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Matemática.

Santiago - Chile

Enero, 2019



aaa

Universidade de Braśılia
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cedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su autor.



Universidad de Santiago de Chile

Facultad de Ciencia

Departamento de Matemática y Ciencia
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Abstract

In this work, we investigate the asymptotic behaviour for measure differential equations (MDEs,

for short) and dynamic equations on time scales via generalized ordinary differential equations

(generalized ODEs, for short). We establish new results that guarantee the existence of unbounded

solutions for generalized ODEs, and using the known correspondence between generalized ODEs

and MDEs, also between MDEs and dynamic equations on time scales, we obtain similar results

for these equations. Furthermore, we introduce measure functional differential equations (MFDEs)

with infinite time-dependent delay, and we study the correspondence between the solutions of these

equations and the solutions of the generalized ODEs in Banach spaces. We obtain an existence–

uniqueness result of solutions and continuous dependence on parameters for MFDEs with infinite

time-dependent delay. We establish a result of existence of solutions for a MFDE with infinite

time-dependent delay in the presence of a perturbation independent of the state. We develop the

theory in the context of phase spaces defined axiomatically.

On the other hand, we investigate existence of fixed points for multivalued maps defined on

Banach spaces. Using the Banach spaces scale concept, we establish the existence of fixed points

of a multivalued map in a vector subspace when the map is only locally Lipschitz continuous. We

apply our results to the existence of mild solutions and asymptotically almost periodic solutions

of an abstract Cauchy problem governed by a first order differential inclusion. Our results are

obtained by using fixed point theory for the measure of noncompactness.

Keywords: Measure differential equations; measure functional differential equations; general-

ized ordinary differential equations; differential inclusions; multivalued maps.
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Resumen

En este trabajo investigamos el comportamiento asintótico para ecuaciones diferenciales en medida

(EDMs, abreviado) y ecuaciones dinámicas sobre escalas temporales a través de ecuaciones diferen-

ciales ordinarias generalizadas (EDOs generalizadas, abreviado). Establecemos nuevos resultados

que garantizan la existencia de soluciones no acotadas para EDOs generalizadas, y usando la cono-

cida correspondencia entre EDOs generalizadas y EDMs, como también entre EDMs y ecuaciones

dinámicas sobre escalas temporales, obtenemos similares resultados para estas ecuaciones. Además,

introducimos ecuaciones diferenciales funcionales en medida (EDFMs) con retardo infinito depen-

diente del tiempo, y estudiamos la correspondencia entre las soluciones de estas ecuaciones y las

soluciones de EDOs generalizadas en espacios de Banach. Obtenemos un resultado de existencia

y unicidad de soluciones y dependencia continua de parametros para EDFMs con retardo infinito

dependiente del tiempo. Establecemos un resultado de existencia de soluciones para una EDFM

con retardo infinito dependiente del tiempo en presencia de una perturbación independiente del

estado. La teoŕıa se desarrolla en el contexto de espacios de fase definidos axiomáticamente.

Por otra parte, investigamos la existencia de puntos fijos para aplicaciones multivaluadas

definidas sobre espacios de Banach. Utilizando el concepto de escalas de espacios de Banach,

establecemos la existencia de un punto fijo de una aplicación multivaluada en un subespacio vecto-

rial donde la aplicación es solamente localmente Lipschitz continua. Aplicamos nuestros resultados

para la existencia de soluciones débiles y soluciones casi asintóticamente periódicas de un problema

de Cauchy abstracto gobernado por una inclusión diferencial de primer orden. Nuestros resultados

son obtenidos utilizando la teoŕıa de punto fijo para medidas de no-compacidad.

Palabras clave: Ecuaciones diferenciales en medida; ecuaciones diferenciales funcionales en

medida; ecuaciones diferenciales ordinarias generalizadas; inclusiones diferenciales; aplicaciones

multivaluadas.
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Resumo

Neste trabalho nós investigamos o comportamento assintótico das equações diferenciais em me-

dida (EDF para abreviar) e das equações dinâmicas em escalas temporais por meio das equações

diferenciais ordinárias generalizadas (EDOG para abreviar). Estabelecemos novos resultados que

garantem a existência de soluções ilimitadas para EDOGs e, usando as conhecidas correspondências

entre EDOG e EDM e entre EDM e as equações dinâmicas em escalas temporais, obtemos resul-

tados similares para estas equações. Além disso, introduzimos uma classe de equações chamada

equações diferenciais funcionais em medida (EDFM) com retardo infinito dependendo do tempo

e estudamos a correspondência entre as soluções dessas equações e as soluções das EDOGs em

espaços de Banach. Obtemos um resultado de existência e unicidade e dependência cont́ınua dos

parâmetros para EDFMs com retardo infinito dependendo do tempo. Estabelecemos um resultado

de existência de soluções para EDFMs com retardo infinito dependendo do tempo na presença de

uma perturbação independente do estado. Desenvolvemos a teoria no contexto dos espaços de fase

definidos axiomaticamente.

Por outro lado, investigamos a existência de pontos fixos para multifunções definidas em espaços

de Banach. Usando o conceito de escalas em espaços de Banach, estabelecemos a existência de

um ponto fixo da multifunção em um subespaço vetorial onde a aplicação é apenas localmente

Lipschitz cont́ınua. Aplicamos nossos resultados para estabelecer a existência de soluções fracas e

de soluções assintoticamente quase-periódicas de um problema de Cauchy abstrato regido por uma

inclusão diferencial de primeira ordem. Nossos resultados foram obtidos usando a teoria de ponto

fixo para a medida de não-compacidade.

Palavras-chave: Equações diferenciais em medida; equações diferenciais funcionais em me-

dida; equações diferenciais ordinárias generalizadas; inclusões diferenciais; multifunções.

vi



Table of Contents

Acknowledgment iii

Abstract iv

Introduction ix

I Measure differential and measure functional differential equations 1

1 Kurzweil integral and generalized ODEs 2

1.1 Kurzweil integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Generalized ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Growth of solutions for generalized ODEs and applications 10

2.1 Growth of solutions for generalized ODEs . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Growth of solutions for measure differential equations . . . . . . . . . . . . . . . . 13

2.3 Growth of solutions for dynamic equations on time scales . . . . . . . . . . . . . . 19

3 Measure functional differential equations with time-dependent
delay 28

3.1 Phase space description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 MFDEs with time-dependent delay regarded as generalized ODEs . . . . . . . . . 38

3.3 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Continuous dependence on parameters . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Existence and uniqueness of solutions for the perturbed system . . . . . . . . . . . 51

II Multivalued maps and applications to Cauchy problems governed by a
first order differential inclusion 55

4 Fixed points of multivalued maps under local Lipschitz conditions and applica-
tions 56

vii



viii

4.1 Multivalued maps and measure of noncompactness . . . . . . . . . . . . . . . . . . 56

4.2 Existence of fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Applications to the abstract Cauchy problem . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Existence under compactness conditions . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Existence under measurability conditions . . . . . . . . . . . . . . . . . . . 72

4.4 Existence of asymptotically almost periodic solutions . . . . . . . . . . . . . . . . . 76

Bibliography 84



ix

Introduction

It is a well known fact that if a function f : Rn× [a, b]→ Rn satisfies the Carathéodory conditions,

then the ordinary differential equation

x′ = f(x, s), x(t0) = x0, (1)

has a solution in a neighborhood J of the initial condition t0 ∈ [a, b], i.e., there exists an absolutely

continuous function x : J → Rn that satisfies

x(t) = x(t0) +

∫ t

t0

f(x(s), s)ds, t ∈ J, (2)

where the integral in (2) is considered in the sense of Lebesgue. In this case, we said that x : J → Rn

is a solution in the Carathéodory sense.

Natural questions arise from the integral equation (2). What is a solution when the right–hand

side of (2) involves a general concept of integration, for example the Henstock–Kurzweil integral?

What kind of conditions on f will we need to obtain an existence result?

Following the successive aproximation to Carathéodory’s ideas, Ralph Henstock developed an

answer to this problem when the Henstock–Kurzweil integral is considered. He established a result

of existence by requiring only “Carathéodory” type conditions on f : Rn × [a, b] → Rn, called

Henstock conditions. In this case, it is said that x : J → Rn is a solution of (2) in the Henstock

sense. Note that, since every Lebesgue integrable function is Henstock–Kurzweil integrable, if

x : J → Rn is a solution in the Carathéodory sense, then x : J → Rn is a solution in the

Henstock sense as well. Furthermore, a remarkable fact is concerned with the conditions imposed

by Henstock. A function f : Rn × [a, b] → Rn satisfies the Henstock conditions if and only if

f(x, t) = p(t) + h(x, t) for every (x, t) ∈ Rn × [a, b], where the function p is Henstock–Kurzweil

integrable and the function h satisfies the Carathéodory conditions. Therefore, the Henstock

existence theorem covers the case of a Carathéodory function perturbed by a Henstock–Kurzweil

integrable function. This relation shows in which sense the Henstock existence theorem is more

general than the Carathéodory.

In 1957, the Czech mathematician Jaroslav Kurzweil [56], motivated by the study of continuous

dependence of solutions to ordinary differential equations, introduced in the literature a class of

integral equations that he called generalized ordinary differential equations (generalized ODEs, for

short).
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Let X be a Banach space, O ⊂ X a nonempty open subset, t0 ∈ R, Ω = O × [t0,∞), and let

F : Ω → X be a given X-valued function. Then a function x : [a, b] → X, with [a, b] ⊂ [t0,∞), is

called a solution of the generalized ODE

dx

dτ
= DF (x, t) (3)

on the interval [a, b], if (x(t), t) ∈ Ω for every t ∈ [a, b], and

x(d)− x(c) =

∫ d

c
DF (x(τ), t), (4)

whenever [c, d] ⊆ [a, b]. The integral on the right-hand side of (4) is understood in the sense of

Kurzweil, and depending of the chosen function F , the Kurzweil integral emcompasses several

types of integrals, such as Henstock–Kurzweil integral, see Definition 1.2. It is important to make

clear that the equation (3) is symbolical only, this does not mean that the solutions of generalized

ODEs should be differentiable. The concept of solution is defined via the integral equation (4).

The word “generalized” in the Kurzweil definition comes from the following simple result holds.

Assume that the function f : Rn × [a, b] → Rn satisfies the Carathéodory conditions, and define

the function

F (z, t) =

∫ t

t0

f(z, s)ds. (5)

Then, x(t) is a solution in the Carathéodory sense if and only if x(t) is a solution of the generalized

ODE (3). Therefore, in the definition of a solution of a generalized ODE, with an appropriate

function F , we can return to a solution of an ODE. The nature of the Kurzweil integral allows to

consider general conditions in which the function F can be integrated, see Definition 1.10.

Although the theory of generalized ODEs was motivated in order to study qualitative properties

of ordinary differential equations, over the time, this concept has shown to encompass a wide

range of equations, such as impulsive systems, measure differential equations, retarded functional

differential equations (finite and infinite delay), dynamic equations on time scales, among others,

see e.g. [26–28,73–75]. One of the principal arguments in which generalized ODEs can encompass

several other equations is due to variations of the relation (5), specifically a Henstock–Kurzweil–

Stieltjes form is considered for that purpose, and how we will see in the Chapters 2 and 3, this

relation enables to impose bounded and Lipschitz conditions over the integral instead of directly

on the function f , see for instance conditions (A1)-(A4) in Section 2.2 or conditions (A)-(C) in

Section 3.2.

In the first part of this work, we are interested in developing qualitative properties for some

of these classes of equations, specifically for measure differential equations, dynamic equations on

time scales and measure functional differential equations with time-dependent delay. The main

tool used for our purpose is the theory of generalized ODEs.

Here, we consider the measure differential equation in the integral form

x(t) = x(t0) +

∫ t

t0

f(x, s)dg(s), (6)
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where the integral on the right-hand side is understood in the sense of Henstock-Kurzweil Stieltjes.

Our interest is focused on the asymptotic behaviour of solutions to the measure differential

equations of type (6), where the functions f and g satisfy conditions (A1)-(A4) from Section 2.2.

Recently in [22], taking into account these considerations for the integral form (6), Federson et al.

generalized the known results about the existence and uniqueness of maximal solutions for measure

differential equations and dynamic equations on time scales. Actually, this fact was achieved using

the theory of generalized ODEs and the relation that exists among generalized ODEs, measure

differential equations and dynamic equations on time scales, see [73] and [74]. The relevance of

theorems given in [22] lies in the fact that they allow us to investigate asymptotic behaviour

of solutions for generalized ODEs and measure differential equations, and as a consequence, for

dynamic equations on time scales. Also, Federson et al. proposed new stability results for measure

differential equations and dynamic equations on time scales, under more general conditions than the

ones found in the literature. Specifically, they obtained uniform stability and uniform asymptotic

stability results via Lyapunov functionals without requiring Lipschitz conditions, see [23].

Inspired by these recent papers [22] and [23], we investigate the asymptotic behaviour of solu-

tions to measure differential equations and dynamic equations on time scales, via generalized ODEs

and Lyapunov functions. We do not require Lipschitz conditions on the Lyapunov functions, and

we work with solutions which are regulated functions. Specifically, we show that the maximal

solutions defined on an interval [t0,+∞) for this type of equations are unbounded. As far as we

know, our results for generalized ODEs were not proved in the literature yet, neither did their

analogues to measure differential equations. Also, we apply our results to dynamic equations on

time scales.

On the other hand, measure functional differential equations with finite delay

y(t) = y(t0) +

∫ t

t0

f(ys, s)dg(s), t ∈ [t0, t0 + σ], (7)

were introduced by M. Federson, J. Mesquita and A. Slav́ık in [26], where y and f are functions

with values in Rn, the integral on the right-hand side of (7) is the Henstock-Kurzweil integral of

the function f with respect to a nondecreasing function g, and as usual in the theory of functional

differential equations, ys represents the “history” or the segment of y at s, i.e., for a fixed r > 0,

the function ys : [−r, 0] → Rn is defined by ys(θ) = y(s + θ), for −r ≤ θ ≤ 0. Using the theory

of generalized ODEs, they established results about existence–uniqueness of solutions and contin-

uous dependence on parameters for these equations. They also showed that functional dynamic

equations on time scales represent a special case of measure functional differential equations.

Later, in [27], the authors studied the relation between measure functional differential equations,

impulsive measure functional differential equations, and impulsive functional dynamic equations

on time scales. They obtained results on existence–uniqueness of solutions, continuous dependence

on parameters, and periodic averaging. Subsequently, M. Federson and J. Mesquita [25] devel-

oped a nonperiodic averaging principle for measure functional differential equations, and using the
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correspondence among measure functional differential equations, functional dynamic equations on

time scales, and impulsive measure functional differential equations, they established this type of

result for the last mentioned equations.

The case when the equation (7) is considered with infinite delay was later studied by A. Slav́ık

in [75], that means, the function ys : (−∞, 0] → Rn is defined by ys(θ) = y(s + θ), for θ ≤ 0.

In this paper, he studied the equation on an appropriate phase space (the space containing the

functions ys), described axiomatically similar to the axiomatic definition of phase space that is

used in the classical theory of retarded functional differential equations with infinite delay (the

reader can see [40, 50]). Using this framework, he obtained results of existence and uniqueness

of solutions. Later, in [66], G. Monteiro and A. Slav́ık investigated a linear measure functional

differential equation which is a special case of (7) with infinite delay. They established existence–

uniqueness and continuous dependence of solutions, improving the existing results, even for finite

delay. Also, they applied their results to functional differential equations with impulses.

On the other hand, recently many authors have begun to study functional differential equations

with time-dependent delay (see [14,29,35,39,59]). These equations have shown to be useful tools for

applications, since they can describe more precisely certain environment phenomena. For instance,

it is a known fact that the formulation of blowfly equation considering the time of maturation of a

population as a delay describes more precisely the size population in the future and this delay is not

constant, it changes over time. Therefore, the population dynamic could be better described using

functional differential equations with time-dependent delay. Interesting recent papers concerning

Nicholson’s blowflies systems with time-dependent delays have been studied, see [13, 52] and the

references therein. The same happens when we are dealing with some types of disease models that

consider incubation period of the virus until the symptoms appears in the patients body. This

period is not constant, it changes with the time and can be different depending on the state of the

patient. Therefore, equations with time-dependent delays and state-dependent delays are better

choice to describe such situation (see [41, 84]). Another example is when we search for data on a

computer. This process is not instantaneous, but it takes some time, which we can describe by a

delay that clearly is not fixed. It will change accordingly to several variables, but mostly depending

how old the data is. Therefore, this type of situation and others which involve memory process

are better described using functional differential equations with time-dependent delays.

Motivated by these facts, we are interested in a type of the equation (7) with time-dependent

delay. Specifically, we focus our attention on the equation given by

y(t) = y(t0) +

∫ t

t0

f(yr(s), s)dg(s), t ∈ [t0, t0 + σ], (8)

where r is an appropriate function, y and f are functions taking values in Rn, the function yr(s) :

(−∞, 0]→ Rn is defined by ys(θ) = y(r(s) + θ), for θ ≤ 0, and the integral on the right-hand side

is in the sense of Henstock-Kurzweil with respect to a nondecreasing function g.

The name time-dependent delay comes from the fact that the simplest example consists of a
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function f defined by

f(ϕ, s) = f̃(ϕ(−τ(s))),

where f̃ : Rn → Rn and τ : [t0, t0 + σ] → [0,∞) are functions that satisfy certain technical

conditions which allow us to develop a qualitative theory. Hence, with r(s) = s, we obtain

f(yr(s), s) = f̃(yr(s)(−τ(s))) = f̃(y(r(s)− τ(s))) = f̃(y(s− τ(s))),

which represents a difference equation with delay τ(s).

Our goal is to establish a correspondence between generalized ODEs and measure functional

differential equations (MFDEs, for short) with time-dependent delay given by (8). Using this

relation, we obtain existence and uniqueness results, and other qualitative properties for MFDEs

with time-dependent delay. To establish general results, we will study the equation in the frame on

a phase space defined axiomatically. Our approach follow the axiomatic approach of phase space

used by many authors in the study of retarded functional differential equations with infinite delay,

see [50]. This approach allows us to consider more general phase spaces than the ones considered

in [66] or [75]. See the Examples 3.3 to 3.7 in the Section 3.1.

It is worth to note that we can rewrite f(yr(s), s) in simple nonautonomous form by defining a

function h(·, s) such that

f(yr(s), s) = h(ys, s), s ≥ t0.

In fact, this is achieved by defining

h(ϕ, s) = f(ϕr(s)−s, s). (9)

However, this transformation presents some inconvenient aspects for the development of a theory.

At first, it is necessary to ensure that (ϕr(s)−s, s) is included in the domain of f , which is a very

strong request, since the phase space B that arise in the study of retarded functional differential

equations with infinite delay usually contain functions ϕ such that ϕ−t /∈ B for t > 0. A second

aspect refers to the fact that the existing qualitative theory for the equation (7) requires that the

function f verify strong conditions of continuity that the function h defined in (9) does not satisfy

due to its dependence on ϕr(s)−s and the fact that this function may not satisfy those properties

of continuity. For these reasons, it is preferable to develop the theory based in expressions (8)

without reducing to expressions of type (7) with h(ys, s) instead of f(ys, s).

On the other hand, in the second part of this work we are concerned with the existence of fixed

points of multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we

establish the existence of a fixed point of a multivalued map in a vector subspace where the map is

only locally Lipschitz continuous. We apply our results to establish the existence of asymptotically

almost periodic mild solutions for a class of abstract Cauchy problem governed by a first order

differential inclusion.

The theory of differential inclusions was initiated firstly in 1934-1936 by A. Marchaud and S.

K. Zaremba, see [60, 86]. Later, at the beginning of sixties, the elementary theory was developed
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by the Cracow mathematical school, motivated by Tadeusz Wazewski which proved that each

control problem described by an ordinary differential equations of first order can be represented as

a differential inclusion. Over the years, differential inclusions was intensively developed and used

to describe many phenomena arising from different fields such as physics, chemistry, population

dynamics, among others. For this reason, in the last years several researchers have studied various

aspects of the theory.

Without the intention to do an exhaustive historical review of differential inclusion, we only

mention here those most recent and directly related papers to the topic in which our work is

inserted, see e.g. [1, 2, 9, 17,34,36,53,54,68,72,79] and references therein for the motivation of the

theory.

The aim of this work is to establish the existence of mild solutions for the abstract first order

differential inclusion

x′(t)−Ax(t) ∈ f(t, x(t)), t ≥ 0, (10)

x(0) = x0 ∈ X, (11)

where X is a Banach space provided with a norm ‖ · ‖, x(t) ∈ X, A : D(A) ⊆ X → X is the

infinitesimal generator of a strongly continuous semigroup of linear operators (T (t))t≥0 on X, and

f is a set valued map defined on [0,∞)×X whose properties will be specified later.

Our goal is to establish a general result of fixed point in scales of Banach spaces, and combining

this result with fixed point theory for the measure of noncompactness, we obtain existence of mild

solutions and asymptotically almost periodic solutions to the problem (10)-(11).

It is important to mention that several authors have studied strongly nonlinear problems, that

is, problems of type (10)-(11) in which A is a m-dissipative operator. The reader can see [80–83] and

the references in these works. We wish to emphasize that these works and ours present important

differences:

(i) Our aim is to establish the existence of asymptotically almost periodic solutions. For this

reason, we need to guarantee the existence of global solutions. We will use the properties of scale

of Banach spaces developed in Section 4.2 to obtain existence of solutions defined in [0,∞).

(ii) Since in our case A is a linear operator, this allows us to decompose f into the form

f = f1 + f2 and to obtain the existence of solutions under different conditions in f1 and f2.

Specifically, we will show that it is sufficient for f1 to verify a local Lipschitz condition, while f2

must verify a compactness property, established in terms of the measure of noncompactness, of

global type, that is, in [0,∞).

(iii) Our results do not require the semigroup (T (t))t≥0 to be compact. We only need the

semigroup (T (t))t≥0 to be continuous in the norm of operators in (0,∞). The class of semigroups

is very wide, including the differentiable, analytic and compact semigroups, etc. [20], which are the

semigroups that frequently arise in applications.



xv

This manuscript is divided in two parts independent from each other. The Part I contains three

chapters.

The Chapter 1 is divided in two sections. In the Section 1.1, we present basic notions and

results related to Kurzweil integration. In the Section 1.2, we present the notion of generalized

ODEs (extensively described in [56, 73]), and results concerned to existence and uniqueness of

maximal solutions for generalized ODEs, recently exposed in [22].

The Chapter 2 is divided in three sections. In the Section 2.1, we present our asymptotic

behaviour results for generalized ODEs. In Section 2.2, we present asymptotic behaviour results

for measure differential equations. In the Section 2.3, using the results of the previous sections,

we obtain results about asymptotic behaviour for dynamic equations on time scales. All results

exposed in this chapter can be found in [32].

The Chapter 3 is divided in five sections. In the first Section 3.1, we discuss the employment of

a convenient phase space for measure functional differential equations with infinite time-dependent

delay. In the Section 3.2, we describe the correspondence between the solutions of measure func-

tional differential equations with infinite time-dependent delay and generalized ODEs. In the

Section 3.3, we present a theorem concerning the existence and uniqueness of solution of MFDEs

with infinite time-dependent delay. In the Section 3.4, we prove continuous dependence results

on parameters for MFDEs with time-dependent delay. Finally, in the Section 3.5, we investigate

perturbed systems, presenting a correspondence between MFDEs with time-dependent delay and

generalized ODEs. Furthermore, an existence–uniqueness theorem. All results exposed in this

chapter can be found in [33].

The Part II contains the Chapter 4.

The Chapter 4 is divided in four sections. In the Section 4.1, we develop some properties about

the measure of noncompactness, and multivalued analysis which are needed to establish our results.

In the Section 4.2, we discuss the existence of fixed points. In the Section 4.3, we apply our results

to establish the existence of solutions. Finally, in the Section 4.4, we establish the existence of

asymptotically almost periodic solutions to problem (10)-(11). All results exposed in this chapter

can be found in [31].
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Part I

Measure differential and measure

functional differential equations
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Chapter 1

Kurzweil integral and generalized ODEs

In this chapter, in order to develop the following Chapters 2 and 3, we define the Kurzweil integral

and we include some results from the theory of generalized ordinary differential equations. For

more details, the reader can see [56,58,73].

1.1 Kurzweil integral

Throughout this chapter, let us assume that X is a Banach space with a norm ‖ · ‖.

Consider a function δ : [a, b] → R+, which is called a gauge on [a, b]. A tagged partition of

the interval [a, b] with subdivision points a = s0 ≤ s1 ≤ · · · ≤ sk = b, and tags τi ∈ [si−1, si],

i = 1, ..., k, is called δ-fine if

[si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)) , i = 1, . . . , k.

The following lemma is fundamental to introduce the notion of Kurzweil integral, and ensures the

existence of δ-fine tagged partitions.

Lemma 1.1. ( [73, Lemma 1.4], Cousin’s lemma) If δ(·) is a gauge on [a, b], then every closed sub

interval of [a, b] has a δ-fine tagged partition.

The next definition is due to J. Kurzweil and it was introduced in his work on differential

equations, see [56]. Below we present the Banach space valued version.

Definition 1.2. A function U : [a, b]× [a, b]→ X is called Kurzweil integrable on [a, b], if there is

an element I ∈ X having the following property: for every ε > 0, there is a gauge δ on [a, b] such

that ∥∥∥∥∥
k∑
i=1

[U(τi, si)− U(τi, si−1)]− I

∥∥∥∥∥ < ε,

for all δ-fine tagged partition of [a, b]. In this case, I is called the Kurzweil integral of U over [a, b]

and it will be denoted by

∫ b

a
DU(τ, t).

As it should be expected, the Kurzweil integral satisfies the usual properties of linearity, addi-

tivity with respect to adjacent intervals, integrability on subintervals, among others.
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Notice that the measure U(τ, t) − U(τ, s) is not necessarily linear in τ , hence the Kurzweil

integral is a non linear integral. If we consider U(τ, s) = x(τ)s, then we obtain the Kurzweil

(linear) integral definition of a function x : [a, b] → X. Independently, R. Henstock in 1961 [47]

introduced an equivalent version of the Kurzweil (linear) integral for real valued functions. In

the literature, it is known by Henstock-Kurzweil integral due to its equivalence. In particular, for

integrable real valued functions x : [a, b]→ R, we have the following proper inclusions

R([a, b];R) ⊂ L1([a, b];R) ⊂ H([a, b];R) = K([a, b];R),

whereR([a, b];R) denotes the space of Riemann integrable functions, L1([a, b];R) denotes the space

of Lebesgue integrable functions, H([a, b];R) denotes the space of Henstock integrable functions

and K([a, b];R) denotes the space of Kurzweil integrable functions.

A remarkable fact concerned with the Henstock–Kurzweil integral is the Fundamental Theorem

of Calculus.

Theorem 1.3. ( [78, Theorem 10]) Suppose x : [a, b]→ R is differentiable at every point of [a, b].

Then x′ is Henstock–Kurzweil integrable over [a, b] and∫ b

a
x′ = x(b)− x(a). (1.1)

Note that Theorem 1.3 may be false for both the Riemann and the Lebesgue integrals, depend-

ing on the function, since they require the assumption that the derivative x′ be integrable in their

respective senses in order to obtain (1.1). We recall a classical example of the theory.

Example 1.4. Consider the differentiable function

x(t) =

{
t2 cos(π/t2), 0 < t ≤ 1,

0, t = 0,

with

x′(t) =

{
2t cos(π/t2) + (2π/t) sin(π/t2), 0 < t ≤ 1,

0, t = 0.

Then, x′ is not Riemann integrable (is not bounded on [0, 1]), neither is Lebesgue integrable.

However, by Theorem 1.3, x′ is Henstock–Kurzweil integrable and

∫ 1

0
x′ = x(1)− x(0) = −1.

In contrast to either the Riemann or Lebesgue integrals, the Henstock–Kurzweil integral is non-

absolute, that means, there are functions which are integrable but whose absolute values are not

integrable. Example 1.4 shows that the function x′ is Henstock–Kurzweil integrable, however |x′|
is not. The proof of the previous assertion can be found in [77, Example 12]. For an introductory

reading concerning Henstock–Kurzweil integral, the reader can see [48,77,78].

In the case of an infinite dimensional Banach space X, it is possible to find a X-valued function

x : [a, b] → X which is Kurzweil (linear) integrable and is not Henstock integrable (the X-valued
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version), see [21, Examples 2.1–3.1]. In particular, we have the following inclusions

L1([a, b];X) ⊂ H([a, b];X) ⊆ K([a, b];X) and R([a, b];X) ⊂ K([a, b];X),

where R([a, b];X) denotes the space of Riemann integrable functions from [a, b] to X, L1([a, b];X)

denotes the space of Bochner-Lebesgue integrable functions from [a, b] to X, H([a, b];X) denotes

the space of Henstock integrable functions from [a, b] to X and K([a, b];X) denotes the space of

Kurzweil integrable functions from [a, b] to X.

On the other hand, if we take U : [a, b]×[a, b]→ X from the Definition 1.2 as U(τ, t) := f(τ)g(t),

then we obtain the Kurzweil–Stieltjes integral definition of a X-valued function f : [a, b]→ X with

respect to a function g : [a, b] → R. Note that if g(t) ≡ t, then we obtain the Henstock–Kurzweil

(linear) integral definition. In the scarce literature about the Kurzweil–Stieltjes integral, this

concept appears under different names, such as Henstock–Stieltjes, gauge integral or even Henstock-

Kurzweil-Stieltjes integral. In this work, we will use the name Henstock–Kurzweil–Stieltjes integral

to refer to this definition. The principal reason is that in most of the papers related to our work,

its authors refer to this integral concept in this way. However, it is important to remark that this

Stieltjes version was firstly used by J. Kurzweil in [57]. The most recent book in this subjet is due to

G. Monteiro, A. Slav́ık, and M. Tvrdý [67], who wrote a monograph about the Kurzweil–Stieltjes

integral and its applications, including an exposition of the properties of the Riemann–Stieltjes

integral, Moore–Pollard–Stieltjes integral, among others interesting results.

In the following Chapters 2 and 3, we are interested in this type of Stieltjes integral, and from

now on, we will denote by
∫ b
a f(s)dg(s), or simply

∫ b
a fdg, to refer to the integral of a function f

which is Henstock–Kurzweil–Stieltjes integrable with respect to a function g.

In what follows, we recall the notion of X-valued regulated functions.

Definition 1.5. A function f : [a, b]→ X is called regulated if the limits below exist

lim
s→t−

f(s) = f(t−) for t ∈ (a, b] and lim
s→t+

f(s) = f(t+) for t ∈ [a, b).

The space of all regulated functions f : [a, b] → X will be denoted by G([a, b], X), and it

is a Banach space under the usual supremum norm ‖f‖∞ = sup
a≤t≤b

‖f(t)‖. Below we present an

important characterization of the regulated functions.

Theorem 1.6. ( [8, Theorem 4.4]) A function f ∈ G([a, b], X) if and only if there exists a sequence

(fn)n∈N of step functions on the interval [a, b] which is uniformly convergent on the interval [a, b]

to the function f .

Also, we will denote by G([t0,∞), X) the vector space of functions f : [t0,∞) → X such that

the restriction f |[a,b] belongs to G([a, b], X) for all [a, b] ⊂ [t0,∞). Further, for our purposes, we

consider the following space

G0([t0,∞), X) :=

{
f ∈ G([t0,∞), X) : sup

s∈[t0,∞)
e−γ(s−t0)‖f(s)‖ <∞

}
,
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for γ > 0, endowed with the norm ‖f‖[t0,∞) = sup
s∈[t0,∞)

e−γ(s−t0)‖f(s)‖. Clearly, G0([t0,∞), X) with

the norm ‖ · ‖[t0,∞) is a Banach space.

The next result gives us sufficient conditions to ensure the existence of the Henstock–Kurzweil–

Stieltjes integral of a function f : [a, b]→ Rn with respect to a function g.

Theorem 1.7. ( [73, Corollary 1.34] ) If f : [a, b]→ Rn is a regulated function, and g : [a, b]→ R

is a nondecreasing function, then the integral

∫ b

a
fdg exists, and∥∥∥∥∫ b

a
f(s)dg(s)

∥∥∥∥ ≤ ∫ b

a
‖f(s)‖dg(s) ≤ ‖f‖∞[g(b)− g(a)]. (1.2)

The previous theorem remains valid if we consider a bounded variation function g : [a, b]→ R,

and in this case, the inequality (1.2) becomes∥∥∥∥∫ b

a
f(s)dg(s)

∥∥∥∥ ≤ ‖f‖∞varba(g),

where varba(g) is the variation of the function g on [a, b].

We point out that the Henstock–Kurzweil–Stieltjes definition allows us to integrate a wide class

of functions. For instance, as it was explained previously, if g(t) ≡ t then we obtain the Henstock–

Kurzweil case, in which is possible to integrate high oscillatory functions, see Example 1.4. On the

other hand, it is well known that if the functions f and g have common points of discontinuity,

then it is not possible to integrate in the sense of Riemann–Stieltjes. For example, if we consider

the functions f, g : [−1, 1]→ R defined by

f(s) =

{
1, −1 ≤ s ≤ 0,

0, 0 < s ≤ 1,
and g(s) =

{
0, −1 ≤ s < 0,

1, 0 ≤ s ≤ 1,

then for any tagged division {(si, τi)}mi=0 of the interval [−1, 1] in which si 6= 0 for every i =

1, ...,m− 1, the Riemann sum may be 0 or 1, and therefore

∫ 1

−1
fdg does not exist in the sense of

Riemann–Stieltjes. However, by Theorem 1.7, we have that the integral

∫ 1

−1
fdg exist in the sense

of Henstock–Kurzweil–Stieltjes.

The conditions on the functions f and g in Theorem 1.7 to guarantee existence of the Henstock–

Kurzweil–Stieltjes integral, are weaker than those required for Riemann–Stieltjes and Moore–

Pollard–Stieltjes integral, see [67]. Therefore, it seems most convenient to work with the Henstock–

Kurzweil–Stieltjes integral when continuity on the functions f and g is not required.

The following result is a special case of [73, Theorem 1.16] and it states important properties

of the Henstock–Kurzweil–Stietltjes integral.

Theorem 1.8. Let f : [a, b]→ Rn and g : [a, b]→ R be a pair of functions such that g is regulated,



1.2. Generalized ODEs 6

and

∫ b

a
fdg exists. Then the function h : [a, b]→ Rn given by

h(t) =

∫ t

a
f(s)dg(s), t ∈ [a, b],

is well defined, regulated, and satisfies

h(t+) = h(t) + f(t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f(t)∆−g(t), t ∈ (a, b],

where ∆+g(t) = g(t+)− g(t) and ∆−g(t) = g(t)− g(t−).

1.2 Generalized ODEs

We now introduce the concept of generalized ordinary differential equation (generalized ODEs, for

short). From now on, we assume that X is a Banach space with norm ‖ · ‖, Ω = O× [t0,∞), where

O ⊂ X is an open and nonempty subset, t0 ≥ 0, and F : Ω → X is a given X-valued function

defined for (x, t) ∈ Ω. The following two concepts are taken from [73].

Definition 1.9. A function x : [a, b] → X, with [a, b] ⊂ [t0,∞), is called a solution of the

generalized ordinary differential equation

dx

dτ
= DF (x, t) (1.3)

on the interval [a, b], if (x(t), t) ∈ Ω for every t ∈ [a, b], and

x(d)− x(c) =

∫ d

c
DF (x(τ), t), (1.4)

whenever [c, d] ⊆ [a, b].

As usual, if (x0, s0) ∈ Ω is fixed, then we can define the solution of the generalized ODE (1.3) on

the interval [a, b] with initial condition x(s0) = x0 (we are considering that s0 ∈ [a, b]), as a function

x : [s0, b] → X such that (x(t), t) ∈ Ω for all t ∈ [s0, b] and satisfies (1.4) for all [c, d] ⊆ [s0, b].

Analogously, we can define a solution of (1.3) for an arbitrary nondegenerate interval I (for a ∈ R,

the interval [a, a] is called degenerate), with initial condition x(s0) = x0.

In order to establish existence and uniqueness for generalized ordinary differential equations,

we need to require some regularity on the function F : Ω→ X, given by the class F(Ω, h).

Definition 1.10. We say that F ∈ F(Ω, h) if there exists a nondecreasing function h : [t0,+∞)→
R such that F : Ω→ X satisfies the following conditions

(F1) For every (x, si) ∈ Ω, with i = 1, 2, we have

‖F (x, s2)− F (x, s1)‖ ≤ |h(s2)− h(s1)|.
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(F2) For every (x, si), (y, si) ∈ Ω, with i = 1, 2, it is satisfied

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖ ≤ |h(s2)− h(s1)|‖x− y‖.

The following lemma gives us enough conditions to ensure the existence of the Kurzweil integral

on the right hand-side of (1.4). The reader can see the proof for X = Rn in [73, Corollary 3.16].

This is still valid in this more general case.

Lemma 1.11. Assume F ∈ F(Ω, h). Suppose x : [a, b]→ X is a regulated function on [a, b] such

that (x(s), s) ∈ Ω for all s ∈ [a, b]. Then the Kurzweil integral

∫ b

a
DF (x(τ), t) exists.

The next result is an immediate consequence of [73, Lemma 3.9] and describes properties of

the solutions of the generalized ODEs when F satisfies the condition (F1).

Lemma 1.12. Let F : Ω → X be a function that satisfies condition (F1). If x : [a, b] → X is a

solution of the generalized ODE (1.3) on the interval [a, b], then x is a regulated function and

‖x(s2)− x(s1)‖ ≤ |h(s2)− h(s1)|

for each pair s1, s2 ∈ [a, b].

The following property will be important for the results of the Chapter 3.

Definition 1.13. Let I ⊂ R be an interval, t0 ∈ I, and let Y be a set whose elements are functions

y : I → Rn. We say that Y has the prolongation property for t ≥ t0, if for every y ∈ Y , and every

t ∈ I ∩ [t0,∞), the function ȳ : I → Rn given by

ȳ(s) =

{
y(s), s ∈ (−∞, t] ∩ I
y(t), s ∈ [t,∞) ∩ I

is an element of Y .

It is immediate that G(I,Rn) and the space of continuous functions C(I,Rn) have the prolon-

gation property, while the space C1(I,Rn) of continuously differentiable functions does not have

it.

The following theorem is related with local existence and uniqueness of solutions for an initial

value problem of the generalized ODE (1.3).

Theorem 1.14. ( [28, Theorem 2.15]) Let F : Ω → X be a function which belongs to the class

F(Ω, h), where h : [t0,∞) → R is a nondecreasing and left continuous function. If (x0, s0) ∈ Ω is

such that x0+F (x0, s
+
0 )−F (x0, s0) ∈ O, then there exists ∆ > 0 and a function x : [s0, s0+∆]→ X

which is the unique solution of the generalized ODE (1.3) on the interval [s0, s0 + ∆] with initial

condition x(s0) = x0.

To be able to study the asymptotic behaviour of solutions for generalized ODEs in the Chapter

2, we need the following auxiliary concepts and results concerning the existence of maximal solu-
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tions to this class of integral equations. In the next, we will see that the unique solution established

in Theorem 1.14 can be extended up to a maximal interval J . For more details, see [22].

At first, for a fixed (x0, τ0) ∈ Ω with x0 + F (x0, τ
+
0 )− F (x0, τ0) ∈ O, we define the set

Sx0,τ0 :=

{
x : Ix ⊂ [t0,∞)→ X

∣∣∣∣ x is a solution of the generalized ODE (1.3),

where Ix is an interval s.t. τ0 = min Ix, x(τ0) = x0

}
.

It is possible to provide a total order on Sx0,τ0 by the relation

x � z ⇐⇒ Ix ⊂ Iz ∧ z|Ix = x.

Definition 1.15. ( [22, Definition 3.6]) Let τ0 ≥ t0 and let x : I → X, I ⊂ [t0,+∞), be a solution

of (1.3) on the interval I, with τ0 = min I. The solution y : J → X, J ⊂ [t0,+∞), with τ0 = min J ,

of the generalized ODE (1.3) is called a prolongation to the right of x, if I ⊂ J and x(t) = y(t)

for all t ∈ I. If I ( J, then y is called a proper prolongation of x to the right.

Definition 1.16. ( [22, Definition 3.7]) Let (x0, s0) ∈ Ω. We say that x : J → X is a maximal

solution of the generalized ODE (1.3) with condition

x(s0) = x0, (1.5)

if x ∈ Ss0,x0 and, for every z : I → O in Ss0,x0 such that x � z, we have x = z. In other words,

x ∈ Ss0,x0 is a maximal solution of (1.3)-(1.5) if there is no proper prolongation of x to the right.

We associate with the function F the set

ΩF := {(x, t) ∈ Ω : x+ F (x, t+)− F (x, t) ∈ O}.

Theorem 1.17. ( [22, Theorem 3.9]) Let F ∈ F(Ω, h), where h : [t0,+∞)→ R is a nondecreasing

and left–continuous function, and assume that Ω = ΩF . Then for every (x0, s0) ∈ Ω there exists

a unique maximal solution x : J → X of the generalized ODE (1.3)-(1.5), where J is an interval

such that s0 = min J .

The condition Ω = ΩF := {(x, t) ∈ Ω : x + F (x, t+) − F (x, t) ∈ O} ensures that there are not

points in Ω for which the solution of the generalized ODE (1.3) can scape from O.

Theorem 1.18. ( [22, Theorem 3.10] ) Let F ∈ F(Ω, h), where h : [t0,∞)→ R is a nondecreasing

and left continuous function, and assume that Ω = ΩF . If (x0, s0) ∈ Ω and x : J → X is the

maximal solution of the generalized ODE (1.3)-(1.5), then J = [s0, ω) with ω ≤ ∞.

Remark 1.19. In the rest of this chapter, we will denote by ω(x0, s0) ≤ ∞, what we will abbreviate

by ω when there is no danger of confusion, the constant that allows us to affirm that the maximal

solution corresponding to (x0, s0) ∈ Ω is defined on the interval [s0, ω).

Corollary 1.20. ( [22, Corollary 3.12]) Let F ∈ F(Ω, h), where h : [t0,+∞)→ R is a nondecreas-

ing and left–continuous function, and assume that Ω = ΩF . Let (x0, s0) ∈ Ω and let x : [s0, ω)→ X

be the maximal solution of the generalized ODE (1.3)-(1.5). If x(t) ∈ K for every t ∈ [s0, ω), where

K is a compact subset of O, then ω = +∞.
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Assuming that Ω = X × [t0,+∞) and F ∈ F(Ω, h), it is possible to ensure that the maximal

solution of the generalized ODE (1.3) is defined on [s0,+∞) when x(s0) = x0.

Corollary 1.21. ( [22, Corollary 3.14]) If Ω = X×[t0,+∞) and F ∈ F(Ω, h), where h : [t0,+∞)→
R is a nondecreasing and left–continuous function, then for every (x0, s0) ∈ Ω, there exists a unique

maximal solution of the generalized ODE (1.3) defined in [s0,+∞) with x(s0) = x0.



10

Chapter 2

Growth of solutions for generalized ODEs and applications

In this chapter, we are interested in the asymptotic behaviour of solutions to the measure differential

equations of the type

x(t) = x(t0) +

∫ t

t0

f(x, s)dg(s), (2.1)

where the integral on the right-hand side is in the sense of Henstock-Kurzweil-Stieltjes.

We investigate the asymptotic behaviour for measure differential equations and dynamic equa-

tions on time scales via generalized ordinary differential equations (generalized ODEs, for short).

At first, we establish new results that guarantee the existence of unbounded solutions for gene-

ralized ODEs, and after that, using the known correspondence between generalized ODEs and

measure differential equations, also between measure differential equations and dynamic equations

on time scales, we obtain similar results for these equations.

2.1 Growth of solutions for generalized ODEs

In this section, our goal is to use Lyapunov functions to study the asymptotic behaviour of solutions

for generalized ODEs defined in a Banach space.

Throughout this section, X is a Banach space endowed with a norm ‖ · ‖, the set Bc denotes

the open ball in X centered at zero with radius c > 0, and Ω = Bc × [t0,+∞) with t0 ≥ 0.

Now, we consider the following generalized ODE

dx

dτ
= DF (x, t), (2.2)

where F : Ω→ X is an X–valued function.

In order to prove our main results, we need the following concept.

Definition 2.1. An increasing continuous function W : [0,+∞)→ [0,+∞) is said to be a wedge,

if W (0) = 0, W (s) > 0 for s > 0 and W (s)→ +∞ as s→ +∞.

Remark 2.2. The function introduced by Definition 2.1 can be also called function of Hahn-class

(see [23,73]).
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We are now in position to prove our first result about asymptotic behaviour of solutions for

generalized ODEs. In the following results, we assume that h : [t0,+∞)→ R is a nondecreasing and

left–continuous function. Moreover, x(t, s0, x0) denotes the maximal solution with x(s0, s0, x0) =

x0. The next theorem is inspired by [12, Theorem 4.1.23], and it is new in the setting of generalized

ODEs.

Theorem 2.3. Let F ∈ F(Ω, h) with Ω = ΩF . Suppose also that there exists a function V :

[t0,∞)×Bc → R and wedges Wi : [0,+∞)→ [0,+∞), i = 1, 2, 3, having the following properties:

(V1) For every solution x : I → Bc of the generalized ODE (2.2), we have

W1(‖x(t)‖) ≤ V (t, x(t)) ≤W2(‖x(t)‖)

for all t ∈ I, where I ⊂ [t0,+∞) is a nondegenerate interval.

(V2) For every maximal solution x(t) = x(t, s0, x0) with (s0, x0) ∈ [t0,+∞)×Bc, of the generalized

ODE (2.2), the inequality

V (t, x(t))− V (s, x(s)) ≥
∫ t

s
W3(‖x(ξ)‖)dl(ξ)

holds for all t, s ∈ [s0, ω(s0, x0)) with t ≥ s, where l : [s0,+∞) → R is a nondecreasing

function such that lim
t→+∞

l(t) = +∞.

Let (s0, x0) ∈ [t0,+∞)×Bc. Then ω(s0, x0) <∞.

Proof. Let s0 ≥ t0 and x0 ∈ Bc. The existence and uniqueness of the maximal solution x(t, s0, x0)

of the generalized ODE (2.2) is guaranteed by Theorem 1.17. Assume that ω = ω(s0, x0) = +∞.

Let γ be a positive number with W2(γ) = W1(‖x0‖). The existence of such γ is ensured by the

continuity of the wedge W2.

By (V2), we infer that the function [s0, ω(s0, x0)) 3 t 7→ V (t, x(t)) is nondecreasing. Then by

(V1), we get that for every t ∈ [s0, ω),

W2(‖x(t)‖) ≥ V (t, x(t)) ≥ V (s0, x(s0)) ≥W1(‖x(s0)‖) = W2(γ). (2.3)

Since W2 is an increasing function, it follows from (2.3) that

‖x(t)‖ ≥ γ for every t ∈ [s0,+∞). (2.4)

On the other hand, for every t ∈ [s0,+∞), combining condition (V2) and (2.4), we obtain the

following inequality

V (t, x(t)) ≥ V (s0, x(s0)) +

∫ t

s0

W3(‖x(s)‖)dl(s)

≥ V (s0, x(s0)) +W3(γ)(l(t)− l(s0)). (2.5)

Therefore, collecting (V1) with (2.5), for every t ∈ [s0,+∞), we have

W2(‖x(t)‖) ≥ V (s0, x(s0)) +W3(γ)(l(t)− l(s0)),
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which implies that ‖x(t)‖ is large enough when t tends to +∞ which is a contradiction.

Assume that functions involved in Theorem 2.3 are defined in X instead of Bc, which implies

that Ω = ΩF . Let x(·) be a maximal solution of (2.2). It follows from Corollary 1.21 that ω =∞.

Therefore, arguing as in the proof of Theorem 2.3, we can state the following property.

Theorem 2.4. Assume that Ω = X × [t0,+∞). Let F ∈ F(Ω, h). Suppose that there exists

a function V : [t0,+∞) × X → R and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2, 3, having the

properties (V1)-(V2), with X instead of Bc. Let (s0, x0) ∈ [t0,+∞) × X. Then ω(s0, x0) = +∞
and ‖x(t, s0, x0)‖ → +∞ as t→ +∞.

We next establish a similar result under very different conditions on the function V . This result

is completely new in the literature associated with the theory of generalized ODEs.

Theorem 2.5. Let F ∈ F(Ω, h) with Ω = ΩF . Suppose there exists a function V : [t0,+∞)×Bc →
R and wedges Wi : [0,+∞)→ [0,+∞), i = 1, 2, having the following properties:

(G1) For every solution x : I → Bc of the generalized ODE (2.2), we have

|V (t, x(t))| ≤W1(‖x(t)‖)

for all t ∈ I, where I ⊂ [t0,+∞) is a nondegenerate interval.

(G2) For every maximal solution x(t) = x(t, s0, x0), with (s0, x0) ∈ [t0,+∞)×Bc, of the generalized

ODE (2.2), the function t 7→ V (t, x(t)) is regulated on [s0, ω(s0, x0)), and the following

inequality

V (t, x(t))− V (s, x(s)) ≤ −
∫ t

s
W2(|V (ξ, x(ξ))|)dl(ξ)

holds for all t, s ∈ [s0, ω(s0, x0)) with t ≥ s, where l : [s0,+∞) → R is a nondecreasing

function such that lim
t→+∞

l(t) = +∞.

Let (s0, x0) ∈ [t0,+∞)×Bc such that V (s0, x0) < 0. Then ω(s0, x0) <∞.

Proof. Since (s0, x0) ∈ Ω, then by Theorem 1.17, there exists a unique maximal solution x(·) of the

generalized ODE (2.2) such that x(s0) = x0. Assume that ω(s0, x0) = +∞. Therefore, condition

(G1) and the monotonicity of W1 imply the following inequality

|V (t, x(t))| ≤W1(‖x(t)‖) ≤W1(c) for all t ∈ [s0,+∞). (2.6)

By condition (G2), we get

V (t, x(t))− V (s0, x(s0)) ≤ −
∫ t

s0

W2(|V (ξ, x(ξ))|)dl(ξ) ≤ 0,

for all t ∈ [s0,+∞). Consequently, we have

V (t, x(t)) ≤ V (s0, x(s0)) = V (s0, x0) < 0 for all t ∈ [s0,+∞),
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which implies that

|V (t, x(t))| ≥ |V (s0, x(s0))| > 0 for all t ∈ [s0,+∞). (2.7)

From (2.7), and using condition (G2) again, we obtain

V (t, x(t)) ≤ V (s0, x(s0))−
∫ t

s0

W2(|V (s, x(s))|)dl(s)

≤ V (s0, x(s0))−
∫ t

s0

W2(|V (s0, x(s0))|)dl(s)

= V (s0, x(s0))−W2(|V (s0, x(s0))|)(l(t)− l(s0)) < 0.

This implies that

|V (t, x(t))| ≥ −V (s0, x(s0)) +W2(|V (s0, x(s0))|)(l(t)− l(s0))

> W2(|V (s0, x(s0))|)(l(t)− l(s0)). (2.8)

Since l is a nondecreasing function and lim
t→+∞

l(t) = +∞, the inequality (2.8) contradicts (2.6) as

t tends to +∞.

In the case Ω = X × [t0,+∞), proceeding as in Theorem 2.4, we can establish the following

result.

Theorem 2.6. Assume that Ω = X × [t0,+∞). Let F ∈ F(Ω, h). Suppose there exist a function

V : [t0,+∞) × X → R and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2, having the properties

(G1)-(G2), with X instead of Bc. Let (s0, x0) ∈ [t0,+∞) × X such that V (s0, x0) < 0. Then

ω(s0, x0) = +∞ and ‖x(t, s0, x0)‖ → +∞ as t→ +∞.

2.2 Growth of solutions for measure differential equations

This section is devoted to study the asymptotic behaviour of solutions for measure differential

equations. In order to get this, we will use the well known correspondence between the solutions

of generalized ODEs and the solutions of measure differential equations (see [73]).

We are concerned with the integral form of a measure differential equation

x(t) = x(t0) +

∫ t

t0

f(x(s), s)dg(s), (2.9)

where f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R are functions with some properties that

we will specify later. The integral on the right hand side is considered in the sense of Henstock–

Kurzweil–Stieltjes.

We will use the notation x ∈ G([t0,+∞), Bc) to indicate that x is a function which belongs

to the space G([t0,+∞),Rn) such that x(s) ∈ Bc for every s ∈ [t0,+∞). Similarly, we define the

notation x ∈ G0([t0,+∞), Bc).

Definition 2.7. We say that a function M : [t0,+∞)→ Rn is locally Henstock–Kurzweil–Stieltjes
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integrable with respect to a function g, if it is Henstock–Kurzweil–Stieltjes integrable with respect

to a function g for every subinterval [a, b] ⊂ [t0,+∞).

We now introduce a set of conditions that f : Bc × [t0,+∞)→ Rn and g : [t0,+∞)→ R must

satisfy to establish our results.

(A1) The function g : [t0,+∞)→ R is nondecreasing and left-continuous on (t0,+∞).

(A2) The integral

∫ u2

u1

f(x(s), s)dg(s) exists for every x ∈ G([t0,+∞), Bc) and u1, u2 ∈ [t0,+∞).

(A3) There exists a function M : [t0,+∞) → R+, which is locally Henstock–Kurzweil–Stieltjes

integrable with respect to g, such that∥∥∥∥∫ u2

u1

f(x(t), t)dg(t)

∥∥∥∥ ≤ ∫ u2

u1

M(t)dg(t),

for all x ∈ G([t0,+∞), Bc) and [u1, u2] ⊆ [t0,+∞) such that u2 ≥ u1.

(A4) There exists a function L : [t0,+∞) → R+, which is locally Henstock–Kurzweil–Stieltjes

integrable with respect to g, such that∥∥∥∥∫ u2

u1

[f(x(t), t)− f(z(t), t)]dg(t)

∥∥∥∥ ≤ ‖x− z‖[t0,+∞)

∫ u2

u1

L(t)dg(t),

for all x, z ∈ G0([t0,+∞), Bc) and [u1, u2] ⊆ [t0,+∞) such that u2 ≥ u1.

The next theorem ensures that under assumptions (A1)–(A4), we can define a function F in

terms of f and g such that F ∈ F(Bc×[t0,+∞), h), for a certain nondecreasing and left–continuous

function h : [t0,+∞)→ R.

Theorem 2.8. ( [22, Theorem 4.2]) Assume that f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R
satisfy conditions (A1)–(A4). Let τ0 ∈ [t0,+∞) and define F : Bc × [τ0,+∞)→ Rn by

F (x, t) =

∫ t

τ0

f(x, s)dg(s), (x, t) ∈ Bc × [τ0,+∞), (2.10)

then F ∈ F(Ω, h), where Ω = Bc × [τ0,+∞) and h : [τ0,+∞) → R is the nondecreasing function

given by

h(t) =

∫ t

τ0

[M(s) + L(s)]dg(s), t ∈ [τ0,+∞). (2.11)

The next result describes the relationship between the solutions of the measure differential

equation (2.9) and the solutions of the generalized ODE (2.2) on an interval I ⊂ [t0,+∞).

Theorem 2.9. ( [22, Theorem 4.8]) Assume that f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R
satisfy conditions (A1)–(A4). Then the function x : I → Rn, where I ⊂ [t0,+∞) is a nondegenerate

interval, is a solution of the measure differential equation (2.9) on I if, and only if, x is a solution

of the generalized ODE (2.2) on I, where the function F is given by (2.10).
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The next result will be very important to our purposes. It ensures the existence of a maximal

solution to the measure differential equation (2.9) for every (x0, s0) ∈ Bc × [t0,+∞).

Theorem 2.10. ( [22, Theorem 4.11]) Suppose f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R
satisfy conditions (A1)–(A4). Further, assume that for every (z0, s0) ∈ Bc × [t0,+∞), we have

z0 +f(z0, s0)∆+g(s0) ∈ Bc. Then for every (x0, s0) ∈ Bc× [t0,+∞), there exists a unique maximal

solution x : J → Rn of the MDE (2.9) with x(s0) = x0 and where J is an interval with s0 = min J.

Theorem 2.11. ( [22, Theorem 4.13] ) Suppose f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R
satisfy conditions (A1)–(A4). Further, assume that for every (z0, s0) ∈ Bc × [t0,+∞), we have

z0 + f(z0, s0)∆+g(s0) ∈ Bc. If (x0, s0) ∈ Bc × [t0,+∞) and x : J → X is the maximal solution of

the MDE (2.9) with x(s0) = x0, then J = [s0, ω) with ω ≤ ∞.

Corollary 2.12. ( [22, Corollary 4.15]) Suppose f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R
satisfy conditions (A1)–(A4). Further, assume that for all (z0, s0) ∈ Bc × [t0,+∞), we have

z0 + f(z0, s0)∆+g(s0) ∈ Bc. Suppose (x0, s0) ∈ Bc × [t0,+∞) and x : [s0, ω)→ Rn is the maximal

solution of the MDE (2.9) with x(s0) = x0. If x(t) ∈ N for all t ∈ [s0, ω), where N is closed in Rn

and contained in Bc, then ω = +∞.

Remark 2.13. Theorem 2.10 and Corollary 2.12 can be considered on an arbitrary open subset

O ⊂ Rn. However, for our purposes, we are considering the particular case O = Bc.

We present a first result about asymptotic behaviour of solutions for measure differential equa-

tions.

Theorem 2.14. Suppose f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R satisfy conditions (A1)–

(A4). Assume that for every (x0, s0) ∈ Bc × [t0,+∞), we have x0 + f(x0, s0)∆+g(s0) ∈ Bc, and

that there exists a function U : [t0,+∞)×Bc → R and wedges Wi : [0,+∞)→ [0,+∞), i = 1, 2, 3,

having the following properties:

(U1) For every solution x : I → Bc of the measure differential equation (2.9), we have

W1(‖x(t)‖) ≤ U(t, x(t)) ≤W2(‖x(t)‖),

for all t ∈ I, where I ⊂ [t0,+∞) is a nondegenerate interval.

(U2) For every maximal solution x(t) = x(t, s0, x0) with (s0, x0) ∈ [t0,+∞) × Bc, of the measure

differential equation (2.9), we have

U(t, x(t))− U(s, x(s)) ≥
∫ t

s
W3(‖x(ξ)‖)dl(ξ),

for all t, s ∈ [s0, ω(s0, x0)) with t ≥ s, where l : [s0,+∞) → R is a nondecreasing function

such that lim
t→+∞

l(t) = +∞.

Let (s0, x0) ∈ [t0,+∞)×Bc. Then ω(s0, x0) <∞.
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Proof. Let x(t, s0, x0) be the unique maximal solution of the measure differential equation (2.9)

such that (s0, x0) ∈ [t0,+∞) × Bc. The existence of such unique maximal solution is ensured by

Theorem 2.10.

Since f : Bc × [t0,+∞) → Rn satisfies conditions (A2)–(A4), and g : [t0,+∞) → R satisfies

conditions (A1)–(A4), from Theorem 2.8 it follows that the function F : Bc × [s0,+∞) → Rn

defined by (2.10), with s0 instead of τ0, belongs to the class F(Ω, h), where Ω = Bc× [s0,+∞) and

h : [s0,+∞)→ R is given by (2.11), with s0 instead of τ0. Hence, for each (x0, s0) ∈ Bc× [t0,+∞),

we have

x0 + F (x0, s
+
0 )− F (x0, s0) = x0 + lim

s→s+0

∫ s

s0

f(x0, τ)dg(τ)−
∫ s0

s0

f(x0, τ)dg(τ)

= x0 + lim
s→s+0

∫ s

s0

f(x0, τ)dg(τ)

= x0 + f(x0, s0)∆+g(s0) ∈ Bc.

Therefore, we get

x0 + F (x0, s
+
0 )− F (x0, s0) ∈ Bc

that is, Ω = ΩF . On the other hand, if x : [s0, ω) → Bc is a (unique) maximal solution of (2.9),

then applying Theorem 1.17 and 2.9, we infer that x is also the unique maximal solution of the

generalized ODE (2.2) on the interval [s0, ω).

Furthermore, since conditions (U1)–(U2) hold, we can show that conditions (V1)–(V2) involved

in the statement of Theorem 2.3 are satisfied. Therefore, since all the conditions of Theorem 2.3

are fulfilled, we infer that ω(s0, x0) <∞, proving the result.

When Ω = Rn × [t0,+∞), proceeding as in the proof of Theorem 2.14 and using Theorem 2.4,

we can establish the following result.

Theorem 2.15. Assume that Ω = Rn × [t0,+∞). Suppose f : Rn × [t0,+∞) → Rn and g :

[t0,+∞) → R satisfy conditions (A1)–(A4) with Rn instead of Bc. Assume that there exists a

function U : [t0,+∞) × Rn → R and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2, 3, having the

properties (U1)-(U2), for Rn instead of Bc. Let (s0, x0) ∈ [t0,+∞) × Rn. Then ω(s0, x0) = +∞
and ‖x(t, s0, x0)‖ → +∞ as t→ +∞.

Next we present a result of asymptotic behaviour for the solution of a measure differential

equation.

Theorem 2.16. Suppose f : Bc × [t0,+∞) → Rn and g : [t0,+∞) → R satisfy conditions (A1)–

(A4). Assume that for every (x0, s0) ∈ Bc × [t0,+∞), we have x0 + f(x0, s0)∆+g(s0) ∈ Bc, and

that there exists a function U : [t0,+∞) × Bc → R and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2,

having the following properties:
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(H1) For every solution x : I → Bc of the measure differential equation (2.9), we have

|U(t, x(t))| ≤W1(‖x(t)‖),

for all t ∈ I, where I ⊂ [t0,+∞) is a nondegenerate interval.

(H2) For every maximal solution x(t) = x(t, s0, x0), with (s0, x0) ∈ [t0,+∞)×Bc, of the measure

differential equation (2.9), the function t 7→ U(t, x(t)) is regulated on [s0, ω(s0, x0)) and we

have

U(t, x(t))− U(s, x(s)) ≤ −
∫ t

s
W2(|U(ξ, x(ξ))|)dl(ξ),

for all t, s ∈ [s0, ω(s0, x0)) with t ≥ s, where l : [s0,+∞) → R is a nondecreasing function

such that lim
t→+∞

l(t) = +∞.

Let (s0, x0) ∈ [t0,+∞)×Bc such that U(s0, x0) < 0. Then ω(s0, x0) <∞.

Proof. Let us fix (x0, s0) ∈ Bc × [t0,+∞). Applying Theorem 2.10 we can affirm that there exists

a unique maximal solution of the measure differential equation (2.9).

Since f : Bc × [t0,+∞) → Rn satisfies conditions (A2)–(A4), and g : [t0,∞) → R satisfies

conditions (A1)–(A4), the function F : Bc × [s0,+∞) → Rn, defined by (2.10), with s0 instead

of τ0, belongs to the class F(Ω, h), where Ω = Bc × [s0,+∞), and h : [s0,+∞) → R is given by

(2.11), with s0 instead of τ0. Proceeding as in the proof of Theorem 2.14, we obtain that Ω = ΩF .

On the other hand, if x : [s0, ω) → Bc is the unique maximal solution of (2.9), then using

Theorem 1.17 and Theorem 2.9, we can conclude that x is also the unique maximal solution

of the generalized ODE (2.2) on the interval [s0, ω). Also, assumptions (H1)–(H2) imply that

U : [t0,+∞)×Bc → R satisfies conditions (G1)–(G2) in the statement of Theorem 2.5. Therefore,

all hypotheses of Theorem 2.5 are fulfilled, which implies that ω(s0, x0) <∞.

For the case Ω = Rn × [t0,+∞), proceeding as in the proof of Theorem 2.16 and using Theo-

rem 2.6, we can establish the following result.

Theorem 2.17. Assume that Ω = Rn × [t0,+∞). Suppose f : Rn × [t0,+∞) → Rn and g :

[t0,+∞)→ R satisfy conditions (A1)–(A4) with Rn instead of Bc. Suppose there exists a function

U : [t0,+∞) × Rn → R and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2, having the properties

(H1)-(H2), with Rn instead of Bc. Let (s0, x0) ∈ [t0,+∞) × Rn such that U(s0, x0) < 0. Then

ω(s0, x0) = +∞ and ‖x(t, s0, x0)‖ → +∞ as t→ +∞.

Now, we apply the theory developed in the previous sections to study a measure linear diffe-

rential equation, described in the next example.

Example 2.18. Consider the measure linear differential equation

z(t) = 1 +

∫ t

t0

z(s)dP (s), (2.12)
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for t0 ≥ 0. In the equation (2.12), the integral on the right-hand side is considered in the sense

of Henstock-Kurzweil-Stieltjes, P : [t0,+∞)→ R is a nondecreasing left-continuous function such

that lim
t→+∞

P (t) = +∞. This implies that P ∈ BV+([t0,+∞),R) which means that P is a function

of locally bounded variation such that 1 + ∆+P (t) > 0 for all t ∈ [t0,+∞) and 1 −∆−P (t) > 0

for all t ∈ (t0,+∞).

Let c > 1 such that 1 + ∆+P (t0) < c and let Bc = {x ∈ R : |x| < c}. We consider the functions

f : Bc × [t0,+∞) → R and g : [t0,+∞) → R defined respectively by f(y, t) = y and g(t) = P (t).

It is straightforward to check that f and g satisfy conditions (A1)–(A4) from the Section 2.2 with

constant functions M(t) = c and L(t) = 1, for t ∈ [t0,+∞). Therefore, by Theorem 2.10 and

2.11, there exist a unique maximal solution z : [t0, ω(1, t0)) → Bc of the equation (2.12) with

z(t0) = 1. On the other hand, as it was explained in [65], the generalized exponential function

t 7→ edP (t, t0), for t ∈ [t0, ω(1, t0)), is defined as the unique solution z : [t0, ω(1, t0)) → R of the

equation (2.12). Moreover, in this case, since P ∈ BV+([t0,+∞),R), it follows that edP (t, t0) > 0

for all t ∈ [t0, ω(1, t0)), see [65, Theorem 3.6]. For more details concerning to the generalized

exponential function and its properties, we refer to [65].

We introduce the function U : [t0,+∞) × R → R, defined by U(t, x) = |x|, and the wedges

Wi(ξ) = ξ, for i = 1, 2, 3, and ξ ≥ 0. If z(·) is a solution of (2.12), it is immediate that

W1(|z(t)|) = |z(t)| = U(t, z(t)) = W2(|z(t)|).

Similarly, for t, s ∈ [t0, ω(1, t0)) with t ≥ s, we have∫ t

s
W3(|z(ξ)|)dP (ξ) =

∫ t

s
|z(ξ)|dP (ξ) =

[
1 +

∫ t

t0

z(ξ)dP (ξ)

]
−
[
1 +

∫ s

t0

z(ξ)dP (ξ)

]
= z(t)− z(s)

= |z(t)| − |z(s)|

= U(t, z(t))− U(s, z(s)).

Therefore, by Theorem 2.14, we conclude that ω(1, t0) <∞.

Remark 2.19. We mention that if P (s) = s, then the equation (2.12) is reduced to the equation

z(t) = 1 +

∫ t

t0

z(s)ds. (2.13)

which has a unique solution, that is the classical exponential function z(t) = edP (t, t0) = et−t0 .

Remark 2.20. We point out that if P is continuously differentiable with P ′ = p, then the equation

(2.12) is reduced to

z(t) = 1 +

∫ t

t0

p(s)z(s)ds, (2.14)

which has unique solution z(t) = edP (t, t0) = e
∫ t
t0
p(s)ds

.
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2.3 Growth of solutions for dynamic equations on time scales

In this section, we will study the asymptotic behaviour of solutions for dynamic equations on time

scales. We will begin by recalling some basic concepts concerning the theory of time scales.

The notion of time scales was introduced by Stefan Hilger [49] in 1988. This theory has been

intensively developed during the last decades, see for instance [3,10,11,55]. Some of the reasons for

the increasing interest in this theory are that it allows to unify the discrete and continuous analysis

or even other cases as quantum analysis (depending on the chosen time scale), its applications to

the modelling of strongly non-linear dynamical systems, population and economics models (non-

uniform steps), systems with delays, among others (see e.g. [6, 10,71]).

First, we remember some basic definitions from [10, 11] and a few directly related results in

order to prove our main theorems.

A time scale is an arbitrary closed nonempty subset T of the real numbers R. Examples of

time scales are the integers Z, the natural numbers N, the set qZ = {qz : n ∈ Z} ∪ {0} ⊂ R, where

q > 1, or the most common time scale T = R. For a, b ∈ T, a ≤ b, we define the time scale interval

by [a, b]T = [a, b]∩T. The open and half–open intervals are defined in a similar way. On the other

hand, [a, b] will be used to denote the usual intervals on the real line. We assume throughout that

T has the topology that it inherits from the standard topology on the real numbers.

For all t ∈ T, we define the forward jump operator and the backward jump operator, respectively,

by

σ(t) = inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t} .

In this definition, it is possible to obtain that {s ∈ T : s > t} = ∅ or {s ∈ T : s < t} = ∅, in these

cases, we assume that inf ∅ := supT and sup ∅ := inf T, i.e., σ(t) = t (respectively, ρ(t) = t) if T
contains the maximal (respectively, the minimal) element t. The graininess function µ : T→ [0,∞)

is defined by

µ(t) = σ(t)− t.

If σ(t) > t, we say that t is right–scattered ; otherwise, t is called right–dense. Similarly, if

ρ(t) < t, then t is called left–scattered, while if ρ(t) = t, t is said left–dense.

If we consider T = R, then σ(t) = ρ(t) = t, and µ(t) = 0. For the case T = Z, we obtain

σ(t) = t+ 1, ρ(t) = t− 1, and µ(t) = 1.

In addition to the set T, the set Tκ is defined as follows. If T contains the left–scattered

maximum m, then Tκ = T \ {m}, and Tκ = T in the other cases. Therefore,

Tκ =

T \ (ρ(supT), supT], if supT <∞,

T, otherwise.

In time scale analysis, the usual derivative f ′(t) and the integral
∫ b
a f(t)dt of a function f :
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[a, b]→ R are replaced by the ∆-derivative f∆(t) and the ∆-integral
∫ b
a f(t)∆t, where f : [a, b]T →

R. For details, the reader can see [10,11].

Definition 2.21. The function f : T→ R is called ∆-differentiable at a point t ∈ Tκ if there exists

f∆(t) ∈ R such that for any ε > 0 there exists a neighborhood W of t ∈ Tκ (i.e., W = (t−δ, t+δ)∩Tκ

for some δ > 0), satisfying∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ < ε|σ(t)− s|, for all s ∈W.

If the function f is ∆-differentiable for any t ∈ Tκ, then f : T → R is called ∆-differentiable on

Tκ. The function f∆ : Tκ → R is called the ∆-derivative of f on Tκ.

If we consider T = R, then f∆ = f ′, is the usual derivative of a function, and in the case T = Z,

then f∆ is the standard forward difference operator.

To present our results, we will need to recall some important concepts related to calculus on

time scales found in [74], which we establish below.

Given a real number t ≤ supT, we define

t∗ = inf {s ∈ T : s ≥ t} ,

and we define the extension of T by

T∗ =

(−∞, supT], if supT <∞,

(−∞,∞), otherwise.

On the other hand, given a function f : T→ Rn, we define its extension f∗ : T∗ → Rn by

f∗(t) = f(t∗), t ∈ T∗.

In the same way as before, for B ⊂ Rn and f : B × T→ Rn, we define

f∗(x, t) = f(x, t∗), x ∈ B, t ∈ T∗.

The next result can be found in [22, Lemma 5.1].

Lemma 2.22. Let T be a time scale such that supT = +∞, t0 ∈ T. Let g : [t0,+∞)→ R be given

by g(t) = t∗ for all t ∈ [t0,+∞). Then g satisfies the following conditions:

(i) g is a nondecreasing function.

(ii) g is left–continuous on (t0,+∞).

Also, it is possible to define for a function f : [a, b]T → Rn the general concept of Riemann

∆-integral and Lebesgue ∆-integral, see for instance [38]. However, to our purpose, we recall the

general concept of Henstock-Kurzweil ∆-integral of a function f : [a, b]T → Rn, introduced by A.

Peterson and B. Thompson in [70], which will be crucial in the rest of this section.
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Let δ = (δL, δR) be a pair of nonnegative functions defined on [a, b]T. We say that δ is a ∆-gauge

for [a, b]T provided δL(t) > 0 on (a, b]∩T, δR(t) > 0 on [a, b)∩T, and δR(t) > µ(t) for all [a, b)∩T.

A tagged partition of the interval [a, b]T with subdivision points si ∈ [a, b]T, i = 1, ..., k, such

that a = s0 ≤ s1 ≤ · · · ≤ sk = b, and tags τi ∈ [a, b]T, with τi ∈ [si−1, si], i = 1, ..., k, is called δ-fine

if

τi − δL(τi) ≤ si−1 < si ≤ τi + δR(τi), i = 1, . . . , k.

Definition 2.23. A function f : [a, b]T → Rn is called Henstock-Kurzweil ∆-integrable, if there

exists a vector I ∈ Rn having the following property: for every ε > 0, there is a ∆-gauge on [a, b]T

such that the inequality ∥∥∥∥∥
k∑
i=1

f(τi)(si − si−1)− I

∥∥∥∥∥ < ε,

holds for every δ-fine tagged partition of [a, b]T. In this case, I is called Henstock-Kurzweil ∆-

integral of f over [a, b]T and it will be denoted by

∫ b

a
f(t)∆t.

Remark 2.24. We say that M : [t0,+∞)T → R+ is locally Henstock-Kurzweil ∆–integrable if,

and only if, the function [s1, s2]T 3 t 7→ M(t) is Henstock-Kurzweil ∆–integrable for all s1, s2 ∈
[t0,+∞)T.

We will denote by G([t0,+∞)T,Rn) the vector space of functions x : [t0,+∞)T → Rn such that

the restriction f |[a,b]T belongs to G([a, b]T,Rn) for all [a, b]T ⊂ [t0,+∞)T, with a, b ∈ T and a ≤ b.

Also, we consider the vector space

G0([t0,+∞)T,Rn) :=

{
f ∈ G([t0,+∞)T,Rn) : sup

s∈[t0,+∞)T

e−γ(s−t0)‖f(s)‖ <∞

}
,

for γ > 0, endowed with the norm ‖f‖[t0,+∞)T = sup
s∈[t0,+∞)T

e−γ(s−t0)‖f(s)‖. Clearly, this normed

vector space is complete.

From now on, we consider the following conditions on a function f : Bc × [t0,+∞)T → Rn:

(B1) The Henstock-Kurzweil ∆–integral

∫ s2

s1

f(y(t), t)∆t exists for all y ∈ G([t0,+∞)T, Bc) and

all s1, s2 ∈ [t0,+∞)T.

(B2) There exists a locally Henstock-Kurzweil ∆–integrable function M : [t0,+∞)T → R+ such

that ∣∣∣∣∫ s2

s1

f(y(t), t)∆t

∣∣∣∣ ≤ ∫ s2

s1

M(t)∆t,

for all y ∈ G([t0,+∞)T, Bc) and all s1, s2 ∈ [t0,+∞)T, s1 ≤ s2.

(B3) There exists a locally Henstock-Kurzweil ∆–integrable function L : [t0,+∞)T → R+ such

that ∣∣∣∣∫ s2

s1

[f(y(t), t)− f(w(t), t)]∆t

∣∣∣∣ ≤ ‖y − w‖[t0,+∞)T

∫ s2

s1

L(t)∆t,
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for all y, w ∈ G0([t0,+∞)T, Bc) and all s1, s2 ∈ [t0,+∞)T, s1 ≤ s2.

The next result establishes the relationship between conditions (B1)–(B3) for the function f

and their analogues for its extension f∗.

Theorem 2.25. ( [22, Theorem 5.8]) Let T be a time scale such that supT = +∞ and t0 ∈ T, and

let f : Bc× [t0,+∞)T → Rn be a function. Let g(t) = t∗ for t ∈ [t0,+∞). The following properties

are fulfilled:

(i) If f : Bc × [t0,+∞)T → Rn satisfies the condition (B1), then the Henstock-Kurzweil-Stieltjes

integral

∫ t2

t1

f∗(x(t), t)dg(t) exists for all x ∈ G([t0,+∞), Bc) and all t1, t2 ∈ [t0,+∞).

(ii) If f : Bc × [t0,+∞)T → Rn satisfies conditions (B1)-(B2), then f∗ : Bc × [t0,+∞) → Rn

satisfies the estimate ∣∣∣∣∫ t2

t1

f∗(x(t), t)dg(t)

∣∣∣∣ ≤ ∫ t2

t1

M∗(t)dg(t),

for all t1, t2 ∈ [t0,+∞), t1 ≤ t2, and all x ∈ G([t0,+∞), Bc).

(iii) If f : Bc× [t0,+∞)T → Rn satisfies conditions (B1) and (B3), then f∗ : Bc× [t0,+∞)→ Rn

satisfies the estimate∣∣∣∣∫ t2

t1

[f∗(x(t), t)− f∗(z(t), t)]dg(t)

∣∣∣∣ ≤ ‖x− z‖[t0,+∞)

∫ t2

t1

L∗(t)dg(t),

for all t1, t2 ∈ [t0,+∞), t1 ≤ t2, and all x, z ∈ G0([t0,+∞), Bc).

Next we recall several properties of the Henstock–Kurzweil–Stieltjes integration theory on time

scales, which are essential to establish our results.

Theorem 2.26. ( [22, Theorem 5.3]) Let T be a time scale such that supT = +∞, t0 ∈ T and

g(t) = t∗ for all t ∈ [t0,+∞). If f : [t0,+∞) → Rn is such that the Henstock–Kurzweil–Stieltjes

integral
∫ d
c f(t)dg(t) exists for every c, d ∈ [t0,+∞), then∫ d

c
f(t)dg(t) =

∫ d∗

c∗
f(t)dg(t),

for all t0 ≤ c < d <∞.

The next result establishes a relationship between the Henstock–Kurzweil ∆–integral and the

Henstock–Kurzweil–Stieltjes integral.

Theorem 2.27. ( [22, Theorem 5.4]) Let T be a time scale such that supT = +∞, t0 ∈ T and

f : [t0,+∞)T → Rn be a function such that the Henstock-Kurzweil ∆–integral

∫ b

a
f(s)∆s exists

for all a, b ∈ [t0,+∞)T and a < b. Let a ∈ [t0,+∞)T, and define

F1(t) =

∫ t

a
f(s)∆s, t ∈ [t0,+∞)T,
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F2(t) =

∫ t

a
f∗(s)dg(s), t ∈ [t0,+∞),

where g(s) = s∗, for all s ∈ [t0,+∞). Then F2 = F ∗1 . In particular, F2(t) = F1(t) for all

t ∈ [t0,+∞)T.

The next result ensures that if two functions assume the same value on T, then their respective

Henstock–Kurzweil–Stieltjes integrals with respect to g(t) = t∗ coincide.

Theorem 2.28. ( [26, Theorem 4.2]) Let T be a time scale, [a, b] ⊂ T∗ and let g : [a, b] → R be

defined by g(s) = s∗, for all s ∈ [a, b]. Let f1, f2 : [a, b] → Rn be functions such that f1(t) = f2(t)

for all t ∈ [a, b] ∩ T. If the Henstock–Kurzweil–Stieltjes integral
∫ b
a f1(s)dg(s) exists, then the

Henstock–Kurzweil–Stieltjes integral
∫ b
a f2(s)dg(s) exists as well, and both integrals have the same

value.

The next result describes a correspondence between the measure differential equation (2.9) and

dynamic equations on time scales.

Theorem 2.29. ( [22, Theorem 5.6]) Assume that T is a time scale such that supT = +∞. Let

f : Rn× [t0,+∞)T → Rn. Assume that for every x ∈ G([t0,+∞)T,Rn), the function t 7→ f(x(t), t)

is Henstock-Kurzweil ∆–integrable on [s1, s2]T, for all s1, s2 ∈ [t0,+∞)T. Define g : [t0,+∞)→ R
by g(s) = s∗ for all s ∈ [t0,+∞). Let J ⊂ [t0,+∞) be a nondegenerate interval such that J ∩ T is

nonempty and for each t ∈ J, we have t∗ ∈ J ∩ T. If x : J ∩ T → Rn is a solution of the initial

value problem

x∆(t) = f(x∗(t), t), (2.15)

x(s0) = x0, (2.16)

for t ∈ J ∩T, where s0 ∈ J ∩T, then x∗ : J → Rn is a solution of the measure differential equation

in integral form

y(t) = x0 +

∫ t

s0

f∗(y(s), s)dg(s). (2.17)

Conversely, if y : J → Rn is a solution of the (2.17), then there exists a solution x : J ∩ T → Rn

of the initial value problem (2.15) such that y = x∗.

Next, we recall the concepts of maximal solution and prolongation of solutions for the dynamic

equation on time scales (2.15), where f : Bc × [t0,+∞)T → Rn. For more details, see [22].

Definition 2.30. ( [22, Definition 5.9]) Assume that IT ⊂ [t0,+∞)T and JT ⊂ [t0,+∞)T are

intervals with s0 = min IT = min JT. Let x : IT → Rn and y : JT → Rn be solutions of (2.15)–

(2.16). The solution y(·) is called a prolongation of x(·) to the right, if IT ⊆ JT and x(t) = y(t)

for all t ∈ IT. If IT $ JT, then y is called a proper prolongation of x to the right.

Definition 2.31. ( [22, Definition 5.10]) Assume that IT ⊂ [t0,+∞)T is an interval with s0 =

min IT. The solution x : IT → Rn of the dynamic equation on time scales (2.15)–(2.16) is called

maximal, if there is no proper prolongation of x to the right.
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Next, we recall two results which ensure the existence and uniqueness of maximal solutions of

(2.15).

Theorem 2.32. ( [22, Theorem 5.11]) Let T be a time scale such that supT = +∞ and t0 ∈ T.
Suppose f : Bc × [t0,+∞)T → Rn satisfies conditions (B1)-(B3). Assume further that for every

(z0, s0) ∈ Bc×[t0,+∞)T we have z0+f(z0, s0)µ(s0) ∈ Bc. Then, for every (x0, s0) ∈ Bc×[t0,+∞)T

there exists a unique maximal solution x : [s0, ω)T → Rn with ω ≤ +∞ of the problem on time

scales (2.15)-(2.16). Furthermore, if ω < +∞, then ω ∈ T and ω is left–dense.

Theorem 2.33. ( [22, Theorem 5.16]) Let T be a time scale such that supT = +∞ and t0 ∈ T.

Suppose f : Bc × [t0,+∞)T → Rn satisfies conditions (B1)-(B3). Assume further that for every

(z0, s0) ∈ Bc × [t0,+∞)T we have z0 + f(z0, s0)µ(s0) ∈ Bc. Suppose (x0, s0) ∈ Bc × [t0,+∞)T and

x : [s0, ω)T → Rn is the unique maximal solution of (2.15)-(2.16). If x(t) ∈ N for all t ∈ [s0, ω)T,

where N is closed in Rn and contained in Bc, then ω = +∞.

In what follows, we present our first result about asymptotic behaviour for solutions of the

equation (2.15).

Theorem 2.34. Let T be a time scale such that supT = +∞ and t0 ∈ T. Suppose f : Bc ×
[t0,∞)T → Rn satisfies conditions (B1)-(B3) and for every (z0, s0) ∈ Bc × [t0,+∞)T we have

z0 + f(z0, s0)µ(s0) ∈ Bc. Assume further there exists a function U : [t0,∞)T ×Bc → [0,+∞) and

wedges Wi : [0,+∞)→ [0,+∞), i = 1, 2, 3, having the following properties:

(U∗1) For every solution x : IT → Bc of the dynamic equation on time scales (2.15), we have

W1(‖x(t)‖) ≤ U(t, x(t)) ≤W2(‖x(t)‖)

for all t ∈ IT, where IT ⊂ [t0,∞)T is a nondegenerate time scale interval.

(U∗2) For every maximal solution x(t) = x(t, s0, x0) with (s0, x0) ∈ [t0,∞)T × Bc of the dynamic

equation on time scales (2.15), we have

U(t, x(t))− U(s, x(s)) ≥
∫ t

s
W3(‖x(ξ)‖)∆ξ

for all t, s ∈ [s0, ω(s0, x0))T, with t ≥ s.

Then for every (s0, x0) ∈ [t0,+∞)T ×Bc, ω(s0, x0) <∞.

Proof. Let x(t, s0, x0) be the unique maximal solution of the dynamic equation on time scales

(2.15) such that (s0, x0) ∈ [t0,+∞)T × Bc. The existence and uniqueness of maximal solution is

ensured by Theorem 2.32.

Let f∗ : Bc × [t0,+∞) → Rn and g : [t0,+∞) → T be the functions f∗(x, t) = f(x, t∗) for all

x ∈ Bc and all t ∈ [t0,+∞), and g(t) = t∗ for all t ∈ [t0,+∞). Since f satisfies conditions (B1)-

(B3), it follows from Lemma 2.22 and Theorem 2.25 that f∗ and g satisfy conditions (A1)-(A4).
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Moreover, for (x0, s0) ∈ Bc × [t0,+∞)T, we have

x0 + f∗(x0, s0)∆+g(s0) = x0 + f(x0, s
∗
0)(g(s+

0 )− g(s0))

= x0 + f(x0, s
∗
0)(σ(s∗0)− s∗0)

= x0 + f(x0, s
∗
0)µ(s∗0)

= x0 + f(x0, s0)µ(s0) ∈ Bc.

On the other hand, if (x0, s0) ∈ Bc × [t0,+∞), but s0 /∈ T, then

x0 + f∗(x0, s0)∆+g(s0) = x0 + f(x0, s
∗
0)(g(s+

0 )− g(s0))

= x0 + f(x0, s
∗
0)(s∗0 − s∗0)

= x0 ∈ Bc.

Hence, combining the preceding assertions, for each (x0, s0) ∈ Bc × [t0,+∞), we obtain x0 +

f∗(x0, s0)∆+g(s0) ∈ Bc.

Furthermore, applying Theorem 2.10 and Theorem 2.29, we can affirm that x∗(t, s0, x0) is the

unique maximal solution of the measure differential equation (2.9) with (s0, x0) ∈ [t0,+∞)×Bc.

On the other hand, for every solution x∗ : I → Bc of the measure differential equation (2.9),

applying condition (U∗1), we get

W1(‖x∗(t)‖) = W1(‖x(t∗)‖)

≤ U(t∗, x(t∗))

= U(t∗, x∗(t))

= U∗(t, x∗(t))

and also,

U∗(t, x∗(t)) = U(t∗, x(t∗))

≤ W2(‖x(t∗)‖)

= W2(‖x∗(t)‖).

This implies that the condition (U1) in the statement of Theorem 2.14 is satisfied. Similarly,

for every maximal solution x∗ of the measure differential equation (2.9), applying condition (U∗2),

Theorems 2.26, 2.27 and 2.28, we get

U∗(t, x∗(t))− U∗(s, x∗(s)) = U(t∗, x(t∗))− U(s∗, x(s∗))

≥
∫ t∗

s∗
W3(‖x(ξ)‖)∆ξ

=

∫ t∗

s∗
W ∗3 (‖x(ξ)‖)dg(ξ)

=

∫ t∗

s∗
W3(‖x(ξ∗)‖)dg(ξ)
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=

∫ t

s
W3(‖x∗(ξ)‖)dg(ξ).

Thus, the condition (U2) in the statement of Theorem 2.14 is fulfilled. Therefore, since all hy-

potheses of Theorem 2.14 are satisfied, we obtain that ω(s0, x0) <∞.

Arguing as above in the case Ω = Rn × [t0,+∞)T and by Theorem 2.15, we can state the

following property.

Theorem 2.35. Let T be a time scale such that supT = +∞ and t0 ∈ T. Suppose f : Rn ×
[t0,+∞)T → Rn satisfies conditions (B1)-(B3) with Rn instead of Bc. Assume further that there

exists a function U : [t0,+∞)T × Rn → [0,+∞) and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2, 3,

having the properties (U∗1) and (U∗2), with Rn instead of Bc. Let x(t) = x(t, s0, x0) be the maximal

solution corresponding to (s0, x0) ∈ [t0,∞)T × Rn of the dynamic equation on time scales (2.15).

Then ω(s0, x0) = +∞ and ‖x(t)‖ → +∞ as t→ +∞.

We complete this section about asymptotic behaviour of solutions of dynamic equations on time

scales with a pair of results similar to Theorem 2.5, Theorem 2.6, Theorem 2.16 and Theorem 2.17.

We begin with a result similar to Theorem 2.5 and Theorem 2.16.

Theorem 2.36. Let T be a time scale such that supT = +∞ and t0 ∈ T. Suppose f : Bc ×
[t0,+∞)T → Rn satisfies conditions (B1)-(B3) and for every (z0, s0) ∈ Bc × [t0,+∞)T, we have

z0 + f(z0, s0)µ(s0) ∈ Bc. Assume that there exists a function U : [t0,∞)T × Bc → R and wedges

Wi : [0,+∞)→ [0,+∞), i = 1, 2, having the following properties:

(H∗1) For every solution x : IT → Bc, of the dynamic equation on time scales (2.15), we have

|U(t, x(t))| ≤W1(‖x(t)‖)

for all t ∈ IT, where IT ⊂ [t0,+∞)T is a nondegenerate time scale interval.

(H∗2) For every maximal solution x(t) = x(t, s0, x0) with (s0, x0) ∈ [t0,+∞)T ×Bc of the dynamic

equation on time scales (2.15), the function t 7→ U(t, x(t)) is regulated on [s0, ω(s0, x0))T and

we have

U(t, x(t))− U(s, x(s)) ≤ −
∫ t

s
W2(|U(ξ, x(ξ)|)∆ξ

for all t, s ∈ [s0, ω(s0, x0))T, with t ≥ s.

Let (s0, x0) ∈ [t0,+∞)×Bc such that U(s0, x0) < 0. Then ω(s0, x0) <∞.

Proof. Let x(t, s0, x0) be the unique maximal solution of the dynamic equation on time scales

(2.15) such that (s0, x0) ∈ [t0,+∞)T × Bc. The existence and uniqueness of maximal solution is

ensured by Theorem 2.32.

Let f∗ and g be defined as in the proof of Theorem 2.34. Arguing as in the proof of Theo-

rem 2.34, we can affirm that f∗ and g satisfy conditions (A1)-(A4), and a direct calculus shows

that x0 + f∗(x0, s0)∆+g(s0) ∈ Bc for all (x0, s0) ∈ Bc × [t0,+∞).
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Combining Theorem 2.10 and Theorem 2.29, we obtain that x∗(t, s0, x0) is the unique maximal

solution of the measure differential equation (2.9) with (s0, x0) ∈ [t0,+∞) × Bc. Moreover, for

every solution x∗ : I → Bc of the measure differential equation (2.9) using (H∗1), we get

|U∗(t, x∗(t))| = |U(t∗, x(t∗))|

≤ W1(‖x(t∗)‖)

= W1(‖x∗(t)‖),

which implies that (H1) is satisfied.

In similar way, for every maximal solution x∗ of the measure differential equation (2.9), applying

condition (H∗2), Theorems 2.26, 2.27 and 2.28, we get

U∗(t, x∗(t))− U∗(s, x∗(s)) = U(t∗, x(t∗))− U(s∗, x(s∗))

≤ −
∫ t∗

s∗
W2(|U(ξ, x(ξ))|)∆ξ

= −
∫ t∗

s∗
W ∗2 (|U(ξ, x(ξ))|)dg(ξ)

= −
∫ t∗

s∗
W2(|U(ξ∗, x(ξ∗)|)dg(ξ)

= −
∫ t∗

s∗
W2(|U∗(ξ, x∗(ξ)|)dg(ξ)

= −
∫ t

s
W2(|U∗(ξ, x∗(ξ)|)dg(ξ).

This implies that condition (H2) is fulfilled.

Consequently, since all hypotheses of Theorem 2.16 are satisfied, it follows that ω(s0, x0) <∞.

Finally, we will finish this section with a similar result to Theorem 2.6 and Theorem 2.17.

Theorem 2.37. Let T be a time scale such that supT = +∞ and t0 ∈ T. Suppose f : Rn ×
[t0,+∞)T → Rn satisfies conditions (B1)-(B3) with Rn instead of Bc. Assume further that there

exists a function U : [t0,+∞)T × Rn → [0,+∞) and wedges Wi : [0,+∞) → [0,+∞), i = 1, 2, 3,

having the properties (H∗1) and (H∗2), with Rn instead of Bc. Let x(t) = x(t, s0, x0) be the maximal

solution corresponding to (s0, x0) ∈ [t0,+∞)T×Rn of the dynamic equation on time scales (2.15).

Then ω(s0, x0) = +∞ and ‖x(t)‖ → +∞ as t→ +∞.
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Chapter 3

Measure functional differential equations with time-dependent

delay

In this chapter, we focus our attention on measure functional differential equations with time-

dependent delay given by

y(t) = y(t0) +

∫ t

t0

f(yr(s), s)dg(s), t ∈ [t0, t0 + σ], (3.1)

where r is an appropriate function, y and f are functions taking values in Rn, and the integral on

the right-hand side is in the sense of Henstock-Kurzweil-Stieltjes.

We study the correspondence between the solutions of this equations and the solutions of the

generalized ODEs in Banach spaces. Using the theory of generalized ODEs, we obtain results

concerning to existence and uniqueness of solutions and continuous dependence on parameters of

measure functional differential equations with infinite time-dependent delay. We also establish a

result of existence of solutions for a MFDEs with infinite time-dependent delay in the presence of

a perturbation independent of the state. We develop the theory in the context of phase spaces

defined axiomatically. Our results in this chapter generalize several previous works on MFDEs

with infinite time-independent delay.

3.1 Phase space description

A delicate aspect when we are dealing with equations involving infinite delay lies in the choice of

a convenient phase space to develop the theory. As already it was mentioned, in order to develop

a general theory for measure functional differential equations with infinite time-dependent delay

we need an appropriate concept of phase space. An approximation to this subject was considered

in [75]. However, in this work we prefer to adapt the usual definition of phase space for retarded

functional differential equations with infinite delay used by many authors (see [40,50]), which will

allow us to work with more general phase spaces. In Examples 3.3 to 3.7 we justify this claim.

In this text we consider as phase space for MFDEs with infinite time-dependent delay a linear

space B ⊂ G((−∞, 0],Rn) of regulated functions equipped with a norm denoted by ‖ · ‖B, and that

satisfies the following axioms:
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(B1) B is complete.

(B2) If y : (−∞, t0 + σ] → Rn, σ > 0, is regulated on [t0, t0 + σ] and yt0 ∈ B, then for every

t ∈ [t0, t0 + σ], the following conditions hold:

(i) yt ∈ B

(ii) There exists a locally bounded continuous function k1 : [0,∞)→ (0,∞) such that

‖y(t)‖ ≤ k1(t− t0)‖yt‖B.

(iii) There exist locally bounded continuous functions k2, k3 : [0,∞)→ (0,∞) such that

‖yt‖B ≤ k2(t− t0)‖yt0‖B + k3(t− t0) sup
t0≤s≤t

‖y(s)‖,

k1, k2, k3 are independent of y, t0 and σ.

(T) Let S(t) : B → B for t ≥ 0 be the operator defined by

[S(t)ϕ](θ) =


ϕ(0), θ = 0,

ϕ(0−), −t ≤ θ < 0,

ϕ(t+ θ), θ < −t.

Then there exists a continuous function k : [0,∞)→ [0,∞) with k(0) = 0, and such that

‖S(t)ϕ‖B ≤ (1 + k(t))‖ϕ‖B

for all ϕ ∈ B.

We now exhibit examples of phase spaces B for measure functional differential equations with

infinite delay.

Example 3.1. Consider the space B = BG((−∞, 0],Rn), which consists of all bounded regulated

functions on (−∞, 0], endowed with the supremum norm

‖y‖∞ = sup{‖y(t)‖ : t ∈ (−∞, 0]}, y ∈ B.

It is not difficult to verify that conditions (B1)-(B2) are satisfied with k1(ξ) = k2(ξ) = k3(ξ) = 1

for all ξ ≥ 0. It is clear also that ‖S(t)ϕ‖B = ‖ϕ‖B, which implies that k(t) = 0 for all t ≥ 0.

In order to study MFDEs with unbounded initial conditions, we can consider the following

phase spaces. The next example aims to show that the phase space considered in [66, Example 2.2]

also satisfies our axioms.

Example 3.2. Let ρ : (−∞, 0] → (0,∞) be a continuous function such that ρ(0) = 1, and that

satisfies the condition

(ρ1) The function p : [0,∞)→ (0,∞) given by

p(t) = sup
θ≤−t

ρ(t+ θ)

ρ(θ)
, t ≥ 0,
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is locally bounded.

Consider the space

B = BGρ((−∞, 0],Rn) =

{
ϕ ∈ G((−∞, 0];Rn) :

‖ϕ‖
ρ

is bounded on (−∞, 0]

}
,

endowed with the norm

‖ϕ‖ρ = sup
θ≤0

‖ϕ(θ)‖
ρ(θ)

, ϕ ∈ BGρ((−∞, 0],Rn).

It is not difficult to verify that conditions (B1)-(B2) are satisfied with k1(ξ) = sup
−ξ≤s≤0

ρ(s),

k2(ξ) = p(ξ) and k3(ξ) = sup
−ξ≤s≤0

1

ρ(s)
for ξ ≥ 0. In fact, let y : (−∞, t0 + σ]→ Rn be a regulated

function on [t0, t0 + σ], with σ > 0, and yt0 ∈ BGρ((−∞, 0],Rn). For a fixed t ∈ [t0, t0 + σ] and ρ

satisfying condition (ρ1), we have the following estimate

sup
θ≤0

‖y(t+ θ)‖
ρ(θ)

≤ sup
θ≤t0−t

‖y(t+ θ)‖
ρ(θ)

+ sup
t0−t≤θ≤0

‖y(t+ θ)‖
ρ(θ)

≤ sup
θ≤t0−t

‖y(t+ θ)‖
ρ(t− t0 + θ)

sup
θ≤t0−t

ρ(t− t0 + θ)

ρ(θ)
+ sup
t0−t≤θ≤0

‖y(t+ θ)‖ sup
t0−t≤θ≤0

1

ρ(θ)

= p(t− t0)‖yt0‖ρ + k3(t− t0) sup
t0≤θ≤t

‖y(θ)‖.

Therefore, we conclude that ‖yt‖ρ ∈ BGρ((−∞, 0],Rn) and (B2-(iii)) follows directly from the

previous inequality. For the axiom (B2-(ii)) it is enough to note that for t ∈ [t0, t0 + σ], we obtain

‖y(t)‖ ≤ sup
θ∈[t0−t,0]

‖y(t+ θ)‖ ≤ sup
θ∈[t0−t,0]

ρ(θ) · sup
θ∈[t0−t,0]

‖y(t+ θ)‖
ρ(θ)

.

On the other hand, the function f : BGρ((−∞, 0],Rn)→ BG((−∞, 0],Rn) defined by y 7→ f(y) =

y/ρ is an isometric isomorphism, and thus BGρ((−∞, 0],Rn) is a complete space.

Initially, if we consider the case where ρ is nonincreasing, then p(t) ≤ 1 and we can take

k(t) = 0, which shows that axiom (T) is fulfilled.

The axiom (T) also holds for non monotone functions. We illustrate this statement with the

function

ρ(θ) = e−θ+P (θ),

where P (·) is a 2-periodic and of class C2 function such that P ([−2, 0]) = [0, 1], P (0) = 0, with

P ′([−2,−1]) = [0, β], where β > 1, P (·) is symmetric with respect to θ = −1, and P ′′(θ) 6= 0 in

those points θ such that P ′(θ) = 1. A typical example is

P (θ) =

{
−(1 + 2θ)(θ + 2)2, −2 ≤ θ ≤ −1,

θ2(3 + 2θ), −1 ≤ θ ≤ 0.

It is clear that ρ is a continuous function on (−∞, 0], ρ(0) = 1, ρ(θ) ≥ 1, and ρ has local



3.1. Phase space description 31

maximums and minima in the abscissa θ such that P ′(θ) = 1. Moreover, for t ≥ 0, we can write

ρ(t+ θ)

ρ(θ)
= e−teP (t+θ)−P (θ) = e−teξt,

for some ξ ∈ [θ, t+ θ]. This implies that

sup
θ≤−t

ρ(t+ θ)

ρ(θ)
≤ e(β−1)t.

Hence, we infer that we can take k(t) = e(β−1)t − 1. Moreover, we observe that k is a continuous

function on [0,∞). This shows that axiom (T) is fulfilled.

Example 3.3. Let ρ : (−∞, 0] → (0,∞) be a function that satisfies the conditions considered in

Example 3.2, and additionally, it satisfies the condition

(ρ2) ρ(θ)→∞ as θ → −∞.

We consider the subspace of BGρ((−∞, 0],Rn) defined as

BG0
ρ((−∞, 0],Rn) =

{
ϕ ∈ BGρ((−∞, 0],Rn) :

‖ϕ(θ)‖
ρ(θ)

→ 0, θ → −∞
}
.

It is not difficult to verify that conditions (B1)-(B2) are satisfied, so that BG0
ρ((−∞, 0],Rn) is a

phase space.

In the following example, we will see that the idea of trying to reduce the time-dependent case

into a nonautonomous simple form is not a convenient option. As we mentioned in the introduction,

this transformation could be obtained by defining the function h(ϕ, s) := f(ϕr(s)−s, s), however, if

ϕ belongs to a given phase space B, then the function ϕr(s)−s is not necessarily an element of B.

Therefore, in this case, this transformation is not well-defined.

Example 3.4. Let γ be a positive constant. Consider the function ρ : (−∞, 0]→ (0,∞) given by

ρ(θ) = eγ·θ
2

for θ ≤ 0, and the phase space B = BG0
ρ((−∞, 0],R). It is straightforward to check

that conditions (ρ1) and (ρ2) are satisfied.

Let ϕ : (−∞, 0]→ R be the function defined by

ϕ(θ) =

{
e−γ , θ ∈ [−1, 0],

eγ(θ2+2θ), θ ∈ (−∞,−1].

Since
ϕ(θ)

ρ(θ)
= e2γθ → 0, θ → −∞, we infer that ϕ ∈ B. On the other hand, note that if we consider

the nondecreasing function r(s) = s− 1, then ϕr(s)−s = ϕ−1 is not an element of the phase space

B. In fact, if θ tends to −∞, then

lim
θ→−∞

|ϕ−1(θ)|
ρ(θ)

= lim
θ→−∞

|ϕ(θ − 1)|
ρ(θ)

= e−γ ,

which is different of zero. Therefore, it follows that ϕ−1 /∈ B.



3.1. Phase space description 32

Remark 3.5. The space constructed in the Example 3.3 is not a phase space for the axiomatic

approach of [66] or [75]. In fact, for the axiomatic definition considered in these works if B ⊂
G((−∞, 0],Rn) is a phase space, then B satisfies the following condition (H2):“If y ∈ B and t < 0,

then yt ∈ B”. However, if we consider the function ϕ ∈ BG0
ρ((−∞, 0],R) given in the Example 3.4,

then BG0
ρ((−∞, 0],R) does not satisfy the condition (H2) because ϕ−1 /∈ BG0

ρ((−∞, 0],R).

We next exhibit another phase space that does not satisfy the axiomatic approach employed

in [66,75].

Example 3.6. Let h : (−∞, 0]→ (0,∞) be a continuous function such that

∫ 0

−∞
h(s)ds = L <∞.

Consider the space

Bh((−∞, 0],Rn) =

{
ϕ ∈ G((−∞, 0],Rn) :

∫ 0

−∞
h(s) sup

s≤ξ≤0
‖ϕ(ξ)‖ds <∞

}
,

endowed with the norm

‖ϕ‖h =

∫ 0

−∞
h(s) sup

s≤ξ≤0
‖ϕ(ξ)‖ds, ϕ ∈ Bh((−∞, 0],Rn).

The vector normed space (Bh((−∞, 0],Rn), ‖ · ‖h) is complete. In fact, let (ϕn)n∈N be a Cauchy

sequence in Bh((−∞, 0],Rn). For every a ≤ 0, we have

‖ϕn − ϕm‖h ≥
∫ a

−∞
h(s)ds sup

θ∈[a,0]
‖ϕn(θ)− ϕm(θ)‖.

Therefore, (ϕn)n∈N is bounded on [a, 0] and it is a Cauchy sequence with the uniform convergence

norm. Thus, (ϕn)n∈N converges uniformly on every compact set [a, 0] ⊂ (−∞, 0] to a function ϕ.

Clearly ϕ is regulated on (−∞, 0]. Furthermore, since every Cauchy sequence is bounded, there

exists M > 0 such that ∫ 0

a
h(s) sup

θ∈[s,0]
‖ϕn(θ)‖ds ≤M, (3.2)

for all n ∈ N and all a ≤ 0. Now, applying Lebesgue’s Dominated Convergence Theorem, we

conclude that ∫ 0

a
h(s) sup

θ∈[s,0]
‖ϕ(θ)‖ds ≤M, (3.3)

for all a ≤ 0. Consequently, by Lebesgue’s Monotone Convergence Theorem, we can deduce that

ϕ ∈ Bh((−∞, 0],Rn) .

Using again that (ϕn)nN is a Cauchy sequence in Bh((−∞, 0],Rn), for every ε > 0, there exists

a Nε ∈ N such that ∫ 0

a
h(s) sup

θ∈[s,0]
‖ϕn(θ)− ϕm(θ)‖ds ≤ ε,

for all n,m ≥ Nε and all a ≤ 0. Now, applying Lebesgue’s Dominated Convergence Theorem we
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obtain that

lim
m→∞

∫ 0

a
h(s) sup

θ∈[s,0]
‖ϕn(θ)− ϕm(θ)‖ds =

∫ 0

a
h(s) sup

θ∈[s,0]
‖ϕn(θ)− ϕ(θ)‖ds ≤ ε,

for all n ≥ Nε and all a ≤ 0. Hence, by Lebesgue’s Monotone Convergence Theorem, we conclude

that ∫ 0

−∞
h(s) sup

θ∈[s,0]
‖ϕn(θ)− ϕ(θ)‖ds ≤ ε,

for all n ≥ Nε. Thus, we have that ϕn → ϕ as n→∞ in Bh((−∞, 0],Rn).

It is straightforward to verify that Bh((−∞, 0],Rn) satisfies the condition (B2) with constant

functions k1(ξ) =
1

L
, k2(ξ) = 1, k3(ξ) = L, for ξ ≥ 0.

We assume in addition that h is nondecreasing. In this case, for ϕ ∈ Bh((−∞, 0],Rn), we have∫ 0

−∞
h(s) sup

s≤ξ≤0
‖ϕ(ξ)‖ds ≥

∫ 0

−∞
h(s)‖ϕ(0)‖ds = L‖ϕ(0)‖,

which implies that

‖ϕ(0)‖ ≤ 1

L
‖ϕ‖h.

In similar way, we can show∫ 0

−∞
h(s) sup

s≤ξ≤0
‖ϕ(ξ)‖ds ≥

∫ 0

−∞
h(s)‖ϕ(0−)‖ds = L‖ϕ(0−)‖,

so that

‖ϕ(0−)‖ ≤ 1

L
‖ϕ‖h.

In addition, for t ≥ 0 and s < −t, we have

sup
s≤ξ≤0

‖[S(t)ϕ](ξ)‖ = sup
s≤ξ≤−t

‖ϕ(t+ ξ)‖.

Combining these estimates, we infer

‖S(t)ϕ‖h =

∫ 0

−∞
h(s) sup

s≤ξ≤0
‖[S(t)ϕ](ξ)‖ds

=

∫ −t
−∞

h(s) sup
s≤ξ≤0

‖[S(t)ϕ](ξ)‖ds+

∫ 0

−t
h(s) sup

s≤ξ≤0
‖[S(t)ϕ](ξ)‖ds

≤
∫ −t
−∞

h(s) sup
s≤ξ≤−t

‖ϕ(t+ ξ)‖ds+
1

L

∫ 0

−t
h(s)ds‖ϕ‖h

=

∫ −t
−∞

h(s) sup
s+t≤η≤0

‖ϕ(η)‖ds+
1

L

∫ 0

−t
h(s)ds‖ϕ‖h

=

∫ 0

−∞
h(τ − t) sup

τ≤η≤0
‖ϕ(η)‖dτ +

1

L

∫ 0

−t
h(s)ds‖ϕ‖h

=

∫ 0

−∞

h(τ − t)
h(τ)

h(τ) sup
τ≤η≤0

‖ϕ(η)‖dτ + k(t)‖ϕ‖h

≤ (1 + k(t))‖ϕ‖h,
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where k(t) = 1
L

∫ 0
−t h(s)ds, which shows that Bh((−∞, 0],Rn) also satisfies the axiom (T).

Example 3.7. Let γ > 1. Consider the function ρ : (−∞, 0]→ (0,∞) as in the Example 3.4, that

is, ρ(θ) = eγθ
2
. We take h(s) =

es

ρ(s)
, for s ∈ (−∞, 0]. It is clear that h is a nondecreasing function.

Let ϕ : (−∞, 0] → R be the function given by ϕ(θ) = eγ(θ2+θ), for θ ≤ 0. Since
ϕ(θ)

ρ(θ)
= eγθ → 0,

when θ → −∞, we infer that ϕ ∈ BG0
ρ((−∞, 0],R). Moreover, ϕ ∈ Bh((−∞, 0],R). In fact, from∫ 0

−∞ h(s)ρ(s)ds = 1, we get that ‖ϕ‖h ≤ ‖ϕ‖ρ <∞. On the other hand, for r(s) = s− 1, we have

that ϕr(s)−s = ϕ−1 /∈ Bh((−∞, 0],R). In fact∫ 0

−∞
h(s) sup

ξ∈[s,0]
ϕ−1(ξ)ds =

∫ 0

−∞
h(s) sup

ξ∈[s,0]
ϕ(ξ − 1)ds =

∫ 0

−∞
h(s)[eγ(s2−s)]ds =

∫ 0

−∞
es(1−γ)ds,

but the last integral does not converge, since γ > 1.

The next result generalizes [75, Lemma 2.3].

Lemma 3.8. Assume that B is a phase space. If y : (−∞, t0 + σ]→ Rn is such that yt0 ∈ B and

y|[t0,t0+σ] is a regulated function, then t 7→ ‖yt‖B is regulated on [t0, t0 + σ].

Proof. Let t ∈ [t0, t0 + σ). Initially we will show that there exists lims→t+ ‖ys‖B. Let t < t1 < t2,

and let z(·) be the function given by z(s) = y(s) for s < t1, z(s) = y(t−1 ) for t1 ≤ s < t2 and

z(t2) = y(t1). Let ε > 0. There exists δ > 0 such that ‖y(s)− y(t+)‖ ≤ ε for all s ∈ (t, t+ δ). We

take t2 ∈ (t, t+ δ). We can decompose

yt2 = yt2 − zt2 + zt2

= yt2 − zt2 + S(t2 − t1)yt1 .

Applying the axioms of phase space, we obtain

‖yt2‖B ≤ 2k3(t2 − t1)ε+ (1 + k(t2 − t1))‖yt1‖B,

which in turn implies that

‖yt2‖B − ‖yt1‖B ≤ 2k3(t2 − t1)ε+ k(t2 − t1)‖yt1‖B. (3.4)

On the other hand, the set {‖ys‖B : s ∈ (t, t + δ)} is bounded. Consequently, there exists a

decreasing sequence tn → t as n → ∞ such that the sequence ‖ytn‖B converges when n goes to

∞. Hence, for s ∈ (t, t+ δ) we can assume that tn ≤ s ≤ tn−1. Applying the estimate (3.4) to the

pairs (tn−1, s) and (tn, s), we can affirm that

‖ytn−1‖B − ‖ys‖B ≤ 2k3(tn−1 − s)ε+ k(tn−1 − s)‖ys‖B, (3.5)

‖ys‖B − ‖ytn‖B ≤ 2k3(s− tn)ε+ k(s− tn)‖ytn‖B. (3.6)

From (3.5), it follows that

‖ytn‖B − ‖ys‖B = ‖ytn‖B − ‖ytn−1‖B + ‖ytn−1‖B − ‖ys‖B
≤ ‖ytn‖B − ‖ytn−1‖B + 2k3(tn−1 − s)ε+ k(tn−1 − s)‖ys‖B. (3.7)
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Combining (3.6) with (3.7), we obtain that lims→t+ ‖ys‖B = limn→∞ ‖ytn‖B.

A similar argument shows that there exists lims→t− ‖ys‖B, which completes the proof.

Remark 3.9. Let r : [t0, t0 + σ] → R be a nondecreasing function such that r(s) ≤ s for all

s ∈ [t0, t0 + σ]. Let ψ : [r(t0), r(t0 + σ)]→ Rn be a regulated function. It is easy to see that ψ ◦ r
is also regulated.

Proof. Let ψ : [r(t0), r(t0 + σ)] → Rn be a regulated function. The function ψ ◦ r is regulated.

In fact, if (tn)n is an increasing sequence that converges to s0, then (r(tn))n is a nondecreasing

and bounded sequence, thus it converges to s1. Since ψ is regulated, we infer that (ψ(r(tn)))n

converges to ψ(s−1 ). Consequently, there exists lim
t→s−0

ψ(r(t)). Proceeding in similar way, we can

show that there exists lim
t→s+0

ψ(r(t)), which implies that ψ ◦ r is a regulated function.

Gathering the Lemma 3.8 with the preceding observation, we obtain the following immediate

consequence.

Lemma 3.10. Let r : [t0, t0 + σ] → R be a nondecreasing function such that r(s) ≤ s for all

s ∈ [t0, t0 + σ]. Assume further that y : (−∞, r(t0 + σ)] → Rn is such that yr(t0) ∈ B and

y|[r(t0),r(t0+σ)] is a regulated function, then t 7→ ‖yr(t)‖B is regulated on [t0, t0 + σ].

In the following sections, we will need to ensure that functions of type s 7→ f(yr(s), s) are

integrable for a wide class of functions y(·). For this purpose, we will now exhibit functions f for

which the function s 7→ f(yr(s), s) is regulated.

Theorem 3.11. Let f : B × [0, a] → X be a function such that for each ϕ ∈ B, the function

f(ϕ, ·) is regulated on [0, a]. Let x : (−∞, a] → Rn, for a > 0, be a function such that x0 ∈ B,

x : [0, a]→ Rn is a regulated function. For each s ∈ [0, a], we define the function y(s) : [0, a]→ Rn

by y(s)(t) = f(xt, s). Assume that {y(s)(·) : 0 ≤ s ≤ a} is a equi-continuous set. Then the function

z : [0, a]→ Rn given by z(t) = f(xt, t) is regulated.

Further, if r : [0, a] → R is a nondecreasing function such that r(s) ≤ s for all s ∈ [0, a] and

xr(0) ∈ B, then the function t 7→ f(xr(t), t) is regulated on [0, a].

Proof. it is immediate that by choosing r(t) = t, it is sufficient to establish the second assertion.

For each ϕ ∈ B, we define the function L(ϕ) : [0, a)→ Rn by

L(ϕ)(t0) = lim
t→t+0

f(ϕ, t).

Let z : [0, a]→ Rn given by z(t) = f(xr(t), t). Let tn → t+0 as n→∞. We denote α = limn→∞ r(tn).

We will show that z(tn)→ L(xα, t0) as n→∞. In fact, we can write

z(tn)− L(xα)(t0) = z(tn)− f(xα, tn) + f(xα, tn)− L(xα)(t0).
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For ε > 0, we can assume that

‖f(xr(tn), s)− f(xα, s)‖ ≤ ε/2

for all s ∈ [0, a] and all n ∈ N large enough. Moreover, we also can assume that

‖f(xα, tn)− L(xα)(t0)‖ ≤ ε/2,

and combining these estimates, we obtain

‖z(tn)− L(xα)(t0)‖ ≤ ε,

for n ∈ N large enough. This shows that limt→t+0
f(xr(t), t) = L(xα)(t0). Proceeding in similar way

we can prove that there exists limt→t−0
f(xr(t), t), which completes the proof of the theorem.

We next apply these ideas to provide examples of functions f . To simplify the calculations, we

only consider linear functions.

Example 3.12. Let B = BG0
ρ be the space defined in Example 3.3 where ρ(·) is nonincreasing.

Let G : (−∞, 0]→ R be a measurable function such that

N =

∫ 0

−∞
|G(θ)|ρ(θ)dθ <∞

and G is locally q-integrable for some 1 < q ≤ ∞. We define the function f : B → Rn by

f(ϕ) =

∫ 0

−∞
G(θ)ϕ(θ)dθ, ϕ ∈ B. (3.8)

Let x : (−∞, a]→ Rn, for a > 0, be a function such that x0 ∈ B and x : [0, a]→ Rn is a regulated

function. Then y : [0, a]→ Rn given by y(t) = f(xt) is a continuous function.

In order to prove this assertion, we fix ε > 0. For b > 0 and t ≤ b, we have∥∥∥∥∫ −b
−∞

G(θ)x(t+ θ)dθ

∥∥∥∥ ≤
∫ −b
−∞
|G(θ)|ρ(t+ θ)

ρ(θ)

‖x(t+ θ)‖
ρ(t+ θ)

ρ(θ)dθ

≤
∫ −b
−∞
|G(θ)|ρ(θ)dθ‖x0‖ρ → 0, b→∞.

As a consequence, we can assume that∥∥∥∥∫ −b
−∞

G(θ)x(t+ θ)dθ

∥∥∥∥ ≤ ε.
First we consider the particular case when x : [−b, a] → Rn is continuous, hence uniformly conti-

nuous. This implies that

‖f(xt)− f(xs)‖ ≤ 2ε+

∥∥∥∥∫ 0

−b
G(θ)[x(t+ θ)− x(s+ θ)]dθ

∥∥∥∥
for s, t ∈ [0, a]. Therefore, there exists δ > 0 such that ‖x(t + θ) − x(s + θ)‖ ≤ ε for |t − s| ≤ δ,
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and combining with the previous estimate, it yields

‖f(xt)− f(xs)‖ ≤ 2ε+ ε

∫ 0

−b
|G(θ)|ρ(θ)dθ ≤ (2 +N)ε.

Turning to the general case, let 1 ≤ p < ∞ the conjugate exponent of q. Since the space

C([−b, a],Rn) is dense in Lp([−b, a],Rn), there exists a sequence xn ∈ C([−b, a],Rn) that converges

to x for the norm in Lp([−b, a],Rn). This implies that∥∥∥∥∫ 0

−b
G(θ)[x(t+ θ)− x(s+ θ)]dθ

∥∥∥∥ ≤ ∫ 0

−b
|G(θ)|‖x(t+ θ)− xn(t+ θ)‖dθ

+

∫ 0

−b
|G(θ)|‖xn(t+ θ)− xn(s+ θ)‖dθ +

∫ 0

−b
|G(θ)|‖xn(s+ θ)− x(s+ θ)‖dθ

≤ 2

(∫ 0

−b
|G(θ)|qdθ

)1/q

‖x− xn‖p +

∫ 0

−b
|G(θ)|dθ sup

−b≤θ≤0
‖xn(t+ θ)− xn(s+ θ)‖.

Using that xn(·) is continuous on [−b, a] and arguing as above, we complete the proof of the

assertion.

Example 3.13. Let Bh((−∞, 0],Rn) be the space defined in Example 3.6 with h nondecreasing.

Let G : (−∞, 0] → R be a measurable function such that |G(s)| ≤ αh(s) for some α > 0, and

lim
θ→−∞

G(θ)

h(θ)
= 0.

We define the function f : Bh((−∞, 0],Rn) → Rn by (3.8). Let x : (−∞, a] → Rn, for a > 0,

be a function such that x0 ∈ Bh((−∞, 0],Rn) and x : [0, a] → Rn is a regulated function. Then

y : [0, a]→ Rn given by y(t) = f(xt) is a continuous function.

In order to prove this assertion, we fix ε > 0. For b > 0 and t ≤ b, we have∥∥∥∥∫ −b
−∞

G(θ)x(t+ θ)dθ

∥∥∥∥ ≤
∫ −b
−∞

|G(θ)|
h(θ)

h(θ)‖x(t+ θ)‖dθ

≤ sup
θ≤−b

|G(θ)|
h(θ)

∫ −b
−∞

h(θ) max
t+θ≤ξ≤0

‖x(ξ)‖dθ

≤ sup
θ≤−b

|G(θ)|
h(θ)

∫ t−b

−∞
h(s) max

s≤ξ≤0
‖x(ξ)‖ds

≤ sup
θ≤−b

|G(θ)|
h(θ)

‖x0‖h → 0, b→∞.

As a consequence, we can assume that∥∥∥∥∫ −b
−∞

G(θ)x(t+ θ)dθ

∥∥∥∥ ≤ ε.
In similar way to Example 3.12, when x : [−b, a]→ X is continuous, hence uniformly continuous,

we can write

‖f(xt)− f(xs)‖ ≤ 2ε+

∥∥∥∥∫ 0

−b
G(θ)[x(t+ θ)− x(s+ θ)]dθ

∥∥∥∥
for s, t ∈ [0, a]. Therefore, there exists δ > 0 such that ‖x(t + θ) − x(s + θ)‖ ≤ ε for |t − s| ≤ δ,
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and combining with the previous estimate, it yields

‖f(xt)− f(xs)‖ ≤ 2ε+ ε

∫ 0

−b
|G(θ)|dθ.

Turning to the general case, and proceeding as in the Example 3.12, in this case we use that the

space C([−b, a],Rn) is dense in L1([−b, a],Rn), there exists a sequence xn ∈ C([−b, a],Rn) that

converges to x for the norm in L1([−b, a],Rn). This implies that∥∥∥∥∫ 0

−b
G(θ)[x(t+ θ)− x(s+ θ)]dθ

∥∥∥∥ ≤ ∫ 0

−b
|G(θ)|‖x(t+ θ)− xn(t+ θ)‖dθ

+

∫ 0

−b
|G(θ)|‖xn(t+ θ)− xn(s+ θ)‖dθ +

∫ 0

−b
|G(θ)|‖xn(s+ θ)− x(s+ θ)‖dθ

≤ 2

∫ 0

−b
|G(θ)|dθ‖x− xn‖1 +

∫ 0

−b
|G(θ)|dθ sup

−b≤θ≤0
‖xn(t+ θ)− xn(s+ θ)‖.

Using that xn(·) is continuous on [−b, a] and arguing as above, we complete the proof of the

assertion.

Proceeding as in the above examples, and using Theorem 3.11, we can provide examples of

nonlinear functions f such that t 7→ f(xr(t), t) is a regulated function for all functions x(·) and r(·)
that satisfy the conditions from Theorem 3.11.

3.2 MFDEs with time-dependent delay regarded as generalized ODEs

From now on, we assume that B ⊂ G((−∞, 0],Rn) is a phase space satisfying conditions (B1)-

(B2)-(T), t0 ∈ R, σ > 0. We assume that r is a nondecreasing function such that r(s) ≤ s for all

s ∈ [t0, t0+σ]. Moreover, g : [t0, t0+σ]→ R is a nondecreasing function and f : B×[t0, t0+σ]→ Rn

is a function that satisfies appropriate conditions which will be specified later.

We will show that under certain assumptions, a measure functional differential equation with

infinite time-dependent delay of the form

y(t) = y(t0) +

∫ t

t0

f(yr(s), s)dg(s), t ∈ [t0, t0 + σ], (3.9)

yt0 = φ, (3.10)

can be regarded as a generalized ordinary differential equation of the form

dx

dτ
= DF (x, t), t ∈ [t0, t0 + σ]. (3.11)

To establish our results, we introduce the space

Y := {y : (−∞, t0 + σ]→ Rn : y|[r(t0),t0+σ] is regulated and yr(t0) ∈ B}

endowed with the norm

‖y‖Y := sup{‖y(s)‖ : r(t0) ≤ s ≤ t0 + σ}+ ‖yr(t0)‖B, y ∈ Y.
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It is clear that Y is a Banach space. We assume that O ⊂ Y , and that the following conditions

are fulfilled:

(A) The integral

∫ b

a
f(yr(s), s)dg(s) exists in the sense of Henstock-Kurzweil-Stieltjes for all y ∈ O

and a, b ∈ [t0, t0 + σ].

(B) There exists a function M : [t0, t0 +σ]→ R+, which is Henstock-Kurzweil-Stieltjes integrable

with respect to g, such that∥∥∥∥∫ b

a
f(yr(t), t)dg(t)

∥∥∥∥ ≤ ∫ b

a
M(t)dg(t),

for all y ∈ O and [a, b] ⊆ [t0, t0 + σ].

(C) There exists a function L : [t0, t0 + σ]→ R+, which is Henstock-Kurzweil-Stieltjes integrable

with respect to g, such that∥∥∥∥∫ b

a
[f(yr(t), t)− f(zr(t), t)]dg(t)

∥∥∥∥ ≤ ∫ b

a
L(t)‖yr(t) − zr(t)‖Bdg(t), (3.12)

for all y, z ∈ O and [a, b] ⊆ [t0, t0 + σ].

Remark 3.14. It follows from Lemma 3.10 that the integral on the right-hand side of (3.12) exists

in the sense of Henstock-Kurzweil-Stieltjes.

In the equation (3.11), we assume that x takes values in O ⊂ Y , and the function F : O ×
[t0, t0 + σ]→ G((−∞, t0 + σ],Rn) is given by

F (z, t)(ξ) =


0, ξ ∈ (−∞, t0],∫ ξ

t0

f(zr(s), s)dg(s), ξ ∈ [t0, t],∫ t

t0

f(zr(s), s)dg(s), ξ ∈ [t, t0 + σ],

(3.13)

for all z ∈ O and t ∈ [t0, t0 + σ].

Remark 3.15. Under the conditions (B) and (C), the requirements that both M and L are

Henstock-Kurzweil-Stieltjes integrable functions with respect to g can be replaced by the require-

ment of the Lebesgue-Stieltjes integrability with respect to g, since these two classes of functions

coincide when we are dealing with nonnegative functions.

In the following lemma we establish that the function F defined by (3.13) satisfies conditions

(F1) and (F2) from Definition 1.10, when f satisfies conditions (A)-(C).

Lemma 3.16. Assume that the function f : B× [t0, t0 + σ]→ Rn satisfies conditions (A)-(C). Let

F : O × [t0, t0 + σ] → G((−∞, t0 + σ],Rn) be the function given by (3.13), then F belongs to the

class F(O × [t0, t0 + σ], h), where

h(t) =

∫ t

t0

(M(s) +KσL(s))dg(s), (3.14)
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for t ∈ [t0, t0 + σ] and Kσ = max

{
sup

ξ∈[t0,t0+σ]
k3(r(ξ)− r(t0)), sup

ξ∈[t0,t0+σ]
k2(r(ξ)− r(t0))

}
.

Proof. It is clear that the function h defined by (3.14) is a nondecreasing function. Assume that

t0 ≤ s1 < s2 ≤ t0 + σ, then we have

F (y, s2)(ξ)− F (y, s1)(ξ) =


0, −∞ < ξ ≤ s1,∫ ξ

s1

f(yr(s), s)dg(s), s1 ≤ ξ ≤ s2,∫ s2

s1

f(yr(s), s)dg(s), s2 ≤ ξ ≤ t0 + σ

for all y ∈ Y . Condition (B) implies that

‖F (y, s2)− F (y, s1)‖Y = sup
ξ∈[s1,s2]

∥∥∥∥∫ ξ

s1

f(yr(s), s)dg(s)

∥∥∥∥ ≤ ∫ s2

s1

M(s)dg(s) ≤ h(s2)− h(s1),

for all y ∈ Y . On the other hand, by using conditions (C) and (B2), for every y, z ∈ Y , we have

‖F (y, s2)− F (y, s1)− F (z, s2) + F (z, s1)‖Y = sup
ξ∈[s1,s2]

∥∥∥∥∫ ξ

s1

[f(yr(s), s)− f(zr(s), s)]dg(s)

∥∥∥∥
≤
∫ s2

s1

L(s)‖yr(s) − zr(s)‖Bdg(s)

≤
∫ s2

s1

L(s)

[
k3(r(s)− r(t0)) sup

r(t0)≤ξ≤t0+σ
‖(y − z)(ξ)‖

]
dg(s)

+

∫ s2

s1

L(s)k2(r(s)− r(t0))‖(y − z)r(t0)‖Bdg(s)

≤ Kσ

∫ s2

s1

L(s)dg(s)‖y − z‖Y

≤ (h(s2)− h(s1))‖y − z‖Y ,

which completes the proof.

Remark 3.17. In the rest of this chapter, we will denote by Kσ the constant introduced in the

statement of the Lemma 3.16.

The next result establishes a very important property of the solutions of the generalized ordinary

differential equations. We will omit its proof because it follows analogously to the one found

in [75, Lemma 3.5] or even the corresponding for the case with finite delay, the reader can see [26,

Lemma 3.7].

Lemma 3.18. Let O ⊂ Y with the prolongation property for t ≥ t0. Assume φ ∈ B, and that

F : O × [t0, t0 + σ] → G((−∞, t0 + σ],Rn) is the function given by (3.13). Assume further that

f : B × [t0, t0 + σ] → Rn satisfies condition (A). If x : [t0, t0 + σ] → O is a solution of the

generalized ordinary differential equation (3.11) on the interval [t0, t0 + σ] and x(t0) is a function

which is constant on [t0, t0 + σ], then

x(v)(ξ) = x(v)(v), t0 ≤ v ≤ ξ ≤ t0 + σ, (3.15)
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x(v)(ξ) = x(ξ)(ξ), t0 ≤ ξ ≤ v ≤ t0 + σ. (3.16)

The next theorem establishes a relation between solutions of measure functional differential

equations with infinite time-dependent delay and solutions of generalized ordinary differential equa-

tions.

Theorem 3.19. Let O be a subset of Y having the prolongation property for t ≥ t0. Assume

that φ ∈ B and that f : B × [t0, t0 + σ] → Rn satisfies conditions (A)-(C). Let F : O × [t0, t0 +

σ] → G((−∞, t0 + σ],Rn) be the function given by (3.13). If y ∈ O is a solution of the measure

functional differential equation with infinite time-dependent delay (3.9)-(3.10), then the function

x : [t0, t0 + σ]→ O given by

x(t)(ξ) =

{
y(ξ), ξ ∈ (−∞, t],
y(t), ξ ∈ [t, t0 + σ]

(3.17)

is a solution of the generalized ordinary differential equation (3.11) on the interval [t0, t0 + σ].

Proof. We need to prove that the integral

∫ v

t0

DF (x(τ), t) exists, and

x(v)− x(t0) =

∫ v

t0

DF (x(τ), t),

for all v ∈ [t0, t0 + σ]. Fix ε > 0. Since the function h : [t0, t0 + σ]→ [0,∞) defined by

h(t) =

∫ t

t0

M(s)dg(s), t ∈ [t0, t0 + σ],

is nondecreasing, it can have only a finite number of points t ∈ [t0, v] such that ∆+h(t) ≥ ε. We

denote these points by t1, . . . , tm.

We now show that there exists a gauge δ : [t0, t0 + σ]→ R+ sufficiently small that satisfies the

following four conditions:

(i) δ(τ) < min
2≤k≤m

{
tk − tk−1

2

}
, τ ∈ [t0, t0 + σ],

(ii) δ(τ) < min
1≤k≤m

{|τ − tk|}, τ ∈ [t0, t0 + σ], τ 6= tk, k = 1, . . . ,m.

These conditions imply that if a point-interval pair (τ, [c, d]) satisfies [c, d] ⊂ (τ−δ(τ), τ+δ(τ)),

then [c, d] contains at most one of the points t1, . . . , tm, and moreover, τ = tk whenever tk ∈ [c, d].

(iii) It follows from (3.17) that yr(tk) = x(tk)r(tk), and applying Theorem 1.8 we obtain that

lim
t→t+k

∫ t

tk

L(s)‖yr(s) − x(tk)r(s)‖Bdg(s) = L(tk)‖yr(tk) − x(tk)r(tk)‖B∆+g(tk) = 0

for all k ∈ 1, . . . ,m. Thus the gauge δ(·) might be chosen in such a way that∫ tk+δ(tk)

tk

L(s)‖yr(s) − x(tk)r(s)‖Bdg(s) <
ε

2m+ 1
, k ∈ {1, . . . ,m}.
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(iv) Using the condition (B), we have

‖y(t+ τ)− y(τ)‖ =

∥∥∥∥∫ τ+t

τ
f(yr(s), s)dg(s)

∥∥∥∥ ≤ ∫ τ+t

τ
M(s)dg(s) = h(τ + t)− h(τ).

Therefore

‖y(τ+)− y(τ)‖ ≤ ∆+h(τ) < ε, τ ∈ [t0, t0 + σ] \ {t1, . . . , tm}.

Thus, we can select the gauge δ(·) such that

‖y(ρ)− y(τ)‖ ≤ ε

for all τ ∈ [t0, t0 + σ] \ {t1, . . . , tm} and ρ ∈ [τ, τ + δ(τ)).

Let {(τi, [si−1, si])}li=1 be a δ-fine tagged partition of [t0, v]. Then

(x(si)− x(si−1))(ξ) =



0, ξ ∈ (−∞, si−1],∫ ξ

si−1

f(yr(s), s)dg(s), ξ ∈ [si−1, si],∫ si

si−1

f(yr(s), s)dg(s), ξ ∈ [si, t0 + σ],

and

(F (x(τi), si)− F (x(τi), si−1))(ξ) =



0, ξ ∈ (−∞, si−1],∫ ξ

si−1

f(x(τi)r(s), s)dg(s), ξ ∈ [si−1, si],∫ si

si−1

f(x(τi)r(s), s)dg(s), ξ ∈ [si, t0 + σ]

for all i ∈ {1, . . . , l}. Combining these expressions, we obtain

(x(si)− x(si−1))(ξ)− (F (x(τi), si)− F (x(τi), si−1))(ξ)

=



0, ξ ∈ (−∞, si−1],∫ ξ

si−1

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s), ξ ∈ [si−1, si],∫ si

si−1

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s), ξ ∈ [si, t0 + σ].

Consequently,

‖(x(si)− x(si−1))− (F (x(τi), si)− F (x(τi), si−1))‖Y

= sup
ξ∈[si−1,si]

∥∥∥∥∥
∫ ξ

si−1

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s)

∥∥∥∥∥ . (3.18)

Using now (3.17), we have that x(τi)r(s) = yr(s) for s ≤ τi. Therefore,

∫ ξ

si−1

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s) =


0, ξ ∈ [si−1, τi],∫ ξ

τi

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s), ξ ∈ [τi, si].
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We now use condition (C) to estimate∥∥∥∥∫ ξ

τi

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s)

∥∥∥∥ ≤ ∫ ξ

τi

L(s)‖yr(s) − x(τi)r(s)‖Bdg(s)

≤
∫ si

τi

L(s)‖yr(s) − x(τi)r(s)‖Bdg(s).

(3.19)

For a point-interval pair (τi, [si−1, si]), there are two possibilities:

(a) The intersection of [si−1, si] and {t1, ..., tm} contains a single point tk. In this case, it follows

from (ii) that tk = τi.

(b) The intersection of [si−1, si] and {t1, ..., tm} is empty.

In case (a), it follows from the construction of the gauge δ(·) that∫ si

τi

L(s)‖yr(s) − x(τi)r(s)‖Bdg(s) ≤ ε

2m+ 1
,

and combining with (3.18) and (3.19), we get

‖(x(si)− x(si−1))− (F (x(τi), si)− F (x(τi), si−1))‖Y ≤
ε

2m+ 1
.

Assume now case (b), and let s ∈ [τi, si]. Let us consider first that r(s) ∈ [τi, si], then

‖yr(s) − x(τi)r(s)‖B ≤ k3(r(s)− r(t0)) sup
r(t0)≤ξ≤r(s)

{‖y(ξ)− x(τi)(ξ)‖}

+ k2(r(s)− r(t0))‖yr(t0) − x(τi)r(t0)‖B
≤ Kσ sup

τi≤ξ≤r(s)
‖y(ξ)− y(τi)‖

≤ Kσε.

Moreover, if r(s) ≤ τi, then ‖yr(s) − x(τi)r(s)‖B = 0 by (3.17). Thus∫ si

τi

L(s)‖yr(s) − x(τi)r(s)‖Bdg(s) ≤ Kσε

∫ si

τi

L(s)dg(s),

and using (3.18) and (3.19) again, we obtain

‖(x(si)− x(si−1))− (F (x(τi), si)− F (x(τi), si−1))‖Y ≤ Kσε

∫ si

τi

L(s)dg(s).

Combining cases (a) and (b), and using the fact that case (a) occurs at most 2m times, it follows

that∥∥∥∥∥x(v)− x(t0)−
l∑

i=1

(F (x(τi), si)− F (x(τi), si−1))

∥∥∥∥∥
Y

≤ ε

(
Kσ

∫ t0+σ

t0

L(s)dg(s) +
2m

2m+ 1

)
< ε

(
Kσ

∫ t0+σ

t0

L(s)dg(s) + 1

)
,

which completes the proof.
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The next theorem establishes the relation between a solution of a generalized ODE (3.11) and

a solution of a measure functional differential equation with infinite time-dependent delay.

Theorem 3.20. Let O be a subset of Y having the prolongation property for t ≥ t0. Assume that

φ ∈ B and that f : B × [t0, t0 + σ] → Rn satisfies conditions (A)-(C). Let F : O × [t0, t0 + σ] →
G((−∞, t0 + σ],Rn) be the function given by (3.13). If x : [t0, t0 + σ] → O is a solution of the

generalized ordinary differential equation (3.11) on the interval [t0, t0 +σ] with the initial condition

x(t0)(ξ) =

{
φ(ξ − t0), ξ ∈ (−∞, t0],

φ(0), ξ ∈ [t0, t0 + σ],
(3.20)

then the function y ∈ O defined by

y(ξ) =

{
x(t0)(ξ), ξ ∈ (−∞, t0],

x(ξ)(ξ), ξ ∈ [t0, t0 + σ]
(3.21)

is a solution of the measure functional differential equation with infinite time-dependent delay

(3.9)-(3.10).

Proof. The equality yt0 = φ follows directly from the definition of y and x(t0). It remains to prove

that

y(v)− y(t0) =

∫ v

t0

f(yr(s), s)dg(s)

for all v ∈ [t0, t0 + σ].

Using Lemma 3.18, we obtain

y(v)− y(t0) = x(v)(v)− x(t0)(t0) = x(v)(v)− x(t0)(v) =

(∫ v

t0

DF (x(τ), t)

)
(v). (3.22)

Let ε > 0 be fixed. By Lemma 3.16, F belongs to the class F(O× [t0, t0 + σ], h), where h is given

by (3.14). Now, arguing as in the proof of Theorem 3.19. Since h is a nondecreasing function and

thus, it can have only a finite numbers of points t ∈ [t0, v] such that ∆+h(t) ≥ ε. We denote these

points by t1, . . . , tm. We consider a gauge δ : [t0, t0 + σ] → R+ that satisfies the following four

conditions:

(i) δ(τ) < min
2≤k≤m

{
tk − tk−1

2

}
, τ ∈ [t0, t0 + σ],

(ii) δ(τ) < min
1≤k≤m

{|τ − tk|}, τ ∈ [t0, t0 + σ], τ 6= tk, k = 1, . . . ,m,

(iii)

∫ tk+δ(tk)

tk

L(s)‖yr(s) − x(tk)r(s)‖Bdg(s) <
ε

2m+ 1
, k ∈ {1, . . . ,m},

(iv) ‖h(ρ)− h(τ)‖ ≤ ε, τ ∈ [t0, t0 + σ] \ {t1, . . . , tm}, ρ ∈ [τ, τ + δ(τ)).
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Let {(τi, [si−1, si])}li=1 be a δ-fine tagged partition of [t0, v] such that∥∥∥∥∥
∫ v

t0

DF (x(τ), t)−
l∑

i=1

[F (x(τi), si)− F (x(τi), si−1)]

∥∥∥∥∥
Y

< ε.

Using (3.22), axiom (B2) and the previous inequality, we obtain∥∥∥∥y(v)− y(t0)−
∫ v

t0

f(yr(s), s)dg(s)

∥∥∥∥ =

∥∥∥∥(∫ v

t0

DF (x(τ), t)

)
(v)−

∫ v

t0

f(yr(s), s)dg(s)

∥∥∥∥
≤ k1(v − r(t0))

∥∥∥∥∥
(∫ v

t0

DF (x(τ), t)

)
v

−

(
l∑

i=1

[F (x(τi), si)− F (x(τi), si−1)]

)
v

∥∥∥∥∥
B

+

∥∥∥∥∥
l∑

i=1

(F (x(τi), si)− F (x(τi), si−1))(v)−
∫ v

t0

f(yr(s), s)dg(s)

∥∥∥∥∥
≤ CσKσε+

l∑
i=1

∥∥∥∥∥(F (x(τi), si)− F (x(τi), si−1))(v)−
∫ si

si−1

f(yr(s), s)dg(s)

∥∥∥∥∥ , (3.23)

where Cσ = sup
ξ∈[t0,t0+σ]

k1(ξ − r(t0)).

On the other hand, the definition of F yields

(F (x(τi), si)− F (x(τi), si−1))(v) =

∫ si

si−1

f(x(τi)r(s), s)dg(s),

which implies ∥∥∥∥∥(F (x(τi), si)− F (x(τi), si−1))(v)−
∫ si

si−1

f(yr(s), s)dg(s)

∥∥∥∥∥
=

∥∥∥∥∥
∫ si

si−1

[f(x(τi)r(s), s)− f(yr(s), s)]dg(s)

∥∥∥∥∥ . (3.24)

We affirm that, for every i ∈ {1, . . . , l}, we have x(τi)r(s) = x(s)r(s) = yr(s) for s ∈ [si−1, τi], and

yr(s) = x(s)r(s) = x(si)r(s) for s ∈ [τi, si]. In fact, suppose that s ∈ [si−1, τi]. If t0 ≤ r(s) + θ ≤ s,

where θ ∈ (−∞, 0], then by Lemma 3.18 we can write

x(τi)r(s)(θ) = x(τi)(r(s) + θ) = x(r(s) + θ)(r(s) + θ) = x(s)(r(s) + θ) = x(s)r(s)(θ).

The equality x(s)r(s) = yr(s) follows directly from (3.21). Now, if we consider r(s) + θ ≤ t0, since

x(·) is a solution of (3.11), it follows from (3.13) that x(τi)r(s) − x(s)r(s) = 0, and

x(τi)r(s) − yr(s) = x(τi)r(s) − x(t0)r(s) = 0.

The case when s ∈ [τi, si] can be proved analogously. Therefore,

∥∥∥∥∥
∫ si

si−1

[f(x(τi)r(s), s)− f(yr(s), s)]dg(s)

∥∥∥∥∥ =

∥∥∥∥∫ si

τi

[f(x(τi)r(s), s)− f(yr(s), s)]dg(s)

∥∥∥∥
=

∥∥∥∥∫ si

τi

[f(x(τi)r(s), s)− f(x(si)r(s), s)]dg(s)

∥∥∥∥
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≤
∫ si

τi

L(s)‖x(τi)r(s) − x(si)r(s)‖Bdg(s)

where the last inequality follows from condition (C).

To estimate (3.24), we distinguish two cases:

(a) The intersection of [si−1, si] and {t1, ..., tm} contains a single point tk = τi.

(b) The intersection of [si−1, si] and {t1, ..., tm} is empty.

In case (a), it follows from the definition of δ(·) that∫ si

τi

L(s)‖x(τi)r(s) − x(si)r(s)‖Bdg(s) ≤ ε

2m+ 1
,

which implies that∥∥∥∥∥(F (x(τi), si)− F (x(τi), si−1))(v)−
∫ si

si−1

f(yr(s), s)dg(s)

∥∥∥∥∥ ≤ ε

2m+ 1
.

We now consider the case (b). It follows from the definition of F that x(si)(ξ) − x(τi)(ξ) = 0,

ξ ∈ (−∞, t0]. Using Lemma 1.12 and axiom (B2), for s ∈ [τi, si] we obtain the estimate

‖x(si)r(s) − x(τi)r(s)‖B ≤ k3(r(s)− r(t0)) sup
r(t0)≤ξ≤r(s)

‖x(si)(ξ)− x(τi)(ξ)‖

+ k2(r(s)− r(t0))‖x(si)r(t0) − x(τi)r(t0)‖B.

It implies that

‖x(si)r(s) − x(τi)r(s)‖B ≤ Kσ

[
sup

ξ∈[r(t0),t0+σ]
‖x(si)(ξ)− x(τi)(ξ)‖+ ‖x(si)r(t0) − x(τi)r(t0)‖B

]
= Kσ‖x(si)− x(τi)‖Y
≤ Kσ(h(si)− h(τi)) ≤ Kσε.

Consequently,∥∥∥∥∥(F (x(τi), si)− F (x(τi), si−1))(v)−
∫ si

si−1

f(yr(s), s)dg(s)

∥∥∥∥∥ ≤ Kσε

∫ si

τi

L(s)dg(s).

Combining the cases (a) and (b), and using the fact that the case (a) occurs at most 2m times, we

obtain

l∑
i=1

∥∥∥∥∥(F (x(τi), si)− F (x(τi), si−1))(v)−
∫ si

si−1

f(yr(s), s)dg(s)

∥∥∥∥∥
≤ Kσε

∫ t0+σ

t0

L(s)dg(s) +
2mε

2m+ 1

< ε

(
Kσ

∫ t0+σ

t0

L(s)dg(s) + 1

)
,
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and substituting in (3.23) yields∥∥∥∥y(v)− y(t0)−
∫ v

t0

f(yr(s), s)dg(s)

∥∥∥∥ < ε

(
CσKσ +Kσ

∫ t0+σ

t0

L(s)dg(s) + 1

)
.

Which completes the proof.

Remark 3.21. By considering the function r(t) := ρ(t, xt) with t ∈ [t0, t0+σ], we can obtain results

concerning to measure functional differential equations with state-dependent delays. Certainly, we

have to take account conditions over the function ρ and f which will allow us to develop an

appropriate theory.

Remark 3.22. Using similar arguments as the ones found in [26,27], it is also possible to establish a

correspondence between measure functional differential equations with time-dependent delay and

functional dynamic equations on time scales with time-dependent delay and impulsive measure

functional differential equations with time-dependent delay.

3.3 Existence and uniqueness of solutions

In this section, our goal is to present a result concerning to existence and uniqueness of solutions of

measure functional differential equations with infinite time-dependent delay. We begin by regarding

the following local existence and uniqueness theorem for generalized ODEs which was exposed in

the Chapter 1 and proved in [28, Theorem 2.15].

Theorem 3.23. Assume that X is a Banach space, O ⊂ X is an open set and the function

F : O × [t0, t0 + σ] → X belongs to the class F(O × [t0, t0 + σ];h), where h : [t0, t0 + σ] → R is a

left continuous nondecreasing function. If x0 ∈ O is such that x0 +F (x0, t
+
0 )−F (x0, t0) ∈ O, then

there exists a β > 0 and a function x : [t0, t0 +β]→ X which is a unique solution of the generalized

ODE (3.11) with initial condition x(t0) = x0.

We now present a result of local existence and uniqueness of solutions for measure functional

differential equations with infinite time-dependent delay.

Theorem 3.24. Assume that g : [t0, t0 + σ]→ R is a left-continuous nondecreasing function and

r is a nondecreasing regulated function such that r(s) ≤ s for all s ∈ [t0, t0 + σ]. Let O ⊂ Y be

an open subset having the prolongation property for t ≥ t0. Assume that f : B × [t0, t0 + σ]→ Rn

satisfies conditions (A)-(C). Let F : O × [t0, t0 + σ] → G((−∞, t0 + σ],Rn) be the function given

by (3.13) and let φ ∈ B. Assume further that the function x0 = x(t0) defined by (3.20) and

z(t) =

{
φ(t− t0), t ∈ (−∞, t0],

φ(0) + f(ϕ, t0)∆+g(t0), t ∈ (t0, t0 + σ]

are elements of O, where ϕ is defined by ϕ(θ) = φ(θ + r(t0) − t0), for θ ∈ (−∞, 0]. Then there

exists β > 0, and a function y : (−∞, t0 +β]→ Rn which is the unique solution of the initial value

problem (3.9)-(3.10) on (−∞, t0 + β].
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Proof. Since f : B × [t0, t0 + σ] → Rn satisfies the conditions (A)-(C), and g : [t0, t0 + σ] → R is

a left-continuous nondecreasing function, it follows from Lemma 3.16 that F satisfies conditions

(F1) and (F2). Let

x0(ξ) =

{
φ(ξ − t0), ξ ∈ (−∞, t0],

φ(0), ξ ∈ [t0, t0 + σ].

We affirm that x0 + F (x0, t
+
0 )− F (x0, t0) ∈ O. In fact, we first point out that F (x0, t0) = 0. The

limit F (x0, t
+
0 ) is taken with respect to the supremum norm and we know it must exist since F is

regulated with respect to the second variable. By the definition of F and Theorem 1.8, we have

F (x0, t
+
0 )(ξ) =

{
0, ξ ∈ (−∞, t0],

f(ϕ, t0)∆+g(t0), ξ ∈ (t0, t0 + σ].

Therefore, it follows that x0 + F (x0, t
+
0 ) − F (x0, t0) ∈ O. Consequently, all hypotheses of Theo-

rem 3.23 are satisfied, which implies that there exists a β > 0 and a unique solution x : [t0, t0+β]→
X of the generalized ODE

dx

dτ
= DF (x, t), x(t0) = x0. (3.25)

Defining the function y : (−∞, t0 + β]→ Rn by

y(ξ) =

{
x(t0)(ξ), ξ ∈ (−∞, t0],

x(ξ)(ξ), ξ ∈ [t0, t0 + β],

we obtain by Theorem 3.20 that y(·) is the unique solution of the initial value problem (3.9)-

(3.10).

3.4 Continuous dependence on parameters

In this section, our goal is to prove a continuous dependence result for measure functional diffe-

rential equations with time-dependent delays, using the existing results for generalized ODEs and

the correspondences established in Section 3.2.

We initiate this section by regarding the following result of continuous dependence on parame-

ters for generalized ODEs which can be found in [73, Theorem 2.4]. We point out that in [73] the

result is proved for the case when X = Rn, but it is not difficult to extend the result for the general

case, that is, when X is a general Banach space. The proof follows as the same way. Therefore,

we will omit its proof here.

Theorem 3.25. Let X be a Banach space, O ⊂ X be an open subset, and hk : [a, b]→ R, k ∈ N,

be a sequence of nondecreasing left-continuous functions such that hk(b) − hk(a) ≤ c, for some

c > 0 and all k ∈ N0. Assume that for every k ∈ N0, Fk : O × [a, b] → X belongs to the class

F(O × [a, b], hk) and that

lim
k→∞

Fk(x, t) = F0(x, t), x ∈ O, t ∈ [a, b],

lim
k→∞

Fk(x, t
+) = F0(x, t+), x ∈ O, t ∈ [a, b).
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For every k ∈ N, let xk : [a, b]→ O be a solution of the generalized ODE

dx

dτ
= DFk(x, t), t ∈ [a, b].

If there exists a function x0 : [a, b] → O such that lim
k→∞

xk(t) = x0(t) uniformly for t ∈ [a, b], then

x0 is a solution of
dx

dτ
= DF0(x, t), t ∈ [a, b].

We mention that in the statement of Theorem 3.25 the functions Fk are defined in O × [a, b],

while in [73], the author consider that Fk are defined on O × (−T, T ), where [a, b] ⊂ (−T, T ) and

hk are defined on (−T, T ). However, as pointed out in [26], it is not difficult to adapt the proof in

order that the Theorem 3.25 is still valid.

Next we recall an auxiliary result, which is essential to prove the continuous dependence result

for MFDEs with time-dependent delay. It can be found in [30, Theorem 2.18].

Theorem 3.26. The following conditions are equivalent:

(i) A set A ⊂ G([α, β],Rn) is relatively compact.

(ii) The set {x(α) : x ∈ A} is bounded and there is an increasing continuous function η : [0,∞)→
[0,∞) with η(0) = 0 and an increasing function K : [α, β]→ R such that

‖x(t2)− x(t1)‖ ≤ η(K(t2)−K(t1)),

for all x ∈ A, and α ≤ t1 ≤ t2 ≤ β.

We are in position to present our main result of this section, that is, the continuous dependence

result for measure functional differential equations with time-dependent delay. Our proof follows

analogously as the proof of [26, Theorem 6.3].

In the next statement we denote by g : [t0, t0+σ]→ R a left-continuous nondecreasing function,

r is a nondecreasing function such that r(s) ≤ s for all s ∈ [t0, t0 + σ], and the space Y is defined

as in Section 3.2.

Theorem 3.27. Suppose that fk : B × [t0, t0 + σ]→ Rn, k ∈ N0, is a sequence of functions which

satisfy conditions (A)-(C) with the same functions M and L. Assume that for every y ∈ Y ,

lim
k→∞

∫ t

t0

fk(yr(s), s)dg(s) =

∫ t

t0

f0(yr(s), s)dg(s),

uniformly with respect to t ∈ [t0, t0 + σ]. Let O be an open subset of Y having the prolongation

property for t ≥ t0. For every k ∈ N, let Fk : O× [t0, t0 +σ]→ G((−∞, t0 +σ],Rn) be the function

given by

Fk(z, t)(ξ) =


0, ξ ∈ (−∞, t0],∫ ξ

t0

fk(xr(s), s)dg(s), ξ ∈ [t0, t],∫ t

t0

fk(xr(s), s)dg(s), ξ ∈ [t, t0 + σ].
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Let φk ∈ B, k ∈ N0 be a sequence of functions such that lim
k→∞

φk = φ0 uniformly on (−∞, 0]. Let

yk ∈ O, k ∈ N, be the solution of

yk(t) = yk(t0) +

∫ t

t0

f((yk)r(s), s)dg(s), t ∈ [t0, t0 + σ],

(yk)t0 = φk.

If there exists a function y0 ∈ Y such that lim
k→∞

yk = y0 on (−∞, t0 + σ], then y0 is a solution of

y0(t) = y0(t0) +

∫ t

t0

f((y0)r(s), s)dg(s), t ∈ [t0, t0 + σ],

(y0)t0 = φ0.

Proof. By hypotheses, for every x ∈ O we have lim
k→∞

Fk(x, t) = F0(x, t) uniformly with respect to

t ∈ [t0, t0 + σ]. By the Moore-Osgood Theorem ( [67, Lemma 4.2.3.]), we obtain lim
k→∞

Fk(x, t
+) =

F0(x, t+) for all x ∈ O and t ∈ [t0, t0 + σ]. Moreover, since Y is a complete space, we have that F0

takes values in Y . Also, it follows from Lemma 3.18 that Fk belongs to the class F(O×[t0, t0+σ];h),

for all k ∈ N, where the function h is given by (3.14). Since lim
k→∞

Fk(x, t) = F0(x, t) uniformly, it

follows that F0 belongs to the class F(O× [t0, t0 + σ], h). For every k ∈ N0 and t ∈ [t0, t0 + σ], we

define

xk(t)(ξ) =

{
yk(ξ), ξ ∈ (−∞, t],
yk(t), ξ ∈ [t, t0 + σ].

It follows from Theorem 3.19 that the function xk(·) is a solution of the generalized ODE

dx

dτ
= DFk(x, t), t ∈ [t0, t0 + σ].

Let k ∈ N and t0 ≤ t1 ≤ t2 ≤ t0 + σ, then

‖yk(t2)− yk(t1)‖ =

∥∥∥∥∫ t2

t1

fk((yk)r(s), s)dg(s)

∥∥∥∥ ≤ ∫ t2

t1

M(s)dg(s) ≤ K(t2)−K(t1),

where K(t) = t +
∫ t
t0
M(s)dg(s) is an increasing function. Moreover, the sequence {yk(t0)}k∈N is

bounded. Thus, we see that condition (ii) in Theorem 3.26 is satisfied. It follows that the sequence

{yk|[t0,t0+σ]}k∈N contains a subsequence which is uniformly convergent on [t0, t0 +σ]. Without loss

of generality, we denote this subsequence again by {yk}k∈N. Since (yk)t0 = φk for θ ∈ (−∞, 0],

we see that {yk}k∈N is in fact uniformly convergent on (−∞, t0 + σ]. Using the definition of

xk, we obtain that lim
k→∞

xk(t) = x0(t) uniformly with respect to t ∈ [t0, t0 + σ]. It follows from

Theorem 3.25 that x0 is a solution of

dx

dτ
= DF0(x, t), t ∈ [t0, t0 + σ].

The proof is finished by applying Theorem 3.20, which ensures that y0 satisfies

y0(t) = y0(t0) +

∫ t

t0

f((y0)r(s), s)dg(s), t ∈ [t0, t0 + σ],

(y0)t0 = φ0,
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which completes the proof.

3.5 Existence and uniqueness of solutions for the perturbed system

In this section, our objective is to study a perturbed measure functional differential equations with

time-dependent delay. These results will be very important to study stability results in the future.

In the rest of this section, we will assume that t0 ∈ R, σ > 0, B ⊂ G((−∞, t0 + σ],Rn) is a

phase space that satisfies axioms (B1)-(B2)-(T) and g : [t0, t0 +σ]→ R is a nondecreasing function.

Further, we assume that the function f : B × [t0, t0 + σ] → Rn satisfies conditions (A)-(C), and r

is a nondecreasing function such that r(s) ≤ s for all s ∈ [t0, t0 + σ].

Let p : [t0, t0 + σ] → Rn be a regulated function and u : [t0, t0 + σ] → R be a nondecreasing

function. We assume that the function p satisfies:

(D) There exists a function K : [t0, t0 +σ]→ R+, which is Henstock-Kurzweil-Stieltjes integrable

with respect to u, such that ∥∥∥∥∫ b

a
p(s)du(s)

∥∥∥∥ ≤ ∫ b

a
K(s)du(s),

for all [a, b] ⊆ [t0, t0 + σ].

In this section, we will consider the perturbed measure functional differential equation with

infinite time-dependent delay

y(t) = y(t0) +

∫ t

t0

f(yr(s), s)dg(s) +

∫ t

t0

p(s)du(s), t ∈ [t0, t0 + σ], (3.26)

We point out that under our previous assumptions a solution y(·) of equation (3.26) is a regulated

function. We keep the notations introduced in the previous sections. In particular, O is a subset

of Y having the prolongation property for t ≥ t0.

Let Q : O × [t0, t0 + σ]→ G((−∞, t0 + σ],Rn) be the function defined by

Q(y, t) = F (y, t) + P (t), t ∈ [t0, t0 + σ], (3.27)

where F is given by (3.13), and

P (t)(ξ) =


0, ξ ∈ (−∞, t0],∫ ξ

t0

p(s)du(s), ξ ∈ [t0, t],∫ t

t0

p(s)du(s), ξ ∈ [t, t0 + σ].

(3.28)

The following result is similar to the Lemma 3.16. For this reason, we omit its proof.

Lemma 3.28. If Q : O× [t0, t0 +σ]→ G((−∞, t0 +σ],Rn) is the function defined by (3.27), then
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the function Q satisfies conditions (F1) and (F2) with

h(t) =

(∫ t

t0

(M(s) +KσL(s))dg(s) +

∫ t

t0

K(s)du(s)

)
,

for all t ∈ [t0, t0 + σ].

The next two theorems are modified versions of Theorem 3.19 and Theorem 3.20. The following

results represent the correspondence between solutions of perturbed measure functional differen-

tial equations with infinite time-dependent delay and solutions of generalized ordinary differential

equations.

Theorem 3.29. Assume that Q : O× [t0, t0 +σ]→ G((−∞, t0 +σ],Rn) is the function defined by

(3.27) If y ∈ O is a solution of the equation (3.26) with initial condition (3.10), then the function

x : [t0, t0 + σ]→ O given by (3.17) is a solution of the generalized ordinary differential equation

dx

dτ
= DQ(x, t), (3.29)

on the interval [t0, t0 + σ].

Proof. Our aim is to show that the integral

∫ v

t0

DQ(x(τ), t) exists and

x(v)− x(t0) =

∫ v

t0

DQ(x(τ), t),

for all v ∈ [t0, t0 + σ].

Let an arbitrary ε > 0 be given. We define the function

h(t) =

(∫ t

t0

[M(s) +KσL(s)]dg(s) +

∫ t

t0

K(s)du(s)

)
, t ∈ [t0, t0 + σ].

Since the functions g and u are nondecreasing, they can have only a finite number of points

t ∈ [t0, v] such that ∆+g(t) > 0 and ∆+u(t) > 0. The same assertion remains true for the function

h. Thus h can have only a finite numbers of points t ∈ [t0, v] such that ∆+h(t) ≥ ε. Let us denote

these points by t1, ..., tm.

We now select a gauge δ : [t0, t0 + σ]→ R+ that satisfies the following four conditions:

(i) δ(τ) < min2≤k≤m

{
tk − tk−1

2

}
, τ ∈ [t0, t0 + σ],

(ii) δ(τ) < min1≤k≤m{|τ − tk|}, τ ∈ [t0, t0 + σ], τ 6= tk, k = 1, . . . ,m.

These conditions assure that if a point-interval pair (τ, [c, d]) satisfies [c, d] ⊂ (τ − δ(τ), τ + δ(τ)),

then [c, d] contains at most one of the points t1, . . . , tm. Moreover, if tk ∈ [c, d] ⊂ (τ−δ(τ), τ+δ(τ)),

then τ = tk.

(iii) Since yr(tk) = x(tk)r(tk), it follows from Theorem 1.8 that

lim
t→t+k

∫ t

tk

L(s)‖yr(s) − x(tk)r(s)‖Bdg(s) = L(tk)‖yr(tk) − x(tk)r(tk)‖B∆+g(tk) = 0
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for all k ∈ 1, . . . ,m. Thus the gauge δ might be chosen in such a way that∫ tk+δ(tk)

tk

L(s)‖yr(s) − x(tk)r(s)‖Bdg(s) <
ε

2m+ 1
, k ∈ {1, . . . ,m}.

(iv) From conditions (B) and (D), we infer

‖y(t+ τ)− y(τ)‖ =

∥∥∥∥∫ τ+t

τ
f(yr(s), s)dg(s) +

∫ τ+t

τ
p(s)du(s)

∥∥∥∥
≤

∫ τ+t

τ
M(s)dg(s) +

∫ τ+t

τ
K(s)du(s)

≤ h(τ + t)− h(τ),

which implies that

‖y(τ+)− y(τ)‖ ≤ ∆+h(τ) < ε, τ ∈ [t0, t0 + σ] \ {t1, . . . , tm}.

Hence, we can select the gauge δ(·) such that

‖y(ρ)− y(τ)‖ ≤ ε

for all τ ∈ [t0, t0 + σ] \ {t1, . . . , tm} and ρ ∈ [τ, τ + δ(τ)).

Let {(τi, [si−1, si])}li=1 be a δ-fine tagged partition of [t0, v]. Then, by definition of x and G we

have

(x(si)− x(si−1))(ξ) =


0, ξ ∈ (−∞, si−1],∫ ξ

si−1
f(yr(s), s)dg(s) +

∫ ξ
si−1

p(s)du(s), ξ ∈ [si−1, si],∫ si
si−1

f(yr(s), s)dg(s) +
∫ si
si−1

p(s)du(s), ξ ∈ [si, t0 + σ],

and

(Q(x(τi), si)−Q(x(τi), si−1))(ξ) =


0, ξ ∈ (−∞, si−1],∫ ξ

si−1
f(x(τi)r(s), s)dg(s) +

∫ ξ
si−1

p(s)du(s), ξ ∈ [si−1, si],∫ si
si−1

f(x(τi)r(s), s)dg(s) +
∫ si
si−1

p(s)du(s), ξ ∈ [si, t0 + σ],

for all i ∈ {1, . . . , l}. Combining these expressions, we obtain that

[(x(si)− x(si−1))(ξ)− (Q(x(τi), si)−Q(x(τi), si−1))(ξ)]

=


0, ξ ∈ (−∞, si−1],∫ ξ

si−1
[f(yr(s), s)− f(x(τi)r(s), s)]dg(s), ξ ∈ [si−1, si],∫ si

si−1
[f(yr(s), s)− f(x(τi)r(s), s)]dg(s), ξ ∈ [si, t0 + σ].

Consequently,

‖(x(si)− x(si−1))− (Q(x(τi), si)−Q(x(τi), si−1))‖Y

= sup
ξ∈[si−1,si]

∥∥∥∥∥
∫ ξ

si−1

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s)

∥∥∥∥∥ .
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Since x(τi)r(s) = yr(s) for s ≤ τi, we have∫ ξ

si−1

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s) =

{
0, ξ ∈ [si−1, τi],∫ ξ

τi
[f(yr(s), s)− f(x(τi)r(s), s)]dg(s), ξ ∈ [τi, si].

We now use condition (C) to obtain the estimate∥∥∥∥∫ ξ

τi

[f(yr(s), s)− f(x(τi)r(s), s)]dg(s)

∥∥∥∥ ≤
∫ ξ

τi

L(s)‖yr(s) − x(τi)r(s)‖Bdg(s)

≤
∫ si

τi

L(s)‖yr(s) − x(τi)r(s)‖Bdg(s).

Given a particular point-interval pair(τi, [si−1, si]), there are two possibilities:

(a) The intersection of [si−1, si] and {t1, . . . , tm} contains a single point tk = τi.

(b) The intersection of [si−1, si] and {t1, . . . , tm} is empty.

We conclude this proof proceeding as in the proof of Theorem 3.19.

By considering appropriate modifications for the perturbed system, the proof of the following

theorem follows analogously to the one performed for Theorem 3.20. For that reason, we omit its

proof.

Theorem 3.30. Assume that Q : O × [t0, t0 + σ] → G((−∞, t0 + σ],Rn) is the function defined

by (3.27) and φ ∈ B. If x : [t0, t0 + σ] → O is a solution of the generalized ordinary differential

equation (3.29) on the interval [t0, t0 + σ] with initial condition x(t0) given in (3.20), then the

function y ∈ O defined by (3.21) is a solution of the measure functional differential equation with

infinite time-dependent delay (3.26) and initial condition (3.10).

In the next result, we establish the existence and uniqueness of solutions for the perturbed

measure functional differential equations with time-dependent delay. We omit the proof because

it is similar to the one performed for Theorem 3.24.

Theorem 3.31. Let O ⊂ Y be an open subset having the prolongation property for t ≥ t0.

Assume that Q : O × [t0, t0 + σ] → G((−∞, t0 + σ],Rn) is the function defined by (3.27), φ ∈ B,

g : [t0, t0 +σ]→ R and u : [t0, t0 +σ]→ R are left-continuous and nondecreasing functions. Assume

further that the function x(t0) defined by (3.20) and

z(t) =

{
φ(t− t0), t ∈ (−∞, t0],

φ(0) + f(ϕ, t0)∆+g(t0) + p(t0)∆+u(t0), t ∈ (t0, t0 + σ]

are elements of O, where ϕ is defined by ϕ(θ) = φ(θ + r(t0) − t0), for θ ∈ (−∞, 0]. Then there

exists β > 0, and a function y : (−∞, t0 +β]→ Rn which is the unique solution of the initial value

problem (3.26)-(3.10) on (−∞, t0 + β].
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Part II

Multivalued maps and applications to

Cauchy problems governed by a first

order differential inclusion
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Chapter 4

Fixed points of multivalued maps under local Lipschitz conditions

and applications

Throughout this chapter, we denote by X a Banach space provided with a norm ‖ · ‖. We assume

that A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous semigroup of linear

operators (T (t))t≥0 on X. We will consider the abstract first order differential inclusion

x′(t)−Ax(t) ∈ f(t, x(t)), t ≥ 0, (4.1)

x(0) = x0 ∈ X, (4.2)

where x(t) ∈ X and f is a set valued map defined on [0,∞)×X whose properties will be specified

later.

As a model, we consider a general heat equation described by a first order differential inclusion

∂u(t, ξ)

∂t
− ∂2u(t, ξ)

∂ξ2
∈ f(t, u(t, ·)), (4.3)

u(t, 0) = u(t, π) = 0, (4.4)

u(0, ξ) = ϕ(ξ), (4.5)

for t ≥ 0 and ξ ∈ (0, π). In this system, we assume that f is a multivalued map, and the inclusion

indicated in (4.3) will be explained in Section 4.3. Moreover, ϕ is an appropriate function.

The goal of this chapter is to establish a general result of fixed point in scales of Banach

spaces, and combinig these results with the theory of measure of noncompactness, we establish

the existence of solutions to the problem (4.1)-(4.2) and the existence of asymptotically almost

periodic solutions to the problem (4.1)-(4.2).

4.1 Multivalued maps and measure of noncompactness

In this section, we will present the basic concepts and properties of the abstract Cauchy problem and

the theory of multivalued functions on which this work is based. The terminology and notations

that will be used throughout this chapter are those generally used in functional analysis. In

particular, if (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) are Banach spaces, we denote by L(Y,Z) the Banach space

of bounded linear operators from Y into Z, and we abbreviate this notation to L(Y ) whenever
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Z = Y . If y ∈ Y , then Br(y, Y ) denotes the closed ball with center at y and radius r > 0. When the

space Y is clear from the context, we abbreviate this notation to Br(y). Moreover, for a compact

interval J ⊆ R, we denote by C(J, Y ) the space of continuous functions from J into Y endowed

with the norm of uniform convergence. Similarly, Cb([0,∞), Y ) is the space of bounded continuous

functions from [0,∞) into Y provided with the norm of uniform convergence and C0([0,∞), Y )

is the subspace of Cb([0,∞), Y ) consisting of functions that vanishes at infinite. Furthermore,

Lp(J, Y ), 1 ≤ p ≤ ∞, denotes the space of p-integrable functions in the Bochner sense from J into

Y .

We next only mention a few concepts and properties concerning to the first order abstract

Cauchy problem. We denote by M ≥ 1 and ω1 ∈ R some constants such that ‖T (t)‖ ≤Meω1t for

t ≥ 0.

The existence of solutions of the first order abstract Cauchy problem

x′(t) = Ax(t) + f(t), t ≥ 0, (4.6)

x(0) = x0, (4.7)

where f : [0,∞) → X is a locally integrable function, and the existence of solutions for the

semilinear first order abstract Cauchy have been discussed in many works [5,69]. We only mention

here that the function x(·) given by

x(t) = T (t)x0 +

∫ t

0
T (t− s)f(s)ds, t ≥ 0, (4.8)

is called mild solution of (4.6)-(4.7).

In Section 4.3 we will use the following uniqueness property.

Remark 4.1. Let f ∈ L1([0, a], X) be a function that satisfies

∫ t

0
T (t− s)f(s)ds = 0 for all 0 ≤

t ≤ a. Then f(t) = 0 a.e. t ∈ [0, a].

Proof. It follows from [69, Theorem 4.2.9] that the function v(t) =

∫ t

0
T (t − s)f(s)ds is a strong

solution of (4.6) with initial condition x0 = 0.

We recall some facts concerning multivalued analysis, which will be used later. Let (Ω, d) be a

metric space. Throughout this chapter P(Ω) denotes the collection of all nonempty subsets of Ω,

Pb(Ω) (respectively, Pc(Ω)) stands for the collection of all bounded (respectively, closed) nonempty

subsets of Ω, and Pcb(Ω) denotes the collection of all closed bounded nonempty subsets of Ω. The

Hausdorff metric dH on Pcb(Ω) is given by

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(a,B) = inf
b∈B

d(a, b).

Let F : Ω → P(Ω) be a multivalued map. A point x ∈ Ω is said to be a fixed point of F if
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x ∈ F (x). We denote Fix(F ) the set consisting of fixed points of F .

Let (Ω1, d1) be a metric space. A multivalued map F : Ω→ Pcb(Ω1) is said to be k-contraction,

where 0 ≤ k < 1, if

d1
H(F (x), F (y)) ≤ kd(x, y), ∀x, y ∈ Ω.

The following result relates these concepts and extends the Banach principle to multivalued map-

pings [37, Theorem I.2.3.1].

Theorem 4.2. Let (Ω, d) be a complete metric space and let F : Ω → Pcb(Ω) be a k-contraction

map. Then F has a fixed point.

We also need to relate the notion of fixed point with the concept of measure of noncompactness.

For this reason, we next recall a few properties of this concept. For general information, see

[4,7,15,42,53]. In this chapter, we use the notion of Hausdorff measure of noncompactness on the

corresponding working space.

Definition 4.3. Let B be a bounded subset of a metric space Ω. The Hausdorff measure of

noncompactness of B is defined by

η(B) = inf{ε > 0 : B has a finite cover by closed balls of radius < ε}.

Remark 4.4. Let B,B1, B2 ⊆ Ω be bounded sets. The Hausdorff measure of noncompactness has

the following properties.

(a) If B1 ⊆ B2, then η(B1) 6 η(B2).

(b) η(B) = η(B).

(c) η(B) = 0 if and only if B is totally bounded.

(d) η(B1 ∪B2) = max{η(B1), η(B2)}.

(e) The function η : Pcb(Ω)→ [0,∞) is dH-continuous.

In what follows, we assume that Y is a normed space. For a set B ⊆ Y , we denote by co(B)

the closed convex hull of the set B.

Remark 4.5. Let B,B1, B2 ⊆ Y be bounded sets. The following properties hold.

(a) For λ ∈ R, η(λB) = |λ|η(B).

(b) η(B1 +B2) 6 η(B1) + η(B2), where B1 +B2 = {b1 + b2 : b1 ∈ B1, b2 ∈ B2}.

(c) η(B) = η(co(B)).
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For the proof of these properties, we refer the reader to the already mentioned references. More-

over, in these references the reader will find the development of the abstract concept of “measure

of noncompactness” as well as numerous concrete examples of measure of noncompactness.

Henceforth we use the notations K(Y ), υ(Y ) and Kυ(Y ) to denote the following sets

(s0) K(Y ) = {D ∈ P(Y ) : D is compact}.

(s1) υ(Y ) = {D ∈ P(Y ) : D is convex }.

(s2) Kυ(Y ) = K(Y ) ∩ υ(Y ).

Moreover, for a multivalued map F : Ω→ P(Y ), we denote

F−1(V ) = {w ∈ Ω : F (w) ⊆ V },

F−1
+ (V ) = {w ∈ Ω : F (w) ∩ V 6= ∅}.

Definition 4.6. Let Ω be a metric space. A multivalued map F : Ω→ P(Y ) is said to be:

(i) Upper semi-continuous (u.s.c. for short) if F−1(V ) is an open subset of Ω for all open set

V ⊆ Y .

(ii) Closed if its graph GF = {(w, y) : y ∈ F (w)} is a closed subset of Ω× Y .

(iii) Compact if its range F (Ω) is relatively compact in Y .

(iv) Lower semi-continuous (l.s.c. for short) if F−1
+ (V ) is an open subset of Ω for all open set

V ⊆ Y .

The following result is an inmediate consequence to the fact that Ω \ F−1
+ (V ) = F−1(Y \ V )

for every V ⊂ Y .

Proposition 4.7. A multivalued map F : Ω→ P(Y ) is u.s.c. ( respectively, l.s.c.), if and only if

for every closed set V ⊂ Y , the set F−1
+ (V ) ( respectively, F−1(V )) is a closed subset of Ω.

Definition 4.8. Let F : Ω → P(Y ) be a multivalued map and f : Ω → Y be a singlevalued map.

We shall say that f is a selection of F provided f(x) ∈ F (x), for every x ∈ Ω.

The problem concerned to the existence of appropriate selections for multivalued mappings is

very important in the fixed point theory. In what follows we introduce some selection theorems

which will be crucial in the Section 4.3.

Theorem 4.9. ( [53, Theorem 1.3.5.]) Let X,Y be Banach spaces, I ⊂ R be a compact set, and

let F : I ×X → K(Y ) be a multivalued map such that

(i) for every x ∈ X, the multimap F (·, x) : I → K(Y ) has a strongly measurable selection;



4.1. Multivalued maps and measure of noncompactness 60

(ii) for every t ∈ I, the multimap F (t, ·) : X → K(Y ) is u.s.c.

Then for every strongly measurable function q : I → X there exists a strongly measurable selection

ϕ : I → Y of the multivalued map F (·, q(·)) : I → K(Y ).

Definition 4.10. Let (Ω,A) be a measurable space and let Y be a Banach space. A multivalued

map F : Ω→ P(Y ) is said to be measurable if F−1
+ (V ) ∈ A for all open set V ⊆ Y .

Below we shall present the Kuratowski–Ryll–Nardzewski selection theorem.

Theorem 4.11. ( [36, Theorem 19.7]) Let (Ω,A) be a measurable space and let Y be a separable

complete space. Then every measurable multivalued map F : Ω→ P(Y ) has a measurable selection.

It is clear that if Ω is a metric space and A is the Borel σ-algebra in Ω, then every l.s.c. map

F : Ω→ P(Y ) is measurable.

In what follows, we assume that Y is a Banach space and Ω is a closed subset of Y . We denote

by η any measure of noncompactness on Y that satisfies the properties mentioned in Remark 4.4

and Remark 4.5. The following concept is taken from [53, Definition 2.2.6].

Definition 4.12. A multivalued map F : Ω → P(Y ) is said to be a condensing map with respect

to η (abbreviated, η-condensing) if for every set D ⊂ Ω that is not relatively compact we have that

η(F (D)) 6≥ η(D).

The next result is essential for the development of the rest of our work. We point out that if

F : Ω→ Kυ(Y ) is u.s.c., then F is closed. This allows us to establish the following version of the

fixed point theorem [53, Corollary 3.3.1].

Theorem 4.13. Let M be a convex closed subset of Y , and let F : M → Kυ(M) be a u.s.c.

η-condensing multivalued map. Then Fix(F ) is a nonempty compact set.

Next we study some properties of the measure of noncompactness on a space of functions with

values in X. To establish some properties, in what follows we denote by χ the Hausdorff measure of

noncompactness in X, and by β the Hausdorff measure of noncompactness in a space of continuous

functions with values in X. We next collect some properties of measure β which are needed to

establish our results. Let J = [0, a].

Lemma 4.14. Let G : J → L(X) be a strongly continuous operator valued map. Let D ⊂ X be a

bounded set. Then β({G(·)x : x ∈ D}) ≤ sup0≤t≤a ‖G(t)‖ χ(D).

The proof of this property is an immediate consequence from Definition 4.3.

Lemma 4.15. ( [7]) Let W ⊆ C(J ;X) be a bounded set. Then χ(W (t)) 6 β(W ) for all t ∈ J .

Furthermore, if W is equicontinuous on J , then χ(W (·)) is continuous on J , and

β(W ) = sup{χ(W (t)) : t ∈ J}.
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Lemma 4.16. ( [46, Lemma 2.9]) Let W ⊆ C(J ;X) be a bounded set. Then there exists a countable

set W0 ⊆W such that β(W0) = β(W ).

Lemma 4.17. Let G : J → L(X) be a strongly continuous semigroup of linear operators, and

Λ : L1(J,X) → C(J,X) be the map defined by Λu(t) =

∫ t

0
G(t − s)u(s)ds, for every t ∈ J . Then

Λ satisfies the following conditions

(S1) There exists a constant D ≥ 0 such that

‖Λu(t)− Λv(t)‖ ≤ D
∫ t

0
‖u(t)− v(t)‖ds

for all u, v ∈ L1(J,X) and t ∈ J .

(S2) For any compact K ⊂ X and sequence (un)n∈N ⊂ L1(J,X) such that (un(t))n∈N ⊂ K for

a.e. t ∈ J , the weak convergence un
w−→ u implies that Λun → Λu.

Proof. The condition (S1) easily follows due to (G(t))t≥0 is a strongly continuous semigroup of

linear operators. Let K ⊂ X be a compact set and let (un)n∈N ⊂ L1(J,X) be a sequence such that

(un(t))n∈N ⊂ K for a.e. t ∈ J . Suppose that un
w−→ u weakly. Since Λ is a continuous operator,

it follows that Λun
w−−−→

n→∞
Λu weakly. To conclude the condition (S2), it is enough to prove that

{Λun : n ∈ N} is relatively compact in C(J,X). In fact, if this last assertion is true, then every

sequence (Λunk
)k∈N ⊂ {Λun : n ∈ N} has a convergent subsequence (Λunkj

)j∈N in C(J,X), that

means Λunkj

‖·‖∞−−−→
j→∞

v, with v ∈ C(J,X). Consequently, Λunkj

w−−−→
j→∞

v weakly, and thus v = Λu.

This fact implies that Λun
‖·‖∞−−−→
n→∞

Λu, obtaining the desired result. Therefore, we will prove that

{Λun : n ∈ N} is relatively compact in C(J,X).

Let t ∈ J . Firstly note that for each n ∈ N, the function s 7→ G(t − s)un(s), s ∈ [0, t] takes

values in a compact set K̂ ⊂ X. Then, by the Mean Value Theorem for the Bochner integral, we

have

Λun(t) ∈ t · co(K̂).

Now, since the closed convex hull of a compact set is compact, we conclude that {Λun(t) : n ∈
N} ⊂ X is relatively compact for t ∈ J .

On the other hand, for u ∈ {Λun : n ∈ N} and t ∈ J , we have

Λu(t+ h)− Λu(t) =

∫ t+h

0
G(t+ h− s)u(s)ds−

∫ t

0
G(t− s)u(s)ds

=

∫ t

0
[G(t+ h− s)−G(t− s)]u(s)ds−

∫ t+h

t
G(t+ h− s)u(s)ds

= (G(h)− I)

∫ t

0
G(t− s)u(s)ds−

∫ t+h

t
G(t+ h− s)u(s)ds

−−−→
h7→0

0.



4.1. Multivalued maps and measure of noncompactness 62

Therefore, {Λun : n ∈ N} is an equicontinuous family of C(J,X). Thus, by Arzelá–Ascoli Theorem

we conclude that {Λun : n ∈ N} is relatively compact in C(J,X).

Definition 4.18. A set W ⊆ L1(J,X) is said to be uniformly integrable if there exists a positive

function µ ∈ L1(J) such that ‖w(t)‖ ≤ µ(t) a.e. for t ∈ J and all w ∈W .

Proposition 4.19. ( [53, Proposition 4.2.1.]) Assume that Ω ⊂ L1(J,X) is uniformly integrable

and the sets Ω(t) are relatively compact for a.e. t ∈ J . Then Ω is weakly compact in L1(J,X).

Theorem 4.20. ( [53, Theorem 4.2.2.]) Let W ⊂ L1(J,X) be a uniformly integrable set. Assume

that there is a positive function q ∈ L1(J) such that χ(W (t)) ≤ q(t) for a.e. t ∈ J . If Λ :

L1(J,X)→ C(J,X) is an operator satisfying properties (S1) and (S2), then

χ(Λ(W )(t)) ≤ 2D

∫ t

0
q(s)ds,

for all t ∈ J , where D ≥ 0 is the constant introduced in condition (S1).

Lemma 4.21. Let G : J → L(X) be a strongly continuous operator valued map such that G is

continuous for the norm of operators on (0, a], and Λ : L1(J,X) → C(J,X) be the map defined by

Λ(u)(t) =

∫ t

0
G(t− s)u(s)ds.

Let W ⊂ L1(J,X) be a uniformly integrable set. Assume that there is a positive function q ∈ L1(J)

such that χ(W (t)) ≤ q(t) for a.e. t ∈ J . Then

β(Λ(W )) ≤ 2 sup
0≤t≤a

‖G(t)‖
∫ a

0
q(t)dt.

Proof. Applying Theorem 4.20, we can affirm that

χ(Λ(W )(t)) ≤ 2 sup
0≤t≤a

‖G(t)‖
∫ t

0
q(s)ds

for every t ∈ J . Moreover, we will prove that Λ(W ) is an equicontinuous set of continuous

functions. Let M ≥ 0 be a constant such that ‖G(t)‖ ≤M for all t ∈ J , and µ ∈ L1(J) such that

‖w(t)‖ ≤ µ(t) a.e. for t ∈ J and all w ∈W .

Initially we study the equicontinuity of Λ(W ) at t = 0. For u ∈W , we estimate

‖Λ(u)(h)‖ =
∥∥∥∫ h

0
G(t− s)u(s)ds

∥∥∥
≤ M

∫ h

0
µ(s)ds→ 0, h→ 0,

independent of u ∈W , which implies that Λ(W ) is equicontinuous at t = 0.

We next study the equicontinuity of Λ(W ) at t > 0. Let ε > 0. We select 0 < δ1 < t/2. Then

G : [δ1, a] → L(X) is uniformly continuous for the norm of operators. Consequently there exists

0 < δ < δ1 such that

‖G(ξ + h)−G(ξ)‖ ≤ ε,
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for all ξ ∈ [2δ1, a] and |h| < δ such that ξ + h ≤ a. To simplify the writing, we consider h ≥ 0. We

have that

Λ(u)(t+ h)− Λ(u)(t) =

∫ t+h

0
G(t+ h− s)u(s)ds−

∫ t

0
G(t− s)u(s)ds

=

∫ t

0
[G(t+ h− s)−G(t− s)]u(s)ds+

∫ t+h

t
G(t+ h− s)u(s)ds

=

∫ t−2δ1

0
[G(t+ h− s)−G(t− s)]u(s)ds+

∫ t

t−2δ1

[G(t+ h− s)−G(t− s)]u(s)ds

+

∫ t+h

t
G(t+ h− s)u(s)ds.

From this decomposition, we can estimate

‖Λ(u)(t+ h)− Λ(u)(t)‖ ≤ ε
∫ t−2δ1

0
µ(s)ds+ 2M

∫ t

t−2δ1

µ(s)ds+M

∫ t+h

t
µ(s)ds,

which shows that Λ(u)(t+h)−Λ(u)(t)→ 0 as h→ 0 independent of u ∈W , which in turn implies

that Λ(W ) is equicontinuous at t.

Using now Lemma 4.15 we obtain the assertion.

4.2 Existence of fixed points

Let (Y, ‖·‖) be a Banach space and let F : Y → Pb(Y ) be a map. Let Z be a closed vector subspace

of Y which is invariant under F , that is to say, F : Z → Pb(Z). In this section we establish the

existence of fixed points of F in Z. We assume that F only satisfies certain local conditions on Y .

To represent the idea of local conditions, we assume that there exists a scale of Banach spaces

(Y, ‖ · ‖) . . . ↪→ . . . (Yn, ‖ · ‖n)
Rn−1,n
↪→ (Yn−1, ‖ · ‖n−1) ↪→ . . . (Y1, ‖ · ‖1),

where (Yn, ‖ · ‖n) are Banach spaces for n ∈ N, Rn−1,n : (Yn, ‖ · ‖n)→ (Yn−1, ‖ · ‖n−1) are bounded

surjective linear maps, and there exist bounded surjective linear maps Rn : (Y, ‖ · ‖)→ (Yn, ‖ · ‖n),

and u.s.c. maps Fn : Yn → Pcb(Yn) for all n ∈ N. We assume that F , Fn, Rn−1,n and Rn are

related as follows.

(H1) Uniqueness property. Let y, z ∈ Y such that Rny ∈ Fn(Rnz) for all n ∈ N, then y ∈ F (z).

(H2) Extension property. For every n ∈ N, and for every y ∈ Yn+1 such that yn = Rn,n+1y ∈
Fn(yn) there exists z ∈ Fn+1(y) such that Rn,n+1y = Rn,n+1z.

(H3) Inclusion property. If (yn)n is a sequence such that yn ∈ Yn, yn = Rn,n+1y
n+1, and {‖yn‖n :

n ∈ N} is a bounded set, then there exists y ∈ Y such that yn = Rny for all n ∈ N.

(H4) Concatenation property. For every n ∈ N,

Rn,n+1Fn+1 ⊆ FnRn,n+1.
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Remark 4.22. It follows from (H4) that if un+1 ∈ Fix(Fn+1), then Rn,n+1u
n+1 ∈ Fix(Fn). In

fact,

Rn,n+1u
n+1 ∈ Rn,n+1Fn+1u

n+1 ⊆ FnRn,n+1u
n+1,

which shows that Rn,n+1u
n+1 ∈ Fix(Fn).

In what follows, to abbreviate the text, we represent by β a generic measure of noncompactness

on Yn that satisfies the properties mentioned in Remark 4.4 and Remark 4.5.

Lemma 4.23. Assume that Fn : Yn → Kυ(Yn), n ∈ N, satisfy the conditions (H1)-(H4). Assume

further that Fn is an u.s.c. β-condensing multivalued map for all n ∈ N. If yn ∈ Fix(Fn), then

there exists yn+1 ∈ Fix(Fn+1) such that yn = Rn,n+1y
n+1.

Proof. Let Cn+1 = {y ∈ Yn+1 : yn = Rn,n+1y}. Since Rn,n+1 is a linear bounded surjective map,

we infer that Cn+1 is a nonempty closed convex set. We define the map Gn+1 by

Gn+1(y) = {z ∈ Fn+1(y) : yn = Rn,n+1z}, y ∈ Yn+1.

It follows from (H2) that Gn+1y 6= ∅, and Gn+1 : Cn+1 → Kυ(Cn+1) is an u.s.c. β-condensing

multivalued map. In fact, let V ⊂ Cn+1 be a closed subset. Since G−1
n+1+

(V ) = R−1
n,n+1(yn) ∩

F−1
n+1+

(V ), and Fn+1 is an u.s.c. map, we conclude that Gn+1 is an u.s.c. map. On the other hand,

let D ⊂ Cn+1 be a bounded set that is not relatively compact. Now, since Fn+1 is a β-condensing

map, we can estimate

β ({Gn+1(w) : w ∈ D}) = β({R−1
n,n+1(yn)} ∩ {Fn+1(w) : w ∈ D})

≤ min{β(R−1
n,n+1(yn)), β({Fn+1(w) : w ∈ D})}

< β(D),

and thus, Gn+1 is a β-condensing map.

It follows from Theorem 4.13 that Fix(Gn+1) is a nonempty compact set. Therefore, there

exists yn+1 ∈ Gn+1(yn+1). This implies that yn+1 ∈ Fn+1(yn+1) and yn = Rn,n+1y
n+1.

Theorem 4.24. Assume that F : Y → Pb(Y ) and Fn : Yn → Kυ(Yn) for n ∈ N, satisfy conditions

(H1)-(H4), and {‖z‖n : z ∈ Fn(y), y ∈ Yn, n ∈ N} is a bounded set. Assume further that Fn is an

u.s.c. β-condensing multivalued map for all n ∈ N. Then Fix(F ) is a nonempty set.

Proof. It follows from Theorem 4.13 that Fix(Fn) is a nonempty compact set. Proceeding in-

ductively by using Lemma 4.23, we can construct a sequence (yn)n such that yn ∈ Fix(Fn) and

yn = Rn,n+1y
n+1. It follows from our hypotheses that {‖yn‖n : n ∈ N} is a bounded set. Applying

condition (H3), we infer that there exists y ∈ Y such that yn = Rny for all n ∈ N. Since

yn = Rny ∈ Fn(Rny),

for all n ∈ N, using now (H1), we obtain that y ∈ F (y).



4.3. Applications to the abstract Cauchy problem 65

We next keep the notation y for the fixed point of F whose existence was established in Theo-

rem 4.24.

Corollary 4.25. Assume that F : Y → Pb(Y ) and Fn : Yn → Kυ(Yn), n ∈ N, satisfy the

conditions of Theorem 4.24. Let Z be a closed vector subspace of Y such that F : Z → Pc(Z).

Assume further that F satisfies the local Lipschitz condition

dH(Fx2, Fx1) ≤ L(r, x)‖x2 − x1‖,

for all x ∈ Y , r > 0, and x1, x2 ∈ Br(x). If there exists r0 > 0 such that Br0(y) ∩ Z 6= ∅ and

L(r0, y) < 1, then F has a fixed point in Z.

Proof. Let x ∈ Br0(y). Then

d(y, F (x)) ≤ dH(F (x), F (y)) ≤ L(r0, y)‖x− y‖ < ‖x− y‖,

which implies that F (x) ⊆ Br0(y). Consequently, F : Br0(y) ∩ Z → Pc(Br0(y) ∩ Z) and F is a

L(r0, y)-contraction. It follows from Theorem 4.2 that F has a fixed point in Br0(y) ∩ Z.

Corollary 4.26. Assume that F : Y → Pb(Y ) and Fn : Yn → Kυ(Yn), n ∈ N, satisfy the

conditions of Theorem 4.24. Let Z be a closed vector subspace of Y such that F : Z → Pc(Z).

Assume further that there exists r > 0 such that Br(y) ∩ Z 6= ∅ and F : Br(y) → Kυ(Br(y)) is

β-condensing. Then F has a fixed point in Z.

Proof. Since F : Br(y) ∩ Z → Kυ(Br(y) ∩ Z) is β-condensing, it follows from Theorem 4.13 that

F has a fixed point in Br(y) ∩ Z.

4.3 Applications to the abstract Cauchy problem

In this section, we establish some results of the existence of mild solutions of problem (4.1)-(4.2).

Initially we will establish the general framework of conditions under which we will study this

problem. Throughout this section, χ denotes the Hausdorff measure of noncompactness in X

and β denotes the Hausdorff measure of noncompactness in any space C([0, a], X) for a > 0.

We assume that the semigroup (T (t))t≥0 is uniformly asymptotically stable, that is, there exist

constants M ≥ 1 and ω > 0 such that

‖T (t)‖ ≤Me−ωt, t ≥ 0. (4.9)

Moreover, in what follows, we assume that f = f1 + f2, where f1 : [0,∞)×X → X and f2 is a

multivalued map from [0,∞)×X into υ(X). We assume that f1 satisfies the following conditions.

(F1) The function f1(·, x) : [0,∞) → X is strongly measurable for each x ∈ X and the function

f1(·, 0) is bounded on [0,∞).

(F2) For each t ≥ 0, the function f1(t, ·) : X → X is continuous.
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(F3) There is a function ν ∈ L1
loc([0,∞)) such that

‖f1(t, x2)− f1(t, x1)‖ ≤ ν(t)‖x2 − x1‖, a.e. t ≥ 0,

for all x2, x1 ∈ X.

4.3.1 Existence under compactness conditions

In this subsection we will study the case characterized by f2 : [0,∞) ×X → Kυ(X). We assume

that f2 satisfies the following properties:

(F4) The function f2(·, x) : [0,∞) → Kυ(X) admits a strongly measurable selection for each

x ∈ X.

(F5) For each t ≥ 0, the function f2(t, ·) : X → Kυ(X) is u.s.c.

(F6) For each r > 0, there is a function µr ∈ L1
loc([0,∞)) such that sup

t≥0

∫ t

0
e−ω(t−s)µr(s)ds <∞

and

‖f2(t, x)‖ := sup{‖v‖ : v ∈ f2(t, x)} ≤ µr(t), a.e. t ≥ 0,

for all x ∈ X with ‖x‖ ≤ r.

(F7) There exists a positive function k ∈ L1([0,∞)) such that

χ(f2(t,Ω)) ≤ k(t)χ(Ω), a.e. t ≥ 0,

for all bounded set Ω ⊆ X.

Remark 4.27. Let x(·) ∈ Cb([0,∞), X). From conditions (F4)-(F6), and applying Theorem 4.9,

we infer that the function f2(·, x(·)) : [0,∞) → Kυ(X), t 7→ f2(t, x(t)), admits a Bochner locally

integrable selection. As a consequence, the set

Sf2,x = {u ∈ L1
loc([0,∞), X) : u(t) ∈ f2(t, x(t)), t ∈ [0,∞)} 6= ∅,

and Sf2,x is convex.

Motivated by expression (4.8), we introduce the following concept of mild solution to problem

(4.1)-(4.2).

Definition 4.28. A function x(·) ∈ Cb([0,∞), X) is said to be a mild solution of problem (4.1)-

(4.2) if the integral equation

x(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x(s))ds+

∫ t

0
T (t− s)u(s)ds

is satisfied for u ∈ Sf2,x and all t ∈ [0,∞).
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When there is no possibility of confusion, we denote by (L1
loc([0,∞), X), ‖| · ‖|) the Banach

space consisting of the equivalence classes of locally integrable functions u : [0,∞)→ X such that

sup
t≥0

∫ t

0
e−ω(t−s)‖u(s)‖ds <∞, endowed with the norm

‖|u‖| = sup
t≥0

∫ t

0
e−ω(t−s)‖u(s)‖ds.

We introduce now the operator Λ : L1
loc([0,∞), X)→ Cb([0,∞), X) given by

Λu(t) =

∫ t

0
T (t− s)u(s)ds, t ≥ 0. (4.10)

It is clear that Λ is a bounded linear operator. Using Λ we can construct the multivalued map

Λ̃ : Cb([0,∞), X)→ υ(Cb([0,∞), X)) given by

Λ̃x = Λ(Sf2,x).

We next define the solution map for problem (4.1)-(4.2) as follows. Let x ∈ Cb([0,∞), X). We

define Γ(x) to be the set formed by all functions v given by

v(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x(s))ds+

∫ t

0
T (t− s)u(s)ds, t ≥ 0,

for u ∈ Sf2,x. It follows from our hypotheses that v ∈ Cb([0,∞), X). Hence, Γ is a multivalued

map from Cb([0,∞), X) into P(Cb([0,∞), X)). Furthermore, it is clear that x(·) is a mild solution

of problem (4.1)-(4.2) if and only if x(·) is a fixed point of Γ.

In order to apply our results of Section 4.2, we take Y = Cb([0,∞), X) and Yn = C([0, n], X)

for n ∈ N. The maps Rn : Y → Yn are defined by Rny = y|[0,n], and Rn,n+1 : Yn+1 → Yn are

defined by Rn,n+1y = y|[0,n] for n ∈ N. Proceeding as above, for n ∈ N and x ∈ C([0, n], X), we

define

Snf2,x = {u ∈ L1([0, n], X) : u(t) ∈ f2(t, x(t)), t ∈ [0, n]} 6= ∅.

We introduce the operator Λn : L1([0, n], X)→ C([0, n], X) given by

Λnu(t) =

∫ t

0
T (t− s)u(s)ds, 0 ≤ t ≤ n. (4.11)

It is clear that Λn is a bounded linear operator. Using Λn we can construct the multivalued map

Λ̃n : C([0, n], X)→ υ(C([0, n], X)) given by

Λ̃nx = Λn(Snf2,x).

In the following Proposition 4.29, Lemma 4.30 and Lemma 4.31 we will consider a compact

interval [0, d] ⊂ R, for d > 0. It is worth to note that previous definitions are the same with d > 0

instead of a fixed n ∈ N.

Proposition 4.29. Let d > 0. Let f2 : [0, d] ×X → Kυ(X) be a multivalued map satisfying the
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properties (F4)–(F7) with [0, d] instead of [0,∞). If x ∈ C([0, d], X), then the set

Sdf2,x = {u ∈ L1([0, d], X) : u(t) ∈ f2(t, x(t)), t ∈ [0, d]} 6= ∅,

is convex, closed and weakly compact.

Proof. Since f2 takes convex values, it is immediate that Sdf2,x is convex. We prove now that Sdf2,x
is closed. Let (un)n∈N ⊂ Sdf2,x be a sequence with un

‖·‖1−−−→
n→∞

u. Then, there exists a subsequence

(unk
)k∈N ⊂ (un)n∈N such that unk

→ u pointwise a.e. Moreover, for every k ∈ N, unk
(t) ∈

f2(t, x(t)) which is a closed set, hence u(t) ∈ f2(t, x(t)) and thus, u ∈ Sdf2,x. On the other hand,

since f2 takes compact values and satisfies condition (F6), it follows from Proposition 4.19 that

Sdf2,x is weakly compact.

Lemma 4.30. ( [53, Lemma 5.1.1.]) Let d > 0. Let f2 : [0, d]×X → Kυ(X) be a multivalued map

satisfying the properties (F4)–(F7) with [0, d] instead of [0,∞). Assume the sequences (xn)n∈N ⊂
C([0, d], X), (un)n∈N ⊂ L1([0, d], X), un ∈ Sdf2,xn, for n ≥ 1 are such that xn

‖·‖∞−−−→ x and un
w−→ u

weakly. Then u ∈ Sdf2,x.

Since T (·) is a strongly continuous operator valued function, the assertion from Lemma 4.17

remains valid for Λd, with d > 0. Hence, combining our previous remarks, we have the following

property.

Lemma 4.31. Let d > 0. Let f2 : [0,∞)×X → Kυ(X) be a multivalued map satisfying conditions

(F4)–(F7). Then Λ̃d is an u.s.c. map with convex compact values.

Proof. Notice that Λ̃d(x) = Λd(Sdf2,x) is ‖ · ‖-closed and weakly compact. In fact, by the linearity

of Λd, we have that Λd(Sdf2,x) is a convex set. Further, since Λd is norm continuous and Sdf2,x is

weakly compact, we have that Λd(Sdf2,x) is weakly compact. Thus, by Mazur’s Theorem, we obtain

the desired result.

We prove now that Λ̃d is an u.s.c. map. Let V be a closed subset of C([0, d], X). We claim

that Λ̃d
−1

+ (V ) = {x ∈ C([0, d], X) : Λ̃d(x) ∩ V 6= ∅} is closed. In fact, let (xn)n∈N ⊂ C([0, d], X) be

a sequence such that xn
‖·‖∞−−−→ x and Λ̃d(xn) ∩ V 6= 0. We take yn ∈ Λ̃N (xn) ∩ V and un ∈ Sdf2,xn ,

i.e. un(t) ∈ f2(t, xn(t)) for t ∈ [0, d], such that yn = Λd(un).

Since {xn(t) : n ∈ N} is a bounded set, it follows from (F7) that {f2(t, xn(t)) : n ∈ N} is

relatively compact. Hence, the set {un(t)}n∈N is relatively compact. Furthermore, by (F6), we

obtain that {un}n∈N is uniformly bounded. Now, using Proposition 4.19 we conclude that {un}n∈N
is weakly compact, and as a consequence, there exists a subsequence {unk

}k∈N such that unk

w−→ u

weakly in L1([0, d], X). Therefore, by Lemma 4.30 we have that u ∈ Sdf2,x. On the other hand,

since Λd(unk
)
w−→ Λd(u) weakly in C([0, d], X) and the operator Λd satisfies the condition (S2) of

Lemma 4.17, we obtain that Λd(unk
) = ynk

‖·‖∞−−−→ Λd(u). Now, since V is closed, we have that

Λd(u) ∈ Λ̃d(x) ∩ V , and thus x ∈ Λ̃d
−1

+ (V ).
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Proceeding in a similar way, we can establish the following property.

Lemma 4.32. Let f2 : [0,∞)×X → Kυ(X) be a multivalued map satisfying conditions (F4)-(F7).

Then Λ̃ is an u.s.c. map with convex closed values.

Proof. Following the proof of Lemma 4.31, we note that the assertion is a consequence from the fact

that Snf2,x is weakly compact. Since the Lebesgue’s measure of [0,∞) is σ-finite, using a standard

diagonal selection process and [19, Corollary 2.6] we conclude that Sf2,x is weakly compact.

For x ∈ C([0, n], X), we define Γn(x) as the set formed by all functions v given by

v(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x(s))ds+

∫ t

0
T (t− s)u(s)ds, t ∈ [0, n],

for u ∈ Snf2,x.

Proposition 4.33. Assume that conditions (F1)-(F7) are satisfied. Then the multivalued map

Γn : C([0, n], X)→ Kυ(C([0, n], X)) is u.s.c. for all n ∈ N, and the scheme (Γ,Γn, Rn, Rn,n+1)n∈N

satisfies conditions (H1)-(H4) from Section 4.2.

Proof. (i) To prove (H1), we consider y, z ∈ Cb([0,∞), X) such that Rny ∈ Γn(Rnz) for all n ∈ N.

This means that

y(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, z(s))ds+

∫ t

0
T (t− s)un(s)ds, t ∈ [0, n], n ∈ N,

where un ∈ Snf2,z. Applying Remark 4.1, we have that un = un+1|[0,n]. This allows us to define

u(t) = un(t) for 0 ≤ t ≤ n. Hence,

y(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, z(s))ds+

∫ t

0
T (t− s)u(s)ds, t ≥ 0.

Moreover, from (F6) it follows that u ∈ (L1
loc([0,∞), X), ‖| · ‖|), and combining this assertion with

the previous expression we conclude that y ∈ Γ(z).

(ii) We now consider n ∈ N and y ∈ C([0, n + 1], X) such that yn = Rn,n+1y ∈ Γn(yn). This

implies that

y(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, y(s))ds+

∫ t

0
T (t− s)un(s)ds, t ∈ [0, n],

for some un ∈ Snf2,yn . It follows from Remark 4.27 that there exists a locally integrable function ũ

defined on [0,∞) such that ũ ∈ Sf2,y. Defining

v(t) =

{
un(t), 0 ≤ t ≤ n,
ũ(t), n < t ≤ n+ 1,

we obtain that v(·) is an extension of un such that v ∈ Sn+1
f2,y

.

We define z(·) by

z(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, y(s))ds+

∫ t

0
T (t− s)v(s)ds, t ∈ [0, n+ 1].
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It is clear that z ∈ Γn+1(y) and y(t) = z(t) for all t ∈ [0, n]. This shows that (H2) is fulfilled.

(iii) To prove that (H3) holds, we take a sequence (yn)n such that yn ∈ C([0, n], X), yn =

Rn,n+1y
n+1, and ‖yn‖ ≤ r for some r ≥ 0 and all n ∈ N. This allows us to define y(t) = yn(t)

for 0 ≤ t ≤ n. It is clear that ‖y(t)‖ ≤ r for all t ≥ 0, which implies that y ∈ Cb([0,∞), X) and

yn = Rny for all n ∈ N.

(iv) Condition (H4) arises easily from the construction.

Finally, the fact that Γn : C([0, n], X) → Kυ(C([0, n], X)) is an u.s.c. map follows as a direct

consequence of Lemma 4.31

We are now in position to prove our first result of this section. A strongly continuous semigroup

of bounded linear operators (T (t))t≥0 is said to be immediately norm continuous if the function

T : (0,∞)→ L(X) is continuous for the norm of operators in L(X) ( [20, Definition II.4.17]).

Theorem 4.34. Let (T (t))t≥0 be an immediately norm continuous semigroup. Assume conditions

(F1)-(F7) and (4.9) hold. Assume further the following conditions are fulfilled:

M sup
t≥0

∫ t

0
e−ω(t−s)ν(s)ds+M lim inf

r>0
sup
t≥0

∫ t

0
e−ω(t−s)µr(s)

r
ds < 1, (4.12)

M
[

sup
0≤t<∞

∫ t

0
e−ω(t−s)ν(s)ds+ 2

∫ ∞
0

k(t)dt
]

< 1. (4.13)

Then there exists a mild solution y(·) of problem (4.1)-(4.2).

Proof. Let n ∈ N. It follows from our hypotheses and Proposition 4.33 that Γn is an u.s.c.

multivalued map with convex compact values.

Using (4.12) we can prove that there exists R > 0 such that Γn(BR(0, Yn)) ⊆ BR(0, Yn). In

fact, it follows from (4.12) that there exists R > 0 large enough such that

M

(
‖x0‖
R

+
1

R
sup
t≥0

∫ t

0
e−ω(t−s)‖f1(s, 0)‖ds+ sup

t≥0

∫ t

0
e−ω(t−s)ν(s)ds+ sup

t≥0

∫ t

0
e−ω(t−s)µR(s)

R
ds

)
is smaller than 1.

Let x ∈ BR(0, Yn) and v ∈ Γn(x). This implies that

v(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x(s))ds+

∫ t

0
T (t− s)u(s)ds

for u ∈ Snf2,x. Hence

‖v(t)‖ ≤ Me−ωt‖x0‖+M

∫ t

0
e−ω(t−s)‖f1(s, 0)‖ds

+ M

∫ t

0
e−ω(t−s)ν(s)dsR+M

∫ t

0
e−ω(t−s)µR(s)ds

≤ R,

for all t ≥ 0.
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Next we show that Γn is β-condensing on BR(0, Yn). Let Ω ⊂ BR(0, Yn). It follows from

Lemma 4.16 that there exists a sequence (vk)k in Γn(Ω) such that β(Γn(Ω)) = β({vk : k ∈ N}).
We can write vk ∈ Γn(xk) for some xk ∈ Ω. Using (4.11) we have

vk(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, xk(s))ds+ Λn(uk)(t), 0 ≤ t ≤ n, (4.14)

for uk ∈ Snf2,xk .

Using Lemma 4.14, we obtain

β({vk(·) : k ∈ N}) ≤M max
0≤t≤n

∫ t

0
e−ω(t−s)ν(s)dsβ({xk(·) : k ∈ N})

+ β({Λn(uk)(·) : k ∈ N}).
(4.15)

On the other hand, since uk ∈ Snf2,xk , for t ∈ [0, n] we have that uk(t) ∈ f2(t, xk(t)) a.e. This

implies that {uk : k ∈ N} is uniformly integrable and, applying condition (F7), we obtain

χ({uk(t) : k ∈ N}) ≤ k(t)χ({xk(t) : k ∈ N}), a.e. t ∈ [0, n].

Combining this estimate with Lemma 4.21, we infer that

β({Λn(uk)(·) : k ∈ N}) ≤ 2Mβ({xk : k ∈ N})
∫ n

0
k(t)dt.

Substituting in (4.15), and using (4.13), we obtain

β({vk(·) : k ∈ N}) ≤M max
0≤t≤n

∫ t

0
e−ω(t−s)ν(s)dsβ({xk(·) : k ∈ N}) + 2Mβ({xk : k ∈ N})

∫ n

0
k(t)dt

≤M
[

max
0≤t≤n

∫ t

0
e−ω(t−s)ν(s)ds+ 2

∫ n

0
k(t)dt

]
β(Ω),

which implies that Γn is a β-condensing map.

Finally, taking Z = Cb([0,∞), X) and applying Theorem 4.24, we infer the existence of a mild

solution y(·) of problem (4.1)-(4.2).

We point out that the constant R > 0 defined in the proof of Theorem 4.34 is independent of

n ∈ N.

Corollary 4.35. Assume that X is a reflexive space. Let (T (t))t≥0 be a compact semigroup.

Assume conditions (F1)-(F6), (4.9) and (4.12) hold. Then there exists a mild solution y(·) of

problem (4.1)-(4.2).

Proof. Using the reflexivity of X and the compactness of Λn, we can establish that the assertions

from Lemma 4.31 hold. Let R > 0 be the constant defined in the proof of Theorem 4.34. Using that

T (t) is a compact operator for all t > 0, we can show that Γn(BR(0, Yn)) is a relatively compact

set. We conclude the proof arguing as in the proof of Theorem 4.34.
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4.3.2 Existence under measurability conditions

We can avoid the condition that f2 has compact values used in the Theorem 4.34 applying the

Kuratowski-Ryll-Nardzewski Theorem, see Theorem 4.11.

Initially, we recall the concept of Lipschitzian map ( [76]). Let (Ω, d) be a metric space.

Definition 4.36. A multivalued map f : Ω→ P(X) is said to be:

(a) Lipschitzian if there exists L ≥ 0 such that

f(ω1) ⊆ f(ω2) + Ld(ω1, ω2)B1(0, X), (4.16)

for all ω1, ω2 ∈ Ω.

(b) Locally Lipschitzian if for every ω0 ∈ Ω there exist ε > 0 and L ≥ 0 such that (4.16) holds

for all ω1, ω2 ∈ Bε(ω0).

In particular, we can adapt the previous concept for maps defined on product spaces.

Definition 4.37. We say that a multivalued map f : [0, d]×X → P(X) is locally Lipschitzian if

for every (t0, x0) ∈ [0, d]×X there exist ε > 0 and L1, L2 ≥ 0 such that

f(t2, x2) ⊆ f(t1, x1) + (L1|t2 − t1|+ L2‖x2 − x1‖)B1(0, X),

for all |ti − t0| ≤ ε and ‖xi − x0‖ ≤ ε for i = 1, 2.

We next denote by m the Lebesgue measure on [0, d]. We say that a function u : [0, d] → X

is m-measurable if it is strongly measurable in the Bochner sense. The reader can see [45, 61] for

properties of m-measurable functions.

Proposition 4.38. Assume that X is a separable Banach space. Let f2 : [0, d] × X → P(X) be

a locally Lipschitzian map with closed values. Let x : [0, d] → X be a continuous function. Then

there exists a m-measurable function u : [0, d]→ X such that u(t) ∈ f2(t, x(t)) for all t ∈ [0, d].

Proof. Let g : [0, d]→ P(X) be given by g(t) = f2(t, x(t)). We first show that g is l.s.c. In fact, let

V ⊆ X be an open set and I = {t ∈ [0, d] : g(t)∩V 6= ∅}. If t0 ∈ I, then there exists u0 ∈ g(t0)∩V .

Since V is an open set, there exists ε > 0 such that Bε(u0) ⊂ V . Moreover, there exists ε1 > 0

such that

u0 ∈ f2(t0, x(t0)) ⊆ f2(t, x(t)) + (L1|t− t0|+ L2‖x(t)− x(t0)‖)B1(0, X),

for all t such that |t− t0| ≤ ε1 and ‖x(t)− x(t0)‖ ≤ ε1. We can take ε1 > 0 small enough so that

(L1 +L2)ε1 < ε. Since x(·) is continuous, there exists 0 < δ < ε1 such that ‖x(t)− x(t0)‖ < ε1 for

|t − t0| < δ. Combining these assertions, if |t − t0| < δ, we infer that there exists u ∈ f2(t, x(t))

that satisfies

u0 = u+ αB1(0, X),
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where 0 ≤ α < ε. Consequently, u ∈ Bε(u0) ⊂ V and g(t)∩V 6= ∅. Hence we can affirm that t ∈ I
and I is open.

It follows from the Kuratowski-Ryll-Nardzewski theorem (Theorem 4.11) that there exists a

measurable function u : [0, d]→ X such that u(t) ∈ f2(t, x(t)) for all t ∈ [0, d]. Applying now [61,

Proposition 2.2.6], we infer that u is m-measurable.

We next weaken the concept of u.s.c map.

Definition 4.39. Let Ω be a metric space and let Y be a Banach space. A multivalued map

F : Ω → P(Y ) is said to be weakly upper semi-continuous (w.u.s.c. for short) if F−1(V ) is an

open subset of Ω for all weakly open set V ⊆ Y .

It is clear from Definition 4.39 that F : Ω→ P(Y ) is w.u.s.c. if and only if F−1
+ (V ) is a closed

subset of Ω for all weakly closed set V ⊆ Y . We use this equivalence in the proof of the next

Proposition.

Proposition 4.40. Assume X is a reflexive space. Let F : X → υ(X) be a locally Lipschitzian

map with closed values that takes bounded sets into bounded sets. Then F is w.u.s.c.

Proof. Let V ⊂ X be a weakly closed set and xn ∈ F−1
+ (V ), n ∈ N, such that xn → x as n→∞.

Let yn ∈ F (xn) ∩ V . Since {yn : n ∈ N} is a bounded set, there is a subsequence (ynk
)k of (yn)n

which converges to y weakly. Since

F (xnk
) ⊆ F (x) + wk

where wk → 0 as k → ∞, we can affirm that there exists zk ∈ F (x) such that ynk
= zk + wk

and zk → y as k → ∞ weakly. Since F (x) is a closed convex set, we infer that y ∈ F (x). Hence

y ∈ F (x) ∩ V , which implies that x ∈ F−1
+ (V ).

Example 4.41. Let X = L2([0, π]), a, b : R → R, a ≤ b, functions that satisfy the Lipschitz

conditions

|a(x2)− a(x1)| ≤ a0|x2 − x1|,

|b(x2)− b(x1)| ≤ b0|x2 − x1|,

for some positive constants a0, b0, and all x1, x1 ∈ R. Let f : X → υ(X) be the multivalued function

given by

f(x) = {u ∈ X : a(x(ξ)) ≤ u(ξ) ≤ b(x(ξ)), 0 ≤ ξ ≤ π}.

Then f is a w.u.s.c. Lipschitzian map with closed bounded values.

Proof. It follows from [62, Chapter 5] that a(x(·)), b(x(·)) ∈ X for all x ∈ X. This implies that

f(x) 6= ∅. Moreover, it is easy to see that f(x) is a closed bounded set in X. Let L = max{a0, b0}.
Then

f(x2) ⊂ f(x1) + L‖x2 − x1‖B1(0, X),
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for all x1, x2 ∈ X. In fact, if u ∈ f(x2), for every ξ ∈ [0, π], we have

u(ξ) ∈ [a(x2(ξ)), b(x2(ξ))]

⊆ [a(x1(ξ))− a0|x2(ξ)− x1(ξ)|, b(x1(ξ)) + b0|x2(ξ)− x1(ξ)|]

⊆ [a(x1(ξ))− L|x2(ξ)− x1(ξ)|, b(x1(ξ)) + L|x2(ξ)− x1(ξ)|].

We define the sets

E1 = {ξ ∈ [0, π] : u(ξ) < a(x1(ξ))},

E2 = {ξ ∈ [0, π] : a(x1(ξ)) ≤ u(ξ) ≤ b(x1(ξ))},

E3 = {ξ ∈ [0, π] : b(x1(ξ)) < u(ξ)}.

Let v(ξ) = u(ξ) +L|x2(ξ)− x1(ξ)|(χE1 − χE3), where χE denotes the characteristic function of E.

Let w(ξ) = L|x2(ξ)− x1(ξ)|(χE1 − χE3). It follows from this construction that v ∈ f(x1), w ∈ X,

and

‖w‖ =

(∫ π

0
|w(ξ)|2dξ

)1/2

≤ L‖x2 − x1‖,

which shows that f is a Lipschitzian map.

Finally, we infer from Proposition 4.40 that f is w.u.s.c.

We next modify slightly conditions (F6)-(F7).

(F6’) For each r > 0, there is a function µr ∈ L2
loc([0,∞)) such that

‖f2(t, x)‖ := sup{‖v‖ : v ∈ f2(t, x)} ≤ µr(t), a.e. t ≥ 0,

for all x ∈ X with ‖x‖ ≤ r.

(F7’) There exists a positive function k ∈ L2([0,∞)) such that

χ(f2(t,Ω)) ≤ k(t)χ(Ω), a.e. t ≥ 0,

for all bounded set Ω ⊆ X.

The following consequence is immediate.

Corollary 4.42. Assume that the hypotheses from Proposition 4.38 are fulfilled, and that condition

(F6’) holds. Let u be the function whose existence was established in Proposition 4.38. Then

u ∈ L2([0, d], X).

Next we assume that the hypotheses from Corollary 4.42 hold. Proceeding as in the previous

part, for d > 0 and x ∈ C([0, d], X), we define

Sdf2,x = {u ∈ L2([0, d], X) : u(t) ∈ f2(t, x(t)), t ∈ [0, d]} 6= ∅.

We consider Λd given by (4.11) on L2([0, d], X). In similar way, for x ∈ Cb([0,∞), X) we define

Sf2,x = {u ∈ L2
loc([0,∞), X) : u(t) ∈ f2(t, x(t)), t ∈ [0,∞)} 6= ∅.
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Without possibility of confusion, in this case we denote by (L2
loc([0,∞), X), ‖|·‖|) the Banach space

consisting of the equivalence classes of locally integrable functions u : [0,∞)→ X that satisfy the

condition sup
t≥0

∫ t

0
e−ω(t−s)‖u(s)‖2ds <∞, endowed with the norm

‖|u‖| = sup
t≥0

(∫ t

0
e−ω(t−s)‖u(s)‖2ds

)1/2

.

We introduce now the operator Λ : L2
loc([0,∞), X)→ Cb([0,∞), X) given by (4.10). It is clear that

Λ is a bounded linear operator.

Remark 4.43. The assertion in Lemma 4.30 remains valid for w.u.s.c. maps. Specifically, let

F : [0, d] ×X → υ(X) be a map with closed values such that F (t, ·) is w.u.s.c. for each t ∈ [0, d].

Assume that xn ∈ C([0, d], X), xn → x0, n → ∞, and un ∈ SdF,xn is a sequence that converges

weakly to u0. Then u0 ∈ SdF,x0.

Proposition 4.44. Assume that X is a separable reflexive Banach space and that (T (t))t≥0 is an

immediately norm continuous semigroup. Let f2 : [0,∞)×X → υ(X) be a locally Lipschitzian map

with closed values such that (F6’) holds. Then Λ̃d : C([0, d], X) → Kυ(C([0, d], X)) is an u.s.c.

map.

Proof. We separate the proof in three steps.

(i) Initially we prove that Λ̃d(x) = Λd(Sdf2,x) is closed for any x ∈ C([0, d], X). Let un ∈ Sdf2,x
such that yn = Λd(un) → y as n → ∞. Since L2([0, d], X) is a reflexive space, there exists a

subsequence (unk
)k that converges weakly to some function u. Moreover, Sdf2,x is a convex and

norm closed set. This implies that Sdf2,x is a weakly closed set and u ∈ Sdf2,x. Since Λd is norm

continuous, it is also weakly continuous, and Λd(unk
)→ Λd(u) = y as k →∞.

(ii) We now prove that Λ̃d(x) is a relatively compact set. Let (un)n be a sequence in Sdf2,x.

Proceeding as in (i), there exists a subsequence (unk
)k that converges weakly to some function u

and Λd(unk
) → Λd(u) as k → ∞ weakly in C([0, d], X). This implies that Λd(unk

)(t) → Λd(u)(t)

as k → ∞ for all t ∈ [0, d]. Moreover, proceeding as in the proof of Lemma 4.21, we obtain that

{Λd(un) : n ∈ N} is an equicontinuous set.

(iii) We can argue as in [53, Corollary 5.1.2] to conclude that Λ̃d is u.s.c. Specifically, let V be a

closed subset of C([0, d], X) and xn ∈ C([0, d], X) such that xn → x as n→∞ and Λ̃d(xn)∩V 6= ∅.
We take yn ∈ Λ̃d(xn)∩ V and un ∈ Sdf2,xn such that yn = Λd(un). Since {un : n ∈ N} is a bounded

set in L2([0, d], X), there exists a subsequence (unk
)k that converges weakly to some function u.

This implies that ynk
→ y = Λd(u), k →∞, weakly. Furthermore, proceeding as in (ii), we can see

that the set ∪∞n=1Λ̃d(xn) is relatively compact. Therefore, there is a subsequence of (ynk
)k which

converges uniformly. This implies that y ∈ V . Using now Remark 4.43, we obtain that u ∈ Sdf2,x,

which in turn implies that y ∈ Λ̃d(x).

Using Proposition 4.44 in the space C([0, n];X) for n ∈ N, we can argue as in the proofs carried
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out from Proposition 4.33 and Theorem 4.34 in order to establish the following property.

Theorem 4.45. Assume that X is a separable reflexive Banach space and that (T (t))t≥0 is an

immediately norm continuous semigroup. Let f1 : [0,∞) × X → X be a function that satisfies

(F1)-(F3), and let f2 : [0,∞) × X → υ(X) be a locally Lipschitzian map with closed values such

that conditions (F6’)-(F7’) are fulfilled. Assume further that conditions (4.9), (4.12) and (4.13)

hold. Then there exists a mild solution y(·) of problem (4.1)-(4.2).

In similar way, modifying slightly the proof of Corollary 4.35, by using Theorem 4.45 instead

of Theorem 4.34, we obtain the following property.

Corollary 4.46. Assume that X is a separable reflexive Banach space and that (T (t))t≥0 is a

compact semigroup. Let f1 : [0,∞) × X → X be a function that satisfies (F1)-(F3), and let

f2 : [0,∞) × X → υ(X) be a locally Lipschitzian map with closed values such that the condition

(F6’) is fulfilled. Assume further that conditions (4.9) and (4.12) hold. Then there exists a mild

solution y(·) of problem (4.1)-(4.2).

In what follows, we will reserve the notation y(·) to denote the solution of problem (4.1)-(4.2)

established in any of Theorem 4.34, Theorem 4.45, Corollary 4.35 or Corollary 4.46. It follows

from Theorem 4.24 and its corollary that ‖y‖∞ ≤ R. From the definition of solutions, we have

y(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, y(s))ds+

∫ t

0
T (t− s)u(s)ds, 0 ≤ t <∞, (4.17)

for some u ∈ Sf2,y. Moreover, combining with Remark 4.1 we can affirm that there is a unique

u ∈ Sf2,y that verifies (4.17).

4.4 Existence of asymptotically almost periodic solutions

We next study the existence of asymptotically almost periodic solutions of (4.1)-(4.2). For general

properties of almost periodic and asymptotically almost periodic functions with values in abstract

spaces, we refer the reader to [18, 43, 85]. We only recall here the basic definitions. In the first

place, we remember that a set P is called relatively dense in R (respectively, in [0,∞)) if there

exists L > 0 so that for any interval I ⊂ R (respectively, I ⊂ [0,∞)) with length greater than or

equal to L we have I∩P 6= ∅. For example, the set of integers Z is relatively dense in R with L = 1,

the set of natural numbers N is relatively dense in [0,+∞) with L = 1 and the set {±
√
n : n ∈ N}

is relatively dense in R with L = 1. On the other hand, the set {n2 : n ∈ N} is not relatively dense

in [0,∞).

The following definition of almost prediodic function is in the sense of Harald Bohr.

Definition 4.47. A function x ∈ C(R, X) is called almost periodic (in short, a.p.) if for every

ε > 0 there exists a relatively dense subset Pε of R such that

‖x(t+ τ)− x(t)‖ ≤ ε, t ∈ R, τ ∈ Pε.
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Definition 4.48. A function z ∈ Cb([0,∞), X) is called asymptotically almost periodic (abbre-

viated, a.a.p.) if there exists w ∈ C0([0,∞), X) and an almost periodic function x(·) such that

z(t) = x(t) + w(t) for all t ≥ 0.

Remark 4.49. ( [85, Theorem 5.5]) A function f ∈ C([0,∞), X) is asymptotically almost periodic

if and only if for every ε > 0 there exists tε > 0 and a relatively dense subset Pε of [0,∞) such that

‖f(t+ ξ)− f(t)‖ ≤ ε,

for all t ≥ tε and ξ ∈ Pε.

In this chapter, AP (X) and AAP (X) denote the spaces consisting of a.p. (respectively, a.a.p.)

functions endowed with the norm of the uniform convergence. The following property is well known

( [44, Lemma 3.1]).

Lemma 4.50. Let (T (t))t≥0 be a uniformly asymptotically stable C0-semigroup on X, and let

u : [0,∞)→ X be an a.a.p. function. Then the function v : [0,∞)→ X given by

v(t) =

∫ t

0
T (t− s)u(s)ds, t ≥ 0,

also is a.a.p.

Definition 4.51. A function f ∈ C([0,∞) × X,X) is called uniformly asymptotically almost

periodic (abbreviated, u.a.a.p.) on compact sets if for every ε > 0 and every compact K ⊂ X there

exists a relatively dense subset PK,ε in [0,∞) and tK,ε > 0 such that

‖f(t+ τ, x)− f(t, x)‖ ≤ ε, t ≥ tK,ε, (τ, x) ∈ PK,ε ×K.

To establish our results, we need some properties of a.a.p. functions. We begin with the

following remark.

Remark 4.52. (a) Assume that (T (t))t≥0 is a uniformly asymptotically stable C0-semigroup on

X. Let f1 ∈ C([0,∞) ×X,X) be a function that satisfies (F3) and f1(·, 0) is bounded on [0,∞).

Let K ⊂ X be a compact set. Then∫ t

a
T (s)f1(t− s, z)ds→ 0, a→∞,

uniformly for t ≥ a and z ∈ K.

Proof. We can assume that (T (t))t≥0 satisfies (4.9). This implies that∥∥∥∫ t

a
T (s)f1(t− s, z)ds

∥∥∥ ≤ M

∫ t

a
e−ωsν(t− s)‖z‖ds+M

∫ t

a
e−ωs‖f1(t− s, 0)‖ds

≤ M‖z‖
∫ ∞

0
ν(ξ)dξe−ωa +

M

ω
sup
t≥0
‖f1(t, 0)‖e−ωa

→ 0, a→∞,

uniformly for z ∈ K and t ≥ a.
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(b) Let x : [0,∞)→ X be an a.a.p. function. Then the range of x(·) is a relatively compact set in

X.

This is a consequence of the fact that both the range of an a.p. function, and the range of a func-

tion that vanishes at infinity are relatively compact sets. The reader can see [18, Proposition 3.9]

or [85, Proposition 5.3].

Using Remark 4.52, we can establish an important property of a.a.p. functions.

Lemma 4.53. Let f1 ∈ C([0,∞)×X,X) be a uniformly asymptotically almost periodic on compact

sets function that satisfies condition (F3). Let x : [0,∞) → X be an a.a.p. function. Then the

function v : [0,∞)→ X given by

v(t) =

∫ t

0
T (t− s)f1(s, x(s))ds, t ≥ 0,

also is a.a.p.

Proof. Since the range Im(x) of x(·) is a relatively compact set, for every ε > 0, there exist a set

P relatively dense in [0,∞) and t1ε > 0 such that

‖x(t+ τ)− x(t)‖ ≤ ε, (4.18)

‖f1(t+ τ, z)− f1(t, z)‖ ≤ ε, (4.19)

for all τ ∈ P , t ≥ t1ε and z ∈ K = Im(x).

Let aε > 0. For t ≥ aε, we can write

v(t+ τ)− v(t) =

∫ aε

0
T (s)[f1(t+ τ − s, x(t+ τ − s))− f1(t+ τ − s, x(t− s))]ds

+

∫ aε

0
T (s)[f1(t+ τ − s, x(t− s))− f1(t− s, x(t− s))]ds

+

∫ t+τ

aε

T (s)f1(t+ τ − s, x(t+ τ − s))ds−
∫ t

aε

T (s)f1(t− s, x(t− s))ds.

Now we estimate each term on the right hand side of the above expression separately. We select

aε > 0 appropriately as follows. For the third and fourth terms, using Remark 4.52 we can assume

that ∥∥∥∫ t+τ

aε

T (s)f1(t+ τ − s, x(t+ τ − s))ds
∥∥∥ ≤ ε,∥∥∥∫ t

aε

T (s)f1(t− s, x(t− s))ds
∥∥∥ ≤ ε,

for all t ≥ aε and τ ∈ P . Let tε = t1ε +aε. For t ≥ tε, using (4.18) we can estimate the first term as∥∥∥∫ aε

0
T (s)[f1(t+ τ − s, x(t+ τ − s))− f1(t+ τ − s, x(t− s))]ds

∥∥∥
≤ M

∫ aε

0
e−ωsν(t+ τ − s)‖x(t+ τ − s)− x(t− s)‖ds
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≤ M

∫ ∞
0

ν(ξ)dξε.

Proceeding in similar way, using (4.19) instead of (4.18), the second term yields∥∥∥∫ aε

0
T (s)[f1(t+ τ − s, x(t− s))− f1(t− s, x(t− s))]ds

∥∥∥ ≤M ∫ aε

0
e−ωsdsε ≤ M

ω
ε.

Combining these estimates, we obtain that

‖v(t+ τ)− v(t)‖ ≤
(

2 +M

∫ ∞
0

ν(ξ)dξ +
M

ω

)
ε

for all τ ∈ P , t ≥ tε. Using Remark 4.49, we can affirm that v(·) is an a.a.p. function.

In the following statement, assuming that the hypotheses from Theorem 4.34, Theorem 4.45,

Corollary 4.35 or Corollary 4.46 are fulfilled, we denote

r = M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s)R+ µR(s)]ds.

Theorem 4.54. Assume the hypotheses from Theorem 4.34, Theorem 4.45, Corollary 4.35 or

Corollary 4.46 hold. Assume further that the following conditions are satisfied:

(i) The function f1 is uniformly asymptotically almost periodic on compact sets.

(ii) For every δ > 0 there exists a measurable function σδ : [0,∞)→ [0,∞) such that σδ1 ≤ σδ2 for

δ1 ≤ δ2 and having the following property: for every x1, x2 ∈ Cb([0,∞), X) with ‖x2−x1‖∞ ≤
δ, for every u2 ∈ Sf2,x2, there exists u1 ∈ Sf2,x1 such that

‖u2(t)− u1(t)‖ ≤ σδ(t)‖x2(t)− x1(t)‖, t ≥ 0.

(iii) For every x ∈ AAP (X) the set S̃f2,x = Sf2,x ∩AAP (X) 6= ∅.

If

M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s) + σ2r(s)]ds < 1, (4.20)

then there exists an a.a.p. mild solution of problem (4.1)-(4.2).

Proof. As it was previously explained in this section, there is a fixed point y of Γ with ‖y‖∞ ≤ R.

On the other hand, for x ∈ AAP (X), we define Γ̃(x) as the set formed by all functions v given

by

v(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x(s))ds+

∫ t

0
T (t− s)u(s)ds, t ≥ 0,

with u ∈ S̃f2,x.

Since Γ̃ is a restriction of Γ on AAP (X), we infer that Γ̃ : AAP (X) → Kυ(Cb([0,∞), X)).

Moreover, Γ̃(AAP (X)) ⊆ Kυ(AAP (X)). In fact, this is an immediate consequence of Lemma 4.50
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and Lemma 4.53. As a consequence, we can affirm that Γ̃(AAP (X) ∩ BR(0)) ⊆ Kυ(AAP (X) ∩
BR(0)).

We next estimate d(y,AAP (X)). Using (4.17) we have

y(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, y(s))ds+

∫ t

0
T (t− s)u(s)ds

= T (t)x0 +

∫ t

0
T (t− s)[f1(s, y(s))− f1(s, 0)]ds+

∫ t

0
T (t− s)f1(s, 0)ds+

∫ t

0
T (t− s)u(s)ds

for u ∈ Sf2,y. Since the function z(·) given by

z(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, 0)ds, t ≥ 0,

is a.a.p., we obtain

d(y,AAP (X)) ≤
∥∥∥∫ t

0
T (t− s)[f1(s, y(s))− f1(s, 0)]ds+

∫ t

0
T (t− s)u(s)ds

∥∥∥
∞

≤ M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s)‖y(s)‖+ µR(s)]ds

≤ M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s)R+ µR(s)]ds

= r.

Consequently, AAP (X) ∩Br(y) is a nonempty closed set.

Let xi ∈ AAP (X) ∩ Br(y), i = 1, 2. We now estimate dH(Γ̃(x2), Γ̃(x1)). Let z2 ∈ Γ̃(x2) and

u2 ∈ S̃f2,x2 be such that

z2(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x2(s))ds+

∫ t

0
T (t− s)u2(s)ds, t ≥ 0.

Using (ii), we can take u1 ∈ Sf2,x1 such that

‖u2(t)− u1(t)‖ ≤ σ2r(t)‖x2(t)− x1(t)‖, t ≥ 0,

and define z1(·) by

z1(t) = T (t)x0 +

∫ t

0
T (t− s)f1(s, x1(s))ds+

∫ t

0
T (t− s)u1(s)ds, t ≥ 0.

We obtain

‖z2(t)− z1(t)‖ ≤ M

∫ t

0
e−ω(t−s)ν(s)‖x2(s)− x1(s)‖ds+M

∫ t

0
e−ω(t−s)‖u2(s)− u1(s)‖ds

≤ M

∫ t

0
e−ω(t−s)ν(s)‖x2(s)− x1(s)‖ds+M

∫ t

0
e−ω(t−s)σ2r(s)‖x2(s)− x1(s)‖ds

≤ M

∫ t

0
e−ω(t−s)[ν(s) + σ2r(s)]ds max

0≤s≤t
‖x2(s)− x1(s)‖
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for t ≥ 0. This implies that

d(z2, Γ̃(x1)) ≤M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s) + σ2r(s)]ds‖x2 − x1‖∞.

Since the right-hand side of the above inequality only depends on x1 and x2, we conclude that

dH(Γ̃(x2), Γ̃(x1)) ≤M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s) + σ2r(s)]ds‖x2 − x1‖∞.

In addition, Γ̃(AAP (X)∩Br(y)) ⊆ AAP (X)∩Br(y). In fact, if x ∈ AAP (X)∩Br(y) and z ∈ Γ̃(x),

using (4.17) and proceeding as above, we have that

‖z − y‖∞ ≤ M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s) + σr(s)]ds‖x− y‖∞

≤ M sup
t≥0

∫ t

0
e−ω(t−s)[ν(s) + σ2r(s)]dsr

≤ r

which shows that z ∈ Br(y).

Combining (4.20) and Theorem 4.2, we infer that Γ̃ has a fixed point x in AAP (X) ∩ Br(y).

It is clear that x(·) is an a.a.p. mild solution of (4.1)-(4.2).

Next we use our previous results to study the existence of solutions of problem (4.3)-(4.5). To

model this problem in the abstract form (4.1)-(4.2), we consider the space X = L2([0, π]). We

define the operator A : D(A) ⊂ X → X by

Az(ξ) = z′′(ξ), 0 ≤ ξ ≤ π,

on D(A) = {z ∈ X : z′′ ∈ X, z(0) = z(π) = 0}. It is well known that A is the infinitesimal

generator of a compact semigroup (T (t))t≥0 that satisfies the estimate (4.9) with M = ω = 1. We

assume that ϕ ∈ X.

Example 4.55. Let f1 : [0,∞) × X → X be a function given by f1(t, x)(ξ) = f̃1(t, x(ξ)) for

0 ≤ ξ ≤ π, where f̃1 : [0,∞)× R→ R is a function that satisfies the Caratheódory conditions [62]

and

|f̃1(t, w2)− f̃1(t, w1)| ≤ ν(t)|w2 − w1|, t ≥ 0, w1, w2 ∈ R,

where ν ∈ L1
loc([0,∞)).

This implies that f1 satisfies conditions (F1)-(F3). Let f2 : X → υ(X) be the map given by

f2(x) = {u ∈ X : a(x(ξ)) ≤ u(ξ) ≤ b(x(ξ)), 0 ≤ ξ ≤ π},

where a, b are functions that satisfy the conditions considered in Example 4.41.

Under these conditions, problem (4.3)-(4.4) is modeled as (4.1)-(4.2) with x0 = ϕ. Moreover,

for u ∈ f2(x) we obtain

‖u‖ ≤ c0 + c1‖x‖,
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where c0 =
√
πmax{|a(0)|, |b(0)|} and c1 = max{a0, b0}. It shows that f2 satisfies (F6’) with

µr(t) = c1r + c0.

We assume that

sup
t≥0

∫ t

0
e−(t−s)ν(s)ds+ c1 < 1. (4.21)

Consequently, it follows from Corollary 4.46 that there exists a mild solution u(·) of problem

(4.3)-(4.5).

We assume further that f̃1 satisfies the condition

|f̃1(t, x)− f̃1(s, x)| ≤ |q(t)− q(s)||x|, s, t ≥ 0, x ∈ R, (4.22)

where q : [0,∞)→ R is an a.a.p. function. Hence we infer that f1 is uniformly a.a.p. on compact

sets, which implies that condition (i) from Theorem 4.54 is fulfilled.

On the other hand, for every x1, x2 ∈ Cb([0,∞), X) and u2 ∈ Sf2,x2 , proceeding as in the proof

of Example 4.41 we can select u1 ∈ Sf2,x1 such that

|u2(t, ξ)− u1(t, ξ)| ≤ c1|x2(t, ξ)− x1(t, ξ)| t ≥ 0, ξ ∈ [0, π],

which implies that condition (ii) from Theorem 4.54 is satisfied with σδ = c1.

Finally, since the function a(·) satisfies a Lipschitz condition, for every x ∈ AAP (X) the

function ã : [0,∞) → X given by ã(t)(ξ) = a(x(t, ξ)) also is a.a.p., which shows that Sf2,x ∩
AAP (X) 6= ∅. Combining with (4.21), and applying Theorem 4.54, we infer that there exists an

a.a.p. mild solution u(·) of problem (4.3)-(4.5).

Example 4.56. Let f1 : [0,∞) ×X → X be a function as in Example 4.55, and let f̃2 : X → X

be the map given by

f̃2(x)(ξ) = a(x(ξ)), 0 ≤ ξ ≤ π,

where a is a function that satisfies the conditions considered in Example 4.41, and for every s0 ∈ R
there exist δ, k > 0 such that

|a(s)− a(s0)| ≥ k|s− s0| (4.23)

for all s ∈ R such that |s− s0| < δ.

For fixed ε > 0, we define

f2(x) = f̃2(x+ Cε(0)) = {f̃2(x+ z) : z ∈ Cε(0)},

where Cε(0) = {z ∈ X : |z(ξ)| ≤ ε, a.e. 0 ≤ ξ ≤ π}. It is clear that Cε(0) is a closed convex subset

of X. Under these conditions, problem (4.3)-(4.4) is modeled as (4.1)-(4.2) with x0 = ϕ.

As a consequence of the Intermediate Value Theorem, the map f2 has convex values. Moreover,

it follows from (4.23) that f2(x) is closed for all x ∈ X. In addition, for u ∈ f2(x) we obtain

‖u‖ ≤ c0 + c1‖x‖,
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where c0 =
√
π|a(0)| + a0ε and c1 = a0. This shows that f2 satisfies (F6’) with µr(t) = c1r + c0.

We assume that (4.21) holds. It is also clear that f2 is a Lipschitz continuous map. Collecting

these assertions, we can apply again Corollary 4.46 to conclude that there exists a mild solution

u(·) of problem (4.3)-(4.5).

On the other hand, assume further that f1 satisfies (4.22). In similar way, using that a(·) is

Lipschitz continuous, we obtain that condition (ii) from Theorem 4.54 is satisfied with σδ = c1,

and proceeding as in Example 4.55, we infer that Sf2,x ∩ AAP (X) 6= ∅. Combining with (4.21),

and applying Theorem 4.54, we infer that there exists an a.a.p. mild solution u(·) of problem

(4.3)-(4.5).
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