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Resumo

Este trabalho usa técnicas de aprendizado de máquina para prever o consumo de energia

elétrica (CEE) do Brasil no curto e médio prazo. Os modelos são comparados com modelos

referenciais, como o Random Walk e ARIMA. Nossos resultados mostram que os métodos

de aprendizado de máquina, especialmente Random Forest e Lasso Lars, têm precisão

superior para todos os horizontes de previsão, removendo o sobreajuste presente nos

modelos tradicionais. Random Forest e Lasso Lars conseguiram acompanhar a tendência

e a sazonalidade nos diferentes horizontes temporais. Ainda, o ganho em prever CEE

utilizando modelos de aprendizado de máquina em relação aos tradicionais é muito maior

no curtíssimo prazo. A seleção de variáveis dos modelos de aprendizado de máquina mostra

ainda que os valores defasados de CEE são extremamente importantes para a previsão de

curtíssimo prazo, devido à sua alta autocorrelação. As demais variáveis são importantes

para horizontes temporais mais longos.

Palavras-chave: Energia elétrica, Atividade econômica, Brasil, Economia emergente,

Previsão, Random Forest, Lasso, Lars, Seleção de modelo.



Abstract

This work uses machine learning techniques to predict Brazilian power electricity consump-

tion (PEC) for short and medium term. The models are compared to benchmark specifica-

tions such as Random Walk and autoregressive integrated moving average (ARIMA). Our

results show that machine learning methods, especially Random Forest and Lasso Lars,

have superior accuracy for all forecasts horizons by removing the overfitting present in

traditional models. Random Forest and Lasso Lars managed to keep up with the trend

and the seasonality in different time horizons. The gain in predicting PEC using machine

learning models compared to traditional ones is much higher in very short-term. Machine

learning variable selection further shows that lagged consumption values are extremely

important for very short-term forecasting due to its high autocorrelation. Other variables

are important for longer time horizons.

Key-words: Power electricity, Economic activity, Brazil, Emerging economies, Forecasting,

Random Forest, Lasso, Lars, Model selection.
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1 Introduction
Forecasting economic activity is essential to the development of the economy. Accu-

rate forecasts allows the government to better organize its budget and help economic agents

to set their expectations. We usually follow GDP as the main representation of economic

activity, but it is released only quarterly and usually these data are adjusted afterwards.

Thus, it is interesting to find some new way to forecast short-term economic activity. This

helps to surpass the problems of the usual measurements, such as a considerable lapse of

time between the analyzed intervals.

Power electricity consumption (PEC) is released hourly and it has a great causal

relation with economic activity (MAZA; VILLAVERDE, 2007). Developed economy

requires a large amount of electricity to satisfy the needs of industries, families, farmers,

and government. In this sense, satellite data on lights at night are a strong and useful

indicator of economic activity (HENDERSON et al., 2012; BUNDERVOET et al., 2015;

NASA, 2000). The Federal Reserve Board’s monthly index of industrial production (until

2005) is partially based on a survey that measures delivered electricity.

Moreover, forecasting PEC is crucial to the planning of electricity industry and

the operation of electric power systems. Accurate forecasts maintain the balance between

power electricity supply and demand since we cannot store electrical energy. Consequently,

these forecasts play an important role in future decisions on energy management and for

saving in operation and maintenance costs.

The purpose of this paper is to make accurate forecasts of Brazilian PEC for 1 day

and up to 3 months ahead. We use traditional econometric models as well as machine

learning techniques in order to get an accurate forecast. Our results show that machine

learning models perform much better than the traditional ones. We also note a bigger

gain in forecasting very short term with machine learning models relative to regular ones.

In a 1-day forecast, our best model has a forecast error that is 5 times smaller the best

benchmark and about 3 times for the other horizons.

PEC is a highly seasonal and cyclical variable. Its consumption level varies with
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the day of the week or season of the year, and is greatly correlated with its past values.

Hence, it is common to forecast short-term PEC by using just lagged variables via ARIMA

model (ALMESHAIEI; SOLTAN, 2011; HUANG; SHIH, 2003; RODRIGUES et al., 2014).

Calendar variables is also an important set of variables that captures the series’ seasonality.

Lebotsa et al. (2018) and Fan and Hyndman (2011) include calendar variables in order to

catch the complex nonlinear relationship between electricity demand and its drivers.

Weather variables are relevant to predict a variety of economic variables. Dell

et al. (2014) exhibit that shocks in temperature affect many economic outcomes, such

as economic growth, industrial output, and energy demand. The authors also note that

poor countries, such as Brazil, appear to be much more sensitive to these shocks for

many outcomes. Including weather variables manages to control PEC highly seasonality

in short-term forecasts (LEBOTSA et al., 2018; FAN; HYNDMAN, 2011).

Hydroelectric plants are responsible for about 68% of all electricity consumed in

Brazil (EPE, 2017). This type of energy is highly seasonal and influenced by weather

factors (ADEGBEHIN et al., 2016). River flow, rain incidence, and temperature increase

directly affect Brazil’s energy production. In addition, wind energy accounts for about

5.4% of Brazil’s electricity production and is on a great rise, growing by around 33% in

2016 (EPE, 2017). This corroborates the inclusion of weather variables for PEC forecasts.

Electric energy price variables and other economic variables capture the whole

economic environment. These sets of variables are able to follow the trend of PEC, given

the positive relationship between them. El-Shazly (2013) include economic variables to

build a dynamic econometric model to forecast PEC and produce reliable ex-post forecasts.

We consider an approach based on a high dimensional data. We build a database

with more than 1500 variables, including lagged demand, calendar variables, weather

variables, electric energy price variables, and other economic variables. We estimate our

models for 6 different forecasts horizons using a rolling window of 546 observations.

The outline of the paper is as follows. We present our model in Section 2 describing

the structure and all models used to forecast PEC. In Section 3 we detail our dataset and
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analyze all variable sets used. We then show our general results and examine the best

models in Section 4. We also observe which variable are more important to predict PEC

for each forecast horizon. Lastly, in Section 5, we present a brief conclusion concerning our

findings.
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2 Data
We use Brazilian data from various sources. The initial date from our dataset is

February 1, 2017, when PEC hourly data starts to be disclosed, and ends on July 31,

2018. Although PEC data are released hourly, most other explanatory variables data are

released only daily or monthly. Therefore, we use data at a daily frequency. Our sample

consists of 546 days (one and a half year). We use one year for the training set and six

months for the holdout set.

The first set of variables that we include is the set of calendar variables. This set

includes day of the week, day of the month, month, season of the year, year and a dummy

for holidays, totaling 6 calendar variables.

2.1 Power Electricity Consumption

We use the hourly energy load by subsystem (mWh) for Brazil, which is released by

the National Electricity System Operator (ONS) to measure Power Electricity Consumption

(PEC). Figure 1 shows the behavior, trend, seasonality, and residue of the total daily

electricity consumption in Brazil. We note that PEC is a highly seasonal variable.

Figure 1 – Seasonal Plot

We can see in Figure 1 the effect on PEC of the Brazil’s truckers strike. At the end

of May 2018, truck drivers blocked roads across Brazil demanding a reduction in diesel
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prices that had risen more than 50% in the last 12 months. With trucks stalled, partially

blocking roads, fuels were no longer delivered to several gas stations and to other activities

that expected raw materials and essential products, such as food, also ran out of supplies.

We note that PEC level fell by about 30% during the Brazil’s truckers strike. This link

between the two variables reinforces the great causal relation between economic activity

and electric energy.

Figure 2 – Autocorrelation Plot

Figure 2 shows how PEC is correlated with its lagged values. We observe a great

correlation with its value from the previous day. However, the correlation is even greater

with the consumption of a week ago, corroborating the cyclical behavior of the PEC

present in Figure 1. This figure indicates the importance of including lagged demand in

forecast models.

We select the hourly energy load by subsystem (mWh) for Brazil and by Region in

the ONS website 1. However, we also take PEC daily data separated by consumption class

for each region from Electric Energy National Agency (ANEEL) website 2. Consumption

classes set includes PEC variables divided into groups such as industrial, commercial and

services, own consumption, residential, rural, street lighting, public service and others 3.

This division by consumption class not only improves the performance of the
1 <http://sdro.ons.org.br/SDRO/DIARIO/index.htm>
2 <http://www.aneel.gov.br>
3 We list all consumption classes in the appendix.

http://sdro.ons.org.br/SDRO/DIARIO/index.htm
http://www.aneel.gov.br
http://sdro.ons.org.br/SDRO/DIARIO/index.htm
http://www.aneel.gov.br
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Figure 3 – PEC by sector

model’s predictions, but is also crucial to understand how the consumption of electricity

is distributed across several economic activities or classes. In our sample, most of the

electricity consumption is concentrated in commercial and services (23%), industrial (12%),

and residential consumption (44%). The first two are directly linked to country’s economic

activity, while the third one is indirectly related. Figure 3 shows these variables and we

can see that the sum of these variables is close to 80% of all PEC in Brazil. This fact

reinforces the link between of economic activity and PEC.

We have a total of 185 PEC variables after taking into account PEC’s division by

hour and by consumption class for each region.

2.2 Weather Variables

We collect this set of variable from the Brazilian Institute of Meteorology (INMET)

website 4 that releases the historical series issued by stations scattered throughout Brazil.

This set of variables contains air nebulosity, atmospheric pressure (mbar), dry bulb

temperature (∘C), humidity bulb temperature (∘C), relative humidity (%), wind direction

and wind speed (m/s) disclosed for 9 a.m., 3 p.m., and 9 p.m. for each station.

The most important weather variable for forecasting PEC is the dry bulb tempera-

ture, which is also a very seasonal variable with a large variance. Inspired by Boldin and
4 <http://www.inmet.gov.br>

http://www.inmet.gov.br
http://www.inmet.gov.br
http://www.inmet.gov.br
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Wright (2015), we adjust the temperature by subtracting the average of the entire training

set, if the day belongs to the training set; and over the entire holdout set, if the day belongs

to the holdout sample. Adjusted-temperature controls both for the seasonal effect and for

the variance of temperature. This methodology is aligned with the World Meteorological

Organization guidelines for the calculation of climate norms (ORGANIZATION, 2017).

Figure 4 – Average Temperature

Figure 5 – Adjusted Average Temperature

Figures 4 and 5 show how the adjusted temperature loses part of its variance and

seasonality. When comparing Figures 1 and 5 we observe that PEC and temperature have

positive correlation. This is a further indication that weather variables are potentially

important in predicting PEC.

We have a total of 180 weather variables for all regions and all hours analyzed by

INMET after aggregating the data by region and including the adjusted temperature.
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2.3 Electric Energy Price

We retrieve the price dataset from Electric Energy National Agency (ANEEL)

website 5 and divide by consumption class for each region. However, price of electricity is a

monthly variable and as our variable of interest has daily frequency, we set the same price

for all days in a month. Figure 6 shows price of power electricity for Brazil and its regions.

After aggregating all variables by region and by consumption class, we have a total

of 60 price variables.

Figure 6 – Average Price by Region

2.4 Economic Variables

We use a database from Brazilian Central Bank (BCB) website 6 that includes

several indices of price, traffic of vehicles, unemployment, wage, industrial production vari-

ables, monetary variables, consultations with credit bureaus, Brazilian Bank for Economic

and Social Development (BNDES) disbursements and several others. We include a wide

list of economic variables, some at a daily and others at a monthly frequency. For those at

a monthly frequency, we also set the same value for all days within a month.
5 <http://www.aneel.gov.br>
6 <https://www.bcb.gov.br/estatisticas/indicadoresconsolidados>

http://www.aneel.gov.br
http://www.aneel.gov.br
https://www.bcb.gov.br/estatisticas/indicadoresconsolidados
http://www.aneel.gov.br
https://www.bcb.gov.br/estatisticas/indicadoresconsolidados
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We have a total of 79 economic variables. After merging all sets of explanatory

variables listed in this section, we have a total of 510 variables 7.

7 We list all sets of variables in the appendix.
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3 Econometric Models

3.1 Estimation

Since PEC is a highly seasonal variable, we consider that its forecast h periods

ahead is a function of three blocks of predictors. Each block of predictors is the merge of

all our explanatory variables in a different period of time, which depends on our forecast

horizon h. The first block uses the data from the last available date, the second one uses

data from the past h days, and the third block uses data from the past 2 * h days. After

aggregating all predictor’s blocks, we have a total of 1530 candidate variables for 546

observations.

The lags structure means that a forecast for 𝑡 + ℎ periods ahead uses variables

from 𝑡, 𝑡 − ℎ and 𝑡 − 2ℎ. That is, in a 7 days ahead forecast, we use data from today

and from past 7 and 14 days. We test several other lags structures and this one presents

the smallest forecast error. We see from Figure 2 that PEC has a large autocorrelation

with different past weeks and this structure builds a database that captures information

from past data. With a nearby lag structure 1, our database loses information that better

capture PEC’s seasonality. The lag structure is the first hyper-parameter that we define.

We take the period from February 2017 to Abril 2018 as the training set. The

holdout set is from May 2018 to July 2018. We split the training set in two in order

to choose all hyper-parameters of the models for each forecast horizon. We run several

hyper-parameters values for each model, such as 𝜆 from Lasso, which we present below.

We select the parameters with the lowest root mean square error (RMSE) for each forecast

horizon.

After we select the hyper-parameters, we run the models for the entire training

set and obtain the model’s parameters (B =
[︁
𝛾, 𝛽

]︁
). Next, we use these parameters in

our holdout set and we obtain the predictions for the models and forecasts horizons. We
1 Example of a nearby lag structure: forecast 𝑡 + ℎ use variables from 𝑡, 𝑡 − 1 and 𝑡 − 2. A 7 day ahead

forecast use data from today, yesterday and the day before yesterday.
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use the RMSE to evaluate our models. Thus, the model that presents the lowest RMSE is

considered the best one because it is closer to the real value of PEC.

We make predictions for 6 different forecast horizons: 1, 7, 15, 30, 60 and 90 days

ahead, divided into three groups: (1) very short-term forecast group (VSTFG) that includes

1 and 7 days, (2) short-term forecast group (STFG) containing 15 and 30 days and (3)

medium-term forecast group (MTFG) including 60 and 90 days. Our estimated equation

is given by:

𝑦𝑡+ℎ = 𝛼0 +
2∑︁

𝑖=0
𝛾𝑖𝑦𝑡−(ℎ*𝑖) +

2∑︁
𝑖=0

𝛽𝑖𝑋𝑡−(ℎ*𝑖) + 𝑢𝑡+ℎ,

in which 𝑦𝑡 is the power electricity consumption (mWh) in Brazil at time 𝑡, 𝛼0 is a constant

term, 𝑋𝑡 is a matrix containing all candidate variables, B =
[︁
𝛾, 𝛽

]︁
is a vector with all the

linear parameters, and 𝑢𝑡 is an error term.

3.2 Models

Our benchmark models, ARIMA and Random Walk, use only lagged PEC. We build

a high-dimensional dataset with all candidate variables. We then use machine learning

models to predict PEC. We expect these models to perform better than traditional ones

when working with big data. All models are explained below.

3.2.1 ARIMA

Autoregressive integrated moving average (ARIMA) uses just lagged variable of

interest. The ARIMA (p,i,q) equation can be represented by:

𝑦*
𝑡 = 𝛾 + Φ0 + Φ1𝑦

*
𝑡−1 + · · · + Φ𝑝𝑦*

𝑡−𝑝 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + · · · + 𝜃𝑞𝑢𝑡−𝑞,

in which 𝑦𝑡 is the PEC at time t, 𝑦*
𝑡 = 𝑦𝑡 −𝑦𝑡−1 and 𝑢𝑡 is an error term. We use Augmented

Dickey–Fuller test and find that our series has an unit root and therefore we use its first
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difference in the ARIMA.

3.2.2 Random Walk

Random Walk (without drift) is a process in which the variable current value is

constituted by its past value plus an error term. That is, the best value for forecasting k

periods ahead is the value available today.

Random Walk is commonly used to trade exchange rates in short-term. Random

Walk without drift can outperform the Random Walk with drift in terms of the RMSE

(MOOSA; BURNS, 2016). The model can be represented by:

𝑦𝑡 = 𝑦𝑡−𝑘 + 𝑢𝑡,

in which 𝑦𝑡 is PEC at time t and 𝑢𝑡 is an error term. This model is a good measure of

sensitivity in a autocorrelated series, since the last available value is probably correlated

with the forecast. Thus, Random Walk, is commonly used as a benchmark for forecasts.

3.2.3 Lasso

Shrinkage methods present a prosperous alternative to traditional models when

working with high dimensional data (GARCIA et al., 2017). The main idea of these

methods is to shrink irrelevant variables to zero.

The least absolute shrinkage and selection operator (Lasso) minimizes the mean

squared error (MSE), just as OLS. However, Lasso has a shrinkage coefficient, 𝜆, that

forces irrelevant variables to zero. The parameters are determined by:

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

⎡⎣‖𝑌 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖1

⎤⎦.

Lasso can be seen as a generic OLS model because if 𝜆 = 0 the parameters, then

𝛽 and 𝛽𝑂𝐿𝑆 are the same. On the other hand, if the shrinkage coefficient is equal to some
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𝜆𝑐 > 0 large enough, then all the variables are considered irrelevant and all 𝛽𝑖 are equal to

zero. Generically we have, 𝜆𝑐 ≥ 𝜆 ≥ 𝜆𝑂𝐿𝑆 = 0.

3.2.4 Lars

Least angle regression (Lars) is also a good model to use when working with high

dimensional data because it provides a way of producing an evaluation of which variables

to include. The main idea of his algorithm is to start with all values of 𝛽 equal to zero

and to increase all the coefficient associated with the 𝑥𝑖 that is most correlated with 𝑦. In

other words, the algorithm increases the parameters values in an equiangular direction to

each one’s correlations with the residual.

Lars algorithm and its variations work gracefully for the case in which there

are many more variables than observations. Lars is easy to modify to produce efficient

algorithms, like Lasso Lars, and is useful in cross-validation or similar attempts (EFRON

et al., 2004).

3.2.5 Lasso Lars

A simple modification in Lars algorithm can result in the simulation of all Lasso

models for all possible 𝜆 values (EFRON et al., 2004). Thus, in the traditional Lars method,

if a coefficient changes the signal, the direction remains the same. However, in Lasso model,

when a coefficient reaches the value 0, it is discarded from the active variable set. For that

reason, Lasso Lars algorithm makes a simple modification in the original Lars. That is,

if any coefficient becomes zero this variable is discarded and the model recalculates the

search direction.

3.2.6 Ridge

Ridge Regression, like Lasso, is a generic version of OLS that also has a shrinkage

coefficient 𝜆. However, the difference is that the Ridge’s restriction is squared and its

parameters are determined by:
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𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

⎡⎣‖𝑌 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖2

2

⎤⎦.

By adding a squared constraint, the loss function becomes strictly convex, and

therefore has a unique minimum. Consequently, this model also reduces overfitting presented

in traditional models. However, Ridge algorithm makes it harder to zero the coefficients

and can not completely eliminate some irrelevant variables.

3.2.7 Elastic Net

Elastic Net is also a regularized model regression that combines the restrics in

Lasso and Ridge Regression. The parameters are given by:

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

⎡⎣‖𝑌 − 𝑋𝛽‖2
2 + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2

2

⎤⎦.

Elastic Net becomes a general case of Lasso and Ridge Regression. Therefore, as in

the Ridge model, the Elastic Net method makes the loss function strictly convex, forcing

it to have a unique minimum.

3.2.8 Random Forest

So far, all machine learning models present a method to shrink less relevant variables.

However, Random Forest is a machine learning method that’s combine a tree of predictors

such that each tree depends on the values of a random vector sampled independently and

with the same distribution for all trees in the forest (BREIMAN, 2001). Briefly, this model

grows a forest of trees and let them vote for the most popular class (if in a classification

problem) or averaging the forecasts (if in a regression problem).

Random Forest seeks to reduce the overfitting of traditional models when making

a bagging (or bootstrap), combining learning models. Moreover, this machine learning

algorithm can also model arbitrarily complex relations between inputs and outputs and
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intrinsically implement feature selection. Medeiros and Freitas (2016) argue that Ran-

dom Forest has a great ability to select variables and a powerful potential to identify

nonlinearities between macroeconomic variables.
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4 Results
We list our best models for each forecast horizon by analyzing their root mean

square error (RMSE). We normalize all variables before running the models in order to

make the comparison between them easier.

Table 1 – Models results
Model Rank 1 day 7 days 15 days 30 days 60 days 90 days

(RMSE) (RMSE) (RMSE) (RMSE) (RMSE) (RMSE)
1st Random Forest Random Forest Lasso Lars Lasso Elastic Net Lasso Lars

(35753.39) (66621.08) (75882.53) (72545.07) (80127.27) (84758.67)
2nd Lasso Lars Lars Random Forest Lasso Lars Ridge Lars

(48300.59) (68400.7) (79375.37) (74151.69) (80876.71) (85059.85)
3rd Lars Ridge Lars Ridge Lars Random Forest

(50234.63) (68846.63) (86543.14) (79611.33) (81952.96) (86887.45)
4th Lasso Lasso Lars Ridge Lars Lasso Lars Ridge

(61572.13) (68898.78) (93536.83) (108984.56) (91794.13) (92784.78)
This table shows the models ranking by the forecast error. The number between parentheses is the RMSE.

Table 1 exhibits the four models that present the smallest RMSE for each forecast

horizon. These results corroborate what we delineate in Section 2: machine learning models

present much better performance than the traditional ones.

We also analyze the gain in predicting PEC using machine learning models instead

of our benchmark models. We normalize the error by dividing the RMSE of the best

models by Random Walk’s RMSE for each time horizon. We use Random Walk because it

has the smallest error among the benchmark models. The relative gain in predicting PEC

using machine learning models is larger for very short-term predictions. The best model

has an error that is about 5 times lower than the error of the Random Walk for 1-day

forecast and that is about 3 times smaller for the subsequent forecasts horizons. Figure 7

shows this comparison.

Even when using almost the same variables to predict short-term PEC 1 as bench-

mark models, machine learning models have a much better performance. Benchmark

models end up being overfitted and present poor results for all time horizons analyzed.

Thus, our four best prediction models are always the machine learning ones that better

select the relevant variables.
1 Benchmark models only use lagged variables to predict and these variables are the main ones for

predicting short-term PEC with machine learning models.
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RMSE divided by Random Walk’s RMSE.

Figure 7 – Relative Gain

In Table 2, we classify the five best models according to the results present in Table

1. For VSTFG, our best prediction model is Random Forest and for STFG and MTFG the

best model is Lasso Lars. Both models present the lowest RMSE in most of the forecast

horizons analyzed for each group.

Table 2 – Models rank

Rank Model
Very Short-Term Short-Term Medium-Term

1st Random Forest Lasso Lars Lasso Lars
2nd Lars Lasso Lars
3rd Lasso Lars Random Forest Random Forest
4th Ridge Lars Elastic Net
5th Lasso Ridge Ridge
This table shows the five best models for each forecast horizon
group.

In order to make a better analysis of the most important variables for each model,

we sum the absolute values of the coefficients for each set of variables described in the

previous section. Table 3 shows this sum for the four best models in each forecast horizon.

Comparing the sum among them does not give us much since each model behaves
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Table 3 – Paremeters analysis
VSTFG

Paremeters 1 Day 7 Days
Random Forest Lasso Lars Lars Lasso Random Forest Lars Ridge Lasso Lars∑︀ | PED Variables| 0.73 511.94 603.4 529.27 0.89 401.59 475.74 334.08∑︀ |Calendar Variables| 0.21 55599.06 54616.96 122161.95 0 120141.53 35985.1 123180.74∑︀ | Weather Variables| 0.04 63548.57 69568.87 66730.31 0.08 97435.28 81025.62 104999.74∑︀ |Price Variables| 0 18906.59 23374.71 77237.62 0.01 79872.65 43863.99 69113.43∑︀ |Economic Variables| 0.02 5146.7 6630.49 5617.05 0.02 12243.93 27198.81 13236

STFG
Paremeters 15 Days 30 Days

Lasso Lars Random Forest Lars Ridge Lasso Lasso Lars Ridge Lars∑︀ |PED Variables| 478.88 0.42 542.32 1147.75 557.29 656.16 1034.1 1223.31∑︀ |Calendar Variables| 103156.78 0.31 110101.43 89350.27 202878.84 182044.05 93669.63 114530.49∑︀ |Weather Variables| 116181.17 0.13 143406.53 257546.68 220317.28 178016.79 292604.5 152194.85∑︀ |Price Variables| 64241.49 0.04 75458.11 137440.58 155713.15 165620.2 165943.6 195263.74∑︀ |Economic Variables| 22414.62 0.1 27228.64 80774.07 10277.77 7590.1 61500.69 23055.89

MTFG
Paremeters 60 Days 90 Days

Elastic Net Ridge Lars Lasso Lars Lasso Lars Lars Random Forest Ridge∑︀ |PED Variables| 729.22 689.71 145.98 204.25 456.33 214.95 0.24 813.52∑︀ |Calendar Variables| 39517.78 36029.92 42947.04 82805.39 42786.92 42731.1 0.49 7113.61∑︀ |Weather Variables| 131628.7 122329.32 51081.44 79428.17 79564.16 58642.19 0.2 114541.38∑︀ |Price Variables| 115291.06 106949.99 32461.2 131733.53 107544.62 114738.55 0.05 102818.97∑︀ |Economic Variables| 46396.04 43915.52 55389.14 50581.4 45921.62 43899.67 0.03 57197.6

Sum of the absolute values of the coefficients for each set of variables and forecast horizon.

differently in the valuation of their parameters. Also, each set of variables has a different

size and the comparison between them also makes no sense. Therefore, we compare the

sum of the parameters for the same model and same variable set between different forecast

horizons. This comparison is only for our main models for each forecast horizon group. In

other words, we basically analyze how the sum of the coefficients varies for each variable

set between each time horizon and thus, infer the importance of this variables set for each

horizon.

We note in Figure 2 that PEC is highly correlated with it previous day value.

Consequently, all major models attach great importance to lagged values in a 1-day

forecast. Other variables have almost no relevance for the prediction in this time horizon.

Lasso model, for instance, have all their variables coefficients equal to zero, except for the

aggregate PEC at 11 p.m. of the previous day. Random Forest assigns almost no value to

all 60 coefficients of electricity price set.
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Power Eletricity Consumption 1 Day Forecast

Figure 8 – 1 day forecast

Figure 8 shows that all four best forecasts are able to capture the direction and

seasonality of electric power consumption with accuracy.

PEC’s autocorrelation of 7 days ago is higher than the previous day autocorrelation,

as we note in Figure 2. Table 3 shows that the weight attributed to lagged demand

is larger for a 7-day forecast than for 1-day forecast. As lagged values increase their

importance in this forecast horizon, other sets of variables reduce their relevance. That

is, other explanatory variables are still not very important to make forecasts for the very

short-term.

Figure 9 shows that the predictions of the main models are able to follow PEC trend

and cyclicity. Additionally, even with a high autocorrelation, our main models perform

better than the Random Walk forecasts.

The set containing lagged values of PEC loses its relevance for short and medium

term forecast. The correlation with the past demand values are still present for a 15-day

forecast, however weak. When comparing with the 7-day forecast, we note that the sum
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Power Electricity Consumption 7 Days Forecast

Figure 9 – 7 days forecast

of the parameters associated with the lagged demand decreases in our main models. In

Random Forest, this set declines by more than a half.

Consequently, for the following horizons all other variables significantly expand

their importance in the major models. The results are intuitive since PEC is highly

autocorrelated with its initial lags. As the forecast horizon increases, other variables gain

more importance, better capturing the series seasonality and the whole macroeconomic

environment.

Figure 10 again shows that the best forecasts are able to follow the series’ trend

and cyclicity, with a small difficulty to find the local maximums and minimums.

Moreover, we still have accurate results in a 30-days forecast. Figure 11 shows that

the best forecasts can follow the series trend and cyclicity. We note that the predictions

made using Lasso model are able to follow the series seasonality even when forecasting a

month ahead.

When forecasting 60-day ahead, we see an increase in sum of the coefficients
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Power Electricity Consumption 15 Days Forecast

Figure 10 – 15 days forecast

Power Eletricity Consumption 30 Days Forecast

Figure 11 – 30 days forecast
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associated with price variables. This is intuitive, since economic agents tend to be more

sensitive to price changes for longer horizons, as they have more time to adjust behavior.

Power Eletricity Consumption 60 Days Forecast

Figure 12 – 60 days forecast

Our predictions for short horizons are very close to the original values of PEC. At

this stage, our forecasts are able to catch the direction and cyclicity of the original series,

as we can note in Figure 12. That is, as the forecast horizon increases our predictions are

less successful in reaching the local maximums and minimums of the series.

When forecasting PEC 90-days ahead we have a smaller accuracy but we still have

good results. As we note in Figure 13, the best models have a greater difficulty to follow

the series cyclicity, but still, they are able to follow its trend.
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Power Eletricity Consumption 90 Days Forecast

Figure 13 – 90 days forecast
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5 Conclusion
This work uses high dimensional data to forecast PEC. We show that machine

learning models perform better than traditional ones when forecasting using this kind of

database. We forecast PEC for 6 different horizons, which we divide into three groups: very

short term, short term, and medium term. The variables in our database can be classified

into five sets: lagged demand, calendar variables, weather variables, electric energy price

variables, and economic variables. We make predictions using more than ten different

models for each forecast horizon, among which are ARIMA, Random Walk, and several

machine learning methods.

The results show that the high dimensional models with regularized coefficients,

especially Random Forest and Lasso Lars, consistently outperform the benchmark models.

We have a bigger relative gain in the very short term when predicting with machine

learning models. In a 1-day forecast, the prediction error of machine learning models

is about 5 times smaller than the error of benchmark models, while for the subsequent

forecast horizons this error is, on average, 3 times smaller. Furthermore, we conclude that

lagged demands are the most relevant variables for very short-term forecast and as we

consider longer horizon, the other sets of variables become more important.

Our paper shows how machine learning models predict PEC better than traditional

ones. Deep learning is a strand of machine learning methods based on artificial neural

networks. These methods are able to automatic learn the temporal dependence and

automatic handle the temporal structures like trends and seasonality when forecasting

time series. Future works may attempt to outperform the forecasts of the models with

regularized coefficients by using deep learning models.
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Appendix

List of Variables

A. Groups

Consumption Classes (C)
Index Class
CSO Commercial, services and others
OC Own consumption
SL Street lighting
IND Industrial
PP Public power
RES Residential
RR Rural
ARR Aquicultor rural
IRR Irrigating rural
PS1 Public service (water, sewage and sanitation)
PS2 Public service (electric traction)
TOT Total
AVG Average

Regions (R)
Index Region
SE Southeast
MW Midwest
S South
NE Northeast
N North
BR Brazil

B. Variables

Power Electricity Consumption - 185 lagged variables
Index Variable

PEC R i Hourly PEC of the hour i and region R (mWh) - (i = 0, · · · , 24,)
PEC R TOT Sum of daily PEC of region R (mWh)
PEC R AVG Average daily PEC of Region R (mWh)
PEC R C Daily PEC of the region R for consumption class C (mWh)
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Calendar - 6 variables
Day of the week (1-7)
Day of the month (1-30)
Month (1-12)
Year (2017, 2018)
Dummy for holiday
Seasons (1-4)

Weather Variables - 180 variables
Index Variable

CLD R i Cloudiness of region R and hour i (i = 9,15,24, AVG)
AP R i Atmospheric pressure (mbar) of region R and hour i (i = 9,15,24, AVG)
DBT R i Dry bulb temperature (∘C) of region R and hour i (i = 9,15,24, AVG)
HBT R i Humid bulb temperature (∘C) of region R and hour i (i = 9,15,24, AVG)
RH R i Relative humidity (%) of region R and hour i (i = 9,15,24, AVG)
WD R i Wind direction of region R and hour i (i = 9,15,24, AVG)
WV R i Wind velocity (m/s) of region R and hour i (i = 9,15,24, AVG)

Electric Energy Price Variables - 60 variables
Index Variable

PECR R C PEC price of region R and consumption class C (R$)
PECR R AVG Average PEC price of region R (R$)

Economic Variables - 79 variables
Selic target imposed by BCB
SELIC effective rate
CDI
Dollar for purchase
Dollar for purchase variance
Dollar for sale
Dollar for sale variance
Euro for purchase
Euro for purchase variance
Euro for Sale
Euro for sale variance
IBOVESPA quotation
IBOVESPA daily minimum value
IBOVESPA daily maximum value
IBOVESPA daily absolute variance
IBOVESPA daily percentage variance
IBOVESPA daily volatility
INPC monthly variance
INPC cumulative
IPCA monthly variance
IPCA accumulated
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IPA-M monthly variance
IPA-M accumulated
IPA-DI monthly variance
IPA-DI accumulated
IGP-M monthly variance
IGP-M accumulated
IGP-DI monthly variance
IGP-DI accumulated
Crude steel production (observed)
Crude steel production (seasonally adjusted)
Heavy vehicles traffic on toll roads (observed)
Heavy vehicles traffic on toll roads (seasonally adjusted)
construction production inputs (observed)
construction production inputs (seasonally adjusted)
CPS and Usecheque consultations (observed)
CPS and Usecheque consultations (seasonally adjusted)
Serasa consultations(observed)
Serasa consultations (seasonally adjusted)
Installed capacity utilization in the manufacturing industry - FGV (observed)
Installed capacity utilization in the manufacturing industry - FGV (seasonally adjusted)
Installed capacity utilization in the processing industry - CNI (observed)
Installed capacity utilization in the manufacturing industry - CNI (seasonally adjusted)
Real Industrial Sales (observed)
Real Industrial Sales (seasonally adjusted)
Production hours worked in the manufacturing industry (observed)
Production hours worked in the processing industry (seasonally adjusted)
Real wage in manufacturing industry (observed)
Real wage in the manufacturing industry (seasonally adjusted)
Oil and gross oil production (monthly production in m3)
Natural gas production (monthly production in m3)
General industrial production (observed)
General industrial production (seasonally adjusted)
Industrial production - capital goods (observed)
Industrial production - capital goods (seasonally adjusted)
Industrial production - intermediate goods (observed)
Industrial production - intermediate goods (seasonally adjusted)
Industrial production - consumer goods (observed)
Industrial production - consumer goods (seasonally adjusted)
Automotive industry production (observed)
Automotive industry production (seasonally adjusted)
Consumer confidence index
National consumer expectations index
Industrial entrepreneur confidence index
BNDES disbursements - accumulated amounts
Total employment index (observed)
Total employment index (seasonally adjusted)
Total employment index- manufacturing industry (observed)
Total employment index - manufacturing industry (seasonally adjusted)
Total employment index- commercial (observed)
Total employment index - commercial (seasonally adjusted)
Total employment index - services (observed)
Total employment index - services (seasonally adjusted)
Total employment index - civil construction (observed)
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Total employment index - civil construction (seasonally adjusted)
Employed people (formally)
Unemployment rate (brazil)
Monetary Base
Currency paper issued
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