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ABSTRACT. The Expectation-Maximization (EM) algorithm is developed for the stochastic frontier mod-
els most used in practice with cross-section data. The resulting algorithms can be easily programmed into a
computer and are shown to be worthy alternatives to general-purpose optimization routines currently used.
The algorithms for the half normal and the exponential models have closed-form expressions whereas those
for the truncated normal and gamma models will require the numerical solution of a nonlinear equation.
Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also com-
bined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and
production frontiers.

Keywords: efficiency, EM acceleration, gamma, maximum likelihood.

1 INTRODUCTION

In this paper we consider the Expectation-Maximization (EM) algorithm (Dempster et al., 1977;
Wu, 1983) for doing stochastic frontier (SF) analysis, a technique for measuring economic effi-
ciency. In statistical terminology, an SF model is a linear mixed-effects model, making it natural
to consider the EM algorithm for maximum likelihood (ML) estimation.

The regression part of SF models represents the production frontier of the i-th firm: the response y
is (possibly) some transformation of measured output and xxx is a vector of (possibly transformed)
inputs. The relation between input and outputs is stochastic: the error ν is the conventional Gaus-
sian noise, νi ∼N (0,σ2

ν ), representing stochastic elements outside the control of the firm. Each
firm possesses an inefficiency term ui ≥ 0 which makes the observed output smaller than its
(stochastic) potential. Thus,

yi = xxx′iβββ +νi−ui. (1)

We assume cross-sectional data for which the νi’s and the ui’s are independent of each other and
across observations.
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362 THE EM ALGORITHM FOR STANDARD STOCHASTIC FRONTIER MODELS

In most applications, u is assumed to be either half-normally or exponentially distributed,
ui ∼N +(0,σ2

u ) or ui ∼ E xp(λ ), respectively. These canonical specifications for u have been
generalized by letting ui ∼N +(µ,σ2

u ) (truncated-normal) and ui ∼ G (α,λ ) (Gamma). These
standard models are detailed in the comprehensive work of Kumbhakar & Lovell (2003).

The estimation method of choice for SF analysis is ML but variations of least squares, nonpara-
metric and Bayesian estimation have also been developed and are surveyed by Greene (2008).
SF models were preceded by (non-stochastic) frontier models whose estimates were computed
by linear and quadratic programming (Aigner & Chu, 1968). Current software for SF analysis
inspected by the authors (Bogetoft & Otto, 2015; Coelli & Henningsen, 2013; SAS Institute Inc.,
2003; StataCorp., 2015; Greene, 2012) has been written around Newton-like routines based on
either user-supplied derivatives or numerical approximations. Strictly speaking, the ML problem
of SF analysis is a constrained optimization problem since there are parameters restricted to the
positive axis. With luck and good starting values this may be of no practical effect in a given
application but the usual practice with Newton-like methods is to reparameterize the model and
retrieve standard errors by means of the delta method. EM updates will keep the iterates for the
positive parameters positive and in our experience with SF estimation EM seems to work with
more liberal starting values.

The use of EM in SF estimation is not new. Instead of using Newton, Greene (1982) devised a
simple iterative scheme by manipulating the likelihood equations of the half normal SF model.
This method was later improved by Lee (1983) who showed that Greene’s scheme did not nec-
essarily solve the likelihood equations and, in addition, did not restrict variance estimates to be
positive. Lee devised a new scheme based on solving a set of rewritten equations which made
explicit use of the conditional expectations E(u|ν +u) and E(u2|ν +u). The new scheme actually
solved the likelihood equations and preserved positivity of variance estimates. Lee did not men-
tion that his scheme was in fact the EM algorithm for the half normal SF model. Huang (1984)
devised the same algorithm, this time explicitly invoking EM, apparently independently of Lee.
In Section 3.1 we will revisit (with different notation) the EM algorithm devised by Lee (1983)
and Huang (1984) for the half normal model. In later sections we develop the EM algorithm for
the other three standard models.

EM does not directly yield standard errors of estimates. Lee was not explicit about calculation
of standard errors and Huang used least-squares errors for the regression coefficients. We will
use more general methods (Section 3.5). Two illustrations are given in Section 4: estimation of
a production frontier with the half normal model using data from the Brazilian Census of Agri-
culture and estimation of a cost function with exponential and gamma inefficiencies. Concluding
remarks and some practical considerations are given in Section 5.
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2 STOCHASTIC FRONTIER MODELS IN EM FORM

The SF model (1) can be written as a hierarchy in terms of the total error ε = y− xxx′βββ and the
inefficiencies u,

εi|ui ∼N (−ui,σ
2
ν ),

ui ∼ fu,

where fu denotes the density for the inefficiency term. At times, we will make the dependence of
ε on βββ explicit by writing ε(βββ ). The resulting joint density is

fθθθ (u,ε) = fu(u)
1

σν

√
2π

exp
[
− (ε(βββ )+u)2

2σ2
ν

]
,

where the vector θθθ comprises βββ , σ2
ν and any parameters from fu.

The loglikelihood of a set of n independent observations is thus given by

`(θθθ) =
n

∑
i=1

log
∫

∞

0
fθθθ (ui,εi)dui, (2)

In order to maximize the likelihood, instead of directly using (2), the EM algorithm uses the
complete-data likelihood (Dempster et al., 1977; Wu, 1983),

`c(θθθ) =
n

∑
i=1

log fθθθ (ui,εi). (3)

The iterations of the algorithm result from two steps: Let θθθ t be the estimate at iteration t of the
algorithm and let Et(·)≡ Eθθθ t (·). Then, the E-step is the evaluation of

Et(`c(θθθ)|εεε) =
∫

fθθθ (uuu,εεε) fθθθ t (uuu|εεε)duuu, (4)

and the M-step is the maximization, with respect to θθθ , of the function

Q(θθθ |θθθ t) = Et(`c(θθθ)|εεε). (5)

It has been shown that the sequence generated by iteratively solving (4) and (5) converges to a
stationary point of `. Furthermore, under regularity conditions (Wu, 1983), the ascent property
holds: upward movements in Q imply upward movements in `,

`(θθθ t+1)− `(θθθ t)≥ Q(θθθ t+1|θθθ t)−Q(θθθ t |θθθ t).

In order to present the steps of the EM algorithm in the context of SF models we start by denoting
the first two conditional moments of (u|ε) by

Mi(θθθ) = Eθθθ (ui|εi) and Ki(θθθ) = Eθθθ (u
2
i |εi). (6)
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Making explicit the dependence of the total error on the coefficients, εi(βββ ), we define

Ri(θθθ t ,βββ ) = Et
[
(ui + εi(βββ ))

2|εi
]

= Ki(θθθ t)+2εi(βββ )Mi(θθθ t)+ ε
2
i (βββ ). (7)

Note that it is crucial to distinguish βββ inside ε from βββ t as part of θθθ t .

Now let
Mt =

1
n ∑

i
Mi(θθθ t), Kt =

1
n ∑

i
Ki(θθθ t), (8)

and
Rt(βββ ) =

1
n ∑

i
Ri(θθθ t ,βββ ). (9)

Finally, we define the “working” response w,

wi(θθθ t) = yi +Mi(θθθ t). (10)

The above definitions will be used in the expressions for the Q function and its derivatives in the
following sections. We close this section by noting that the integrals in the E-step can be carried
out explicitly except in the gamma model (Section 3.4).

3 EM ALGORITHMS FOR THE STANDARD SF MODELS

The original models used in SF analysis were the half normal and exponential models, the former
being the default option in most software for SF analysis. EM is developed for these two models
in Sections 3.1 and 3.2 resulting in extremely simple algorithms with closed-form expressions
and intuitive iterative schemes. The econometric literature on SF models has considered gener-
alizations of those two models to allow for a nonzero mode for u leading to the truncated normal
(Section 3.3) and gamma (Section 3.4) SF models. Another direction of generalization is to make
some (or all) of the parameters in the distribution of the noise dependent on covariates. In any
case, the resulting EM algorithm will not render explicit updates as with the simple half normal
and exponential specifications.

3.1 Half Normal Model

We now consider implementation of the EM scheme with the half normal model, ui ∼
N +(0,σ2

u ), that is, for u≥ 0,

fu(u) =
1

2σu
ϕ

(
u

σu

)
,

where ϕ denotes the standard normal density. The EM algorithm for the half normal model
was introduced by Huang (1984) but Lee (1983) arrived at the same algorithm from a different
standpoint.
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The Q function, after some simplifications using expressions (6)–(9), becomes (constant term
omitted)

Q(θθθ |θθθ t) =−n
[

log(σuσν)+
1

2σ2
u

Kt +
1

2σ2
ν

Rt(βββ )

]
,

and thus,

∂Q
∂βββ

= 0⇔∑
i

xxxi [Mi(θθθ t)+ εi(βββ )] = 0,

∂Q
∂σ2

ν

= 0⇔ σ
2
ν = Rt(βββ ),

∂Q
∂σ2

u
= 0⇔ σ

2
u = Kt .

We finally obtain the iterative scheme in Algorithm A below with w given by (10).

Algorithm A: EM for the half-normal SF model

Initialize with (βββ 0,σ
2
ν ,0,σ

2
u,0).

Iterate:

A1. βββ t+1 = (XXX ′XXX)−1XXX ′wwwt , wwwt = (w1(θθθ t), . . . ,wn(θθθ t)).

A2. σ2
ν ,t+1 = Rt(βββ t+1).

A3. σ2
u,t+1 = Kt .

Stop if RC ≤ ζ .

(initialization and relative change (RC) criterion are illustrated in Section 4)

Some remarks are due. All of the conditional expectations in the calculations above are available
in closed form since the conditional distribution of u given ε is truncated normal (Kumbhakar &
Lovell, 2003, Chapter 3),

(ui|εi)∼N +(µ̃i,b2) with µ̃i =
−εiσ

2
u

σ2
u +σ2

ν

, b2 =
σ2

ν σ2
u

σ2
u +σ2

ν

.

Therefore, the conditional moments in (6) are given by

Mi(θθθ) = µ̃i +bδi

and
Ki(θθθ) = M2

i (θθθ)+b2[1−δi(δi + µ̃i/b)]

where δi =
ϕ(−µ̃i/b)

1−Φ(−µ̃i/b)
and Φ is the cumulative distribution function of the standard normal

density ϕ .
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Note that Algorithm A has remarkably simple and intuitive updates. The regression coefficients
are updated in A1 by OLS with the working response (10), which is a version of y+E(u|ε), a
sort of “correction” for the presence of u in the overall error ε = ν−u. In A2 the noise variance is
updated as a mean square based on the squared “residuals” (u+ε)2 given by (7). The inefficiency
variance is updated last by the mean of the Ki’s. Since Ki is the conditional mean of u2

i and its
model mean is zero, the variance update A3 is simply a version of Var(u|ε).

3.2 Exponential Model

We now extend the EM algorithm to the other models starting with the exponential SF model.
The notation developed in Section 2 and used in Section 3.1 remains useful. The inefficiencies
are assumed to have an exponential density with mean 1/λ .

Similar to Section 3.1, using definitions (6)–(9), the Q function for the exponential model is given
by

Q(θθθ |θθθ t) = n
[

log
(

λ

σν

)
−λMt −

1
2σ2

ν

Rt(βββ )

]
.

As before, the EM iterations are obtained by setting ∂Q
∂θθθ

= 000, resulting in Algorithm B below.

Algorithm B: EM for the exponential SF model

Initialize with (βββ 0,σ
2
ν ,0,λ0).

Iterate:

1. βββ t+1 = (XXX ′XXX)−1XXX ′wwwt , wwwt = (w1(θθθ t), . . . ,wn(θθθ t))

2. σ2
ν ,t+1 = Rt(βββ t+1)

3. λt+1 = M−1
t

Stop if RC ≤ ζ .

(initialization and relative change (RC) criterion are illustrated in Section 4)

Remarks similar to those for the half normal model can be made. Again, all expectations involved
are known analytically since the distribution of (u|ε) is also truncated normal (Kumbhakar &
Lovell, 2003, Chapter 3),

(ui|εi)∼N +(µ̃i,σ
2
ν ), µ̃i =−(εi +λσ

2
ν ).

Therefore, the conditional moments in (6) are given by

Mi(θθθ) = µ̃i +σν δi
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and
Ki(θθθ) = M2

i (θθθ)+σ
2
ν [1−δi(δi + µ̃i/σν)]

where δi =
ϕ(−µ̃i/σν)

1−Φ(−µ̃i/σν)
.

The updates in Algorithm B mirror those of the half normal case. B1 and B2 are analogous to A1
and A2 (allowing, of course, for different expressions for Mi and Ki for each model). In B3, λ is
updated by the inverse of the estimated mean of the inefficiencies, M−1, which is the conditional
version of E−1(u|ε).

3.3 Truncated Normal Model

We now present the EM scheme with the truncated normal model, ui ∼N +(µ,σ2
u ), that is, for

u≥ 0,

fu(u) =
1

σu
ϕ

(
u−µ

σu

)
Φ

(
µ

σu

) .

The Q function is, after some simplifications using (6)–(9),

Q(θθθ |θθθ t) =−n
[

log(σuσν)+ log
(

Φ

(
−µ

σu

))
+

+
1

2σ2
u

(
Kt −2µMt +

µ2

n

)
+

1
2σ2

ν

Rt(βββ )

]
.

After setting ∂Q/∂θθθ to zero, we arrive at the iterative scheme in Algorithm C below, using,
once again, definitions (6)–(10).
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Algorithm C: EM for the truncated normal SF model

Initialize with (βββ 0,σ
2
ν ,0,µ0,σ

2
u,0).

Iterate:

1. βββ t+1 = (XXX ′XXX)−1XXX ′wwwt , wwwt = (w1(θθθ t), . . . ,wn(θθθ t))

2. σ2
ν ,t+1 = Rt(βββ t+1)

3. µt+1 = m satisfyingm <
Kt

Mt

Φ

(
−m
st

)
(Mt −m) = ϕ

(
−m
st

)√
Kt −mMt

4. σ2
u,t+1 = Kt −µt+1Mt

Stop if RC ≤ ζ .

(initialization and relative change (RC) criterion are illustrated in Section 4)

As before, all conditional moments involved in Algorithm C have simple closed forms since
(Kumbhakar & Lovell, 2003, Chapter 3),

(ui|εi)∼N +(µ̃i,b2), µ̃i =
µσ2

ν − εiσ
2
u

σ2
u +σ2

ν

, b2 =
σ2

ν σ2
u

σ2
u +σ2

ν

,

which leads to
Mi(θθθ) = µ̃i +bδi,

and
Ki(θθθ) = M2

i (θθθ)+b2[1−δi(δi + µ̃i/b)],

where δi =
ϕ(−µ̃i/b)

1−Φ(−µ̃i/b)
.

The updates C1 and C2 are analogous to steps A1 and A2 in Algorithm A. Iteration C3 does not
give an explicit update for µ since it requires the solution of a nonlinear equation with an upper
bound which guarantees positivity in C4. The inefficiency variance is updated last by a term of
the form K−µM which is a version of E(u2|ε)−E2(u|ε) with µM in the place of M2.

3.4 Gamma Model

In the gamma model the inefficiencies are assumed to have a gamma density with mean α/λ .
We will adopt the same definitions used so far in expressions (6)–(10) and in addition we define

Li(θθθ) = Eθθθ (log(ui)|εi) (11)
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and
L̄t =

1
n ∑

i
Li(θθθ t). (12)

The Q function is thus (constant term omitted)

Q(θθθ |θθθ t) = n
[

log
(

λ α

Γ(α)σν

)
+(α−1)L̄t −λMt −

1
2σ2

ν

Rt(βββ )

]
.

As opposed to the previous models, the conditional moments involved in the Q function for the
gamma SF model do not have simple closed-form expressions. The conditional density f (u|ε)
has an intractable normalizing constant (Kumbhakar & Lovell, 2003, Chapter 3) which affects not
only EM calculations but also the loglikelihood and its derivatives. More specifically, recalling
(6), we have for the gamma model,

Mi(θθθ) =
hi(α)

hi(α−1)
and Ki(θθθ) =

hi(α +1)
hi(α−1)

where
hi(r) =

∫
∞

0
ur

ϕi(u)du, (13)

and ϕi(·) is the density function of a normal random variable with mean −(εi + λσ2
ν ) and

variance σ2
ν .

Evaluation of (13) was initially addressed by simulation-based methods (Greene, 2003; Kozumi
& Zhang, 2005) but, recently, we showed that quadrature and Fourier methods can be used with
higher accuracy (Andrade & Souza, 2018) and this is adopted in the implementations of Section
4. Similarly, Li =

∫
∞

0 log(u)ϕi(u)du may be computed via numerical quadrature.

Setting ∂Q/∂θθθ to zero yields Algorithm D below where we make use of the digamma function
ψ(a) = Γ′(a)/Γ(a).
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Algorithm D: EM for the gamma SF model

Initialize with (βββ 0,σ
2
ν ,0,α0,λ0).

Iterate:

1. βββ t+1 = (XXX ′XXX)−1XXX ′wwwt , wwwt = (w1(θθθ t), . . . ,wn(θθθ t))

2. σ2
ν ,t+1 = Rt(βββ t+1)

3. λt+1 = m satisfying
log(m)+ L̄t = ψ(mMt), m > 0

4. αt+1 = λt+1Mt

Stop if RC ≤ ζ .

(initialization and relative change (RC) criterion are illustrated in Section 4)

Similar to the truncated normal model, Algorithm D requires the solution of a nonlinear equation
in step D3. All other updates are straightforward. We also note that Algorithms A–D have anal-
ogous updates for βββ and σ2

ν . The differences occur only in the updates of the parameters related
to the distribution of u, steps 3 and 4 in Algorithms A–D.

3.5 Standard Errors and Hybrid EM

EM does not directly yield standard errors. In addition, EM can be extremely slow to con-
verge. Acceleration schemes have been proposed alongside ways of estimating standard errors
(Jamshidian & Jennrich, 1997). We will call these methods hybrid EM since in order to obtain
standard errors, the likelihood (not necessary for the updates) must be provided.

In the illustrations that follow, we have used different EM implementations:

I. Straightforward implementation of the EM updates (Algorithms A, B and C) with the
variance of ML estimates, θ̂θθ , obtained with the outer product of gradients (OPG),

V̂ar(θ̂θθ) = (Ĝ′Ĝ)−1, (14)

where Ĝ is the n× p matrix of derivatives of the loglikelihood, Ĝi j = [∂`i/∂θ j]|θ̂θθ . Here,
derivatives were computed via numerical differentiation of the loglikelihood (2). Explicit
computation of ∂`i/∂θ j is possible for the half-normal, exponential and truncated normal
SF models and may also be used to obtain Ĝ instead of numerical differentiation.

II. Hybridization schemes:

(II.1) Simple follow-up of EM by any Newton-like method: Running EM in the beginning
then switching to a quasi-Newton method is a well established strategy (McLachlan
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& Krishnan, 2007). The idea is to take advantage of the global convergence properties
of EM at first and then bypass EM’s slow convergence by switching to a Newton-like
method such as DFP or BFGS, which features fast, superlinear, local convergence
(Dennis & Moré, 1974). Such a hybrid algorithm is possible as long as the the log-
likelihood (2) is available (at least numerically). In addition, regardless of whether
the chosen Newton method uses user-supplied derivatives or some built-in numerical
derivative routine, a Hessian matrix evaluated at the optimum, Ĥ, will be generated
at the final iteration which is then used for variance estimation,

V̂ar(θ̂θθ) =−Ĥ−1. (15)

(II.2) Squared extrapolation method: Next we consider a hybridization scheme known as
SQUAREM (Varadhan & Roland, 2008). It belongs to the non-monotone (partially
monotone) class of acceleration schemes (Varadhan & Roland, 2008; Zhou et al.,
2011) and along with the more elaborate scheme of Zhou et al. (2011) is consid-
ered the gold standard among acceleration schemes (Zhou et al., 2011). The general
form of this accelerated EM algorithm is given is pseudo code form below. Details
about the calculation of the steplength are given in Varadhan and Roland. In the R
implementation we used (Bobb & Varadhan, 2018), standard errors are obtained by
a numerically computed hessian if the loglikelihood is provided.

Algorithm SQUAREM: Pseudo code (Varadhan & Roland, 2008)

Iterate:

i. θθθ a = EMupdate(θθθ t )

ii. θθθ b = EMupdate(θθθ a)

iii. rrr = θθθ a−θθθ t

iv. sss = θθθ b−θθθ a− rrr

v. Compute steplength α

vi. θθθ c = θθθ t −2αrrr+α2sss

vii. θθθ t+1 = EMupdate(θθθ c)

viii. Stop if RC ≤ ζ .

(initialization and relative change (RC) criterion are illustrated in Section 4)

(II.3) Quasi-newton acceleration of EM: the method developed by Zhou et al. (2011) sur-
passes previous quasi-Newton acceleration methods in that it does not handle the
observed information matrix or the Hessian of the algorithm map (EMupdate), a
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property shared with the above squared extrapolation method. The general form of
the update is given by

θθθ t+1 = EMupdate(θθθ t)−∆[θθθ t −EMupdate(θθθ t)].

The matrix ∆ is related to a low-rank approximation of the differential of the EM
update. Its construction is detailed in Zhou et al. (2011).

In both SQUAREM and quasi-Newton acceleration the Hessian of the loglikelihood
evaluated at the estimate is obtained numerically thus providing standard errors, ac-
cording to (15). Note that the likelihood is not needed in the updates, just for Hessian
computation.

4 ILLUSTRATIONS

In the following illustrations we have monitored the relative change in estimates,

RC =
‖θθθ t −θθθ t−1‖
ζ +‖θθθ t−1‖

,

with stopping rule RC < ζ . We have set ζ = 10−6. The hybrid scheme (II.1) runs EM until
RC reaches a less stringent level (say ζ = 10−3), followed by a built-in BFGS routine (which
computes the necessary derivatives of the loglikelihood numerically).

Starting values for all schemes are obtained by adapting ordinary least squares (OLS) and the
results for half normal and exponential models were checked against those provided by Stata14’s
rfrontier StataCorp. (2015) which uses a Newton routine.

Versioned code in R language for the applications below are available from the authors’ website
as illustrated in the Appendix.

4.1 Agricultural Production Frontier

As a first illustration, we use data from the Brazilian Census of Agriculture (2006) (IBGE,
2006)1 including 219 municipalities in the Brazilian Midwest region to fit the half normal and
exponential models using EM. The specific technology considered is Cobb-Douglas,

log(Yi) = β0 +β1 log(Ki)+β2 log(Li)+νi−ui,

where Y is gross output of farms, ranches and agricultural enterprises in the municipality and K
and L are aggregate measures of capital and labor, respectively.

For the half normal model, a combination of method of moments and OLS, known as modified
OLS (MOLS), is available (with closed-form expressions) (Kumbhakar & Lovell, 2003) and the
parameter estimates could be used as (excellent) starting values for likelihood maximization.

1The latest available census is from 2017, followed by the one in 2006, but we, as of now, have not been able to compile
the 2017 microdata.
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A rougher starting point is simply βββ 0 = OLS estimates and σ2
ν ,0 = σ2

u,0 = half of the residual
variance from OLS. As expected, with either of these sets of starting values we obtained conver-
gence with different generic optimization routines available in R and Stata14. EM converged in
about 370 iterations when started from MOLS and it took close to 600 iterations when started
from the rougher point. The acceleration scheme SQUAREM (II.2) used close to 20 iterations
with either starting point. Computing times for all scenarios considered were less than a second
on a personal computer running Linux OS (i5-6500 CPU 3.20GHz) with no parallelization. Re-
gardless of method and software, results for point estimates agreed within reasonable numerical
accuracy. However, standard errors differ slightly for the technology coefficients and more so for
the parameters of the random components. The results are presented in Table 1.

For the exponential model, starting our routines at βββ 0 = OLS estimates and σ2
ν ,0 = 1/λ 2

0 = half
of the residual variance from OLS, the EM algorithm took far less iterations (around 100) to
reach the desired relative precision with SQUAREM requiring only 10 iterations. As opposed to
the half normal model, standard errors for the parameters of the random components were less
variable across methods. In passing, we note that the likelihood-ratio test of σu = 0 rejected the
null (as opposed to the half normal case). The results are presented in Table 2.

Table 1 – Estimation results from half normal SF model with 219
agricultural DMUs and different routines. `(θ̂θθ) =−170.45.

β̂0 β̂1 β̂2 σ̂2
u σ̂2

ν

MLE 1.18 0.73 0.24 0.15 0.22
Standard Errors
OPG (see eq. (14)) (.59) (.03) (.03) (.10) (.04)
Hybrid EM (see II.1) (.60) (.06) (.05) (.12) (.05)
SQUAREM (see II.2) (.56) (.04) (.03) (.14) (.05)
Stata14 (.60) (.06) (.05) (.12) (.05)

Table 2 – Estimation results from exponential SF model with 219
agricultural DMUs and different routines. `(θ̂θθ) =−167.94.

β̂0 β̂1 β̂2 σ̂2
u

† σ̂2
ν

MLE 1.59 0.70 0.26 0.07 0.20
Standard Errors
OPG (see eq. (14)) (.58) (.04) (.03) (.02) (.03)
Hybrid EM (see II.1) (.60) (.06) (.05) (.03) (.03)
SQUAREM (see II.2) (.58) (.02) (.03) (.03) (.03)
Stata14 (.60) (.06) (.05) (.03) (.03)

† The routine used is parameterized in terms of λ = 1/σu.

The errors for σ2
u reported here were obtained by delta method.
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4.2 Electricity Cost Function

Here we use the EM algorithm to fit the gamma model to electricity data from 1970 (n = 158 firms
and holding companies) which has appeared in Greene (2003) and other places. The cost function
is Cobb-Douglas with a quadratic term in log output (logQ). The other variables involved are total
cost of generation (C) and the unit prices of fuel (F), capital (K) and labor (L),

log(C/F)i = β0 +β1 log(L/F)i +β2 log(K/F)i +β3 logQi +β4 log2 Qi +νi +ui.

We note that software regularly used by us (R, Stata and SAS) do not fit the SF gamma model,
most likely due to issues in integration and identifiability. LIMDEP (Greene, 2012) uses a simu-
lated likelihood method Greene (2003) to estimate the gamma SF model. Our use of the gamma
model (Algorithm D) has been operationalized by numerical integration which is the focus of
(Andrade & Souza, 2018). The estimates of the gamma SF model produced by EM (Algorithm
D with the appropriate sign changes due to this being a cost function and therefore ε = ν + u)
are shown in Table 3.

The starting point used was the OLS estimates for the β ’s, α0 = 1 (exponential model) and σ2
ν ,0

and 1/λ 2
0 = half of the residual variance from OLS.

We note that different choices of initial values have led to other stationary points with lower
likelihood. In fact, several local maxima may be the reason for the identifiability questions raised
by Ritter & Simar (1997) with respect to the gamma SF model. Simulated maximum likelihood
(SML) estimates reported by Greene (2003) are shown in the last line of Table 3. The SML
estimates suggest an exponential model and have lower likelihood than that achieved by the EM
estimates. We have not succeeded in estimating standard errors by numerical computation of the
hessian due to issues involving numerical integration. The OPG method yields the errors reported
in Table 3; the standard error associated with λ̂ is extremely low relative to the estimate and could
be the result of numerical inaccuracy.

Running time differences were irrelevant in the model fits of the previous section. Here, we
must note that, because numerical integration and root finding are involved in the EM steps, the
computing time becomes an issue. EM took approximately 2 minutes to converge and the gain
from using SQUAREM is noticeable, with running time of 36 seconds.

Table 3 – Estimation results from gamma SF model with 158 DMUs.

β̂0 β̂1 β̂2 β̂3 β̂4 σ̂2
ν α̂ λ̂ ˆ̀

EM -7.044 0.146 0.135 0.455 0.028 0.012 0.258 5.876 93.4
(.22) (.04) (.04) (.04) (.002) (.002) (.15) (.01)

SML -7.034 0.145 0.138 0.445 0.028 0.011 1.082 9.577 91.6
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5 FINAL REMARKS AND PRACTICAL CONSIDERATIONS

The hierarchical structure of SF models motivated our study of the EM algorithm. We have
given the necessary information to implement the EM algorithm in four standard SF models. EM
calculations resulted in simple algorithms with closed-form expressions for the half normal and
exponential models and more elaborate versions for the truncated normal and gamma models.

This paper does not bring any comparative study of optimization methods for SF models. In gen-
eral, the user’s needs, programming environment, programming ability and objectives, access
to built-in routines (for optimization and nonlinear equation solving) and data characteristics
will dictate the methods and criteria for useful and specific comparisons. We offer the following
general remarks. Since the loglikelihood is available for the standard models (and at least nu-
merically for the gamma model), several general-purpose optimization methods may be used to
compute ML estimates. Such methods may require up to second derivatives or be derivative-free,
including trust regions, Newton, quasi-Newton, conjugate gradient, Nelder-Mead, pattern search,
etc. Specific implementations may require user-supplied derivatives or be automated to compute
them numerically. EM is another tool in this toolbox. It does not require derivatives in the esti-
mation but we have used numerically calculated first and second derivatives in the computation
of standard errors by means of the hessian and the outer product of gradients estimate (14). It is
well known that EM is relatively slow and Newton is very fast when close to the solution (Dennis
& Moré, 1974). Differences in running time may be negligible depending on the data size and
model used. Yet, small differences may matter if one is performing large simulations. The ascent
property (Section 2) gives EM more room for choosing initial values than most methods. Imple-
menting Algorithms A–D in most languages should be straightforward whereas general-purpose
methods are much more elaborate. Yet, built-in versions of quasi-Newton are readily available
in systems like R and Matlab. EM’s computer storage and sensitivity to data sparsity have not
been studied by us relative to any other method. Since units may vary widely for different kinds
of inputs (hours, tons, dollars, counts) we suggest rescaling xxx for better numerical stability.

Acceleration schemes for EM have been discussed and the examples showed that SQUAREM
accelaration substantially reduces the computing time. We would certainly consider them in im-
plementations of EM for more complex models with covariates and heterocedasticity. The above
considerations, as usual, call for further research, especially with regards to the gamma SF model.

References

[1] AIGNER D & CHU DS. 1968. On estimating the industry production function. American
Economic Review, 58: 826–839.

[2] ANDRADE BB & SOUZA GS. 2018. Likelihood computation in the normal-gamma
stochastic frontier model. Computational Statistics, 33(2): 967–982.

Pesquisa Operacional, Vol. 39(3), 2019



376 THE EM ALGORITHM FOR STANDARD STOCHASTIC FRONTIER MODELS

[3] BOBB JF & VARADHAN R. 2018. turboEM: A Suite of Convergence Acceleration
Schemes for EM, MM and Other Fixed-Point Algorithms. Available at: https://CRAN.
R-project.org/package=turboEM. R package version 2018.1.

[4] BOGETOFT P & OTTO L. 2015. Benchmarking with DEA and SFA. R package version
0.26.

[5] COELLI T & HENNINGSEN A. 2013. frontier: Stochastic Frontier Analysis. Available at:
http://CRAN.R-Project.org/package=frontier. R package version 1.1-0.

[6] DEMPSTER AP, LAIRD NM & RUBIN DB. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1): 1–38.
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APPENDIX: R TOOLS

############################################################

# R code using:

# sfaEM: EM tools for stochastic frontier analysis_
# R package under development; version 0.0.1 (june/2019)
# http://probest-unb.weebly.com/sobre.html
# Author: Bernardo B. de Andrade

############################################################

install.packages(’sfaEM.tar.gz’, type=’source’)

# Half normal production frontier

require(sfaEM)
data(AGRO2006)
x <- agro2006[,2:3]

y <- agro2006$y

# EM and SQUAREM

out <- sfaem(x=x, y=y, dist=’halfnorm’)

out

pars(out)

stderror(out) # from numerical Hessian

# OPG standard errors

sqrt(diag(opg(out)))

# EM with lower tolerance, followed by Newton (II.1)

out0 <- sfaem(x=x, y=y, reltol=1e-3)

out1 <- bfgs(out0)

out1

sqrt(diag(out1$invhessian))

# Gamma cost frontier

data(Electricity1970)
x <- with(Electricity1970, {

data.frame(x1 = log(labor) - log(fuel),
x2 = log(capital) - log(fuel),
x3 = log(output),
x4 = log(output)ˆ2)

}

)

y <- with(Electricity1970, log(cost) - log(fuel))

out <- sfaem(x=x, y=y, dist=’gamma’, frontier=’cost’)

out

pars(out)

sqrt(diag(opg(out)))
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