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ABSTRACT

�is work presents a multiscale procedure for solving mechanical problem in heterogeneous
media. All materials are intrinsically heterogeneous at some scale. At this small scale nonlinear
phenomena usually takes place, such as plastic �ow and dislocations movements. �is localized
phenomena ultimately a�ects the behavior of the whole structure. �e implemented procedure
consists of solving a boundary value problem (BVP) in the representative volume element
(RVE) that takes into account the microstructure for each integration point of the macro scale.
�ere is no explicit declaration of the constitutive relation in the macro scale. In fact, the
macro scale constitutive parameters are obtained via homogenization of the microstructure
�elds. Nonlinearities are also treated only in the micro scale. �e micro scale displacement
�eld must satisfy kinematical condition which generate multiple approaches to solve the BVP.
�is work deals with the two most simple ones, the Taylor and linear boundary condition
assumptions. We show via examples that the Taylor assumption produces a sti�er model. �e
implementation was wri�en using Python programming language and the mesh and post
processing plots were done using the free so�ware Gmsh. �e solution modules were veri�ed
with simple benchmark problems and two more involved examples are provided, one of a
perforated notched bar and the other of the proximal part of human femur. �e femur example
shows that a greater void ratio produces a more �exible model, as expected. It also shows that
the microstructure con�guration a�ects considerably the end result.

Key-words: Computational Homogenization, Multiscale, Finite Element Method, Plasticity,
Python.
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RESUMO

Nesse trabalho é apresentado um procedimento multiescala para resolver problemas mecânicos
em mı́dia heterogênea. Todos os materiais são intrinsicamente heterogêneos em uma escale.
Nessa escala, fenômenos não-lineares geralmente ocorrem, como deformações plástico e movi-
mentos de deslocamento. Esse fenômeno local afeta o comportamento de toda a estrutural. O
procedimento implementado consiste em resolver um problema de valor de contorno (PVC)
em um volume representativo que considera a microestrutura para cada ponto de integração
na escala macro. Não há declaração explicita das relações constitutiva na escala macro. Na real-
idade, os parâmetros constitutivos da escala macro são obtidos através da homogenização dos
campos da microestrutura. As não linearidades são tratadas apenas na escala micro. Os campos
de deslocamento micro devem satisfazer as condições cinemáticas que geram diferentes abor-
dagens para resolver o problema de valor de contorno. Esse trabalho trata das duas condições
mais simples, a condição de Taylor e a condição de condição de contorno linear. Mostramos por
meio de exemplos que a condição de Taylor produz um modelo mais rı́gido. A implementação
foi realizada inteiramente utilizando a linguagem de programação Python, apenas a malha e o
os grá�cos de pós processamento foram feitos utilizando o programa livre Gmsh. Os módulos
implementados foram veri�cados utilizando problemas de benchmark simples e dois exemplos
mais complexos são apresentados. O primeiro de uma placa com entalhe circular e material
perfurado e o segundo o modelo da parte proximal do fêmur humano. O exemplo do fêmur
mostra que quanto maior a porcentagem de vaios mais �exı́vel é o modelo. Ele ainda mostra
que a con�guração da microestrutrua afeta o resultado �nal consideravelmente.

Palavras-chave: Homogenização computacional, Multiescala, Método dos Elementos
Finitos, Plasticidade, Python.
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1. INTRODUCTION

Composite materials are formed by two or more materials, which remain separate from each
other, and each material has its own set of characteristic properties. Examples of this kind of
material are reinforced concrete, metal matrix composites and �ber reinforced polymer. �e
mechanical behavior of a composite material is directly a�ected by the mechanical properties
and geometric con�guration of its individual constituents. For instance, the macro-scale e�ects
of plastic or any other dissipative phenomena depend on the complex interaction between
heterogeneities and defects at small scales (Sánchez et al. 2013). Here we denote macro scale as
the scale in which we are mainly interested, the structural level. �e lower scales are refered as
micro scales. Other aspect of composites is their multi-scale nature in which the size of their
constituents is much smaller than the resulting structure. As a ma�er of fact, many materials
regarded as homogeneous can have intrinsic heterogeneous nature. Materials like iron-carbon
alloy, in which its microstructure depends on the carbon content and heat treatment, or even
wood which is composed of cellulose �bers held together with a sti�er material called lignin
(Callister 2007). �ose two examples are called natural composites.

With advances in the manufacturing industry, many structures will be built using heteroge-
neous material designed to take advantages of its individual components. As opposed to the
natural composites those are arti�cially made. One example is the disk in turbines, instead of
build it with a homogeneous material, they are using long �ber reinforced SiC/Ti composite to
resist inertial forced due high rotation speed (Feyel 2003). �ose kind of materials are also used
to reduce the strength to weight ratio which improves fuel consumption in vehicles. High-
temperature strength is another parameter that can be obtained via composites. Industries that
take advantage of composites are aerospace, transportation and under water (Callister 2007).

Engineering materials present some sort of separation of scales if we consider that the most
basic element of ma�er is the atom. �e organization of atoms form complex structures that
are not visible to the naked eye even though this structure impacts the material properties.
Engineering usually deals with this multiscale aspect of materials by proposing models that
already take into account the microscopic process. However the development of those models
can take tremendous amount of e�ort in laboratory work. Multiscale technique aims to give an
alternative to this procedure and is expected to become a central approach to aid new design
paradigms for materials and structures (Oliver et al. 2017).

1.1. MOTIVATION

When designing a multi-phase structure, it is usually important to establish the relation between
the reinforcement phase and the desired overall structure property. �e reinforcement phase,
at micro level, can present complex behavior that directly a�ects the macro–scale such as
the interaction between heterogeneities and defects (Sánchez et al. 2013). Even though we
are dealing speci�cally with multi phase media, all engineering materials have a intrinsic
heterogeneity at some scale. �e behavior at this �ne scale is generally nonlinear, such as
plastic deformation, cracks, dislocations, creep, relaxation and defects. Ultimately, damage and
fracture at the micro level governs the behavior of the whole structure (Matouš et al. 2017).

During design of heterogeneous structures, the �rst approach is to model the whole structure
including small scale features, using some discretization technique such as the FEM. �is
approach leads to overly re�ned meshes that have a high computational cost (Saeb et al. 2016).

Instead of modeling the structure considering the small scale features, one can simply use
the e�ective, or homogenized, properties obtained experimentally. However, this approach
is usually di�cult to be performed or too expensive, specially at the design phase, where the

1



composition may vary signi�cantly and a series of samples are required (Kanouté et al. 2009;
Carneiro Molina and Curiel-Sosa 2015; Saeb et al. 2016).

Pure phenomenological theories, in which constitutive response is de�ned by a set of
ordinary di�erential equations, have drawbacks in regard complex strain paths, specially
when damage or phase bonding are considered (Vaz Júnior et al. 2011). One example of such
material is �bre-reinforced polymer which has many applications in the aerospace industry,
civil structures and prosthetics (Tong et al. 2002; Ullah et al. 2017).

1.2. CONTEXT

In recent decades, a series of multi-scale approaches have been proposed and implemented
based on di�erent models, such as the Homogenization �eory of Asymptotic Expansion, the
e�ective medium approximation and many others. �ose methodologies consider for their
conceptual foundation analytical and semi-analytical procedures, however, they are restricted
to simple micro-structure con�gurations (Sánchez et al. 2013). For a conceptual review of the
many theoretical approachs see Kanouté et al. (2009), McDowell (2010), Nguyen et al. (2011),
Saeb et al. (2016), and Matouš et al. (2017)

�e method used in this work is commonly called in the literature as multiscale homoge-
nization method, or computational homogenization, which uses the concept of representative
volume element (RVE) to derive global properties of highly heterogeneous media (Suquet 1983).
�e development of the RVE can be traced back to the work of Hill (1963) which describe it as
a typical sample that represent the whole mixture on average. �is approach is also referenced
as �rst-order homogenization because it considers only the �rst gradient of the deformation
gradient. It consists of using the macro-scale strain to solve the micro-scale problem to obtain
the micro-scale stress tensor and the macro-scale stress by volume average. When the Finite
Element Method is used at both scales the method is called FE2 (Smit et al. 1998).

One of the main assumption in which the �rst-order homogenization method relies is
separation of scales which can be stated as “the microscopic length is much smaller than
the characteristic length of macro scale” (Geers et al. 2010; Saeb et al. 2016). �e �rst-order1

computational homogenization does not contain the physical size of the RVE (Javili et al. 2015).
Second order approach allows taking into account micro scale size e�ects when the scales
length are comparable (Kouznetsova et al. 2004; Kouznetsova et al. 2002; Kaczmarczyk et al.
2008)

Multi-scale methods have contributed to bridging the gap between mechanics and material
science (Geers et al. 2010). �e bene�ts of the method are

1. Modeling based on mechanics at micro scale
2. Macro phenomenological constitutive law not required
3. Represent macro anisotropy with interation of individual phases at micro scale
4. Allows gradual incorporaton of complex mechanical phenomena at the micro scale
As a drawback we have a high computational cost, specially for nonlinear problems, as we

later verify.

1.3. OBJECTIVES AND SCOPE

�e purpose of this work is to apply a multi-scale procedure in order to solve problems that
involve highly heterogeneous media. In this procedure we consider nonlinearities only in

1�e denomination �rst-order is given because the model only considers the �rst gradient of the macro scale
displacement �eld, macro strain.
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the microdomain and transfer homogenized properties to the macro level. We focus on the
method procedure therefore we restrict ourselves to plane problems, more speci�cally plane
strain, in order to avoid overly complex data structures in the early stage of the code and to
avoid large computational requirements. Plane strain was chosen because its a �rst step in
coding the numerical procedure for solving nonlinear problems. More complex behavior in the
microstructure such as the debonding phenomenon was also le� out of the scope of the thesis,
nonetheless the code is structured in a way which allows further development in this direction.
�e main feature of this procedure consists in the fact that there is no constitutive assumption
for the macro scale and nonlinearities are treated only in the micro scale.

�e objectives are:
1. Describe and implement a multi-scale procedure, in its variational form, for solving

mechanical problems in heterogeneous media, where the nonlinearities are treated only
in the microdomain.

2. Describe and implement a nonlinear solution procedure for plane strain problems using
the Finite Element Method. Using the von Mises Yield criteria and a linear isotropic
hardening function.

1.4. IMPLEMENTATION CONSIDERATIONS

�e motivation behind developing our own implementation, here called scikit-mechanics,
instead of using a comercial so�ware resides in the complexity of the non conventional analysis
which requires two �nite elements solvers to run simultaneously. �e in-house development
allows prototyping with di�erent procedures due its �exibility.

�e code was wri�en in Python, a high level language which is �exible and legible. �e
model, mesh, material and element are abstracted in classes. �e model class encapsulates
the whole problem description and is extended with the other classes that are involved in the
analysis. �is design allows further improvements of the code features without compromising
existing capabilities. So, for instance, the micro model object is assigned as an a�ribute of the
model class.

�e incremental procedure is performed via a function where the increments and iterations
are standards loops. �e data structure for the internal variables is currently handled by Python
dictionaries due its straightforward key-value structure. Nonetheless the way it is handled in
the code is quite complex and there room for improvement via another class abstraction. �e
usage of dictionaries is convenient but it may also contributes to the slowness of the code.
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2. LITERATURE REVIEW

Numerous a�empts have been made to e�ectively model composite materials using computa-
tional homogenization techniques. Many principles were used when deriving those a�empts,
this section presents some of the works that deal with multiscale analysis.

2.1. EARLY EFFORTS

Eshelby (1957) originally proposed a method to �nd the current stresses in an elastic solid
when a inclusion is subjected to a change in its shape. With his method it was possible to solve
many boundary value problems such as the ellipsoidal inclusion with elastic matrix, ellipsoidal
hole with elastic in an elastic medium and ellipsoidal cracks in an elastic solid.

Suquet (1983) presented the homogenization theory to derive global properties of heteroge-
neous media. He de�ned the macroscopic variables as average of the �elds in the heterogeneous
body. Noting that if the constituents of the heterogeneous medium are not perfectly bonded
(with voids and crack) the averaging process is valid on extended �elds. He mentions that it is
o�en assumed that micro-strain and or micro-stress is uniform on the boundary of the RVE. �e
macro-homogeneity condition consists of micro-work been equal to the macro–work (a�ributed
to Hill). �e induced micro-strain, εµ, by the macro strain ε is obtained by localization.

2.2. FINITE ELEMENTS AND HOMOGENIZATION METHODS

Guedes and Kikuchi (1990) discussed the homogenization method to determine the e�ective
average elastic constants of linear elasticity of general composite materials when the microstruc-
ture is considered. �ey presented the implementation of homogenization method using the
�nite element method for linear elastic problems in 2D and 3D. �ere is a PREMAT module
that is responsible to compute the material constants based on homogenization method. �ey
presented a series of simple examples that can be reproduced. �ey used asymptotic expantion
theory and there is no mention to displacement �uctation nor their kinematical admissibility.

Feyel (1999) presented a multi-scale model based on the multilevel �nite element (FE2)
in order to take into account heterogeneities in the behavior between �bre and matrix. He
described the FE2 model by considering only the constitutive relations on the microscopic scale.
�en, the macroscopic strain and stresses are computed with homogenization and localization
equations. �e behavior of microstructure is obtained by FE computation. �e steps in the FE2

are: �rst, localization of macroscopic strain ε, then compute the response of the microstructure
σµ, �nally homogenization of the micro-stress by averaging, σ = 〈σµ〉, where 〈·〉 denotes
volume average. He approximates the sti�ness matrix by a perturbation method, which consists
of �nding the response of the structure for small strain variations. For 2D problems it is
necessary to solve 4 FE problems. Finally he presents an example of four point bending problem
where the in�uence of �bers sizes were analyzed.

Feyel and Jean-Louis Chaboche (2000) presented and analysis of the behavior of structures
reinforced by long �bre SiC/Ti composite material with periodic microstructure. �e analysis
is carried with the multilevel �nite element approach (FE2). In this approach the constitutive
equations are only wri�en in the microscopic scale. �ey showed an example of a simple 8-node
quadrilateral element with 4 Gauss points. �e local model was tested with four di�erent
meshes, the coarse one has 266 elements, they do not tell if the micro scale elements were
quad4 or quad8.

Terada and Kikuchi (2001) presented a general algorithm for multi-scale analysis. �eir
algorithm goal is to generalize the multi-scale problems for heterogeneous media with �ne
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periodic microstructure using variational statements thus unifying the computational treatment.
�eir algorithm is similar to the one implemented for this work. �ey also conclude the
inviability of the procedure for practical application when nonlinearity is considered due
to large computational requirements. �e di�culties encountered then can be solved with
approaches such as localized usage of the method and parallelization. �ey do not mention the
di�erent types of boundary conditions that can be applied in the RVE.

Miehe and Koch (2002) investigated algorithms for computational homogenized stresses
and overall tangent moduli of microstructure considering small strains. It is shown that the
overall stress and tangent sti�ness can be de�ned exclusively in terms of discrete forces and
sti�ness properties on the boundary. He focused on deformation driven where the macroscopic
deformation is controlled. Di�erent types of boundary conditions are investigates, linear
displacements, constant tractions and periodic displacements. He presented micro-to-macro
transition algorithms. �e displacement boundary conditions imposed in the microstructure
is obtained with uq = DTε, where ε is the macroscopic strain vector and D is a 3x2 (for
ndim = 2) with the coordinates of a point in the reference con�guration. �e product ofD and
ε gives the displacement at a speci�c node.

Böhm et al. (2002) presented a unit cell approach for randomly oriented �bers, which di�ers
from this work. �ey only performed the analysis on the micro structure, generating the
homogenized variables. �e solved problem was not coupled with a macro structure like in
this work.

Yuan and Fish (2008) presented a computational homogenization approach for linear and
non-linear mechanics using ABAQUS and Python.

de Souza Neto and Feijóo (2008) discussed the equivalence relationships for large strain
multi-scale solid constitutive model based on volume average of microscopic stress over RVE. He
pointed out that for �nite strain multi-scale constitutive model based on the reference volume
average of the �rst Piola-Kircho� stress di�ers from the spatial volume average of the Cauchy
stress �eld. But under certain kinematically admissible conditions, both are mechanically
equivalent.

Temizer and Zohdi (2007) �ey showed that as we increase the number of particles in the RVE
the homogenized parameter converge to a certain value and there is a �xed di�erence between
the value obtained using linear displacement boundary conditions and traction boundary
conditions. However, with mesh re�nement the gap between the choice of two boundary
conditions decrease. �is was also tested by Saeb et al. (2016).

Miehe et al. (2010) presented a new method for quasi-static homogenization of granular
microstructure.

Saavedra Flores and de Souza Neto (2010) presented a workaround for the high computa-
tional cost of the coupled multiscale problem. In their discussion, the size of the RVE represented
the major factor that a�ected in computational time. �erefore, their goal was to use symme-
tries in order to choose the most appropriate RVE size without compromising the solution
accuracy.

Saavedra Flores and Friswell (2012) presented a couple multi-scale �nite element model for
constitutive description of an alumina/magnesium alloy/epoxy composite. �eir work aims
to use multiscale simulation to shed light on how natural materials, such as wood, can be
optimized on the microstructure level to absorb large amounts of strain before failure.

Tchalla et al. (2013) presented a implementation of multilevel �nite element method in
ABAQUS. �e implementation is used to model composite materials. �e multilevel �nite
element method framework consists of �nding the unknown macro-scale constitutive relation-
ship by solving a local �nite element problem at micro-scale. �ey used a Python script and
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FORTRAN subroutines. Feyel and Chaboche developed their own code ZéBuLon, based on
Newton-Raphson procedure to solve nonlinear problemas. �ey pointed out that two-scale
�nite element method remains unused because of the great e�ort needed to implement it.
�e micro-macro problem is described. At macro-scale the constitutive relation is unknown.
�e stresses at macro-scale are computed by solving a local �nite element. �e local �nite
element is de�ned by the same equations as the macro-scale. �e boundary conditions used in
the local problem are based on the macro-scale deformation tensor. �e deformation tensor
is computed as the integral of the deformation rate, which is approximated in ABAQUS by
central di�erenced. A�er solving the micro-scale problem the macro-scale stress is obtained via
volumetric average of micro-scale stress. With the macro-scale stress, the homogenized linear
elasticity tensor can be calculated. �ey presented the implementation of two-leve analysis for
linear elastic and nonlinear cases.

Sánchez et al. (2013) presented a good description of the variational formulation of multi-
scale model. �ey considered that at the macroscopic level the medium is continuum but it
admits nucleation and cohesive cracks due progressive localization phenomena occurring at
microscopic level. �e microscopic e�ect is considered at the macro-scale only when a certain
criterion is ful�lled. �eir main goal is to model micro-scale phenomena that leads to material
failure.

E�ekhari et al. (2014) presented a XFEM multi-scale approach for fracture analysis of carbon
nanotube reinforced concrete. At nanoscale, molecular dynamics is used to �nd mechanical
properties of carbon nanotubes. �en, a hydration model is used to �nd the chemical composi-
tion of cement paste. �e addition of carbon nanotubes can increase the strength of concrete
up to 50/It also increases the fracture resistance properties, decreasing porosity and shrinkage
which contributes to long term durability. A �nite element analysis is constructed for the
micro-scale using the properties from the nanotubes and the chemical composition of cement.
A mechanical and damage response of the structure is obtained from the micro-scale fem anal-
ysis. �e homogenized response of the micro-scale is upscaled to a macro-scale analysis. �e
nanoscale analysis results in the mechanical properties of CNTs, elastic modulus, failure stress,
Poisson’s ratio. �e molecular dynamics was performed using the LAMMPS open source code,
in order to capture the stress-strain response. Only the tensile behavior of CNTs was carried
because they rarely bear compressive stresses. �e micro model presents three di�erent phases:
unhydrated, hydrated phases and porosity. �e problem takes in consideration a isotropic
damage model. A incremental procedure is carried using a Newton-Raphson solver. �e model
is incrementally loaded by the applied strain and the corresponding stress is computed in order
to calculate the mechanical properties. �e author did not specify how the micro-scale mesh
was produced or solved, only that they have used the open source code OOFEM.

Blanco et al. (2016) presented a uni�ed variational theory for a general class of multi-scale
models based on the representative volume elementos. �is work consolidates the variational
basis of the multiscale theory. �ey also presented a numerical example.

Carneiro Molina and Curiel-Sosa (2015) presented a multi-scale �nite element procedure
for nonlinear multi-phase materials. �ey used the multi-scale computational homogenization
which is the most e�ective way to deal with arbitrary nonlinear material behavion at micro level.
In the procedure, the stress-strain relationship is computed at every macro-scale integration
point.

de Souza Neto et al. (2015) presented an extension of the classical multi-scale theory by
considering inertia e�ects and body forces. �eir description of the model is based on solid
variational foundations which allows further usage of the methodology to di�erent problems,
such as dynamics, material failure with kinematical discontinuities and coupled multi-physics.
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Bencheikh et al. (2017) presented a multi-scale modeling of thin �lms that are applied to
coat tools during machining operations. �e problem involves thermomechanical coupling and
it was solved using a combination of XFEM and level set functions. �e framework was applied
to solve 2D transient thermomechanical problemas. �e results were compared to classic FEM
approach using the number of Gauss points.

Oliver et al. (2017) presented an alternative to the expensive FE2 procedure. In regard the
code of the method, it is the same as the standard couple multiscale with an RVE. �e alternative
method consistis of substituting the displacement �uctuation unknown variables to strain
�uctuation. �e RVE boundary conditions are also formated in terms of the strains. �ey also
used a method to reduce the number of quadrature points to further reduce the computational
cost. �ey considered a RVE with only elastic materials and in order to represent the fracture
phenomena a large set of cohesive so�ening bands that provide a good approximation for
possible crack paths. �e micro-problem is formulated considering displacement �uctuations
and the variational equations are also presented.

Ullah et al. (2017) presented a multi scale framework for �ber-reinforcement polymer
composites. �ey used an uni�ed approach to impose the multiple types of RVE boundary
conditions. �ey performed multiple tests to check the response of the micro structure alone
where the homogenized stress computed was compared with experimental data. �ey also
used cohesive interface elements to model �ber-matrix decohesion.

Eidel and Fischer (2018) presented the formulation of heterogeneous multiscale �nite
element method (FE-HMM) for linear elastic solids. �ey show how the FE-HMM compares to
the FE2, which is used in this work. �is comparison establishes a link between asymptotic
homogenization from the FE-HMM with the macro homogeneity conditions, Hill-Mandel
conditions. �e FE2 most prominent feature is the two level �nite element procedure, which is
used in this work. �ey also derived error estimates for the multiscale procedure FE-HMM
which helps with macro and micro mesh re�nements. �e micro problem is solved using a
single increment step, the same was done in this dissertation. While the FE2 method is already
been used for linear and nonlinear problems, the FE-HMM extension to nonlinear problems is
not straightforward.

Matouš et al. (2017) presented a review of the multiple procedures to solve multiscale
nonlinear problems. �ey show the state-of-the-art platform of predictive simulation. �is
platform allows the use of image-based simulation that work together with the experiment. �ey
classify multiscale methods based on the procedure adopted as concurrent methods, hierarchical
methods and hybrid methods. �is work adopts the hierarchical method, which link both scales
by means of averaging theorems.

2.3. BONE MODELING

Regarding the usage of the Finite Element Method for modeling bone biomechanics, Parashar
and Sharma (2016) presented a review of the current state of the art. �e mechanical prediction
of bone behavior is the subject of many publications. In Budyn and Hoc (2007) they used a
multiple scale method to model crack growth in cortical bone, albeit the simulation is performed
only in a 2D four phase microstructure. �eir goal was to �gure out the importance of the
microstructure in bone failure. Podshivalov et al. (2011) proposed a new 3D multiscale �nite
element analysis of trabecular bone but performed a test case in 2D. �ey used a technique to
convert a medical image into the microstructure mesh. In the homogenization method they
used an ad-hoc method where a set of boundary conditions is applied on the micro structure in
order to �nd the e�ective material parameters. Works such as Abdel-Wahab et al. (2012) deals
with only the bone micro structure analysis to investigate the e�ect of micro structure changes
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in crack propagation. �ey used a 2D model with XFEM to simulate cortical bone. van den
Munckhof and Zadpoor (2014) assess the accuracy of FE methods for predicting fracture load of
proximal femoral. �ey concluded that FE produces results more accurate than usual fracture
risk techniques used, however the FE results are highly dependent on modeling quality and
methodologies which lack standards.

In Ural and Mischinski 2013 they showed that bone fracture phenomena is highly dependent
of a multiscale mechanism. �e 2D analysis is used to provide information on how microsc-
tructural properties in�uence the overall bone behavior, for instance, the e�ect of cement
line strength on crack de�ection. �eir main focus was on modeling the crack formation on
the cohesive element used to simulate the cement line. �ey used computational fracture
mechanics based on the cohesive �nite element method to model this phenomena.

In Vellwock et al. 2018 they used a mixture of multiscale techniques together with extended
�nite elements (XFEM) to model fracture behavior of bone inspired composite. �e goal of the
authors with their simulation was to provide understanding of the e�ect of microstructure in
overall material behavior. �ey separted the domain in three regions: linear elastics, damage
initiation and damage evolution. All the analysis were based on the cohesive segment approach.
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3. MATHEMATICAL AND FINITE ELEMENT FORMULATION

In this section the mathematical model for the standard Finite Element is presented.

3.1. GENERAL METHODOLOGY

One solution to model the interaction between di�erent material scales is a multi-scale strategy
in which both scales are modeled separately and coupled together. In this coupled analysis
the homogenized properties of the material are obtained from the micro-scale analysis, which
is performed at every macro-scale integration point. �is way the constitutive relation is not
required at the macro level.

Both scales are solved using the Finite Element Method. �e standard Newton Raphson
procedure is used for incrementally solving the macro-scale problem in multiple increments
and solve the micro-scale problem in a single increment. Each micro scale analysis has as
input parameters the macro strain trial increment. A�er the micro scale analysis is completed
the homogenized parameters are passed to the macro scale and convergence is checked. If it
converged, the internal variables are updated and the next macro increment is started. If not
converged, we repeat the global iteration and solve the micro scale problem again with another
macro strain increment.

Figure 3.1 shows schematically the adopted procedure. In a macroscale increment [tn, tn+1]
the goal is to compute the nodal displacement at tn+1 such that equilibrium is satis�ed. Starting
with a known displacement increment ∆u(k+1) = u

(k+1)
n+1 −un, in which ∆u(1) = 0, the solution

proceeds to a step called as localization. �e array αn contains the internal variables at the
gauss points. In this step, element matrices are formed through calculations using standard
state update algorithms for each integration point, see Simo and Hughes (1998) and de Souza
Neto et al. (2008) for a detailed explanation.

When a multi-scale procedure is considered, in the macro-scale localization, at each macro-
scale integration point, a micro-scale increment procedure is called. �e micro-scale procedure
repeats the same steps of the macro one, the di�erence is that this one is performed in a single
load (or pseudo-time) increment.

3.2. FINITE ELEMENT METHOD

�e Finite Element Method is a discretization method in which the di�erential equation that
describe a physical phenomena is solved on an weak sense by assigning an approximated
solution formed as linear combination of known functions. �is approximation is such that the
domain is subdivided into �nite elements connected by their nodes. �e method when applied
to linear mechanical problems yields a linear system of equations,

Ku
law
= f ext (3.1)

where K is the assembled sti�ness matrix, u is a vector with unknown nodal displacements
and f ext is the vector with external equivalent nodal load.

�e element sti�ness matrix is given by,

K(e) def
=

∫
V (e)

BT D̂BdV (3.2)

where B is the discretized version of the symmetric gradient operator,∇s, which relates the
strains and displacements, ε def

= ∇su, for small displacements. �e matrix D̂ is the constitutive
matrix which in the elastic case is constant and in the plastic case is dependent on the stress
state, D̂ = D̂(σ), where σ is the vector representation of the Cauchy stress tensor, σ.
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Figure 3.1. Procedure for an increment considering multi-scale.

3.3. PLASTICITY

When the stress-strain relation is unknown in eq. (3.1), this equation is wri�en as,

f int(u)
law
= f ext (3.3)

which represents a balance law where the internal load, f int(u), must be equal to the external
load. �e internal load vector is computed for an element with,

f int
(e)(u)

def
=

∫
V (e)

BT σ̂(α, ε)dV (3.4)

where σ̂(α, ε) is a general constitutive equation, when an incremental procedure is adopted,
that depends on the strains ε, and internal variables α. �is equation is nonlinear because
the incremental constitutive function depends on the unkown displacements, σ̂(α, ε(u)). See
appendix D.1 for detailed derivation of the discretized FEM equation.

When solving a nonlinear problem a incremental procedure is adopted. So the problem can
be stated as knowing the state at tn, �nd the displacement, un+1 and internal variables, αn+1 at
time tn+1. For a single increment the eq. (3.4) becomes,

f int
(e)(un+1)

def
=

∫
V (e)

BT σ̂(αn, εn+1)dV (3.5)

thus, the constitutive function is dependent only on the unknown strains εn+1 because the
internal variables αn are constant during a single step.

In order to solve the nonlinear eq. (3.3) we use the Newton method which linearizes it, see
appendix A.1 for details on linearization. �e Newton method yields,

K
(k)
T δu(k+1) = −

(
f int(u

(k)
n+1)− f ext

n+1

)
(3.6)
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where KT is the tangent sti�ness matrix and the vector di�erence is de�ned as equilibrium
residual, r = f int− f ext. �e vector δu(k+1) is the Newton correction which corrects the solution
and guides it towards equilibrium,

u
(k+1)
n+1 = u

(k)
n+1 + δu(k+1) (3.7)

this procedure of approximating the equilibrium solution iteratively is schematically represented
in �g. 3.2.

Figure 3.2. Newton method schematically represented to approximate the equilibrium
solution

�e material nonlinearity, represented by the constitutive function, σ̂(αn, εn+1), consists
of the relation between stresses and strains. In a numerical procedure we need to �nd the
internal state variable for a given strain. �is procedure can be stated as: for a given strain
increment ∆ε = εn+1− εn and internal variables αn �nd the internal variables at the next step
αn+1 which includes the stress σn+1 and elastic strain εen+1.

�is problem can be solved using a standard state update procedure assuming von Mises
yield criteria a particular hardening rule. In this work it was assumed a linear hardening curve.
Details of the state update procedure can be found in Simo and Hughes (1998), de Souza Neto
et al. (2008), and Borst and Cris�eld (2012). �e computational implementation is also detailed
in appendix B.

3.4. MULTISCALE MODELING

�is section deals with the variational formulation of multiscale procedure.
Multiscale theory aims to model constitutive behavior of solids by considering its di�erent

scales. Figure 3.3 shows the di�erent scales associated with multi-scale modeling. �e basic
assumption used to derive multi-scale constitutive theories is that the micro-scale characteristic
length, `µ, is much smaller than the macro-scale characteristic length `. Zooming into a point
on the macro structure we can see how the micro structure is arranged, then we can select a
Representative Volume Element (RVE) to perform our micro analysis.

�e classical multi-scale theory can be derived from two principles: (i) kinematical admissi-
bility, and (ii) multi-scale virtual power (de Souza Neto et al. 2015). �ese two principles are
used to establish the transition between scales. �e kinematical admissibility arises from the
average relation between micro and macro strains. �e multi scale virtual power is related to
the Hill-Mandel principle (Hill 1963; Hill 1972) which states that the volume average of the
power of an equilibrium stress �eld over an RVE equals to the macro-scale stress power. Both
will be detailed in subsequent sections.
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Figure 3.3. Di�erent scales associated with the multi-scale constitutive model.

3.4.1. MICROSCALE DISPLACEMENT FIELD

�e micro-scale displacement �eld can be split in two parts, one related to the e�ect of macro-
scale strain, ε̄. �is step is also known as additive split of microscopic displacement,

uµ(y)
def
= ε̄(x)y + ũµ(y) (3.8)

where ũµ(y) is a micro-scale displacement �uctuation unknown part of the micro-scale dis-
placement. �e term y represents a point coordinate in the micro-scale and the product ε̄y the
e�ect of the macro-scale strain in the micro-scale displacement.

�e micro displacement �uctuation is a periodic function which means that it has identical
value at the boundary of the RVE domain when this domain is translated parallel to the direction
of invariance of the la�ice by a distance equal to its length (Michel et al. 1999).

�e micro-scale strain can be obtained from eq. (3.8),

εµ
def
= ε̄+ ε̃µ (3.9)

where ε̃µ = ∇s
yũ

µ is the micro strain �uctuation. �e bar over the variables, (̄·), indicates an
homogenized quantity. �e superscript (·)µ indicates a micro-scale variable (also encounter in
the literature as µ = 1).

Notice that the micro strain does not depend explicitly on the micro position y, this allow
independence of the RVE dimensions, which is a bene�t of the �rst order multiscale analysis
(Gruer 2015). Multiple authors use this split form of micro displacement (Michel et al. 1999;
de Souza Neto and Feijóo 2006; Saavedra Flores and de Souza Neto 2010; Kanouté et al. 2009;
Otero et al. 2018)

3.4.2. KINEMATICALLY ADMISSIBLE MICRO DISPLACEMENT FIELDS

�e kinematics conditions for the micro displacement come from the coupling between the
two scales. �is coupling is based on average theorems which was proposed, for in�nitesimal
deformations, by Hill (1963). �e coupling states that the macro strain is equal to the volume
average of the micro strains. Substituting the de�nition of the micro strain �eld in eq. (3.9)
into the following average relation for the strains,

ε̄(x)
def
=

1

V µ

∫
V µ
εµ(y)dV (3.10)
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we get

1

V µ

∫
V µ
ε̃µdV = 0 (3.11)

and using a general tensor relation 2 we get an expression for the micro displacement �uctuation.

1

V µ

∫
Sµ
ũµ ⊗s ndS = 0 (3.12)

wheren is the unit normal vector to the micro domain boundarySµ anda⊗sb ≡ 1
2
(a⊗b+b⊗a)

is the symmetric tensor product, used because of the relation ε̃µ = ∇sũµ.
With this restriction in mind, the most simple kinematic conditions for the micro displace-

ment �uctuation are
1. Taylor assumption or zero �uctuations (Taylor 1938). �is will imply homogeneous defor-

mation in the micro-scale, which will be equal to macro strain, ε̄.

ũµ(y) = 0, ∀y ∈ V µ (3.13)

where V µ is the micro volume. �is model represents an upper bound of the homogenized
sti�ness, which is also same result from the classic mixing theory (Gruer 2015).

2. Linear boundary displacements or zero boundary �uctuation

ũµ(y) = 0, ∀y ∈ Sµ (3.14)

where Sµ is the micro boundary surface. �is model was demonstrated to be a restrictive
constraint that produces an overestimated homogenized microscopic sti�ness (Kaczmar-
czyk et al. 2008). It yields a conventional BVP with Dirichlet boundary conditions. It is
called linear boundary displacement because the micro scale displacement is simply a
linear function of the macro strain by means of (3.8).

�e other two, periodic boundary �uctuations and minimal constraint are discussed throughly
in de Souza Neto and Feijóo (2006), de Souza Neto et al. (2015), and Blanco et al. (2016). �e
periodic boundary condition has been shown to produce be�er sti�ness estimates for periodic
and random microstructure. Whereas the Taylor assumption is the easiest to implement
however it does not capture internal �uctuations due heterogeneities.

3.4.3. HILL-MANDEL PRINCIPLE

�is principle was �rst proposed by Hill (1963), and later developed in Hill (1972). �e Hill-
Mandel principle says that the macro-scale virtual virtual work must be equal to volume average
of micro-scale virtual virtual work over the RVE. It establishes the energy consistency between
scales and can be stated as,

σ̄ : ˙̄ε
def
=

1

V µ

∫
V µ
σµ : ε̇µdV (3.15)

the reference to virtual means that this equation must hold for any admissible strain �eld. �is
statement in the context of the �nite element is multiplication of a general test function in the
weighted residuals method.

2General tensor relation from Gurtin (1981),
∫
V
S(∇v)TdV =

∫
S

(Sn) ⊗ vdS −
∫
V

(divS) ⊗ vdV with
S = I , a general identity tensor, and v = ũµ
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�is principle has two consequences. �e �rst relates to the micro-macro transition for the
stresses and the second to the micro equilibrium equation. In order to be�er visualize those
consequences it is useful to rewrite this principle using the micro displacement split, from eq.
(3.9), we get

σ̄ : ˙̄ε
def
=

1

V µ

∫
V µ
σµ : ˙̄εdV +

1

V µ

∫
V µ
σµ : ˙̃ε

µ
dV (3.16)

3.4.4. SCALE TRANSITION FOR THE STRESS

�e scale transition for the stresses is a consequence of the Hill-Mandel principle, eq. (3.15).
By choosing a virtual micro displacement �uctuation equal to zero, ˙̃u

µ
= 0,3 the Hill-Mandel

principle becomes,

σ̄ : ˙̄ε =
1

V µ

∫
V µ
σµ : ˙̄εdV (3.17)

therefore, the equation is only satis�ed if

σ̄(x)
def
=

1

V µ

∫
V µ
σµ(y)dV (3.18)

It can be shown that the homogenized stress can be expressed in terms of RVE boundary
tractions, t(y), and body forces, b(y), (de Souza Neto and Feijóo 2006),

σ̄(x)
def
=

1

V µ

[∫
Sµ
t(y)⊗ ydS −

∫
V µ
b(y)⊗ ydV

]
(3.19)

3.4.5. EQUILIBRIUM OF THE RVE

Strong form of equilibrium equations at the micro-scale is expressed by

divyσµ + b(y)
law
= 0, in V µ (3.20)

σµn
def
= t(y) in Sµt (3.21)

using the Principle of Virtual Work,4∫
V µ
σµ : ∇s

yηdV −
∫
V µ
b(y) · ηdV −

∫
Sµt

t(y) · ηdS = 0, ∀η ∈ Vµ (3.22)

whereσµ ≡ σµ(y) is the micro-scale stress, η is a virtual displacement that is in an appropriate
set Vµ and ∇s

y is the symmetric gradient operator on the y coordinate variable.
�e lack of de�nition of the space Vµ makes the equilibrium problem ill-posed (de Souza

Neto and Feijóo 2006). �e space Vµ must ensure that the strain average relation between ε̄ and
εµ, holds as discussed in the previous section 3.4.2. Once the space is de�ned, the multi-scale
model will yield the macro-scale stress as a function of the macro-scale strain, σ̄ = σ̄(ε̄).

Using the Hill-Mandel condition, eq. (3.15) considering a virtual macro strain �eld equals to
zero, ˙̄ε = 0, and changing notation for the virtual strain �eld ˙̃ε

µ ≡ ∇s
yη, where η is a general

test function, we get as micro equilibrium equation
1

V µ

∫
V µ
σµ : ∇s

yηdV = 0 (3.23)

3Since its a virtual �eld we can choose any kinematically admissible strain �eld.
4Using the product rule σ : ∇xη def

= divx(ση)− (divxσ) · η
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�is is an important result for multiscale theory. It implies that external load system of the
RVE (body force and surface traction) is a mere reaction to the imposed kinematical constraints
(de Souza Neto and Feijóo 2006; Vaz Júnior et al. 2011).

3.4.6. LINEARIZED MICRO-SCALE VIRTUAL WORK EQUATION

In order to solve problems considering material nonlinearity we need an incremental form of
the �nite element equation. �is is obtained by linearizing the weak equilibrium equation at a
known point in the direction of a small perturbation in the displacement.

Rewriting considering a general constitutive functional, Fµ, in order to obtain a expression
that can be used for material nonlinearity

G(uµ,η)
def
=

∫
V µ

Fµ : ∇s
yηdV = 0, ∀η ∈ Vµ (3.24)

where Fµ = Fµ(εµt) is dependent on the strain path but the time superscript is avoided.
By linearizing the functional G(uµ,η) about a point uµ∗ in a general direction δuµ using the
standard procedure shown in appendix A.1, we get

G(uµ∗ ,η) + DG(uµ∗ ,η)[δuµ] = 0 (3.25)

the �rst term in the le� hand side is equal to zero only when the solution satisfy the equilibrium
statement in eq. (3.24). �e directional derivative can be developed by substituting eq. (3.24) in
eq. (3.25), resulting in∫

V µ
DFµ(εµ∗)[∇s

yδũ
µ] : ∇s

yηdV = −
∫
V µ

Fµ(εµ∗) : ∇s
yηdV (3.26)

where we can compute the increment in the micro displacement δũµ. Details of this derivation
can be found in appendix D.4. In a time discrete form,∫

V µ
Dµ : ∇s

yδũ
µ : ∇s

yηdV = −
∫
V µ
σ̂µ(εµ∗) : ∇s

yηdV (3.27)

where Dµ is the tangent constitutive operator at εµ∗ and σ̂µ is the incremental constitutive
function. With the FEM discretization, we need to solve the following system of equations to
�nd the Newton correction for the micro displacement �uctuation∫

hV µ
(Bg)TDµBgδũµdV = −

∫
hV µ

(Bg)TσµdV (3.28)

3.4.7. HOMOGENIZED CONSTITUTIVE TANGENT OPERATOR

�e de�nition of homogenized constitutive tangent operator is obtained by linearizing the con-
stitutive functional about a speci�c strain con�guration, ε̄t∗, and in an generic strain direction,
δε̄,5

F̄(ε̄t∗ + δε̄) = F̄(ε̄t∗) + DF̄(ε̄t∗)[δε̄] (3.29)

where the directional derivative de�nes the tangent relation between the stresses and strains.
Notice that the constitutive functional depends on the strain path, ε̄t, whereas the incremental

5�is direction should not be confused with a virtual strain.
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constitutive function, ˆ̄σ depends only on the strain of the time increment. �rough out the
text the time superscript is avoided to keep the notation less clu�ered.

For multi-scale constitutive models based on the volume average of micro stress, conse-
quence of Hill-Mandel principle, the homogenized constitutive functional can be de�ned as

F̄(ε̄) =
1

V µ

∫
V µ

Fµ(εµ)dV (3.30)

which is equivalent to the relation between micro and macro stresses.
By using the de�nition in eq. (3.29) and eq. (3.30) the homogenized constitutive tangent

operator for multi-scale problem can be obtained by taking the derivative of the constitutive
functional at a point ε̄∗ in a general direction δε̄, which results in

DF̄(ε̄∗)[δε̄] =
1

V µ

∫
V µ

DFµ(εµ)[δε̄]dV +
1

V µ

∫
V µ

DFµ(εµ) [DG(ε̄)[δε̄]] dV (3.31)

here the funtion∇s
yũ = G(ε̄) relates the micro displacement �uctuations to the macro strains.

See appendix D.2 for details on this procedure. A�er mathematical manipulation the homoge-
nized tangent operator has the following form,

D̄
def
= DT + D̃ (3.32)

where the �rst fourth order tensor, DT , is the called Taylor tangent operator and the second, D̃,
is the �uctuation contribution. �e Taylor contribution is simply the homogenized constitutive
operator considering the Taylor assumption, see appendix D.3. �e �uctuation contribution
depends on the choice of admissible space for the micro displacement �uctuation and it is
calculated based on the tangential relation between the macro strain, ε̄, and the gradient of
micro displacement �uctuation,∇s

yũ
µ which is discussed in details in appendix D.5.

3.5. IMPLEMENTATION CONSIDERATIONS

�e multiscale procedure was implemented on top of a standard �nite element in its incremental
form. �e following diagram, �g. 3.4, shows a representation of this scheme. �e Increment
step represents a load increment for each we seek a converged displacement. �e Newton
Raphson is a iterative procedure where we get closer and closer to the desired tolerance of the
actual solution, when it converges. Next we have a localization procedure in which we loop
over each element. Inside the element we are interested in �nd its internal variables and with
that build the element matrices and vectors. �e multiscale procedure enters the algorithm
inside a macro localization procedure. At this stage we check if the analysis is going to be a
multiscale one or a standard state update procedure. If it is multiscale we then start a micro
increment followed by a Newton Raphson and a localization through elements in the micro
domain. We can see that we are repeating the FEM procedure in the macro localization step.

�e procedural paradigm was used in order to perform the multiscale analysis. Object
oriented programming was used to encapsulate the material, element and model properties.
An element class for instance has the structure shown in �g. 3.5. We have a parent Element
class which all new elements can inherit. �is class has basic element a�ributed such as node
coordinate, connectivity, material properties and also method to create element matrices and
vectors.
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Figure 3.4. Scheme of procedure

Figure 3.5. Element class a�ributes and methods
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4. MULTISCALE SIMULATION OF COMPOSITES

In this section the results obtained with the computer implementation of the numerical method,
scikit-mechanics, are presented. �e plasticity results are compared to an Abaqus simulation.
�e multi-scale results are compared with the simulation considering the rule of mixture and
fully discretized microstructure models.

4.1. PLASTICITY VERIFICATION

�e plasticity module veri�cation consists of a single element subject to a load control. �e
load control test was compared with a simulation using the so�ware Abaqus.

�e load control simulation model parameters are shown in �g. 4.1. It consists of a 1
mm square plate with 5 MPa applied in one of the boundaries. Plane strain is assumed and
the material properties are shown in table 4.1. �e results for the horizontal displacement,
for the von Mises equivalent stress, q, for the equivalent plastic strain, ε̄p, and for the stress
components are shown in �g. 4.2. We can see that the Skmech (Scikit-Mechanics) results
matched exactly the Abaqus results for this example.

Figure 4.1. A single quad element with four integration points. A load step of ∆t = 0.01
and a residual error tolerance of 5 103.

Table 4.1. Material properties load control problem

E 250 GPa
ν 0.25
σy 5 MPa
H 50 GPa
t 1 mm

4.2. MULTISCALE VERIFICATION WITH TAYLOR ASSUMPTION

In this section we verify the multiscale implementation considering the Taylor assumption,
in which the macro strain is applied uniformly in the micro domain and there is no internal
�uctuations. �e model used for this test is presented in �g. 4.3, it consists of a single element
with a horizontal traction applied on the right boundary.

�is test was performed for three di�erent microstructures. �e �rst with a circular
reinforcement with greater elastic modulus and the same other material parameters as the
matrix. �e second a circular reinforcement with greater elastic modulus, yield stress and
hardening modulus. �e third with a circular void. All of them with reinforcement and void
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Figure 4.2. Comparison between scikit-mechanics and ABAQUS, (a) the tip displacement,
(b) the e�ective von Mises stress, (c) the equivalent plastic strain and (d) the other stresses
compoments.

ratio of 23.56%. In every analysis the homogeneous problem is plo�ed as a reference. �e
multiscale analysis is compared with the standard analysis considering the rule of mixture for
the material parameters.

Figure 4.3. Di�erent micro structure model

�e rule of mixture expressions to approximate the e�ective material properties of hetero-
geneous media, (Callister 2007). �ose expressions are going to be useful when checking the
multiscale analysis. �e upper and lower bound are given by,

Eupp
eff = Emvm + Ervr and Elow

eff =
EmEr

vmEr + vrEm
(4.1)
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where Em is the elastic modulus of the matrix material, Er the elastic modulus of the re-
inforcement material, vr and vm are the volume fraction of the reinforcement and matrix
materials.

4.2.1. REINFORCEMENT WITH STIFFER ELASTIC MODULUS

In this example the reinforcement has sti�er elastic modulus than the matrix, 8 times greater.
However the other material parameters are the same. Table 4.2 shows the material parameters
used in the analysis.

�e goal with this test is to compare the multiscale analysis with the rule of mixture results
when they are applied only to the elastic modulus. All analysis were run in the implemented
code skmech, only the homogeneous analysis was performed also using abaquos.

Table 4.2. Material properties problem with sti�er elastic modulus

Matrix Reinforcement
E 250 GPa 2000 GPa
ν 0.25 0.25
σy 2.5 MPa 2.5 MPa
H 50 GPa 50 GPa
t 1 mm 1mm

We can see from �g. 4.4 that when there is no reinforcement the multiscale analysis (MS)
results the same as the previous direct incremental analysis. When reinforcement is added we
notice the decrease in the tip displacement resulted from a sti�er model. We also notice two
changes in inclination of the load-displacement curve. �e �rst one marks the yielding on the
reinforcement, which can be seen in the equivalent plastic strain �eld at point A in �g. 4.4.

In regards the micro scale �elds with the Taylor assumption, we should expect homoge-
neous distribution of the �elds in the di�erent materials. �is happens because in the Taylor
assumption the macro strain �eld is applied uniformly in the micro domain. However in the
�elds shown in �g. 4.4 we see that they are not homogeneous. �e explanation for that is
because when interpolating the �eld from the Gauss point to the nodes and smoothing them
out by a simple element average we get intermediary values.
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Figure 4.4. Displacement load curve solved and microstructure �elds at GP4 considering
microstructure with sti�er reinforcement.
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4.2.2. REINFORCEMENT WITH HIGHER YIELD STRESS

�is example consists of the same macro structure from the previous example, single square
element, and a microstructure with a sti�er reinforcement and greate yield stress and hardening
modulus. �e material properties are shown in table 4.3.

Table 4.3. Material properties problem with higher yield stress

Matrix Reinforcement
E 250 GPa 2000 GPa
ν 0.25 0.25
σy 2.5 MPa 10 MPa
H 50 GPa 200 GPa

We expect with this example to produce a sti�er structure. And because the reinforcement
has a higher elastic modulus it will absorve most of the stress inside the microstructure. We
can see the von Mises stress distribution in the microstructure in �g. 4.5. At the last load
increment we notice that only the reinforcement developed stress greater than the yield limit
and the matrix has not yielded. From the load-displacement curve we notice only change in
the inclination which marks the point where the reinforcement yields. �e rule of mixture
results, represented with the gray area, mark a wide interval where the heterogeneous material
responde may lie. �e wide range is explained due the large di�erence in the yield stress and
hardening modulus of both materials, the reinforcement is 4 times larger.
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Figure 4.5. Displacement load curve solved and microstructure �elds considering mi-
crostructure with sti�er and larger yield strength reinforcement.

4.2.3. MICROSTRUCTURE WITH A VOID

�is example consists of the same single macro element with a circular void micro domain. �e
material properties for the matrix is the same as before and it is presented in table 4.4.

�e void fraction is the same as the reinforcement used in the previous sections, vv =
23.56%. Because we are removing material from the structure we expect it to behave less sti�
than the previous analysis. Figure 4.6 shows the load-displacement curve and the microstructure
�elds at three di�erent load increments. We can see that in this case the curve is bellow the
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Table 4.4. Material properties problem with a hole

Matrix
E 250 GPa
ν 0.25
σy 2.5 MPa
H 50 GPa

homogeneous case, performed in abaqus and skmech (MS w/o reinf), which represents a larger
displacement as expected.

�e microstructure �elds are homogeneous because of the Taylor assumption. At point
A we still in the linear regime and the microstructure did not yield, as we can see from the
equivalent plastic strain �eld. �e multiscale result with a hole matched exactly the result
obtained using the rule of mixture formular and a standard FEM analysis.
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Figure 4.6. Displacement load curve solved and microstructure �elds at GP4 considering
microstructure with hole.

4.3. FURTHER COMPOSITE ANALYSIS

�is section explores di�erent aspects of the multiscale analysis. First we test the two RVE
boundary condition assumptions, Taylor and Linear. Next we analyze the e�ect of the inclusion
scale on the overall response.

4.3.1. DIFFERENT RVE BOUNDARY CONDITION ASSUMPTIONS

In this section we will test the di�erent RVE boundary condition assumption. Speci�cally, the
Taylor and the linear boundary condition assumptions. �e model used for this test is shown
in �g. 4.7, again a single element with �xed bo�om and le� sides and with a shear traction
applied on the top and right sides. �e microstructure considered is a square with a square hole
so we can be�er vizualize the dislpacement �uctuations inside of it. �e material parameters
are shown in table 4.5.

�e analysis considers a nonlinear material, the load increment-displacement curve is plo�ed
in �g. 4.8. �e �elds in the gauss point 3, see �g. 4.9, for three di�erent load increments are also
plo�ed. We can see from the curves that the Taylor assumption for the RVE matches the rule of
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Figure 4.7. One element model with square voids in the microstructure

Table 4.5. Material properties for example with di�erent RVE boundary assumption

Matrix
E 250 GPa
ν 0.25
σy 2.5 MPa
H 50 GPa

mixture results which consider the elastic module of the material fraction occupied by the matrix,
further explained in the next sessions. We can also see that the Taylor assumption produces
a sti�er model, with less displacement. �is happens because the interactions, �uctuations
due the square hole, inside the miscro structure are not considered. Whereas when the linear
assumption is considered, the square hole a�ects the homogenized parameters producing a
less sti� model. Notice that the micro �elds, equivalent plastic strain, are homogeneous in the
Taylor model, and that they �uctuate when the linear boundary condition model is considered.
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Figure 4.8. Displacement load curve solved and microstructure �elds at GP3 considering
microstructure with a square hole.

4.4. DIFFERENT SCALE EFFECT

In this section we explore the e�ect of di�erent microstructure scales. �e model used is slab
with circular inclusions, shown in �g. 4.9, with restrict displacements on the le�, top and
bo�om. �e slab is only allowed to deform in the horizontal direction. �ere is a uniform
traction applied on the le� side. �e microstructure has a reinforcement ratio of 23.56% which
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gives a ratio between diameter and length of 27.38%. We restricted this test to the linear case
in order to avoid larger processing time when simulating the fully discretized domain (which
considers the microstructure).

Figure 4.9. Slab model with boundary conditions for multiscale analysis

�e reinforcement has a higher sti�ness than the matrix, ten times higher. �e other
material parameters are the same and they are shown in table 4.6.

Table 4.6. Material properties example with di�erent scales

Matrix Reinforcement
E 20 GPa 200 GPa
ν 0.25 0.25
σy 2.5 MPa 2.5 MPa
H 50 GPa 50 GPa

�is test will explore the e�ect of the distribution of the material through the macro domain.
We expect that as we increase the number of reinforcement inclusions we approach the rule of
mixture results, which is equivalent to using the Taylor assumption in the RVE.

E�ect of scale di�erence between micro and macro length represented by di�erent number
of inclusions but with the same reinforcement ratio. Figure 4.10 shows the di�erent models
tested. We started with only �ve inclusions with 0.3 m of diameter, which yields 23.56%
reinforcement ratio, and increased the number of inclusions while keeping the same ratio. �e
next four models have respectively 20, 45, 80 and 180 inclusion. In this analysis we opted for
using the XFEM module in order to automate the creation of di�erent models with di�erent
number of inclusions with di�erent radius. Using the python programming language we
de�ned a function in which the zero level set is the inclusion boundaries6.

Figure 4.11 shows the tip displacement of the models considering di�erent inclusions
number as we increase the number of degree’s of freedom. We can clearly see that the tip
displacement decreases as we increase the number of inclusions. �e shaded band mark the

6�is function was created by summing boolean expressions that de�ne each hole in a particular cell. �ose
boolean expression are simply,

micro domains+ = ((x > xc−dx)(x < xc+dx)(y > yc−dy)(y < yc+dy)((x−xc)2+(y−yc)2−r2)) (4.2)

where (xc, yc) is the inclusion center, r the inclusion radius and dx, dy de�ne the micro cell. �en, for each micro
cell we compute if a point (x, y) is inside or outside the inclusion using the circle equation. If it is inside the
expression will be negative and if it is outside, positive. �e zero level set will de�ne the inclusion boundaries.
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Figure 4.10. Model with di�erent number of inclusion (5, 20, 45, 80, 180) but with same
reinforcement volume ratio of 23.56%.

ruled of mixture lower and upper limit. Notice that the more inclusion we have the more we
get close to the lower limit. �is lower limit is obtained using the �rst expression in eq. (4.1)
which represents a volumetric average.
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Figure 4.11. Tip displacement as we increase the number of degree’s of freedom for
models with di�erent number of inclusions but same reinforcement volume ratio.

We can see in �g. 4.12 that increasing the number of inclusion, and keeping the same
reinforcement ratio, makes the structure sti�er which reduces the displacement. �is happens
because we are spreading the sti�er material evenly throughout the geometry. �e multi
scale simulation considering the Taylor assumption matches the result obtained with the rule
of mixtures, which can be seen as the lower limit in the �g. 4.12. �e multiscale analysis
considering Linear assumption takes into account �uctuations inside the microstructure, which
results in a less sti� structure.
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Figure 4.12. Converged displacement at node 3 (�g. 4.9) we increase the number of
inclusions keeping the same reinforcement volume ratio of 23.56% and the multi scale
result.

4.5. PERFORATED PLATE

We now focus on testing the multiscale procedure for nonlinear problems. A similar study
was done in Matsui et al. (2004) but with a di�erent kind of microstructure and without fully
discretized model.

�is test consists of a notched rod which a�er symmetry arguments is reduced to the model
shown in �g. 4.13. �e micro scale consists of a periodic distributed circular voids, volumetric
fraction of the voids is 12.56%. Uniform load is applyied at the top.

Figure 4.13. Perforated plate model

�e material properties considered for the nonlinear analysis are expressed in table 4.7. and
Plane strain is considered together with von Mises yielding criteria and isotropic hardening.

Table 4.7. Material properties for notched plate

Matrix
E 100 GPa
ν 0.15
σy 10 MPa
H 20 GPa

Figure 4.14 shows the load-displacement curve. �e displacement considered was from
node 3, see �g. 4.13. �e homogeneous case was also simulated in order to give a reference
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to the multiscale result. For the homogeneous domain we run it in three di�erent ways. �e
�rst one was the standard incremental FEM implemented, the second from Abaqus and the
third the implemented multiscale considering homogeneous micro cell. We can see that they
match closely with the Abaqus result. �e standard FEM procedure has 1328 elements whereas
in the multiscale we used 203 elements. �e mesh for the standard analysis was chosen by
comparing the error relative with the Abaqus result and the mesh choice for the macro scale
took in consideration the rule of mixture result. Even though we used less elements in the
multiscale analysis it took longer, 5.2 hours, whereas the standard analysis took 10 minutes, i.e.
30 times more.

Figure 4.14. Tip displacement of perforated plate Heterogeneus with 12x12 hole grid
(see �g. 4.17 d) and Multiscale (MS) with 203 elements (see �g. 4.16 b and c)

�e multiscale analysis considering the Taylor assumption was then performed with 224
elements in the macro scale and 128 elements in the micro scale. �is simulation took 28.6
hours (i5 1.90GHz 8GB RAM). �e result of this simulation should match the standard analysis
considering e�ective properties with rule of mixtures. We can see in the plot, �g. 4.14, that
the curves are fairly close. �e average error between the multiscale simulation with linear
boundary displacement assumption (MS Linear) and the heterogeneous fully discretized model
are shown in the Table 4.8 bellow,

Table 4.8. Average error between MS linear and heterogeneus analysis.

Average error 1.43%
Maximum error 3.96%
RMSE 7.01 10−7

�e simulation considering the linear boundary condition for the RVE, no micro displace-
ment �uctuation in the boundary, is also performed with 203 macro elements and 128 micro
elements. Comparing the processing time, the MS Linear with 203 macro elements and 128
micro elements took twice the processing time of the heterogeneous model fully discretized
with 15816 quad elements. �is happens because the multiscale implementation is not using
parallelization and it is used on all elements even in the elastic case. �erefore there still
room for great improvement in performance time. As we expected from this RVE boundary
condition assumption we get a less sti� model when it is considered. �is happens because a
non homogeneous stress distribution produce a non homogeneous plastic behavior.

We also notice that the linear displacement boundary condition assumption for the RVE
generates a sti�er model, or upper bound, for the multiscale analysis. �e literature report
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that this occur generally and the lower bound is obtained using the periodic displacement
boundary condition for the RVE. (Hollister and Kikuchi 1992; Nemat-Nasser et al. 1993; Hori
and Nemat-Nasser 1999; Miehe and Koch 2002; Kanit et al. 2003; de Souza Neto and Feijóo 2006)

Figure 4.15 shows the comparison between the standard analysis in the fully discretized
heterogeneous model and the multiscale. �e parameter is the tip displacement at node 3 in the
last load step. We can see that as we increase the number of voids we approach the multiscale
considering the linear boundary condition assumption for the RVE.
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Figure 4.15. Evolution of tip displacement of perforated plate in the fully discretized
simulation considering di�erent number of voids and comparison with the multiscale
simulation with di�erent RVE boundary condition assumption and number of elements.

�e von Mises stress for the multiscale analysis and the mixture one are shown in �g. 4.16.
We can notice from the �gure the number of elements used on each analysis. �e standard FEM
considering rule of mixtures with 1328 quad elements and the multiscale with 203 elements.
�ose �gures also show the deformed shape scaled by a 1000 times.
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Figure 4.16. Von Mises stress for standard and multiscale analysis of heterogeneous ma-
terial. In (a) model using standard mixture theory, (b) considering the Taylor assumption
and (c) considering linear displacement assumption.

In order to verify the accuracy of the multiscale analysis considering linear displacement
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boundary condition in the RVE we use a fully discretized model. �e fully discretized model
consists of the perforated plate with small holes in its domain. In the test we gradually increase
the number of the holes in a grid NxN. �e di�erent models used and the respective number of
elements are shown in �g. 4.17. �e models tested have respectively 6, 8, 10 and 12 holes in a
grid NxN. We notice from the results of the vertical displacement of node 3, in �g. 4.15, as we
increase the number of holes in the structure the overall response is more �exible. �is occurs
because the stress concentration at the holes, specially in the bo�om row, produce plastic
response that increases the vertical elongation. From the plot we can see that the multiscale
analysis considering the linear displacement boundary condition approaches the result of the
fully discretized model as we increase the number of macro elements.
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Figure 4.17. Von Mises stress for full discretized model with di�erent number N of voids
in a grid NxN. Model (a) with a hole grid of 6 perforations and 3168 elements, (b) with a
grid of 8 and 6708 elements, (c) with a grid of 10 and 10466 elements and (d) a grid of 12
and 15816 elements.

Figure 4.18 shows the micro scale von Mises stress and the equivalent plastic strain �eld at
three di�erent instants, (A, B, C) from �g. 4.14. We can notice the homogeneous distribution
when the Taylor assumption is considered and the non-homogeneous distribution when the
internal �uctuations are considered. Notice that when the linear boundary condition of the
RVE is considered the section presents plastic behavior earlier.
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Figure 4.18. Micro cell �elds for Taylor and linear assumptions at the gauss point 3
(�g. 4.13). In (a) and (c) the ε̄p considering Taylor and Linear boundary displacement
assumptions respectively; and (b) and (d) with von Mises stress, q, considering Taylor and
Linear boundary displacement assumptions respectively. Each set of �lds is correspondent
to the instants A, B, C (�g.4.14)
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5. MULTISCALE SIMULATION OF CANCELLOUS BONE OF HUMAN
FEMUR

In this example we explore the multiscale procedure to model the proximal part of human
femur. �e typical structure of long bones consists of a cylindrical sha� called diaphysis and
two rounded ends called epiphysis. �e diaphysis is composed mainly of cortical bone whereas
the epiphysis contains mostly cancellous bone. Cortical bone is a solid mass with microscopic
channels. �e human skeleton mass is formed by approximately 80% of cortical bone. �e other
20% is cancelous bone, found in inner parts of bones. Cortical bone main role is to support and
protect the skeleton therefore it has low porosity. Cancellous bone function is mainly mineral
homeostasis and also supportive. Figure 5.1 shows the proximal end of the human femur cross
section and a radiograph. More details about bone morphology can be found in (Cowin 2001).

Figure 5.1. Femur section and radiograph image (Cowin 2001).

�e model used in this example is shown in �g. 5.2. Our goal with this analysis is to test the
e�ect of di�erent microstructure void ratios and its distribution. Four di�erent microstructure
were tested, two with 30% void fraction and two with 60%. In regards the void distribution we
tested a micro domain with only a single circular void and one with multiple elipses and circular
voids, referred herea�er as multiple elipses only. Another analysis is performed comparing the
multiscale results with a standard �nite element procedure using an e�ective isotropic elastic
modulus from a single RVE analysis.

Figure 5.2. Femur model and micro model.

Di�erent from the previous examples, the macro model used in this analysis is separated in
two parts: one where multiscale is performed and the other with standard �nite element. �e
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standard part is used to model the homogeneous cortical bone whereas the multiscale is used
to model the cancellous bone with its high porosity. Table 5.1 shows the material properties
used which were based on the work of Wolfram and Schwiedrzik (2016).

Table 5.1. Material properties for femur example

Matrix
E 20 GPa
ν 0.3
σy 50 MPa
H 20 GPa

�e results for the displacement at node 4, see Fig. 5.2, are shown in the Fig. 5.3 bellow. On
the le�, �g. 5.3a, we have the comparison between the di�erent microstructure and di�erent
void volume fraction. We can see noticeable di�erence on the response of the structure
depending on its microstructure arrangement.

�e RVE with 30% void fraction presented a elastic response. And the di�erence between
the two microstructure arrangement, single circle and multiple voids, was smaller. When the
void fraction increased to 60% the bone response was nonlinear. �e e�ect of the RVE void
arrangement is signi�cant, the micro structure with multiple voids is much more �exible than
the single circle micro structure.

�e microstructure with multiple elipses voids produced a more �exible model and we
can conclude that the larger the void fraction the greater is the di�erence compared with a
single circle void. �is is mainly because the larger the void fraction the micro structure with
multiple elipses voids produce a model with weak spots which are points subjected to stress
concentrations and plasti�cation as consequence.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
uy Node 4 (mm)

0

2

4

Lo
ad

(M
Pa

)

vv=30% Circular
vv=30% Elipses
vv=60% Circular
vv=60% Elipses

(a)

-1.2 -1.0 -0.8 -0.5 -0.2 0.0
uy Node 4 (mm)

0

2

4

Lo
ad

(M
Pa

)

Circular σy = 30 MPa
Elipses σy = 30 MPa
Circular σy = 50 MPa
Elipses σy = 50 MPa

(b)

Figure 5.3. Displacement at node 4 for a multiscale analysis considering a macro mesh
of 102 elements and 4 di�erent micro models, vv = 30%, vv = 60% each fraction with a
single circle and multiple voids. (a) for a load of 2.5 MPa in an elastic domain and (b) for
a load of 5 MPa with a plastic domain.

Figure 5.3b shows the vertical displacement at node 4 for the model with void fraction of
60%, however we changed the plastic property of the bone to a yield stress of 30 MPa instead
of 50 MPa. As expected, the smaller yield stress resulted in greater deformation. �e di�erence
between the two RVE micro structure con�guration kept the same, the model with multiple
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voids deformed more that the model with a single circle void. �e deformed macro model is
shown in Fig. 5.4, we notice a similar stress distribution when using both micro structures.
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Figure 5.4. Von mises stress in the macro domain deformed shape scaled 10x for di�erent
micro structures with a 5 MPa load. In (a) with Vv =30% Circle, (b) Vv =30% Elipses, (c)
Vv =60% Circle and (d) Vv =60% Elipses.

From the von Mises equivalent stress distribution we can notice the most solicited areas
are concentrated in the femural sha� due the moment arm generated by the vertical load. �is
region is formed by the denser bone which can be�er resist to the load. In the cancelous bone
the most solicited area is in the neck region, which is in between the head and the greater
trochanter.

Figure 5.5 shows the equivalent plastic strain for the model with 30% void ration and for
the model with 60%. We can see that the model with more voids is more �exible due the
plasti�cation of the section areas where stresses concentrate.
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Figure 5.5. Equivalent plastic strain in the micro domain deformed shape scaled 30x
referent to GP3 shown in �g. 5.2. In (a) Vv =30% and (b) Vv =60%

�e equivalent plastic strain for the microstructure in the model with 60% void ratio and
two di�erent yield stress σy = 50 MPa and 30 MPa are shown in �g. 5.6. We can see that the
model with smaller yield stress the plasti�cation of the section was greater than the model
with larger yield stress.

Next we compare the multiscale results with an analysis made with an e�ective isotropic
elastic modulus obtained by using a single microstructure model. �e e�ective elastic modulus
is computed by applying a uniform strain in the microstructure within the elastic range, then
compute the stress response and average that over the domain, �nally we use the plane strain
stress-strain relation to calculate the elastic modulus for a known poison ratio.
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Figure 5.6. Equivalent plastic strain in the micro domain deformed shape scaled 30x
referent to GP3 shown in �g. 5.2. In (a) Vv =60% 5 MPa σy = 50 MPa and (b) Vv =60% 5
MPa σy = 30 MPa

From Fig. 5.7 we can see that the micro sctructure con�guration considerably a�ect the
e�ective elastic modulus obtained by applying a known macro strain. �e microstructure with
multiple elipses voids has a sti�er response in the x-direction than in the y-direction, 5.7b. �is
occurs because of the geometric characteristic of ellipses which has greater strength in the
major axis direction. When we apply a shear strain in the micro structure we get an e�ective
elastic modulus that produces a response that closely match the multiscale analysis.

When the circular void microstructure is considered we get an isotropic response. �is
happens due symmetry of the micro structure model. All directions produce the same response.
Again we observe that when we use the e�ective elastic modulus from the shear perturbation
we get a be�er approximation to the multiscale analysis. Both homogeneous analysis fail to
capture the localized plasti�cation phenomena which is accounted when a multiscale analysis
is used.

(a) (b)

Figure 5.7. Comparison between multiscale (MS) analysis and a standard analysis with
an e�ective isotropic elastic modulus, Ē, obtained by applying a known strain, ε =
[εx, 0, 0], [0, εy, 0], [0, 0, γxy], into the microstructure. In (a) the circular microstructure
and (b) the multiple elipses.

Figure 5.8 shows the deformed shape and the von Mises stress distribution of the single
microstructure where the uniform strain is applied. Each strain component is applied separately.
We notice that the response of the micro structure when only shear strain is applied is similar
to the RVE representing the gauss point in the neck region of the femur, see �g. 5.2. �is
can be an explanation for why the e�ective elastic modulus obtained from the shear strain
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perturbation resulted in a closer response to the multiscale analysis. �e gauss point is subject
to a strain state with a dominance of shear strain and the strength of the neck region is the
most responsible for the node 4 vertical displacement.
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Figure 5.8. Deformed shape scaled 100x and Von Mises stress �eld of microstructure
a�er applying a known macro strain �eld, ε = [εx, 0, 0], [0, εy, 0], [0, 0, γxy] where
εx = εy = γxy = 10−4 in a (a) circular and (b) multiple elipses microstructure.
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6. CONCLUSION

�is work focused on developing an in-house code that can be later expanded and serve as
a base for prototyping new analysis methods. �e implementation was veri�ed using simple
benchmark problems.

�e multiscale procedure implemented, also known as FE2, proved as an option to treat
highly heterogeneous problems which are di�cult to solve using the standard FEM approach.
�e procedure also poses many challenges, one of them is the high computational cost for
nonlinear analysis. �e high cost occur due the need to perform a non linear �nite element
analysis for each macro gauss point. When the Taylor assumption for the RVE is considered
the macro �eld is applied homogeneously in the micro domain and the �uctuations are not
considered. Since the micro �elds are known, there is no need to solve a boundary �eld problem
in this case, which reduces the computational cost. By not considering the micro �uctuations
the complex interaction that may happen in the microstructure is not taken into account.
�erefore, the Taylor assumption serves as an approximation of the macro-micro coupling.

�e Taylor assumption for the RVE displacement condition produced a sti�er model. When
the �uctuations are considered, we need to solve a boundary value problem at each gauss
point. When nonlinearity is considered, multiple iterations are needed for each of them. �is
introduces a great amount of extra computations into the problem. A �rst intuitive solution
is to use parallelization to solve the micro problem for the RVE. Other solution is to use the
micro scale solution only at points of interest, an adaptive method.

Although the multiscale procedure is computationally expensive, it allows computing
the structure response for arbitrary microstructure geometry. New mechanical models to
predict complex phenomena can be gradually added to the code. In this work we presented
microstructures with square and circular voids, however the code is capable of handling
arbitrary plane geometry.

We presented an example of the code application to model the proximal part of human
femur considering that the cancelous bone is highly porous. We tested the e�ect of the void
distribution in the microstructure, concluding that is a�ects the overall response signi�cantly,
specially when high porosity is considered. We tested RVE with void fraction of 30% and 60%.
As expected, a greater void fraction produces a more �exible overall response. Two di�erent
micro structure con�guration were tested, one with a single circular void and other with
multiple elipses voids. �e micro structure with multiple voids produces a more �exible macro
response. �e di�erence between the micro structure con�guration is much more noticeble
for large void fraction. �is happens because the void distribution creates regions of stress
concentration that are more susceptible to plasti�cation.

Further research based on this work can explore di�erent aspects of the problem, such as
1. Parallelization of the RVE boundary value problem;
2. New constitutive models for the micro scale problem;
3. Add complex modeling such as damage, crack formation and debonding mechanism to

the microstructure;
4. New techniques to optimize the micro scale procedure for nonlinear problems.
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A. MATHEMATICAL PRELIMINARIES

A.1. LINEARIZATION OF A GENERAL NONLINEAR MULTI VARIABLE FUNCTION

Given a general multi variable function, or functional, F(x), we can state the following problem
which consists of �nding a root x of the function

F(x) = 0 (A.1)

we then take the Taylor expansion of this function about a general point, x = x0, in a general
direction δx = x− x0,

F(x) = F(x0) + DF(x0)[δx] + . . . (A.2)

where the notation DF(·)[·] indicates the directional derivative of the function F at (·) in the
direction of [·] (Gurtin 1981). We can also ignore the higher order terms in the expansion to get
a linear approximation. �e directional derivate, which is also called tangent matrix, can be
computed with the aid of an extra perturbation parameter ε,

DF(x0)[δx] =
d

dε

∣∣∣∣
ε=0

F(x0 + εδx) (A.3)

=



dF1

dx1

∣∣∣∣
x0

dF1

dx2

∣∣∣∣
x0

. . .

dF2

dx1

∣∣∣∣
x0

dF2

dx2

∣∣∣∣
x0

. . .

... ... . . .


δx (A.4)

= K(x0)δx (A.5)

where the chain rule was used. �en, calling the linear approximation a linearization of F
about x0, the problem can be stated as �nd δx such that

L F(x0 + δx) = F(x0) + DF(x0)[δx] = 0. (A.6)

which implies �nding when the linearization is zero. In two dimension this means approximate
the solution for the zero of the tangent line. If we repeat this procedure we tend to get closer
to the actual solution to eq. (A.1). Using the result in eq. (A.6), we get the following system to
�nd the increment of the approximate solution

K(x0)δx = −F(x0) (A.7)

A.2. DERIVATIVE OF TENSORS FUNCTIONS OF TENSORS

�e derivative is a linear transformation between �nite dimensional spaces (Gurtin 1981; de
Souza Neto et al. 2008). It can be represented for second order tensor function with arguments
also second order tensors as

DF(ε∗)[δε] ≡
dF
dε

∣∣∣∣
ε∗

: δε (A.8)

where the derivative of second order tensor with respect to a second order tensor is equal a
forth order tensor, hence the double contraction operation in order to satisfy the mapping
between two second order tensors (δε and DF(ε0)[δε]).
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�e above expression, eq. (B.33), can be visualized using an analogy with scalar variables,

f(x0 + δx) = f(x0) +
df

dx

∣∣∣∣
x0

δx (A.9)

hence, from eq. (A.2), ignoring higher order terms, we arrive at eq. (A.9). �erefore,

Df(x0)[δx] =
df

dx

∣∣∣∣
x0

δx (A.10)

A.3. CHAIN RULE

For a function of another function, a composition,

Y(ε) = Y(G(ε)) (A.11)

the derivative of Y at ε, (Gurtin 1981), is

DY(ε)[δε] = DY(G(ε))[DG(ε)[δε]] (A.12)

Using a scalar function as example,

Df(g(x))[δx] = Df(g(x))[Dg(x)[δx]] (A.13)

which can be wri�en, using the de�nition in eq. (A.10), as

Df(g(x))[δx] =
df

dg

dg

dx
δx (A.14)

B. COMPUTATIONAL PLASTICITY

In this appendix some aspects of computational plasticity are presented with explicit expression
for ready implementation. First we present the linearization of the virtual work equation. �en,
its discretized form. A�er stating the FEM procedure we need to solve the material nonlinearity
with a return mapping algorithm. �is solution will yield the tangent operator. �e general
formulation for obtaining the tangent operator is presented followed by a speci�c formulation
considering Von Mises yield criteria and isotropic hardening. Next the speci�c case of the
returning map procedure is presented considering Von Mises yield criteria.

B.0.1. LINEARIZATION OF THE VIRTUAL WORK

�is process is also discussed in Simo and Hughes (1998) and de Souza Neto et al. (2008).
Considering that the stress tensor is a function only of the current strains only,

σ
def
= σ(ε) (B.1)

the problem can be stated as �nding kinematically admissible displacement �eld, u, that satisfy
the equilibrium equation,

G(u,η) = 0, ∀η ∈ V (B.2)
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where, V is the space of virtual displacements de�ned as V = {η : V → U|η = 0 on Su},
in which U is the space of vectores the three-dimensions euclidian space, and Su is the boundary
where the displacement is prescribed. G is the virtual work functional,

G(u,η)
def
=

∫
V

(σ : ∇sη − b · η) dV −
∫
St

t · ηdA (B.3)

Noting that the dependence of u occurs through the stress functional σ(ε).
We aim to linearize equation (B.2) with respect to u about an arbitrary argument u∗ Using

the multi variable Taylor expansion, the linearized problem consists of �nding δu such that,

L(δu,η)
def
= G(u∗,η) + DG(u∗,η)[δu] = 0, ∀η ∈ V , (B.4)

where L is the linearized virtual work functional and the gradient operator D , or directional
derivatives at u∗ in the direction of δu, is de�ned as7,

DG(u∗,η)[δu]
def
=

d

dε

∣∣∣∣
ε=0

G(u∗ + εδu,η). (B.6)

Substituting G from equation (B.3), into above equation (B.6), we get,

DG(u∗,η)[δu] =
d

dε

∣∣∣∣
ε=0

∫
V

σ(ε(ε)) : ∇sηdV (B.7)

applying the chain rule in the derivative of the stress tensor, dσ
dε

= dσ
dε

dε
dε

, the above equation
becomes

DG(u∗,η)[δu] =

∫
V

D : ∇sδu : ∇sηdV (B.8)

where the following function was used for the strain as a function of the perturbation ε

ε(ε)
def
= ∇s (u∗ + εδu) ≡ ε∗ + ε∇sδu (B.9)

and the in�nitesimal tangent modulus is then de�ned as,8

D
def
=

∂σ

∂ε

∣∣∣∣
ε∗

(B.10)

where, ε∗ def
= ∇su∗ is simply the strain tensor �eld at u∗.9

�e linearized virtual work is then,∫
V

D : ∇sδu : ∇sηdV = −
∫
V

(σ : ∇sη − b · η) dV −
∫
S

t · ηdA (B.11)

where σ is the stress corresponding to the �eld u∗, because the right hand side (RHS) was
originated from G(u∗,η).10 �erefore we can compute an correction to the displacement from
the state de�ned by the previous step.

7Another de�nition using limits is

DG(u∗,η)[δu]
def
= lim

δu→0

G(u∗ + δu)−G(u∗)

δu
(B.5)

8Details on (de Souza Neto et al. 2008, p. 754)
9Note that the linearization occurred at a speci�c point u∗ and the goal is to �nd the displacement increment

of the iteration δu, which in the discretized version is given by the vector δu
10Note that u are η are still italic so they represent �eld and not �nite element vectors, which are obtained by

discretization of V
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B.1. DISCRETIZATION OF THE LINEARIZED VIRTUAL WORK

�e discretized version of (B.11) is,11(∫
hV

(Bg)TD(k)BgdV

)
δu(k+1) = −

(∫
hV

[
(Bg)T σ̂(k) − (Ng)Tb

]
dV − (Ng)T tdA

)
(B.12)

where hV is the discretization h of domain V by �nite elements, the superscript g indicates
global matrices. �e right hand side of equation (B.12) above represents the residual for a
global displacement vector u

(k)
n+1. So, the above equation can be rewri�en as a general iterative

formula on the index k as 12

K
(k)
T δu(k+1) = −r(k). (B.13)

We can compute the residual on the previous step as,

r(k)
def
= f int(u

(k)
n+1)− f ext

n+1 (B.14)

and KT is the global tangent sti�ness matrix, computed as

K
(k)
T

def
=

∫
hV

(Bg)TDBgdV. (B.15)

�erefore, solving for δu, we can update the solution for the displacement until convergence is
archived.

u
(k+1)
n+1 = u

(k)
n+1 + δu(k+1) (B.16)

�is procedure is presented in algorithm 1.

B.2. NUMERICAL INTEGRATION FOR ELASTOPLASTIC CONSTITUTIVE EQUA-
TIONS

�is section details the procedure for solving the nonlinear constitutive problem. At a given
pseudo-time t0, the elastic strain is εe(t0), the plastic strain is εp(t0) and the set α(t0) is the
collection of internal hardening variables at a known point p.

�e problem is stated as: Given the initial values of εe(t0) and the internal hardening
variables α(t0) and given the history of the strain tensor ε(t) for t ∈ [t0, T ], �nd the functions
εe(t),α(t)and γ̇(t) (plastic multiplier) that satisfy the reduced general elastoplastic constitutive
equations.

ε̇e(t)
def
= ε̇(t)− γ̇(t)N , where, ε̇p def

= γ̇(t)N (σ(t),A(t)) (B.17)
α̇

def
= γ̇(t)H(σ(t),A(t)) (B.18)

Loading, unloading condition (B.19)

Where the plastic �ow equation was incorporated in the additive strain rate decomposition,
(B.17). �e plastic strain does not appear explicitly in the system. A is de�ned through potential
relations. N is the �ow vector andH is an associative hardening rule.

11It was used the convention presented in appendix E
12Note that σ is the vector representation of the stress tensor σ
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�e time discretization of the constitutive equations is done using backward Euler scheme
(fully implicit). For integration in a generic time interval [tn, tn+1], the system becomes,

εen+1
def
= εen + ∆ε−∆γ(t)N (B.20)

αn+1
def
= αn + ∆γH (B.21)

where the unknowns are εen+1, αn+1 and ∆γ with the loading/unloading constraints,

∆γ ≥ 0, Φ(σn+1,An+1) ≤ 0, ∆γΦ(σn+1,An+1) = 0 (B.22)

In which (·)n denotes the variable (·) at time tn.
�e solution of the incremental problem is done using a two step algorithm (de Souza Neto

et al. 2008, p. 193). Only two possibilities, mutually exclusive, are possible:
1. Null incremental plastic multiplier

∆γ = 0 (B.23)

which means that there is no plastic �ow, ε̇p = 0 and no evolution of internal variables
α̇ = 0. �is step is purely elastic. �e evolution of the unknowns are straightforward

εen+1 = εen + ∆ε (B.24)
(B.25)

αn+1 = αn. (B.26)

and the yield function must satisfy the condition Φ ≤ 0 which indicates the elastic
domain.

2. Positive plastic multiplier

∆γ > 0 (B.27)

In this case, the unknowns satisfy the constitutive equations, presented in (B.20) and
(B.21). �ose equations simply represent the additive properties of strain and the evolution
of the internal hardening variables. Also, the yield function for this case is null, Φ = 0.

�e strategy for implementation is called return mapping algorithm and it consists of
de�ning an elastic trial step,

εe trial
n+1 = εen + ∆ε (B.28)
αtrial
n+1 = αn (B.29)

where, the strain increment, ∆ε is de�ned a priori. �en check the yield criteria and update the
state variables by solving a nonlinear system with the Newton Raphson, or solve analytically
in the case of isotropic hardening and von Mises yield criteria as shown in later sections.

B.3. CONSTITUTIVE MODEL CONSIDERING VON MISES YIELD CRITERIA

�is constitutive model is the set of equations that govern the material behavior.
�e model considering the von Mises yield criteria contains,
1. Linear elastic constitutive law,

σ
law
= De : εe (B.30)
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2. In this particular case, the yield function is given by,

Φ = Φ(σ, σy) =
√

3J2(s(σ))− σy (B.31)

where σy = σy(ε̄
p), the yield stress is a function of the accumulated plastic strain which

accounts for creation of new dislocations in the material which increases the strength of
the material. �e J2 is the second invariant of the deviatoric stress tensor.

3. �e �ow rule is given by,

ε̇p
def
= γ̇N (B.32)

where the �ow vector (Prandtl-Reuss) is de�ned with,

N
def
=

∂Φ

∂σ
≡
√

3

2

s

||s|| (B.33)

4. A hardening rule, where the internal variable of interest is the equivalent plastic strain
and its evolution is given by,

˙̄εp =

√
2

3
||ε̇p|| ≡ γ̇ (B.34)

B.4. SINGLE EQUATION RETURN MAPPING

In order to update de state variables of the model based on the strain increment we use a return
mapping algorithm.

�e nonlinear system of the return mapping can be reduced to a single equation when
considering the von Mises model. First, we start from a general load step n+ 1 and we know
the variable values at the previous step n. At this pseudo-time step, we have the incremental
displacement vector δu and our goal is to compute the next increment δu. We start by computing
the update displacement at all nodes,

u
(k+1)
n+1 = u

(k)
n+1 + δu(k+1) (B.35)

Note that the �rst iteration k = 0, the displacement increment is δu(k) = 0 and at the beginning
of every iteration the increment is set to zero. Next, we compute the strain increment at each
gauss point of each element,

∆ε = Bδu(e) (B.36)

We then use this strain increment13 to compute the elastic trial strain at the pseudo-time step
n+ 1,

εe trial
n+1 = εen + ∆ε (B.37)

Note that we need the elastic strain from the previous step n, this is computed by the return-
mapping function. �is trial strain is then decomposed in a deviatoric and volumetric part.

εe trial
v n+1

def
= tr(εe trial

n+1 ), εe triald n+1
def
= εe trial

n+1 −
1

3
εe trial
v n+1I (B.38)

13Note that δu(e)(k) corresponds to the values referent to a particular element, so we need to slice the global
displacement increment array.
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Considering the volumetric/deviatoric decomposition of strains, and the fact that the �ow
vector using the e�ective von Mises stress is purely deviatoric, we have

εed n+1
def
= εe trial

d n+1 −∆γ

√
3

2

sn+1

||sn+1||
(B.39)

which, in terms of stresses (multiply by 2G),

sn+1
def
= strial

n+1 −∆γ2G

√
3

2

sn+1

||sn+1||
(B.40)

the plastic multiplier ∆γ only a�ects the deviatoric part, so the hydrostatic part can be removed
from the nonlinear system. Rearranging the terms in Eq. (B.40), we get,

strial
n+1

def
= sn+1

(
1 +

√
3

2

∆γ2G

||sn+1||

)
(B.41)

which implies a linear relation between the trial and updated deviatoric stresses. Because of
the linear property, we can write the following ratio relation

sn+1

||sn+1||
=

strial
n+1

||strial
n+1||

(B.42)

substituting this relation, Eq. (B.42), into Eq. (B.40), and considering q def
=
√

3/2||s||,

sn+1
def
= strial

n+1

(
1− ∆γ3G

qtrial
n+1

)
. (B.43)

Substituting this results, Eq. (B.43), and the evolution of accumulated plastic strain (internal
variable) into the yield function we obtain the single return mapping equation, (de Souza Neto
et al. 2008, Eq. 7.91),

Φ̃
def
=
√

3J2(sn+1)− σy(ε̄pn+1) (B.44)

≡
√

3

2
||sn+1|| − σy(ε̄pn + ∆γ) (B.45)

≡
√

3

2
||strial

n+1

(
1− ∆γ3G

qtrial
n+1

)
|| − σy(ε̄pn + ∆γ) (B.46)

≡
√

3

2
||strial

n+1||
(

1− ∆γ3G

qtrial
n+1

)
− σy(ε̄pn + ∆γ) (B.47)

≡ qtrial
n+1

(
1− ∆γ3G

qtrial
n+1

)
− σy(ε̄pn + ∆γ) (B.48)

≡ qtrial
n+1 − 3G∆γ − σy(ε̄pn + ∆γ) = 0 (B.49)

A�er solving the above equation, Eq. (B.49), for the unknown ∆γ using a local Newton-Raphson,
the variables can be updated with,

sn+1
def
= strial

n+1

(
1− ∆γ3G

qtrial
n+1

)
(B.50)

σn+1
def
= sn+1 + ptrial

n+1I (B.51)

εen+1
def
= [De]−1 : σn+1 ≡

1

2G
sn+1 +

1

3
εe trial
v n+1 (B.52)

ε̄pn+1
def
= ε̄pn + ∆γ (B.53)

�is procedure is implemented in algorithm 2.

48



B.5. GENERAL ELASTOPLASTIC CONSISTENT TANGENT CONSTITUTIVE OPER-
ATOR FOR IMPLICIT RETURN MAPPINGS

From (de Souza Neto et al. 2008, sec. 7.4.4). �e returning map equations for the solution of the
constitutive model at each gauss point is,

εen+1 − εe trial
n+1 + ∆γNn+1

αn+1 −αn −∆γHn+1

Φ(σn+1,An+1)

 =


0
0
0

 (B.54)

whereHn+1 is the generalized hardening modulus which de�nes the evolution of hardening
variables, andAn+1 is the hardening thermodynamic forces. �e unknowns are εen+1, which
can recuperate the updated stresses, the set of internal variables, α and the plastic multiplier
∆γ. In order to compute the derivative of the stress, the consistent tangent modulus, we need
to linearized the returning map equations. �is linearization yields the system,

C + ∆γ
∂N

∂σ
B + ∆γ

∂N

∂A
N

A−∆γ
∂H

∂σ
J−∆γ

∂H

∂A
−H

∂Φ

∂σ

∂Φ

∂A
0


 dσ

dA

d∆γ

 =

dεe trial

0

0

 (B.55)

where the subscript n+ 1 was omi�ed. By inverting the relation we get,

dσ = D11dε
e trial (B.56)

where D11 = Dep is the elastoplastic consistent tangent modulus and it represents the �rst set
of terms from the inverse of the above matrix.

For the particular case of using von Mises yield criteria and isotropic hardening, a couple
of simpli�cation can be made, see (de Souza Neto et al. 2008, sec. 6.6.3). First, the set of
internal variables is reduced to one scalar α = {ε̄p}, the accumulated plastic strain. �e
set of thermodynamic forces is reduced to the scalar κ = κ(ε̄p), which is a function of the
accumulated plastic strain (could be linear or nonlinear). �e associative evolution equation of
the internal variable is simply ε̄p = γ̇.

Using that, we have

∂H

∂σ
= 0;

∂H

∂σ
= 0. (B.57)

�e operators B = A = 0, the only operators that don’t vanish are C = [De]−1,14 and J = 1/H ,
where H is the hardening modulus. 15 All that together generates a system,

[De]−1 + ∆γ
∂N

∂σ
0 N

0
1

H
−1

N −1 0


 dσ

dA

d∆γ

 =

dεe trial

0

0

 (B.58)

14�is is the dependence of the model in the elastic properties, at this point we can use the multiscale model to
generate a homogenized elastic constitutive matrix.

15considering a linear relation between the yield stress and accumulated plastic strain, σy = σy0 +Hε̄p.
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the tangential relation is then obtained by inverting this matrix, which results in (de Souza
Neto et al. 2008, Eq. 7.148),

Dep = P− 1

N : P : N +H
(N : P)⊗ (P : N ) (B.59)

where,

P ≡
(

IS + ∆γDe :
∂N

∂σ

)−1
: De (B.60)

�e fourth order symmetric identity tensor, IS has as a matrix equivalent for computational
implementation for the 2D problems, IS ,

IS
def
=

 1 0 0
1 0

sym. 1

2

 . (B.61)

Note the notation for computer implementation matrix, the sans-serif font is substituted to
serif types. �e double contraction operation between a fourth order tensor and a second order
becomes,

N : P : N
def
= NTPN (B.62)

�e �ow vector considering the von Mises yield criteria,

N
def
=

√
3

2

s

||s|| (B.63)

where s is the deviatoric stress,

s
def
= σ − pI (B.64)

where p def
= 1

3
tr(σ) is the hydrostatic stress. �e relation between shear and bulk modulus with

respect to Young’s modulus and Poisson’s ration is,

G
def
=

E

2(1 + ν)
, K

def
=

E

3(1− 2ν)
(B.65)

and the following relations are valid,

p
def
= Kεev, s

def
= 2Gεed (B.66)

where εev = tr(εe) is the volumetric part of the elastic strain, and εed is the deviatoric part. �e
second order identity tensor in its computer implementation form is represented by,

I ≡ i
def
=

1
1
0

 (B.67)
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B.6. ELASTOPLASTIC CONSISTENT TANGENT FOR VON MISES MODEL WITH
ISOTROPIC HARDENING

�is particular case have the following formula for the consistent tangent constitutive modulus
(de Souza Neto et al. 2008, Eq. 7.120)

Dep def
= 2G

(
1− ∆γ3G

qtrial
n+1

)
Id + 6G2

(
∆γ

qtrial
n+1

− 1

3G+H

)
N̄ ⊗ N̄ +KI ⊗ I (B.68)

where N̄ =
√

2
3
N is the unit �ow vector de�ned in (de Souza Neto et al. 2008, Eq. 7.117), and

computed using the deviatoric stress tensor,

N̄
def
=

s

||s|| . (B.69)

�e e�ective von Mises stress is computed with,

σeq ≡ q
def
=
√

3J2 ≡
√

3

2
||s|| (B.70)

�e tensor Id is the forth order deviatoric projection tensor given by Id
def
= Is − I ⊗ I . Note, in

the code presented in (de Souza Neto et al. 2008, sec. 7.4.3), the trial e�ective von Mises stress
is computed with q =

√
3/2||s||+ 3G∆γ 16. In Voigt notation, appendix E, the elastoplastic

tangent matrix is computed with,

Dep = 2G

(
1− 3∆γ

qtrial

)
Id + 6G2

(
∆γ

qtrial −
1

3G+H

)
1

||s||2 ssT +KiiT (B.75)

�e elastic tangent operator is given by (de Souza Neto et al. 2008, eq. 7.107),

De def
= 2GIs +KI ⊗ I (B.76)

16He recovered the last von Mises e�ective stress with q =
√

3
2 ||s||, then used this value to �nd the new trial

e�ective stress qtrial = q + 2G∆γ. �e trial e�ective von Mises is given by,

qtrial
n+1 =

√
3J2(strial

n+1) =

√
3

2
||strial

n+1|| (B.71)

but, only the converged value of σn+1 is passed to the ctvm function. So using the update equation for the
deviatoric stress,

sn+1 = (1− 3G∆γ

qtrial
n+1

)strial
n+1 (B.72)

inside the e�ective stress de�nition, we get

qtrial
n+1 =

√
3

2

||sn+1||
(1− 3G∆γ

qtrial
n+1

)
(B.73)

which results in,

qtrial
n+1 =

√
3

2
||sn+1||+ 3G∆γ (B.74)

where ||sn+1|| is compute based on the converged value for the stress tensor.
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which in Voigt notation for computer implementation, appendix E, becomes

De = 2GIs +KiiT (B.77)

�is procedure is in algorithm 3.

C. EXTENDED FINITE ELEMENTS

In this section some aspects of the mathematical description of the eXtended �nite elements
are discussed. �is method will be used to model a highly heterogeneous material in order to
compare with the multiscale procedure.

�e eXtended �nite element method (XFEM) is a numerical method that extends the
classical �nite element method (FEM) by adding additional degree’s of freedom with local
enrichments.One of the main advances of the method is to approximate solution with non-
smooth characteristics.

One particular case of problem that presents non-smooth properties is the mechanical
analysis of composite materials. In this case, stress and strain �eld are not continuous across
the material boundary.

Discontinuities are classi�ed accordingly to the jump in the gradient of the �eld, they can
be strong or weak. If the gradient presents a jump the discontinuity is called strong. Weak
discontinuity is characterized by a kink in the gradient distribution.

�e enhanced approximation for an element displacement function is given by the sum of
the standard FEM approximation and additional functions,

u(x, t) ≈ uh(x, t) def
=

N∑
i=1

Ni(ξ)ui +
M∑
j=1

Nj(ξ) (ψ(x)− ψ(xj)) aj (C.1)

≡ Nstd
(ξ)u + Nenr

(ξ)a, x ∈ V (e) (C.2)

where ψ(x) is the enrichment function. �e form ψ(x)−ψ(xj) is known as shi�ed enrichment
function and is important to ensure that the function is approximated by the generalized
coordinates at the nodes, i.e., u(xk) = uk. �is allows one to enforce the boundary conditions
directly in the linear system the same way as in the standard �nite element method.
N and M are the number of standard shape function and the number of enrichment

functions. �e vectors u and a contain the standard dof constant unknown and the new
enrichment dof unknown respectively.

For the plane problem the shape function matrices are given by,

Nstd
i (ξ)

def
=

[
Ni(ξ) 0

0 Ni(ξ)

]
(C.3)

Nenr
j (ξ)

def
=

[
Nj(ξ) (ψ(x)− ψ(xj)) 0

0 Nj(ξ) (ψ(x)− ψ(xj))

]
(C.4)

where, for quad elements, the shape functions given in isoparametric coordinates ξ = (ξ, η)
are expressed by Nk(ξ, η) = 1

4
(1− ξkξ) (1− ηkη), with k = 1, 2, 3, 4 and (ξk, ηk) the nodes

coordinates of the master element in the isoparametric coordinate system.
Substituting the approximation (C.1) into the weak form for the equilibrium equations we

arrive at a system,[
Kuu Kua

Kau Kaa

]{
u
a

}
=

{
f ext
u

f ext
a

}
(C.5)
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where, the subscripts u and a refer to standard and enriched respectively. �e sti�ness matrix
is computed with

Kαβ
(e) def

=

∫
V (e)

(Bα)TDBβdV, α, β = std, enr (C.6)

and the external load vector,

f ext
α

def
=

∫
S
(e)
t

(Nα)T tdS +

∫
V (e)

(Nα)T bdV α = std, enr (C.7)

C.1. LEVEL SET FUNCTION

�e level set function is used to de�ne the discontinuities interface and is de�ned as a sign
distance,

φ(x)
def
= ||x− x∗||sign(n · (x− x∗)) (C.8)

where the variables are depicted in �g. C.1. �e point x∗ is the closest from a general x to the
discontinuity surface. �e zero level set indicates the discontinuity interface, φ(x∗) = 0. �e
inner product will indicate if the point is inside or outside the inclusion. If the inner product is
negative then the point is inside.

Figure C.1. Level set function de�nition.

C.2. ENRICHMENT FUNCTIONS FOR WEAK DISCONTINUITY

�e shi�ed ramp enrichment is o�en employed for weak discontinuity, di�erent material
inclusions for instance,

ψ̄i = |φ(x)| − |φ(xi)| (C.9)

where φ(x) is the level set function de�ned in the previous section. �e level set function is
conveniently interpolated in an element using the standard shape functions,

φ(x) =
N∑
i=1

Ni(ξ)φi (C.10)

where φi is the nodal value of the level set function. �e shi�ed ramp function ensures that
the nodal values are consistent with the standard �nite element. In this case, the derivative
with respect to spatial coordinates yields,

∂ψ̄(x)

∂x
= sign (φ(x))

∂φ(x)

∂x
(C.11)
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in which the derivative of the level set function can be obtained by using the approximation in
eq. (C.10). �is represents a convenient approximation that improves accuracy as the mesh is
re�ned, (Khoei 2015, p. 41).

∂φ(x)

∂x
=

N∑
i=1

∂Ni(ξ)

∂x
φi (C.12)

�en we can compute a component of the enriched discretized gradient operator,

∂Ni(ξ)ψ̄i(x)

∂x
=
∂Ni(ξ)

∂x
ψ̄i(x) +Ni(ξ)

∂ψ̄i(x)

∂x
(C.13)

using eq. (C.12) and eq. (C.11) the component becomes,

∂Ni(ξ)ψ̄i(x)

∂x
=
∂Ni(ξ)

∂x

(
|
N∑
i=1

Ni(ξ)φi| − |φi|
)

+ Ni(ξ)sign
(
N∑
i=1

Ni(ξ)φi

)
N∑
i=1

∂Ni(ξ)

∂x
φi. (C.14)

In the implementation, the shape functions are evaluated at the gauss points. �e only extra
information required di�erently from the standard �nite elements is the level set value at the
nodes. �is value is obtaining using a module (scikit-fmm) that computes the distance of a
zero level set from a regular grid, then the distance value is interpolated from this grid into the
Finite Element mesh.

Figure C.2 shows a zero level set de�nition in which the inclusion material is de�ned by
-1 values and the matrix is equal to 1. �e inclusion shape, or interface, is obtained when the
function is equal to zero which is the de�nition of the zero level set. In this case, -1 and 1 were
used so it is clear where the zero level set is, however any function can be used to de�ne an
inclusion interface.
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Figure C.2. Interface de�nition with 2d array of 1 and -1.

�en using am external function to compute the distance of grid points (independent of
the FEM mesh) to the zero level set we get a distance function shown in �g. C.3. �is function
is then interpolated to the mesh nodes to form the array φi. �e nodal values of the distance
function is used to �nd if the element contains the discontinuity interface. A method is used to
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Figure C.3. Distance of grid points to the zero level set, which de�nes the inclusion
interface.

check the distance function sign in a particular element. If the distance function is negative
on a node means that the discontinuity cross the element, and this element is marked for
enrichment. If all distance values are negative, means that the whole element is inside the
inclusion. Doing that for all nodes we can classify the standard and enriched nodes, see �g. C.4.

Figure C.4. Enriched nodes and regular nodes in the presence of a discontinuity.

D. IMPLEMENTATION ASPECTS

D.1. DISCRETIZED EQUILIBRIUM EQUATION

�is section details the conversion between continuum mechanics to a discrete system of
equations using standard �nite element procedures.

Considering the weak form of equilibrium,∫
V

σ : ∇sη − b · ηdV −
∫
S

t · ηdS = 0 (D.1)

Substituting the standard fem approximation for the displacement and test function,∫
hV

σTBgη− b ·NgηdV −
∫
hS

t ·NgηdS = 0 (D.2)

where we notice the change from tensor notationσ to vector Voigt’s notationσ. �e superscript
g in the shape function and discretized gradient operator means that they are global matrices.
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�is eq. (D.2) can be simpli�ed to,∫
hV

(Bg)Tσ− (Ng)TbdV −
∫
hS

(Ng)T tdS = 0 (D.3)

D.2. HOMOGENIZED TANGENT CONSTITUTIVE OPERATOR FOR THE GENERAL
CASE

In this appendix it will be discussed how to compute the homogenized constitutive tangent op-
erator for any assumption for the RVE displacement �uctuation. �e homogenized constitutive
tangent operator is going to be one of the outputs of the multiscale analysis together with the
homogenized stresses.

�e de�nition of the homogenized tangent constitutive operator is given as the directional
derivative of the homogenized constitutive functional, F̄(ε̄), de�ned by

F̄(ε̄) =
1

V µ

∫
V µ

Fµ(εµ)dV (D.4)

which is derived from the macro-micro stress average relation. Its directional derivative at ε̄∗
in the direction of δε̄ is given by,

DF̄(ε̄)[δε̄] =
1

V µ

∫
V µ

DFµ(εµ)[δε̄]dV (D.5)

=
1

V µ

∫
V µ

d

dε

∣∣∣∣
ε=0

Fµ(εµ(ε̄ε))dV (D.6)

knowing that the micro strain is a function of the macro strain and the gradient of micro
displacement �uctuation can also be related to the macro strain ,

εµ = εµ(ε̄) and ∇s
yũ

µ = ε̃µ = ε̃µ(ε̄) = G(ε̄) (D.7)

noticing that the relationshop between∇s
yũ

µ and ε̄ is generally nonlinear (de Souza Neto and
Feijóo 2006). Using this information with the directional derivative de�nition, eq. (D.5) can be
further developed using the chain rule,

DF̄(ε̄)[δε̄] =
1

V µ

∫
V µ

d

dε

∣∣∣∣
ε=0

Fµ(ε̄ε + G(ε̄ε))dV (D.8)

=
1

V µ

∫
V µ

dFµ

dεµ

∣∣∣∣
εµ∗

:

(
δε̄+

d

dε

∣∣∣∣
ε=0

G(ε̄ε)

)
dV (D.9)

=
1

V µ

∫
V µ

dFµ

dεµ

∣∣∣∣
εµ∗

: δε̄dV +
1

V µ

∫
V µ

dFµ

dεµ

∣∣∣∣
εµ∗

:
d

dε

∣∣∣∣
ε=0

G(ε̄ε)dV (D.10)

=
1

V µ

∫
V µ

DFµ(εµ)[δε̄]dV +
1

V µ

∫
V µ

DFµ(εµ) [DG(ε̄)[δε̄]] dV (D.11)

where it was used the following macro strain perturbation at ε̄ε,

ε̄ε = ε̄∗ + εδε̄ (D.12)

the point εµ∗ = ε̄∗ + G(ε̄∗) and the relationship presented in appendix A.2. Using the chain
rule notation shown in appendix A.3 we can arrive at the same result in eq. (D.11). �is result
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agree with the ones presented in the literature (Terada and Kikuchi 2001; de Souza Neto and
Feijóo 2006; Perić et al. 2011; Blanco et al. 2016)

In a time discrete context, eq. (D.11) generates the homogenized constitutite tangent
operator, which can be wri�en as

D̄ : δε̄ =
1

V µ

∫
V µ

Dµ : δε̄dV +
1

V µ

∫
V µ

Dµ : Ã : δε̄dV (D.13)

where D̄ is the homogenized tangent constitutive tensor, Dµ is the micro tangent constitutive
tensor. �e tensor Ã is the tangential relation between macro strain ε̄ and the gradient of micro
displacement �uctuation

Ã : δε̄ = DG(ε̄)[δε̄] (D.14)

�e tangential relation Ã is obtained using one form of the linearized micro equilibrium,
presented in appendix D.5. �e �rst contribution to this homogenized operator is called Taylor
contribution and the second the �uctuation contribution (Sánchez et al. 2013).

Eq. (D.13) in its space discrete form for FEM implementation is obtained using the notation
from appendix E,

D̄ =
1

V µ

∫
hV µ

DµdV +
1

V µ

∫
hV µ

DµÃdV (D.15)

D.3. HOMOGENIZED TANGENT CONSTITUTIVE OPERATOR CONSIDERING TAY-
LOR ASSUMPTION FOR THE MICRO DISPLACEMENT FLUCTUATION

�is section details the formulation for computing the homogenized constitutive operator
considering Taylor assumption for micro displacement �uctuations.

Considering the Taylor assumption, ũ = 0 in the whole micro domain, the homogenized
constitutive tensor, from eq. (D.13), becomes,

DT =
1

V µ

∫
V µ

DµdV (D.16)

which is the classic mixing theory result. Within this assumption G = ũ = 0 and therefore
Ã = 0. �is constitutive tangent operator measures how the macroscopic stress varies under
the Taylor assumption at the state de�ned by the microscopic strain (de Souza Neto and Feijóo
2006). If the constitutive functional Dµ does not depend on y then it can be taken out of
the integral expression. �en we can subdivide the micro domain in its homogenized parts,
resulting in

DT =

gp∑
i

Dµ
i

V µ

∫
V µi

dV =

gp∑
i

viD
µ
i (D.17)

where vi = V µ
i /V

µ is the volume fraction of the solid fraction i. �e nonlinear version is
obtained by simply using the tangent constitutive operator computed as shown in appendix
B.5 for the general case using Von Mises yield criteria and appendix B.6 considering isotropic
hardening. In the nonlinear case, the tangent constitutive operator can vary from element to
element, therefore we should compute the volume weighted average from eq. (D.16).
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D.4. LINEARIZATION OF MICRO EQUILIBRIUM

In this section we discuss the procedure to linearize the micro equilibrium equation using
standard techniques. From the de�nition of the linearization, eq. (3.25), repeated here for
convenience

G(uµ∗ ,η) + DG(uµ∗ ,η)[δuµ] = 0 (D.18)

It is important to remark that the linearization procedure starts at a guess point, uµ∗ , and we
are interested in �ndind a correction, δuµ. �is means that the �rst term is only equals to
zero, from equilibrium eq. (3.24), when we arrive at the converged solution. We proceed by
substituting the de�nition of the function G(ũµ,η), eq. (3.24), in the above equation,∫

V µ
Fµ(εµ∗) : ∇s

yηdV +

∫
V µ

DFµ(εµ∗)[δu
µ] : ∇s

yηdV = 0 (D.19)

Because at a micro scale step we have �xed macro strain, δε̄ = 0, we can write the pertubation
as

δuµ = δε̄y + δũµ = δũµ (D.20)

now, using the de�nition of directional derivative from appendix A.1 and following the same
procedure as in appendix B.0.1, we get

DFµ(εµ∗)[δu
µ] =

d

dε

∣∣∣∣
ε=0

Fµ(εµε ) (D.21)

=
dFµ

dεµ

∣∣∣∣
εµ∗

:
dεµε
dε

∣∣∣∣
ε=0

(D.22)

= DFµ(εµ∗)[∇s
yδũ

µ] (D.23)

where it was used the chain rule and the perturbed strain

εµε = εµ∗ + εδεµ (D.24)
= εµ∗ + ε

(
δε̄+∇s

yδũ
µ
)

(D.25)
= εµ∗ + ε∇s

yδũ
µ (D.26)

where eq. (D.20) was used. �e tangent operator is computed using information from the
known point εµ∗ = εµ(k). Substituting this result, eq. (D.23), in the eq. (D.19) we get,∫

V µ
DFµ(εµ∗)[∇δuµ] : ∇s

yηdV = −
∫
V µ

Fµ(εµ∗) : ∇s
yηdV (D.27)

�e results agree with the literature (Michel et al. 1999; de Souza Neto and Feijóo 2006; Asada
and Ohno 2007; Perić et al. 2011; Gruer 2015; Saeb et al. 2016). �is equation in space discretized
iterative form, using notation from appendix E, can be wri�en as∫

V µ
(Bg)TDµ(k)Bgδũµ(k+1)dV = −

∫
V µ

(Bg)T σ̂µ(k)dV (D.28)

where the tangent matrix and stress vector are computed using the known internal variables,
and the system is solved for the Newton correction δũµ. �is equation is similar to eq. (B.12),
the only di�erence is the absence of external force vector. Notice that the macro strain does
not appears splicitly in here, but it will a�ect the calculation of the stress when using the state
update procedure in appendix B.4.

A�er solving the linear system we update the solution with

uµ(k+1) = uµ(k) + δũµ(k+1) (D.29)
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D.5. TANGENTIAL RELATION BETWEEN MACRO STRAIN AND GRADIENT OF
MICRO DISPLACEMENT FLUCTUATION

In this appendix we discuss an specialization of the linearized micro equilibrium equation in
eq. (D.27). �is tangential relation between macro strain, ε̄, gradient of micro displacement
�uctuation, ∇s

yũ
µ, is used to �nd the �uctuation contribution to the homogenized constitutive

tangent operator in eq. (D.13).
It emerges from linearization of the micro equilibrium at a known point uµ∗ and at a speci�c

direction δuµ = δε̄y + δũµ. �is direction is formed by a pair, ε̄ε and ũµε , that solves the
equilibrium equation in eq. (3.24). Di�erently from eq. (D.19), the �rst term will be equal to
zero due equilibrium. Which means we are already with the converged micro displacement
that satisfy micro equilibrium. �erefore, the linearized equilibrium equation becomes∫

V µ
DFµ(εµ∗)[δu

µ] : ∇s
yηdV = 0 (D.30)

Applying the de�nition of directional derivative we get,

DFµ(εµ∗)[δu
µ] =

d

dε

∣∣∣∣
ε=0

Fµ(εµε ) (D.31)

=
dFµ

dεµ

∣∣∣∣
εµ∗

:
dεµε
dε

∣∣∣∣
ε=0

(D.32)

= Dµ : δεµ (D.33)
= Dµ :

(
δε̄+∇s

yδũ
µ
)

(D.34)

where it was used the de�nition of the perturbation εµε = εµ∗ + εδεµ and the de�nition of
constitutive tangent Dµ = dFµ

dεµ
|εµ∗ .

Now, substituting this derivative in a time discrete version of the linearized equilibrium, eq.
(D.30), we get the wanted tangential relation,∫

V µ
Dµ : ∇s

yδũ
µ : ∇s

yηdV = −
∫
V µ

Dµ : δε̄ : ∇s
yηdV (D.35)

�is result agrees with the literature (Terada and Kikuchi 2001; de Souza Neto and Feijóo 2006;
Asada and Ohno 2007; Perić et al. 2011)

Using the relation from appendix A.2 and the notation from appendix E we get the following
discrete linearized equilibrium equation∫

hV µ
(Bg)TDµBgδũµdV = −

∫
hV µ

(Bg)TDµδε̄dV (D.36)

where Bg is the discrete gradient matrix and Dµ is the consistent tangent constitutive matrix.
Notice that this equation establishes the linear tangential relation between the macro strain
and the displacement �uctuation. For a given macro displacement correction δε̄ �nd the
micro displacement �uctuation correction δũµ. Notice that we need to apply proper boundary
conditions to this equation so we get an admissible solution.

We now focus on how to obtain the tangential tensor, Ã, which relates

∇δũµ = Ã : δε̄ (D.37)

this is used to compute the �uctuation part of the homogenized constitutive tangent D̄, eq.
(D.13).
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In order to obtain this tangent operator we need to use the linearized version of the micro
equilibrium equations presented in eq. (D.36). �e procedure can be described mathematically
as in de Souza Neto and Feijóo (2006) and Sánchez et al. (2013) or in a algorithmic form as in
Saeb et al. (2016).

For a given unit macro strain perturbation, δε̄ij = ei ⊗ ej , which in a discrete FEM se�ing
will be three vectors with unit component, [1, 0, 0], [0, 1, 0], [0, 0, 1], we compute the solution of
the linear system from eq. (D.36) using the last consistent constitutive tangent Dµ, resulting in
δũµij which the gradient is going to be part of the tensor Ã. Substituting the strain pertubations
in eq. (D.35),∫

V µ
∇s
yη : Dµ : ∇s

yδũ
µ
ijdV = −

[∫
V µ
∇s
yη : DµdV

]
ei ⊗ ej (D.38)

Since eq. (D.35) is linear for δũµ, we can write its solution as a linear combination of the
solutions δũµij ,

δũµ = δε̄ijδũ
µ
ij (D.39)

If we take the gradient on both sides we get an expression for the tangent relation shown in eq.
(D.14),

∇s
yδũ

µ = δε̄ij∇s
yδũ

µ
ij = Ã : δε̄ = DG(ε̄)[δε̄] (D.40)

�erefore the components of the tensor can be found Ã = ∇s
yδũ

µ
ij .

In a FEM discretized situation, the solution of the linear system in eq. (D.36) will be a vector,
δũµj which will be arranged as columns of a matrix, so we can compute the discrete version of
the tensor Ã as,

Ã = B
[
δũ1 δũ2 δũ3

]
(D.41)

for plane problems, this will result in a 3x3 matrix. Notice that we are using the discrete
gradient in a element se�ing, therefore we only use the interested part of the vectors δũj �is
procedure is explicit in the algorithm 7.

E. NOTATION CONVENTION

�is notation is from Simo and Hughes (1998) and de Souza Neto et al. (2008).

E.1. CONTRACTION OF TENSORS

When converting between tensor notation to Voigt notation (vectors and matrices),

σ : ∇η ≡ σTBgη (E.1)

where the 2nd order stress tensor was substituted by a vector, the double contraction by a dot
product (using the transpose notation) and the gradient by its discrete form by means for a
matrix Bg.

Applications of fourth order tensors to second order ones yields,

D : ε ≡ Dε (E.2)

�ose two conventions can be applied to expressions with two double contractions,

D : ∇δu : ∇η ≡ (Bgη)TDBgδu (E.3)

where it was used the transpose properties (AU)T ≡ UTAT and (AT )T ≡ A.
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E.2. TENSOR PRODUCT

�e tensor product between two second order tensors is substituted with,

a⊗ b ≡ abT (E.4)

E.3. SECOND ORDER TENSORS

Second order tensors are mapped to vectors,

σ ≡

σ11σ22
σ12

 (E.5)

E.4. FOURTH ORDER TENSORS

Fourth order tensors will be mapped onto matrices. �e fourth order identity, for instance, in a
2d se�ing, will be mapped into

I ≡ I =

1 0 0
0 1 0
0 0 1

 (E.6)

�e general symmetric fourth order tensor will be mapped into,

D ≡

D1111 D1122 D1112

D2222 D2212

D1212

 (E.7)

F. ALGORITHMS

In this section the algorithms used to implement the solutions are presented.

F.1. STANDARD NEWTON PROCEDURE

F.2. STATE UPDATE PROCEDURE

61



Algorithm 1 Standard Newton procedure
procedure newton(un)

(1) Set initial guess u
(0)
n+1 = un

Element loop

(2) Compute f int
(e)(σ

(0)
n+1) and D using ε(0)n+1 = Bu

(0)
n+1 call suvm() and ctvm()

(3) Compute K
(e)
T =

∑gp
i wijiB

T
i DiBi

End Element loop

(4) Assemble global and solve for δu(k+1) = −K−1T [f int − λn+1f̄
ext]

(5) Apply Newton correction u
(k+1)
n+1 = u

(k)
n+1 + δu(k+1)

Element loop

(6) Update strains ε(k+1)
n+1 = Bu

(k+1)
n+1

(7) Compute f int
(e)(σ

(k+1)
n+1 ) and D using ε(k+1)

n+1

(8) Compute K
(e)
T =

∑gp
i wijiB

T
i D̄iBi

End Element loop

if r = f int − λn+1f̄
ext converged then

Set (·)n+1 = (·)(k+1)
n+1 and Exit

else
Set k = k + 1 and Go to (4)

end if
end procedure

Algorithm 2 State update von Mises

procedure suvm(∆ε = ε
(k+1)
n+1 − εn,αn, mat)

(1) Compute trial state
(2) Check plastic admissibility
if Φ < 0 then

Elastic step set (·)n+1 = (·)trialn+1 and Exit
else

Call returning mapping algorithm to compute σn+1 and αn+1

end if
end procedure
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F.3. CONSTITUTIVE CONSISTENT TANGENT MATRIX

Algorithm 3 Consistent tangent
procedure ctvm(σn+1,αn, flag, mat)

if flag is elastic then
Compute and return De(mat)

else flag is plastic
Compute and return Dep(mat,σn+1,αn)

end if
end procedure

F.4. NEWTON PROCEDURE FOR MULTISCALE ANALYSIS

Algorithm 4 Newton procedure for multiscale
procedure newton(un)

(1) Set initial guess u
(0)
n+1 = un

Element loop

(2) Compute f int
(e)(σ̄

(0)
n+1) and D̄ using ε̄(0)n+1 = Bu

(0)
n+1 call multiscale()

(3) Compute K
(e)
T =

∑gp
i BT

i D̄iBiwiji
End Element loop

(4) Assemble global and solve for δu(k+1) = −K−1T [f int − λn+1f̄
ext]

(5) Apply Newton correction u
(k+1)
n+1 = u

(k)
n+1 + δu(k+1)

Element loop

(6) Update strains ε̄(k+1)
n+1 = Bu

(k+1)
n+1

(7) Compute f int
(e)(σ̄

(k+1)
n+1 ) and D̄(e) using ε̄(k+1)

n+1 call multiscale()
(8) Compute K

(e)
T =

∑gp
i BT

i D̄iBiwiji
End Element loop

if r = f int − λn+1f̄
ext converged then

Set (·)n+1 = (·)(k+1)
n+1 and Exit

else
Set k = k + 1 and Go to (4)

end if
end procedure
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F.5. MULTISCALE INCREMENTAL PROCEDURE

Algorithm 5 Multiscale incremental procedure
procedure multiscale(ε̄n+1, ũ

µ
n)

(1) Set initial ũ
µ(0)
n+1 = ũµn

Element loop at micro scale

(2) Compute f int
(e)(σ

µ(0)
n+1) and Dµ using εµ(0)n+1 = ε̄n+1 + Bũ

(0)
n+1 call suvm() and ctvm()

(3) Compute K
(e)
T =

∑gp
i BT

i Dµ
i Biwiji

End Element loop

(4) Assemble global and solve for δũµ(k+1) = −K−1T f int

(5) Apply Newton correction ũ
µ(k+1)
n+1 = ũ

µ(k)
n+1 + δũµ(k+1)

Element loop at micro scale

(6) Update strains εµ(k+1)
n+1 = ε̄n+1 + Bũ

µ(k+1)
n+1

(7) Compute f int
(e)(σ

µ(k+1)
n+1 ) and Dµ using εµ(k+1)

n+1 call suvm() and ctvm()

(8) Compute K
(e)
T =

∑gp
i BT

i Dµ
i Biwiji

(9) Compute f
(e)
D =

∑gp
i BT

i Dµ
i wiji

End Element loop

if r = f int converged then
Set (·)n+1 = (·)(k+1)

n+1

(10) Assemble global KT and fD
(11) Compute and return σ̄n+1 and D̄ call hstress() and hct()

else
Set k = k + 1 and Go to (4)

end if
end procedure

F.6. HOMOGENIZATION PROCEDURES

Algorithm 6 Homogenized stress
procedure hstress(σµn+1)

Element loop

(1) Compute volume average σ̄ +=
∑gp

i σ
µ
n+1wiji

End Element loop

(2) Return σ̄
end procedure
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Algorithm 7 Homogenized constitutive tangent
procedure hct(KT , f

D)
for ε̄j in (ε̄1, ε̄2, ε̄3) = ([1, 0, 0], [0, 1, 0], [0, 0, 1]) do

(1) Compute δũj = −K−1T fDε̄j
end for

Element loop

(2) Compute DT += 1
V µ

∑gp
i Dµjiwi

(3) Compute Ã(e) = B[δũ1[e], δũ2[e], δũ3[e]]
(4) Compute D̃ += 1

V µ

∑gp
i Ã(e)Dµjiwi

End Element loop

(5) Compute and return D̄ = DT + D̃
end procedure
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