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Resumo

Nesta tese estabelecemos resultados de existéncia, unicidade, multiplicidade e regu-
laridade de solucoes para a seguinte classe de problemas quasilineares que podem ser

singulares envolvendo expoentes variaveis

—Ap@yu = c(x)d(x) PP u=@ £ X f(z,u) in Q,
u>0in ©Q; u =0 on 0N.

Na primeira parte, determinamos condi¢oes suficientes para existéncia de tnica

1,p(z)
oc

solucdo em W, (Q) quando f(z,t) é sublinear em ¢t = 0 e ¢ = 400 para todo
z € Q. Na segunda parte, obtemos multiplicidade de solucdo em W, (x)(Q) quando
f(x,t) & superlinear em ¢ = 400 em algum subdominio de €. Além disso, permitimos
miultiplas regioes de singularidades, tanto no potencial quanto na nao linearidade u > 0,
enquanto que na segunda parte consideramos S = 0. Provamos também um principio
de Comparacao para sub e supersolucao em I/Vllo’f(f) (Q2) para problemas sublineares em
t=0eem t =400 envolvendo o operador p(z)—Laplaciano.

Entre as técnicas utilizadas estao o Método de Galerkin; Técnica de regularizacao

tipo Di Giorgi; Método de Sub-super solucao e o Teorema do Passo da Montanha.

Palavras-chave: p(r)—Laplaciano, singular com expoentes variaveis, Princi-

pio de Comparacao, Regularidade de solugoes

i



Abstract

In this thesis we establish results of existence, uniqueness, multiplicity and regularity of
solutions for the following class of quasilinear problems that may be singular, involving

variable exponents

—Ap@yu = c(x)d(x) PP u=@ £ X f(z,u) in Q,
u>0in ©Q; u =0 on 0N.

In the first part, we determined sufficient conditions for the existence of a unique
solution in W™ (Q) when f(z,t) is sublinear in ¢ = 0 and ¢ = 400 throughout the
domain. In the second part, we obtain multiplicity of solution in W,* (I)(Q) when
f(z,t) is superlinear in ¢ = 400 just in a subdomain of €2 in some subdomain of €.

Besides this, we allow multiple regions of singularity, both for the potential and for the

non-linearity u > 0, while in the second part we take 5 = 0. In addition, we prove a

1,p()

Q) for sublinear problems

Comparison principle for sub and supersolution in W,
in ¢t =0 and t = 400, involving the p(x)—Laplacian operator.
Among the techniques used are the Galerkin Method; the Di Giorgi regularization

technique; the Sub-super solution method; the Mountain Pass Theorem.

Keywords: p(r)—Laplacian, singular variable exponent, Comparison Princi-

ple, Regularity of Solutions
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Introduction

This work presents a study of questions related to existence, uniqueness, multi-

plicity and regularity of solutions for the following class of quasilinear problems

—Apyu = a(z)d(z) Py 4 A f(z,u) in Q,
U>01HQ, u=20 On(‘9§27

(1)

involving variable exponents and powers, where 2 C R is a bounded open domain
with smooth boundary, A > 0 is a real parameter, d(z) = yienafg |x —y|, for z € Q, is the
standard distance function to the boundary of ©, p : @ — R is a C*(Q)-function that
satisfies

1 <minp(z) =p_ < p; =maxp(z) < N,
e €N

and A, stands for the p(r)—Laplacian operator, that is,
Apyu = div(|Vul/P2Vy).

When p(z) = p (a constant), we have the well known p—Laplacian operator. Be-
cause of the non-homogeneity of the p(x)—Laplacian, these kinds of problems are more
delicate than ones with p—Laplacian. For example, the first eigenvalue of p(x)—Laplacian
is zero in general, and only under some special conditions the positivity holds (see [32]).

By quoting [28], the study of variable exponents spaces appeared in the literature
for the first time in 1931, in an article by Orlicz [58], but the field of variable exponent
function spaces has witnessed an explosive growth in recent years. The developments
in science lead to a period of intense study of variable exponent spaces. Also observed
were problems related to modeling of so-called electrorheological fluids [63] [64], the

study of thermorheological fluids [67] and image processing [19].



By going back to the problem , we notice that it exhibits a singular behavior
at the origin when a(x) > 0, that is, s~®) 20 oo for all @ € {a(z) > 0}.
Moreover, the weight d(z)™#(®) also presents a singular behavior near the boundary
when B(z) > 0, that is, d(z)#® D0 1 o for all = € {B(z) > 0}.

The study of singular problems relies mainly of their application to physical mod-
els such as non-Newtonian fluids [12], boundary layer phenomena for viscous fluids [I1],
chemical heterogenous [10] and e theory of heat conduction in electrically conducting
materials [22].

Our objective in this work is exploit the variable exponent to study the problem
(1)) in two different ways. The first being when f(x,t) is sublinear in ¢ = 0 and ¢ = +o0
throughout the domain and a(z), 8(x) allowing to change the signal. In second part,
f(z,t) is superlinear in t = +o00 only in a subdomain of Q, 8 = 0 and «a(z) allowing
the signal to change.

Our work is divided into three chapters and two appendix. In Chapter 1, we are
going to remember some definitions and results involving the Lebesgue and Sobolev

spaces with variable exponents which will be used throughout this thesis.

In Chapter 2 we present a Comparison principle to the problem

—Apyu = g(z,u) in Q,
u>0 inQ, wuw=0on 0,

where Q C RY is a smooth domain, p: Q — R is a C*(Q)-function that satisfies

1 <minp(r) =p- <py =maxp(z) < N,
e zeN

and g(x,t) fulfills the following conditions:

(g1) g : © x (0,00) — [0,4+00) is a function such that ¢ — g(z,t) is a continuous

function a.e. x € Q and for each ¢ > 0 the function z — ¢(x,t) is mensurable,

g(, 1)

(g2) t— Py is strictly decreasing on (0, 00) for a.e. z € €,

(g3) the functional I, : Wy — R, defined by

Tu(u) = /ﬂ i /Q G, u)d,




is coercive and weakly lower semicontinuous on {w € Wy"™(Q) / 0 < w < u}

with respect to Wy *™(Q)-norm, where
Gh(z,s) ::/ gn(z,t+ h)dt and gp(z,t) :=g(z,t + h)
0

for each h > 0 given.

Brezis and Oswald [8] studied the semilinear case to the problem , that is,

—Au = g(x,u) in £,
u =0 on 0f),

(3)

with g(x,t) satisfying:

(BO); t +— g(z,t) is a continuous function a.e. x €  and for each t > 0 the function
x +— g(z,t) belongs to L>®(Q) a.e. x € Q,
t
(BO)y t— g(a;, ) is strictly decreasing on (0, 00) for a.e. z € €,

(BO); there is a constant C' > 0 such that g(z,t) < C(1+1t) for a.e. z € Qand t > 0.

Besides this, they introduce the extended functions

t t
ag(x) = lim 9(@.t) and as(z) = lim 9(z.t) for z € Q
t—0t 1 t—oo ¢

and the quantity

Aa) = inf {/ |V7J\2 —/ a|v\2dx}
veH (), llvll2=1 { Jq {v#0}

for any extended function a : Q@ — RU {—o0, +0o0} given. With this set of hypotheses,
they showed that the problem has at most one weak solution. Moreover, a weak
solution of exists if and only if M(ag) < 0 < A(aw). Later, Diaz and Saa [27]
extended the result of Brezis and Oswald for p—Laplacian operator with p > 1 and
similar hypotheses. The fundamental tool to prove the uniqueness of solution is the
following inequality

W — W2

p—1
p

W — W2

p—1
P

/ IVw? |P2Vw! V — |[Vwd [P2Vwi V de >0, (4)
Q

wy Wy

which became known as Diaz-Saa Inequality [27].



Going back to our problem, the hypotheses (g1) — (g3) do not imply any growth
restriction on g with respect to the variable t and allow g(x,t) to have singular behavior
at 0. Furthermore, the technical hypothesis (g3) is not a “strange assumption”. In fact,
with the hypothesis A\(as) > 0 considered in Brezis-Oswald [8] (Laplacian operator) or
Diaz-Saa [27] (p—Laplacian operator) together with (BO); — (BO)3 and p(z) = p, lead
us to show that functional [}, is coercive and sequentially weakly lower semicontinuous
on {w € Wy () / 0 < w < u}. On the other side, in a Sobolev variable exponent

space, the amount

p(z)
veEWLP@) | |v]|(p) =1 Q {v#£0} p(:c)

may not be positive, see for instance [32]. We also point out that if we take g(z,t) =
a(x)/t*® | for some a(z) > 1 —p_ and a € L™ (Q) with a suitable choice of r(z) > 1,
and, in particular, p(z) has a strictly local minimum (or maximum) in , then the
infima in (5] is null, but the hypothesis (g1) — (g3) are still satisfied.

Before enunciating our first result, we need of the next definition.

Definition 0.0.1 We say that u € VVli’f(x)(Q) is a subsolution 0f ifu>0,g(x,u) €
L} .(Q) and

loc
/ |Vu[P® 2 VuVedr — / glz,u)pdr <0, ¥V ¢ € C(Q), ¢ > 0.
Q Q

Analogously, u € Wl’p(w)(Q) is a supersolution of (2) if u >0, g(x,u) € L, .(Q) and

loc loc
/ \Va[P@-2vaveds — / g(z,W)pdr >0, ¥V ¢ € C(Q), ¢ > 0.
Q Q

Now, we have.

Theorem 0.0.2 Assume that (g1) — (g3) holds true for each h > 0 given. If u,u

are subsolution and supersolution for , respectively, such that u € L2 () with

(u— )" € WoPUQ) for each ¢ > 0 given and essi(}lfﬂ(x) > 0 for each U CC 9,
Te

then u < a.e. in .

The importance of our first result is principally because it may be applied to
subsolutions and supersolutions just in I/Vllo’f(x) (). The proof is quite technical, because
we have to keep away from the boundary of €2 to avoid the possible singularity of g(x,t)

at t = 0. The first part of our proof is inspired on ideas in [16] that show the comparison



between a sub and a supersolution for a nonlocal and singular problem by truncating
the singularity in an suitable way. The second part is inspired on ideas of [43], to take

advantage to the convexity of the functional J = J : L],

(Q) = (—o0, 0] be given by

loc

5 [p(a) ;
/ N ey >0, wit € Wi (@),
J(w)=q Jx »p2)
+00, otherwise,

for each K CC (2 given to derive a Diaz-Saa type inequality

1 1
w1 — Wa p_ — p_
_ p(z)—2 P
— |Vw,™ | Vw,  V
pP— pP_
Wy Wy

W1 — W2

1 1
/ Vw!~ [P@2Vw!~ Vv
K

where wi,ws € L2(Q) N {u € LL(Q) [ u > 0, u- € WD (Q)} with wi/w, €

loc loc loc
[,

2 (Q), i # j. To our knowledge, this result is new even for Laplacian operator.

In the Chapter 3, we study issues about existence, regularities and uniqueness
of solutions to the problem . To enunciate these results, let us denote the J-strip
around to the boundary of (2 by

Qs :={zx e /dx)<d}

and consider the numbers

(z) — B(z) . _
01 = vets p(i) +a(r) -1 if B(x) + a(z) > 1 in Qs 05 = min p(z) — B(x) :
1 if B(z) + a(z) < 1in Q, 20, P(7) + o) — 1

for each 6 > 0 given.

So, let us assume that there exists a 6 > 0 such that:
(Hy) a:Q — RisaC%(Q)-function that satisfies a(z) > min, g a(x) == a_ > 1—p_,
(Hy) f:Qx[0,00) — [0,00) is a Carathéodory function such that
f(z,t) < bz)14+t1@7Y) for all € Q

holds true, for some functions ¢ € C'(Q2) and 0 < b € L*@)(Q) N L>(Q;) with
1 <q-<gqy <p_ands(x) > N/p_ for x € Q,

(Hs) (i) B:Q — Ris a C%(Q)-function that satisfies B, < p_,
(i) 0 < ¢ € L"@(Q) N L™= (Qs) for some r € C1(Q) with 1 < r(z) < +o0,
(7ii) c(x)/(1 — a(z)) € L"@(Q) N L>(Qys),

5



t
(Hy) tpx’_l) is strictly decreasing on (0, 00) for a.e. z € Q.

Under the condition (H;), the problem may be singular at v = 0 in multiple
regions of the domain. For example, if Q = Bg(0) is the ball centered at origin of
RY with radius R = 10x, then the problem oscillates from singular in the rings
Bak41)x(0)\B(2r)»(0) to non-singular one in B(o)x(0)\Bk-1)=(0) for k = 1,--- 5.
Beside this, we allow the signal of «(z) oscillates from a sub-linearity (1 —p_ < a(z) <
0) passing through an weak singularity (0 < «(z) < 1), to reach a strong singularity
(a(x) > 1) both in the domain and its boundary.

Before sharing our principal results, we here briefly recall the literature about
related singular problems. Crandall, Rabinowitz and Tartar [24] have considered a

class of singular problems which included, as special model,

NC)

in Q «u>0in Q uwu=0 on 09, (6)
ua

for some 0 < a € C*(Q) and a > 0 being a real number, showing not only existence of
classical and weak solutions but also some boundary regularity.

A broad literature on problems like (@ is available to this date. Since then, many
authors have considered the above problem with other operators.

In a famous paper, Lazer and McKenna [51] studied the problem

—Au:CL(x) in Q, vu>0in Q, wu=0 on 09, (7)
ua

where a € C(Q) with a > 0 in Q, and o > 0 is a real constant. They proved that
has a solution in Hj(Q) if and only if 0 < a < 3, while for & > 1 the solutions
are not in C*(Q). An extension of the Lazer and McKenna’s obstruction was proved
by Zhang and Cheng [72] when a(z) is like d(z)” with 8 € R (i.e., 3 ¢,C > 0 s.t.
cd(x)? < a(x) < Cd(x)® on Q), where they showed that has a solution still in
H(Q) if, and only if, o« — 283 < 3.

Boccardo and Orsina [6], by combining the technique of truncation with some nec-
essary apriori estimates on the solutions of the corresponding approximation problem,
showed existence and regularity results for

—div (M (z)Vu) = alz) in Q, vu>01in 2, w=0 on 09,

uOé




where o > 0 is a real constant, and 0 < a € L"(£2). In particular, they showed that

if « <1andr=2"/(2*+a—1), then their solution v € Hj(Q2), while u € H} (Q) if

loc
a > 1 and r = 1. Following these ideas, Chu, Gao and Gao [20] have generalized the
main result in [6] for the case when o > 0 is a variable power, by considering three
cases: 0 <a_<ay <l,a_<l<apandl<a_ <ayin .

Carmona and Aparicio [I7] also considered o > 0 as a variable power that may
have a region inside €2 with a(x) < 1 and another one with a(x) > 1. They proved
the existence of solution in H}(Q2) when a(z) <1 in a strip around the boundary and
belongs to the H} () with zero on the boundary in a general sense for the other cases.
Most of these results was generalized for different operators. We would like to mention
[7, 20, 26, 57] and their references.

Results for p(z)—Laplace equations with pure singular non-linearity have been

recently explored. In [71], Zhang has studied the problem

A
—Appyu=——in Q, u>0in Q, u=0 on I,
p ua(l’)

with a(x) > 0. By using the sub-solution method, he has obtained the existence result
of solutions in W/lf)f(x)(Q) N C(Q) and has presented an asymptotic behavior of these
positive solutions when A > 0 is large enough. The same author in [71] has improved

his above existence result by considering the problem
~Apyu = MK (2) f(z,u) + fu@ in Q uw>0in Q u=0 on IQ,

where v € C(Q) with v(z) < p_, f(z,t) € C(Q x (0,00), (0,00)) is a decreasing and
singular function at the origin, 0 < K € L@ for some ¢(z) > N, and A, 8 > 0 are real
parameters.

After Lazer and Mackenna [51], it is well known that our problem may not have
solutions with zero-boundary value in the sense of the trace function. Along this

chapter, we are going to consider the next one.

Definition 0.0.3 Letu € W"(Q). We say that u < 0 on 0Q if (u—e)* € W™ ()
for every € > 0 given. Furthermore, we also say that uw > 0 on 0 if —u < 0 on 051,
and u =20 on IQ if u <0 and u > 0 on IN, simultaneously.

It is readily seen that if u € W, ™(Q), then v = 0 on € in the sense of above



definition. Moreover, for each small 6 > 0 given, the function

(

od(z)? if d(x) < 6,
N ST = R
u(z) = oo +/<5 6o <T> dt if § < d(z) < 296,

26 AN —"
a0? + / o057 <M) dt if 26 > d(x),
\ é

4]
does not belong to W™ (Q) if 6 > 1 —1/p,, but (u—e€)* € Wg*“(Q) for each e > 0

given.
Inspired by the ideas in [I7], for each I' C 99 smooth enough, and h € C'(Q)

given, let us denote by
W () = {u € WH@(U) / u|. =0 in the trace sense}

for all open set U C Q such that U N9Q = I'. In particular, we notice that

Wi (@) i T =),
1,h(x
Wy (@) =
Wy (Q) if T = a9
We notice that the trace over I' is well defined if, for example, 2 is Lipschitz
continuous (see [28, Chapter 12])

Definition 0.0.4 A positive function u € er’p(x)(Q) is a solution to problem if
u =0 on 092 in the sense of Definition[0.0.3], and

(i) e(z)d(z)P@u(z)=*® € Lj,,(Q),

loc

(i7) ess 1I£1fu(a:) > 0 for all K CC Q,
xre

(147) /Q VP2V uV pdr = /Q c(x)d(z)P@u=® pdz 4\ /Q fz,u)pde, ¥ ¢ € CE(Q).

From the results in [6, 17, 26, [51] [72], it is reasonable to expect that admits
a solution that fulfills the boundary datum in the sense of the trace function when the
trio (c(x), a(z), B(x)) satisfies some “compatibility condition”. For this reason, let us

consider the C%'-manifold

I, = {zedQ | [-B(z) +t(1 - a(z))] +1> 0},

1—1/r(z)
and the number
U:max{p—+(ﬁ+—1)/92+a+—1’p—+0¢+—1}.
p— b—

Our first result is related to existence of solutions and it is formulated as follows.




Theorem 0.0.5 Assume (Hy) — (Hy). If

* /
(;m) if |8(x) + a(x) > 1| > 0 in Qs,

<p_<>> if |B(x) + a(x) > 1] = 0 in Q;,

l—a—

then there exists a 0 < A* < oo such that the problem admits a solution u = uy €
erlﬁ(l%(ﬁ) with u(x) > Cd(z), x € Q for each 0 < X\ < X* given. In addition:

(i) if g+ < p— in (Hay), then \* = oo,

(i) if c(x) > cs in Qs for some cs > 0, then u(x) > Cd(z)" for x € Qs and
ue Wi, (@),

The variable exponents considered on our problem implied two integrability con-
ditions when were seeking solutions still in Wol P (m)(Q). This happened because we were
not able to show the boundedness C1d(z)%® < u(z) < Cod(2)’® ae. z € Q for
0(z) = (p(z) — B(x))/(p(z) + a(x) — 1) for z € Q. For p, 3 and a constants and for
some particular cases, this inequality is true (see for instance Bougherara, Giacomoni
and Hernandez [7]). In fact, we prove (see Proposition that Cyd(x)" < u(x) <

Cod(x)? for x € Q5 for c like that one considered in [7]. For a general ¢, we proved

an inequality with 1 in the place of 0; (see Propositions [3.2.5|and [3.2.6). This fact has

great influence in the final shape of the solution, that is, in this case the solution u

belongs just to W;f’u(ffé (), where

WEP(Q) if (a(z) — 1)(B(x) + a(z) — 1) <0,
WLP(I) (Q) _

Iy UF92

Wel(Q) if (a(w) = D(B(x) + alz) 1) >0,

that is, W% (Q) = W™ (Q) if and only if

1UT,

a(r) < max {2 - % — B(x), 1+ 0—12 (1 - % - ﬁ(az)) } for all z € 0. (8)

More, as claimed in Theorem [0.0.5] if ¢(z) > ¢ in Q5 for some ¢; > 0, then
WP (Q) if a(z) < 1,
1,p(x
we Wl () =

WERD(Q) if a(x) > 1,



that is, u € W™ (Q) if either

o(z) gmin{1,1+9ll (1—r—1)—5(:v)) }

(x
0r1<04(x)<1+6—12(1—T1x)—ﬁ(x)> for all z € 0. (9)

Returning to constant exponents that were treated in literature up to now, it
follows from Theorem [0.0.5] and above informations that the solution w still belongs
1,p(z . . 1,p(x 1,p(x 1,p(x 1,p(x
to Wy (Q) if either WE) (@) = W™ (@) or WP (@) = We"™(Q). In
particular, Theorem [0.0.5}(¢4) includes the main results found in the literature about

this issue up to now:
(i) (Lazer and McKenna - 1991 [51]) Let p(z) = 2, a(x) = «, f(z) =0 and ¢(z) €
C'(Q) with ¢ > 0 in Q. Thus, it follows from (8) and (9)), that
Welh, (@) = W) & 0 <a <3,
(ii) (Zhang and Cheng - 2004 [72]) Let p(z) = 2, a(z) = «, f(x) = B € (0,2) and
c(r) = ¢ with ¢ > 0 in Q. Thus,
WP (Q) = Wy (Q) < 0 32
FQIUF92( ) 0 Q) ed<a< B,
(iii) (Mohammed - 2009 [55]) Let p(z) = p, a(r) = «, B(z) = 0 and c(z) € L=(Q)

with ¢ > 0 in Q. Thus,

2p—1
p—1°

1,p(x 1,p(x
WEPE), (@) = Wi (@) & 0 < a <

(iv) (Giacomoni, Bougherara and Hernandez - 2015 [7]) Let p(z) = p, a(z) = «a,
B(x) < p and c(x) € L=(Q) with ¢ > 0 in Q. Thus,

p(x p(x 2p—1 p
Weiin, () = W™ (@) & a <~ = 6,

(v) (Yijing and Duanzhi - 2013 [66]) The problem

—Apyu = c(z)d(z) 1@y~ 1-1@
u =0, 01}

(10)

possesses a solution in Wy () for any 0 < ¢ € L}(Q) and 0 < ¢ € C*(Q) due
to (8)). It includes the example presented in [66] that considered p(z) = g(z) = 2

and c¢(x) = ¢ > 0 for some real constant ¢ > 0.

10



The proof of Theorem [0.0.5] relies on a generalized Galerkin Method, which con-
sists in finding one solution to a "regularized problem" and then to perform an apriori
uniform estimates. From the hypothesis (H;), the term v*® may not be monotone in
u > 0 anymore, this makes it more difficult to show uniform positivity estimates for
an approximate sequence in the interior of Q (condition (i) in Definition [0.0.4).

The importance of our next result is principally because it may be applied to dif-
ferent types of problems, namely: purely singular with weak singularity (i.e., f(z,t) =0
and 0 < a(x) < 1), purely singular with strong singularity (i.e., f(z,¢) = 0 and
a(x) > 1), singular-sublinear («(z) > 0), purely sublinear (a(x) < 0) and to oscillated
problems (i.e. a(z) changing its signal). Moreover, since c(x)d(x)™?® may not lie in
LY(Q), we emphasize that the analysis of the behavior of the trio (¢, a, 3) only near
the boundary is very essential.

The third result deals with regularity of solutions for Problem . It is stated as
a combination of Theorem [3.1.4] and the Corollary of the Chapter 3.

Theorem 0.0.6 Assume (Hy)—(H,). Letu € W;E;; () be the solution for (1)) given

by Theorem [0.0.5) Then there exists a 0 < A\ < 0o (As is possibly less than \* given
in Theorem |0.0.5)) such that for all 0 < X\ < \,, we have:

(1) we L>®(Q) if r(z) > N/p_,

(i1) u € COV(U) for all open set U C 2 such that UNO =T, UTy, if r(x) > N/p_,

Nr_(p_+4a_-1)

(tii) we L N-r— (Q) if |B(z) + a(x) > 1] > 0 in Qs and r— < N/p_ with and

<r

— -

-_ N(p_ +a; —1) Np-+22 +a,-1)
(N=p)p-+a- =D +p-(p-+a4 =) (N—p)(p-+a_ — 1) +p_(p-+ Z= +ay — 1)

Nr_(p_+4a_-1)

() we L Y- (Q)if |B(x) + alz) > 1] =0 in Qs and

Np- <r <£
Np-—=(N—-p)l—a )™~ p-

for 6 >0 as in Theorem|0.0.5. In addition, if ¢, < p_ in (Hs), then A\, = co. Besides

this, the same conclusions hold true if we change I'y for I'y,.

The boundedness and regularity of the solutions depending on the trio (c, «, 5)

have been considered in [0, 17, 26] for particular cases. We establishes similar results
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and prove the Holder continuity adopting the method of De Giorgi developed by La-
dyzhenskaya and Ural’tseva and derived the suitable Caccioppoli type inequality [31].
To conclude, we present a sufficient condition for uniqueness of solution for
Theorem 0.0.7 Assume that (Hy)—(Hy) holds true with r(x) > N/p_. If 5(z) < 1 on
08), then there exists a 0 < A < 00 (Ass 18 possibly less than \* given in Theorem/|0.0.5))

such that for all 0 < X < A, the problem admits an only solution in V[/i)’f(x)(Q) in
sense of Definition |0.0.4] Beside this, M. = 400 if p_ = q4.

Theorem will be fundamental to prove uniqueness of W,-"")(Q)-solutions
for . In the last years, some papers have proved uniqueness of solutions for purely-
singular problems for different operators. The semilinear case p(x) = 2 and g(z,t) =
t~, for @« > 0 being a real constant, was proved in [I4]. This result was recently
extended for g(z,t) = a(x)t™® with 0 < a(z) € L*(Q) for p(z) = 2 in [13], for p(x) = p
in [I5], while in [16] the fractional p—Laplacian operator was considered. Our result
generalizes and complements these results, since we consider the variable exponent
p(z)-Laplacian and the variable power a(z), which can oscillates from negative to
positive values. That is, we do not require g(z,t) being monotone and do not impose
g(z,t) = f(x)h(t).

As a novelty in this chapter, we point out that we took advantage as most as
possible of the variability of the exponents and powers. As a consequence of this,
we have shown that the difficulty in answering the principal issues about this kind of
problem is concentrated in understanding the behaviors of the powers and exponents
just near to the boundary of the domain where the singularity is really triggered for
Dirichlet boundary conditions problems. For instance, the “integrability condition” of
trio (¢, «v, ) only near the boundary of the domain is sufficient to obtain existence of
solutions still in W™ (Q). We conjecture that the converse claim is true as well.

In Chapter 4, we study the problem

—Apyu = a(x)u=® + \f(z,u) in Q,
u >0 in €, u=0 on 01,

(11)

where () is a bounded domain in RY with smooth boundary 99, 0 < a € L"®) () for
some r € C(Q), p € CYQ), A > 0 is a real parameter and f(x,t) has a superlinear

local behavior at t = +00 to be presented below.
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Coclite and Palamieri [21] consider the problem

—Au=u"*+ P = g(zr,u) in Q,
u>0 in €, u=0 on 01,

(12)

with a,p > 0 and A > 0 and showed that there exists \* > 0 such that has a
solution for all 0 < A < A* and no classical solution for A > \*.

Long, Sun and Wu [53] studied with0 < a<land 1 <p<2*—1to
obtain the existence of a A* > 0 such that has at least two weak solutions for all
0 < A < A\*. Later, Sun and Wu [54] returned to the problem and obtained an exact
result value for A\* > 0. After these works, a broad literature has been accumulating
in relation to Laplacian operator with g(x,s) in different kinds of hypotheses, see for
instance [1}, 44, [46] 47| and their references.

More general operators have been considered recently, as well. For the p—Laplacian

—Apu = a(z)u™® + Af(x,u) in §,
u >0 in €, u=0 on 0f2.

(13)

Perera and Zhang [62] obtained multiplicity of solutions for combining a cutoff
argument, variational methods, results relating to W'? versus C' minimizers, with

p>2,a>0and f(x,t) satisfying the classical Ambrosetti-Rabinowitz condition and
(H,) there are ¢o > 0in CL(Q2) and q > n such that agy® € LI(Q).

Later, Perera and Silva [60] improved above result by considering stronger hy-
potheses. For instance, they did not assume p > 2 or any stronger regularity assump-
tion on f. Giacomoni, Schindler and Takac [4I] established the global multiplicity
results of the above problem for a certain range of \ by considering 0 < o < 1 and
f(z,t) = t9. Still related to problem [13] we may also cite [39, 59, [61] and their refer-
ences.

In context of p(x) — Laplacian, to our knowledge, there exists few works treating

the problem like (11)). Byun and Ko [9] and Ghamni and Saoudi [40]

—Apyu = A~ + f(x,u) in Q,
u>0 in €, u=0, on 0f,

(14)
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improved the principal result in [41] by considering variable 0 < a(z) < 1 and f(z,t)
superlinear at +oo throughout the domain. Their proof is variational and the funda-
mental tool used in their approach is an extension for the p(x)—Laplacian context of
Lp(z)

the local minimization C' versus W’

To state ours results, let us first define a solution to Problem ([11]).

Definition 0.0.8 A positive function u € Wol’p(x)(Q) is a solution to 1' if
/\Vu\p(x)QVquﬁdx:/a(w)ua(x)gbdx—i-)\/ f(x,u)pdx
Q 0 Q
for all ¢ € WP ().

Besides this, let us remind that Qs := {x € Q / d(z) < 0}, for each § > 0, stands

for the interior J-strip around the boundary of the domain,

D= {z€dQ /[t — a(2))] +1>0), fort € {1,61,6,),

I
1—1/r(z)

is a subset of the boundary of the domain and the numbers #; and 05 are defined by

p(z) :
max if a(x) > 1,
0, = €9 p(x) + afz) —1 (@) and 6, = min p(z) .
1 if a(x) <1 ven; P(z) +alr) 1

Related to the functions «(z),a(x) and f(z,t), we make the following general

assumptions. Assume that there exists a 6 > 0 such that:
(Hy) a:Q — Risa C%(Q)-function that satisfies a_ > 1 —p_,
(Hy) 0 <a€ L"™(Q) with r(x) > N/p_ and one of the items below:

(Z) a < LOO(Q(S) and 'y U F92 = 89,

(ZZ) CL(.%) >as > 0in Q(s, a & LOO(Q(;) and Fgl U ng = GQ,

(Hy) {22 € '@ ({a(x) £ 1)).

(f1) f:Qx][0,00) = [0,00) is a Caratheodory function such that for each M > 0

given there exists ¢; = ¢1(M) > 0 satisfying

0 < f(z,s) < ¢ forevery 0 < s < M and a.e. z in

14



where the last hypothesis was inspired on a hypotheses in [60].

Our first result is.

Theorem 0.0.9 Suppose (Hi), (Hs) and (f1) are satisfied. Then there exist A\g > 0
such that the problem has a positive weak solution uy € Wol’p(x)(Q) N L>®(Q) for
each 0 < A < N\ given satisfying uy > mod(z) in Q for some my > 0. In addition,
there exists My, M1, my > 0 such that:

(i) mod(x) < uy < Mod(x)% for x € Qs if (Hy)(i) holds,
(ii) myd(x)" < uy < Myd(x)® for v € Qs if (Hy)(i4) holds.
We can also consider a setting in what f(z, s) is allowed to change its signal and

is bounded from below by integrable functions on bounded intervals of the variable

s > 0, that is:

(f2) f:Q2x][0,00) = R is a Caratheodory function such that for each M > 0 given
there exists ¢ = co(M) > 0 and 0 < h = hy; € LY(Q) satisfying

—h(x) < f(z,s) < ¢y for every 0 < s < M and a.e. z € Q,

(f3) there are ¢ > 0 and ¢3 > 0 such that

f(z,s) > —cga(x) for every 0 < s < ( and a.e. x € Q.

Our second result is.

Theorem 0.0.10 Suppose (H,), (Hs), (f2) and (f3) are satisfied. If a(x) > 0 in Q
with a(z) < 1 on 0N, then there exist Ay > 0 such that the problem has a positive
weak solution uy € Wg’p(”(Q)mLm(Q) for each 0 < X\ < Ay given satisfying uy > Cd(x)
i Q for some C' > 0.

The proofs of Theorem [0.0.9] and [0.0.10| relied upon finding a sub and a superso-

lution, say u,u, for in Wol’p(x)(Q) N L>(Q), minimizing an appropriated C! energy
functional in W, "™ () and showing that this minimum belongs to the cone [u, 7] and
is an weak solution for . To do this, the results obtained in Chapter 3 were deter-
minants, since u and w are solutions for an appropriated singular-sublinear problems.
More, the Comparison principle demonstrated in Chapter 2 was a fundamental tool

used to show that u < w. However, when f(x,t) is allowed to change its signal, the
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restriction a(x) > 0 was necessary in order to obtain a comparison between the sub
and supersolution.
In order to establish the existence of at least two solutions for the problem (11J),

we also assume:
(f1) there exists C' > 0 such that
|f(z,t)] < CA+ 1971 fort >0 and a.e. z € Q,
with 1 < ¢ € C(Q) and p, < ¢, < p*,

(f5) there exists a subdomain () # D C € such that

F(x,t
lim (z,1)

t—oo P+

= +o00 uniformly on z € D,

where F(z,t) = [} f(z,s)ds for t >0 and = € Q,

(fs) there exist tg, By > 0 and 7 € C(Q) with 1 < 7(x) < p_, x € Q such that

piF(x,t) — f(x,t)t < Bot™™@ for all t >ty and a.e. z € Q.

This set of hypotheses was inspired in [37]. Note that (f;) does not impose
q(z) > p(x) in Q and (f5) implies that f(x,s) is just locally (p; — 1)—superlinear at
infinity just in D, that is,

lim f(x,t)/t"* "' = 400 uniformly in D.

t——+o0

The hypothesis (fs), as pointed out in [37] for constants functions s(x) and ¢(x), is
a weaker form of the classical condition of Ambrosetti-Rabinowitz. For instance, the
function

F(z,t) = b(2)t*® + ¢(x)t9@

with 1 <s_ <s, <p_<py <q <p“,b>0,ceR, satisties (f1) — (fs), but do not

satisfy Ambrosetti-Rabinowitz condition if 6 =0 in D and ¢ =0 in some K C Q/D.

Theorem 0.0.11 Suppose (Hy) — (Hs), (f1) — (f6) are satisfied. There exists A\ > 0
such that the problem has at least two different solutions uy,vy € Wol’p(x)(Q) for
each 0 < A\ < A\, gwen. In addition, uy < vy and uy has negative energy while vy 1s a

positive enerqy solution.
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The proof of Theorem rely heavily on perturbation arguments and on
the variational method employed by Perera and Silva [60]. We verify that the cut-
off functional associated with the problem satisfy the geometric hypotheses of the
Mountain Pass Theorem and the Cerami condition. However, the changing of signal
a(x) provides an obstacle in estimates and, with our set of hypotheses, we do not know
that the solutions belongs to C', which prevent us use results relating of W)
versus C'! minimizers.

The importance of our result, related to other works involving variable exponents,
is principally due to the fact that we do not impose 0 < a(z) < 1 in Q when f(x,t)
is nonnegative and we just demand a(z) < 1 on 0N if f(z,t) is allowed to change
its signal. Moreover, we do not require in the hypothesis (f;) that g_ > p, in whole
(2, as in the former works. We take advantage of the result obtained in Chapter 3 to
obtain the existence of solutions in Wy (€) with a different hypothesis that (H,),
as considered in [39, 60, 62], namely, ad!=*@) ¢ LY(Qs), for t = {1,6,,0,} given
in Theorem Besides these, the results obtained in Chapter 4 complements the
results in Chapter 3 in the sense that a local superlinearity at infinity of f(x,t) implies
multiplicity of solutions, in contrast to uniqueness obtained if f(x,t) is sublinear in
whole €.

In order to make the chapters self-sufficient, we will state once again, in each
chapter, the main results as well as the problems and hypotheses considered in the

introduction.
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Notation and Terminology

C and C; denote positive constants.

e RY denote the N-dimensional Euclidean Space.

e B,(z) is the open ball centered in x radius r > 0.

e If O C RY is Lebesgue mensurable, then |[Q| denote the Lebesgue measure of .
e The notation x,, — x mean strongly convergence.

e The notation x,, — x mean weakly convergence.

e X — Y denote that X is continuously embedded in Y.

e X —<— Y denote that X is compactly embedded in Y.

e If u: Q — R is mensurable, then v~ = —min{u(z),0} and v* = max{u(x),0}

denote the negative and positive part, respectively.
o If u: ) — R is mensurable, then u_ = essﬂinfu(x) and u, = esssup u(x).
Q

o d(z) = inan |z — yl, for x € Q, the standard distance function to 09,
ye

Q, = {x € Q /d(z) < s}, for s > 0, the strip around of the boundary of (2.

0.0.1 Space of Functions

e ((9) denote the space of continuous functions in Q and Cy(£2) the continuous

functions with compact support in €.



C*(£2) consists of those functions on €2 having continuous derivatives up to order

k and COO(Q) = ﬂkle’“(Q).
Coo () = C=(Q) N Co(2).

LP(Q) = {u: Q2 — R is mensurable / [, |u(z)[Pdz < oo}, endowed with the norm

Huma=inf(jghdmﬂpdm);-

L>(Q) = {u : 2 — R is mensurable / esssup |u(z)| < oo} , endowed with the

e
norm

||u||0o = esssup |u(z)].
zeN

L®(Q) = {p € L>(Q) / essiélfp > 1}.
BAS
If p e LY(R2), we define the the variable exponent space by
LP@(Q) = {u : 2 — R is mensurable / / lu(z)|P@dx < oo} ,
Q

endowed with the Luxemburg norm

Hmm@:nﬂ{A>0/[;

If p e LY(S2), we define the space

ulz)
)

p(z)
de <15,

W@ (Q) = {u e LFY(Q) / |Vu| € LP(Q)}
endowed with the norm
[l p@) = [|ullpe) + [Vullpe)-

The space Wy 7 () is defined as the closure of C5°(€2) in W@ (Q) with respect

of the norm || - ||1 () endowed with the norm

[lull = 11V ullp@)-
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Chapter 1

About variable exponent spaces

In this chapter, let us present some properties and results about the spaces
LP@(Q), W@ (Q) and WP ™(Q), where Q C RY is a bounded open set. For the
interested reader in more information about these spaces, including the proofs omitted
in this chapter, we refer the papers Fan and Zhao [34], Kovacik and Rékosnik [49] and
the book of Diening et al. [28].

1.1 Lebesgue spaces with variable exponents

Let us denote by L3°(2) the set
L)) = {u € L>(Q) / essinf u > 1}

FISY)

and by LP®)(Q) the variable exponent space defined by

Lp(’:)(Q) = {u : Q@ — R is mensurable / / \u(x)]p(x)dx < oo} ,
Q
endowed with the Luxemburg norm

p(z)
||u||p(x):inf{/\>0/ / dxgl},
Q

for each p € LY (§2) given. This space is well-known as the variable exponent Lebesgue

ulz)
)

space.
It is well-known that when p(z) = p is constant the Luxemburg norm coincides
with the usual norm in LP(£2), that is, the variable exponent Lebesgue space turns into

the classical Lebesgue space.



Now, given a p € LF(12), let us we denote by p_ and p, the following real numbers

p_ =essinf p(x) and py = esssupp(z).
zeQd e

and define the modular function p : LP®)(Q) — R by

plu) = / ()P,

Proposition 1.1.1 ([34], Theorems 1.2 and 1.3) Let u € LP®)(Q). Then:

L lullpay <1 (=1,>1) & p(u) <1 (=1,>1),
2. |ullp@y > 1= [[ullyqy < plw) < Jull}f,,
3. |ullpy < 1= [lullyiy < plw) < ullyg,,
|l p(z)
4. ||ullp@) = a if, and only if, / <—> dr = 1.
Q a

Proposition 1.1.2 ([34], Theorem 1.4) Let (u,) C LP®(Q). Then,
L. lm ||ug]]p@) = 0 if, and only if, lim p(u,) = 0.
n— o0 n—oo
2. lim ||up||p@) = +o0 if, and only if, lim p(u,) = +oc.
n—00 n—0o0
In special, for some u € LP® (),
lim ||u, — ul|p@) = 0 if, and only if, lim p(u, —u) = 0.
n—oo n—oo
As a Corollary of the above result, we have.

Corollary 1.1.3 ([34]) Let (u,) C LP@(Q) with u, — u in LP@(Q). Then there

exists a subsequence (uy,) such that
1. up, () = u(x) a.e. in Q,
2. |, (v)] < h(x) for all k > 1 and a.e. in Q with h € LP@ ().
An important estimate that will be frequently used in this work is given in the

next proposition.

Proposition 1.1.4 ([34]) Let h,p € LY(Q) with h(z) < p(z) a.e in Q, and u €
LP@)(Q). Then, |u|"® ¢ L%(Q) and

(T

h h_
oy < Il + il

or

1" | ey < ma { [l el

h(z)

Reciprocally, if |u|"® ¢ L%(Q) with h(x) < p(z), then u € LP@(Q), and there is a
number ho € [h_, h.] such that ||[u]"®|| e ||u|\gf$)

h(x)
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Proposition 1.1.5 ([34], Theorems 1.6 and 1.10) Let p € L(Q2). Then the space
(LP@(Q), |||lpw)) is separable. In addiction, if p_ > 1, then LP®)(Q) is uniform conver

and thus is reflexive.

Given p € L (2), we denote by p'(x) the conjugate function of p(x), that is,

with the convention that 1/oco0 = 0. Now we present the generalization of Holder’s

Inequality.

Proposition 1.1.6 ([49], Theorem 2.1) Let p € L3°(Q) with p_ > 1. For any u €
LP@)(Q) and v € LY@ (Q) we have

/ uvdx
Q

In addition, if 1/p(x) + 1/p'(z) + 1/p"(x) = 1 holds true, then

/ uowdx
Q

for all uw € LP®)(Q), v € LP@(Q) and w € LY@ (Q).

1 1
< | — + ) ullp@) [0l @) < 20|ullp@) 0] ]p@)-
(p p’>” ||p()H Hp() H ||p()H ||p()

1 1 1
< (p— s p—) Hallo el il el ey < Bllallool 01y ]l o

To end, we present the natural inclusion of variable exponent Lebesgue’s spaces.

Proposition 1.1.7 ([34], Theorem 1.11) Let h,p € LY(Q) with 1 < h(z) < p(z)
a.e in Q. Then LP@)(Q) is continuously embedding into LM ().

1.2 Sobolev spaces with variable exponents

In this section, we consider only the space of Sobolev WP (Q). The definition
and properties of the spaces W*?(®)(Q), with k > 1, can be found in the references
quoted above in this chapter.

The variable exponent Sobolev space W1P(®)(Q) is defined by
Whee(Q) = {u € L(Q) / |Vu| € LP)(Q)}
endowed with the norm
[lull1 ) = [lullp) + [Vullpe)- (1.1)
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Similarly to LP®)(Q), the Banach space W'P(®)(Q) is separable and, if p_ > 1,
it is also a reflective space. The space Wy "™ (Q) is defined as the closure of C5°(S2)
in WP (Q) with respect of the norm defined in . It is also worth to point out
that unlike of the validity of the density of C*°(Q) in W(Q) when p(z) =p > 1, in
the context of the variable exponent space W™ (x)(Q) this will be true if we require
additional conditions on the domain and exponent p(x), for instance, if 92 is Lipschitz

continuous and p(z) satisfies the log H6lder condition, that is,
log |z — y| p(x) — p(y)| < C for all z,y € Q with 0 < |z —y| < 1

for some C' > 0, then C*°(Q) is dense in W'?(#)(Q) with respect of the norm defined
in ([L.1]). See for instance [28].

By using similar arguments like those used in [48, Lemma 1.25|, we obtain.

Proposition 1.2.1 Let v € W'?(®)((Q).
(2) If v has compact support, then v € Wol’p(x)(ﬂ).
(i) Ifu e WoP™(Q) and 0 <v < u a.e. in Q, then v e Wy ().

(131) Ifu € WoLp(x)(Q) and |v| < |u| a.e. in Q\ K, where K is a compact subset of €2,
then v € Wy P™(Q).

In this setting, the variable critical function-exponent for embedding of Sobolev

to Lebesgue with variable exponents is defined by

—N (z) i x
px)=¢ N—plz) P> ple),
+00 it N <p(x),

and it is called as the critical function with respect to p(z).

Proposition 1.2.2 ([34], Theorem 2.3) Let p € LL(Q). If p,q € C(Q) with 1 <
p_ < py <N, then:

(1) WhP@(Q) < LI@)(Q) if 1 < q(z) < p*(2) a.e. in Q,
(i3) WHP@(Q) <ses LID(Q) if 1 < q(z) < p*(z) a.e. in Q.
More, there exists a constant C' > 0 such that

ullpe) < Cl|Vullp@ for all u e WyP@ ().
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The last inequality is well known as Poincaré’s inequality. As a consequence of it,
we infer that || V| define on W™ (Q) an equivalent norm to ||u||1 p). From now

on, we are going to denote this norm by ||u|| and we will use it for the whole paper.

Proposition 1.2.3 Let u € Wol’p(x)(Q) and the modular function py : LP®(Q) — R
defined by po(u) = [, [Vu(z)[P™. Then the same conclusion of Proposition holds

if we consider || - || and po.

The notion of a map of (S )-type is useful to help us to prove that a sequence
converge strongly in I/VO1 P (‘T)(Q) under appropriate assumptions.

We say that a function is (S )-type

if u,, = w in W[]l’p($)(Q) and limsup (Luy,, u, —u) <0, then u, — u in Wol’p(x)(ﬂ).

n—o0

Proposition 1.2.4 ([33], Theorem 3.1) The map L : Wy "™ (Q) — W=12)(Q) de-
fined by

<Lu,v>:/\Vu]p(x)_QVqud:U
18: '
(1) continuous,
(17) bounded,
(1i) strictly monotone, that is,

(Lu — Lv,u —v) >0 for all u,v € Wol’p(m)(Q), u # v,
(iv) (S)+-type.

Below, we present two inequalities that will be useful in parts of this thesis.

Lemma 1.2.5 ([45], Hardy’s Inequality) Let Q be an open and bounded subset of

RN . Assume that there exists a constant @ > 0 such that
|B,(y) N Q] > 0| B,(y)|

for every y € 02 and r > 0. Then there exists positive constants ¢ and ag depending

only on p, N and 0 such that the inequality
U a
H < clld(@)" Vo

p(z)

holds for all u € W™ () and a € [0, ao).

24



Lemma 1.2.6 (Simon’s Inequality) For all 1 < p € C(Q) there exists a positive
constants C = C(p) such that

[V(u—v)|
(IVul +[Vo])?
[V (u— )" if pz) > 2

(p-—1)

923—p+

if 1 <p(r) <2,
(IVuP?) 2V — Vo) 2Ve) V(u—v) > )

for all u,v € WLP@(Q).

1.3 Regularity results in variable exponents spaces

In this section, we establish some results concerning regularity of bounded func-
tions satisfying some relations involving the p(x)—Laplace operator. The first one is an
improvement of a result of Fan and Zhao [31] that was the first result in this direction
n the context of variable exponents.

We highlight that for our purposes, we need of the below Proposition instead
of the classical Fan’s result [31], because ours weights a(x), b(z) in (1]) are not in L>(2).
Despite of this generality, we are to show that our solution u of the Problem (|1)) satisfies
Chd(z) < u(z) < Cod(z)? close to the boundary of 2 for some C, Cy > 0, where d(x)

is the standard distance function to the boundary of 2. This makes possible to verify

(1.3) and apply Proposition [1.3.5]

Definition 1.3.1 Let M,~,~v1,0,r, R be positive constants with 6 < 2, r > 1 and

Br(y) C Q. We say that a function v belongs to class Bp.y(Br(y), M,~,m,6,1/r) if

v € WPE(Q) with I%ax|v(x)| < M and the functions w(zx) = Fv(x) satisfy the
R

mequalities,
w(z) — k p(z)
/ V[P dz < / (L) dz + | A (1.2)
Akﬂ— Ak,t

t—1T
for arbitrary 0 < 7 < t < R and k such that k > 1;12(1})(11}(:(;) — oM, where Ay, =
t\Y
{r e B, : w(z)>k}. In a analogue way, we say that a function v belongs to class
Byy(Br(2) MO, M, y,v1,6,1/r) if v € W@ (Bg(2) N Q) with Bngaﬁgﬂ lv(x)] < M,
Rr(z

< d (1.2) hold k> — oM .
B£?§89|v(x)| o0 an olds for _maX{Bg(l?)}éQw(x) ,B;n(ze)%(mw(x)}

Definition 1.3.2 We say that Q2 satisfies an exterior cone condition at a point x € OS2
if there exists a finite right circular cone V, with vertex x such that QN V, = x, in
particular, say that Q) satisfes a uniform exterior cone condition on 0S) if Q) satisfes an

exterior cone condition at every x € OS2 and the cones V, are all congruent to some
fized cone V.
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Lemma 1.3.3 (Lemma 4.5, [68]) Let p € C(Q), 1 < p_ < py < oo and be log-
Hélder continuous in Q and let Ry € (0,1), 09 > 1 be numbers such that poog > N,
where pg = min _p(x) and 29 € Q. Let Bri(y) C Bp,(70)NQ and u € W@ (Bp)N

BRO(xo)ﬁQ
L>®(Bg/). Suppose that, for arbitrary R < R', there exists a number r > oq such that

u € By (Br(y), M,v,71,0,1/r), where M is a positive number satisfying ||ul|p~s,,) <
M. Then there exists a constant s = s(N, Po; 00, MAX By (20)n02 p(x), M,~,L) > 2 such
that, for arbitrary R < R/,

sup u(r)— inf wu(z) <cR™“R%,
z€BR(y) z€BR(y)

where ¢, are constants independent of M.

Lemma 1.3.4 (Lemma 4.10, [68]) Let p € C(Q), 1 < p_ < py < 0o and be log-
Hélder continuous in Q and let Ry € (0,1), o9 > 1 be numbers such that pyoy >

N, where py = . H(nr; Qp(x) and zo € Q. Suppose that Q satisfes an exterior cone
Rq (To n

condition at z € 09). Let Br(z) C Br,(10) and u € W@ (Br(2)N Q)N L®(Bgr/(2)N
Q). Suppose that, for arbitrary R < R', there exists a number r > oy such that
u € Bpy(Br(y)(2) NQ, M,v,v,6,1/r) and satisfies

sup  u(r)— inf u(z) < ByR™,
xEBR(2)NON ( ) x€BR(2)NOQ (> 0

where By, g are positive constants and M is a positive number satisfying ||u|| (B, (:)na) <

M. Then there exists a constant s = S(N,p(),Uo,maXBRo(xo)me(l’),M,’}/, LV,) > 2
such that, for arbitrary R < R/,

sup u(r)— inf w(r) <cR™“R?,
z€BR(2) rE€BR(2)

where ¢, are constants independent of M.

As a consequence of above Lemmas, we have the result.

Proposition 1.3.5 If p € C(2), 1 < p_ < py < o0 and be log-Hélder continuous
in Q, then B,y (Br(y), M,v,7,8,1/r) C C%*(Q), where the constant 5y € (0,1] is
independent of M and ~. In addiction, if Q satisfes an exterior cone condition at
z € 0N and u € By (Br(2) NOQ, M,~v,7,0,1/r) with u|sgq € C**1 () satisfies

su u(x) — inf u(z) < CR™ 1.3
IGBR(SQQQ ( ) x€BR(2)NON ( )_ ( )

for some C,a > 0 constants, then u € C%(Q), where the constant 3, € (0,1] is
independent of M and .
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The following Lemma is due to Ladyzhenskaya and Uraltseva [50] and will be

fundamental to apply the above Proposition.

_ 1
Lemma 1.3.6 ([60], Lemma 4.7) Let (z,) be a sequence such that zo < )x_%z,u n?
and 11 < Mzt for any n € N with \,n and p being positive constants and p > 1.

Then (x,) converges to 0 as n — oo.

Another application of the above Lemma is the next result.

Lemma 1.3.7 ([71], Lemma 2.4) Suppose 0 < by < b(-) € L*@(Q) with a(z) > N
on Q. Let M > 0 and u s the unique solution of the problem

—Ap@yu = Mb(z) in €,
u =20 on 0N.

1 1
Then, ||ulloc < CYM®==D for M > 1, and ||ul||lec < CoM @+~ for M < 1, where
C1, Cy are positive constants depending on py,p—, N, ||b||ro- ) and Q.

The next C'-regularity result is due to Fan.
Theorem 1.3.8 (Theorem 1.2, [29]) If p is Hélder continuous on 2 and
|f(x,1)] < e +eolt|™™ Y forallz € Q and t € R,
where ¢ € C(Q) and 1 < q(x) < p*(x) for x € ), then every solution u € Wol’p(x)(Q) of

—Ap@u = f(x,u) in Q,
u=20 on 0.

belongs to C1(Q) for some v € (0,1).
To end, we present a strong maximum principle for the p(z)—Laplacian operator

due to Fan, Zhang and Zhao.

Proposition 1.3.9 (Theorems 1 and 2, [69]) Suppose that p € C'(Q), p_ > 1,
u € WH@O(Q), u >0 and u # 0 in Q. If —Dpmu + h(2)ut®=1 > 0 in Q, where
h € L*(Q), h >0 and p(z) < q(z) < p*(x), then u > 0 in Q, and when u € CY(Q),

then g—’; > 0 on 0N), where 1 is the inward unit normal on OS).
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Chapter 2

A Comparison Principle for a kind of

(p(x) — 1)—sublinear problems

2.1 Introduction

In this chapter we present a Comparison principle for sub and super solutions
in W,2"/(Q) to a kind of (p(z) — 1)—sublinear problems, which will be so useful in
several points of this thesis.

Consider the problem

—Ap@yu = g(x,u) in Q,
u >0 in €, u=0 on 012,

where g : Q x (0,00) — [0, +00) is a function satisfying:

(g1) t +— g(x,t) is a continuous function a.e. x € Q and for each ¢ > 0 the function
)i

x +— g(x,t) is mensurable,

(907 t) .

(g2) t —~ is strictly decreasing on (0, 00) for a.e. x € Q.

Note that under the above hypotheses, we do not impose growth restriction just
on g with respect to the variable ¢ and allow g(z,t) to be singular at the origin, that is,
g(x,t) — +oo as t — 0% a.e. x € Q. For instance, the function g(z,t) =t~ + ¢t#@),
t >0, with a(z) > 1—p_ and (z) < p— — 1 on 2 satisfies (g1) — (g2)-



From Lazer and Mckenna [51], the existence of weak solutions with zero-boundary
value in the sense of the trace function to singular problems is possible just in some
cases. For example, if p(x) = 2 and g(x,t) = ¢t~, t > 0, then there exists a solution
still in H}(Q) if, and only if, 0 < a < 3. Therefore, the way of understanding the

boundary condition will be the following:

Definition 2.1.1 Letu € Wl’p(m)(Q). We say that u < 0 on 0Q if (u—e)™ € W(},p(m)(Q)

loc

for every € > 0. Furthermore u =0 on 0S) if u is nonnegative and u < 0 on 0.

It is readily seen that if u € Wo*™(Q), then u = 0 on O in the sense of the

above definition. Moreover, the function

;

od(z)? if d(x) < 6,

50 o 0691 -t ﬁdt if 9 <d 26
u(z) = "*5 o 5 if 0 <d(x) <29,

25 AN
od® + / a5 (%) dt if 26 > d(z),
\ 19

where d(z) is the distance function in £, does not belong to W™ (Q) if > 1—1/p,.,
but (v — €)™ € W P"(Q) for each € > 0 given.
Definition 2.1.2 We say that u € I/Vllof(m)(Q) is a subsolution of 1} if u > 0,
g(z,u) € L, .(Q) and
/ |Vu[P@=2VuVedr — / glz,u)pdr <0V ¢ € C(Q), ¢ > 0.
Q Q

Analogously, @ € W-""/(Q) is a supersolution of 1’ ifu>0, g(x,u) € L} (Q) and

loc loc

Va2 vaveds - [ gemods =0 6 € CR@) 020,
Q

Q

The main result of this chapter is the following Comparison Principle.

Theorem 2.1.3 Assume that (g1) — (g2) hold and suppose that for each h > 0
(g3) the functional I, :— R, defined by

In(u) = /Q |v])zéf;x)dx— /Q G, u)de,

18 coercive and weakly lower semicontinuous on

K:={w GWol’p(@(Q) /0 <w<7u}

with respect to W™ (Q)-norm, where

Gh(z,s) = / gn(z,t+ h)dt, s >0 and gp(z,t) := g(x,t + h) fort >0
0
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Letu,w e Wl’p(x)(Q) be a subsolution and a supersolution of Problem 1} respectively.

loc

If w € LY. () with uw < 0 on 0 and essiglfﬂ(x) > 0 for each U CC Q, then u < u
xre

loc

a.e. in .

The hypotheses (g1) and (g2) are used to derive a type of Diaz-Sad’s Inequality
(see below) in variable exponents context. Due to the absence of growth condition
and the lack of positivity of the first eigenvalue in the setting of W@ (Q), we have
to consider the assumption (g3) that will be used to obtain a fundamental estimate in
our proof. More details are presented in the next section.

The importance of our first result is principally because it may be applied to
subsolutions and supersolutions just in T/Vllo’f(x)(Q). To our knowledge, this result is

new even for Laplacian operator.

2.2 Auxiliary results

In this section we present the results that will be useful in the proof of Theorem

2.1.3| Inspired by the ideas in [43], let D = {u € L}, .(Q) / u >0, u- € WP (),

loc loc

Fixed ¢ € C5°(2), consider the functional J = J, : L}

loc

(Q) = (—o0, 00] given by

|Vup%|p(w) )
——¢dr if u e D,
J(u) = /Q p(z)

+00 otherwise.

Lemma 2.2.1 Let J be the above functional. Then J is convexr and J # +o00.

Proof. Let us begin our proof showing that J # +o0o0. To this end, fixed z( € €, take
R > 0 such that Bgr(zg) C  is the closed ball centered in xy with radius R. Now,

given 6 > p_ let

o(z) = % (|x — x0]) if © € Bpr(xy),

0 otherwise.

where Tg : [0, R] — R is defined by

1if ¢ =0,
Ug(t) = ¢ linear if 0 <t < R/2,
0if R/2<t<R.
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Evidently v € D. Moreover,

0 g

L ()
/ A% (v”f) |p(@) e / (—Upf |V’UR|>p o
Q Br(o)

p(z) p(x)

Pt
< L <i) / v(i_1> P | VTR |P®) pda
p— \P- Br(o)

1 9 P+
< — <—) / VTR [P® pdr < 400,
P— \P- Br(zo)

that is, J(v) # +o0.
Now we are going to show that J is convex. As in proof of [27, Lemma 1|, we

have
IV (swy + (1 — s)ws) P~ [P~ < s|Vuwi/P [P~ + (1 — 5)|Vws/P~ P~ for all s € [0, 1],

where wy,w,; € D. Since the function s — sP@/P- is convex on [0, ), it follows from

the above inequality that

J(swy + (1 —s)wy) =

/ IV (swi + (1 — s)wQ)pl—|p<w>¢dx

p(x)
p(z)

S|VU)F -+ (1 — 8)’VU)2_|p‘) "
od

gl

< T
[ (A o)
0 p(x) p(x)
= sJ(wr)+ (1 —s)J(ws),
for each s € [0, 1] given. This shows the Lemma. |

The next result will be fundamental for our purposes.

Lemma 2.2.2 (Diaz-Saa’s type Inequality) Assume that wy,we € L2 (Q) N D .
]fwl/w] = Lloc( )7 7éj7 then

P p(e) -2 P wy — Wy S p(@)-20, e Wy — Wy
1 2

(2.2)
holds, for all ¢ € C§°(Q).
Proof. To obtain the inequality (2.2) it suffices to show
1 p(@)—-2 1 1=p_
(J'(u),v / Vur- Vur-V (u P ) ¢dz, (2.3)
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for all u,v € LS. (Q) ND with wy/we € LS. (2) and apply Lemma In fact,

admitting it by now, it follows from Lemma [2.2.1] that

0 <p_(J'(wy)— J(wg),w; —wy)

P ()~ - wy — Wy o= wy — w
/lww P27, V(W) |Vw2 [P =27, V(W)]gbdw.
1 2

Now, we are going to prove that (2.3) holds true. First, we notice that if u €
LOO

loc

(Q) "D, then u € W,2P™(Q). In fact, by denoting w = u'/?~ we have that
p_—1

Vu| = [V(wP-)| = p_|w’"|Vw| = p_|u] >~ |V(up )| € Lp(w)(Q)

loc

Let u,v € L2 (Q) ND. Thus,

1 |p(z 1
_ V( (u+ tv)r- — |Vur- [p@)
<fwx>:hmJW+”)*”W:ﬁm/w ( ) b
t—0 t t—0 Jq tp(:c)

L h(z,t) s dh

= 151(1)/9 () pdx = 11_1)18 g a(w,t)dx, (2.4)
where

h(x,t) (‘V ( U —i—tv)pf) — ‘Vupl|p(x)> b

and

%(m,t) = ]% ‘V ((u —I—tv)”%>

forz € Qand ¢t > 0.

RV ((u +tv)i> v (( o) T v) ¢

The last equality at follows from Mean Value Theorem, that is, there exists an

0 < s=s(x,t) <t<1such that h(z,t)/t = % (z,s) for z € Q. Since

dh 1 1p p(e)-1
< |—= -
7 —(x,8)] < . (u+ sv) V(u+ sv)
1—p_ 12 1=p-
‘ pe (u+sv) 7~ vV(u+ sv) + p—(u +sv) 7~ V|
] 1 p(z)—1
< (L) Gt s
p— (u+ sv)
p — 1 (u+ sv)P- : 1 (u—l—sv)”%
(9l + sV + - v ) o
] 1 p(z)—1
< (LWL 19y 4 v
p— u
LGl KL pt N M]v |
P u D_
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where we used u,v > 0 in the last inequality.

So, it follows from the above information and hypotheses v, u, u/v,v/u € L2 (),

that
dh (&) (w+0) >

p(x) (u+v)*P- o [V
G| < BB v+ 19y (2+1) ol

p(z)

< cillells (||| 1) (Jul 7= 5w ) ([T T )
U Lo (supp ()

2 _p()

< Cal[o]oo|ul 7~ 1+ (IVul?® + |Vol)

L (supp (¢))
(2.5)

< Cs|6]] 0 [(upl_wvuop(x) + <Uz’1—1‘vv|)p(x) <%>I;@—P(ff)]
< Cyl|9|oo [!Vup%]p(z) + |va%’p(m)} e Ll (9),

where Cs = Cs(||u/v|| L), [|u|| L (@), P+, p—) > 0 is a real constant.
Thus, the Lebesgue Dominated Convergence theorem implies that
P

/ _ L e, P2 (T
<J(u),v>—p_/Q (D) d:p—/Q|Vu | Vur-V(u 7~ v)pdx

holds. This ends our proof. m

In [I5], the authors showing the comparison between a sub and a supersolution
for the problem (2.1) with p(z) = p and g(z,t) = a(z)t™®, where a > 0 is a real
constant, by truncating the singularity in an suitable way. Inspired in these ideas, let
us define

gn(z,t) = g(x, t + h) for (z,t) € Q x (0,00),
for each h > 0 given, and consider the problem

_Ap(x)u = gh(xa U) in §,
u>01in €, u =0 on 0.

(2.6)

So, we have.

Lemma 2.2.3 Assume (g1) and (g3) hold. Then there exists a w € K (defined at
(2.1.3) such that

/Q Vw2V wVids — /Qgh(x,w +h)dr >0, ¥V e WP (Q), >0, (2.7)
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Proof. It follows by hypothesis (g3), that the functional

| V[P /
Iu:/—dx— Gp(z,u)dz, ue
(u) o p() Q (o u)

is coercive and weakly lower semicontinuous on the closed and convex set K. So, there
exists a w = wy, such that Ij,(w) = inf,exc In(u).

Now, given 0 <1 € C5°(12), set
vy = min{w + t,u} and wy = (w+tp — )",

for t > 0 such that ¢ < @. Since v, w, € WHP@(Q), 0 < v, < w +tah, 0 < wy < 1)
and 0 < w; < @ with supp (w;) C supp (¢), it follows by Proposition in that
vy, Wy € Wol’p(m)(Q), that is, vy, w; € K.

For y € IC, let us define
o(t) = In(ty + (1 — t)w) for t € [0, 1]
and deduce from Ij,(w) = ming I, that 0(0) < o(t) for all ¢ € [0, 1], that is,
0 <0'(0) = (I (w),y —w).
Now, by taking y = v; and noticing that v; — w = ¢ — wy, we obtain
0 < /Q |Vw[P@ 2V wV (t — w,)dx — /Qgh(x, w+ h)(t) — wy)da
_ < /Q |Vw [P D2 VwVipds — /Q gn(z,w + h)wdx) (2.8)
— /Q |Vw[P@ =2V wVw,dz + /Qgh(:v,w + h)wdzx.

On the other hand, since 0 < w; € Wol’p(x)(Q), there exists a sequence ((,) C
CeR(92) with ¢, > 0, supp (¢,) C supp (w;) and ¢, — w; in Wol’p(z)(Q) as n — oo.

Now, by using the fact that u € I/Vll’p(x)(Q) is a supersolution of problem with ¢,

oc

as a test function, we obtain
/ VPO =2vav(,de — / gn(2, W) Cpdx > 0 for all n € N,
Q Q

that lead us to
/ |Va|P @) 2 VaVw,ds — / gn(z, w)widxr >0 (2.9)
Q Q
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by the using of the Lebesgue’s convergence theorem together with the fact that |Va|P(®)

is integrable on the support of w; and 0 < w; <ty for each x € ().

So, it follows from (2.8 and (2.9)), that

0<t (/ |Vw[P®2VwVipds — / gn(x,w + h)@[)dx) (2.10)
Q Q

+/ (|Vﬂ|p(x)—2VE - |Vw|p(a:)—2Vw) Vuwydzr + / (gn(z,w + h) — gp(x,0)) wedx
Q Q

for all ¢ > 0 enough small.

Since
(gn(z,w + h) — gn(z, @) w; < gn(z,w + k)t on supp (wy),
it follows from (2.10), by dividing by t > 0, that
0 < /Q IVw[P® =2V wVipds — /Q gn(w,w + h)pdx

+ / (IVaP=)2va — [Vw[P ™ 2Vw) Vi) + / gn(z,w + h)pdz,
{w+tp>u} {w+tp>u}
that is, by doing ¢t — 0, using Proposition [I.2.6] and applying Lebesgue’s Convergence
Theorem, we conclude that is true for all 0 < ¢ € C3°(Q2). The result follows by
a standard density of C5°(Q) in Wy (). u

Now we are able to prove the Theorem [2.1.3

2.3 Proof of Theorem - Completed

Let us do the proof by an contradiction argument by combining the above results
together with a very fine analysis.

Proof. Consider the set
Q" ={xecQ/ulx)—h>w)+h}

and assume, by contradiction, that |Q2"| > 0 for some h > 0. From compactness of QP
there exists a 2o € Q" and R > 0 such that |Kp| = |[Bg N Q" > 0, where Bp be the
ball of radius R centered in x.

We can assume, without loss of generality, that Bg C 2. In fact, since 2 is

smooth, then |02 = 0. In particular, there exits 0 > 0 such that the set Qs = {x €
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Q / d(x,0Q) < &} satisfies |Qs| < |Q"|/4. Moreover, by compactness of 2\ Q, there
exists a finite cover U B,,(z;) with x; € Q and r; < §/4 such that d(B, (x;),00Q) >
(36)/4, for all i = 1,2,...,m. Thus, |(Q2\ Q) NQ"| > (3|Q"])/4. So there exists
Bgr := B,,(z;) C © such that ‘BR N Qh| > ( for some 1 < i <m.

Fix0 <t < R < d/4and take 0 < s < tsuch that K, := B,NQ" and K, := B,NQ"

have positive Lebesgue measure. Define ¢, € C3°(§2) such that 0 < ¢, < 1, ¢s = 1 in
By, supp (¢,) C B; and [V¢,| < C(t — s)~Y/?+), Now defining

—_ pYF\P- p_1T —_ pYF\P- p-1T
ool — ek (= b)) — (b ]

N weny (w o+ By |
we obtain
0<¢;<(u—h)" and 0< ¢y < Csp(u—h)*. (2.11)
Moreover,
p— p——1
Vo= o |(1+ -0 (25) ) va-nr-p (S51) wu
(u—h)" — (w+h)P-
+ Vo, ( (] )

and

v 1 Y LA R w b\ Gy

b= |(1+0-- 0 (455) )ve-r (555) Va-n

(et (o hr),

(w+h)P=!
Since u € L2 (Q2) and w > h in K, we obtain

IVéi| < p|@s]|oo (IVU| + [Vw]) + [[V@s]|oo (Ju] + [w])
and

[l 7o (1)
p,

V| < p- ||¢8||00|| |Loo (KR)
2

(IVal + |Vw]) + [[Vésloo——77

that is, ¢y, o € WHPE (Q) N L®(Q) with supp (¢1), supp (¢p2) C Ky CC Q. Besides
that we infer that ¢p,¢s € Wi P™(Q) N L(9), by the using and Proposition
2.1

By taking ¢s as a test function in Lemma [2.2.3] we obtain

fr e (S 258

2/ gn(z,w+ h)
K

(w— )P~ — (w+ h)e-
(w+ h)P~!

dudr (2.12)
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and by repeating the density arguments used in Lemma [2.2.3] we can take ¢, as test

function in Definition 2.1.2] to obtain

’vg|p(z)f2vuv (¢s (ﬂ - h)p7 — (w_—l- h)Pf > i
(w—h)"

Ky

(u—h)"" — (w+h)P-
< /th(x,g) T ¢sdx. (2.13)

Now, let us do the next two estimates to come back in (2.12)) and (2.13)) for further

information. First, by using the definition of ¢, and the fact that u > 2h in 2, we get

- B |V1_L|p(z)’2VQ |Vw|p(x)f2vw
/Kt (= = (ot W) ( (w—hp—1  (w A Ryt ) Wsdm’

Vulf@-2Vy  |[Vw[P@)-2Vw
— p— _ h p— _
/Kt\KS ((@ h) (w + ) ) ( (@_ h);g_,l (w + h)p_fl qusdl‘

< oy 12 Ml / (V@ + [V de
(t — S) 2P+ Kt\K
llu— h||7- oo
< optr- EZER) ||| W@t V@ ||1||Lp<w>(Kt\Ks>
t—s)2P+ PO (Ki\Ks)
[l = Al
< 2hp'7P- L (Kr) H‘V ‘p(x -l—‘vap(x)il“ _p(@) |2+ (k)
(t— ) Lr®™ (Kr)
1
< Ot —s)r+

(2.14)
where C' = C (||w]|w106) (1) e [0 (k) |2l Lo (1) R)is a real constant.

Second, by using Lemma [2.2] we obtain that

/K | {M\p 27V (<“ - Zp_ ;)E,w_f W)
(= )~ (w+ by

(w+ h)p’_1

— |Vw[P@ =27y V( )]gzﬁsdx (2.15)

is non-negative.
So, by subtracting (2.13]) by (2.12]) and using and ( -, we obtain
o h p- _ h p—
0< / {WW —2VyV ((u ) (w+h) ) (2.16)
K

(w—hy"
e (B S0

g(z, u) gn(x, w + h) e o
S/Kt<(u—h)p—1_ (w+h)p—1)<<@_h> (w+ h)P~) psdz + C(t — s)

:/ <9h($7u—h) _ gn(@,w+h)
re \N(w—hp==t (w+ Rt

) (= WP~ — (w+ BYP-) bude + C(t — )75
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for each 0 < s < t given. That is, by using that ¢s(z) — 1 as s — t a.e. in Q, it follows
from (2.16) and Fatou’s Lemma, that

gn(@,u—h)  gn(z,w+h) b
0§/}<t((u—h>”‘1 - (w+h)p—1)(@_h> (w+h)") de. (2.17)

As the hypothesis (g2) implies that

gh(xa t)
1

we obtain from (2.17)) that

gn(®,u—h)  gn(z,w+h) b )
OS/Kt<(Q_h)p_1—(w+h)p_1>((u—h) (w+ h)P~) dz <0,

is strictly decreasing for ¢ > 0,

but this is impossible. Then €2, has null Lebesgue measure for all h > 0, that is,
u<w+2h <u+2h a.e. in

for all h > 0. So, letting h — 0, we obtain u < u a.e. in {2, as desired. This ends our

proof. [
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Chapter 3

Uniqueness of Wll()’f <x>(Q)—Solution for a

oscillating-singular-concave problem

3.1 Introduction

In this chapter we study the following quasilinear elliptic singular-concave prob-
lem with variable exponents and powers
—Ap@yu = c(x)d(z)P@u=@ L \f(z,u) in Q,
u>0in ©Q, u =0 on 02,

(3.1)

where Q C RY is a bounded open domain with smooth boundary, A\ > 0 is a real

parameter, p : Q — R is a C*(Q)-function that satisfies

1 <p- =minp(z) < p; =maxp(z) <N
e e

and d(x) = iIlan |z — y| for x € Q is the standard distance function to the boundary of
ye
Q.
Inspired on ideas of [17], for each T' C 99 smooth enough and h € C*(Q) given,

let us define
W;’h(x)(Q) ={ue Wwhh@ (@) / u!r =0 in the trace sense} (3.2)

for all open sets U C €2 such that OU N 02 =T'. In special, we notice that

- Wl (Q) if T =0,
Wr ’ (Q) =
Wy Q) if T = 9.



The trace over I' is well defined if, for example, 02 is Lipschitz continuous (see
[28, Chapter 12]).

Throughout this chapter we adopt the following definition of solution:

Definition 3.1.1 A positive function u € er’p(x)(Q) 1s a solution to problem 1) if
u <0 on 0N) in sense of Definition and
(i) a(z)u(z)* € Li,(Q):

(17) essi[?fu(x) >0 for all K CC Q;
xre

(i13) for all ¢ € C§(Q),

/|Vu\p(x)2VuV¢d:U:/c(x)d(x)B(I)u“(I)¢dx+)\/f(x,u)¢dx.
0 0 0

To state ours results, let us denote the interior strip around of the boundary of

Q by s, that is,
Qs :={z € Q /d(x) <} for each § > 0 given

and define the numbers

p(x) — B(z)

0 = gé%};p(x) +a(z)—1 if 5(z) + a(z) > 1 in £, 6, = min p(x) — B() |
1 if B(x) +a(z) <1in Q, vea, p(x) + a(z) — 1

(3.3)
Related to the functions a(x), B(x),c(x) and f(z,t), we make the following as-

sumptions: Assume that there exists a § > 0 such that:
(Hy) a:Q — RisaC%(Q)-function that satisfies a(z) > min, g a(x) == a_ > 1—p_,
(Hy) f:Qx[0,00) — [0,00) is a Carathéodory function such that

f(z,t) < bz)14+t1@7Y) for all z € Q

holds true, for some functions ¢ € C*(Q) and 0 < b € L*®(Q) N L>®(Qs) with

1 <q <gqy <p_and s(x) > N/p_ for x € Q, where

(Hs) (i) B:Q — Ris a C%(Q)-function that satisfies B, < p_,
(i) 0 < ¢ € L"@(Q) N L™= (Qs) for some r € C1(Q) with 1 < r(z) < +o0,
(7ii) c(x)/(1 — a(z)) € L"@(Q) N L>(Qys),
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t
(Hy) tpx’_l) is strictly decreasing on (0, 00) for a.e. z € Q.

The main objective of this chapter is provide sufficient conditions for existence,
regularity and uniqueness of I/Vli’f(x) (Q)-solutions to the problem |) in sense of Def-
inition For this reason, let us consider the C%!'-manifold

Iy={2x€0Q /[-p(z)+t(1 — a(x))] +1> 0},

1—1/r(z)
and the number

a:max{p_+(6+_1>/92+a+_1,p_+a+_1}.
p- p-

Our first result is related to existence of solutions and it is formulated as follows.

Theorem 3.1.2 Assume (Hy) — (Hy). If
* /
(m) if |16(x) + a(x) > 1] > 0 in Qs
r(z) =
l—a—

(£2) if 18(z) + alx) > 1] = 0 in O,

then there exists a 0 < \* < oo such that the problem (3.1) admits a solution u = u, €
erlpu(gz(ﬁ) with uw(x) > Cd(x), x € Q for each 0 < X\ < X\* given and for some C > 0.
In addition:

(1) if qr < p— in (Hz), then \* = oo,
(i7) if c(x) > c5 in Qs for some cs > 0, then there exists a ¢ > 0 such that u(x) >

cd(z)% for x € Q5 and, in particular, u € Wpljj(j%e? (Q).

When = 0, we are able to highlight how the regularity of ¢(x) influences the
behavior of the solution for (3.1 close to the boundary of €.

Corollary 3.1.3 Assume (H,),(Hs), (Hy) and § =0. If

* _ /
(M) if la(z) > 1| > 0 in Qs

(s —a(@)p-

. /
(p—(“"f)) if |a(z) > 1| = 0 in Qs,

1—a—

then there exists a 0 < \* < oo such that the problem (3.1) admits a solution u = u, €
erip(m)(ﬂ) for each 0 < X\ < \* given, with u(x) > Cd(z), x € Q for some C > 0. In

addition:

(i) if c(x) € L>®(Qs), then u(z) < Md(z)% for x € Q5 and some M > 0 and, in
particular, u € erlﬁ(gz ().
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(17) if c(x) € L®(Qys) and c(x) > c5 in Qs for some cs > 0, then there exists a m >0
such that md(z)" < u(x) < Md(z)? for x € Qs. In particular, u € WI};’SC%BQ (Q).

In any case, if g < p_ in (Hs), then \* = oco.

The second result deals with regularity of solutions obtained in Theorem [3.1.2]

Theorem 3.1.4 Assume that (Hy) — (Hy) hold true. Let u € W;ﬁ?;(Q) be the solu-
tion of Problem (3.1)) given by Theorem|3.1.2| Then there exists a 0 < A, < 00, possibly
smaller than \* given in Theorem |3.1.2), such that for all 0 < X\ < \,, we have:

(1) we L>®(Q) if r(z) > N/p_,

Nr_(p_+a_-1)

(1) we L - (Q) if |B(x) + a(z) > 1| >0 in Qs and r— < N/p_ with and

<r

i N(p- +a; —1) Np-+E2t +ay—1)
(N=p)p-+a- =1 +p-(p-+or = 1) (N-p)(p- +a_ — 1) +p_(p- + ZL +a; — 1)

Nr_(p_+4a_-1)

(tii) we L N-r— (Q) if |B(z) + a(x) > 1| =0 in Qs and

Np_ <r < N
T_ —.
Np-—(N—-p)Q1—a-) ~ p-

In addition if ¢y < p_ in (Hs), then A\, = co. Besides this, the same conclusions hold
true if we change I'y by Iy, .

As a consequence of Theorem [3.1.4(7), we get the Hélder continuity up to the
boundary of with some restriction is placed on the domain. We say that () satisfies
an exterior cone condition at a point x € 9L if there exists a finite right circular cone
V, with vertex x such that Q NV, = x, in particular, say that Q satisfes an uniform
exterior cone condition on 0f) if ) satisfes an exterior cone condition at every x € 0f2

and the cones V. are all congruent to some fixed cone V (see Section 8.10 of [42]).

Corollary 3.1.5 Assume that (Hy) — (Hy) holds true with r(x) > N/p_. If u is a
solution of 1} given in Theorem then u € C%7(U) for all open set U C Q with
oU NoOQY =Ty ULy, satisfying a uniform exterior cone condition on OU N 0.

To end, we present a sufficient condition for uniqueness of solution for (3.1)).

Theorem 3.1.6 Assume that (Hy)—(Hy) holds true with r(x) > N/p_. If f(z) < 1 on
0N), then there exists a 0 < A\, < 00, possibly smaller than \* given in Theorem [3.1.2
such that for all 0 < X\ < A, the problem admits an only solution in I/Vl})’f(x)(Q)
in sense of Definition[2.1.2] Beside this, M. = +00 if p_ = q in (Hs).
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Before going on to the proofs, a comment on the powers o and 3 should be done.
We will assume that all the sets {0 < a(x) < 1},{a(z) > 1}, {a(z) < 0},{5(z) > 0}
and {8(x) < 0} have a positive Lebesgue measure. We emphasize that if one or more
of them has null measure, the result will still be valid and the proofs become simpler.

The chapter is organized as follows. In section 3.2, we consider the approximated
problems and prove the existence of the approximated solutions in W, * (m)(Q) satis-
fying the Definition Moreover, we prove the boundedness of these solutions in
W;i’ﬁfz)z (©) and the asymptotic behavior depending of the trio (c¢(z), a(x), 5(z)) on the
boundary. In section 3.3 is devoted to prove our results by using all the properties that

we have proved in the previous sections.

3.2 A family of auxiliary problems

In order to prove our results, we inspired in some ideas of Boccardo and Orsina [6]
who work by "regularizing" the singular term by a small perturbation 1/n and study-
ing the behavior of a sequence (u,) C Wol’p(m)(Q) of solutions for this approximated
problems. In general, that sequence is obtained by a fixed point argument. We shall
employ a different approach based on a Generalized Galerkin method.

From now on, we will understand that f(x,t) has been extended for ¢ < 0 by
putting f(z,t) = f(z,0).

Let us consider the family of regularized problems

1\ P —a(z)
—Ap@yu = () (d(ﬂf) + —) (u + —) + Mo(z, u) in Q,
n

n (3.4)
u>01in ©Q, u =0 on 012,
where c¢,(z) = min{c(z),n} and f,(z,t) = min{f(x,t),n}. We note that u €
WP (Q) is a solution of (3.4) if, and only if, u is such that
A(u,v) = 0 for all v € WP (Q),

where the functional A : W ™(Q) x W™ (Q) — R is defined by

) 1\ 8@ 1\ @
Au,v) = /Q <|Vup(ac) VuVov — cp(2) <d(a:) + n> (u| + n> v+ Az, \u|)v> dx.

Lemma 3.2.1 Assume that (Hy) and (H3) holds true. The operator T := T, x, defined
by (T'(u),v) = A(u,v) for all v € Wol’p(x)(Q) and for each u € Wol’p(w)(Q), is linear and
continuous, that is, T(u) € W12'@)(Q) for each u € Wol’p(x)(Q) given.
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Proof. The linearity is obvious. To show the continuity, first we notice that the hypothesis
(H1) implies that

en() <d(x) + :L) o <|u + :L) - <n <nﬁ<w> + (d(z) + 1)*57) (nam + (Jul + 1)*%)
< Ci(n) (14 (Jul +1)7°). (3.5)

So, it follows from (3.5)), Holder’s Inequality and Sobolev embeddings, that

|A(u,v)| < / \Vu|p(x)*1]Vv|dm + Cg(n)/ (1 + (Jul + 1)*0‘—) |v|dx
Q Q

< Cy(n) [|[IVap @) ||wup<x>+<1+r|1r| ot 1H<1+|u\>—aHm>||v||p<w>]
p(a:)—l p(x o — —_
< Ca(n) (|full == +1) o]l (3.6)

recalling that we are assuming that a— < 0. Thus,

[(T(u),0) | = [A(u, v)| < C(n, [[ul))|[v] for all v e Wy ™™ (),

showing the continuity of T'(u) for each u € VVO1 P (x)(Q) given. This ends the proof of Lemma
B.2.1 [

As a consequence of the above Lemma, we note to find a weak solution to problem
is equivalent to obtain an wu, € Wol’p(w)(Q) such that T(u,) = 0. To do this, we begin by
fixing a 0 < ¢ € C5°(Q2) such that

e(z)d(x)P@y £ 0 and c(2)d(z) @y e LH(Q). (3.7)

Let F' C Wol’p(x) (Q) be a finite dimensional subspace with ¢ € F and Tr : F — F* a
function defined by T = Iy o T o I, where

Ip s (B |- 1) = (Wo ")

u— Ip(u) = u.

and [}, is an adjoint operator of Ir. We note that Tp = T'|p, that is, for all u,v € F', we have

(Tr(u),v) = /Q IVuP® =2y Vods
_ /Q [cn(x) <d(x)+i>_6(x) <]u\+i>_a(x)’u+/\fn(x, ]u\)v] iz (3.8)

Below, let us find a zero of Ty for each finite dimensional subspace F' C VVO1 P (m)(Q)
given with ¢ € F.

Lemma 3.2.2 Assume (H1) and (Hs). Then there exists an 0 # up = u, \p € F' such that
TF(UF) =0.
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Proof. We claim that T is a continuous operator. In fact, let (u;) C F with u; — u in F.
From Proposition the operator L : Wol’p(x)(ﬂ) — WP @)(Q) given by

(L(u),v) —/ IVulP® 2 VuVode,
Q

is continuous.
Now, from Proposition and the embedding Wol’p(w)(ﬂ) — LP(*)(Q), we have that
wj(z) — u(x) a.e. in Q and exists h € LP(*)(Q) such that |u;| < h, unless of subsequence. As

a consequence,

e (2) (d(m) + 1) o (\uj\ + ;) L ) <d(ac) + i) e <yu\ + i) -,

fo(@; luj)o = fo(a, Jul)v (3.9)

a.e. in Q for each v € Wol’p(x)(Q). So, the informations at 1) and 1} permit us to use
Lebesgue’s Dominated Convergence Theorem to conclude that T is continuous.
Now, let m = dim(F') be the dimension of F' and (e,)"~; be an orthonormal basis of

F, that is, each u € F is uniquely expressed as

m
Zmei for some n = (n1,12, .., Mm) € R™.
i=1
This permit us to define i = ip : (R™,|-|) — (F,||-||]) by i(n) = u and set |n| = ||u]|.
By using this and the continuity of T, we obtain that the operator Sr : R® — R® defined by
Sp = i* o T 01 is continuous, where * stands for the adjoint operator of i. Let u = i(n) for
n € R™. So, it follows from , Proposition , Hoélder’s inequality and the embedding
WP (Q) < LP@(Q), that

(Sr(n),n) = (FoTpoi(n),n) = (Tr(u),u)

> /Vu|p(z>d:c—0(n)/ [l + (Ju| + 1)1~ ] d:c—)\n/ |u|dz

iy 5 0 (3.10)
> max {[[ul[P~, [[ul[P*} = C5(n) (||u\|p<x> +t+ IuIII;(_oc?)
> max {[[u] [P~ [|ul[P*} = Co(n) (IJul| + |[1 + [ul[[*=*)..

Now, if p_ > 1—a_, then we are able to choose an ry = r9(n) > 1 such that (Sr(n),n) >
0 for each |n| = ||ul|| = ro.

So, by using Lemma , there exists ngp € B;,(0) such that Sp(nr) = 0, that is, by
letting up = i(nr) and v = i(v), we conclude that

(Tr(ur),v) = (Sr(nr),v) =0 for allv € F,
which implies, for all v € F', that

/ [Vup|P®)2VupVods
Q

—B(z) —a(z)
= /an(a:) <d(a:) + rlz) (uF\ + i) vdx — )\/an(a:, lup|)vdz.
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Finally, assume by contradiction that up = 0. By (3.7) and taking v = v, we obtain

~B(x)
0< / cn(z) (d(m) + i) n®®ypdy = —/\/ falz,0)0 <0,
Q Q

since fn(z,t) > 0 for all t > 0. So, would follow that [, ¢, () (d(z) + %)_B(x) pdx < 0. Thus,
by Fatou’s Lemma,

1

—B(x)
0< / c(z)d(z) P@ypda < lim inf/ en(z) (d(:n) + > dr =0
Q n—oo

Q n

but this is impossible, since c(z)d~?®)y) # 0. So, up # 0. This finish the proof. m

Proposition 3.2.3 Assume that (Hy) and (Hs) holds true. Then the problem (3.4) has a
weak solution u, € Wol’p(x)(Q) for each n € N given.

Proof. Let ¢ as in and set
A= {F C Wol’p(x) (Q) /¢ € F and F is a finite dimensional subspace of Wol’p(x)} .
Given Fy € A, let
Ve, ={ur€eF /| FeA FyCF, Tp(ur) =0e¢ ||lur|| <70}

and note that Vg, # (), as a consequence of Lemma Since Vg, C B;,(0), we have
V(j;o C B,,(0), where V(j;o is the weak closure of Vg, and By, (0) is the closed ball on F. So
7

, 18 weakly compact.

Now, consider the set
B={Vy" | Fe A},
and a finite subfamily
Vi, Vi, Vi } CB,

where F':= span{F}, F», ...F},, }. By definition of V,, we have up € V;L_ fori=1,2,...,n, that
is,

n

(\VE#0

i=1

showing that B has the finite intersection property. Since By, (0) is weakly compact, it follows

from Proposition that
W = ﬂ Vi® £ 0.

FeA

Let u, € W. Given ¢ € W&’p(‘r)(Q), take Fy € A such that span{¢, u,, ¢} C Fy. Since
Up, C By, it follows from Proposition that there exists (un ;) C Vg, and Fj = F, ; C A
such that u, ; — uy in Wol’p@) () with ||un, ;|| < ro and

/\Vun7j|p(“”)2Vun7vada;
Q

_ /Q (cn(x) (d(az) + i) o <|uw| + i) G \uw\)) vdz.  (3.11)
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for all v € F;. By passing to a subsequence if necessary, we have u, ;j — u, in Lh(x)(Q) for all
1 < h(z) < p*(x) and uy;(z) = up(x) a.e. in Q. So, by taking v = u, ; — u, € F; in (3.11)),
it follows from (3.5, that

/|Vun7j|p(x)2Vun,j(Vuw — Vu,)dzx
Q

-/ (cnu«) (d(:v) n ;) o <|un,j| n ;) VIS |un,j|>> (t — )

< () (llwng + 11,3 +1) [ng = unllye.

that is,
lim sup/ IVt P2V, (Vg j — Vg )dz < 0.
Q

Jj—00
and a conse f thi . ; 1,p() . ..
quence of this, we have that u, ; — u, in W (Q), by using Proposition [1.2.4

So, passing to a subsequence if necessary, we have that Vu, j(x) = Vu,(z) a.e. in Q, which

lead us to conclude that

—B(x) 1 —a(z)
/ |Vun|p(x)_2Vuandx = / <cn(:r) (d(:r) + 1) <]unl + ) + Afnl(z, ]un|)> vdz
Q Q n n

holds true for all v € F}. Since we can take v = ¢ and ¢ was taken arbitrary, then we obtain

1 —5(95) 1 —Oé(x)
[ 190l e = [ <cn<x> <d<m> T ) (|un| ; ) Al |un|>) b,
o) Q n n

for all ¢ € W (0).
Now, let us show that uw, > 0 in €. Arguing as in the proof of Lemma we infer
that u, # 0. More, by taking ¢ = —u,,, we obtain

—B(x) —a(z)
/ [V, [P da < —/ cn () (d(az) + 1) (u; + 1) u;da:—)\/ f(z,u, )u,, dr <0,
Q Q n Q

n

which implies that u,, = 0. So,

/ |V, PP 2V, Voda
Q

-/ <Cn<x> (d(:v) n i)ww <u ; ;)W) T Afn<:c,un>> pdo. (312)

for all ¢ € W&’p(aj)(Q). By using that Theorem m, it follows that u, > 0 in . To end, by
Proposition |1.3.8] u,, € C'(Q) for some =, € (0,1), finishing the proof. m
Now, let us verify an assumption of the our Comparison Principle holds true for our

problem.
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Lemma 3.2.4 Assume (Hy),(Hs) and (Hy) holds true. The functional Iy, : Wol’p(z)(Q) — R,
defined by

|Vu|P() / < 1 ) —B(=) 14 9ph
1 = d " d — In| —2————1|d
w(w) /Q ple) " {a(2)=1} enle) (o) + 3 et 142n !

n () (d(x) 4 %)—ﬁ(x) [(% +2h)1—a(m) _ (u+ T % +2h)1—0¢(a:)}
o
a(z)<1}

1— a(z) dx
enl) (d(z) + L) 77 [(u+ +1pop)te® 1y Qh)l—aw)}
+/ dx
a(z)>1} alr) —1

+ )\/ [F(x,2h) — Fy(z,ut + 2h)]dz
Q

is coercive and weakly lower semicontinuous for each h > 0 and n € N given, where F,(z,t) =
f(f fn(x,s)ds.
Proof. By using Ins < s for all s > 0, Holder’s Inequality and Sobolev embedding, we obtain
that )
Iuw) > cmin {[ful [l = € (i 4l 1),

where C' = C(n, h,$, ay ) is a positive real constant. Since p_ > 1 — «a_, it follows that I}, is
coercive.

To prove the weakly lower semicontinuity of I, let u; — u in VVO1 P (x)(Q). So, it is well
known that u; — u in L*®)(Q) for all 1 < t(z) < p*(x), u;j(x) — u(z) a.e. in Q and there
exists © € L'®)(Q) such that u, < ©. Below, let us consider each integral in the definition

of Ip,. First, by using these informations and Fatou’s Lemma, we obtain

_B(z 1—a(z)
cn(z) (d(z) + %) ) (uj + % + 2h)
lim inf / dx
j—ro0 az)>1} a(z) —1
- / cn(z) (d(z) + %)_B(I) (ut+ 1+ 2h)1_a(z) i
~ Ja(@)>1} a(z) -1 '

More. Since

—B(x) 1.9p
/ cn(2) (d(x) + 1) In +”+ dx
{o(2)=1} n uj + 5 +2h
—B(x) 1.19p
< / cn(x) (d(x) + 1> +"+ dx
{a(z)=1} n uj + o+ 2h

1 —B(z)
< / cn() (d(w) + > dz < 00
a(z)=1} n
holds, we obtain by the hypothesis (Hs), that

n

/{a(x)<1} 1—- CV(JZ)

) / enl) (d(a) + 1) 7P (2 4 op) 7o
= Jia(z)<1} 1 — o)

eola) (d) + 1) [+ 2) ' = (uf + e am) )

dzr

dr < 00
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holds as well. Now, we are able to apply Lebegue’s Theorem to obtain

() (d(z) + l)*ﬁ(x) [(i n 2h>17a(z) _ (uj+ L1y 2h)1a(¢)i|

lim / " i
700 | J{a(z)<1} 1—a(z)
/ cn () (d(x) + %)—ﬁ(ﬂs) [(% i 2h)1—a(z) _ (u+ + % 4 Qh)l—a(m)} )
= x7
a(z)<1} 1— O[(Q})
and

1 —B(x) 1
lim —/ cn(x) (d(:n) + ) In (uj + -+ Qh) dx
oo a(z)=1} " n

1 —B(z) 1
= / en () (d(x) + ) In (u +—+ Qh) dx.
{a(z)=1} n n

Again, to finish our analysis, we just note that f,,(z,¢) < n that implies that
|Fo(uj + 2h)| < n(© + 2h)
holds. So, once using Lebesgue’s Theorem, we obtain

lim | F,(x,uj +2h)dr = / Fo(x,u+ 2h)dz.
J— JO QO

that is, Ip(u) < liminf I}, (u;), as desired. This ends the proof. m

The next result is fundamental in our approach.

Proposition 3.2.5 Assume that (Hi),(Hs) and (H4) holds true. For each U CC § given
there exists a Cy > 0, independent of n, such that

up(x) > Cy > 0 for every x € U and for all n > 1,

where u, € CY(Q) is the solution of Problem (3.4) given by Proposition 3.2.3. In addiction,
there exists 91 > 0 such that u,(x) > Cd(x) for x € Qs,, for some C > 0 independent of n.

Proof. Fixed n € N, let g, : @ x R — R™ be defined by

t=@) if a(zx) >0 and t>1/n,
gn(x’t) = o(z)
n if a(x) <0 or t<1/n

and the problem

1Y .
—Apyw = cp(z)dn(T)gn (x, lw| + n> in Q,
’UZOH’IS-Z7 ’U:OOnaQ’

(3.13)

n
in Proposition , the problem 1) admits a positive solution w, € C'(Q), for some

Yn € (0,1) and for each n € N given. Moreover, since

where ¢, (z) = min {c(z),n} and d,(x) = min { (d(z) + l)_B(m) ,nﬁ(‘”)}. Now, by arguing as

on(2)dn(2)n (:c wn + i) < en(@) (d(m) + 711) o <wn 4 i) ),
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holds true, we obtain that w,, is a subsolution of Problem (3.4]).

We claim that w,, is increasing in n. In fact, defining

1 1
9(1') =g <x7wn + n) ) <1' W1 + +1>

we obtain
(wn + %)_O‘(x) — (wn+1 + ﬁ)ﬂé(w) if a(z)>0 and wp41 + n+1 > 1
O(z) = (wn + %)—a(ﬂﬂ) _ pel@) if a(x)>0 and w1+ n+1 <4
0 otherwise,

(3.14)
that is, O(z)(w, — wpa1)™ < 0 in Q.
Now, by using that w, and w,y1 are solutions of and taking (w, — w,41)" as
test functions to them, it follows from , that

/ <|an|p(w)_2an — |an+1]”(x)_2an+1> V(w, — wpy1)Tde
Q

1

= [ (ex@ntaly (n + ) = coa(obuia@ly (00 + 57 ) ) (= i) o

< /Q (@) 1(2)O (&) (w0 — 1) el < 0,

that lead us to infer that ||(w, —wn41)"|| = 0 thanks to Lemma [1.2.6] In particular, wy1 >
Wy, as claimed.

Let gn(z,t) = cn(x) (d(z) +1/n) P (¢ +1/n)"*@ 4 Af,(x,t). Tt follows from hy-
potheses (Hy) and (Hy) that §,(z,t)/tP~ ! is strictly decreasing for ¢+ > 0 and a.e. z € Q.
More, by Proposition [3.2.4] the functional

p(z) u
[Vl dx—// gn(x,s + 2h)dsdz,
o px) 2 Jo

is coercive and weakly lower semicontinuous for each h > 0 and n € N given. Then, by using

Theorem we have that u, > w, in . In particular, it follows from the monotonicity
of w,, and continuity of wy that there exists a Cy > 0 such that u,, > wy; > Cy > 0 for each
U cc Q given.

On the other hand, we know by [42, Lemma 14.16] that d € C?(Qs,) and 94 (z) < 0 in
99, where v is the outward unit normal on 99Q. Since wy; € C171(Q), it follows by Proposition
that %(CL’) < 0. So, by compactness of Qg,, C'(Q)-regularities of the solution w; and
of the distance function d, and the boundary conditions w; = d = 0 on OS2, there exists a
constant Cy, > 0 such that

8’[1)1 8d
ey (x) < Cy, ey (x) for all z € Q,

that is,
Cs,d(x) < wiq(z) for all x € Qs,,

and, in particular, u, > w; > Cd(z) in s, finishing the proof. m

20



We are able to obtain more accurate asymptotic behavior than the above one for u, if
we request more restrictions on the function ¢(z). To do this, let §; > 0 be that one given in
Lemma [3.2.5 and remember the numbers

p(x) — Bz . .
(z) (z) if B(z) + a(x) > 1 in Qs, p(z) — Bz

01 =1 wcq; p(x) +afz) -1 62 = min o)
1 if B(x) + az) < 1in Qs, ven, P(z) + a(w) =

for some 0 < ¢ < 41 small enough.

Proposition 3.2.6 Assume that (H1)—(Ha) hold true. Then there exists 0 < § < d1, ng > 1,

and
(i) an m > 0, independent of n, such that

n\N" 1
un+1/n>m[<d(3:)+> — 7| i Qs for alln > ng
n nv1 ’

if e(x) > ¢cs >0 in Qs,

(7i) an M > 0, independent of n, such that

(a1

where Q5 ={x € Q / d(z) +1/n < 6}.

Up +1/n <M in Qs for all n > ng,

Proof. The proof is inspired on ideas contained in [70, Theorem 4.1]. Since 2 is smooth, we
can consider d € C?(Qss,) with |Vd(z)| = 1 in 3, for some §; > § > 0. Fix ng > 1 large
enough such that ¢, () > (cs5,)/2 and let 6 € (1/ng, d2/3) be a small constant to be fix later.
For n > ng and o > 0, 6 € (0, 1] positive constants, defining

- [(d(m) + ;)0 - H if (d(m) + i) <5,

(d(:r)—i—%) _ %
(@) =19 ¢ <59 — 19) +/ o501 <255 t)” Lt s < (d(a:) + 1) < 26,
19

n n
25 AN
o ((50 - 19> +/ 06501 (25t> Cdt if 26 > (d(x) + 1) ,
n s 1) n

we infer that z, € C1(Q) N C(Q).

Proof of (i): We prove the result just considering that f(x) + a(x) > 1 in s, because the
other situation is treated in a similar way. Let us show that z,(z) is a subsolution for (3.4)),
that is,

—B(x) —o(z)
/an(m) <d(1:) + ;) (zn + i) ¢dx + )\/an(a:, 2n)ddx

2/]V2n|p(‘r)2VznV¢d$:/ V2, |P®) 2V 2, Vpda
Q {d(z)+1 <6}

(

(3.15)

+ / V2 |P®) =2V 2, Vpda: + / IVzn|P® 2V 2, Vode  (3.16)
{6<d(x)+L <25} {d(z)+1>26}
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for all ¢ € C§°(€2), ¢ > 0. Once this is done, it follows from Theorem that u, +1/n > z,
in Q and, in particular, we obtain the claim (7).

Initially we note that

(U@)p(x)il (d(ac) + %)(9—1)(17(43)—1) vd(x)7 (d(l‘) —+ %) <0
V2, [P 2V 2, = -1 ( 20—(d@)+3) = L
01 (2 dD) Vd(z), &< (d(x)+4) <20
; (@) +1) > 2

that lead us to conclude that

/ |v2np(m)—2aZ"¢dx+/ WZn‘p(r)—2%¢dx
of (d(z)+1)<s} om 0{5<(d(z)+1) <25} Iy
+/ |Vzn\p(x)’2%¢dx =0 (3.17)
o{(d(z)+1)>26} I3

where 7;, ¢ = 1,2,3 are the normal unit outward vectors to the sets {(d(z)+ %) < 4},

{6 < (d(z)+ L) <6} and {(d(z) + L) > 6}, respectively .
Thus, by using integration by parts and (3.17)), we obtain

/ IV 20 |P) 2V 2, Vpdix + / IV 20 |P) 2V 2, Vi
{d(z)+L <6} {6<d(x)+L <25}

(1 + Iy (2)) pda

1\ =D p@)-1)-1
)

— [ @0 () - 1) () +
{d(z)+; <4}

2p(@)=1)

Lyt (20 (i) + )\
+/{6§d(x)+;<25} (0660 1) o ( ) ) I (2)pdz, (3.18)
where
- 1\ ( Vp(x)Vd(z)In(of)  Vp(x)Vd(z)n (d(z) + 1) Vave
e <d<x)+ ”> ( G- -1 plr) ~ 1 TS0 D) - 1))
and

- <25 — (d(:c) + i)) {cﬁ In (09591 (25 - (dff) ") ) 2) VdVp + Vd§¢

To show that (3.16]) holds true, it suffices to estimate the two integral of the right side
in (3.18). Let us begin with the first one. Since

IVP@)llloo of , NIVP@)ld | NIVl >
0 —-1p-—1) p-—1 o0 —1)(p-—1)/)°

My (@) < 6 (
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we have that |II;(x)| < 1/2 for 6 > 0 small enough. So, by using this and 6§ = 6, we obtain

1 B =D (@) -1)-1
(000" (B, — 1)(p(x) — 1)(1 + Ty (2)) (d(za) n )

n

o (d(x) 1 > B -t0(2)
< eo(a) <d(x) + i) o <a ((d(m) + i)e - 7;9> + i) - (3.19)
< on(a) <d(x) + ;) o (zn + :L) )

holds true in d(x) + 1/n < §, when a(x) > 0, and 0,6 > 0 are small enough, since (0; —
V- — 1)~ 12 —B(z) - brale).
For the case a(z) <0, we have
) 1\ @r=Dp(@)-1)-1
(00 61~ 1(p(o) - D1+ ()] (de) + )

n

. > ~B(@)-b1a(x)

< en(@) (d(a:) + ;) o <a (<d(x) + i)e - 7;)> 4 i) - (3.20)
< ¢n() <d($) + ;) o <zn + ;) o + A /Q fa(, 20)

is true in d(z) + 1/n < § for some o, > 0 small enough.

Hence, it follows from (3.19) — (3.20)), that
/ IV 2|72V 2, V bz (3.21)
{d(z)+ <5}

1 —ﬁ(x) 1 —0‘(17)
<[ en(e) <d<x> n ) ( " ) sy Fules )b
{d(z)+1 <6} n n {d(z)+1 <6}

for §,0 > 0 small enough.
Now, we going to evaluate the integral in (3.18)) in the strip § < d(z)+1/n < 2. Since

2py — 1) HV¢HOO>
(p-—1) ¢

holds true in 6 < d(x) + 1/n < 2§, we can use the boundedness of IIy to obtain

()] < s <91591—1 11Vp(@)l. +

2p(2)=1) _4

_ _ 1)\ e
(09159171>p(x) - (25 (dfsa:)%—n)) ’ My(z) < my 6@~ D@11

where my = mq (9, py,p—,0,61).
After this, we can use similar arguments used to obtain (3.19) and (3.20) to infer that

2(p(z)—1) —1

(0915971>”($)_1 (26 - (d((;ﬂ) u n)> o y(z) < cp(2) <d(:z) + 1)5(1) (zn + 71L> e

[y

n
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holds true in § < d(z) + 1/n < 26 for §,0 > 0 small enough, that is,

/ V2 |P® 2V 2, Ve
{6<d(z)+L <26}

(3.22)
<

1\ B 1\ @
/ en(2) <d(x) + ) <zn + > odx + )\/ fn(x, 2p)odx
{6<d(z)+L <25} n n {6<d(z)+L <25}

for §,0 > 0 small enough.

So, it follows from (3.21]) — (3.22)) the inequality in (3.16)), that is, z,(z) is a subsolution
for (3.4]). This finishes the proof of the claim (7)

Proof of (ii): Consider the function

5(2) = o (d(m) + i)e Cd()+ <8

It is easy to see that Z, € W'li’f(x)(ﬁmg) N CI(QW;). Similarly to (¢), we will show that Z, is
a supersolution for (3.4)) in €, s, that is,

/ V2, |P®) 2V 2, Voda
Qn,(s

(3.23)
1\ —B@) 1\ —o@)
> / cn(z) <d(:z:) + ) (Zn + > odx + )\/ fnlx, Zp)ddx,
Qn,ts n n Qn,é
for all ¢ € C5°(Qy,5) with ¢ > 0.
As in (3.18]), we have that
/ |Vz,|P®) =2V 2, Voda
Qn,6
1\ (b2=D)(p(2)-1)-1
- / (002)P@ =10y — 1) (p(z) — 1) <d(x) + n) (1+ Ty (2)) e
Qn,6

To obtain (3.23)), we initially infer from (Hs), that

1 —B(z)
cn() (d(m) + n) 270 LN fo(x, Zn)

1 —O2a(x) 1 02(q(x)—1)
< O ellwd(a) 7 (dla)+ 1) 4 Ml (1407 () + 1)
n

holds true. If 5(z) + O2a(x) > 0, then

n
d

1 —bra(x) 1 62(q(z)—1)
a—a(x)HCHOOd(x)—B(z) (d(l’) + n> + )\||b|’oo 1+ U‘J(x)—l <d(l‘) + )
()72 (|l oo ™) Al (1-+ 070157010 ) ) o)+ 20l

IN

IN

d

I

(z)~A@)—b20() (chmg—a(x) B |oo <1 i UQ(x)—1592(lI(9C)—1)) 56(x>+92a(x>)

(3.24)
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On the other hand, if 8(x) 4+ #2a(x) < 0, then

1 —O2a(x) 1 02(q(z)—1)
O_—a(z)HCHOOd(:E)—B(x) (d(l‘) + n> + )\||b”oo 1+ o'q(m)—l (d(w) + >

n
< d(x)/o’(m)+92a(x) <|’c”ooo,fa(:p)éfﬁ(z)f%a(m) + )\HbHoo (1 + 0—‘1(95)*1692@(1)71)>>
— By (3.25)

Since (02 — 1)(p(xz) — 1) — 1 < min{—p(z) — b2a(x), B(x) + O2c(x)}, it follows (3.24))
and (3.25)), that we can choose o > 0 large enough such that

1 B2-D(p(@)-1)-1
(06207162 = 1)(p(o) ~ (1 + )] () + )

Z max{El, EQ}
n

—bra(z)
> e(z)d(z)~P@ <d(m) + i) + Af(z, %) (3.26)

So, it follows from (3.23)) and (3.26)), that Z, is a supersolution for (3.4)) in €2, 5. Thus,
it follows from Theorem that u, +1/n < Z, in Q,, 5, as desired. ®

3.2.1 Estimates in the variable exponents spaces

Throughout this section we will fix
1
wps =02\ Qs where Q,5={xeQ : dx)+ - <d}.
n
for § > 0 as in Proposition [3.2.6]

Proposition 3.2.7 Assume (Hy) — (Hy) hold true. If |B(x) + a(x) > 1| > 0 in Q5 and

op* o p—+ﬁ§;1+a+—1 p_+ay —1
r(x) = with o = max , ,
p—( (z)

c—1)+1—-a p_ jo

then there exists a 0 < A\ < 0o such that the sequence uy, is bounded in L7 @)(Q) for all
0 < X\ < \i. Besides this, \y = +o00 if g7 < p_.

Proof. Let u, € Wol’p(m) (€2) be the solution of the problem . We have that

/\Vu%\pdx = /apufl("_l)|Vun|pdaz
Q Q

(3.27)
< of- (/ wP= "Ny —|—/ ufl(”_l)|Vun|p(r)dx>
Q Q
holds true for each o > 1 given. So, by fixing the number
Bi—1
-+ +ay—1 p_ -1
J:max{p o TPty }21 (3.28)
pb- p-

%)



and taking uh~ (o=D)+1 ¢ Wol’p(gc)(Q) as a test function in l’ it follows from (Hs) that

(p(0—1)+1) / oD |V [P gy — / Vg PO 2500, 7 (w2 (D) g
Q Q

1\ A@ 1\ P-(o—D+1-a(2)
< / c(x) (d(a:) + > (un + > dx (3.29)
Q n n

+ )\/ b(x)(l + u%(x)—l)ugf(a—l)-q—ldx.
Q

Below, we are going to estimate the two integrals of the right side in (3.29)). To begin,
since

op* op* >'
s(x) > — > " = ,
@32 e~ e v
then, by using Hélder’s Inequality, we obtain

/ b(z)(1 + ud® - DH gy < My ( / b(z)dx + / b(x)ug—wnw(w)dx)
Q Q Q

< My <1+Hug<0—1>+q@> . ) (3.30)
p_(o—1D+a(z)
op*

—(o—1 — —(o—1
< My (14 [Jun 57D 4 fug 7,

where we used u{){(a_l)ﬂ <1+ub (o=1)+a(z) to obtain the first inequality.
On the other hand, it follows from (H3)(i7) that ¢ € L>(Q,, 5), because €2, 5 C 5. By
using Proposition [3.2.6{i3), we obtain

1 —ﬂ(iE) 1 —CM(:E)
frofors2) ™ st
Q n n

1\ 8@ 1\ P-(e=D+1-a(2)
< / c(x) <d(x) + ) (un + ) dx (3.31)
Qn,& n n
1\ P-(o—D+1-a(2)
+ Mg/ c(x) (un + >
Wn,§ n

1\ @ 1\ 02 p—(o—1)+1—o(x)
< M, / <d(:c) + ) <d(m) + ) do
Qn,é n n

dx

1\ P-(e-D+l-a(z)
> dx

+M3/w6c(x) (un+n

1\ ~B@)+02[p—(e—1)+1-a(2)]
< Ms / <d(l‘) + n> dx _|_/ C(l,)uzzl_(afl)+1fa(:v)dx ]
Q Q

To estimate the first integral in (3.31]), we note that (3.28) implies that t(x) = —p(z) +
O2[p— (0 —1) +1 — a(x)] > —1 and, as a consequence of this, we obtain

1\ —B@+02[p— (0—1)+1-a()] (d(z) + 1)) if t(x) >0
(d(az) + > <
" d(z)!®), if —1<t(x)<0.
holds true. Thus, by Lazer and Mckenna [51]], we have
1\ ~PA@)+02[lp—(o—1)+1-a(z)]
/ <d(x) + n) dx < Ms, (3.32)
Q
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with Mg independent of n.
To estimate the last term of (3.31]), we use Holder’s Inequality to obtain

/C(x)up(0—1)+1—a(z)d$ — M7||C||T(z) ‘uﬁf(a—l)—l—l—a(;r)
Q

op* (3.33)

p_(c—1)+1—a(x)

n

< Mz ([funllpg 70 D)

Combining (3.32) and (3.33) in (3.31) we conclude that

1\ A 1\ P-(e—D+1—-a(z)
/ c(x) <d(:v) + ) (un + ) dx
Q n n

< My (14l 870770 4 un 2,070 ) L (3.39)
Now, by Sobolev embedding Wol’p_ (Q) < LP=(Q) we have

Miollual 2 = Mol < 2 ) = [ [95-da. (3.35)

0

So, by using (3.30]), (3.34) and (3.35) in (3.27), we obtain that

[ 175 < My (1 [l (55707170 4 a7 4 A 7074 ) - (3.36)

holds true for some M7; > 0 independent of n. Thus, we are able to choose a A1 > 0 small
enough in the case ¢ = p_ or \; = o0 if ¢4 < p_ holds to conclude that u, is bounded in
LoP~(Q). m

Proposition 3.2.8 Assume that (H1) — (Ha) hold true. If |f(z) + a(z) > 1| = 0 in Q, 5 and

_ (@)
= (1)
then there exists a 0 < Ay < oo such that the sequence (uy) is bounded in LP"(®)(Q) for all
0 < X\ < Xg. Besides this, Ao = +o00 if ¢7 < p_.

Proof. Taking u,, € Wol’p(x)(Q) as a test function in 1D and using (Hs), we get
1\ B@ 1\ 1—e@
/ |Vt [P@) e < / c(x) (d(az) + ) <un + ) dx + /\/ b(z)(1 + ud® Yy, da.
Q Q n n Q

As in proof of Proposition [3.2.7] we will estimate the integrals above. Initially, note
that

/Q b(z)(1 4 wd® N, de < M, ( /Q b(z)dz + /Q b(x)ug<f>dx>

< 23 ([1bl + [1b(=) o+ Ib(@) ) (3:37)
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and for the singular term, we have

[ O

1 1—a(x)—B(x) Uy +% 1—a(z)
— /Q () <d<x>+n) <d<x>+1> dz (3.38)

n

- 1 1—a(z) u _|_l 1—a(z)
< M, / c(x) L d:v+/ c(x) _nn dx
a(x)>1) d(x) + 5 {a(@)<1} d(z) + 5

u _|_l 1—a(z)
< M, /c(x)d:c+/ o(x) | ———"r dz |,
Q {a(x)<1) d(@) + 5

where we used that u, +1/n > Ca(d(z) + 1/n) in Q to obtain the last inequality, as claimed
in Proposition [3.2.5| Now, by using Proposition [3.2.6(i7) and ¢ € L*(€25), we obtain

u _|_l 1—a(z)
c(z) | 22— dx 3.39
/a(msu ( )<d(w)+ 1) (339

n

1\ (2= (1—a(2))
< Mj / <d(x)+ ) dx + / o(z) (up + 1)@
Qn sN{a(z)<1} n wnsM{a(z)<1}

1\ (2= D(1-a(2))
< My / <d($)+ ) dx+/ c(x)ul=o- +/ c(x)dz | .
Qp,sN{a(x)<1} n wn,sMo(z)<1} Q

To finish, it follows from Lazer and Mckenna [51], that

1\ (G2-D(1-a(a)
/ <d(a:) + ) dz < M, (3.40)
Q n

since (62 —1)(1 — a(x)) > —1. To the last term in (3.39)), we use Holder’s Inequality once, to
obtain

—Q—

o 1
| etarut=do < el (3.41)

So, by combining (3.29)) with (3.39) — (3.41)) and following the same lines of the proof
of Proposition [3.2.7], we conclude that

_ l—a—
mac{|[un |27 . [onl 5y} < Mo (14 nllr sy + Allunl %, ) (3.42)

hold true for some Mg > 0 independent of n. Thus, again we are able to choose a Ao > 0 small
enough if gy = p_ holds or Ay = 400 when ¢4 < p_ occurs to infer that (uy) is bounded in
@ Q).

Below, let us prove that the sequence (uy) converges to a solution of (3.1). To do
this, we begin by proving a priori estimate on the sequence (uy) in W;’p(w)(ﬂ). The role

played by the trio (c¢(z), a(x), 5(x)) near the boundary is determinant. Let us remember the
C%l-manifold

T, ={zedQ/[-Blz)+t1 - a(x))] +1> 0}, (3.43)

1—1/r(z)
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Definition 3.2.9 We say that (uy,) is bounded in Wll’p($)(ﬂ) if (un) is bounded in WP (1)
for all open set U C Q given such that OU NJQ) =T.

Proposition 3.2.10 Assume that (Hy) — (Hy) hold with r(z) as in Propositions or
3.2.8. Then (uy) is bounded in WIEIZL(I{ZQ (Q) for all 0 < A\ < min{A1, Ao}. In addiction, if

c(x) > c5 in Qs, then (uy) is bounded in W;ZS}QQ (Q) for all 0 < X\ < min{A1, A2 }.

Proof. Given an open set U C € such that 0U N 9Q = I'y U Ty, let ¢p € C°(U) with
supp (v) C UUT. Denoting by supp (¢) = Sy, consider the sets

1
Qn75’¢,1" = {JU S Sq/, / d(CC, 8S¢, N F) + - < 5} and Wp, s, = Sw \wn,5’¢’p.

We get that wy, 540 CC Q, where I' = T’y UTy,. By taking u,yP+ € Wol’p(m)(Q) as a test
function in (3.12]), we obtain that

/ |V |[P® P+ da + poy. / Un P+ [V, PP 2V u, Vipda (3.44)
U U

< /U (c(w) (d(a:) + i) o (u + D_a(x) - Af(x,un>> U da

Now we will estimate each integral in (3.44). First, we notice that {a(z) > ar} C

Wn,s 7 CC ), where ar = max a(z). To estimate the first integral after the inequality,
€8y 59,7

we need consider two cases. Initially, let us assume that apr > 1. From Proposition [3.2.5] it
follows that

1 —B(z) 1 1—a(x)
/ c(x) (d(x) + > (un + ) YP+dx < Myllcl]r. (3.45)
a( )>&[‘} n

n

For the complimentary case, we will split the integral in two new ones, that is,

1\ A 1\ o)
/ c(x) (d(x) + ) <un + ) up PP+ dz
a(z)<ar} n n
1\ ~B(@) 1\ 1-al@)
< / o(@) <d(x) + ) <un + ) WP+ da (3.46)
{1<a(z)<ar} n n

1 —B(x) 1 1—a(x)
—I—/ c(x) <d(z) + ) (un + ) YPrde.
a(z)<1} n n

Firstly we notice that,

1 1 1
a(x) <max{2—@—ﬁ(x),1+6—2 <1_r(:c)_ﬁ($)> }, zel
and thus,

min {(—8(z) + 1 — ar)r'(z), (—B(z) + 2(1 — ap))r'(z)} > -1, z €T,

that is, it follows from a Lazer and Mckenna'’s result [51], that

max{ / () B@H1=arl (@) gy / d(m)[ﬁ($)+92(1ar)]rl(x)dw} . (3.47)
Qs Qs
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For the first integral of (3.46]), by using Proposition and Holder’s Inequality, we

obtain
1\ B@ 1\ I—e@)
/ c(x) <d(w) + ) (un + > YPrdx
{i<a(@)<ar} n n

1\ ~B@)H1-a()
< Mg/ c(x) (d(x) + )
{1<a(z)<ar} n

< M / o(@)d(z)P@H=@ g 4 Myl
{1<a(z)<ar}

WP da (3.48)

< M3/ c(x)d(x)_ﬂ(x)‘f‘l—a(w)dx+M5HCH1
Qn,é,w,rﬂ{1<a( )SOCF}

< Mg (|CHT(I) L7 @) () * 1) '

‘d(m)—ﬂ(m)—Fl—a(:p)

From Proposition [1.1.1] and (3.47)

< ( / d(ﬂ?)(ﬁ(af:map)r’(awd%)Y < .
Lr/(m)(Qé) - Q(;

H d(z) P +1-a()

where v € {1/ry,1/r_}. Thus,

1\ B 1\ —o@)
/ c(x) <d(x) + ) (un + > YPrde < My (3.49)
{1<a(z)<ar} n n

for some M7 independent of n;
For the second integral of (3.46)), we should analyze more sub cases. From Propositition

or [3.2.8, we have r(z) > p*/(p* + a— —1). By applying Proposition [3.2.6(ii) and

Hoélder’s Inequality, we obtain

1\ B 1\ 1—o@)
/ c(x) <d(x) + ) <un + > YPrdx
a(w)<1} n n

1\ ~BA@)+02(1—a(2)
< | (o) (dta) + )
Q50,0 M{a(z)<1} n
1

1-a(x)
T Ms/ c(z) (Un + > dzx
Wn, 5,9, 0 a(z)<1} n

’ d(z) A0 (1-a(@))

dx (3.50)

< My (HCHT(I)

< Mg K / d(x)[ﬁ@%(lar)]r’(wdxy + 1}
Qs

for some Mg > 0 independent of n, since ||uy||p+ is uniformly bounded, by Propositions
or 3.2.8

By combining (3.45),(3.48) and (3.50) we conclude that

1 —B(x) 1 —a(z)
/ c(x) <d(fL‘) + > <un + n> upP+dr < My (3.51)
U

n

L @) (Q 5,0.T)

l—a_
el pr lunll,=" +HCH1>

p* +a_—1

holds for some M7; > 0 independent of n.
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Now, let us assume the opposite case ap < 1. Thus, by arguing as in (3.50)), we obtain

(@) 1\ 1-e@)
1 —B(z)+02(1—a(z)) 1 1-a(z)
< Mo / d(a:) + > dx +/ c(x) (un + ) dx
n 8,9, n Wn, 8,4, T n

< M3

) d(z) @) +b2(1-a(@))

||C”r(ax)

l—a_
el o unll,e” +||C||1>

LT/(I)( n,5,1/),1—‘) p* fa_—1

< M K / d(;,;)[—ﬁ(ac)wz(l—our)]r'(ac)dx)7 n 1} ‘
Qs

So, this information together with our assumptions on U and ({3.43)), we obtain again (3.51)).
Besides these, it follows from hypothesis (Hs), that

)\/Uf(x,un)unz/zp+dx < )\/Ub(x)(un—l—uq JYPtdx

< MigA||b]|s_ (”uan*HlH p* w11 )
p_—1 q() pr —q(x)

< MMz (llunlly: + lunllfs + lunllf ) < Mis.

(3.52)
for some Mjg > 0 independent of n, since ||uy||,* is uniformly bounded, by applying Propo-

sitions [3.2.7 or again.

On the other side, it follows from the Young’s Inequality and the boundedness of (u,)
in LP®)(Q), see Propositions or again, that

’ / |V PP =2V, Vipu, pP+ L da:
U

1
<e / [Vt [P@ i1 g 4 C, / [ V[P da
U U
§e/ |vun|p<$>¢p+dx+c€\|w||oo/ P
U U
€ / |Vt [P P+ daz + M. (3.53)
U

After all these, by taking € > 0 small enough in (3.53) and combining the informations

given at (3.51)) in (3.44)), we deduce that

/ |V, PP+ da < Mg
U

holds for all open set U C § such that OU N 9Q = T'y UTy,, that is, (u,) is bounded in
1’
WeE, ().
We also notice that
o If 'y UTy, = 09, then we can take 1) =1 and U = Q to conclude that (u,) is bounded

in W™ (Q).

o IfI'y UTy, =0, then Sy, CC Q. Thus, (uy) is bounded in W, ’p(x)(ﬂ)

loc

To the end, if ¢(x) > ¢s in the set s, we can redo the above arguments with the estimate
wy, + 1/n > m[(d(z) + 1/n)% — 1/n%] (see Proposition [3.2.6) in the place of u, > Cd(z) to
obtain the claim. These finishes the proof. =
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3.3 Proof of main results

In this section, let us complete the proof of Theorem from the sequence we have

obtained in the last section. Besides this, we will prove regularities results for this solution.

3.3.1 Proof of Theorem - Completed

Proof. Let (u,) C Wol’p(x)(Q) be the sequence of solutions of the problem given by
Proposition [3.2.3] As proved in Proposition [3.2.10 we have that the sequence (uy,) is bounded
in W;fijgé (©). So, given an open set U C Q with 9U N 9N = I'y U Ty, we have that, up to
subsequence, that u, — u in W@ (U), u, — u in LX®)(U) for any 1 < t(z) < p*(x) given,
Un(x) = u(x) a.e. in U and there exists hy € LM (U) such that u, < hy.

Let ¢ € C3°(U). By using ¢(u, — u) as a test function for the problem (3.4), we have

/ IVt PO 250, V[ (1, — 1)) da
Sy

_ /S ¢ (cn(:p) (d(x) + 1) o (un + i) e un)> (un — w)ddz.  (3.54)

n

First, by using Proposition [3.2.5] and [3.2.10 standard embedding, and splitting the

S¢ = supp (¢) in the regionof singularity and non-singularity, we get to

/S el (d(a:) + ;) B (un . % ) ~o(x) -

c(z)(uy —u)dx c(x)(uy, —(®) (4, — u)dx )
<M, (/{Q(M () 1t — ) +/{am§0} ()t + 1)~ )d) (3.55)

< My (Iun—UIlw_Jrllun—ull o’ ||un+1||;§*_),

p(o—1)+1

recalling that we are assuming that a— < 0.

More, by using the hypothesis (Hz), we have
[, ) — 06| < [[@l]ocble) (b + b)) € LI(O). (3.56)

So, by taking the limit in (3.54), it follows from (3.55)), (3.56]) combined with Lebesgue’s

theorem, that

O VP2V, V (U, — u)dz = / (U — )| Vun|P® 2V, Vodz + 0,(1).

Sg Sg

Since

< (IV6lloc |Vt

ooy [Un = ullp@) = on(1),
p(z)—1

/ (U — 1) |V, PP 2V, Vda
Se

we obtain that

/ OV, PP 2V, V (uy, — u)dz = 0, (1) (3.57)
S
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and recalling that u, — u in W) (U), we have

O VulPD2VuV (1, — u)dz = op(1). (3.58)
Se

So, it follows from (3.57) and (3.58)), that

0< / (|vun|p<“">—2wn - |Vu\p(m)_2Vu> V(un — u)da — 0
Sy

and as a consequence of this together with Proposition[A.1.7, we obtain that Vu,(x) — Vu(z)
a.e. in U and
tn = (|Vun| + [Vu P2V (4, —u) = 0 ae. in U.

By using the Holder’s Inequality, we get

/ (Vatn] + V)PV (1, — )| [V < / (V| + [Vu)P@ 1V | dx
S Se

1 1 L
< ClIVlloo max {1 Vun] + IVullZE 1Vun] + [Vl ISel 7
< CIS,PF ||Vl \Y \Y SNy \Y Pt
< ® oo MaX 3 (|| Vtn|lpz) + [Vl @) s IV lp@y + [Vullpm))

< 01|5¢>\i,
(3.59)
where Cy = C1(p—, p+, @) > 0 is a real constant.
Exploiting Vitali’s Theorem and the estimate

2P~ 22 — [y[P%y| < Colz| + [y))P |z — y| for all z,y € RY with |z| + [y| > 0,

we get
/S ¢(|Vun|p(x)_2Vun —\Vu|p(m)_2Vu)V¢dx‘
< [ (19wl + 9219 = )] V0ldz =0,
[
and then
. Vi [P 2V, Vode — .. |Vul[P@ 2TV pda. (3.60)

Finally, it follows from the hypothesis (Hs), Proposition the convergence ([3.60)),
by passing the limit at 1} we obtain that v € WhP()(U) satisfies

/ |Vu|p(x)_2VuV¢dw = / (a(m)u_a(m) + Af(:n,u)) ¢dx for all ¢ € C°(U),
U U

for all U C Q with oU N 902 = I'1 UTy,, that is, u € W;ﬂ;g (U) is a solution of Problem
2

. Moreover, by Propositions and , we obtain that C1d(z) < u(z) < Cod(x)%
or Crd(z)" < u(x) < Cod(z)% for ae. z € Q.

To finish the proof, we just need to show that the boundary condition. For each
e > 0 given, we may argue as in Proposition to show that ((u, —€)™) is bounded
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in Wol’p(z)(Q), and hence it has a subsequence that converges weakly in Wol’p(w)(ﬂ) and a.e.
in Q to some v € Wol’p(x)(Q). Then v = (u —€)* since (up, —€)t > (u—€)T ae. in Q. m

As a consequence of the proof, we have:
o if 'y UTy, = 092, then we can take U = (2 to conclude that u € Wol’p(m)(Q),

e if Iy UTy, = 0, then S, CC Q. Thus, u € W77 (q).

oc

Proof of Corollary - Completed. The proof of is identical to the corresponding one
for Theorem [3.1.2] by noticing that Propositions or [3.2.8] holds with the assumptions

on c(x). m

3.3.2 Proof of Theorem - Completed

In order to prove the Theorem [3.1.4f4), we will follow some ideas found in Fan [29] and
Fusco and Shordone [38] to the problem (3.4)).
Proof of Theorem [3.1.4t.
Proof of (i): For each x¢g € Q and R > 0 given, set Kr = Br(z0) N Q and

5 — minp(s), (z) ND-
_ = 1min T = max T = .
p-=winp(e),  py=maxp(z), L=

From now on, let us take this R > 0 small enough such that p, <p*. Let 0 <1y <1y < R
such that K,, C K,, C Kpandtake{ € C*°(Q) with0 < ¢ <1,{=1in K, , supp (§) C K,
and |V¢| < (1o — 1)~ Given k < 1, define

An,k,i = Kz N {$ €N / Un(IE) > k}, 1= {7"1,7’2,R}.

Since u,, € WO1 P (x)(Q) is the sequence of solutions for || we can take the function
&P+ (u, — k)t € Wol’p(m)(Q) as a test function for 1) to infer, by using (Hs), that

/An,k,TQ

—hla) —a(a)
< /AkQ <C(x) (d(x) + i) (un + i) + A\b(x) (1 + u%(x)1>> €+ (uy — k)t

holds true for each k > 1 given.
Below, let us evaluate each integral of the inequality in (3.61). First, it follows by
Young’s Inequality that

/1471,19,7“2

< / L v@)| gy, o) e @6 g 4 /
" JApgn, V(@) Aoy P(T)

. i ) kN i
<C|ée'- / |Vt [P@) P+ do 4 P+ / (“ ) dz 4 € P+ Ap gl | - (3.62)
An,k,rQ An1k7r2 ro —T1
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|V [P P+ da: + iy / |Vt [P 2T 0, VEEP+ (1, — k) Fda (3.61)

n,k,ro

|V | VE (g, — k)P = / [Vt [P VE (uy, — k)T da

An,k,rz

e P@|VEP@ |y, — kP® da




holds true for each ¢ > 0 given, since |V&| < (ro — r1)~" and [(un, — k)/(rg — r1)]P® <
L [(tn — )/ (72 — )P~

In the sequel, let us estimate the integral involving the b(z). Since s(x) > (p* /p-)" >
(5* /) holds, it follows by Holder’s inequality and from the embedding L*' ()(Q) « L*- (),

that

/Qb(x) (1 + ug@)*l) P+ (up, — k) Hde < /

b(z) (up — k)dz + / b(z)ul™ da

An,k,rg An,k,'rg
b(x)uﬁdac—i—/ b(x)dx
n,k,ro An,k,rg
s P / s_ /
Wl 8+ Bl ) 369
1
T -
Wy, il )
~ L % 1
e RYP 1 " TVIES

Pt )
75 7 —s p_
L =P (An k 'rz) Lp_ =P= (An,k,rg)

ol a1 b 1
</ ((u" B k)p’i + kpi) dx) ’An,k,T2|37 -+ |An,k,r2‘37
A

n,k,ro

. 5 4P _
/ (un — kY= da | |Apprsl™™ 7+ kP A g
An,kmg

L
s_

P

Up — k e =k P +_ZET_ = %
/ ( ) (rg —ri)P-dz ‘Amkﬂ’z A |An,k,7"2 |*=
An,k,'rQ T2 - rl

P
pr il I 1
Up — k - T 5 e
/ < - > dr ‘Amhm (A ’An,kﬂ“z |*
An,k,'rz T2 1

where we used the inequality ub— < u;f + 1 to obtain the fourth inequality.
About the possible singular integral in (3.61)), we need consider other sub cases. Define

the sets AT

77/7’{}77’2

= Ay kr, N {B(z) >0} and A = Ay kr, N {B(z) <0}. So, by arguing as

n,k,ro
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in , we can conclude

/ o) (d(:r) + ;) e <un + ;) e — )P da

{B(z)<0} J A~
= Mo ( / o(@)(un — k)dz + / (@) (tn + 1P~ (up k)dg;)
ke, () >0} neyrg () <0}
n,k,ro

< My (/
A
N p—
o —k j 2l P 1P %
SMB / (u ) dz |Ankr2| - _+k7p ’Ank’rz|
An,k,'rz T2 - T.l

To another term, we notice that

o) () + ) (ot 1) (- Ry
/. ; :

nkr2

/QgﬂA
/OJ(;QA

To the first integral after the inequality above, it follows from Propositions and
3.2.6| (1) and repeating the arguments used to obtain used in (3.47)), that

1\ A@ 1\ ~®)
/ c(x) (d(x) + > <un + > (up, — k)dz
Q‘SQA:,k,rQ n n

- c(z) <un + i) - (up — k)dz (3.64)

c(x)(up — k)dx + /A

n,k,ro

c(x)ub- dx)

IN

n,k,ro

_|_

n,k,ro

1 (z)—B(x)
< My|[e]| 1= (0 / . <d(a:) + ) dz (3.65)
QAL Na(z)>1} n
1\ ~A@)+b2(1-a(z))
+ Muoldloia [ (ata)+ 1) o
QgﬂAn kyrg N{a(z)<1} n

< My, (H d(z)l-P@+1-a(@)] . H ) 4 1)[A@+1-a@)

Lr@) (At Lr@(AF )

i Hd(x)[—ﬁ(w)+92(1—a(w))]‘

+ H )+ 1) P eE)

o vt >) Mo,

1
7

< M12|An,k,7‘2 | - < M12kﬁ7 |An,7€77’2 ‘ TL
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To the second one, by following the same lines as in (3.64]), we obtain that

/ e(z)d(z) POy (4, — k)da
w(;ﬁA

n,k,ro

< Hd(:r)_ﬁ(x)

e(z)u; ) (u, — :
e [ @, b (3.66)

n,k,ro

< M3 / c(x)(up — k)dz + / c(x)ub-dx
An,k,Tgm{a>0} An,k,'rgm{ago}

Uy — k o Pl 1 b
< M3 / ( > dz |Ankr2| - _+kp |Ankr2’
An,k,'rQ r2 —T1
holds true.

After these estimates, it follows from (3.62)) — (3.66]), that

/

_ L= k\P- _
‘Vun‘p(x)f‘mdx < My (/ <u > dr + ‘An,k,rz| + kP~ |An,k,7"2|<
An k,ro

n,k,ro TQ - Tl
i P -
u, — k\"- - I
+ / < = > da Akl ™ |- (3.67)
An,k,r2 r2—n
is true for some e > 0 small enough, where |An7k7,ﬂ2\C = max{\An,k,m’l/sl*, \Amk,m‘l/rl}.

That is, by definition of &, we obtain that

/

W%@ws/ VenPOEP* di + [Ap o]

An,k,T'Q

Y — Lk p* ~
< Mis (/ <“ > Az 4 |Ap gy | + EP= | Ay o |© (3.68)
An k 9

n,k,rq

ro—"

P _
u, — k\ 7" P (-5
P (B )
An,k:,r'g L

holds true, where Mj5 > 0 is a real constant independent of n and k.

Now, set
R R ~ Ry + Ry 1

and note that R k
Ry %, kn /5 and Rni1 < R< R, <R.

Define
Inh = / | () — kp |7~ da
A"»kthh
and consider ¢ € C'([0,00)) satisfying 0 < ¢(¢) < 1, ¢(t) = 1 for ¢t < 3 and ¢(t) = 0 for
t> 3 |o(t)] < C. Set ¢n(x) = (2’”1 o - & ) Hence ¢y = 1 in Kg,,, and ¢, = 0 in
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RV\ Kp, . Thus

Inhi1 = / |(un (@) = kny1)pn|”da < [(wn(@) = Fny1)gn [P~ do
An ko1 Rugq An»kh+1!éh
< / |(un () = kps1)dn[P da
Kgr

Since ¢p(v — kpy1)t € Wol’ﬁ* (KR), it follows from the Sobolev inequality that

Jppyr < Mg IV ((un () = kpt1)én) P~ da
A"ﬁkhﬁ-lﬁéh
< My / |Vun|ﬁd$+/ IV on|P~ (wn, — kpy1)P~dx
An,th,Rh Akh+1véh
< My |Vun|i)7d$+2hf)7 / (un —kh+1)ﬁ7dl‘
A"vkh-ﬁ—lvéh A’%+17Rh
holds.

By using 1} with rq = f{h < Rp=r2and J,j > J, ht1 , we obtain

D_ ~x
P ol
5 Up — Kpy1 5
Jonyr = M [/ (RR dz + | A sy Ry |+ Bhy | An o R |
An kg 1.Ry, h = fth i
P
pr il P
Up — k'h+1 - C—=+ hb_ <
4 / <R dr | |Apgml =+ 20 (tn — Epy1)P-dz
An,kp,1.Rp Rp — Ry, An ko 1.Rp,
< My [/ (u” o k’H—l)p_ dx + |An7kh+1,Rh’ + kP~ |An7kh+1th|<
A"*kh+1th .
D
pr P
~x - C*W hb ~x%
+ (/ (un — th)de) [Anka,mal T+ 277 (un — kpy1)P-dax
A”vkh+lth A"vkh-H’Rh

P -
= (%= 5
< My [Jn,hﬂ + Ak, ol [ Anp o mil + Ty s [ Anpora | 7 42" Jn,h]
LS 2=
< Mg | Jn + An g Rl + Angg ol + T p | Akl 7 42" T
(3.69)
where My7 = Mi7(p—, N, k).
Besides this, since kj, < kp41 for any h, we have
Jnn = / (un — kp)P-dx > / (un — kp)P-dx
An ky, Ry, Ankp,1.Rp,
> / (st — Jon)P" (3.70)
Ankpi1,Rp

Sk

- k -
= ‘An7kh+1,Rh‘ |kh+1 - kh|p— = |An,kh+1,Rh| (2h+1> )

that is, by using (3.70) in (3.69)), we obtain
e

Tt S Mg [T+ 275 gy 4 2P oGP g ot
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By setting M = max(p*, (p*,(p* — p—), it follows from the above inequality that

P_
i AM 7¢ 1-¢
o1 < M1g270J0 [Jn,h + 1}

holds true for some Mg = Myg(p—, N, k). Now, by using Proposition or [3.2.8) we have

Lms/u%—mmﬁmsmm < Mo,
Kgr

)
where My is independent of n. Thus, by above estimate and ¢ € {1/7_,1/s"_} we obtain

Jnni1 < CBMIT (3.71)

Sk
p_

holds for some C' independent of n, B := oM~ and n = ({p* /p—) —1 > 0 since we are using

the hypotheses (), s(z) > N/p— = (p~ /p-)" > (p~/p-)".
Now, we claim that

sz/ i () — kP — lu(z) — knlP=da = Ji (3.72)
Ankp, Ry,

Agy, Ry,

as n — 0o, where Ay ; = K; N {z € Q : u(x) > k}. In fact, since
(un(x) — kh)XAn,kh,Rthn,é (z) = (u(z) — kh)XAkh,Rhﬁﬂé (z) a.e. inin Q,

and Proposition implies that

[
1 2
0 < (un(®) = kn)Xa, i, 5,005 < M2 (d(w) + ) < Moy (d(z) + 1) € LH(Q)

n

holds, we are able to apply Lebesgue’s Theorem to obtain

lim Jun () — kp|P=-da = / \u(z) — kp|P-da.

n—oo
An,kh,Rthn,é Akthh QQ‘S

Besides this, by using that u, — u in whr@) (Q), we have

loc

lim Jun () — kp|P=-da = / lu(z) — ky [P~ du,

n—oo
Ak, Ry, Wn,s Ak, Ry Nws

that is, (3.72)) holds. As a consequence of this, by passing the limit n — oo in (3.71)), we
obtain

Jhy1 < CBP T

holds for all h € NU {0}.
To finish, remembering that u satisfies C1d(z) < u(x) < Cod(z)% in Qs and u € LZ)’C(Q),
we are able to apply once Lebesgue’s Theorem to conclude that

k pr
JOZ/ da:—i—/
A A Nwg

gﬂ“Q 572 %WQ

*

p_

U— — dr — 0

69



_1
as k — oo. So, by taking k > kg large enough such that Jy < C'_%B 7 and applying Lemma
we have that Jj converges to 0 as h — oo, that is,

/ lu — kolP~dx = 0

ko, &

Since u — kg > 0 in Ako r and zg € ) was taken arbitrary, the last integral implies
72

’Ako,g =0 for all 29 € Q. Thus, 0 < u < kg on Kko,% for all zg € Q, that is, u € L>®(Q).
This finishes the proof of (7)

Proof of (ii) Let u, € Wol’p(z) (2) be the solution of the problem and uf I ¢
Wol’p(x)(Q) a test function in for 0 > 1 given. So, we have

@(a—1y+n/}@@“vay@ux:/ﬁvwm@*%hmvwgw*”bw: (3.73)
Q Q
L\ —5@) 1\ —a(@)
fg/adx)<d@34—> (un+—> zﬁfWU+%m-%A/pmxx1+44@>1y£¢@U+%m.
Q n n Q
Since

/\Vu%\p—dx = /ap—uﬁ—("l)wun]p—dx
Q Q

of- (/ uﬁ("_l)daj—l—/ ug(a_1)|Vun|p(x)dx>
Q Q

IN

holds, we obtain

/ |Vul|P-dx < C[/ c(x) <d(x) + ) (Un + ) ug_(o—l)ﬂdx
Q Q n n

+A/¢@xymﬁ@*mﬁwﬁﬂwx+/
Q Q

_(o—1
ub- )dm} .
holds true for each o > 1 given.
Below, let us evaluate each integral in the above inequality. Let us begin by considering

the parameter o > 1 satisfying

UEmaX{p+(ﬁ+_1)/92+a+—17p+a+_1}‘

! - (3.74)

To the first integral, we note that following the same lines used in (3.31)) and (3.32]), we obtain

—B(=) —a(z)
/ c(x) (d(az) 4 1) (un 4 1) uﬁ—("*l)“da: < M, (1 +/ c(:c)uﬁ—("l)*la(x)dx) .
Q n Q

n

Now, by Holder Inequality,

/C(x)ufb—(o'—l)‘f‘l—a(x)dxg/C(‘,I/.)uﬁ_(a—l)"rl—a-g-dx_'_/C(x)uﬁ—"r(o'—l)-‘rl—a_dx
Q Q Q

< HcHT7 Hug—(ofl)Jrlfc”_ (o—1)+1-a_

y + [lel|r_ [|ub (3.75)

rl

n n
r

p_(o—1)+1l—ay
_(o=1)+1—a_ || (p—(e—1)+1—a_)r" _(o—1)+1—a_
< llelly- { Juz-t==V o futmtemrres]| )
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that is, it follows from the last two inequalities that

1\ P@) 1\ ~®)
/ c(x) (d(x) + ) (un + ) uP= =D+ gy
Q n n

p_(o—L+l—ay
< My ("U, —(o—1)+1—a_ || (p—(c=D+1-a_)r’ + Hup (6—1)+1-a-— / +1> ) (376)

n
"

For the second integral,

/ b(z)(1 + ud® - =D+ gy < My ( / b(z)dx + / b(x)ug—wnw(x)dz)
Q Q Q

p_(0—1)+qy

3M5< : ) A I P CY )

To the last integral in, we have

/uﬁ—(al)dxg/uﬁ‘(oUHO“dm—i—/ ldx
Q Q Q

< Mg (Hug<ff—1>+1—a 4 1) (3.78)

Now, let us choose o > 1 such that op* := (p_(0 — 1) +1 — a_)r’"_. That is,

r-(p-+a- —1(N —p-)
p—(N —r_p-) '

Since (N —r_p_) > 0, then o is well defined. Also, 0 > (p— + a4 — 1)/p_ if, and only if,

N(p- +ay —1)

<r_,
(N=p)p-+a-=1)—p-(p-+ay—-1) ~
and o > (p, + By —1)/02+ g — 1) /p— if, and only if,
Np-+22 +a, -1
(p 05 Qe ) <r_

(N=p)(p-+a-—1)—p_(p- + B2 +a, — 1)

holds true. Thus, it follows from (3.75)) — (3.78]), that

o"” / b= OOV PO < My (1 a5 77 a7 e A [TV )
0 -
(3.79)
Now, by Sobolev embedding Wol’p‘ (Q) — LP=(Q) we have

MellEI: < il ) = [ 1Va-de (3.50)

So, it follows from (3.79) and (3.80) that

o - 1— +1—a— -1
175 < Mo [fun| 270 o flun [50S4

for some Mg > 0 independent of n. Thus, we are able to choose a A, > 0 small enough of
Nr_(p_4+a_-1)

gy = p_ or A\, = oo if ¢4 < p_, such that u, is bounded in L7P=(Q) = L~ Y-~ ().
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Proof of (iii): In this case, we need just to estimate the below integral in (3.73]), because
the estimate to the other one is already done in (3.77)). Let us procedure. By splitting the
domain 2 and using 1 — a(z) — B(x) > 0 in €2, 5, we obtain

1 —B(x) 1 1—a(x)
O
Q n n

1\ P-(o=D+l—a(@)~B) [, | 1 p—(o—1)+1-a(x)
— [ cto) () + ) () d
Q n d(z) +

1 p—(o—1)+1—a(z)—B(z) w, + 1 p-(o—1)+1-a(z)
+ / c(z) <d(:c) + ) ——_n_ dx
Wn,§ n d(x) +

1
—(o—1)+1—a(z)
Up, + 1 P
<M clz) | ——2 dx.
- I/Q ( )<d(a:)+1>

n

To this last integral, by arguing as in and -, we get

w41 p—(o—1)+1—a(z)
/c(x) ”7111 dzx < Mg/ c(z)dx
Q d(z) + {p—(6—1)+1—a(x)<0}

1\ G2=D(p-(e—1)+1-a(z))
c(x) <d(x) + >

n

+ dzx

Q5N {p-(0—1)+1-a(z)>0}

+ / () (up, + 1)P- (o= DF1I=a(@) gy

n,sN{p— (6—1)+1—a(x)>0}
Around to the boundary of {2, we have

1\ (2= D(p-(o-1)+1-a(z))
) dx

c(z) <d(a:) +

/szn,m{p_<o-1>+1a(x>>0}

< o(z)(d(z) 4+ 1)~ D-(o=D+1=a@)) g < pf,.

/ﬂn,m{p (0—1)+1-a(z)>0}

where we used that 02 > 1 in 5, since 1 — a(z) — B(z) > 0 in Q,, 5. That is, by above

inequalities, we have

1\ A& 1\ -ed@)
fiafon )™ )
Q n n
< Ms <1 +/ C($)ug—(ol)+1a($)dx> ] (3.81)
Q

Since by hypotheses N —r_p_ > 0 and
Np_
Np-— (N -p)(1—a_)

<r_

are true, we are able to fix o > 1 satisfying op* := (p_(0 — 1) + 1 — a_)r’, that is,

r_(p- +a_ —1)(N —p_)
p—(N—r_p-) '
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So, by using (3.81)) and (3.77) in (3.73)), we can repeat the same lines as the final part

of the proof of (i7) to choose a A\, > 0 small enough if ¢y = p_ or A\, = 00 if ¢4 < p_, to

Nr_(p_+a_—-1)

conclude that u, is bounded in L7P=(Q) =L~ 77— (Q). =m

Remark 3.3.1 Letu € W, ’p(‘r)(ﬂ) an arbitrary solution for |D If we repeat the proof of
Theorem [3.1.4(i) with w in the place of u,, x9 € Q and £ € C’go(Q) then we are able to
conclude that u € Lj5.(Q), that is, any T/Vli’f(x)(Q)—solution for (3.1)) belongs to LS (€).

Proof of Corollary For each zp € Q and R > 0 given, set Br(xo) the ball centered
in o with radius R. Let 0 < r; < ro < R such that B,, C B,, C Br and take £ € C§°(Q2)
with 0 < € < 1, € = 1 in By, (w0), supp (£) C Byy(wo) and |VE| < (re — )7t For k > 1,
consider the function 1) = &P+ (u — k)* and note that ¢ € Wol’p(x)(Q) N L>*(Q). By taking ¢
as a test function for and using (Hj) we have

/Q \VulP@ P+ dx + py /Q \VuP@=2vuveeP+—  (u — k)t da (3.82)
< / (c(x)d(x) (@) =al@) 1 \p() ( + uqm—l)) P+ (u — k)t da.
Q
Now, by arguing as in (3.61)), (3.62)), and (3.64)), we obtain
/ IVuP@=1 Ve (u — k)T eP+da (3.83)
Q

Se/
A

where A ; = B;N{z € Q : u(x) >k}, i={ri,re, R}
For the singular integral, using (H3) (i) and Lemma [3.2.6[i) we obtain

~%

~ _ p_
IVulP@ bt do + C, < u=k > dz,
Ak T

2 ="

k,ro

/ o(@)d(z) POy g (4 — )+
Q
< Hd(x)—ﬁ(w)ul—a(x)gm .

1--L
o lellr_ Akl 7= (3.84)
More,

/ b()<1+uq(’” )gM( )+dx<Hu+uq<w> 1Bl]s_ Ak 5. (3.85)
A L>(Q) B

k,ro

From (B52) -

_ p(z)
/ [VulP@dz < C / ( uzk ) dm+max{Akr2] 2| Ak, T2| }
A Ak,ry T2 =T

holds true for each € > 0 small enough given, that is, u € C%7(Q) for some 0 < v < 1, by

k,r1

using Lemma [1.3.5

Now, let us prove the Holder continuity up to the boundary of U, for all open sets
U C Q such that U N 9N = T'; UTy,. For each zy € U set Kr = Bgr(zo) NU. Let
0 <7y <rg< Rsuch that K,, C K, C Kg and take £ € C®°(U) with 0 < ¢ <1,£=1in
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K., supp (&) C K, and |V¢| < (rg —71)~ L. For k > néaxu(:v) —ol|ul|pee(ury, 0 < 2, consider
)

the function ¥ = P+ (u — k)* and note that ¢» € WHP()(Q) N L>°(Q) with ¢ = 0 in U N IQ
in trace sense. By taking ¢ as a test function for (3.1)) and using (Hz) we have

/ \VulP® eP+de + py / IVuP@ =2y veeP+ (u — k) tda (3.86)
U U
< / (c(x)d(x) (@) =al®) 1 \p() ( + uq@)*l)) €+ (u — k)t da.
U
For the singular integral, using that

Crd(z) < u(z) < Cod(z)” in Qs NT, (3.87)

we obtain

/, c(:n)d(x)_ﬁ(x)u_o‘(z){m(u — k)tdx < /

< C(x)d(x)—ﬁ(w)ul—a(w)§ﬁ+dx
k,ro ;{:T‘2
< M / co(z)d(z) @) =B@) b+ gy +/ c(z)d(z) PO +02(1—al@) b gy
QsNA o Na(z)>1} ngA;C”n{a(x)gl}
() B@)y, P+ / d
+ H (z) i HLoo(wa) QC@) “
where A}, = K;N{z €U : u(z) >k}, i={ri,rs, R} Since 9U NI =T1UTy,, then by
Lazer and McKenna [51]
max{ / ()P 101 (@) gy / d(x)[ﬁ(w)wz(l04+)]T’(w)dx} .
Qs Qs

Thus, by the above inequalities

- _ 1
/ e(@)d(2) Pt O (u — Bytdr < M)A, | (3.88)
k,ro
More,

// b(x) (1 —i—uq(x)fl) &P+ (u — k) tda < Hu—i—uq(x)

k,ro

_ 1
oy [Pl 45

which lead us to conclude, as done in first part, that

_ p(x) 1
/ IVulP@dz < C / < u—k ) dz + max {\Ak TQ\ — | AL 702| = } :
;CT‘I 36,7‘2 2T

Beside this, by using (3.87) and the fact of u € C%7(Q), we conclude that there exists
C > 0 such that

su uw(x) — Inf wu(zx) <CR.
xeKRIr)waU (@) r€KrNoU (z) <

Thus, by Proposition we conclude that u € C%7(U). =
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3.3.3 Proof of Theorem - Completed

Finally, let us prove the uniqueness result of I/Vlif(x)(Q)—solutions to the problem ((3.1)).

Proof. Let uy,us € I/Vli’f(x) (©) be two solutions of the problem 1} By Remark we
have that ui,us € L{2,(Q). Now, set g(z,t) = c(z)d(z) P@t=2@) 4 A\ f(x,t) for 2 € Q and
t > 0. We claim that the hypotheses of Theorem holds true on the cone

[0,u1) = {w € WiP(Q) / 0<w < ).

Admitting this by now, we are able to apply Theorem to conclude that u; < wg in Q.
In the same way, we obtain that u; > uo in €2, that is, u; = uo in Q.

Now, we will prove the claim. First, the hypothesis (g1) is immediate. Second, from
hypotheses (H;) and (Hy) we have that g(x,t)/tP- is strictly decreasing in ¢t > 0 for a.e.
x € Q, showing (g2). To show (g3), given h > 0, define the functional I}, : Wol’p(m)(Q) — R

_ [ V) / ~A(x) 2h__
Ih(u)—/Q (@) dx + {a(I)ZI}c(:E)d(;U) In o dz

C(Jﬁ)d(aj)*ﬂ(x) [(’U,+ + Qh)l—a(m) _ <2h)1fa(x):|
' /{04(33)751} alz) —1

- A /Q(F(x, u+ 2h) — F(x,2h))dx.

The weakly lower semicontinuity of I, on [0,u1] with respect to W& P (x)(ﬂ) follows by
the same arguments used in Proposition Below, we are going to show that Ij is coercive

on [0,u1]. To this, we notice that

/ o(@)d(z)P@ In(ut + 2h)dz < / e(@)d(z) 7@ (u* + 2h)da
fa(@)=1) fa()=1)
’LL+

c(2)d(z) P ——dx c(z)d(z) P dy :
g/ﬂ (@)(@) ) +2h/Q (2)d(z) @ d (3.89)

<M < /Q 5 a;z;r)dzn—l— /w el + /Q c(m)d(:v)_ﬂ(x)da:),

that is, by using that S(x) < 1 on 99, it follows from Lazer and McKenna [51], that

[ @) < lllumia [ dia) o+ aa)2
Q Q

clz)dr < co. (3.90
m@/g () (3.90)

To others integrals, by applying Hardy’s Inequality, Holder’s Inequality and the embedding
W) (Q) — L") (Q), we obtain

/ c(x)d(z) 7@ In(u + 2h)dz < My (||ul| +1). (3.91)
{a(2)=1}

)



To the complementary sets. First, we have

—B(x) 1—a(z) —B(x)
/ c(x)d(x) (u+2h) dr < / c(x)d(x) (14 (u+2h)) d
a(z)<1} a(z)<1}

1 —ax) 1 —az)
c(x) 2)1-8) 1+u+2h .
< f e

< Ms / 1+“+2hdx+/ ) 44y oh)da ).
Qn{a(@<1y  d() wsn{a(z)<1} 1 — ()

So, by using hypothesis (Hs)(iii), Holder’s Inequality, Hardy’s Inequality and again the em-
bedding W@ (Q) — L"@)(Q), we obtain

clx xT —B(x) U alz)
/ (z)<1} ) a(x() _+12h) 1dx < My(JJul] +1). (3.92)

To another one, by arguing as in (3.90]), we obtain

—B(x) 1—a(z) —B(x) 1—a(x)
/ c(x)d(x) (u+2h) dr < / c(x)d(x) (2h) dr <o
{a(z)>1} a(z)>1}

alz) —1 afz) —1

To end, by using the hypothesis (Hs), s(z) > N/p_ > p* /q(x) and Holder’s inequality,

we have

/ F(z,u+ 2h)dx
Q

§M5/b(x) (|u+2h|+|u+2h\q<fv>) dz
Q

< Mg (HH%HS/(I) + [[ (u + 2h) 1)) p*_> (3.93)
q(z)

ar )
pr

< M (11w + 2h]|g(z) + 1| (u + 20) |52+ [[(w + 2h)

< Mz ([Ju+ 2h[| + |[(w + 2R)[|* + [|(uw + 2R)[|*).

So, we obtain from (3.91) — (3.93]) in (3.89)), that

1
In(u) > p:Hqu’ = Ca(L+[Jul] + [[ul]"= + Alful ")
for all u € Wol’p(x)(Q) with ||u|| > 1.

Thus, we are able to choose a A > 0 small enough f ¢y = p_ or A\ = 0 if g < p_,
such that Iy is coercive for all 0 < A < A4 , proving the claim and finishing the proof. =
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Chapter 4

Multiplicity of VVO1 P ($>(Q)—solutions for

local-singular-convex problem

4.1 Introduction

In this chapter we study the following quasilinear elliptic local-singular-convex problem

with variable exponents and powers

{ —Apu = a(x)u=*®) £ \f(z,u) in Q,

. (4.1)
w>01in Q;, u =0 on 0.

where Q is a bounded open domain in RY with smooth boundary 99, 0 < a € L"®)(Q) for
some 1 < p € C*(Q) and A > 0 is a real parameter.
Throughout this chapter we adopt the following definition of solution:

Definition 4.1.1 A positive function u € Wol’p(x)(Q) is a solution to 1) if
/|Vu|p($)_2VuV¢dx:/a(z)u_a(m)qbdx—k)\/ f(z,u)pdzx
Q Q Q

for all ¢ € WP (Q).
To state ours results, let us remind that:
Qs :={x e Q/d(z) <}, for each 6 > 0,

stands for the interior d-strip around the boundary of the domain,
1
Iy = Q /[t(1 — — +1 fort € {1,0,6
t {.CCE@ /[( a(l‘))}l—l/?"(.f)_}— >O}7 or 6{ y U1, 2}

is a subset of the boundary of the domain and the numbers

p— xT re) + - 1 pr— 1
01 eqs p(z) + a(x) and A2 = min @)+ @) =1

1 if a(x) <1, v€Qs P

{ max p(z) if a(z) > 1, p(z)



will be important to establish behaviors of the solutions around the boundary.
Related to the functions a(x),a(z) and f(z,t), we make the following general assump-
tions. Assume that there exists a 6 > 0 such that:

(H1) a:Q — Risa C%(Q)-function that satisfies a_ > 1 —p_,
(Hy) 0 < a e L"®(Q) with 7(z) > N/p_ and one of the items below:
(1) a € L>®(s) and I'y UTy, = 09,
(77) a(z) > as > 0in Qs, a € L>®(Qy) and Ty, UTy, = 09,
(Hy) 125 € '@ ({a(w) #1}),

(f1) f:Qx[0,00) = [0,00) is a Caratheodory function such that for each M > 0 given

there exists ¢; = ¢1(M) > 0 satisfying

0< f(z,s) < ¢ forevery 0 < s < M and a.e. z in 2

We would like to notice that the hypothesis (Hy) and (Hz) will be used to guarantee the
existence of a positive subsolution for that belongs to WO1 P (x)(Q), via Corollary
while the condition (f;) will be used to establish the existence of a positive supersolution for
([4.1), without any additional growth condition on f(z,t) in ¢ > 0.

From now on, whenever we use the hypothesis (f1), we will understand that f(z,s) has
been extended for s < 0 by putting f(x,s) = f(z,0).

Our first result is.

Theorem 4.1.2 Suppose (Hy), (Hs2) and (f1) are satisfied. Then there exist \g > 0 such
that the problem 1’ has a weak solution uy € Wol’p(m)(Q) N L>®(Q) for each 0 < A < Ao
given satisfying uy > mod(x) in Q for some my > 0. In addition, there exist My, M1, m1 >0
such that:

(i) mod(x) < uy < Mod(x)?? for x € Qs if (Ho)(i) holds,

(#3) mid(z)? < wuy < Myd(z)% for x € Qs if (Ho)(ii) holds.

We can also consider a setting in what f(z, s) is allowed to change its sign if we replace

(f1) for the following couple of assumptions:

(f2) f:9Qx][0,00) — R is a Caratheodory function such that for each M > 0 given there
exists ca = co(M) >0 and 0 < h = hy; € L1(Q) satistying

—h(z) < f(z,s) <cgforall 0 <s <M and a.e. z € (),

(f3) there are ¢ > 0 and ¢3 > 0 such that

f(z,s) > —csa(x) for all 0 < s < ¢ and a.e. x € Q.
So, for f(z,t) changing the signal, we have.
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Theorem 4.1.3 Suppose (Hy), (H3), (f2) and (f3) are satisfied. If a(z) > 0 in Q with
alx) < 1 on 0Q, then there exist A\ > 0 such that the problem (4.1) has a weak solution
uy € Wol’p(w)(Q) N L>®(Q) for each 0 < X < A\ given satisfying uy > Cd(x) in Q for some
C>0.

In order to establish the existence of at least two solutions for the problem (4.1)), we

also assume:
(f1) there exists C' > 0 such that
|z, )] < C(L+t9@71) for ¢ > 0 and ae. z € Q,
with 1 < ¢ € C(Q) and p; < g4 < p*,

(f5) there exists a subdomain ) £ D C Q such that
F(z,1)

t—oo P+

= 400 uniformly on = € D,

where F(z,t) fo f(x,s)ds for t > 0 and = € Q,
(fs) there exist 7 € C(Q) with 7 < p_ such that
piF(z,t) — flz, )t < Bot™™® for a.e. z € Q and all t > ¢

for some tg > 0 and By >0 .

So, we have existence of two ordered weak solutions

Theorem 4.1.4 Suppose (Hy)— (Hs), (f1) — (f6) are satisfied. There exists Ay > 0 such that
the problem (4.1) has at least two different solutions uy,vy € W, Lp( ( ) for each 0 < X\ < A,

given. In addmon, uy < vy and uy has negative energy while vy is a positive energy solution.

The chapter is organized as follows. The section 4.2 is dedicated to obtain a weak
solution for the problem (4.1)) by using a sub-solution method and the results of Chapters
2 and 3. In section 4.3 we present the multiplicity of weak solutions via Mountain Pass

Theorem.

4.2 Existence of a first solution

We start defining a sub and a supersolution to problema (4.1)).

Definition 4.2.1 A function u € W'P@)(Q) is a subsolution to (4.1)) ifu > 0 in Q, a(x)u=*®)
LI (Q), ut € Wol’p(m) (Q) and

loc
1V 2VuVods < [ afelu@oda ) | fawods
Q Q Q

holds for all € C3°(Q) with ¢ > 0 a.e. in Q. Analogously, u € WLrE)(Q) is a supersolution
to lb ifu>0inQ, a(zx)u @ e L} (Q),u € Wol’p(x)(Q) and

/ \VuP®) =2 vavede > / a(z)u" @ ¢dx + A / fla,u)pdz
Q Q Q

holds true for all ¢ € C§°(Q2) with ¢ > 0 a.e. in L.

79



Lemma 4.2.2 Assume (Hy), (H2)(i) and (f1) hold. Then there exists A\g > 0 the problem
l} admits a subsolution and a supersolution u,u € Wol’p(m)(Q) for each 0 < A < Ao given
satisfying w > u > 0 for all x € €.

Proof. Since we are assuming that (H;) and (Hz) hold true, let u € Wol’p(x)(Q) be the unique

solution of the singular-concave problem

(4.2)

—Apzyu = a(z)u=*®) in Q,
u>0in Q, w =0 on 0,

given by Corollary 3.1.3] In particular, by non-negativity of f(z,t), we have that u is a
subsolution of the problem (4.1)).

Now, let us construct a supersolution of . Again, by applying Corollary , we
obtain an only VVO1 P (m)(Q)—solution to the problem

{ —Apzyu= a(z)u=*® 4+ 1in Q, (13)

uw>0in Q, u =0 on 9.

Let us denote it by uw € Wol’p(x)(Q). Once using (H;) and (Ha2), it follows by Theorem
that u,uw € L*>(Q).
Now, it follows from the hypothesis (f;) with M = ||u||~, that

/ IVulP® 2Ty pdz —/ a(z)u~ " ¢dx — )\/ f(z,u)pdx > / (1= Xcp)a(x)e >0,
Q Q Q Q

for all ¢ € C5°(2) with ¢ > 0, whenever 0 < A < A9, where \g = 1/¢; > 0. This shows that
u is a supersolution for (4.1)).

To end, we point out that u and @ are also subsolution and supersolution to the problem
. Thus, we can apply Theorem , to conclude that w > u > 0 for all x € Q. This
complete the proof. m

Now we will study the case when f(x,s) may change the signal.

Lemma 4.2.3 Assume that (Hi),(H2),(f2) and (f3) holds true. If a(x) > 0 in Q with
a(z) < 1 on 09, then exists \y > 0 such that the problem (4.1) admils a subsolution and
a supersolution v,v € Wol’p(x)(Q) N L>®(Q) for each x € Q and 0 < X\ < A1 given satisfying
v>v>0.

Proof. First, let us build a subsolution. Given € > 0, consider the problem

—Ayu=ea(r) inf, (4.4)
u=0 on ON.

Since that the map v — [, ea(x)vdx defines a continuous linear functional on Wol’p(x) Q)
and L is an homeomorphism, as shown at Lemma , then the problem (4.4)) admits an
unique weak solution 0 £ v =v, € Wol’p(x)(Q). Also, it follows from Proposition that
v > 0 in Q and, from Proposition , we obtain that v € C*7(Q). In particular we obtain
from Lemma [[.3.7 that )

[[v]]oo < CeP+~1 for 0 < e < 1. (4.5)

80



Now, by taking 0 < € < 1 so small, we obtain 0 < ||v||cc < min{(,1}, where ¢ > 0 is
given at (f3). So, we are able to use the hypothesis (f3) to obtain

[ 1vulr 2909 0ds - [ ae)e@ode 2 [ flav)ods
Q Q Q
< —/Q(l—e—)\cl)a(:c)gbgo,

whenever 0 < A < )\ for some N > 0 sufficiently small, that is, v > 0 is a subsolution to the
problem ([4.1)).

About the supersolution. By following the same arguments as done in the proof of
Lemma we obtain a v € Wol’p(x)(Q) N L*>(Q) that is a supersolution to the problem
(A1), whenever 0 < XA < X" for some A" > 0.

To end, by defining A\; = min{\, \"} and noticing that 7, v are also a subsolution and a
supersolution to the problem , we are able to apply Theorem to deduce that v > v
in x € Q. This finish the proof. m

4.2.1 Proof of Theorems 4.1.2| and 4.1.3F Completed

Below, let us minimize an appropriated energy functional in T/VO1 P (gc)(ﬂ) and show that
this minimum belongs to the cone [u,u].

Proof of Theorem [4.1.2|- Completed. Consider the following truncation

a(x)u=*®) 4 \f(z,u) if t<u,
f(x,t) =1 a(x)t=*® £ \f(z,t) if u<t<, (4.6)
a(x)a @) 4 \f(z,w) if t>7.

So, f(z,t) is a Carathéodory function. We set F(xz,t) = fot f(z,s)ds and consider the func-
tional J : Wol’p(m)(Q) — R defined by

— |Vulp(®) ] Bl e
J(u)—/Q s /QF( u)da. (@7)

From Lemma |B.0.3, J belongs to C* (W&’p(x)(9)>, is coercive and sequentially weakly

lower semi-continuous. Then it has a global minimizer uy € VVO1 P (w)(Q), that is,

J(uy) = inf  J(w) and J(uy) =0.
veW P (Q)

In particular, by using (uy — )" as a test function, we obtain
/ IVurP@2Vup\V (uy — ) tde = /f(a:,u,\)(u,\ —u)tdr
Q Q
- / (a(az)ﬂ_a(m) A f(x,a)) (ur — @)t dz
Q

< / \VaP®=2vav (uy, —u)td,
Q
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where the last inequality is obtained by using the fact that @ is a supersolution for the problem

(4.1), that is,
/ (vapm—?vm - yvmp@)—?W) V(u—u)Tdz <0,
Q

holds true.
So, it follows from Lemma that [{uy >u}| = 0, that is, uy < w a.e. in Q. In a

analogous way, we have u < uy a.e. in {2 and thus

/\VuA\p(x)QVu)\Vvdx:/
Q

a(x)u;a(x)vd:c + /\/ f(z,uy)vde,
Q Q

for all v € Wol’p(x)(Q), that is, u) is a weak solution for .

To end, the asymptotic behavior follows directly from Corollary [3.1.3] since u and @
satisfies the hypotheses considered. This finish the proof. m
Proof of Theorem - Completed. The proof follows the same lines of the proof of
Theorem by changing u,w used in the proof of Theorem by new ones v,V given by
Lemma and finally using Lemma instead of Lemma [

4.3 Existence of a second solution

Now, we are able to show the existence of a second solution to problem by using
the Mountain Pass Theorem. For convenience, throughout this section we are going to denote
by u,w the subsolution and supersolution obtained both in Lemma and Lemma {4.2.3
and by uy the solution obtained both in Theorem and

Let the Carathéodory function defined by

. { a(x)u;a(x) + Af(zyuy) if t < wy,

TEOZ a@® £ 7 ft) it >, "

for 0 < A < min{\;, A2}, where A;, A2 were given in Lemmas [4.2.2 and [4.2.3] respectively.

Now, consider the following auxiliary Dirichlet problem

—Ap(x?u = f(z,u) in Q, (4.9)
w>0in Q, u=0 on 0.
The functional associated to (4.9)) is defined by
. p(z) .
J(u) = / V™ / F(x,u)dz, ue W PP (Q), (4.10)
o px) Q
where
F(z,u) = flx,s)ds

u

|
S—S—

’ f(a:,s)ds + /u f(x, s)ds

—a(x) wl—(@) (411)
= (a(a:)u)\ + )\f(a:, U,)\))U)\ + (I(.I) X{a(m);ﬁl} (.75)1_70[(3:) + X{a(ﬁ)zl}(t’li) Inu

1—a(x)
— a(x) (X{a(m)?gl}(x)l)‘a) + X{a(;c):l}(x) In U)\> + A(F(z,u) — F(x,uy)).

(x
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So, defined like this, it follows from Lemma [B.0.5{that J € C" (W(}’Z’(”(Q)). Let

1,p(x 2
K;= {u e WPD(Q) / J'(u) = o}
be the set of critical points of J. We claim that
K;C {u € WHPD(Q) / u(z) > ur(z) ae. in Q} : (4.12)

that is, any critical point of J is a weak solution of {} Indeed, if v € K, it follows from
the fact that u) is a weak solution to problem (4.1, that

/ IVulP@ 290V (uy — v)tde = / f(z,v)(uy —v)tda
Q Q
_ / (a(@)u; @ + Af(2, up)) (ur — v)*de
Q
= / [VurP@) 2T uyV (uy — v)tde,
Q

that is,
/ (|Vv\p(x)_2Vv - |Vu>\\p(x)_2Vu)\> V(uy —v)"dz <0.
Q

So, it follows from Lemma that | {uy > v} | = 0, proving the claimed. After this,
to prove Theorem m, it suffices to show that J has a critical point other than uy for
0 < A < min{A1, A2} sufficiently small.

4.3.1 Mountain Pass Geometry

Lemma 4.3.1 Assume (Hy) — (Hs) and (f4) holds true. Then there exist R, > 0 and
0 < A\ <min{Ai, A2} such that

mf{j(u) / ||ul| = R} >8>0 (4.13)

for each 0 < A < A, given.
Proof. To begin, we claim that

/ P, w)de < My (14 [full + [Jul [ + Allu]|%+)
Q

holds true for all u € Wol’p(x)(Q) with |Ju|| > 1 and for each 0 < A < min{A;, A2} given. By
admitting this from now, we obtain that
. VP .
J(u):/ [Vl dx—/F(l‘,u)da:
o p) Q
> My (JJul[P* =1 [Jul| = [Jul[ 7% = Al|ul|*)

for all u € W' (Q) with [[u|| > 1.
Now, let 8 > 0 and R = ||u|| be such that RP+ — R — R'=% —1 > 28/Ms,. So, by
taking 0 < A, < min{\;, A2} such that A\,R™ < /M, we conclude that

J(u) > B for all u € WSP™(Q) with ||ul| = R,
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that is, inf {j(u) / ul| = R} > > 0 holds true for each 0 < A < A, given.
Now, let us prove the claim. It follows from (4.11)) and from the fact that uy being a
solution of the problem (4.1)), that

/F(x,u)d:v < /(a(m)u;a(m)udm +/ A (2, uy)udx +/ a(x)(Inu — Inwuy)dz
Q Q {u<uy} {u>ur}nfa(z)=1}
1—a(z)

ul—a(x) U
+ / a(x) R dx + )\/ (F(x,u) — F(x,uy))dz
{usuy}n{a()£1} (1 —a(z) 1-a(z) (u>u}

1—a(z)
§/\Vm|p(x)dw+2)\/ |f(:U,u,\)|u,\dx+/a(x)ud$+/ a(z)u "
Q Q Q U {u>up}n{a(z)<1} 1- Oz(l’)

dx

1—a(z)
+/ a(m)u)‘daf—i—k/ |F(x,u)]da?+>\/ |F'(z,uy)|dz.
ox)>1} Oé(%) -1 Q Q

By virtue of hypothesis (f4) we obtain
|F(z,t)| < Ms (\t\ + \t\q(x)> for a.e. z € Qand t € R,

By using the above informations, once the hypotheses (f4) and (Hs), the fact that uy > Cd(z),
r(z) > (p~/p-) > (p~/(1 — a-))’, Holder’s Inequality and Hardy’s Inequality we conclude
that

/F(m,u)da: < / |V [P@®) da: + 2)\/ |f(x,uy)|urde + My </ udx-i—/ a(m)udaz)
Q Q 0 q, d(z) ws
d(l«)l—a(ﬂﬁ) a(l,)ul—oc(a;)

+ Ms/ a(x)——————dx _|_/ AN
fo@>1y ol@) —1 fusudnfat<1y 1 a(2)

+ AMs ( / (Jul + [u|™)dz + / (ux + u"f“)dw)
{u>uy} {u>un}

< M (Humm Ml 4 Mlual 1% & Alfal] + Aljul 2 + H

d(x)lfa(x) .
* /a(a})>1} a(z) afz) —1 4 > '

where ws = Q \ Q5. Also, by using (Hs) and Hélder’s Inequality, we conclude that

d(x)lfa(w)
a(r)———dx < M,
/a( )>1} ( )a(ﬁﬂ)—l ‘

a

1—a(x)

Lr® ({a(x)<1})

alz) —1

Hd(x)l—oz(a:) /
) L7 @) ({a(z)>1))

L@ ({a(x)>1}
and thus, by hypothesis (Hz) and Lazer and McKenna [51] result,

gl
, < / d(z) 7" @y ) < oo,
L™ (@) ({a(x)>1}) a(z)>1}

where v € {1/r;,1/r_}, proving the claim and finishing the proof. m

o

Lemma 4.3.2 Assume that (H,), (Hs) and (fs) holds true. Then J(t¢) — —oo as t — oo
for some ¢ € C°(Q).
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Proof. By using the hypothesis (f5), there exists so = so(€) > 0 such that

1
F(x,s) > — " forzeD and s > s
ept

for each € > 0 given. Now, take ¢ € C§°(D) with ¢ > 0,¢ # 0, and t > 1 large enough such
that the set {z € D / tp(x) > so} has positive Lebesgue measure. It follows from the above

estimate, by taking s = t¢, that
F(z,t9) /
———dx > — d
/Q tr+ pte ¢p “

liminf/ F(a, t¢)d > b gbp dx,
Q

t—00 tp p+€

F
liminf/ M = o0,
Q

t—00 ot

holds true, that is,

which lead us to conclude

by doing € — 0.
Besides this, it follows from (4.11)) that

F
W I0) _ (afauy ™ 4 Afun) 5y
¢17a(:):) 1 1 t¢
Ta(@) (X{W#l}(%_a(x) a1 T Ma@=1( >n)

a(z)

(4.14)

F(x,uy)

holds true. By using the above expression and (4.14)), we obtain

liminf/ de:oo.
tooo Jo o tP

Hence,

lim sup
t—o00

: +

tP

that is, J(t¢) — —oco as t — oo, ﬁnishing the proof. m

4.3.2 The Cerami Condition

1—a(z)
u F(z,t$)
_ i (X{a(z);él}(x) 1 i a(:L‘) + X{a(w):l}(-r) In U)\> + A < e _

P+

).

Lemma 4.3.3 If hypotheses (Hy) — (Hs), (f4) and (fs) holds, then J satisfies the Cerami

condition.

Proof. Let (uy) C Wol’p(w)(Q) be a sequence such that
(a) |J(un)| < M,

(b) (1 + [[un| D[ (un)|| = 0 as n — .
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We are going to prove the result in two steps. In the first one, it will be shown that
Uy) is bounded in W@ Q). To do this, we begin using the item (b) to conclude that
0 g g

‘<j’(un)=w>\ < _Enllwl|

< I for all w e W@, (4.15)
1+ [[un| 0

for some €, \,0 as n — oco. So, by choosing w = —u,, in (4.15)), we obtain

< €n,

‘/ ]Vun]p(x)dx+/a(m)u;a(x)undx+)\/ [z, uy)u, dx
0 0 0

which lead us to conclude, by using the above inequality, Proposition [1.1] and Hlder’s
inequality, that
win {Jluz [P g} < [ (9P
Q
R R R
& Q
Q

<ent C H |V [P@)~1

U,
N

for some C' > 0. So,
(u,, ) is bounded in Wol’p(x)(Q). (4.16)

Let us show that (u;}) is bounded in Wol’p(z) (Q). By taking w = u;} in |) it follows
that
—/ |V |P@) da +/ fle,uf ) ufde = o,(1). (4.17)
Q Q

Now, by using the item (a) above, we have

prM > p /Wd:c—p /F(:cu)da:
+ —+Q p(.’lf) +Q y Un

+p(z) —p(z)
A L ) P N L S I
{un>0} p(z) {un <0} p(z)

which lead us, by using 1D and the boundedness of u,, given in 1) to
Ve P _—
py | ——~—dz —p;+ | F(z,u, )dz < py M. (4.18)
o px) Q
By summing (4.17)and (4.18)), we obtain
+ R R
/ <p - 1) (V[P de < My — / (f(x,u,f)ufl —p*F(m,u,f)) dx (4.19)
Q Q

p(x)
= My — /{uigu/\} (f(:c,u,ﬁf)u,‘f —p+F(:U,u,f)) dx — ~/{ui>u/\} (f(ac,u:{)u;f —p+ﬁ’(x,u;§)> dx.
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Below, let us estimate both integrals in the last line above. For the first one, by using
(4.8), (f1) and Holder’s Inequality, we have

| /{Wu ) (F@,uh)t = p F(a,u)) dm‘
<(p+—1) /{uf{gm} <a($)u;a(2)uj{ + )\|f($’u/\)|u;r) da

< (p+ — 1)/{ ) (a(ff)uia(m)ux + )\lf($7UA)|UA> dzx (4.20)

< e =1 ([ a0 unde 42 [ 11 un)lunde )

< e =0 ([ 1V 40 [ 11l +3 [ 176w fusde )

< Ms;.
For the second integral, by letting

= {u:[ > uA} N{a(z) =1},
= {uf > uy ) n{ax) > 1}, (4.21)
A = {u,f > u)\} N{a(z) <1},

and using (4.21) and (4.11)), we obtain

/ <p+f7’(x,u,f) — f(x,uf{)u,f) dx = / a(z)(py Inuf —py Inuy — 1)dz
{u:{>u,\} Al

_ P+ +\1—a() 7, _ _ b+ | 1-a@)
+/ a(x ( 1> Uy dx / a(x U dz
A+UA- I\ = a(r) () A+UA- )y afz) A

+ )\/ Flo,ul)dr — )\p+/ F(x,uy)dr (4.22)
u'jz»>uk uj{>’UJ)\

ul D+ _
< —dx + . S +)1—a(z) / ya +
=P /,41 a(z)In U d / a(z) <1 —a(x) 1> () oA {ud>ux} ()

<pe /Q al) 2 di + / o) (1_]’;(33) - 1) ()@ A/{ubm} Flw,ul)de,

where F(z,t) = p4F(x,t) — f(x,t)t. More, by using that r(z) > (p* /p-) > (p~ /(1 —a_))’,
uy > Cd(x), (H2) and (Hs3), the integrals in the last line of (4.22]) can be estimate by

/Q a(m)qﬁder / a(z) (1—]);(:6) - 1) (w1 @ gy

a(x) ol
= Ms ( 7(151? +p+/ 1—70@(“:{)1 ( )d$> (4.23)
Usy a(z
< Mg <||a||L°°(Q,5 d(n)d x + (15 (:E)u:{dxjt /A %(u:)l_a(”")dx>

< M (||u +||+|!u+|\1 “),

where we used that Hardy’s, Hélder’s Inequality and the embedding I/VO1 P ($)(Q) — L"@(Q).
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After this, by combining (4.22)) and (4.23)), we obtain

[{+ }(mﬁ(x,ug)—f(x,u;)ug) dng[{ oy Z N (Ll + ] ).
Up >UN Up >UN
(4.24)

To conclude that (u;}) is bounded in Wol’p(x)(Q), let us use (fs) to find sp = so(By) >0
such that
piF(z,s) — f(z,s)s < Bos™™ for a.e. z € Q and for all s > so.

Adding to this information, a consequence of hypothesis (f4) that
p+F(z,s) — f(z,8)s < Mg for x € Q and s < sy,
holds true for some Mg > 0, we obtain that

Flz,ul) <ptF(z,ub) — flz,uHub < Bo(ut) @ + Mg, z € Q. (4.25)

n

So, it follows from (4.24)), (4.25) and Holder’s Inequality, that

/{ oy (PP ) = Fl i o < o (1 T+ st + )
Up >UN
(4.26)

holds true. Now, combining (4.20]) and (4.26]) in (4.19)), we obtain
min {[Ju} [P~ [|ug [P} < Mao (1 + [ I + st [[7 + [y [[1727)

that is, u; is bounded in Wol’p(x)(Q).

Summarizing, since we already know that u,, is bounded in VVO1 P (I)(Q) (see ) and
the boundedness of ;! as just shown, we have that u, is bounded in VVO1 P (I)(Q), finishing the
first step.

In this last step, let us complete the proof that J satisfies the Cerami condition. To
do this, since u,, is bounded Wol’p(x)(ﬂ), then there exists u € Wol’p(x)(Q) such that, unless
to a subsequence, u, — u in Wol’p(x)(Q), u, — uin LH®(Q) for 1 < t(z) < p*(z) and
up(x) = u(x) a.e. in Q. Now, by taking w = u,, —u in

€n|[tn — ul|

/ Vi |P® 2V 0, V (1, — u)dz — / f (@, un) (un — w)dz < ) (4.27)
Q Q 1+ [|un||
Now, we are going to show that
/ F (@, un) (up — uw)dz| — 0 (4.28)
Q
as n — 0o. As a consequence, we can obtain that
lim / [Vt [P 2V 0, V (1, — w)dz < 0, (4.29)
n—oo Q

that is, u, — u in Wol’p(x)(Q), by using Proposition , which lead us to conclude that J

satisfies the Cerami condition.
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To proof (4.27), using the hypothesis (f4), the fact of uy is a weak solution for (4.1)

and Holder’s Inequality, we notice that

<

/Q(a(;v)u)_\a(m) + Af(x,up))(up — u)dx

‘/ f(a:,un)(un —u)dx
{Unguk}

S/ ‘VU)\‘p(x)_l‘un—u’d%—f—Q/\/ | f(z, up)||un — uldx (4.30)
Q Q

-1
< 811l = oy + 198771l = ull ).

q4+—q(z)+1

On the other hand, by using again that u) is a weak solution for (4.1)), hypothesis (f2)
and Holder’s Inequality

/ (@, ) (un — w)da| = / (a(@)u=® £ A (2, un))(un — w)da (4.31)

{un>uk} {Un>u/\}

< / a(:c)u;a(x) (up, — uy)dz + / a(z)(1+ uﬁ‘fl)(un —uy)dz
fun>usJnfa(z) >0} funus n{a(2) <0)

—i—)\/ | f(z, up)||un — uldx
Q

<

a(x)u;a(x)(un — u)\)dx + M12Ha||r(x) (Hug—l =+ 1H1’7T/(Z> ||un — U)\Hprf(x)>
—1

p_

/{un>u,\}ﬂ{a(m) >0}

#8010l =l + 19l = ull ).
q(z)—

g4 —q(z)+1

Since up, — u in Wol’p(w)(ﬂ) and

I
g+ —q(r) +1

then by using (4.30) and (4.31]) we conclude that (4.28)) holds. This finish the proof. m

p—r'(z) < pt < p*(w),

4.3.3 Proof of Theorem - Completed

Proof. Now, we are going to complete the proof of Theorem [4.1.4 To establish this, we
begin noticing that
/ |Vu [P@) de = / a(m)ui_a(x)dx +/ M (z, up)urdz.
Q Q Q

holds true, since wu) is a weak solution of (4.1)).
Beside this, by using (4.8) and (4.10]), we obtain that

R p(z)

J(uA):/ ’vu/\|dw—/a(:r)uia(x)da:+/Af(x,u>\)uAd:c,
o p@) Q Q

that is,

Juy) = /Q <p(1x> _ 1> Vur P @ dz < 0.

89



Finally, by using Lemmas {4.3.1] [£.3.2] and [4.3.3] we can apply the Theorem Mountain
Pass theorem (see ) to obtain a function vy € Wol’p(x)(ﬂ) that is critical point of .J
satisfying

J(uy) <0< B = inf {j(u) / [l = 7"} < J(w),

that is, uy # vy and
/ (]Vv,\|p("”)72Vv)\V§ — a(x)U;a(x)ﬁ — )\f(x,v,\)§> dx =0,
Q

for all £ € I/VO1 P (x)(Q), which lead us to conclude that vy is a weak solution of |j with
vy > uy, because of (4.12). m
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Chapter 5
Open problems and future work

We left some open questions in this work. Here we summarize our contribution and

what remains open.

Chapter 2

In Theorem we consider u € I/Vli’f(x)(ﬂ) subsolution of 1) with v € L2 (©2). In
our proof, this locally boundedness was fundamental to obtain that the set Q| = 0. We tried
some techniques to prove it without this assumption, but we could not solve the problem. It
remains as an open question.

On the other hand, the proofs based in Diaz-5ad Inequality demands, in general,

u/u,u/u € L>*(N). In this sense, we have a contribution.

Chapter 3

In Theorem [3.1.2) we show that the "integrability condition" of trio (c, a, 8) just near
the boundary of the domain is sufficient to obtain existence of solutions in VVO1 P (z)(Q). We
conjecture that the converse claim is true as well.

On the other hand, we present sufficient conditions for that the solution for be
Holder continuous on the boundary. As a future work, we want to find conditions to obtain
solutions in C1®. The work of Lazer and Mckenna suggest that the right answer of this

question is a(z) < 1 on 9. A future work is studying it.
Chapter 4

In this chapter, we prove that just a locally (p4 — 1) — superlinear perturbation of the

singularity is suffices to obtain multiplicity of solutions for small A* > 0. If we define

A = sup{\ / The problem (4.1)) has a solution}



then A > 0. The next step is try to show under which hypothesis that A < oo to obtain
a global multiplicity result. As a future work, we pretend to give a positive answer for this

question.
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Appendix A

Algebraic tools

In this Chapter, let us enunciate some very classical and well known results in order to

ease the lecture of reader.

A.1 Algebraic tools

Proposition A.1.1 (Fatou’s Lemma, [3]) Let f,, : R — [0,00] be (nonnegative) Lebesgue

measurable functions. Then

n—oo n—0o0

liminf/ fndz Z/Iiminf fndzx.
R R

Proposition A.1.2 (Lebesgue dominated convergence theorem, [3]) Suppose f, : R —
[—00, 00| are (Lebesgue) measurable functions such that the pointwise limit f(z) = limy, o0 fn ()
exists. Assume there is an integrable g : R — [0, 00| with |f,(z)| > g(x) for each x € R. Then

f is integrable as is f,, for each n, and

lim /fnd:):Z/ lim fndx:/fdm.

Proposition A.1.3 (J65], Vitali’s convergence Theorem ) Let p be a finite positive mea-

sure on a measure space X . If f, has uniformly absolutely continuous integrals and f,(x) —
f(z) a.e. in X, then f € L*(u) and

fdp = lim / fndp.
A n—oo X
Lemma A.1.4 ([62]) Assume that S : R® — R® is a continuous map such that (S(n),n) >0

for all n € R® such that |n| = r for some r > 0, where (-,-) is the usual inner product in R5.
Then, there is ng € B(0) such that S(ng) = 0.

Proposition A.1.5 ([56], Theorem 26.9) Let X be a topological space. Then X is compact
if and only if for every collection C of closed sets in X having the finite intersection property,

i.e., the intersection NoecC' of all the elements of C is nonempty.



Proposition A.1.6 ([36], Theorem 1.5) Let X be a reflexive Banach space, A a bounded
subset of X, and xo a point in the weak closure of A. Then there exists an infinite sequence

(zg) in A converging weakly to xo in X.

Proposition A.1.7 ([25], Lemma 6) Let X be a finite dimensional real Hilbert space with
norm | - | and scalar product (-,-). Let (Bx) be a sequence of functions from X into X which
converges uniformly on compact subsets of X to a continuous function 3. Assume that the

functions B, are monotone and the B is strictly monotone, i.e.

(Br(z) = Br(y),z —y) >0, (B(z)—B(y),z—y) >0,

for every k and for every x,y € X with x # y. Let (n;) be a sequence in X and let n be an
element of X such that

(Br(nk) — Br(n),mk —n) = 0.

lim
k—o00

Then (ny) converges to n in X.
Due to Ambrosetti and Rabinowitz [67], the Mountain Pass Theorem is a fundamental
result in Critical Point Theory and whose development was strongly related to the search for
saddle-type critical points. In this section, X denotes a space of Banach real, ¢ : X — Ris a

functional and (uy,) is a sequence in X.

Below, we present a condition of compactness on the functional ¢ due to Cerami [18].

Definition A.1.8 We say that ¢ satisfies the Cerami condition at level c, if every sequence
(xn) C Wol’p(x) (Q) such that ¢(x,,) = ¢ in R and

(14 lJzn|))¢ (xn) = 0 in Wol’p(x)(Q) as n — oo,

admits a strongly convergent subsequence. We say that ¢ satisfies the Cerami condition, if it

satisfies the Cerami condition at every level ¢ € R.

This compactness type condition on ¢ is weaker than the usual Palais-Smale condition.
However, as it has shown in [4], the deformation theorem and consequently the minimax
theory of the critical values of ¢ is still valid if the Palais-Smale condition is replaced by the
Cerami condition. In particular, we have the following form of the well-known "Mountain

Pass theorem".

Proposition A.1.9 Suppose ¢ € C1(X) satisfies the geometric condition

max{¢(0), #(e)} <0 < B =inf{d(z) : [[z[| = p},
for some 0 < B, p> 0 and e € X with ||e|| > p. If ¢ is defined by

¢= inf max P(v(1)),

where I' = {y € C([0,1]; X) / v(0) = 0,7(1) = e}, and ¢ satisfies the Cerami condition, then
c > B and c is a critical value of ¢. Moreover, if ¢ = n, then there exists a critical point
x € X of ¢ with ¢(x) = ¢ and ||z|| = p.
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Appendix B

Auxiliary Results

We will now enunciate some lemmas that have helped us in the results tests presented
in the thesis.

In Chapter 4, we introduced some functionals that was useful in ours proofs. In this
appendix we present and prove their properties. We also enunciate a Lemma that guarantee

when the test functions in C§°(Q) can be change for test functions in Wol’p(m)(Q) in problem

().

Lemma B.0.1 Assume that (f4) holds true. If u € Wol’p(w)(Q) be a solution of 1 in sense
of Definition then

/Q]Vu|p(m)2VuVUdaz = /Qa(z)ua(r)vda: + )\/Qf(az,u)vda:, Yo € Wol’p(x)(ﬂ),
that is, u is an weak solution of (4.1)).

Proof. The proof is inspired in an argument of Boccardo and Casado-Diaz [5]. Let v be an
arbitrary function in Wol’p(m) () and take (v,) C C§°(€2) such that v, — v in Wol’p(x)(Q) and

also pointwise almost everywhere. So, given € > 0, by taking /e’ + |v, — vi|? — € as a test



function, for some 6 € N, we obtain that

/a(ac)ua(fv) < 4 60 + |Un _ Uk|9 _ 6> dr
Q
a1 B
< (/Q\Vu|p(:c)—1!vn( vg|" "V (vn Gfl)k)‘d:EJr)\/Q | f (2, u)| <9 € 4 [vn — vg|f _6> dx)
0

69 + ‘Un — vk\a)

— 0N Y _
< (/ ‘vu|p(z)—1|vn 'Uk:| | (Un 9_11}k)|d$—|—)\01/(1 + |u|q(z)—1) (9 0 + ‘Un _Uk’0 _ €> d:E)
o (8 + on — o)) T o
— |01 —
<6 (H,wpm_l‘ I (A
p(x)—1 (60 + |UTL — Uk;|0)T p(x)
- Hl + @7 €O 4 o, — vp]? — e
p*(z) p* ()
(@)=t @) —a(@)+1
< Ca(lful =7 4 [l P27 4 faal [ 7 4 [Jul [ 4 1) o — gll-
Letting € — 0 and using the Fatou’s lemma, we derive that
a(x)vn\ . I
is a Cauchy sequence in L™ (Q), (B.1)
ua(w)

so that a(z)u=*®v, — a(z)u=*®v in L}(Q) taking into account that v, (z) — v(x) a.e. in

Q). Thus we can make n — oo in the inequality

/|Vu|p(x)ZVqundx:/a(a:)u_a(x)vncm-i-)\/f(x,u)vndx,

Q ) Q

in order to obtain
/|Vu]p(z)2Vqudx:/a(a:)ua(x)vdx—i—)\/f(:v,u)vdx.
Q Q Q

u

Remark B.0.2 [fu e Wol’p(w)(Q)OLoo(Q), then we can replace (fy) for (f1) in the statement
of Lemma [B.0.1] to obtain the same conclusion.

Lemma B.0.3 Assume (Hy), (Ha) and (f1) holds. Then the functional J defined at (4.7)

belongs to CI(WOLP(QC)(Q),R), is coercive and weakly lower semicontinuous.

Proof. We start showing that J has Gateaux derivative for each u € Wol’p(w)(Q). Let
u,v € WyP'™(Q) and € > 0 small. So, we have,

/Q Flou+t eve) — Flz,u) = /Q </01 flz,u+ sev)d5> vdx. (B.2)

First we notice,

1
/ f(z,u+ sev)ds — f(z,u) as e >0 a.ex €. (B.3)
0

96



Besides this, it follows from that,
Fla) < (a(@)u@ + 0 f(2,0)) Xy (2) (B4)
+ (a(@)t @ £ Af(2,)) Mucreny (2) + (a(@)T @ + Af(@,7)) X(po ()
< 2a(@) (w@ + 7 ) 4 A (F(@,w) + f(@,7) + Xugizn (@)f(2,1))

In particular,
1 1
(/ flz,u+ sev)ds) v= <X{u§u+8w§u} (x)/ (a(x)(u + sev) @) A f(z,u+ sev)) ds> v
0 0
+ X{u+sev<g} (.I‘) (a(x)ﬂ—a(w) + )‘f(xaﬂ)) v+ X{u+sev>ﬂ} (.%') (a(x)ﬂ_a(x) + )\f(l’,ﬂ)) v
1

< [2@(@ (Qfa(x) —i—ﬁ*a(az)> + A <f(x,u) + f(z,u) + X{u<u+sw<u}(aﬁ)/ flz,u+ sev)ds>] [v].

0

By using the hypothesis (f1), with M = |[t||~, we have

1
A <f(a;,u) + f(z,u) + X{u<u+sev<u}(m)/o flz,u+ sev)ds> [v] < 3Aeq|v]. (B.5)

for all 0 < t < M, that is, to apply Lebesgue’s dominated convergence theorem just remains
to show that
2a() (w0 + 7720 Jo] € L(). (B.6)

Since u € Wol’p(z) (Q) is a solution for the problem 1) it follows by Lemma m
with |v| as test function and Hélder’s Inequality that

/a(az)ua(z”v\dx:/ IVulP® =2 vV |v|da
Q Q

<2 (H\WW“H,,,@ ywu) < .

In a analogue way we conclude that a(z)z“®|v] € L'(Q). Then, by Lebesgue’s

dominated convergence theorem, the Géteaux derivative jl(u) exists and is given by

<j’(u),v> = /Q |Vul[P®2VuVods — /Qf(x,u)vdx, for all u,v € Wol’p(m) ().

To show the continuity of J', let wy, w € Wol’p(x)(Q) be such that wy — w in Wol’p(x)(ﬂ).
By using Hdlder’s Inequality, we obtain

(7 (w) = T (w),v),

= /(Vwk|p(””)_2Vwk — |[Vw[P®) =2V w) Voda —/(f(z:,wk) — f(z,w))vdz (B.7)
Q Q

< H|Vwk]p(x)*2Vwk - |Vw|p(x)72Vw‘

b 121l +/Q(f($vwk) — f(z,w))vdz.

p(x)—1

It follows from (4.6)), that

flz,wy) — f(z,w) = a(z) (wlza(x) - w_o‘(x)> — M f(x,wg) — f(z,w)) fu<w, <7,
0 if wy > w,
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and, as a consequence of this and following similar arguments used to obtain (B.5)) and (B.6] -,

we can conclude

Aw@ww—ﬂamwwscmw

So, it follow from above arguments, by using Lebesgue’s dominated convergence theorem
in , that the Gateaux derivative of 7' is continuous.

For the coercivity, let v € W, Lp( ( ) with [|v]| > 1. By using ( . and u,u are
solutions of [4.2) and [4.3] respectively, we obtain

. p(z) _
T(v) = ‘W” M—/mem
Q
p—
> H’UH 0/ ) 4 a(z)u~*® + 1)vdx
b+
p7
> @ -C </ |Vg|p(m)_2Vvada: - / |Vu]p(w)_2Vqudx>
D+ Q Q

v

[|v] [P~ -
_C Hvup(a:) 1) . Hvup ‘ R
P+ @)1 (@)1

showing that J is coercive, since p_ > 1.

To finish, we note that the weakly lower semi continuity follows from continuity and

convexity of the map s — |s[P®), (B.5)) and . [

Lemma B.0.4 Assume (Hy), (H2)(ii), (f2) and (f3). If a(z) > 0 and a(x) < 1 on OS2, then

the functional

p(z) -
[Vl dz —/ F(z,u)dx. (B.8)
p(x Q
belongs to Cl(Wol’p(x)(Q),]R), s coercive and weakly lower semicontinuous, where

a(z)v™ @ 4 Af(z,v)  t<
fx,t) =< a(z)t=*@) 4 Af(x,t) v <
a(zx)5=®) £ \f(x,7) t>

<7, (B.9)

Proof. We start showing that J has Gateaux derivative for each u € Wol’p(z)(Q). Let
u,v € Wol’p(m)((l) and € > 0 small. So, we have,

/Q F(x,u+ eve) — F(z,u) _ /Q (/01 flzu+ Sev)ds> vdz. (B.10)

1
/ flx,u+ sev)ds — f(r,u) as e >0 aex €, (B.11)
0

Again,

To use Lebesgue’s dominated convergence theorem we need to show that
1 ~
(/ flz,u+ sev)ds> lv| € LY(9).
0
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Initially, by using , we obtain

0
1
+A (f(:x,v) + f(2,9) + Xy<utsew<u} (%) /0 f(z,u+ Sev)d5> o).

We only need to estimate the singular term a(x)v~*®)  because the estimate of other
terms follows from and . To this end, by following the same arguments used in
proof of Lemma we conclude that v(x) > Cd(z) for all z € €2, for some C' > 0. More,
from continuity of a(z), there exits 0 < §; < § such that a(z) < 1 in Qs , with ¢ as in
hypothesis (Hs). By using this and (Hs)(i7) we have

/a(x)’l)_a(x)vdx < Hc—a(x)
Q

/ a(z)d(z) @ ydz (B.12)
> JQ

all oo d(z) 0@ gy o ||s7o@) / a(z)vdz | .
N (H Iz (951)/9(51 (z) d(x) H 1 s Jonas, (z)

Now, from Hélder’s inequality and Lemma [1.2.5] we obtain

d(x)l_a(;”)idfc + / a(x)vdz
/Q(;l d(l') Q\Qél

<o

v
<C||-== d(z)' @ + llallr e Nl 2
(‘ d(LE) Lp(m)(stl) H ( ) Lp,(z>(951) || H ( )H H ( )
< C1 (IIV0ll ooy, + Wl ) < Calloll (B.13)

From (B.12) and (B.13) we deduce that a(z)v=*®v € L'(Q).Then, by Lebesgue’s

dominated convergence theorem, the Gateaux derivative .J' (u) exists and is given by
<j/(u),v> = / |Vu|P(:v)—2Vqud:z: —/ f(x,u)vdq:, for all u,v € Wol’p(z)(Q),
Q Q

Now, by following the same arguments as done in the proof of Lemma we obtain

the continuity of J' and coercivity and weakly lower semi continuity of J. m

Lemma B.0.5 Assume (H;) — (H3) and (f1) holds. The functional J defined at (4.10)
belongs to C’l(WOl’p(x)(Q),R) and is weakly lower semicontinuous. The same result is valid if
we consider the set of hypothesis (Hy), (H2)(i1), (f2), (f3), a(x) < 1 in Q and a(x) < 1 on
o0.

Proof. The proof is analogous to that made in Lemmas |[B.0.3|and [B.0.4] =
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