evolves by
∂

∂t
Rjk = ∆Rjk + 3RRjk − 6gpqRjpRqk + (2|Ric|2 −R2)gjk. (3.15)

Proof. We just have to write the Riemann tensor Rm as a combination of the Ricci tensor

Ric. Then it follows from (2.7) that

2gpqgrsRpjkrRqs = 2gpqgrs[Rprgjk +Rjkgpr −Rpkgjr −Rjrgpk −
R

2
(gprgjk − gpkgjr)]Rqs

= 2gpqgrsRprRqsgjk + 2gpqgrsgprRqsRjk − 2gpqgrsgjrRpkRqs

− 2gpqgrsgpkRjrRqs − gpqgrsgprgjkRqsR + gpqgrsgpkgjrRqsR

= 2|Ric|2gjk + 2gqsRqsRjk − 2gpqRpkRqj − 2grsRjrRks

− gqsRqsgjkR +RkjR

= (2|Ric|2 −R2)gjk + 3RkjR− 4gpqRjpRqk,

where we used the fact the the Ricci tensor is symmetric and since there is a summa-

tion over p, q, r and s on −2gpqRpkRqj − 2grsRjrRks, we can add those terms together.

Substituting this in equation (3.14) yields the formula in (3.15).

We would also like to check if the Riemann curvature tensor satisfies a reaction-

diffusion equation.

Proposition 3.1.5. Under the Ricci flow, the (3,1)-Riemann curvature tensor evolves by

∂

∂t
Rl
ijk = ∆Rl

ijk+g
pq
(
Rr
ijpR

l
rqk − 2Rr

pikR
l
jqr + 2Rl

pirR
r
jqk

)
−Rp

iR
l
pjk

−Rp
jR

l
ipk −R

p
kR

l
ijp +Rl

pR
p
ijk.

(3.16)

Proof. Using the second Bianchi identity (2.2) and the fact that Rl
jqk = glmRjqkm, we

have

∆Rl
ijk = gpq∇p∇qR

l
ijk = gpq∇p(−∇iR

l
jqk −∇jR

l
qik).
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Now commuting the covariant derivatives, from (2.5) we get

∆Rl
ijk =gpq

[
−∇i∇pR

l
jqk +Rr

pijR
l
rqk +Rr

piqR
l
jrk +Rr

pikR
l
jqr

−Rl
pirR

r
jqk −∇j∇pR

l
qik −Rr

pjiR
l
rqk −Rr

pjqR
l
irk

−Rr
pjkR

l
iqr +Rl

pjrR
r
iqk

]
.

Observe that in the terms −Rl
pirR

r
jqk and Rl

pjrR
r
iqk, we have switched the indexes r and

l, this is why this terms have different signs. Applying the second Bianchi identity again,

we have

gpq∇pR
l
jqk =gpqglm(−∇kRjqmp −∇mRjqpk) = gpqglm(∇kRqjmp −∇mRqjkp)

= ∇kR
l
j −∇lRjk,

where we used the fact that Rl
jqk = glmRjqkm and the fact that g is a parallel tensor.

Doing the same computation for ∇pR
l
qik, we can rewrite

∆Rl
ijk =−∇i∇kR

l
j +∇i∇lRjk +∇j∇kR

l
i −∇j∇lRik

+ gpq
[
Rr
pijR

l
rqk +Rr

piqR
l
jrk +Rr

pikR
l
jqr −Rl

pirR
r
jqk

−Rr
pjiR

l
rqk −Rr

pjqR
l
irk −Rr

pjkR
l
iqr +Rl

pjrR
r
iqk

]
.

By the first Bianchi identity, we know that

Rr
pijR

l
rqk −Rr

pjiR
l
rqk = −Rr

ijpR
l
rqk.

Then ∆Rl
ijk can be written as

∆Rl
ijk =−∇i∇kR

l
j +∇i∇lRjk +∇j∇kR

l
i −∇j∇lRik

Rr
iR

l
jrk +Rr

jR
l
irk + gpq

[
−Rr

ijpR
l
rqk +Rr

pikR
l
jqr

−Rl
pirR

r
jqk −Rr

pjkR
l
iqr +Rl

pjrR
r
iqk

]
.

Regarding the equation above, observe that since we are contracting on gpq, we have

gpqRr
pikR

l
jqr = gpqRl

pjrR
r
iqk
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and

gpqRl
pirR

r
jqk = gpqRr

pjkR
l
iqr.

Finally, considering formula (3.9) and rewriting

gpq(∇j∇iRkp −∇i∇jRkp) = glp(Rq
ijkRqp +Rq

ijpRkp),

we get

∂

∂t
Rl
ijk =−∇i∇kR

l
j −∇j∇lRik +∇i∇lRjk +∇j∇kR

l
i + glp(Rq

ijkRqp +Rq
ijpRkq)

= ∆Rl
ijk + gpq(Rr

ijpR
l
rqk − 2Rr

pikR
l
jqr + 2Rl

pirR
r
jqk)−R

p
iR

l
pjk −R

p
jR

l
ipk

− glqRkpR
q
ijp +Rl

pR
p
ijk,

where we interchanged the indexes p and q on the last two terms since there is a contraction

on gpq.

As a direct corollary we get

Corollary 3.1.6.2. Under the Ricci flow, the (4,0)-Riemann curvature tensor satisfies

the following reaction-diffusion equation:

∂

∂t
Rijkl =∆Rijkl + gpq

(
Rr
ijpRrqkl − 2Rr

pikRjqrl + 2RpirlR
r
jqk

)
−
(
Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rl

pRijkp

)
.

(3.17)

Proof. Just remember that Rijkl = glmR
m
ijk. Hence,

∂

∂t
Rijkl =

∂

∂t
(glmR

m
ijk) = (−2Rlm)Rm

ijk + glm(
∂

∂t
Rm
ijk),

then the result follows from Proposition 3.1.5.
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We define the (4,0)-tensor B by

Bijkl := −gprgqsRipjqRkrls = −Rq
pijR

p
qlk. (3.18)

Note that B satisfies

Bijkl = Bjilk = Bklij. (3.19)

Proposition 3.1.6. Under the Ricci flow, the (4,0)-Riemann curvature tensor evolves by

∂

∂t
Rijkl =∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

− (Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rl

pRijkp)

(3.20)

Proof. First we see that

−2gpqRr
pikRjqrl = −2gpqgrsRipksRjqlr = 2Bikjl

and

2gpqRpirlR
r
jqk = 2gpqgrsRiprlRjqkr = −2Biljk.

Then using the first Bianchi identity in the second term of (3.16) , we get

gpqRr
ijpRrqkl =gpqgrsRijprRsqkl = gpqgrsRrpjiRsqkl

= gpqgrs(−Rrjip −Rripj)(−Rsklq −Rslqk)

= −Bjikl +Bjilk +Bijkl −Bijlk = 2Bijkl − 2Bijlk.

Substituting this into equation (3.17), the proposition follows.

Remark. Although the tensor B does not satisfy the first Bianchi identity, if we define

the tensor C by

Cijkl := Bijkl −Bijlk +Bikjl −Biljk,

30



then C satisfies the Bianchi identity. Similarly, although Bjikl 6= −Bijkl, we get Cjikl =

−Cijkl.

3.2 The Linearization of the Ricci Curvature

In this section, we consider the Ricci tensor Ricg as a nonlinear partial differential

operator on the metric g, i.e.,

Ric : C∞(S+
2 T
∗Mn) −→ C∞(S2T

∗Mn),

where C∞(S+
2 T
∗Mn) denotes the space of positive definite symmetric (2,0)-tensors (i.e.,

Riemannian metrics) and C∞(S2T
∗Mn) is the space of symmetric (2,0)-tensors.

First we introduce the concept of parabolicity of linear differential operators on vector

bundles. Let E be a smooth vector bundle over a closed manifoldMn. Let v ∈ C∞(E) be

a smooth section of E. Locally we may write v = vαeα for some local frame {eα}. Then

we consider
∂v

∂t
= L(v),

where L is a linear second order differential operator L : C∞(E) −→ C∞(E) that may be

given locally, in terms of coordinates {xi} on Mn and the local frame {eα}, by

L(v) =

(
aijαβ

∂

∂xi
∂

∂xj
vβ + biαβ

∂

∂xi
vα + cαv

β

)
eα.

Definition 3.2.1. Let Π : T ∗M −→ M be the bundle projection over Mn and Π∗(E)

a vector bundle over T ∗M whose fibre at (p, ξ) ∈ T ∗M is Ep, i.e., (Π∗(E))(p,ξ) = Ep.

Thus, we define the principal symbol of L, denoted by σ(L) : Π∗(E) −→ Π∗(E), at

(p, ξ) ∈ T ∗M as

σ(L)(p, ξ)v =
(
aijαβξiξjv

β
)
eα.

We say that
∂v

∂t
= L(v) is strictly parabolic if there exists λ > 0 such that, for any fibre
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metric,

〈σ(L)(p, ξ)v, v〉 ≥ λ|ξ|2|v|2

∀(p, ξ) ∈ T ∗M and v ∈ C∞(E).

As we mentioned above, the Ricci curvature is nonlinear. In order to calculate its prin-

cipal symbol, first we need to compute its linearization, which is defined in the following

way.

Definition 3.2.2. Let E and F be vector bundles over Mn. For a nonlinear differential

operator F (x, ∂ku) : C∞(E) −→ C∞(F ), its linearization at u ∈ C∞(E) is defined to

be the linear operator

Puv =
d

ds
F
(
x, ∂k(U(s))

) ∣∣∣∣
s=0

,

where U(s) ∈ C∞(E), U(0) = u and U ′(0) = v.

For the Ricci curvature, we shall denote its linearization by

DRic : C∞(S2T
∗M) −→ C∞(S2T

∗M),

given by

(DRic)gv =
d

ds
Ric(g(s))

∣∣∣∣
s=0

where g(s) is a family of metrics such that g(0) = g and g′(0) = v, which is the directional

derivative of Ric in the direction of the variation of the metric. We may denote E =

−2Ric. Then we have

Proposition 3.2.1. The linearization of the differential operator

E = −2Ric : C∞(S+
2 T
∗Mn) −→ C∞(S2T

∗Mn)

can be written as

(DEgv)ij = gkl (∇i∇jvkl −∇k∇ivjl −∇k∇jvil +∇k∇lvij) . (3.21)

Proof. From the definition of linearization of a nonlinear differential operator on vector
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bundles, we have

DEgv = −2(DRic)gv = −2
d

ds
Ric(g(s))

∣∣∣∣
s=0

.

Since g(s) is a family of metrics with g(0) = g and

g′(0) =
∂

∂s
g(s)

∣∣∣∣
s=0

= v,

one sees that we can use the evolution equation for the Ricci tensor and equation (3.2)

yields

(DEgv)ij = −2
d

ds
Ric(g(s))

∣∣∣∣
s=0

= −2
1

2
gkl (−∇i∇jvkl +∇k∇ivjl +∇k∇jvil −∇k∇lvij) .

Hence, the result follows.

Now we are ready to compute the principal symbol of DE.

Corollary 3.2.0.1. The principal symbol of the linear differential operator DE in the

direction ξ = (ξ1, ..., ξn) is

σ(DE(g)ξ)vij = gkl (ξiξjvkl + ξkξlvij − ξiξkvjl − ξkξjvil) . (3.22)

In particular, the Ricci Flow is not strictly parabolic.

Proof. As previously defined, we just have to replace ∇i by the variable ξi to get (3.22),

since our equation is tensorial. Now considering equation (3.22), we may assume that

‖ξ‖ = 1 and, since σ is a tensor, we can choose coordinates at a point such that

gij = δij,

ξ = (1, 0, ..., 0).

Then

σ (DE(g)) (ξ)vij = vij + δi1δji (v11 + v22 + ...+ vnn)− δi1v1j − δj1v1i.
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So we get

[σ (DE(g)) (ξ)vij]11 = v22 + ...+ vnn,

[σ (DE(g)) (ξ)vij]1k = 0, if k 6= 1,

[σ (DE(g)) (ξ)vij]lk = vlk, if k 6= 1 and l 6= 1.

In particular,

(vij) =


∗ ∗ . . . ∗

∗ 0 . . . 0
...

... . . . ...

∗ 0 . . . 0


are eigenvectors of σ with eigenvalue 0. This shows that the Ricci flow cannot be strictly

parabolic.

3.3 Short Time Existence

The lack of strict parabolicity of the Ricci flow is our motivation to consider the modi-

fied Ricci flow (Ricci-DeTurck flow). First we rewrite the linearization of the Ricci tensor

as

(DEgv)jk = −2 [D (Ric(g)) v]jk = −2
∂

∂s
Rjk

= ∆vjk −∇j (gpq∇qvpk)−∇k (gpq∇qvpj) +∇j∇k (gpqvqp)

+ 2gpqRr
qjkvrp − gpqRjpvkq − gpqRkpvjq.

Now we define the 1-form H = H(g, v) given by

Hk := gpq∇pvqk −
1

2
∇k (gpqvpq) . (3.23)

We observe that V = gpqvpq is a scalar function, so ∇j∇kV = ∇k∇jV . Then we may

write

−2 [D (Ric(g)) v]jk = ∆vjk −∇jHk −∇kHj + Sjk, (3.24)
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where S = S(g, v) is the symmetric 2-tensor defined by

Sjk := 2gpqRr
qjkvrp − gpqRjpvkq − gpqRkpvjq. (3.25)

We check that S involves no derivatives of v. Also, note that we may rewrite H as

Hk =
1

2
gpq (∇pvqk +∇qvpk −∇kvpq)

= gpqgkr [D (Γg) v]rpq ,

where D (Γg) : C∞(S2T
∗Mn) −→ C∞(S2T

∗Mn ⊗ TMn) denotes the linearization of the

Levi-Civita connection and is given by

[D (Γg) v]kij =
∂

∂s
Γkij

∣∣∣∣
s=0

, (3.26)

when ∂
∂s
g
∣∣
s=0

= v.

Now we fix a background metric g̃ (we could always consider g̃ = g0, our initial metric

on the manifold) and consider its Levi-Civita connection Γ̃kij. We define a vector field

W = W (g, Γ̃) by

W k := gpq
(

Γkpq − Γ̃kpq

)
. (3.27)

Using the fact that the difference of two connections is a tensor, we get that W ∈

X (Mn) is globally well-defined. If we define P = P (Γ̃) := LWg, we see that P is a second

order partial differential operator on g since W contains order one derivatives of g.

Since

(LWg)ij = ∇iW
kgkj +∇jW

kgik +W k∇k(gij),

we can consider a geodesic frame and write

(LWg)ij = ∇iW
j +∇jW

i. (3.28)
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Then

(LWg)ij = ∇i

(
gpq
(

Γjpq − Γ̃jpq
))

+∇j

(
gpq
(

Γipq − Γ̃ipq

))
.

This, together with equation (3.26), shows that the linearization of P in v is

[DP (v)]jk = ∇kHj +∇jHk + Tjk, (3.29)

where Tjk appears when we take ∂
∂t

of gpq and is a linear first order expression in v, so it

will not be important for our purpose. Also, note that Γ̃ is fixed, so it vanishes when we

take ∂
∂t

of this expression.

This leads us to consider the modified Ricci operator

Q := −2Ric+ P : C∞(S2T
∗Mn) −→ C∞(S2T

∗Mn). (3.30)

Proposition 3.3.1. Q is an elliptic operator.

Proof. From (3.24),

−2 [D (Ric(g)) v]jk = ∆vjk −∇jHk −∇kHj + Sjk,

where Hk and Sjk are given by (3.23) and (3.25). Then it follows from (3.29) that the

linearization of Q is given by

DQ(v) = ∆v + U,

where Ujk = Sjk+Tjk is a first order operator on g. This implies that the principal symbol

of DQ(v) is given by

σ [DQ(ξ)v] = |ξ|2v, (3.31)

which shows that Q is elliptic.
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This construction leads us to define the Ricci-DeTurck flow on Mn by

∂

∂t
gij = −2Rij +∇iW +∇jW,

g(0) = g0,

(3.32)

where W is the 1-form g-dual to the vector field defined in (3.27). In particular,

Wj = gjkW
k = gjkg

pq
(

Γkpq − Γ̃kpq

)
(3.33)

depends on g(t), Γ(t) and the fixed background connection Γ̃.

Proposition 3.3.2. The Ricci-DeTurck flow, defined in equation (3.32), is strictly parabolic.

Moreover, there exists an ε = ε(g0) > 0 such that (3.32) has a unique solution g(t) for

t ∈ [0, ε).

Proof. Equation (3.31) shows that the Ricci-DeTurck flow is strictly parabolic. Since M

is compact, it is a standard result from PDE theory that for any smooth initial metric

g0, there exists and ε > 0, depending on g0, such that a unique solution g(t) to (3.32)

will exist on [0, ε). For a brief discussion of the existence an uniqueness of solutions to

parabolic partial differential equations on vector bundles, see Appendix A.

If t ∈ [0, ε), it is clear that the family of vector fields W (t) is well defined. Then we

consider the following family of maps

∂

∂t
φt(p) = −W (φt(p), t),

φ0 = id,

(3.34)

∀p ∈Mn, ∀t ∈ [0, ε), where φt : M −→M for each t.

The next lemma says that (3.34) always has a unique solution in [0, ε).

Lemma 3.3.1. If {Xt : 0 ≤ t < T ≤ ∞} is a continuous time-dependent family of vector

fields on a compact manifold Mn, then there exists an one-parameter family of diffeomor-

phisms

{φt : Mn −→Mn : 0 ≤ t < T ≤ ∞}
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defined on the same interval such that

∂

∂t
φt(p) = Xt(φt(p)),

φ0(p) = p,

∀p ∈Mn, ∀t ∈ [0, T ).

Proof. We assume there is t0 ∈ [0, T ) such that the solution exists for all t ∈ [0, t0] and

p ∈Mn. Let t1 ∈ (t0, T ) be given. If we prove that φt exists for all t ∈ [t0, t1], the lemma

follows since t1 is arbitrary. For p0 ∈ Mn given, we consider local coordinates (U, x) and

(V, y) such that p0 ∈ x(U) and φt0(p0) ∈ y(V ).

If p = x(q) ∈ x(U) and φt(p) ∈ y(V ), then ∂
∂t
φt(p) = Xt(φt(p)) is equivalent to

∂

∂t

(
y−1 ◦ φt ◦ x(q)

)
= y−1

∗

[
∂

∂t
φt(x(q))

]
,

for q ∈ U such that φt ◦ x(q) ∈ y(V ), where y−1
∗ represents the differential of y−1. Setting

zt = y−1 ◦ φt ◦ x and Ft = y−1
∗ Xt ◦ x, we get ∂

∂t
zt = Ft(zt). Hence, our system is locally

equivalent to a nonlinear ODE in Rn. So for all p ∈ x(U) such that φt0(p) ∈ y(V ), a

unique solution exists for t ∈ [t0, t0 + ε] for some ε > 0.

Since Xt is uniformly bounded on Mn× [t0, t1], there exists an ε0 > 0, independent of

p ∈Mn and of t ∈ [t0, t1], such that there exists a unique solution φt(p) for t ∈ [t0, t0 +ε0].

We see that this still holds for the flow starting at φt0+ε0 , so a simple iteration proves the

lemma.

As a corollary, we get a unique solution for (3.34). Now we are ready to prove the

existence of solutions to the Ricci flow.

Proposition 3.3.3. Let (Mn, g0) be a closed Riemannian manifold and let Ric denote its
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Ricci curvature tensor. Then the evolution equation

∂

∂t
g(t) = −2Ric(g(t)),

g(0) = g0,

(3.35)

has a solution for a short time [0, ε), for some ε > 0.

Proof. Let g(t) be a solution to (3.32) and let φt be a unique solution for (3.34) on

M × [0, ε). We consider the family of metrics given by

g(t) := φ∗tg(t), t ∈ [0, ε) (3.36)

We have g(0) = id∗g(0) = g0. In addition,

∂

∂t
g(t) =

∂

∂t
(φ∗tg(t)) =

∂

∂s

(
φ∗t+sg(t+ s)

) ∣∣∣∣
s=0

= lim
s→0

φ∗t+sg(t+ s)− φ∗tg(t)

s

= lim
s→0

φ∗t+sg(t+ s)− φ∗tg(t+ s)

s
+ lim

s→0

φ∗tg(t+ s)− φ∗tg(t)

s

= φ∗t

(
lim
s→0

(φ∗t )
−1 ◦ φ∗t+s − Id

s

)
(g(t+ s)) + φ∗t

(
lim
s→0

g(t+ s)− g(t)

s

)
= φ∗t

(
lim
s→0

(φ∗t )
−1 ◦ φ∗t+s − Id

s

)
(g(t)) + φ∗t

(
∂

∂t
g(t)

)
= −φ∗t

(
LW (t)g(t)

)
+ φ∗t

(
−2Ric(g(t)) + LW (t)g(t)

)
= −2φ∗tRic(g(t)) = −2Ric (φ∗tg(t)) = −2Ric(g(t)),

where we used (3.32), (3.28) and in the last equality we used the invariance of the Ricci

tensor under the family of diffeomorphisms φ∗t . This shows the existence of the solution

g(t) for the Ricci flow (3.35) for t ∈ [0, ε).

3.4 Uniqueness of the Ricci Flow

In order to prove uniqueness for the Ricci flow, Hamilton [14] used the sophisticated

Nash-Moser Theorem. This was used because the Ricci flow is weakly parabolic, due to

its invariance under diffeomorphisms. In this dissertation, we will follow the argument

introduced by Hamilton in [13]. To do so, we need to define the harmonic map flow,
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firstly introduced by Eells and Sampson in [18].

Let f : Mn −→ Nm be a smooth map between two Riemannian manifolds (Mn, g)

and (Nm, h). We already know that the derivative of f, df, is an element of the vector

bundle C∞(T ∗Mn ⊗ f ∗TNm), where f ∗TNm is the pullback bundle over Mn.

Now let {xi} and {yα} be local coordinates onMn and Nm, respectively. We shall also

denote the Levi-Civita connections of g and h respectively by Γ(g)kij and Γ(h)γαβ. Thus,

df = (df)αj

(
dxj ⊗ ∂

∂yα

)
=
∂fα

∂xj

(
dxj ⊗ ∂

∂yα

)
.

We may also induce the following connection

∇ : C∞(T ∗Mn ⊗ f ∗T ∗Nm) −→ C∞(T ∗Mn ⊗ T ∗Mn ⊗ f ∗T ∗Nm)

by

(f ∗Γ)γiβ =
∂fα

∂xi
(Γh ◦ f)γαβ .

Thus we get

∇(df) =
∑
i,j,α

(∇df)αijdx
i ⊗ dxj ⊗ ∂

∂yα
,

where

(∇df)αij = ∇idjf
α =

∂

∂xi

(
∂fα

∂xj

)
− (Γg)

k
ij

(
∂fα

∂xk

)
+
∂fβ

∂xi
(Γh ◦ f)αβγ

(
∂fγ

∂xj

)
.

Hence we may define the harmonic map Laplacian with respect to the domain

metric g and codomain metric h as the trace

∆g,hf := trg(∇(df)) ∈ C∞(f ∗TNm).
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In components, we get (∆g,hf)γ = gij(∇df)αij, i.e

(∆g,hf)γ = gij
[
∂2fγ

∂xi∂xj
− (Γg)

k
ij

∂fγ

∂xk
+
(
(Γh)

γ
αβ ◦ f

) ∂fα
∂xi

∂fβ

∂xj

]
. (3.37)

Now we are ready to define the harmonic map flow.

Definition 3.4.1. Given a diffeomorphism f0 : Mn −→ Nm, the harmonic map flow

is given by

∂

∂t
f = ∆g,hf (3.38)

f(0) = f0 (3.39)

Eells and Sampson ([18]) showed that this is a parabolic equation, so we have a unique

solution on a short time interval. The following lemma gives us a useful way to rewrite

the Laplacian operator.

Lemma 3.4.1. Let f : (Mn, g) −→ (Nm, h) be a diffeomorphism of Riemannian mani-

folds. Then

(∆g,hf)γ (p) = [(f−1)∗g]αβ
(
−Γ(f−1)∗g)γαβ + Γ(h)γαβ

)
(f(p)).

Proof. For simplicity, let κ = (f−1)∗g. Then, considering local coordinates {xi} and {yα}

on Mn and Nm, respectively, we shall compute the Christoffel symbols of κ.

Γ(f ∗κ)kij
∂

∂xk
= ∇ ∂

∂xi
(f ∗κ)

∂

∂xj
= (f−1)∗

(
∇f∗( ∂

∂xi
)f∗(

∂

∂xj
)

)
= (f−1)∗

(
∇ ∂fα

∂xi
∂
∂yα

(κ)

(
∂fβ

∂xj
∂

∂yβ

))
= (f−1)∗

(
∂2fβ

∂xi∂xj
∂

∂yβ
+ (Γ(κ))γαβ

∂fα

∂xi
∂fβ

∂xj
∂

∂yγ

)
=

(
∂2fβ

∂xi∂xj
∂(f−1)k

∂yβ
+ (Γ(κ))γαβ

∂fα

∂xi
∂fβ

∂xj
∂(f−1)k

∂yγ

)
∂

∂xk
.

Now this gives us

(Γ(f ∗κ))kij
∂fγ

∂xk
=

∂2fγ

∂xi∂xj
+ (Γ(κ))γαβ

∂fα

∂xi
∂fβ

∂xj
.
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Multiplying it by (f ∗κ)ij and using that

καβ = (f ∗κ)ij
∂fα

∂xi
∂fβ

∂xj
, (3.40)

we get

−καβ(Γ(κ))γαβ = (f ∗κ)ij
(
− ∂2fγ

∂xi∂xj
− (Γ(f ∗κ))kij

∂fγ

∂xk

)
. (3.41)

Now, we recall that κ = (f−1)∗g. Therefore, substituting (3.41) and (3.40) into (3.37)

gives us

(∆f)γ =
(
(f−1)∗g

)αβ [− (Γ((f−1)∗g)
)γ
αβ

+ (Γ(h))γαβ

]
f,

so the lemma follows.

We then consider the case where M = N. The idea is to combine the Ricci flow with

the harmonic map flow. Let us recall that the diffeomorphisms φt, defined by (3.34),

satisfy the following equation

∂

∂t
φt = −W ◦ φt = gpq

(
−Γkpq + Γ̃kpq

)
.

Hence it follows from Lemma 3.4.1 and the fact that g = (φt)
∗g that

∂

∂t
φt = gpq

(
−Γkpq + Γ̃kpq

)
=
(
(φ−1

t )∗g
)pq (−Γkpq + Γ̃kpq

)
= ∆g(t),g̃φt.

This implies that the DeTurck diffeomorphisms satisfy the harmonic map flow. We

are finally ready to prove uniqueness of the Ricci flow.

Proposition 3.4.1. Under the same conditions of Proposition 3.3.3, the Ricci flow has

a unique solution for a short time interval.

Proof. We have already proved existence of solutions to the Ricci flow. Now, suppose

that we have two solutions for the Ricci flow, g1(t) and g2(t), such that g1(0) = g2(0). Let
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φit be the solution to the harmonic map flow with respect to gi(t) and g̃, with φi0 = id

and i = 1, 2. Then g1(t) = (φ1
t )∗g1(t) and g2(t) = (φ2

t )∗g2(t) are both solutions of the

Ricci-DeTurck flow with

g1(0) = (φ1
0)∗g1(0) = (id)∗g1(0) = (φ2

0)∗g2(0) = g2(0).

Since we have a unique solution for the Ricci-DeTurck flow, we get that g1(t) = g2(t)

as long as both exist. However, this implies that φ1
t and φ2

t are both solutions to the same

autonomous ODE

∂

∂t
(φit)(p) = −W

(
φit(p), t

)
,

i = 1, 2, generated by the same vector field

W k = (gi)
pq
(

Γkpq − Γ̃kpq

)
.

Thus, φ1
t = φ2

t for all times t where both are well defined. In particular,

g1(t) = (φ1
t )
∗g1(t) = (φ2

t )
∗g2(t) = g2(t),

and we have uniqueness for the Ricci flow.
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Chapter 4

The Maximum Principle

The Maximum Principle has been one of the techniques most used in the field of

Geometric Analysis in the past decades. In this chapter, we provide an overview of the

Maximum Principle in the scalar case and on Vector Bundles. The results in this chapter

can be found in [12], [6] and [8].

4.1 The Scalar Case

For future comparison, we will start with the first and second derivative test, from

differential calculus. Let u : (0, l)× [0, T ) −→ R be a C2 function satisfying the following

inequality

∂2

∂x2
u(x, t)− ∂

∂t
u(x, t) > 0, (4.1)

on a region E = (0, l) × (0, T ). The function u cannot attain a local maximum on any

interior point (x0, t0) ∈ E because otherwise we would have for (x0, t0) ∈ E :

∂2

∂x2
u(x0, t0) ≤ 0

∂

∂t
u(x0, t0) = 0,

a contradiction with (4.1). This basic idea will guide us through the following results.
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We start with a closed Riemannian manifold Mn and a family of Riemannian met-

rics g(t), t ∈ [0, T ), on M. Also, let X(t) = Xt be a familly of smooth vector fields on M.

We say that a C2 function u : Mn × [0, T ) −→ R is a supersolution of

∂

∂t
v = ∆gtv + 〈Xt,∇v〉 (4.2)

in (p, t) ∈Mn × [0, T ) if

∂

∂t
u(p, t) ≥ ∆gtu(p, t) + 〈Xt,∇u〉(p, t). (4.3)

Analogous to that, we say that u is a subsolution if

∂

∂t
u(p, t) ≤ ∆gtu(p, t) + 〈Xt,∇u〉(p, t), (4.4)

where ∆gt = gij∇i∇j is the Laplacian on the metric g(t).

Theorem 4.1.1. Let gt and Xt as above, t ∈ [0, T ). Let u : Mn × [0, T ) −→ R be a C2

function, where Mn is a closed Riemannian manifold. Suppose that there exists α ∈ R

such that u(p, 0) ≥ α, ∀p ∈ M and that u is a supersolution of (4.2) at every point

(p, t) ∈M × [0, T ) where u(p, t) < α. Then u(p, t) ≥ α for all (p, t) ∈M × [0, T ).

Proof. We define the auxiliary function

H := u− α + εt+ ε,

for any ε > 0. Since u is a supersolution of 4.2 at every point where u < α, we get

∂

∂t
H =

∂

∂t
u+ ε ≥ ∆u+ 〈Xt,∇u〉+ ε = ∆H + 〈Xt,∇H〉+ ε, (4.5)

at those points. Moreover, H(p, 0) ≥ ε since u(p, 0) ≥ α.

We claim that H(p, t) > 0 for all p ∈M and all t ∈ [0, T ). In fact, suppose that there
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exists a point (p1, t1) ∈M × [0, T ) such that H(p1, t1) ≤ 0. Let us consider the function

F : [0, T ) −→ R

given by F (t) := infp∈M H(p, t).

Since M is compact, this infimum is always attained. Now F is obviously continuous,

F (0) > 0 and F (t1) ≤ 0. Therefore there must be a first time t0 ∈ (0, t1] such that

F (t0) = 0. Let p0 ∈M be such that F (t0) = H(p0, t0). Thus H(p0, t0) = 0 gives us

u(p0, t0) = α− ε(1 + t0) < α,

so u is a supersolution at (p0, t0). Since H is a C2 function and (p0, t0) is a point and time

where H attains its minimum among all p ∈M and all t ∈ [0, t0], that is,

H(p0, t0) = min
M×[0,t0]

H,

we have the following conditions on its derivatives

∂

∂t
H(p0, t0) ≤ 0,

∇H(p0, t0) = 0,

∆H(p0, t0) ≥ 0.

Combining this with (4.5) implies

0 ≥ ∂

∂t
H(p0, t0) ≥ ∆H(p0, t0) + 〈X,∇H〉(p0, t0) + ε ≥ ε > 0,

which is a contradiction. Hence our claim holds. It follows from the definition of H that

u(p, t) + εt + ε > α for all p ∈ M and all t ∈ [0, T ). Since ε > 0 is arbitrary, this proves

the theorem.

Remark. This is the simplest case of the scalar maximum principle and it is, basically,

the original heat equation since ∇u vanishes at local maximum and minimum.

Now we consider the heat equation with a linear reaction term. Let β : Mn×[0, T ) −→
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R be a given function and consider the following equation

∂

∂t
v = ∆gtv + 〈Xt,∇v〉+ βv.

We define supersolution and subsolution in the same way as before, i.e., v is a super-

solution of the equation above if

∂

∂t
v ≥ ∆gtv + 〈Xt,∇v〉+ βv

and a subsolution if
∂

∂t
v ≤ ∆gtv + 〈Xt,∇v〉+ βv.

Proposition 4.1.1. Let u : Mn × [0, T ) −→ R be a C2 function, where Mn is a closed

Riemannian manifold, satisfying

∂

∂t
u ≥ ∆gtu+ 〈Xt,∇u〉+ βu. (4.6)

Suppose that for each τ ∈ [0, T ), there exists a constant 0 < C(τ) <∞ such that β(p, t) ≤

C(τ) ∀(p, t) ∈M × [0, τ ]. If u(p, 0) ≥ 0 ∀p ∈M, then u(p, t) ≥ 0 ∀(p, t) ∈M × [0, T ).

Proof. We start by defining the auxiliary function J(p, t) := e−C(τ)tu(p, t), for each τ ∈

(0, T ), where C(τ) is defined as in the hypothesis. Thus,

∂

∂t
J = −C(τ)J + e−C(τ)t ∂

∂t
u ≥ ∆gtJ + 〈Xt,∇J〉+ (β − C(τ))J.

Now, fix an arbitrary τ ∈ (0, T ). Suppose there exists a point (p0, t0) ∈ M × [0, τ) such

that J(p0, t0) < 0. Therefore, on a neighborhood U ∈ M × (0, τ) of (p0, t0) we have

J(p, t) < 0. This yields

∂

∂t
J(p, t) ≥ ∆gtJ(p, t) + 〈Xt,∇J〉(p, t),

∀(p, t) ∈ U since β − C(τ) ≤ 0 in M × [0, τ ].

By hypothesis u(p, 0) ≥ 0. Hence, using Theorem 4.1.1, we get that J ≥ 0 in M × [0, τ ],

which says that u ≥ 0 in M × [0, τ ]. Since τ ∈ (0, T ) is arbitrary, the result follows.

Finally, we are ready for our main result. Now we would like to consider a non-linear
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reaction term. This is the most common case when we are studying the evolution of

geometric quantities under the Ricci flow or the mean curvature flow.

We consider the following semi-linear heat equation

∂

∂t
v = ∆gtv + 〈Xt,∇v〉+ F (v), (4.7)

where F : R −→ R is a locally Lipschitz function. We define supersolution and subso-

lution in the same way as before: u is a supersolution of (4.7) if

∂

∂t
u ≥ ∆gtu+ 〈Xt,∇u〉+ F (u)

and a subsolution if
∂

∂t
u ≤ ∆gtu+ 〈Xt,∇u〉+ F (u).

Theorem 4.1.2. Let u : Mn × [0, T ) −→ R be a C2 function and a supersolution for

(4.7) on a closed manifold. Suppose that there exists a constant C1 such that u(p, 0) ≥ C1

∀p ∈M and let φ1 be the solution of the initial value problem

∂

∂t
φ1 = F (φ1),

φ1(0) = C1.

Then u(p, t) ≥ φ1(t) ∀p ∈ M and ∀t ∈ [0, T ) where φ1(t) exists. Analogously, if u is a

subsolution of (4.7) and u(p, 0) ≤ C2 ∀p ∈ M, where C2 ∈ R is a constant. Let φ2(t) be

the solution of the initial value problem

∂

∂t
φ2 = F (φ2),

φ2(0) = C2.

Then u(p, t) ≤ φ2(t) ∀p ∈M and ∀t ∈ [0, T ) where φ2(t) exists.

Proof. For the first part, we have

∂

∂t
(u− φ1) ≥ ∆gt(u− φ1) + 〈Xt,∇t(u− φ1)〉+ F (u)− F (φ1),

where u − φ1 ≥ 0 when t = 0. Let τ ∈ (0, T ) be arbitrary. Since M is compact, given
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τ ∈ (0, T ), there exists 0 < C(τ) <∞ such that |u(p, t)| < C(τ) and |φ1| < C(τ) ∀p ∈M

and ∀t ∈ [0, τ ]. Now since F is locally Lipschitz, there exists 0 < L(τ) < ∞ such that

|F (u)− F (φ1)| < L(τ)|u− φ1|, ∀u, φ1 such that |u(p, t)| < C(τ) and |φ1| < C(τ) ∀p ∈M

and ∀t ∈ [0, τ ]. Therefore,

∂

∂t
(u− φ1) ≥ ∆gt(u− φ1) + 〈Xt,∇t(u− φ1)〉 − L(τ)sgn(u− φ1)(u− φ1),

because

|F (u)− F (φ1)| < L(τ)|u− φ1|

implies

|F (φ1)− F (u)| < L(τ)sgn(u− φ1)(u− φ1),

and therefore

F (u)− F (φ1) ≥ −|F (φ1)− F (u)| > −L(τ)sgn(u− φ1)(u− φ1).

If β := −L(τ)sgn(u−φ1), then β(p, t) ≤ L(τ) and u(p, 0)−φ1(0) ≥ 0. Therefore it follows

from Proposition 4.1.1 that u− φ1 ≥ 0 ∀(p, t) ∈M × [0, T ) where φ1(t) exists.

Now, for the second part, we have

∂

∂t
(φ2 − u) ≥ ∆gt(φ2 − u) + 〈Xt,∇t(φ2 − u)〉+ F (φ2)− F (u),

with φ2 − u ≥ 0 at t = 0. Then, the result is totally analogous to the first part.

4.2 The Maximum Principle for Vector Bundles

In 1986, Hamilton ([12]) introduced the maximum principle for systems, which says

that given a heat-type equation for sections of a vector bundle over a manifold, if the

solution is initially in a closed convex subset, invariant under parallel translation, and if

the ODE associated to the PDE preserves the subset, then the solution of PDE remains

in the subset for positive time. This result is given in details in Theorem 4.2.14. In 2004,

Bennet Chow and Peng Lu ([6]) presented a more general maximum principle. In their
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paper, the subsets are time-dependent.

We shall introduce the techniques that are needed to prove Chow and Lu’s result,

formulate the vector bundle that we will need, present the result and prove it. This

section is mainly based on the theory developed in [8].

4.2.1 Spatial Maximum Functions and Its Dini Derivatives

Definition 4.2.1. Let f(t) be a function defined on (a, b). The upper Dini derivative

is the lim sup of forward difference quotients:

d+f

dt
(t) := lim sup

h→0+

f(t+ h)− f(t)

h
,

the lower Dini derivative is the lim inf of the same quotients:

d−f

dt
(t) := lim inf

h→0+

f(t+ h)− f(t)

h
.

We may also define the upper converse Dini derivative by

d+f

dt
(t) := lim sup

h→0+

f(t)− f(t− h)

h

and the lower converse Dini derivative by

d−f

dt
(t) := lim inf

h→0+

f(t)− f(t− h)

h
.

We say that f(t) is right upper semi-continuous at τ if

lim sup
t→τ+

f(t) ≤ f(τ).

Similarly, f(t) is left lower semi-continuous at τ if

lim inf
t→τ−

f(t) ≥ f(τ).

Finally, we say that f(t) is right upper semi-continuous (resp. left lower semi-continuous)
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if it is right upper semi-continuous (resp. left lower semi-continuous) at t for all t ∈ (a, b).

For instance, if
d+f

dt
<∞ then f is right upper semi-continuous.

Lemma 4.2.1. Assume f : [0, T ) −→ R is right upper semi-continuous and left lower

semi-continuous, with f(0) ≤ c. If
d+f

dt
≤ 0, ∀t ∈ [0, T ) where f(t) > c, then f(t) ≤ c for

all t ∈ [0, T ).

Proof. Given ε > 0, let fε(t) := f(t)− ε− εt. Let t0 ∈ (0, T ] be defined by

t0 := sup {τ ∈ [0, T ]; fε(t) ≤ c,∀t ∈ [0, τ)} .

Since fε(0) = c−ε < c and fε is right upper semi-continuous, we get t0 > 0. Suppose that

t0 < T for some ε > 0. First we observe that fε(t0) = c. In fact, since fε is right upper

semi-continuous and left lower semi-continuous and t0 < T, we have

c ≤ lim sup
t→t0+

fε(t) ≤ fε(t0)

and

c ≥ lim inf
t→t0−

fε(t) ≥ fε(t0),

which implies the equality.

Then we can consider a sequence {ti} ⊂ [0, T ], ti ↘ t0 such that fε(ti) > c = fε(t0).

Thus,

0 ≤ fε(ti)− fε(t0)

ti − t0
=
f(ti)− f(t0)

ti − t0
− ε.

Therefore,
d+

dt
f(t0) ≥ lim inf

i→∞

f(ti)− f(t0)

ti − t0
≥ ε > 0.

Since f(t0) = c + ε + εt0 > c, we get that
d+

dt
f(t0) ≤ 0 by hypothesis, which is a contra-

diction. Hence t0 = T for all ε > 0. Therefore fε(t) ≤ c ∀t ∈ [0, T ). If we let ε → 0, we

prove the lemma.

The following result is a direct consequence of the lemma above.

Corollary 4.2.1.1. If f : [0, T ) −→ R is right upper semi-continuous and left lower

semi-continuous and
d+f

dt
≤ 0, ∀t ∈ [0, T ), then f(t) is nonincreasing on [0, T ).
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The next result shows that under certain conditions, exponential growth preserves

f ≤ 0.

Corollary 4.2.1.2. Let f : [0, T ) −→ R be right upper and left lower semi-continuous

with f(0) ≤ 0. If there exists c, 0 < c < ∞ such that
d+f

dt
≤ cf(t) ∀t ∈ [0, T ) where

f(t) > 0, then f(t) ≤ 0 ∀t ∈ [0, T ).

Proof. Consider e−ctf(t). Then we have

d+

dt
(e−ctf(t)) =e−ct

d+

dt
f(t)− ce−ctf(t)

= e−ct
[
d+

dt
f(t)− cf(t)

]
≤ 0,

∀t ∈ [0, T ) where f(t) > 0. Then it follows from Lemma 4.2.1 that e−ctf(t) ≤ 0 ∀t ∈ [0, T ).

Since e−ct > 0, the result follows.

Now, let S be a topological space and let g : S× [0, T ) −→ R be a function. We define

the spatial maximum function f : [0, T ) −→ R relative to g by

f(t) := sup
s∈S

g(s, t).

The following lemma will be useful to help us characterize when an ODE preserves a

closed convex set and when a PDE preserves a set that is closed and convex in each fiber.

Lemma 4.2.2. If S is a sequentially compact topological space and if g and ∂g
∂t

are con-

tinuous in s and t, then f is locally Lipschitz and

d+f

dt
(t) = sup

{
∂g

∂t
(s, t); s ∈ S satisfies g(s, t) = f(t)

}
.

Proof. First, since S is sequentially compact, we get that g is uniformly Lipschitz in t on

S × [0, T − ε] for every ε > 0, therefore f is locally Lipschitz. Now, let (ti) be a sequence

of times such that ti+1 ≤ ti and ti → t with

lim
i→∞

f(ti)− f(t)

ti − t
=
d+f

dt
(t).
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Since S is compact, for each i ∈ N we get si ∈ S such that

g(si, ti) = f(ti).

Also, we can find a subsequence such that si → s∞ for some s∞ ∈ S. Then

g(s∞, t) = lim
i→∞

g(si, ti) = lim
i→∞

f(ti) = f(t).

Hence, we get, using the Mean Value Theorem,

d+f

dt
(t) = lim

i→∞

g(si, ti)− g(s∞, t)

ti − t
≤ lim

i→∞

g(si, ti)− g(si, t)

ti − t
= lim

i→∞

∂g

∂t
(si, τi),

for some τi ∈ [t, ti], where the inequality follows from g(s∞, t) = sups∈S g(s, t) ≥ g(si, t).

Now, since si → s∞ and τi → t, we have

lim
i→∞

∂g

∂t
(si, τi) =

∂g

∂t
(s∞, t),

because ∂g
∂t

is continuous on both variables by hypothesis. Then d+f
dt

(t) ≤ ∂g
∂t

(s∞, t) for

some s∞ ∈ S with f(t) = g(s∞, t).

On the other hand, let s0 ∈ S such that g(s0, t) = f(t) and

∂g

∂t
(s0, t) = sup

{
∂g

∂t
(s, t); s ∈ S satisfies g(s, t) = f(t)

}
.

Let (δi) be a sequence of positive real numbers such that δi+1 ≤ δi, δi → 0 and

d+f

dt
(t) = lim

i→∞

f(t+ δi)− f(t)

δi
≥ lim

i→∞

g(s0, t+ δi)− g(s0, t)

δi
=
∂g

∂t
(s0, t).

Then d+f
dt

(t) ≥ ∂g
∂t

(s0, t) ≥ ∂g
∂t

(s∞, t) and the lemma follows.

4.2.2 Convex Sets and Support Functions

In this section, we introduce important properties of convex sets, which are going to

be useful for our maximum principle.

Definition 4.2.2. A set Γ ⊂ Rk is a cone with vertex u ∈ Rk if, for every ω ∈ Γ, we
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have u+ t(ω − u) ∈ Γ, ∀t ∈ [0,∞).

In what follows, J ⊂ Rk is a closed convex set. We state the next lemma, which is a

classical result and will help us in dealing with half-spaces containing a given convex set.

Lemma 4.2.3. (i) For any ω /∈ J, there exists a unique v ∈ ∂J such that d(ω, v) =

infx∈J d(ω, x) = d(ω, J).

(ii) Let J(t), t ∈ [0, T ], be a continuous family of convex sets. Given ω /∈ J(t), let v(ω, t)

be the point defined by ω and J(t) as in (i). Then v is a continuous function of (ω, t).

Proof. See [2], Theorem 5.2 on page 132.

Lemma 4.2.4. Given ω /∈ J and v ∈ ∂J such that d(ω, J) = d(v, ω), the half-space

Hω :=
{
x ∈ Rk; 〈x− v, ω − v〉 ≤ 0

}
contains J and ω /∈ Hω. Hence any convex set is equal to the intersection of a family of

half-spaces.

Proof. See [2], Theorem 5.2 on page 132.

Definition 4.2.3. Given v ∈ ∂J, the tangent cone CvJ of J at v is the intersection of

all closed half-spaces containing J and with v on the boundary of the half-space.

Remark. Observe that this definition only makes sense for convex sets.

Lemma 4.2.5. If Γ is a closed convex cone with vertex u, then Γ is an intersection of

half-spaces with u contained on their boundaries.

Proof. The result follows from the fact that ∀w /∈ Γ, there exists a half-space Hω contain-

ing Γ with u ∈ ∂Hω and w /∈ Hω. In fact,∀w ∈ Γ it follows from Lemmas 4.2.3 and 4.2.4

that there is a unique v ∈ ∂Γ closest to w. Let

H :=
{
x ∈ Rk; 〈x− v, w − v〉 ≤ 0

}
.

Then Hω is a closed half-space with Γ ⊂ H and w /∈ H. Also, it is clear that v ∈ ∂H. The

ray R = {u + t(v − u); t ≥ 0} is in Γ. If u /∈ ∂H, then for some t sufficiently close to 1,

u+ t(v − u) ∈ Γ is closest to w than v, a contradiction. Hence u ∈ ∂H.
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Lemma 4.2.6. The tangent cone CvJ is the smallest closed convex cone with vertex v

containing J.

Proof. It follows directly from the lemma above and the definition of a tangent cone.

Definition 4.2.4. A linear function l : Rk −→ R is a support function for J at v ∈ ∂J

if

(i) |l| := sup
x,|x|=1

l(x) = 1;

(ii) l(ω) ≤ l(v), ∀ω ∈ J.

Definition 4.2.5. Given a support function l for J at v ∈ ∂J, define the associated

closed half-space Hl ⊂ Rk by

Hl :=
{
ω ∈ Rk; l(ω) ≤ l(v)

}
.

Remark. Hl is the closed half-space whose boundary is equal to the hyperplane passing

through v and perpendicular to Nl, where Nl is the outward unit normal to ∂J at v. Also,

(ii) says that J ⊂ Hl.

From now on, let H be any closed half-space of Rk. For every v ∈ ∂H, the unit outward

normal is the same and will be denoted by NH .

Definition 4.2.6. The linear function lH : Rk −→ R associated to a half-space H ⊂ Rk

is defined by

lH(ω) := 〈ω,NH〉, (4.8)

for all ω ∈ Rk.

Lemma 4.2.7. Let v ∈ ∂J and let H be a closed half-space containing J, with v ∈ ∂H.

Then the linear function lH is a support function for J at v.

Proof. We have that lH(ω) ≤ lH(v) ∀ω ∈ H, in particular ∀ω ∈ J. Also, |lH | ≤ 1 and

lH(NH) = 1, so |lH | = 1.
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Given v ∈ ∂J, let

SvJ := "set of support functions of J at v”

and

HvJ := "set of closed half-spaces containing J with v on their boundaries".

If we define φ : SvJ −→ HvJ by φ(l) := Hl and ψ : HvJ −→ SvJ by ψ(H) := lH , then it

is clear that φ−1 = ψ and ψ−1 = φ. The next lemma offers a criterion for a vector to be

in the tangent cone.

Lemma 4.2.8. For any v ∈ ∂J, we have X ∈ CvJ if and only if l(X) ≤ l(v), ∀l ∈ SvJ.

Proof. In fact, it is easy to check that X ∈ CvJ is equivalent to any of the following

1. X ∈ H, ∀H ∈ HvJ ;

2. lH(X) ≤ lH(v), ∀H ∈ HvJ ;

3. l(X) ≤ l(v), ∀l ∈ SvJ.

Corollary 4.2.8.1. For every ω /∈ J, there exists v ∈ ∂J and H ∈ HvJ such that ω /∈ H

and

d(ω, J) = d(ω,H) = lH(ω − v) = 〈ω − v,NH〉.

Proof. It follows directly from Lemmas 4.2.3 and 4.2.4.

Let s : Rk −→ [0,∞) be the distance function to J :

s(ω) = d(ω, J).

Lemma 4.2.9. If ω /∈ J, then

s(ω) = sup {l(ω − v); v ∈ ∂J and l ∈ SvJ} . (4.9)
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Hence, s(ω) is a convex function. Moreover, the supremmum is attained and s(ω) is a

continuous function of ω.

Proof. Let σ(ω) := sup {l(ω − v); v ∈ ∂J and l ∈ SvJ} . From Corollary 4.2.8.1, ∃v0 ∈ ∂J

and H0 ∈ HvJ such that ω /∈ H0 and

s(ω) = d(ω, J) = d(ω,H0) = lH0(ω − v0) ≤ σ(ω).

On the other hand, for any v ∈ ∂J and H ∈ HvJ, we have J ⊂ H, so

lH(ω − v) = d(ω,H) ≤ d(ω, J) = s(ω).

Hence σ(ω) ≤ s(ω) and the equality follows. Since l is convex for every l ∈ SvJ, s(ω) is

also convex.

Lemma 4.2.10. Let J ⊂ Rk be a closed convex set.

(i) The function s is C1 on Rk − J. For ω /∈ J, let v ∈ ∂J be the unique point such that

s(ω) = d(ω, v). Then the gradient ∇s(ω) is equal to the unit vector pointing in the

direction from v to ω.

(ii) For ω /∈ J, define the closed convex set J̃ := s−1 ([0, s(ω)]) . Then ∂J̃ is C1 and the

gradient ∇s(ω) is equal to the unit outward normal to J̃ at ω.

(iii) Let J(t), t ∈ [0, T ], be a continuous family of convex sets. Given ω /∈ J(t), let

s(ω, t) := d(ω, J(t)) be the distance function. Then the gradient ∇s(ω, t) is a con-

tinuous function of (ω, t).

Proof. In order to prove (i), consider a Euclidean coordinate system {yi} on Rk such that

the origin is in v and the positive yk axis is in the direction from v to ω. Then

J ⊂
{

(y1, . . . , yk) ∈ Rk; yk ≤ 0
}

:= H−.

Moreover, ω = (0, . . . , 0, yk), for some yk > 0. If y /∈ H−, then

d(y,H−) = s(y) ≤ d(y, 0),
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i.e., if y = (y1, . . . , yk),

yk ≤ s(y1, . . . , yk) ≤
√
y1

2 + . . . yk2.

Therefore, s(y1, . . . , yk) is differentiable at (0, . . . , 0, yk) and its gradient is given by

∇s(0, . . . , 0, yk) = (0, . . . , 0, 1).

This proves (i).

Item (ii) follows directly from (i); we just have to observe that J̃ is the s(ω)-neighborhood

of J.

Finally, using Lemma 4.2.3, v(ω, t) is continuous on (ω, t). Then ω− v(ω, t) is contin-

uous. Since

∇s(ω, t) =
ω − v(ω, t)

|ω − v(ω, t)|
,

the result (iii) follows.

4.2.3 Vector Bundle Formulation

Let π : Er −→ Mn be a rank r real vector bundle over a closed manifold M. Consider a

family of Riemannian metrics on M, g(t), t ∈ [0, T ), a fixed bundle metric h on E and

time dependent connections

∇(t) = ∇t
: C∞(E) −→ C∞(E ⊗ T ∗M),

compatible with h, i,e,

X(h(u, v)) = h
(
∇t

Xu, v
)

+ h
(
∇t

Xv, u
)
,

for all vector fields X ∈ TMn, sections u, v ∈ C∞(E) and time t ∈ [0, T ). In coordinates,

we may consider a local basis {vi} of E and, therefore, for any section u ∈ C∞(E) we
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can write u =
r∑
i=1

uivi, where ui are smooth functions on M. Hence, we get the following

expression

∇t

X

(
r∑
i=1

uivi

)
=

r∑
i=1

(
X(ui)vi + ui∇t

Xvi

)
.

We may also define ∇̂(t) = ∇̂t : C∞ (E ⊗ T ∗M) −→ C∞ (E ⊗ T ∗M ⊗ T ∗M) by

∇̂t
X (φ⊗ ξ) =

(
∇t

Xφ
)
⊗ ξ + φ⊗∇t

Xξ,

for all X ∈ TM, ξ ∈ T ∗M and φ ∈ C∞(E), where ∇t is the Levi-Civita connection on

Mn with respect to g(t).

Then we may define the time-dependent bundle Laplacian ∆̂(t) acting on sections

of E :

∆̂tφ := trg∇̂
(
∇φ
)
. (4.10)

The Laplacian at (p, t) ∈M × [0, T ) can be expressed as follows. Let γ : [0, b] −→M

be a differentiable curve on M. We say that a section v(s) ∈ Eγ(s) is parallel along γ if

∇t

γ(s)′v(s) = 0.

For every γ : [0, b] −→ M and vector v0 ∈ Eγ(0), there exists a unique parallel section

v(s) ∈ Eγ(s) along γ(s) with v(0) = v0 (we call it a parallel lift on γ(s)). Given a vector

u0 ∈ Ep0 , p0 ∈ M, we can extend u0 to a section u of E over the normal neighborhood

Bρ(p0) ⊂ M, of p0, where ρ is the injectivity radius of p0 ∈ (Mn, g(t)). In fact, for every

geodesic γ starting at p0, parallel translate u0 along γ using the connection ∇t
. This gives

a well-defined section u on Bρ(p0).
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Given any X0 ∈ Tp0M, since u is a parallel section we have that

(
∇t

X0
u
)

(p0) = 0

and the diagonal part of the second covariant derivative also vanishes:

(
∇t

2

X0
u
)

(p0) = 0.

In fact, let γ : [0, ρ
|X0| ] −→ M be the constant speed geodesic with γ(0) = p0 and

γ′(0) = X0. Then we get:

(
∇2

γ′,γ′(t)
)
u = ∇t

γ′

(
∇t

γ′u
)
−
(
∇t

γ′γ
′
)
u = 0,

since u is parallel along γ and γ is a geodesic.

Now consider a basis {vi(p0)}ri=1 of Ep0 .We extend this basis to a basis of local sections

vi, defined on a neighborhood U of p0, by parallel transport along geodesics emanating

from p0. If u ∈ C∞(E), then we may write, on U,

u :=
r∑
i=1

uivi,

where ui : U −→ R. Given X0 ∈ Tp0M, let γ denote the constant speed geodesic with

γ(0) = p0 and γ′(0) = X0. Let X = γ′ along γ. Since

∇XX = 0 and ∇Xvi = 0 along γ,

we have

∇2

X,X(t)u = ∇X

(
∇Xu

)
−
(
∇XX

)
u = X(X(ui))vi.

Choosing {ej}nj=1 ⊂ Tp0M an orthonormal frame of tangent vectors at p0 and taking

X = ej, we have

(
∆̂u
)

(p) =
n∑
j=1

(
∇2

ej ,ej
u
)

(p) =
r∑
i=1

n∑
j=1

ej
(
ej(u

i)
)
vi(p) =

r∑
i=1

(
∆ui

)
(p)vi(p),
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as we expected. Now that we understand the Laplacian ∆̂, we would like to consider

heat-type equations for sections of E. Suppose that u(t) ∈ C∞(E), t ∈ [0, T ), satisfies

∂u

∂t
= ∆̂tu+∇t

X(t)u+ F (u, t), (4.11)

where X(t) is a time dependent vector field on M and F : E × [0, T ) −→ E is a fiber-

preserving map for each t ∈ [0, T ).

We may consider the system of ODE on Ep related to (4.11), for each p ∈M :

du

dt
= Fp(u, t), (4.12)

where Fp := F
∣∣
Ep×[0,T )

: Ep × [0, T ) −→ Ep.

Definition 4.2.7. Let K ⊂ E be a subset of E and denote Kp = K ∩Ep, for p ∈M. We

say that K is invariant under parallel translation if for every differentiable curve

γ : [0, b] −→ M and vector v ∈ Kγ(0), the unique parallel section v(s) ∈ Eγ(s), s ∈ [0, b],

along γ(s) with v(0) = v is contained in K.

Remark. The maximum principle for the scalar case (Theorem 4.1.2) basically says that

solutions to the associated ODE give bounds for the solutions to the PDE. We wish to gen-

eralize this result to systems. The analogue, for systems, of the initial pointwise bounds

c1 ≤ u(p, 0) ≤ c2, is the requirement that the initial data lies in a closed subset K ⊂ E

which is invariant under parallel translation in E with respect to ∇t
, ∀t ∈ [0, T ), and is

convex in each fiber, i.e., Kp = K ∩ Ep is a convex subset of Ep, ∀p ∈M.

If, for instance, E = M × R is the trivial line bundle, invariance under parallel

translation is the same as [c1, c2] being independent of p ∈ M. Convexity in the fibers

corresponds to [c1, c2] ⊂ R being convex.

Remark. If M = [0, 1] and T = ∞, let K = M × Rk be a higher rank trivial vector

bundle. Suppose u : [0, 1]× [0,∞) −→ Rk is a solution of the heat equation ∂u
∂t

= ∆u and

the values at 0 and 1 are fixed, u(0) = a and u(1) = b. Then the heat equation smooths

out (or averages) the function u to the linear function u∞(s) = (1− s)a + sb as t ↗ ∞.
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Intuitively, this is why we need K to be convex in each fiber.

In applications to the Ricci flow, we are going to consider vector bundles of the form

E = V ⊗S V, where V is a vector bundle and ⊗S is the symmetric tensor product. Let

EndSA(V ) be the bundle of self-adjoint endomorphisms of V. Thus, using the metric on

V, we may identify V with V ∗ and E ∼= EndSA(V ).

Now let u0 ∈ Ep0 for some p0 ∈ M. For a given path γ : [0, 1] −→ M with γ(0) = p0,

let u(t) be the parallel lift of γ such that u(0) = u0. Let ω0 ∈ Vp0 be an eigensection of

u0 with eigenvalue λ0 ∈ R, i.e., u0(ω0) = λ0ω0, using our identification E ∼= EndSA(V ).

Let ω : [0, 1] −→ V be the unique parallel lift of γ such that ω(0) = ω0. We claim that ω

is an eigensection of u with the same eigenvalue λ0. Indeed, ∇γ′ (u(ω)− λ0ω) = 0 since u

and ω are parallel lifts. Furthermore, (u(ω)− λ0ω) (0) = 0, then u(ω) = λ0ω ∀t ∈ [0, 1].

Now let r := rank(V ) and, given u0 ∈ Ep0 , let

λ1(u0) ≥ · · · ≥ λr(u0)

denote the ordered eigenvalues of u0. Let

Γ := {(λ1, . . . , λr) ∈ Rr;λ1 ≥ · · · ≥ λr} . (4.13)

Under these conditions, the following is true.

Lemma 4.2.11. Suppose that G : Γ −→ R is a function, where Γ is given by (4.13).

Given c ∈ R, let

Kc := {u ∈ E;G(λ1(u), . . . , λr(u)) ≤ c} . (4.14)

Then Kc ⊂ E is invariant under parallel translation.

Proof. According to the construction above, let ω1, . . . , ωr ∈ Vp be unit eigensections of

u ∈ Ep corresponding to λ1 ≥ · · · ≥ λr, so that

u =
r∑

a=1

λaωa ⊗ ωa.
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Given any path γ : [0, 1] −→ M with γ(0) = p, let ωa : [0, 1] −→ V be the parallel lift of

γ with ωa(0) = ωa. Then u =
r∑

a=1

λaωa ⊗ ωa is a parallel lift of γ with u(0) = u. Hence

λa(u) = λa(u) for a = 1, . . . , r and the lemma follows.

4.2.4 Understanding when ODEs preserve convex sets

Now we consider a solution u(t) of a given ODE
d

dt
u(t) = F (u, t). Suppose that the

initial value u(0) = u0 is inside a closed convex set J ⊂ Rk. We would like to understand

when solutions to the ODE remain in J . The basic idea, when J is independent of time,

is that if the vector field F, which drives the ODE, points into J at the boundary ∂J, then

J is preserved under the ODE, i.e., the solution to the ODE remains in J. This is the

content of the next result. We say that the solution for the ODE
du

dt
= F (u, t) preserves

the set J if u(t0) ∈ J for some t0 implies u(t) ∈ J for all t ≥ t0 such that the solution

exists.

Proposition 4.2.1. Let J ⊂ Rk be a closed convex set and let F : Rk × [0, T ) −→ Rk be

a continuous function which is locally Lipschitz in Rk. The ODE

du

dt
= F (u, t) (4.15)

preserves J if and only if

v + F (v, t) ∈ CvJ,

∀v ∈ ∂J and ∀t ∈ [t0, T ), which is equivalent to

l(F (v, t)) ≤ 0,

∀v ∈ ∂J, t ∈ [t0, T ) and ∀l ∈ SvJ.

Proof. Assume the ODE preserves J, we want to prove that l(F (v, t)) ≤ 0 ∀v ∈ ∂J, t ∈

[t0, T ) and ∀l ∈ SvJ. Suppose l0(F (v0, t0)) > 0 for some v0 ∈ ∂J, t0 ∈ [0, T ) and l0 ∈ Sv0J.
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Let u(t) be a solution of (4.15) with u(t0) = v0. Then

d

dt
l0(u(t))

∣∣∣∣
t=t0

= l0(
d

dt
u(t0)) = l0(F (v0, t0)) > 0.

This implies that if t > t0 is close enough to t0, then l0(u(t)) > l0(v0). Hence, u(t) /∈ Hl0

and u(t) /∈ J. Therefore, u(t) ∈ J for all t ∈ [t0, T ) implies

l(F (v, t)) ≤ 0,

∀v ∈ ∂J, t ∈ [t0, T ) and ∀l ∈ SvJ.

In order to prove the converse, let u0 ∈ J, t0 ∈ [0, T ) and t1 ∈ (t0, T ). Consider a

solution u(t) to (4.15), with t ∈ [t0, t1] and u(t0) = u0. Then, there exists R > 0 such

that u(t) ∈ BR(0), ∀t ∈ [t0, t1]. Let JR := J ∩ BR(0), a convex and compact set. We will

prove that u(t) ∈ JR ∀t ∈ [t0, t1], which clearly proves the converse. First, we introduce

the following definition. The space of support functions for J is

S(J) := {(v, l); v ∈ ∂J, l ∈ SvJ} .

Claim: If J is compact, then S(J) is compact. In particular, SR = S(JR) is compact.

In order to prove the claim, let (vi, li) ⊂ S(J) be any sequence. Since ∂J is com-

pact, there exists a subsequence of (vi), which will still be represented by (vi), such that

vi → v∞ ∈ ∂J, for some v∞. Since the unit sphere Sk−1
1 (0) ⊂ Rk is compact, there exists

a further subsequence such that the outward unit normal vectors Ni of li converge to

some N∞ ∈ Sk−1
1 (0). Then li → l∞, where l∞(ω) := 〈ω,N∞〉. Since l∞ is the limit of a

sequence of support functions, we get that |l∞|=1. Moreover, since J ⊂ Hli ∀i ∈ N and

Hl∞ = limHi, we have J ⊂ Hl∞ . Hence, (v∞, l∞) ∈ S(J) and S(J) is compact. This

proves the claim.

Now, if ω ∈ BR(0)− J, since u0 ∈ J ∩BR(0), we have

d(ω, J) = d(ω, JR) = sup {l(ω − v); v ∈ ∂JR, l ∈ SvJR} .
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Define g : SR × [t0, t1] −→ R by g(v, l, t) = l(u(t) − v). Let s(t) = d(u(t), J). Then,

whenever s(t) > 0, by our choice of R we have

s(t) = sup
(v,l)∈SR

g(v, l, t) = sup
(v,l)∈SR

l(u(t)− v),

because u(t) ∈ BR(0). We also have

d

dt
(l(u(t)− v)) = l

(
du

dt

)
= l(F (u(t), t)).

Hence, from Lemma 4.2.2, whenever s(t) > 0 we get

d+

dt
s(t) = sup {l(F (u(t), t)); (v, l) ∈ SR with l(u(t)− v) = s(t)} .

Then we consider (v, l) ∈ SR with respect to which the above supremum is taken. We

have

l(u(t)− v) = d(u(t), v) = s(t),

with v ∈ ∂J and l ∈ SvJ. By the assumption, we have l(F (v, t)) ≤ 0. Since |l| = 1, this

implies that for (v, l) ∈ S as above,

l(F (u(t), t)) =l(F (u(t), t)− F (v, t)) + l(F (v, t))

≤ |F (u(t), t)− F (v, t)| ≤ cd(u(t), v) = cs(t),

provided that s(t) > 0, where we have used that F is locally Lipschitz in the first entry.

Then
d+

dt
s(t) ≤ cs(t) whenever s(t) > 0 in [t0, t1]. Since s(t0) = 0, it follows from Corollary

4.2.1.2 that s(t) = 0 ∀t ∈ [t0, t1], i.e., u(t) ∈ JR ∀t ∈ [t0, t1]. Since t1 ∈ [t0, T ) is arbitrary,

it follows that u(t) ∈ J ∀t ∈ [t0, T ).

Remark. The condition v + F (v, t) ∈ CvJ shows that F (v, t) should be thought of as

based at v.

Now, we let our set J to depend on time. Let J(t) ⊂ Rk, t ∈ [0, T ), be a family of

time-dependent closed sets of the Euclidean space. We define the space-time track of
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J(t) by

L :=
{

(v, t) ∈ Rk × R; v ∈ J(t), 0 ≤ t < T
}
.

Definition 4.2.8. Given (v, t) ∈ L, we define the set of forward looking directions

D(v,t)L as the set of all ω ∈ Rk such that for all decreasing sequences of real numbers

hi → 0, there exists a subsequence (hij) and a sequence of vectors ωij ∈ Rk converging to

ω such that

v + hijωij ∈ J(t+ hij),

i.e.,

(v, t) + hij(ωij , 1) ∈ L.

Example. Given a < b, let J(t) = {v ∈ R; at ≤ v ≤ bt} , t ∈ [0,∞). Then

D(0,0)L = [a, b]

since a(t+hij) ≤ v+hijωij ≤ b(t+hij) for sufficiently big ij, where ωij → 0 and hij → 0.

Lemma 4.2.12. If J(t) is convex for each t, then the set D(v,t)L ⊂ Rk is convex.

Proof. Let ω, x ∈ D(v,t)L. Let (hi) ⊂ R be an arbitrary sequence such that hi ↘ 0. Then

there exists a subsequence of (hi), still represented by (hi), and ωi → ω such that

v + hiωi ∈ J(t+ hi).

Also, there exists a further subsequence (hi) and xi → x such that

v + hixi ∈ J(t+ hi).

Observe that, for all ε ∈ [0, 1], we have

v + hi[(1− ε)ωi + εxi] = (1− ε)(v + hiωi) + ε(v + hixi) ∈ J(t+ hi)
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since J(t+ hi) is convex. Also, since (1− ε)ωi + εxi → (1− ε)ω + εx, it follows that

(1− ε)ω + εx ∈ D(v,t)L,

∀ε ∈ [0, 1].

Lemma 4.2.13. Let u(t) be a solution to (4.15) with u(t0) ∈ J(t0) for some 0 < t0 < T.

Suppose that there exists a t2 ∈ [0, T ), with t2 > t0, such that u(t2) /∈ J(t2). Also, suppose

that F (v, t) ∈ D(v,t)L, for all (v, t) ∈ ∂L and t < T. Moreover, let t1 ∈ [t0, t2) such that

u(t1) ∈ J(t1) and u(t) /∈ J(t), ∀t ∈ (t1, t2]. Finally, let

s(t) = d(u(t), J(t)). (4.16)

Then, s(t) is right continuous and left lower semi-continuous on (t1, t2].

Proof. First, we will prove that s(t) is lower semi-continuous (LSC). Suppose t ∈ (t1, t2)

and let (ti) be a sequence of times with ti → t. For each i ∈ N, there exists vi ∈ J(ti)

such that d(u(ti), vi) = s(ti), since J(ti) is closed. Consider a subsequence (tij) of (ti)

such that

lim
j→∞

s(tij) = lim inf
i→∞

s(ti).

Since L is also closed, there exists a subsequence (vij) that converges to an element of

J(t). Let v∞ = limvij . Then,

lim inf
i→∞

s(ti) = lim
j→∞

s(tij) = lim
j→∞

d(u(tij), vij) = d(u(t), v∞)

≥ s(t).

So s(t) is lower semi-continuous.

In order to prove that s(t) is right continuous, we only need to prove that it is right

upper semi-continuous on [t1, t2]. Since t1 is such that (u(t1), t1) ∈ L and (u(t), t) /∈ L

∀t ∈ (t1, t2], then (u(t1), t1) ∈ ∂L. Let vt1 = u(t1). For any t ∈ (t1, t2) there exists a
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vt ∈ J(t) such that s(t) = d(u(t), vt) and (vt, t) ∈ ∂L, because u(t) /∈ J(t).

By hypothesis, F (vt, t) ∈ D(vt,t)L. Given t ∈ [t1, t2), let (hi) be a sequence such that

hi ↘ 0 and

lim
i→∞

s(t+ hi) = lim sup
τ→t+

s(τ).

By definition, we get a subsequence of (hi) such that vt+hiωi ∈ J(t+hi) and ωi → F (vt, t),

where the subsequence is still represented by (hi). Then

s(t+ hi) ≤ d(u(t+ hi), vt + hiωi).

If we let i→∞, we get

lim sup
τ→t+

s(τ) = lim
i→∞

s(t+ hi) ≤ d(u(t), vt) = s(t).

Proposition 4.2.2. Let J(t) ⊂ Rk, 0 ≤ t < T, be a family of nonempty closed convex sets

such that L is closed in Rk × [0, T ). Consider the ODE (4.15), where F : Rk × [0, T ) −→

Rk is continuous in (u, t) and locally Lipschitz in u. Then the following conditions are

equivalent:

(i) For any initial time t0 ∈ [0, T ) and any solution of the ODE (4.15) such that u(t0) ∈

J(t0), the solution u(t) ∈ J(t) for all t ∈ [t0, T ).

(ii) F (v, t) ∈ D(v,t)L, ∀(v, t) ∈ ∂L and t < T.

Proof. First we prove that (i) implies (ii). Consider any (v0, t0) ∈ ∂L and u(t) a solution

to (4.15) with u(t0) = v0. Then, (i) implies that u(t0 + t) ∈ J(t0 + t), ∀t ∈ [0, T − t0).

This implies that for every sequence hi ∈ R with hi → 0+, we get

Fi :=
u(t0 + hi)− u(t0)

hi
→ du

dt
(t0) = F (v0, t0)

and

v0 + hiFi = u(t0 + hi) ∈ J(t0 + hi).
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This proves that F (t0, v0) ∈ D(v0,t0)L.

Now, we prove that (ii) implies (i) : . We will argue by contradiction. Suppose that

u(t) is a solution of (4.15) with u(t0) ∈ J(t0). Assume there exists t1 < t2 such that

u(t1) ∈ J(t1) and u(t) /∈ J(t) for all t ∈ (t1, t2]. Then s(t1) = 0 and s(t) > 0, ∀t ∈ (t1, t2].

Claim:
d+s

dt
(t) ≤ cs(t) for t ∈ (t1, t2). This will imply that s(t) = 0 for t ∈ [t1, t2) by

Corollary 4.2.1.2, which is a contradiction.

In order to prove our claim, we consider

S(t) = {(v, l); v ∈ ∂J(t) and l ∈ SvJ(t)} .

Since

s(t) = sup
(v,l)∈S(t)

g(v, l, t),

where g(v, l, t) = l(u(t)− v), there exist vi ∈ ∂J(t+ hi) and li ∈ SviJ(t+ hi) such that

g(vi, li, t+ hi) = s(t+ hi) = |u(t+ hi)− vi|.

There also exist v∞ ∈ ∂J(t) and l∞ ∈ Sv∞J(t) such that

g(v∞, l∞, t) = |u(t)− v∞|.

Hence, we compute

d+s

dt
= lim

i→∞

g(vi, li, t+ hi)− g(v∞, l∞, t)

hi

= lim
i→∞

li(u(t+ hi)− vi)− l∞(u(t)− v∞)

hi

= lim
i→∞

li(u(t+ hi)− u(t)) + li(u(t)− vi)− l∞(u(t)− v∞)

hi
.

(4.17)

From (ii), F (v∞, t) ∈ D(v∞,t)L, so there exists a subsequence (hij) and a sequence of Fij
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with Fij → F (v∞, t) such that

v∞ + hijFij ∈ J(t+ hij),

so that lij(v∞ + hijFij − vij) ≤ 0. Let us denote (hij) by (hi). Then it follows from (4.17)

that
d+s

dt
≤ lim sup

i→∞
li

(
u(t+ hi)− u(t)

hi
− Fi

)
+ lim sup

i→∞

li(v∞ + hiFi − vi)
hi

+ lim sup
i→∞

1

hi
(li − l∞)(u(t)− v∞)

≤ lim
i→∞

∣∣∣∣u(t+ hi)− u(t)

hi
− Fi

∣∣∣∣ =
∣∣F (u(t), t)− F (v∞, t)

∣∣
≤ c|u(t)− v∞| = cs(t),

where we used the fact that |li| = 1 and

(li − l∞)(u(t)− v∞) = li(u(t)− v∞)− |u(t)− v∞| ≤ 0.

This ends the proof.

We are finally ready to prove our main theorem.

Theorem 4.2.14. Under the vector bundle formulation described in Subsection 4.2.3, let

K(t) ⊂ E be a family of subsets which are invariant under parallel translation with respect

to ∇(t), for each t ∈ [0, T ). We require Kp(t) := K(t) ∩ Ep to be closed and convex and

the space-time track

T := {(v, t) ∈ E × R; v ∈ K(t) and t ∈ [0, T )}

also to be closed in E × [0, T ). Assume that F (u, t) : E × [0, T ) −→ E is continuous in

(u, t) and locally Lipschitz in u. Suppose that for any p ∈ M and initial time t0 ∈ [0, T ),

any solution u(t) of

du

dt
= Fp(u, t),

which starts in Kp(t0), will remain in Kp(t) for t ∈ [t0, T ). Then the solution u(t), t ∈
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[0, T ), of the PDE

∂u

∂t
= ∆̂u+∇X(t)u+ F (u, t) (4.18)

will remain in K(t) for all t ∈ [t0, T ), provided u(t0) ∈ K(t0).

Proof. Given u ∈ Ep = π−1(p), let d(u,Kp(t)) denote the distance from u to Kp(t) with

respect to the metric h. Let u(p, t) be a solution to (4.18) with u(p, 0) ∈ K(0) ∀p ∈ M

and let

s(t) := sup
p∈M

d(u(p, t), Kp(t))

be the maximum distance from u(t) to the set K(t). We shall argue by contradiction.

Suppose there exist p2 ∈M and t2 ∈ (0, T ) such that u(p2, t2) /∈ K(t2). Since T is closed,

there exists a time t1 ≥ 0 such that u(p, t1) ∈ K(t1) ∀p ∈ M and for any t ∈ (t1, t2], we

can find a p ∈M such that u(p, t) /∈ K(t). So we have s(t1) = 0 and s(t) > 0 ∀t ∈ (t1, t2].

We then make two claims.

Claim 1: s(t) is left lower semi-continuous and right continuous on [t1, t2].

Claim 2: s(t) grows at most exponentially:

d+s

dt
(t) ≤ Cs(t)

for all t ∈ (t1, t2] and for some constant C <∞.

If our claims are true, the result will follow. In fact, since s(t1) = 0, from

Corollary 4.2.1.2 we get that s(t) ≡ 0, ∀t ∈ (t1, t2], which is a contradiction.

Now, we prove our first claim. First, we prove that s(t) is lower semi-continuous. Since

s(t1) = 0 and s(t) > 0 ∀t ∈ (t1, t2], s(t) is obviously lower semi-continuous at t1. Now con-

sider an arbitrary t ∈ (t1, t2]. Thus, s(t) > 0. Fix p ∈M such that s(t) = d(u(p, t), Kp(t)).

Since T is closed, we get an ε > 0 such that u(p, t) /∈ Kp(t) for every t ∈ (t− ε, t+ ε).

Restricting ourselves toEp, we may apply Lemma 4.2.13 to conclude that d (u(p, .), Kp(.))
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is lower semi-continuous at t. Thus, if ti → 0, we get

lim inf
i→∞

s(t+ ti) ≥ lim inf
i→∞

d
(
u(p, t+ ti), Kp(t+ ti)

)
≥ d(u(p, t), Kp(t)) = s(t).

This proves that s(t) is lower semi-continuous at t and, therefore, on [t1, t2].

Now we prove that s(t) is upper right semi-continuous, which will be sufficient to prove

its right continuity since we have already proved that s(t) is lower semi-continuous and,

in particular, lower right semi-continuous.

Again, let t ∈ [t1, t2) be an arbitrary time. Also, consider ti → 0+. We shall prove

that there is a subsequence of ti, also denoted by ti, such that

lim
i→∞

s(t+ ti) ≤ s(t).

In fact, by considering a subsequence if necessary, we may assume the existence of

limi→∞ s(t+ ti). Then, for each i, let pi ∈M be such that

s(t+ ti) = d
(
u(pi, t+ ti), Kpi(t+ ti)

)
.

Since Mn is compact, we may assume that pi → p∞ ∈ Mn, again by passing to a subse-

quence if necessary. Then, let v∞ ∈ Kp∞(t) such that

d
(
u(p∞, t), Kp∞(t)

)
= d(u(p∞, t), v∞),

whose existence is guaranteed by the fact that Kp∞(t) is closed.

Now, since s(t+ ti) > 0, Tp := T ∩ (Ep × [0, T ]) is invariant under parallel translation

and T is closed, it follows that (v∞, t) ∈ ∂Tp∞ . If follows from our hypothesis and from

Proposition 4.2.2 that D(v∞,t)Tp∞ 6= ∅. Then we get (v∞+ tiωi) ∈ Kp∞(t+ ti) with ωi → ω
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for some ω ∈ Ep∞ . This implies that

d
(
u(p∞, t+ ti), v∞ + tiωi

)
≥ d

(
u(p∞, t+ ti), Kp∞(t+ ti)

)
. (4.19)

Since u(p, t) is continuous in p and Kp(t+ ti) is invariant under parallel translation with

respect to ∇(t+ ti) for all p ∈M, we may consider

d
(
u(p∞, t+ ti), Kp∞(t+ ti)

)
arbitrarily close to d

(
u(pi, t+ ti), Kpi(t+ ti)

)
when i is large enough.

So the right hand-side of (4.19) goes to the limit of s(t+ti). However, the left hand-side

approaches

d(u(p∞, t), v∞) = d
(
u(p∞, t), Kp∞(t)

)
≤ s(t).

Hence,

lim
i→∞

s(t+ ti) ≤ s(t)

and we have proved the upper right semi-continuity of s(t). This proves the first claim.

In order to prove the second claim, let

SvKp(t) ⊂ (Ep)
∗

be the set of support functions of Kp(t) at v ∈ ∂Kp(t) and let

Sp(t) = {(v, l); v ∈ ∂Kp(t) and l ∈ SvKp(t)}

be the set of all support functions of Kp(t). Let

R(t) :=
⋃
p∈M

Sp(t),
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which is a subset of E ⊗ E∗. Define

g(v, l, p, t) := l(u(p, t)− v),

for (v, l, p) ∈ R(t) and t ∈ [t1, t2]. Then, for t ∈ (t1, t2] we may write s(t) as

s(t) = sup
p∈M

{
sup

(v,l)∈Sp(t)

l(u(p, t)− v)

}
= sup

(v,l,p)∈R(t)

g(v, l, p, t).

Let t ∈ (t1, t2) be fixed and consider (hi) a sequence of real numbers such that hi ↘ 0

and

d+s

dt
= lim

i→∞

s(t+ hi)− s(t)
hi

.

Then by Corollary 4.2.8.1 we have sequences (pi) ⊂ M, (vi), with vi ∈ ∂Kpi(t + hi) and

li ∈ SviKpi(t+ hi), such that

g(vi, li, pi, t+ hi) = s(t+ hi).

SinceM is compact and T is closed, we get a subsequence of pi, still represented by pi, such

that pi → p∞ ∈M, for some p∞.Also, from the equality above and since lim s(t+hi) ≤ s(t)

and s(t) is right continuous, we get that s(t+hi) is uniformly bounded. This implies that

the sequence vi does not diverge, so we get subsequences such that vi → v∞ ∈ ∂Kp∞(t)

and li → l∞ ∈ Sv∞Kp∞(t) ⊂ (Ep∞)∗ .

By the continuity of g and the right-continuity of s(t), the first claim gives us

s(t) = g (v∞, l∞, p∞, t) = l∞ (u(p∞, t)− v∞) . (4.20)

So
d+s

dt
= lim

i→∞

g(vi, li, pi, t+ hi)− g (v∞, l∞, p∞, t)

hi

= lim
i→∞

li (u(pi, t+ hi)− vi)− l∞ (u(p∞, t)− v∞)

hi
.

(4.21)
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For each i ∈ N, let vi ∈ ∂Kpi(t) and li ∈ SviKpi(t) be such that

d (u(pi, t), Kpi(t)) = li (u(pi, t)− vi) = |u(pi, t)− vi|h. (4.22)

Now let Ui(t) be the solution to the ODE in Epi restricted to [t0, t0 + ε).

dUi
dt

= F (Ui, t), (4.23)

Ui(t) = vi, (4.24)

where ε > 0 is independent of i. Define Fi ∈ Epi by

vi + hiFi = Ui(t+ hi). (4.25)

Note that Ui(t+ hi) ∈ Kpi(t+ hi) by our hypothesis. Thus

li (vi + hiFi − vi) ≤ 0. (4.26)

It follows from (4.23) and (4.25) that if we let i→∞, then

|Fi − F (vi, t)| =
∣∣∣∣Ui(t+ hi)− Ui(t)

hi
− dUi

dt
(t)

∣∣∣∣→ 0.

Passing to a subsequence if necessary, we get vi → v∞ ∈ Kp∞(t) and li → l∞. We claim

that v∞ = v∞.

From (4.22), letting i→∞ we have

|u(p∞, t)− v∞|h = l∞ (u(p∞, t)− v∞) = d (u(p∞, t), Kp∞(t))

= |u(p∞, t)− v∞|,

by (4.20). Since Kp∞(t) is convex, v∞ ∈ ∂Kp∞(t) is the unique point in Kp∞(t) closest
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to u(p∞, t), so v∞ = v∞. Using (4.21), we have

d+s

dt
= lim

i→∞

[
li

(
u(pi, t+ hi)− u(pi, t)

hi
− Fi

)
+
li(vi + hiFi − vi)

hi

]
+ lim

i→∞

li(u(pi, t)− vi)− l∞(u(p∞, t)− v∞)

hi
.

However, since |li| = 1 for each i ∈ N we get

li(u(pi, t)− vi) ≤ |u(pi, t)− vi|h = d(u(pi, t), Kpi(t))

≤ s(t) = d (u(p∞, t), Kp∞(t)) = l∞ (u(p∞, t)− v∞) ,

where we used the fact that s(t) is defined as a supremum of those distances. From (4.20),

we also get that (v∞, l∞, p∞) ∈ R(t) satisfies

l∞(u(p∞, t)− v∞) = s(t).

Consider the parallel translation of v∞ and l∞ along geodesics emanating from p∞ with

respect to g(t). Then (v∞(p), l∞(p), p) ∈ R(t), for p in a neighborhood of p∞. Since l∞ is

linear, ∆̂u(p∞, t) ∈ Ep∞ and l∞(u(t)− v∞) is a real-valued function in a neighborhood of

p∞ which achieves a local maximum at p∞, we have

0 = ∇ (l∞(u(p, t)− v∞)) (p∞) = l∞
(
∇u(p∞, t)

)
and

0 ≥ ∆̂ (l∞(u(t)− v∞)) (p∞) = l∞

(
∆̂u(p∞, t)

)
.

Hence, from (4.26), since li(vi + hiFi − vi) ≤ 0 and li(u(pi, t) − vi) ≤ l∞(u(p∞, t) − v∞),

we have

d+s

dt
= lim

i→∞

[
li

(
u(pi, t+ hi)− u(pi, t)

hi
− Fi

)
+
li(vi + hiFi − vi)

hi

]
+ lim

i→∞

li(u(pi, t)− vi)− l∞(u(p∞, t)− v∞)

hi

≤ l∞

(
∂u

∂t
(p∞, t)− F (v∞, t)

)
.
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Hence, since we are assuming that u is a solution of (4.18), we get

d+s

dt
(t) ≤ l∞

(
∆̂u(p∞, t) +∇X(t)u(p∞, t) + F (u(p∞, t), t)− F (v∞, t)

)
= l∞

(
∆̂u(p∞, t)

)
+ l∞

(
∇X(t)u(p∞, t)

)
+ l∞ (F (u(p∞, t), t)− F (v∞, t))

≤ |l∞||F (u(p∞, t), t)− F (v∞, t)|

≤ C|u(p∞, t)− v∞|h = c|u(p∞, t)− v∞|h = cs(t),

where we used the fact that l∞
(

∆̂u(p∞, t)
)
≤ 0 and l∞

(
∇X(t)u(p∞, t)

)
= 0 at p∞,

|l∞| = 1 and F (u, t) is Lipschitz in u. This proves the second claim and, therefore, the

theorem.
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Chapter 5

Three-Manifolds with Positive Ricci

Curvature

Our goal in this chapter is to prove a result on long time existence of the Ricci flow.

We will start by explaining a formulation which enables us to write the evolution of the

Riemann curvature tensor in a particularly nice form. After that, we will use the discussion

about Lie algebras on Chapter 2 to understand more about this evolution equation. This

will make it possible to get local and, later on, global estimates for the curvature tensor.

These estimates will show that the family of metrics g(t), t ∈ [0, T ), which is a solution

to the Ricci flow, converges uniformly to an Einstein metric. In the end of the chapter,

we make a brief comment on what would be the next steps to prove Hamilton’s main

theorem from his first paper [14], using the important results obtained in this chapter.

5.1 Uhlenbeck’s Trick

Now we would like to simplify the evolution equations of curvatures, in order to

understand them better. In particular, we shall find a nice form for equation (3.20):

∂

∂t
Rijkl =∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

− (Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rl

pRijkp).
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With this goal in mind, we will consider an orthonormal frame (with respect to the initial

metric g0) and evolve it in a way that it remains orthonormal. The idea of evolving a frame

field to compensate for the evolution of g(t) has a more abstract formulation and is due to

Karen Uhlenbeck. The Uhlenbeck’s trick gives us a particularly nice form for the evolution

equation above. We now present the formulation. We start with the following motivation:

Let (Mn, g(t)) be a solution to the Ricci flow ∂
∂t
g(t) = −2Ric(g(t)) and let {e0

a},

a = 1, . . . , n, be a local orthonormal frame field w.r.t g0 defined on an open set U ⊂Mn.

Consider the following ODE system in TpM, for each p ∈M :

d

dt
ea(p, t) = Ric(ea(p, t)),

ea(p, 0) = e0
a(p),

(5.1)

where the Ricci tensor in the metric g(t) is regarded as a (1,1)-tensor, Ric : TMn −→

TMn. Since (5.1) is a system of n ODE’s with an initial value, there exists a unique

solution as long as the solution g(t) of the Ricci flow exists.

Lemma 5.1.1. Assume g(t) is a solution of the Ricci flow and ea(p, t) is a solution of

(5.1) for each a = 1, ..., n. If {e0
a(p)} is orthonormal for each p ∈ M , then {ea(t)} is

orthonormal for each t.

Proof. We just have to see that

∂

∂t
(g(ea, eb)) =(

∂

∂t
g)(ea, eb) + g(

∂

∂t
ea, eb) + g(ea,

∂

∂t
eb)

= −2Ric(ea, eb) + g(Ric(ea), eb) + g(ea, Ric(eb))

= −2Ric(ea, eb) +Ric(ea, eb) +Ric(ea, eb) = 0.

Then g(ea(t), eb(t)) = g0(e0
a, e

0
b) = δab, ∀t.

Let (Mn, g(t)), t ∈ [0, T ), be a solution to the Ricci flow
∂

∂t
g = −2Ric(g(t)) with

g(0) = g0. Let V be a bundle over Mn such that (ι0)p : Vp −→ TpM
n is a vector space

isomorphism for each p ∈ Mn, depending smoothly on p ∈ Mn. Define h = (ι0)∗(g0).

Then ι0 : (V, h) −→ (TMn, g0) is a bundle isometry.
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Suppose we evolve the isometry ι0 by

∂

∂t
ι(t) = Ricg(t) ◦ ι,

ι(0) = ι0.

(5.2)

For each p ∈ Mn, (5.2) is a system of linear ordinary differential equations. Hence

there exists a unique solution for t ∈ [0, T ). Furthermore, i(t) remains a smooth bundle

isomorphism for all t ∈ [0, T ). In fact, we get more.

Proposition 5.1.1. For each t ∈ [0, T ) the solution ι(t) : (V, h) −→ (TM, g(t)) of (5.2)

is a bundle isometry.

Proof. We will prove that ι(t) is an isometry by showing that h is the pullback of g(t) via

ι(t), i.e., h = (ι(t))∗(g(t)), ∀t ∈ [0, T ). Since h is fixed and ι(0) is an isometry, it suffices to

show that (ι(t))∗(g(t)) remains constant in time. Let p ∈Mn and X, Y ∈ Vp be arbitrary.

Then

∂

∂t
((ι∗g)(X, Y )) =

∂

∂t
[g(ι(X), ι(Y ))]

= −2Ric(ι(X), ι(Y )) + g(Ric(ι(X)), ι(Y )) + g(ι(X), Ric(ι(Y ))) = 0,

as we required. Therefore ι(t) remains an isometry.

Now we may define connections on V by the pull-back of the Levi-Civita connections

∇(t) on Mn :

D(t) := ι(t)∗∇(t) : C∞(TMn)× C∞(V ) −→ C∞(V ),

where for each X ∈ C∞(TMn) and ξ ∈ C∞(V ), we have

D(t)(X, ξ) = (D(t))X(ξ) = (ι∗∇)X(ξ) = ∇X(ι(ξ)).

We can also define connections on tensor product bundles of TMn, V and their

dual bundles T ∗Mn and V ∗, using the usual product rule, as it was done on Section 4.2.3
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of the previous chapter. These connections will be denoted by

∇t
D : C∞(TMn)× C∞ (V ⊗ T ∗M) −→ C∞ (V ⊗ T ∗M ⊗ T ∗M) ,

and are given by

∇t
D(X, ξ ⊗ φ) = (∇X(ι(ξ)))⊗ φ+ ξ ⊗∇Xφ,

for all X ∈ TM, ξ ∈ C∞(V ) and φ ∈ T ∗M. Any other connection on tensor product

bundles of the above mentioned bundles will also be denoted by ∇t
D. Now we pull-back

the Riemann curvature tensor to V. For an arbitrary p ∈M and ξ, η, α, β ∈ Vp, we define

(ι∗Rm)(t) ∈ C∞(∧2V ⊗S ∧2V ) by

(ι∗Rm)(ξ, η, α, β) := Rm (ι(ξ), ι(η), ι(α), ι(β)) . (5.3)

Consider local coordinates {xk}, k = 1, . . . , n, on an open set U ⊂ Mn and let {ea}

be a basis of sections of V restricted to U. Then we define the components of ιka of

(ι)(t) : (V, h) −→ (TMn, g(t)) by

ι(ea) :=
n∑
k=1

ιka
∂

∂xk
.

Accordingly, the components Rabcd of ι∗Rm are given by

R(t)abcd := (ι∗Rm)(ea, eb, ec, ed)(t) =
n∑

i,j,k,l=1

ιiaι
j
bι
k
c ι
l
dRijkl. (5.4)

Now we would like to understand how the evolution equation for ι∗(Rm) relates to

the evolution equation of Rm. First, we define the Laplacian acting on tensor product

bundles of (TMn, g(t)) and (V, h).

∆t
D := trg(∇t

D ◦D(t)) =
n∑

i,j=1

gij(∇t
D)i(D(t))j,

where (∇t
D)j(ξ) = ∇t

j(ι(ξ)). Then we get the following result.

Proposition 5.1.2. Let g(t) be a solution of the Ricci flow and ι(t) a solution of (5.2).
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Then ∇t
D(ι) = 0 and ι∗Rm, defined as in (5.3), evolves by

∂

∂t
Rabcd = ∆t

DRabcd + 2(Babcd −Babdc +Bacbd −Badbc), (5.5)

where Babcd := −heihflRaebfRcidl.

Proof. First, we recall from (5.2) that ∂
∂t
ιka = Rk

l ι
l
a. Then

∂

∂t
Rabcd =

n∑
i,j,k,l=1

∂

∂t

(
ιiaι

j
bι
k
c ι
l
dRijkl

)
= (Ri

mι
m
a )ιjbι

k
c ι
l
dRijkl + ιia(R

j
mι

m
b )ιkc ι

l
dRijkl

+ ιiaι
j
b(R

k
mι

m
c )ιldRijkl + ιiaι

j
bι
k
c (R

l
mι

m
d )Rijkl

+ ιiaι
j
bι
k
c ι
l
d[∆

tRijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

− (Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rl

pRijkp)]

= ιiaι
j
bι
k
c ι
l
d

[
∆tRijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

]
.

The last equality follows from the fact that (Ri
mι

m
a )ιjbι

k
c ι
l
dRijkl = ιiaι

j
bι
k
c ι
l
dR

p
iRpjkl and the

respective equalities for the other terms. Now, we note that ∇t
D(ι) = 0. In fact, consider

ι(t) as an element of C∞(V ∗ ⊗ TM). Then, by definition,

ι((∇t
D)Xξ) = ∇t

X(ι(ξ)) = (∇t
D)X(ι(ξ)) = ((∇t

D)Xι)(ξ) + ι((∇t
D)Xξ),

which implies that (∇t
D)Xι = 0 for all X ∈ Vp, ∀p ∈M. Then we get from (5.4) that

∆t
DRabcd = ιiaι

j
bι
k
c ι
l
d∆

tRijkl

and the proposition follows.

5.2 The Structure of the Evolution Equation for the

Curvature

In order to get a better grasp of the evolution equation for the Riemann tensor, we

look more closely at the structure of the Riemann curvature operator. In order to so, it
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is better to look at Rm as the operator on 2-forms

Rm : ∧2T ∗M −→ ∧2T ∗M

defined for all u ∈ ∧2T ∗M by

[Rm(u)]ij := −gkpglqRijklupq.

If we define the inner product on ∧2T ∗M as

〈u, v〉 := gikgjluijvkl, (5.6)

then Rm is self adjoint:

〈Rm(u), v〉 =− gikgjlgkpglqRijklupqvkl = −gikgjlgpkgqlRklijvklupq

= gpkgql(−gikgjlRklijvkl)upq = gpkgql[Rm(v)]klupq

= 〈Rm(v), u〉.

Now we consider the operator

Rm2 = Rm ◦Rm : ∧2T ∗M −→ ∧2T ∗M

given in local coordinates by

(Rm2(u))ij = gkmglngpqgrsRijpsRrqklumn. (5.7)

Considering equation (5.5), we would like to get more information about the last term

2(Babcd −Babdc +Bacbd −Badbc).

In order to do so, we consider ∧2T ∗pM as a Lie algebra, for each p ∈Mn. In what follows,

we explain this formulation.

If we fix p ∈Mn, we may introduce in ∧2T ∗pM
n a Lie algebra structure. In fact, given
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u, v ∈ ∧2T ∗pM
n, we define their Lie bracket by

[u, v]ij := gkl(uikvlj − vikulj). (5.8)

Let {ei} be a local orthonormal frame field on M and let {ωi} be a dual basis for

{ei}. Then, as it was explained in Chapter 2, any 2-form u may be naturally identi-

fied with an anti-symmetric matrix (uij), whose entries are the components of u, i.e.,

u =
∑
i<j

uijωi ∧ ωj. For each p ∈ Mn, this gives a Lie algebra isomorphism between

G =
(
∧2T ∗pM, [, ]

)
and so(n), exactly as we explained in Chapter 2. The inner prod-

uct on G is defined as in (5.6). Hence formula (5.8) corresponds to

[u, v]ij = (uv − vu)ij. (5.9)

If we take local coordinates {xi} around p ∈ M then {dxi ∧ dxj; 1 ≤ i < j ≤ n} is a

basis for G. Moreover, the structure constants C(pq)(rs)
(ij) (see Chapter 2) are defined by

[dxp ∧ dxq, dxr ∧ dxs] =
∑
(ij)

C
(pq)(rs)
(ij) dxi ∧ dxj.

Since

dxp ∧ dxq =
1

2
(dxp ⊗ dxq − dxq ⊗ dxp) =

1

2
(δpkδ

q
l − δ

q
kδ
p
l )dx

k ⊗ dxl,

we can use (5.8) to get an explicit formula for the structure constants:

C
(pq),(rs)
(ij) =

1

4
gkl
[
(δpi δ

q
k − δ

q
i δ
p
k)(δ

r
l δ
s
j − δsl δrj )− (δri δ

s
k − δsi δrk)(δ

p
l δ
q
j − δ

q
l δ
p
j )
]

=
1

4

[
gqrδpi δ

s
j − gqsδ

p
i δ
r
j − gprδ

q
i δ
s
j + gpsδqi δ

r
j − gspδri δ

q
j

+ gsqδri δ
p
j + grpδsi δ

q
j − grqδsi δ

p
j

]
=

1

4

[
gqr(δpi δ

s
j − δsi δ

p
j ) + gqs(δri δ

p
j − δ

p
i δ
r
j )

+ gpr(δsi δ
q
j − δ

q
i δ
s
j ) + gps(δqi δ

r
j − δri δ

q
j )
]
.
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Therefore, the definition of the Lie algebra square (see Chapter 2) gives us

(Rm#)ijkl = C
(pq),(rs)
(ij) C

(uv),(wy)
(kl) RpquvRrswy. (5.10)

Now we are able to write the evolution of the Riemann curvature tensor in a way

which enables us to apply the maximum principle.

Theorem 5.2.1. Let g(t) be a solution of the Ricci flow. Then the curvature ι∗(Rm)

defined in equation (5.3) evolves by

∂

∂t
(ι∗Rm) = ∆D(ι∗Rm) + (ι∗Rm)2 + (ι∗Rm)#. (5.11)

Proof. First, we look at equation (5.7) and use the first Bianchi identity to see that

(Rm2)ijkl = gpqgrsRijpsRqrlk = gpqgrs(−Ripsj −Risjp)(−Rqkrl −Rqlkr)

= gpqgrs(Rpijs +Rjpis)(Rlrkq +Rrklq)

= (Rr
pij −Rr

pji)(R
p
rkl −R

p
rlk)

= −Bijlk +Bijkl +Bjilk −Bjikl

= 2(Bijkl −Bijlk)

since Bijkl = −Rr
pijR

p
rlk.

On the other hand, since the structure constants are fully antisymmetric, i.e., anti-

symmetric in (ij), (pq) and (rs), we get that

RpquvC
(pq),(rs)
(ij) =

Rpquv

4
gqr(δpi δ

s
j − δsi δ

p
j ) +

Rpquv

4
gqs(δri δ

p
j − δ

p
i δ
r
j )

+
Rpquv

4
gpr(δsi δ

q
j − δ

q
i δ
s
j ) +

Rpquv

4
gps(δqi δ

r
j − δri δ

q
j ).

Then, since we are adding on p and q and Rpquv = −Rqpuv, we get

RpquvC
(pq),(rs)
(ij) =

1

2
Rpquv

[
gqr(δpi δ

s
j − δsi δ

p
j ) + gps(δqi δ

r
j − δri δ

q
j )
]

and
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RpquvRrswyC
(pq),(rs)
(ij) = RpquvRrswyg

qr(δpi δ
s
j − δsi δ

p
j ).

From (5.10), (Rm#)ijkl = C
(pq),(rs)
(ij) C

(uv),(wy)
(kl) RpquvRrswy, we get

(Rm#)ijkl = RpquvRrswyg
qr(δpi δ

s
j − δsi δ

p
j )g

vw(δul δ
y
k − δ

x
l δ

u
k )

= Rr
uvpR

v
sry(δ

p
i δ
s
j − δsi δ

p
j )(δ

u
l δ

y
k − δ

y
l δ
u
k )

= Rr
lviR

v
jrk −Rr

kviR
v
jrl −Rr

lvjR
v
irk +Rr

kvjR
v
irl

= −Blikj +Bkilj +Bljki −Bkjli

= 2(Bikjl −Biljk)

since Bijkl = Bjilk = Bklij.

Then pulling back by the bundle isomorphism ι defined in (5.2), the theorem follows

by using Proposition 5.1.2.

Our aim is to apply the maximum principle for systems in order to study equation

(5.11) by considering the associated ODE

d

dt
B = B2 +B#,

where B is a self adjoint linear transformation in Sym2(∧2Rn).

Let (Mn, g) be a Riemannian manifold and let {ei} be an orthonormal moving frame

on an open subset U ⊂ Mn. Then {ei} defines a dual frame {ωi} such that ωi(ek) = δki

and {ωi ∧ ωj}i<j gives a basis on ∧2TU. Therefore, given p ∈ U, we get a Lie algebra

isomoprhism

ϕp : ∧2TpM
n −→ ∧2Rn,

which takes an ordered basis (ω1 ∧ ω2, . . . , ω(n−1) ∧ ωn) to β = (β1, . . . , βm), an ordered

basis of ∧2Rn, wherem = n(n−1)
2

. From now on, let us denote the ordered basis {ωi∧ωj}i<j
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of Λ2TpM
n by {θk = θkijω

i ∧ ωj, 1 ≤ i < j ≤ n}mk=1. Let R denote the space of self ad-

joint linear transformations in Sym2(∧2Rn) that obey the 1st Bianchi identity.

Let B be a solution of

d

dt
B = B2 +B#,

B(0) ∈ R,

which is the ODE that corresponds to (5.11). Using the basis β, we may represent B by a

n×n matrix Bβ defined by B(βj) = βi(Bβ)ij, where Bβ is symmetric. Also, the structure

constants for ∧2TpM ∼= ∧2Rn ∼= so(n), Cβ, on the basis β are given by

[βj, βk] = βi(Cβ)ijk.

Finally, if we define by Q to be the following transformation

B 7→ Q := B2 +B#,

then Q is given by

(Qβ)ij = (Bβ)ik(Bβ)kj + (Cβ)ipq(Cβ)jrs(Bβ)pr(Bβ)qs.

Now, we consider the case when n = 3 and M3 is a closed manifold. Equation (2.17)

from Chapter 2 gives us an expression for the # operator. Therefore, if the matrix B is

diagonal, i.e.,

B =


α 0 0

0 β 0

0 0 γ

 ,

then

B# =


βγ 0 0

0 αγ 0

0 0 αβ

 .
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Now we identify Rm with the following quadratic form B on ∧2TM3 :

B(ei ∧ ej, el ∧ ek) = 〈R(ei, ej)ek, el〉.

Thus, considering the matrix (Bpq), related to B, given by

〈R(ei, ej)ek, el〉 = Bpqθ
p
ijθ

q
lk (5.12)

on each fiber ∧2TpM
3 of ∧2TM3, and evolving {ei} so that it remains orthonormal (Uh-

lenbeck’s trick) we get that the PDE (5.11) corresponds to the ODE

d

dt
B = B2 +B#, (5.13)

satisfied by B in each fiber.

If we choose {ei} so that B(0) is diagonal at p ∈ M3 with eigenvalues λ(0) ≥ µ(0) ≥

ν(0), then, by uniqueness of solution to (5.13), the elements outside the diagonal remain

0. In particular, B(t) remains diagonal. Therefore, equation (5.13) is given by

d

dt


λ 0 0

0 µ 0

0 0 ν

 =


λ2 + µν 0 0

0 µ2 + λν 0

0 0 ν2 + λµ

 , (5.14)

a system in R3. Hence

d

dt
(λ− µ) = λ2 + µν − µ2 − λν = (λ− µ)(λ+ µ− ν)

d

dt
(µ− ν) = µ2 + λν − ν2 − λµ = (µ− ν)(µ+ ν − λ).

(5.15)

Let (0, T ] be an interval where a solution of (5.14) exists. Then the inequality λ(t) ≥

µ(t) ≥ ν(t) is preserved for all t ∈ (0, T ] . In fact, we either have strict inequality for all

times or the equality holds for all t ∈ (0, T ]. In case of strict inequality, (5.15) gives λ−µ

and µ− ν in terms of exponentials.
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We may define the greatest eigenvalue of Rm, λ, as

λ(B) = max
|v|=1

B(v, v).

Similarly, we define the smallest eigenvalue, ν, and (µ+ ν) by

ν(B) = min|v|=1B(v, v)

(µ+ ν)(B) = min
|v1|=|v2|=1,〈v1,v2〉=0

(B(v1, v1) +B(v2, v2)) .

Proposition 5.2.1. With regard to the definitions above, λ : R −→ R is a convex function

and ν and (µ+ ν) are concave functions. Moreover, the eigenvalues λ, µ and ν are twice

the sectional curvatures, i.e.

λ = 2R2323,

µ = 2R1313,

ν = 2R1212.

Proof. Let B,N ∈ R and let θ ∈ [0, 1] be arbitrary. Then

θB(v, v) + (1− θ)N(v, v) ≤ θλ(B) + (1− θ)λ(N).

Considering the maximum of the left-hand side over all |v| = 1, we get that λ is a convex

function. In the same way, we have for ν :

θB(v, v) + (1− θ)N(v, v) ≥ θν(B) + (1− θ)ν(N).

Now, considering the minimum of the left-hand side over all |v| = 1, we prove that ν is

concave. The same reasoning applies to prove that (µ+ ν) is concave.

Finally, observe that λ = B11. Then equation (5.12) implies

B11θ
1
ijθ

1
lk = Rijkl.
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Since we already know the structure constants by (2.16), we get

λ
1√
2

1√
2

= R2323,

which gives us λ = 2R2323. The other eigenvalues follow by a totally analogous reasoning.

Therefore, the Ricci tensor may be regarded as the matrix

Ric =
1

2


µ+ ν 0 0

0 λ+ ν 0

0 0 λ+ µ

 . (5.16)

Recalling Definition (2.0.6), where we defined the trace-free part of the Ricci tensor,

we write the trace-free parts of Rm and Ric for later reference:

R̊m =
1

3


2λ− µ− ν 0 0

0 2µ− λ− ν 0

0 0 2ν − λ− µ

 = −2R̊ic. (5.17)

5.3 Local Estimates

In this section, we will provide two estimate results for 3-manifolds with positive Ricci

curvature. The first one shows that a comparison of the curvatures is preserved and the

second one shows that it actually improves it. This second result shows that a solution

to the Ricci flow on a closed 3-manifold with positive Ricci curvature is nearly Einstein

at any point where the scalar curvature is large.

First, we will introduce a few results for the Ricci flow as a direct consequence of the

maximum principle for systems introduced in Chapter 4. Again, let λ(t) ≥ µ(t) ≥ ν(t) be

the eigenvalues of Rm of a solution to the Ricci flow (M3, g(t)) on a closed 3-manifold.

Also, recall that these eigenvalues are twice the sectional curvature. Finally, throughout

this section, let E = Sym2(∧2TM3).
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Proposition 5.3.1. Let (M3, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed

3-manifold, such that the scalar curvature at t = 0 Rg0 ≥ C0, for some constant C0. Then

Rg(t) ≥ C0 for all t ∈ [0, T ).

Proof. Let

Kt =
{
P ∈ E;λt(P ) + µt(P ) + νt(P ) ≥ C0

}
. (5.18)

We see that Kt is closed, invariant under parallel translation by Lemma 4.2.11 and since

λ(t) + µ(t) + ν(t) is convex (the trace is actually linear), it follows that Kt is convex in

each fiber. When we consider the associated ODE, we know that

d

dt
λ = λ2 + µν,

d

dt
µ = µ2 + λν, (5.19)

d

dt
ν = ν2 + λµ.

Therefore,
d

dt
(λ+ µ+ ν) =

1

2

(
(λ+ µ)2 + (λ+ ν)2 + (µ+ ν)2

)
≥ 0

Then it follows that Kt
p is preserved by the ODE for each p ∈ M. By the maximum

principle for systems (Theorem (4.2.14)), the Ricci flow preserves Rg(t) ≥ C0.

Proposition 5.3.2. Let (M3, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed

3-manifold such that Ric(g0) ≥ 0. Then Ric(g(t)) ≥ 0 for all t ∈ [0, T ) .

Proof. First, we note that the smallest eigenvalue of Ric is µ + ν. So, if we prove that

ν ≥ 0 is preserved, the result follows. Hence, let us define

Kt =
{
P ∈ E; νt(P ) ≥ 0

}
=
{
P ∈ E;−νt(P ) ≤ 0

}
Kt is closed, invariant by parallel translation from Lemma 4.2.11 and since −νt is convex

(because νt is concave), Kt
p is convex for each p ∈ M. Looking at the associated ODEs

(5.19), we consider the following options:
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(i) ν(0) = 0 and µ(0) > 0 : then
d

dt
ν(0) = λ(0)µ(0) > 0, so ν(t) > ν(0) = 0;

(ii) ν(0) > 0 and µ(0) > 0 : then
d

dt
ν(0) = ν2(0) + λ(0)µ(0) > 0, so ν(t) > ν(0) > 0;

(iii) λ(0) = µ(0) = ν(0) = 0 : then λ(t) = µ(t) = ν(t) = 0 for all t ∈ [0, T );

(iv) ν(0) = µ(0) = 0 and λ(0) > 0 : then λ(t) > 0 for all t ∈ [0, T ).

Therefore, Ric ≥ 0 is preserved.

Lemma 5.3.1. Let (M3, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed

3-manifold such that the initial metric g0 has strictly positive Ricci curvature. If there

exists a constant 0 < C <∞ such that λ(0) ≤ C(µ(0) + ν(0)), then

λ(t) ≤ C(µ(t) + ν(t)). (5.20)

Proof. Since λ ≥ µ ≥ ν, it is true that λ ≥ 1
2
(µ+ ν) > 0, by hypothesis. Considering the

associated ODEs (5.19), we may look at log(
λ

µ+ ν
). Then we have

d

dt
log(

λ

µ+ ν
) =

µ+ ν

λ

(
dλ

dt

1

µ+ ν
− λ

(µ+ ν)2

d

dt
(µ+ ν)

)
=

1

λ(µ+ ν)

(
dλ

dt
(µ+ ν)− λ d

dt
(µ+ ν)

)
=

1

λ(µ+ ν)

[
(λ2 + µν)(µ+ ν)− λ(ν2 + λµ+ µ2 + λν)

]
=

1

λ(µ+ ν)

[
λ2ν + λ2µ+ µν2 + νµ2 − λν2 − λ2µ− λµ2 − λ2ν

]
=
µ2(ν − λ) + ν2(µ− λ)

λ(µ+ ν)
≤ 0,

since ν(t) ≤ λ(t) and µ(t) ≤ λ(t).

Let λ(P ) ≥ µ(P ) ≥ ν(P ) denote the eigenvalues of

P ∈ (∧2T ∗M3 ⊗S ∧2T ∗M3)p.
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Define Kt ⊂ (∧2T ∗M3 ⊗S ∧2T ∗M3)p by

Kt :=
{
P ;λt(P )− C(νt(P ) + µt(P )) ≤ 0

}
.

It follows from Lemma 4.2.11 that Kt is invariant under parallel translation. Now, since

λt(P )− C(νt(P ) + µt(P )) = max
|U |=1

P (U,U) + C max
|V |=|W |=1,〈V,W 〉=0

(−P (V, V )− P (W,W ))

is a convex function, the set Kt is convex in each fiber. Moreover, Kt is closed. Then

it follows from
d

dt
log(

λt

µt + νt
) ≤ 0 that if 0 < C < ∞ is sufficiently large so that

B(0) ∈ K0 ∀p ∈ M3, then B(t) remains in Kt, where B ∈ (∧2T ∗M3 ⊗S ∧2T ∗M3)p is

the quadratic form that corresponds to Rm(g(t)), given by (5.12). From the maximum

principle (Theorem (4.2.14)), since by our hypothesis λ(0) ≤ C(µ(0) + ν(0)), it follows

that λ(t)− C(ν(t) + µ(t)) ≤ 0 and the lemma follows.

Corollary 5.3.1.1. Let (M3, g(t)), t ∈ [0, T ), be a solution of the Ricci flow on a closed

3-manifold M3 such that Ric(g0) > 0. Let

Rmin(t) := inf
p∈M3

R(p, t).

Then there exists β > 0, depending only on g0, such that at all points of M3,

Ric(g(t)) ≥ 2β2R(t)g(t) ≥ 2β2R(t)ming(t),

for all t ∈ [0, T ).

Proof. From the Lemma (5.3.1) and equation (5.16), we can find C > 0 depending on g0

such that the following holds ∀p ∈M3 :

Ric ≥ µ+ ν

2
g ≥ λ

2C
g ≥ λ+ µ+ ν

6C
g ≥ Rmin

6C
g.

Considering 2β2 =
1

6C
, the result follows.

The following theorem proves that the metric is nearly Einstein at points where the

scalar curvature is large enough. This shows that the upper and lower estimates get better
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as R→∞.

Theorem 5.3.2. Let (M3, g(t)) be a solution to the Ricci flow on a closed 3-manifold such

that the initial metric g0 has strictly positive Ricci curvature. Then there exist positive

constants δ < 1 and C depending only on g0 such that

λ− ν
λ+ µ+ ν

≤ C

(λ+ µ+ ν)δ
. (5.21)

Remark. Before we prove our theorem, we observe that
λ− ν

λ+ µ+ ν
is invariant under

homotheties of the metric g(t), while
C

(λ+ µ+ ν)δ
tends to 0 as R = λ + µ + ν → ∞.

Therefore, equation (5.21) shows that λ tends to ν, which is the smallest eigenvalue. Since

λ ≥ µ ≥ ν, this actually shows that, at points where the scalar curvature R goes to ∞, the

eigenvalues all approach each other. Further ahead, we will clarify what happens on the

manifold as a whole.

Proof. We may assume that λ(B) > ν(B) for B(t) ∈ (∧2T ∗M3 ⊗S ∧2T ∗M3)p, where B

is the quadratic form corresponding to Rm(g(t)), given by (5.12). Now we calculate, for

the associated ODEs (5.19),

d

dt
log(λ− ν) = λ− µ+ ν

and
d

dt
log(λ+ µ+ ν) =

1

λ+ µ+ ν

[
λ2 + µν + ν2 + λµ+ µ2 + λν

]
=

1

λ+ µ+ ν

[
µ(ν + µ) + λ(µ− ν) + (λ+ ν)2

]
.

Let 0 < δ < 1 be a constant that will be chosen later. Hence,
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d

dt
log

(
λ− ν

(λ+ µ+ ν)1−δ

)
=

d

dt
[log(λ− ν)− (1− δ) log(λ+ µ+ ν)]

= λ− µ+ ν − (1− δ)µ(ν + µ) + λ(µ− ν) + (λ+ ν)2

λ+ µ+ ν

= δ(λ− µ+ ν)− (1− δ
λ+ µ+ ν

[
µ(ν + µ) + λ(µ− ν) + (λ+ ν)2 + (µ− λ− ν)(λ+ µ+ ν)

]
= δ(λ− µ+ ν)− (1− δ

λ+ µ+ ν

[
µ(µ+ ν) + λ(µ− ν) + µ2

]
≤ δ(λ− µ+ ν)− (1− δ) µ2

λ+ µ+ ν
,

since ν ≤ µ. Let 0 < C <∞ such that λ(0) ≤ C(µ(0) + ν(0)), where C depends only on

the initial metric g0. By our hypothesis, Ric(g(0)) > 0. Hence, using Lemma 5.3.1, we get

λ+ ν − µ ≤ λ ≤ 2Cµ.

Since
2µ

µ+ λ+ ν
≥ µ+ ν

µ+ λ+ ν
≥ µ+ ν

3λ
,

we get
µ

µ+ λ+ ν
≥ µ+ ν

6λ
.

Therefore,

µ

λ+ µ+ ν
≥ µ+ ν

6λ
≥ 1

6C
.

Then we choose δ > 0 small enough so that

δ

1− δ
≤ 1

12C2

in order to get

d

dt
log

(
λ− ν

(λ+ µ+ ν)1−δ

)
≤ 0.
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Now we define the set

Kt :=
{
P ;λ(P )− ν(P )− C[λ(P ) + µ(P ) + ν(P )]1−δ ≤ 0

}
.

Following the same reasoning as before, we get that Kt is invariant under parallel transla-

tion, closed and convex in each fiber. Then, by the maximum principle (Theorem 4.2.14)

, the result follows. In particular, if Ric(g0) > 0, then there exist constants 0 < C0 <∞

and δ > 0 such that

λ(Rm)− ν(Rm)

R1−δ ≤ C0.

In his 1982’s paper [14], Hamilton proved the following result, which follows from the

theorem above.

Corollary 5.3.2.1. There exist constants δ > 0 and C < ∞ depending only on g0 such

that
4|R̊ic|2

R2
≤ CR−δ, (5.22)

where R̊ic is the trace-free part of the Ricci tensor.

Proof. Observe that

Ric− 1

3
Rg =

1

6


µ+ ν − 2λ 0 0

0 λ+ ν − 2µ 0

0 0 λ+ µ− 2ν

 .
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Hence,

∣∣Ric− 1
3
Rg
∣∣2

R2
=

1

36(λ+ µ+ ν)2

[
(µ+ ν − 2λ)2 + (λ+ ν − 2µ)2 + (λ+ µ− 2ν)2

]
=

1

36(λ+ µ+ ν)2

[
6(λ2 + µ2 + ν2)− 6(λµ+ λν + µν)

]
=

1

36(λ+ µ+ ν)2

[
3
(
(λ− µ)2 + (µ− ν)2 + (λ− ν)2

)]
=

(λ− µ)2 + (µ− ν)2 + (λ− ν)2

12(λ+ µ+ ν)2

≤ 3(λ− ν)2

12(λ+ µ+ ν)2
≤ 1

4
CR−δ,

where δ = 2δ.

5.4 Estimating the Gradient of the Scalar Curvature

In the previous section, we obtained estimates that compare curvatures at the same

point, which tells us that the sectional curvatures approach each other if the scalar cur-

vature goes to ∞ somewhere in our manifold. Since these estimates are punctual, this is

not enough to conclude that the sectional curvatures approach each other everywhere. In

this section, we shall obtain an estimate on the gradient of the scalar curvature, which

enables us to compare sectional curvatures at different points. As a motivation, according

to Theorem 2.0.1, if g is an Einstein metric on a manifold Mn, then Ric = fg for some

function f on Mn. Besides, we have

∇kR = ∇k(g
ijRij) = ∇k(g

ijfgij) = n∇kf.

On the other hand, the contracted second Bianchi identity gives us the following

∇k(R) = 2∇jRjk = 2∇j(fgjk) = 2∇kf.

So if n > 2, then (n− 2)∇f = 0 implies that f = R
n
is constant.
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Now, if we consider a solution (M3, g(t)) of the Ricci flow on a closed 3-manifold,

equation (5.22) can be written as

|Ric− 1
3
Rg|2

R2
≤ CR−δ. (5.23)

The right-hand side is small when the scalar curvature is large, so g(t) is getting closer to

an Einstein metric. Our calculation above shows that R should be close to being constant.

Therefore, it is natural to expect that we will be able to get a bound on |∇R|. In fact,

this is exactly what happens. In order to prove this result, first we have to obtain several

evolution equations, and that is what we shall do in the next lemmas.

Lemma 5.4.1. If (Mn, g(t)) is a solution of the Ricci flow, then the evolution of |∇R|2

is given by
∂

∂t
|∇R|2 = ∆|∇R|2 − 2|∇∇R|2 + 4〈∇R,∇|Ric|2〉. (5.24)

Proof. We recall the evolution equation for the scalar curvature (equation (3.13)):

∂

∂t
R = ∆R + 2|Ric|2.

Hence

∂

∂t
|∇R|2 =

∂

∂t

(
gij∇iR∇jR

)
= 2Ric(∇R,∇R) + 2〈∇R,∇

(
∆R + 2|Ric|2

)
〉.

Now we recall the Bochner-Weitzenböck formula (see [20], Lemma 3.4 on page 27):

∆|∇R|2 = 2|∇∇R|2 + 2〈∇R,∆∇R〉+ 2Ric(∇R,∇R).

Comparing the terms, the lemma follows.

Lemma 5.4.2. Let (Mn, g(t)), with t ∈ [0, T ), be a solution of the Ricci flow such that

R(0) > 0. Then the following holds for all t ∈ [0, T ) :

∂

∂t

(
|∇R|2

R

)
= ∆

(
|∇R|2

R

)
− 2R

∣∣∣∣∇( |∇R|2R

) ∣∣∣∣2 − 2
|∇R|2

R2
|Ric|2 +

4

R
〈∇R,∇|Ric|2〉.

(5.25)
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Proof. We already know that R > 0 is preserved. Now, using the evolution equation for

R and Lemma 5.4.1, we get

∂

∂t

(
|∇R|2

R

)
=

1

R

[
∆|∇R|2 − 2|∇∇R|2 + 4〈∇R,∇|Ric|2〉

]
− |∇R|

2

R2

(
∆R + 2|Ric|2

)
.

Now we recall that for any smooth functions u and v, we have

∆
(u
v

)
=

∆u

v
− u∆v

v2
− 2

v2
〈∇u,∇v〉+

2u

v3
|∇v|2.

Hence,

∂

∂t

(
|∇R|2

R

)
=∆

(
|∇R|2

R

)
− 2

(
|∇R|4

R3
− 〈∇|∇R|

2,∇R〉
R2

+
|∇∇R|2

R

)
− 2

R2
|∇R|2|Ric|2 +

4

R
〈∇R,∇|Ric|2〉

= ∆

(
|∇R|2

R

)
− 2R

(
|∇R|4

R4
− 〈∇|∇R|

2,∇R〉
R3

+
|∇∇R|2

R2

)
− 2

R2
|∇R|2|Ric|2 +

4

R
〈∇R,∇|Ric|2〉

= ∆

(
|∇R|2

R

)
− 2R

∣∣∣∣∇(∇RR
) ∣∣∣∣2 − 2

R2
|∇R|2|Ric|2 +

4

R
〈∇R,∇|Ric|2〉.

Lemma 5.4.3. If (Mn, g(t)) is a solution of the Ricci flow, then

∂

∂t
R2 = ∆R2 − 2|∇R|2 + 4R|Ric|2 (5.26)

and
∂

∂t
|Ric|2 = ∆|Ric|2 − 2|∇Ric|2 + 4RilRjkRijkl. (5.27)

Proof. The first equation follows from the evolution equation of R since

∂

∂t
R2 =2R

(
∆R + 2|Ric|2

)
= ∆R2 − 2|∇R|2 + 4R|Ric|2.
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On the other hand, using the evolution equation for the Ricci tensor (3.14), we get

∂

∂t
|Ric|2 =

∂

∂t
(gijgklRikRjl) = 2Rijg

klRikRjl + 2gijRklRikRjl

+ gijgkl(∆LRic)ikRjl + gijgklRik(∆LRic)jl

= 4trg(Ric
3) + 2〈Ric,∆LRic〉

= ∆|Ric|2 − 2|∇Ric|2 + 4RilRjkRijkl,

since the term 4trg(Ric
3) is cancelled by the last term of equation (3.14).

Corollary 5.4.3.1. If (M3, g(t)) is a solution of the Ricci flow on a 3-manifold, then

∂

∂t

(
|Ric|2 − 1

3
R2

)
=∆

(
|Ric|2 − 1

3
R2

)
− 2

(
|∇Ric|2 − 1

3
|∇R|2

)
− 8trg(Ric

3) +
26

3
R|Ric|2 − 2R3.

(5.28)

Proof. In dimension 3, we may use the fact that the Weyl tensor vanishes (see Chapter

2) to write the Riemann tensor in terms of the Ricci tensor. Then, equation (5.27) can

be written as

∂

∂t
|Ric|2 = ∆|Ric|2 − 2|∇Ric|2 − 2R3 − 8trg(Ric

3) + 10R|Ric|2.

The result follows from this.

In order to prove our main result of this section, we would like to show that the term
4

R
〈∇R,∇|Ric|2〉 on the evolution equation of |∇R|

2

R
(equation (5.25)) can be controlled.

In fact, this term will be eliminated by computing the evolution of
|∇R|2

R
+ |Ric|2 − 1

3
R2.

This is what we shall do in the next results.

Lemma 5.4.4. In dimension n = 3, we have

(
1− 1

37

) ∣∣∇Ric∣∣2 − 1

3

∣∣∇R∣∣2 ≥ 0. (5.29)

Proof. First, we define a (3,0)-tensor X by

Xijk := ∇iRjk −
1

3
gjk∇iR
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and a (1,0)-tensor Y by

Yk := gijXijk.

Observe that using the second contracted Bianchi identity, we get

Yk = gijXijk = gij∇iRjk −
1

3
gijgjk∇iR =

1

2
∇kR−

1

3
δki∇iR.

Then

Yk =
∇kR

6

and

|Y |2 =
1

36
|∇R|2.

In any dimension n, we have the following estimate for a (2,0)-tensor Z :

|Z|2 ≥ 1

n
(trgZ)2 .

Hence

1

3
|Y |2 ≤ |X|2 = gipgjsgklXijkXpsl

= gipgjsgkl
(
∇iRjk −

1

3
gjk∇iR

)(
∇pRsl −

1

3
gsl∇pR

)
= gipgjsgkl

(
∇iRjk∇pRsl −

1

3
gjk∇iR∇pRsl −

1

3
gsl∇pR∇iRjk +

1

9
gjkgsl∇iR∇pR

)
= |∇Ric|2 − 2

3
|∇R|2 +

3

9
|∇R|2

=
∣∣∇Ric∣∣2 − 1

3

∣∣∇R∣∣2.
Then we get ∣∣∇Ric∣∣2 ≥ 1

3
(1 +

1

36
)
∣∣∇R∣∣2 =

37

108

∣∣∇R∣∣2 (5.30)

and the result follows.
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Corollary 5.4.4.1. If (M3, g(t)) is a solution of the Ricci flow on a 3-manifold, then

∂

∂t

(
|Ric|2 − 1

3
|R|2

)
≤∆

(
|Ric|2 − 1

3
|R|2

)
− 2

37

∣∣∇Ric∣∣2
− 8trg(Ric

3) +
26

3
R|Ric|2 − 2R3.

(5.31)

Proof. This is a direct result. We just have to use Corollary 5.4.3.1 and substitute the

inequality (5.29) into equation (5.28).

Now, let us consider equation (5.25) again. On a 3-manifold with positive Ricci cur-

vature, we have |Ric| ≤ R. Also, the following holds:

∣∣∇|Ric|2∣∣ ≤ 2
∣∣∇Ric∣∣|Ric|.

Then, if we consider (5.30) and the term
4

R
〈∇R,∇|Ric|2〉 on (5.25), by applying the

Cauchy-Schwarz inequality we get

4

R
〈∇R,∇|Ric|2〉 ≤ 4

R
|∇R|

∣∣∇|Ric|2∣∣ ≤ 8 |∇R| |∇Ric| |Ric|
R

≤ 8

√
108

37
|∇Ric|2 ≤ 8

√
3 |∇Ric|2 .

Now we consider

V :=
|∇R|2

R
+

37

2
(8
√

3 + 1)

(
|Ric|2 − 1

3
R2

)
,

which will provide an upper bound for |∇R|
2

R
.

Lemma 5.4.5. If (M3, g(t)) is a solution of the Ricci flow on a 3-manifold whose Ricci

curvature is initially positive, then

∂

∂t
V ≤∆V − 2R

∣∣∣∣∇(∇RR
)∣∣∣∣2 − 2

|Ric|2

R2
|∇R|2 − |∇Ric|2

+
37

2
(8
√

3 + 1)

(
26

3
R|Ric|2 − 8trg(Ric

3)− 2R3

)
.
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Proof. Using Lemma 5.4.4, we have that

∣∣∇Ric∣∣2 − 1

3

∣∣∇R∣∣2 ≥ 1

37

∣∣∇Ric∣∣2.
By Corollary 5.4.4.1, we get

∂

∂t

(
|Ric|2 − 1

3
|R|2

)
≤∆

(
|Ric|2 − 1

3
|R|2

)
− 2

37

∣∣∇Ric∣∣2
− 8trg(Ric

3) +
26

3
R|Ric|2 − 2R3,

and by Lemma 5.4.2 we get

∂

∂t

(
|∇R|2

R

)
= ∆

(
|∇R|2

R

)
− 2R

∣∣∣∣∇( |∇R|2R

) ∣∣∣∣2 − 2
|∇R|2

R2
|Ric|2 +

4

R
〈∇R,∇|Ric|2〉.

Hence, we have

∂

∂t
V ≤∆

(
|∇R|2

R

)
− 2R

∣∣∣∣∇(∇RR
) ∣∣∣∣2 − 2

|∇R|2

R2
|Ric|2 + 4

〈∇R,∇|Ric|2〉
R

+
37

2
(8
√

3 + 1)

[
∆(|Ric|2 − 1

3
R2)− 2

37
|∇Ric|2 − 8trg(Ric

3) +
26

3
R|Ric|2 − 2R3

]
= ∆V − 2|Ric|2

R2
|∇R|2 − (8

√
3 + 1)|∇Ric|2 +

4

R
〈∇R,∇|Ric|2〉

≤ ∇V − 2|Ric|2

R2
|∇R|2 − (8

√
3 + 1)|∇Ric|2 + 8

√
3|∇Ric|2,

so the lemma follows.

We will show that the term

W :=
26

3
R|Ric|2 − 8trg(Ric

3)− 2R3,

which appears in the evolution of V is small when the metric is close to an Einstein metric

because of Corollary 5.4.3.1.

Lemma 5.4.6. On a 3-manifold of positive Ricci curvature, one has

W ≤ 50

3
R

(
|Ric|2 − 1

3
R2

)
.
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Proof. First, let X := −8〈Ric− 1
3
Rg,Ric2〉. Then X = 8

3
R|Ric|2− 8trg(Ric

3) and W can

be written as

W = X + 6R(|Ric|2 − 1

3
R2).

Now let us define a (2,0)-tensor Y by Y := Ric2 − 1
9
R2g. We note that

Yij := Rk
iRkj −

1

9
R2gij = gkl

(
Rik −

1

3
Rgik

)(
Rjl +

1

3
Rgjl

)
.

Then we may use Cauchy-Schwarz to estimate X. Since

〈Ric− 1

3
Rg,Ric2 − 1

9
R2g〉 = trg(Ric

3)− 1

3
R|Ric|2 − 1

9
R2trg(Ric) +

1

27
R33

= trg(Ric
3)− 1

3
R|Ric|2 − 1

9
R3 +

1

9
R3 = −X

8
,

we have

X ≤ 8|Ric− 1

3
Rg|2|Ric+

1

3
Rg|.

Now since Ric > 0, we get X ≤ 32
3
R
(
|Ric|2 − 1

3
R2
)
. Finally,

W = X + 6R

(
|Ric|2 − 1

3
R2

)
≤
(

32

3
+

18

3

)
R

(
|Ric|2 − 1

3
R2

)
=

50

3
R

(
|Ric|2 − 1

3
R2

)
.

We now introduce a result that will be used later and will be needed for the main

result of this section.

Lemma 5.4.7. Let (Mn, g(t)), with t ∈ [0, T ), be a solution of the Ricci flow, where Mn

is a closed manifold. If there are t0 ≥ 0 and ρ > 0 such that

inf
p∈Mn

R(p, t0) = ρ,

then g(t) becomes singular in finite time.
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Proof. The proof is a straightforward application of the Maximum Principle. In fact, from

equation (3.13), we have

∂

∂t
R = ∆R + 2|Ric|2 ≥ ∆R +

2

n
R2.

Then we may consider the solution of the corresponding ODE

r(t) =
2

n
r2,

r(t0) = ρ > 0,

which is given by

r(t) =
ρn

n− 2ρ(t− t0)
.

Since R(p, t0) ≥ ρ, it follows from the maximum principle (Theorem (4.2.14)) that for all

p ∈Mn

R(p, t) ≥ inf
p∈M

R(p, t) ≥ r(t)

as long as the solution r(t) exists. However, if we let t = t0 +
n

2ρ
, then

lim
t→t

r(t) =∞,

then

lim
t→t

R(t) =∞.

Hence, g(t) becomes singular for some t ≤ t.

Finally, we are ready to prove our theorem.

Theorem 5.4.8. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-manifold

with g(0) = g0. If Ric(g0) > 0, then there exist constants β, δ > 0 depending only on g0

such that for any β ∈ [0, β], there exists a constant C > 0 depending only on β and g0

such that
|∇R|2

R3
≤ βR−

δ
2 + CR−2.
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Remark. Here, the left-hand side is scale invariant. On the other hand, the right-hand

side is small when the scalar curvature is large.

Proof. We may use Lemmas 5.4.5 and 5.4.6 to write

∂

∂t
V ≤ ∆V − |∇Ric|2 +

37

2
(8
√

3 + 1)
50

3
R

(
|Ric|2 − 1

3
R2

)
= ∆V − |∇Ric|2 +

7400
√

3 + 925

3
R

(
|Ric|2 − 1

3
R2

)
.

Now, using equation (5.23), we get a slightly better estimate

∂

∂t
V ≤ ∆V − |∇Ric|2 + CR3−2γ,

where C and γ ≡ δ
2
depend only on g0. It follows directly from (3.13) that

∂

∂t
R2−γ = ∆(R2−γ)− (2− γ)(1− γ)R−γ |∇R|2 + 2(2− γ)R1−γ|Ric|2.

Now let β be such that

0 < β ≤ (Rmin(0))γ

3(2− γ)(1− γ)

and recall that

|∇R|2 ≤ 3 |∇Ric|2 .

Then, for any β ∈ [0, β], we get

∂

∂t

(
V − βR2−γ) ≤∆

(
V − βR2−γ)+

[
β(2− γ)(1− γ)R−γ |∇R|2 − |∇Ric|2

]
+ CR3−2γ − 2β(2− γ)R1−γ|Ric|2.

Observe that the second term is non-positive because of the constants that we have chosen.

For the rest of the terms, we see that

CR3−2γ − 2β(2− γ)R1−γ|Ric|2 ≤ CR3−2γ − CR3−γ,
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where C is a constant. For R large enough this term is dominated by the second term,

which is negative. Therefore we can get a uniform upper bound C1 for it. Hence, we have

∂

∂t

(
V − βR2−γ) ≤ ∆

(
V − βR2−γ)+ C1

From the maximum principle for the scalar case (Theorem (4.1.2)) we get

V − βR2−γ ≤ C1t+ C2.

On the other hand, (3.13) implies that

∂

∂t
R ≥ ∆R +

2

3
R2.

From Lemma 5.4.7, this means that there is a time T <∞ at which the solution becomes

singular. Thus,
|∇R|2

R
≤ V ≤ βR2−γ + C1T + C2.

Let C := C1T + C2. This proves the theorem.

5.5 Long-Time Existence and Finite Time Blow Up

We already know that on a compact manifoldMn with an initial metric g0, there exists

a unique solution g(t) of the Ricci flow with g(0) = g0 on a short time interval. Hence,

there must be a maximal time interval [0, T ), with 0 < T ≤ ∞, on which the solution

exists. In this section, we would like to understand what happens if T < ∞. In fact, we

shall prove that if the maximum curvature remains bounded, then T =∞.

First, we need to obtain some derivative estimates of the curvature, due to Bernstein,

Bando and Shi (see, for example, [26] and [27]).

Lemma 5.5.1. If (Mn, g(t)) is a solution of the Ricci flow, then we have the following

evolution equation for the square of the norm of its curvature tensor

∂

∂t
|Rm|2 = ∆|Rm|2 − 2 |∇Rm|2 + 4grigsjgpkgqlRrspq(Bijkl −Bijlk +Bikjl −Biljk),
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where Bijkl = −Rq
pijR

p
qlk. In particular, we have

∂

∂t
|Rm|2 ≤ ∆|Rm|2 − 2 |∇Rm|2 + C|Rm|3,

where C depends only on n.

Proof. We know that the (4,0)-Riemann curvature tensor evolves by

∂

∂t
Rijkl =∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)

− (Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rl

pRijkp).

Then we can check that

∂

∂t
|Rm|2 =

∂

∂t

(
grigsjgpkgqlRrspqRijkl

)
= 2grigsjgpkgqlRrspq [∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)]

− 2grigsjgpkgqlRrspq(R
m
i Rmjkl +Rm

j Rimkl +Rm
k Rijml +Rm

l Rijkm)

+ 2gsjgpkgql(gtrgimRtm)RrspqRijkl + 2grigpkgql(gtsgjmRtm)RrspqRijkl

+ 2grigsjgql(gtpgkmRtm)RrspqRijkl + 2grigpkgsj(gqtglmRtm)RrspqRijkl.

Since the last four terms cancel out with

−2grigsjgpkgqlRrspq(R
m
i Rmjkl +Rm

j Rimkl +Rm
k Rijml +Rm

l Rijkm),

we get

∂

∂t
|Rm|2 =

∂

∂t

(
grigsjgpkgqlRrspqRijkl

)
= 2grigsjgpkgqlRrspq [∆Rijkl + 2(Bijkl −Bijlk +Bikjl −Biljk)] .

Since

∆|Rm|2 = 2grigsjgpkgqlRrspq∆Rijkl + 2|∇Rm|2,

the lemma follows.

Corollary 5.5.1.1. If (Mn, g(t)), with t ∈ [0, T ), is a solution of the Ricci flow on a
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compact manifold and

Z(t) := sup
p∈Mn

|Rm(p, t)|g(p,t) ,

then there exists C > 0 depending only on the dimension n such that

Z(t) ≤ 2Z(0)

for all t within 0 ≤ t < min{T, C
Z(0)
}. This result is known as the Doubling-Time

Estimate.

Proof. By Lemma 5.5.1, Z(t) is Lipschitz on t and satisfies

dZ

dt
≤ CZ3

2Z
=
C

2
Z2,

where C depends only on the dimension n. To see this, just drop the Laplacian and the

gradient terms on the lemma (we can do this because Z(t) is defined as the supremum of

Rm over the manifold, for each time t). Then we get

Z(t) ≤ 1
1

Z(0)
− C

2
t

as long as t ∈ [0, T ) satisfies t < 2
CZ(0)

. If we choose C as 1
C
, then we have the result.

Corollary 5.5.1.2. If (Mn, g0) is a Riemannian manifold such that |Rm(g0)|g0 ≤ K,

then the unique solution of the Ricci flow with g(0) = g0 exists at least for t ∈ [0, C
K

],

where C > 0 is a constant depending only on n.

Proof. In order to obtain this result, we just have to combine the Doubling Time Estimate

and Theorem 5.5.4.

Theorem 5.5.2. Let (Mn, g(t)) be a solution of the Ricci flow, where Mn is a closed

manifold. For any α > 0 and m ∈ N, suppose there exists a constant K > 0 such that

|Rm(p, t)|g(p,t) ≤ K,
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∀p ∈ Mn and t ∈ [0, α
K

], then there exists a positive constant Cm depending only on m,n

and max{α, 1} such that

|∇mRm(p, t)|g(p,t) ≤
CmK

t
m
2

,

∀p ∈Mn and t ∈ (0, α
K

].

Proof. Although this result is essential to our goal in this dissertation, its proof is very

long and technical. In order to provide a better reading experience, we provide the proof

of this theorem in Appendix B.

Remark. We observe that these estimates do not hold when t = 0. This is actually

expected since bounds on an arbitrary curvature tensor do not necessarily tell us any-

thing about its derivatives. However, the Bando-Bernstein-Shi (BBS) estimates (Theorem

(5.5.2)) show that after the flow starts, the derivatives of the curvature tensor instantly

begin to be brought under control.

Corollary 5.5.2.1. Let (Mn, g(t)) be a solution of the Ricci flow, where Mn is compact.

If there are β > 0 and K > 0 such that

|Rm(p, t)| ≤ K,

∀p ∈ M and ∀t ∈ [0, T ], where T > β
K
, then there exists, for each m ∈ N, a constant Cm

depending only on m,n and min{β, 1} such that

|∇mRm| ≤ CmK
1+m

2 ,

∀p ∈M and ∀t ∈ [min{β,1}
K

, T ].

Proof. First, let β0 := min{β, 1}.We fix t0 ∈ [β0
K
, T ], set T0 = t0− β0

K
and t = t−T0. Now,

let g(t) solve the Ricci flow equation with g(0) = g(T0). By the uniqueness of solutions

to the Ricci flow, given t ∈ [0, β
K

], we have g(t) = g(t). Hence, |Rm(p, t)|g ≤ K by the

hypothesis, for all p ∈Mn and t ∈ [0, β
K

].
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Using theorem 5.5.2, let α = β0. Then we get constants Cm depending only on m and

n such that

|∇m
Rm(p, t)|g ≤

CmK

t
m
2

,

∀p ∈M and t ∈ (0, β0
K

]. When t ∈ [ β0
2K
, β0
K

], we have

t
m
2 ≥ β

m
2

0 2
−m
2 K

−m
2 .

Then, if t = β0
K
, we have

|∇mRm(p, t0)|g ≤

(
2
m
2 Cm

β
m
2

0

)
K1+m

2 ,

∀p ∈Mn. Since t0 is arbitrary in [β0
K
, T ], our proof is completed.

Before we can state another gradient estimate, we need a few results. Here, we will

work with a half-open interval [0, T ) since the application we are interested in is to help

us understand what are the obstacles to long-time existence of the Ricci flow.

Lemma 5.5.3. Let Mn be a closed manifold. For 0 ≤ t < T ≤ ∞, let g(t) be a one-

parameter family of metrics on Mn depending smoothly on space and time. If there exists

a constant C <∞ such that

∫ T

0

∣∣∣∣ ∂∂tg(p, t)

∣∣∣∣
g(t)

dt ≤ C,

∀p ∈Mn, then

e−Cg(p, 0) ≤ g(p, t) ≤ eCg(p, 0),

∀p ∈ M and t ∈ [0, T ). Moreover, as t ↗ T, g(t) converges uniformly to a continuous

metric g(T ) such that

e−Cg(p, 0) ≤ g(p, T ) ≤ eCg(p, 0),
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∀p ∈Mn.

Proof. Let p ∈ Mn and t0 ∈ [0, T ) be arbitrary. Also, consider an arbitrary vector

v ∈ TpMn. Since |A(u, u)| ≤ |A|g for any 2-tensor A and any unit vector u, we get

∣∣∣∣log

(
g(p, t0)(v, v)

g(p, 0)(v, v)

)∣∣∣∣ =

∣∣∣∣∫ t0

0

∂

∂t
log(g(p, t)(v, v))dt

∣∣∣∣
=

∣∣∣∣∣
∫ t0

0

∂
∂t
g(p, t)(v, v)

g(p, t)(v, v)
dt

∣∣∣∣∣
≤
∫ t0

0

∣∣∣∣∣ ∂∂tg(p, t)(v, v)

|v|2g

∣∣∣∣∣ dt
=

∫ t0

0

∣∣∣∣ ∂∂tg(p, t)

(
v

|v|
,
v

|v|

)∣∣∣∣ dt ≤ ∫ t0

0

∣∣∣∣ ∂∂tg(p, t)

∣∣∣∣ dt ≤ C.

Thus, the uniform bounds follow from considering the exponential of the inequality above.

In particular, this shows that the metrics g(t) are all uniformly equivalent. Therefore, we

have

∫ T

0

∣∣∣∣ ∂∂tg(p, t)

∣∣∣∣
g(0)

dt ≤ C,

for some C > 0. Observe that now we are taking the norm with respect to the fixed metric

g(0). Let us define

g(p, T ) := g(p, 0) +

∫ T

0

∂

∂t
g(p, t)dt.

This integral is well defined because our family of metrics is smooth and the bound above

tells us that the integrand is absolutely integrable with respect to the norm induced by

g(0). Thus

|g(p, t)− g(p, T )|g(0) ≤
∫ T

0

∣∣∣∣ ∂∂tg(p, t)

∣∣∣∣
g(0)

dt→ 0

as t→ T for each fixed p ∈M. The convergence above is uniform due to the compactness

of M. Therefore g(T ) is continuous. The last bound of the lemma follows directly just

by taking the limit on e−Cg(p, 0) ≤ g(p, t) ≤ eCg(p, 0). This shows that g(T ) is positive

definite and, therefore, g(t) converges to a continuous Riemannian metric g(T ), uniformly

equivalent to g(0).
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Corollary 5.5.3.1. Let (Mn, g(t)) be a solution of the Ricci flow. If there exists K > 0

such that |Ric| ≤ K on [0, T ], then

e−2KTg(p, 0) ≤ g(p, t) ≤ e2kTg(p, 0),

∀p ∈Mn and ∀t ∈ [0, T ].

Proof. Just remember that ∂
∂t
g = −2Ric. Then, for an arbitrary t0 ∈ [0, T ), we have

∫ t0

0

∣∣∣∣ ∂∂tg(p, t)

∣∣∣∣ dt =

∫ t0

0

|−2Ric(g(t))| dt ≤
∫ t0

0

2Kdt ≤ 2KT.

We have just shown that there is a limit metric g(T ), which is continuous. Now, in

our result on the long-time existence of the Ricci flow, we will need to show that this limit

metric is actually smooth. To do so, we need to make sure that the spatial derivatives of

g(t) are controlled when we are approaching the time T. This is the content of our next

two results, that follow from Theorem 5.5.2.

Proposition 5.5.1. Let (Mn, g(t)) be a solution of the Ricci flow on a compact manifold

with a fixed background metric g and a connection ∇. If there exists K > 0 such that

|Rm(p, t)|g ≤ K

∀p ∈ Mn and ∀t ∈ [0, T ], then for every m ∈ N, there exists a constant Cm that depends

on m,n,K, T, g0 = g(0) and the pair (g,∇) such that

∣∣∇m
g(p, t)

∣∣
g
≤ Cm,

∀p ∈Mn and ∀t ∈ [0, T ].

Proof. Similarly to Theorem (5.5.2), we provide a proof for this proposition in Appendix

B.

Corollary 5.5.3.2. Let (Mn, g(t)) be a solution of the Ricci flow on a compact manifold
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with a fixed background metric g and a connection ∇. If there exists K > 0 such that

|Rm(p, t)|g ≤ K

∀p ∈ Mn and ∀t ∈ [0, T ], then for every m ∈ N, there exists a constant C ′m that depends

on m,n,K, T, g0 = g(0) and the pair (g,∇) such that

∣∣∇m
Ric(p, t)

∣∣
g
≤ C ′m,

∀p ∈Mn and ∀t ∈ [0, T ].

Proof. This is a result established in the proof of Proposition 5.5.1. In order to check the

proof in details, see Appendix B.

Now we state and prove a theorem that shows that the only obstacle to long-time

existence of the Ricci flow is the curvature becoming unbounded.

Theorem 5.5.4. If g0 is a smooth metric on a compact manifold Mn, the Ricci flow with

g(0) = g0 has a unique solution g(t) on a maximal time interval t ∈ [0, T ), with T ≤ ∞.

Moreover, if T <∞, then

lim
t↗T

(
sup
p∈Mn

|Rm(p, t)|
)

=∞. (5.32)

Proof. Let us define

Z(t) := sup
p∈Mn

|Rm(p, t)|.

We already know that there exists a unique solution g(t) of the Ricci flow satisfying the

initial condition g(0) = g0 on a short time interval [0, ε). First, we will prove the claim

that the lim sup of Z(t) goes to ∞.

Suppose that the solution exists on the maximal finite time interval [0, T ), with T <∞.

We claim that

sup
0≤t<T

Z(t) =∞. (5.33)
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Suppose by contradiction that there is a constant K > 0 such that

sup
0≤t<T

Z(t) ≤ K.

We will show that, given this condition, we are able to define the flow beyond T. Consider

local coordinates {xi} on an open set U ⊂ Mn around an arbitrary point p ∈ Mn. Let

τ ∈ (0, T ) be also arbitrary. Using Lemma 5.5.3, we get a continuous limit metric g(T )

that can be written as

gij(p, T ) = gij(p, τ)− 2

∫ T

τ

Rij(p, t)dt.

Let α be any multi-index with |α| = m ∈ N. Then it follows from Proposition 5.5.1

and Corollary 5.5.3.2 that ∂m

∂xα
gij and ∂m

∂xα
Rij are uniformly bounded on U × [0, T ). Thus

(
∂m

∂xα
gij

)
(p, T ) =

(
∂m

∂xα
gij

)
(p, τ)− 2

∫ T

τ

(
∂m

∂xα
Rij

)
(p, t)dt.

This shows that our limit metric is smooth. Moreover,∣∣∣∣( ∂m

∂xα
gij

)
(p, T )−

(
∂m

∂xα
gij

)
(p, τ)

∣∣∣∣ ≤ C(T − τ)

for some constant C <∞. So g(τ)→ g(T ) uniformly in any Cm norm as τ ↗ T.

Due to the smoothness of g(T ), we know that there is a unique solution of the Ricci

flow, g(t), with g(0) = g(T ) on a short time interval [0, ε). Since g(τ) → g(T ) smoothly,

we have that

g̃(t) :=

g(t), t ∈ [0, T )

g(t− T ), t ∈ [T, T + ε)

is a solution of the Ricci flow with g(0) = g0. This is a contradiction with the fact that T

is maximal. Hence, if T <∞, then (5.33) holds.
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Suppose (5.32) is false, i.e., suppose there exists K0 <∞ such that

lim
t↗T

(
sup
p∈Mn

|Rm(p, t)|
)
≤ K0.

Then, there exists a sequence ti ↗ T such that Z(ti) ≤ K0. Using the doubling-time

estimate of Corollary 5.5.1.1, we get a constant C = C(n) > 0 such that

Z(t) ≤ 2Z(ti) ≤ 2K0,

∀t ∈
[
ti,min{T, ti + C

K0
}
)
. Since ti ↗ T, we get a large enough index i0 such that

ti0 + C
K0
≥ T. Thus

sup
ti0≤t<T

Z(t) ≤ 2K0,

which contradicts the claim (5.33), previously established on this proof. This completes

the proof of the theorem.

Corollary 5.5.4.1. Any solution (M3, g(t)) of the Ricci flow on a compact manifold whose

Ricci curvature is initially positive exists on a maximal time interval 0 ≤ t < T <∞ and

the following holds

lim
t↗T

(
sup
p∈M3

|Rm(p, t)|

)
=∞.

Proof. In order to obtain this result, we just have to combine Theorem 5.5.4 and Lemma

5.4.7.

Now we obtain new global estimates for the curvature.

Proposition 5.5.2. Let (M3, g(t)) be a solution of the Ricci flow on a compact manifold

whose Ricci curvature is initially positive. Then the solution becomes singular at some

T <∞. Moreover, it obeys the following a priori estimates:

1. Let Rmin(t) = inf
p∈M3

R(p, t) and Rmax(t) = sup
p∈M3

R(p, t). There exist positive constants
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C and α depending only on g0 such that

Rmin

Rmax

≥ 1− C

Rα
max

(5.34)

for all times 0 ≤ t < T. In particular, Rmin
Rmax

→ 1 as t↗ T.

2. For p ∈ M3 and t ∈ [0, T ), let λ(p, t) ≥ µ(p, t) ≥ ν(p, t) denote the eigenvalues of

the curvature operator at (p, t). Then for any ε ∈ (0, 1), there exists Tε ∈ [0, T ) such

that

min
p∈M3

ν(p, t) ≥ (1− ε)
[

max
p∈M3

λ(p, t)

]
> 0

for all times t ∈ [Tε, T ). In particular, the solution eventually attains positive sec-

tional curvature everywhere.

Proof. Lemma 5.4.7 tells us that the solution becomes singular at some time T < ∞.

Additionally, since our dimension is n = 3, we know Ric completely determines Rm.

Therefore, we have c|Ric| ≤ |Rm| ≤ C|Ric| for some positive constants c and C. So it

follows from Theorem 5.5.4 that

lim
t↗T

(
sup
p∈M3

|Ric(p, t)|

)
=∞. (5.35)

Theorem 5.4.8 provides positive constants A,B and α such that

|∇R|2 ≤ 1

2
A2R3−2α

max +B2Rmax.

Using equation (5.35), the fact that |Ric|2 ≤ R2 and R > 0, we are able to find a τ ∈ [0, T )

such that

|∇R| ≤ AR
3
2
−α

max

∀t ∈ (τ, T ). Now, for t ∈ (τ, T ) fixed, there exists p(t) ∈M3 such that Rmax(t) = R(p, t),

because M3 is compact.
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Consider the geodesic ball B(p, L), where L <∞ is given by

L(t) :=
1

ε
√
Rmax(t)

,

for a given ε.

If γ is a minimizing geodesic from p to p ∈ B(p, L), we have the following estimate

Rmax −R(p) ≤
∫
γ

|∇R| ds ≤ AR
3
2
−α

maxL ≤
A

ε
R1−α
max.

This gives us a lower bound on B(p, L) :

R ≥ Rmax

(
1− A

ε

(
1

Rmax

)α)
. (5.36)

Since R → ∞ as t → T, it follows that there exists t ∈ (τ, T ) depending on A,α and ε

such that

R ≥ (1− ε)Rmax (5.37)

on B(p, L), ∀t ∈ [t, T ). We shall prove that for ε > 0 small enough, B(p, L) is actually

all of M3. Since from (5.36) we already have our estimate on B(p, L), this will prove the

first item.

From Corollary 5.3.1.1, we get a constant β > 0 that depends only on g0 such that

Ric ≥ 2β2Rg,

then equation (5.37) implies that

Ric ≥ 2β2(1− ε)Rmaxg (5.38)

holds for all points of B(p, L). We first observe that if γ is a geodesic emanating from

p with length l(γ) ≤ L, then the estimate above holds for all points in γ. Moreover, it
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is a consequence from the proof of Bonnet-Myers’ theorem (see, for example, [4]) that in

a complete manifold (Mn, g), if Ric ≥ (n− 1)Hg along a geodesic of length at least π√
H
,

where H > 0 is a constant, then this geodesic has conjugate points. Finally, we choose

ε ∈ (0, 1) so that

π

β
√

(1− ε)Rmax

<
1

ε
√
Rmax

= L,

which is always possible.

Now we suppose there exists p0 ∈ M3 such that p0 /∈ B(p, L). Then let γ be the

minimizing geodesic starting at p and connecting it to p0, so that d(p, p0) = l(γ); whose

existence is guaranteed becauseM3 is compact, hence complete. Since p0 is not in B(p, L),

we know that γ intersects the boundary of B(p, L). Let p1 be that point of intersection.

Then the length of γ from p to p1 is L >
π

β
√

(1− ε)Rmax

and, from our observation above

and estimate (5.38), it follows that γ has a conjugate point within B(p, L). However, this

contradicts the fact that γ is a minimizing geodesic from p to p0. Therefore, we must have

p0 ∈ B(p, L). Since p0 ∈M3 is arbitrary, it follows that M3 = B(p, L) and this proves the

first item.

Now, for our second item, we use Theorem 5.3.2. Since we have positive constants C

and δ < 1, depending only on g0, such that

ν ≥ λ− C(λ+ µ+ ν)1−δ,

∀p ∈M3, we get the pointwise inequality

ν

λ
≥ 1− 3CR−δ ≥ 1− 3CR−δmin. (5.39)

Then, let p, q ∈ M3 and 1 > η > 0 be given. By (5.35), (5.37) and (5.39), there exists

119



Tη ∈ [t, T ) such that

ν(p, t) ≥ (1− η)λ(p, t) ≥ 1− η
3

R(p, t)

≥ (1− η)2

3
R(q, t) ≥ (1− η)2

3
[λ+ 2(1− η)λ](q, t)

≥ (1− η)3λ(q, t),

∀t ∈ [Tη, T ). If we take the infimum over p ∈ M3 and the supremum over q ∈ M3, the

claim follows.

In particular, we may conclude that g(t) approaches an Einstein metric uniformly as

t↗ T :

Corollary 5.5.4.2. If (M3, g(t)), with t ∈ [0, T ), is a solution of the Ricci flow on a

compact manifold with strictly positive Ricci curvature at t = 0, then

lim
t↗T

(
sup
p∈M3

|R̊ic|2

R2

)
= 0.

Proof. Just apply the estimate of Theorem 5.3.2 in the form of equation (5.22). Thus,

there are positive constants C and δ such that

|R̊ic|2

R2
≤ CR−δ ≤ R−δmin.

Since Rmax(t) → ∞ and Rmin
Rmax

→ 1 as t ↗ T, the result follows from Proposition (5.5.1).

After having established long time existence for the Ricci flow and having showed that

g(t) approaches an Einstein metric uniformly as t goes to the maximal time T, we would

need to define the normalized Ricci flow, which is just a rescale of g(t) in order to keep

the volume of (Mn, g(t)) equal to 1. After that, one can show that this new flow exists

for all time and asymptotically approaches an Einstein metric. Then one would need to

prove some of the results already established in this dissertation for this normalized Ricci

flow. Using these results, one can show that this convergence is exponential in every Ck

norm. Therefore, every compact 3-manifold with initially strictly positive Ricci curvature
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admits a metric with constant positive sectional curvature. For more details, we refer the

reader to [14], [12] and [5].
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Appendix A

Existence Theory for Parabolic PDEs

In this appendix, we will present the existence results for PDEs used throughout the

text. This is mainly based on [28]. Consider a vector bundle π : E −→ M, where M is

a Riemannian manifold, with a fixed bundle metric h. We are interested in the following

type of PDEs:
∂

∂t
u = L(u),

u(p, 0) = u0(p),

(A.1)

where u : M × [0, T ) −→ E is a section of E and L : C∞(E) −→ C∞(E) is a differential

operator.

First, we fix some notation.

1. x = (x1, . . . , xn) ∈ Rn, xi ∈ R,

2. α = (α1, . . . , αn) ∈ Nn, αi ∈ N,

3. |α| = α1 + · · ·+ αn,

4. xα = xα1
1 . . . xαnn .

We use ∂α to denote the derivative operator of order |α| such that if u : Rn −→ R is a

function, then

∂αu =
∂|α|u

∂xα1
1 . . . ∂xαnn
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Now let L be a linear differential operator. Then, using the multi-index notation

above, we may write

L(u) =
∑
|α|≤k

Lα∂
αu,

where k is the order of L and Lα ∈ Hom(E,E). For instance, if M = Rn, E = Rn × R,

and k = 2, then

L(u) =
∑
i,j

aij∂
i∂ju+

∑
i

bi∂
iu+ cu,

where aij, bi, c : Rn −→ R are smooth functions.

Definition A.0.1. We say that the second order operator L is elliptic if the coefficients

aij are uniformly positive definite, which means that there exists some λ > 0 such that

aijξiξj ≥ λ|ξ|2,

∀ξ ∈ Rn (or, in the case of vector bundles, for all sections in E).

Definition A.0.2. We say that equation (A.1) is parabolic if L is elliptic.

Remark. In chapter 3, we defined strict parabolicity using the principal symbol of the

operator. We observe that these definitions are equivalent and the word strict (sometimes

we also use strong) is used to distinguish it from more general definitions.

The Ricci flow mainly gives us non-linear PDEs. Hence, we need to know what

it means for a non-linear PDE to be parabolic. To do so, we define the linearization of

the non-linear operator L, which has already been done in Chapter 3. For this kind of

equation, we say that ∂
∂t
u = L(u) is parabolic if ∂

∂t
u = [DL(v)]u is parabolic. Then we

get the following result, which will be used in all existence proofs in this dissertation.

Theorem A.0.1. If equation (A.1) is (strictly) parabolic at u0 (L being linear or non-

linear), then there exists a solution on a time interval [0, ε), for some ε > 0, which is

unique as long as it exists.

This is a classical result on the theory of parabolic PDEs. See, for example, [19].
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Appendix B

Proof of Some Results

In this Appendix, we prove two technical results that were not proved in the text.

Theorem 5.5.2 shows that if we have bounds on the Riemann curvature tensor, then the

Ricci flow provides us bounds on its derivatives as soon as we apply it to our mani-

fold. Proposition 5.5.1, in the other hand, shows that if the Riemann curvature tensor is

bounded with regards to the metric g(t), then the higher order derivatives of g(t) with

respect to a fixed background metric g are also bounded.

Before we begin our proof, let us consider a simple problem, that will be useful on

our next calculations. If Q(t) is a 1-parameter family of (1,0)-tensor fields on a solution

(Mn, g(t)) of the Ricci flow, then we have

∂

∂t
∇iQj =

∂

∂t

(
∂

∂xi
Qj − ΓkijQk

)
= ∇i(

∂

∂t
Q)j + (∇iR

k
j +∇jR

k
i −∇kRij)Qk.

Hence, using the evolution equation of g−1, we get

∂

∂t
|∇Q|2 =

∂

∂t

(
gikgjl∇iQj∇kQl

)
= 2∇iQj∇i(

∂

∂t
Q)j + 2∇iQj(∇iR

k
j +∇jR

k
i −∇kRij)Qk

+ 2Rik∇iQ
j∇kQj + 2Rjl∇iQj∇iQl.

The point here is that when we compute the time derivative of a quantity such as |∇Q|2,
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we have to take into consideration how the metric and its Levi-Civita connection evolve.

Finally, we just introduce a notation convention for the theorem. Consider two tensors,

A and B, on a Riemannian manifold. Then we denote by A ∗ B any quantity obtained

from A⊗B by one or more of the following operations:

1. Summation over pairs of matching upper and lower indices;

2. Contraction on upper indices with respect to the metric;

3. Contraction on lower indices with respect to the inverse of the metric;

4. Multiplication by constants that depend only on n, rank(A) and rank(B).

Furthermore, (A∗)k will denote any k-fold product A ∗ · · · ∗ A.

Theorem B.0.1. Let (Mn, g(t)) be a solution of the Ricci flow, where Mn is a closed

manifold. For any α > 0 and m ∈ N, suppose there exists a constant K > 0 such that

|Rm(p, t)|g(p,t) ≤ K,

∀p ∈ Mn and t ∈ [0, α
K

], then there exists a positive constant Cm depending only on m,n

and max{α, 1} such that

|∇mRm(p, t)|g(p,t) ≤
CmK

t
m
2

,

∀p ∈Mn and t ∈ (0, α
K

].

Proof. We will apply complete induction on m. First, let m=1. Then, we see

that the evolution equation for |∇Rm|2 is

∂

∂t
|∇Rm|2 = 2〈∇

(
∂

∂t
Rm

)
,∇Rm〉+∇Ric ∗Rm ∗ ∇Rm+Ric ∗ [(∇Rm)∗]2,

using the notation introduced above and the evolution equations for |∇Q|2 previously

described. Now, we want to understand ∇( ∂
∂t
Rm). Before that, we must understand

how the commutator [∇,∆] acts on a tensor. Let A be any tensor. The technique for
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commuting derivatives gives us the following:

[∇k,∆]A = ∇k∆A−∆∇kA = gij (∇k∇i∇jA−∇i∇j∇kA)

= gij ([∇k,∇i]∇jA+∇i∇k∇jA−∇i∇j∇kA) = gij ([∇k,∇i]∇jA+∇i([∇k,∇j]A)) .

Thus, using the formula for commuting covariant derivatives, we see that [∇,∆] is of the

form

[∇,∆]A = Rm ∗ ∇A+∇(Rm ∗ A) = Rm ∗ ∇A+∇Rm ∗ A.

Using the second Bianchi identity, we have

[∇,∆]A = Rm ∗ ∇A+∇Ric ∗ A.

Then, using formula (3.20) and replacing the instances of Rc with Rm, one gets

∇
(
∂

∂t
Rm

)
= ∇

(
∆Rm+ (Rm)∗2

)
= ∆∇Rm+Rm ∗ ∇Rm.

Since ∆|A|2 = ∆(〈A,A〉) = 〈∆A,A〉+ 2〈∇A,∇A〉 for any tensor, we conclude that

∂

∂t
|∇Rm|2 = ∆|∇Rm|2 − 2|∇2Rm|2 +Rm ∗ (∇Rm)∗2. (B.1)

To obtain a good estimate for |∇Rm|2 from the equation above, we must control two

possible difficulties. The first one is the term Rm ∗ (∇Rm)∗2 and the other is the fact

that, a priori, we have no control on |∇Rm|2 at t = 0. With this goal in mind, we

introduce a new quantity:

F := t|∇Rm|2 + β|Rm|2,

where β is a constant that will be chosen later.

At t = 0, we get an upper bound F ≤ βK2. Also, when t is small, the term Rm ∗

(∇Rm)∗2, obtained by differentiating |∇Rm|2, can be compensated by a new term we get
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when we differentiate |Rm|2, −2β|∇Rm|2. Taking the derivative of F, we get

∂

∂t
F = |∇Rm|2 + t

(
∂

∂t
|∇Rm|2

)
+ β

∂

∂t
(|Rm|2)

= |∇Rm|2 + t
(
∆|∇Rm|2 − 2|∇2Rm|2 +Rm ∗ (∇Rm)∗2

)
+ β

(
∆|Rm|2 − 2|∇Rm|2 + (Rm)∗3

)
= ∆F + (1− 2β)|∇Rm|2 + tRm ∗ (∇Rm)∗2 − 2t|∇2Rm|2 + β(Rm)∗3

≤ ∆F + (1− 2β + c1t|Rm|)|∇Rm|2 + c2β|Rm|3,

where c1 and c2 depend only on the dimension n. Since |Rm| ≤ K for all t ∈ [0, α
K

] by the

hypothesis, we get

∂

∂t
F ≤ ∆F + (1 + c1α− 2β)|∇Rm|2 + c2βK

3.

Let β be any constant such that β ≥ 1+c1α
2

(note that β depends only on n and α). Then,

∂

∂t
F ≤ ∆F + c2βK

3,

∀t ∈ [0, α
K

]. Using the maximum principle, we have

sup
p∈M

F (p, t) ≤ βK2 + c2βK
3t ≤ (1 + c2α)βK2 ≤ C1

2K2,

∀t ∈ [0, α
K

], where C1 is a constant again depending only on n and α. Thus,

|∇Rm| ≤
√
F

t
≤ C1K

t
1
2

,

for 0 < t ≤ α
K
. This proves the case m=1.

Now we prove the inductive step. Suppose that |∇jRm| is estimated for all

1 ≤ j < m. Let 1 ≤ k ≤ m. First, we see that

∂

∂t
|∇kRm|2 = 2〈 ∂

∂t

(
∇kRm

)
,∇kRm〉+Ric ∗ (∇kRm)∗2. (B.2)
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Now we need to calculate ∂
∂t

(∇kRm). In fact, by formulas (3.20) and (3.8), we get

∂

∂t

(
∇kRm

)
= ∇k

(
∂

∂t
Rm

)
+

k−1∑
j=0

∇j
(
∇Ric ∗ ∇k−1−jRm

)
= ∇k

(
∆Rm+ (Rm)∗2

)
+

k∑
j=1

∇jRm ∗ ∇k−jRm

= ∇k∆Rm+
k∑
j=0

∇jRm ∗ ∇k−jRm.

Similar to what we did in the case m=1, we shall substitute ∇k∆Rm by ∆∇kRm and

add a compensation term. For any tensor A, we have

[∇k,∆]A = ∇k∆A−∆∇kA =
k∑
j=0

∇jRm ∗ ∇k−jA.

Hence,
∂

∂t

(
∇kRm

)
= ∆∇kRm+

k∑
j=0

∇jRm ∗ ∇k−jRm.

Finally, we get from (B.2) and ∆|A|2 = ∆(〈A,A〉) = 〈∆A,A〉+ 2〈∇A,∇A〉 that

∂

∂t
|∇kRm|2 = 2〈∆∇kRm+

k∑
j=0

∇jRm ∗ ∇k−jRm,∇kRm〉+Ric ∗ (∇kRm)∗2

= ∆|∇kRm|2 − 2|∇k+1Rm|2 +
k∑
j=0

∇jRm ∗ ∇k−jRm ∗ ∇kRm.

(B.3)

Now, if k = m, we get

∂

∂t
|∇mRm|2 ≤ ∆|∇mRm|2 +

m∑
j=0

Cmj|∇jRm||∇m−jRm||∇mRm|,

where Cmj depends only on j,m and n, ∀0 ≤ j ≤ m.

Using the inductive hypothesis, we can estimate |∇m−jRm| for all 0 ≤ j ≤ m and
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|∇jRm| for all 0 ≤ j < m. Thus, we have

∂

∂t
|∇mRm|2 ≤ ∆|∇mRm|2 + (Cm0 + Cmm)K|∇mRm|2 +

(
m−1∑
j=1

Cmj
Cj

t
j
2

C(m−j)

t
(m−j)

2

)
K2|∇mRm|

≤ ∆|∇mRm|2 +K

(
C
′

m|∇mRm|2 +
C
′′
m

t
m
2

K|∇kRm|
)
,

∀t ∈ (0, α
K

], where C ′m and C ′′m depend only on m and n. Now, if we regard the term in

parenthesis as an incomplete square, we get a new constant Cm, also depending only on

m and n, such that

∂

∂t
|∇mRm|2 ≤ ∆|∇mRm|2 + CmK

(
|∇mRm|2 +

K2

tm

)
. (B.4)

Analogous to the case m = 1, we define a new quantity

G := tm|∇mRm|2 + βm

m∑
k=1

(m− 1)!

(m− k)!
tm−k|∇m−kRm|2.

Defined like this, we observe that G satisfies

G ≤ βm(m− 1)!K2

when t = 0. Using equation (B.3), we see that there are constants Ck, by the inductive

hypothesis, such that for any 1 ≤ k < m, we have

∂

∂t
|∇kRm|2 ≤ ∆|∇kRm|2 − 2|∇k+1Rm|2 +

CkK
3

tk
, (B.5)

∀t ∈ (0, α
K

]. We observe that we retained the term −2|∇k+1Rm| on (B.5), although the

same term was dropped on (B.4). This term will be helpful further on the proof. Now,
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we compute the evolution equation for G.

∂

∂t
G = mtm−1|∇mRm|2 + tm

(
∂

∂t
|∇mRm|2

)
+ βm

m∑
k=1

(m− 1)!

(m− k − 1)!
tm−k−1|∇m−kRm|2

+ βm

m∑
k=1

(m− 1)!

(m− k)!
tm−k

(
∂

∂t
|∇m−kRm|2

)
≤ mtm−1|∇mRm|2 + tm

[
∆|∇mRm|2 + CmK

(
|∇mRm|2 +

K2

tm

)]
+ βm

m∑
k=1

(m− 1)!

(m− k − 1)!
tm−k−1|∇m−kRm|2

+ βm

m∑
k=1

(m− 1)!

(m− k)!
tm−k

[
∆|∇m−kRm|2 − 2|∇m−k+1Rm|2 +

Cm−kK
3

tm−k

]
.

Then we get

∂

∂t
G ≤∆G+ CmKt

m|∇mRm|2 +mtm−1|∇mRm|2 + CmK
3

+ βm

m∑
k=1

(m− 1)!

(m− k)!

[
−2tm−k|∇m−k+1Rm|2 + Cm−kK

3 + (m− k)tm−k−1|∇m−kRm|2
]
,

which gives us the estimate

∂

∂t
G ≤ ∆G+

(
CmKt+m− 2βm

)
tm−1|∇mRm|2 +

(
Cm + βmC

′

m

)
K3,

where

C
′

m :=
m∑
k=1

(m− 1)!

(m− k)!
Cm−k.

In the estimate above, the terms −2 (m−1)!
(m−k)!

tm−k|∇m−k+1Rm|2 compensate the terms

(m− 1)!

(m− k + 1)!
(m− k + 1)tm−k|∇m−k+1Rm|2
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since

m∑
k=1

(m− 1)!

(m− k)!
(m− k)tm−(k−1)|∇m−kRm|2 −

m∑
k=2

2
(m− 1)!

(m− k)!
tm−k|∇m−(k−1)Rm|2 =

=
m∑
k=2

[
(m− 1)!

(m− k + 1)!
(m− k + 1)tm−k|∇m−(k−1)Rm|2 − 2

(m− 1)!

(m− k)!
tm−k|∇m−(k−1)Rm|2

]
= −

m∑
k=2

(m− 1)!

(m− k)!
tm−k|∇m−(k−1)Rm|2,

which is a nice term for our estimate. This is why we work with G, not |∇mRm|2 directly.

Now, if we choose βm ≥ (Cmα+m)
2

, we have

∂

∂t
G ≤ ∆G+

(
Cm + βC ′m

)
K3,

∀t ∈ [0, α
K

]. Also, we observe that βm depends only on n,m and α. Since G ≤ βm(m−1)!K3

at t = 0, the scalar case of the maximum principle gives us

sup
p∈M

G(p, t) ≤ βm(m− 1)!K2 +
(
Cm + βmC ′m

)
K3t

≤ βm(m− 1)!K2 +
(
Cm + βmC ′m

)
K3 α

K

=
[
βm(m− 1)! +

(
Cm + βmC ′m

)
α
]
K2,

for 0 ≤ t ≤ α
K
. Thus, if Cm :=

√
βm(m− 1)! +

(
Cm + βmC ′m

)
α, we get

|∇mRm| ≤
√
G

tm
≤ CmK

t
m
2

,

for 0 < t ≤ α
K
. This proves the inductive step and, therefore, the theorem.

Finally, we prove Proposition 5.5.1.

Proposition B.0.1. Let (Mn, g(t)) be a solution of the Ricci flow on a compact manifold
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with a fixed background metric g and a connection ∇. If there exists K > 0 such that

|Rm(p, t)|g ≤ K

∀p ∈ Mn and ∀t ∈ [0, T ], then for every m ∈ N, there exists a constant Cm that depends

on m,n,K, T, g0 = g(0) and the pair (g,∇) such that

∣∣∇m
g(p, t)

∣∣
g
≤ Cm,

∀p ∈Mn and ∀t ∈ [0, T ].

Proof. First, we use the compactness ofMn to get a finite atlas in which we have uniform

estimates on the derivatives of the local charts. Then, we fix one of these charts, ϕ :

U ⊂Mn −→ Rn. Now, since the pair (g,∇) is fixed, we only need to prove that for each

m ∈ N, we can find a constant Cm depending on m,n,K,Γ and g0 so that the following

holds

|∂mg(p, t)| ≤ Cm,

∀p ∈ U and ∀t ∈ [0, T ), where |.| = |.|δ is taken with respect to the Euclidean metric

δ in U. Also, we shall regard Γ as a tensor in U, being the difference of the Levi-Civita

connection on g and the background flat metric in U. As expected, we will complete our

proof by induction on m.

In what follows, C will be a generic constant that may change from line to line, but

it will always depend only on m,n,K,Γ and g0. Let β = β(K,T ) so that 0 < β <

min{KT, 1}.

Using Corollary 5.5.3.1, we get uniform pointwise estimates for g(t) on (0, T ]. Now, we

shall estimate the first derivatives of the metric, i.e., the case m = 1.

∂

∂t

(
∂

∂xi
gjk

)
=

∂

∂xi

(
∂

∂t
gjk

)
= −2

∂

∂xi
Rjk = −2

(
∇iRjk + ΓlijRlk + ΓlikRjl

)
.
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Since |Rm(p, t)|g ≤ K by hypothesis, we have∣∣∣∣ ∂∂t∂g
∣∣∣∣ = 2|∂Ric| ≤ 2|∇Ric|+ CK|Γ|. (B.6)

Additionally, we know from equation (3.8) that

∂

∂t
Γkij = −gkl (∇iRjl +∇jRil −∇lRij) .

This gives us another estimate: ∣∣∣∣ ∂∂tΓ
∣∣∣∣ ≤ C |∇Ric| .

Now, Corollary 5.5.2.1 says that there exists a constant B = B(m,n,K, β) such that

|∇Ric| ≤ B holds on ( β
K
, T ). Furthermore, since |Γ| is bounded on [0, β

K
] by some constant

A = A(K, β, g0), we see that

|Γ(p, t)| ≤ A+BC(T − β

K
) ≤ C (B.7)

∀p ∈M and ∀t ∈ [0, T ).

Then, since |∇Ric| is bounded on [0, β
K

] by some D = D(K, β, g0), (B.6) gives us

|∂g| ≤ |∂g0|+ CD
β

K
+ (2B + C)(T − β

K
) ≤ C

by the maximum principle.

Now, we prove the inductive step. Let α = (a1, . . . , ar) be any multi-index with

|α| = m. Then, since

∂

∂t

(
∂|α|

∂xα
gij

)
= −2

(
∂|α|

∂xα
Rij

)
,

we just need a bound for |∂αRic| . We first consider the case m = 2. Then

∂i∂jRkl =∇i∇jRkl +
[
Γpij∇pRkl + Γpik∇jRpl + Γpil∇jRkp + Γpjk∇iRpl + Γpjl∇iRkp

]
+
[
ΓqipΓ

p
jlRkq + ΓqipΓ

p
jkRql + ΓpilΓ

q
jkRqp + ΓpikΓ

q
jlRpq

]
+
[
∂iΓ

p
jkRpl + ∂iΓ

p
jlRkp

]
.
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Then, considering the general case, we see that

|∂mRic| ≤
m∑
i=0

Ci
∣∣Γi∣∣ ∣∣∇m−iRic

∣∣+
m−1∑
i=1

C
′

i

∣∣∂iΓ∣∣ ∣∣∂m−1−iRic
∣∣ . (B.8)

Now, by Corollary 5.5.2.1 and using our estimate on |Γ| , (B.7), we get

m∑
i=0

∣∣Γi∣∣ ∣∣∇m−iRic
∣∣ ≤ C sup

0≤t≤ β
K

[
m∑
i=0

∣∣∇m−iRic
∣∣]+ C

m∑
i=0

Cm−iK
1+m−i

2 ≤ C.

For the other term on B.8, we may apply the inductive step, i.e., suppose that |∂t∂pg|

(equivalently |∂pRic|) has been estimated for all 0 ≤ p < m− 1. Then (B.8) implies that

we have bounds for |∂iΓ| , with 1 ≤ i ≤ m− 2. So we just need to estimate |∂m−1Γ| and

our proof is done. Using (3.8) again, we see that

∂

∂t

(
∂m−1

∂xp1 . . . ∂xpm−1
Γkij

)
=

∂m−1

∂xp1 . . . ∂xpm−1

(
∂

∂t
Γkij

)
=

∂m−1

∂xp1 . . . ∂xpm−1

[
−gkl (∇iRjl +∇jRil −∇lRij)

]
.

Hence, using the inductive hypothesis and Corollary 5.5.3.1, we have

∣∣∣∣ ∂∂t∂m−1Γ

∣∣∣∣ ≤ C
m−1∑
i=0

∣∣∂m−1−i(g−1)
∣∣ ∣∣∂i∇Ric∣∣

≤ C

m−1∑
i=0

∣∣∂m−1−ig
∣∣ ∣∣∂i∇Ric∣∣

≤ C

m−1∑
i=0

∣∣∂i∇Ric∣∣ ,
(B.9)

since g being bounded implies that g−1 is bounded and the same is true for the derivatives

of each one because

∂

∂xi
gjk = −gjpgkq ∂

∂xi
gpq.

Similarly to what we did in (B.8), we get

∣∣∂i∇Ric∣∣ ≤ i∑
j=0

Cj

∣∣Γj∣∣ ∣∣∇i+1−jRic
∣∣+

i−1∑
j=1

C ′j
∣∣∂jΓ∣∣ ∣∣∂i−jRic∣∣ ,
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where Cj and C ′j depend only on p and n. Finally, we apply this to (B.9) to get

∣∣∣∣ ∂∂t∂m−1Γ

∣∣∣∣ ≤ C

m−1∑
i=0

(
i∑

j=0

∣∣Γj∣∣ ∣∣∇i+1−jRic
∣∣+

i−1∑
j=1

∣∣∂jΓ∣∣ ∣∣∂i−jRic∣∣) .
Since all the terms on the right-hand side have already been bounded, we get a bound on∣∣ ∂
∂t
∂m−1Γ

∣∣ and therefore, |∂m−1Γ| ≤ C + CT and this completes the proof.
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Appendix C

The Maximum Principle and Other

Geometric Flows

In this Appendix, we briefly introduce the curve shortening flow (CSF) and the mean

curvature flow (MCF), with the aim of showing how the maximum principle and the ideas

developed by Hamilton can be used in other geometric flows. In fact, the CSF can be seen

as the one dimensional case of the MCF. However, it is interesting to study both cases

separately. In particular, we observe the similarity between the results for the Ricci flow

presented in this work and the results for the curve shortening flow in this appendix. The

work presented in here is mainly based on [17], [11], [10] and [15].

Definition C.0.1. A one-parameter family of embedded curves {Γt ⊂ R2}t∈I moves by

curve shortening flow if the normal velocity at each point is given by the curvature vector,

i.e., if we consider embeddings γ = γ(., t) : S1 × I −→ R2 with Γt = γ(S1, t), then

∂

∂t
γ(x, t) = κ(x, t)N(x, t), (C.1)

where κ is the curvature of the curve and N is its inward pointing unit normal vector.

Remark. Equation (C.1) can also be written as

∂

∂t
γ =

∂2

∂s2
γ,
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where s is the arc length of γ. This is almost the heat equation, but the arc length depends

on (x, t) in a nonlinear way, so the curve shortening flow is actually a nonlinear PDE.

Theorem C.0.1. Let γ0 : S1 −→ R2 be an embedded curve. Then there exists a unique

smooth solution γ : S1 × [0, T ) −→ R2 of the curve shortening flow

∂tγ = ∂2
sγ,

γ(., 0) = γ0(.),

defined on a maximal time interval [0, T ). Besides, the maximal existence time is charac-

terized by

sup
S1×[0,T )

|κ(x, t)| =∞.

Proof. For a comprehensive proof of this result, with the use of the Maximum Principle,

see [15].

Proposition C.0.1. Let the closed curve γ(t) be a solution to the CSF and let L(t) be

the length of the solution at time t, given by

L(t) =

∫
S1

√
〈∂xγ, ∂xγ〉dx.

Then

d

dt
L(t) = −

∫
Γt

κ2ds,

that is, the curve shortening flow is the gradient flow of the length functional. Therefore,

it shortens curves in the fastest way possible.

Proof. See [10], Lemma 3.1.2.

Proposition C.0.2. Let the closed curve γ(t) be a solution to the CSF and let A(t) be

the area enclosed by the solution at time t, then

d

dt
A(t) = −2π.
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In particular, A(t) = A(0)− 2π and T ≤ A(0)
2π
.

Proof. See [10], Lemma 3.1.7.

Proposition C.0.3. If {Γt ⊂ R2} evolves by the curve shortening flow, then its curvature

evolves by

κt = κss + κ3,

where s denotes arc length.

Proof. See [10], Lemma 3.1.6.

Corollary C.0.1.1. Convexity is preserved under curve shortening flow, i.e., if κ > 0 at

t = 0 then κ > 0 for all t ∈ [0, T ).

Proof. See [10]. This is a direct consequence of the proposition above and the maximum

principle. In fact, if κmin(t) := minΓt κ is positive at t = 0, then it is nondecreasing in

time and satisfies

κmin(t) ≥ κmin(0)

1− 2tκ2
min(0)

.

Theorem C.0.2. There exist constants Cm(K,T ) < ∞ such that if {Γt ⊂ R2} is a

solution of the curve shortening flow with

sup
t∈[0,T )

|κ| ≤ K,

then

sup
Γt

|∂ms κ| ≤
Cm

t
m
2

.

Proof. For a proof using the maximum principle, see [15].

Theorem C.0.3. If Γ ⊂ R2 is a closed embedded curve, then the curve shortening flow

{Γt}t∈[0,T ) with Γ0 = Γ exists until T = A(Γ)
2π

and converges for t → T to a round point,
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i.e., there exists a unique point x0 ∈ R2 such that the rescaled flows

Γλt := λΓ(T+λ−2t−x0)

converge for λ→∞ to the round shrinking circle {∂B√−2t}t∈(−∞,0).

Proof. See [11].

Now we state some results regarding the mean curvature flow. Consider a closed

surfaceMn = Mn
0 , n ≥ 2, which is uniformly convex and embedded in Rn+1. Let F0 : U ⊂

Rn −→M0 be a local chart toM0. Then we say that a family of hypersurfacesM(t) ⊂ Rn

evolves by the mean curvature flow if there exist local charts satisfying

∂

∂t
F (x, t) = ∆tF (X, t) = −H(x, t)ν(x, t), (C.2)

F (., 0) = F0, (C.3)

where ∆t is the Laplace-Beltrami operator on the manifold Mt, given by F (., t), H(., t) is

the mean curvature of Mt and ν(., t) is the outer unit normal on Mt.

Theorem C.0.4. The evolution equation C.2 has a solution Mt for a short time with any

smooth closed initial surface M = M0 at t = 0.

Proof. See [17].

Lemma C.0.5. The metric of Mt satisfies

∂

∂t
gij = −2Hhij,

where hij are the coefficients of the second fundamental form A(t) of Mt.

Proof. See [17], Lemma 3.2.

Lemma C.0.6. The unit normal to Mt satisfies ∂
∂t
ν = ∇H.

Proof. See [17], Lemma 3.3.

Proposition C.0.4. The mean curvature of Mt satisfies

∂

∂t
H = ∆H + |A|2H.
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Proof. See [17], Corollary 3.5.

Remark. Observe that H satisfies a heat-type equation and we have the following estimate

∂

∂t
H ≥ ∆H +

1

n
H3. (C.4)

Then, if H(x, 0) > 0 ∀x ∈Mn, then we can consider ϕ(t) solution of the associated ODE

ϕ′(t) =
1

n
ϕ3(t), (C.5)

ϕ(0) = Hmin(0) > 0. (C.6)

The maximum principle says that H(x, t) ≥ ϕ(t) as long as the solution exists. There-

fore,

H(x, t) ≥ Hmin(0)√
1− 2

n
H2
min(0)t

> 0.

Inspired by Hamilton’s approach, Huisken studied the eigenvalues of the second fun-

damental form for the MCF, showed that we have bounds on the gradient of the mean

curvature and for the higher derivatives of A, proved that the mean curvature becomes

constant as t→ T, T being a maximum time interval for the existence of the mean curva-

ture flow. Finally, with the help of the maximum principle, Huisken proved the following

result.

Theorem C.0.7. Let n ≥ 2 and assume that M0 is uniformly convex, i.e., the eigenval-

ues of its second fundamental form are strictly positive everywhere. Then the evolution

equation (C.2) has a smooth solution on a finite time interval [0, T ) and Mt converges to

a single point as t→ T. The normalized version of the flow has a solution for all positive

time and Mt converges exponentially to a sphere of area A(0) in any Ck−norm.
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