~
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

A resolution-based E-connected calculus

Lucas de Moura Amaral

Dissertacdo apresentada como requisito parcial para

conclusio do Mestrado em Informaética

Orientadora
Prof.a Dr.a Claudia Nalon

Brasilia
2019

Ficha catalografica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

AABSr

Amaral , Lucas de Moura

A resol ution based E-connected cal culus / Lucas de Mura
Amaral ; orientador C audia Nalon. -- Brasilia, 2019.

60 p.

Di ssertacdo (Mestrado - Mestrado em |Informatica) --
Uni ver si dade de Brasilia, 2019.

1. nodal logics. 2. connections. |. Nalon, C audia,
orient. Il. Titulo.

~
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

A resolution-based E-connected calculus
Lucas de Moura Amaral

Dissertac@o apresentada como requisito parcial para

conclusido do Mestrado em Informatica

Prof.a Dr.a Claudia Nalon (Orientadora)
CIC/UnB

Prof. Dr. Bruno Lopes Vieira Prof. a Dr. a Daniele Nantes Sobrinho
IC/UFF MAT/UnB

Prof. Dr. Bruno Macchiavello

Coordenador do Programa de Pés-graduacdo em Informatica

Brasilia, 25 de fevereiro de 2019

Dedicatoria

Dedico este trabalho a memoria do meu pai, Gesley, que sempre fez de tudo para me dar uma
boa educacdo e me incentivou a escolher o curso de Ciéncia de Computagcdo. Também a minha
familia, que sempre me ajuda em tudo que preciso e ndo deixa de demonstrar interesse em
minha vida: a minha mae, Esther; meu padastro, Marcio; e aos meus irmdos Thiago, Davi e

Benjamin.

v

Acknowledgements

I thank the Computer Science department and my lecturers for providing a great background,
both in technical and theoretical aspects. In particular, I thank my supervisor, Claudia, for her
exceptional availability and understanding, both of which were essential for conclusion of this
work. I also give an special acknowledgement to CAPES (Coordenacdo de Aperfeicoamento

de Pessoal de Nivel Superior) for their support, funding a period of my work.

Abstract

We introduce a calculus to reason about £-connections, which provide a computationally ro-
bust method to combine arbitrary Abstract Description Systems (ADSs). ADSs, introduced by
Baader et al, are a generalization of various logics such as temporal, spatial, epistemic descrip-
tion and modal logics in general. In this work, we restrict the logics to be combined to normal
modal logics. We provide a resolution-based calculus to deal with connections, assuming that
the global satisfiability problems of the component logics are decidable. This allows us to focus
on reasoning only about the restrictions imposed by the £-connections, leaving domain-specific
reasoning to the component logic.

One of the most important steps required to achieve this is the proper separation of syn-
tactical elements related to different components via a proposed normal form. Therefore, we
provide the full set of transformation rules, presenting proofs for termination and preservation
of satisfiability of this transformation.

This work presents the correctness, completeness and termination proofs for the proposed
calculus. We also make available a proof-of-concept implementation, based on the KgP prover.
We discuss the results of the evaluation and suggest some modifications that can be made to
improve performance, paving the way for the development of a future modular and efficient

implementation.

Keywords: modal logic, combination of logics, connections, automated reasoning, resolution

vi

Contents

1 Introduction
1.1 Motivation o o e e e e
1.2 Outline e

2 Modal logic and basic logic notions

2.1 The normal modal logic K,y, .
211 Syntax e e e
2.1.2 SemantiCs e e e e e
2.2 Some notions aboutcalculi
3 Combinations of logics
3.1 Methods of combinations
3.2 Connections e e e e e e e e e e e e
4 E-connected calculus
4.1 A normal form for connected logics
42 Thecalculus
4.3 Algorithm
4.4 Implementation L e e
4.4.1 Implementationdetails
442 EXperiments e e e e e
4.4.3 Possible optimizations
5 Metatheoretical results
5.1 Transformation
5.1.1 Correctness of the transformation
5.1.2 Termination of the transformation
5.2 Calculus e e e
5.2.1 Soundness of the calculus
5.2.2 Completeness of thecalculus

vil

\S]

o N L A A

11
11
13

17
18
22
26
27
29
30
31

6 Conclusion and future work
Bibliography
Appendix

A Experimental results

A.1 Running timeoftests

viil

57

58

59

60

2.1
22
2.3

3.1
32

4.1
4.2

List of Figures

Example of contextual reasoning L 5
Graphical representation of themodel M

Graphical representation of the model M

Graphical representation of the model M” 14
Graphical representation of an implementation of the calculus 16
Simulation of the querying process 28
Total running time of test groups L. 32

1X

4.1
4.2
43
4.4

A.l
A2

List of Tables

Form of clauses in &,,,,,-NF 18
Simplification and rewritingrules oL oL 19
Solved satisfiable problems by family 31
Solved unsatisfiable problems by family 31
Running times and satisfiability for the adapted KgP examples 60
Running times and satisfiability for the adapted LWB 61

Chapter 1

Introduction

1.1 Motivation

Propositional modal languages are extensions of the propositional language with additional
operators to express modalities. A modality is an expression used to qualify the truth of a
sentence. As an example, we can qualify the sentence “It rains” using the possibility modality.
Thus, we get the new sentence “It is possible that it rains”. Such modalities are expressed
through modal operators.

Modal and other non-classic logics are used to formalise and reason about different notions,
as spatial requirements, temporal aspects, and others. Because of its diversity and expressivity,
such logics are object of interest in areas such as Knowledge Representation (KR) and On-
tologies [4], Model Checking [12] and Multi-agent systems [11]. Applications in these areas
usually talk about several different notions at once, combining spatial and temporal formalisms,
different types of descriptive reasoning and even epistemic aspects.

Such formalisms are normally difficult to extend and, consequently, methods for combin-
ing different logics were developed, such as products [18], fusions [19] and fibrings [8]. The
method of connections or £-connected logics [9], in particular, has gained attention in the KR
community, mainly for its intuitive semantics, generality and robustness regarding decidability
preservation. It was originally proposed as a method for combining abstract description sys-
tems (ADS), which are a generalisation of description and modal logics, in such a way that, if
the components are decidable, the resulting system is still decidable, although it may have an
increase in complexity [9].

This method is closely related to Distributed Description Logics (DDL), but has greater
expressivity [9]. DDLs provide a formalism for reasoning with multiple description logics,
with interaction of different ontologies being unidirected, in the sense that the domain A maps
the information of the domain B into their own context, having limited impact on the knowledge

of the domain B [3]. £-connections are more flexible in the sense that they provide a method

for building new complex concepts from the basic concepts of the components. In the context
of modal logic, this allow us to construct formulae using modalities of other logics through the
use of bridge modalities.

An interesting aspect of £-connections is that they do not, by themselves, add properties
such as confluence, which may cause loss of decidability [9]. This occurs, for example, in
approaches for combinations based on products [7]. Because £-connections keep the languages
disjoint, such behaviour does not occur. To obtain such properties, they must be explicitly added
as axioms.

To the best of our knowledge, no dedicated automated reasoning solutions have been de-
veloped for this type of combination of logics. In [16], a simplified version of £-connections
was presented, together with a calculus for reasoning about such connection that is correct,
complete and terminating. However, the calculus was restricted to local reasoning and the com-
bined logics were fixed. In this work, we propose a calculus that extends the one in [16] for
global reasoning, while taking a modular approach for the component logics. This is done by
syntactically separating elements related to different components, which allow us to develop
rules that focus on manipulating only the connection modalities. For handling domain-specific
reasoning, before applying a rule we check if the calculus for the component can derive some

necessary clauses given the current knowledge base.

1.2 Outline

This work presents a formal calculus for the £-connections of modal logics, which manipulate
only the formalisms regarding the links between the logics and leaves the domain-specific rea-
soning for the particular component logics being combined. This presentation is done in the

following way:

1. Chapter 2 presents the basic definitions regarding modal logic and formal calculi, exem-
plified through the classical modal logic K,y and reviewing the concepts of termination,

correctness, completeness.

2. Chapter 3 discusses some formalisms regarding combinations of logics, including the one

used in this work, £-connections.

3. Chapter 4 presents our main results. We introduce the calculus for £-connections, in-
cluding an appropriate normal form and the related definitions regarding the £-connected
logic problem and satisfiability. This chapter also presents an overview of our prototypi-

cal implementation and its experimental evaluation.

4. Chapter 5 contains all the theoretical results regarding the normal form and the calculus,

including correctness, completeness and termination.

2

5. Chapter 6 concludes this text, making a brief review of the results and discusses future

work.

Chapter 2
Modal logic and basic logic notions

In this chapter we give the basic theory necessary to the understanding of this work. We focus

mainly in two aspects: basic modal logics and formal calculi.

2.1 The normal modal logic K,

Propositional modal languages extend the classic propositional language with modal operators
which are capable of expressing different modalities of fruth. A modal language with more than
one primitive modal operator, that is, a operator that cannot be obtained through a combination
of the others, is called a multimodal language. There are several different modal languages,
for instance, conveying notions of time, that is, when something is true; notions of space, that
is, where something is true; notions of belief, that is, if something is believed to be true, and
many others [2]. The most common notions associated with modalities are those of necessity
and possibility.

One of the most basic modal languages is obtained through an extension of the classic
propositional language by two modal operators: one representing necessity ([a]) and the other,
possibility (<@>). We may exemplify the sentences that this language can express by considering
the formulae <@—p and [blp, where p denotes the fact that "the sky is blue” and —p denotes its
negation. Then, the first formula expresses the sentence "Agent a considers that it is possible
that the sky is not blue”, and the second formula means "Agent b considers that it is necessary
that the sky is blue”.

Both these sentences may be true at the same time through reasoning in different contexts,
called possible worlds. The meaning of each modal operator is associated with an accessibility
relation over the possible worlds. Then, given a world w, an agent may reason about the truth of
a proposition by examining the information of the worlds accessible through the agent’s relation

from the world w.

Wo

Figure 2.1: Example of contextual reasoning

Fig. 2.1 shows an exemple of contextual reasoning. In this and in the following exam-
ples, we use circles to represent worlds, labelled edges represent the agent’s relations and the
(negated) propositional symbols inside the circles represent what is true at that world. Agent
a, reasoning from world wy, considers —q necessary, as at every world that is accessible from
wy through the relation a, —q holds. Meanwhile, agent b considers ¢ possible, as ¢ holds at the
world wy, which is accessible from wy through the relation b.

The modal operators enrich the language, as we may now talk not only about a single abso-
lute truth in a system, but we may refer to different contexts and possibilities for truth. In the
following subsections we will present the syntactical and semantic formalisms regarding the
basic modal logic K,,). The definitions given in the next sections follow standard presentations
of modal logics [2] as well as the one given in [16].

We will refer to a logic L as the combination of its syntax (L) together with an appropriate

semantics, given by the relation = .

2.1.1 Syntax

Formulae are built from a countable set of propositional symbols, P = {p,q,p’,¢,...}. The
finite set of agents is defined as A = {1,...,n}, n € N. We extend the set of propositional
connectives (true, =, A) with the unary modal operators M = { 1] .. }, where [a] ¢,
a € A, is read as “agent a considers ¢ necessary”. When n = 1, we may omit the index. The
fact that agent a considers ¢ possible is denoted by <@y, which is an abbreviation for — [a]—.
The language of K, is defined over the alphabet P U M U {true, =, A}:

Definition 1. The set of well-formed formulae, F(K,), is defined inductively:
o if p € P, thenp € F(K,))
o true ¢ F(K,)
e if p and 7 are in F(K,)), then:
-~ € F(Kw)

- @(,0 S F(K(n)), Va e A

Formulae of the form (¢ V ¢) and (¢ — 1) are abbreviations for =(—p A =) and = V 1),
respectively. The symbol false is an abbreviation for —true. If there is only one agent in the

logic being considered, we may omit the index inside the modal operator.

Example 1. Let ¢ and ¢ be formulae of the basic modal language. The following are considered
well-formed formulae: (¢ A —p), [@(o V ¥), (¢ — (¥ V —1))). In contrast, the following
expressions are ill-formed: — A ¢, ¢ (@], oV —).

Definition 2. We call (propositional) literals all formulae of the form p or —p, for any propo-
sitional symbol p in P. Modal literals are Formulae of the form [alp, [a]-p, @p, <a>—|p, for
a€ A

Definition 3. We denote the set of propositional literals of a formula ¢ by Lit(¢). We also
extend this notation to a set S of formulae by writing Lit(S), that is, Lit(S) = U, g Lit(p) .

2.1.2 Semantics

To give meaning to a formula and be able to talk about sentences that are logical consequence of
a set of statements, we need to formalise the semantics of the logic. That is, we need to define

what is a model for the basic modal language. This is done via Kripke structures.

Definition 4. A Kripke structure M for n agents over P is atuple M = W, 7, R4, ..., R,),
where)V is a non-empty set of possible worlds; the function 7(w) : P — {true, false},
w € W, is an interpretation that gives each world in)V a valuation to propositions; and,
foralla € A= {1,...,n}, R, €W x W is a binary relation over W. Truth of a formula

at a world w is given by:

=

w) =, true

=

w) ¢ piff w(w)(p) = true, where p € P

)
)
) e~ iff (M, w) [#e ¢
)
)

=

Fe (9 A) iff (M, w) =, ¢ and (M, w) |= ¢
w) =, [a] o iff for all w’ such that (w, w') € Ry, (M, w') ¢

, W

°
=
S

=

Let M = (W, 7, Ry, ..., R,) be a Kripke structure.

Definition 5. We say that a formula ¢ is (locally) satisfiable in a model M, denoted M |=; ¢, if
there exists a world w € M such that (M, w) =, ¢. In this case, M is called a model for p. We
extend this notion to sets in the following way: Let I' C F(K,)), Ml a model and w a world in
M. If (M, w) =, ¢ for each ¢ € I, then (M, w) =, I', and M is a model for I".

Definition 6. We say that ¢ (resp. I') is satisfiable if there exists a model M such that ¢ (resp.
I') is satisfiable in the model M.

Example 2. Fig. 2.2 represents the Kripke structure Ml = (W, 7, R), where W = {wyq, wy, wo };
7(w, p) = true at w = wy, and false otherwise; and 7(w, q¢) = true at w = wy, and false oth-
erwise. The relation over worlds is R = {(wy, w1), (wo, ws), (wq,w1), (we, ws)}. The formulae
[1-p, p, <q and <>—q are satisfiable at wy, [| q is satisfiable at w; and [| —q is satisfiable at

wsy.

Wo

Figure 2.2: Graphical representation of the model M

The above definitions give a notion of local satisfiability of a modal formula. We may also

define a global satisfiability notion:

Definition 7. We say that a model M globally satisfies o, denoted by M =, ¢ if, and only if,
for all worlds w in W, we have (M, w) = ¢.

Definition 8. We say that a formula ¢ is globally satisfiable if there is a model M such that
M = .

Example 3. Fig. 2.3 represents the Kripke structure M’ = (W, m, R), where W = {w, w1 }; p
is true everywhere; and ¢ holds at wy, but is false at w;. The relation over worlds is given by
R = {(wp, w;)}. The formulae [|p and p are globally satisfiable, but the formulae <>p and ¢

are not.

Figure 2.3: Graphical representation of the model M/

Definition 9. Let F (K(n)) be the language of K(n), that is, its set of well-formed formulae. Let
I' € F(Kqy) and ¢ € F(K,)). We say that ¢ is a logical consequence of I, denoted I FK(n) o,
if every model of I' is also a model of ¢.

Definition 10. We say that a formula ¢ is valid if it is a logical consequence of the empty set,
that is, if @):K(n) . This is also denoted as):K(n) ®.

Example 4. Let I' = {p — ¢,p}. Let M be a Kripke structure that satisfies I', that is, there
is a world w € M such that (M, w) = I'. Then, we have that (M, w) =« , p — ¢ and
(M, w)):K(n) p. By the semantics of implication, (M, w)):K(m q. Then, as M is arbitrary, ¢ is
a logical consequence of I'.

2.2 Some notions about calculi

In this work, we propose a calculus to reason about a specific method of combination of log-
ics. Then, we need to properly state some useful definitions about formal calculi and, specifi-
cally, about resolution, as our calculus, presented in Chapter 4, is based on this particular proof
method. We denote by 2° the powerset of S.

Definition 11. Let L be a logic. A deductive calculus is a pair (A, R), where A C F(L) is a
set of axioms and R C 27(1) x F(L) is a set of inference rules.

Definition 12. Let C' = (A, R) be a deductive calculus for a logic L, p € F(L)and I' C F(L).
A proof for ¢ from T is a sequence of formulae (g, @1, ..., ¢r), @; € F(L), 0 < i < k, where
wr = @ and each ; is either an axiom, a formula in I, or was obtained from the application of
one of the inference rules to previous formulae in the sequence. We denote that C' = (A4, R)

proves o from ' by I' -7 . If I' = &, we may simply write - .

We use deductive calculi to infer formulae from a set of assumptions. As such, we want to
be able to show that (1) everything that we may deduce using the calculus is, in fact, a logical
consequence of the assumptions and (2) we can deduce everything that is a consequence of our
hypothesis. These notions are expressed by the following two properties of deductive calculi:
soundness and completeness.

Let p € F(L),I' C F(L), and C = (A, R) be a deductive calculus.

Definition 13. We say that C'is strongly sound if T = ¢, then T' = ¢ holds.
Definition 14. We say that C'is strongly complete if I' =C ¢, then T' = ¢ holds.

In this work, we use a resolution-based approach to our calculus. Before properly introduc-
ing what resolution means in the context of propositional logic, we must define the notion of

clauses.

Definition 15. A clause is a disjunction of literals. A single literal is a clause, called the unit

clause. The constant false is also a clause, called the empty clause.

We say that a formula is in Negated Normal Form (NNF) if it only contains the connectives
A, V and negations are only applied to propositional symbols. We say that a formula is in
Clausal Normal Form (CNF) if it is a conjunction of clauses. Any set of formulae can be
first transformed to NNF and then to CNF [13]. This transformation is necessary for clausal
resolution-based calculi.

Resolution-based calculi were introduced in [17] as a method for testing the (un)satisfiability

of a set of first-order clauses. These calculi have been highly used both for its simplicity and
efficiency [10].

Definition 16. The resolution-based calculus for propositional logic is the pair Res = ((}, R),

where ‘R is singleton set containing the binary resolution rule:

RES] D Vv I
D v -l
D Vv D

where D and D’ are clauses and [is a literal. The premises are called parent clauses and the
conclusion is called resolvent. The literals [and —[are called complementary literals. Two

clauses can be resolved if they contain complementary literals.

9

This method is able to check the (un)satisfiability of a set of clauses through saturation.
This means that, given a set I' of propositional clauses, we check the satisfiability of this set
by adding to the clause set the new formulae generated through the application of the binary
resolution inference rule until either the empty clause is generated, or no new clauses can be
found. Note that, as the number of literals occurring in I' is finite, then so is the amount of new
clauses that can be generated. This means that the method must terminate. If the empty clause
is found, then, as the rule is sound, we know that false is a logical consequence of I', which
means that I' is unsatisfiable. If the empty clause is not found, then, as the method is complete,
we know that the original set is satisfiable. For more details on the soundness and completeness

of resolution for propositional logic, refer to [17].

Example 5. We show an example of the application of this method to show the unsatisfiability
of a set of clauses, taken from [13]. Consider the set I' = {—p V ¢, =1 V ¢,~q V s, p, 7s}. We

generate new clauses through repeated application of the resolution rule, until we can derive

false.
1. -pVyq
2. rVq
3.qVs
4.p
5. 718
6. pVs [RES,1,3]
7.q [RES, 1,4]
8. -rVs [RES,2,3]
9. ~q [RES, 3, 5]
10. false [RES, 7,9

Then, as false is generated by the resolution calculus, the original set is unsatisfiable. [

10

Chapter 3
Combinations of logics

This chapter introduces the concept of combinations of logics, briefly mentioning some usual
forms of combining logics and presenting the method that is the focus of this work, the &-

connections method.

3.1 Methods of combinations

In the past decades, a great variety of logics were developed to represent various aspects of
objects, such as spatial, temporal and descriptive aspects of such objects. However, given a
specific domain to be represented, even with this great diversity of logics there is a considerable
chance that there is no logic that is capable of represent all interesting aspects of such objects,
or that it does so by becoming too complex.

For these reasons, there has been extensive research in developing formalisms to combin-
ing different logics. Such a formalism is capable of, given two logics, construct another one,
with models being derived from the models of each component, and capable of syntactically
represent elements of each language, with some degree of interaction. The restrictions on the
models, the syntactic elements and their interaction are given by the specific formalism used to
combine the logics.

One of the simplest methods for combining logics is called fusion [7]. Given two proposi-
tional modal logics L, and L,, with disjunct sets of modal operators M; = { [1];,..., [7];} and
My = {1, ..., ml,}, the fusion of L, and L,, denoted by L; ® L., is the propositional modal
logic with the set of modal operators M = M; U My. Let M; = (W, 71, R1,...,R,) be a
model for L, and My = (W, 1, R, ..., R2,) be a model for L,. A model for L, ® L, is simply
the Kripke structure M = (W, R}, ..., R-, R3, ..., R2, 7), where the set of worlds WV is shared
by both logics.

Example 6. Consider the fusion of K,y with the linear temporal logic, LTL. LTL is a propo-

sitional modal language with modalities referring to time. It has two basic modal operators,

11

X (next) and U (until). Additional modal operators may be defined based on these, such as
G (always) and F (eventually). The semantics of LTL is based on a discrete, linear notion of
time, which means there is only one possible future. This means that, with these new operators,
we can say that a formula ¢ is true at the next instant of time through the sentence X ¢, or that
some formula ¢ is true until a condition v is met, @lf1).

We may combine K,y and LTL to obtain a logic K,y ® LTL capable of expressing a
change on what the agents consider possible or necessary through time. In this language, we
may express sentences such as "agent a does not consider ¢ necessary until agent b does"
((= [al) U([bl)) or "agent a will eventually consider ¢ necessary" (F [a]y). [

The method of fusions is interesting both for its simplicity and because it usually preserves
interesting properties of the component logics, such as Kripke completeness and the finite model
property [7]. Another interesting aspect of fusions is their computational robustness, in the
sense that they usually preserve decidability'.

Another usual method for combining logics is the product of logics. The language of
the product L; x L, is, again, simply the basic propositional language with modalities from
both logics. The difference is how we combine the models. For simplicity, we consider
that the model of each logic has only one relation each. For example, given the models
M; = (Wi, Ry, m1) and My = (Ws, Ra, ma), the model for the product L, x L, is defined
as Ml = (W, x Wy, Ry, Ry, T1 X T2), Where, for w, wy € Wy and vy, vy € Wy, we have:

® <w17 U1>7_?'h <U)2, ’UQ) lf, and Ol'lly lf, U}1R1w2 and V1 = Vg,
® <U}17 U1>7_zv <w2, U2> lf, and only lf, W1 = W2 and UlRQ’UQ;

o (m x mo)({wy,v1))(p) = true if, and only if, 71 (w1)(p) = true and mo(vy)(p) = true

Products of logics are natural constructs which allow representing combinations of aspects
of the real world, through interactions of modal operators related to time and space, for example.
However, it is worth noting that by using products, we may include properties such as commu-
tativity of operators (for instance, @@p — <2><Dp), which may cause loss of decidability of
the combination [7].

Although fusions and products are well studied and have a natural geometric interpreta-
tion, other formalisms for combining logics have been proposed, trying to better control the
interactions provided by the formalism whilst also maintaining expressivity. The method of

&-connections is one such formalism, which is introduced in the next subsection.

'As a very well-know example that fusions do not preserve all desirable properties of the component logics,
we note that the propositional dynamic logic (PDL) enriched with the global modality (K3,) is highly undecidable
whilst both PDL and K, are decidable. See [2, Section 6.5].

12

3.2 Connections

Let L, and L, be disjoint multimodal normal logics that are to be connected. Before defining

the language of a modal connection, we must define the set of connecting modal operators:

M = My U My, with My = {&'| j € T,} and My = {®°| k € T}

where 7, and Z, non-empty countable set of indexes.

The set of formulae of the connected modal language CM(LI, L,) may be split in a set
of I-formulae and a set of 2-formulae. Intuitively, I-formulae are formulae from the logic L,
enriched with new connecting modal operators to talk about 2-formulae. The same goes for

2-formulae:

Definition 17. The sets of /-formulae and 2-formulae of CM(Ll, L,) are defined through si-

multaneous induction, with ¢ € {1, 2}:

e Every propositional symbol of L, is an i-formula
e The set of i-formulae is closed under the Boolean and modal operators of L;
o If s a I-formula and k € T, then &° o is a 2-formula

e If vy is a2-formula and j € 7, then 1 W is a I-formula

When we are referring to some component i € {1,2}, the other component will be referred as
i. Thatis, 1 =2 and 2 = 1.

Example 7. Let p,q € F(L,) and [, m € F(L,). Then, the expressions p A ¢ and [C] 1(1 —m)

are 1-formulae, while the expressions [VV m and @2(]7 V q) are 2-formulae. |

A connected Kripke model for CM(Ll, L,) consists of a Kripke model for L;, a Kripke
model for L, and an interpretation of the set £ of relations associated with the connecting

modal operators:

Definition 18. A connected Kripke model for the logic CM(Ll, L,) is the structure M =
(Wi, Wa, (E});c1,> (Ei)pez,)> where W, is a Kripke model for L;, Ej C W; x W,, for
each j € 71, and E,f C Wy x Wy, for each k € Z5. The members of the set £ = £; U &;, with
& =A{E}|jeL}and & = {E} | k € Lo} are called connecting relations.

The global satisfiability of an i-formula of L; is defined by extending the global satisfiability
notion of the connected logics: Booleans and modalities of the logic L; are defined as previously
(see Chapter 2). The remaining cases are defined as follows. Let ¢ be an /-formula, and v a
2-formula, w, € VW, and wy € W,. Then, the global satisfiability of the connected modalities

is defined as follows.

13

Definition 19. Given a connected model Ml = (W1, Wy, (E}), .7, (E}),c7,)- the satisfiability

of the connected modalities are as follows:

o M|, @' ¢ < Yw, € Wy, 3wy € Wy such that wy E} w,, and (M, ws) =, ¢; and

o M=, 2 @ <= Ywy € Wy, Jw; € W, such that wy E} wy, and (M, w,) = ¢

The method of £-connections provides a controlled interaction between the languages, ob-
tained through the connecting operators and their related connecting relations. This becomes

clear in the following examples.

Example 8. Consider again the languages of K,y and LTL. We may combine both logics into
the logic cM (K(n), LTL), where the set M = {<<>2} is the set of connecting modalities. We

may express the statements "agent a will eventually know " through the sentence F [[] ? [alp.

Example 9. Consider two models for the basic model logic, My = ({wq, w1 }, { (wo, w1)}, m1)
and My = ({wg,v1, v}, {(vo, 1), (vo,v2), (v1,v1), (V2,v2)}, a); With w1 (p) = true every-
where in M[; and 71(q) = true at wq only; me(m) = true only at vy and 7(l) = true only at
Vo-

We may connect these models with the relation E' = {(wg, v2), (wy,v;)}, obtaining the
model for the connection, M"” = (M, M, {E'}, @). This model is graphically represented
below, where the dashed lines show the connecting relations. We see that M”):g O 1—|l,
as for every world in M, all worlds in M that are accessible satisfy —/. We also see that
M" =, (O 1m) v (O 1—|m), as the worlds in M either only see worlds in M, where m holds,

or worlds where it does not.

7’) N \
M; Wo p D w1y !
N q -q /

i m
o >/

-l

m Il -m
(%] v 7//,,—

Figure 3.1: Graphical representation of the model M”

14

Example 9 demonstrates how the languages of the connected logics are kept separated.
Syntactically, interaction between the languages is done via the connecting operators, while
the models are kept disjoint, which permit the evaluation of formulae to be done in an isolated
way: i-formulae are evaluated in the i-component, and any i-subformulae are evaluated in the
opposing component, through the accessibility relations.

The characteristic of the method, which keeps the languages reasonably separated, allow
us to propose, in this work, a calculus that can focus on reasoning only about the connections,
leaving domain specific knowledge to the reasoners for each component. A possible implemen-
tation for such calculus, including the one shown in this work on Chapter 4, would mimic the
separated nature of the models. Given a set of formulae with connecting modalities to test for
satisfiability, such an implementation would query the reasoners of the component logics about
the satisfiability of the formulae inside such modalities while transferring information between

both reasoners.

Example 10. Let L, and L, be two logics to be connected, such that [€ F(L,) and p € F(L,).
Fig. 3.2 exemplifies how an implementation of this calculus may be used to test the satisfiability
of the set of 1-formulae I' = {I — <<>1<,0,l — O 1ﬁgp, [}. In the figure, the steps taken are
numbered 1-6, with (1) being the initial problem. The £-connected reasoner starts by querying
the reasoner of Logic 2 to check if the set of 2-formulae {p, —p} is satisfiable (2). The result
is that this set is not satisfiable, which means that the left-hand side of the implications in
{l = <>>1g0,l — [0 —p}, cannot hold (3). That is, -/ must be satisfiable. The £-connected
reasoner then has both 1-formulae [and —I, and it queries the reasoner of Logic 1 if the set
{l, 1} is satisfiable (4). As it answers that the set is unsatisfiable (5), we finally have that I" is
unsatisfiable (6).

In the next chapter we present a calculus based on these ideas, together with a normal form
to keep the interaction between the languages to a minimum, facilitating the design of a calculus

with characteristics of modular reasoning.

15

Reasoner for Logic 1 |

5. Unsatisfiable ! 4. {1, -1} satisfiable?

LT ={l— Oy, I - d'-p, 1}
satisfiable?

£-connected reasoner 6. Unsatisfiable

2. {p, ~p} satisfiable? :

2 3. Unsatisfiable

| Reasoner for Logic 2

Figure 3.2: Graphical representation of an implementation of the calculus

16

Chapter 4
£ -connected calculus

In this chapter we introduce the resolution-based calculus for reasoning about the connection
of logics, CM(LI, L,). This calculus operates on the so called CM(LI, L,)-problem, which
is a structure containing the formulae that we wish to reason upon. For applying the inference
rules of the calculus, we will require further that the problem is in a specific normal form, called
E-connected normal form, abbreviated as &.,,,-NF.

We first define what a ¢/ (L,,L,)-problem is.

Definition 20. Let Gy, Go, Ky, Ko C f(CM(Ll, L,)) be sets of formulae. ACM(Ll, L,)-

problem C is a structure:
<<g1; IC1>7 <g2a IC2>>

where each (G;, K;), fori € {1,2}, is called a partial (or component) cM (L, L,) problem.

The purpose of this work is to devise a method for deciding the satisfiability of a formula ¢
in the language of the connected logics. Instead of working on the formula itself, we carry out
the satisfiability checking procedure over a correspondent equisatisfiable CM (L, Ly)-problem.
The satisfiability of cM (L, Ly)-problems is defined next.

Definition 21. Let C = ((G1, K1), (G2, K2)) be a CM(Ll, L,)-problem and M = (W, Wy,

(E]l)j T,» (E})cz,) be a connected Kripke model. The component C; = (G;, K;) is satisfiable
in M, denoted by M |=, C;, if, and only if, for all ¢ € G;UK;, we have that W, |=, ¢, where the
definitions for satisfiability of connected modalities, adapted from Definition 19, are as follows:

o M; |, i 1 if, and only if, M |=, C; and, for all w € W;, 3w’ € W; such that w EJZ w'’
and (MG, w') |=¢ 1.

17

Definition 22. We say that a CM(LI, L,)-problem C = ((Gy, K1), (Ga, Ky)) is satisfiable if,
and only if, there is a model M = (W1, W, (E}),.7,, (E})scz,) such that M =, (G1, K1),
that is, M satisfies the component (G, KC1).

We will always consider the satisfiability problem of 1-formulae. Thus, we consider that
the CM(Ll, L,)-problem C = ((G1, K1), (G2, ko)) is satisfiable if, and only if, (G, Ky) is
satisfiable. Note that our definitions do not require that the (G, K5) is satisfiable, as a problem
as ({1}, {t1 — 1t2}>, ({false}, 0)) is satisfiable even though G, = {false} cannot ever be
satisfiable in any model for C,. However, definition Definition 21 makes it so that, if the 1-
formulae force the existence of a 2-world in a model, then G5 U Cy must be globally satisfied in
the model.

Before presenting the rules of the calculus, we present how to transform a formula into
Econn-NFE. This normal form is loosely based on the Separated Normal Form, presented in [6]

and revisited in [16].

4.1 A normal form for connected logics

The idea is to apply a set of rewriting and renaming rules to obtain formulae in the appropriate
clausal form. Rewriting is used to remove unwanted operators whilst the renaming rules replace
complex formulae in the scope of modal operators by new propositional symbols until we have
acM (L, Ly)-problem with two disjoint pairs of sets of formulae, each pair belonging to the
language of one of the logics. Moreover, at the end of the transformation, we will require that
formulae in each of the sets of the corresponding CM (L, Ly)-problem is in a specific form.
The allowed forms of clauses are given in Table 4.1 (where [, I’ are literals, b, € N, € {1,2},
a € A’, where A’ is the set of modal agents of language L;, and & € &;). The separation
between the languages is not complete, because in the scope of the connecting operators of the
language L, we still have literals in the language of L;. However, we limit the occurrence of
formulae inside the connecting operators to literals, and we place all the "connecting formulae"
of L, in the set /C;.

Literal clause Vi lo
Positive a,-clause I — @?l
Negative a;-clause ' — @Zl
Positive £F-clause U — ']

Negative £F-clause I — &'
Table 4.1: Form of clauses in &,,,,,,-NF

The definition of the £-connected normal form is given below.

18

Definition 23. Let C = ((G,K4), (G2, K3)) be a CM(LI, L,)-problem. We say that C is in
Econn-NF if and only if, for i € {1,2}:

e all formulae in G, are literal clauses.

e all formulae in /C; are a;-clauses, that is, modal clauses of L,, or Ef—clauses, that is,

connecting modal clauses.

We define next the set of transformation rules used to produce the normal form of a formula
@. At the end of the transformation, the i-formulae are placed in the appropriate G, and XC;
sets, with formulae that contain modalities belonging to K; and formulae that do not contain
modalities belonging to G;.

To ensure that the problem is in normal form at the end of the process, we apply the simpli-

fication and rewriting rules given in the Table 4.2 at any step of the transformation.

(P AY) = VY (e VY) = —p A

(=) = A =
~@'p — [af'~p ~®'p = [~
(p V true) — true —false — true
(p N false) — false —true — false

(p Atrue) — ¢

(V)= (eNp) =
(p V —p) — true (p N —p) — false

Table 4.2: Simplification and rewriting rules

Given an 1-formula ¢ € F(CM(Ll, L,)), we define the initial CM(Ll, L,)-problem, also
denoted by start(yp), as C = ((G1,K1), (G2, K2)), where K1 = Gy = Ky = & and the set
G1 = {to,to — ¢} and ¢, is a literal not occurring in . We define Lit(®P) as the set of literals
occurring in the original formula ¢.

Next, we give the rules to transform the problems into an appropriate clausal form. We
first deal with the cases in which the formula on the right-hand side of the implication is a

conjunction or a disjunction:

TA - (gZU{t—Mpl/\gpg},KZ)—><QZU{t—>g01,t—>c,02},lCl>
Tv - <gZ U {t — 1 V (pg},]C» — <gz U {t — 1 V tl,tl — QOQ},’CJ
where (5 1s not a disjunction of literals

As the calculus to be presented in the next section is clausal, purely propositional formu-

lae are required to be in clausal form, that is, they are disjunction of literals. The next rule

19

transforms a formula ¢ — ¢ into a disjunction of literals, when ¢ is already a propositional

clause:

T (G U{t = ¢}, Ki) — (GiU{=t V p}, K))
where ¢ is a disjunction of literals
As previously said, during the transformation, the set G; might contain formulae with oc-

currences of modalities. The following rule moves i-formulae which have modalities as main

operators into the corresponding K; set:

Tmove * <gz U {t — (10}7 IC@) — <gza ’Cz U {t — @})
where the main operator in ¢ is a modality

The next rules rename complex subformulae occurring in the scope of modal operator
(where t; is a new propositional symbol). The new definition for the subformula is moved
to the appropriate G; set (where ¢ is not a literal).

T4 (G, Kiu{t — @igo}> — (G, U{t; = o}, K;U{t — @it1}>

o (G0 KUt = @'o}) — (G Ut = o} K U{t — @'}

Finally, we must deal with formulae in which there is an occurrence of a connecting modal-

T

ity. These transformation rules work in a similar way to the two previous rules, but we move the
subformula being renamed to the global set of the other logic language. By doing so, we keep
the vocabulary of the logics separated. Formulae in (G;, KC;) have basically only the construc-
tions of the language of L;, with the exception of literals occuring in the scope of connecting

modalities. Recall that 7 is the opposing index in {1, 2}. Thatis, 1 = 2 and 2 = 1.

T.<@WNU%E%%»H<@KNU%E%h>
o (G K5 (GiU{t — ¢}, K5)
T.<@xm&+©%¢»ﬁ<@xmﬁ+@%m>
c (G K5 (Giu{t — ¢}, K5)

Note that in the above transformation rules, renaming occurs even if ¢ is a literal. However, to
ensure termination of the transformation procedure, if ¢ is a literal, the rule is only applied if ¢
occurs in Lit(P), the set of literals occurring in the original formula.

We apply these transformation rules while it is possible to do so. Note that the cases where

the transformation rules cannot be applied are three:
1. ¢ in G, is a disjunction of literals, that is, ¢ is a literal clause;

20

2. t — pisin ; and ¢ is a modal literal, that is, ¢ — ¢ is either a negative or a positive

a;-clause, with a single literal occuring inside the modality;

3. t = @isin K;, ¢ is either of the form 't or Z't, and t ¢ Lit(P), thatis, t — ¢ is
either a negative or a positive £*-clause.

Thus, when the transformation procedure stops, the problem is into the &.,,,, normal form, as
shown in Chapter 5.

We now give an example of an application of the transformation procedure.

Example 11. Consider the following 1-formula in NNF:
p=(~qVE (I AM) APV a)
where {p, ¢} isin L, {l,m} is in L,. The initial problem is:

<Hmmﬁtwv!WAm»A@va@,>
(2,)

We then apply 7, to the conjunction in X, obtaining:
({to.to = (~g VI (L Am). 1o = (pV @)}, 2),
(2,9)
Next, we apply 7_, to tg — (p V ¢), as both p and q are literals, obtaining:
< ({to,to = (=g VI (L Am)),—to V pV g}, 2), >
(2,2)

We then apply 7, to tg — (—q V 1(l A m)). Note that the propositional symbol ¢; is
introduced to rename ([1(l Am)):

< ({to,to = (mq Vt1), = to VpVq,t, — l(l Am)}, D), >
(2, 2)

1
Ast; — (I A'm) in G; contains a modality, we apply T,,ove in order to move this
formula to the correct set, KCy:

< Uto, to — (mqV 1), —to VpV g}, {t1 — B (1 Am)}), >
(9,2)

Next, we rename (I A m) by t} by applying the 7, transformation rule:

21

< ({to, to — (g V 1), ~to V p V q}, {ts — I '1,}), >
{t, = (I Am)},2)

By an application of 7, we obtain the following cM (L, L,)-problem:

< ({to,to = (~q V1), ~to V pV g}, {ty — [T}, >
({t, = 1t, > m}, @)

And, finally, the 7_, transformation rule is applied to the three formulae which are not

yet in the normal form. We obtain:
< ({to, ~to V =q V t1,~to Vp V g}, {t: — D't }), >
({—ty VI, =ty vm}, @)
which is in the &,,,,,,-NF.

Once a formula is transformed into a CM(LI, L,)-problem into &.,,,-NF, the resolution

method for £-connected logics can be applied. The calculus is introduced in the next section.

4.2 The calculus

We assume that the logics L, and L, are decidable logics, and that C, and C, are terminating,
strongly sound and strongly complete calculi for L; and L,, respectively. Having decision
procedures for the component logics ensure us that we only need to provide inference rules
for the connection between them. The inference rules provided here are an adaptation of those
given in [16], with additional side conditions to check that the component calculi G, of logic L;
can derive specific i-formulae.

The resolution rules are applied to a CM(LI, L,)-problem C in &.,,-NF until no new
clauses are generated or a contradiction (in the form of G, I—C1 false) is found. We assume
that our initial problem is a 1-problem, that is, before the &.,,,,-NF procedure, we are given a
1-formula. Then, contradictions found in the second component do not necessarily mean the
whole problem is unsatisfiable.

In the following, let C = ((G1, K1), (G2, Ks)) be a CM(Ll, L,)-problem in &.,,,,-NF; 1, [;
be literals; a € Aand k € &;.

The first inference rule, [£-GEN1], is a hyperresolution resolution rule [17], in the sense
that it resolves multiple clauses at once, while avoiding unnecessary intermediate clauses. Note
that in this rule, we may have that m = 0. We can only apply the rule if the calculus of the

other component, C;, can derive at least one of the literals in the scope of modalities on the

22

right-hand side of the implications. This is because, if we have that at least one of the literals in
the clause /1 V - - - VV [,,, V [holds, then we could have a world where =} A --- A =l/ A=l holds,
which means that we cannot have all the literals in the antecedents of the clauses satisfiable at

the same time.

(if G; UK; e, LV Vi, Vi)
lll — i_'ll e K;
L [£-GEN1]
l;n — “ly, € ICl
@'l e K,
vVl vl e gy

The second inference rule, [£-GEN2], is similar to [£-GEN1], but in this case the contra-
diction occurs between the literals in the scope of modal operators on the right-hand side of
the positive £F-clauses and a literal clause in the other component language. Note that we may
not have that m = 0, else the side condition becomes G; l_Cg &, which means that the empty
clause must hold, which contradicts with the fact that the negative modal clause in the premises

1s satisfiable.

(if G; U K; l_Cz LV Vi)

U=, ek

. [£-GEN2]
l;n — _|lm €]Cl
=& €K,
-lpveeevallo vl e gy

The inference rules [E-GEN1] and [£-GEN2] are applied to formulae in a CM (Ly, Ly)-
problem and we rely on the decision procedures C, and C, for the component logics L, and L,
to check the side conditions. This was not necessary in [16], as the calculus was specifically
designed to deal with the connections of the logics given there. As we rely only on these deci-
sion procedures, we cannot make use of the structure of the proofs produced by these methods.
However, the fact that C, and C, are decision procedures for L, and L,, respectively, is enough
to ensure that the calculus presented here is complete with respect to the intended semantics, as
shown in Chapter 5.

With these inference rules, we can formally state the definition of our resolution calculus:

Definition 24. Given two decidable logics L; and L, with their terminating, strongly sound and

strongly complete calculi C, and C,, the resolution calculus for the £-connected combination

23

C/\/I(L17 L,), RES¢« ¢y is the tuple (A, R), where A = & is the set of axioms and R =
{€-GEN1, £-GEN2} is the set of inference rules.

Definition 25. Let C = ((G, K1), (G2, K2)) beaCM(Ll, L,)-problem into &, -NF. A deriva-
tion from C by RES;¢, ¢, is a sequence (Cy, Cy,C,,...) of problems such that C; = C,
C; = (G}, K}), (G, K4)) and C; 4 is either:

o ((GLU{D}, K%, (G5, KL)), where D is the conclusion of an application of £-GENI1 or
E-GEN2 to a set of clauses in ICil_l; or

e ((G1,K}), (G5 U {D}, %)), where D is the conclusion of an application of £-GENT1 or
£-GEN2 to a set of clauses in K} !

In both cases, D must be in simplified form and not a tautology.

Definition 26. A refutation for a cM (Ly, Ly)-problem C = ((G1, K1), (G2, K2)) by RES; (¢, ¢y
is a finite derivation from C such that, for some i > 0, C; = ((G%,K!), (G5, %)), we have
G -, false.

Definition 27. We say that a derivation (Cy, Cy, Co, ...) ferminates if it is either a refutation or
if there exists ¢ € N such that any further application of the inference to C; produces a clause

already in C;. In this last case, the problem C; is called saturated.

As the formula to be evaluated for satisfiability is always an 1-formula, we only care for
contradictions found in the second component if the first component “sees” it, that is, there
is a negative & -formula in ICﬁ. If this is the case, the contradiction can then be brought to
the first component, as becomes clear in the proof of completeness for the calculus, shown in

Theorem 6, in Chapter 5.

Example 12. Consider the following 1-formula in NNF:
1 1 1 1
p=0(vaAO pAD ~gAO 7
where {p, ¢, 7} is in F(L,). The corresponding problem in &,,,, normal form is:

1 1 1 1
< {to}, {to = O t1,to =[O ta,to =[O t3,t0 = O ta}), >
(-t VpVq,—ty V —op,—ts V og, oty Vo, D)

Clauses 1-9 are resulting from the problem above:

24

1.ty [G1
2.ty — ['t
3.t — [t
4.tg — @1753

]
]
1]
1]
5.t — Oty]

.ts Vg
.—tg V
Lty VT
Tty VpVag

© 00 ~J O

We may quickly obtain the refutation as follows:

which means that the initial problem is in fact unsatisfiable.

10 _\to [5 - GEN2, 2, 3, 4, 5, gg |_C’2 _\tl V _\tg V ﬂtg,, gl]

Then, as {tg, -t} C G, and as C, is strongly complete, false can be derived by C;,

Example 13. In this example, we show the unsatisfiability of a formula on the £-connection

of a reflexive logic (T) with a transitive logic (4). In order to improve readability, we will

not rename propositional symbols inside non-connecting modalities. This does not affect

the proof, as our rules do not directly operate with the modalities in the component logics

in any way. We assume sound and complete calculi C; and C, for T and 4, respectively.

p=(p— OOO([blg— [bl blg)) A lalp)

Consider the following 1-formula of CM (T, 4):

where {p} is in F(T) and {¢} is in F(4). The corresponding problem in &, normal form

1S:

L.t [G1]
2.t5V —tgVop G
3.to— lalp [KC4]
dts Oty K]
5.ty = Oty K]

Clauses 1-9 are resulting from the problem above:

6.1t — @—'q
7.ty — bt
8.t — @q
9.1, — Ot

1 1
({to,ts V =t V =p, }, {to = lalp,t5 = O ty,t3 = O ta})
<@, {tl — @—'q, tg — @tl,tl — @q, t4 — <<>2t3}>

;

As the second component is 4, a transitive logic, note that G5 I—C4 =ty must hold. Also,

as the first component T is a reflexive logic, if —¢5 holds, we have G, I—CT —tg. Therefore,

25

we can obtain a refutation for the problem as follows.

10. —t5 [— GENL,5,G; b, —ta, G1]
11. —t, [€—GEN1,9,G; F¢, —t3,Go]
12. _|t5 [5 — GEN]-; 47 g2 |_C’4 _'t47 gl]

Then, as {to, ~to} C G, and as C; is strongly complete, false can be derived by C-,

which means that the initial problem is unsatisfiable.

4.3 Algorithm

In this section, we present an algorithm for applying the rules of the calculus. First, we introduce
a non-deterministic version of this algorithm, and later we will show the necessary steps needed

for our implementation.

CONNECTED-RESOLUTION(C)

1 do

2 Choose a set of modal candidates, together with a literal clause
[y V...V, for querying.

3 Apply £-GEN1

4 Apply £-GEN2

5 until a contradiction is found or no new clauses are generated

6 return

This version of the algorithm is straightfoward: we non-deterministically choose a set of
modal clauses from C in which we will try to apply £-GEN1 and £-GEN2. Before applying
the rules, the side condition of the £-GEN rules require that we check if the clause [; V... \V[,, can
be derived by the appropriate component. If it can, we add the resolvents to their appropriate
sets (if they are new) and check if either the resolvents were already generated or a contradiction
can be derived, stopping the execution in these cases. Otherwise, we repeat the whole process,
emulating a derivation of the calculus.

For a proper implementation of this algorithm, we need a deterministic method for choosing
the modal candidates and the queried clause. First note that, if we always create a new literal
while renaming subformulae inside modal connecting operators, each modal clause of the form
[y — [0/} is uniquely determined by [}. This allow us to generate the set of modal candidates,

which will be used on the application of a rule, by the literal clause that will be queried.

26

With this in mind, we may focus on the generation of the literal clause. Instead of non-
deterministically choosing some clause ¢, we may instead try all possible literal clauses for a
component G, in each step, covering any possible choice of a clause.

A simulation of the execution of this deterministic approach is shown in the next example.

For simplicity, we focus only on the application of £-GEN1.

Example 14. Fig. 4.1 shows the execution of our deterministic algorithm for the problem
C= {3 = Ol ly = Ol 1), (I} = Ola, Iy V —p, p)). In this example, we choose the
query clause by lexicographic order.

We start in component 1 by choosing —/; for querying, and {l; — <>1}} as the set of
modal candidates. We ask the prover of component 2 if =/} is derivable, which yields a
negative answer (1). We move on to the next attempt.

We then choose —l} and {l, — <>I,}. We ask the prover of component 2 if =l is
derivable, which yields a positive answer (2). The resolvent of the application of £-GEN1
is added to component 1 (3).

The E-prover then switches to the other component and chooses the set {I} — Oly} as
the set of modal candidates and the literal clause [, for the querying. We ask component
1 if =, is derivable, which yields a positive answer (4). The resolvent —l] is added to
component 2 (5). This ends all possible choices for component 2.

Finally, we choose —l} for querying, and {I; — <!} as the set of modal candidates.
We ask the prover of component 2 if =[] is derivable, which yields a positive answer (6),
adding the resolvent —/; to the known clauses of component 1 (7). This, combined with [,

generates a contradiction on the first component (8), which ends the proof.

4.4 Implementation

A proof-of-concept implementation of this algorithm, currently supporting logics Ky, T , 4
and S4 as components, is available at www.cic.unb.br/~nalon/#software [5]. The
implementation is based on the KgP prover [15], which is an implementation of a modal-layered
resolution calculus for the K,,)-logic, described in [14]. The implementation in this work fol-
lows the representation given in Fig. 3.2, where there is a £-connected reasoner that queries
instances of provers for the component logics. The purpose of this implementation is not to
provide a high-performance prover, but rather to provide a simple modular prototype in which
we can run a much larger amount of examples than can be done by hand, while also demonstrat-

ing the possibility of a future fully-featured prover for £-connected logics. Due to this purpose,

27

www.cic.unb.br/~nalon/#software

Component 1 E-prover
{l1 — @lll, lQ — @lé, ll}
I = o i
lg — @ ll2
Resolvent
B)—ly e~ £-GEN1
=y sat.?
(4) Yes oo 1<,
£-GEN1
ll — Qlll
Resolvent
M=l e £-GEN1
(8) C, I fals

Figure 4.1: Simulation of the

the implementation cannot run on large datasets on a short time, as this was not intended. There

are many optimizations to be made, as it will be discu

The KqP prover was chosen both for the proximity

mented with the inference rules given in this work and for the large amount of options it gives

28

Component 2

= 1, I,V —p, p}

-l sat.?
7777777777777777777 » (1) No
-l sat.?
7777777777777777777 » (2) Yes
Resolvent
,,,,,,,,,,,,,,,,,,,,,,,, - (5) 1
-l sat.?
777777777777777777777777 > (6) Yes

€

querying process

ssed later.

of the modal inference rules there imple-

us for experimentation, which have been shown necessary to perform adequate preprocessing of
the input formulae. Some modifications on the original prover were necessary both to read and
store the formulae of each component in an appropriate manner, as well as to correctly perform
the resolution of clauses. A new module responsible for managing the communication between
the components was also implemented.

For the component provers, we also used unmodified KgP instances. This allowed us to get
reasonable performance on the components, while also having flexibility on the logics to be

connected.

4.4.1 Implementation details

The first modifications to the KgP source code while making the central module were made to
the parser and lexer. The new connecting modalities required specific tokens for appropriate
representation in the input formulae, and the grammar was also extended to deal with these
modalities.

On the next step of the process, we needed to transform the set of clauses to the appropriate
Econn normal form. For this, we slightly modified the original procedure for normal form in
KgP, placing each subformula renamed in the structure corresponding to its appropriate set (G,
Ga, K1, ko).

Representation of the sets of literal and modal clauses of each component was done using
the same chain of hash tables already used by the KgP prover for storing clauses. Each G; and
IC;-sets are represented by a separate structure. This allows for reuse of the many functions
already available for processing the formulae in KgP.

The main processing loop of the program closely follows the algorithm described in Sec-
tion 4.3. The fact that we ask the satisfiability of all query-clauses multiple times may be
attenuated by the use of a technique called subsumption.

Subsumption of a clause o by a clause 1) works by comparing their literals Lit(¢) and
Lit(y): if Lit(yp) C Lit(p), then, if ¢ is satisfiable, so must be ¢, by the definition of dis-
junction. With this in mind, we may store the clauses which we know that can be derived by
component G, from a set S; of clauses, allowing us to check if ¢ is subsumed by any clause
in §; and avoiding a test for the derivability of the subsumed clause by the component, which
is costly. The set of known clauses is implemented using the same hash-structure used by the
G,;-sets, so that we can reuse the subsumption functions of KgP.

In each iteration, we generate a new clause that will be tested for derivability in the respec-
tive component, checking for subsumption beforehand. If the clause is subsumed, we do not
need to apply the £-GEN rules again, as the resolvent would already be subsumed by previous
ones. The query-clauses that are not derivable are stored in a list for each component, both for

simplicity of implementation and the cyclic approach to querying.

29

Both rules of the calculus are also implemented reusing existing functions of KgP, with
changes to support parametrization of source sets. As per the described algorithm, the program
keeps generating new clauses by querying and applying rules until either a contradiction is
found or no new clauses are added.

For handling the querying, a new module was added to the program. This module provides
a function that receives only the clause to be queried and the component index, handling all
comunication. Due to the prototypical nature of this implementation, a simple approach to
communication was taken: for each query, an instance of the component prover is initialized,
receives all the clauses of the component together with the negated query and returns either
satisfiable/unsatisfiable, allowing us to gain information on the derivability of the clause from

the set of formulae of the component.

4.4.2 Experiments

One of the challanges presented during this work was the lack of dedicated bases for experi-
mentation. As this work presents, to the best of our knowledge, the first modular calculus and
prover for £-connected logics, there are no available collection of test cases and to check the
robustness of implementation.

Manual tests were developed to verify correct functioning of this implementation, which
cover varying logics for the components. For more extensive tests, we have modified both the
test set provided with KgP source code, which was used mostly for verifying correctness, as
well as the LWB [1] knowledge base, typically used for benchmarking modal logics, which
was mostly used for workload testing. These modifications were straightfoward, replacing the
basic K,y modalities with connecting modalities.

As the purpose of this implementation never was perfomance, running times can be vastly
improved. The database which KgP provides consists of small problems and the expected re-
sults can be manually verified — with all outputs matching expectations — but provide no
meaningful running time. The LWB database, however, has problems that are far too large to
non-automatically check for satisfiability. Moreover, most of the problems are too large for our
current implementation to execute in the determined timeout of 20 minutes. Of the 378 prob-
lems in LWB, only 60 could run within the configured timeout. These problems are divided in
9 families: branch, d4, dum, grz, 1in, path, ph, poly and t4p. Each of these families
consists of 21 satisfiable problems and 21 unsatisfiable problems for K(,,). An overview of the
executions for each family is shown in Fig. 4.2, Table 4.3 and Table 4.4. Detailed results are

available at the appendix.

30

Family | Total time (s) | No. of instances solved/total | Average time (s)
branch 7.54 1721 7.54
d4 179.98 8/21 22.50
dum 0.00 0/21 -
arz 211.93 6/21 35.32
lin 8.34 2/21 4.17
path 87.40 1/21 87.40
ph 0.00 0/21 -
poly 437.51 2/21 218.76
t4p 171.98 9/21 19.11
Table 4.3: Solved satisfiable problems by family
Family | Total time (s) | No. of instances solved/total | Average time (s)
branch 2.34 1721 2.34
d4 0.00 0/21 -
dum 0.00 0/21 -
arz 0.00 0/21 -
lin 0.01 21/21 0.00
path 54.38 2/21 27.19
ph 51.20 3/21 17.07
poly 1.26 1721 1.26
t4p 0.00 0/21 -

Table 4.4: Solved unsatisfiable problems by family

4.4.3 Possible optimizations

The purpose of this version of the software was merely to provide an evidence of the feasability
of an implementation, and many of the functionalities were done in the most straightfoward and
simplistical way possible. Therefore, some modifications can highly improve execution times.

Most of the execution time on large exemples is spent on the processing of queries by the
component provers. As detailed in Section 4.4.1, for each query, we start a fresh instance and
send the component its whole clause set, together with the query-clause itself. Some modi-
fications on the component KgP could allow us to make successive queries while storing the
saturated initial clause set in an usable set. That way, the component does not need to saturate
the whole set each time, greatly improving performance. Also, a fully modular version of this
prover might define a simpler protocol for comunication, allowing higher interchangeability of
the components.

Our approach to generating queries is also not optimal, as we build literal clauses from all

the renamed literals. Although we skip clauses that have two or more negative modal literals,

31

Running time and instances solved (Satisfiable)

500.00 10
437.51
400.00
@
2 B
S 300.00 %
2 3
w2
Q [0}
§ 200.00 2
— 3
z z
o
L]
= 100.00
0.00
branch d4 dum orz lin path ph poly t4p
B Totaltime == Instances solved
(a) Satisfiable examples
Running time and instances solved (Unsatisfiable)
60.00 54.38 25
51.20
20
@
2 4000 B
8 15 =
o)
2 3
2 6
g 10 2
= 20.00 s
s [=!
L]
= 5
2.34
0.00 0.0 0.0 0.01 126 .00
0.00 _-\ I 0
branch d4 dum grz lin path ph poly t4p

B Totaltime == Instances solved

(b) Unsatisfiable examples

Figure 4.2: Total running time of test groups

we still have to do the process of checking. If we split the negative and positive renamed literals
in two sets and generate the queries by combining them, we may reduce the amount of times
we pass through the loop from 2”7 to n * 2P, where n is the amount of negative modal literals

and p is the amount of positive modal literals.

32

Finally, we might also try to reduce the amount of literals generated in the transformation
of the problem to &.,,,,-normal form by reusing literals for equal subformulae. It is important
to note, however, that special care must be taken when combining this improved renaming with
the previous optimization and the check for subsumption on the algorithm. If a renamed literal
appears both in the scope of positive and negative connection modalities, it must be present
both on the set of negatives and positive literals. Moreover, even with this replication we might
face another problem on the check for subsumption, as a literal no longer uniquely identify a
modal clause. A proper approach to renaming might require some deeper study, but the amount
of literals added during the transformation has a significant impact on the size of the problem,

and any optimization in this regard might be worth the effort.

33

Chapter 5
Metatheoretical results

This chapter contains the metatheoretical results regarding the transformation of formulae into
normal form and the results regarding the calculus itself, including proofs of soundness, com-

pleteness and termination.

5.1 Transformation

In this section we show that the transformation of a formula into &,,,, normal form is correct
and terminating. By correctness, we mean that a formula is satisfiable if, and only if, its trans-
formation into the normal form is satisfiable. By termination, we mean that the transformation
process does not go on indefinitely, that is, there is we always obtain a problem C’ such that no

transformation rule can be applied. We show that this problem C’ is in normal form.

5.1.1 Correctness of the transformation

Before starting to prove that the transformation of a formula into the normal form preserves
satisfiability, we need some auxiliary lemmas that show that satisfiability of a problem only

depends on its propositional symbols. This is done in Lemmas 1 to 3.

Lemma 1. Let ¢ be an i-formula and t a propositional symbol not occurring in . Let
M = (W, Wy, (£}) 7, (E)pet,) where Wi = W', m, Ry, ..., R,,). Let M = (W', W,
(€})ieT,s (ED)4ez,)» where Wi = W; and W; = W'l RY, .. R, such that, for all
w € W,, mi(w)(p) = mi(w)(p), forall p #t. Let w be a world in W,. Then, (M, w) =, ¢ if,
and only if, (M, w) =, .

Proof. By induction on the structure of .
We start with the induction basis, which is the case where ¢ is a propositional symbol. If

 is a propositional symbol p, then by the statement of the lemma we have that p # ¢t. Then,

34

mi(w)(p) = m;(w)(p). This means that p is satisfiable in exactly the same worlds in both models.

Then, (M, w) |=, p if, and only if, (M, w) |, p.
Now for the other cases we use the inductive hypothesis, which states that, for any world w,

for any formula ¢ with size smaller than the size of ¢, (M, w) |=, ¢ if, and only if, (M, w) =,
.

1. If ¢ 1s of the form 1 A @9, then, by the definition of satisfiability of the conjunction, if
(M, w) ¢ ¢1 A o, then (M, w) =, ;. Similarly, (M, w) |, ¢o. By the induction
hypothesis, as ¢1 and ¢, are smaller than ¢, (M/, w) =, ¢1 and (M/, w) =, s. Then,

by the semantics of conjunction, (M, w) =, ¢1 A ¢2. The "only if" part is analogous.

2. If ¢ is of the form ¢ V ¢, then, by the definition of satisfiability of the disjunction, if
(M, w) = 1V pa, then either (M, w) =, @1 or (M, w) = 2. Consider (M, w) =, ¢,
then, as ; is smaller than ¢, by induction hypothesis, (M, w) |, ¢;. Then, by the
semantics of the disjunction, (M, w) =, 1 V ¢o. The case for 5 is similar. The "only

if" part is also analogous.

3. If ¢ is of the form ¢; — (5, then, by the definition of satisfiability of the implica-
tion, if (M, w) ¢ o1, then (M, w) =4 @2. Suppose (M, w) |=¢ 1. By the semantics
of implication, (M, w) |=; ¢2. Then, as ¢ and 9 are smaller than ¢, by induction
hypothesis, (M, w) =, ¢1 and (M, w) =, ¢,. By the semantics of the implication,
(M, w) [=e 1 — a. If (M, w) F~; ¢1, then, by induction hypothesis, (M, w) =, .
Then, by the semantics of implication, (M, w) =, 1 — o.

4. If ¢ is of the form —¢y, by the semantics of negation, (M, w) 4, ¢1. Then, as ¢ is
smaller than ¢, by induction hypothesis, (M', w) %4, ¢1. By the semantics of negation,

(M, w) = =1

5. If o = lalp,, then by the semantics of [a], for every world w’ € W; such that wRiw’ ,
(W;,w") ¢ ¢1. By the induction hypothesis, as ¢; is smaller than ¢, (W, w') =,
1. Then, because the relation Rfl is the same in both models, by the semantics of [a/,
(Wi, w) e (@l

6. If ¢ = [y, then for every world w’ € W; such that wEiw', (W;,w') =, ¢1. By

induction hypothesis, as ¢, is smaller than ¢, (W%, w’) |=; ¢ Then, because the relation
&} is the same in both models, by the semantics of [, (M, w) |=; [1.

7. If ¢ = @gpl, then by the semantics of @, there is a world w’ € W, such that wR,uw’
and (W;, w’) =, ¢1. By the induction hypothesis, as 7 is smaller than ¢, (W’ w') =,
1. Then, because the relation RZ is the same in both models,by the semantics of @,

(W, w) e @,

35

8. If ¢ = &y, then there is a world w’ € W; such that wEw' and (W, w') |=¢ ¢1. By
induction hypothesis, as ¢, is smaller than ¢, (W%, w’) |=¢ 1 Then, because the relation
EJ’f is the same in both models, by the semantics of <>, (M, w) Q.

As (M, w) [=, ¢ if, and only if, (M, w) =, ¢ holds for every possible form of ¢, the lemma
holds.
O

Lemma 2. Let ¢ be an i-formula and t a propositional symbol not occurring in ¢. Let
M = (W, Wy, (gl)jeL7 (ER) e, where W; = W', Ry, ..., RL). Let M = (W{, W,

J
()T, (ER)er,) where Wi = Wi and Wy = W', Ry, ..., R,,), such that, for all

J

w e W,;, m(w)(p) =m(w)(p), forall p#t. Then, M |=, ¢ if, and only if, M |=, ¢.

Proof. Suppose M =, ¢. This means that, for every world w € W;, (M, w) =, ¢. By the
previous lemma, this means that for every world w € W/, we have that (M, w) |=, ¢. That is,

M’ =, ¢. The proof is analogous for the "only if" part. [

Lemma 3. Let C = ((G1, K1), (G2, Ks)) be a cM (L, Ly)-problem and t a propositional sym-
bol not occurring in p. Let M = (W1, W, (5]-1)].611, (&) e,) Where W; = W' m, Ry, ...
R;.) and M =, C. Let M = (Wi, Wy, (€])..7,, (EF),c7,)» where Wi = W; and W), =
W', ml,R1, ..., R,,), such that T(p) = m;(p), for all p #t. Then, M' =, C.

Proof. Straightforward, as it suffices to apply the previous lemma to each formula in the sets.
O

This concludes the proof that the satisfiability of a cM (L, L,)-problem only depends on
the valuation to the propositional symbols occurring in the problem. Next, we show the correct-

ness of each transformation rule.

Lemma 4. (7;,;;) Let ¢ be an i-formula into NNF, and let C = ((G1,K1), (G2, K2)) be a
CM(Ll, L,)-problem, where G, = {to,to — ¢} and K1y = Gy = Ky = &, where t, does not
occur in . Then, @ is globally satisfiable if and only if C is globally satisfiable.

Proof. (=) If ¢ is globally satisfiable, then there is a model Ml = (W1, W, (€;) .7, (€7)4e 7,0
with Wy = W', 71, Ry, ..., R,,), such that Ml }=; ¢. We construct a model M/ = (W', W,
(€1),e7, (ED)ger,). With W)y = Wa, and W) = (W', x/,R},..., R}), where 7/(w)(p) =
m(w)(p), for all p # ty, and 7, (w)(ty) = true, for all w € Wy, where t, is a new proposi-
tional symbol not occurring in ¢. By Lemma 1, we have that M’ =, . As W} =, ¢, by the
semantics of implication we have that W} =, ¢, — ¢. Then we have that M’ =, t, — .
As, by construction, 7}(w)(ty) = true, for all w € W/, we have that W |=, t; and M =, ¢,

and finally M |=, {to — ¢,%o}, thatis, M’ |=, KC;. Then, by the definition of satisfiability

36

of cM (L, Ly)-problems, because Gs, K1, KCs are trivially satisfied in any model, we have that
M &, C.

(<) If C is satisfiable, then there is a model M = (W, W, (gjl>jeL= (E2)4ez,)> With
W, = W', Ri,..., R,), such that Wy =, (to —) and Wy =, t,. By the semantics of
implication, we have W, |=, ¢. Finally, we have M |=, ¢.

0

This lemma shows that a formula ¢ is satisfied if, and only if, it is the corresponding initial
CM (L, L,)-problem is satisfiable. The following lemmas deal with the other transformation

rules.

Lemma 5. (7) Let 1, @2 be i-formulae and let t be a literal. Let C = ((G1,K1), (G2, Ks)),
where {t — (o2 A 2)} C Gi. Then, C; = (G;, K;) is satisfiable if, and only if, C; = (G, K.) is
satisfiable, where G = {t — p1,t — o} UG; \ {t = (p2 A p2)} and K, = K.

Proof. (=) If C; is satisfiable, then there is a model M = (W1, Wy, (£})..7 . (€F),c7,)> With
W; = W', m, R, ..., R,,.),such that Ml =y G; U{(t — 2 A 2)} UK. Then, for any world
w € W;, we have that (W;, w) =, (t — ¢1 A p2). We consider two cases:

If ¢ holds at w, then, by the semantics of implication, (W;, w) =, ©1 A ¢o. This means
that we have (W,, w) =, ¢ and (W;, w) |=¢ ¢o. By the semantics of implication, we have
(W, w) ¢ (t — 1) and (W, w) = (t — ¢2). If t does not hold at w, by the semantics of
implication we trivially have (W;, w) =, (t — ¢1) and (W;, w) =, (t — p2).

As in any world w either ¢ holds or it does not hold, this means that for every world w,
(W, w) ¢ (t — 1) and (W, w) =, (t — @9), that is, (W;,w) =, {t — ¢1,t — 2}, and
then we have M |=, G:. Then, we have M =, C..

(<:) If C; is satigﬁable, then there is a model M = (W1, Wy, (£}). .7, (€F),c7,)> With W; =
W', 7, Ry, ..., R,,), such that W; =/ C;. Then, for any world w, we have that (W;, w) =,
{(t = 1), (t = o) }. Again, we then consider two cases:

1. If ¢ holds at w, then, by the semantics of conjunction, (W; w) =, (¢t — ¢;) and
(W;,w) =4 (t — 2). Then, as ¢ holds, we have (W;, w) =, ¢1 and (W;, w) =4 @2, by
the semantics of implication. We then have (W;, w) =, ¢1 A @2, and by the semantics of
implication, we have (W;, w) =, (t = ©1 A p2)

2. If t does not hold at w, by the semantics of implication we trivially have (W,;, w) =, (t —
P1 A Pa).

As in any world w either ¢ holds or it does not hold, this means that for every world w,
(W;,w) =e (t = 1 A @2), and then we have M =, (! — 1 A ¢2). Finally, we have
M k=, G;. Then, we have M =, C,.

37

]

Lemma 6. (7,) Let 1, p2 be i-formulae and let t be a literal. Let C = ((G1,K1), (G2, Ks)),
where {t — ©1 V @2} C Gi. Then, C; = (G;, K;) is satisfiable if, and only if, C, = (G}, K}) is
satisfiable, where t, is a new propositional symbol and G, = {t — ©1Vt1,t; — 2} UG\ {t —
o1V o}, K=K,

Proof. (=) If C; is satisfiable, then there is a model M = (W, W, (gjl>jeL’ (E7)pez,)» With
W; = W', 7, Ry, ..., R,,), such that M |=, C;. We construct a model M = (W', Wy,
(DT, (ER)per,)> with Wi = Wy, and W, = W', 7w, Ry,..., R,,), where mj(w)(p) =
mi(w)(p), for all p # ¢y, and 7, (w)(t1) = true, if, and only if, (W;, w) =, 2. By Lemma 3,
C; is satisfiable. Then, by construction of our model, ¢; — s is trivially satisfied, as #; holds
everywhere ¢, holds. Now, if we have that (t — ¢ V ¢9) is satisfied at a world w, then if ¢
holds, either ; or ¢, is satisfied at w. As we have that 7 (w)(t1) = true if and only if 9 holds
at w, then, by the semantics of disjunction, ¢, V ¢, is satisfied and then t — ¢ V ¢ is satisfied.
By the semantics of conjunction, {(t — @1 V t1), (t; — @2)} is satisfied. If ¢ does not hold at
w, then the whole formula is also trivially satisfied. Then, as this holds at every world of W,
we have that M |=, {(t — ¢1 V t1), (t1 — ¢2)}, thatis, M’ =, C..
(<) If C; is satisfiable, both (t — ¢ V t1) and (t; — o) are satisfied at every world
w. Then, for any world w, if ¢ does not hold at w, (t — @1 V 9) is trivially satisfied, by
the semantics of implication. If ¢ does hold at w, then, by the semantics of implication and
disjunction, either ¢, or ¢; holds at w. If ¢o; holds at w, then, by the semantics of the disjunction,
1V 9 holds and then ¢ — 1 V5 holds. If £; holds, as t; — 5 holds at w, by the semantics of
the implication, ¢9 holds. Then, we have that ¢; V¢, must hold, by the semantics of disjunction,
and then we have that t — ¢ V ¢, holds by the semantics of implication. Finally, C; is satisfied.
]

Lemma 7. (7_,) Let ¢ be an i-formula and let t be a literal. Let C = ((G1,K1), (G2, Ks)),
where {t — ¢} C G,. If v is a disjunction of literals, then, C; = (G;, K;) is satisfiable if, and
only if, C; = (G}, K.) is satisfiable and G, = {—t V o} UG; \ {t = ¢}, K. = K..

Proof. (=) If C; is satisfiable, then there is a model M = (Wy, Wy, (£])..7 . (F)c7,)> With
W; = (W', m,R1,...,R,,.), such that M =, G; U K;. Then, for any world w € W;, we have
that (W;, w) =, (t —). We consider two cases:

If ¢ holds, then, by the semantics of implication, (W;, w) }=, ¢. Then, by the semantics of
disjunction, (W;, w) =, =t V . If t does not hold at w, then, by the semantics of negation, —t
holds, and by the semantics of disjunction, (W;, w) =, =t V ¢. As =t V ¢ holds in both cases,

(W;, w) ¢ —t V¢ must hold, and as w was arbitrary, then we have Ml |=, =tV ¢ and M =, C..

38

(¢=) If C; is satisfiable, then there is a model M = (W1, Wy, (£]). .7, (€F)c7,)> With W, =
W', 7, Ry, ..., R,,.), such that W; k=, C;. Then, for any world w, we have that (W;, w) =
-t V . Again, we then consider two cases:

If ¢ holds, then, —¢ does not hold and, by the semantics of disjunction, ¢ holds. Then, by
the semantics of implication, (W;, w) =, t — ¢. If t does not hold, then ¢ — ¢ holds trivially.
Finally, as w was arbitrary, Ml =, t — ¢ and M |=, C,. O

Lemma 8. (7,,0.c) Let ¢ be an i-formula, and let t be a literal. Let C = ((G1, K1), (Ga, K2)),
where {t — ¢} C G;. Then, C; = (G;,K;) is satisfiable if, and only if, C; = (G}, K.) is
satisfiable, where G, = G; \ {t — ¢}, K. = K; U{t — ¢}.

Proof. Immediate from the definition of satisfiability of a problem, as both C; and C; contain

the same formulae. [

Lemma 9. (1) Let o be an i-formula, and let t be a literal. Let C = ((G1,K1), (G2, K2)),
where {t — [alp} C K;. Then, C; = (G;,K;) is satisfiable if, and only if, C; = (G., K.) is

satisfiable, where t, is a new propositional symbol and K; = {t — lalt;} UK, \ {t — [alp},
Gi=G:u{ti = ¢}

Proof. (=) If C; is satisfiable, then there is a model M = (W, Wy, (8]1)].621, (E7)4ez,)> With
W; = W', 7, Ry, ..., R,,), such that M |=, C;. We construct a model M’ = (W', Wy,
()T, (ERper,)> with Wi = Wy, and W, = W', 7w, Ry,..., R,,), where j(w)(p) =
mi(w)(p), for all p # tq, and 7/(w)(t1) = true, if, and only if, (W;,w) =, ¢. By Lemma 3,
M’ |=, C;. By construction of M, ¢; — ¢ is trivially satisfied, as ¢; holds everywhere ¢
holds. Now, if we have that (t — [a]yp) is satisfied at a world w € W,, then if ¢ holds, by
the semantics of implication and (@], for every world w’ € W;, such that wR,w’, we have
that (W;, w’) =, ¢. As we have that 7/(w)(t;) = true if and only if ¢ holds at w, then, by
the semantics of [a], [alt; is satisfied at w and then ¢t — [alt; is satisfied. By the semantics
of conjunction, (¢t — [alt;) A (t; —) is satisfied. If ¢ does not hold at w, then the whole
formula is also trivially satisfied. Then, as this is true at every world of W, we have that
M’ =, (t — lalty) A (t1 — o). Finally, C; is satisfied.

(<) If C; is satisfiable, both (t — [a]t;) and (t; — ¢) are satisfied at every world w € W,.
Then, for any world w, if ¢ does not hold w, (t — @g@) is trivially satisfied, by the semantics
of implication. If ¢ does hold at w, then, by the semantics of implication, [alt; holds at w.
By the semantics of [a], for every world w’ such that wR,w’, we have that ¢; holds at w’. As
t1 — ¢ holds at every world w, then, by the semantics of implication, we have that for every
w’, such that wR,w’, © holds at w’. Then, by the semantics of [a], [a]y holds at w. Thus, by
the semantics of implication, ¢t — [alp is satisfiable in M. Finally, C; is satisfied.

O

39

Lemma 10. (1) Let be an i-formula and t be a literal. Let C = ((G1, K1), (G2, K2)), where
{t = @} C K. Then, C; = (G;,K,) is satisfiable if, and only if, C; = (G}, K}) is satisfiable,
where IC; = {t — @t} UK, \ {t — @}, with t, a propositional symbol not occurring in C,
Gi=G:U{tL — ¢}

Proof. (=) If C; is satisfiable, then there is a model M = (Wi, Wy, (£])..7,, (€7)1c7,)s
with W, = W' 7, R, ..., R,), such that M =, (t — @yp). We construct a model
M = (W}, Wy, (€]),e7,+ (ER)yer,)> With Wi = Wy, and W) = (W', 7, Ry, ..., R},), where
mi(w)(p) = mi(w)(p), for all p # tq, and 7, (w)(t;) = true, if, and only if, (W;,w) =, ¢.
By construction of our model, ¢t; — ¢ is trivially satisfied, as ¢; holds at every world where
¢ holds. Now, if we have that (t — @) is satisfied at a world w € W,, then if ¢ holds,
by the semantics of implication and @ there exists a world w’ € W;, such that wR,w’, and
(W;,w') ¢ . As we have that 7/ (w)(t1) = true if and only if ¢ holds at w, then, by the
semantics of <@, <@t is satisfied at w, that is, <@t is satisfied, and then ¢t — <@t is satis-
fied. Then, {(t — @t,),(t; — —¢)} is satisfied. If ¢ does not hold at w, then the whole
formula is also trivially satisfied. Then, as this is true at every world of W, we have that
M =, {(t — @), (t; —)}. Finally, C/ is satisfied.

(<) If C} is satisfiable, both (¢ — <@t,) and (t; — () are satisfied at every world w € W,.
Then, for any world w, if ¢ does not hold at w, (t — @90) is trivially satisfied, by the semantics
of implication. If ¢ does hold at w, then, by the semantics of implication, <@t holds at w. By
the semantics of <@, there exists a world w’ such that wR,w’, and ¢, holds at w’. As t; — ¢
holds at every world w, by the semantics of implication, — holds at w’. That is, for a world w’
such that wR,w’, we have that ¢ holds at w’. Then, by the semantics of @, <CL><p holds at w,
that is, @(p holds. Thus, by the semantics of implication, ¢t — @(p is satisfiable in M. Finally,
C; is satisfied.

]

Lemma 11. (T@) Let ¢ be an i-formula, and let t be a literal. Let C = ((G1,K1), (G2, K2)),
where {t — [El¢o} C K;. Then, C is satisfiable if, and only if, C' = ((G},K1), (G5, K5)) is
satisfiable, where t; is a new propositional symbol and KC; = {t — [&t;} U K; \ {t — e},
G:=G;U{ti = ¢}, G, =G, and K: = K;.

Proof. First, consider the case where G, UK, -, 1true, for all 1-connecting modalities 1.
This means that the second component is unreachable, and the satisfiability of the problem only
depends on C; = (G4, Ky). If i = 2, the proof is straightforward, as we may extend any model
for C with 7y (w)(t1) = false, and thus the application of the rule does not change satisfiability
of the problem. If 7 = 1, both lgo and 1t1 are trivially satisfied, as the second component
is unreachable. Then, satisfiability of the problem is also preserved. We may now proceed
considering that the models will globally satisfy G, U Ko, as we have that G; UK, =, 1true.

40

(=) If C is satisfiable, then there is a model M = (W, Wy, (£}),.7,. (£7)4e7,)s With
W; = W', m, Ry, ..., R,,) and W; = W', 13, Ry,..., R,), such that W; =, (G;, ;) and
W; =y (G, K5). We construct a model M = (W, Wy, (E}). .7, (7)e1,)s With W, = W,
and Wi = (W', 74, Ry, ..., R,,.), where mi(w)(p) = m;(w)(p), for all p # 1, and m(w)(t1) =
true, if, and only if, (W;, w) =, ¢. By Lemma 3, M |=, C. By construction of our model,
t1 — s trivially satisfied at every world w’ € W%, as ¢, holds everywhere ¢ holds. Then, we
have that Ml =, t; = p and M |=, (G;, K5).

Now, if we have that C' is satisfied at a world w € W, then if ¢ holds, by the semantics of
implication and [&], for every world w’ € W, such that wEfw’, we have that (W, w') =, ¢.
As we have that 7/(w)(t1) = true if and only if ¢ holds at w, then, by the semantics of [&],
t; 1s satisfied at w and then ¢t — t; is satisfied. If ¢ does not hold at w, the implication is
also trivially satisfied. Then, we have that M |=, t — [& ¢t; and M’ |=, (G, KC;).

As we have both M |=, (G;, K;) and M =, (G;, K;), then M |=, ((G;, K;), (G;, K3))
and the problem C’ is satisfied.

(<) If C' is satisfiable, then, by the semantics of conjunction, both (¢ — [Et;) and (t; —)
are satisfied at every world w. Then, for any world w, if ¢ does not hold w, (t — [&¢) is
trivially satisfied, by the semantics of implication. If ¢ does hold at w, then, by the semantics
of implication, [&] ¢, holds at w. By the semantics of [&] , for every world w’ such that w&w’,
we have that ¢; holds at w’. As t; — ¢ holds at every world w, then, by the semantics of
implication, we have that for every w’ such that wE{w’, ¢ holds at w’. Then, by the semantics
of [, [¢ holds at w. Thus, by the semantics of implication, ¢ — [&] ¢ is satisfiable in M.
Finally, C is satisfied.

O]

Lemma 12. (7,) Let ¢ be an i-formula, and let t be a literal. Let C = ((G1, K1), (G2, K2)),
where {t — ©} C K;. Then, C is satisfiable if, and only if, C' = (G, K}),(Gh, K5)) is
satisfiable, where K = {t — ©t;} UK; \ {t — ®©p}, with t; a propositional symbol not
occurring in C, G = G; U{t; — ¢}, G; = G, and K = K;.

Proof. First, consider the case where G, U K4 [;Ag 1true, for all 1-connecting modalities 1.
This means that the second component is unreachable, and the satisfiability of the problem only
depends on C; = (G, Ky). If i = 2, the proof is straightforward, as we may extend any model
for C with 71 (w)(t1) = false, and thus the application of the rule does not change satisfiability
of the problem. If ¢ = 1, both lgo and ltl cannot be satisfied, as the second component
is unreachable. Then, satisfiability of the problem is also preserved. We may now proceed
considering that the models will globally satisfy G, U KCo, as we have that G; UK, =, 1true.

(=) If C is satisfiable, then there is a model M = (W, W, (Sjl)jezl, (E2)4ez,)> With
W, = W' m,R.,...,R..), such that M |=; (t — ®©¢). We construct a model M/ =

41

(Wi, W, (ED) o7, (EF)pez,)> With Wi = Wi, and W, = (W' 7/, Ri,...,R},), where
mi(w)(p) = m;(w)(p), for all p # t1, and 7 (w)(t1) = true, if, and only if, (W;,w) =, .
By construction of our model, ¢t; — ¢ is trivially satisfied, as ¢; holds everywhere ¢ holds.
Then, we have that M =, (G; U {(t; — ¢)}, K;). Now, if we have that (t — &) is satisfied
at a world w € W,, then if ¢ holds, by the semantics of implication and <&, there exists a world
w' € W;, such that w&iw', and (W;, w') =, . As we have that 7(w)(t;) = true if and only
if ¢ holds at w, then, by the semantics of &>, 4>t is satisfied at w, that is, ¢>t; is satisfied, and
then t — <>t is satisfied. Then, we have that M’ |=, (t — & t;) and M =, (G, ;).

As we have both M’ |=, (G;, K;) and M’ |=, (G;, K;), then M |=, ((G;, K;), (G;, K;)) and
the problem C’ is satisfied.

(<) If C' is satisfiable, (t — <¢>t;) is satisfiable at every world in W; and (t; — ¢) is
satisfied at every world in W;. Then, for any world w € W, if ¢ does not hold at w, (t — &)
is trivially satisfied, by the semantics of implication. If £ does hold at w, then, by the semantics
of implication, ¢>t; holds at w. By the semantics of <>, there exists a world w’ € W5 such
that w&{w', and ¢; holds at w’. As t; — holds at every world w’ € W;, by the semantics
of implication, ¢ holds at w’. That is, for a world w’ such that w&;w', we have that o holds at
w’. Then, by the semantics of &>, &> holds at w, that is, ¢>¢ holds. Thus, by the semantics
of implication, t — < is satisfiable in W,, that is, W; =, t — ©¢ and W; =, (G;, K;).
Finally, C is satisfied.

O]

Finally, we show that applying the transformation rules a finite number of times to the
problem C corresponding to a formula ¢ yields a new problem, C’, that is satisfiable if, and
only if, ¢ is satisfiable. Showing this to the problem C = (({¢}, @), (&, @)) suffices, as this

problem is satisfiable if, and only if, ¢ is satisfiable.

Theorem 1. Let p be an i-formula in NNF, with the corresponding initial M (Ly, Ly)-problem
Co = ((G1,K1), (G2, Ka)) where G; = {to,to — ¢} and K; = G; = K; = &. Then, the
problem C', obtained after a finite number of applications of the transformation rules given in
Section 4.1 is satisfiable if, and only if, C is satisfiable.

Proof. By induction on the number of transformation rules applied.

The base case is when ¢ is a disjunction of literals, then only the rule 7_, is applied. The
correctness of this step is given by Lemma 7.

The induction hypothesis is that, for every transformation of a problem (({¢}, @), (&, @))
in to a cM (L, L,)-problem in normal form that takes & < n steps, the resulting problem is
satisfiable if and only if the first problem is satisfiable.

For the inductive step, consider a chain of transformation rules (R, ..., R,) of length n >

1, with corresponding problems (C = C,,...,C,_1,C, = C’). We may show that C,,_; is

42

satisfiable if and only if ¢ is satisfiable by applying the inductive hypothesis to the sub-chain
(Co,...,Cp1).

Now, the last rule, R, that transforms C,,_; into C,,, must be one of the rules presented in
Section 4.1. We may then conclude this step by applying the corresponding lemma, between
Lemmas 5 to 12. With this, we show that C,, is satisfiable if, and only if, C,,_; is satisfiable.
We then have that C,, is satisfiable if, and only if, ¢ is satisfiable.

Finally, we have that every transformation of finite length of a problem (({¢}, @), (&, @))
yields a cM (L, L,)-problem that is satisfiable if and only if ¢ is satisfiable.

[

5.1.2 Termination of the transformation

In this subsection, we show that the application of the transformation rules terminate and, when
it does, we are left with a problem in the normal form.
We start by showing that the transformation rules can be applied if, and only if, the problem

is not in the normal form.

Theorem 2. Given a CM(Ll, L,)-problem C = ((G1,K1), (G2, K2)), the normal form rules

can be applied if, and only if, the problem is not in the normal form.

Proof. (=) We show the contrapositive, that is, if the problem is in the normal form, the rules

cannot be applied. We analyse each rule:

(Tinit) This rule is only used to construct the initial problem, so it cannot be applied.

(Ta,v) These rules can only be applied to formulae of the form ¢t — ¢ Ay ort — 1 V 9, and
these are not in the clausal form given in Table 4.1.

(7—) This rule can only be applied to formulae of the form ¢ — ¢, where ¢, is a disjunction
of literals. All the formulae with occurrences of implications in Table 4.1 have a modal

operator, so this rule cannot be applied.

(Timove) This rule can only be applied when there are formulae with a modal operator on a G;-set,

which goes against the definition of the normal form. Then, this rule cannot be applied.

(T) These rules can only be applied to formulae of the form t — @y, and t — <>, where
O

1 1s not a literal, and these are not in the clausal form given in Table 4.1.

(T 0) These rules can only be applied to formulae of the form ¢t — [a]p; and ¢t — []p;, where
’ 1 1s not a literal, and these are not in the clausal form given in Table 4.1.

Then, we conclude that, as the problem is in normal form, no transformation rule can be

applied.

43

(<) We must show that, if the problem is not in the normal form, then there is some rule
7 that can be applied. We consider only the formulae of the form ¢ — ¢, as obtained by
application of rule 7;,;;. We analyse the possibilities for the formula ¢ — ¢, on the structure of

v, where ¢ is in NNF.

(true) If the formula is of the form ¢ — true, then we may apply the simplifications in given in

Table 4.2 to obtain the formula ¢, which is in the normal form.
(p) If the formula is of the form ¢ — p, then we may apply the rule 7_,.
(A) If the formula is of the form ¢ — ¢ A 9, then we may apply the rule 74.

(V) If the formula is of the form ¢ — 1 V (9, then, if 1 V @9 is a disjunction of literals, we

may apply the rule 7_,. Otherwise, we may apply rule 7.

(—) This is not possible, as the original formulae must be in the NNF, and the rules do not

generate nested implications.

(>,<>, [1,10)) If the formula has a modality, then the inner formula may not be a literal occurring in the
initial problem, otherwise it is in normal form. Then the appropriate rule
p ‘ pprop 7—<>7<<>7 D 7@
can be applied.

]

To show the termination property for the transformation rules, we define a weight function
for problems and show that each transformation rule can only lower the weight of the resulting
problem. Intuitively, given a cM (L, Ly)-problem, the weight function gives information of
how much work still needs to be performed in order to obtain a problem in the desired normal
form. Before giving the formal definitions, let us consider the following example, where Cy is

an initial problem:

Co = (({to,to = p A @'y},), (2, 2))

No transformation rule can be applied to the formula ¢, in G, but the transformation rule 7,

can be applied to the implication ty — p A @1¢, resulting in the problem C;:

C1 = (({to,to — p,to — [@'9}, @), (@, @)

At this stage, less transformation steps are needed in order to obtain the normal form of C,.
The initial problem required one step to rewrite the conjunction on the right-hand side of the
implication plus all the transformations steps required by the added formulae. The resulting
problem will require one less step during the transformation, as the rule 7, got rid already of

the conjunction. The weight function is therefore designed to correspond to the number of steps

44

taken during the transformation procedure. As so, the weight of a problem (set, formula) is
basically given by what still needs to be considered for achieving the normal form.

Following the previous example, the weight of C, is the weight of transforming t, —
PA @11/1, which requires to recursively checking how many transformation steps need to be ap-
plied to each of the conjuncts. In this case, the weight of the problem C,; depends on the weights
of both introduced formulae. As C; is not yet in the normal form, we could, for instance, apply

. 1 o
the 7, transformation rule to t, — [l 4, resulting in:

Cs = (({to to = p.tr — ¥}, {to = [@'t,}), (2, 2))

Note that t5 — @1151 requires no further renaming. Therefore, even if the problem grows in
size, the added modal clause does not affect the weight of the problem. In other words, the
weight is only affected by further steps required to transform the formula ¢; — ¢ in its normal
form. After those examples, we now proceed by providing the definitions and proofs that the
transformation into the normal form is indeed terminating and it is correct, that is, it produces a
problem in the desired form.

In the following, we will recursively define the weight functions w for problems, sets, and
formulae. As no confusion should arise, we will use the same functional symbol for all weight
functions. We start by defining the weight of a problem C = ((G1, K1), (G2, K2)) as:

w(C) = w(G1) + w(Ky) + w(G2) + w(Ky)

The weight of a set of formulae I is given by the sum of the weights of its members:

el
The weight of the union of two sets of formulae, I" and I, is given by the sum of the weights

of each set:

w(UT") =w(T) +w()

The weight function is then defined by case on the structure of formulae. Recall that a formula
in a problem can always be simplified to its Negate Normal Form (NNF), by applying the
simplification rules given in Table 4.2. Thus, in the following, we only consider those cases.
The base cases are those where no transformation rule can be applied (where D is a disjunction

of literals, [is a literal, and ¢, ¢’ are propositional symbols introduced by renaming):
w(D) = w(t — [@'l) =w(t — @) =wt — @) =wt— &) =0
If ¢ is a disjunction of literals, then we also define:

45

w(t —¢)=1

For complex formulae occurring on the right-hand side of implications, the weight function is

defined as follows:

w(t = 1 Aps) = w(t— 1) Fw(t —) +1

w(t — o1 V) = w(t—p1 Vi) +w(ts — ¢2) +1 where ¢ is not a literal
w(t — @igp) w(t — @) +1 where ¢ is not a literal
w(t — @lcp) = w(t—p) +1 where ¢ is not a literal
w(t — iQO) w(t — @) +1 where ¢ & Lit(D)
w(t — Z'<,0) = wt—p)+1 where o & Lit(P)

This completes the definition of the weight function.

Recall that we define a transformation into the normal form as a sequence of problems C,
Ci, ..., where Cy is start(y), Lit(®P) is the set of literals occurring in @, and each problem C,;
was obtained from C; by an application of the transformation rules given in Section 4.1, for all
j > 0. In order to show that the transformation rules given in Section 4.1 may only decrease the
weight of a problem, we need to show that each possible transformation rule does so, as given
by the following lemmas. For a transformation rule 7, we slightly abuse notation and call w(7)
the difference between the weight of the problem before and after the transformation rule has

been applied.

Lemma 13 (7). Let C; = ((G1,K1), (G2, K2)) be a CM(Ll, L,)-problem, where t — 1 A
@2 € Gi. Let T'be G; \ {t — v1 Ao} and Cjq = ((G', K1), (G, K3)) be a problem such that
G =TU{t = ¢1,t = v}, Gt = G; K; = K, and K = K;. That is, C;4 is the result of
applying 7, to C;. Then, w(C;) > w(Cjiq).

Proof.

g

Cj) — w(Cji1)

Gi) +w(Ks) +w(G7) + w(ks) — (w(G;) + w(Ky) +w(G7) + w(k))
G:) — w(G;)

) +w(t — 1 Apa) = (w(l) + w(t = ¢1) + wlt = ¢2))

t— o1 ANa) —w(t — 1) —w(t — p2)

= wt—=p1)+wlt—p)+1—wt—p1)—wlt— p)

w(Tp)

Il
g

I
g

= w

Il
S

(
(
(
(
(
(

|
-

46

Lemma 14 (7). Let C; = ((G1,K4), (G2, K2)) be a CM(Ll, L,)-problem, where t — 1 V
@2 € Gi. Let T'be G; \ {t — 1 V o} and C;1 = ((G', KY), (G, K3)) be a problem such that
G =TU{t = p1 Vi1, t1 = v}, G; = G;, K = K, and K} = K;. That is, C;1 is the result
of applying 7, to C;. Then, w(C;) > w(Cj1).

Proof.
w(th) = w(Cj) —w(Cjp)
= w(G:) + w(Ks) + w(G;) +w(ky) — (w(F)) +w(k) + w(Gy) + w(K;))
= w(@:) —w(G)
= w(l) +w(t = o1 V) = (wl) +w(t = o1 Vi) +w(ts = ¢2))
= w(t— o1 V) —w(t— o1 Vi) —w(ty — p2)
= wit—=>p1 V) Fw(ty =)+ 1 —w(t — @1 Vi) —w(ty = pa)

|
—_

]

Lemma 15 (7). Let C; = ((G1, K1), (G2, K2)) be a CM(Ll, L,)-problem, where t — ¢ € G;
and is a disjunction of literals. Let T be G; \ {t — ¢} and C; 1 = ((G},K}), (G5, K5)) be a
problem such that G, = T U {=t V ¢1}, G5 = G;, K = K, and K; = K;. That is, Cj4 is the
result of applying 7_, to C;. Then, w(C;) > w(Cjiq).

Proof.
w(rs) = w(C)) —w(Cjia)
= w(G) +w(Ks) + w(G;) + w(K;) — (w(G}) + w(Ki) + w(F;) + w(K5))
= w(Gi) —w(G))
= (wI) +w(t =) = (W) +w(=tVe)
= w(t =) =w("tVy)
— 1-0=

]

Lemma 16 (7,,,00¢). Let C; = ((G1,K4), (G2, K2)) be a CM(Ll, L,)-problem, where t — ¢ €
G; and ¢ is a formula whose main operator is a modality. Let C; 11 = (G}, K}), (G5, K3)) be
a problem such that G, = G,;, G- = G;, K = K; U {t — ¢}, and K; = K;. That is, C; 1 is the
result of applying Tpepe to C;. Then, w(C;) > w(Cjiq).

47

Proof.
w(t,) = w(C i) — w(Cjy1)
= w(G;) +w(t = @) + w(K;) + w(G;) + w(k;)—
(w(G}) + w(K)) + w(t = ¢) + w(Gs) + w(K3))
=0
]

Lemma 17 (7). Let C; = ((G1, K1), (G2, Ka)) beaCM(Ll, L,)-problem, where t — @igo €
KCi and ¢ is not a literal. Let I be K; \ {t — @icp} and C;11 = ((G1,K)), (G5, KY)) be a
problem such that G, = G, U {t; — ¢}, G- = G;, K, =T U{t — @itl}, and K; = K;. That
is, Cjy1 is the result of applying 7 to C;. Then, w(C;) > w(Cjiy).

Proof.

w(T

|
g

C;) = w(Cjt1)
) i) +w(G;) + w(Ks) — (w(G)) + w(K;) +w(GF) + w(K3))
) i) — (w(G}) — w(Ky))
) D) +wt— la'y)— .
w(Gi) + w(ts = ¢) + w(l) + w(t — [a't))
t— (') — (wlty — o) +w(t — [a't))
t— @igo) —w(t; — @)
t—¢)+1—w(t;y — @)

o) =

|
g

gi
g
g

i

K
K

|
g

(
(
(
(

+ w(
+ w(
+ w(

|
g

—~

|
g

= w(
—
(

= w

|
—_

[
Lemma 18 (7). Let C; = ((G1, K1), (G2, K>)) be a CM(Ll, L,)-problem, where t — @igo €
K: and ¢ is not a literal. Let T be K; \ {t = @'¢} and Cj1 = ((G1, K1), (G5, K5)) be a
problem such that G, = G, U {t; — ¢}, G- =G;, K; =T U{t — @'t,}, and K: = K. That
is, Cj11 is the result of applying 7 ., to C;. Then, w(C;) > w(Cjpq).

Proof.
w(7_<>> = w(C) —w(Cj41)
w(Gi) +w(Ki) +w(G;) +w(l;) — (w(G;) + w(Ky) +w(G7) +w(KF))
w(Gi) +w(Ki) — (w(G;) — w(K)) |
w(Gs) + w(l) + w(t - @'p) — (w(G,) +w(ty = @)+ w(l) + w(t — @)
w(t — @'p) — (w(ty — @) +w(t - @)
= w(t > @) —w(ts = ¢)
= w(t =) +1-wti = @)

|
—_

48

]

Lemma 19 (7). Let C; = ((G1, K1), (G2, K2)) be a CM(Ll, L,)-problem, where t — igo €
K: and ¢ is not in Lit(®). Let T be K; \ {t — &' ¢} and Cj1 = ((G1,K7), (G5, Ksy)) be a
problem such that G, = G;, G = G; U {t; = ¢}, K, =T U{t — itl}, and K: = KC;. That
is, Cj 1 is the result of applying 7 to C;. Then, w(C;) > w(Cjiq).

Proof.
w(ty) = w(Cj) —w(Cjy1)
= w(G:) +w(K;) + w(G;) + w(K;) — (w(G;) + w(K}) +w(GF) +w(K))
w(G;) + w(Ki) — (w(G;) — w(Ky))
w(G;) + w(l') + w(t — [‘o) = (w(Gy) +w(ty = ¢) +w(l) +w(t — ')
w(t — [so) (w(ts —) +w(t — @'t))
= w(t—[E'g) —w(t, — @)
= wlt—=e)+1-wti—)

|
—

]

Lemma 20 (7). Let C; = ((G1, K1), (G2, K>)) be a CM(Ll, L,)-problem, where t — igo €
K: and ¢ is not in Lit(®). Let T be K; \ {t — © ¢} and Cj1 = (G}, K1), (G5, Ksy)) be a
problem such that G, = G;, G = G; U {t; = ¢}, K, =T U{t — itl}, and K; = KC;. That
is, Cj1 is the result of applying 7, to C;. Then, w(C;) > w(Cjy1).

Proof.
w(ty) = w(C)) —w(Cjp)
= w(@:) +w(Ki) + w(G;) + w(K;) — (w(G7) + w(Ki) + w(Gs) + w(KF))
— w(G;) + w(Ks) — (w(G)) — w(K)) |
w(G;) + w(l) +w(t - ©'p) - (w(G7) + w(ty = @) + w(l) + w(t = ©'t))
w(t = ®'p) — (w(ty > @) +w(t - ©'t))
= w(t—>‘gp)—w(t1—>gp)
= wit—-p)+1—wlt; = p)
=1

]

Lemmas 13-20 show that each step of the transformation lowers the weight of a given prob-
lem until the desired normal form is achieved. By induction on the number of steps of a trans-

formation, we get the following result.

49

Theorem 3 (Termination of the transformation). Let 7 = (Cq, Cy, ...) be a transformation.

Then, there is n such that C,, € T and it is in the normal form.

Proof. By definition, 7 is a sequence of problems where Cy is start(y), Lit(P) is the set of
literals not occurring in ¢, and each problem C;; was obtained from C; by an application of
the transformation rules given in Section 4.1, for all 7 > 0. By Lemmas 13-20, for every j > 0,
we have that w(C;) > w(C,41). We now show that we can only apply the transformation rules
if the weight of a problem is positive.

We use the contrapositive and show that if the weight is not positive, then no transformation
rule can be applied. As defined, the weight function only assigns values greater or equal to zero.
If a problem has weight zero, we can no further apply any transformation rule, as by definition
this means that all clauses in all sets of a problem are either a literal clause, an a;-clause, or
an EF-clause. Note that in almost all cases, the inequality w(C;) > w(C;41) is actually strict,
that is, we have that w(C;) > w(C;;;). The only exception is when 7, is applied. In
this case, assume that C; is of the form ((G1, K1), (G2, Ks)) be a CM(Ll, L,)-problem, where
t — ¢ € G; and g is a formula whose main operator is a modality. Let I' be G; \ {t — ¢}.
Then, after the application of 7,0, We obtain C;,1 = ((G}, K}), (G5, Ky)) where G = T,
G: = G;, K, = K, U{t = ¢}, and K; = K;. We assume, without loss of generality, there
is only one formula of the form t — ¢ € G, and ¢ is a formula whose main operator is a
modality. There are now two cases to consider: either ¢ — ¢ is already in the normal form
or one of the transformation rules for modalities can be applied. If ¢ — ¢ is already in the
normal form and w(C;;;) = 0, then n = j + 1 and we are done. If ¢ — ¢ is already in the
normal form and w(C;4;) > 0, then, by Lemmas 13-15, there is another transformation rule
that can be applied whose resulting weight w(Cj) is strictly lower than w(C,4). Hence,
w(C;) > w(Cjya). If t — ¢ is not in the normal form, by Lemmas 17-20, an application
of any of the transformation rules T Teys Ty OF Ty 1O t — pin IC; will result in a problem
C,42 such that w(Cj11) > w(Cjis). Again, it follows that w(C;) > w(C,;2). This suffices
to show that the weight of problems will eventually decrease as desired. As a problem is finite,
the number of times we can decrease the weight of problems in a transformation is also finite.
Therefore, there is n such that C,, € 7, w(C,,) = 0, that is, C,, is in the normal form, and the

transformation procedure terminates. 0

5.2 Calculus

This section contains the proofs of soundness, termination and completeness, together with the

necessary lemmas.

50

5.2.1 Soundness of the calculus

The proof of soundness is done in a straightforward way. We prove soundness of rules [£-
GEN1] and [£-GEN2], and then show soundness of the calculus itself by induction on the

length of a derivation.

Lemma 21. £-GEN1 is sound. That is, for a problem C = ((G1,K1), (G2, Ks)), where P =
{l}, — & " —|l1, — [&] —|lm,l’ - &' =-l} C K, and C; = (G, K;) is satisfiable, if G; U
Kitg V- Vi, VI then we have that C; |= =l V ...V =y, vV =l

Proof. As C; is satisfiable, there is a model Ml = (W, W, (gjl>jeL= (ED)pez,)s With W, |=, P
Let w be a world in W;. For the purpose of contradiction, suppose (W;, w) =, I3 A AL AT

As P is globally satisfiable, then we have that (W;, w) &=, {I} — -, U — s
' — i—|l}. By the semantics of conjunction and the semantics of implication, we have that
(W;, w) = {i—lll, ey iﬂlm, i—|l}. By the semantics of @, there is a world v’ € W
such that wEiw' and (W;, w’) |, —l. By the semantics of @', as wEiw', we also have that
(W5, w') e {1y, ...y 2l

From G; U ; '_C; Ly V--- Vi, VI, as G;is strongly correct, we have that G; U K; =,
[1 V-V iy VI This means that we have (W;, w’) =4 {3 V - - - V [,,, V [, which contradicts with
(W;,w'") =0 {=l, ..., =y, —l}, as aliteral and its negation cannot be satisfied at the same
time. Thus, our assumption that (W;, w) =, [{ A ... A, Al is incorrect, that is, there cannot
be a world where all these literals hold. This means that at least one —/; must hold in W;, that
is, W; =, =iy V... v =l v =l', and the conclusion of the rule is satisfied. Then, £-GEN1 is

sound. L]

Lemma 22. £-GEN2 is sound. That is, for a problem C = ((G1, K1), (G2, K2)), where P =
(I - " —|ll, — 5 "l I = & 'Sl} C Ky and C; = (G, K,) is satisfiable, if G; U
Kitg V-V, thenwe have that C; |= =1y V ...V =l V =l

Proof. As C; is satisfiable, there is a model M = (W, Wy, (£}) L, (ER)pez,)> With W, |=, P
Let w be a world in W;. For the purpose of contradiction, suppose (W;, w) =, I3 A AL AT

As P is globally satisfiable, then we have that (W,, w) =, {l] — iﬂll, I, — iﬂlm,
I @l }. By the semantics of conjunction and the semantics of implication, we have that
(Wi, w) ¢ {H'—ly, ..., [, ®'~l}. By the semantics of &', there is a world w’ € W;
such that wEiw' and (W;, w’) |, —l. By the semantics of ', as w&iw', we also have that
(W5, w") e {1, ...y 2l

As G; is strongly correct, we have that G; U KC;):g [y V ---V1,,. This means that we have
(W;,w'") e 1y V - -+ V 1y, which contradicts with (W5, w') =, {=ly, ..., =}, as a literal
and its negation cannot be satisfied at the same time. Thus, our assumption that (W;, w) =,

Iy A... AU A is incorrect, that is, there cannot be a world where all these literals hold. This

51

means that at least one —/; must hold in W,, that is, W; =, =} V ...V =ll V =i, and the
conclusion of the rule is satisfied. Then, £-GEN2 is sound. OJ

Theorem 4 (Correctness of RES; ¢, ¢,). Let (C1,Cs, . ..) be a derivation. Then, for alln € N,
C,, is satisfiable if C, is satisfiable. That is, RES; ¢, ¢, is sound.

Proof. By induction on n. The base case is when no rule is applied, that is, the derivation has
only one problem, C;. This case is trivial, as C; is satisfiable if itself is satisfiable.

For the inductive step, we have as hypothesis that C,, . is satisfiable if C,, is satisfiable, and
that problem C,; itself is satisfiable. We need to show that C,,; is satisfiable.

C,4rn 1s obtained from C,, by an application of either £-GEN1 or £-GEN2. Thatis, C,,;; =
((GTU{D}, K", (G3,K5)) or Cyq = ((GF,KT), (Gy U{D},K3)), where D is the result of
the application of the rule. Let C,, = (G, K!') be the component of C,, to which the rule is
applied. Then, C,; = (G7 U {D},K}) is the resulting component. By Lemmas 21 and 22,
C, =4 D. This means that C,,; is also satisfiable.

This concludes the inductive proof of the theorem, and we have that RES,, ¢, is sound.

O

The following proof shows that the number of clauses that can be generated by the resolution
procedure is finite. This means that the CM (L, Ly)-problem will eventually get saturated, that
is, no rule can be applied which generates new clauses. This shows that the length of a derivation
is always finite.

Theorem 5 (Termination of RES;, ¢,). Let C be a cM (L,,Ly)-problem and (Cy, C4, . ..) be
a derivation by RES; ¢, ¢, Then, there exists a natural number k such that Cy, is saturated or

contains a contradiction. That is, the resolution calculus RES;¢, , is terminating.

Proof. Let n denote the number of literalsina C M (L, L,)-problem Cy. Note that the inference
rules do not add new literals in their conclusion. This means that no new literals are created in
the derivation. Rules £-GEN1 and £-GEN2 always add clauses, but the number of such clauses
is limited by the number of literals from which they can be created, as these are always propo-
sitional clauses. We identify a clause with its set of literals, and work applying simplification
whenever possible. This way, no clause may contain both its literal and its negation, while also
allowing us to associate a clause with its set of literals. This also allow us to represent the set
of all possible clauses by QE”(CO), where Lit(Cy) is the set of literals in the initial problem.
Then, the maximal number of possible clauses is equal to \2£“(C0)\. As |Lit(Cy)| = n, then
\25“(60)\ = 2", Thus, we have that the number of clauses that can be derived by RES;, ¢, is
at most 2". Finally, we have that either a derivation ends in a contradiction or, eventually, no

new clauses can be derived, which means that RES; ¢, ¢, always terminates. O]

52

5.2.2 Completeness of the calculus

In this subsection, we prove that the calculus RES; ¢, ¢, is complete. This is done by first
defining a structure representing all possible models, called a connected graph. Each node of
this graph represent a consistent set of literals, and we give a definition for what it means for a
node to satisfy a formula. We prove completeness by showing that if a formula is unsatisfiable,
the formula does not hold in any node of the graph, causing us to remove each node until the
graph becomes empty. Then, we show that application of the inference rules of RES;, ¢, can
mimic this removal of nodes.

First, we begin with a definition of satisfiability of a formula in a set of literals and, based

on this definition, satisfiability on a node.

Definition 28. Let) be a consistent set of literals and modal literals. Let ¢, ¢" and 1) be boolean
combinations of literals and modal literals. We say that) satisfies ¢, (written as V' |=) if, and

only if:
e ¢ c V, for a literal or modal literal ;
e pisoftheform p Ay, V = pandV | ¢
e pisoftheformp Vi),V EporV =1
e ¢ is of the form —) and V does not satisfy ¢ (written as V' |~ 1))

Definition 29. Let) be a consistent set of literals and modal literals, 77 be a node that contains all
the literals and modal literals in V), ¢ be a boolean combination of literals and modal literals, and
X = {p1,...,0m} be a set of formulae, where each p;, i < i < m, is a boolean combination
of literals and modal literals. We say that) satisfies ¢ (written as 7 |=) if, and only if, V |= ¢.
We say that 7 satisfies X' (written as 1) = X) if, and only if, |= 1 A ... A @

We may now define the graph structures.

Definition 30. A component graph G; = (N, R}, ..., R}'), where \; is a set of nodes and
each R? is a set of edges labelled by a € A, is built from the set of i-clauses in a cM (Ly,Ly)-
problem C. Each node in V corresponds to a set of ¢-literals and 7-modal literals in C, and each

set of edges corresponds to the accessibility relations of the agents in A;.
Definition 31. A connected graph G = (Gy,Gy, Ef, ..., E" E} ... E) is built from the
component graphs G; and G, of a CM(Ll, L,)-problem C. The sets £ correspond to the

connecting accessibility relations of £.

We now define how these graphs are constructed. We assume that the calculi for the com-
ponent logics L; and L, are strongly complete, and assume that we can use their own graph-
building procedures that generate the component graphs G;, with the nodes in \/; being max-

imal consistent sets of ¢-literals and i-modal literals, and the edges in RZ connecting theses

33

nodes. These graphs are consistent in the sense that all the nodes must satisfy the ¢-clauses in
C = ((G1,K1), (Ga, K3)), as they were given by the procedures of the strongly complete calculi
for the logics L; and L,.

With the component graph G; already given, we construct the connected graph G by first
connecting both graphs with the connecting edges Ef , as follows. For each pair n € G; and
n' € G;, there is a j-edge from 7 to 1. Then, for every node 7, if (I’ — Z‘l) € K;andn U,
delete any j-edges from 7 to i’ such that o’ [~ [. This ensures that all the positive j-clauses are
satisfied by any nodes in . Next, consider any nodes that do not satisfy the negative j-clauses
in ;. For each node 7 and each j € &, if (I' — ﬂil) € K;, n = I’ and there is no j-edge
between 7 and a node that satisfies -/, then 7 is deleted. This ensures that all negative j-clauses
are satisfied by all nodes in G. Note that, after this step, we must use the completeness proofs
from the component logics to, again, delete any nodes in which the negative :-modal clauses
are no longer satisfied, as we deleted some nodes.

The connected graph obtained after performing all possible deletions is called reduced be-
haviour graph. We say that this connected graph is non-empty if G, is non-empty.

We first show that a set of clauses is satisfiable if, and only if, the reduced graph for the
corresponding M (L, Ly)-problem in normal form is non-empty.

Lemma 23. Let C be a ¢M (Ly,Ly)-problem. C is satisfiable in CM(Ll, L,) if, and only if,

the reduced behaviour graph G constructed from C is non-empty.

Proof. (=) Assume that C is satisfiable. If we construct a graph G from C, the component
graphs G; are non-empty, as the calculus for each logic L; is strongly correct. After the con-
struction of the component graphs, nodes are deleted only if negative j-clauses cannot be satis-
fied. As C is satisfiable, at least the 1-formulae can be satisfied. Hence, a satisfiable problem
will result in a non-empty graph.

(<) Assume that the reduced graph G = (Gy,Gy, E}, ..., EF Ei, ... EX) constructed
from C is non-empty. First consider the case where G5 is also non-empty. To show that
C is satisfiable, we construct a model M from G. By the completeness proofs of the cal-
culi for L, and L,, we may construct two models W; = (W' 1, Ry,..., R,) and W, =
(W? 12, RY, ..., R2.,) from G, and G, in such a way that there are two functions node; :
N1 — Wy and nodey : N3 — W, mapping each consistent set of literals and modal literals
to worlds, where each node is assigned to a different world, and if two nodes are connected
through and a-edge, then the corresponding worlds are connected through the R;. Now, all
we have to do to finish the construction of the model Ml = (W1, Wy, (£}) .7, (EF),e7,) is to
construct each relation £; connecting the worlds that are connected by the respective Ej-edges.

For the case where G5 is empty, as (G; has at least one node, this means that the second
component is unreachable. Then, we may construct the model similarly to the previous case,

with the difference that the model W, may be any model and the £'-relations are empty. Then,

54

the second component is unreachable and the satisfiability of the problem depends only on the
model M. Then, M =, C. O

Theorem 6. Let C be an unsatisfiable M (Ly, Ly)-problem. A refutation can be derived by
applying the resolution rules for RES;¢, c,

Proof. We proceed by case analysis. First, assume that the literal 1-clauses are unsatisfiable,
which means that all nodes on the first component will be removed. Then, by completeness of
C, GIUK, I—C1 false. By the definition of derivation, RES; c, ¢, derives false. The case where
the set of literal 2-clauses are unsatisfiable, that is, when all the nodes of the second component
are removed, would only imply unsatisfiability of the whole problem if a negative & -clause
(I — o) has a satisfiable left-hand side in some node n € G;. If this is the case, as there
are no nodes in the second component, the negative 5{ -clause cannot be satisfied, and the node
7 is removed. We can mimic this steps by first observing that the completeness of the calculus
for the second component, together with its unsatisfiability, means that its calculus can derive
—!’" in any node. This means that Gy U Ky |—02 —l'. Then, we may apply £-GEN1 to derive —!.
Then, by the completeness of C,, false is derived in the first component and, by the definition
of a derivation, RES, ¢, ¢, derives false. From now on, we may assume that the sets of literal
clauses are by themselves satisfiable.

Next, if the non-reduced graph is not empty, consider any nodes that do not satisfy the
negative £/ -clauses in C. For each node 7 and for each relation E7, if (I — <>I')isin C, n =
and there is no 5{ -edge between 7 and a node that satisfies I/, then 7 is deleted.

Let (C;-7 be the set of positive Sl-j ~clauses in C, that is, clauses of the form ({; — il;-), whose
left-hand side are satisfiable by 7). Let R’ be the set of literals in the scope of (2 in the clauses
of C7, that is, if (I; — Z'l;-), then [€ RY. From the construction of the graph, for a clause
(I — '), if n |= [but there is no El-j -edge to a node containing /', it means that /',]R;-’ and the
literal clauses of the i-component must be contradictory. As [’ alone is not contradictory and we

are assuming that the literal clauses are satisfiable, we have the following cases:

1. Assume that]R;-’ itself is contradictory. This means there must be clauses of the form
(I, — il”), (ly — i—|l”) € C], where n) |= Iy and) |= I,. Thus, we can apply
E-GEN2 to the clauses and the negative modal clause (I — &'), deriving (—l; V —ls).
This rule may be applied, as (I” VV —l") is a tautology and C; is strongly complete. The
addition of this resolvent means n will be deleted as required.

2. Assume that [and R is contradictory. Then, C] contains a clause (I; — @) where,
from the definition of CJ, n |= [;. Thus, by an application of £-GENI to this clause and
(Il — il’), we derive (—/; V —l). This rule may be applied, as (I’ V =) is a tautology
and G; is strongly complete. The addition of this resolvent means 7 will be deleted as

required.

55

3. Assume that [’ and the literal clauses of the i-component are contradictory. As the calculus
for C; is strongly complete, it derives —I’. This means we may apply £-GENI1 to generate

—(as a resolvent, which will delete 7 as required.

4. Assume that R? and the literal clauses of the i-component are contradictory, but not ’.
Let l4,...,1[, be the relevant literals in Rg. As l; A ... A, and the literal clauses of the
i-component are contradictory, and as C; is strongly complete, we have that C; derives
=ly V...V =l,, and then we may apply £-GEN2 to the relevant clauses which will delete

7 as required.

5. Assume that [/, R’]? and the literal clauses all contribute to the contradiction. We may
proceed in a way similar to the above. As C; is strongly complete, it may derive —l; V

..V ~l, V —l’, and then we may apply £-GEN2 to delete 7, as required.

Essentially, we may mimic the deletion of nodes by applying rules £-GEN1 and £-GEN2
to transfer knowledge between the components and generate the resolvents, which are simple
enough to generate a contradiction directly in the component. We leave the cases where an
inconsistency is caused by i-literal clauses to C;, and focus on the cases where knowledge from
both components is needed. We use £-GEN1 when the contradiction involves the literal inside
the relevant negative clause, and £-GEN2 when it does not.

]

56

Chapter 6
Conclusion and future work

This work presented a modalised version of £-connections, following the approach in [16]. We
have also proposed a normal form for a set of CM (L, Ly)-formulae, which separates the differ-
ent domains of knowledge as much as possible, facilitating the development of inference rules
that are specialised to deal with the connections only, without doing domain-specific reasoning.
We showed that the transformation process is both correct and terminating, in the sense that
it always produces a correspondent CM (L,,L,)-problem in normal form, that is satisfiable if,
and only if, the original set of formulae is satisfiable.

Our definition of a ¢! (L, Ly)-problem allowed us to present a modular calculus for &-
connected logics, together with proofs for correctness, completeness and termination. We have
also made available an algorithm and a prototype implementation for this calculus, which rely
on external provers for the component logics to deal with domain-specific knowledge.

Some of the aspects of the problem that a production-ready prover might have to overcome
are discussed. We presented specific parts of our implementation that can be improved, from
the optimization of the query-clause generation to the possibility of defining a basic protocol
for communication, not only allowing better modularity of the components, but also specifying
requirements that their provers have to meet to allow for efficient processing of the queries.
We have also raised the possibility of studying a possible improvement of the renaming of
subformulae in the normal form process, which could, if successful, reduce the search space of
queries. Itis also important to create a method for automatically generating clause sets of known
satisfiability, as the lack of available test cases can obstruct progress on future implementations.
Finally, the development of a reasoner capable of working with description logics syntax would

provide a useful method for studying the practical use of £-combinations on various domains.

57

Bibliography

[1] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the proposi-
tional modal logics K, KT, S4. Journal of Automated Reasoning, 24, 01 2000. 30

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
New York, NY, USA, 2001. 4, 5, 12

[3] A.Borgida and L. Serafini. Distributed description logics: Assimilating information from
peer sources. J. Data Semantics, 1:153—-184, 01 2003. 1

[4] B. Cuenca Grau, B. Parsia, and E. Sirin. Combining OWL ontologies using £-connections.
Web Semant., 4(1):40-59, Jan. 2006. 1

[5] L. de Moura Amaral. £-KgP. Available at www.cic.unb.br/~nalon/#software,
2019. 27

[6] M. Fisher. A resolution method for temporal logic. In Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence - Volume 1,1JCAI’91, pages 99-104, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. 18

[7] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Log-
ics: Theory and Applications. Elsevier, 1 edition, 2003. 2, 11, 12

[8] D. M. Gabbay. Fibred semantics and the weaving of logics. Part 1: Modal and intuitionistic
logics. Journal of Symbolic Logic, 61(4):1057-1120, 1996. 1

[9] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. £-connections of abstract description
systems. Artificial Intelligence, 156(1):1 —73,2004. 1, 2

[10] A. Leitsch. The Resolution Calculus. Springer-Verlag New York, Inc., New York, NY,
USA, 1997. 9

[11] C.-J. Liau. Belief, information acquisition, and trust in multi-agent systems—a modal
logic formulation. Artificial Intelligence, 149(1):31 — 60, 2003. 1

[12] S. Merz. Model checking: A tutorial overview. In Proceedings of the 4th Summer School
on Modeling and Verification of Parallel Processes, MOVEP 00, pages 3-38, London,
UK, UK, 2001. Springer-Verlag. 1

[13] C. Nalon. Légica computacional 1. Notas de Aula, 2015. 9, 10

58

www.cic.unb.br/~nalon/#software

[14]

[15]

[16]

[17]

[18]

[19]

C. Nalon, U. Hustadt, and C. Dixon. A modal-layered resolution calculus for K. In
H. de Nivelle, editor, Automated Reasoning with Analytic Tableaux and Related Methods,
pages 185-200, Cham, 2015. Springer International Publishing. 27

C. Nalon, U. Hustadt, and C. Dixon. KgP: A resolution-based prover for multimodal
k. In Automated Reasoning: 8th International Joint Conference, IICAR 2016, Coimbra,
Portugal, June 27 — July 2, 2016, Proceedings, pages 406—415, Cham, 2016. Springer
International Publishing. 27

C. Nalon and O. Kutz. Towards resolution-based reasoning for connected logics. Electron.
Notes Theor. Comput. Sci., 305:85-102, July 2014. 2, 5, 18, 22, 23, 57

J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23-41, Jan. 1965. 9, 10, 22

K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, 2(1):77-96,
1973. 1

R. H. Thomason. Combinations of tense and modality. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic,
pages 135-165. Springer Netherlands, Dordrecht, 1984. 1

59

Appendix A

Experimental results

A.1 Running time of tests

In this section, we include the obtained satisfiability results, together with their execution time,

during the testing on the exemples provided by the KgP and LWB bases. Any input file not

listed in the LWB tables exceeded the timeout of 20 minutes.

File name Output | Time (ms)
exl.p.in | Unsatisfiable 22
ex2.p.in | Unsatisfiable 27

ex23.p.in | Unsatisfiable 20
ex3.p.in | Unsatisfiable 5
ex30.p.in | Unsatisfiable 20
ex31.p.in | Unsatisfiable 22
ex33.p.in | Unsatisfiable 28
ex34.p.in | Unsatisfiable 31
ex35.p.in | Unsatisfiable 25
ex4.p.in | Unsatisfiable 6
ex5.p.in | Unsatisfiable 6
ex6.p.in | Unsatisfiable 7
ex7.p.in | Unsatisfiable 87
ex8.p.in | Unsatisfiable 7
ex9.p.in | Unsatisfiable 20

File name Output | Time (ms)
ex1.n.in | Satisfiable 107
ex2.n.in | Satisfiable 36
ex3.n.in | Satisfiable 8

ex32.n.in | Satisfiable 5
ex4.n.in | Satisfiable 7
ex5.n.in | Satisfiable 8
ex6.n.in | Satisfiable 6
ex7.n.in | Satisfiable 102
ex8.n.in | Satisfiable 7
ex9.n.in | Satisfiable 20

Table A.1: Running times and satisfiability for the adapted KgP examples

60

File name Output | Time (s)

k_branch_n.01 | Satisfiable 7.536

File name Output | Time (s) k_d4_n.01 | Satisfiable 2.406
k_branch_p.01 | Unsatisfiable 2.335 k_d4_n.02 | Satisfiable 22.401
k_lin_p.01 | Unsatisfiable 0.010 k_d4_n.03 | Satisfiable | 564.759
k_lin_p.02 | Unsatisfiable 0.006 k_d4_p.01 | Satisfiable 7.237
k_lin_p.03 | Unsatisfiable 0.006 k_d4_p.02 | Satisfiable | 338.388
k_lin_p.04 | Unsatisfiable 0.007 k_d4_p.03 | Satisfiable 21.136
k_lin_p.05 | Unsatisfiable 0.006 k_d4_p.04 | Satisfiable | 231.792
k_lin_p.06 | Unsatisfiable 0.007 k_d4_p.05 | Satisfiable | 251.697
k_lin_p.07 | Unsatisfiable 0.009 k_grz_p.02 | Satisfiable 15.548
k_lin_p.08 | Unsatisfiable 0.008 k_grz_p.03 | Satisfiable 24.592
k_lin_p.09 | Unsatisfiable 0.008 k_grz_p.04 | Satisfiable 48.819
k_lin_p.10 | Unsatisfiable 0.006 k_grz_p.05 | Satisfiable | 104.788
k_lin_p.11 | Unsatisfiable 0.011 k_grz_p.06 | Satisfiable | 285.236
k_lin_p.12 | Unsatisfiable 0.012 k_grz_p.07 | Satisfiable | 792.585
k_lin_p.13 | Unsatisfiable 0.009 k_lin_n.01 | Satisfiable 0.008
k_lin_p.14 | Unsatisfiable 0.014 k_lin_n.02 | Satisfiable 16.671
k_lin_p.15 | Unsatisfiable 0.012 k_path_n.01 | Satisfiable 87.401
k_lin_p.16 | Unsatisfiable 0.011 k_ph_n.01 | Satisfiable 0.006
k_lin_p.17 | Unsatisfiable 0.006 k_ph_n.02 | Satisfiable 0.055
k_lin_p.18 | Unsatisfiable 0.009 k_ph_n.03 | Satisfiable | 21.946
k_lin_p.19 | Unsatisfiable 0.009 k_poly_n.01 | Satisfiable | 12.062
k_lin_p.20 | Unsatisfiable 0.009 k_poly_n.02 | Satisfiable | 862.963
k_lin_p.21 | Unsatisfiable 0.008 k_t4p_n.01 | Satisfiable | 258.285
k_path_p.01 | Unsatisfiable 0.004 k_t4p_n.02 | Satisfiable | 172.371
k_path_p.02 | Unsatisfiable | 108.759 k_t4p_p.01 | Satisfiable 0.720
k_ph_p.01 | Unsatisfiable 0.006 k_t4p_p.02 | Satisfiable 3.414
k_ph_p.02 | Unsatisfiable 0.1 k_t4p_p.03 | Satisfiable 8.771
k_ph_p.03 | Unsatisfiable | 153.494 k_t4p_p.04 | Satisfiable | 29.996
k_poly_p.01 | Unsatisfiable 1.262 k_t4p_p.05 | Satisfiable | 82.099
k_t4p_p.06 | Satisfiable | 262.159

k_t4p_p.07 | Satisfiable | 730.003

Table A.2: Running times and satisfiability for the adapted LWB

61

	Dedicatória
	Agradecimentos
	Abstract
	Introduction
	Motivation
	Outline

	Modal logic and basic logic notions
	The normal modal logic [1.2ex]K(n)
	Syntax
	Semantics

	Some notions about calculi

	Combinations of logics
	Methods of combinations
	Connections

	E-connected calculus
	A normal form for connected logics
	The calculus
	Algorithm
	Implementation
	Implementation details
	Experiments
	Possible optimizations

	Metatheoretical results
	Transformation
	Correctness of the transformation
	Termination of the transformation

	Calculus
	Soundness of the calculus
	Completeness of the calculus

	Conclusion and future work
	Bibliography
	Appendix
	Experimental results
	Running time of tests

