
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Domain-Specific Modeling Approach Supporting
Technology-oriented Experiments

Eneias Cordeiro da Silva

Brasília
2018



Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Domain-Specific Modeling Approach Supporting
Technology-oriented Experiments

Eneias Cordeiro da Silva

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Orientador
Prof. Dr. Vander Ramos Alves

Coorientadora
Prof.ª Dr.ª Alba Cristina Magalhães Alves de Melo

Brasília
2018



Ficha catalográfica elaborada automaticamente, 
com os dados fornecidos pelo(a) autor(a)

CSI586d
Cordeiro da Silva, Eneias
   A Domain-Specific Modeling Approach Supporting
Technology-oriented Experiments / Eneias Cordeiro da Silva;
orientador Vander Ramos Alves; co-orientador Alba Cristina
Magalhães Alves de Melo. -- Brasília, 2018.
   150 p.

   Dissertação (Mestrado - Mestrado em Informática) --
Universidade de Brasília, 2018.

   1. Experimentos controlados. 2. Experimentos orientados
a tecnologia. 3. Modelagem específica de domínio. 4.
Linguagem específica de domínio. I. Ramos Alves, Vander,
orient. II. Cristina Magalhães Alves de Melo, Alba, co
orient. III. Título.



Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Domain-Specific Modeling Approach Supporting
Technology-oriented Experiments

Eneias Cordeiro da Silva

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Prof. Dr. Vander Ramos Alves (Orientador)
CIC/UnB

Prof. Dr. Guilherme Horta Travassos Prof. Dr. Rodrigo Bonifácio de Almeida
COPPE/UFRJ CIC/UnB

Prof. Dr. Bruno Luiggi Macchiavello Espinoza
Coordenador do Mestrado em Informática

Brasília, 12 de julho de 2018



Dedicatória

Dedico este trabalho ao meu pai Agenor (in memorian) e à minha mãe Regina. Aos meus
irmãos Narciso, Dorotéia, Aline, Raquel, Jonas e Joel. À minha esposa Diesse, ao meu
filho Emmanuel e à minha filha Sophia.

iv



Agradecimentos

À Diesse, minha esposa, e ao Emmanuel, meu filho, pelo apoio incondicional e também
pela paciência em compreender os momentos de ausência. Agradeço também por me
incentivarem nos momentos de desânimo.

Aos meus pais Agenor (in memorian) e Regina, e aos meus irmãos Narciso, Dorotéia,
Aline, Raquel, Jonas e Joel, por terem sido meus primeiros professores e por servirem de
exemplo de dedicação aos estudos.

Ao meu orientador, Prof. Vander Alves, pelos ensinamentos e pela valiosa orientação
ao longo da pesquisa, sempre me desafiando a ir mais além. Estendo também os agradeci-
mentos à minha coorientadora Prof.a Alba Alves de Melo pelas valorosas contribuições.

Ao Alessandro Leite, que participou intensamente desde o início do projeto com o apoio
ao uso do Dohko, o que enriqueceu consideravelmente o trabalho. Agradeço também ao
Prof. Rodrigo Ribeiro, pelas contribuições em relação à formalização, e ao Prof. Eduardo
Nakano, pelas contribuições em relação à análise estatística.

À Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), pelo apoio na reali-
zação da visita técnica ao Departamento de Ciência da Computação e Matemática da
Universidade de Passau, Alemanha. Agradeço também ao Prof. Sven Apel pela recepção
durante a visita técnica e pelas preciosas contribuições ao trabalho.

Aos colegas de orientação André Lanna, Thiago Castro, Ricardo Lima e Junier Amorim,
pela inspiração de seus trabalhos e pelos comentários e sugestões sempre muito úteis.

Aos membros da banca, Prof. Guilherme Travasos e Prof. Rodrigo Bonifácio, pelas
sugestões e críticas que contribuíram para o aprimoramento do trabalho.

Ao Prodasen e ao Senado Federal, pela concessão de licença para capacitação, a qual
possibilitou dedicação mais intensa na pesquisa durante o período, bem como a realização
da visita técnica à Universidade de Passau.

v



“We should be taught not to wait for inspiration
to start a thing. Action always generates inspi-
ration. Inspiration seldom generates action.”

(Frank Tibolt)



Resumo

Contexto: Experimentação é um meio de produzir mudanças controladas e medir as
variáveis envolvidas no fenômeno em estudo; experimentação deve também prover dados
para suas futuras replicações. Entretanto, a condução e replicação de experimentos
orientados a tecnologia (ou seja, experimentos cujos tratamentos são aplicados aos objetos
por uma ferramenta computacional) sem suporte ferramental adequado é frequentemente
uma tarefa que consome tempo e altamente sujeita a erros. Apesar de muitas técnicas
terem sido propostas para auxiliar na condução de experimentos controlados, nenhuma
delas trata simultaneamente (1) especificações executáveis de experimentos em alto nível
de abstração; (2) execução de tratamentos e análise automatizadas a partir da especificação
do experimento; e (3) garantias formais da corretude dos resultados de acordo com a
especificação do experimento para experimentos orientados a tecnologia.

Objetivos: Os objetivos desse trabalho são os seguintes: (a) prover meios para
especificar experimentos orientados a tecnologia em alto nível de abstração; (b) possibilitar
execução e análise automatizadas dessas especificações; e (c) apresentar um modelo formal
da nossa abordagem e propriedades de corretude essenciais.

Método: Nós usamos uma abordagem Domain-Specific Modeling (DSM) para criar
uma ferramenta baseada em Web compreendendo uma Domain-Specific Language (DSL),
geradores de scripts de execução e de análise, um framework de suporte e uma infraestrutura
de execução. Um experimentador usa a DSL para especificar um experimento usando
conceitos do domínio de experimentação. A partir dessa especificação, as aplicações
correspondentes aos tratamentos subjacentes são executadas, os resultados de execução
são coletados e analisados e, finalmente, os resultados da análise são apresentados para o
experimentador. Estabelecemos a consistência desses resultados em relação à especificação
do experimento por meio da formalização e prova de propriedades de corretude essenciais
da nossa ferramenta.

Resultados: Nós avaliamos empiricamente a solução em relação a automação por
meio da replicação de três experimentos já publicados; avaliamos também o nível de
abstração por meio de uma avaliação qualitativa. Nossa avaliação empírica mostra que
a DSL é expressiva o suficiente para especificar três experimentos orientados a tecnologia
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selecionados e que a ferramenta de suporte pode ser usada para prover correta automação
da execução e da análise a partir de especificações de experimentos orientados a tecnologia.
Além disso, a DSL eleva o nível de abstração das especificações dos experimentos usando
conceitos de experimentação. A prova formal de propriedades de corretude essenciais (por
exemplo, corretude da geração do script de execução, otimização de recursos de execução
e corretude do experimento) garante que os resultados são consistentes em relação à
especificação do experimento.

Conclusão: Contribuímos com uma solução DSM e uma ferramenta correspondente
compreendendo uma DSL, geradores de scripts de execução e de análise, um framework
de suporte e uma infraestrutura de execução. A avaliação empírica e formal indica que a
solução oferece ao experimentador abstrações e suporte de automação adequados, o que
pode auxiliar na melhoria de produtividade e confiabilidade no processo de experimentação.

Palavras-chave: Experimentos controlados, Experimentos orientados a tecnologia, Mo-
delagem específica de domínio, Linguagem específica de domínio
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Abstract

Context: Experimentation is a means to produce controlled changes and to measure the
variables involved in the phenomena under study; experimentation must also provide data
to its further replication. However, conducting and replicating technology-oriented experi-
ments (i.e., experiments in which treatments are applied to objects by a computer-based
tool) without proper tool support is often a time-consuming and highly error-prone task.
Although many techniques have been proposed to help conducting controlled experiments,
none of them simultaneously addresses (1) runnable specification of experiments at a high
level of abstraction; (2) automated treatment execution and automated data analysis
from the experiment specification; and (3) formal guaranties of the correctness of results
according to an experiment specification for technology-oriented experiments.

Objective: The objectives of this work are the following: (a) provide means to specify
technology-oriented experiments at a high level of abstraction; (b) enable automated
execution and automated data analysis of such specification; and (c) present a formal
model of our approach and key correctness properties.

Method: We used a Domain-Specific Modeling (DSM) approach to create a Web-
based tool comprising a Domain-Specific Language (DSL), execution and analysis script
generators, a supporting framework, and a running infrastructure. An experimenter uses
the DSL to specify an experiment using experimentation concepts. From this specification,
applications corresponding to the underlying treatments are executed, execution results are
collected and analyzed, and, finally, the analysis results are presented to the experimenter.
We establish the consistency of such results with respect to the experiment specification
by formalizing and proving of key correctness properties of our tool.

Results: We empirically evaluated the solution with respect to automation by repli-
cating three already published experiments; we evaluated also the level of abstraction by a
qualitative assessment. Our empirical evaluation shows that the DSL is expressive enough
to specify three selected technology-oriented experiments and that the supporting tool
can be used to enable sound automation of execution and analysis from the specification
of technology-oriented experiments. In addition, the DSL raises the level of abstraction
of experiment specifications by using experimentation concepts. The formal proof of key
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correctness properties (e.g., execution script generation soundness, execution resource
optimization, and experiment soundness) assures that the results are consistent with the
experiment specification.

Conclusion: We contribute a DSM approach and corresponding tool comprising
a DSL, execution and analysis script generators, a supporting framework, and a running
infrastructure. The empirical and formal assessment indicate that the contribution provides
the experimenter with proper abstractions and automation support, which can help to
improve productivity and reliability on the experimentation process.

Keywords: Controlled experiments, Technology-oriented experiments, Domain-specific
modeling, Domain-specific language
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Chapter 1

Introduction

Empirical research is based on observations of or experimentation with real-world phenom-
ena and its measurable changes. Experimentation is a means to produce controlled changes
and to measure the variables involved in the phenomena under study. Experimentation
provides further data so that other researchers can replicate original experiments and
verify the results [Juristo and Moreno, 2013].

The purpose of controlled experiments is to conduct studies under strictly controlled
conditions. The objective is to manipulate one or more variables and to check the
effects on dependent variables. In controlled experiments, quantitative data are collected,
and statistical analyses are performed [Juristo and Moreno, 2013; Wohlin et al., 2012].
Experiments can be human-oriented or technology-oriented. In the former, a person
applies treatments to objects, whereas, in the latter, treatments are applied to objects by
a computer-based tool [Wohlin et al., 2012].

Technology-oriented experiments are important not only in software engineering but also
in other research fields, such as Bioinformatics, Engineering, Physics, and Chemistry [Chen
and Chang, 2017; Houben and Lapkin, 2015; Pavlov et al., 2014; Tabatabaei, 2016].
Technology-oriented experiments can be used in several ways. First, software can be used
to evaluate methodologies or approaches [Medeiros et al., 2016]. Moreover, software can
be used in simulation based studies [Banks, 1999]. For example, in Engineering, systems
can be simulated by using software to avoid the costs of building real systems [Tabatabaei,
2016]. In some studies, (e.g., use and occupation of the soil), evaluations cannot be
performed in real-world, so they need to use simulations [Ralha et al., 2013]. Furthermore,
software can also be used together with physical instruments. For example, Chemistry
and Physics laboratories can have instruments connected to computers to automate
experiments [Houben and Lapkin, 2015; Pavlov et al., 2014]. In this work, we focus on such
technology-oriented experiments and hereafter use experiments to refer to this context,
which includes not only in silico simulation based studies [Travassos and Barros, 2003]
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but also experiments that evaluate algorithms or computer-based tools. For example,
Lanna et al. [2018] presented a novel feature-family-based analysis strategy to compute
the reliability of all products of a software product line. To evaluate their strategy, the
authors created a tool named ReAna1 and used it to compare the performance of different
reliability analysis strategies for software product lines.

1.1 Problem Statement

Conducting an experiment is often a complex and time-consuming task. Since experi-
mentation involves many steps, such as goal definition, planning, execution, analysis, and
packaging, all steps must be performed in a systematic and consistent way to achieve a
replicable experiment and valid results [Juristo and Moreno, 2013; Wohlin et al., 2012].
In addition, since the scale of scientific problems has been increasing, this is reflected
not only on data size but also on the complexity of the computer-based tools required
to investigate such problems [Sonntag et al., 2010; Zhao et al., 2011]. Thus, such tools
must run in an infrastructure that provides computing power, data storage, and network
resources. However, deploying and executing applications in such infrastructure (e.g., a
cloud computing infrastructure) are complex tasks and require advanced computational
skills [Kephart and Chess, 2003]. Likewise, data analysis requires knowledge on statistics
so that results can be correctly analyzed and interpreted. Therefore, conducting and
replicating controlled experiments is an error-prone task.

First, experiments are usually specified in natural language. Since specifications in
natural language are not runnable, one has to code such specification into a general purpose
programming language (e.g., scripting languages). These specifications are at a low level
of abstraction, though.

Problem 1

An experimenter needs to deal with different levels of abstraction while specifying an
experiment and writing execution and analysis scripts. High-level specifications are
usually in natural language and are not runnable, whereas runnable specifications are
usually written in general purpose languages, at a low-level of abstraction.

Second, to execute applications related to the treatments defined for the hypotheses of
the experiment, execution scripts have to be manually written. This is often time-consuming
and requires knowledge on a general purpose programming language. In addition, there
may be inconsistencies between the experiment specification and its execution script. Also

1https://github.com/SPLMC/reana-spl
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data analysis is often complex, time-consuming, and requires knowledge on statistics so
that results can be correctly analyzed and interpreted.

Problem 2

An experimenter needs to manually create the execution and the analysis scripts.

Furthermore, although there are empirical evidences, none of the existing solutions
provide formal evidences of the correctness of results provided by their approaches. With
correct results we mean that the results of the overall experimentation process are consistent
with the experiment specification.

Problem 3

In the context of technology-oriented experiments, there is a lack of formal evidence of
the correctness of results in relation to the experiment specification.

There is a number of approaches supporting experiment conduction and replication,
focusing on distinct phases of the experimentation process, and supporting human-oriented
or technology-oriented experiments (Section 8.2). Although these approaches help in
conducting controlled experiments, none of them simultaneously addresses runnable
specification of experiments at a high level of abstraction; automated treatment execution
and automated data analysis from the experiment specification; and formal guaranties
of the correctness of results for technology-oriented experiments. The lack of proper tool
support may lead not only to extra time or resources consumption but also to incorrect
results.

1.2 Proposed Solution

To address this issue, we propose a Domain-Specific Modeling (DSM) approach [Kelly and
Tolvanen, 2008] supporting technology-oriented experiments. The approach is implemented
as a Web-based tool and comprises a Domain-Specific Language (DSL), execution and
analysis script generators, a supporting framework, and a running infrastructure. The DSL
empowers researchers to specify experiments using experimentation concepts. An experi-
mentation concept is a concept that is directly related to the experimentation domain (e.g.,
experimental design, treatment, experimental object, dependent variable). Execution and
analysis scripts are automatically generated from the specification. Next, applications (i.e.,
computer-based tools) related to the treatments defined in the research hypotheses of the

3



experiment are executed by the infrastructure, and results are then collected and analyzed
by the previously generated analysis script. Finally, an analysis report is presented to
the experimenter. The supporting framework integrates all the components and interacts
with the running infrastructure to start and monitor execution, and also to analyze the
results. The whole procedure of generating execution and analysis scripts, executing, and
analyzing an experiment from an experiment specification has been formally specified, and
key correctness properties have been stated. The formal proof of these properties assures
the correctness of results according to the experiment specification.

We evaluated the proposed solution with respect to level of abstraction, automation,
and correctness. To show that our DSL raises the level of abstraction of experiment
specifications, we evaluated it by an analytical comparison between DSL concepts and
experimentation concepts and by comparing the level of abstraction of experiment specifi-
cations across different studies. Although the experimenter must learn a new language,
the results suggest that the use of our DSL raises the level of abstraction of experiment
specifications. By comparing the DSL constructs with domain concepts, we found that
54.35% are high-level constructs, 15.22% are mid-level constructs, and 30.43% are low-level
constructs. To show that our tool can automate execution and analysis, we replicated
three already published experiments using our tool. The results suggest that the DSL is
expressive enough to specify technology-oriented experiments and that the proposed tool
can be used to enable sound automation of execution and analysis from the specification
of technology-oriented experiments. Finally, we assured correctness by proving key formal
properties of the formal specification.

1.3 Main Contributions

In summary, we make the following contributions:

• We present a Domain-Specific Modeling (DSM) approach that supports technology-
oriented experiments (Chapter 4), comprising a DSL (Section 4.2), execution and
analysis script generators (Sections 4.3 and 4.4), a running infrastructure (Section 4.5),
and a supporting framework (Section 4.6).

• We present a Web-based tool that implements the DSM approach (Chapter 5),
providing a means to specify runnable experiment specifications at a high level of
abstraction; automated execution, data analysis, and results presentation.

• We empirically evaluate the practical applicability of the tool to provide automation
in the experimentation process and its level of abstraction (Sections 6.1 and 6.2).
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• We present a formal model of the whole procedure and proofs of correctness (Chap-
ter 4).

1.4 Outline

The remainder of this work is organized as follows:

• Chapter 2 presents the motivation of the work and a further discussion about the
problem statement.

• Chapter 3 lays conceptual foundations for the proposed research. We present concepts
regarding Experimentation (Section 3.1), Domain-Specific Modeling (Section 3.2),
and Running Infrastructures (Section 3.3).

• Chapter 4 presents the method, comprising a DSL (Section 4.2), execution and
analysis script generators (Sections 4.3 and 4.4), a running infrastructure (Section 4.5),
and a supporting framework (Section 4.6).

• Chapter 5 presents a Web-based tool that implements the DSM approach presented in
Chapter 4. We present its functional view (Section 5.1), its architecture (Section 5.2),
and its implementation (Section 5.3).

• Chapter 6 presents a preliminary evaluation of automation (Section 6.1) and level of
abstraction (Section 6.2).

• Chapter 7 presents and analyzes the results of the evaluation of automation (Sec-
tion 7.1) and level of abstraction (Section 7.2). It also presents the discussions and
lessons learned (Section 7.3), as well the threats to validity (Section 7.4).

• Finally, Chapter 8 presents the conclusions, as well the limitations (Section 8.1),
related work (Section 8.2), and future work (Section 8.3).
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Chapter 2

Motivation

As mentioned previously, conducting an experiment is often a complex, time-consuming,
and error-prone task. This complexity is inherent in all phases of the experimentation pro-
cess. Validity and replicability must be addressed from the earliest phases onwards [Juristo
and Moreno, 2013; Wohlin et al., 2012].

Definition and planning are critical phases. Indeed, an experiment correctly designed
can gather much information from fewer executions, whereas an incorrect design can lead to
extra time and resource consumption or even invalidate the results of the experiment [Juristo
and Moreno, 2013; Wohlin et al., 2012]. Worse, experiments are usually specified in natural
language, which may lead to ambiguity, inconsistency, and lack of information [Ciolkowski,
2012]. Specifications in natural language are not executable, therefore one has to code such
specification into a general purpose programming language (e.g., a scripting language).
These specifications are then at a low level of abstraction, though. In the context of
technology-oriented experiments, ambiguity, inconsistency, and lack of information of
natural language specifications may hamper not only the coding of low-level scripts but
also future replications of the experiment.

For instance, Bak and Duggirala [2017] presented a technique to perform simulation-
equivalent reachability and safety verification of linear systems with inputs. To evaluate
their proposal, they created a tool named Hylaa (HYbrid Linear Automata Analyzer).
Their experiment was specified, executed, and measured using Python scripts1. Plots were
generated by Gnuplot. Listing 2.1 presents an excerpt of the corresponding execution
script in Phyton.

In one of their evaluations, the authors examined the effects of optimizations for
computing reachability for linear-time invariant systems with inputs. Optimizations, which
correspond to treatments, are defined in Lines 11 to 20. In fact, each optimization is
defined by appending distinct parameters to the tool (Lines 13 and 18). To measure

1http://stanleybak.com/papers/bak2017cav_repeatability.zip
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runtime, each optimization is applied to the input file (io.xml). In addition, the number
of steps in the problem is varied by changing the step size. Thus, each step size used
to run the tool corresponds to an experimental object. The first experimental object is
defined by step_size variable (Line 24). The following objects are defined in Line 36 inside
a loop (Line 26) until the timeout is reached (Line 33). Each treatment is applied to an
experimental object in Line 32. This is executed inside a loop (Line 31), which is repeated
the number of times defined in the variable num_trials (Line 10).

Likewise, Lanna et al. [2018] used Python scripts to perform an experiment comparing
the performance of different reliability analysis strategies for software product lines. An
excerpt of the experiment execution script2 is presented in Listing 2.2. The loop in Line
6 iterates over treatments (strategy) and experimental objects (spl). Each treatment is
applied to each object (Line 11). This execution is repeated the number of times defined
in number_of_runs (Line 25).

Although this approach to conducting an experiment works in both of the aforemen-
tioned studies, there are limitations. First, the execution scripts have to be written. This is
often time-consuming and requires knowledge on a general purpose programming language,
so the experimenter, in this case, should also be a programmer, which is not always the
case. As a result, experimentation concepts are not clearly defined, which hampers their
understanding and future replications of the experiment. Although variable names may
help, there is no standard way to define experimentation concepts, such as treatments,
experimental objects, and the number of tests to run. For instance, num_trials in List-
ing 2.1 and number_of_runs in Listing 2.2 were used to represent the same concept. Second,
there may be inconsistencies between the experiment specification and its execution script.
A treatment or an object could be repeated, resulting in unnecessary executions, or a
parameter could be incorrectly assigned to a treatment, resulting in wrong results. For
example, parameters assigned to the treatment Warm (Line 18, Listing 2.1) could be
incorrectly assigned to the treatment Hylaa (Line 13). Finally, there are unexplored
commonalities between scripts of distinct experiments, such as treatments, objects, and
dependent variables definitions, not to mention the application of treatments to objects and
the repetition of executions. This results in development of similar scripts with duplicated
code for distinct experiments, which could be error-prone and time-consuming.

Also data analysis is often complex, time-consuming, and requires knowledge on
statistics. Statistics is used to discover and to understand relationships between variables.
Significance tests are used to check whether the differences observed in collected data
are statistically significant [Juristo and Moreno, 2013]. A series of parametric and non-
parametric analysis methods can be used in significance testing. Although parametric

2https://github.com/SPLMC/reana-evaluator/blob/master/runner.py
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Listing 2.1: Excerpt of an execution script in Python [Bak and Duggirala, 2017]
1 def main():
2 '''main function '''
3 measure ()
4 plot("opt_comparison.gnuplot")
5 plot("tool_comparison.gnuplot")
6
7 def measure ():
8 '''run the measurements '''
9 timeout_secs = 15

10 num_trials = 10
11 tools.append('hylaa ')
12 labels.append('Hylaa ')
13 tool_params.append('-settings settings.print_output=False')
14 input_xml.append('io.xml')
15
16 tools.append('hylaa ')
17 labels.append('Warm')
18 tool_params.append('-settings settings.print_output=False ' +
19 'settings.opt_decompose_lp=False ')
20 input_xml.append('io.xml')
21 for i in xrange(len(tools)):
22 tool = tools[i]
23 with open('out/result_ {}.dat'.format(label), 'w') as f:
24 step_size = 0.2
25
26 while True:
27 timeout = False
28 total_secs = 0.0
29 measured_secs = []
30
31 for _ in xrange(num_trials):
32 res = e.run(print_stdout=True , run_tool=True)
33 if avg_runtime > timeout_secs:
34 break
35
36 step_size /= 1.3
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Listing 2.2: Excerpt of an execution script in Python [Lanna et al., 2018]
1 def run_all_analyses(number_of_runs ,in_results):
2 '''
3 Runs all analyses for all SPLs and returns an AllStats object.
4 '''
5 all_stats = []
6 for (spl , strategy), command_line in CONFIGURATIONS.iteritems ():
7 try:
8 name = strategy + " ("+spl+")"
9 print name

10 print "---------"
11 stats = run_analysis(spl , strategy , command_line ,

number_of_runs)
12
13 all_stats.append(stats)
14 print "Flushing data to replay"
15 replay.save(AllStats(all_stats), in_results)
16 test_hypotheses(AllStats(all_stats))
17 print "===================================="
18 except:
19 print "Unexpected error:",

sys.exc_info ()[0],sys.exc_info ()[1]
20 traceback.print_tb(sys.exc_info ()[2], limit=None , file=None)
21 print "Error running analysis"
22
23 return AllStats(all_stats)
24 def run_analysis(spl , strategy , command_line , number_of_runs):
25 data = [_run_for_stats(command_line) for i in

xrange(number_of_runs)]
26 return CummulativeStats(spl , strategy , data)
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Listing 2.3: Excerpt of a Gnuplot configuration file [Bak and Duggirala, 2017]
1 plot \
2 "out/result_Basic.dat" with linespoints title "Basic" ls 1, \
3 "out/result_Warm.dat" with linespoints title "Warm" ls 2 pi -1, \
4 "out/result_Decomp.dat" with linespoints title "Decomp" ls 3, \
5 "out/result_Hylaa.dat" with linespoints title "Hylaa" ls 4 pi -1, \
6 "out/result_NoInput.dat" with linespoints title "NoInput" ls 5, \

models can be more useful, they make stronger assumptions. Collected data must be
consistent with the assumptions made by the method. Misusing an analysis method can
lead to wrong results and, thus, affect the validity of the experiment [Rosenberg, 2008;
Singer et al., 2008].

To make this point clearer, a Gnuplot configuration file is presented in Listing 2.3.
This file is used to plot experiment results from data files, which are then used to draw
the conclusions of the experiment. Since this file is manually created, it may contain
wrong correspondences between treatments and execution results. In addition, there may
be inconsistencies between the execution script presented in Listing 2.1 and the Gnuplot
file presented in Listing 2.3. For instance, each Line from 2 to 6 relates a title to the
corresponding execution results. However, a title could be misassigned to a result file,
what would lead to a wrong interpretation and thus incorrect results.

Another example is presented in Listing 2.4. Lanna et al. [2018] used this script3

not only to generate plots but also to perform statistical analysis. To create this script,
some knowledge on statistics was necessary. Its purpose is to check whether two data
samples are significantly different. To make this comparison, either a non-parametric
Mann-Whitney test or a parametric T-test can be applied. The script first checks if the
assumptions made by the parametric test are met, and then apply the corresponding test.
An error in this script, for instance, using p ≤ SIGNIFICANCE instead of p ≥ SIGNIFICANCE in
Line 30 would lead to the use of a parametric test when it should not be used, and, thus,
invalidate the results.

Listing 2.4: Excerpt of a Python analysis script [Lanna et al., 2018]
1 def _compare_samples(sample1 , sample2):
2 '''
3 Returns -1 if sample2 is higher , +1 if sample1 is higher or 0 if

they are
4 not significantly different.

3https://github.com/SPLMC/reana-evaluator/blob/master/dataanalyzer.py
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5 '''
6 mean1 = mean(sample1)
7 mean2 = mean(sample2)
8 gain = max(mean1 , mean2)/min(mean1 , mean2)
9

10 if not _is_normally_distributed(sample1) or not
_is_normally_distributed(sample2):

11 normality = "Not all are normal"
12 are_equal , details = _non_normal_are_equal(sample1 , sample2)
13 else:
14 normality = "All are normal"
15 are_equal , details = _normal_are_equal(sample1 , sample2)
16
17 if not are_equal:
18 result = mean1 - mean2
19 else:
20 result = 0
21 aggregated_details = (normality ,
22 details ,
23 {"mean 1": mean1 ,
24 "mean 2": mean2 ,
25 "gain": str(gain) + "x"})
26
27 return result , aggregated_details
28 def _is_normally_distributed(sample):
29 w, p = normaltest(sample)
30 return p ≥ SIGNIFICANCE
31
32
33 def _non_normal_are_equal(sample1 , sample2):
34 u, p = mannwhitneyu(sample1 ,
35 sample2 ,
36 use_continuity=False)
37 return p ≥ SIGNIFICANCE , ("Mann -Whitney", {"U": u, "p-value": p})
38
39
40 def _normal_are_equal(sample1 , sample2):
41 equal_vars = _variances_are_equal(sample1 , sample2)
42 are_equal , details = _test_normal_equality(sample1 , sample2 ,

equal_vars)
43 return are_equal , details
44
45 def _variances_are_equal(sample1 , sample2):
46 stat , p = bartlett(sample1 , sample2)
47 return p ≥ SIGNIFICANCE
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48
49 def _test_normal_equality(sample1 , sample2 , equal_variances):
50 stat , p = ttest_ind(sample1 , sample2 , equal_var=equal_variances)
51 method = "T-test" if equal_variances else "Welch"
52 return p ≥ SIGNIFICANCE , (method , {"statistic": stat , "p-value": p})

Conducting experiments without proper tool support to automatically generate execu-
tion and analysis scripts is often a highly time-consuming and error-prone task. Although
some techniques provide support in conducting controlled experiments (Section 8.2), none
of them simultaneously provide from a specification at a high level of abstraction automated
generation of execution and analysis scripts for technology-oriented experiments.

Finally, none of the existing solutions to support technology-oriented experiments
provide formal evidence of the correctness of results they produce. With correct results
we mean that the results of the overall experimentation process are consistent with the
experiment specification. That is, analysis is evaluating execution results that actually
correspond to the hypotheses defined in the experiment specification, using a suitable
analysis procedure and the correct parameters. For instance, execution results could be
misassigned to the underlying treatments of the hypotheses, or analysis could misplace the
execution results in the analysis test, or even use an unsuitable analysis function. Either
case, would lead to incorrect results. Thus, there is still a lack of formal guaranties of the
correctness of results with respect to the experiment specification.

In the context of technology-oriented experiments, there is a lack of tool support
simultaneously addressing (1) runnable specification of experiments at a high level of
abstraction; (2) automated treatment execution and automated data analysis from the
experiment specification; and (3) formal guaranties of the correctness of results according
to an experiment specification.
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Chapter 3

Background

To better understand the problem and the proposed solution, it is useful to bear in mind
concepts regarding Experimentation (Section 3.1), Domain-Specific Modeling (Section 3.2),
and Running Infrastructures (Section 3.3). In what follows, we lay these conceptual
foundations for the proposed research.

3.1 Experimentation

Scientific research is a process of directed learning that follows an inductive-deductive
process. In the inductive step, from observations of the reality, an initial model, theory or
hypothesis is created. This model is then, in the deductive step, checked against the reality
through observation or experimentation. When the collected data and the model fail to
agree, the discrepancy can lead, by induction, to modifications in the model, and another
iteration can be initiated. Experimentation is a means to produce controlled changes
and to measure the variables involved in the phenomena under study. Experimentation
also produces data so that other researchers can replicate the experiment and verify the
results [Box et al., 2005; Juristo and Moreno, 2013].

Empirical studies can be classified as qualitative or quantitative. Qualitative studies,
or exploratory studies, aim to study objects in their natural setting and let the findings
emerge from the observations. In contrast, quantitative studies, or explanatory studies, aim
to get a numerical relationship between several variables or alternatives under examination.
In addition, quantitative studies promote comparisons and statistical analysis [Juristo and
Moreno, 2013; Wohlin et al., 2012].

Empirical studies include surveys, controlled experiments, and case studies. Surveys
are used to identify the characteristics of a broad population. Surveys can be conducted
by using questionnaires, structured interviews, or data logging. However, surveys provide
no control of the execution or the measurement. The purpose of controlled experiments is
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to conduct studies under strictly controlled conditions. The objective is to manipulate one
or more variables and check the effects on dependent variables. In controlled experiments,
quantitative data are collected, and statistical analyses are performed. In circumstances
where the subjects cannot be randomly assigned to the treatments, quasi-experiments can
be conducted. Case studies are done by observation of an ongoing project or activity in
its real-life context in situations where the context is expected to play a central role or
where the effects are expected to take a long time to appear. In these cases, controlled
experiments would be inappropriate. However, in study cases, data collection and analysis
are more open to interpretation and researcher bias [Easterbrook et al., 2008; Juristo and
Moreno, 2013; Wohlin et al., 2012].

Travassos and Barros [2003] presented a four-staged taxonomy to classify empirical
studies in software engineering:

• In vivo: such experiments involve people in their own environments. In Software
Engineering, in vivo studies are executed in software development organizations
throughout the development process and under real conditions and under real
circumstances;

• In vitro: such experiments are executed in a controlled environment, such as a labo-
ratory or a controlled community. Most in vitro studies are executed in universities,
research centers or among selected groups of software development organizations;

• In virtuo: such experiments involve the interaction among participants and a com-
puterized model of reality. The behavior of the environment with which subjects
interact is described as a model and represented by a computer program. In Soft-
ware Engineering, these studies are usually executed in universities and research
laboratories characterized by small groups of subjects manipulating simulators;

• In silico: such experiments are characterized for both the subjects and real world
being described as computer models. The environment is fully composed by numeric
models with no human interaction.

In this work, we focus on technology-oriented experiments, which includes not only
in silico simulation based studies but also other experiments that evaluate algorithms or
computer-based tools.

3.1.1 Experimentation Concepts

We may use an experiment to evaluate our beliefs, i.e., to test a theory or hypothesis. The
starting point is that we have an idea of a cause and effect relationship, which we are able
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to state formally in a hypothesis. Experiments are launched when we want control over the
situation and want to manipulate behavior directly, precisely and systematically to compare
the outcomes. Experiments may be human-oriented or technology-oriented. In human-
oriented experiments, humans apply different treatments to objects, whereas in technology-
oriented experiments, typically different tools are applied to different objects [Wohlin et al.,
2012].

To better understand the experimentation process, it is useful to bear in mind some
experimentation concepts. Some of them are also despicted in Figure 3.1.
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Figure 3.1: Illustration of an experiment (adapted from Wohlin et al. [2012])

Experimental subject. In human-based experiments, is the person who applies
the methods or techniques to experimental objects. In contrast, in technology-based
experiments, experimental subject is usually the software that applies treatments to
experimental objects [Juristo and Moreno, 2013; Wohlin et al., 2012].

Experimental Object Or experimental unit. The objects on which the experiment
is run [Juristo and Moreno, 2013; Wohlin et al., 2012].

Example. We want to study the effect of a new development method on the productivity
of the personnel. We may have chosen to introduce an object-oriented design method
instead of a function-oriented approach. The objects are the programs to be developed
and the subjects are the personnel [Wohlin et al., 2012].

Independent Variable. All variables in a process that are manipulated and controlled
are called independent variables [Wohlin et al., 2012].

Dependent Variable. Or response variable, is the outcome of an experiment that
we want to study to see the effect of the changes in some input [Juristo and Moreno, 2013;
Wohlin et al., 2012].

Example. The dependent variable in the previous example experiment is the productivity.
Independent variables may be the development method, the experience of the personnel,
tool support, and the environment [Wohlin et al., 2012].
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Factor. The factors of an experiment are any characteristics that are intentionally
varied during experimentation to examine their influence on the dependent variable [Juristo
and Moreno, 2013; Wohlin et al., 2012].

Treatment. Or alternative, or level. A treatment is one particular value of a factor.
This means that each treatment of a factor is an alternative for that factor [Juristo and
Moreno, 2013; Wohlin et al., 2012].

Example. The factor for the example experiment above, is the development method
since we want to study the effect of changing the method. We use two treatments of the
factor: the old and the new development method [Wohlin et al., 2012].

Parameter. The independent variables that are controlled at a fixed level during the
experiment to set a controlled environment. These are characteristics that we do not want
to investigate but may influence the result of the experiment [Juristo and Moreno, 2013;
Wohlin et al., 2012].

Elementary experiment. Or tests, or trials. A combination of treatment, subject
and object [Juristo and Moreno, 2013; Wohlin et al., 2012].

Example. A test can be that person N (subject) uses the new development method
(treatment) for developing program A (object). [Wohlin et al., 2012]

Experiment Design. A design of an experiment describes how the tests are organized
and run. The designs range from simple experiments with a single factor to more complex
experiments with many factors or treatments [Wohlin et al., 2012].

3.1.2 Experimentation Process

Conducting an experiment is a complex and time-consuming task. The experimenter has to
prepare, conduct, and analyze experiments properly. A process provides support in setting
up and conducting an experiment [Juristo and Moreno, 2013; Wohlin et al., 2012]. In what
follows, we describe an experimentation process (Figure 3.2). Although this process is
described for controlled experiments, it could be adapted to other empirical strategies. The
phases of the process are: scoping (definition); planning; operation (execution); analysis
and interpretation; and presentation and package.

In scoping, or definition phase, the experimenter describes the goals of the experiment,
i.e., what the experiment aims to investigate and its motivation. The goal is formulated
from the problem to be solved. Then, a hypothesis is clearly defined in terms of what
variables are going to be examined [Juristo and Moreno, 2013; Wohlin et al., 2012].

In planning phase, the hypothesis is formally stated, including a null hypothesis and
an alternative hypothesis. The context is thoroughly defined and variables and scales of
measure are determined. Next, the experimental design is defined. This design defines an
experiment as a set of tests. Each test is a combination of treatment, subject, and object.
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Figure 3.2: Experiment Process (adapted from Wohlin et al. [2012])

In addition, design defines how many tests are going to be run [Juristo and Moreno, 2013;
Wohlin et al., 2012].

Design and analysis are closely related since the statistical analyses that are going to
be applied depend on the chosen design and measurement scales defined in design. In
the same way, to design an experiment, the experimenter has to take into account which
statistical analysis must be performed to reject the null hypothesis [Juristo and Moreno,
2013; Wohlin et al., 2012].

The plan must consider validity of the results. Easterbrook et al. [2008] classifies
validity as construct validity, internal validity, external validity, and reliability. Construct
validity focuses on whether the theoretical constructions are correctly interpreted and
measured. Internal validity focuses on the design and whether the results actually follow
the data. External validity is related to the generalization of the results. Finally, reliability
is related to bias in the research. Independent researchers repeating the experiment must
yield the same results.

Planning phase is crucial to provide further replications of the experiment. In addition,
there are several types of replication. Despite the use of the term replication with distinct
meanings in literature, replications usually fall into three groups: replications that vary
little or not at all with respect to the reference experiment; replications that do vary but
still follow the same method as the reference experiment; and replications that use different
methods to verify the reference experiment results [Gómez et al., 2010]. In this work,
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we use the term replication with the meaning of exact replication: “An exact replication
is one in which the procedures of an experiment are followed as closely as possible to
determine whether the same results can be obtained” [Shull et al., 2008].

During operation, or execution phase, the first step is to prepare the subjects, the
instruments, and the material needed. Then, the subjects apply the treatments to the
objects according to the experimental design, and data are collected. Finally, the collected
data must be validated to make sure that they are correct and provide a valid picture of
the experiment [Juristo and Moreno, 2013; Wohlin et al., 2012].

In analysis and interpretation phase, data collected in execution are analyzed and
interpreted. First, descriptive statistics is applied to provide a visualization of the data
and help the experimenter to understand and interpret the data informally. Next, data
reduction is performed, which consists in considering whether the data set should be
reduced, either by removing data points or by reducing the number of variables. After
that, based on the design and on the nature of the data, hypothesis tests are performed.
Finally, results are interpreted [Juristo and Moreno, 2013; Wohlin et al., 2012].

Presentation and package is the documentation and presentation of the results. It can
be done in a paper, in a technical report, or in a package for replication of the experiment,
depending on the purpose of the experiment. A common problem is that experiments are
poorly or heterogeneously reported [Jedlitschka et al., 2008; Juristo and Moreno, 2013],
which hampers further replications, due to difficulty to find context information from the
original experiment [Wohlin et al., 2012].

3.1.3 Data Analysis and Presentation Tools

As mentioned before, data analysis is complex, time-consuming, and requires knowledge
on Statistics so that results can be correctly analyzed and interpreted. Statistics is used to
discover and to understand relationships between variables. Significance tests are used to
check whether the differences observed in collected data are statistically significant [Juristo
and Moreno, 2013]. Misusing an analysis method can lead to wrong results and, thus, affect
the validity of the experiment [Rosenberg, 2008; Singer et al., 2008]. Equally important is
presentation and package. Not only must data analysis be correct but also all scripts and
raw data must be presented, so that other researchers can easily re-analyze the data either
using the same data analysis technique to verify that no errors were made during the data
analysis phase, or with other analysis techniques to verify whether similar findings can
be obtained using the same data of a previous experiment [Gómez et al., 2010; Madeyski
and Kitchenham, 2017]. For this reason, using proper tool supporting data analysis and
presentation of results is essential to achieve valid and reproducible results.
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In Computational Science there is an initiative called reproducible research. Repro-
ducible research refers to the idea that the ultimate product of research is the paper plus
the entire environment used to produce the results in the paper (data, software, etc.).
Reproducible research aims that anything in a scientific paper should be reproducible by
the reader, including results, plots and graphs [Kovacevic, 2007; Madeyski and Kitchenham,
2017].

Furthermore, Madeyski and Kitchenham [2017] discussed the use of Reproducible
Research to address some problems found in empirical software engineering research, par-
ticularly issues related to validity and reproduction of data analysis. The authors suggested
the use of a set of free and open-source tools to use in practice to produce reproducible
research, including R [Team, 2018], LaTeX [Lamport, 1994], and Sweave [Leisch, 2002].

R is a programming language and free open-source (GNU-licensed) environment derived
from the earlier S language developed at Bell Labs. Its main application fields are statistical
computing and graphics. The main repository for software products developed by the R
community, known as packages, is the Comprehensive R Archive Network (CRAN)1. In
addition, a large number of packages also exists independently on code repositories like
GitHub [Plakidas et al., 2016]. R is important for Reproducible Research because the use of
a statistical language and open source environment provides more traceability to the details
of the statistical analysis than a closed source statistical package. In addition, typing an R
script is more reproducible and easier to communicate than using the point-and-click user
interface often adopted in other statistical packages [Madeyski and Kitchenham, 2017].

LaTeX is an ideal language for representing mathematical and statistical equa-
tions [Madeyski and Kitchenham, 2017]. LaTeX is an extremely popular system for
typesetting documents in the scientific and academic communities, and it is extensively
used in industry. An experienced user can define commands to represent mathematical
structures, for instance, and use these commands to keep the format of the mathematical
structures consistent along all the document. In addition, an user do not have to worry
about formatting while writing a document. Formatting decisions can be made and
changed at any time [Lamport, 1994]. Besides the default functions provided by LaTex, the
LaTeX community also creates and makes available additional packages in Comprehensive
TEX Archive Network (CTAN)2.

Sweave embeds the statistical analysis in LaTex. The purpose is to create dynamic
reports, which can be updated automatically if data or analysis change, while using
standard tools for both data analysis and word processing. Sweave is written in the S
language but either the open source R or the commercial Splus3 can be used for statistical

1https://cran.r-project.org/
2https://ctan.org/
3http://www.insightful.com
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data analysis. Sweave is part of every R installation (version 1.5.0 or higher). Sweave files
are easy to write and offer the full power of LaTex for high-quality typesetting. Storing
code and documentation in a single source file makes research completely reproducible
since all results can easily be verified and regenerated [Leisch, 2002].

The use of the aforementioned tools supports the iterative nature of research where
results are often revised and re-analyzed by providing mechanisms to easily update
tables and figures, thus keeping reports updated if data are changed or new analyses are
required [Madeyski and Kitchenham, 2017].

3.2 Domain-Specific Modeling

Models are used in Software Engineering to raise the level of abstraction and hide imple-
mentation details. DSM aims to raise the level of abstraction by using domain concepts.
The solution is specified by using a DSL, which is a language optimized to a given class of
problems related to the domain. From the language, complete code is then generated. This
is possible because both language and generator are domain specific [Kelly and Tolvanen,
2008; Voelter et al., 2013].

Domains can be horizontal or vertical. Horizontal domains are technical domains, such
as persistence, user interface, communication, or transactions. In contrast, vertical domains
are business domains, such as telecommunication, banking, robot control, insurance, or
retail. Each DSM solution focuses on a narrow domain because it offers substantial
gains in expressiveness with corresponding gains in productivity and reduced maintenance
costs [Kelly and Tolvanen, 2008; Mernik et al., 2005].

Using DSM brings many benefits. First, due to the higher level of abstraction and
to code generation, productivity is improved. Less code must be written and read, and
common code is reused. Improved productivity also leads to shorter time-to-market and
lower development costs. Second, the product quality is improved. Modeling languages
can include correctness rules of the domain, which makes finding and correcting bugs easier
and cheaper. Finally, DSM hides the solution complexity and implementation details.
Since the technical aspects of the solution are designed and implemented during the DSM
construction, domain experts can use the DSL to provide specifics solutions at a high level
of abstraction [Fowler, 2010; Kelly and Tolvanen, 2008; Voelter et al., 2013].

3.2.1 Domain Specific Modeling Architecture

To get the benefits from using DSM, Kelly and Tolvanen [2008] proposed a three-layer
architecture composed by DSL, Generator, and Framework.

20



A DSL is a small, usually declarative, language that offers expressive power and an
abstraction mechanism to deal with complexity in a given domain. Instead of using
concepts of a programming language, the solution is specified by using domain concepts.
Using DSL improves communication between developers and domain experts. In addition,
DSL allows domain experts to actively take part in the development process [Kelly and
Tolvanen, 2008; van Deursen et al., 2000].

The code generator plays a central role in DSM. A generator specifies how information
is extracted from models and transformed into code. Instead of having source code,
developers have source model, which are specified by using the DSM. Generated code
must be complete code. As a result, no generated code should be touched by hand. Any
changes must be done either in the models or in the generator. In addition, the generator
target is not limited to programming language code. From the model, the generator can
also generate another model or a text file in any format [Fowler, 2010; Kelly and Tolvanen,
2008].

Although generated code is complete in the sense that no further modification is
required, generated code, due to its narrow focus, usually does not provide a whole
solution for the problem. Some extra utility code or components may be necessary. These
components can be new or existing code. The domain framework provides the interface
between generated code and the underlying platform [Kelly and Tolvanen, 2008].

3.2.2 DSL Implementation

Implementing a DSL means developing a program that is able to read text written in that
DSL, parse it, process it, and then possibly interpret it or generate code in another language.
Xtext is an Eclipse framework for implementing programming languages and DSLs. It
covers all aspects of a complete language infrastructure, starting from the parser, code
generator, or interpreter, up to a complete Eclipse Integrated Development Environment
(IDE) integration with all the typical IDE features, such as syntax highlighting, background
validation, error markers, content assist, quick-fixes, and automatic build [Bettini, 2016].

To start a DSL implementation, Xtext needs only a grammar specification similar
to ANother Tool for Language Recognition (ANTLR). From this specification, Xtext
automatically generates the lexer, the parser, the Abstract Syntax Tree (AST) model, the
construction of the AST to represent the parsed program, and the Eclipse editor with
all the IDE features. AST is a convenient representation in memory of a program and
represents the abstract syntactic structure of the program [Bettini, 2016].

Xtext uses the Modeling Workflow Engine 2 (MWE2) DSL to configure the generation
of its artifacts. During the MWE2 workflow execution, Xtext generates artifacts related to
the User Interface (UI) editor for the DSL, and derive an ANTLR specification from the
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Xtext grammar with all the actions to create the AST while parsing. Xtext automatically
infers the Eclipse Modeling Framework (EMF) meta-model for the language, and using
this meta-model, generates the classes for the nodes of the AST [Bettini, 2016].

The EMF is a modeling framework that provides code generation facilities for building
tools and applications based on structured data models. Most of the Eclipse projects that
in some way deal with modeling are based on EMF since it simplifies the development of
complex software applications with its mechanisms [Steinberg et al., 2008].

Parsing a program is only the first stage in a programming language implementation.
In particular, the overall correctness of a program cannot always be determined during
parsing. Some additional static analysis can be performed only when other program parts
are already parsed. Actually, the best practice is to do as little as possible in the grammar
and as much as possible in validation. In Xtext, these validations are implemented using
a validator that performs constraint checks on the elements of an EMF model [Bettini,
2016].

After a program written in the DSL has been parsed and validated, typically code
in another language, for example, Java code, a configuration file, XML, or a text file, is
generated from the parsed EMF model, that is, the AST of that program. In all of these
cases, one needs to write a code generator. Then, Xtext automatically integrates the code
generator into the Eclipse build infrastructure [Bettini, 2016].

Although the validators and code generators can be implemented in Java, Xtend
provides useful mechanisms for writing code generators, for example, multi-line template
expressions, in addition to powerful features that make model visiting and traversing
really easy, straightforward, and natural to read and maintain. Xtend is a statically typed
language that uses the Java type system, including Java generics and Java annotations.
Xtend programs are translated into Java, and Xtend code can access all the Java libraries;
thus Xtend and Java can cooperate seamlessly [Bettini, 2016].

For instance, using Xtext, Freire et al. [2013] created a DSL named ExpDSL to
specify controlled experiments in software engineering. ExpDSL comprises four views:
process view, which allows defining the procedures of data collection from the experiment
participants; metric view, used to define the metrics that have to be collected during the
experiment execution; experimental plan view, used to define the experimental plan; and
questionnaire view, which allows defining questionnaires in order to collect quantitative
and qualitative data from participants of the experiment.

Their approach also comprises model-driven transformations that allow workflow models
generation, and a workflow execution environment. First, a researcher uses ExpDSL to
specify the experiment. Then, model-driven transformations are applied to the experiment
specification to generate customized workflows for each experiment participant. Finally,
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the workflow is executed in a Web-based workflow engine and the researchers running the
experiment can monitor the activities performed by the participants. The purpose of the
workflow is to guide participants in human-based experiments by providing instructions
for their tasks.

Complementary to Xtext, DSLFORGE [Lajmi et al., 2014] is a framework for the
generation of web textual DSL editors from the DSL grammar, validators, and code
generators created using Xtext. The generated editors are packaged into workbench
web applications based on Eclipse Remote Application Platform (RAP) and let users
create, edit, and launch transformations from models. These on-line editors are also easily
customizable and extensible.

3.3 Running Infrastructures

Since the scale of scientific problems has been increasing, this is reflected not only on
data size but also on the complexity of the computer-based tools required to investigate
such problems [Sonntag et al., 2010; Zhao et al., 2011]. Thus, such tools must run in an
infrastructure that provides computing power, data storage, and network resources. Among
many others, Docker Containers (Section 3.3.1) and Autonomic Computing (Section 3.3.2)
help in providing an infrastructure to run technology-oriented experiments.

3.3.1 Docker Containers

When it comes to technology-oriented experiments, the concept of Reproducible Research
discussed in Section 3.1.3 must also consider the execution environment. Crucial scientific
processes, such as replicating the results, extending the approach or testing the conclusions
in other contexts, or even merely installing the software used by the original researchers
can become immensely time-consuming if not impossible [Boettiger, 2015].

Docker is a platform supporting container for developing, shipping and running dis-
tributed applications. Although Docker has largely focused on the needs of businesses in
deploying web applications and the potential for a lightweight alternative to full virtual-
ization, these features have potentially important implications for systems research in the
area of scientific reproducibility [Boettiger, 2015; Chung et al., 2016].

A Docker based approach works similarly to a virtual machine image in addressing
the “Dependency Hell” problem by providing other researchers with a binary image in
which all the software has already been installed, configured and tested. A key difference
between Docker images and virtual machines is that the Docker images share the Linux
kernel with the host machine. Sharing the Linux kernel makes Docker more light-weight
and higher performing than complete virtual machines. On the other hand, any Docker
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image must be based on a Linux system with Linux-compatible software, which includes
R, Python, Matlab, and most other scientific programming needs. When running a job,
each container is assigned a unique PID; it can be observed equivalently as a process at
the view of host machine [Boettiger, 2015; Chung et al., 2016].

The steps necessary to build up a Docker image are documented within a Dockerfile.
While machine images can be very large, a Dockerfile is just a simple script file that can
be easily stored and shared. Dockefile is also suited for use with a version management
system such as Subversion or Git. In addition, it is straightforward for other users to
extend or customize the resulting image by editing the script directly [Boettiger, 2015].

3.3.2 Autonomic Computing

The term Autonomic Computing was first used by IBM in 2001 to describe self-managed
systems, in an analogy with the human autonomic nervous system. Autonomic System is
also refereed as Self-Managing System or Self-Adaptive System [Huebscher and McCann,
2008].

The growing complexity of information technology infrastructures threatens the benefits
the systems aims to provide. Installing, configuring, and executing applications in such
infrastructures are complex, time-consuming, and error-prone tasks even for experts.
Autonomic computing aims to decrease human involvement in managing resources [Horn,
2001; Huebscher and McCann, 2008; Kephart and Chess, 2003]

Autonomic Computing hides the complexity of managing infrastructure resources from
users since they have only to specify the goals of the infrastructure instead of specifying
how to achieve them. From the goals and the high level policies, autonomic systems must
be capable of running themselves, adjusting to varying circumstances and anticipating
resource needs [Horn, 2001].

The essence of Autonomic Computing is self-management. This involves self-
configuration, self-optimization, self-healing, and self-protection [Horn, 2001; Kephart and
Chess, 2003]. First, with self-configuration, autonomic systems will configure themselves
automatically according to the user’s goals and high-level policies. This includes installing,
configuring, and integrating large complex systems. Second, self-optimization means that
autonomic system will continuously seek for improving their operation. Furthermore, an
autonomic system with self-healing will detect, diagnose, and repair localized problems
resulting from failures in hardware or software. Finally, self-protection means that an
autonomic system will protect the whole system against large-scale problems arising from
malicious attacks or cascade failures. In addition, the system will, based on early reports
from sensors, anticipate problems to avoid or mitigate them.
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Figure 3.3: Autonomic properties implemented by Dohko [Leite et al., 2016]

For instance, Leite et al. [2017] proposed an autonomic and goal-oriented system, namely
Dohko. As depicted in Figure 3.3, Dohko follows a declarative strategy to provide self-
configuration, self-healing, and context-awareness. The users describe their applications,
requirements, and constraints in an Application Descriptor. Then, from the Application
Descriptor, the system creates and configures the whole computing environment, monitors
the availability and state of the nodes through self-healing, and connects the nodes taking
into account their locations. This allows users to concentrate on their objectives rather
than on dealing with cloud or system administration issues.

In this chapter, we layed the conceptual foundations for our research, including
Experimentation (Section 3.1), Domain-Specific Modeling (Section 3.2), and Running
Infrastructures (Section 3.3). These concepts are useful to better understand the proposed
solution, which is described in the following chapters.
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Chapter 4

Method

Our objective is to provide a solution simultaneously addressing (1) runnable specification
of experiments at a high level of abstraction; (2) automated treatment execution and
automated data analysis from the experiment specification; and (3) formal guaranties of
the correctness of results according to an experiment specification for technology-oriented
experiments. To adress the aforementioned problems, we present a DSM-based solution,
which comprises a DSL (Section 4.2), an experiment execution script generator (Section 4.3),
an analysis script generator (Section 4.4), a running infrastructure (Section 4.5), and a
supporting framework (Section 4.6). To assure that the experiment results provided by our
model are consistent with the experiment specification, we also provide formal definitions
and key correctness properties (Sections 4.3 and 4.4).

4.1 Overview

We present a DSM-based solution as depicted in Figure 4.1. Initially, we created a DSL,
execution and analysis scripts generators, and a supporting framework. The DSL is then
used by other researchers to specify an experiment.

In the DSL, an experiment comprises a set of research hypotheses, each of which is a
statement on the measured effects of treatments. To determine the effect of treatments, a
research design defines how to apply them to experimental objects; the effect on dependent
variables is measured by the corresponding instrumentation. The resulting data points are
analyzed to confirm or refute the hypotheses according to statistical tests corresponding
to the type of statement on the research hypotheses.

The DSL allows the researcher to specify an experiment focusing mostly on the domain
at hand abstracting from low-level details, this way, addressing Problem 1. Validators
check the experiment specification in the DSL for syntactic and type-level consistency.
Then, the generator uses this specification to create an execution script, which reflects the
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design of the experiment and includes all information required to run applications (i.e.,
computer-based tools) related to the treatments defined in the research hypotheses. The
generator also produces an analysis script referring to all statistical tests required to test
the hypotheses of the experiment. This frees the researcher from the low-level details of
manually creating execution and analysis scripts, this way, addressing Problem 2.

The running infrastructure executes the experiment execution script producing a series
of data points. The framework monitors execution and collects partial results. After
execution, the framework automatically collects and analyzes data using the previously
generated analysis script to confirm or refute the hypotheses specified in the experiment
specification. Automated analysis includes significance testing and generation of mea-
surements and plots from data. This helps researchers in performing descriptive analysis,
hypothesis testing, and interpreting the results. It is important to note that all of the
results are consistent with the experiment specification, which is guaranteed by formal
specification and proof of correctness properties, this way, addressing Problem 3. Finally,
an analysis report is presented to the experimenter, which packages and presents results
and conclusions of the experiment, as well a lab package for future replications.

Although our solution helps in these tasks by providing an analysis report, the generated
scripts, and the execution results, the experimenter still has to perform some manual tasks,
such as interpreting the results, drawing the conclusions, writing replication instructions,
and publishing the lab package.

4.2 The DSL

Following an action research method [Easterbrook et al., 2008], we developed the DSM
solution inspired by the experimental challenges reported by a colleague in our research
group [Lanna et al., 2018]. Our DSL is partially based on ExpDSL [Freire et al., 2013], and
extends it with new constructs for technology-oriented experiments; theirs was designed for
human-oriented experiments. We choose ExpDSL because it has been already empirically
evaluated and successfully used in a number of experiments [Freire et al., 2014].

The syntax of the DSL, containing the main constructs of the language, is presented
in Listing 4.1. We represent types as records, and we write e.hypotheses to access the
data stored at field hypotheses of a given experiment e ∈ E, for example. In addition, we
use overlines to represent lists. For instance, hypotheses are represented by type H. So,
H represents a list of hypotheses. The only exception is EX (Line 6, Listing 4.2), which
actually is a set of executions EX . We also assume the existence of primitive types, such
as String, PosInt, and Float.

27



Input/OutputControl flow Activity Artifact Fork/Join

Figure 4.1: Proposed DSM-based solution

Listing 4.1: DSL Syntax
1 E ::= {hypotheses : H , design : D, treatments : T , objects : O, dependentVariables : DV }
2 H ::= {name : String, dependentVariable : DV , treatment1 : T , treatment2 : T}
3 D ::= {runs : PosInt, designFunction : T ×O → (T ,O)}
4 T ::= {name : String, command : String}
5 O ::= {name : String, argument : String}
6 DV ::= {name : String, instrument : String}

An experiment specification E comprises a list of research hypotheses H, an exper-
imental design D, a list of treatments T , a list of experimental objects O, and a list of
dependent variables DV (Line 1). Each research hypothesis compares the values of a
dependent variable DV corresponding to the execution of each treatment T (Line 2).
The experimental design D comprises the number of runs (i.e., the number of times each
treatment is applied to the same object) and a design function (Line 3). The design
function defines how treatments are applied to experimental objects. For each treatment,
a related command is specified (Line 4). This command represents the command line used
to run that treatment in the infrastructure. Likewise, for each experimental object O,
an argument is defined (Line 5), and, for each dependent variable DV , an instrument is
specified (Line 6). The instrument defines how to measure the corresponding dependent
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variable in the infrastructure. This model description (abstract syntax) is complemented
by the following definition of well-formedness:

Definition 1 (Experiment specification well-formedness). An experiment specification E
is well-formed, denoted by wf (e), if and only if all treatments and dependent variables
referred to in its hypotheses are defined, and each hypothesis compares distinct treatments.
In addition, each hypothesis, treatment, object, and dependent variable is specified with a
unique name; each treatment has a distinct valid command; each object has a distinct
valid argument; and each dependent variable has a distinct valid instrument.

∀e : E · wf (e) ⇐⇒ (∀h ∈ e.hypotheses·

h.dependentVariable ∈ e.dependentVariables ∧

h.treatment1 ∈ e.treatments ∧

h.treatment2 ∈ e.treatments ∧

h.treatment1 6= h.treatment2 ) ∧

(∀rh1 , rh2 ∈ e.hypotheses · rh1 6= rh2 =⇒

rh1 .name 6= rh2 .name)∧

(∀tr1 , tr2 ∈ e.treatments · tr1 6= tr2 =⇒

tr1 .name 6= tr2 .name ∧ tr1 .command 6= tr2 .command) ∧

(∀o1 , o2 ∈ e.objects · o1 6= o2 =⇒

o1 .name 6= o2 .name ∧ o1 .argument 6= o2 .argument) ∧

(∀dv1 , dv2 ∈ e.dependentVariables · dv1 6= dv2 =⇒

dv1 .name 6= dv2 .name ∧ dv1 .instrument 6= dv2 .instrument)

4.3 Experiment Execution Script Generation and Ex-
periment Execution

An execution script ES comprises a list of applications A (Line 1, Listing 4.2). Each
application is defined by an instrument, related to a dependent variable, a command,
related to a treatment, and an argument, related to an object (Line 2). In addition, an
execution EX consists of a dependentVariable, a treatment, and an object (Line 3), whereas
an execution result ER comprises the instrument, the command, and the argument used
to run the application, and also the value resulting of its execution (Line 4).
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Listing 4.2: Execution Script and Execution Model
1 ES ::= {applications : A}
2 A ::= {instrument : String, command : String, argument : String}
3 EX ::= {dependentVariable : DV , treatment : T , object : O}
4 ER ::= {instrument : String, command : String, argument : String, value : Float}
5 generateExecutionScript : E → ES
6 applyDesign : D × H × O → EX
7 generateApplication : EX → A
8 execute : ES → ER

Function generateExecutionScript (Line 1, Algorithm 1) uses as argument an exper-
iment specification and generates the execution script ES . The first step is to apply
function applyDesign (Line 5) using the experimental design, the hypotheses, and the
objects defined in the experiment specification as arguments. It returns a set of exe-
cutions EX . From each execution (Lines 7–12), an application is generated by using
generateApplication (Line 8). Then, each application is repeated the number of times
defined in the experimental design (Lines 9–11). Finally, an execution script is created
with all the generated applications (Lines 13–14).

Function applyDesign (Line 17) applies, for each hypothesis (Lines 19–30),
designFunction to the treatments of that hypothesis and to the experimental ob-
jects (Line 22). This results in a series of treatment and object pairs related by
the design function. From each pair (Lines 23–29), an execution EX is created (Line 24)
using its treatment (Line 25), its object (Line 26), and the dependent variable of the
corresponding hypothesis (Line 27).

Function generateApplication (Line 33) generates an application A from an execution
EX . First, an application A is created (Line 34). Then, the command of the application is
assigned with the corresponding command from the treatment of the execution (Line 35),
the argument of the application is assigned with the corresponding argument from the
object of the execution (Line 36), and the instrument of the application is assigned with
the corresponding instrument from the dependent variable of the execution (Line 37).

Definition 2 (Execution script well-formedness). Every execution script is well-formed.

∀es : ES · wf (es)

The generation of the execution script must assure that, given a well-formed experiment
specification (Definition 1), the resulting execution script is also well-formed (Definition 2):

Property 1 (Execution script generation well-formedness). The result of generating an
execution script from a well-formed experiment specification is a well-formed execution
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Algorithm 1 Execution Script Generation
1: function generateExecutionScript(experimentSpecification)
2: design ← experimentSpecification.design
3: hypotheses ← experimentSpecification.hypotheses
4: objects ← experimentSpecification.objects
5: executions ← applyDesign(design, hypotheses, objects)
6: applications ← new List
7: for all execution ∈ executions do
8: application ← generateApplication(execution)
9: for i← 1, design.runs do . Repeats execution design.runs times

10: insert application into applications
11: end for
12: end for
13: executionScript ← new ES
14: executionScript.applications ← applications
15: return executionScript
16: end function

17: function applyDesign(design, hypotheses, objects)
18: executions ← new Set . We are using Set since executions must not contain

repetitions
19: for all hypothesis ∈ hypotheses do
20: t1 ← hypothesis.treatment1
21: t2 ← hypothesis.treatment2
22: relatedTreatmentsAndObjects ← design.designFunction({t1 , t2}, objects)
23: for all pairTreatmentObject ∈ relatedTreatmentsAndObjects do
24: execution ← new EX
25: execution.treatment ← pairTreatmentObject.treatment
26: execution.object ← pairTreatmentObject.object
27: execution.dependentVariable ← hypothesis.dependentVariable
28: insert execution into executions
29: end for
30: end for
31: return executions
32: end function

33: function generateApplication(execution)
34: application ← new A
35: application.command ← execution.treatment.command
36: application.argument ← execution.object.argument
37: application.instrument ← execution.dependentVariable.instrument
38: return application
39: end function
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script.

∀e : E · wf (e) =⇒ wf (generateExecutionScript(e))

Proof sketch. By definition of generateExecutionScript, since every execution script ES is
well-formed (Definition 2).

To ensure soundness, in addition, Property 2 states that the generation of the execution
script must assure that this script includes the applications required to evaluate all the
research hypotheses defined in the experiment specification, and that each application is
run the number of times defined in the experimental design.

Property 2 (Execution script generation soundness). The infrastructure runs the required
commands to execute a well-formed experiment. Specifically, for each hypothesis of a
well-formed experiment, its treatments are applied n times to each experimental object,
according to the experimental design and using the corresponding instrumentation. The
number of repetitions n is specified in the experimental design.

∀e : E · wf (e) =⇒ ∀h ∈ e.hypotheses·

∀(t, o) ∈ e.design.designFunction({h.treatment1 , h.treatment2}, e.objects)·

∃=na ∈ generateExecutionScript(e).applications |

a.instrument = h.dependentVariable.instrument ∧

a.command = t.command ∧

a.argument = o.argument

Proof sketch. By definition of generateExecutionScript, as it calls applyDesign and, for
each hypothesis (Line 19, Algorithm 1), applyDesign applies the design of the exper-
iment to the treatments related to the hypothesis and to the objects defined in the
experiment (Line 22), resulting in pairs of related treatments and objects. When
generateExecutionScript calls generateApplication, the resulting pairs of treatments and
objects, toghether with the related dependent variable (Line 27), are mapped to their corre-
sponding command (Line 35), argument (Line 36), and instrument (Line 37); the resulting
application is repeated the number of times defined in the experimental design (Line 9).

Furthermore, in addition to soundness, it is essential to optimize resource allocation,
since experiment execution is often costly. In this vein, Property 3 states that the
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generated execution script contains only applications related to the hypotheses defined in
the experiment specification.

Property 3 (Execution resource optimization). The infrastructure runs only commands
required to evaluate the hypotheses according to the design of the experiment, nothing else.
Specifically, each application executed by the infrastructure maps to an execution of a
treatment on an experimental object related to some dependent variable and hypothesis of
the experiment. The treatment is related to one hypothesis specified in the experiment, and
the instrument used to measure the dependent variable is related to the same hypothesis. In
addition, the experimental object is related to the treatment according to the experimental
design.

∀e : E · wf (e) =⇒ ∀a ∈ generateExecutionScript(e).applications·

∃h ∈ e.hypotheses, t ∈ {h.treatment1 , h.treatment2}, o ∈ e.objects |

a.instrument = h.dependentVariable.instrument ∧

a.command = t.command ∧

a.argument = o.argument ∧

(t, o) ∈ e.design.designFunction({h.treatment1 , h.treatment2}, e.objects)

Proof sketch. By definition of generateExecutionScript, as each application A is gener-
ated (Line 8, Algorithm 1) from an execution E resulting from applying the design of the
experiment (Line 5) to the treatments of each hypothesis and to the experimental objects.

After execution script generation, the supporting framework uses the function
execute (Line 1, Algorithm 2) to request the running infrastructure to run the execution
script, and, then, collects a series of execution results ER. Each application in the execu-
tion script (Lines 3–10) is executed by the running infrastructure and the return value is
collected (Line 4). An execution result ER is created (Line 5), and the instrument (Line 6),
the command (Line 7), and the argument (Line 8) used to run that application are
assigned to the execution result; the value resulting from execution is assigned to field
value (Line 9). Carrying over all four elements into the execution result is necessary for
filtering purposes during analysis (Section 4.4).

The infrastructure semantics (Definition 3) consists of the results of executing the
execution script in the running infrastructure.

Definition 3 (Infrastructure semantics).

∀es : ES · wf (es) =⇒ JesK = execute(es)
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Algorithm 2 Experiment Execution
1: function execute(executionScript)
2: results ← new List
3: for all application ∈ executionScript.applications do
4: value ← executeApplication(application) . Executes the application in the

infrastructure
5: result ← new ER
6: result.instrument ← application.instrument
7: result.command ← application.command
8: result.argument ← application.argument
9: result.value ← value

10: insert result into results
11: end for
12: return results
13: end function

4.4 Analysis Script Generation and Analysis

An analysis script AS (Line 1, Listing 4.3) comprises a sequence of hypotheses tests HT ,
each of which (Line 2) is defined by a hypothesisName and a sequence of analysis tests
AT . A hypothesis test is applied to each hypothesis, whereas an analysis test is applied
to each object related by design function to the treatments of that hypothesis. Each
analysis test AT (Line 3) is defined by an analysis function and two parameters P . These
parameters (Line 4) are records with fields instrument, command, and argument. They
are used to filter the execution results corresponding to the application that generated the
result. Each hypothesis result HR (Line 5) is the result of analyzing each hypothesis and is
defined by a hypothesisName and a sequence of testResults. Each test result TR (Line 6)
is the result of the analysis test applied to the corresponding object. The argument is
used to trace the test results to the corresponding object, and the analysisResult is the
result of applying the analysis test. The analysis result AR (Line 7) contains a String
result representing the result of the analysis test.

Listing 4.3: Analysis Script and Analysis Model
1 AS ::= {hypothesesTests : HT}
2 HT ::= {hypothesisName : String, analysisTests : AT}
3 AT ::= {analysisFunction : ER × ER→ AR, parameter1 : P, parameter2 : P}
4 P ::= {instrument : String, command : String, argument : String}
5 HR ::= {hypothesisName : String, testResults : TR}
6 TR ::= {argument : String, analysisResult : AR}
7 AR ::= {result : String}
8 generateAnalysisScript : E → AS
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9 generateHypothesisTest : D ×H ×O → HT
10 generateAnalysisTest : H ×O → AT
11 generateParameter : D × T ×O → P
12 suitableFunction : H → (ER × ER→ AR)
13 analyze : ER ×AS → HR
14 analyzeHypothesis : HT → HR
15 applyAnalysisTest : AT → TR
16 filterResults : ER × P → ER

Function generateAnalysisScript (Line 1, Algorithm 3) generates the analysis script
AS based on an experiment specification E. For each hypothesis (Lines 6–9) defined in the
experiment specification, function generateHypothesisTest (Line 7) generates a hypothesis
test using the experimental design, the corresponding hypothesis, and the experimental ob-
jects defined in the experiment specification. Finally, an analysis script is created (Line 10),
and the generated hypotheses tests are assigned to field hypothesesTests (Line 11).

Function generateHypothesisTest (Line 14) generates a hypothesis test from the experi-
mental design, a hypothesis, and a list of objects. It first calls applyDesign (Line 16), which
results in a set of executions. Each execution comprises the dependent variable defined for
the hypothesis, either treatment1 or treatment2 related to the same hypothesis, and an
object, related to the treatment by the design function. For each execution (Lines 17–25),
function generateAnalysisTest (Line 21) generates an analysis test using the corresponding
object and the hypothesis. Since the analysis test compares the execution results of both
treatments, when applied to an object, there must be only one analysis test per object
related to a given hypothesis. For this reason, before generating the analysis test, we first
check if a test has already been generated for that object (Line 20).

Function generateAnalysisTest (Line 31) generates an analysis test from a hypothesis
and a related object. First, the analysis test is created (Line 35). Then, the analysis
function is retrieved by calling suitableFunction (Line 36), which is an oracle embedding
the statistician’s knowledge to provide a suitable analysis function for a given research
hypothesis [Box et al., 2005; Juristo and Moreno, 2013]. Since this analysis function is
provided uniquely based on the hypothesis, it is actually a procedure with parametric
and non-parametric tests, as well tests to check the assumptions to the parametric tests.
During analysis, when execution results are available, the analysis test first checks if all
assumptions are satisfied, and, if so, the parametric test is applied. Otherwise, another
(non-parametric) test is applied. Next, successive calls to function generateParameter
generate parameter1 (Line 37) and parameter2 (Line 38) using the dependentVariable,
object, and treatment1 and treatment2 of the hypothesis, respectively.

Finally, function generateParameter (Line 41) generates an parameter P from a
dependentVariable, a treatment, and an object. The instrument of the dependent variable,
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the command of the treatment, and the argument of the object are assigned, respectively,
to the instrument (Line 43), the command (Line 44), and the argument (Line 45) of the
parameter P.

Definition 4 (Analysis script well-formedness). An analysis script is well-formed if and
only if each distinct hypothesis test refers to a distinct hypothesis; each analysis test
compares distinct treatments but the same object and dependent variable; and, for each
hypothesis, each analysis test is related to a distinct object.

∀as : AS · wf (as) ⇐⇒ (∀ht1 , ht2 ∈ as.hypothesesTests·

ht1 6= ht2 =⇒ ht1 .hypothesisName 6= ht2 .hypothesisName)

∧ (∀ht ∈ as.hypothesesTests · (∀at ∈ ht·

at.parameter1 .instrument = at.parameter2 .instrument

∧ at.parameter1 .argument = at.parameter2 .argument

∧ at.parameter1 .command 6= at.parameter2 .command)

∧ (∀at1 , at2 ∈ ht · at1 6= at2 =⇒

at1 .parameter1 .argument 6= at2 .parameter1 .argument))

Similar to the generation of execution scripts, the generation of the analysis script
must assure that, given a well-formed experiment specification (Definition 1), the resulting
analysis script is also well-formed (Definition 4):

Property 4 (Analysis script generation well-formedness). The result of generating an
analysis script from a well-formed experiment specification is a well-formed analysis script.

∀e : E · wf (e) =⇒ wf (generateAnalysisScript(e))

Proof sketch. By definition of generateAnalysisScript, since each hypothesis test is gener-
ated from a distinct hypothesis (Line 7, Algorithm 3) using a distinct hypothesisName
(Line 27), each analysis test is generated from a distinct object (Line 21), and the parame-
ters of the analysis test are generated from the same dependent variable and object but
with a distinct treatment (Lines 37 and 38).

The supporting framework uses function analyze (Line 1, Algorithm 4) to request the
running infrastructure to analyze the execution results using the previously generated
analysis script and returning a series of hypothesis results HR. Each hypothesisTest of
the analysis script (Lines 3–6) is analyzed by the function analyzeHypothesis (Line 4).
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Algorithm 3 Analysis Script Generation
1: function generateAnalysisScript(experimentSpecification)
2: hypothesesTests ← new List
3: design ← experimentSpecification.design
4: hypotheses ← experimentSpecification.hypotheses
5: objects ← experimentSpecification.objects
6: for all hypothesis ∈ hypotheses do
7: hypothesisTests ← generateHypothesisTest(design, hypothesis, objects)
8: insert hypothesisTests into hypothesesTests
9: end for

10: analysisScript ← new AS
11: analysisScript.hypothesesTests ← hypothesesTests
12: return analysisScript
13: end function

14: function generateHypothesisTest(design, hypothesis, objects)
15: analysisTests ← new List
16: executions ← applyDesign(design, {hypothesis}, objects)
17: for all execution ∈ execution do
18: object ← execution.object
19: visitedObjects ← new List
20: if object /∈ visitedObjects then . Creates only one analysis test per object
21: analysisTest ← generateAnalysisTest(hypothesis, object)
22: insert analysisTest into analysisTests
23: insert object into visitedObjects
24: end if
25: end for
26: hypothesisTest ← new HT
27: hypothesisTest.hypothesisName ← hypothesis.name
28: hypothesisTest.analysisTests ← analysisTests
29: return hypothesisTest
30: end function

31: function generateAnalysisTest(hypothesis, object)
32: dv ← hypothesis.dependentVariable
33: t1 ← hypothesis.treatment1
34: t2 ← hypothesis.treatment2
35: analysisTest ← new AT
36: analysisTest.analysisFunction ← suitableFunction(hypothesis)
37: analysisTest.parameter1 ← generateParameter(dv, t1 , object)
38: analysisTest.parameter2 ← generateParameter(dv, t2 , object)
39: return analysisTest
40: end function
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41: function generateParameter(dependentVariable, treatment, object)
42: parameter ← new P
43: parameter .instrument ← dependentVariable.instrument
44: parameter .command ← treatment.command
45: parameter .argument ← object.argument
46: return parameter
47: end function

This function (Line 9) analyzes all the analysisTests (Lines 11–14) of that hypothesisTest.
Each analysisTest is analyzed by the function applyAnalysisTest (Line 12), which returns
a testResult TR. Then, a hypothesisResult is created (Line 15), the hypothesisName
is assigned to field hypothesisName (Line 16), and the testResults are assigned to field
testResults (Line 17).

Function applyAnalysisTest (Line 20) performs the analysis test and returns a testResult.
It first filters the execution results (Lines 21–22) corresponding to each treatment using
the parameters defined in the analysis test. Then, the analysis function is applied (Line 23)
to the execution results, returning an analysis result. Finally, a testResult is created and
the argument (Line 25) and the analysis result are set to it.

Function filterResults (Line 29) filters execution results based on the instrument, the
command, and the argument defined for the argument. Each subset of the execution
results corresponds to the measurements of a dependent variable resulting from applying
each treatment of a hypothesis to an experimental object.

The overall result of an experiment is a sequence of hypothesis results. Each hypothesis
result represents the answer to a research hypothesis evaluated for each object, according
to the experimental design.

Definition 5 (Experiment semantics). The semantics of an experiment consists of the
confirmation/rejection of its hypotheses.

∀e : E · wf (e) =⇒ JeK = analyze(executionResults, analysisScript)

where

executionResults = execute(executionScript)

executionScript = generateExecutionScript(e)

analysisScript = generateAnalysisScript(e)

Finally, the overall process, which includes execution script generation, execution, analy-
sis script generation, and analysis, must assure that the experiment semantics (Definition 5)
is consistent with the experiment specification, addressing Problem 3.
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Algorithm 4 Analysis
1: function analyze(executionResults, analysisScript)
2: hypothesesResults ← new List
3: for all hypothesisTest ∈ analysisScript.hypothesesTests do
4: hypothesisResults ← analyzeHypothesis(hypothesisTest)
5: insert hypothesisResults into hypothesesResults
6: end for
7: return hypothesesResults
8: end function

9: function analyzeHypothesis(hypothesisTest)
10: testResults ← new List
11: for all analysisTest ∈ hypothesisTest.analysisTests do
12: testResult ← applyAnalysisTest(analysisTest)
13: insert testResult into testResults
14: end for
15: hypothesisResults ← new HR
16: hypothesisResults.hypothesisName ← hypothesisTest.hypothesisName
17: hypothesisResults.testResults ← testResults
18: return hypothesisResults
19: end function

20: function applyAnalysisTest(analysisTest)
21: results1 ← filterResults(executionResults, analysisTest.parameter1 )
22: results2 ← filterResults(executionResults, analysisTest.parameter2 )
23: analysisResult ← analysisTest.analysisFunction(results1 , results2 )
24: testResult ← new TR
25: testResult.argument ← analysisTest.parameter1 .argument
26: testResult.analysisResult ← analysisResult
27: return testResult
28: end function

29: function filterResults(results, parameter)
30: filteredResults ← new List
31: for all result ∈ results do
32: if result.instrument = parameter .instrument ∧ result.command =

parameter .command ∧ result.argument = parameter .argument then
33: insert result into filteredResults
34: end if
35: end for
36: return filteredResults
37: end function
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Property 5 (Experiment soundness). The analysis is performed by using a suitable
analysis function for each hypothesis and using correct parameters in the correct order. In
addition, execution data are produced by executing a sound execution script generated
from the experiment specification. For each hypothesis, the analysis function is suitable
to analyze it, and each parameter of the analysis function corresponds to a set of data
resulting from applying each treatment to an object, according to the experimental design,
and measured by the corresponding instrument. The parameters are provided to the
analysis function in the correct order. Moreover, execution data are produced by executing
a sound execution script generated from a well-formed experiment specification.

∀e : E · wf (e) =⇒ ∀hr ∈ JeK · ∀tr ∈ hr ·

tr = suitableFunction(h)(parameter1 data, parameter2 data)

where

parameter1 data = filterResults(executionResults, parameter1 )

parameter2 data = filterResults(executionResults, parameter2 )

executionResults = execute(generateExecutionScript(e))

parameter1 = (h.dependentVariable.instrument, h.treatment1 .command,

o.argument)

parameter2 = (h.dependentVariable.instrument, h.treatment2 .command,

o.argument)

h = (HR↔ H)hr

hObjects = e.design.designFunction({h.treatment1 , h.treatment2},

e.objects).objects

o = (TR↔ hObjects)tr

HR ↔ H is a bijection between hypotheses results HR and hypotheses H. Given a
hypothesis h : H , hr : HR is its corresponding result.

Likewise, TR↔ hObjects is bijection between test results TR and the objects resulting
of applying the design function to the treatments of a given hypothesis and the objects.
We also use a helper function objects : (T ,O)→ O.

Proof sketch. Let e ∈ E , as ∈ AS , at ∈ AT . By definition of applyAnalysisTest, since
it applies at.analysisFunction (Line 23, Algorithm 4) to two subsets of the execu-
tion results, filtered by filterResults using parameters at.parameter1 (Line 21) and
at.parameter2 (Line 22); at.analysisFunction is a suitable function to analyze the hypoth-
esis (Line 36, Algorithm 3). The parameters used to filter each subset of the results are
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generated from the same dependent variable and object, but each one using a treatment
of the same hypothesis (Lines 37 and 38, Algorithm 3).

Each hypothesis test of the analysis script as is generated from a hypothesis de-
fined in e (Line 7, Algorithm 3). This establishes a bijection between e.hypotheses and
as.hypothesesTests:

H ↔ HT generateHypothesisTest(H , ...) : HT

The analysis of each as.hypothesesTests (Line 4, Algorithm 4) results in a hypothesis result
HR. This establishes a bijection between HT and HR:

HT ↔ HR analyzeHypothesis(HT ) : HR

So, by transitivity, or composition of functions, there is also a bijection between H and
HR:

H ↔ HR analyzeHypothesis(generateHypothesisTest(H , ...)) : HR

For each object related to a hypothesis by the design function (Line 16, Algorithm 3),
an analysis test is created (Line 21). This establishes a bijection between the related
objects (hObjects) and the analysis tests (AT ):

hObjects ↔ AT generateAnalysisTest(O, ...) : AT

Each analysis test is analyzed (Line 12, Algorithm 4), resulting in a test result TR. This
establishes a bijection between AT and TR:

AT ↔ TR applyAnalysisTest(AT ) : TR

So, by transitivity, or composition of functions, there is also a bijection between hObjects
and TR:

hObjects ↔ TR applyAnalysisTest(generateAnalysisTest(O, ...)) : TR
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4.5 Running Infrastructure

The main functions of the running infrastructure are to execute and to analyze the
experiment. It receives commands from the supporting framework to run the execution
script, reports the execution status, and send execution results back to the supporting
framework. Likewise, the running infrastructure receives commands to run the analysis
script and sends analysis results back to the supporting framework.

The running infrastructure must be able to run applications specified in an execution
script; check and report execution status; and collect execution results. In addition, the
running infrastructure must be able to run an analysis script and present the corresponding
analysis report.

4.6 Supporting Framework

The supporting framework integrates the DSM components and provides the interface
between the generated code and the running infrastructure. It also monitors execution,
collects results, and presents the analysis results to the experimenter.

The sequence diagram in Figure 4.2 shows how the supporting framework interacts with
the other elements of our DSM solution. By using function generateExecutionScript (Line 1,
Algorithm 1), the supporting framework requests the generator to generate the execution
script from the experiment specification; likewise, by calling generateAnalysisScript (Line 1,
Algorithm 3), the supporting framework requests the generation of the analysis script.
By using function execute (Line 1, Algorithm 2), the framework requests the running
infrastructure to execute the corresponding execution script. While execution is running,
the framework monitors and gathers partial results from the running infrastructure. After
finishing execution, by using the function analyze (Line 1, Algorithm 4), the supporting
framework requests the running infrastructure to analyze the execution results using
the previously generated analysis script. Finally, the supporting framework collects the
analysis results and present them to the experimenter.
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Figure 4.2: Supporting Framework Interactions
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Chapter 5

Tool Support

In this section, we present a Web-based tool that implements the DSM approach (Chap-
ter 4), providing a means to specify runnable specifications at a high level of abstraction;
automated execution, data analysis, and results presentation. We present its functional
view (Section 5.1), its architecture (Section 5.2), and its implementation (Section 5.3).

5.1 Functional View

To conduct an experiment using our tool, an experimenter first must create an experiment
specification using the DSL. To ease this task, we created a specific editor with syntax
highlighting, content assist, syntax validation, static semantics validation, template pro-
posals, and text hover (Figure 5.1). When an experiment is specified using the editor,
its specification is type checked by the editor according to the grammar rules and addi-
tional static semantics validation rules. Each additional validation rule represents a static
semantics non-conformity and can be reported as an error or as a warning by the editor.

Listing 5.1 shows a specification using the DSL, which was adapted from the original
experiment conducted by Lanna et al. [2018]. In this specification, the research hypothesis
RH1 (Line 4) compares the dependent variable analysisTime resulting of applying the treat-
ments featureFamily and featureProduct. The dependent variable analysisTime (Line 10) has
a corresponding instrumentation (Line 13). The instrumentation comprises a command
and a value expression. The command is used to run the instrumentation tool, whereas the
value expression is used to build a regular expression and extract the corresponding value
from the output. The treatments (Lines 18–21) are related to the factor strategy (Line 16).
Each treatment defines a parameter named argument and uses the execution reanaEval-
uator (Lines 19 and 20). Each object defines a parameter named spl (Lines 24 and 27).
The execution reanaEvaluator (Lines 32–34) defines a command using the placeholders
${treatment.parameter.argument} and ${object.parameter.spl} (Line 33), which are replaced
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by the corresponding values defined for each treatment and object during the execution
script generation.

Listing 5.1: Example of an experiment specification
1 Experiment reanaSpl {
2 description "Reliability Analysis of Software Product Lines"
3 Research Hypotheses {
4 RH1 {analysisTime featureFamily = featureProduct description

"Analysis time for Feature Family is equal to analysis time for
Feature Product"}

5 }
6 Experimental Design {
7 runs 8
8 }
9 Dependent Variables {

10 analysisTime { description "Analysis time" scaleType Absolute unit
"ms" instrument analysisTimeCommand }

11 }
12 Instruments{
13 analysisTimeCommand {command "/usr/bin/time -v" valueExpression

"Total analysis time:" }
14 }
15 Factors {
16 strategy { description "Analysis Strategy" scaleType Nominal}
17 }
18 Treatments {
19 featureFamily description "Feature Family" factor strategy

parameters{argument "FEATURE_FAMILY"} execution reanaEvaluator ,
20 featureProduct description "Feature Product" factor strategy

parameters{argument "FEATURE_PRODUCT"} execution reanaEvaluator
21 }
22 Objects { description "SPL" scaleType Nominal {
23 lift {
24 description "Lift" parameters {spl "lift"}
25 },
26 intercloud {
27 description "Intercloud" parameters {spl "intercloud"}
28 }
29 }
30 }
31 Executions {
32 reanaEvaluator {
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33 command "java -Xss100m -Xmx8g -jar reana -spl.jar
--all -configurations --suppress -report --stats --param -path =
param --analysis -strategy = ${treatment.parameter.argument}
--feature -model = ${object.parameter.spl}/ models /0.txt
--uml -models =
${object.parameter.spl}/ models /0 _behavioral_model.xml"

34 }
35 }
36 }

Figure 5.1: DSL Editor

After specifying the experiment, the experimenter can have the execution and anal-
ysis scripts generated by running the command Generate. The command Generate and
Run (Figure 5.2) generates the scripts and then run them. The execution script is executed
by the running infrastructure, and, during execution, the execution status is presented to
the experimenter (Figure 5.3). Execution results are collected, and then analyzed by the
analysis script. Finally, the experimenter can access not only a report containing plots,
statistical tests, and the overall results of the experiment but also the raw data and the
generated scripts. The experimenter can also re-run analysis using the command Run
Analysis or perform additional analysis using the raw data and the scripts. The boxplot
presented in Figure 5.4 corresponds to the analysis of RH1, which compares the analysis
time of the treatments Feature Family and Feature Product (Line 4, Listing 5.1), for the
experimental object Lift (Lines 23–24, Listing 5.1).

5.2 Architecture

The tool architecture is modular and extensible due to Eclipse’s extension mechanism.
The core component comprises the grammar, the validators, and interfaces to define
generators, commands, and access to database (Figure 5.5). The execution script generator
(DohkoGenerator) and the analysis script generator (RScriptGenerator) are implementations
of IGenerator. Additional generators can be defined by implementing this interface. The
commands that can be run from the supporting framework are defined by implementing
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Figure 5.2: Generate and Run command

Figure 5.3: Execution Status

the interface ICommand. The component RunDohko implements the command to run the
execution script, and the RunAnalysis implements the command to run the analysis script.
The ExecutionStatus component interacts with the running infrastructure to monitor the
execution status. The component MongoDBApi implements the access to database.

The running infrastructure must be able to run the execution script and the analysis
script. In our exploratory studies we have identified Dohko [Leite et al., 2017] as a
potential autonomic solution to be used in the proposed solution because it not only
fulfills all the requirements presented in Section 4.5 but also provides self-configuration,
self-healing, and scalability in inter-cloud environments. This frees the researcher from the
often error-prone and time-consuming task of manually performing the configuration and
initialization of the computing infrastructure with enough resources to run the experiments
in a timely manner. In addition, Slurm [Yoo et al., 2003] is a flexible and fault-tolerant
cluster resource management system. It provides a simple, robust, and scalable parallel job
execution environment for clusters. Both Dohko and Slurm could be used as infrastructure

47



Figure 5.4: Excerpt of an Analysis Report

solution in our approach. However, we are using Dohko since it can manage resources
not only in clusters but also in inter-cloud environments. Dohko was also integrated with
runexec [Beyer et al., 2015] since it fulfills some requirements for reliable benchmarking
and accurate resource measurements. To run analysis, we created an environment with
R1 for data analysis and Latex2 for presentation of results. We actually run R Sweave
scripts, which embed R code chunks in Latex documents. By doing so, we aim to achieve
a Reproducible Research, as proposed by Madeyski and Kitchenham [2017].

Each main component, i.e., the supporting framework, the execution environment, the
analysis environment, and the database, is run in its own Docker container, which enables

1https://www.r-project.org/
2https://www.latex-project.org/
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IGenerator ICommand IDatabaseApi

Core

DohkoGenerator RScriptGenerator RunDohko ExecutionStatus RunAnalysis MongoDBApi

Figure 5.5: Tool Components

distributed execution, environment isolation, and portability. In highly resource-consuming
experiments, distributed execution enables leveraging resources from multiple machines,
achieving a greater performance than using a single machine. In addition, environment
isolation prevents the other components from affecting execution results, specially when it
comes to performance measurements, such as runtime and memory consumption. Finally,
portability enables the tool to be run in distinct environments, consequently, easing
execution and replication of experiments.

5.3 Implementation

Using Xtext3, we created the DSL partially based on ExpDSL Freire et al. [2013]. ExpDSL
comprises four views: process view, metric view, experimental plan view, and questionnaire
view. Metric view and experimental view are the same for human-oriented and technology-
oriented experiments; thus, they can be reused in our work. Nevertheless, since the
process view and the questionnaire view are bound to human-oriented experiments,
they cannot be reused in our work. So, we created our DSL with new constructs for
technology-oriented experiments, which enables the specification of execution parameters
related to the treatments, as well infrastructure requirements, such as the number of
cpus and memory size. In addition, since both the grammar and the generated artifacts
are significantly distinct from ExpDSL, we also developed our own code generators and
supporting framework.

The concrete syntax of the grammar was specified in Xtext, which is a domain-specific
language designed for the description of textual languages. Our full DSL grammar is
presented in Appendix A. The parser of the DSL parses the specification of an experiment

3https://eclipse.org/Xtext/
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and returns a corresponding object. Then, the validators and code generators access this
object and all its elements to respectively validate and generate the code.

The validators and code generators have been implemented using the Xtend4 language.
The validators complement the validations provided by the grammar rules to check the
well-formedness (Definition 1) of the experiment specification. We created eight validation
rules, four are reported as error and four are reported as warning. The validators are
used to check the following non-conformities: if two distinct hypotheses perform the same
treatments comparison (error); if a hypothesis compares a treatment with itself (error);
if a hypothesis compares treatments from distinct factors (error); if a parameter used in
a command line is invalid (error); if a dependent variable is never used (warning); if a
factor is never used (warning); if a treatment is never used (warning); and if an execution
is never used (warning). Our validation rules are listed in Appendix B.

After validating the specification, the code generators access the experiment model
and, using string templates, generate the code. We implemented two code generators: an
executions script generator and an analysis script generator.

Since we are using Dohko as infrastructure solution, the execution script is actually a
Dohko Application Descriptor. Listing 5.2 is an excerpt of the generated execution script
corresponding to the experiment specification in Listing 5.1. According to Algorithm 1,
the execution script generator applies the treatments to the objects according to the design
function. Currently, the tool supports only design functions expressed as any subset of a
Cartesian product of treatments and objects. For instance, the experimenter could restrict
the application of the treatment featureProduct only to the object Lift. Since no restriction
was applied to the design (Lines 6–8, Listing 5.1), a Cartesian product is used to relate
the treatments to the objects. Accordingly, each block of applications in the execution
script corresponds to the application of a treatment to an object (Lines 5–7, 8–10, 11–13,
and 14–16, Listing 5.2). The command line of each application is generated by combining
the instrumentation command and the execution command. In addition, the placeholders
related to treatments and objects are replaced by the corresponding values. For instance, by
applying the treatment featureFamily to the object lift, the resulting command Line (Line 7)
uses the instrumentation command (Line 13, Listing 5.1) related to the dependent variable
analysisTime, the command line defined for reanaEvaluator (Line 33, Listing 5.1), the
parameter argument defined for the treatment featureFamily (Line 19, Listing 5.1), and
the parameter spl defined for the object lift (Line 24, Listing 5.1). Finally, the resulting
application is repeated the number of times defined by runs (Line 7, Listing 5.1). For the
sake of brevity, we omitted these repetitions in Listing 5.2.

4http://www.eclipse.org/xtend/
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Listing 5.2: Excerpt of a generated execution script corresponding to the experiment
specification in Listing 5.1

1 ---
2 name: "reanaSpl"
3 description: "Reliability Analysis of Software Product Lines"
4 blocks:
5 - applications:
6 - name: "featureFamily_lift_0"
7 command -line: "/usr/bin/time -v java -Xss100m -Xmx8g -jar

reana -spl.jar --all -configurations --suppress -report --stats
--param -path = param --analysis -strategy = FEATURE_FAMILY
--feature -model = lift/models /0.txt --uml -models =
lift/models /0 _behavioral_model.xml"

8 - applications:
9 - name: "featureFamily_intercloud_0"

10 command -line: "/usr/bin/time -v java -Xss100m -Xmx8g -jar
reana -spl.jar --all -configurations --suppress -report --stats
--param -path = param --analysis -strategy = FEATURE_FAMILY
--feature -model = intercloud/models /0.txt --uml -models =
intercloud/models /0 _behavioral_model.xml"

11 - applications:
12 - name: "featureProduct_lift_0"
13 command -line: "/usr/bin/time -v java -Xss100m -Xmx8g -jar

reana -spl.jar --all -configurations --suppress -report --stats
--param -path = param --analysis -strategy = FEATURE_PRODUCT
--feature -model = lift/models /0.txt --uml -models =
lift/models /0 _behavioral_model.xml"

14 - applications:
15 - name: "featureProduct_intercloud_0"
16 command -line: "/usr/bin/time -v java -Xss100m -Xmx8g -jar

reana -spl.jar --all -configurations --suppress -report --stats
--param -path = param --analysis -strategy = FEATURE_PRODUCT
--feature -model = intercloud/models /0.txt --uml -models =
intercloud/models /0 _behavioral_model.xml"

The corresponding generated analysis script is an R Sweave script (Listing 5.3). The
analysis script starts with ordinary Latex code (Lines 1–5). For each hypothesis (Line 4),
and for each object related to the treatments of that hypothesis by the design func-
tion (Line 5), the analysis is performed using R code (Lines 6–24). First, a boxplot is
generated (Lines 7–15) using the execution results corresponding to the dependent variable
and treatments related to the hypothesis, and the experimental object at hand (Lines 7
and 9). Using the same subset of the execution results, the analysis test first checks if the
assumptions to apply a parametric test are satisfied (Line 17). If so, it applies a parametric
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test (Line 18) and presents the results (Line 19). Otherwise, it applies a non-parametric
test (Line 21) and then presents the results (Line 22).

Listing 5.3: Excerpt of a generated analysis script
1 \begin{document}
2 \title{Reliability Analysis of Software Product Lines}
3 \section{Research Hypotheses}
4 \subsection{RH1: Analysis time for Feature Family is equal to analysis

time for Feature Product}
5 \subsubsection{RH1.1: Object Lift}
6 <<RH1_lift , include=TRUE , echo=FALSE , warning=FALSE , message=FALSE >> =
7 DF = subset(json_data , (treatment == 'featureFamily ' | treatment ==

'featureProduct ') & object == 'lift ')
8 DF$treatmentDescription = ordered(DF$treatmentDescription , levels =

levels(DF$treatmentDescription)[
order(as.numeric(by(DF$analysisTime , DF$treatmentDescription ,
mean)))])

9 boxplot_RH1_lift = ggplot(DF , aes(x =treatmentDescription , y =
analysisTime)) +

10 geom_boxplot(fill = "#4271 AE", colour = "#1 F3552",alpha =
0.7, outlier.colour = "#1 F3552", outlier.shape = 20)+

11 theme_bw () +
12 scale_x_discrete(name = "Analysis Strategy ")+
13 ggtitle (" Analysis time by Analysis Strategy for Lift") +
14 ylab(" Analysis time (ms)")
15 boxplot_RH1_lift
16
17 if(shap_featureFamily_lift$p.value > alpha &

shap_featureProduct_lift$p.value > alpha){
18 tTest = t.test(subset(json_data , treatment == 'featureFamily ' &

object == 'lift ') $analysisTime , subset(json_data , treatment ==
'featureProduct ' & object == 'lift ') $analysisTime , var.equal =
fTest$p.value > alpha , paired = FALSE)

19 print(tTest)
20 }else{
21 wTest = wilcox.test(analysisTime¬treatment , data=subset(json_data ,

(treatment == 'featureFamily ' | treatment == 'featureProduct ') &
object == 'lift '))

22 print(wTest)
23 }
24 @
25 \end{document}
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Using DSLFORGE [Lajmi et al., 2014], an initial version of the supporting framework
has been automatically generated from the DSL grammar and code generators. The
generated application is based on Eclipse Remote Application Platform (RAP) and
includes the web editor and commands to create and delete models, and also to generate
code from the model. We extended and customized this initial version of the framework
with additional commands to enable execution, monitoring, data analysis, and presentation
of results.

The use of our DSL empowers researchers to specify experiments using experimentation
concepts (e.g., experimental design, treatment, experimental object, dependent variable).
The tool we created using Xtext and DSLFORGE supports the researcher in specifying the
experiment by providing a specific editor with syntax highlighting, content assist, syntax
validation, static semantics validation, template proposals, and text hover. A model-
driven approach is used to generate execution and analysis scripts from the experiment
specification. Since code generators generate execution and analysis scripts, this frees
the researcher from dealing with the low-level details of creating such scripts. The
running infrastructure (Dohko) runs the execution script, reports the execution status, and
provides execution results. The analysis infrastructure (R Sweave environment) analyzes
the execution results and generates an analysis report. The objective is to provide a
push-button solution that automatically generates execution and analysis scripts, runs the
execution script, analyzes the results, and presents the analysis results to the researcher
from an experiment specification at a high-level of abstraction.

Scientific workflows are used to model a flow of activities and data ready to be executed
by a workflow engine. Scientific workflows are an alternative to represent pipelines or
script-based applications. In scientific workflows, these activities are often programs or
services that represent solid algorithms and computational methods [Mattoso et al., 2010].
The purpose of our approach is not to replace scripts or scientific workflows; instead, it is
to generate scripts from high-level experiment specifications. The sequence of activities
to be executed by the scripts is derived from experimentation concepts, such as research
hypotheses, treatments, objects, dependent variables, and experimental design. Likewise,
we could use our approach to generate a workflow model from the experiment specification
by creating specific code generators and replacing the running infrastructure by a workflow
engine.
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Chapter 6

Preliminary Evaluation

As a preliminary evaluation, the proposed solution was assessed with respect to automation,
level of abstraction, and correctness. First, we formally proved that our model complies
with key correctness properties to assure that execution and analysis results are correct
according to the experiment specification (Sections 4.3 and 4.4). Then, we investigated, in
Section 6.1, the expressiveness of our tool to specify technology-oriented experiments (RQ 1)
and if it can be used to enable sound automation of execution and analysis from the
specification of technology-oriented experiments (RQ 2 and RQ 3). Finally, we evaluated
the level of abstraction (Section 6.2) by comparing specifications of previously published
experiments and specifications using our DSL (RQ 4), and by comparing DSL’s grammar
constructs with experimentation concepts (RQ 5).

6.1 Execution and Analysis Automation

The main goal of this section is to assess the feasibility of our tool to provide automation
in the experimentation process and is guided by the following research questions:

RQ 1. Is the DSL expressive enough to specify technology-oriented experiments?

RQ 2. Can the proposed tool be used to enable sound automation of execution from the
specification of technology-oriented experiments?

RQ 3. Can the proposed tool be used to enable sound automation of analysis from the
specification of technology-oriented experiments?

6.1.1 Evaluation Method

To address RQs 1 to 3, we first randomly selected three previously published experiments
meeting the criteria described in Section 6.1.2. For each experiment, we performed two

54



replications: one using our tool and another using the scripts provided by the authors.
With our tool, we specified each experiment using our DSL, which assesses if the DSL
is expressive enough to specify technology-oriented experiments (RQ 1). Since the main
goal of the evaluation is to assess the feasibility of the tool, not the usability, we used the
DSL ourselves (as future work, we plan an independent usability evaluation). Then, we
used the tool to, from specification, generate and execute execution and analysis scripts.
By doing so, we assess if the proposed tool can be used to enable sound automation
of execution (RQ 2) and analysis (RQ 3) from the specification of technology-oriented
experiments. However, execution and analysis must be sound. For this reason, we also
replicated the experiments using original scripts, and, then, compared the results with the
results obtained with our tool to assure that not only the tool can generate execution an
analysis scripts, but also that these scripts can produce sound results. With sound results
we mean execution results that lead to the same conclusions as the original results.

To evaluate our proposal, we conducted external replications, with no interaction with
original experimenters. We used the published papers and the lab packages provided by
the authors. The replications were as similar as possible to the original experiments, except
for the machines. For practical reasons, we used the same machine type for all experiments,
without taking into account the original machine resources. This may affect the absolute
execution time but should not affect the overall conclusions of the experiments. In some
cases, we also made some minor changes in the original scripts to ease execution and data
collection. For instance, we saved execution results in a file instead of showing them in
the console. These changes did not change how the experiment is executed and measured,
though.

All the experiments were run on Google Cloud Platform on a virtual machine type
n1-standard-4 running Ubuntu 16.10. The machine has 4 vCPUs and 15 GB RAM. To
keep the execution environment as similar as possible, both replications were run inside
the same Docker container and running in the same virtual machine. The complete
specification, scripts files and results, as well instructions for future replications can be
obtained from the repository located at https://github.com/eneiascs/dsm-experiments-
evaluation/tree/dissertation.

6.1.2 Experiments Selection

We selected three experiments meeting the following criteria:

• The experiment is reported in a published paper in a venue explicitly requiring
reproducibility as part of the evaluation process or distinguishing it in accepted
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papers. The venues considered were International Conference on Computer Aided
Verification (CAV) and Joint Meeting on Foundations of Software Engineering (FSE).

• The experiment is technology-oriented, i.e., a software, instead of a person, applies
treatments to objects.

• Replication is completely documented.

• Every software, script, and artifact required to replicate the experiment is publicly
available.

• Each hypothesis of the experiment compares two treatments of the same factor at a
time, or the experiment can be decomposed in pairwise comparisons.

Based on the selection criteria presented in above, we selected the following experiments:

Experiment 1. Bak and Duggirala [2017] presented a technique to perform simulation-
equivalent reachability and safety verification of linear systems with inputs. To evaluate
their proposal, they created a tool named Hylaa (HYbrid Linear Automata Analyzer)1.
In their optimization evaluation, the authors examined the effects of optimizations for
computing reachability for linear-time invariant systems with inputs. They compared
the basic algorithm (Basic), warm-start optimization (Warm), Minkowski sum decompo-
sition (Decomp), and Hylaa (uses both Minkowski sum decomposition and warm-start).
Measurements for the no-input system (NoInput) were included for references and could
be considered a lower-bound for the simulation-based methods if the time to handle the
inputs could be completely eliminated. In order to measure the runtime, the number of
steps in the problem was varied by changing the step size and keeping the time bound fixed
at 2π. Then the runtime for each optimization was measured, recording 10 measurements
in each case. The results are presented in Figure 7.1. The performance of the Basic
algorithm (Basic) is improved by the warm-start optimization (Warm), but not as much as
when the Minkowski sum decomposition optimization is used (Decomp). Combining both
optimizations works even better (Hylaa). The reachability time for the system without
inputs (NoInput) is a lower bound.

Experiment 2. Brennan et al. [2017] presented a constraint caching framework to expedite
potentially expensive satisfiability and model-counting queries. Their techniques were
implemented in a tool named Cashew2, which was built as an extension of the Green caching
framework [Visser et al., 2012]. Cashew was also integrated with Symbolic PathFinder
(SPF) [Păsăreanu et al., 2013] and the ABC [Aydin et al., 2015] model-counting constraint

1http://stanleybak.com/papers/bak2017cav_repeatability.zip
2https://github.com/vlab-cs-ucsb/cashew/
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solver. The authors investigated the effects of their normalization procedure on model-
counting datasets of string constraints. Kaluza dataset [Saxena et al., 2010], a well-known
benchmark of string constraints, was used in their evaluation. This dataset contains
1,342 big constraints (SMC-Big) and 17,554 small constraints (SMC-Small). Another
version of this dataset (without duplicates), with 359 constraints in SMC-Big and 9,745
constraints in SMC-Small, was also used. The results of model-counting all constraints
in each set (SMC-Big and SMC-Small, original and without duplicates) are presented
in Table 7.1. The results show that, on the SMC-Big set without duplicates, Cashew
achieved a speedup over 10x, and, on the SMC-Small set without duplicates, 2.19x. For
the original datasets, the speedup was 89.70x on SMC-Big, and 2.60x on SMC-Small.
The authors remarked that the high number of speedup on SMC-Big original dataset
is due to the presence of duplicates, which makes even caching with no normalization
very effective. They also investigated the effect of disabling each transformation in the
normalization procedure. Table 7.2 shows the number of orbits that are achieved by
different subsets of the transformations. The removeVar and removeConj transformations
are preprocessing steps that remove redundant variables and conjuncts, respectively. The
other transformations are re-ordering (σI ), renaming the variables (σV), and permuting
the alphabet constants (σΣ). The results indicate that all transformations yield some
benefit, and that σV is the most beneficial transformation.

Experiment 3. The third experiment is the second part of the experimental evaluation
presented in Brennan et al. [2017]. In this experiment, the authors investigated the
effects of their normalization procedure on side-channel analysis. They used Symbolic
PathFinder [Păsăreanu et al., 2013] with Cashew to symbolically execute four Java programs
that operate on strings: Password1, Password2, Obscure, and CRIME. Password1 contains
a method that checks whether or not a user-given string matches a secret password.
Password2 is variant of the previous one that requires a certain number of characters to be
compared before returning, even if a mismatch has already been found. Obscure is a Java
translation of the obscure.c program used in Luu et al. [2014], which is a password change
authorizer. CRIME is a Java version of a well-known attack, Compression Ratio Info-leak
Made Easy [Bang et al., 2016; Rizzo, 2012]. For each of the four programs under analysis,
they ran 1,000 symbolic-execution-based side-channel analyses, using as the secret each
of the 1,000 passwords in the RockYou1K dataset [Weir et al., 2010]. Table 7.5 shows
execution time, hits and misses for three execution modes. The first mode uses neither
normalization nor caching. In the second mode, only caching without normalization is
performed. In the third mode, Cashew’s normalization is enabled. The results show that
Cashew achieved an average speedup of nearly 3x, while caching without normalization
achieved only 1.06x. The hit/miss ratios improve dramatically when switching to Cashew.
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6.2 Level of Abstraction

The main goal of this section is to assess our tool with respect to the level of abstraction
from the perspective of experimenters. This assessment is guided by the following research
questions:

RQ 4. Does the proposed tool raise the level of abstraction required to execute and
analyze a technology-oriented experiment?

RQ 5. What is the level of abstraction of the language constructs?

6.2.1 Evaluation Method

To address RQ 4, we compared the level of abstraction of original specifications with
specifications using the DSL of experiments used in Section 6.1. The level of abstraction
is evaluated based on the following criteria:

• Level of detail: abstract specifications say what a program does without necessarily
saying how it does it; abstraction is a process of generalization, eliminating detail,
removing inessential information [Ward, 1995].

• Number of potential implementations: abstract specifications have more poten-
tial implementations, whereas moving to a lower level means restricting the number
of potential implementations [Ward, 1995].

• Domain concepts: DSM raises the level of abstraction beyond general purpose
languages by specifying the solution directly using problem domain concepts [Kelly
and Tolvanen, 2008].

• Complexity: DSM reduces complexity, since the language deals only with high-level
domain concepts, and all details of implementation are hidden in code genera-
tors [Kelly and Tolvanen, 2008].

To address RQ 5, we first selected well-established guides in Software Engineering
experimentation and then compared their key concepts with DSL constructs/elements.
Then, we classified the DSL constructs in three groups, according to their relation with
domain concepts:

• High-level construct: a construct that is directly related to a domain concept
found in literature.

• Mid-level construct: a construct that is not directly related to a domain concept
but supports or details high-level constructs.
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• Low-level construct: a construct that neither is directly related to a domain
concept nor supports or details high-level constructs.
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Chapter 7

Results and Analysis

We present and discuss the results of the empirical evaluation we performed regarding the
use of the proposed solution to provide automation of execution and analysis (Section 7.1)
and to raise the level of abstraction (Section 7.2) in the experimentation process. We also
discuss the lessons learned (Section 7.3), and the threats to validity (Section 7.4).

7.1 Execution and Analysis Automation

We present the results of replicating Experiments 1 to 3.
The first replicated experiment was Experiment 1. The results of replicating the

experiment with the tool (Figure 7.2b) are consistent with the replication using original
scripts (Figure 7.2a) and with the results presented in the paper (Figure 7.1): Basic is
the worst optimization, followed by Warm and Decomp; Hylaa is better than Decomp; and
NoInput is a lower bound. The relative differences between the results with and without
the tool are presented in Figure 7.3. The differences are really high for runtime values
below one second, reaching more than 70% for NoInput. However, the differences decrease
quickly to nearly 20% for one second, to 10% for two seconds, and to 5% for three seconds.
Above three seconds, the differences keep below 5%.

The second replicated experiment corresponds to Experiment 2. Due to the high
number of duplicates present in original dataset and to avoid an excessive time-consuming
experiment, in our replications we used only the Kaluza dataset without duplicates. The
results are presented in Tables 7.3 and 7.4. Using original scripts, Cashew achieved a
speedup of 20.62x on the SMC-Big, and 2.43x on SMC-Small. Using our tool, 26.06x on
SMC-Big and 24.45x on SMC-Small. When it comes to the effect of each transformation
in the normalization procedure, the results of each replication are exactly the same. These
results are consistent with the results presented in the paper (Tables 7.1 and 7.2). The
only difference in results is the number of orbits on SMC-Small with no transformation,
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Figure 7.1: Results of Optimization Comparison [Bak and Duggirala, 2017]
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Table 7.1: Results of Model counting SMC-Big and SMC-Small [Brennan et al., 2017]

Wihtout caching With caching Speedup

Big (no dups)
Average 8.94 s 0.82 s 10.90x
Maximum 121.92 s 40.13 s 3.03x
Total time 3,208.65 s 293.21 s 10.94x

Small (no dups)
Average 0.12 s 0.05 s 2.40x
Maximum 1.09 s 1.12 s 0.97x
Total time 1,211.09 s 552.56 s 2.19x

Big (original)
Average 23.32 s 0.26 s 89.70x
Maximum 121.92 s 40.13 s 3.03x
Total time 31,297.90 s 358.17 s 87.38x

Small (original)
Average 0.13 s 0.05 s 2.60x
Maximum 1.09 s 1.12 s 0.97x
Total time 2,221.91 s 971.50 s 2.29x

Table 7.2: Effect of transformations on orbit refinement [Brennan et al., 2017]

Transformations enabled #Orbits (SMC-Big) #Orbits (SMC-Small)

None 359 9754
All Transformations 34 360
All except σI 72 376
All except σV 344 9645
All except σΣ 35 841
All except removeVar 34 361
All except removeConj 40 386

which is 9710 for both replications, whereas the number presented in the paper is 9754.
Originally, the authors computed the hash of each constraint file and removed duplicates.
They assumed that the number of unique constraint files would be the same as the number
of orbits when no transformations were enabled; however, this assumption was incorrect
due to the different variable declarations in files with the exact same constraint. The
relative differences between the average runtime results with and without the tool are
presented in Figure 7.4. The difference is around 30% for SMC-Big without caching and
below 5% for the other cases.

The last replicated experiment was Experiment 3. The results are presented in Tables 7.6
and 7.7. Cashew achieved an average speedup of 2.8x (original) and 2.43x (tool), while
caching without normalization achieved 1.07x (original) and 1.08x (tool). The number of
hits and misses for all programs is exactly the same for both replications. These results are
consistent with the results presented in the paper (Table 7.5). However, there is a difference
in results for Obscure in relation to the number of hits and misses. This discrepancy is
likely due to changes in the version of ABC. Nevertheless, a further investigation should be
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Table 7.3: Results of Model counting SMC-Big and SMC-Small (replication)

Original scripts Tool
Without
caching

With
caching Speedup Without

caching
With

caching Speedup

Big
Avg 12.94 s 0.63 s 20.62x 16.79 s 0.64 s 26.06x
Max 178.64 s 17.35 s 10.30x 273.96 s 17.55 s 15.61x
Total 4,645.99 s 217.78 s 21.33x 6,028.07 s 223.57 s 26.96x

Small
Avg 0.21 s 0.09 s 2.43x 0.22 s 0.09 s 2.45x
Max 1.42 s 1.57 s 0.90x 1.45 s 1.55 s 0.93x
Total 2,070.63 s 853.79 s 2.43x 2168.72 s 885.42 s 2.45x

Table 7.4: Effect of transformations on orbit refinement (replication)

Original scripts Tool

Transformations enabled #Orbits
(SMC-Big)

#Orbits
(SMC-Small)

#Orbits
(SMC-Big)

#Orbits
(SMC-Small)

None 359 9710 359 9710
All Transformations 34 360 34 360
All except σI 72 376 72 376
All except σV 344 9645 344 9645
All except σΣ 35 841 35 841
All except removeVar 34 361 34 361
All except removeConj 40 386 40 386
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Table 7.5: Results of SPF-based quantitative analyses of string programs [Brennan et al.,
2017]

Program Caching Total time Speedup #Hits #Misses H/M

Password1
None 297 s – – – –
No norm 258 s 1.15x 17,547 56,173 0,31
Cashew 106 s 2.80x 62,797 10,923 5.75

Password2
None 3,364 s - - - -
No norm 3,379 s 0.99x 30,448 824,832 0.04
Cashew 1,243 s 2.71x 659,804 195,476 3.38

Obscure
None 2,158 s - - - -
No norm 1,965 s 1.10x 2,000 59,000 0.03
Cashew 609 s 3.54x 44,893 16,107 2,79

CRIME
None 3,005 s - - - -
No norm 2,941 s 1.02x 31,884 84,127 0.38
Cashew 1,067 s 2.82x 78,289 37,722 2.08

Table 7.6: Results of SPF-based quantitative analyses of string programs (original scripts)

Program Caching Total time Speedup #Hits #Misses H/M

Password1
None 463.61 s - - - -
No norm 395.78 s 1.17x 17,547 56,173 0,31
Cashew 208.51 s 2.22x 62,797 10,923 5.75

Password2
None 4,689.48 s - - - -
No norm 4,737.73 s 0.99x 30,448 824,832 0.04
Cashew 1,899.93 s 2.47x 659,804 195,476 3.38

Obscure
None 3,172.23 s - - - -
No norm 2,888.71 s 1.10x 1,999 58,999 0.03
Cashew 1,482.03 s 2.14x 32,443 28,555 2,79

CRIME
None 4,362.45 s - - - -
No norm 4,218.28 s 1.03x 31,884 84,127 0.38
Cashew 1,626.53 s 2.68x 78,289 37,722 2.08

carried out to confirm or refute this hypothesis. The relative differences between the total
runtime results with and without the tool are presented in Figure 7.5. The differences are
below 5% for all cases.

Since we could specify three experiments, this suggests that the DSL is expressive
enough to specify technology-oriented experiments (RQ 1). From experiment specifications,
we used the tool to automatically generate execution and analysis scripts. Then, we used
the tool to execute the execution scripts and collect the results. Finally, we used the tool
to analyze the execution results using the previously generated analysis scripts.

When it comes to the execution results, there were some differences in relation to
runtime. For Experiment 1, the differences were higher for lower runtime values (below
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Table 7.7: Results of SPF-based quantitative analyses of string programs (tool)

Program Caching Total time Speedup #Hits #Misses H/M

Password1
None 470.68 s - - - -
No norm 401.66 s 1.17x 17,547 56,173 0,31
Cashew 203.87 s 2.31x 62,797 10,923 5.75

Password2
None 4,803.33 s - - - -
No norm 4,779.28 s 1.01x 30,448 824,832 0.04
Cashew 1,898.29 s 2.53x 659,804 195,476 3.38

Obscure
None 3,151.55 s - - - -
No norm 2,844.71 s 1.11x 1,999 58,999 0.03
Cashew 1,462.96 s 2.15x 32,443 28,555 2,79

CRIME
None 4,311.08 s - - - -
No norm 4,176.90 s 1.03x 31,884 84,127 0.38
Cashew 1,5856.8 s 2.72x 78,289 37,722 2.08

one second), but the differences decrease quickly for higher runtime values (above three
seconds). For Experiment 2, there are only two treatments and two objects; thus, only
four data points. For SMC-Big without caching, the difference is around 30%, and the
runtime without the tool is 12.94s. For the other cases, the differences are below 5%, and
the runtime values without the tool are 0.21s, 0.22s, and 0.63s. For Experiment 3, the
total runtime is higher, from near 100 seconds to almost 5000 seconds, and the differences
are all less than 5%. These preliminary results suggest that the overhead of the tool is
more significant for lower runtime values (below one second), although the results for
Experiment 2 diverge from this hypothesis. For this reason, further experiments should
be conducted to thoroughly investigate this issue. However, when we evaluated other
dependent variables that not depend on the execution environment, such as number of
orbits, number of hits, and number of misses in caching systems, the execution results
were exactly the same with and without the tool.

Although there are some differences regarding execution time between the replications
with and without the tool, the qualitative results are consistent and lead to the same
conclusions. Thus, these preliminary results suggest that not only the proposed solution
can be used to enable automation of execution and analysis from the specification of
technology-oriented experiments but also that the generated execution and analysis scripts
are sound (RQs 2 and 3).

7.2 Level of Abstraction

We present the results of comparing the level of abstraction of original specifications with
specifications using the DSL of experiments used in Section 6.1 (Section 7.2.1) and also
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the results of comparing the DSL constructs/elements with key experimentation concepts
(Section 7.2.2).

7.2.1 Experiment Specifications

For execution purposes, the authors of Experiment 1 created an execution script (Listing 2.1)
and a Gnuplot configuration file (Listing 2.3). Instead, we created a corresponding
specification using the DSL (Listing 7.1).

The execution scripts and experiment specifications of Experiments 2 and 3 are
presented in Listings D.1 to D.4.

Listing 7.1: Excerpt of an experiment specification
1 Experiment hylaaOptimization {
2 Research Hypotheses {
3 RH1 {time Hylaa = Warm description "Runtime time for Hylaa is equal

to runtime time for Warm" },
4 RH2 {time Hylaa = Decomp description "Runtime time for Hylaa is

equal to runtime time for Decomp"},
5 RH3 {time Hylaa = Basic description "Runtime time for Hylaa is

equal to runtime time for Basic"},
6 RH4 {time Hylaa = NoInput description "Runtime time for Hylaa is

equal to runtime time for NoInput"}
7 }
8 Experimental Design {
9 runs 10

10 }
11 Dependent Variables {
12 time { description "Runtime" scaleType Absolute unit "seconds"

instrument timeInstrument }
13 }
14 Instruments {
15 timeInstrument {command "/usr/bin/python -u

/opt/optimizations/time.py" valueExpression "runtime:"}
16 }
17 Factors {
18 optimization { description "Optimization" scaleType Nominal}
19 }
20 Treatments {
21 Hylaa description "Hylaa" factor optimization parameters {params

""} execution hylaaTool ,
22 Warm description "Warm" factor optimization parameters {params

"settings.opt_decompose_lp=False"} execution hylaaTool ,

69



23 Decomp description "Decomp" factor optimization parameters {params
"settings.opt_warm_start_lp=False"} execution hylaaTool ,

24 Basic description "Basic" factor optimization parameters {params
"settings.opt_warm_start_lp=False
settings.opt_decompose_lp=False"} execution hylaaTool ,

25 NoInput description "No Input" factor optimization parameters
{params ""} execution hylaaToolNoInput

26 }
27 Objects {description "Number of steps" scaleType Logarithmic {
28 steps31 {description "31 steps" value "31" parameters {num_steps

"31", step_size "0.200000000"}},
29 steps40 {description "40 steps" value "40" parameters {num_steps

"40", step_size "0.153846154"}},
30 steps53 {description "53 steps" value "53" parameters {num_steps

"53", step_size "0.118343195"}},
31 steps106948 {description "106948 steps" value "106948" parameters

{num_steps "106948", step_size "0.000058720"}},
32 steps139032 {description "139032 steps" value "139032" parameters

{num_steps "139032", step_size "0.000045169"}},
33 steps180742 {description "180742 steps" value "180742" parameters

{num_steps "180742", step_size "0.000034746"}}
34 }
35 }
36 Executions {
37 hylaaTool {
38 command "/usr/bin/python -u

/opt/hyst -1.5/ src/hybridpy/hybridpy/tool_hylaa.pyc
${treatment.name}/${object.parameter.num_steps }.py -"

39 timeout 15
40 preprocessing {
41 mkdir{command "mkdir -p ${treatment.name}"},
42 hyst{command "java -jar /opt/hyst -1.5/ src/Hyst.jar -i

/opt/optimizations/io.xml -o
${treatment.name}/${object.parameter.num_steps }.py -tool hylaa
'-settings settings.print_output=False
${treatment.parameter.params} -step
${object.parameter.step_size}'"}

43 }
44 postprocessing {
45 rm{command "rm -f

${treatment.name}/${object.parameter.num_steps }.py"}
46 }
47 },
48 hylaaToolNoInput {
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49 command "/usr/bin/python -u
/opt/hyst -1.5/ src/hybridpy/hybridpy/tool_hylaa.pyc
${treatment.name}/${object.parameter.num_steps }.py -"

50 timeout 15
51 preprocessing {
52 mkdir{command "mkdir -p ${treatment.name}"},
53 hyst{command "java -jar /opt/hyst -1.5/ src/Hyst.jar -i

/opt/optimizations/ha.xml -o
${treatment.name}/${object.parameter.num_steps }.py -tool
hylaa '-settings settings.print_output=False
${treatment.parameter.params} -step
${object.parameter.step_size}'"}

54 }
55
56 postprocessing {
57 rm{command "rm -f

${treatment.name}/${object.parameter.num_steps }.py"}
58 }
59 }
60 }
61 }

We present a comparison between the level of abstraction of original specifications
with specifications using the DSL of Experiments 1 to 3 based on the criteria defined in
Section 6.2.1:

• Level of detail: Since the DSL is declarative, it says only what the experiment
does without saying how to do it. The details of how to execute and analyze an
experiment are specified in the code generators. Using Python, an experimenter
must write how to execute and analyze the experiment with all implementation
details. For instance, using the DSL, an experimenter needs only to specify the
experimental design (Lines 8–10), treatments (Lines 20–26), and objects (Lines
27–34). The details of how to apply the treatments to the objects are implemented in
the code generators, according to the experimental design. On the other hand, using
Python (Listing 2.1), one must write not only the treatments and objects definitions
but also the mechanics of applying the treatments to the objects (Lines 21–36).

• Number of potential implementations: The DSL is implemented by code gen-
erators, which are able to generate any text. So, code generators can generate
source-code in any other language, including another DSL. To provide a distinct
implementation of the execution script in Pyhton, one would have to use distinct
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implementations of the Python compiler, which, indeed, limits the potential imple-
mentations.

• Domain concepts: Our proposed DSL was created to be used in the Experimen-
tation Domain. So, naturally, it uses domain concepts, such as Research Hypothe-
sis (Line 2), Dependent Variables (Line 11), Treatments (Line 20), Objects (Line
27), etc. Unlike the DSL, the original scripts were created using Python, which is a
general purpose language and does not contain any concept of the Experimentation
Domain.

• Complexity: Since the DSL is declarative, it does not contain control flow state-
ments. All the complexity is left to the code generators, which, once created, do not
need to be directly used by experimenters. On the other hand, to create execution
scripts in Python, or any other imperative language, the experimenter must deal
with the complexity of control flow statements, variable declarations, and so on.
For instance, in Listing 2.1, to repeat the execution a number of times, first, the
variable num_trials is declared (Line 10). Then, a loop control is used to repeat the
execution the number of times defined in num_trials (Lines 31–32). Using the DSL,
the experimenter simply defines the number of runs (Line 9).

Based on this comparison, we conclude that the proposed tool raises the level of
abstraction required to execute and analyze a technology-oriented experiment (RQ 4).

7.2.2 DSL Constructs

We also present a comparison between DSL constructs and domain concepts. In this
comparison, we considered all types defined in the DSL grammar. Based on the criteria
defined in Section 6.2.1, we classified the grammar constructs in three groups: high-
level constructs (Table 7.8), mid-level constructs (Table 7.9), and low-level constructs
(Table 7.10).

As a result of the evaluation (RQ 5), we found that, out of 46 types defined in the
grammar, 25 are high-level constructs (54.35%), 7 are mid-level constructs (15.22%), and
14 are low-level constructs (30.43%). Despite the low-level constructs, the high-level and
mid-level constructs add up to around 70%. In addition, the low-level constructs are
not too complex since they are declarative statements instead of control flow statements.
All the low-level constructs are related to the infrastructure, which suggests that these
constructs should not be part of the DSL. Instead, they should be defined somewhere in
the supporting framework. Furthermore, this also suggests that there is another role in
the experimentation process, a system administrator, which deals with low-level details to
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Table 7.8: Comparison between DSL constructs and Domain Concepts (high-level con-
structs)

DSL Construct Domain Concept
Jedlitschka et al. [2008]Wohlin et al. [2012] Juristo and Moreno [2013]

Abstract Abstract Abstract N/A
Analysis Analysis Data Analysis Analysis
Author Authorship Authorship N/A
Context Parameter Context Parameter
DependentVariable Dependent variable Dependent variable Response variable
DesignType Design Type Design Type Design Type
Execution Execution Execution Execution
Experiment Experiment Experiment Experiment
ExperimentalDesign Experiment Design Experiment design Experimental design
ExperimentalObject Experimental Material Object Experimental object
Factor Independent variable Factor Factor
Goal Goal Goal Goal
Instrument Instrument Instrument N/A
Keyword Keyword N/A N/A
Range Range Range N/A
ResearchHypothesis Hypothesis Hypothesis Hypothesis
ResearchQuestion Research question Research question N/A
ScaleType Scale type Scale type Scale type
SimpleAbstract Abstract Abstract N/A
SimpleGoal Goal Goal Goal
StructuredAbstract Structured Abstract Structured Abstract N/A
StructuredGoal Goal Goal Goal
Threat Threat to validity Threat to validity Validity threat
ThreatType Threats classification Threats classification Threats classification
Treatment Treatment Treatment Level

Table 7.9: DSL mid-level constructs

DSL Construct Purpose

File Related to a Treatment or to an Experimental Object
Model Container for all elements of the grammar
ObjectGroup Groups related Experimental Objects

OperatorType Represents which comparison between Treatments
will be done

Parameter Related to a Treatment or to an Experimental Object

ResearchHypothesisFormula
Comprises a Dependent Variable, two Treatments,
and an Operator Type

Restriction
Used to limit the relation between
Treatments and Experimental Objects
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Table 7.10: DSL low-level constructs

DSL Construct Purpose

AccessKey Cloud Access Key
Infrastructure Infrastructure specifications
InstanceType Virtual Machine Instance Type
Cloud Cloud specifications
CloudProvider Cloud Provider specification
OnFinishType Action performed in the virtual machine after finishing execution
PlatformType Virtual Machine Platform Type
Preconditions Names of packages required to run the experiment
Region Cloud Region
Requirements Infrastructure requirements, such as CPU, memory, cost, etc
StatusType Region Status
User Username and User Keys
UserKey User key to access the Cloud
Zone Cloud Zone

configure the required infrastructure to run the experiment. In fact, special attention must
be payed to the Requirements construct. Although this construct reflects infrastructure
requirements, such as CPU, memory, and costs, in some experiments, these specifications
are important for the context of the experiment. Thus, there should be a way to specify
these requirements using the Context construct, and have the code generators map then
to the infrastructure requirements. By doing so, the number of high-level constructs would
increase to 78.13%, the number of mid-level to 21.88%, and there would not be low-level
constructs anymore.

7.3 Discussion and Lessons Learned

We propose a DSM approach supporting technology-oriented experiments. The proposed
solution was evaluated with respect to automation, level of abstraction, and correctness.

Automation. We used a model-driven approach to generate execution and analysis
scripts from experiment specifications. This enables full automation of execution and
analysis, and, thus, frees the researcher of the task of manually creating execution and
analysis scripts, which could be error-prone, time-consuming, and requires knowledge on
general purpose languages and statistics. By replicating three published experiments, we
show that the DSL is expressive enough to specify technology-oriented experiments (RQ 1)
and that the proposed tool can be used to enable sound automation of execution (RQ 2)
and analysis (RQ 3) from the specification of technology-oriented experiments.

Abstraction. By creating a DSL using experimentation concepts, we raised the level
of abstraction of experiments specifications. Although the experimenter must learn a new
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language, this language has a higher level of abstraction in relation to general purpose
languages (RQ 4) since less detail must be provided in the specification, there are more
potential implementations, the DSL uses domain concepts, and the DSL is less complex.
By comparing the DSL constructs with domain concepts (RQ 5), we found that 54.35% are
high-level constructs, 15.22% are mid-level constructs, and 30.43% are low-level constructs.
Even the low-level constructs are less complex than general purpose language statements
since they contain only declarative statements instead of control flow ones. In addition,
the results suggest that, since the low-level constructs are related to the infrastructure,
they could be moved from the DSL to the supporting framework.

Correctness. To assure the correctness of the results provided by our model, we defined
some key correctness properties (Chapter 4). These correctness properties were formally
proved, which assures that the results are consistent with the experiment specification.

7.4 Threats to Validity

The evaluation of automation (Section 6.1) is a quantitative evaluation based on replications.
On the other hand, the evaluation of the level of abstraction (Section 6.2) is an analytical
comparison. For both evaluations, we present the threats to validity:

Conclusion validity. To perform the replications with and without the tool, we
used procedures and scripts as similar as possible to that presented by the authors in
the original papers. This includes the number of runs, which affects the sample size,
and the procedure to collect execution results. For this reason, we could not perform
statistical significance tests to check the differences in results between the executions with
and without the tool. In Experiment 1, each treatment is applied to each object ten times;
however, the original script records only the mean, the minimum, and the maximum value
of each sample, which is not enough to perform a significance test. It requires all the
single measurements, or, at least, the mean and the variance of the sample [Box et al.,
2005; Juristo and Moreno, 2013]. In Experiments 2 and 3, since each object is, in fact, a
whole dataset, each treatment is applied only one time to each object, which results in an
insufficient sample size to perform a significance test. Therefore, we drew our conclusions
based on the interpretation of the plots containing execution results, and considering the
qualitative results of each replication. In addition, to mitigate the threat of using a bad
instrumentation, in the replications, we used the same instrumentation used in the original
experiments.

Internal validity. The measurement of performance, specially runtime, is sensibly
affected by the execution environment. Other processes running in the same machine and
consuming resources, such as cpu, memory, and disk access, may cause variations in the
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measured runtime. This could affect the comparison of the results of replications with
and without the tool. To reduce this threat, we ran each replication in a dedicated virtual
machine on Google Cloud. The virtual machine was recreated before each replication
using the same configurations to keep the execution environments as similar as possible.

Construction validity. To assure that the metrics chosen for the evaluation are
suitable measures of the issue under investigation, they were derived from the goals and
research questions and based on references from the literature.

External validity. To empirically evaluate the proposed solution, we replicated
distinct experiments from the automatic verification domain. To find technology-oriented
experiments with the replication completely documented and all the artifacts available (Sec-
tion 6.1.2), we direct our search to venues explicitly requiring reproducibility as part of the
evaluation process or distinguishing it in accepted papers, and also to experiments more
related to our research group, which may have restricted the domain of the experiments. In
future works, we intend to replicate experiments from additional domains and also compare
the level of abstraction of these experiment specifications with experiment specifications
using our tool.

Reliability validity. We conducted the evaluation ourselves, which can introduce
bias in the evaluation. In relation to automation, since it is a feasibility evaluation, and
not a subjective evaluation, such as usability, the bias does not affect the results. When
it comes to the evaluation of abstraction, to mitigate the threat of researchers bias, we
defined objective evaluation criteria based on references from the literature.
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Chapter 8

Conclusion

We presented a Domain-Specific Modeling Approach Supporting technology-oriented
experiments. The solution comprises a DSL, execution and analysis script generators, a
supporting framework, and a running infrastructure. All these components are integrated
in a Web-based tool that implements the DSM approach, providing a means to specify
runnable specifications at a high level of abstraction; automated execution, data analysis,
and results presentation.

We empirically evaluated the practical applicability of the tool to provide automation in
the experimentation process and its level of abstraction. The results suggest that the DSL
is expressive enough to specify technology-oriented experiments and that the proposed tool
can be used to enable sound automation of execution and analysis from the specification
of technology-oriented experiments. In addition, the empirical assessment also suggests
that the use of the DSL raises the level of abstraction of experiment specifications when
comparing to general purpose languages. When it comes to the language constructs, the
comparison with domain concepts shows that 54.35% are high-level constructs, 15.22%
are mid-level constructs, and 30.43% are low-level constructs. However, even the low-level
constructs are less complex than general purpose language statements since they contain
only declarative statements instead of control flow ones.

We also presented a formal model of the tool and some key correctness properties.
These correctness properties were formally proved, which assures that the results are
consistent with the experiment specification. Overall, we believe our DSM solution and
supporting tool are a step towards improved efficiency of the experimentation process and
correctness of its results.
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8.1 Limitations

Although the DSL is expressive enough to specify technology-oriented experiments and the
proposed tool can be used to enable automation of execution and analysis of technology-
oriented experiments, there are some limitations.

Experimental Design. The experimental design applies only a (subset of) Cartesian
product to relate treatments and experimental objects. There should be a means to specify
additional designs relating more than two treatments at a time, or even applying only one
treatment to several objects in scalability evaluations.

Experimental Objects. The tool is able to apply a treatment to an object the
number of times defined by the experimenter. However, the object must be exactly the
same. In some experiments [Beyer et al., 2018; Devroey et al., 2017], the treatment is
applied to a group of related objects, and all the measurements are analyzed as if they
were repetitions of the same object.

Output checking. Using our tool, the applications corresponding to the treatments
are executed and the dependent variables are measured. However, there is no way to
compare the output of the tool with some reference value. This would be necessary, for
instance, to replicate the experiment presented in Beyer et al. [2018].

Analysis. Since the research hypotheses relate only two treatments, the statistical
tests performed are T-test and Mann-Whitney, depending on normality of the data. If
additional designs were added to the specification, the corresponding statistical test should
also be added to analysis.

Evaluation. We evaluated neither the cost of learning the DSL nor its usability.
Manual Tasks. Although our solution can be used to enable automation of execution

and analysis, the experimenter still has to perform some manual tasks, such as interpreting
the results, drawing the conclusions, writing replication instructions, and publishing the
lab package. In addition, a system administrator has to properly configure the running
infrastructure to run the experiment. Then, the system administrator can publish a Docker
image with these configurations so that other researchers can replicate the experiment or
conduct further analyses.

8.2 Related Work

To address the problems related to conducting experiments, many techniques have been
proposed. To the best of our knowledge, none of them simultaneously addresses runnable
specification of experiments at a high level of abstraction; automated treatment execution
and automated data analysis from the experiment specification; and formal guaranties
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of the correctness of results with respect to the experiment specification for technology-
oriented experiments. The existing techniques have a different and broad perspective and
support distinct phases of the experimentation process either for technology-oriented or
for human-oriented experiments.

Technology-oriented experiments: Beyer et al. [2015] formulated a set of require-
ments for reliable benchmarking and accurate resource measurements. They also provided
BenchExec, a free implementation of a benchmarking framework that fulfills all presented
requirements. The authors first defined some restrictions of the tool to be run: the tool is
CPU-bound, i.e., when compared to CPU usage, input and output operations from and
to disks are negligible, and input and output bandwidth does not need to be limited nor
measured; the tool does not perform network communication during the execution; the tool
does not spread across several machines during execution, but is limited to a single machine;
and the tool does not require user interaction. Based on these restrictions, the author
listed five specific requirements for reliable benchmarking: measure and limit resources
accurately, kill processes reliably, assign cores deliberately, respect non-uniform memory
access, and avoid swapping. Then, the authors described BenchExec, a cgroups-based
benchmarking framework that fulfills all these requirements. BenchExec is split in two
parts, one responsible for benchmarking a single run of a given tool, named runexec, and
the other responsible for benchmarking a whole set of runs. The tool runexec can be
easily used from within other benchmarking frameworks. In fact, we integrated runexec
with Dohko [Leite et al., 2017] so that our execution environment meets the requirements
presentend by the authors.

Hauck et al. [2014] presented Goal-oriented INfrastructure Performance EXperiments
(Ginpex) approach, which introduces goal-oriented and model-based specification and
generation of executable performance experiments for automatically detecting and quanti-
fying performance-relevant infrastructure properties. Ginpex provides a meta-model for
experiment specification and comes with predefined experiment templates that provide
automated experiment execution on the target platform and also automate the evalua-
tion of the experiment results. It can be used by performance analysts to automatically
derive performance-relevant infrastructure properties for performance predictions. Like
our approach, Ginpex provides automated execution and data analysis. However, the
main focus of Ginpex is to derive performance-relevant infrastructure properties based on
goal-oriented measurements. Ginpex could be used, for instance, to evaluate the overhead
of our tool and the running infrastructure.

Wang et al. [2005] presented Weevil, a framework providing techniques for software
engineers to automate the experimentation activity in highly distributed systems. A highly
distributed system usually consists of a network of components, executing independent
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and possibly heterogeneous tasks, that collectively realize a coherent service. Their
approach is founded on a suite of models that characterize the distributed system under
experimentation, the testbeds upon which the experiments are to be carried out, and
the client behaviors that drive the experiments. Similar to our approach, Weevil uses a
model-based approach to provide automated execution from an experiment configuration.
However, it does not provide automated data analysis from the experiment specification.
In addition, its main focus is on highly distributed systems.

Human-oriented experiments: Freire et al. [2013] proposed a model-driven ap-
proach to specify and monitor controlled experiments in software engineering, focusing
on human-oriented experiments. Their approach comprises a DSL, named ExpDSL;
model-driven transformations that allow workflow models generation; and a workflow
execution environment. First, a researcher uses ExpDSL to specify the experiment. Then,
model-driven transformations are applied to the experiment specification to generate
customized workflows for each experiment participant. Finally, the workflow is executed in
a Web-based workflow engine, which guides the participants by providing instructions for
their tasks. In addition, the researchers running the experiment can monitor the activities
performed by the participants. Their approach is similar to ours in the sense that they
use a DSM approach comprising a DSL, code generators, a supporting framework, and
a running infrastructure. However, there are significant differences. First, unlike our
approach, their work supports human-oriented experiments. For this reason, we partially
based our DSL in ExpDSL but we extended it with new constructs for technology-oriented
experiments. Second, their approach does not provide data analysis. Finally, since we
enable automation of execution and data analysis of technology-oriented experiments,
our code generators, supporting framework, and running infrastructure are completely
different. Although their approach can be used for scoping, planning, and execution, it is
not suitable for technology-oriented experiments.

Travassos et al. [2008] presented an experimental Software Engineering Environment
(eSEE) to support large-scale experimentation and scientific knowledge management in
Software Engineering. It is represented by a computerized infrastructure to support
large-scale experimentation in Software Engineering. eSEE provides a set of facilities to
allow geographically distributed software engineers and researchers to accomplish and
manage experimentation processes as well as scientific knowledge concerned with different
study types through the web. The eSEE’s conceptual model has been organized in three
abstraction levels: meta, configured and execution. Meta-level contains common knowledge
regarding experimental software engineering and its studies, including Software Engineering
knowledge. Configured-level is the knowledge for each type of experimental study. Finally,
execution-level is the knowledge for a specific study. Their proposal includes definition,
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planning, execution, and packaging of primary and secondary studies. However, it does
not support automated execution and data analysis from the experiment specification for
technology-oriented experiments.

Arisholm et al. [2002] developed a Web-based experiment support environment called
Simula Experiment Support Environment (SESE) to support large-scale human-oriented
experiments. The objective is to scale up the experiments and particularly run experiments
with professionals in industry using professional development tools to make the experiments
more realistic. SESE supports the logistics of a large-scale experiment and allows an exper-
imenter to define experiments, including all the detailed questionnaires, task descriptions
and necessary code, assign subjects to a given experiment session, run and monitor each
experiment session and collect the results from each subject for analyses. However, SESE
is bound to human-oriented experiments and does not include data analysis.

Hochstein et al. [2008] described the Experiment Manager Framework, an environment
that simplifies the process of collecting, managing, and sanitizing data from classroom
experiments, while minimizing disruption to natural subject behavior. The framework is
an integrated set of tools to support software engineering experiments in High Performance
Computing (HPC) classroom environments. The objectives are to simplify the process of
conducting software engineering experiments that involve development effort and workflow,
and to ensure consistency in data collection across experiments in classroom environments.
The framework also supports data analysis. Some of these analyses are focused on a single
subject, while others aggregate data over several classes. However, the framework does
not support technology-oriented experiments.

Data analysis and presentation: Madeyski and Kitchenham [2017] discussed the
concept of Reproducible Research and its use to address some problems found in empirical
software engineering research, particularly issues related to validity and reproduction of
data analysis. The authors raised awareness of the problems caused by unreproducible
research in software engineering, which is caused by a lack of raw data, sufficient summary
statistics, or undefined analysis procedures. Reproducible Research refers to the extend
to which the report of a specific scientific study can be compiled from the reported text,
data, and analysis procedures. Reproducible Research is proposed as one of the methods to
address problems with empirical research in software engineering. The authors suggested
the use of a set of free and open-source tools to use in practice to produce reproducible
research, including R, Latex, and Sweave. To avoid the issues discussed by the authors,
we followed their recommendations and used R, Latex, and Sweave in data analysis and
results presentation. In addition, the generated analysis scripts, as well the raw data and
the results, become available to the experimenter.

As mentioned before, although the aforementioned techniques help in conducting
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controlled experiments, they have a different and broad perspective and can be seen as
complementary works.

8.3 Future Work

Indeed, as a preliminary contribution, our DSM solution has a number limitations (Sec-
tion 8.1). Accordingly, in future work, some improvements could be made:

Experimental Design. Support additional design types relating more than two
treatments at a time, or applying only one treatment to several objects in scalability
evaluations since, currently, we support only two-treatment comparisons.

Experimental Objects. Support the definition of related experimental objects as a
single dataset so that the results can be analyzed as a single experimental object. This
would enable the use of the tool in experiments where the treatment is applied to a group
of related objects, and all the measurements are analyzed as if they were repetitions of the
same object.

Output checking. Provide means to specify an output reference to check the actual
output of execution. Currently, we run the tool specified by the experimenter and
measure the dependent variable using the corresponding instrumentation. However, the
experimenter must be assured that the tool related to the treatment is performing the
work it is supposed to do rather than performing some arbitrary processing.

Analysis. Provide additional statistical tests and allow the experimenter to choose the
tests to be applied and plots to be generated. Supporting additional designs also means
providing additional tests corresponding to these designs. In addition, the experimenter
should have more control over the statistical tests being applied and the plots being
generated.

Evaluation. Replicate the same experiments again but changing the original scripts
so that we can collect enough data to perform significance tests to compare the results with
and without the tool. In addition, conduct further experiments to investigate the overhead
of the tool in relation to runtime. The preliminary results suggest that the differences in
runtime with and without the tool vary for distinct time ranges. However, this should be
thoroughly investigated with additional experiments. Furthermore, evaluate additional
aspects of the DSL, such as usability and the cost of learning the language by independent
users. This would provide more information regarding the costs of the adoption of our
solution to experimenters who want to use it to conduct their experiments.
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Appendix A

DSL Grammar

In this appendix, we present the grammar of the DSL (Listing A.1) created using Xtext.

Listing A.1: DSL Grammar
1 grammar br.unb.autoexp.AutoExp with org.eclipse.xtext.common.Terminals
2 import "http :// www.eclipse.org/emf /2002/ Ecore" as ecore
3 generate autoExp "http :// www.unb.br/autoexp/AutoExp"
4
5 Model:
6 experiments += Experiment*
7 ;
8
9 Experiment returns Experiment:

10 'Experiment '
11 name=ID
12 '{'
13 ('Authors ' '{' authors += Author ("," authors += Author)* '}')?
14 ('description ' description=STRING)?
15 ('Abstract ' abstract=Abstract)?
16 ('Keywords ' '{' keywords += Keyword ("," keywords += Keyword)* '}')?
17 ('Goals ' '{' goals +=Goal ("," goals +=Goal)* '}')?
18 ('Research Questions ' '{' researchQuestions += ResearchQuestion (","

researchQuestions += ResearchQuestion)* '}')?
19 ('Research Hypotheses ' '{' researchHypotheses += ResearchHypothesis

("," researchHypotheses += ResearchHypothesis)* '}')?
20 ('Threats ' '{' threats += Threat ("," threats += Threat)* '}')?
21 'Experimental Design ' experimentalDesign=ExperimentalDesign
22 'Dependent Variables ' '{' dependentVariables += DependentVariable

("," dependentVariables += DependentVariable)* '}'
23 ('Instruments ' '{' instruments += Instrument (","

instruments += Instrument)* '}')?
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24 'Factors ' '{' factors += Factor ("," factors += Factor)* '}'
25 'Treatments ' '{' treatments += Treatment ("," treatments += Treatment)*

'}'
26 ('Groups ' '{' groups += ObjectGroup ("," groups += ObjectGroup)* '}')?
27 'Objects ' '{' 'description ' objectsDescription=STRING 'scaleType '

objectsScaleType=ScaleType '{'
experimentalObjects += ExperimentalObject (","
experimentalObjects += ExperimentalObject)* '}' '}'

28 'Executions ' '{' executions += Execution ("," executions += Execution)*
'}'

29 ('Analysis ' analysis=Analysis)?
30 'Infrastructure ' infrastructure=Infrastructure
31 '}';
32
33 Infrastructure:
34 {Infrastructure}
35 '{'
36 user=User
37 ('requirements ' requirements=Requirements)?
38 ('preconditions ' preconditions=Preconditions)?
39 ('clouds ' '{' clouds += Cloud (',' clouds += Cloud)* '}')?
40 ('on-finish ' onFinish=OnFinishType)?
41 '}'
42 ;
43
44 Preconditions:
45 {Preconditions}
46 '{'
47 (packages += STRING (',' packages += STRING)*)?
48 '}'
49 ;
50 User:
51 'user ' '{'
52 'username ' username=STRING
53 ('keys ' '{' keys+= UserKey (',' keys+= UserKey)* '}')?
54
55 '}'
56 ;
57 UserKey:
58 name=STRING
59 ('{'
60 ('privateKey ' privateKey=STRING)?
61 ('publicKey ' publicKey=STRING)?
62 ('fingerprint ' fingerprint=STRING)?
63 '}')?
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64 ;
65 Requirements:
66 '{'
67 'cpu ' cpu=INT
68 'memory ' memory=INT
69 'platform ' platform=PlatformType
70 'cost ' cost=BigDecimalType
71 'number -of -instances -per -cloud ' instancesPerCloud=INT
72 '}'
73 ;
74 PlatformType:
75 typeName=('LINUX ' | 'WINDOWS ' );
76 BigDecimalType returns ecore:: EBigDecimal:
77 INT ('.' INT)?;
78
79 Cloud:
80 name=STRING
81 '{'
82 provider=CloudProvider
83 accessKey=AccessKey
84 ('regions ' '{' regions += Region (',' regions += Region)*'}')?
85 ('instanceTypes ' '{' instanceTypes += InstanceType (','

instanceTypes += InstanceType)*'}')?
86 '}'
87 ;
88
89 CloudProvider:
90 'provider ' name=STRING
91 ('{'
92 ('maxResourcePerType ' maxResourcePerType=INT)?
93 ('description ' description=STRING)?
94 ('serviceClass ' serviceClass=STRING)?
95 '}')?
96
97 ;
98
99 InstanceType:

100 {InstanceType}
101 name=STRING
102 ('instances ' numberOfInstances=INT)?
103 ;
104
105 Region:
106 name=STRING
107 ('{'
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108 ('endpoint ' endpoint=STRING)?
109 ('status ' status=StatusType)?
110 ('city ' city=STRING)?
111 ('geographicRegion ' geographicRegion=INT)?
112 ('zones ' '{' zones +=Zone (',' zones +=Zone)*'}')?
113 '}')?
114 ;
115
116 StatusType:
117 typeName=('UP' | 'DOWN ' );
118
119 Zone:
120 name=STRING
121 (status=STRING)?
122 ;
123 AccessKey:
124 'access -key ' accessKey=STRING
125 'secret -key 'secretKey=STRING
126 ;
127 OnFinishType:
128 typeName=('NONE ' | 'SHUTDOWN ' |'TERMINATE ' );
129 Abstract returns Abstract:
130 Abstract_Impl | SimpleAbstract | StructuredAbstract;
131
132 Goal returns Goal:
133 Goal_Impl | SimpleGoal | StructuredGoal;
134
135 ExperimentalDesign returns ExperimentalDesign:
136 '{'
137 ('type ' type=DesignType)?
138 'runs ' runs=INT
139
140 ('Restrictions ' '{' restrictions += Restriction (","

restrictions += Restriction)* '}')?
141
142 ('Context Variables ' '{' contextVariables += ContextVariable (","

contextVariables += ContextVariable)* '}')?
143 '}';
144
145 Restriction returns Restriction:
146 treatment =[ Treatment|ID] 'objects ' '{'

objects +=[ ExperimentalObject|ID] (","
objects +=[ ExperimentalObject|ID])* '}'

147 ;
148
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149 Execution returns Execution:
150 name=ID
151 '{'
152 ('command ' cmd=STRING)?
153 ('timeout ' timeout=BigDecimalType)?
154 ('preconditions ' preconditions=Preconditions)?
155 ('result ' result=File)?
156 ('files ' '{' files +=File ("," files +=File)* '}')?
157 ('preprocessing ' '{' preProcessingExecutions += Execution (","

preProcessingExecutions += Execution)* '}')?
158 ('postprocessing ' '{' postProcessingExecutions += Execution (","

postProcessingExecutions += Execution)* '}')?
159 '}';
160
161 Analysis returns Analysis:
162 {Analysis}
163 name=ID
164 '{'
165 ('significance ' significanceLevel=BigDecimalType)?
166 '}';
167
168 ExperimentalObject returns ExperimentalObject:
169 {ExperimentalObject}
170 name=ID
171 '{'
172 'description ' description=STRING
173 ('value ' value=STRING)?
174 ('group ' objectGroup =[ ObjectGroup|ID])?
175 ('parameters ' '{' parameters += Parameter (","

parameters += Parameter)* '}')?
176 ('files ' '{' files +=File ("," files +=File)* '}')?
177 '}'
178 ;
179 Abstract_Impl returns Abstract:
180 {Abstract };
181
182 Author returns Author:
183 {Author}
184 name=ID
185 '{'
186 ('fullName ' fullName=STRING)?
187 ('institution ' institution=STRING)?
188 ('email ' email=STRING)?
189
190 '}';
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191
192 Keyword returns Keyword:
193 {Keyword}
194 description=STRING
195 ;
196
197 Threat returns Threat:
198 {Threat}
199 name=ID
200 '{'
201 ('description ' description=STRING)?
202 ('type ' type=ThreatType)?
203 ('CA' CA=STRING)?
204 '}';
205
206 Goal_Impl returns Goal:
207 {Goal}
208 name=ID;
209
210 ResearchQuestion returns ResearchQuestion:
211 {ResearchQuestion}
212 name=ID
213 '{'
214 ('description ' description=STRING)?
215 ('goal ' goal=[Goal|ID])?
216 '}';
217
218 ResearchHypothesis returns ResearchHypothesis:
219 {ResearchHypothesis}
220 name=ID
221 '{'
222 formula=ResearchHypothesisFormula
223 ('description ' description=STRING)?
224 ('goal ' goal=[Goal|ID])?
225 '}';
226
227 ResearchHypothesisFormula returns ResearchHypothesisFormula:
228 {ResearchHypothesisFormula}
229 depVariable =[ DependentVariable|ID] treatment1 =[ Treatment|ID]

operator=OperatorType treatment2 =[ Treatment|ID];
230
231 OperatorType:
232 typeName=('<' | '=' |'!=' | '>');
233
234 DependentVariable returns DependentVariable:
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235 {DependentVariable}
236 name=ID
237 '{'
238 'description ' description=STRING
239 ('scaleType ' scaleType=ScaleType)?
240 ('unit ' unit=STRING)?
241 ('range ' '{' range +=Range ("," range +=Range)* '}')?
242 ('instrument ' instrument =[ Instrument|ID])?
243 '}';
244 Instrument returns Instrument:
245 {Instrument}
246 name=ID
247 '{'
248 'command ' command=STRING
249 'valueExpression ' valueExpression=STRING
250 ('conversionFactor ' conversionFactor=BigDecimalType)?
251 '}'
252 ;
253 Factor returns Factor:
254 {Factor}
255 name=ID
256 '{'
257 'description ' description=STRING
258 ('scaleType ' scaleType=ScaleType)?
259 '}';
260
261 ContextVariable returns Context:
262 {Context}
263 name=ID
264 '{'
265 ('description ' description=STRING)?
266 ('scaleType ' scaleType=ScaleType)?
267 ('range ' '{' range +=Range ("," range +=Range)* '}')?
268 '}';
269
270 enum DesignType returns DesignType:
271
272 FACTORIAL='FACTORIAL ' |CRD='CRD ' | RCBD='RCBD ' | LS='LS' |

OTHER='OTHER ';
273
274 enum ScaleType returns ScaleType:
275 Absolute='Absolute ' | Logarithmic='Logarithmic ' | Nominal='Nominal ';
276
277 Range returns Range:
278 {Range}
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279 name=ID;
280
281 Treatment returns Treatment:
282 name=ID
283 'description ' description=STRING
284 'factor ' factor =[ Factor|ID]
285 ('parameters ' '{' parameters += Parameter (","

parameters += Parameter)* '}')?
286 ('files ' '{' files +=File ("," files +=File)* '}')?
287 'execution ' execution =[ Execution|ID];
288
289 File returns File:
290 {File}
291 '{'
292 'name ' name=STRING
293 'source ' source=STRING
294 ('dest ' dest=STRING)?
295 ('checksum ' checksum=STRING)?
296 '}'
297 ;
298 Parameter returns Parameter:
299 {Parameter}
300 name=ID
301 (value=STRING)?;
302
303 ObjectGroup returns ObjectGroup:
304 {ObjectGroup}
305 name=ID;
306
307 SimpleAbstract returns SimpleAbstract:
308 {SimpleAbstract}
309 (description=STRING)
310 ;
311
312 StructuredAbstract returns StructuredAbstract:
313 {StructuredAbstract}
314 '{'
315 ('context ' context=STRING)?
316 ('objective ' objective=STRING)?
317 ('method ' method=STRING)?
318 ('results ' results=STRING)?
319 ('conclusion ' conclusion=STRING)?
320 '}';
321
322 enum ThreatType returns ThreatType:
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323 iv='iv' | ev='ev ' | c='c' | r='r' | cl='cl ';
324
325 SimpleGoal returns SimpleGoal:
326 {SimpleGoal}
327 name=ID
328 description=STRING
329 ;
330
331 StructuredGoal returns StructuredGoal:
332 {StructuredGoal}
333 name=ID
334 '{'
335 ('object ' object=STRING)?
336 ('technique ' technique=STRING)?
337 ('quality ' quality=STRING)?
338 ('ptView ' ptView=STRING)?
339 ('contextOf ' contextOf=STRING)?
340 '}';
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Appendix B

DSL Validators

In this appendix, we present the validators of the DSL (Listing B.1) created using Xtend
and integrated with Xtext framework.

Listing B.1: DSL Validators
1 package br.unb.autoexp.validation
2
3 import br.unb.autoexp.autoExp.AutoExpPackage
4 import br.unb.autoexp.autoExp.DependentVariable
5 import br.unb.autoexp.autoExp.Execution
6 import br.unb.autoexp.autoExp.Experiment
7 import br.unb.autoexp.autoExp.Factor
8 import br.unb.autoexp.autoExp.ResearchHypothesis
9 import br.unb.autoexp.autoExp.ResearchHypothesisFormula

10 import br.unb.autoexp.autoExp.Treatment
11 import br.unb.autoexp.generator.ExperimentalDesignGenerator
12 import javax.inject.Inject
13 import org.eclipse.xtext.validation.Check
14
15 import static extension java.lang.String .*
16
17
18 class AutoExpValidator extends AbstractAutoExpValidator {
19 public static val ISSUE_CODE_PREFIX = "br.unb.autoexp.";
20 public static val HIERARCHY_CYCLE = ISSUE_CODE_PREFIX +

"HierarchyCycle";
21 public static val INVALID_ENTITY_NAME = ISSUE_CODE_PREFIX +

"InvalidEntityName";
22 public static val INVALID_ATTRIBUTE_NAME = ISSUE_CODE_PREFIX +

"InvalidAttributeName";
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23 public static val INVALID_PARAMETER_PLACEHOLDER = ISSUE_CODE_PREFIX +
"InvalidParameterPlaceholder";

24 public static val SAME_TREATMENT_COMPARISON = ISSUE_CODE_PREFIX +
"SameTreatmentComparison";

25 public static val TREATMENT_FROM_DISTINCT_FACTORS = ISSUE_CODE_PREFIX
+ "InvalidTreatment";

26 public static val SAME_FORMULA = ISSUE_CODE_PREFIX + "SameFormula";
27 public static val DEPENDENT_VARIABLE_NEVER_USED = ISSUE_CODE_PREFIX +

"DependentVariableNeverUsed"
28 public static val FACTOR_NEVER_USED = ISSUE_CODE_PREFIX +

"FactorNeverUsed"
29 public static val TREATMENT_NEVER_USED = ISSUE_CODE_PREFIX +

"TreatmentNeverUsed"
30 public static val EXECUTION_NEVER_USED = ISSUE_CODE_PREFIX +

"ExecutionNeverUsed"
31 public static val INVALID_PARAMETER = ISSUE_CODE_PREFIX +

"InvalidParameter"
32 public static val UNREGISTERED_DESIGN = ISSUE_CODE_PREFIX +

"UnregisteredDesign"
33
34 @Inject extension ExperimentalDesignGenerator
35
36 @Check
37 def checkRepeatedHypothesis(ResearchHypothesis hypothesis) {
38 val experiment = hypothesis.eContainer as Experiment
39 experiment.researchHypotheses.forEach [ hyp |
40 if (! hypothesis.name.equals(hyp.name) &&
41 hypothesis.formula.depVariable
42 .equals(hyp.formula.depVariable) &&
43 hypothesis.formula.treatment1
44 .equals(hyp.formula.treatment1) &&
45 hypothesis.formula.operator.typeName
46 .equals(hyp.formula.operator.typeName) &&
47 hypothesis.formula.treatment2
48 .equals(hyp.formula.treatment2)) {
49 warning("Hyphoteses '%s' and '%s' have the same

formula".format(hypothesis.name , hyp.name),
50 AutoExpPackage.eINSTANCE.researchHypothesis_Formula ,

AutoExpValidator.SAME_FORMULA , experiment.name)
51 }
52 ]
53 }
54 @Check
55 def checkSameTreatmentComparison(ResearchHypothesisFormula

hyphotesisFormula) {
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56 if (hyphotesisFormula.treatment1
57 .equals(hyphotesisFormula.treatment2))
58 error("Comparison must be done between distinct treatments",
59 AutoExpPackage.eINSTANCE
60 .researchHypothesisFormula_Treatment2 ,
61 SAME_TREATMENT_COMPARISON , hyphotesisFormula.treatment2.name)
62 }
63 @Check
64 def checkTreatmentsFromDistinctFactors(ResearchHypothesisFormula

hyphotesisFormula) {
65 if (! hyphotesisFormula.treatment1.factor
66 .equals(hyphotesisFormula.treatment2.factor))
67 error("Treatments '%s' and '%s' do not belong to the same

factor".format(hyphotesisFormula.treatment1.name ,
68 hyphotesisFormula.treatment2.name),
69 AutoExpPackage.eINSTANCE
70 .researchHypothesisFormula_Treatment2 ,
71 TREATMENT_FROM_DISTINCT_FACTORS ,

hyphotesisFormula.treatment2.name)
72 }
73 @Check
74 def checkDependentVariableNeverUsed(DependentVariable variable) {
75 val experiment = variable.eContainer as Experiment
76 if (! experiment.researchHypotheses.map[formula.depVariable]
77 .contains(variable)) {
78 warning("Dependent variable '%s' is never

used".format(variable.name),
79 AutoExpPackage.eINSTANCE.dependentVariable_Name ,

AutoExpValidator.DEPENDENT_VARIABLE_NEVER_USED ,
variable.name)

80 }
81 }
82 @Check
83 def checkInvalidParameter(Execution execution) {
84 val experiment = execution.eContainer as Experiment
85 experiment.designExecutions.filter[execution.name.equals(name)]
86 .forEach [ exec |
87 exec.invalidParameters.forEach [ parameter ,attribute |
88 val att=switch attribute{
89 case "cmd": AutoExpPackage.eINSTANCE.execution_Cmd
90 case "result": AutoExpPackage.eINSTANCE.execution_Result
91 }
92 error("Parameter '%s' cannot be resolved".format(parameter),

att , AutoExpValidator.INVALID_PARAMETER , parameter)
93 ]
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94 ]
95 }
96 @Check
97 def checkFactorNeverUsed(Factor factor) {
98 val experiment = factor.eContainer as Experiment
99 if (! experiment.researchHypotheses

100 .map[formula.treatment1.factor ]. contains(factor) &&
101 !experiment.researchHypotheses
102 .map[formula.treatment2.factor ]. contains(factor)) {
103 warning("Factor '%s' is never used".format(factor.name),

AutoExpPackage.eINSTANCE.factor_Name ,
104 AutoExpValidator.FACTOR_NEVER_USED , factor.name)
105 }
106 }
107 @Check
108 def checkTreatmentNeverUsed(Treatment treatment) {
109 val experiment = treatment.eContainer as Experiment
110 if (! experiment.researchHypotheses.map[formula.treatment1]
111 .contains(treatment) &&

!experiment.researchHypotheses.map[formula.treatment2]
112 .contains(treatment)) {
113 warning("Treatment '%s' is never used".format(treatment.name),

AutoExpPackage.eINSTANCE.treatment_Name ,
114 AutoExpValidator.TREATMENT_NEVER_USED , treatment.name)
115 }
116 }
117 @Check
118 def checkExecutionNeverUsed(Execution execution) {
119 val experiment = execution.eContainer as Experiment
120 if (! experiment.researchHypotheses
121 .map[formula.treatment1.execution ]. contains(execution) &&
122 !experiment.researchHypotheses
123 .map[formula.treatment2.execution ]. contains(execution)) {
124 warning("Execution '%s' is never used".format(execution.name),

AutoExpPackage.eINSTANCE.execution_Name ,
125 AutoExpValidator.EXECUTION_NEVER_USED , execution.name)
126 }
127 }
128
129 }

101



Appendix C

Generators

In this appendix, we present the execution script generator (Listing C.1) and the analysis
script generator (Listing C.2) for the DSL.

Listing C.1: Execution Script Generator
1 package br.unb.autoexp.generator.dohko
2
3 import br.unb.autoexp.autoExp.Experiment
4 import br.unb.autoexp.generator.ExperimentalDesignGenerator
5 import javax.inject.Inject
6
7 class DohkoGenerator {
8 @Inject extension ExperimentalDesignGenerator
9 def compileDohko(Experiment experiment) {

10 '''
11 ---
12 name: "«experiment.name»"
13 description: "«IF experiment.description !== null» «

experiment.description» «ENDIF»"
14 user:
15 username: "«experiment.infrastructure.user.username»"
16 «IF !experiment.infrastructure.user.keys.isNullOrEmpty»
17 keys:
18 «ENDIF»
19 «FOR key:experiment.infrastructure.user.keys»
20 - name: "«key.name»"
21 «IF key.privateKey !== null»
22 private -key -material: "«key.privateKey»"
23 «ENDIF»
24 «IF key.privateKey !== null»
25 public -key -material: "«key.publicKey»"
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26 «ENDIF»
27 «IF key.privateKey !== null»
28 fingerprint: "«key.fingerprint»"
29 «ENDIF»
30 «ENDFOR»
31 «IF experiment.infrastructure.requirements !== null»
32 requirements:
33 cpu: «experiment.infrastructure.requirements.cpu»
34 memory: «experiment.infrastructure.requirements.memory»
35 platform: "«experiment.infrastructure
36 .requirements.platform.typeName»"
37 cost: «experiment.infrastructure.requirements.cost»
38 number -of -instances -per -cloud: «experiment.infrastructure
39 .requirements.instancesPerCloud»
40 «ENDIF»
41 «IF experiment.infrastructure.preconditions !== null»
42 preconditions:
43 packages:
44 «FOR pack:experiment.infrastructure
45 .preconditions.packages»
46 - «pack»
47 «ENDFOR»
48 «ENDIF»
49 «IF !experiment.infrastructure.clouds.isNullOrEmpty»
50 clouds:
51 «FOR cloud:experiment.infrastructure.clouds»
52 - name: "«cloud.name»"
53 «IF cloud.provider !== null»
54 provider:
55 name: "«cloud.provider.name»"
56 «IF cloud.provider.maxResourcePerType >0»
57 max -resource -per -type: «

cloud.provider.maxResourcePerType»
58 «ENDIF»
59 «IF cloud.provider.description !== null»
60 description: "«cloud.provider.description»"
61 «ENDIF»
62 «IF cloud.provider.serviceClass !== null»
63 service -class: "«cloud.provider.serviceClass»"
64 «ENDIF»
65 «ENDIF»
66 «IF cloud.accessKey !== null»
67 access -key:
68 access -key: "«cloud.accessKey.accessKey»"
69 secret -key: "«cloud.accessKey.secretKey»"
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70 «ENDIF»
71 «IF !cloud.regions.isNullOrEmpty»
72 regions:
73 «ENDIF»
74 «FOR region:cloud.regions»
75 - name: "«region.name»"
76 «IF region.endpoint !== null»
77 endpoint: "«region.endpoint»"
78 «ENDIF»
79 «IF region.status !== null»
80 status: «region.status.typeName»
81 «ENDIF»
82 «IF region.city !== null»
83 city: "«region.city»"
84 «ENDIF»
85 «IF region.geographicRegion !=0»
86 geographic -region: «region.geographicRegion»
87 «ENDIF»
88 «IF !region.zones.isNullOrEmpty»
89 zone:
90 «ENDIF»
91 «FOR zone:region.zones»
92 - name: "«zone.name»"
93 «IF zone.status !== null»
94 status: "«zone.status»"
95 «ENDIF»
96 «ENDFOR»
97 «ENDFOR»
98 «IF !cloud.instanceTypes.isNullOrEmpty»
99 instance -types:

100 «ENDIF»
101 «FOR instance:cloud.instanceTypes»
102 - name: "«instance.name»"
103 «IF instance.numberOfInstances >0»
104 number -of -instances: «instance.numberOfInstances»
105 «ENDIF»
106 «ENDFOR»
107 «ENDFOR»
108 «ENDIF»
109
110 «IF !experiment.designExecutions.isNullOrEmpty»
111 blocks:
112 «FOR execution:experiment.designExecutions»
113 - repeat: «experiment.experimentalDesign.runs»
114 applications:
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115 - name: "«execution.taskName»"
116 command -line: "«execution.cmd»"
117 «IF execution.timeout !== null»
118 timeout: «execution.timeout»
119 «ENDIF»
120 «IF execution.preconditions !== null»
121 preconditions:
122 packages:
123 «FOR pack:execution.preconditions.packages»
124 - «pack»
125 «ENDFOR»
126 «ENDIF»
127 «IF!execution.files.isNullOrEmpty»
128 files:
129 «ENDIF»
130 «FOR file:execution.files»
131 - name: "«file.name»"
132 path: "«file.path»"
133 generated: «IF file.generated»"Y"«ELSE»"N"«ENDIF»
134 «ENDFOR»
135 «ENDFOR»
136 «ENDIF»
137 «IF experiment.infrastructure.onFinish !== null»
138 on-finish: "«experiment.infrastructure.onFinish.typeName»"
139 «ENDIF»
140 '''
141
142 }
143
144 }

Listing C.2: Analysis Script Generator
1 package br.unb.autoexp.generator.rscript
2
3 import br.unb.autoexp.autoExp.DependentVariable
4 import br.unb.autoexp.autoExp.Experiment
5 import br.unb.autoexp.autoExp.ExperimentalObject
6 import br.unb.autoexp.autoExp.ResearchHypothesis
7 import br.unb.autoexp.autoExp.ScaleType
8 import br.unb.autoexp.autoExp.SimpleGoal
9 import br.unb.autoexp.autoExp.Treatment

10 import br.unb.autoexp.autoExp.impl.SimpleAbstractImpl
11 import br.unb.autoexp.autoExp.impl.SimpleGoalImpl
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12 import br.unb.autoexp.autoExp.impl.StructuredAbstractImpl
13 import br.unb.autoexp.autoExp.impl.StructuredGoalImpl
14 import br.unb.autoexp.generator.ExperimentalDesignGenerator
15 import java.util.List
16 import javax.inject.Inject
17
18 class RScriptGenerator {
19 @Inject extension ExperimentalDesignGenerator
20 def compileRScript(Experiment experiment) {
21 '''
22 \documentclass{article}
23 \usepackage{authblk}
24 \usepackage{float}
25 \usepackage{multirow}
26 \usepackage[utf8]{ inputenc}
27 \begin{document}
28 «experiment.generateTitle»
29 «experiment.generateAuthor»
30 \maketitle
31 «experiment.generateAbstract»
32 «experiment.generateKeywords»
33 <<setup , include=FALSE , echo=FALSE , warning=FALSE ,

message=FALSE >≥

34 library(reproducer) # R package incl. software engineering data
sets

35 library(ggplot2) # R package to create high -quality graphics
36 library(jsonlite)
37
38 alpha = «IF experiment.analysis ?. significanceLevel !== null» «

experiment.analysis.significanceLevel»«ELSE»0.05«ENDIF»
39
40 json_data = fromJSON("data.json")
41
42 «FOR i:1.. experiment.experimentalObjects.size»
43 json_data$objectOrder[json_data$object ==

'«experiment.experimentalObjects.get(i-1).name» '] = «i»
44 «ENDFOR»
45
46 «FOR treatment:experiment.treatmentsInUse»
47 json_data$treatmentDescription[json_data$treatment ==

'«treatment.name» '] = '«treatment.description»'
48 «ENDFOR»
49 «FOR object:experiment.experimentalObjects»
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50 json_data$objectLabel[json_data$object == '«object.name» '] = '«IF
object.value === null» «
object.description»«ELSE»«object.value»«ENDIF»'

51 «ENDFOR»
52
53 expectedRuns = «experiment.experimentalDesign.runs»
54 «FOR variable: (experiment.researchHypotheses as

List <ResearchHypothesis >).map[
formula.depVariable ]. removeDuplicates»

55 json_data$«variable.name.convert »[json_data$executionStatus !=
'FINISHED '] = NA

56 «FOR treatment:experiment.treatmentsInUse»
57 «FOR object:treatment.experimentalObjects»
58 if (length(json_data$«variable.name.convert»[

json_data$treatment == '«treatment.name»' & json_data$object
== '«object.name»' & !is.na(
json_data$«variable.name.convert»)]) != expectedRuns){

59 json_data$«variable.name.convert »[json_data$treatment ==
'«treatment.name»' & json_data$object ==
'«object.name» ']=NA

60 }
61 «ENDFOR»
62 «ENDFOR»
63 «ENDFOR»
64
65 json_data$treatment = as.factor(json_data$treatment)
66 json_data$treatmentDescription =

as.factor(json_data$treatmentDescription)
67 json_data$object = as.factor(json_data$object)
68 «IF experiment.objectsScaleType.equals(ScaleType.NOMINAL)»
69 json_data$objectLabel = as.factor(json_data$objectLabel)
70 «ELSE»
71 json_data$objectLabel = as.numeric(json_data$objectLabel)
72 «ENDIF»
73 data_summary <- function(data , varname , groupnames){
74 require(plyr)
75 summary_func <- function(x, col){
76 c(mean = mean(x[[col]], na.rm=TRUE),
77 sd = sd(x[[col]], na.rm=TRUE))
78 }
79 data_sum <-ddply(data , groupnames , .fun=summary_func ,
80 varname)
81 data_sum <- rename(data_sum , c("mean" = varname))
82 return(data_sum)
83 }
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84 breaks_continuous <- function(data , steps){
85 diff <-max(data)-min(data)
86 step_size <-diff/steps
87 step <-min(data)
88 breaks <-c(step)
89 for (i in 1: steps){
90 step <-step+step_size
91 breaks <-c(breaks ,step)
92 }
93 return(breaks)
94 }
95 breaks_log <- function(data , steps){
96 diff <-max(data)/min(data)
97 base <-diff ^(1/ steps)
98 exp <-log(min(data),base)
99 breaks <-c(round(base^exp))

100 for (i in 1: steps){
101 exp <-exp+1
102 breaks <-c(breaks ,round(base^exp))
103 }
104 return(breaks)
105 }
106 @
107 \section{Description}
108 «experiment.description»
109 «experiment.generateGoals»
110 «experiment.generateQuestions»
111
112 \section{Overview}
113 «experiment.generateOverview»
114
115 \subsection{Objects Overview}
116 «FOR object:experiment.objectsInUse»
117 \subsubsection{Overview for «object.description»}
118 «experiment.generateObjectOverview(object)»
119 «ENDFOR»
120
121 \section{Research Hypotheses}
122 «FOR hypothesis:experiment.researchHypotheses»
123
124 \subsection{«hypothesis.name»: «hypothesis.description»}
125 «hypothesis.generate»
126
127 «ENDFOR»
128

108



129 \section{Result Summary}
130 \subsection{Research Hypotheses}
131
132 «experiment.generateResultsSummary»
133
134 «experiment.generateResultsFile»
135
136 «generateSessionInformation»
137
138 \end{document}
139 '''
140 }
141
142 def String generateResultsSummary(Experiment experiment)
143 '''
144 «FOR hypothesis:experiment.researchHypotheses»
145 «hypothesis.generateSummary»
146 «ENDFOR»
147
148 '''
149
150 def String generateSessionInformation () {
151 '''
152 \clearpage
153 \appendix
154 \section{Session Information}
155 <<echo=FALSE , warning=FALSE , message=FALSE >≥

156 sessionInfo ()
157 @
158 '''
159 }
160
161 def String generate(ResearchHypothesis hypothesis){
162 '''
163
164 «hypothesis.initializeResults»
165
166 «hypothesis.generateOverview»
167
168 «FOR obj:hypothesis.objects»
169
170 \subsubsection{«hypothesis.name».«

hypothesis.objects.indexOf(obj) + 1»: Object «
obj.description»}

171 «hypothesis.generate(obj)»
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172
173 «ENDFOR»
174
175
176 «hypothesis.generateSummary»
177
178 '''
179 }
180 def String generateOverview(ResearchHypothesis hypothesis){
181 val experiment=hypothesis.eContainer as Experiment
182 '''
183 <<overview_«hypothesis.name», include=TRUE , echo=FALSE ,

warning=FALSE , message=FALSE >≥

184 DF <- data_summary(subset(json_data , «FOR
object:hypothesis.objectsInUse BEFORE "(" SEPARATOR "|" AFTER
")"»object == '«object.name»' «ENDFOR» & (treatment ==
'«hypothesis.formula.treatment1.name»' | treatment ==
'«hypothesis.formula.treatment2.name» ')), varname =
"«hypothesis.formula.depVariable.name.convert»", groupnames =
c("treatmentDescription", "objectLabel", "objectOrder"))

185 «generatePlotOverview(experiment , hypothesis.formula.depVariable)»
186 @
187 '''
188 }
189
190
191 def String generateResultsFile(Experiment experiment)
192 '''
193 <<echo=TRUE , echo=FALSE , warning=FALSE , message=FALSE >≥

194 experimentResults = list(«FOR hypothesis:
experiment.researchHypotheses» «hypothesis.name»_result«IF
!hypothesis.name.equals(
experiment.researchHypotheses.last.name)», «ENDIF»«ENDFOR»)

195 write(toJSON(experimentResults , pretty = TRUE , auto_unbox =
TRUE), "experimentResults.json")

196
197 @
198 '''
199
200 def String generateSummary(ResearchHypothesis hypothesis)
201 '''
202 <<echo=FALSE , echo=FALSE , warning=FALSE , message=FALSE >≥

203 «hypothesis.name»_result = list(hypothesis =
"«hypothesis.name»", results =
c(result_«hypothesis.name»_less /
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result_«hypothesis.name»_objects ,
result_«hypothesis.name»_greater /
result_«hypothesis.name»_objects , result_«hypothesis.name»_«
hypothesis.formula.treatment1.name» /
result_«hypothesis.name»_objects , result_«hypothesis.name»_«
hypothesis.formula.treatment2.name» /
result_«hypothesis.name»_objects ,
result_«hypothesis.name»_none /
result_«hypothesis.name»_objects ,
result_«hypothesis.name»_inconclusive /
result_«hypothesis.name»_objects), objectResults = list(«FOR
object:hypothesis.objects» list(object = '«object.name»',
result = result_object_«hypothesis.name»_«object.name»)«IF
!object.name.equals(hypothesis.objects.last.name)», «
ENDIF»«ENDFOR» ))

204 @
205
206 \subsubsection{«hypothesis.name» Results: «

hypothesis.formula.depVariable.description» «
hypothesis.formula.treatment1.description» «
hypothesis.formula.operator.typeName» «
hypothesis.formula.treatment2.description»}

207
208
209 \begin{table }[H]
210 \centering
211 \caption{«hypothesis.name» Results per Object}
212 \begin{tabular }{ll}
213 «FOR object:hypothesis.objects»
214 \textbf{«object.description»} &

\Sexpr{result_«hypothesis.name»_«object.name»} \\
215 «ENDFOR»
216 \end{tabular}
217 \end{table}
218
219 \begin{table }[H]
220 \centering
221 \caption{«hypothesis.name» Results Summary}
222 \begin{tabular }{ll}
223 \textbf{«hypothesis.formula.treatment1.description» \textless {}

«hypothesis.formula.treatment2.description»:}& \Sexpr {100 *
result_«hypothesis.name»_less /
result_«hypothesis.name»_objects }\% \\

224 \textbf{«hypothesis.formula.treatment1.description»
\textgreater {} «
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hypothesis.formula.treatment2.description»:}& \Sexpr {100 *
result_«hypothesis.name»_greater /
result_«hypothesis.name»_objects }\%\\

225 \textbf{«hypothesis.formula.treatment1.description»:} &
\Sexpr {100 * result_«hypothesis.name»_«
hypothesis.formula.treatment1.name» /
result_«hypothesis.name»_objects }\%\\

226 \textbf{«hypothesis.formula.treatment2.description»:} &
\Sexpr {100 * result_«hypothesis.name»_«
hypothesis.formula.treatment2.name» /
result_«hypothesis.name»_objects }\%\\

227 \textbf{None :}& \Sexpr {100 * result_«hypothesis.name»_none /
result_«hypothesis.name»_objects }\%\\

228 \textbf{Inconclusive :}& \Sexpr {100 *
result_«hypothesis.name»_inconclusive /
result_«hypothesis.name»_objects }\%

229 \end{tabular}
230 \end{table}
231 '''
232
233 def String generate(ResearchHypothesis hypothesis ,

ExperimentalObject object){
234 '''
235
236 «hypothesis.generateTreatmentsData(object)»
237
238 \textbf{Comparison}
239
240 <<«hypothesis.name»_«object.name», include=TRUE , echo=FALSE ,

warning=FALSE , message=FALSE >≥

241 «hypothesis.generateBoxplot(object)»
242 if( length( «hypothesis.formula.depVariable.name.convert»_«

hypothesis.formula.treatment1.name»_« object.name») ==
expectedRuns & length( «
hypothesis.formula.depVariable.name.convert»_«
hypothesis.formula.treatment2.name»_«object.name») ==
expectedRuns){

243 «hypothesis.generateTests(object)»
244 }
245 if( length( «hypothesis.formula.depVariable.name.convert»_«

hypothesis.formula.treatment1.name»_« object.name») ==
expectedRuns & length( «
hypothesis.formula.depVariable.name.convert»_«
hypothesis.formula.treatment2.name»_« object.name») ==
expectedRuns){
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246 «hypothesis.generateComparison(object)»
247 }
248 if ( length( «hypothesis.formula.depVariable.name.convert»_«

hypothesis.formula.treatment1.name»_« object.name») !=
expectedRuns & length( «
hypothesis.formula.depVariable.name.convert»_«
hypothesis.formula.treatment2.name»_« object.name») !=
expectedRuns){

249 result_object_«hypothesis.name»_«object.name» = 4
250 result_«hypothesis.name»_«object.name» = "None"
251 result_«hypothesis.name»_none = result_«hypothesis.name»_none + 1
252 }
253 if ( length( «hypothesis.formula.depVariable.name.convert»_«

hypothesis.formula.treatment1.name»_«object.name») ==
expectedRuns & length( «
hypothesis.formula.depVariable.name.convert»_«
hypothesis.formula.treatment2.name»_«object.name») !=
expectedRuns){

254 result_object_«hypothesis.name»_«object.name» = 2
255 result_«hypothesis.name»_«object.name» =

"«hypothesis.formula.treatment1.description»"
256 result_«hypothesis.name»_« hypothesis.formula.treatment1.name» =

result_« hypothesis.name»_«
hypothesis.formula.treatment1.name» + 1

257 }
258 if ( length( «hypothesis.formula.depVariable.name.convert»_«

hypothesis.formula.treatment1.name»_« object.name») !=
expectedRuns & length( «
hypothesis.formula.depVariable.name.convert»_«
hypothesis.formula.treatment2.name»_«object.name») ==
expectedRuns){

259 result_object_«hypothesis.name»_«object.name» = 3
260 result_«hypothesis.name»_«object.name» =

"«hypothesis.formula.treatment2.description»"
261 result_« hypothesis.name»_« hypothesis.formula.treatment2.name»

= result_« hypothesis.name»_«
hypothesis.formula.treatment2.name» + 1

262 }
263 @
264 '''
265 }
266
267 def String initializeResults(ResearchHypothesis hypothesis)
268 '''
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269 <<«hypothesis.name», include=TRUE , echo=FALSE , warning=FALSE ,
message=FALSE >≥

270
271 result_«hypothesis.name»_objects=«hypothesis.objects.size»
272 result_«hypothesis.name»_less=0
273 result_«hypothesis.name»_greater =0
274 result_«hypothesis.name»_« hypothesis.formula.treatment1.name»

= 0
275 result_«hypothesis.name»_« hypothesis.formula.treatment2.name»

= 0
276 result_«hypothesis.name»_none = 0
277 result_«hypothesis.name»_inconclusive = 0
278 @
279 '''
280 def String generateComparison(ResearchHypothesis hypothesis ,

ExperimentalObject object)
281 '''
282 print("")
283 print("Means comparison")
284 print( paste( "Mean «hypothesis.formula.depVariable.description»

for «hypothesis.formula.treatment1.description»: ", mean(
subset( json_data , treatment ==
'«hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert»)))

285 print( paste( "Mean «hypothesis.formula.depVariable.description»
for «hypothesis.formula.treatment2.description»: ", mean(
subset( json_data , treatment ==
'«hypothesis.formula.treatment2.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert»)))

286 print( paste( "Absolute difference: ", abs( mean( subset(
json_data , treatment == '«hypothesis.formula.treatment1.name»'
& object == '«object.name» ')$«
hypothesis.formula.depVariable.name.convert») - mean( subset(
json_data , treatment == '«hypothesis.formula.treatment2.name»'
& object == '«object.name» ')$«
hypothesis.formula.depVariable.name.convert»))))

287 if (result_« hypothesis.name»_«object.name»_tTest |
result_«hypothesis.name»_« object.name»_wTest){

288 if( mean( subset( json_data , treatment ==
'«hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert») > mean(
subset( json_data , treatment ==
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'«hypothesis.formula.treatment2.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert»)){

289 result_«hypothesis.name»_«object.name» =
"«hypothesis.formula.treatment1.description»
\\ textgreater {} «
hypothesis.formula.treatment2.description»"

290 result_object_«hypothesis.name»_«object.name» = 1
291 result_«hypothesis.name»_greater =

result_«hypothesis.name»_greater + 1
292 }else {
293 result_«hypothesis.name»_«object.name» =

"«hypothesis.formula.treatment1.description»
\\ textless {} «hypothesis.formula.treatment2.description»"

294 result_object_«hypothesis.name»_«object.name» = 0
295 result_«hypothesis.name»_less =

result_«hypothesis.name»_less + 1
296 }
297
298 }else{
299 result_object_«hypothesis.name»_«object.name» = 5
300 result_«hypothesis.name»_«object.name» = "Inconclusive"
301 result_«hypothesis.name»_inconclusive =

result_«hypothesis.name»_inconclusive + 1
302 }
303
304 if( mean( subset( json_data , treatment ==

'«hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert») > mean( subset(
json_data , treatment == '«hypothesis.formula.treatment2.name»'
& object == '«object.name» ')$«
hypothesis.formula.depVariable.name.convert» )){

305 cat( paste( "«hypothesis.formula.depVariable.description» for
«hypothesis.formula.treatment1.description» is ", 100 * (
abs( mean( subset( json_data , treatment == '«
hypothesis.formula.treatment2.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert») - mean(
subset( json_data , treatment == '«
hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert» )) / mean(
subset( json_data , treatment == '«
hypothesis.formula.treatment2.name»' & object ==
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'«object.name» ')$«
hypothesis.formula.depVariable.name.convert» )), "%
greater than \n «
hypothesis.formula.depVariable.description» for «
hypothesis.formula.treatment2.description»" ))

306 }else{
307 cat( paste( "«hypothesis.formula.depVariable.description» for

«hypothesis.formula.treatment2.description» is ", 100 * (
abs( mean( subset( json_data , treatment == '«
hypothesis.formula.treatment2.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert») - mean(
subset( json_data , treatment ==
'«hypothesis.formula.treatment1.name»' & object ==
'«object.name»' )$«
hypothesis.formula.depVariable.name.convert» )) / mean(
subset( json_data , treatment == '«
hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert» )), "%
greater than \n«
hypothesis.formula.depVariable.description» for «
hypothesis.formula.treatment1.description»" ))

308 }
309 '''
310
311 def String generateNonParametricTest(ResearchHypothesis hypothesis ,

ExperimentalObject object)
312 '''
313 result_«hypothesis.name»_«object.name»_wTest = FALSE
314 wTest = wilcox.test( «hypothesis.formula.depVariable.name.convert

»¬treatment , data = subset( json_data , (treatment ==
'«hypothesis.formula.treatment1.name»' | treatment == '«
hypothesis.formula.treatment2.name» ') & object ==
'«object.name» '))

315 print(wTest)
316 if(wTest$p.value > alpha){
317 print( paste( "Wilcoxon -Mann -Whitney test: Null Hypothesis

not rejected. P-value:", wTest$p.value , sep = " "))
318 result_«hypothesis.name»_« object.name»_wTest = FALSE
319 }else{
320 print( paste( "Wilcoxon -Mann -Whitney test: Null Hypothesis

rejected. P-value:", wTest$p.value , sep = " "))
321 result_« hypothesis.name»_«object.name»_wTest = TRUE
322 }
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323 '''
324
325 def String generateTests(ResearchHypothesis hypothesis ,

ExperimentalObject object)
326 '''
327 result_«hypothesis.name»_« object.name»_tTest = FALSE
328 result_«hypothesis.name»_« object.name»_wTest = FALSE
329
330 if( shap_«hypothesis.formula.treatment1.name»_«

object.name»$p.value > alpha &
shap_«hypothesis.formula.treatment2.name»_«
object.name»$p.value > alpha){

331 print("Fisher 's F-test to verify the homoskedasticity (homogeneity
of variances)")

332
333 fTest = var.test( subset( json_data , treatment ==

'«hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$« hypothesis.formula.depVariable.name.convert »
, subset(json_data ,treatment == '«
hypothesis.formula.treatment2.name»' & object ==
'«object.name» ')$« hypothesis.formula.depVariable.name.convert»)

334 print(fTest)
335
336 print( paste( "Homogeneity of variances: ", fTest$p.value > alpha ,

". P-value: ", fTest$p.value , sep = ""))
337
338 print("Assuming that the two samples are taken from populations

that follow a Gaussian distribution (if we cannot assume that ,
we must solve this problem using the non -parametric test called
Wilcoxon -Mann -Whitney test)")

339 tTest = t.test( subset( json_data , treatment ==
'«hypothesis.formula.treatment1.name»' & object ==
'«object.name» ')$« hypothesis.formula.depVariable.name.convert »
, subset( json_data , treatment ==
'«hypothesis.formula.treatment2.name»' & object ==
'«object.name» ')$« hypothesis.formula.depVariable.name.convert»,
var.equal = fTest$p.value > alpha , paired = FALSE)

340 print(tTest)
341 if(tTest$p.value > alpha){
342 print(paste("T-test: Null Hypothesis not rejected. P-value:",

tTest$p.value , sep = " "))
343
344 }else{
345 print(paste("T-test: Null Hypothesis rejected. P-value:",

tTest$p.value , sep = " "))
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346 result_«hypothesis.name»_«object.name»_tTest = TRUE
347 }
348 }else{
349 wTest = wilcox.test( «hypothesis.formula.depVariable.name.convert »¬

treatment , data = subset( json_data , (treatment ==
'«hypothesis.formula.treatment1.name»' | treatment ==
'«hypothesis.formula.treatment2.name» ') & object ==
'«object.name» '))

350 print(wTest)
351 if(wTest$p.value > alpha){
352 print( paste( "Wilcoxon -Mann -Whitney test: Null Hypothesis not

rejected. P-value:", wTest$p.value , sep = " "))
353 result_«hypothesis.name»_« object.name»_wTest = FALSE
354 }else{
355 print( paste( "Wilcoxon -Mann -Whitney test: Null Hypothesis

rejected. P-value:", wTest$p.value , sep = " "))
356 result_«hypothesis.name»_« object.name»_wTest = TRUE
357 }
358 }
359 '''
360 def String generateBoxplot(ResearchHypothesis hypothesis ,

ExperimentalObject object)
361 '''
362 DF=subset(json_data ,( treatment ==

'«hypothesis.formula.treatment1.name»' | treatment ==
'«hypothesis.formula.treatment2.name» ') & object ==
'«object.name» ')

363 DF$treatmentDescription = ordered(DF$treatmentDescription , levels
= levels(DF$treatmentDescription)[order( as.numeric( by(
DF$«hypothesis.formula.depVariable.name.convert»,
DF$treatmentDescription , mean)))])

364 boxplot_«hypothesis.name»_«object.name» = ggplot(DF , aes(x
=treatmentDescription , y = «
hypothesis.formula.depVariable.name.convert»)) +

365 geom_boxplot(fill = "#4271AE", colour = "#1 F3552",alpha =
0.7, outlier.colour = "#1 F3552", outlier.shape = 20)+

366 theme_bw () +
367 scale_x_discrete(name =

"«hypothesis.formula.treatment1.factor.description»")+
368 ggtitle( "«hypothesis.formula.depVariable.description» by «

hypothesis.formula.treatment1.factor.description» for «
object.description»") +

369 ylab("«hypothesis.formula.depVariable.description» «IF
hypothesis.formula.depVariable.unit !== null»( «
hypothesis.formula.depVariable.unit» )«ENDIF»")
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370 boxplot_«hypothesis.name»_«object.name»
371 '''
372
373 def String generateTreatmentsData(ResearchHypothesis hypothesis ,

ExperimentalObject object)
374 '''
375 «FOR treatment:hypothesis.getTreatments»
376 \textbf{«hypothesis.formula.depVariable.description» for «

treatment.description»}
377 <<«hypothesis.name»_«treatment.name»_«object.name», include = TRUE ,

echo = FALSE , warning = FALSE , message = FALSE >≥

378 «hypothesis.formula.depVariable.name.convert»_«
treatment.name»_«object.name» = subset( json_data , treatment ==
'«treatment.name»' & object == '«object.name»' & !is.na( «
hypothesis.formula.depVariable.name.convert» ))$«
hypothesis.formula.depVariable.name.convert»

379 print(paste("Sample size: ",
length(«hypothesis.formula.depVariable.name.convert»_«
treatment.name»_«object.name»)))

380 summary(subset(json_data , treatment == '«treatment.name»' & object
== '«object.name» ')$«
hypothesis.formula.depVariable.name.convert»)

381
382 if( length( «hypothesis.formula.depVariable.name.convert»_«

treatment.name»_«object.name») == expectedRuns){
383 reproducer :: boxplotAndDensityCurveOnHistogram( subset(

json_data , treatment == '«treatment.name»' & object ==
'«object.name» '),
"«hypothesis.formula.depVariable.name.convert»", min(
subset(json_data , treatment == '«treatment.name»' & object
== '«object.name» ')$«
hypothesis.formula.depVariable.name.convert»), max( subset(
json_data , treatment == '«treatment.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert»))

384
385 shap_«treatment.name»_«object.name» = shapiro.test( subset(

json_data , treatment == '«treatment.name»' & object ==
'«object.name» ')$«
hypothesis.formula.depVariable.name.convert»)

386 print(shap_«treatment.name»_«object.name»)
387 if(shap_«treatment.name»_«object.name»$p.value > alpha){
388 print( paste( "Shapiro test: Null Hypothesis (normality)

not rejected. P-value:",
shap_«treatment.name»_«object.name»$p.value , sep = " "))
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389 }else{
390 print( paste( "Shapiro test: Null Hypothesis (normality)

rejected. P-value:",
shap_«treatment.name»_«object.name»$p.value , sep = " "))

391 }
392 }
393 @
394 «ENDFOR»
395 '''
396
397 def String generateTitle(Experiment experiment)
398 '''
399 \title{«experiment.description»}
400 '''
401
402 def String generateAuthor(Experiment experiment)
403 '''
404 \author{«FOR author:experiment.authors»«author.fullName»«IF

!author.name.equals(experiment.authors.last.name)», «
ENDIF»«ENDFOR»}

405 '''
406
407 def String generateAbstract(Experiment experiment)
408 '''
409
410 «IF experiment.abstract ?.class ?. equals(SimpleAbstractImpl)»
411 \abstract{«(experiment.abstract as

SimpleAbstractImpl).description»}
412 «ELSEIF experiment.abstract ?.class ?. equals(

StructuredAbstractImpl)»
413 «val abstract = (experiment.abstract as StructuredAbstractImpl)»
414 \begin{abstract}
415 «IF !abstract.context.isNullOrEmpty»
416 \textbf{Context :} «abstract.context»
417 «ENDIF»
418
419 «IF !abstract.objective.isNullOrEmpty»
420 \textbf{Objective :} «abstract.objective»
421 «ENDIF»
422
423 «IF !abstract.method.isNullOrEmpty»
424 \textbf{Method :} «abstract.method»
425 «ENDIF»
426
427 «IF !abstract.results.isNullOrEmpty»
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428 \textbf{Results :} «abstract.results»
429 «ENDIF»
430
431 «IF !abstract.conclusion.isNullOrEmpty»
432 \textbf{Conclusion :} «abstract.conclusion»
433 «ENDIF»
434 \end{abstract}
435
436 «ENDIF»
437
438 '''
439
440 def String generateKeywords(Experiment experiment)
441 '''
442 «IF !experiment.keywords.isNullOrEmpty»
443 %\ keywords{«FOR keyword :

experiment.keywords»«keyword.description»«IF !keyword.equals(
experiment.keywords.last)», «ENDIF»«ENDFOR»}

444 «ENDIF»
445
446 '''
447 def String generateGoals(Experiment experiment)
448 '''
449 «IF !experiment.goals.isNullOrEmpty»
450 \section{Goals}
451 \begin{itemize}
452 «FOR goal:experiment.goals»
453 «IF goal.class.equals(SimpleGoalImpl)»
454 \item{«(goal as SimpleGoal).name»: «(goal as

SimpleGoal).description»}
455 «ELSEIF goal.class.equals(StructuredGoalImpl)»
456 «val structuredGoal =(goal as StructuredGoalImpl)»
457 \item{«structuredGoal.name»:
458 «IF !structuredGoal.object.isNullOrEmpty»
459 \textbf{Object :} «structuredGoal.object».
460 «ENDIF»
461 «IF !structuredGoal.technique.isNullOrEmpty»
462 \textbf{Technique :} «structuredGoal.technique».
463 «ENDIF»
464 «IF !structuredGoal.quality.isNullOrEmpty»
465 \textbf{Quality :} «structuredGoal.quality».
466 «ENDIF»
467 «IF !structuredGoal.ptView.isNullOrEmpty»
468 \textbf{Point of View:} «structuredGoal.ptView».
469 «ENDIF»
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470 «IF !structuredGoal.contextOf.isNullOrEmpty»
471 \textbf{Context Of:} «structuredGoal.contextOf».
472 «ENDIF»
473 }
474
475 «ENDIF»
476 «ENDFOR»
477 \end{itemize}
478 «ENDIF»
479 '''
480 def String generateQuestions(Experiment experiment)
481 '''
482 «IF !experiment.researchQuestions.isNullOrEmpty»
483 \section{Research Questions}
484 \begin{itemize}
485
486 «FOR question:experiment.researchQuestions»
487 \item{«question.description» «IF question.goal !== null». Related

to «question.goal.name»«ENDIF»}
488 «ENDFOR»
489
490 \end{itemize}
491 «ENDIF»
492 '''
493
494 def String generateOverview(Experiment experiment)
495 '''
496
497 «FOR variable : (experiment.researchHypotheses as

List <ResearchHypothesis >).map[
formula.depVariable ]. removeDuplicates»

498 <<overview_«variable.name.convert», include=TRUE , echo=FALSE ,
warning=FALSE , message=FALSE >≥

499 DF <- data_summary( subset( json_data , «FOR object :
experiment.objectsInUse BEFORE "(" SEPARATOR "|"»object ==
'«object.name»'«ENDFOR») & !is.na(«variable.name.convert» )),
varname = "«variable.name.convert»", groupnames =
c("treatmentDescription", "objectLabel", "objectOrder"))

500 «generatePlotOverview( experiment , variable)»
501 @
502 «ENDFOR»
503 '''
504
505 protected def CharSequence generatePlotOverview(Experiment

experiment , DependentVariable variable)
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506 '''«IF experiment.objectsScaleType.equals(ScaleType.NOMINAL)»
507 DF$objectLabel <- factor(DF$objectLabel , levels = c( «FOR object

: experiment.experimentalObjects SEPARATOR
","»"«object.description»"«ENDFOR»))

508 «ENDIF»
509
510 ggplot(DF , aes(x = objectLabel , y = «variable.name.convert»,

group = treatmentDescription , color = treatmentDescription))
+

511 geom_errorbar( aes( ymin = «variable.name.convert» - sd, ymax = «
variable.name.convert»+sd), width = .1, linetype = 3) +

512 geom_line () + geom_point ()+
513 scale_color_brewer(palette="Paired") +
514 theme_bw () +
515 «IF experiment.objectsScaleType.equals( ScaleType.NOMINAL)»
516 scale_x_discrete(name = "«experiment.objectsDescription»")+
517 «ENDIF»
518 «IF experiment.objectsScaleType.equals( ScaleType.ABSOLUTE)»
519 scale_x_continuous(name = "«experiment.objectsDescription»",

breaks_continuous( data = DF$objectLabel , steps = 10))+
520 «ENDIF»
521 «IF experiment.objectsScaleType.equals( ScaleType.LOGARITHMIC)»
522 scale_x_log10(name = "«experiment.objectsDescription»( log

scale)", breaks_log( data = DF$objectLabel , steps =10))+
523 «ENDIF»
524
525 «IF variable.scaleType.equals( ScaleType.NOMINAL)»
526 scale_y_discrete(name = "«variable.description» «IF

variable.unit !== null»(«variable.unit»)«ENDIF»")+
527 «ENDIF»
528 «IF variable.scaleType.equals( ScaleType.ABSOLUTE)»
529 scale_y_continuous(name = "«variable.description» «IF

variable.unit !== null»(«variable.unit»)«ENDIF»")+
530 «ENDIF»
531 «IF variable.scaleType.equals( ScaleType.LOGARITHMIC)»
532 scale_y_log10(name = "«variable.description» «IF variable.unit

!== null»( «variable.unit»)«ENDIF»( log scale)")+
533 «ENDIF»
534 ggtitle("«variable.description» Overview") +
535 theme(legend.title = element_blank ())
536 '''
537
538 def String generateOverview(Experiment experiment , Treatment

treatment)
539 '''
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540 <<«treatment.name», include = TRUE , echo = FALSE , warning =
FALSE , message = FALSE >≥

541 «FOR variable : (experiment.researchHypotheses as
List <ResearchHypothesis >).map[
formula.depVariable ]. removeDuplicates»

542 DF = subset( json_data , «FOR object :
treatment.experimentalObjects BEFORE "(" SEPARATOR "|" AFTER
")"»object == '«object.name»'«ENDFOR» & treatment ==
'«treatment.name» ')

543 DF$objectLabel = ordered(DF$objectLabel , levels =
levels(DF$objectLabel)[order( as.numeric( by(
DF$«variable.name.convert», DF$objectLabel , mean)))])

544 boxplot_«treatment.name»_«variable.name.convert» = ggplot(DF ,
aes(x = objectLabel , y = «variable.name.convert»)) +

545 geom_boxplot(fill = "#4271AE", colour = "#1 F3552",alpha =
0.7, outlier.colour = "#1 F3552", outlier.shape = 20)+

546 theme_bw () +
547 scale_x_discrete(name = "Experimental Object")+
548 ggtitle("«variable.description» by «treatment.factor.description»

for «treatment.description»") +
549 ylab("«variable.description» «IF variable.unit !==

null»(«variable.unit»)«ENDIF»")
550 boxplot_«treatment.name»_«variable.name.convert»
551 «ENDFOR»
552 @
553 '''
554
555 def String generateObjectOverview(Experiment

experiment ,ExperimentalObject object)
556 '''
557 <<«object.name», include = TRUE , echo = FALSE , warning = FALSE

, message = FALSE >≥

558 «FOR variable : (experiment.researchHypotheses as
List <ResearchHypothesis >).map[
formula.depVariable ]. removeDuplicates»

559 DF = subset(json_data , («FOR treatment :
experiment.treatmentsInUse SEPARATOR "|"»treatment ==
'«treatment.name»'«ENDFOR») & object == '«object.name» ')

560 DF$treatmentDescription = ordered(DF$treatmentDescription , levels
= levels( DF$treatmentDescription)[order( as.numeric( by(
DF$«variable.name.convert», DF$treatmentDescription , mean)))])

561 boxplot_«object.name»_«variable.name.convert» = ggplot(DF , aes(x
=treatmentDescription , y = «variable.name.convert»)) +

562 geom_boxplot(fill = "#4271AE", colour = "#1 F3552",alpha =
0.7, outlier.colour = "#1 F3552", outlier.shape = 20)+
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563 theme_bw () +
564 scale_x_discrete(name =

"«experiment.treatmentsInUse.head.factor.description»")+
565 ggtitle("«variable.description» by «

experiment.treatmentsInUse.head.factor.description» for «
object.description»") +

566 ylab("«variable.description» «IF variable.unit !== null»( «
variable.unit»)«ENDIF»")

567 boxplot_«object.name»_«variable.name.convert»
568
569 «ENDFOR»
570 @
571 '''
572
573 def convert(String depVariable) {
574 switch(depVariable){
575 case "cpuConsumption":"cpu"
576 case "memoryConsumption":"memory"
577 default: depVariable
578 }
579 }
580
581 }

125



Appendix D

Empirical Evaluation

In this appendix, we present the execution scripts (Listings D.1 and D.3) and the experiment
specifications (Listings D.2 and D.4) used in the empirical evaluation. The complete set of
scripts, specifications, and results data are available in the suplementary material.

Listing D.1: Excerpt an execution script used in Experiment 2
1 for size in big small
2 do
3 redis -cli flushall
4 for conf in \
5 kaluza.nocache.conf \
6 kaluza.cashew.conf \
7 kaluza.cashew -except -order.conf \
8 kaluza.cashew -except -reduce.conf \
9 kaluza.cashew -except -remove.conf \

10 kaluza.cashew -except -renameAlph.conf \
11 kaluza.cashew -except -renameVar.conf
12 do
13 expsdir=exps.${conf}_$i.output
14 mkdir -p ${expsdir}
15 for constraint in $(ls ${INPUTDIR} | grep $size)
16 do
17 runkal ${INPUTDIR }/${constraint} ${conf} >

${expsdir }/${constraint}
18 done
19 echo ''
20 done
21 for conf in \
22 kaluza.nocache.conf \
23 kaluza.cashew.conf
24 do
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25 mkdir -p results
26 expsdir=exps.${conf}_$i.output
27 grep totalSolvingTime ${expsdir }/big*.smt2 | awk '{print$3}' |

st > results/${expsdir }.big.time
28 cat results/${expsdir }.big.time
29 grep totalSolvingTime ${expsdir }/ small*.smt2 | awk '{print$3}'

| st > results/${expsdir }.small.time
30 cat results/${expsdir }. small.time
31 done
32 for expsdir in $(ls | grep 'exps .*. output$ ')
33 do
34 cat ${expsdir }/big*.smt2 | grep Canonicalized | sed

's/Canonicalized: //' | sort | uniq -c | sort -nr -k1 | tee
${expsdir }.big.orbits | awk '{print$1}' | st >
results/${expsdir }.big.orbits

35 cat ${expsdir }/ small*.smt2 | grep Canonicalized | sed
's/Canonicalized: //' | sort | uniq -c | sort -nr -k1 | tee
${expsdir }.small.orbits | awk '{print$1}' | st >
results/${expsdir }. small.orbits

36 cat ${expsdir }/*. smt2 | grep Canonicalized | sed
's/Canonicalized: //' | sort | uniq -c | sort -nr -k1 | tee
${expsdir }.all.orbits | awk '{print$1}' | st >
results/${expsdir }.all.orbits

37 done
38 done
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Listing D.2: Excerpt of an experiment specification used in Experiment 2
1 Experiment cashew {
2 description "Constraint Normalization and Parameterized Caching for

Quantitative Program Analysis"
3 Research Hypotheses {
4 RH1 {averageTime cashew = noCache description "Average time for

Cashew is equal to Average time for No Cache"},
5 RH2 {maxTime cashew = noCache description "Maximum time for Cashew

is equal to Average time for No Cache"},
6 RH3 {sumTime cashew = noCache description "Total time for Cashew is

equal to Average time for No Cache"},
7 RH4 {orbits cashew = noCache description "Number of Orbits for

Cashew is equal to the Number of Orbits for No Cache"},
8 RH5 {orbits cashew = cashewExceptOrder description "Number of

Orbits for Cashew is equal to the Number of Orbits for Cashew
Except Order"},

9 RH6 {orbits cashew = cashewExceptReduce description "Number of
Orbits for Cashew is equal to the Number of Orbits for Cashew
Except Reduce"},

10 RH7 {orbits cashew = cashewExceptRemove description "Number of
Orbits for Cashew is equal to the Number of Orbits for Cashew
Except Remove"},

11 RH8 {orbits cashew = cashewExceptRenameAlph description "Number of
Orbits for Cashew is equal to the Number of Orbits for Cashew
Except Rename Alph"},

12 RH9 {orbits cashew = cashewExceptRenameVar description "Number of
Orbits for Cashew is equal to the Number of Orbits for Cashew
Except Rename Var"}

13 }
14 Experimental Design {
15 runs 1
16 }
17 Dependent Variables {
18 averageTime { description "Average time" scaleType Absolute unit

"s" instrument averageTimeCommand },
19 maxTime { description "Maximum time" scaleType Absolute unit "s"

instrument maxTimeCommand },
20 sumTime { description "Total time" scaleType Absolute unit "s"

instrument sumTimeCommand },
21 orbits { description "Number of Orbits" scaleType Absolute

instrument orbitsCommand }
22 }
23 Instruments {
24 averageTimeCommand {command "" valueExpression "mean:" },
25 maxTimeCommand {command "" valueExpression "max:" },
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26 sumTimeCommand {command "" valueExpression "sum:" },
27 orbitsCommand {command "" valueExpression "N-orbits:" }
28 }
29 Factors {
30 transformations { description "Transformations enabled" scaleType

Nominal}
31 }
32 Treatments {
33 cashew description "All transformations" factor transformations

parameters{conf "kaluza.cashew.conf"} execution cashewExecutor ,
34 noCache description "No cache" factor transformations

parameters{conf "kaluza.nocache.conf"} execution cashewExecutor ,
35 cashewExceptOrder description "Except order" factor

transformations parameters{conf
"kaluza.cashew -except -order.conf"} execution cashewExecutor ,

36 cashewExceptReduce description "Except removeVar" factor
transformations parameters{conf
"kaluza.cashew -except -reduce.conf"} execution cashewExecutor ,

37 cashewExceptRemove description "Except removeConj" factor
transformations parameters{conf
"kaluza.cashew -except -remove.conf"} execution cashewExecutor ,

38 cashewExceptRenameAlph description "Except rename alph" factor
transformations parameters{conf
"kaluza.cashew -except -renameAlph.conf"} execution cashewExecutor ,

39 cashewExceptRenameVar description "Except rename var" factor
transformations parameters{conf
"kaluza.cashew -except -renameVar.conf"} execution cashewExecutor

40 }
41 Objects { description "Constraints" scaleType Nominal {
42 small {
43 description "SMC -Small"
44 parameters {
45 preffix "small"
46 }
47 },
48 big {
49 description "SMC -Big"
50 parameters {
51 preffix "big"
52 }
53 }
54 }
55 }
56 Executions {
57 cashewExecutor {
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58 command "/root/phab/green/run -orbits.sh
${treatment.parameter.conf} ${object.parameter.preffix}"

59 timeout 100000
60 preprocessing {
61 redisFlush { command "redis -cli flushall" },
62 }
63 }
64 }
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Listing D.3: Excerpt of an execution script used in Experiment 3
1 function jpf() {
2 java -Xmx2g -jar ${HOME}/phab/jpf -core/build/RunJPF.jar $@
3 }
4 expdir=exps.${expname}
5 mkdir -p ${expdir}
6 for flavor in nocache trivialcaching cashew
7 do
8 redis -cli flushall
9 echo ''

10
11 for pw in $(cat ${passwordsfile })
12 do
13 echo "Running ${flavor }.${pw}"
14 jpf ${seriesname }.${flavor }.jpf +target.args=${pw} >

${expdir }/${flavor }.${pw}.log
15 done
16
17 redis -cli save
18 cp /var/lib/redis/dump.rdb redis_after.${expname }.${flavor }.rdb
19
20 done
21
22 for flavor in nocache
23 do
24 sat_time=$(grep ABCService :: timeConsumption

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')
25 echo $flavor sat_time $sat_time
26 count_time=$(grep ABCCountService :: timeConsumption

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')
27 echo $flavor count_time $count_time
28 satpluscount_time=$(grep

"\( ABCService \| ABCCountService \):: timeConsumption"
${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')

29 echo $flavor satpluscount_time $satpluscount_time
30 satpluscountplusnorm_time=$(grep ":: timeConsumption"

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')
31 echo $flavor satpluscountplusnorm_time $satpluscountplusnorm_time
32 echo
33 done
34
35 for flavor in trivialcaching cashew
36 do
37 sat_time=$(grep ABCService :: timeConsumption

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')
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38 echo $flavor sat_time $sat_time
39 count_time=$(grep ABCCountService :: timeConsumption

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')
40 echo $flavor count_time $count_time
41 satpluscount_time=$(grep

"\( ABCService \| ABCCountService \):: timeConsumption"
${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')

42 echo $flavor satpluscount_time $satpluscount_time
43 satpluscountplusnorm_time=$(grep ":: timeConsumption"

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t/1000.0} ')
44 echo $flavor satpluscountplusnorm_time $satpluscountplusnorm_time
45 echo
46 sat_hits=$(grep ABCService :: cacheHits ${expdir }/${flavor }.*. log |

awk '{t=t+$3}END{print t}')
47 echo $flavor sat_hits $sat_hits
48 sat_misses=$(grep ABCService :: cacheMisses ${expdir }/${flavor }.*. log

| awk '{t=t+$3}END{print t}')
49 echo $flavor sat_misses $sat_misses
50 sat_hitmissratio=$(python -c "print(float($sat_hits)/$sat_misses)")
51 echo $flavor sat_hitmissratio $sat_hitmissratio
52 sat_hitpercentage=$(python -c "print(float($sat_hits)/( $sat_hits +

$sat_misses))")
53 echo $flavor sat_hitpercentage $sat_hitpercentage
54 echo
55 count_hits=$(grep ABCCountService :: cacheBoundedHits

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t}')
56 echo $flavor count_hits $count_hits
57 count_misses=$(grep ABCCountService :: cacheMisses

${expdir }/${flavor }.*. log | awk '{t=t+$3}END{print t}')
58 echo $flavor count_misses $count_misses
59 count_hitmissratio=$(python -c

"print(float($count_hits)/$count_misses)")
60 echo $flavor count_hitmissratio $count_hitmissratio
61 count_hitpercentage=$(python -c

"print(float($count_hits)/( $count_hits + $count_misses))")
62 echo $flavor count_hitpercentage $count_hitpercentage
63 echo
64 done
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Listing D.4: Excerpt of an experiment specification used in Experiment 3
1 Experiment cashew {
2 description "Constraint Normalization and Parameterized Caching for

Quantitative Program Analysis"
3 Research Hypotheses {
4 RH1 {sumTime cashew = nocache description "Total time for Cashew is

equal to Total time for No Cache"},
5 RH2 {sumTime cashew = trivialcaching description "Total time for

Cashew is equal to Total time for No Normalization"},
6 RH3 {hits cashew = trivialcaching description "Number of hits for

Cashew is equal to Number of hits for No Normalization"},
7 RH4 {misses cashew = trivialcaching description "Number of misses

for Cashew is equal to Number of misses for No Normalization"},
8 RH5 {hitsMissesRatio cashew = trivialcaching description

"Hits/Misses ratio for Cashew is equal to Hits/Misses ratio for
No Normalization"}

9 }
10 Experimental Design {
11 runs 1
12 }
13 Dependent Variables {
14 sumTime { description "Total time" scaleType Absolute unit "s"

instrument sumTimeCommand },
15 hits { description "Hits" scaleType Absolute instrument

hitsCommand },
16 misses { description "Misses" scaleType Absolute instrument

missesCommand },
17 hitsMissesRatio { description "Hits/Misses ratio" scaleType

Absolute instrument hitsMissesRatioCommand }
18 }
19 Instruments {
20 sumTimeCommand {command "" valueExpression "time:" },
21 hitsCommand {command "" valueExpression "hits:" },
22 missesCommand {command "" valueExpression "misses:" },
23 hitsMissesRatioCommand {command "" valueExpression

"hitsmissesratio:" }
24 }
25 Factors {
26 transformations { description "Transformations enabled" scaleType

Nominal}
27 }
28 Treatments {
29 nocache description "No cache" factor transformations

parameters{conf "kaluza.nocache.conf"} execution cashewExecutor ,
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30 trivialcaching description "No Normalization" factor
transformations parameters{conf
"kaluza.cashew -except -order.conf"} execution cashewExecutor ,

31 cashew description "Cashew" factor transformations parameters{conf
"kaluza.cashew.conf"} execution cashewExecutor

32 }
33 Objects { description "Constraints" scaleType Nominal {
34 password {description "Password1"},
35 password2 {description "Password2"},
36 obscure {description "Obscure"},
37 crime {description "CRIME"}
38 }
39 }
40 Executions {
41 cashewExecutor {
42 command "jpf -security/src/examples/cashew/run -security.sh

${treatment.name} ${object.name}"
43 timeout 100000
44 preprocessing {
45 redisFlush { command "redis -cli flushall" },
46 }
47 postprocessing {
48 redisSave { command "redis -cli save" },
49 }
50 }
51 }
52 }
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