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ABSTRACT
In recent years, the applications related to artificial satellites have considerably grown in several areas such as
telecommunications, astronomy and meteorology. An important point that must be taken into account to place
a satellite in orbit is the design of Attitude Control System (ACS) to control the angular position according to
a fixed reference frame. Most satellites have in their structure the presence of flexible appendices such as solar
panels, sails, or even antennas that may produce undesirable oscillations during satellite maneuvers and this can
excite the whole system’s structure. Therefore, it is important to develop an ACS that limits the excursion of the
flexible structure and meet the control requirements for attitude stabilization. In this paper, a Model Predictive
Control (MPC) scheme is proposed for ACS of a Rigid-Flexible Satellite. MPC handles structurally the system’s
constraints in problem formulation by solving at each sampling instant an optimization problem that express the
control objectives. As a result, MPC is able to track efficiently the references for attitude control by keeping the
displacement of flexible structure within predetermined limits reducing vibration of the system. Moreover, MPC
also deals with constraints on control inputs since actuators are physically bounded by its maximum allowable
value. Another important feature of the proposed control strategy is the parameterization of MPC which reduces
considerably the complexity of the optimization problem enabling short computation times. Simulation results are
shown to emphasize the efficiency of the parameterized MPC strategy and a comparison with a Linear Quadratic
Regulator (LQR) is also performed.
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1. INTRODUCTION

There are several methodologies to design satellite Attitude Control System (ACS), depending on the control
system complexity; computer simulation cannot be the more appropriate one [1]. Experimental platforms have the
important advantage of allowing the satellite dynamics representation in laboratory to accomplish experiments and
simulations to evaluate satellites ACS [2]. Experimental test has also the possibility of introducing more realism
than the simulation; but it has the difficulty of reproducing zero gravity and torque free space condition. Examples
of simulator dynamics and control system experimental investigations can be found in [3, 4]. A classic case of
a phenomenon that was not investigated experimentally before launch, was the dissipation energy effect that has
altered the satellite Explorer I rotation [5]. Several institutions and universities are investigating and testing the
ACS performance by experimental prototypes [6, 7]. In [8, 9] it was showed that the influence of the non-linearities
introduced by the slosh motion, the panel’s flexibility and the system parameters variation can degrade the control
system performance, indicating the necessity of new robust control technique. Examples of multi-objectives control
methods to design controller’s space system can be found in [10, 11].
Among these techniques, those that use Model Predictive Control (MPC) theory are interesting, since they take into
account, in the design, the constraints inherent to the model to be controlled, or to the actuators of the system. Such
constraints are easily implemented using predictive control. Several works have been performed in the control area,



using predictive control techniques, potentially in aerospace applications, showing the relevance of this technique
for this field of activity. In [12], it is shown that the main purpose of MPC method is to control plants where
the implementation of an offline control is very complicated, particularly due to inherent process constraints.
Restrictions are present in almost every type of process, such as limiting force on actuators and safety limits for
temperatures and speeds. In [13], the MPC technique was used to control the attitude of a micro satellite. The
satellite used was the European Space Agency (ESA) and the results were displayed in terms of simulations. An
approach using MPC was also proposed by [14] to control the attitude of a satellite. The authors used a hybrid
solution for the actuating devices of the system: a combination of reaction wheels and magnetic torque actuators,
in case one actuator failed, the other continued to operate, and the process would continue to be properly controlled.
Simulations were performed with the proposed control model, which proved good performance of the controller.
However, an important drawback of MPC based controller is the computation time to perform on-line optimization
which may demand more hardware processing and avoid real-time implementation for embedded applications.
In this paper, a fast MPC scheme is proposed for attitude control of a rigid-flexible satellite that takes into account
operational constraints of the system. Moreover, a parameterized approach is also developed in order to diminish
the computational burden necessary for on-line optimization. The system modeling considers the same represen-
tation used by [8] and [15] and simulation results are shown to verify the advantages of using this method and a
comparison with a Linear Quadratic Regulator (LQR) is also provided. This paper is organized as follows. First the
rigid-flexible satellite model is presented. Then, the control design of a parameterized MPC strategy is formalized.
Some simulation results are shown in the sequel and the paper ends with conclusions and future works.

2. RIGID-FLEXIBLE SATELLITE MODEL

The rigid-flexible satellite model is represented by the rotary flexible link module which consists of a rigid central
hub connected to a flexible appendage [16] and the robust performance objectives are associated with the multi-
input multi-output model [17, 18], which can be interpreted as a solar panel or a flexible antenna coupled to a rigid
satellite. Figure 1 illustrates the satellite system model.

Figure 1 – Rigid-flexible satellite model. Adapted from [15]

In this model, the rigid body of satellite is the rotor with cylindrical geometry of radius R and moment of inertia
Jr in relation to the axis of symmetry of the rotor. The flexible rod of length L and linear density µ is fixed to the
rotor and has a concentrated mass mL at the end of free extremity with moment of inertia JL in relation of rotor’s
axis. The rod also has a damping coefficient Ke and stiffness EI where E in the Young modulus and I the sectional
moment of inertia of the rod.
It is worth mentioning that inertial reference X0Y0 is to be considered, instead of non inertial one, namely XY ,
fixed to satellite’s body which rotates together with it. The angle between these two reference axis is θ(t) which
is also called rigid displacement. However, flexible rod deflects with a greater angle than θ(t). In order to model
the displacement of flexible rod, let us define the elastic rod deformation w(x, t), which is the distance between
reference XY to the some intermediate point in the rod, which is dependent on the position x along X-axis and
current time t. Then, the free rod extremity will deform w(L, t) with total displacement angle defined such as α(t).
Rotor is modeled with viscous friction coefficient bm with torque τ which is the command input.
For mathematical model of rigid-flexible satellite dynamics, the flexible rod is considered as Euler-Bernoulli beam,



where elastic deformations can be formalized according to the following partial differential equation such as:

EI
∂ 4w(x, t)

∂x4 +µ
∂ 2w(x, t)

∂ t2 = 0 (1)

This equation has some boundary conditions. The extremity of the rod fixed to rigid body has no flexible displace-
ment. In addition, there are no efforts applied at the free extremity of the rod. Then, the boundary conditions are
formalized as follows:

w(0, t) = 0
∂w(0, t)

∂x
= 0

∂ 2w(L, t)
∂x2 = 0 (2)

∂ 3w(L, t)
∂x3 − mL

EI
∂ 2w(L, t)

∂ t2 = 0

Above equations defined the Boundary Value Problem (BVP). A widely used method in the literature to solve a
BVP is the separation of variables where it is assumed that solution is a product between a function of time T (t)
and function of space X(x) such as:

w(x, t) = X(x)T (t) (3)

Replacing this solution in equation (1) and applying the boundary conditions, X(x) can be obtained [15]:

X(x) = K
[

cosh(βix)− cos(βix)−
(

cosh(βiL)+ cos(βiL)
senh(βiL)+ sen(βiL)

)
(senh(βix)− sen(βix))

]
(4)

In this function K is a normalization constant and βi are the roots of the following equation:

1+ cosh(βL)cos(βL)+
mL

µL
βL(senh(βL)cos(βL)− cosh(βL)sen(βL)) = 0 (5)

The flexible rod displacement can be therefore obtained by using the assumed-mode method which consists in
considering that flexible displacement is the sum of product between a shape function, define by ϕ(x) and a time-
dependent function η(t) for n vibration modes according to:

w(x, t) =
n

∑
i=1

ϕi(x)ηi(t) (6)

where ηi(t) are the generalized coordinates which represent how shape functions vary in time. The shape functions
must satisfy the following normalization conditions [19]:

µ

∫ L

0
ϕi(x)ϕ j(x)dx+mLϕi(L)ϕ j(L) = 0, i 6= j (7)

µ

∫ L

0
ϕ

2
i (x)dx+mLϕ

2
i (L) = 1 (8)

As a result, the shape function ϕi is the solution of Euler-Bernouli equation and constant K can be obtained by
normalization conditions (7) and (8) [19]. Thus, the natural frequencies ωi of each vibration mode can be computed
as follows:

ωi = β
2
i

√
EI
µ

(9)

The Lagrange approach is used in order to obtain the satellite dynamical equations by means of kinetic and potential
energies of the system, Ek and Ep respectively. The first one can be computed as the sum of kinetic energy of rotor,
rod and mass:

Ek = Ek(rotor)+Ek(rod)+Ek(mass) (10)

Expanding the above expression according to each part of system, Ek can be obtained:

Ek =
1
2

θ̇
2
(

Jr +µ

(∫ L

0
w2dx+

1
3
(R+L)3− 1

3
R3
)
+mL(w2

L +(R+L)2)+ JL

)
+

1
2

θ̇

(
2µ

∫ L

0
ẇ(R+ s(x))dx+2mLẇL + JL

(
∂ ẇ
∂x

)
+

1
2

(
µ

∫ L

0
ẇ2dx+mL

(
∂ ẇ
∂x

))) (11)



where function s represents the distance from the origin of coordinate system XY to a rod mass element. Then,
ϕi(x) and ηi(t) can be expressed by matrix representation such as:

φ =
[
ϕ1(x) ϕ2(x) . . . ϕn(x)

]T ; χ =
[
η1(t) η2(t) . . . ηn(t)

]T (12)

The potential energy of system is given by the following equation:

Ep =
1
2

EI
∫ L

0

(
∂ 2w
∂x2

)2

dx (13)

This system is also subject to a dissipation function of Rayleigh R such as [19]:

R =
1
2

bmθ̇
2 +

1
2

KeEI
∫ L

0

(
∂ 2ẇ
∂x2

)2

dx (14)

Since Lagrange function is defined such as L = Ek − Ep, according to Lagrangian method, L must satisfy the
following relationship:

d
dt

(
∂L
∂qi

)
− ∂L

∂qi
+

∂R
∂qi

= Γi (15)

where qi are the generalized coordinates of Lagrangian method and can be defined as q=
[
θ η1(t) η2(t) . . .ηn(t)

]
and Γ =

[
τ 0 0 . . .0

]
represents the generalized torque. Replacing L = Ek−Ep in (15) and expanding the re-

sulting expression, the satellite dynamical equations are obtained:

θ̈ [It +χ
TCrrχ]+ χ̈

T Mr f + θ̇ [2χ
TCrr χ̇ +bm] = τ (16)

θ̈Mr f +M f f χ̈− θ̇
2Crrχ +K f f χ +B f f χ̇ = 0

where constants are defined such as:

It = Jr +
1
3

µ((R+L)3−R3)+mL(R+L)2 + JL B f f = KeEI
∫ L

0

d2φ

dx2
d2φ

dx2

T

dx

Crr = µ

∫ L

0
φφ

T dx+mLφLφ
T
L K f f = EI

∫ L

0

d2φ

dx2
d2φ

dx2

T

dx (17)

M f f = µ

∫ L

0
φφ

T dx+mLφLφ
T
L +

1
2

JL
dφL

dx
dφL

dx

T
Mr f = µ

∫ L

0
φ(R+ x)dx+mL(R+L)φL +

1
2

JL
dφL

dx
dφL

dx

T

According to [15], only the first two vibration modes (9) are significant for system dynamics. For this reason, a
reduced nonlinear model based on only two vibration modes was adopted and the set of dynamic equations is
obtained as follows:

θ̈ = (τ +M(1,1)
r f K(1,1)

f f η1 +M(2,1)
r f K(2,2)

f f η2 +M(1,1)
r f B(1,1)

f f η̇1 +M(2,1)
r f B(2,2)

f f η̇2−2θ̇ η̇1η1

−2θ̇ η̇2η2−bmθ̇ −M(1,1)
r f θ̇

2
η1−M(2,1)

r f θ̇
2
η2)/(It +η

2
1 +η

2
2 −M(1,1)

r f

2
−M(2,1)

r f

2
)

η̈1 = θ̇
2
η1−K(1,1)

f f η1−B(1,1)
f f η̇1−M(1,1)

r f ((τ +M(1,1)
r f K(1,1)

f f η1 +M(2,1)
r f K(2,2)

f f η2 +M(1,1)
r f B(1,1)

f f η̇1 +M(2,1)
r f B(2,2)

f f η̇2

−2θ̇ η̇1η1−2θ̇ η̇2η2−bmθ̇ −M(1,1)
r f θ̇

2
η1−M(2,1)

r f θ̇
2
η2)/(It +η

2
1 +η

2
2 −M(1,1)

r f

2
−M(2,1)

r f

2
)) (18)

η̈2 = θ̇
2
η2−K(2,2)

f f η2−B(2,2)
f f η̇2−M(2,1)

r f ((τ +M(1,1)
r f K(1,1)

f f η1 +M(2,1)
r f K(2,2)

f f η2 +M(1,1)
r f B(1,1)

f f η̇1 +M(2,1)
r f B(2,2)

f f η̇2

−2θ̇ η̇1η1−2θ̇ η̇2η2−bmθ̇ −M(1,1)
r f θ̇

2
η1−M(2,1)

r f θ̇
2
η2)/(It +η

2
1 +η

2
2 −M(1,1)

r f

2
−M(2,1)

r f

2
))

where notation A(i, j) is used for the ith line and jth column of matrix A. The above system defines a state vector
x ∈ Rn with n = 6 such as x = [θ η1 η2 θ̇ η̇1 η̇2]

T and control input u ∈ Rnu with nu = 1 and u = τ .
Note that system (18) is highly coupled with several nonlinear terms and it will be used to simulate plant model to
obtain a more realist behavior of satellite in simulation. However, for control design, it is necessary to perform a
linearization procedure around some operating point to obtain a Linear Time Invariant (LTI) system of a classical
form ẋ(t) = Ax(t)+Bu(t), where A∈Rn×n and B∈Rn×nu are the state and input matrices respectively. Linearizing
the system (18) by Taylor method around operating point

[
θ χ

]
=
[
0 0 0 . . . 0

]
, A and B can be obtained:

A =


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn

 ; B =


∂ f1
∂u1

∂ f1
∂u2

. . . ∂ f1
∂un

∂ f2
∂u1

∂ f2
∂u2

. . . ∂ f2
∂un

...
...

. . .
...

∂ fn
∂u1

∂ fn
∂u2

. . . ∂ fn
∂un

 (19)



Thus, the resulting linear system for the first two vibration modes can be expressed by the following set of equa-
tions:

θ̈ = (τ +M(1,1)
r f K(1,1)

f f η1 +M(2,1)
r f K(2,2)

f f η2 +M(1,1)
r f B(1,1)

f f η̇1 +M(2,1)
r f B(2,2)

f f η̇2−bmθ̇)/(It −M(1,1)
r f

2
−M(2,1)

r f

2
)

η̈1 = −K(1,1)
f f η1−B(1,1)

f f η̇1−M(1,1)
r f ((τ +M(1,1)

r f K(1,1)
f f η1 +M(2,1)

r f K f f (2,2)η2

+M(1,1)
r f B(1,1)

f f η̇1 +M(2,1)
r f B(2,2)

f f η̇2−bmθ̇)/(It −M(1,1)
r f

2
−M(2,1)

r f

2
)) (20)

η̈2 = θ̇
2
η2−K(2,2)

f f η2−B(2,2)
f f η̇2−M(2,1)

r f ((τ +M(1,1)
r f K(1,1)

f f η1 +M(2,1)
r f K(2,2)

f f η2

+M(1,1)
r f B(1,1)

f f η̇1 +M(2,1)
r f B(2,2)

f f η̇2−bmθ̇)/(It −M(1,1)
r f

2
−M(2,1)

r f

2
))

The system (20) will be used therefore for MPC design as shown in next topic. First it is necessary to define the
control problem to be solved. The aim of satellite attitude control is to track the rigid deflection θ(t), now called
regulated output yr such as yr = θ(t), to a desired regulated output namely yd

r . Moreover, the flexible displacement
at rod’s extremity w(L, t) must not exceed some predetermined limits such as:

ymin
c ≤ w(L, t)≤ ymax

c (21)

where ymin
c and ymin

c are the minimum and maximum allowable values for w(L, t). Since only two vibration modes
are considered, flexible deflection can be obtained according to (6):

w(L, t) = ϕ1(L)η1(t)+ϕ2(L)η2(t) (22)

The controller must also respects the limits the control input u(t) which is the torque τ applied to the system. Then,
input constraints is formalized as follows:

umin ≤ u(t)≤ umax (23)

Last constraint concerns the input rate of change, which means that the difference between two successive values
δu(t) does not exceed the maximum and minimum bounds, namely δ max and δ min such as:

δ
min ≤ δu(t)≤ δ

max (24)

3. MODEL PREDICTIVE CONTROL DESIGN

3.1. Classical MPC Formulation
Once the system model is presented, next step consists in designing a control strategy to provide tracking perfor-
mance for attitude control and deal with constraints on control inputs and maximum allowable displacement of
flexible rod. First, the linear system obtained in previous section must be discretized at each sampling instant k,
i.e, x(k+1) = Adx(k)+Bdu(k) where Ad ∈ Rn×n and Bd ∈ Rn×nu are state and input discrete matrix respectively.
According to formulation proposed by [20], one can define the future values ũ for control input over a prediction
horizon N such as:

ũ(k) = (u(k) u(k+1) . . .u(k+N−1))T ∈ RN.nu (25)

Then, future states x̃(k) can be obtained by applying the above control sequence in the discretized system leading
to the following expression:

x̃(k)=(x(k+1) x(k+2) . . .x(k+N))T ∈RN.n (26)

At instant k+2 the state equation becomes x(k+2) = Adx(k+1)+Bdu(k+1) which is equivalent to x(k+2) =
A2

dx(k)+ [AdBd Bd ][u(k) u(k+1)]T . Considering the ith instant such as i ∈ {1, ...,N}, one can define the state
at k+ i as follows:

x(k+ i) = Φix(k)+Ψiũ(k) (27)

where Φi = Ai
d and matrix Ψi can be defined according to:

Ψi :=[Ai−1
d Bd , ...,AdBd ,Bd ]


Π

(nu,N)
1

Π
(nu,N)
2

...
Π

(nu,N)
i

 ; Π
(n,N)
i :=(On×n, ...,On×n︸ ︷︷ ︸

(i-1) terms

In×n On×n, ...,On×n︸ ︷︷ ︸
(N-i) terms

) (28)



The matrix Π
(n,N)
i ∈ Rn×(N.n) selects the ith vector of dimension n which is composed by the concatenation of N

of such vectors. However only part of the state or a linear combination of x(k) needs to be regulated or tracked.
Then, regulated output yr ∈ Rnr can be defined as follows:

yr(k) =Crx(k) (29)

where Cr ∈ Rnr×n is the output matrix and nr the dimension of regulated states. The rigid displacement θ(t) is
the only regulated output which implies nr = 1. According to [20], in MPC formulations, the cost function can be
defined depending on the state at present instant k, the prediction horizon N and the desired regulated output yd

r
such as:

J(ũ|x(k),yd
r (k),u

d) :=
N

∑
i=1
||yr(k+ i)− yd

r (k+ i)||2Qy +
N

∑
i=1
||Π(nu,N)

i ũ−ud ||2Qu (30)

where Qy ∈ Rnr×nr is a penalizing matrix for the trajectory tracking error, Qu ∈ Rnu×nu to penalize the excursion
of command ũ and ud the stationary control at steady state condition. The aim of this cost function is to weigh
the desired output and control sequence represented by the first and second sum respectively. Then, expanding
calculations on (30) based on previous definition, the cost function can be rewritten such as:

J(ũ|x(k),yd
r (k),u

d) :=
1
2

ũT Hũ+F(k)T ũ (31)

where

H := 2
N

∑
i=1

[ΨT
i CT

r QyCrΨi +(Π
(nu,N)
i )T Qu(Π

(nu,N)
i )] ; F(k) := F1x(k)+F2yd

r +F3ud

F1 := 2
N

∑
i=1

[ΨT
i CT

r QyCrΦi] ; F2 :=−2
N

∑
i=1

[ΨT
i CT

r QyΠ
(nr ,N)
i ] ; F3 := 2

N

∑
i=1

[(Π
(nu,N)
i )T Qu]

Expression (31) represents a classical Quadratic Problem (QP) where H is the Hessian matrix, which can be
computed off-line as well as matrices F1, F2 and F3. Only matrix F(k) needs to be updated because the dependency
on x(k) and yd

r which is the desired set-point. Next step consists in defining the problem’s constraints to formalize
the complete QP to be solved in MPC formulation.
The set of constrained outputs, represented by flexible displacement, was previously defined in (21) and can be
formalized according to yc :=Ccx, where Cc represents the constraint output matrix and yc must satisfy operational
constraints on outputs such as [ymin

c ,ymax
c ] which are the lower and upper bounds respectively for the outputs. As

a result, for i ∈ {1, ...,N}, expression (21) can be rewritten, i.e., ymin
c ≤ yc(k+ i) =Ccx(k+ i)≤ ymax

c and together
with (27) a new set of inequalities can be formalized as follows:

+CcΨ1
...

+CcΨN
−CcΨ1

...
−CcΨN


ũ≤



−CcΦ1
...

−CcΦN
+CcΦ1

...
+CcΦN


x(k)+



+ymax
c
...

+ymax
c

−ymin
c
...

−ymin
c


(32)

A compact form of above inequality is proposed

A1ũ≤ G1x(k)+G3 (33)

where A1, G1 and G3 are the inequality matrices related to output constraints. The second set of constraints (23)
refers to control inputs and defines physical restrictions on actuator which is represented by the torque. Therefore,
∀i ∈ {1, ...,N}, the sequence of future control actions over prediction horizon must respect the following set of
input constraints:

umin ≤ u(k+ i−1)≤ umax (34)

The last set of constraints consists in defining the limits for input variation, i.e., δ max and δ min that represents
maximum and minimum allowable values between two successive control values. This means that δ i

u = u(k+ i)−
u(k+ i−1) must satisfy the bounds on input derivatives according to δ min ≤ δ i

u ≤ δ max, ∀i ∈ {1, ...,N}. Expanding
this expression over the prediction horizon, the resulting matrix inequality is represented as follows:
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1
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
A compact matrix representation is then proposed:

A2ũ≤ G2u(k−1)+G4 (35)

where A2, G2 and G4 are the matrices related to input variation constraints.
Once the constraints and QP are defined, the constrained optimization problem for general MPC strategy can be
formalized. The aim is to find an optimized sequence for control input while handling state and input constraints.
Thus, the optimization problem to be solved is formalized:

ũopt(k) := argmin
u

[
1
2

ũT Hũ+FT (k)ũ
]

subject to:

A∗ũ≤ B∗(k) , ũmin ≤ ũ≤ ũmax
(36)

In the above representation, matrices A∗ and B∗(k) are defined such as:

A∗ =
(

A1
A2

)
; B∗(k) = G5x(k)+G6u(k−1)+G7 (37)

where G5, G6 and G7 the following matrices:

G5=

(
G1

O(2.N.nu)×n

)
G6=

(
O(2.N.nc)×nu

G2

)
G7=

(
G3
G4

)
The solution of optimization problem (36) provides the optimal control sequence ũopt and only the first term is
applied to the system, according to classical MPC definition [12].

KMPC(x(k)) = Π
(nu,N)
1 .ũopt(k) (38)

where KMPC is the optimal control law and Π
(nu,N)
1 selects the first part of optimal sequence ũopt which is scheduled

to be applied at each sampling instant.

3.2. Exponential Parameterization
The control parameterization method aims to reduce the complexity of the optimization problem since the num-
ber of degrees of freedom of classical MPC problems may increase unnecessarily. Among many possibilities for
control parameterization, the exponential strategy proposed by [20] is a potential candidate due to its simplicity
to apply while keeping equivalent performance compared to the original problem but with smaller computation
times.
The basic idea of the proposed parameterized scheme consists in providing a suitable change of input variables
in order to reduce the number of commands to solve the QP. As a result, an exponential parameterization such as
presented in [20] can be defined according to:

u j(k+ i) :=
n( j)

e

∑
l=1

[
e
−λ j(iτs)
(l−1)α+1

]
· p( j)

l ;α > 1 (39)

where p represents the new set of decision variables, the tuning parameters are represented by λ j and α , n( j)
e the

number of exponential terms, j index the j-th actuator and τs the sample time. Note that u is now defined as a
linear combination of sum of exponential terms which can be computed off-line. Thus, let us introduce component
m j,l(i) as follows:

m j,l(i) :=
n( j)

e

∑
l=1

[
e
−λ j(iτs)
(l−1)α+1

]
(40)



As a result, u j is re-written in a compact way:

u j(k+ i) := [M j(i)] · p( j) ; p( j) ∈ Rn( j)
e (41)

where M j(i) ∈ R1×n( j)
e is a vector which gathers all m j components and can also be computed off-line:

M j(i) := (m j,1(i) · · ·m j,n( j)
e
(i)) (42)

where p is defined as a new set of decision variables:

p :=


p(1) ∈ Rn(1)e

...

p(nu) ∈ Rn(nu)
e

 (43)

The matrix transformation expressed by (41) together with (43) defines, for each actuator j = {1, ...,nu}, the
following relationship:

u(k+ i) = M(i)

 p(1)
...

p(nu)

 ; with M(i) = BlockDiag
(

M j(i)
nu
j=1

)

Considering the above expression over the prediction horizon, i.e., for i = {0, ...,N−1}, ũ can be finally expressed
by the following exponential parameterization:

ũ = Πe · p ; with Πe :=

 M(0)
...

M(N−1)

 (44)

Thus, the optimization problem depending on the new set of decision variable p must be reformulated. Equations
(44) and (36) lead to a new cost function:

J(p) =
1
2

pT (
Π

T
e HΠe

)
p+
(
Π

T
e F
)T

p (45)

As a result, the new QP to be solved for the exponential parameterization is defined as follows:

p̃opt(k) := argmin
p

[J(p)] subject to:

Ared p≤ Bred(k) , ũmin ≤Πe.p≤ ũmax
(46)

where p̃opt is the solution of the new QP, Ared and Bred(k) the reduced matrices defined as:

Ared =

A∗.Πe
−Πe
+Πe

 Bred(k) =

B∗(k)
−ũmin

+ũmax


In the above expression Πe is computed previously. The resulting computational burden is substantially smaller
than standard formulation thanks to the low dimensional decision variable obtained by means of exponential pa-
rameterization. In fact, the reduction of computation time is a key issue for embedded applications specially in
systems where hardware limitations are imposed or necessary.

4. SIMULATION RESULTS

In this section, some simulation results are presented to evaluate the performance of the parameterized MPC
strategy. Simulations were carried out with Matlab-Simulink software under an Intel core i5 processor of 1,70 GHz
with 4GB RAM. Two scenarios of predictive control were performed, N = 20 and N = 60, with sampling time
τs of 20 ms. Constraints on regulated output, namely the flexible deflection w(x, t) was set to [+5,−5]cm, torque
was limited within the interval of [−2,+2]Nm and bounds of input variation defined at [−1,+1]N.m/s. The set-
point for rigid deflection θ(t) was set to 45◦. The aim consists in tracking the rigid deflection reference for attitude



control while respecting the limits on flexible rod’s displacement, torque and rate of change of control variable. It is
assumed that the whole state vector x is known. Table 1 summarizes the parameters used for numerical simulations
for system plant and MPC controller. Parameters of rigid-flexible satellite were taken according to [15].

Table 1 – Parameters used for numerical simulations

Parameters of Rigid-Flexible Satellite MPC Parameters
Parameter Value Parameter Value
Length of rod: L 1,5 m Output constraints: [ymin

c ,ymax
c ] [-5,+5] cm

Radius of rotor: R 0,05 m Input constraints: [umin,umax] [-2,+2] N.m
Viscous friction component: bm 0,15 m2/s Input Variation constraints: [δ min,δ max] [-1,+1] N.m/s
Moment of inertia of rotor: Jr 0,3 kg.m2 Prediction horizon: N 20/60
Linear density of rod: µ 0,54 kg/m Number of exponentials: ne 2
Damping coefficient: Ke 0,03 Tuning parameter: α 10
Stiffness of rod: EI 18,4 N.m2 Tuning parameter: λ 30
Mass of extremity: mL 0,25 kg Weighing Matrix: Inputs: Qu

[
0,1
]

Moment of inertia of mass - JL 0,04 kg.m2 Weighing Matrix: Regulated Output: Qy
[
100000

]
Moreover, simulations using LQR strategy were also realized in order to compare tracking performance and con-
straints handling. For each simulation scenario, restrictions on control inputs were imposed and model plant was
simulated by means of linear (20) and nonlinear (18) representations. As mentioned previously, nonlinear model
considered the two most significant vibration modes that affects the system dynamics. Then, numerical values of
system matrices defined in (17) can be obtained:

Mr f =

(
1.1402
0.0641

)
; B f f =

(
1.1067 0.0001
0.0001 62.0769

)
; K f f =

(
36.9 0

0 2069.2

)
; Crr = I2 ; M f f = I2

The first simulation scenario illustrates the system behavior under LQR controller. The weighting matrix for state
variables was set to Q = diag[100 1 1 1 1 1] and for control input the same as for MPC. Other parameters
remained unchanged. Figure 2 shows the rigid and flexible deflection as well as input torque and control variation.
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(b) Evolution of Rigid Deflection θ(t) - LQR
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(c) Evolution of Input Rate of Change δu - LQR
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Figure 2 – Simulation scenario of LQR for linear and nonlinear system model. Note that attitude control θ(t) is tracked with
overshoot of 8% (linear) and 18% (nonlinear) but constraints of maximum allowable value for w(x, t), torque input and rate of
change are not respected.



The rigid displacement is correctly tracked by LQR with some overshoot observed for both simulation scenarios,
linear and nonlinear plant. However, the controller is not able to deal with system’s constraints as can be seen in
the behavior of flexible deflection, torque and its variation. In fact, LQR is an optimal control strategy for linear
systems but with no constraints handling which explains the excursion of transient period of w(x, t), control input
u and δu.
The second simulation scenario shows the evolution of θ(t) and w(x, t) using the parameterized MPC method
with prediction horizon of 20, as shown in figure 3. It is worth noting that, in this case, the flexible displacement
respects the imposed limits for maximal deviation. Moreover, the input torque and control variation also remain
within the predetermined interval. For tracking of rigid displacement, the desired reference is attained but with
higher overshot and settling time values than LQR. This scenario also shows a closer behavior between linear and
nonlinear model.
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(b) Evolution of Rigid Deflection θ - MPC (N = 20)
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(c) Evolution of Input Rate of Change δu - MPC (N = 20)
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(d) Evolution of Flexible Deflection w(x, t) - MPC (N = 20)

Figure 3 – Simulation scenario of MPC for linear and nonlinear system model with N = 20. In this case rigid displacement is
tracked with an overshoot of 60% and 64% for linear and nonlinear plant respectively, much higher when compared with the
previous scenario. On the other hand, output constraints on w(x, t) and control input u and torque variation δu are addressed
appropriately.

Figure 4 shows the last numerical simulation which proposes the same scenario than previous case but now with
higher prediction horizon (N = 60). Again, constraints on input and output are structurally respected and almost no
difference is observed between response of linear and nonlinear model. Moreover, MPC also deals with constraints
on the rate of change of control input, avoiding abrupt variations on actuators which may increase considerably
its lifespan. It is worth emphasizing the improvement of transient period of rigid displacement, much better than
shorter prediction horizon, enabling smaller overshoot and settling time. In fact, for higher values of prediction
horizons, better system performance in terms of stability and optimality are normally expected, specially when
model-plant mismatches are not considered [12]. On the other hand, increasing prediction horizon means that a
more complex quadratic problem needs to be solved at each sampling instant which also increases the compu-
tational burden. This condition is strongly prohibitive when embedded systems are concerned, such as satellite
applications, where hardware limitation represents an important issue to be addressed. This motivates the use of
more advanced control methodologies, such as parameterized MPC strategy, in order to reduce the complexity of
the optimization problem while keeping or improving performance index compared with unconstrained control
methods.



0 2 4 6 8 10

-2

-1

0

1

2

Time (s)

Torque [N.m]

 

 

Non Linear
Linear

(a) Constrained Torque - MPC Controller (N = 60)
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(b) Evolution of Rigid Deflection θ - MPC (N = 60)
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(c) Evolution of Input Rate of Change δu - MPC (N = 60)
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Figure 4 – Simulation scenario of MPC for linear and nonlinear system model with N = 60. Note an abrupt reduction of overshot
for rigid displacement, around 3% for both models, with a settling time of 2.3 seconds, due to the increase of prediction horizon.
Flexible deflection also stabilizes faster than the previous case and stays within operational limits. It is worth mentioning the
smooth torque’s behavior leading to a softer response of θ(t) and w(x, t).

5. CONCLUSION AND FUTURE WORKS

In this paper, a parameterized MPC technique was proposed for attitude control of a rigid-flexible satellite. Nu-
merical simulations showed the efficiency of this control methodology since satellite operational constraints such
as flexible rod displacement and torque were suitably satisfied and tracking performance for attitude angle in terms
of overshoot and settling time, represented by the rigid deflection, was attained. Moreover, the exponential param-
eterization reduced the complexity of the optimization problem enabling the proposed solution to be applied to
embedded applications. Future works consist in developing a Hardware-in-the-Loop platform in order to validate
the proposed control scheme under real hardware conditions. Preliminary results are quite promising and it will be
communicated in future publications.
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