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Resumo

Nesta tese estabelecemos resultados de existência, unicidade, multiplicidade e regu-

laridade de soluções para a seguinte classe de problemas quasilineares que podem ser

singulares envolvendo expoentes variáveis −∆p(x)u = c(x)d(x)−β(x)u−α(x) + λf(x, u) in Ω,

u > 0 in Ω; u = 0 on ∂Ω.

Na primeira parte, determinamos condições su�cientes para existência de única

solução em W
1,p(x)
loc (Ω) quando f(x, t) é sublinear em t = 0 e t = +∞ para todo

x ∈ Ω. Na segunda parte, obtemos multiplicidade de solução em W
1,p(x)
0 (Ω) quando

f(x, t) é superlinear em t = +∞ em algum subdomínio de Ω. Além disso, permitimos

múltiplas regiões de singularidades, tanto no potencial quanto na não linearidade u > 0,

enquanto que na segunda parte consideramos β ≡ 0. Provamos também um princípio

de Comparação para sub e supersolução em W
1,p(x)
loc (Ω) para problemas sublineares em

t = 0 e em t = +∞ envolvendo o operador p(x)−Laplaciano.

Entre as técnicas utilizadas estão o Método de Galerkin; Técnica de regularização

tipo Di Giorgi; Método de Sub-super solução e o Teorema do Passo da Montanha.

Palavras-chave: p(x)−Laplaciano, singular com expoentes variáveis, Princí-

pio de Comparação, Regularidade de soluções
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Abstract

In this thesis we establish results of existence, uniqueness, multiplicity and regularity of

solutions for the following class of quasilinear problems that may be singular, involving

variable exponents −∆p(x)u = c(x)d(x)−β(x)u−α(x) + λf(x, u) in Ω,

u > 0 in Ω; u = 0 on ∂Ω.

In the �rst part, we determined su�cient conditions for the existence of a unique

solution in W
1,p(x)
loc (Ω) when f(x, t) is sublinear in t = 0 and t = +∞ throughout the

domain. In the second part, we obtain multiplicity of solution in W
1,p(x)
0 (Ω) when

f(x, t) is superlinear in t = +∞ just in a subdomain of Ω in some subdomain of Ω.

Besides this, we allow multiple regions of singularity, both for the potential and for the

non-linearity u > 0, while in the second part we take β ≡ 0. In addition, we prove a

Comparison principle for sub and supersolution in W
1,p(x)
loc (Ω) for sublinear problems

in t = 0 and t = +∞, involving the p(x)−Laplacian operator.

Among the techniques used are the Galerkin Method; the Di Giorgi regularization

technique; the Sub-super solution method; the Mountain Pass Theorem.

Keywords: p(x)−Laplacian, singular variable exponent, Comparison Princi-

ple, Regularity of Solutions
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Introduction

This work presents a study of questions related to existence, uniqueness, multi-

plicity and regularity of solutions for the following class of quasilinear problems −∆p(x)u = a(x)d(x)−β(x)u−α(x) + λf(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(1)

involving variable exponents and powers, where Ω ⊂ RN is a bounded open domain

with smooth boundary, λ ≥ 0 is a real parameter, d(x) = inf
y∈∂Ω
|x− y|, for x ∈ Ω, is the

standard distance function to the boundary of Ω, p : Ω → R is a C1(Ω)-function that

satis�es

1 < min
x∈Ω

p(x) = p− ≤ p+ = max
x∈Ω

p(x) < N,

and ∆p(x) stands for the p(x)−Laplacian operator, that is,

∆p(x)u = div(|∇u|p(x)−2∇u).

When p(x) ≡ p (a constant), we have the well known p−Laplacian operator. Be-

cause of the non-homogeneity of the p(x)−Laplacian, these kinds of problems are more

delicate than ones with p−Laplacian. For example, the �rst eigenvalue of p(x)−Laplacian

is zero in general, and only under some special conditions the positivity holds (see [32]).

By quoting [28], the study of variable exponents spaces appeared in the literature

for the �rst time in 1931, in an article by Orlicz [58], but the �eld of variable exponent

function spaces has witnessed an explosive growth in recent years. The developments

in science lead to a period of intense study of variable exponent spaces. Also observed

were problems related to modeling of so-called electrorheological �uids [63, 64], the

study of thermorheological �uids [67] and image processing [19].



By going back to the problem (1), we notice that it exhibits a singular behavior

at the origin when α(x) > 0, that is, s−α(x) s→0+

−−−→ +∞ for all x ∈ {α(x) > 0}.

Moreover, the weight d(x)−β(x) also presents a singular behavior near the boundary

when β(x) > 0, that is, d(x)−β(x) d(x)→0−−−−→ +∞ for all x ∈ {β(x) > 0}.

The study of singular problems relies mainly of their application to physical mod-

els such as non-Newtonian �uids [12], boundary layer phenomena for viscous �uids [11],

chemical heterogenous [10] and e theory of heat conduction in electrically conducting

materials [22].

Our objective in this work is exploit the variable exponent to study the problem

(1) in two di�erent ways. The �rst being when f(x, t) is sublinear in t = 0 and t = +∞

throughout the domain and α(x), β(x) allowing to change the signal. In second part,

f(x, t) is superlinear in t = +∞ only in a subdomain of Ω, β ≡ 0 and α(x) allowing

the signal to change.

Our work is divided into three chapters and two appendix. In Chapter 1, we are

going to remember some de�nitions and results involving the Lebesgue and Sobolev

spaces with variable exponents which will be used throughout this thesis.

In Chapter 2 we present a Comparison principle to the problem −∆p(x)u = g(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(2)

where Ω ⊂ RN is a smooth domain, p : Ω→ R is a C1(Ω)-function that satis�es

1 < min
x∈Ω

p(x) = p− ≤ p+ = max
x∈Ω

p(x) < N,

and g(x, t) ful�lls the following conditions:

(g1) g : Ω × (0,∞) → [0,+∞) is a function such that t 7→ g(x, t) is a continuous

function a.e. x ∈ Ω and for each t > 0 the function x 7→ g(x, t) is mensurable,

(g2) t 7→ g(x, t)

tp−−1
is strictly decreasing on (0,∞) for a.e. x ∈ Ω,

(g3) the functional Ih : W
1,p(x)
0 → R, de�ned by

Ih(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

Gh(x, u)dx,

2



is coercive and weakly lower semicontinuous on {w ∈ W 1,p(x)
0 (Ω) / 0 ≤ w ≤ u}

with respect to W
1,p(x)
0 (Ω)-norm, where

Gh(x, s) :=

∫ s

0

gh(x, t+ h)dt and gh(x, t) := g(x, t+ h)

for each h > 0 given.

Brezis and Oswald [8] studied the semilinear case to the problem (2), that is, −∆u = g(x, u) in Ω,

u = 0 on ∂Ω,
(3)

with g(x, t) satisfying:

(BO)1 t 7→ g(x, t) is a continuous function a.e. x ∈ Ω and for each t ≥ 0 the function

x 7→ g(x, t) belongs to L∞(Ω) a.e. x ∈ Ω,

(BO)2 t 7→ g(x, t)

t
is strictly decreasing on (0,∞) for a.e. x ∈ Ω,

(BO)3 there is a constant C > 0 such that g(x, t) ≤ C(1 + t) for a.e. x ∈ Ω and t ≥ 0.

Besides this, they introduce the extended functions

a0(x) = lim
t→0+

g(x, t)

t
and a∞(x) = lim

t→∞

g(x, t)

t
for x ∈ Ω

and the quantity

λ(a) = inf
v∈H1(Ω), ||v||2=1

{∫
Ω

|∇v|2 −
∫
{v 6=0}

a|v|2dx
}

for any extended function a : Ω→ R∪ {−∞,+∞} given. With this set of hypotheses,

they showed that the problem (3) has at most one weak solution. Moreover, a weak

solution of (3) exists if and only if λ(a0) < 0 < λ(a∞). Later, Diaz and Saá [27]

extended the result of Brezis and Oswald for p−Laplacian operator with p > 1 and

similar hypotheses. The fundamental tool to prove the uniqueness of solution is the

following inequality

∫
Ω

|∇w 1
p

1 |p−2∇w
1
p

1∇

w1 − w2

w
p−1
p

1

− |∇w 1
p

2 |p−2∇w
1
p

2∇

w1 − w2

w
p−1
p

2

 dx ≥ 0, (4)

which became known as Diaz-Saá Inequality [27].
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Going back to our problem, the hypotheses (g1)− (g3) do not imply any growth

restriction on g with respect to the variable t and allow g(x, t) to have singular behavior

at 0. Furthermore, the technical hypothesis (g3) is not a �strange assumption�. In fact,

with the hypothesis λ(a∞) > 0 considered in Brezis-Oswald [8] (Laplacian operator) or

Diaz-Saa [27] (p−Laplacian operator) together with (BO)1− (BO)3 and p(x) ≡ p, lead

us to show that functional Ih is coercive and sequentially weakly lower semicontinuous

on {w ∈ W 1,p(x)
0 (Ω) / 0 ≤ w ≤ u}. On the other side, in a Sobolev variable exponent

space, the amount

inf
v∈W 1,p(x), ||v||p(x)=1

{∫
Ω

|∇v|p(x) −
∫
{v 6=0}

a∞(x)|v|p(x)

p(x)
dx

}
(5)

may not be positive, see for instance [32]. We also point out that if we take g(x, t) =

a(x)/tα(x), for some α(x) > 1− p− and a ∈ Lr(x)(Ω) with a suitable choice of r(x) ≥ 1,

and, in particular, p(x) has a strictly local minimum (or maximum) in Ω, then the

in�ma in (5) is null, but the hypothesis (g1)− (g3) are still satis�ed.

Before enunciating our �rst result, we need of the next de�nition.

De�nition 0.0.1 We say that u ∈ W 1,p(x)
loc (Ω) is a subsolution of (2) if u ≥ 0, g(x, u) ∈

L1
loc(Ω) and∫

Ω

|∇u|p(x)−2∇u∇φdx−
∫

Ω

g(x, u)φdx ≤ 0, ∀ φ ∈ C∞0 (Ω), φ ≥ 0.

Analogously, u ∈ W 1,p(x)
loc (Ω) is a supersolution of (2) if u ≥ 0, g(x, u) ∈ L1

loc(Ω) and∫
Ω

|∇u|p(x)−2∇u∇φdx−
∫

Ω

g(x, u)φdx ≥ 0, ∀ φ ∈ C∞0 (Ω), φ ≥ 0.

Now, we have.

Theorem 0.0.2 Assume that (g1) − (g3) holds true for each h > 0 given. If u, u

are subsolution and supersolution for (2), respectively, such that u ∈ L∞loc(Ω) with

(u − ε)+ ∈ W
1,p(x)
0 (Ω) for each ε > 0 given and ess inf

x∈U
u(x) > 0 for each U ⊂⊂ Ω,

then u ≤ u a.e. in Ω.

The importance of our �rst result is principally because it may be applied to

subsolutions and supersolutions just inW
1,p(x)
loc (Ω). The proof is quite technical, because

we have to keep away from the boundary of Ω to avoid the possible singularity of g(x, t)

at t = 0. The �rst part of our proof is inspired on ideas in [16] that show the comparison

4



between a sub and a supersolution for a nonlocal and singular problem by truncating

the singularity in an suitable way. The second part is inspired on ideas of [43], to take

advantage to the convexity of the functional J = JK : L1
loc(Ω)→ (−∞,∞] be given by

J(u) =


∫
K

|∇u
1
p− |p(x)

p(x)
dx, u ≥ 0, u

1
p− ∈ W 1,p(x)

loc (Ω),

+∞, otherwise,

for each K ⊂⊂ Ω given to derive a Diaz-Saá type inequality∫
K

|∇w 1
p−
1 |p(x)−2∇w

1
p−
1 ∇

w1 − w2

w

p−−1

p−
1

− |∇w 1
p−
2 |p(x)−2∇w

1
p−
2 ∇

w1 − w2

w

p−−1

p−
2

 dx ≥ 0,

where w1, w2 ∈ L∞loc(Ω) ∩ {u ∈ L1
loc(Ω) / u ≥ 0, u

1
p− ∈ W

1,p(x)
loc (Ω)} with wi/wj ∈

L∞loc(Ω), i 6= j. To our knowledge, this result is new even for Laplacian operator.

In the Chapter 3, we study issues about existence, regularities and uniqueness

of solutions to the problem (1). To enunciate these results, let us denote the δ-strip

around to the boundary of Ω by

Ωδ := {x ∈ Ω / d(x) < δ}

and consider the numbers

θ1 =


max
x∈Ωδ

p(x)− β(x)

p(x) + α(x)− 1
if β(x) + α(x) > 1 in Ωδ,

1 if β(x) + α(x) ≤ 1 in Ωδ,

θ2 = min
x∈Ωδ

p(x)− β(x)

p(x) + α(x)− 1
,

for each δ > 0 given.

So, let us assume that there exists a δ > 0 such that:

(H1) α : Ω→ R is a C0,1(Ω)-function that satis�es α(x) ≥ minx∈Ω α(x) := α− > 1−p−,

(H2) f : Ω× [0,∞)→ [0,∞) is a Carathéodory function such that

f(x, t) ≤ b(x)(1 + tq(x)−1) for all x ∈ Ω

holds true, for some functions q ∈ C1(Ω) and 0 ≤ b ∈ Ls(x)(Ω) ∩ L∞(Ωδ) with

1 < q− ≤ q+ ≤ p− and s(x) > N/p− for x ∈ Ω,

(H3) (i) β : Ω→ R is a C0,1(Ω)-function that satis�es β+ < p−,

(ii) 0 < c ∈ Lr(x)(Ω) ∩ L∞ (Ωδ) for some r ∈ C1(Ω) with 1 ≤ r(x) ≤ +∞,

(iii) c(x)/(1− α(x)) ∈ Lr(x)(Ω) ∩ L∞(Ωδ),

5



(H4)
f(x, t)

tp−−1
is strictly decreasing on (0,∞) for a.e. x ∈ Ω.

Under the condition (H1), the problem (1) may be singular at u = 0 in multiple

regions of the domain. For example, if Ω = BR(0) is the ball centered at origin of

RN with radius R = 10π, then the problem (1) oscillates from singular in the rings

B(2k+1)π(0)\B(2k)π(0) to non-singular one in B(2k)π(0)\B(2k−1)π(0) for k = 1, · · · , 5.

Beside this, we allow the signal of α(x) oscillates from a sub-linearity (1−p− < α(x) ≤

0) passing through an weak singularity (0 < α(x) ≤ 1), to reach a strong singularity

(α(x) ≥ 1) both in the domain and its boundary.

Before sharing our principal results, we here brie�y recall the literature about

related singular problems. Crandall, Rabinowitz and Tartar [24] have considered a

class of singular problems which included, as special model,

−∆u =
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω, (6)

for some 0 < a ∈ C1(Ω) and α > 0 being a real number, showing not only existence of

classical and weak solutions but also some boundary regularity.

A broad literature on problems like (6) is available to this date. Since then, many

authors have considered the above problem with other operators.

In a famous paper, Lazer and McKenna [51] studied the problem

−∆u =
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω, (7)

where a ∈ C(Ω) with a > 0 in Ω, and α > 0 is a real constant. They proved that

(7) has a solution in H1
0 (Ω) if and only if 0 < α < 3, while for α > 1 the solutions

are not in C1(Ω). An extension of the Lazer and McKenna's obstruction was proved

by Zhang and Cheng [72] when a(x) is like d(x)β with β ∈ R (i.e., ∃ c, C > 0 s.t.

cd(x)β ≤ a(x) ≤ Cd(x)β on Ω), where they showed that (7) has a solution still in

H1
0 (Ω) if, and only if, α− 2β < 3.

Boccardo and Orsina [6], by combining the technique of truncation with some nec-

essary apriori estimates on the solutions of the corresponding approximation problem,

showed existence and regularity results for

−div (M(x)∇u) =
a(x)

uα
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

6



where α > 0 is a real constant, and 0 < a ∈ Lr(Ω). In particular, they showed that

if α ≤ 1 and r = 2∗/(2∗ + α− 1), then their solution u ∈ H1
0 (Ω), while u ∈ H1

loc(Ω) if

α > 1 and r = 1. Following these ideas, Chu, Gao and Gao [20] have generalized the

main result in [6] for the case when α > 0 is a variable power, by considering three

cases: 0 < α− < α+ < 1, α− < 1 < α+ and 1 < α− < α+ in Ω.

Carmona and Aparicio [17] also considered α > 0 as a variable power that may

have a region inside Ω with α(x) ≤ 1 and another one with α(x) > 1. They proved

the existence of solution in H1
0 (Ω) when α(x) ≤ 1 in a strip around the boundary and

belongs to the H1
loc(Ω) with zero on the boundary in a general sense for the other cases.

Most of these results was generalized for di�erent operators. We would like to mention

[7, 20, 26, 57] and their references.

Results for p(x)−Laplace equations with pure singular non-linearity have been

recently explored. In [71], Zhang has studied the problem

−∆p(x)u =
λ

uα(x)
in Ω, u > 0 in Ω, u = 0 on ∂Ω,

with α(x) > 0. By using the sub-solution method, he has obtained the existence result

of solutions in W
1,p(x)
loc (Ω) ∩ C(Ω) and has presented an asymptotic behavior of these

positive solutions when λ > 0 is large enough. The same author in [71] has improved

his above existence result by considering the problem

−∆p(x)u = λK(x)f(x, u) + βuγ(x) in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where γ ∈ C(Ω) with γ(x) < p−, f(x, t) ∈ C(Ω × (0,∞), (0,∞)) is a decreasing and

singular function at the origin, 0 � K ∈ Lq(x) for some q(x) > N , and λ, β > 0 are real

parameters.

After Lazer and Mackenna [51], it is well known that our problem may not have

solutions with zero-boundary value in the sense of the trace function. Along this

chapter, we are going to consider the next one.

De�nition 0.0.3 Let u ∈ W 1,p(x)
loc (Ω). We say that u ≤ 0 on ∂Ω if (u−ε)+ ∈ W 1,p(x)

0 (Ω)

for every ε > 0 given. Furthermore, we also say that u ≥ 0 on ∂Ω if −u ≤ 0 on ∂Ω,

and u = 0 on ∂Ω if u ≤ 0 and u ≥ 0 on ∂Ω, simultaneously.

It is readily seen that if u ∈ W 1,p(x)
0 (Ω), then u = 0 on ∂Ω in the sense of above

7



de�nition. Moreover, for each small δ > 0 given, the function

u(x) =



σd(x)θ if d(x) < δ,

σδθ +

∫ d(x)

δ

σθδθ−1

(
2δ − t
δ

) 2
p−−1

dt if δ ≤ d(x) < 2δ,

σδθ +

∫ 2δ

δ

σθδθ−1

(
2δ − t
δ

) 2
p−−1

dt if 2δ ≥ d(x),

does not belong to W
1,p(x)
0 (Ω) if θ > 1− 1/p+, but (u− ε)+ ∈ W 1,p(x)

0 (Ω) for each ε > 0

given.

Inspired by the ideas in [17], for each Γ ⊂ ∂Ω smooth enough, and h ∈ C1(Ω)

given, let us denote by

W
1,h(x)
Γ (Ω) =

{
u ∈ W 1,h(x)(U) / u

∣∣
Γ

= 0 in the trace sense
}

for all open set U ⊆ Ω such that U ∩ ∂Ω = Γ. In particular, we notice that

W
1,h(x)
Γ (Ω) =


W

1,h(x)
loc (Ω) if Γ = ∅,

W
1,h(x)
0 (Ω) if Γ = ∂Ω.

We notice that the trace over Γ is well de�ned if, for example, Ω is Lipschitz

continuous (see [28, Chapter 12])

De�nition 0.0.4 A positive function u ∈ W
1,p(x)
Γ (Ω) is a solution to problem (1) if

u = 0 on ∂Ω in the sense of De�nition 0.0.3, and

(i) c(x)d(x)−β(x)u(x)−α(x) ∈ L1
loc(Ω),

(ii) ess inf
x∈K

u(x) > 0 for all K ⊂⊂ Ω,

(iii)

∫
Ω

|∇u|p(x)−2∇u∇φdx =

∫
Ω

c(x)d(x)−β(x)u−α(x)φdx+λ

∫
Ω

f(x, u)φdx, ∀ φ ∈ C∞0 (Ω).

From the results in [6, 17, 26, 51, 72], it is reasonable to expect that (1) admits

a solution that ful�lls the boundary datum in the sense of the trace function when the

trio (c(x), α(x), β(x)) satis�es some �compatibility condition�. For this reason, let us

consider the C0,1-manifold

Γt = {x ∈ ∂Ω / [−β(x) + t(1− α(x))]
1

1− 1/r(x)
+ 1 > 0},

and the number

σ = max

{
p− + (β+ − 1)/θ2 + α+ − 1

p−
,
p− + α+ − 1

p−

}
.

Our �rst result is related to existence of solutions and it is formulated as follows.
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Theorem 0.0.5 Assume (H1)− (H4). If

r(x) =


(

σp∗−
p−(σ−1)+1−α(x)

)′
if |β(x) + α(x) > 1| > 0 in Ωδ,(

p∗(x)
1−α−

)′
if |β(x) + α(x) > 1| = 0 in Ωδ,

then there exists a 0 < λ∗ ≤ ∞ such that the problem (1) admits a solution u = uλ ∈
W

1,p(x)
Γ1∪Γθ2

(Ω) with u(x) ≥ Cd(x), x ∈ Ω for each 0 ≤ λ < λ∗ given. In addition:

(i) if q+ < p− in (H2), then λ∗ =∞,

(ii) if c(x) ≥ cδ in Ωδ for some cδ > 0, then u(x) ≥ Cd(x)θ1 for x ∈ Ωδ and

u ∈ W 1,p(x)
Γθ1∪Γθ2

(Ω).

The variable exponents considered on our problem implied two integrability con-

ditions when were seeking solutions still inW
1,p(x)
0 (Ω). This happened because we were

not able to show the boundedness C1d(x)θ(x) ≤ u(x) ≤ C2d(x)θ(x) a.e. x ∈ Ω for

θ(x) = (p(x)− β(x))/(p(x) + α(x)− 1) for x ∈ Ω. For p, β and α constants and for

some particular cases, this inequality is true (see for instance Bougherara, Giacomoni

and Hernandez [7]). In fact, we prove (see Proposition 3.2.6) that C1d(x)θ1 ≤ u(x) ≤

C2d(x)θ2 for x ∈ Ωδ for c like that one considered in [7]. For a general c, we proved

an inequality with 1 in the place of θ1 (see Propositions 3.2.5 and 3.2.6). This fact has

great in�uence in the �nal shape of the solution, that is, in this case the solution u

belongs just to W
1,p(x)
Γ1∪Γθ2

(Ω), where

W
1,p(x)
Γ1∪Γθ2

(Ω) =


W

1,p(x)
Γ1

(Ω) if (α(x)− 1)(β(x) + α(x)− 1) ≤ 0,

W
1,p(x)
Γθ2

(Ω) if (α(x)− 1)(β(x) + α(x)− 1) > 0,

that is, W
1,p(x)
Γ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω) if and only if

α(x) < max
{

2− 1

r(x)
− β(x), 1 +

1

θ2

(
1− 1

r(x)
− β(x)

)}
for all x ∈ ∂Ω. (8)

More, as claimed in Theorem 0.0.5, if c(x) ≥ cδ in Ωδ for some cδ > 0, then

u ∈ W 1,p(x)
Γθ1∪Γθ2

(Ω) =


W

1,p(x)
Γθ1

(Ω) if α(x) ≤ 1,

W
1,p(x)
Γθ2

(Ω) if α(x) > 1,
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that is, u ∈ W 1,p(x)
0 (Ω) if either

α(x) ≤ min
{

1, 1 +
1

θ1

(
1− 1

r(x)
− β(x)

)}
or 1 < α(x) < 1 +

1

θ2

(
1− 1

r(x)
− β(x)

)
for all x ∈ ∂Ω. (9)

Returning to constant exponents that were treated in literature up to now, it

follows from Theorem 0.0.5 and above informations that the solution u still belongs

to W
1,p(x)
0 (Ω) if either W

1,p(x)
Γ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω) or W

1,p(x)
Γθ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω). In

particular, Theorem 0.0.5-(ii) includes the main results found in the literature about

this issue up to now:

(i) (Lazer and McKenna - 1991 [51]) Let p(x) ≡ 2, α(x) = α, β(x) ≡ 0 and c(x) ∈

C1(Ω) with c > 0 in Ω. Thus, it follows from (8) and (9), that

W
1,p(x)
Γθ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω)⇔ 0 < α < 3,

(ii) (Zhang and Cheng - 2004 [72]) Let p(x) ≡ 2, α(x) = α, β(x) = β ∈ (0, 2) and

c(x) = c with c > 0 in Ω. Thus,

W
1,p(x)
Γθ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω)⇔ 0 < α < 3− 2β,

(iii) (Mohammed - 2009 [55]) Let p(x) ≡ p, α(x) = α, β(x) ≡ 0 and c(x) ∈ L∞(Ω)

with c > 0 in Ω. Thus,

W
1,p(x)
Γθ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω)⇔ 0 < α <

2p− 1

p− 1
,

(iv) (Giacomoni, Bougherara and Hernandez - 2015 [7]) Let p(x) ≡ p, α(x) = α,

β(x) < p and c(x) ∈ L∞(Ω) with c > 0 in Ω. Thus,

W
1,p(x)
Γθ1∪Γθ2

(Ω) = W
1,p(x)
0 (Ω)⇔ α <

2p− 1

p− 1
− p

p− 1
β,

(v) (Yijing and Duanzhi - 2013 [66]) The problem −∆p(x)u = c(x)d(x)q(x)u−1−q(x), Ω

u = 0, ∂Ω
(10)

possesses a solution in W
1,p(x)
0 (Ω) for any 0 < c ∈ L1(Ω) and 0 < q ∈ C0,1(Ω) due

to (8). It includes the example presented in [66] that considered p(x) = q(x) = 2

and c(x) = c > 0 for some real constant c > 0.
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The proof of Theorem 0.0.5 relies on a generalized Galerkin Method, which con-

sists in �nding one solution to a "regularized problem" and then to perform an apriori

uniform estimates. From the hypothesis (H1), the term uα(x) may not be monotone in

u > 0 anymore, this makes it more di�cult to show uniform positivity estimates for

an approximate sequence in the interior of Ω (condition (ii) in De�nition 0.0.4).

The importance of our next result is principally because it may be applied to dif-

ferent types of problems, namely: purely singular with weak singularity (i.e., f(x, t) ≡ 0

and 0 < α(x) ≤ 1), purely singular with strong singularity (i.e., f(x, t) ≡ 0 and

α(x) > 1), singular-sublinear (α(x) > 0), purely sublinear (α(x) < 0) and to oscillated

problems (i.e. α(x) changing its signal). Moreover, since c(x)d(x)−β(x) may not lie in

L1(Ω), we emphasize that the analysis of the behavior of the trio (c, α, β) only near

the boundary is very essential.

The third result deals with regularity of solutions for Problem (1). It is stated as

a combination of Theorem 3.1.4 and the Corollary 3.1.5 of the Chapter 3.

Theorem 0.0.6 Assume (H1)−(H4). Let u ∈ W 1,p(x)
Γ1∪Γθ2

(Ω) be the solution for (1) given

by Theorem 0.0.5. Then there exists a 0 < λ∗ ≤ ∞ (λ∗ is possibly less than λ∗ given

in Theorem 0.0.5) such that for all 0 ≤ λ < λ∗, we have:

(i) u ∈ L∞(Ω) if r(x) > N/p−,

(ii) u ∈ C0,γ(U) for all open set U ⊆ Ω such that U ∩ ∂Ω = Γ1 ∪ Γθ2 if r(x) > N/p−,

(iii) u ∈ L
Nr−(p−+α−−1)

N−r−p− (Ω) if |β(x) + α(x) > 1| > 0 in Ωδ and r− < N/p− with and

max

{
N(p− + α+ − 1)

(N − p)(p− + α− − 1) + p−(p− + α+ − 1)
,

N(p− + β+−1
θ2

+ α+ − 1)

(N − p)(p− + α− − 1) + p−(p− + β+−1
θ2

+ α+ − 1)

}
≤ r−,

(iv) u ∈ L
Nr−(p−+α−−1)

N−r−p− (Ω) if |β(x) + α(x) > 1| = 0 in Ωδ and

Np−
Np− − (N − p−)(1− α−)

≤ r− <
N

p−
.

for δ > 0 as in Theorem 0.0.5. In addition, if q+ < p− in (H2), then λ∗ =∞. Besides

this, the same conclusions hold true if we change Γ1 for Γθ1.

The boundedness and regularity of the solutions depending on the trio (c, α, β)

have been considered in [6, 17, 26] for particular cases. We establishes similar results
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and prove the Hölder continuity adopting the method of De Giorgi developed by La-

dyzhenskaya and Ural'tseva and derived the suitable Caccioppoli type inequality [31].

To conclude, we present a su�cient condition for uniqueness of solution for 1.

Theorem 0.0.7 Assume that (H1)−(H4) holds true with r(x) > N/p−. If β(x) < 1 on

∂Ω, then there exists a 0 < λ∗∗ ≤ ∞ (λ∗∗ is possibly less than λ
∗ given in Theorem 0.0.5)

such that for all 0 ≤ λ < λ∗∗ the problem (1) admits an only solution in W
1,p(x)
loc (Ω) in

sense of De�nition 0.0.4. Beside this, λ∗∗ = +∞ if p− = q+.

Theorem 0.0.2 will be fundamental to prove uniqueness of W
1,p(x)
loc (Ω)-solutions

for (1). In the last years, some papers have proved uniqueness of solutions for purely-

singular problems for di�erent operators. The semilinear case p(x) ≡ 2 and g(x, t) =

t−α, for α > 0 being a real constant, was proved in [14]. This result was recently

extended for g(x, t) = a(x)t−α with 0 � a(x) ∈ L1(Ω) for p(x) = 2 in [13], for p(x) ≡ p

in [15], while in [16] the fractional p−Laplacian operator was considered. Our result

generalizes and complements these results, since we consider the variable exponent

p(x)-Laplacian and the variable power α(x), which can oscillates from negative to

positive values. That is, we do not require g(x, t) being monotone and do not impose

g(x, t) = f(x)h(t).

As a novelty in this chapter, we point out that we took advantage as most as

possible of the variability of the exponents and powers. As a consequence of this,

we have shown that the di�culty in answering the principal issues about this kind of

problem is concentrated in understanding the behaviors of the powers and exponents

just near to the boundary of the domain where the singularity is really triggered for

Dirichlet boundary conditions problems. For instance, the �integrability condition� of

trio (c, α, β) only near the boundary of the domain is su�cient to obtain existence of

solutions still in W
1,p(x)
0 (Ω). We conjecture that the converse claim is true as well.

In Chapter 4, we study the problem −∆p(x)u = a(x)u−α(x) + λf(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(11)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, 0 < a ∈ Lr(x)(Ω) for

some r ∈ C(Ω), p ∈ C1(Ω), λ > 0 is a real parameter and f(x, t) has a superlinear

local behavior at t = +∞ to be presented below.
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Coclite and Palamieri [21] consider the problem −∆u = u−α + λup = g(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(12)

with α, p > 0 and λ > 0 and showed that there exists λ∗ > 0 such that (12) has a

solution for all 0 < λ < λ∗ and no classical solution for λ > λ∗.

Long, Sun and Wu [53] studied (12) with 0 < α < 1 and 1 < p < 2∗ − 1 to

obtain the existence of a λ∗ > 0 such that (12) has at least two weak solutions for all

0 < λ < λ∗. Later, Sun andWu [54] returned to the problem (12) and obtained an exact

result value for λ∗ > 0. After these works, a broad literature has been accumulating

in relation to Laplacian operator with g(x, s) in di�erent kinds of hypotheses, see for

instance [1, 44, 46, 47] and their references.

More general operators have been considered recently, as well. For the p−Laplacian

 −∆pu = a(x)u−α + λf(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω.
(13)

Perera and Zhang [62] obtained multiplicity of solutions for (13) combining a cuto�

argument, variational methods, results relating to W 1,p versus C1 minimizers, with

p ≥ 2, α > 0 and f(x, t) satisfying the classical Ambrosetti-Rabinowitz condition and

(Hα) there are φ0 ≥ 0 in C1
0(Ω) and q > n such that aφ−α0 ∈ Lq(Ω).

Later, Perera and Silva [60] improved above result by considering stronger hy-

potheses. For instance, they did not assume p ≥ 2 or any stronger regularity assump-

tion on f . Giacomoni, Schindler and Takac [41] established the global multiplicity

results of the above problem for a certain range of λ by considering 0 < α < 1 and

f(x, t) = tq. Still related to problem 13, we may also cite [39, 59, 61] and their refer-

ences.

In context of p(x)−Laplacian, to our knowledge, there exists few works treating

the problem like (11). Byun and Ko [9] and Ghamni and Saoudi [40] −∆p(x)u = λu−α(x) + f(x, u) in Ω,

u > 0 in Ω, u = 0, on ∂Ω,
(14)
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improved the principal result in [41] by considering variable 0 < α(x) < 1 and f(x, t)

superlinear at +∞ throughout the domain. Their proof is variational and the funda-

mental tool used in their approach is an extension for the p(x)−Laplacian context of

the local minimization C1 versus W
1,p(x)
0 .

To state ours results, let us �rst de�ne a solution to Problem (11).

De�nition 0.0.8 A positive function u ∈ W 1,p(x)
0 (Ω) is a solution to (4.1) if∫

Ω

|∇u|p(x)−2∇u∇φdx =

∫
Ω

a(x)u−α(x)φdx+ λ

∫
Ω

f(x, u)φdx

for all φ ∈ W 1,p(x)
0 (Ω).

Besides this, let us remind that Ωδ := {x ∈ Ω / d(x) < δ}, for each δ > 0, stands

for the interior δ-strip around the boundary of the domain,

Γt = {x ∈ ∂Ω / [t(1− α(x))]
1

1− 1/r(x)
+ 1 > 0}, for t ∈ {1, θ1, θ2},

is a subset of the boundary of the domain and the numbers θ1 and θ2 are de�ned by

θ1 =


max
x∈Ωδ

p(x)

p(x) + α(x)− 1
if α(x) > 1,

1 if α(x) ≤ 1,

and θ2 = min
x∈Ωδ

p(x)

p(x) + α(x)− 1
.

Related to the functions α(x), a(x) and f(x, t), we make the following general

assumptions. Assume that there exists a δ > 0 such that:

(H1) α : Ω→ R is a C0,1(Ω)-function that satis�es α− > 1− p−,

(H2) 0 < a ∈ Lr(x)(Ω) with r(x) > N/p− and one of the items below:

(i) a ∈ L∞(Ωδ) and Γ1 ∪ Γθ2 = ∂Ω,

(ii) a(x) ≥ aδ > 0 in Ωδ, a ∈ L∞(Ωδ) and Γθ1 ∪ Γθ2 = ∂Ω,

(H3) a(x)
1−α(x)

∈ Lr(x)({α(x) 6= 1}).

(f1) f : Ω × [0,∞) → [0,∞) is a Caratheodory function such that for each M > 0

given there exists c1 = c1(M) > 0 satisfying

0 ≤ f(x, s) ≤ c1 for every 0 ≤ s ≤M and a.e. x in Ω,

14



where the last hypothesis was inspired on a hypotheses in [60].

Our �rst result is.

Theorem 0.0.9 Suppose (H1), (H2) and (f1) are satis�ed. Then there exist λ0 > 0

such that the problem (11) has a positive weak solution uλ ∈ W 1,p(x)
0 (Ω) ∩ L∞(Ω) for

each 0 < λ < λ0 given satisfying uλ ≥ m0d(x) in Ω for some m0 > 0. In addition,

there exists M0,M1,m1 > 0 such that:

(i) m0d(x) ≤ uλ ≤M0d(x)θ2 for x ∈ Ωδ if (H2)(i) holds,

(ii) m1d(x)θ1 ≤ uλ ≤M1d(x)θ2 for x ∈ Ωδ if (H2)(ii) holds.

We can also consider a setting in what f(x, s) is allowed to change its signal and

is bounded from below by integrable functions on bounded intervals of the variable

s > 0, that is:

(f2) f : Ω × [0,∞) → R is a Caratheodory function such that for each M > 0 given

there exists c2 = c2(M) > 0 and 0 ≤ h = hM ∈ L1(Ω) satisfying

−h(x) ≤ f(x, s) ≤ c2 for every 0 ≤ s ≤M and a.e. x ∈ Ω,

(f3) there are ζ > 0 and c3 > 0 such that

f(x, s) ≥ −c3a(x) for every 0 ≤ s ≤ ζ and a.e. x ∈ Ω.

Our second result is.

Theorem 0.0.10 Suppose (H1), (H2), (f2) and (f3) are satis�ed. If α(x) ≥ 0 in Ω

with α(x) < 1 on ∂Ω, then there exist λ1 > 0 such that the problem (11) has a positive

weak solution uλ ∈ W 1,p(x)
0 (Ω)∩L∞(Ω) for each 0 < λ < λ1 given satisfying uλ ≥ Cd(x)

in Ω for some C > 0.

The proofs of Theorem 0.0.9 and 0.0.10 relied upon �nding a sub and a superso-

lution, say u, u, for (11) in W
1,p(x)
0 (Ω)∩L∞(Ω), minimizing an appropriated C1 energy

functional in W
1,p(x)
0 (Ω) and showing that this minimum belongs to the cone [u, u] and

is an weak solution for (11). To do this, the results obtained in Chapter 3 were deter-

minants, since u and u are solutions for an appropriated singular-sublinear problems.

More, the Comparison principle demonstrated in Chapter 2 was a fundamental tool

used to show that u ≤ u. However, when f(x, t) is allowed to change its signal, the
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restriction α(x) ≥ 0 was necessary in order to obtain a comparison between the sub

and supersolution.

In order to establish the existence of at least two solutions for the problem (11),

we also assume:

(f4) there exists C > 0 such that

|f(x, t)| ≤ C(1 + tq(x)−1) for t > 0 and a.e. x ∈ Ω,

with 1 < q ∈ C(Ω) and p+ < q+ < p∗−,

(f5) there exists a subdomain ∅ 6= D ⊂ Ω such that

lim
t→∞

F (x, t)

tp+
= +∞ uniformly on x ∈ D,

where F (x, t) =
∫ t

0
f(x, s)ds for t > 0 and x ∈ Ω,

(f6) there exist t0, β0 ≥ 0 and τ ∈ C(Ω) with 1 < τ(x) < p−, x ∈ Ω such that

p+F (x, t)− f(x, t)t ≤ β0t
τ(x) for all t > t0 and a.e. x ∈ Ω.

This set of hypotheses was inspired in [37]. Note that (f4) does not impose

q(x) > p(x) in Ω and (f5) implies that f(x, s) is just locally (p+ − 1)−superlinear at

in�nity just in D, that is,

lim
t→+∞

f(x, t)/tp+−1 = +∞ uniformly in D.

The hypothesis (f6), as pointed out in [37] for constants functions s(x) and q(x), is

a weaker form of the classical condition of Ambrosetti-Rabinowitz. For instance, the

function

F (x, t) = b(x)ts(x) + c(x)tq(x)

with 1 < s− ≤ s+ < p− ≤ p+ < q+ < p∗−, b ≥ 0, c ∈ R, satis�es (f4)− (f6), but do not

satisfy Ambrosetti-Rabinowitz condition if b ≡ 0 in D and c ≡ 0 in some K ⊂ Ω/D.

Theorem 0.0.11 Suppose (H1) − (H3), (f4) − (f6) are satis�ed. There exists λ∗ > 0

such that the problem (11) has at least two di�erent solutions uλ, vλ ∈ W 1,p(x)
0 (Ω) for

each 0 < λ < λ∗ given. In addition, uλ ≤ vλ and uλ has negative energy while vλ is a

positive energy solution.
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The proof of Theorem 0.0.11 rely heavily on perturbation arguments and on

the variational method employed by Perera and Silva [60]. We verify that the cut-

o� functional associated with the problem satisfy the geometric hypotheses of the

Mountain Pass Theorem and the Cerami condition. However, the changing of signal

α(x) provides an obstacle in estimates and, with our set of hypotheses, we do not know

that the solutions (11) belongs to C1, which prevent us use results relating of W 1,p(x)

versus C1 minimizers.

The importance of our result, related to other works involving variable exponents,

is principally due to the fact that we do not impose 0 < α(x) < 1 in Ω when f(x, t)

is nonnegative and we just demand α(x) < 1 on ∂Ω if f(x, t) is allowed to change

its signal. Moreover, we do not require in the hypothesis (f4) that q− > p+ in whole

Ω, as in the former works. We take advantage of the result obtained in Chapter 3 to

obtain the existence of solutions in W
1,p(x)
0 (Ω) with a di�erent hypothesis that (Hα),

as considered in [39, 60, 62], namely, adt(1−α(x)) ∈ L1(Ωδ), for t = {1, θ1, θ2} given

in Theorem 0.0.5. Besides these, the results obtained in Chapter 4 complements the

results in Chapter 3 in the sense that a local superlinearity at in�nity of f(x, t) implies

multiplicity of solutions, in contrast to uniqueness obtained if f(x, t) is sublinear in

whole Ω.

In order to make the chapters self-su�cient, we will state once again, in each

chapter, the main results as well as the problems and hypotheses considered in the

introduction.
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Notation and Terminology

• C and Ci denote positive constants.

• RN denote the N-dimensional Euclidean Space.

• Br(x) is the open ball centered in x radius r > 0.

• If Ω ⊂ RN is Lebesgue mensurable, then |Ω| denote the Lebesgue measure of Ω.

• The notation xn → x mean strongly convergence.

• The notation xn ⇀ x mean weakly convergence.

• X ↪→ Y denote that X is continuously embedded in Y .

• X ↪→↪→ Y denote that X is compactly embedded in Y .

• If u : Ω → R is mensurable, then u− = −min{u(x), 0} and u+ = max{u(x), 0}

denote the negative and positive part, respectively.

• If u : Ω→ R is mensurable, then u− = ess inf
Ω

u(x) and u+ = ess sup
Ω

u(x).

• d(x) = inf
y∈∂Ω
|x− y|, for x ∈ Ω, the standard distance function to ∂Ω,

• Ωs = {x ∈ Ω / d(x) ≤ s}, for s > 0, the strip around of the boundary of Ω.

0.0.1 Space of Functions

• C(Ω) denote the space of continuous functions in Ω and C0(Ω) the continuous

functions with compact support in Ω.



• Ck(Ω) consists of those functions on Ω having continuous derivatives up to order

k and C∞(Ω) = ∩k≥1C
k(Ω).

• C∞0 (Ω) = C∞(Ω) ∩ C0(Ω).

• Lp(Ω) =
{
u : Ω→ R is mensurable /

∫
Ω
|u(x)|pdx <∞

}
, endowed with the norm

||u||p = inf

(∫
Ω

|u(x)|p dx
) 1

p

.

• L∞(Ω) =

{
u : Ω→ R is mensurable / ess sup

x∈Ω
|u(x)| <∞

}
, endowed with the

norm

||u||∞ = ess sup
x∈Ω

|u(x)|.

• L∞+ (Ω) =

{
p ∈ L∞(Ω) / ess inf

x∈Ω
p > 1

}
.

• If p ∈ L∞+ (Ω), we de�ne the the variable exponent space by

Lp(x)(Ω) =

{
u : Ω→ R is mensurable /

∫
Ω

|u(x)|p(x)dx <∞
}
,

endowed with the Luxemburg norm

||u||p(x) = inf

{
λ > 0 /

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
,

• If p ∈ L∞+ (Ω), we de�ne the space

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) / |∇u| ∈ Lp(x)(Ω)

}
endowed with the norm

||u||1,p(x) = ||u||p(x) + ||∇u||p(x).

• The spaceW
1,p(x)
0 (Ω) is de�ned as the closure of C∞0 (Ω) inW 1,p(x)(Ω) with respect

of the norm || · ||1,p(x) endowed with the norm

||u|| = ||∇u||p(x).
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Chapter 1

About variable exponent spaces

In this chapter, let us present some properties and results about the spaces

Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω), where Ω ⊂ RN is a bounded open set. For the

interested reader in more information about these spaces, including the proofs omitted

in this chapter, we refer the papers Fan and Zhao [34], Kovácik and Rákosník [49] and

the book of Diening et al. [28].

1.1 Lebesgue spaces with variable exponents

Let us denote by L∞+ (Ω) the set

L∞+ (Ω) =

{
u ∈ L∞(Ω) / ess inf

x∈Ω
u ≥ 1

}
and by Lp(x)(Ω) the variable exponent space de�ned by

Lp(x)(Ω) =

{
u : Ω→ R is mensurable /

∫
Ω

|u(x)|p(x)dx <∞
}
,

endowed with the Luxemburg norm

||u||p(x) = inf

{
λ > 0 /

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
,

for each p ∈ L∞+ (Ω) given. This space is well-known as the variable exponent Lebesgue

space.

It is well-known that when p(x) = p is constant the Luxemburg norm coincides

with the usual norm in Lp(Ω), that is, the variable exponent Lebesgue space turns into

the classical Lebesgue space.



Now, given a p ∈ L∞+ (Ω), let us we denote by p− and p+ the following real numbers

p− = ess inf
x∈Ω

p(x) and p+ = ess sup
x∈Ω

p(x).

and de�ne the modular function ρ : Lp(x)(Ω)→ R by

ρ(u) =

∫
Ω

|u(x)|p(x).

Proposition 1.1.1 ([34], Theorems 1.2 and 1.3) Let u ∈ Lp(x)(Ω). Then:

1. ||u||p(x) < 1 (= 1, > 1)⇔ ρ(u) < 1 (= 1, > 1),

2. ||u||p(x) > 1⇒ ||u||p−p(x) ≤ ρ(u) ≤ ||u||p+

p(x),

3. ||u||p(x) < 1⇒ ||u||p+

p(x) ≤ ρ(u) ≤ ||u||p−p(x),

4. ||u||p(x) = a if, and only if,

∫
Ω

(
|u|
a

)p(x)

dx = 1.

Proposition 1.1.2 ([34], Theorem 1.4) Let (un) ⊂ Lp(x)(Ω). Then,

1. lim
n→∞

||un||p(x) = 0 if, and only if, lim
n→∞

ρ(un) = 0.

2. lim
n→∞

||un||p(x) = +∞ if, and only if, lim
n→∞

ρ(un) = +∞.

In special, for some u ∈ Lp(x)(Ω),

lim
n→∞

||un − u||p(x) = 0 if, and only if, lim
n→∞

ρ(un − u) = 0.

As a Corollary of the above result, we have.

Corollary 1.1.3 ([34]) Let (un) ⊂ Lp(x)(Ω) with un → u in Lp(x)(Ω). Then there

exists a subsequence (unk) such that

1. unk(x)→ u(x) a.e. in Ω,

2. |unk(x)| ≤ h(x) for all k ≥ 1 and a.e. in Ω with h ∈ Lp(x)(Ω).

An important estimate that will be frequently used in this work is given in the

next proposition.

Proposition 1.1.4 ([34]) Let h, p ∈ L∞+ (Ω) with h(x) ≤ p(x) a.e in Ω, and u ∈
Lp(x)(Ω). Then, |u|h(x) ∈ L

p(x)
h(x) (Ω) and∥∥|u|h(x)

∥∥
p(x)
h(x)

≤ ||u||h+

p(x) + ||u||h−p(x)

or ∥∥|u|h(x)
∥∥
p(x)
h(x)

≤ max
{
||u||h+

p(x), ||u||
h−
p(x)

}
.

Reciprocally, if |u|h(x) ∈ L
p(x)
h(x) (Ω) with h(x) ≤ p(x), then u ∈ Lp(x)(Ω), and there is a

number h0 ∈ [h−, h+] such that
∥∥|u|h(x)

∥∥
p(x)
h(x)

= ||u||h0

p(x).
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Proposition 1.1.5 ([34], Theorems 1.6 and 1.10) Let p ∈ L∞+ (Ω). Then the space

(Lp(x)(Ω), ||·||p(x)) is separable. In addiction, if p− > 1, then Lp(x)(Ω) is uniform convex

and thus is re�exive.

Given p ∈ L∞+ (Ω), we denote by p′(x) the conjugate function of p(x), that is,

1

p(x)
+

1

p′(x)
= 1

with the convention that 1/∞ = 0. Now we present the generalization of Hölder's

Inequality.

Proposition 1.1.6 ([49], Theorem 2.1) Let p ∈ L∞+ (Ω) with p− > 1. For any u ∈
Lp(x)(Ω) and v ∈ Lp′(x)(Ω) we have∣∣∣∣∫

Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
||u||p(x)||v||p′(x) ≤ 2||u||p(x)||v||p′(x).

In addition, if 1/p(x) + 1/p′(x) + 1/p′′(x) = 1 holds true, then∣∣∣∣∫
Ω

uvwdx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−
+

1

p′′−

)
||u||p(x)||v||p′(x)||w||p′′(x) ≤ 3||u||p(x)||v||p′(x)||w||p′′(x)

for all u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω) and w ∈ Lp′′(x)(Ω).

To end, we present the natural inclusion of variable exponent Lebesgue's spaces.

Proposition 1.1.7 ([34], Theorem 1.11) Let h, p ∈ L∞+ (Ω) with 1 ≤ h(x) ≤ p(x)

a.e in Ω. Then Lp(x)(Ω) is continuously embedding into Lh(x)(Ω).

1.2 Sobolev spaces with variable exponents

In this section, we consider only the space of Sobolev W 1,p(x)(Ω). The de�nition

and properties of the spaces W k,p(x)(Ω), with k > 1, can be found in the references

quoted above in this chapter.

The variable exponent Sobolev space W 1,p(x)(Ω) is de�ned by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) / |∇u| ∈ Lp(x)(Ω)

}
endowed with the norm

||u||1,p(x) = ||u||p(x) + ||∇u||p(x). (1.1)
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Similarly to Lp(x)(Ω), the Banach space W 1,p(x)(Ω) is separable and, if p− > 1,

it is also a re�ective space. The space W
1,p(x)
0 (Ω) is de�ned as the closure of C∞0 (Ω)

in W 1,p(x)(Ω) with respect of the norm de�ned in (1.1). It is also worth to point out

that unlike of the validity of the density of C∞(Ω) in W 1,p(Ω) when p(x) = p > 1, in

the context of the variable exponent space W
1,p(x)
0 (Ω) this will be true if we require

additional conditions on the domain and exponent p(x), for instance, if ∂Ω is Lipschitz

continuous and p(x) satis�es the log Hölder condition, that is,

log |x− y|−1|p(x)− p(y)| ≤ C for all x, y ∈ Ω with 0 < |x− y| < 1

for some C > 0, then C∞(Ω) is dense in W 1,p(x)(Ω) with respect of the norm de�ned

in (1.1). See for instance [28].

By using similar arguments like those used in [48, Lemma 1.25], we obtain.

Proposition 1.2.1 Let v ∈ W 1,p(x)(Ω).

(i) If v has compact support, then v ∈ W 1,p(x)
0 (Ω).

(ii) If u ∈ W 1,p(x)
0 (Ω) and 0 < v < u a.e. in Ω, then v ∈ W 1,p(x)

0 (Ω).

(iii) If u ∈ W 1,p(x)
0 (Ω) and |v| < |u| a.e. in Ω \K, where K is a compact subset of Ω,

then v ∈ W 1,p(x)
0 (Ω).

In this setting, the variable critical function-exponent for embedding of Sobolev

to Lebesgue with variable exponents is de�ned by

p∗(x) =


Np(x)

N − p(x)
if N > p(x),

+∞ if N ≤ p(x),

and it is called as the critical function with respect to p(x).

Proposition 1.2.2 ([34], Theorem 2.3) Let p ∈ L∞+ (Ω). If p, q ∈ C(Ω) with 1 <

p− ≤ p+ < N , then:

(i) W 1,p(x)(Ω) ↪→ Lq(x)(Ω) if 1 ≤ q(x) ≤ p∗(x) a.e. in Ω,

(ii) W 1,p(x)(Ω) ↪→↪→ Lq(x)(Ω) if 1 ≤ q(x) < p∗(x) a.e. in Ω.

More, there exists a constant C > 0 such that

||u||p(x) ≤ C||∇u||p(x) for all u ∈ W 1,p(x)
0 (Ω).
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The last inequality is well known as Poincaré's inequality. As a consequence of it,

we infer that ||∇u||p(x) de�ne on W
1,p(x)
0 (Ω) an equivalent norm to ||u||1,p(x). From now

on, we are going to denote this norm by ||u|| and we will use it for the whole paper.

Proposition 1.2.3 Let u ∈ W
1,p(x)
0 (Ω) and the modular function ρ0 : Lp(x)(Ω) → R

de�ned by ρ0(u) =
∫

Ω
|∇u(x)|p(x). Then the same conclusion of Proposition 1.1.1 holds

if we consider || · || and ρ0.

The notion of a map of (S+)-type is useful to help us to prove that a sequence

converge strongly in W
1,p(x)
0 (Ω) under appropriate assumptions.

We say that a function is (S+)-type

if un ⇀ u in W
1,p(x)
0 (Ω) and lim sup

n→∞
〈Lun, un − u〉 ≤ 0, then un → u in W

1,p(x)
0 (Ω).

Proposition 1.2.4 ([33], Theorem 3.1) The map L : W
1,p(x)
0 (Ω)→ W−1,p(x)(Ω) de-

�ned by

〈Lu, v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx

is:

(i) continuous,

(ii) bounded,

(iii) strictly monotone, that is,

〈Lu− Lv, u− v〉 > 0 for all u, v ∈ W 1,p(x)
0 (Ω), u 6= v,

(iv) (S)+-type.

Below, we present two inequalities that will be useful in parts of this thesis.

Lemma 1.2.5 ([45], Hardy's Inequality) Let Ω be an open and bounded subset of

RN . Assume that there exists a constant θ > 0 such that

|Br(y) ∩ Ωc| ≥ θ|Br(y)|

for every y ∈ ∂Ω and r > 0. Then there exists positive constants c and a0 depending

only on p,N and θ such that the inequality∥∥∥∥ u

d(x)1−a

∥∥∥∥
p(x)

≤ c||d(x)a∇u||p(x),

holds for all u ∈ W 1,p(x)
0 (Ω) and a ∈ [0, a0).
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Lemma 1.2.6 (Simon's Inequality) For all 1 < p ∈ C(Ω) there exists a positive

constants C = C(p) such that

(
|∇u|p(x)−2∇u− |∇v|p(x)−2∇v

)
∇(u−v) ≥


(p− − 1)

|∇(u− v)|
(|∇u|+ |∇v|)2−p(x)

if 1 < p(x) < 2,

23−p+

p+

|∇(u− v)|p(x) if p(x) ≥ 2

for all u, v ∈ W 1,p(x)(Ω).

1.3 Regularity results in variable exponents spaces

In this section, we establish some results concerning regularity of bounded func-

tions satisfying some relations involving the p(x)−Laplace operator. The �rst one is an

improvement of a result of Fan and Zhao [31] that was the �rst result in this direction

n the context of variable exponents.

We highlight that for our purposes, we need of the below Proposition 1.3.5 instead

of the classical Fan's result [31], because ours weights a(x), b(x) in (1) are not in L∞(Ω).

Despite of this generality, we are to show that our solution u of the Problem (1) satis�es

C1d(x) ≤ u(x) ≤ C2d(x)θ2 close to the boundary of Ω for some C1, C2 > 0, where d(x)

is the standard distance function to the boundary of Ω. This makes possible to verify

(1.3) and apply Proposition 1.3.5.

De�nition 1.3.1 Let M,γ, γ1, δ, r, R be positive constants with δ ≤ 2, r > 1 and

BR(y) ⊂ Ω. We say that a function v belongs to class Bp(·)(BR(y),M, γ, γ1, δ, 1/r) if

v ∈ W 1,p(x)(Ω) with max
BR
|v(x)| ≤ M and the functions w(x) = ±v(x) satisfy the

inequalities, ∫
Ak,τ

|∇w|p(x)dx ≤ γ

∫
Ak,t

(
w(x)− k
t− τ

)p(x)

dx+ γ1|Ak,t|1−
1
r (1.2)

for arbitrary 0 < τ < t < R and k such that k ≥ max
Bt(y)

w(x) − σM , where Ak,ρ =

{x ∈ Bρ : w(x) > k}. In a analogue way, we say that a function v belongs to class

Bp(·)(BR(z) ∩ ∂Ω,M, γ, γ1, δ, 1/r) if v ∈ W 1,p(x)(BR(z) ∩ Ω) with max
BR(z)∩Ω

|v(x)| ≤ M ,

max
BR(z)∩∂Ω

|v(x)| <∞ and (1.2) holds for k ≥ max{ max
BR(z)∩Ω

w(x)− δM, max
BR(z)∩∂Ω

w(x)}.

De�nition 1.3.2 We say that Ω satis�es an exterior cone condition at a point x ∈ ∂Ω

if there exists a �nite right circular cone Vx with vertex x such that Ω ∩ Vx = x, in

particular, say that Ω satisfes a uniform exterior cone condition on ∂Ω if Ω satisfes an

exterior cone condition at every x ∈ ∂Ω and the cones Vx are all congruent to some

�xed cone V .
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Lemma 1.3.3 (Lemma 4.5, [68]) Let p ∈ C(Ω), 1 < p− ≤ p+ < ∞ and be log-

Hölder continuous in Ω and let R0 ∈ (0, 1), σ0 > 1 be numbers such that p0σ0 > N ,

where p0 = min
BR0

(x0)∩Ω
p(x) and x0 ∈ Ω. Let BR′(y) ⊂ BR0(x0)∩Ω and u ∈ W 1,p(x)(BR′)∩

L∞(BR′). Suppose that, for arbitrary R ≤ R′, there exists a number r ≥ σ0 such that

u ∈ Bp(·)(BR(y),M, γ, γ1, δ, 1/r), where M is a positive number satisfying ||u||L∞(BR′ )
≤

M . Then there exists a constant s = s(N, p0, σ0,maxBR0
(x0)∩Ω p(x),M, γ, L) > 2 such

that, for arbitrary R ≤ R′,

sup
x∈BR(y)

u(x)− inf
x∈BR(y)

u(x) ≤ cR′−αRα,

where c, α are constants independent of M .

Lemma 1.3.4 (Lemma 4.10, [68]) Let p ∈ C(Ω), 1 < p− ≤ p+ < ∞ and be log-

Hölder continuous in Ω and let R0 ∈ (0, 1), σ0 > 1 be numbers such that p0σ0 >

N , where p0 = min
BR0

(x0)∩Ω
p(x) and x0 ∈ Ω. Suppose that Ω satisfes an exterior cone

condition at z ∈ ∂Ω. Let BR′(z) ⊂ BR0(x0) and u ∈ W 1,p(x)(BR′(z)∩Ω)∩L∞(BR′(z)∩
Ω). Suppose that, for arbitrary R ≤ R′, there exists a number r ≥ σ0 such that

u ∈ Bp(·)(BR(y)(z) ∩ Ω,M, γ, γ1, δ, 1/r) and satis�es

sup
x∈BR(z)∩∂Ω

u(x)− inf
x∈BR(z)∩∂Ω

u(x) ≤ β0R
α0 ,

where β0, α0 are positive constants andM is a positive number satisfying ||u||L∞(BR′ (z)∩Ω) ≤
M . Then there exists a constant s = s(N, p0, σ0,maxBR0

(x0)∩Ω p(x),M, γ, L, Vz) > 2

such that, for arbitrary R ≤ R′,

sup
x∈BR(z)

u(x)− inf
x∈BR(z)

u(x) ≤ cR′−αRα,

where c, α are constants independent of M .

As a consequence of above Lemmas, we have the result.

Proposition 1.3.5 If p ∈ C(Ω), 1 < p− ≤ p+ < ∞ and be log-Hölder continuous

in Ω, then Bρ(·)(BR(y),M, γ, γ1, δ, 1/r) ⊂ C0,β1(Ω), where the constant β1 ∈ (0, 1] is

independent of M and γ. In addiction, if Ω satisfes an exterior cone condition at

z ∈ ∂Ω and u ∈ Bp(·)(BR(z) ∩ ∂Ω,M, γ, γ1, δ, 1/r) with u|∂Ω ∈ C0,α1(∂Ω) satis�es

sup
x∈BR(z)∩∂Ω

u(x)− inf
x∈BR(z)∩∂Ω

u(x) ≤ CRα1 (1.3)

for some C, α > 0 constants, then u ∈ C0,β2(Ω), where the constant β2 ∈ (0, 1] is

independent of M and γ.
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The following Lemma is due to Ladyzhenskaya and Uraltseva [50] and will be

fundamental to apply the above Proposition.

Lemma 1.3.6 ([50], Lemma 4.7) Let (xn) be a sequence such that x0 ≤ λ−
1
ηµ
− 1
η2

and xn+1 ≤ λµnx1+η
n for any n ∈ N with λ, η and µ being positive constants and µ > 1.

Then (xn) converges to 0 as n→∞.

Another application of the above Lemma is the next result.

Lemma 1.3.7 ([71], Lemma 2.4) Suppose 0 < b0 ≤ b(·) ∈ Lα(x)(Ω) with α(x) > N

on Ω. Let M > 0 and u is the unique solution of the problem{
−∆p(x)u = Mb(x) in Ω,

u = 0 on ∂Ω.

Then, ||u||∞ ≤ C1M
1

(p−−1) for M ≥ 1, and ||u||∞ ≤ C2M
1

(p+−1) for M < 1, where

C1, C2 are positive constants depending on p+, p−, N, ||b||Lα− (Ω) and |Ω|.

The next C1-regularity result is due to Fan.

Theorem 1.3.8 (Theorem 1.2, [29]) If p is Hölder continuous on Ω and

|f(x, t)| ≤ c1 + c2|t|q(x)−1 for all x ∈ Ω and t ∈ R,

where q ∈ C(Ω) and 1 < q(x) < p∗(x) for x ∈ Ω, then every solution u ∈ W 1,p(x)
0 (Ω) of{

−∆p(x)u = f(x, u) in Ω,

u = 0 on ∂Ω.

belongs to C1,γ(Ω) for some γ ∈ (0, 1).

To end, we present a strong maximum principle for the p(x)−Laplacian operator

due to Fan, Zhang and Zhao.

Proposition 1.3.9 (Theorems 1 and 2, [69]) Suppose that p ∈ C1(Ω), p− > 1,

u ∈ W 1,p(x)(Ω), u ≥ 0 and u 6= 0 in Ω. If −∆p(x)u + h(x)uq(x)−1 ≥ 0 in Ω, where

h ∈ L∞(Ω), h ≥ 0 and p(x) ≤ q(x) ≤ p∗(x), then u > 0 in Ω, and when u ∈ C1(Ω),

then ∂u
∂η
> 0 on ∂Ω, where η is the inward unit normal on ∂Ω.
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Chapter 2

A Comparison Principle for a kind of

(p(x)− 1)−sublinear problems

2.1 Introduction

In this chapter we present a Comparison principle for sub and super solutions

in W
1,p(x)
loc (Ω) to a kind of (p(x) − 1)−sublinear problems, which will be so useful in

several points of this thesis.

Consider the problem

 −∆p(x)u = g(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(2.1)

where g : Ω× (0,∞)→ [0,+∞) is a function satisfying:

(g1) t 7→ g(x, t) is a continuous function a.e. x ∈ Ω and for each t > 0 the function

x 7→ g(x, t) is mensurable,

(g2) t 7→ g(x, t)

tp−−1
is strictly decreasing on (0,∞) for a.e. x ∈ Ω.

Note that under the above hypotheses, we do not impose growth restriction just

on g with respect to the variable t and allow g(x, t) to be singular at the origin, that is,

g(x, t)→ +∞ as t→ 0+ a.e. x ∈ Ω. For instance, the function g(x, t) = t−α(x) + tβ(x),

t > 0, with α(x) > 1− p− and β(x) < p− − 1 on Ω satis�es (g1)− (g2).



From Lazer and Mckenna [51], the existence of weak solutions with zero-boundary

value in the sense of the trace function to singular problems is possible just in some

cases. For example, if p(x) ≡ 2 and g(x, t) = t−α, t > 0, then there exists a solution

still in H1
0 (Ω) if, and only if, 0 < α < 3. Therefore, the way of understanding the

boundary condition will be the following:

De�nition 2.1.1 Let u ∈ W 1,p(x)
loc (Ω). We say that u ≤ 0 on ∂Ω if (u−ε)+ ∈ W 1,p(x)

0 (Ω)

for every ε > 0. Furthermore u = 0 on ∂Ω if u is nonnegative and u ≤ 0 on ∂Ω.

It is readily seen that if u ∈ W
1,p(x)
0 (Ω), then u = 0 on ∂Ω in the sense of the

above de�nition. Moreover, the function

u(x) =



σd(x)θ if d(x) < δ,

σδθ +

∫ d(x)

δ

σθδθ−1

(
2δ − t
δ

) 2
p−−1

dt if δ ≤ d(x) < 2δ,

σδθ +

∫ 2δ

δ

σθδθ−1

(
2δ − t
δ

) 2
p−−1

dt if 2δ ≥ d(x),

where d(x) is the distance function in Ω, does not belong to W
1,p(x)
0 (Ω) if θ > 1−1/p+,

but (u− ε)+ ∈ W 1,p(x)
0 (Ω) for each ε > 0 given.

De�nition 2.1.2 We say that u ∈ W
1,p(x)
loc (Ω) is a subsolution of (2.1) if u ≥ 0,

g(x, u) ∈ L1
loc(Ω) and∫

Ω

|∇u|p(x)−2∇u∇φdx−
∫

Ω

g(x, u)φdx ≤ 0 ∀ φ ∈ C∞0 (Ω), φ ≥ 0.

Analogously, u ∈ W 1,p(x)
loc (Ω) is a supersolution of (2.1) if u ≥ 0, g(x, u) ∈ L1

loc(Ω) and∫
Ω

|∇u|p(x)−2∇u∇φdx−
∫

Ω

g(x, u)φdx ≥ 0 ∀ φ ∈ C∞0 (Ω), φ ≥ 0.

The main result of this chapter is the following Comparison Principle.

Theorem 2.1.3 Assume that (g1)− (g2) hold and suppose that for each h > 0

(g3) the functional Ih :→ R, de�ned by

Ih(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

Gh(x, u)dx,

is coercive and weakly lower semicontinuous on

K := {w ∈ W 1,p(x)
0 (Ω) / 0 ≤ w ≤ u}

with respect to W
1,p(x)
0 (Ω)-norm, where

Gh(x, s) :=

∫ s

0

gh(x, t+ h)dt, s ≥ 0 and gh(x, t) := g(x, t+ h) for t ≥ 0

29



Let u, u ∈ W 1,p(x)
loc (Ω) be a subsolution and a supersolution of Problem (2.1), respectively.

If u ∈ L∞loc(Ω) with u ≤ 0 on ∂Ω and ess inf
x∈U

u(x) > 0 for each U ⊂⊂ Ω, then u ≤ u

a.e. in Ω.

The hypotheses (g1) and (g2) are used to derive a type of Diaz-Saá's Inequality

(see (2.2) below) in variable exponents context. Due to the absence of growth condition

and the lack of positivity of the �rst eigenvalue in the setting of W 1,p(x)(Ω), we have

to consider the assumption (g3) that will be used to obtain a fundamental estimate in

our proof. More details are presented in the next section.

The importance of our �rst result is principally because it may be applied to

subsolutions and supersolutions just in W
1,p(x)
loc (Ω). To our knowledge, this result is

new even for Laplacian operator.

2.2 Auxiliary results

In this section we present the results that will be useful in the proof of Theorem

2.1.3. Inspired by the ideas in [43], let D = {u ∈ L1
loc(Ω) / u ≥ 0, u

1
p− ∈ W 1,p(x)

loc (Ω)}.

Fixed φ ∈ C∞0 (Ω), consider the functional J = Jφ : L1
loc(Ω)→ (−∞,∞] given by

J(u) =


∫

Ω

|∇u
1
p− |p(x)

p(x)
φdx if u ∈ D,

+∞ otherwise.

Lemma 2.2.1 Let J be the above functional. Then J is convex and J 6≡ +∞.

Proof. Let us begin our proof showing that J 6≡ +∞. To this end, �xed x0 ∈ Ω, take

R > 0 such that BR(x0) ⊂ Ω is the closed ball centered in x0 with radius R. Now,

given θ > p− let

v(x) =

 vθR(|x− x0|) if x ∈ BR(x0),

0 otherwise.

where vR : [0, R]→ R is de�ned by

vR(t) =


1 if t = 0,

linear if 0 < t < R/2,

0 if R/2 ≤ t ≤ R.
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Evidently v ∈ D. Moreover,

∫
Ω

|∇
(
v

1
p−

)
|p(x)

p(x)
φdx =

∫
BR(x0)

(
θ
p−
v

θ
p−
−1|∇vR|

)p(x)

p(x)
φdx

≤ 1

p−

(
θ

p−

)p+
∫
BR(x0)

v

(
θ
p−
−1

)
p− |∇vR|p(x)φdx

≤ 1

p−

(
θ

p−

)p+
∫
BR(x0)

|∇vR|p(x)φdx < +∞,

that is, J(v) 6≡ +∞.

Now we are going to show that J is convex. As in proof of [27, Lemma 1], we

have

|∇(sw1 + (1− s)w2)1/p− |p− ≤ s|∇w1/p−
1 |p− + (1− s)|∇w1/p−

2 |p− for all s ∈ [0, 1],

where w1, w2 ∈ D. Since the function s 7→ sp(x)/p− is convex on [0,∞), it follows from

the above inequality that

J(sw1 + (1− s)w2) =

∫
Ω

|∇(sw1 + (1− s)w2)
1
p− |p(x)

p(x)
φdx

≤
∫

Ω

(
s|∇w

1
p−
1 |p− + (1− s)|∇w

1
p−
2 |p−

) p(x)
p−

p(x)
φdx

≤
∫

Ω

s|∇w 1
p−
1 |p(x)

p(x)
+

(1− s)|∇w
1
p−
2 |p(x)

p(x)

φdx

= sJ(w1) + (1− s)J(w2),

for each s ∈ [0, 1] given. This shows the Lemma.

The next result will be fundamental for our purposes.

Lemma 2.2.2 (Diaz-Saá's type Inequality) Assume that w1, w2 ∈ L∞loc(Ω) ∩ D .

If wi/wj ∈ L∞loc(Ω), i 6= j, then∫
Ω

[
|∇w

1
p−
1 |p(x)−2∇w

1
p−
1 ∇

(
w1 − w2

w
(p−−1)/p−
1

)
− |∇w

1
p−
2 |p(x)−2∇w

1
p−
2 ∇

(
w1 − w2

w
(p−−1)/p−
2

)]
φdx ≥ 0

(2.2)

holds, for all φ ∈ C∞0 (Ω).

Proof. To obtain the inequality (2.2) it su�ces to show

〈J ′(u), v〉 =

∫
Ω

∣∣∣∇u 1
p−

∣∣∣p(x)−2

∇u
1
p−∇

(
u

1−p−
p− v

)
φdx, (2.3)
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for all u, v ∈ L∞loc(Ω) ∩ D with w1/w2 ∈ L∞loc(Ω) and apply Lemma 2.2.1. In fact,

admitting it by now, it follows from Lemma 2.2.1, that

0 ≤ p− 〈J ′(w1)− J ′(w2), w1 − w2〉

=

∫
Ω

[
|∇w

1
p−
1 |p(x)−2∇w

1
p−
1 ∇

(
w1 − w2

w
(p−−1)/p−
1

)
− |∇w

1
p−
2 |p(x)−2∇w

1
p−
2 ∇

(
w1 − w2

w
(p−−1)/p−
2

)]
φdx.

Now, we are going to prove that (2.3) holds true. First, we notice that if u ∈

L∞loc(Ω) ∩ D, then u ∈ W 1,p(x)
loc (Ω). In fact, by denoting w = u1/p− , we have that

|∇u| = |∇(wp−)| = p−|wp−−1||∇w| = p−|u|
p−−1

p− |∇(u
1
p− )| ∈ Lp(x)

loc (Ω).

Let u, v ∈ L∞loc(Ω) ∩ D. Thus,

〈J ′(u), v〉 = lim
t→0

J(u+ tv)− J(u)

t
= lim

t→0

∫
Ω

∣∣∣∇((u+ tv)
1
p−

)∣∣∣p(x)

− |∇u
1
p− |p(x)

tp(x)
φdx

= lim
t→0

∫
Ω

h(x, t)

tp(x)
φdx = lim

t→0

∫
Ω

dh

dt
(x, t)dx, (2.4)

where

h(x, t) =

(∣∣∣∇((u+ tv)
1
p−

)∣∣∣p(x)

− |∇u
1
p− |p(x)

)
φ,

and

dh

dt
(x, t) =

p(x)

p−

∣∣∣∇((u+ tv)
1
p−

)∣∣∣p(x)−2

∇
(

(u+ tv)
1
p−

)
∇
(

(u+ tv)
1−p−
p− v

)
φ

for x ∈ Ω and t > 0.

The last equality at follows from Mean Value Theorem, that is, there exists an

0 < s = s(x, t) < t < 1 such that h(x, t)/t = dh
dt

(x, s) for x ∈ Ω. Since∣∣∣∣dhdt (x, s)

∣∣∣∣ ≤ ∣∣∣∣ 1

p−
(u+ sv)

1−p−
p− ∇(u+ sv)

∣∣∣∣p(x)−1

∣∣∣∣1− p−p2
−

(u+ sv)
1−2p−
p− v∇(u+ sv) +

1

p−
(u+ sv)

1−p−
p− ∇v

∣∣∣∣φ
≤

(
1

p−

(u+ sv)
1
p−

(u+ sv)
(|∇u|+ s|∇v|

)p(x)−1

(
p− − 1

p2
−

(u+ sv)
1
p−

(u+ sv)2
|v|(|∇u|+ s|∇v|) +

1

p−

(u+ sv)
1
p−

(u+ sv)
|∇v|

)
φ

≤

(
1

p−

(u+ v)
1
p−

|u|
(|∇u|+ |∇v|)

)p(x)−1

(
p− − 1

p2
−

(u+ v)
1
p−

u2
v(|∇u|+ |∇v|) +

1

p−

(u+ v)
1
p−

u
|∇v|

)
φ,
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where we used u, v > 0 in the last inequality.

So, it follows from the above information and hypotheses v, u, u/v, v/u ∈ L∞loc(Ω),

that∣∣∣∣dhdt (x, s)

∣∣∣∣ ≤ p(x)

p
p(x)
−

(u+ v)
p(x)
p−

up(x)
(|∇u|+ |∇v|)p(x)

(v
u

+ 1
)
||φ||∞

≤ C1||φ||∞
(∥∥∥v

u

∥∥∥
L∞(supp (φ))

+ 1

)(
|u|

p(x)
p−
−p(x)

+ v
p(x)
p− u−p(x)

)
(|∇u|p(x) + |∇v|p(x))

≤ C2||φ||∞|u|
p(x)
p−
−p(x)

1 +

∥∥∥∥∥(vu)
p(x)
p−

∥∥∥∥∥
L∞(supp (φ))

 (|∇u|p(x) + |∇v|p(x))

(2.5)

≤ C3||φ||∞

[(
u

1
p−
−1|∇u|

)p(x)

+
(
v

1
p−
−1|∇v|

)p(x) (u
v

) p(x)
p−
−p(x)

]
≤ C4||φ||∞

[
|∇u

1
p− |p(x) + |∇v

1
p− |p(x)

]
∈ L1

loc(Ω),

where C3 = C3(||u/v||L∞(Ω), ||u||L∞(Ω), p+, p−) > 0 is a real constant.

Thus, the Lebesgue Dominated Convergence theorem implies that

〈J ′(u), v〉 =
1

p−

∫
Ω

h(x, t)

tp(x)
dx =

∫
Ω

|∇u
1
p− |p(x)−2∇u

1
p−∇(u

1−p−
p− v)φdx

holds. This ends our proof.

In [15], the authors showing the comparison between a sub and a supersolution

for the problem (2.1) with p(x) = p and g(x, t) = a(x)t−α, where α > 0 is a real

constant, by truncating the singularity in an suitable way. Inspired in these ideas, let

us de�ne

gh(x, t) = g(x, t+ h) for (x, t) ∈ Ω× (0,∞),

for each h > 0 given, and consider the problem −∆p(x)u = gh(x, u) in Ω,

u ≥ 0 in Ω, u = 0 on ∂Ω.
(2.6)

So, we have.

Lemma 2.2.3 Assume (g1) and (g3) hold. Then there exists a w ∈ K (de�ned at

(2.1.3)) such that∫
Ω

|∇w|p(x)−2∇w∇ψdx−
∫

Ω

gh(x,w + h)ψdx ≥ 0, ∀ ψ ∈ W 1,p(x)
0 (Ω), ψ ≥ 0. (2.7)
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Proof. It follows by hypothesis (g3), that the functional

Ih(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

Gh(x, u)dx, u ∈ K

is coercive and weakly lower semicontinuous on the closed and convex set K. So, there

exists a w = wh such that Ih(w) = infu∈K Ih(u).

Now, given 0 ≤ ψ ∈ C∞0 (Ω), set

vt = min{w + tψ, u} and wt = (w + tψ − u)+,

for t > 0 such that tψ ≤ u. Since vt, wt ∈ W 1,p(x)(Ω), 0 ≤ vt ≤ w + tψ, 0 ≤ wt ≤ tψ

and 0 ≤ wt ≤ u with supp (wt) ⊂ supp (ψ), it follows by Proposition 1.2.1 in that

vt, wt ∈ W 1,p(x)
0 (Ω), that is, vt, wt ∈ K.

For y ∈ K, let us de�ne

σ(t) = Ih(ty + (1− t)w) for t ∈ [0, 1]

and deduce from Ih(w) = minK Ih that σ(0) ≤ σ(t) for all t ∈ [0, 1], that is,

0 ≤ σ′(0) = 〈I ′h(w), y − w〉 .

Now, by taking y = vt and noticing that vt − w = tψ − wt, we obtain

0 ≤
∫

Ω

|∇w|p(x)−2∇w∇(tψ − wt)dx−
∫

Ω

gh(x,w + h)(tψ − wt)dx

= t

(∫
Ω

|∇w|p(x)−2∇w∇ψdx−
∫

Ω

gh(x,w + h)ψdx

)
−

∫
Ω

|∇w|p(x)−2∇w∇wtdx+

∫
Ω

gh(x,w + h)wtdx.

(2.8)

On the other hand, since 0 ≤ wt ∈ W
1,p(x)
0 (Ω), there exists a sequence (ζn) ⊂

C∞0 (Ω) with ζn ≥ 0, supp (ζn) ⊂ supp (wt) and ζn → wt in W
1,p(x)
0 (Ω) as n → ∞.

Now, by using the fact that u ∈ W 1,p(x)
loc (Ω) is a supersolution of problem 2.6, with ζn

as a test function, we obtain∫
Ω

|∇u|p(x)−2∇u∇ζndx−
∫

Ω

gh(x, u)ζndx ≥ 0 for all n ∈ N,

that lead us to ∫
Ω

|∇u|p(x)−2∇u∇wtdx−
∫

Ω

gh(x, u)wtdx ≥ 0 (2.9)
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by the using of the Lebesgue's convergence theorem together with the fact that |∇u|p(x)

is integrable on the support of wt and 0 ≤ wt ≤ tψ for each x ∈ Ω.

So, it follows from (2.8) and (2.9), that

0 ≤ t

(∫
Ω

|∇w|p(x)−2∇w∇ψdx−
∫

Ω

gh(x,w + h)ψdx

)
(2.10)

+

∫
Ω

(
|∇u|p(x)−2∇u− |∇w|p(x)−2∇w

)
∇wtdx+

∫
Ω

(gh(x,w + h)− gh(x, u))wtdx

for all t > 0 enough small.

Since

(gh(x,w + h)− gh(x, u))wt ≤ gh(x,w + h)tψ on supp (wt),

it follows from (2.10), by dividing (2.10) by t > 0, that

0 ≤
∫

Ω

|∇w|p(x)−2∇w∇ψdx−
∫

Ω

gh(x,w + h)ψdx

+

∫
{w+tψ≥u}

(
|∇u|p(x)−2∇u− |∇w|p(x)−2∇w

)
∇ψ +

∫
{w+tψ≥u}

gh(x,w + h)ψdx,

that is, by doing t→ 0, using Proposition 1.2.6, and applying Lebesgue's Convergence

Theorem, we conclude that (2.7) is true for all 0 ≤ ψ ∈ C∞0 (Ω). The result follows by

a standard density of C∞0 (Ω) in W
1,p(x)
0 (Ω).

Now we are able to prove the Theorem 2.1.3.

2.3 Proof of Theorem 2.1.3 - Completed

Let us do the proof by an contradiction argument by combining the above results

together with a very �ne analysis.

Proof. Consider the set

Ωh := {x ∈ Ω / u(x)− h > w(x) + h}

and assume, by contradiction, that |Ωh| > 0 for some h > 0. From compactness of Ωh,

there exists a x0 ∈ Ωh and R > 0 such that |KR| = |BR ∩ Ωh| > 0, where BR be the

ball of radius R centered in x0.

We can assume, without loss of generality, that BR ⊂ Ω. In fact, since Ω is

smooth, then |∂Ω| = 0. In particular, there exits δ > 0 such that the set Ωδ = {x ∈
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Ω / d(x, ∂Ω) < δ} satis�es |Ωδ| < |Ωh|/4. Moreover, by compactness of Ω \ Ωδ there

exists a �nite cover ∪mi=0Bri(xi) with xi ∈ Ω and ri ≤ δ/4 such that d(Bri(xi), ∂Ω) ≥

(3δ)/4, for all i = 1, 2, ...,m. Thus,
∣∣(Ω \ Ωδ) ∩ Ωh

∣∣ ≥ (3|Ωh|)/4. So there exists

BR := Bri(xi) ⊂ Ω such that
∣∣BR ∩ Ωh

∣∣ > 0 for some 1 ≤ i ≤ m.

Fix 0 < t < R < δ/4 and take 0 < s < t such thatKs := Bs∩Ωh andKt := Bt∩Ωh

have positive Lebesgue measure. De�ne φs ∈ C∞0 (Ω) such that 0 ≤ φs ≤ 1, φs ≡ 1 in

Bs, supp (φs) ⊂ Bt and |∇φs| ≤ C(t− s)−1/(2p+). Now de�ning

φ1 =
φs [((u− h)+)

p− − (w + h)p− ]
+

((u− h)+)p−−1 and φ2 =
φs [((u− h)+)

p− − (w + h)p− ]
+

(w + h)p−−1
,

we obtain

0 ≤ φ1 ≤ (u− h)+ and 0 ≤ φ2 ≤ Cs,h(u− h)+. (2.11)

Moreover,

∇φ1 = φs

[(
1 + (p− − 1)

(
w + h

u− h

)p−)
∇(u− h)+ − p−

(
w + h

u− h

)p−−1

∇w

]

+∇φs
(

(u− h)p− − (w + h)p−

(u− h)p−−1

)
and

∇φ2 = φs

[(
1 + (p− − 1)

(
u− h
w + h

)p−)
∇w − p−

(
u− h
w + h

)p−−1

∇(u− h)+

]

+∇φs
(

(u− h)p− − (w + h)p−

(w + h)p−−1

)
.

Since u ∈ L∞loc(Ω) and w > h in Kt, we obtain

|∇φ1| ≤ p−||φs||∞ (|∇u|+ |∇w|) + ||∇φs||∞ (|u|+ |w|)

and

|∇φ2| ≤
p−||φs||∞||u||p−L∞(KR)

hp−
(|∇u|+ |∇w|) + ||∇φs||∞

||u||p−L∞(KR)

hp−
,

that is, φ1, φ2 ∈ W 1,p(x)(Ω) ∩ L∞(Ω) with supp (φ1), supp (φ2) ⊂ Kt ⊂⊂ Ω. Besides

that we infer that φ1, φ2 ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω), by the using (2.11) and Proposition

1.2.1.

By taking φ2 as a test function in Lemma 2.2.3, we obtain∫
Kt

|∇w|p(x)−2∇w∇
(
φs

(u− h)p− − (w + h)p−

(w + h)p−−1

)
dx

≥
∫
Kt

gh(x,w + h)
(u− h)p− − (w + h)p−

(w + h)p−−1 φsdx (2.12)
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and by repeating the density arguments used in Lemma 2.2.3, we can take φ1 as test

function in De�nition 2.1.2 to obtain∫
Kt

|∇u|p(x)−2∇u∇
(
φs

(u− h)p− − (w + h)p−

(u− h)p−−1

)
dx

≤
∫
Kt

g(x, u)
(u− h)p− − (w + h)p−

(u− h)p−−1 φsdx. (2.13)

Now, let us do the next two estimates to come back in (2.12) and (2.13) for further

information. First, by using the de�nition of φs and the fact that u > 2h in Ωh, we get

∣∣∣∣∫
Kt

((u− h)p− − (w + h)p−)

(
|∇u|p(x)−2∇u
(u− h)p−−1

− |∇w|
p(x)−2∇w

(w + h)p−−1

)
∇φsdx

∣∣∣∣
=

∣∣∣∣∫
Kt\Ks

((u− h)p− − (w + h)p−)

(
|∇u|p(x)−2∇u
(u− h)p−−1

− |∇w|
p(x)−2∇w

(w + h)p−−1

)
∇φsdx

∣∣∣∣
≤ 2h1−p−

||u− h||p−L∞(KR)

(t− s)
1

2p+

∫
Kt\Ks

(
|∇u|p(x)−1 + |∇w|p(x)−1

)
dx

≤ 2h1−p−
||u− h||p−L∞(KR)

(t− s)
1

2p+

∥∥|∇u|p(x)−1 + |∇w|p(x)−1
∥∥
L

p(x)
p(x)−1 (Kt\Ks)

||1||Lp(x)(Kt\Ks)

≤ 2h1−p−
||u− h||p−L∞(KR)

(t− s)
1

2p+

∥∥|∇u|p(x)−1 + |∇w|p(x)−1
∥∥
L

p(x)
p(x)−1 (KR)

||1||Lp+ (Kt\Ks)

≤ C(t− s)
1
p+ .

(2.14)

where C = C
(
||w||W 1,p(x)(KR), ||u||W 1,p(x)(KR), ||u||L∞(KR), R

)
is a real constant.

Second, by using Lemma 2.2, we obtain that∫
Kt

[
|∇u|p(x)−2∇u∇

(
(u− h)p− − (w + h)p−

(u− h)p−−1

)
− |∇w|p(x)−2∇w∇

(
(u− h)p− − (w + h)p−

(w + h)p−−1

)]
φsdx (2.15)

is non-negative.

So, by subtracting (2.13) by (2.12) and using (2.14) and (2.15), we obtain

0 ≤
∫
Kt

[
|∇u|p(x)−2∇u∇

(
(u− h)p− − (w + h)p−

(u− h)p−−1

)
− |∇w|p(x)−2∇w∇

(
(u− h)p− − (w + h)p−

(w + h)p−−1

)]
φsdx

(2.16)

≤
∫
Kt

(
g(x, u)

(u− h)p−−1
− gh(x,w + h)

(w + h)p−−1

)
((u− h)p− − (w + h)p−)φsdx+ C(t− s)

1
p+

=

∫
Kt

(
gh(x, u− h)

(u− h)p−−1
− gh(x,w + h)

(w + h)p−−1

)
((u− h)p− − (w + h)p−)φsdx+ C(t− s)

1
p+
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for each 0 < s < t given. That is, by using that φs(x)→ 1 as s→ t a.e. in Ω, it follows

from (2.16) and Fatou's Lemma, that

0 ≤
∫
Kt

(
gh(x, u− h)

(u− h)p−−1
− gh(x,w + h)

(w + h)p−−1

)
((u− h)p− − (w + h)p−) dx. (2.17)

As the hypothesis (g2) implies that

gh(x, t)

tp−−1
is strictly decreasing for t > 0,

we obtain from (2.17) that

0 ≤
∫
Kt

(
gh(x, u− h)

(u− h)p−−1
− gh(x,w + h)

(w + h)p−−1

)
((u− h)p− − (w + h)p−) dx < 0,

but this is impossible. Then Ωh has null Lebesgue measure for all h > 0, that is,

u ≤ w + 2h ≤ u+ 2h a.e. in Ω

for all h > 0. So, letting h→ 0, we obtain u ≤ u a.e. in Ω, as desired. This ends our

proof.
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Chapter 3

Uniqueness of W
1,p(x)
loc (Ω)-solution for a

oscillating-singular-concave problem

3.1 Introduction

In this chapter we study the following quasilinear elliptic singular-concave prob-

lem with variable exponents and powers −∆p(x)u = c(x)d(x)−β(x)u−α(x) + λf(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(3.1)

where Ω ⊂ RN is a bounded open domain with smooth boundary, λ ≥ 0 is a real

parameter, p : Ω→ R is a C1(Ω)-function that satis�es

1 < p− = min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < N

and d(x) = inf
y∈∂Ω
|x− y| for x ∈ Ω is the standard distance function to the boundary of

Ω.

Inspired on ideas of [17], for each Γ ⊂ ∂Ω smooth enough and h ∈ C1(Ω) given,

let us de�ne

W
1,h(x)
Γ (Ω) =

{
u ∈ W 1,h(x)(U) / u

∣∣
Γ

= 0 in the trace sense
}

(3.2)

for all open sets U ⊆ Ω such that ∂U ∩ ∂Ω = Γ. In special, we notice that

W
1,h(x)
Γ (Ω) =


W

1,h(x)
loc (Ω) if Γ = ∅,

W
1,h(x)
0 (Ω) if Γ = ∂Ω.



The trace over Γ is well de�ned if, for example, ∂Ω is Lipschitz continuous (see

[28, Chapter 12]).

Throughout this chapter we adopt the following de�nition of solution:

De�nition 3.1.1 A positive function u ∈ W 1,p(x)
Γ (Ω) is a solution to problem (3.1) if

u ≤ 0 on ∂Ω in sense of De�nition 2.1.1 and

(i) a(x)u(x)−α(x) ∈ L1
loc(Ω);

(ii) ess inf
x∈K

u(x) > 0 for all K ⊂⊂ Ω;

(iii) for all φ ∈ C∞0 (Ω),∫
Ω

|∇u|p(x)−2∇u∇φdx =

∫
Ω

c(x)d(x)−β(x)u−α(x)φdx+ λ

∫
Ω

f(x, u)φdx.

To state ours results, let us denote the interior strip around of the boundary of

Ω by Ωδ, that is,

Ωδ := {x ∈ Ω / d(x) < δ} for each δ > 0 given

and de�ne the numbers

θ1 =


max
x∈Ωδ

p(x)− β(x)

p(x) + α(x)− 1
if β(x) + α(x) > 1 in Ωδ,

1 if β(x) + α(x) ≤ 1 in Ωδ,

θ2 = min
x∈Ωδ

p(x)− β(x)

p(x) + α(x)− 1
.

(3.3)

Related to the functions α(x), β(x), c(x) and f(x, t), we make the following as-

sumptions: Assume that there exists a δ > 0 such that:

(H1) α : Ω→ R is a C0,1(Ω)-function that satis�es α(x) ≥ minx∈Ω α(x) := α− > 1−p−,

(H2) f : Ω× [0,∞)→ [0,∞) is a Carathéodory function such that

f(x, t) ≤ b(x)(1 + tq(x)−1) for all x ∈ Ω

holds true, for some functions q ∈ C1(Ω) and 0 ≤ b ∈ Ls(x)(Ω) ∩ L∞(Ωδ) with

1 < q− ≤ q+ ≤ p− and s(x) > N/p− for x ∈ Ω, where

(H3) (i) β : Ω→ R is a C0,1(Ω)-function that satis�es β+ < p−,

(ii) 0 < c ∈ Lr(x)(Ω) ∩ L∞ (Ωδ) for some r ∈ C1(Ω) with 1 ≤ r(x) ≤ +∞,

(iii) c(x)/(1− α(x)) ∈ Lr(x)(Ω) ∩ L∞(Ωδ),
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(H4)
f(x, t)

tp−−1
is strictly decreasing on (0,∞) for a.e. x ∈ Ω.

The main objective of this chapter is provide su�cient conditions for existence,

regularity and uniqueness of W
1,p(x)
loc (Ω)-solutions to the problem (3.1) in sense of Def-

inition 3.1.1. For this reason, let us consider the C0,1-manifold

Γt = {x ∈ ∂Ω / [−β(x) + t(1− α(x))]
1

1− 1/r(x)
+ 1 > 0},

and the number

σ = max

{
p− + (β+ − 1)/θ2 + α+ − 1

p−
,
p− + α+ − 1

p−

}
.

Our �rst result is related to existence of solutions and it is formulated as follows.

Theorem 3.1.2 Assume (H1)− (H4). If

r(x) =


(

σp∗−
p−(σ−1)+1−α(x)

)′
if |β(x) + α(x) > 1| > 0 in Ωδ,(

p∗(x)
1−α−

)′
if |β(x) + α(x) > 1| = 0 in Ωδ,

then there exists a 0 < λ∗ ≤ ∞ such that the problem (3.1) admits a solution u = uλ ∈
W

1,p(x)
Γ1∪Γθ2

(Ω) with u(x) ≥ Cd(x), x ∈ Ω for each 0 ≤ λ < λ∗ given and for some C > 0.

In addition:

(i) if q+ < p− in (H2), then λ∗ =∞,

(ii) if c(x) ≥ cδ in Ωδ for some cδ > 0, then there exists a c > 0 such that u(x) ≥
cd(x)θ1 for x ∈ Ωδ and, in particular, u ∈ W 1,p(x)

Γθ1∪Γθ2
(Ω).

When β ≡ 0, we are able to highlight how the regularity of c(x) in�uences the

behavior of the solution for (3.1) close to the boundary of Ω.

Corollary 3.1.3 Assume (H1), (H2), (H4) and β ≡ 0. If

r(x) =


(
p∗−(p−+α+−1)

(α+−α(x))p−

)′
if |α(x) > 1| > 0 in Ωδ,(

p∗(x)
1−α−

)′
if |α(x) > 1| = 0 in Ωδ,

then there exists a 0 < λ∗ ≤ ∞ such that the problem (3.1) admits a solution u = uλ ∈
W

1,p(x)
Γ1

(Ω) for each 0 ≤ λ < λ∗ given, with u(x) ≥ Cd(x), x ∈ Ω for some C > 0. In

addition:

(i) if c(x) ∈ L∞(Ωδ), then u(x) ≤ Md(x)θ2 for x ∈ Ωδ and some M > 0 and, in

particular, u ∈ W 1,p(x)
Γ1∪Γθ2

(Ω).
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(ii) if c(x) ∈ L∞(Ωδ) and c(x) ≥ cδ in Ωδ for some cδ > 0, then there exists a m > 0

such that md(x)θ1 ≤ u(x) ≤Md(x)θ2 for x ∈ Ωδ. In particular, u ∈ W 1,p(x)
Γθ1∪Γθ2

(Ω).

In any case, if q+ < p− in (H2), then λ∗ =∞.

The second result deals with regularity of solutions obtained in Theorem 3.1.2

Theorem 3.1.4 Assume that (H1)− (H4) hold true. Let u ∈ W 1,p(x)
Γ1∪Γθ2

(Ω) be the solu-

tion of Problem (3.1) given by Theorem 3.1.2. Then there exists a 0 < λ∗ ≤ ∞, possibly

smaller than λ∗ given in Theorem 3.1.2, such that for all 0 ≤ λ < λ∗, we have:

(i) u ∈ L∞(Ω) if r(x) > N/p−,

(ii) u ∈ L
Nr−(p−+α−−1)

N−r−p− (Ω) if |β(x) + α(x) > 1| > 0 in Ωδ and r− < N/p− with and

max

{
N(p− + α+ − 1)

(N − p)(p− + α− − 1) + p−(p− + α+ − 1)
,

N(p− + β+−1
θ2

+ α+ − 1)

(N − p)(p− + α− − 1) + p−(p− + β+−1
θ2

+ α+ − 1)

}
≤ r−.

(iii) u ∈ L
Nr−(p−+α−−1)

N−r−p− (Ω) if |β(x) + α(x) > 1| = 0 in Ωδ and

Np−
Np− − (N − p−)(1− α−)

≤ r− <
N

p−
.

In addition if q+ < p− in (H2), then λ∗ =∞. Besides this, the same conclusions hold

true if we change Γ1 by Γθ1.

As a consequence of Theorem 3.1.4(i), we get the Hölder continuity up to the

boundary of with some restriction is placed on the domain. We say that Ω satis�es

an exterior cone condition at a point x ∈ ∂Ω if there exists a �nite right circular cone

Vx with vertex x such that Ω ∩ Vx = x, in particular, say that Ω satisfes an uniform

exterior cone condition on ∂Ω if Ω satisfes an exterior cone condition at every x ∈ ∂Ω

and the cones Vx are all congruent to some �xed cone V (see Section 8.10 of [42]).

Corollary 3.1.5 Assume that (H1) − (H4) holds true with r(x) > N/p−. If u is a

solution of (3.1) given in Theorem 3.1.2, then u ∈ C0,γ(U) for all open set U ⊂ Ω with

∂U ∩ ∂Ω = Γ1 ∪ Γθ2 satisfying a uniform exterior cone condition on ∂U ∩ ∂Ω.

To end, we present a su�cient condition for uniqueness of solution for (3.1).

Theorem 3.1.6 Assume that (H1)−(H4) holds true with r(x) > N/p−. If β(x) < 1 on

∂Ω, then there exists a 0 < λ∗∗ ≤ ∞, possibly smaller than λ∗ given in Theorem 3.1.2,

such that for all 0 ≤ λ < λ∗∗ the problem (3.1) admits an only solution in W
1,p(x)
loc (Ω)

in sense of De�nition 2.1.2. Beside this, λ∗∗ = +∞ if p− = q+ in (H2).
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Before going on to the proofs, a comment on the powers α and β should be done.

We will assume that all the sets {0 < α(x) < 1}, {α(x) > 1}, {α(x) ≤ 0}, {β(x) > 0}

and {β(x) ≤ 0} have a positive Lebesgue measure. We emphasize that if one or more

of them has null measure, the result will still be valid and the proofs become simpler.

The chapter is organized as follows. In section 3.2, we consider the approximated

problems and prove the existence of the approximated solutions in W
1,p(x)
0 (Ω) satis-

fying the De�nition 3.1.1. Moreover, we prove the boundedness of these solutions in

W
1,p(x)
Γ1∪Γθ2

(Ω) and the asymptotic behavior depending of the trio (c(x), α(x), β(x)) on the

boundary. In section 3.3 is devoted to prove our results by using all the properties that

we have proved in the previous sections.

3.2 A family of auxiliary problems

In order to prove our results, we inspired in some ideas of Boccardo and Orsina [6]

who work by "regularizing" the singular term by a small perturbation 1/n and study-

ing the behavior of a sequence (un) ⊂ W
1,p(x)
0 (Ω) of solutions for this approximated

problems. In general, that sequence is obtained by a �xed point argument. We shall

employ a di�erent approach based on a Generalized Galerkin method.

From now on, we will understand that f(x, t) has been extended for t < 0 by

putting f(x, t) = f(x, 0).

Let us consider the family of regularized problems
−∆p(x)u = cn(x)

(
d(x) +

1

n

)−β(x)(
u+

1

n

)−α(x)

+ λfn(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

(3.4)

where cn(x) = min {c(x), n} and fn(x, t) = min {f(x, t), n}. We note that u ∈

W
1,p(x)
0 (Ω) is a solution of (3.4) if, and only if, u is such that

A(u, v) = 0 for all v ∈ W 1,p(x)
0 (Ω),

where the functional A : W
1,p(x)
0 (Ω)×W 1,p(x)

0 (Ω)→ R is de�ned by

A(u, v) =

∫
Ω

(
|∇u|p(x)−2∇u∇v − cn(x)

(
d(x) +

1

n

)−β(x)(
|u|+ 1

n

)−α(x)

v + λfn(x, |u|)v

)
dx.

Lemma 3.2.1 Assume that (H1) and (H3) holds true. The operator T := Tn,λ, de�ned

by 〈T (u), v〉 = A(u, v) for all v ∈ W
1,p(x)
0 (Ω) and for each u ∈ W

1,p(x)
0 (Ω), is linear and

continuous, that is, T (u) ∈W−1,p′(x)(Ω) for each u ∈W 1,p(x)
0 (Ω) given.
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Proof. The linearity is obvious. To show the continuity, �rst we notice that the hypothesis

(H1) implies that

cn(x)

(
d(x) +

1

n

)−β(x)(
|u|+ 1

n

)−α(x)

≤ n
(
nβ(x) + (d(x) + 1)−β−

)(
nα(x) + (|u|+ 1)−α−

)
≤ C1(n)

(
1 + (|u|+ 1)−α−

)
. (3.5)

So, it follows from (3.5), Hölder's Inequality and Sobolev embeddings, that

|A(u, v)| ≤
∫

Ω
|∇u|p(x)−1|∇v|dx+ C2(n)

∫
Ω

(
1 + (|u|+ 1)−α−

)
|v|dx

≤ C3(n)

[∥∥∥|∇u|p(x)−1
∥∥∥

p(x)
p(x)−1

||∇v||p(x) +

(
1 + ||1|| p(x)

p(x)+α−−1

∥∥(1 + |u|)−α−
∥∥
p(x)
−α−

)
||v||p(x)

]
≤ C4(n)

(
||u||−α− + 1

)
||v||, (3.6)

recalling that we are assuming that α− < 0. Thus,

| 〈T (u), v〉 | = |A(u, v)| ≤ C(n, ||u||)‖v‖ for all v ∈W 1,p(x)
0 (Ω),

showing the continuity of T (u) for each u ∈W 1,p(x)
0 (Ω) given. This ends the proof of Lemma

3.2.1.

As a consequence of the above Lemma, we note to �nd a weak solution to problem (3.4)

is equivalent to obtain an un ∈ W
1,p(x)
0 (Ω) such that T (un) = 0. To do this, we begin by

�xing a 0 < ψ ∈ C∞0 (Ω) such that

c(x)d(x)−β(x)ψ 6= 0 and c(x)d(x)−β(x)ψ ∈ L1(Ω). (3.7)

Let F ⊂ W
1,p(x)
0 (Ω) be a �nite dimensional subspace with ψ ∈ F and TF : F → F ∗ a

function de�ned by TF = I?F ◦ T ◦ IF , where

IF : (F, || · ||)→
(
W

1,p(x)
0 (Ω)

)
u 7→ IF (u) = u.

and I?F is an adjoint operator of IF . We note that TF = T |F , that is, for all u, v ∈ F , we have

〈TF (u), v〉 =

∫
Ω
|∇u|p(x)−2∇u∇vdx

−
∫

Ω

[
cn(x)

(
d(x) +

1

n

)−β(x)(
|u|+ 1

n

)−α(x)

v + λfn(x, |u|)v

]
dx (3.8)

Below, let us �nd a zero of TF for each �nite dimensional subspace F ⊂ W
1,p(x)
0 (Ω)

given with ψ ∈ F .

Lemma 3.2.2 Assume (H1) and (H3). Then there exists an 0 6= uF = un,λ,F ∈ F such that

TF (uF ) = 0.
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Proof. We claim that TF is a continuous operator. In fact, let (uj) ⊂ F with uj → u in F .

From Proposition 1.2.4, the operator L : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) given by

〈L(u), v〉 =

∫
Ω
|∇u|p(x)−2∇u∇vdx,

is continuous.

Now, from Proposition 1.1.3 and the embedding W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω), we have that

uj(x)→ u(x) a.e. in Ω and exists h ∈ Lp(x)(Ω) such that |uj | ≤ h, unless of subsequence. As
a consequence,

cn(x)

(
d(x) +

1

n

)−β(x)(
|uj |+

1

n

)−α(x)

v → cn(x)

(
d(x) +

1

n

)−β(x)(
|u|+ 1

n

)−α(x)

v

fn(x, |uj |)v → fn(x, |u|)v (3.9)

a.e. in Ω for each v ∈ W 1,p(x)
0 (Ω). So, the informations at (3.5) and (3.9) permit us to use

Lebesgue's Dominated Convergence Theorem to conclude that TF is continuous.

Now, let m = dim(F ) be the dimension of F and (en)mn=1 be an orthonormal basis of

F , that is, each u ∈ F is uniquely expressed as

m∑
i=1

ηiei for some η = (η1, η2, ..., ηm) ∈ Rm.

This permit us to de�ne i = iF : (Rm, | · |) → (F, || · ||) by i(η) = u and set |η| = ||u||.
By using this and the continuity of TF , we obtain that the operator SF : Rs → Rs de�ned by

SF = i? ◦ TF ◦ i is continuous, where i? stands for the adjoint operator of i. Let u = i(η) for

η ∈ Rm. So, it follows from (3.5), Proposition 1.1.1, Hölder's inequality and the embedding

W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω), that

〈SF (η), η〉 = 〈i? ◦ TF ◦ i(η), η〉 = 〈TF (u), u〉

≥
∫

Ω
|∇u|p(x)dx− C(n)

∫
Ω

[
|u|+ (|u|+ 1)1−α−] dx− λn ∫

Ω
|u|dx

≥ max {||u||p− , ||u||p+} − C5(n)
(
||u||p(x) + ||1 + |u|||1−α−p(x)

)
≥ max {||u||p− , ||u||p+} − C6(n)

(
||u||+ ||1 + |u|||1−α−

)
.

(3.10)

Now, if p− > 1−α−, then we are able to choose an r0 = r0(n) > 1 such that (SF (η), η) >

0 for each |η| = ||u|| = r0.

So, by using Lemma A.1.4, there exists ηF ∈ Br0(0) such that SF (ηF ) = 0, that is, by

letting uF = i(ηF ) and v = i(ν), we conclude that

〈TF (uF ), v〉 = 〈SF (ηF ), ν〉 = 0 for all v ∈ F,

which implies, for all v ∈ F , that∫
Ω
|∇uF |p(x)−2∇uF∇vdx

=

∫
Ω
cn(x)

(
d(x) +

1

n

)−β(x)(
|uF |+

1

n

)−α(x)

vdx− λ
∫

Ω
fn(x, |uF |)vdx.
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Finally, assume by contradiction that uF = 0. By (3.7) and taking v = ψ, we obtain

0 ≤
∫

Ω
cn(x)

(
d(x) +

1

n

)−β(x)

nα(x)ψdx = −λ
∫

Ω
fn(x, 0)ψ ≤ 0,

since fn(x, t) ≥ 0 for all t ≥ 0. So, would follow that
∫

Ω cn(x)
(
d(x) + 1

n

)−β(x)
ψdx ≤ 0. Thus,

by Fatou's Lemma,

0 ≤
∫

Ω
c(x)d(x)−β(x)ψdx ≤ lim inf

n→∞

∫
Ω
cn(x)

(
d(x) +

1

n

)−β(x)

ψdx = 0

but this is impossible, since c(x)d−β(x)ψ 6= 0. So, uF 6= 0. This �nish the proof.

Proposition 3.2.3 Assume that (H1) and (H3) holds true. Then the problem (3.4) has a

weak solution un ∈W 1,p(x)
0 (Ω) for each n ∈ N given.

Proof. Let ψ as in (3.7) and set

A =
{
F ⊂W 1,p(x)

0 (Ω) / ψ ∈ F and F is a �nite dimensional subspace of W
1,p(x)
0

}
.

Given F0 ∈ A, let

VF0 = {uF ∈ F / F ∈ A, F0 ⊂ F, TF (uF ) = 0 e ||uF || ≤ r0}

and note that VF0 6= ∅, as a consequence of Lemma 3.2.2. Since VF0 ⊂ Br0(0), we have

V
σ
F0
⊂ Br0(0), where V

σ
F0

is the weak closure of VF0 and Br0(0) is the closed ball on F . So

V
σ
F0

is weakly compact.

Now, consider the set

B =
{
VF

σ | F ∈ A
}
,

and a �nite subfamily {
V
σ
F1
, V

σ
F2
, ..., V

σ
Fn

}
⊂ B,

where F := span{F1, F2, ...Fn}. By de�nition of VFi , we have uF ∈ V
σ
Fi for i = 1, 2, ..., n, that

is,
n⋂
i=1

V
σ
Fi 6= ∅

showing that B has the �nite intersection property. Since Br0(0) is weakly compact, it follows

from Proposition A.1.5, that

W =
⋂
F∈A

VF
σ 6= ∅.

Let un ∈ W . Given φ ∈ W 1,p(x)
0 (Ω), take F0 ∈ A such that span{ψ, un, φ} ⊂ F0. Since

un ⊂ Br0 , it follows from Proposition A.1.6 that there exists (un,j) ⊂ VF0 and Fj = Fn,j ⊂ A
such that un,j ⇀ un in W

1,p(x)
0 (Ω) with ||un,j || ≤ r0 and∫

Ω
|∇un,j |p(x)−2∇un,j∇vdx

=

∫
Ω

(
cn(x)

(
d(x) +

1

n

)−β(x)(
|un,j |+

1

n

)−α(x)

+ λfn(x, |un,j |)

)
vdx. (3.11)
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for all v ∈ Fj . By passing to a subsequence if necessary, we have un,j → un in Lh(x)(Ω) for all

1 < h(x) < p∗(x) and un,j(x)→ un(x) a.e. in Ω. So, by taking v = un,j − un ∈ Fj in (3.11),

it follows from (3.5), that∫
Ω
|∇un,j |p(x)−2∇un,j(∇un,j −∇un)dx

=

∫
Ω

(
cn(x)

(
d(x) +

1

n

)−β(x)(
|un,j |+

1

n

)−α(x)

+ λfn(x, |un,j |)

)
(un,j − un)dx

≤ C(n)
(
||un,j + 1||−α−p(x) + 1

)
||un,j − un||p(x),

that is,

lim sup
j→∞

∫
Ω
|∇un,j |p(x)−2∇un,j(∇un,j −∇un)dx ≤ 0.

and a consequence of this, we have that un,j → un in W
1,p(x)
0 (Ω), by using Proposition 1.2.4.

So, passing to a subsequence if necessary, we have that ∇un,j(x)→ ∇un(x) a.e. in Ω, which

lead us to conclude that∫
Ω
|∇un|p(x)−2∇un∇vdx =

∫
Ω

(
cn(x)

(
d(x) +

1

n

)−β(x)(
|un|+

1

n

)−α(x)

+ λfn(x, |un|)

)
vdx

holds true for all v ∈ Fj . Since we can take v = φ and φ was taken arbitrary, then we obtain∫
Ω
|∇un|p(x)−2∇un∇φdx =

∫
Ω

(
cn(x)

(
d(x) +

1

n

)−β(x)(
|un|+

1

n

)−α(x)

+ λfn(x, |un|)

)
φdx.

for all φ ∈W 1,p(x)
0 (Ω).

Now, let us show that un > 0 in Ω. Arguing as in the proof of Lemma 3.2.2 we infer

that un 6= 0. More, by taking φ = −u−n , we obtain∫
Ω
|∇u−n |p(x)dx ≤ −

∫
Ω
cn(x)

(
d(x) +

1

n

)−β(x)(
u−n +

1

n

)−α(x)

u−n dx−λ
∫

Ω
f(x, u−n )u−n dx ≤ 0,

which implies that u−n ≡ 0. So,∫
Ω
|∇un|p(x)−2∇un∇φdx

=

∫
Ω

(
cn(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

+ λfn(x, un)

)
φdx. (3.12)

for all φ ∈ W 1,p(x)
0 (Ω). By using that Theorem 1.3.9, it follows that un > 0 in Ω. To end, by

Proposition 1.3.8, un ∈ C1,γn(Ω) for some γn ∈ (0, 1), �nishing the proof.

Now, let us verify an assumption of the our Comparison Principle holds true for our

problem.
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Lemma 3.2.4 Assume (H1), (H3) and (H4) holds true. The functional Ih : W
1,p(x)
0 (Ω)→ R,

de�ned by

Ih(u) =

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
{α(x)=1}

cn(x)

(
d(x) +

1

n

)−β(x)

ln

(
1
n + 2h

u+ + 1
n + 2h

)
dx

+

∫
{α(x)<1}

cn(x)
(
d(x) + 1

n

)−β(x)
[(

1
n + 2h

)1−α(x) −
(
u+ + 1

n + 2h
)1−α(x)

]
1− α(x)

dx

+

∫
{α(x)>1}

cn(x)
(
d(x) + 1

n

)−β(x)
[(
u+ + 1

n + 2h
)1−α(x) −

(
1
n + 2h

)1−α(x)
]

α(x)− 1
dx

+ λ

∫
Ω

[Fn(x, 2h)− Fn(x, u+ + 2h)]dx

is coercive and weakly lower semicontinuous for each h > 0 and n ∈ N given, where Fn(x, t) =∫ t
0 fn(x, s)ds.

Proof. By using ln s ≤ s for all s > 0, Hölder's Inequality and Sobolev embedding, we obtain

that

Ih(u) ≥ 1

p+
min

{
||u||p− , ||u||p+

}
− C

(
||u||1−α− + ||u||+ 1

)
,

where C = C(n, h,Ω, α+) is a positive real constant. Since p− > 1− α−, it follows that Ih is

coercive.

To prove the weakly lower semicontinuity of Ih, let uj ⇀ u in W
1,p(x)
0 (Ω). So, it is well

known that uj → u in Lt(x)(Ω) for all 1 ≤ t(x) < p∗(x), uj(x) → u(x) a.e. in Ω and there

exists Θ ∈ Lt(x)(Ω) such that un ≤ Θ. Below, let us consider each integral in the de�nition

of Ih. First, by using these informations and Fatou's Lemma, we obtain

lim inf
j→∞

∫
{α(x)>1}

cn(x)
(
d(x) + 1

n

)−β(x)
(
u+
j + 1

n + 2h
)1−α(x)

α(x)− 1
dx


≥
∫
{α(x)>1}

cn(x)
(
d(x) + 1

n

)−β(x) (
u+ + 1

n + 2h
)1−α(x)

α(x)− 1
dx.

More. Since ∫
{α(x)=1}

cn(x)

(
d(x) +

1

n

)−β(x)

ln

(
1
n + 2h

u+
j + 1

n + 2h

)
dx

≤
∫
{α(x)=1}

cn(x)

(
d(x) +

1

n

)−β(x)
(

1
n + 2h

u+
j + 1

n + 2h

)
dx

≤
∫
{α(x)=1}

cn(x)

(
d(x) +

1

n

)−β(x)

dx <∞

holds, we obtain by the hypothesis (H3), that

∫
{α(x)<1}

cn(x)
(
d(x) + 1

n

)−β(x)
[(

1
n + 2h

)1−α(x) −
(
u+
j + 1

n + 2h
)1−α(x)

]
1− α(x)

dx

≤
∫
{α(x)<1}

cn(x)
(
d(x) + 1

n

)−β(x) ( 1
n + 2h

)1−α(x)

1− α(x)
dx <∞
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holds as well. Now, we are able to apply Lebegue's Theorem to obtain

lim
j→∞

∫
{α(x)<1}

cn(x)
(
d(x) + 1

n

)−β(x)
[(

1
n + 2h

)1−α(x) −
(
u+
j + 1

n + 2h
)1−α(x)

]
1− α(x)

dx


=

∫
{α(x)<1}

cn(x)
(
d(x) + 1

n

)−β(x)
[(

1
n + 2h

)1−α(x) −
(
u+ + 1

n + 2h
)1−α(x)

]
1− α(x)

dx,

and

lim
j→∞

(
−
∫
{α(x)=1}

cn(x)

(
d(x) +

1

n

)−β(x)

ln

(
uj +

1

n
+ 2h

)
dx

)

=

∫
{α(x)=1}

cn(x)

(
d(x) +

1

n

)−β(x)

ln

(
u+

1

n
+ 2h

)
dx.

Again, to �nish our analysis, we just note that fn(x, t) ≤ n that implies that

|Fn(uj + 2h)| ≤ n(Θ + 2h)

holds. So, once using Lebesgue's Theorem, we obtain

lim
j→∞

∫
Ω
Fn(x, uj + 2h)dx =

∫
Ω
Fn(x, u+ 2h)dx.

that is, Ih(u) ≤ lim inf Ih(uj), as desired. This ends the proof.

The next result is fundamental in our approach.

Proposition 3.2.5 Assume that (H1), (H3) and (H4) holds true. For each U ⊂⊂ Ω given

there exists a CU > 0, independent of n, such that

un(x) ≥ CU > 0 for every x ∈ U and for all n ≥ 1,

where un ∈ C1(Ω) is the solution of Problem (3.4) given by Proposition 3.2.3. In addiction,

there exists δ1 > 0 such that un(x) ≥ Cd(x) for x ∈ Ωδ1, for some C > 0 independent of n.

Proof. Fixed n ∈ N, let gn : Ω× R→ R+ be de�ned by

gn(x, t) =

{
t−α(x) if α(x) > 0 and t > 1/n,

nα(x) if α(x) ≤ 0 or t ≤ 1/n

and the problem  −∆p(x)w = cn(x)dn(x)gn

(
x, |w|+ 1

n

)
in Ω,

v ≥ 0 in Ω; v = 0 on ∂Ω,
(3.13)

where cn(x) = min {c(x), n} and dn(x) = min
{(
d(x) + 1

n

)−β(x)
, nβ(x)

}
. Now, by arguing as

in Proposition 3.2.3, the problem (3.13) admits a positive solution wn ∈ C1,γn(Ω), for some

γn ∈ (0, 1) and for each n ∈ N given. Moreover, since

cn(x)dn(x)gn

(
x,wn +

1

n

)
≤ cn(x)

(
d(x) +

1

n

)−β(x)(
wn +

1

n

)−α(x)

+ λfn(x,wn),
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holds true, we obtain that wn is a subsolution of Problem (3.4).

We claim that wn is increasing in n. In fact, de�ning

Θ(x) = g

(
x,wn +

1

n

)
− g

(
x,wn+1 +

1

n+ 1

)
,

we obtain

Θ(x) =


(
wn + 1

n

)−α(x) −
(
wn+1 + 1

n+1

)−α(x)
if α(x) > 0 and wn+1 + 1

n+1 >
1
n ,(

wn + 1
n

)−α(x) − nα(x) if α(x) > 0 and wn+1 + 1
n+1 <

1
n ,

0 otherwise,

(3.14)

that is, Θ(x)(wn − wn+1)+ ≤ 0 in Ω.

Now, by using that wn and wn+1 are solutions of (3.13) and taking (wn − wn+1)+ as

test functions to them, it follows from (3.14), that∫
Ω

(
|∇wn|p(x)−2∇wn − |∇wn+1|p(x)−2∇wn+1

)
∇(wn − wn+1)+dx

=

∫
Ω

(
cn(x)dn(x)g

(
x,wn +

1

n

)
− cn+1(x)dn+1(x)g

(
x,wn+1 +

1

n+ 1

))
(wn − wn+1)+dx

≤
∫

Ω
cn+1(x)dn+1(x)Θ(x)(wn − wn+1)+dx ≤ 0,

that lead us to infer that ||(wn−wn+1)+|| = 0 thanks to Lemma 1.2.6. In particular, wn+1 ≥
wn, as claimed.

Let g̃n(x, t) = cn(x) (d(x) + 1/n)−β(x) (t+ 1/n)−α(x) + λfn(x, t). It follows from hy-

potheses (H1) and (H4) that g̃n(x, t)/tp−−1 is strictly decreasing for t > 0 and a.e. x ∈ Ω.

More, by Proposition 3.2.4, the functional

Ih(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω

∫ u

0
g̃n(x, s+ 2h)dsdx,

is coercive and weakly lower semicontinuous for each h > 0 and n ∈ N given. Then, by using

Theorem 2.1.3, we have that un ≥ wn in Ω. In particular, it follows from the monotonicity

of wn and continuity of w1 that there exists a CU > 0 such that un ≥ w1 ≥ CU > 0 for each

U ⊂⊂ Ω given.

On the other hand, we know by [42, Lemma 14.16] that d ∈ C2(Ωδ1) and ∂d
∂ν (x) < 0 in

∂Ω, where ν is the outward unit normal on ∂Ω. Since w1 ∈ C1,γ1(Ω), it follows by Proposition

1.3.9 that ∂w1
∂ν (x) < 0. So, by compactness of Ωδ1 , C

1(Ω)-regularities of the solution w1 and

of the distance function d, and the boundary conditions w1 = d = 0 on ∂Ω, there exists a

constant Cδ1 > 0 such that

∂w1

∂ν
(x) ≤ Cδ1

∂d

∂ν
(x) for all x ∈ Ωδ1 .

that is,

Cδ1d(x) ≤ w1(x) for all x ∈ Ωδ1 ,

and, in particular, un ≥ w1 ≥ Cd(x) in Ωδ1 �nishing the proof.
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We are able to obtain more accurate asymptotic behavior than the above one for un if

we request more restrictions on the function c(x). To do this, let δ1 > 0 be that one given in

Lemma 3.2.5, and remember the numbers

θ1 =

 max
x∈Ωδ

p(x)− β(x)

p(x) + α(x)− 1
if β(x) + α(x) > 1 in Ωδ,

1 if β(x) + α(x) ≤ 1 in Ωδ,

θ2 = min
x∈Ωδ

p(x)− β(x)

p(x) + α(x)− 1
,

for some 0 < δ ≤ δ1 small enough.

Proposition 3.2.6 Assume that (H1)−(H4) hold true. Then there exists 0 < δ ≤ δ1, n0 > 1,

and

(i) an m > 0, independent of n, such that

un + 1/n ≥ m

[(
d(x) +

1

n

)θ1
− 1

nθ1

]
in Ωn,δ for all n ≥ n0

if c(x) ≥ cδ > 0 in Ωδ,

(ii) an M > 0, independent of n, such that

un + 1/n ≤M

[(
d(x) +

1

n

)θ2]
in Ωn,δ for all n ≥ n0,

where Ωn,δ = {x ∈ Ω / d(x) + 1/n < δ}.

Proof. The proof is inspired on ideas contained in [70, Theorem 4.1]. Since Ω is smooth, we

can consider d ∈ C2(Ω3δ2) with |∇d(x)| ≡ 1 in Ω3δ2 for some δ1 ≥ δ2 > 0. Fix n0 > 1 large

enough such that cn0(x) ≥ (cδ2)/2 and let δ ∈ (1/n0, δ2/3) be a small constant to be �x later.

For n ≥ n0 and σ > 0, θ ∈ (0, 1] positive constants, de�ning

zn(x) =



σ

[(
d(x) +

1

n

)θ
− 1

nθ

]
if

(
d(x) +

1

n

)
< δ,

σ

(
δθ − 1

nθ

)
+

∫ (d(x)+ 1
n)

δ
σθδθ−1

(
2δ − t
δ

) 2
p−−1

dt if δ ≤
(
d(x) +

1

n

)
< 2δ,

σ

(
δθ − 1

nθ

)
+

∫ 2δ

δ
σθδθ−1

(
2δ − t
δ

) 2
p−−1

dt if 2δ ≥
(
d(x) +

1

n

)
,

(3.15)

we infer that zn ∈ C1(Ω) ∩ C(Ω).

Proof of (i): We prove the result just considering that β(x) + α(x) > 1 in Ωδ, because the

other situation is treated in a similar way. Let us show that zn(x) is a subsolution for (3.4),

that is,∫
Ω
cn(x)

(
d(x) +

1

n

)−β(x)(
zn +

1

n

)−α(x)

φdx+ λ

∫
Ω
fn(x, zn)φdx

≥
∫

Ω
|∇zn|p(x)−2∇zn∇φdx =

∫
{d(x)+ 1

n
<δ}
|∇zn|p(x)−2∇zn∇φdx

+

∫
{δ≤d(x)+ 1

n
<2δ}
|∇zn|p(x)−2∇zn∇φdx+

∫
{d(x)+ 1

n
≥2δ}
|∇zn|p(x)−2∇zn∇φdx (3.16)
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for all φ ∈ C∞0 (Ω), φ ≥ 0. Once this is done, it follows from Theorem 2.1.3 that un+1/n ≥ zn
in Ω and, in particular, we obtain the claim (i).

Initially we note that

|∇zn|p(x)−2∇zn =



(σθ)p(x)−1
(
d(x) + 1

n

)(θ−1)(p(x)−1)∇d(x),
(
d(x) + 1

n

)
< δ[

σθδθ−1

(
2δ−(d(x)+ 1

n)
δ

) 2
p−−1

]p(x)−1

∇d(x), δ ≤
(
d(x) + 1

n

)
< 2δ

0,
(
d(x) + 1

n

)
≥ 2δ

that lead us to conclude that∫
∂{(d(x)+ 1

n)<δ}
|∇zn|p(x)−2∂zn

∂η1
φdx+

∫
∂{δ<(d(x)+ 1

n)<2δ}
|∇zn|p(x)−2∂zn

∂η2
φdx

+

∫
∂{(d(x)+ 1

n)≥2δ}
|∇zn|p(x)−2∂zn

∂η3
φdx = 0 (3.17)

where ηi, i = 1, 2, 3 are the normal unit outward vectors to the sets {
(
d(x) + 1

n

)
< δ},

{δ <
(
d(x) + 1

n

)
≤ δ} and {

(
d(x) + 1

n

)
≥ δ}, respectively .

Thus, by using integration by parts and (3.17), we obtain∫
{d(x)+ 1

n
<δ}
|∇zn|p(x)−2∇zn∇φdx+

∫
{δ≤d(x)+ 1

n
<2δ}
|∇zn|p(x)−2∇zn∇φdx

= −
∫
{d(x)+ 1

n
<δ}

(σθ)p(x)−1(θ − 1)(p(x)− 1)

(
d(x) +

1

n

)(θ−1)(p(x)−1)−1

(1 + Π1(x))φdx

+

∫
{δ≤d(x)+ 1

n
<2δ}

(
σθδθ−1

)p(x)−1
δ−1

(
2δ −

(
d(x) + 1

n

)
δ

) 2(p(x)−1)
p−−1

−1

Π2(x)φdx, (3.18)

where

Π1(x) =

(
d(x) +

1

n

)(
∇p(x)∇d(x) ln(σθ)

(θ − 1)(p(x)− 1)
+
∇p(x)∇d(x) ln

(
d(x) + 1

n

)
p(x)− 1

+
∇d∇φ

φ(θ − 1)(p(x)− 1)

)

and

Π2(x) =
2(p(x)− 1)

(p− − 1)

−
(

2δ −
(
d(x) +

1

n

))φ ln

σθδθ−1

(
2δ −

(
d(x) + 1

n

)
δ

) 2
p−−1

∇d∇p+
∇d∇φ
φ

 .
To show that (3.16) holds true, it su�ces to estimate the two integral of the right side

in (3.18). Let us begin with the �rst one. Since

|Π1(x)| ≤ δ
(
‖|∇p(x)|‖∞ σθ
(θ − 1)(p− − 1)

+
‖|∇p(x)|‖∞ δ

p− − 1
+

||∇φ||∞
φ(θ − 1)(p− − 1)

)
,
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we have that |Π1(x)| < 1/2 for δ > 0 small enough. So, by using this and θ = θ1, we obtain∣∣∣(σθ1)p(x)−1 (θ1 − 1)(p(x)− 1)(1 + Π1(x))|
(
d(x) +

1

n

)(θ1−1)(p(x)−1)−1

≤ cδ
2

(
d(x) +

1

n

)−β(x)−θ1α(x)

≤ cn(x)

(
d(x) +

1

n

)−β(x)
(
σ

((
d(x) +

1

n

)θ1
− 1

nθ1

)
+

1

n

)−α(x)

(3.19)

≤ cn(x)

(
d(x) +

1

n

)−β(x)(
zn +

1

n

)−α(x)

+ λf(x, zn)

holds true in d(x) + 1/n < δ, when α(x) > 0, and σ, δ > 0 are small enough, since (θ1 −
1)(p− − 1)− 1 ≥ −β(x)− θ1α(x).

For the case α(x) ≤ 0, we have∣∣∣(σθ1)p(x)−1 (θ1 − 1)(p(x)− 1)(1 + Π1(x))|
(
d(x) +

1

n

)(θ1−1)(p(x)−1)−1

≤ σ−α(x) cδ
2

(
d(x) +

1

n

)−β(x)−θ1α(x)

≤ cn(x)

(
d(x) +

1

n

)−β(x)
(
σ

((
d(x) +

1

n

)θ1
− 1

nθ1

)
+

1

n

)−α(x)

(3.20)

≤ cn(x)

(
d(x) +

1

n

)−β(x)(
zn +

1

n

)−α(x)

+ λ

∫
Ω
fn(x, zn)

is true in d(x) + 1/n < δ for some σ, δ > 0 small enough.

Hence, it follows from (3.19)− (3.20), that∫
{d(x)+ 1

n
<δ}
|∇zn|p(x)−2∇zn∇φdx (3.21)

≤
∫
{d(x)+ 1

n
<δ}

cn(x)

(
d(x) +

1

n

)−β(x)(
zn +

1

n

)−α(x)

φdx+ λ

∫
{d(x)+ 1

n
<δ}

fn(x, zn)φdx

for δ, σ > 0 small enough.

Now, we going to evaluate the integral in (3.18) in the strip δ ≤ d(x) + 1/n < 2δ. Since

|Π2(x)| ≤ 2(p+ − 1)

(p− − 1)
+ δ

(
θ1δ

θ1−1 ‖|∇p(x)|‖∞ +
||∇φ||∞

φ

)
holds true in δ ≤ d(x) + 1/n < 2δ, we can use the boundedness of Π2 to obtain

(
σθ1δ

θ1−1
)p(x)−1

δ−1

(
2δ −

(
d(x) + 1

n

)
δ

) 2(p(x)−1)
p−−1

−1

Π2(x) ≤ m1δ
(θ1−1)(p(x)−1)−1,

where m1 = m1(δ, p+, p−, σ, θ1).

After this, we can use similar arguments used to obtain (3.19) and (3.20) to infer that

(
σθ1δ

θ−1
)p(x)−1

(
2δ −

(
d(x) + 1

n

)
δ

) 2(p(x)−1)
p−−1

−1

Π2(x) ≤ cn(x)

(
d(x) +

1

n

)−β(x)(
zn +

1

n

)−α(x)
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holds true in δ ≤ d(x) + 1/n < 2δ for δ, σ > 0 small enough, that is,∫
{δ≤d(x)+ 1

n
<2δ}
|∇zn|p(x)−2∇zn∇φdx (3.22)

≤
∫
{δ≤d(x)+ 1

n
<2δ}

cn(x)

(
d(x) +

1

n

)−β(x)(
zn +

1

n

)−α(x)

φdx+ λ

∫
{δ≤d(x)+ 1

n
<2δ}

fn(x, zn)φdx

for δ, σ > 0 small enough.

So, it follows from (3.21)− (3.22) the inequality in (3.16), that is, zn(x) is a subsolution

for (3.4). This �nishes the proof of the claim (i).

Proof of (ii): Consider the function

z̃n(x) = σ

(
d(x) +

1

n

)θ2
, d(x) +

1

n
< δ.

It is easy to see that z̃n ∈ W 1,p(x)
loc (Ωn,δ) ∩ C1(Ωn,δ). Similarly to (i), we will show that z̃n is

a supersolution for (3.4) in Ωn,δ, that is,∫
Ωn,δ

|∇z̃n|p(x)−2∇z̃n∇φdx (3.23)

≥
∫

Ωn,δ

cn(x)

(
d(x) +

1

n

)−β(x)(
z̃n +

1

n

)−α(x)

φdx+ λ

∫
Ωn,δ

fn(x, z̃n)φdx,

for all φ ∈ C∞0 (Ωn,δ) with φ ≥ 0.

As in (3.18), we have that∫
Ωn,δ

|∇z̃n|p(x)−2∇z̃n∇φdx

= −
∫

Ωn,δ

(σθ2)p(x)−1(θ2 − 1)(p(x)− 1)

(
d(x) +

1

n

)(θ2−1)(p(x)−1)−1

(1 + Π1(x))φdx.

To obtain (3.23), we initially infer from (H2), that

cn(x)

(
d(x) +

1

n

)−β(x)

z̃−α(x)
n + λfn(x, z̃n)

≤ σ−α(x)||c||∞d(x)−β(x)

(
d(x) +

1

n

)−θ2α(x)

+ λ||b||∞

(
1 + σq(x)−1

(
d(x) +

1

n

)θ2(q(x)−1)
)

holds true. If β(x) + θ2α(x) ≥ 0, then

σ−α(x)||c||∞d(x)−β(x)

(
d(x) +

1

n

)−θ2α(x)

+ λ||b||∞

(
1 + σq(x)−1

(
d(x) +

1

n

)θ2(q(x)−1)
)

≤ d(x)−β(x)−θ2α(x)
(
||c||∞σ−α(x) + λ||b||∞

(
1 + σq(x)−1δθ2(q(x)−1)

)
d(x)β(x)+θ2α(x)

)
≤ d(x)−β(x)−θ2α(x)

(
||c||∞σ−α(x) + λ||b||∞

(
1 + σq(x)−1δθ2(q(x)−1)

)
δβ(x)+θ2α(x)

)
:= E1. (3.24)
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On the other hand, if β(x) + θ2α(x) < 0, then

σ−α(x)||c||∞d(x)−β(x)

(
d(x) +

1

n

)−θ2α(x)

+ λ||b||∞

(
1 + σq(x)−1

(
d(x) +

1

n

)θ2(q(x)−1)
)

≤ d(x)β(x)+θ2α(x)
(
||c||∞σ−α(x)δ−β(x)−θ2α(x) + λ||b||∞

(
1 + σq(x)−1δθ2(q(x)−1)

))
:= E2. (3.25)

Since (θ2 − 1)(p(x) − 1) − 1 ≤ min{−β(x) − θ2α(x), β(x) + θ2α(x)}, it follows (3.24)

and (3.25), that we can choose σ > 0 large enough such that

∣∣∣(σθ2)p(x)−1(θ2 − 1)(p(x)− 1)(1 + Π1(x))
∣∣∣ (d(x) +

1

n

)(θ2−1)(p(x)−1)−1

≥ max{E1, E2}

≥ c(x)d(x)−β(x)

(
d(x) +

1

n

)−θ2α(x)

+ λf(x, z̃n) (3.26)

So, it follows from (3.23) and (3.26), that z̃n is a supersolution for (3.4) in Ωn,δ. Thus,

it follows from Theorem 2.1.3 that un + 1/n ≤ z̃n in Ωn,δ, as desired.

3.2.1 Estimates in the variable exponents spaces

Throughout this section we will �x

ωn,δ = Ω \ Ωn,δ where Ωn,δ = {x ∈ Ω : d(x) +
1

n
< δ}.

for δ > 0 as in Proposition 3.2.6.

Proposition 3.2.7 Assume (H1)− (H4) hold true. If |β(x) + α(x) > 1| > 0 in Ωn,δ and

r(x) =

(
σp∗−

p−(σ − 1) + 1− α(x)

)′
with σ = max

{
p− + β+−1

θ2
+ α+ − 1

p−
,
p− + α+ − 1

p−

}
,

then there exists a 0 < λ1 ≤ ∞ such that the sequence un is bounded in Lσp
∗(x)(Ω) for all

0 ≤ λ < λ1. Besides this, λ1 = +∞ if q+ < p−.

Proof. Let un ∈W 1,p(x)
0 (Ω) be the solution of the problem 3.4. We have that∫

Ω
|∇uσn|p−dx =

∫
Ω
σp−up−(σ−1)

n |∇un|p−dx

≤ σp−
(∫

Ω
up−(σ−1)
n dx+

∫
Ω
up−(σ−1)
n |∇un|p(x)dx

) (3.27)

holds true for each σ ≥ 1 given. So, by �xing the number

σ = max

{
p− + β+−1

θ2
+ α+ − 1

p−
,
p− + α+ − 1

p−

}
≥ 1 (3.28)
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and taking u
p−(σ−1)+1
n ∈W 1,p(x)

0 (Ω) as a test function in (3.12), it follows from (H2) that

(p−(σ − 1) + 1)

∫
Ω
up−(σ−1)
n |∇un|p(x)dx =

∫
Ω
|∇un|p(x)−2∇un∇(up−(σ−1)+1

n )dx

≤
∫

Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)p−(σ−1)+1−α(x)

dx

+ λ

∫
Ω
b(x)(1 + uq(x)−1

n )up−(σ−1)+1
n dx.

(3.29)

Below, we are going to estimate the two integrals of the right side in (3.29). To begin,

since

s(x) >
N

p−
≥

σp∗−
σp∗− − p−(σ − 1)− q(x)

=

(
σp∗−

p−(σ − 1) + q(x)

)′
,

then, by using Hölder's Inequality, we obtain∫
Ω
b(x)(1 + uq(x)−1

n )up−(σ−1)+1
n dx ≤M1

(∫
Ω
b(x)dx+

∫
Ω
b(x)up−(σ−1)+q(x)

n dx

)
≤M2

(
1 +

∥∥∥up−(σ−1)+q(x)
n

∥∥∥ σp∗−
p−(σ−1)+q(x)

)
(3.30)

≤M2

(
1 + ‖un‖p−(σ−1)+q−

σp∗−
+ ‖un‖p−(σ−1)+q+

σp∗−

)
,

where we used u
p−(σ−1)+1
n ≤ 1 + u

p−(σ−1)+q(x)
n to obtain the �rst inequality.

On the other hand, it follows from (H3)(ii) that c ∈ L∞(Ωn,δ), because Ωn,δ ⊂ Ωδ. By

using Proposition 3.2.6(ii), we obtain∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

up−(σ−1)+1
n dx

≤
∫

Ωn,δ

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)p−(σ−1)+1−α(x)

dx

+M3

∫
ωn,δ

c(x)

(
un +

1

n

)p−(σ−1)+1−α(x)

dx

(3.31)

≤ M4

∫
Ωn,δ

(
d(x) +

1

n

)−β(x)
[(

d(x) +
1

n

)θ2]p−(σ−1)+1−α(x)

dx

+M3

∫
ωδ

c(x)

(
un +

1

n

)p−(σ−1)+1−α(x)

dx

≤M5

(∫
Ω

(
d(x) +

1

n

)−β(x)+θ2[p−(σ−1)+1−α(x)]

dx+

∫
Ω
c(x)up−(σ−1)+1−α(x)

n dx

)
.

To estimate the �rst integral in (3.31), we note that (3.28) implies that t(x) = −β(x) +

θ2[p−(σ − 1) + 1− α(x)] > −1 and, as a consequence of this, we obtain(
d(x) +

1

n

)−β(x)+θ2[p−(σ−1)+1−α(x)]

≤

 (d(x) + 1)t(x), if t(x) ≥ 0

d(x)t(x), if − 1 < t(x) < 0.

holds true. Thus, by Lazer and Mckenna [51], we have∫
Ω

(
d(x) +

1

n

)−β(x)+θ2[p−(σ−1)+1−α(x)]

dx ≤M6, (3.32)
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with M6 independent of n.

To estimate the last term of (3.31), we use Hölder's Inequality to obtain∫
Ω
c(x)up−(σ−1)+1−α(x)

n dx = M7||c||r(x)

∥∥∥up−(σ−1)+1−α(x)
n

∥∥∥ σp∗−
p−(σ−1)+1−α(x)

(3.33)

≤M7

(
||un||p−(σ−1)+1−α−

σp∗−
+ ||un||p−(σ−1)+1−α+

σp∗−

)
.

Combining (3.32) and (3.33) in (3.31) we conclude that

∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)p−(σ−1)+1−α(x)

dx

≤M8

(
1 + ||un||p−(σ−1)+1−α−

σp∗−
+ ‖un‖p−(σ−1)+1−α+

σp∗−

)
. (3.34)

Now, by Sobolev embedding W
1,p−
0 (Ω) ↪→ Lp

∗
−(Ω) we have

M10||un||σp−σp∗−
= M10||uσn||

p−
p∗−
≤ ||uσn||

p−

W
1,p−
0 (Ω)

=

∫
Ω
|∇uσn|p−dx. (3.35)

So, by using (3.30), (3.34) and (3.35) in (3.27), we obtain that

||un||σp−σp∗−
≤M11

(
1 + ||un||p−(σ−1)+1−α−

σp∗−
+ ‖un‖p−(σ−1)+1−α+

σp∗−
+ λ||un||p−(σ−1)+q+

σp∗−

)
, (3.36)

holds true for some M11 > 0 independent of n. Thus, we are able to choose a λ1 > 0 small

enough in the case q+ = p− or λ1 = ∞ if q+ < p− holds to conclude that un is bounded in

Lσp
∗
−(Ω).

Proposition 3.2.8 Assume that (H1)− (H4) hold true. If |β(x) +α(x) > 1| = 0 in Ωn,δ and

r(x) =

(
p∗(x)

1− α−

)′
,

then there exists a 0 < λ2 ≤ ∞ such that the sequence (un) is bounded in Lp
∗(x)(Ω) for all

0 ≤ λ < λ2. Besides this, λ2 = +∞ if q+ < p−.

Proof. Taking un ∈W 1,p(x)
0 (Ω) as a test function in (3.12) and using (H2), we get∫

Ω
|∇un|p(x)dx ≤

∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

dx+ λ

∫
Ω
b(x)(1 + uq(x)−1

n )undx.

As in proof of Proposition 3.2.7, we will estimate the integrals above. Initially, note

that∫
Ω
b(x)(1 + uq(x)−1

n )undx ≤M1

(∫
Ω
b(x)dx+

∫
Ω
b(x)uq(x)

n dx

)
≤M2

(
||b||1 + ||b(x)||s(x)||un||

q−
p∗(x) + ||b(x)||s(x)||un||

q+
p∗(x)

)
(3.37)
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and for the singular term, we have∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

dx

=

∫
Ω
c(x)

(
d(x) +

1

n

)1−α(x)−β(x)
(
un + 1

n

d(x) + 1
n

)1−α(x)

dx (3.38)

≤M1

∫
{α(x)>1}

c(x)

(
un + 1

n

d(x) + 1
n

)1−α(x)

dx+

∫
{α(x)≤1}

c(x)

(
un + 1

n

d(x) + 1
n

)1−α(x)

dx


≤M2

∫
Ω
c(x)dx+

∫
{α(x)≤1}

c(x)

(
un + 1

n

d(x) + 1
n

)1−α(x)

dx

 ,

where we used that un + 1/n ≥ C2(d(x) + 1/n) in Ω to obtain the last inequality, as claimed

in Proposition 3.2.5. Now, by using Proposition 3.2.6(ii) and c ∈ L∞(Ωδ), we obtain∫
{α(x)≤1}

c(x)

(
un + 1

n

d(x) + 1
n

)1−α(x)

dx (3.39)

≤M3

(∫
Ωn,δ∩{α(x)≤1}

(
d(x) +

1

n

)(θ2−1)(1−α(x))

dx+

∫
ωn,δ∩{α(x)≤1}

c(x)(un + 1)1−α(x)

)

≤M4

(∫
Ωn,δ∩{α(x)≤1}

(
d(x) +

1

n

)(θ2−1)(1−α(x))

dx+

∫
ωn,δ∩{α(x)≤1}

c(x)u1−α−
n +

∫
Ω
c(x)dx

)
.

To �nish, it follows from Lazer and Mckenna [51], that∫
Ω

(
d(x) +

1

n

)(θ2−1)(1−α(x))

dx ≤M5, (3.40)

since (θ2− 1)(1−α(x)) > −1. To the last term in (3.39), we use Hölder's Inequality once, to

obtain ∫
Ω
c(x)u1−α−

n dx ≤ ||c||r(x)||un||
1−α−
p∗(x) . (3.41)

So, by combining (3.29) with (3.39) − (3.41) and following the same lines of the proof

of Proposition 3.2.7, we conclude that

max{||un||p−p∗(x), ||un||
p+

p∗(x)} ≤M6

(
1 + ‖un‖1−α−p∗(x) + λ||un||q+p∗(x)

)
, (3.42)

hold true for someM6 > 0 independent of n. Thus, again we are able to choose a λ2 > 0 small

enough if q+ = p− holds or λ2 = +∞ when q+ < p− occurs to infer that (un) is bounded in

Lp(x)(Ω).

Below, let us prove that the sequence (un) converges to a solution of (3.1). To do

this, we begin by proving a priori estimate on the sequence (un) in W
1,p(x)
Γ (Ω). The role

played by the trio (c(x), α(x), β(x)) near the boundary is determinant. Let us remember the

C0,1-manifold

Γt = {x ∈ ∂Ω / [−β(x) + t(1− α(x))]
1

1− 1/r(x)
+ 1 > 0}. (3.43)
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De�nition 3.2.9 We say that (un) is bounded in W
1,p(x)
Γ (Ω) if (un) is bounded in W 1,p(x)(U)

for all open set U ⊂ Ω given such that ∂U ∩ ∂Ω = Γ.

Proposition 3.2.10 Assume that (H1) − (H4) hold with r(x) as in Propositions 3.2.7 or

3.2.8. Then (un) is bounded in W
1,p(x)
Γ1∪Γθ2

(Ω) for all 0 ≤ λ < min{λ1, λ2}. In addiction, if

c(x) ≥ cδ in Ωδ, then (un) is bounded in W
1,p(x)
Γθ1∪Γθ2

(Ω) for all 0 ≤ λ < min{λ1, λ2}.

Proof. Given an open set U ⊂ Ω such that ∂U ∩ ∂Ω = Γ1 ∪ Γθ2 , let ψ ∈ C∞(U) with

supp (ψ) ⊂ U ∪ Γ. Denoting by supp (ψ) = Sψ, consider the sets

Ωn,δ,ψ,Γ =

{
x ∈ Sψ / d(x, ∂Sψ ∩ Γ) +

1

n
< δ

}
and ωn,δ,ψ,Γ = Sψ \ ωn,δ,ψ,Γ.

We get that ωn,δ,ψ,Γ ⊂⊂ Ω, where Γ = Γ1 ∪ Γθ2 . By taking unψ
p+ ∈ W

1,p(x)
0 (Ω) as a test

function in (3.12), we obtain that∫
U
|∇un|p(x)ψp+dx+ p+

∫
U
unψ

p+−1|∇un|p(x)−2∇un∇ψdx (3.44)

≤
∫
U

(
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

+ λf(x, un)

)
unψ

p+dx

Now we will estimate each integral in (3.44). First, we notice that {α(x) > αΓ} ⊂
ωn,δ,ψ,Γ ⊂⊂ Ω, where αΓ = max

x∈Ωn,δ,ψ,Γ
α(x). To estimate the �rst integral after the inequality,

we need consider two cases. Initially, let us assume that αΓ > 1. From Proposition 3.2.5, it

follows that ∫
{α(x)>αΓ}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx ≤M1||c||1. (3.45)

For the complimentary case, we will split the integral in two new ones, that is,∫
{α(x)≤αΓ}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

unψ
p+dx

≤
∫
{1<α(x)≤αΓ}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx

+

∫
{α(x)≤1}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx.

(3.46)

Firstly we notice that,

α(x) < max
{

2− 1

r(x)
− β(x), 1 +

1

θ2

(
1− 1

r(x)
− β(x)

)}
, x ∈ Γ

and thus,

min
{

(−β(x) + 1− αΓ)r′(x), (−β(x) + θ2(1− αΓ))r′(x)
}
> −1, x ∈ Γ,

that is, it follows from a Lazer and Mckenna's result [51], that

max

{∫
Ωδ

d(x)[−β(x)+1−αΓ]r′(x)dx,

∫
Ωδ

d(x)[−β(x)+θ2(1−αΓ)]r′(x)dx

}
<∞. (3.47)
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For the �rst integral of (3.46), by using Proposition 3.2.5 and Hölder's Inequality, we

obtain ∫
{1<α(x)≤αΓ}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx

≤M2

∫
{1<α(x)≤αΓ}

c(x)

(
d(x) +

1

n

)−β(x)+1−α(x)

ψp+dx (3.48)

≤M3

∫
{1<α(x)≤αΓ}

c(x)d(x)−β(x)+1−α(x)dx+M4||c||1

≤M3

∫
Ωn,δ,ψ,Γ∩{1<α(x)≤αΓ}

c(x)d(x)−β(x)+1−α(x)dx+M5||c||1

≤M6

(
||c||r(x)

∥∥∥d(x)−β(x)+1−α(x)
∥∥∥
Lr
′(x)(Ωδ)

+ 1

)
.

From Proposition 1.1.1 and (3.47)∥∥∥d(x)−β(x)+1−α(x)
∥∥∥
Lr
′(x)(Ωδ)

≤
(∫

Ωδ

d(x)(−β(x)+1−αΓ)r′(x)dx

)γ
<∞,

where γ ∈ {1/r+, 1/r−}. Thus,∫
{1<α(x)≤αΓ}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx ≤M7 (3.49)

for some M7 independent of n;

For the second integral of (3.46), we should analyze more sub cases. From Propositition

3.2.7 or 3.2.8, we have r(x) ≥ p∗−/(p
∗
− + α− − 1). By applying Proposition 3.2.6(ii) and

Hölder's Inequality, we obtain∫
{α(x)≤1}

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx

≤ M7

∫
Ωn,δ,ψ,Γ∩{α(x)≤1}

c(x)

(
d(x) +

1

n

)−β(x)+θ2(1−α(x))

dx

+M8

∫
ωn,δ,ψ,Γ∩{α(x)≤1}

c(x)

(
un +

1

n

)1−α(x)

dx

(3.50)

≤M9

(
||c||r(x)

∥∥∥d(x)−β(x)+θ2(1−α(x))
∥∥∥
Lr
′(x)(Ωn,δ,ψ,Γ)

+ ||c|| p∗−
p∗−+α−−1

||un||1−α−p∗−
+ ||c||1

)

≤M10

[(∫
Ωδ

d(x)[−β(x)+θ2(1−αΓ)]r′(x)dx

)γ
+ 1

]
for someM10 > 0 independent of n, since ||un||p∗− is uniformly bounded, by Propositions 3.2.7

or 3.2.8.

By combining (3.45),(3.48) and (3.50) we conclude that∫
U
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

unψ
p+dx ≤M11 (3.51)

holds for some M11 > 0 independent of n.
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Now, let us assume the opposite case αΓ ≤ 1. Thus, by arguing as in (3.50), we obtain∫
U
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

ψp+dx

≤M12

(∫
Ωn,δ,ψ,Γ

c(x)

(
d(x) +

1

n

)−β(x)+θ2(1−α(x))

dx+

∫
ωn,δ,ψ,Γ

c(x)

(
un +

1

n

)1−α(x)

dx

)

≤M13

(
||c||r(x)

∥∥∥d(x)−β(x)+θ2(1−α(x))
∥∥∥
Lr
′(x)(Ωn,δ,ψ,Γ)

+ ||c|| p∗−
p∗−+α−−1

||un||1−α−p∗−
+ ||c||1

)

≤M14

[(∫
Ωδ

d(x)[−β(x)+θ2(1−αΓ)]r′(x)dx

)γ
+ 1

]
.

So, this information together with our assumptions on U and (3.43), we obtain again (3.51).

Besides these, it follows from hypothesis (H2), that

λ

∫
U
f(x, un)unψ

p+dx ≤ λ

∫
U
b(x)(un + uq(x)

n )ψp+dx

≤ M16λ||b||s−

(
||un||p∗− ||1|| p∗−

p−−1

+
∥∥∥uq(x)

n

∥∥∥ p∗−
q(x)

||1|| p∗−
p∗−−q(x)

)
≤ λM17

(
||un||p∗− + ‖un‖q−p∗− + ‖un‖q+p∗−

)
≤M18.

(3.52)

for some M18 > 0 independent of n, since ||un||p∗− is uniformly bounded, by applying Propo-

sitions 3.2.7 or 3.2.8 again.

On the other side, it follows from the Young's Inequality and the boundedness of (un)

in Lp(x)(Ω), see Propositions 3.2.7 or 3.2.8 again, that∣∣∣∣∫
U
|∇un|p(x)−2∇un∇ψunψp+−1dx

∣∣∣∣ ≤ ε∫
U
|∇un|p(x)ψ

p+−1

p(x)−1
p(x)

dx+ Cε

∫
U
|un∇ψ|p(x)dx

≤ ε
∫
U
|∇un|p(x)ψp+dx+ Cε||∇ψ||∞

∫
U
|un|p(x)dx

≤ ε
∫
U
|∇un|p(x)ψp+dx+M19. (3.53)

After all these, by taking ε > 0 small enough in (3.53) and combining the informations

given at (3.51) in (3.44), we deduce that∫
U
|∇un|p(x)ψp+dx ≤M20

holds for all open set U ⊂ Ω such that ∂U ∩ ∂Ω = Γ1 ∪ Γθ2 , that is, (un) is bounded in

W
1,p(x)
Γ1∪Γθ2

(Ω).

We also notice that

• If Γ1 ∪ Γθ2 = ∂Ω, then we can take ψ ≡ 1 and U = Ω to conclude that (un) is bounded

in W
1,p(x)
0 (Ω).

• If Γ1 ∪ Γθ2 = ∅, then Sψ ⊂⊂ Ω. Thus, (un) is bounded in W
1,p(x)
loc (Ω).

To the end, if c(x) ≥ cδ in the set Ωδ, we can redo the above arguments with the estimate

un + 1/n ≥ m[(d(x) + 1/n)θ1 − 1/nθ1 ] (see Proposition 3.2.6) in the place of un ≥ Cd(x) to

obtain the claim. These �nishes the proof.
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3.3 Proof of main results

In this section, let us complete the proof of Theorem 3.1.2 from the sequence we have

obtained in the last section. Besides this, we will prove regularities results for this solution.

3.3.1 Proof of Theorem 3.1.2 - Completed

Proof. Let (un) ⊂ W
1,p(x)
0 (Ω) be the sequence of solutions of the problem (3.4) given by

Proposition 3.2.3. As proved in Proposition 3.2.10, we have that the sequence (un) is bounded

in W
1,p(x)
Γ1∪Γθ2

(Ω). So, given an open set U ⊂ Ω with ∂U ∩ ∂Ω = Γ1 ∪ Γθ2we have that, up to

subsequence, that un ⇀ u in W 1,p(x)(U), un → u in Lt(x)(U) for any 1 ≤ t(x) < p∗(x) given,

un(x)→ u(x) a.e. in U and there exists hU ∈ Lt(x)(U) such that un ≤ hU .
Let φ ∈ C∞0 (U). By using φ(un − u) as a test function for the problem (3.4), we have∫
Sφ

|∇un|p(x)−2∇un∇[(un − u)φ]dx

=

∫
Sφ

(
cn(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

+ λf(x, un)

)
(un − u)φdx. (3.54)

First, by using Proposition 3.2.5 and 3.2.10, standard embedding, and splitting the

Sφ = supp (φ) in the regionof singularity and non-singularity, we get to∣∣∣∣∣
∫
Sφ

cn(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

(un − u)φdx

∣∣∣∣∣
≤M1

(∫
{α(x)>0}

c(x)(un − u)dx+

∫
{α(x)≤0}

c(x)(un + 1)−α(x)(un − u)dx

)
(3.55)

≤M2

(
||un − u||r′− + ||un − u|| σp∗−

p(σ−1)+1

||un + 1||−α−σp∗−

)
,

recalling that we are assuming that α− < 0.

More, by using the hypothesis (H2), we have

|f(x, un)(un − u)φ| ≤ ||φ||∞b(x)
(
hU + h

q(x)
U

)
∈ L1(U). (3.56)

So, by taking the limit in (3.54), it follows from (3.55), (3.56) combined with Lebesgue's

theorem, that∫
Sφ

φ|∇un|p(x)−2∇un∇(un − u)dx =

∫
Sφ

(un − u)|∇un|p(x)−2∇un∇φdx+ on(1).

Since∣∣∣∣∣
∫
Sφ

(un − u)|∇un|p(x)−2∇un∇φdx

∣∣∣∣∣ ≤ ||∇φ||∞ ∥∥∥∇up(x)−1
n

∥∥∥
p(x)
p(x)−1

||un − u||p(x) = on(1),

we obtain that ∫
Sφ

φ|∇un|p(x)−2∇un∇(un − u)dx = on(1) (3.57)
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and recalling that un ⇀ u in W 1,p(x)(U), we have∫
Sφ

φ|∇u|p(x)−2∇u∇(un − u)dx = on(1). (3.58)

So, it follows from (3.57) and (3.58), that

0 ≤
∫
Sφ

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
∇(un − u)dx→ 0

and as a consequence of this together with Proposition A.1.7, we obtain that∇un(x)→ ∇u(x)

a.e. in U and

tn := (|∇un|+ |∇u|)p(x)−2∇(un − u)→ 0 a.e. in U.

By using the Hölder's Inequality, we get∫
Sφ

(|∇un|+ |∇u|)p(x)−2|∇(un − u)||∇φ|dx ≤
∫
Sφ

(|∇un|+ |∇u|)p(x)−1|∇φ|dx

≤ C||∇φ||∞max
{
‖|∇un|+ |∇u|‖p+−1

p(x) , ‖|∇un|+ |∇u|‖p−−1
p(x)

}
|Sφ|

1
p+

≤ C|Sφ|
1
p+ ||∇φ||∞max

{(
||∇un||p(x) + ||∇u||p(x)

)p+−1
,
(
||∇un||p(x) + ||∇u||p(x)

)p−−1
}

≤ C1|Sφ|
1
p+ ,

(3.59)

where C1 = C1(p−, p+, φ) > 0 is a real constant.

Exploiting Vitali's Theorem and the estimate∣∣|x|p−2x− |y|p−2y
∣∣ ≤ C2(|x|+ |y|)p−2|x− y| for all x, y ∈ RN with |x|+ |y| > 0,

we get ∣∣∣∣∣
∫
Sφ

(|∇un|p(x)−2∇un −|∇u|p(x)−2∇u)∇φdx
∣∣∣

≤
∫
Sφ

(|∇un|+ |∇u|)p(x)−2|∇(un − u)||∇φ|dx→ 0,

and then ∫
Sφ

|∇un|p(x)−2∇un∇φdx→
∫
Sφ

|∇u|p(x)−2∇u∇φdx. (3.60)

Finally, it follows from the hypothesis (H2), Proposition 3.2.5, the convergence (3.60),

by passing the limit at (3.4), we obtain that u ∈W 1,p(x)(U) satis�es∫
U
|∇u|p(x)−2∇u∇φdx =

∫
U

(
a(x)u−α(x) + λf(x, u)

)
φdx for all φ ∈ C∞0 (U),

for all U ⊂ Ω with ∂U ∩ ∂Ω = Γ1 ∪ Γθ2 , that is, u ∈ W
1,p(x)
Γ1∪Γθ2

(U) is a solution of Problem

(3.1). Moreover, by Propositions 3.2.5 and 3.2.6, we obtain that C1d(x) ≤ u(x) ≤ C2d(x)θ2

or C1d(x)θ1 ≤ u(x) ≤ C2d(x)θ2 for a.e. x ∈ Ω.

To �nish the proof, we just need to show that the boundary condition. For each

ε > 0 given, we may argue as in Proposition 3.2.10 to show that ((un − ε)+) is bounded
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in W
1,p(x)
0 (Ω), and hence it has a subsequence that converges weakly in W

1,p(x)
0 (Ω) and a.e.

in Ω to some v ∈W 1,p(x)
0 (Ω). Then v = (u− ε)+ since (unk − ε)+ → (u− ε)+ a.e. in Ω.

As a consequence of the proof, we have:

• if Γ1 ∪ Γθ2 = ∂Ω, then we can take U = Ω to conclude that u ∈W 1,p(x)
0 (Ω),

• if Γ1 ∪ Γθ2 = ∅, then Sφ ⊂⊂ Ω. Thus, u ∈W 1,p(x)
loc (Ω).

Proof of Corollary 3.1.3 - Completed. The proof of is identical to the corresponding one

for Theorem 3.1.2, by noticing that Propositions 3.2.7 or 3.2.8, holds with the assumptions

on c(x).

3.3.2 Proof of Theorem 3.1.4 - Completed

In order to prove the Theorem 3.1.4(i), we will follow some ideas found in Fan [29] and

Fusco and Sbordone [38] to the problem (3.4).

Proof of Theorem 3.1.4:.

Proof of (i): For each x0 ∈ Ω and R > 0 given, set KR = BR(x0) ∩ Ω and

p̃− = min
KR

p(x), p̃+ = max
KR

p(x), p̃∗− =
Np̃−
N − p̃−

.

From now on, let us take this R > 0 small enough such that p̃+ < p̃∗−. Let 0 < r1 < r2 < R

such that Kr1 ⊂ Kr2 ⊂ KR and take ξ ∈ C∞(Ω) with 0 ≤ ξ ≤ 1, ξ ≡ 1 in Kr1 , supp (ξ) ⊂ Kr2

and |∇ξ| ≤ (r2 − r1)−1. Given k ≤ 1, de�ne

An,k,i = Ki ∩ {x ∈ Ω / un(x) > k} , i = {r1, r2, R}.

Since un ∈ W 1,p(x)
0 (Ω) is the sequence of solutions for (3.4), we can take the function

ξp̃+(un − k)+ ∈W 1,p(x)
0 (Ω) as a test function for (3.4) to infer, by using (H2), that∫

An,k,r2

|∇un|p(x)ξp̃+dx+ p̃+

∫
An,k,r2

|∇un|p(x)−2∇un∇ξξp̃+−1(un − k)+dx (3.61)

≤
∫
An,k,r2

(
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

+ λb(x)
(

1 + uq(x)−1
n

))
ξp̃+(un − k)+dx,

holds true for each k ≥ 1 given.

Below, let us evaluate each integral of the inequality in (3.61). First, it follows by

Young's Inequality that∫
An,k,r2

|∇un|p(x)−1|∇ξ|(un − k)+ξp̃+−1dx =

∫
An,k,r2

|∇un|p(x)−1ξp̃+−1|∇ξ|(un − k)+dx

≤
∫
An,k,r2

1

p′(x)
εp
′(x)|∇un|p(x)ξp

′(x)(p̃+−1)dx+

∫
An,k,r2

1

p(x)
ε−p(x)|∇ξ|p(x)|un − k|p(x)dx

≤ C

(
εp̃
′
−

∫
An,k,r2

|∇un|p(x)ξp̃+dx+ ε−p̃+

∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx+ ε−p̃+ |An,k,r2 |

)
. (3.62)
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holds true for each ε > 0 given, since |∇ξ| ≤ (r2 − r1)−1 and [(un − k)/(r2 − r1)]p(x) ≤
1 + [(un − k)/(r2 − r1)]p̃

∗
− .

In the sequel, let us estimate the integral involving the b(x). Since s(x) > (p∗−/p−)′ ≥
(p̃∗−/p̃−)′ holds, it follows by Hölder's inequality and from the embedding Ls

′(x)(Ω) ↪→ Ls
′
−(Ω),

that∫
Ω
b(x)

(
1 + uq(x)−1

n

)
ξp̃+(un − k)+dx ≤

∫
An,k,r2

b(x)(un − k)dx+

∫
An,k,r2

b(x)uq(x)
n dx

≤M1

(∫
An,k,r2

b(x)up−n dx+

∫
An,k,r2

b(x)dx

)

≤M2

(
||b||Ls− (An,k,r2 )||up−n ||Ls′− (An,k,r2 )

+ ||b||Ls− (An,k,r2 )||1||Ls′− (An,k,r2 )

)
(3.63)

≤M3

(
||up̃−n ||Ls′− (An,k,r2 )

+ |An,k,r2 |
1
s′−

)

≤M4

||(un − k + k)p̃−s
′
− ||

1
s−

L

(
p̃∗−
s′−p̃−

)
(An,k,r2 )

||1||
1
s′−

L

p̃∗−
p̃∗−−s

′
−p̃− (An,k,r2 )

+ |An,k,r2 |
1
s′−


= M4

(∫
An,k,r2

(
(un − k)p̃

∗
− + kp̃

∗
−
)
dx

) p̃−
p̃∗−
|An,k,r2 |

1
s′−
− p̃−
p̃∗− + |An,k,r2 |

1
s′−


≤M5

(∫
An,k,r2

(un − k)p̃
∗
− dx

) p̃−
p̃∗−
|An,k,r2 |

1
s′−
− p̃−
p̃∗− + kp̃− |An,k,r2 |

1
s′−


= M5

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
(r2 − r1)p̃

∗
−dx

) p̃−
p̃∗−
|An,k,r2 |

1
s′−
− p̃−
p̃∗− + kp̃− |An,k,r2 |

1
s′−


≤M6

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx

) p̃−
p̃∗−
|An,k,r2 |

1
s′−
− p̃−
p̃∗− + kp̃− |An,k,r2 |

1
s′−

 .
where we used the inequality u

p−
n ≤ up̃−n + 1 to obtain the fourth inequality.

About the possible singular integral in (3.61), we need consider other sub cases. De�ne

the sets A+
n,k,r2

= An,k,r2 ∩ {β(x) > 0} and A−n,k,r2 = An,k,r2 ∩ {β(x) ≤ 0}. So, by arguing as
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in (3.63), we can conclude∫
A−n,k,r2

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

(un − k)ξp+dx

≤
∥∥∥(d(x) + 1)−β(x)

∥∥∥
{β(x)≤0}

∫
A−n,k,r2

c(x)

(
un +

1

n

)−α(x)

(un − k)dx (3.64)

≤M6

(∫
A−n,k,r2

∩{α(x)>0}
c(x)(un − k)dx+

∫
A−n,k,r2

∩{α(x)≤0}
c(x)(un + 1)p−−1(un − k)dx

)

≤M7

(∫
An,k,r2

c(x)(un − k)dx+

∫
An,k,r2

c(x)up−n dx

)

≤M8

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx

) p−
p̃∗−
|An,k,r2 |

1
r′−
− p−
p̃∗− + kp− |An,k,r2 |

1
r′−

 .
To another term, we notice that∫

A+
n,k,r2

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

(un − k)ξp+dx

≤
∫

Ωδ∩A+
n,k,r2

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

(un − k)dx

+

∫
ωδ∩A+

n,k,r2

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

(un − k)dx.

To the �rst integral after the inequality above, it follows from Propositions 3.2.5 and

3.2.6 (ii) and repeating the arguments used to obtain used in (3.47), that∫
Ωδ∩A+

n,k,r2

c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

(un − k)dx

≤M9||c||L∞(Ωδ)

∫
Ωδ∩A+

n,k,r2
∩{α(x)>1}

(
d(x) +

1

n

)1−α(x)−β(x)

dx (3.65)

+M10||c||L∞(Ωδ)

∫
Ωδ∩A+

n,k,r2
∩{α(x)≤1}

(
d(x) +

1

n

)−β(x)+θ2(1−α(x))

dx

≤M11

(∥∥∥d(x)[−β(x)+1−α(x)]
∥∥∥
Lr(x)(A+

n,k,r2
)

+
∥∥∥(d(x) + 1)[−β(x)+1−α(x)]

∥∥∥
Lr(x)(A+

n,k,r2
)

+
∥∥∥d(x)[−β(x)+θ2(1−α(x))]

∥∥∥
Lr(x)(A+

n,k,r2
)

+
∥∥∥(d(x) + 1)[−β(x)+θ2(1−α(x))]

∥∥∥
Lr(x)(A+

n,k,r2
)

)
||1||Lr′(x)(A+

n,k,r2
)

≤M12|An,k,r2 |
1
r′− ≤M12k

p̃− |An,k,r2 |
1
r′− .
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To the second one, by following the same lines as in (3.64), we obtain that∫
ωδ∩A+

n,k,r2

c(x)d(x)−β(x)u−α(x)
n (un − k)dx

≤
∥∥∥d(x)−β(x)

∥∥∥
L∞(ωδ)

∫
A+
n,k,r2

c(x)u−α(x)
n (un − k)dx (3.66)

≤M13

(∫
An,k,r2∩{α>0}

c(x)(un − k)dx+

∫
An,k,r2∩{α≤0}

c(x)up̃−n dx

)

≤M13

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx

) p−
p̃∗−
|An,k,r2 |

1
r′−
− p−
p̃∗− + kp̃− |An,k,r2 |

1
r′−


holds true.

After these estimates, it follows from (3.62)− (3.66), that∫
An,k,r2

|∇un|p(x)ξp̃+dx ≤M14

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx+ |An,k,r2 |+ kp̃− |An,k,r2 |ζ

+

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx

) p̃−
p̃∗−
|An,k,r2 |

ζ− p̃−
p̃∗−

 . (3.67)

is true for some ε > 0 small enough, where |An,k,r2 |ζ := max
{
|An,k,r2 |1/s

′
− , |An,k,r2 |1/r

′
−
}
.

That is, by de�nition of ξ, we obtain that∫
An,k,r1

|∇un|p̃−dx ≤
∫
An,k,r2

|∇un|p(x)ξp̃+dx+ |An,k,r2 |

≤M15

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx+ |An,k,r2 |+ kp̃− |An,k,r2 |ζ (3.68)

+

(∫
An,k,r2

(
un − k
r2 − r1

)p̃∗−
dx

) p̃−
p̃∗−
|An,k,r2 |

ζ− p̃−
p̃∗−


holds true, where M15 > 0 is a real constant independent of n and k.

Now, set

Rh =
R

2
+

R

2h+1
, R̃h =

Rh +Rh+1

2
and kh = k

(
1− 1

2h+1

)
for h ∈ N ∪ {0} ,

and note that

Rh ↘
R

2
, kh ↗

k

2
and Rh+1 < R̃ < Rh < R.

De�ne

Jn,h =

∫
An,kh,Rh

|un(x)− kh|p̃
∗
−dx

and consider φ ∈ C1([0,∞)) satisfying 0 ≤ φ(t) ≤ 1, φ(t) = 1 for t ≤ 1
2 and φ(t) = 0 for

t ≥ 3
4 , |φ(t)| ≤ C. Set φh(x) = φ

(
2h+1

R

(
|x| − R

2

))
. Hence φh = 1 in KRh+1

and φh = 0 in

67



RN \KR̃h+1
. Thus

Jn,h+1 =

∫
An,kh+1,Rh+1

|(un(x)− kh+1)φh|p̃
∗
−dx ≤

∫
An,kh+1,R̃h

|(un(x)− kh+1)φh|p̃
∗
−dx

≤
∫
KR

|(un(x)− kh+1)φh|p̃
∗
−dx

.

Since φh(v − kh+1)+ ∈W 1,p̃−
0 (KR), it follows from the Sobolev inequality that

J

p̃−
p̃∗−
n,h+1 ≤ M14

∫
An,kh+1,R̃h

|∇
(
(un(x)− kh+1)φh

)
|p̃−dx


≤ M14

∫
An,kh+1,R̃h

|∇un|p̃−dx+

∫
Akh+1,R̃h

|∇φh|p̃−(un − kh+1)p̃−dx


≤ M15

∫
An,kh+1,R̃h

|∇un|p̃−dx+ 2hp̃−
∫
Akh+1,R̃h

(un − kh+1)p̃−dx


holds.

By using (3.68) with r1 = R̃h < Rh = r2 and Jn,h ≥ Jn,h+1 , we obtain

J

p̃−
p̃∗−
n,h+1 ≤ M16

[∫
An,kh+1,Rh

(
un − kh+1

Rh − R̃h

)p̃∗−
dx+ |An,kh+1,Rh |+ k

p̃−
h+1|An,kh+1,Rh |

ζ

+

(∫
An,kh+1,Rh

(
un − kh+1

Rh − R̃h

)p̃∗−
dx

) p̃−
p̃∗−
|An,kh+1,Rh |

ζ− p̃−
p̃∗− + 2hp̃−

∫
An,kh+1,Rh

(un − kh+1)p̃
∗
−dx


≤ M17

[∫
An,kh+1,Rh

(un − kh+1)p̃
∗
−dx+ |An,kh+1,Rh |+ kp̃− |An,kh+1,Rh |

ζ

+

(∫
An,kh+1,Rh

(un − kh+1)p̃
∗
−dx

) p̃−
p̃∗−
|An,kh+1,Rh |

ζ− p̃−
p̃∗− + 2hp̃−

∫
An,kh+1,Rh

(un − kh+1)p̃
∗
−dx


≤ M17

[
Jn,h+1 + |An,kh+1,Rh |+ |An,kh+1,Rh |

ζ + J

p̃−
p̃∗−
n,h+1|An,kh+1,Rh |

ζ− p̃−
p̃∗− + 2hp̃−Jn,h

]

≤ M17

[
Jn,h + |An,kh+1,Rh |+ |An,kh+1,Rh |

ζ + J

p̃−
p̃∗−
n,h |Akh+1,Rh |

ζ− p̃−
p̃∗− + 2hp̃−Jn,h

]
,

(3.69)

where M17 = M17(p−, N, k).

Besides this, since kh ≤ kh+1 for any h, we have

Jn,h =

∫
An,kh,Rh

(un − kh)p̃
∗
−dx ≥

∫
An,kh+1,Rh

(un − kh)p̃
∗
−dx

≥
∫
An,kh+1,Rh

(kh+1 − kh)p̃
∗
−dx

=
∣∣An,kh+1,Rh

∣∣ |kh+1 − kh|p̃
∗
− =

∣∣An,kh+1,Rh

∣∣ ( k

2h+1

)p̃∗−
,

(3.70)

that is, by using (3.70) in (3.69), we obtain

J

p̃−
p̃∗−
n,h+1 ≤ M18

[
Jn,h + 2hp̃

∗
−Jn,h + 2hζp̃

∗
−Jζn,h + 2h(ζp̃∗−−p̃−)Jζn,h + 2hp̃

∗
−Jn,h

]
.
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By setting M = max(p̃∗−, ζp̃
∗
−, ζp̃

∗
− − p̃−), it follows from the above inequality that

J

p̃−
p̃∗−
n,h+1 ≤M192hMJζn,h

[
J1−ζ
n,h + 1

]
holds true for some M19 = M19(p−, N, k). Now, by using Proposition 3.2.7 or 3.2.8, we have

Jn,h ≤
∫
KR

(|un − kh|+)p̃
∗
−dx ≤ ||un||

L
p̃∗− (KR)

< M20,

where M20 is independent of n. Thus, by above estimate and ζ ∈ {1/r′−, 1/s′−} we obtain

Jn,h+1 ≤ CBhJ1+η
n,h (3.71)

holds for some C independent of n, B := 2
M

p̃∗−
p̃− and η = (ζp̃∗−/p̃−)− 1 > 0 since we are using

the hypotheses r(x), s(x) > N/p− = (p∗−/p−)′ ≥ (p̃∗−/p̃−)′.

Now, we claim that

Jn,h =

∫
An,kh,Rh

|un(x)− kh|p̃
∗
−dx→

∫
Akh,Rh

|u(x)− kh|p̃
∗
−dx := Jh (3.72)

as n→∞, where Ak,i := Ki ∩ {x ∈ Ω : u(x) > k}. In fact, since

(un(x)− kh)XAn,kh,Rh∩Ωn,δ(x)→ (u(x)− kh)XAkh,Rh∩Ωδ(x) a.e. in in Ω,

and Proposition 3.2.6 implies that

0 ≤ (un(x)− kh)XAn,kh,Rh∩Ωn,δ ≤M21

(
d(x) +

1

n

)θ2
≤M21(d(x) + 1)θ2 ∈ L1(Ω)

holds, we are able to apply Lebesgue's Theorem to obtain

lim
n→∞

∫
An,kh,Rh∩Ωn,δ

|un(x)− kh|p̃
∗
−dx =

∫
Akh,Rh∩Ωδ

|u(x)− kh|p̃
∗
−dx.

Besides this, by using that un → u in W
1,p(x)
loc (Ω), we have

lim
n→∞

∫
An,kh,Rh∩ωn,δ

|un(x)− kh|p̃
∗
−dx =

∫
Akh,Rh∩ωδ

|u(x)− kh|p̃
∗
−dx,

that is, (3.72) holds. As a consequence of this, by passing the limit n → ∞ in (3.71), we

obtain

Jh+1 ≤ CBhJ1+η
h

holds for all h ∈ N ∪ {0}.
To �nish, remembering that u satis�es C1d(x) ≤ u(x) ≤ C2d(x)θ2 in Ωδ and u ∈ L

p∗−
loc(Ω),

we are able to apply once Lebesgue's Theorem to conclude that

J0 =

∫
A k

2 ,r2

∣∣∣∣u− k

2

∣∣∣∣p∗− dx =

∫
A k

2 ,r2
∩Ωδ

∣∣∣∣u− k

2

∣∣∣∣p∗− dx+

∫
A k

2 ,r2
∩ωδ

∣∣∣∣u− k

2

∣∣∣∣p∗− dx→ 0
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as k →∞. So, by taking k ≥ k0 large enough such that J0 ≤ C−
1
ηB
− 1
η2 and applying Lemma

1.3.6, we have that Jh converges to 0 as h→∞, that is,∫
A
k0,

R
2

|u− k0|p̃
∗
−dx = 0

Since u − k0 > 0 in Ak0,
R
2
and x0 ∈ Ω was taken arbitrary, the last integral implies∣∣∣Ak0,

R
2

∣∣∣ = 0 for all x0 ∈ Ω. Thus, 0 ≤ u ≤ k0 on Kk0,
R
2
for all x0 ∈ Ω, that is, u ∈ L∞(Ω).

This �nishes the proof of (i)

Proof of (ii) Let un ∈ W
1,p(x)
0 (Ω) be the solution of the problem (3.4) and u

p−(σ−1)+1
n ∈

W
1,p(x)
0 (Ω) a test function in (3.12) for σ ≥ 1 given. So, we have

(p−(σ − 1) + 1)

∫
Ω
up−(σ−1)
n |∇un|p(x)dx =

∫
Ω
|∇un|p(x)−2∇un∇(up−(σ−1)+1

n )dx (3.73)

≤
∫

Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

up−(σ−1)+1
n dx+ λ

∫
Ω
b(x)(1 + uq(x)−1

n )up−(σ−1)+1
n dx.

Since ∫
Ω
|∇uσn|p−dx =

∫
Ω
σp−up−(σ−1)

n |∇un|p−dx

≤ σp−
(∫

Ω
up−(σ−1)
n dx+

∫
Ω
up−(σ−1)
n |∇un|p(x)dx

)
holds, we obtain∫

Ω
|∇uσn|p−dx ≤ C

[ ∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

up−(σ−1)+1
n dx

+ λ

∫
Ω
b(x)(1 + uq(x)−1

n )up−(σ−1)+1
n dx+

∫
Ω
up−(σ−1)
n dx

]
.

holds true for each σ ≥ 1 given.

Below, let us evaluate each integral in the above inequality. Let us begin by considering

the parameter σ ≥ 1 satisfying

σ ≥ max

{
p− + (β+ − 1)/θ2 + α+ − 1

p−
,
p− + α+ − 1

p−

}
. (3.74)

To the �rst integral, we note that following the same lines used in (3.31) and (3.32), we obtain∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

up−(σ−1)+1
n dx ≤M1

(
1 +

∫
Ω
c(x)up−(σ−1)+1−α(x)

n dx

)
.

Now, by Hölder Inequality,∫
Ω
c(x)up−(σ−1)+1−α(x)

n dx ≤
∫

Ω
c(x)up−(σ−1)+1−α+

n dx+

∫
Ω
c(x)up−+(σ−1)+1−α−

n dx

≤ ||c||r−
∥∥∥up−(σ−1)+1−α+

n

∥∥∥
r′−

+ ||c||r−
∥∥∥up−(σ−1)+1−α−

n

∥∥∥
r′−

(3.75)

≤ ||c||r−

(∥∥∥up−(σ−1)+1−α−
n

∥∥∥ p−(σ−1)+1−α+
(p−(σ−1)+1−α−)r′−
r′−

+
∥∥∥up−(σ−1)+1−α−

n

∥∥∥
r′−

)
,
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that is, it follows from the last two inequalities that∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)−α(x)

up−(σ−1)+1
n dx

≤M3

(∥∥∥up−(σ−1)+1−α−
n

∥∥∥ p−(σ−1)+1−α+
(p−(σ−1)+1−α−)r′−
r′−

+
∥∥∥up−(σ−1)+1−α−

n

∥∥∥
r′−

+ 1

)
. (3.76)

For the second integral,∫
Ω
b(x)(1 + uq(x)−1

n )up−(σ−1)+1
n dx ≤M4

(∫
Ω
b(x)dx+

∫
Ω
b(x)up−(σ−1)+q(x)

n dx

)
≤M5

(
1 + ‖uσn‖

p−(σ−1)+q+
σ

p∗−

)
= M5

(
1 + ‖un‖p−(σ−1)+q+

σp∗−

)
. (3.77)

To the last integral in, we have∫
Ω
up−(σ−1)
n dx ≤

∫
Ω
up−(σ−1)+1−α−
n dx+

∫
Ω

1dx

≤M6

(∥∥∥up−(σ−1)+1−α−
n

∥∥∥
r′−

+ 1

)
(3.78)

Now, let us choose σ ≥ 1 such that σp∗− := (p−(σ − 1) + 1− α−)r′−. That is,

σ =
r−(p− + α− − 1)(N − p−)

p−(N − r−p−)
.

Since (N − r−p−) > 0, then σ is well de�ned. Also, σ ≥ (p− + α+ − 1)/p− if, and only if,

N(p− + α+ − 1)

(N − p)(p− + α− − 1)− p−(p− + α+ − 1)
≤ r−,

and σ ≥
(
p− + (β+ − 1)/θ2 + α+ − 1

)
/p− if, and only if,

N(p− + β+−1
θ2

+ α+ − 1)

(N − p)(p− + α− − 1)− p−(p− + β+−1
θ2

+ α+ − 1)
≤ r−,

holds true. Thus, it follows from (3.75)− (3.78), that

σp−
∫

Ω
up−(σ−1)
n |∇un|p(x)dx ≤M7

(
1 + ||un||p−(σ−1)+1−α+

σp∗−
+ ||un||p−(σ−1)+1−α−

σp∗−
+ λ||un||p−(σ−1)+q+

σp∗−

)
.

(3.79)

Now, by Sobolev embedding W
1,p−
0 (Ω) ↪→ Lp

∗
−(Ω) we have

M5||uσn||
p−
p∗−
≤ ||uσn||

p−

W
1,p−
0 (Ω)

=

∫
Ω
|∇uσn|p−dx. (3.80)

So, it follows from (3.79) and (3.80) that

||un||σp−σp∗−
≤M6

[
|un||p−(σ−1)+1−α+

σp∗−
+ ||un||p−(σ−1)+1−α−

σp∗−
+ ||un||p−(σ−1)+q+

σp∗−
+ 1
]

for some M6 > 0 independent of n. Thus, we are able to choose a λ∗ > 0 small enough of

q+ = p− or λ∗ =∞ if q+ < p−, such that un is bounded in Lσp
∗
−(Ω) = L

Nr−(p−+α−−1)

N−r−p− (Ω).
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Proof of (iii): In this case, we need just to estimate the below integral in (3.73), because

the estimate to the other one is already done in (3.77). Let us procedure. By splitting the

domain Ω and using 1− α(x)− β(x) > 0 in Ωn,δ, we obtain∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

up−(σ−1)+1
n dx

=

∫
Ω
c(x)

(
d(x) +

1

n

)p−(σ−1)+1−α(x)−β(x)
(
un + 1

n

d(x) + 1
n

)p−(σ−1)+1−α(x)

dx

=

∫
Ωn,δ

c(x)

(
d(x) +

1

n

)p−(σ−1)+1−α(x)−β(x)
(
un + 1

n

d(x) + 1
n

)p−(σ−1)+1−α(x)

dx

+

∫
ωn,δ

c(x)

(
d(x) +

1

n

)p−(σ−1)+1−α(x)−β(x)
(
un + 1

n

d(x) + 1
n

)p−(σ−1)+1−α(x)

dx

≤M1

∫
Ω
c(x)

(
un + 1

n

d(x) + 1
n

)p−(σ−1)+1−α(x)

dx.

To this last integral, by arguing as in (3.38) and (3.39), we get∫
Ω
c(x)

(
un + 1

n

d(x) + 1
n

)p−(σ−1)+1−α(x)

dx ≤M2

∫
{p−(σ−1)+1−α(x)≤0}

c(x)dx

+

∫
Ωn,δ∩{p−(σ−1)+1−α(x)>0}

c(x)

(
d(x) +

1

n

)(θ2−1)(p−(σ−1)+1−α(x))

dx

+

∫
ωn,δ∩{p−(σ−1)+1−α(x)>0}

c(x)(un + 1)p−(σ−1)+1−α(x)dx.

Around to the boundary of Ω, we have∫
Ωn,δ∩{p−(σ−1)+1−α(x)>0}

c(x)

(
d(x) +

1

n

)(θ2−1)(p−(σ−1)+1−α(x))

dx

≤
∫

Ωn,δ∩{p−(σ−1)+1−α(x)>0}
c(x)(d(x) + 1)(θ2−1)(p−(σ−1)+1−α(x))dx ≤M4,

where we used that θ2 > 1 in Ωn,δ, since 1 − α(x) − β(x) > 0 in Ωn,δ. That is, by above

inequalities, we have∫
Ω
c(x)

(
d(x) +

1

n

)−β(x)(
un +

1

n

)1−α(x)

up−(σ−1)+1
n dx

≤M3

(
1 +

∫
Ω
c(x)up−(σ−1)+1−α(x)

n dx

)
. (3.81)

Since by hypotheses N − r−p− > 0 and

Np−
Np− − (N − p−)(1− α−)

≤ r−

are true, we are able to �x σ ≥ 1 satisfying σp∗− := (p−(σ − 1) + 1− α−)r′−, that is,

σ =
r−(p− + α− − 1)(N − p−)

p−(N − r−p−)
.
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So, by using (3.81) and (3.77) in (3.73), we can repeat the same lines as the �nal part

of the proof of (ii) to choose a λ∗ > 0 small enough if q+ = p− or λ∗ = ∞ if q+ < p−, to

conclude that un is bounded in Lσp
∗
−(Ω) = L

Nr−(p−+α−−1)

N−r−p− (Ω).

Remark 3.3.1 Let u ∈ W 1,p(x)
loc (Ω) an arbitrary solution for (3.1). If we repeat the proof of

Theorem 3.1.4(i) with u in the place of un, x0 ∈ Ω and ξ ∈ C∞0 (Ω), then we are able to

conclude that u ∈ L∞loc(Ω), that is, any W
1,p(x)
loc (Ω)−solution for (3.1) belongs to L∞loc(Ω).

Proof of Corollary 3.1.5. For each x0 ∈ Ω and R > 0 given, set BR(x0) the ball centered

in x0 with radius R. Let 0 < r1 < r2 < R such that Br1 ⊂ Br2 ⊂ BR and take ξ ∈ C∞0 (Ω)

with 0 ≤ ξ ≤ 1, ξ ≡ 1 in Br1(x0), supp (ξ) ⊂ Br2(x0) and |∇ξ| ≤ (r2 − r1)−1. For k ≥ 1,

consider the function ψ = ξp̃+(u− k)+ and note that ψ ∈ W 1,p(x)
0 (Ω) ∩ L∞(Ω). By taking ψ

as a test function for (3.1) and using (H2) we have∫
Ω
|∇u|p(x)ξp̃+dx+ p̃+

∫
Ω
|∇u|p(x)−2∇u∇ξξp̃+−1(u− k)+dx (3.82)

≤
∫

Ω

(
c(x)d(x)−α(x)u−α(x) + λb(x)

(
1 + uq(x)−1

))
ξp̃+(u− k)+dx.

Now, by arguing as in (3.61), (3.62), and (3.64), we obtain∫
Ω
|∇u|p(x)−1|∇ξ|(u− k)+ξp̃+−1dx (3.83)

≤ ε
∫
Ak,r2

|∇u|p(x)ξp̃+dx+ Cε

∫
Ak,r2

(
u− k
r2 − r1

)p̃∗−
dx,

where Ak,i = Bi ∩ {x ∈ Ω : u(x) > k} , i = {r1, r2, R}.
For the singular integral, using (H3)(ii) and Lemma 3.2.6(ii) we obtain∫

Ω
c(x)d(x)−β(x)u−α(x)ξp̃+(u− k)+dx

≤
∥∥∥d(x)−β(x)u1−α(x)ξp̃+

∥∥∥
L∞(Ω)

||c||r− |Ak,r2 |
1− 1

r− . (3.84)

More,∫
Ak,r2

b(x)
(

1 + uq(x)−1
)
ξp̃+(u− k)+dx ≤

∥∥∥u+ uq(x)
∥∥∥
L∞(Ω)

||b||s− |Ak,r2 |
1− 1

s− . (3.85)

From (3.82)− (3.86)∫
Ak,r1

|∇u|p(x)dx ≤ C

(∫
Ak,r2

(
u− k
r2 − r1

)p(x)

dx+ max

{
|Ak,r2 |

1− 1
r− , |Ak,r2 |

1− 1
s−

})

holds true for each ε > 0 small enough given, that is, u ∈ C0,γ(Ω) for some 0 < γ < 1, by

using Lemma 1.3.5.

Now, let us prove the Hölder continuity up to the boundary of U , for all open sets

U ⊆ Ω such that ∂U ∩ ∂Ω = Γ1 ∪ Γθ2 . For each x0 ∈ U set KR = BR(x0) ∩ U . Let

0 < r1 < r2 < R such that Kr1 ⊂ Kr2 ⊂ KR and take ξ ∈ C∞(U) with 0 ≤ ξ ≤ 1, ξ ≡ 1 in
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Kr1 , supp (ξ) ⊂ Kr2 and |∇ξ| ≤ (r2− r1)−1. For k ≥ max
Kr2

u(x)−σ||u||L∞(U), σ ≤ 2, consider

the function ψ = ξp̃+(u− k)+ and note that ψ ∈W 1,p(x)(Ω)∩L∞(Ω) with ψ = 0 in ∂U ∩ ∂Ω

in trace sense. By taking ψ as a test function for (3.1) and using (H2) we have∫
U
|∇u|p(x)ξp̃+dx+ p̃+

∫
U
|∇u|p(x)−2∇u∇ξξp̃+−1(u− k)+dx (3.86)

≤
∫
U

(
c(x)d(x)−α(x)u−α(x) + λb(x)

(
1 + uq(x)−1

))
ξp̃+(u− k)+dx.

For the singular integral, using that

C1d(x) ≤ u(x) ≤ C2d(x)θ2 in Ωδ ∩ U, (3.87)

we obtain∫
A′k,r2

c(x)d(x)−β(x)u−α(x)ξp̃+(u− k)+dx ≤
∫
A′k,r2

c(x)d(x)−β(x)u1−α(x)ξp̃+dx

≤M1

(∫
Ωδ∩A′k,r2∩{α(x)>1}

c(x)d(x)1−α(x)−β(x)ξp̃+dx+

∫
Ωδ∩A′k,r2∩{α(x)≤1}

c(x)d(x)−β(x)+θ2(1−α(x))ξp̃+dx

)

+
∥∥∥d(x)−β(x)u1−α(x)ξp̃+

∥∥∥
L∞(ωδ)

∫
Ω
c(x)dx,

where A′k,i = Ki ∩ {x ∈ U : u(x) > k} , i = {r1, r2, R}. Since ∂U ∩ ∂Ω = Γ1 ∪ Γθ2 , then by

Lazer and McKenna [51]

max

{∫
Ωδ

d(x)[−β(x)+1−α+]r′(x)dx,

∫
Ωδ

d(x)[−β(x)+θ2(1−α+)]r′(x)dx

}
<∞.

Thus, by the above inequalities∫
A′k,r2

c(x)d(x)−β(x)u−α(x)ξp̃+(u− k)+dx ≤M2|A′k,r2 |
1− 1

r− (3.88)

More,∫
A′k,r2

b(x)
(

1 + uq(x)−1
)
ξp̃+(u− k)+dx ≤

∥∥∥u+ uq(x)
∥∥∥
L∞(Ω)

||b||s− |A′k,r2 |
1− 1

s− .

which lead us to conclude, as done in �rst part, that∫
A′k,r1

|∇u|p(x)dx ≤ C

(∫
A′k,r2

(
u− k
r2 − r1

)p(x)

dx+ max

{
|A′k,r2 |

1− 1
r− , |A′k,r2 |

1− 1
s−

})
.

Beside this, by using (3.87) and the fact of u ∈ C0,γ(Ω), we conclude that there exists

C > 0 such that

sup
x∈KR∩∂U

u(x)− inf
x∈KR∩∂U

u(x) ≤ CRγ .

Thus, by Proposition 1.3.5 we conclude that u ∈ C0,γ(U).
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3.3.3 Proof of Theorem 3.1.6 - Completed

Finally, let us prove the uniqueness result of W
1,p(x)
loc (Ω)-solutions to the problem (3.1).

Proof. Let u1, u2 ∈ W 1,p(x)
loc (Ω) be two solutions of the problem (3.1). By Remark 3.3.1 we

have that u1, u2 ∈ L∞loc(Ω). Now, set g(x, t) = c(x)d(x)−β(x)t−α(x) + λf(x, t) for x ∈ Ω and

t > 0. We claim that the hypotheses of Theorem 2.1.3 holds true on the cone

[0, u1] = {w ∈W 1,p(x)
0 (Ω) / 0 ≤ w ≤ u1}.

Admitting this by now, we are able to apply Theorem 2.1.3 to conclude that u1 ≤ u2 in Ω.

In the same way, we obtain that u1 ≥ u2 in Ω, that is, u1 = u2 in Ω.

Now, we will prove the claim. First, the hypothesis (g1) is immediate. Second, from

hypotheses (H1) and (H4) we have that g(x, t)/tp− is strictly decreasing in t > 0 for a.e.

x ∈ Ω, showing (g2). To show (g3), given h > 0, de�ne the functional Ih : W
1,p(x)
0 (Ω)→ R

Ih(u) =

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
{α(x)=1}

c(x)d(x)−β(x) ln

(
2h

u+ + 2h

)
dx

+

∫
{α(x)6=1}

c(x)d(x)−β(x)
[
(u+ + 2h)

1−α(x) − (2h)1−α(x)
]

α(x)− 1
dx

− λ
∫

Ω
(F (x, u+ 2h)− F (x, 2h))dx.

The weakly lower semicontinuity of Ih on [0, u1] with respect to W
1,p(x)
0 (Ω) follows by

the same arguments used in Proposition 3.2.4. Below, we are going to show that Ih is coercive

on [0, u1]. To this, we notice that∫
{α(x)=1}

c(x)d(x)−β(x) ln(u+ + 2h)dx ≤
∫
{α(x)=1}

c(x)d(x)−β(x)(u+ + 2h)dx

≤
∫

Ω
c(x)d(x)1−β(x) u

+

d(x)
dx+ 2h

∫
Ω
c(x)d(x)−β(x)dx (3.89)

≤M1

(∫
Ωδ

u+

d(x)
dx+

∫
ωδ

c(x)u+dx+

∫
Ω
c(x)d(x)−β(x)dx

)
,

that is, by using that β(x) < 1 on ∂Ω, it follows from Lazer and McKenna [51], that∫
Ω
c(x)d(x)−β(x) ≤ ||c||L∞(Ωδ)

∫
Ω
d(x)−β(x)dx+

∥∥∥d(x)−β(x)
∥∥∥
L∞(ωδ)

∫
Ω
c(x)dx <∞. (3.90)

To others integrals, by applying Hardy's Inequality, Hölder's Inequality and the embedding

W 1,p(x)(Ω)→ Lr
′(x)(Ω), we obtain∫

{α(x)=1}
c(x)d(x)−β(x) ln(u+ 2h)dx ≤M2 (||u||+ 1) . (3.91)
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To the complementary sets. First, we have∫
{α(x)<1}

c(x)d(x)−β(x) (u+ 2h)1−α(x)

1− α(x)
dx ≤

∫
{α(x)<1}

c(x)d(x)−β(x)(1 + (u+ 2h))

1− α(x)
dx

≤
∫

Ω

c(x)

1− α(x)
d(x)1−β(x) 1 + u+ 2h

d(x)
dx

≤M3

(∫
Ωδ∩{α(x)<1}

1 + u+ 2h

d(x)
dx+

∫
ωδ∩{α(x)<1}

c(x)

1− α(x)
(1 + u+ 2h)dx

)
.

So, by using hypothesis (H3)(iii), Hölder's Inequality, Hardy's Inequality and again the em-

bedding W 1.p(x)(Ω)→ Lr
′(x)(Ω), we obtain∫

{α(x)<1}

c(x)d(x)−β(x) (u+ 2h)α(x) − 1

α(x)− 1
dx ≤M4(||u||+ 1). (3.92)

To another one, by arguing as in (3.90), we obtain∫
{α(x)>1}

c(x)d(x)−β(x) (u+ 2h)1−α(x)

α(x)− 1
dx ≤

∫
{α(x)>1}

c(x)d(x)−β(x)(2h)1−α(x)

α(x)− 1
dx <∞.

To end, by using the hypothesis (H2), s(x) > N/p− ≥ p∗−/q(x) and Hölder's inequality,

we have ∣∣∣∣∫
Ω
F (x, u+ 2h)dx

∣∣∣∣ ≤M5

∫
Ω
b(x)

(
|u+ 2h|+ |u+ 2h|q(x)

)
dx

≤M6

(
||u+ 2h||s′(x) + ||(u+ 2h)q(x)|| p∗−

q(x)

)
(3.93)

≤M6

(
||u+ 2h||s′(x) + ||(u+ 2h)||q−p∗− + ||(u+ 2h)||q+p∗−

)
≤M7 (||u+ 2h||+ ||(u+ 2h)||q− + ||(u+ 2h)||q+) .

So, we obtain from (3.91)− (3.93) in (3.89), that

Ih(u) ≥ 1

p+
||u||p− − C4(1 + ||u||+ ||u||q− + λ||u||q+)

for all u ∈W 1,p(x)
0 (Ω) with ||u|| > 1 .

Thus, we are able to choose a λ∗∗ > 0 small enough f q+ = p− or λ∗∗ =∞ if q+ < p−,

such that Ih is coercive for all 0 < λ < λ∗∗ , proving the claim and �nishing the proof.
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Chapter 4

Multiplicity of W
1,p(x)
0 (Ω)-solutions for

local-singular-convex problem

4.1 Introduction

In this chapter we study the following quasilinear elliptic local-singular-convex problem

with variable exponents and powers{
−∆p(x)u = a(x)u−α(x) + λf(x, u) in Ω,

u > 0 in Ω; , u = 0 on ∂Ω.
(4.1)

where Ω is a bounded open domain in RN with smooth boundary ∂Ω, 0 < a ∈ Lr(x)(Ω) for

some 1 < p ∈ C1(Ω) and λ > 0 is a real parameter.

Throughout this chapter we adopt the following de�nition of solution:

De�nition 4.1.1 A positive function u ∈W 1,p(x)
0 (Ω) is a solution to (4.1) if∫

Ω
|∇u|p(x)−2∇u∇φdx =

∫
Ω
a(x)u−α(x)φdx+ λ

∫
Ω
f(x, u)φdx

for all φ ∈W 1,p(x)
0 (Ω).

To state ours results, let us remind that:

Ωδ := {x ∈ Ω / d(x) < δ}, for each δ > 0,

stands for the interior δ-strip around the boundary of the domain,

Γt = {x ∈ ∂Ω / [t(1− α(x))]
1

1− 1/r(x)
+ 1 > 0}, for t ∈ {1, θ1, θ2}

is a subset of the boundary of the domain and the numbers

θ1 =

 max
x∈Ωδ

p(x)

p(x) + α(x)− 1
if α(x) > 1,

1 if α(x) ≤ 1,

and θ2 = min
x∈Ωδ

p(x)

p(x) + α(x)− 1



will be important to establish behaviors of the solutions around the boundary.

Related to the functions α(x), a(x) and f(x, t), we make the following general assump-

tions. Assume that there exists a δ > 0 such that:

(H1) α : Ω→ R is a C0,1(Ω)-function that satis�es α− > 1− p−,

(H2) 0 < a ∈ Lr(x)(Ω) with r(x) > N/p− and one of the items below:

(i) a ∈ L∞(Ωδ) and Γ1 ∪ Γθ2 = ∂Ω,

(ii) a(x) ≥ aδ > 0 in Ωδ, a ∈ L∞(Ωδ) and Γθ1 ∪ Γθ2 = ∂Ω,

(H3) a(x)
1−α(x) ∈ L

r(x)({α(x) 6= 1}),

(f1) f : Ω × [0,∞) → [0,∞) is a Caratheodory function such that for each M > 0 given

there exists c1 = c1(M) > 0 satisfying

0 ≤ f(x, s) ≤ c1 for every 0 ≤ s ≤M and a.e. x in Ω

We would like to notice that the hypothesis (H1) and (H2) will be used to guarantee the

existence of a positive subsolution for (4.1) that belongs to W
1,p(x)
0 (Ω), via Corollary 3.1.3,

while the condition (f1) will be used to establish the existence of a positive supersolution for

(4.1), without any additional growth condition on f(x, t) in t > 0.

From now on, whenever we use the hypothesis (f1), we will understand that f(x, s) has

been extended for s < 0 by putting f(x, s) = f(x, 0).

Our �rst result is.

Theorem 4.1.2 Suppose (H1), (H2) and (f1) are satis�ed. Then there exist λ0 > 0 such

that the problem (4.1) has a weak solution uλ ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω) for each 0 < λ < λ0

given satisfying uλ ≥ m0d(x) in Ω for some m0 > 0. In addition, there exist M0,M1,m1 > 0

such that:

(i) m0d(x) ≤ uλ ≤M0d(x)θ2 for x ∈ Ωδ if (H2)(i) holds,

(ii) m1d(x)θ1 ≤ uλ ≤M1d(x)θ2 for x ∈ Ωδ if (H2)(ii) holds.

We can also consider a setting in what f(x, s) is allowed to change its sign if we replace

(f1) for the following couple of assumptions:

(f2) f : Ω × [0,∞) → R is a Caratheodory function such that for each M > 0 given there

exists c2 = c2(M) > 0 and 0 ≤ h = hM ∈ L1(Ω) satisfying

−h(x) ≤ f(x, s) ≤ c2 for all 0 ≤ s ≤M and a.e. x ∈ Ω,

(f3) there are ζ > 0 and c3 > 0 such that

f(x, s) ≥ −c3a(x) for all 0 ≤ s ≤ ζ and a.e. x ∈ Ω.

So, for f(x, t) changing the signal, we have.

78



Theorem 4.1.3 Suppose (H1), (H2), (f2) and (f3) are satis�ed. If α(x) ≥ 0 in Ω with

α(x) < 1 on ∂Ω, then there exist λ1 > 0 such that the problem (4.1) has a weak solution

uλ ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω) for each 0 < λ < λ1 given satisfying uλ ≥ Cd(x) in Ω for some

C > 0.

In order to establish the existence of at least two solutions for the problem (4.1), we

also assume:

(f4) there exists C > 0 such that

|f(x, t)| ≤ C(1 + tq(x)−1) for t > 0 and a.e. x ∈ Ω,

with 1 < q ∈ C(Ω) and p+ < q+ < p∗−,

(f5) there exists a subdomain ∅ 6= D ⊂ Ω such that

lim
t→∞

F (x, t)

tp+
= +∞ uniformly on x ∈ D,

where F (x, t) =
∫ t

0 f(x, s)ds for t > 0 and x ∈ Ω,

(f6) there exist τ ∈ C(Ω) with τ < p− such that

p+F (x, t)− f(x, t)t ≤ β0t
τ(x) for a.e. x ∈ Ω and all t ≥ t0

for some t0 ≥ 0 and β0 ≥ 0 .

So, we have existence of two ordered weak solutions

Theorem 4.1.4 Suppose (H1)− (H3), (f4)− (f6) are satis�ed. There exists λ∗ > 0 such that

the problem (4.1) has at least two di�erent solutions uλ, vλ ∈W
1,p(x)
0 (Ω) for each 0 < λ < λ∗

given. In addition, uλ ≤ vλ and uλ has negative energy while vλ is a positive energy solution.

The chapter is organized as follows. The section 4.2 is dedicated to obtain a weak

solution for the problem (4.1) by using a sub-solution method and the results of Chapters

2 and 3. In section 4.3 we present the multiplicity of weak solutions via Mountain Pass

Theorem.

4.2 Existence of a �rst solution

We start de�ning a sub and a supersolution to problema (4.1).

De�nition 4.2.1 A function u ∈W 1,p(x)(Ω) is a subsolution to (4.1) if u > 0 in Ω, a(x)u−α(x) ∈
L1
loc(Ω), u+ ∈W 1,p(x)

0 (Ω) and∫
Ω
|∇u|p(x)−2∇u∇φdx ≤

∫
Ω
a(x)u−α(x)φdx+ λ

∫
Ω
f(x, u)φdx

holds for all φ ∈ C∞0 (Ω) with φ ≥ 0 a.e. in Ω. Analogously, u ∈W 1,p(x)(Ω) is a supersolution

to (4.1) if u > 0 in Ω, a(x)u−α(x) ∈ L1
loc(Ω), u− ∈W 1,p(x)

0 (Ω) and∫
Ω
|∇u|p(x)−2∇u∇φdx ≥

∫
Ω
a(x)u−α(x)φdx+ λ

∫
Ω
f(x, u)φdx

holds true for all φ ∈ C∞0 (Ω) with φ ≥ 0 a.e. in Ω.
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Lemma 4.2.2 Assume (H1), (H2)(i) and (f1) hold. Then there exists λ0 > 0 the problem

(4.1) admits a subsolution and a supersolution u, u ∈ W 1,p(x)
0 (Ω) for each 0 < λ < λ0 given

satisfying u ≥ u > 0 for all x ∈ Ω.

Proof. Since we are assuming that (H1) and (H2) hold true, let u ∈W 1,p(x)
0 (Ω) be the unique

solution of the singular-concave problem{
−∆p(x)u = a(x)u−α(x) in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(4.2)

given by Corollary 3.1.3. In particular, by non-negativity of f(x, t), we have that u is a

subsolution of the problem (4.1).

Now, let us construct a supersolution of (4.1). Again, by applying Corollary 3.1.3, we

obtain an only W
1,p(x)
0 (Ω)-solution to the problem{

−∆p(x)u = a(x)u−α(x) + 1 in Ω,

u > 0 in Ω, u = 0 on ∂Ω.
(4.3)

Let us denote it by u ∈ W 1,p(x)
0 (Ω). Once using (H1) and (H2), it follows by Theorem 3.1.4,

that u, u ∈ L∞(Ω).

Now, it follows from the hypothesis (f1) with M = ||u||∞, that∫
Ω
|∇u|p(x)−2∇u∇φdx−

∫
Ω
a(x)u−α(x)φdx− λ

∫
Ω
f(x, u)φdx ≥

∫
Ω

(1− λc1) a(x)φ ≥ 0,

for all φ ∈ C∞0 (Ω) with φ ≥ 0, whenever 0 < λ < λ0, where λ0 = 1/c1 > 0. This shows that

u is a supersolution for (4.1).

To end, we point out that u and u are also subsolution and supersolution to the problem

(4.2). Thus, we can apply Theorem 2.1.3, to conclude that u ≥ u > 0 for all x ∈ Ω. This

complete the proof.

Now we will study the case when f(x, s) may change the signal.

Lemma 4.2.3 Assume that (H1), (H2), (f2) and (f3) holds true. If α(x) ≥ 0 in Ω with

α(x) < 1 on ∂Ω, then exists λ1 > 0 such that the problem (4.1) admits a subsolution and

a supersolution v, v ∈ W 1,p(x)
0 (Ω) ∩ L∞(Ω) for each x ∈ Ω and 0 < λ < λ1 given satisfying

v ≥ v > 0.

Proof. First, let us build a subsolution. Given ε > 0, consider the problem{
−∆p(x)u = εa(x) in Ω,

u = 0 on ∂Ω.
(4.4)

Since that the map v 7→
∫

Ω εa(x)vdx de�nes a continuous linear functional onW
1,p(x)
0 (Ω)

and L is an homeomorphism, as shown at Lemma 1.2.4, then the problem (4.4) admits an

unique weak solution 0 � v = vε ∈ W
1,p(x)
0 (Ω). Also, it follows from Proposition 1.3.9 that

v > 0 in Ω and, from Proposition 1.3.8, we obtain that v ∈ C1,γ(Ω). In particular we obtain

from Lemma 1.3.7 that

||v||∞ ≤ Cε
1

p+−1 for 0 < ε < 1. (4.5)
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Now, by taking 0 < ε < 1 so small, we obtain 0 < ||v||∞ ≤ min{ζ, 1}, where ζ > 0 is

given at (f3). So, we are able to use the hypothesis (f3) to obtain∫
Ω
|∇v|p(x)−2∇v∇φdx−

∫
Ω
a(x)v−α(x)φdx− λ

∫
Ω
f(x, v)φdx

≤ −
∫

Ω
(1− ε− λc1) a(x)φ ≤ 0,

whenever 0 < λ < λ′ for some λ′ > 0 su�ciently small, that is, v > 0 is a subsolution to the

problem (4.1).

About the supersolution. By following the same arguments as done in the proof of

Lemma 4.2.2, we obtain a v ∈ W
1,p(x)
0 (Ω) ∩ L∞(Ω) that is a supersolution to the problem

(4.1), whenever 0 < λ < λ′′ for some λ′′ > 0.

To end, by de�ning λ1 = min{λ′, λ′′} and noticing that v, v are also a subsolution and a

supersolution to the problem (4.2), we are able to apply Theorem 2.1.3 to deduce that v ≥ v
in x ∈ Ω. This �nish the proof.

4.2.1 Proof of Theorems 4.1.2 and 4.1.3- Completed

Below, let us minimize an appropriated energy functional in W
1,p(x)
0 (Ω) and show that

this minimum belongs to the cone [u, u].

Proof of Theorem 4.1.2 - Completed. Consider the following truncation

f(x, t) =


a(x)u−α(x) + λf(x, u) if t ≤ u,
a(x)t−α(x) + λf(x, t) if u < t < u,

a(x)u−α(x) + λf(x, u) if t ≥ u.
(4.6)

So, f(x, t) is a Carathéodory function. We set F (x, t) =
∫ t

0 f(x, s)ds and consider the func-

tional J : W
1,p(x)
0 (Ω)→ R de�ned by

J(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω
F (x, u)dx. (4.7)

From Lemma B.0.3, J belongs to C1
(
W

1,p(x)
0 (Ω)

)
, is coercive and sequentially weakly

lower semi-continuous. Then it has a global minimizer uλ ∈W
1,p(x)
0 (Ω), that is,

J(uλ) = inf
v∈W 1,p(x)

0 (Ω)

J(v) and J
′
(uλ) = 0.

In particular, by using (uλ − u)+ as a test function, we obtain∫
Ω
|∇uλ|p(x)−2∇uλ∇(uλ − u)+dx =

∫
Ω
f(x, uλ)(uλ − u)+dx

=

∫
Ω

(
a(x)u−α(x) + λf(x, u)

)
(uλ − u)+dx

≤
∫

Ω
|∇u|p(x)−2∇u∇(uλ − u)+dx,
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where the last inequality is obtained by using the fact that u is a supersolution for the problem

(4.1), that is, ∫
Ω

(
|∇uλ|p(x)−2∇uλ − |∇u|p(x)−2∇u

)
∇(u− u)+dx ≤ 0,

holds true.

So, it follows from Lemma 1.2.6, that |{uλ > u}| = 0, that is, uλ ≤ u a.e. in Ω. In a

analogous way, we have u ≤ uλ a.e. in Ω and thus∫
Ω
|∇uλ|p(x)−2∇uλ∇vdx =

∫
Ω
a(x)u

−α(x)
λ vdx+ λ

∫
Ω
f(x, uλ)vdx,

for all v ∈W 1,p(x)
0 (Ω), that is, uλ is a weak solution for (4.1).

To end, the asymptotic behavior follows directly from Corollary 3.1.3, since u and u

satis�es the hypotheses considered. This �nish the proof.

Proof of Theorem 4.1.3 - Completed. The proof follows the same lines of the proof of

Theorem 4.1.2 by changing u, u used in the proof of Theorem 4.1.2 by new ones v, v given by

Lemma 4.2.3 and �nally using Lemma B.0.4 instead of Lemma B.0.3.

4.3 Existence of a second solution

Now, we are able to show the existence of a second solution to problem (4.1) by using

the Mountain Pass Theorem. For convenience, throughout this section we are going to denote

by u, u the subsolution and supersolution obtained both in Lemma 4.2.2 and Lemma 4.2.3

and by uλ the solution obtained both in Theorem 4.1.2 and 4.1.3.

Let the Carathéodory function de�ned by

f̂(x, t) =

{
a(x)u

−α(x)
λ + λf(x, uλ) if t ≤ uλ,

a(x)t−α(x) + λf(x, t) if t > uλ,
(4.8)

for 0 < λ < min{λ1, λ2}, where λ1, λ2 were given in Lemmas 4.2.2 and 4.2.3, respectively.

Now, consider the following auxiliary Dirichlet problem{
−∆p(x)u = f̂(x, u) in Ω,

u > 0 in Ω, u = 0 on ∂Ω.
(4.9)

The functional associated to (4.9) is de�ned by

Ĵ(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω
F̂ (x, u)dx, u ∈W 1,p(x)

0 (Ω), (4.10)

where

F̂ (x, u) =

∫ u

0
f̂(x, s)ds

=

∫ uλ

0
f̂(x, s)ds+

∫ u

uλ

f̂(x, s)ds

= (a(x)u
−α(x)
λ + λf(x, uλ))uλ + a(x)

(
X{α(x)6=1}(x)

u1−α(x)

1− α(x)
+ X{α(x)=1}(x) lnu

)

− a(x)

(
X{α(x)6=1}(x)

u
1−α(x)
λ

1− α(x)
+ X{α(x)=1}(x) lnuλ

)
+ λ(F (x, u)− F (x, uλ)).

(4.11)
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So, de�ned like this, it follows from Lemma B.0.5 that Ĵ ∈ C1
(
W

1,p(x)
0 (Ω)

)
. Let

KĴ =
{
u ∈W 1,p(x)

0 (Ω) / Ĵ ′(u) = 0
}

be the set of critical points of Ĵ . We claim that

KĴ ⊆
{
u ∈W 1,p(x)

0 (Ω) / u(x) ≥ uλ(x) a.e. in Ω
}
, (4.12)

that is, any critical point of Ĵ is a weak solution of (4.1). Indeed, if v ∈ KĴ , it follows from

the fact that uλ is a weak solution to problem (4.1), that∫
Ω
|∇v|p(x)−2∇v∇(uλ − v)+dx =

∫
Ω
f̂(x, v)(uλ − v)+dx

=

∫
Ω

(a(x)u
−α(x)
λ + λf(x, uλ))(uλ − v)+dx

=

∫
Ω
|∇uλ|p(x)−2∇uλ∇(uλ − v)+dx,

that is, ∫
Ω

(
|∇v|p(x)−2∇v − |∇uλ|p(x)−2∇uλ

)
∇(uλ − v)+dx ≤ 0.

So, it follows from Lemma 1.2.6 that | {uλ > v} | = 0, proving the claimed. After this,

to prove Theorem 4.1.4, it su�ces to show that Ĵ has a critical point other than uλ for

0 < λ < min{λ1, λ2} su�ciently small.

4.3.1 Mountain Pass Geometry

Lemma 4.3.1 Assume (H1) − (H3) and (f4) holds true. Then there exist R, β > 0 and

0 < λ∗ < min{λ1, λ2} such that

inf
{
Ĵ(u) / ||u|| = R

}
≥ β > 0 (4.13)

for each 0 < λ < λ∗ given.

Proof. To begin, we claim that∫
Ω
F̂ (x, u)dx ≤M1

(
1 + ||u||+ ||u||1−α− + λ||u||q+

)
holds true for all u ∈ W 1,p(x)

0 (Ω) with ||u|| > 1 and for each 0 < λ < min{λ1, λ2} given. By
admitting this from now, we obtain that

Ĵ(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω
F̂ (x, u)dx

≥M2

(
||u||p+ − 1− ||u|| − ||u||1−α− − λ||u||q+

)
for all u ∈W 1,p(x)

0 (Ω) with ||u|| ≥ 1.

Now, let β > 0 and R = ||u|| be such that Rp+ − R − R1−α− − 1 ≥ 2β/M2. So, by

taking 0 < λ∗ < min{λ1, λ2} such that λ∗R
q+ ≤ β/M2, we conclude that

Ĵ(u) ≥ β for all u ∈W 1,p(x)
0 (Ω) with ||u|| = R,
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that is, inf
{
Ĵ(u) / ||u|| = R

}
≥ β > 0 holds true for each 0 < λ < λ∗ given.

Now, let us prove the claim. It follows from (4.11) and from the fact that uλ being a

solution of the problem (4.1), that∫
Ω
F̂ (x, u)dx ≤

∫
Ω

(a(x)u
−α(x)
λ udx+

∫
{u≤uλ}

λf(x, uλ)udx+

∫
{u>uλ}∩{α(x)=1}

a(x)(lnu− lnuλ)dx

+

∫
{u>uλ}∩{α(x)6=1}

a(x)

(
u1−α(x)

1− α(x)
−

u
1−α(x)
λ

1− α(x)

)
dx+ λ

∫
{u>uλ}

(F (x, u)− F (x, uλ))dx

≤
∫

Ω
|∇uλ|p(x)dx+ 2λ

∫
Ω
|f(x, uλ)|uλdx+

∫
Ω
a(x)

u

uλ
dx+

∫
{u>uλ}∩{α(x)<1}

a(x)u1−α(x)

1− α(x)
dx

+

∫
{α(x)>1}

a(x)
u

1−α(x)
λ

α(x)− 1
dx+ λ

∫
Ω
|F (x, u)|dx+ λ

∫
Ω
|F (x, uλ)|dx.

By virtue of hypothesis (f4) we obtain

|F (x, t)| ≤M3

(
|t|+ |t|q(x)

)
for a.e. x ∈ Ω and t ∈ R,

By using the above informations, once the hypotheses (f4) and (H3), the fact that uλ ≥ Cd(x),

r(x) > (p∗−/p−)′ > (p∗−/(1 − α−))′, Hölder's Inequality and Hardy's Inequality we conclude

that∫
Ω
F̂ (x, u)dx ≤

∫
Ω
|∇uλ|p(x)dx+ 2λ

∫
Ω
|f(x, uλ)|uλdx+M4

(∫
Ωδ

u

d(x)
dx+

∫
ωδ

a(x)udx

)
+M5

∫
{α(x)>1}

a(x)
d(x)1−α(x)

α(x)− 1
dx+

∫
{u>uλ}∩{α(x)<1}

a(x)u1−α(x)

1− α(x)
dx

+ λM6

(∫
{u>uλ}

(|u|+ |u|q(x))dx+

∫
{u>uλ}

(uλ + u
q(x)
λ )dx

)

≤M5

(
||uλ||p+ + λ||uλ||+ λ||uλ||q+ + λ||u||+ λ||u||q+ +

∥∥∥∥ a

1− α(x)

∥∥∥∥
Lr(x)({α(x)<1})

||u||1−α−

+

∫
{α(x)>1}

a(x)
d(x)1−α(x)

α(x)− 1
dx

)
.

where ωδ = Ω \ Ωδ. Also, by using (H3) and Hölder's Inequality, we conclude that∫
{α(x)>1}

a(x)
d(x)1−α(x)

α(x)− 1
dx ≤M6

∥∥∥∥ a

α(x)− 1

∥∥∥∥
Lr(x)({α(x)>1})

∥∥∥d(x)1−α(x)
∥∥∥
Lr
′(x)({α(x)>1})

and thus, by hypothesis (H2) and Lazer and McKenna [51] result,

∥∥∥d(x)1−α(x)
∥∥∥
Lr
′(x)({α(x)>1})

≤

(∫
{α(x)>1}

d(x)(1−α(x))r′(x)dx

)γ
<∞,

where γ ∈ {1/r+, 1/r−}, proving the claim and �nishing the proof.

Lemma 4.3.2 Assume that (H1), (H2) and (f5) holds true. Then Ĵ(tφ)→ −∞ as t→∞
for some φ ∈ C∞0 (Ω).
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Proof. By using the hypothesis (f5), there exists s0 = s0(ε) > 0 such that

F (x, s) ≥ 1

εp+
sp

+
for x ∈ D and s ≥ s0

for each ε > 0 given. Now, take φ ∈ C∞0 (D) with φ ≥ 0, φ 6≡ 0, and t > 1 large enough such

that the set {x ∈ D / tφ(x) ≥ s0} has positive Lebesgue measure. It follows from the above

estimate, by taking s = tφ, that∫
Ω

F (x, tφ)

tp+ dx ≥ 1

p+ε

∫
D
φp

+
dx

holds true, that is,

lim inf
t→∞

∫
Ω

F (x, tφ)

tp+ dx ≥ 1

p+ε

∫
D
φp

+
dx,

which lead us to conclude

lim inf
t→∞

∫
Ω

F (x, tφ)

tp+ =∞, (4.14)

by doing ε→ 0+.

Besides this, it follows from (4.11) that

F̂ (x, tφ)

tp+
= (a(x)u

−α(x)
λ + λf(x, uλ))

φ

tp+−1

+ a(x)

(
X{α(x)6=1}(x)

φ1−α(x)

1− α(x)

1

tp++α(x)−1
+ X{α(x)=1}(x)

ln tφ

tp+

)

− a(x)

tp+

(
X{α(x)6=1}(x)

u
1−α(x)
λ

1− α(x)
+ X{α(x)=1}(x) lnuλ

)
+ λ

(
F (x, tφ)

tp+
− F (x, uλ)

tp+

)
.

holds true. By using the above expression and (4.14), we obtain

lim inf
t→∞

∫
Ω

F̂ (x, tφ)

tp+ dx =∞.

Hence,

lim sup
t→∞

Ĵ(tφ)

tp+ ≤ 1

p−

∫
Ω
|∇φ|p(x)dx− lim inf

t→∞
λ

∫
Ω

F̂ (x, tφ)

tp+ dx = −∞,

that is, Ĵ(tφ)→ −∞ as t→∞, �nishing the proof.

4.3.2 The Cerami Condition

Lemma 4.3.3 If hypotheses (H1) − (H3), (f4) and (f6) holds, then Ĵ satis�es the Cerami

condition.

Proof. Let (un) ⊂W 1,p(x)
0 (Ω) be a sequence such that

(a) |Ĵ(un)| ≤M ,

(b) (1 + ||un||)||Ĵ ′(un)|| → 0 as n→∞.
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We are going to prove the result in two steps. In the �rst one, it will be shown that

(un) is bounded in W
1,p(x)
0 (Ω). To do this, we begin using the item (b) to conclude that∣∣∣〈Ĵ ′(un), w

〉∣∣∣ ≤ εn||w||
1 + ||un||

for all w ∈W 1,p(x)
0 , (4.15)

for some εn ↘ 0 as n→∞. So, by choosing w = −u−n in (4.15), we obtain∣∣∣∣∫
Ω
|∇u−n |p(x)dx+

∫
Ω
a(x)u

−α(x)
λ u−n dx+ λ

∫
Ω
f(x, uλ)u−n dx

∣∣∣∣ ≤ εn,
which lead us to conclude, by using the above inequality, Proposition 1.1.1 and Hölder's

inequality, that

min
{
||u−n ||p− , ||u−n ||p+

}
≤
∫

Ω
|∇u−n |p(x)dx

≤ εn −
∫

Ω
a(x)u

−α(x)
λ u−n dx− λ

∫
Ω
f(x, uλ)u−n dx

= εn −
∫

Ω
|∇uλ|p(x)−2∇uλ∇u−n dx

≤ εn + C
∥∥∥|∇uλ|p(x)−1

∥∥∥
p′(x)
||u−n ||

for some C > 0. So,

(u−n ) is bounded in W
1,p(x)
0 (Ω). (4.16)

Let us show that (u+
n ) is bounded in W

1,p(x)
0 (Ω). By taking w = u+

n in (4.15), it follows

that

−
∫

Ω
|∇u+

n |p(x)dx+

∫
Ω
f̂(x, u+

n )u+
n dx = on(1). (4.17)

Now, by using the item (a) above, we have

p+M ≥ p+

∫
Ω

|∇un|p(x)

p(x)
dx− p+

∫
Ω
F̂ (x, un)dx

= p+

∫
{un≥0}

(
|∇u+

n |p(x)

p(x)
− F̂ (x, u+

n )

)
dx+ p+

∫
{un≤0}

(
|∇u−n |p(x)

p(x)
− F̂ (x,−u−n )

)
dx,

which lead us, by using (4.11) and the boundedness of u−n given in (4.16), to

p+

∫
Ω

|∇u+
n |p(x)

p(x)
dx− p+

∫
Ω
F̂ (x, u+

n )dx ≤ p+M1. (4.18)

By summing (4.17)and (4.18), we obtain∫
Ω

(
p+

p(x)
− 1

)
|∇u+

n |p(x)dx ≤M2 −
∫

Ω

(
f̂(x, u+

n )u+
n − p+F̂ (x, u+

n )
)
dx (4.19)

= M2 −
∫
{u+

n≤uλ}

(
f̂(x, u+

n )u+
n − p+F̂ (x, u+

n )
)
dx−

∫
{u+

n>uλ}

(
f̂(x, u+

n )u+
n − p+F̂ (x, u+

n )
)
dx.
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Below, let us estimate both integrals in the last line above. For the �rst one, by using

(4.8), (f4) and Hölder's Inequality, we have∣∣∣∣∣
∫
{u+

n≤uλ}

(
f̂(x, u+

n )u+
n − p+F̂ (x, u+

n )
)
dx
∣∣∣

≤ (p+ − 1)

∫
{u+

n≤uλ}

(
a(x)u

−α(x)
λ u+

n + λ|f(x, uλ)|u+
n

)
dx

≤ (p+ − 1)

∫
{u+

n≤uλ}

(
a(x)u

−α(x)
λ uλ + λ|f(x, uλ)|uλ

)
dx (4.20)

≤ (p+ − 1)

(∫
Ω
a(x)u

−α(x)
λ uλdx+ λ

∫
Ω
|f(x, uλ)|uλdx

)
≤ (p+ − 1)

(∫
Ω
|∇uλ|p(x)dx+ λ

∫
Ω
|f(x, uλ)|uλdx+ λ

∫
Ω
|f(x, uλ)|uλdx

)
≤M3.

For the second integral, by letting

A1 =
{
u+
n > uλ

}
∩ {α(x) = 1} ,

A+ =
{
u+
n > uλ

}
∩ {α(x) > 1} ,

A− =
{
u+
n > uλ

}
∩ {α(x) < 1} ,

(4.21)

and using (4.21) and (4.11), we obtain∫
{u+

n>uλ}

(
p+F̂ (x, u+

n )− f̂(x, u+
n )u+

n

)
dx =

∫
A1

a(x)(p+ lnu+
n − p+ lnuλ − 1)dx

+

∫
A+∪A−

a(x)

(
p+

1− α(x)
− 1

)
(u+
n )1−α(x)dx−

∫
A+∪A−

a(x)
p+

1− α(x)
u

1−α(x)
λ dx

+ λ

∫
{u+

n>uλ}
F(x, u+

n )dx− λp+

∫
{u+

n>uλ}
F (x, uλ)dx (4.22)

≤ p+

∫
A1

a(x) ln
u+
n

uλ
dx+

∫
A−

a(x)

(
p+

1− α(x)
− 1

)
(u+
n )1−α(x)dx+ λ

∫
{u+

n>uλ}
F(x, u+

n )dx

≤ p+

∫
Ω
a(x)

u+
n

uλ
dx+

∫
A−

a(x)

(
p+

1− α(x)
− 1

)
(u+
n )1−α(x)dx+ λ

∫
{u+

n>uλ}
F(x, u+

n )dx,

where F(x, t) = p+F (x, t)− f(x, t)t. More, by using that r(x) > (p∗−/p−)′ > (p∗−/(1− α−))′,

uλ ≥ Cd(x), (H2) and (H3), the integrals in the last line of (4.22) can be estimate by∫
Ω
a(x)

u+
n

uλ
dx+

∫
A−

a(x)

(
p+

1− α(x)
− 1

)
(u+
n )1−α(x)dx

≤M5

(∫
Ω
a(x)

u+
n

d(x)
dx+ p+

∫
A−

a(x)

1− α(x)
(u+
n )1−α(x)dx

)
(4.23)

≤M6

(
||a||L∞(Ωδ)

∫
Ωδ

u+
n

d(x)
dx+

1

δ

∫
ωδ

a(x)u+
n dx+

∫
A−

a(x)

1− α(x)
(u+
n )1−α(x)dx

)
≤M6

(
||u+

n ||+ ||u+
n ||1−α−

)
,

where we used that Hardy's, Hölder's Inequality and the embedding W
1,p(x)
0 (Ω) ↪→ Lr(x)(Ω).

87



After this, by combining (4.22) and (4.23), we obtain∫
{u+

n>uλ}

(
p+F̂ (x, u+

n )− f̂(x, u+
n )u+

n

)
dx ≤ λ

∫
{u+

n>uλ}
F(x, u+

n )dx+M7

(
1 + ||u||+ ||u+

n ||1−α−
)
.

(4.24)

To conclude that (u+
n ) is bounded in W

1,p(x)
0 (Ω), let us use (f6) to �nd s0 = s0(β0) > 0

such that

p+F (x, s)− f(x, s)s ≤ β0s
τ(x) for a.e. x ∈ Ω and for all s ≥ s0.

Adding to this information, a consequence of hypothesis (f4) that

p+F (x, s)− f(x, s)s ≤M8 for x ∈ Ω and s < s0,

holds true for some M8 > 0, we obtain that

F(x, u+
n ) ≤ p+F (x, u+

n )− f(x, u+
n )u+

n ≤ β0(u+
n )τ(x) +M8, x ∈ Ω. (4.25)

So, it follows from (4.24), (4.25) and Hölder's Inequality, that∫
{u+

n>uλ}

(
p+F̂ (x, u+

n )− f̂(x, u+
n )u+

n

)
dx ≤M9

(
1 + ||u+

n ||τ− + ||u+
n ||τ+ + ||u+

n ||1−α−
)
(4.26)

holds true. Now, combining (4.20) and (4.26) in (4.19), we obtain

min
{
||u+

n ||p− , ||u+
n ||p+

}
≤M10

(
1 + ||u+

n ||τ− + ||u+
n ||τ+ + ||u+

n ||1−α−
)
,

that is, u+
n is bounded in W

1,p(x)
0 (Ω).

Summarizing, since we already know that u−n is bounded in W
1,p(x)
0 (Ω) (see (4.16)) and

the boundedness of u+
n as just shown, we have that un is bounded in W

1,p(x)
0 (Ω), �nishing the

�rst step.

In this last step, let us complete the proof that Ĵ satis�es the Cerami condition. To

do this, since un is bounded W
1,p(x)
0 (Ω), then there exists u ∈ W 1,p(x)

0 (Ω) such that, unless

to a subsequence, un ⇀ u in W
1,p(x)
0 (Ω), un → u in Lt(x)(Ω) for 1 ≤ t(x) < p∗(x) and

un(x)→ u(x) a.e. in Ω. Now, by taking w = un − u in (4.15)∫
Ω
|∇un|p(x)−2∇un∇(un − u)dx−

∫
Ω
f̂(x, un)(un − u)dx ≤ εn||un − u||

1 + ||un||
. (4.27)

Now, we are going to show that∣∣∣∣∫
Ω
f̂(x, un)(un − u)dx

∣∣∣∣→ 0 (4.28)

as n→∞. As a consequence, we can obtain that

lim
n→∞

∫
Ω
|∇un|p(x)−2∇un∇(un − u)dx ≤ 0, (4.29)

that is, un → u in W
1,p(x)
0 (Ω), by using Proposition 1.2.4, which lead us to conclude that Ĵ

satis�es the Cerami condition.
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To proof (4.27), using the hypothesis (f4), the fact of uλ is a weak solution for (4.1)

and Hölder's Inequality, we notice that∣∣∣∣∣
∫
{un≤uλ}

f̂(x, un)(un − u)dx

∣∣∣∣∣ ≤
∣∣∣∣∫

Ω
(a(x)u

−α(x)
λ + λf(x, uλ))(un − u)dx

∣∣∣∣
≤
∫

Ω
|∇uλ|p(x)−1|un − u|dx+ 2λ

∫
Ω
|f(x, uλ)||un − u|dx (4.30)

≤M11

(
||un − u||p(x) + ||uq(x)−1

λ || q+
q(x)−1

||un − u|| q+
q+−q(x)+1

)
.

On the other hand, by using again that uλ is a weak solution for (4.1), hypothesis (f2)

and Hölder's Inequality∣∣∣∣∣
∫
{un>uλ}

f̂(x, un)(un − u)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
{un>uλ}

(a(x)u−α(x)
n + λf(x, un))(un − u)dx

∣∣∣∣∣ (4.31)

≤
∫
{un>uλ}∩{α(x)>0}

a(x)u
−α(x)
λ (un − uλ)dx+

∫
{un>uλ}∩{α(x)≤0}

a(x)(1 + up−−1
n )(un − uλ)dx

+ λ

∫
Ω
|f(x, un)||un − u|dx

≤
∫
{un>uλ}∩{α(x)>0}

a(x)u
−α(x)
λ (un − uλ)dx+M12||a||r(x)

(∥∥up−−1
n + 1

∥∥
p−r′(x)

p−−1

‖un − uλ‖p−r′(x)

)

+M13

(
||un − u||p(x) + ||uq(x)−1

n || q+
q(x)−1

||un − u|| q+
q+−q(x)+1

)
.

Since un ⇀ u in W
1,p(x)
0 (Ω) and

q+

q+ − q(x) + 1
, p−r

′(x) < p∗− ≤ p∗(x),

then by using (4.30) and (4.31) we conclude that (4.28) holds. This �nish the proof.

4.3.3 Proof of Theorem 4.1.4 - Completed

Proof. Now, we are going to complete the proof of Theorem 4.1.4. To establish this, we

begin noticing that∫
Ω
|∇uλ|p(x)dx =

∫
Ω
a(x)u

1−α(x)
λ dx+

∫
Ω
λf(x, uλ)uλdx.

holds true, since uλ is a weak solution of (4.1).

Beside this, by using (4.8) and (4.10), we obtain that

Ĵ(uλ) =

∫
Ω

|∇uλ|p(x)

p(x)
dx−

∫
Ω
a(x)u

1−α(x)
λ dx+

∫
Ω
λf(x, uλ)uλdx,

that is,

Ĵ(uλ) =

∫
Ω

(
1

p(x)
− 1

)
|∇uλ|p(x)dx < 0.

89



Finally, by using Lemmas 4.3.1, 4.3.2 and 4.3.3, we can apply the Theorem Mountain

Pass theorem (see A.1.9) to obtain a function vλ ∈ W
1,p(x)
0 (Ω) that is critical point of Ĵ

satisfying

Ĵ(uλ) < 0 < β = inf
{
Ĵ(u) / ||u|| = r

}
≤ Ĵ(vλ),

that is, uλ 6= vλ and∫
Ω

(
|∇vλ|p(x)−2∇vλ∇ξ − a(x)v

−α(x)
λ ξ − λf(x, vλ)ξ

)
dx = 0,

for all ξ ∈ W
1,p(x)
0 (Ω), which lead us to conclude that vλ is a weak solution of (4.1) with

vλ ≥ uλ, because of (4.12).
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Chapter 5

Open problems and future work

We left some open questions in this work. Here we summarize our contribution and

what remains open.

Chapter 2

In Theorem 2.1.3, we consider u ∈W 1,p(x)
loc (Ω) subsolution of (2.1) with u ∈ L∞loc(Ω). In

our proof, this locally boundedness was fundamental to obtain that the set |Ωh| = 0. We tried

some techniques to prove it without this assumption, but we could not solve the problem. It

remains as an open question.

On the other hand, the proofs based in Diaz-Saá Inequality demands, in general,

u/u, u/u ∈ L∞(Ω). In this sense, we have a contribution.

Chapter 3

In Theorem 3.1.2, we show that the "integrability condition" of trio (c, α, β) just near

the boundary of the domain is su�cient to obtain existence of solutions in W
1,p(x)
0 (Ω). We

conjecture that the converse claim is true as well.

On the other hand, we present su�cient conditions for that the solution for (3.1) be

Holder continuous on the boundary. As a future work, we want to �nd conditions to obtain

solutions in C1,α. The work of Lazer and Mckenna suggest that the right answer of this

question is α(x) < 1 on ∂Ω. A future work is studying it.

Chapter 4

In this chapter, we prove that just a locally (p+− 1)− superlinear perturbation of the

singularity is su�ces to obtain multiplicity of solutions for small λ∗ > 0. If we de�ne

Λ = sup{λ / The problem (4.1) has a solution}



then Λ > 0. The next step is try to show under which hypothesis that Λ < ∞ to obtain

a global multiplicity result. As a future work, we pretend to give a positive answer for this

question.
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Appendix A

Algebraic tools

In this Chapter, let us enunciate some very classical and well known results in order to

ease the lecture of reader.

A.1 Algebraic tools

Proposition A.1.1 (Fatou's Lemma, [3]) Let fn : R → [0,∞] be (nonnegative) Lebesgue

measurable functions. Then

lim inf
n→∞

∫
R
fndx ≥

∫
R

lim inf
n→∞

fndx.

Proposition A.1.2 (Lebesgue dominated convergence theorem, [3]) Suppose fn : R→
[−∞,∞] are (Lebesgue) measurable functions such that the pointwise limit f(x) = limn→∞ fn(x)

exists. Assume there is an integrable g : R→ [0,∞] with |fn(x)| ≥ g(x) for each x ∈ R. Then
f is integrable as is fn for each n, and

lim
n→∞

∫
R
fndx ≥

∫
R

lim
n→∞

fndx =

∫
R
fdx.

Proposition A.1.3 ([65], Vitali's convergence Theorem ) Let µ be a �nite positive mea-

sure on a measure space X. If fn has uniformly absolutely continuous integrals and fn(x)→
f(x) a.e. in X, then f ∈ L1(µ) and∫

X
fdµ = lim

n→∞

∫
X
fndµ.

Lemma A.1.4 ([52]) Assume that S : Rs → Rs is a continuous map such that (S(η), η) > 0

for all η ∈ Rs such that |η| = r for some r > 0, where (·, ·) is the usual inner product in Rs.
Then, there is η0 ∈ Br(0) such that S(η0) = 0.

Proposition A.1.5 ([56], Theorem 26.9) Let X be a topological space. Then X is compact

if and only if for every collection C of closed sets in X having the �nite intersection property,

i.e., the intersection ∩C∈CC of all the elements of C is nonempty.



Proposition A.1.6 ([36], Theorem 1.5) Let X be a re�exive Banach space, A a bounded

subset of X, and x0 a point in the weak closure of A. Then there exists an in�nite sequence

(xk) in A converging weakly to x0 in X.

Proposition A.1.7 ([25], Lemma 6) Let X be a �nite dimensional real Hilbert space with

norm | · | and scalar product (·, ·). Let (βk) be a sequence of functions from X into X which

converges uniformly on compact subsets of X to a continuous function β. Assume that the

functions β, are monotone and the β is strictly monotone, i.e.

(βk(x)− βk(y), x− y) ≥ 0, (β(x)− β(y), x− y) > 0,

for every k and for every x, y ∈ X with x 6= y. Let (ηk) be a sequence in X and let η be an

element of X such that

lim
k→∞

(βk(ηk)− βk(η), ηk − η) = 0.

Then (ηk) converges to η in X.

Due to Ambrosetti and Rabinowitz [67], the Mountain Pass Theorem is a fundamental

result in Critical Point Theory and whose development was strongly related to the search for

saddle-type critical points. In this section, X denotes a space of Banach real, φ : X → R is a

functional and (un) is a sequence in X.

Below, we present a condition of compactness on the functional φ due to Cerami [18].

De�nition A.1.8 We say that φ satis�es the Cerami condition at level c, if every sequence

(xn) ⊂W 1,p(x)
0 (Ω) such that φ(xn)→ c in R and

(1 + ||xn||)φ′(xn)→ 0 in W
1,p(x)
0 (Ω) as n→∞,

admits a strongly convergent subsequence. We say that φ satis�es the Cerami condition, if it

satis�es the Cerami condition at every level c ∈ R.

This compactness type condition on φ is weaker than the usual Palais-Smale condition.

However, as it has shown in [4], the deformation theorem and consequently the minimax

theory of the critical values of φ is still valid if the Palais-Smale condition is replaced by the

Cerami condition. In particular, we have the following form of the well-known "Mountain

Pass theorem".

Proposition A.1.9 Suppose φ ∈ C1(X) satis�es the geometric condition

max{φ(0), φ(e)} ≤ 0 < β = inf{φ(x) : ||x|| = ρ},

for some 0 < β, ρ > 0 and e ∈ X with ||e|| > ρ. If c is de�ned by

c = inf
γ∈Γ

max
0≤t≤1

φ(γ(t)),

where Γ = {γ ∈ C([0, 1];X) / γ(0) = 0, γ(1) = e}, and φ satis�es the Cerami condition, then

c ≥ β and c is a critical value of φ. Moreover, if c = η, then there exists a critical point

x ∈ X of φ with φ(x) = c and ||x|| = ρ.
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Appendix B

Auxiliary Results

We will now enunciate some lemmas that have helped us in the results tests presented

in the thesis.

In Chapter 4, we introduced some functionals that was useful in ours proofs. In this

appendix we present and prove their properties. We also enunciate a Lemma that guarantee

when the test functions in C∞0 (Ω) can be change for test functions in W
1,p(x)
0 (Ω) in problem

(4.1).

Lemma B.0.1 Assume that (f4) holds true. If u ∈W 1,p(x)
0 (Ω) be a solution of (4.1) in sense

of De�nition 2.1.2, then∫
Ω
|∇u|p(x)−2∇u∇vdx =

∫
Ω
a(x)u−α(x)vdx+ λ

∫
Ω
f(x, u)vdx, ∀v ∈W 1,p(x)

0 (Ω),

that is, u is an weak solution of (4.1).

Proof. The proof is inspired in an argument of Boccardo and Casado-Díaz [5]. Let v be an

arbitrary function in W
1,p(x)
0 (Ω) and take (vn) ⊂ C∞0 (Ω) such that vn → v in W

1,p(x)
0 (Ω) and

also pointwise almost everywhere. So, given ε > 0, by taking θ
√
εθ + |vn − vk|θ − ε as a test



function, for some θ ∈ N, we obtain that∫
Ω
a(x)u−α(x)

(
θ

√
εθ + |vn − vk|θ − ε

)
dx

≤

(∫
Ω
|∇u|p(x)−1 |vn − vk|θ−1|∇(vn − vk)|

(εθ + |vn − vk|θ)
θ−1
θ

dx+ λ

∫
Ω
|f(x, u)|

(
θ

√
εθ + |vn − vk|θ − ε

)
dx

)

≤

(∫
Ω
|∇u|p(x)−1 |vn − vk|θ−1|∇(vn − vk)|

(εθ + |vn − vk|θ)
θ−1
θ

dx+ λC1

∫
Ω

(1 + |u|q(x)−1)

(
θ

√
εθ + |vn − vk|θ − ε

)
dx

)

≤ C2

(∥∥∥|∇u|p(x)−1
∥∥∥

p(x)
p(x)−1

∥∥∥∥∥ |vn − vk|θ−1|∇(vn − vk)|

(εθ + |vn − vk|θ)
θ−1
θ

∥∥∥∥∥
p(x)

+
∥∥∥1 + uq(x)−1

∥∥∥
p∗(x)
q(x)−1

∥∥∥∥ θ

√
εθ + |vn − vk|θ − ε

∥∥∥∥
p∗(x)

p∗(x)−q(x)+1


≤ C3(||u||p−−1 + ||u||p+−1 + ||u||q−−1 + ||u||q+−1 + 1)||vn − vk||.

Letting ε→ 0 and using the Fatou's lemma, we derive that(
a(x)vn

uα(x)

)
is a Cauchy sequence in L1(Ω), (B.1)

so that a(x)u−α(x)vn → a(x)u−α(x)v in L1(Ω) taking into account that vn(x) → v(x) a.e. in

Ω. Thus we can make n→∞ in the inequality∫
Ω
|∇u|p(x)−2∇u∇vndx =

∫
Ω
a(x)u−α(x)vndx+ λ

∫
Ω
f(x, u)vndx,

in order to obtain∫
Ω
|∇u|p(x)−2∇u∇vdx =

∫
Ω
a(x)u−α(x)vdx+ λ

∫
Ω
f(x, u)vdx.

Remark B.0.2 If u ∈W 1,p(x)
0 (Ω)∩L∞(Ω), then we can replace (f4) for (f1) in the statement

of Lemma B.0.1 to obtain the same conclusion.

Lemma B.0.3 Assume (H1), (H2) and (f1) holds. Then the functional J de�ned at (4.7)

belongs to C1(W
1,p(x)
0 (Ω),R), is coercive and weakly lower semicontinuous.

Proof. We start showing that Ĵ has Gateaux derivative for each u ∈ W
1,p(x)
0 (Ω). Let

u, v ∈W 1,p(x)
0 (Ω) and ε > 0 small. So, we have,∫

Ω

F (x, u+ εv)− F (x, u)

ε
=

∫
Ω

(∫ 1

0
f(x, u+ sεv)ds

)
vdx. (B.2)

First we notice,∫ 1

0
f(x, u+ sεv)ds→ f(x, u) as ε→ 0 a.e x ∈ Ω. (B.3)
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Besides this, it follows from (4.6) that,

f(x, t) ≤
(
a(x)u−α(x) + λf(x, u)

)
X{t<u}(x) (B.4)

+
(
a(x)t−α(x) + λf(x, t)

)
X{u≤t≤u}(x) +

(
a(x)u−α(x) + λf(x, u)

)
X{t>u}(x)

≤ 2a(x)
(
u−α(x) + u−α(x)

)
+ λ

(
f(x, u) + f(x, u) + X{u≤t≤u}(x)f(x, t)

)
.

In particular,(∫ 1

0
f(x, u+ sεv)ds

)
v =

(
X{u≤u+sεv≤u}(x)

∫ 1

0

(
a(x)(u+ sεv)−α(x) + λf(x, u+ sεv)

)
ds

)
v

+ X{u+sεv<u}(x)
(
a(x)u−α(x) + λf(x, u)

)
v + X{u+sεv>u}(x)

(
a(x)u−α(x) + λf(x, u)

)
v

≤
[
2a(x)

(
u−α(x) + u−α(x)

)
+ λ

(
f(x, u) + f(x, u) + X{u≤u+sεv≤u}(x)

∫ 1

0
f(x, u+ sεv)ds

)]
|v|.

By using the hypothesis (f1), with M = ||u||∞, we have

λ

(
f(x, u) + f(x, u) + X{u≤u+sεv≤u}(x)

∫ 1

0
f(x, u+ sεv)ds

)
|v| ≤ 3λc1|v|. (B.5)

for all 0 < t < M , that is, to apply Lebesgue's dominated convergence theorem just remains

to show that

2a(·)
(
u−α(·) + u−α(·)

)
|v| ∈ L1(Ω). (B.6)

Since u ∈ W
1,p(x)
0 (Ω) is a solution for the problem (4.2), it follows by Lemma B.0.1,

with |v| as test function and Hölder's Inequality that∫
Ω
a(x)u−α(x)|v|dx =

∫
Ω
|∇u|p(x)−2∇u∇|v|dx

≤ 2

(∥∥∥|∇u|p(x)−1
∥∥∥
p′(x)
||v||

)
<∞.

In a analogue way we conclude that a(x)u−α(x)|v| ∈ L1(Ω). Then, by Lebesgue's

dominated convergence theorem, the Gâteaux derivative J
′
(u) exists and is given by〈

J
′
(u), v

〉
=

∫
Ω
|∇u|p(x)−2∇u∇vdx−

∫
Ω
f(x, u)vdx, for all u, v ∈W 1,p(x)

0 (Ω).

To show the continuity of Ĵ ′, let wk, w ∈W
1,p(x)
0 (Ω) be such that wk → w inW

1,p(x)
0 (Ω).

By using Hölder's Inequality, we obtain∣∣∣〈J ′(wk)− J ′(w), v
〉∣∣∣

=

∫
Ω

(|∇wk|p(x)−2∇wk − |∇w|p(x)−2∇w)∇vdx−
∫

Ω
(f(x,wk)− f(x,w))vdx (B.7)

≤
∥∥∥|∇wk|p(x)−2∇wk − |∇w|p(x)−2∇w

∥∥∥
p(x)
p(x)−1

||v||+
∫

Ω
(f(x,wk)− f(x,w))vdx.

It follows from (4.6), that

f(x,wk)− f(x,w) =


0 if wk ≤ u,
a(x)

(
w
−α(x)
k − w−α(x)

)
− λ(f(x,wk)− f(x,w)) if u < wk < u,

0 if wk ≥ u,
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and, as a consequence of this and following similar arguments used to obtain (B.5) and (B.6),

we can conclude ∫
Ω

(f(x,wk)− f(x,w))vdx ≤ C||v||.

So, it follow from above arguments, by using Lebesgue's dominated convergence theorem

in (B.7), that the Gâteaux derivative of J
′
is continuous.

For the coercivity, let v ∈W 1,p(x)
0 (Ω) with ||v|| > 1. By using (B.4), (B.5) and u, u are

solutions of 4.2 and 4.3, respectively, we obtain

J(v) =

∫
Ω

|∇v|p(x)

p(x)
dx−

∫
Ω
F (x, v)dx

≥ ||v||p−
p+

− C
∫

Ω
(a(x)u−α(x) + a(x)u−α(x) + 1)vdx

≥ ||v||p−
p+

− C
(∫

Ω
|∇u|p(x)−2∇u∇vdx−

∫
Ω
|∇u|p(x)−2∇u∇vdx

)
≥ ||v||p−

p+
− C

(∥∥∥∇up(x)−1
∥∥∥

p(x)
p(x)−1

−
∥∥∥∇up(x)−1

∥∥∥
p(x)
p(x)−1

)
||v||,

showing that J is coercive, since p− > 1.

To �nish, we note that the weakly lower semi continuity follows from continuity and

convexity of the map s 7→ |s|p(x), (B.5) and (B.6).

Lemma B.0.4 Assume (H1), (H2)(ii), (f2) and (f3). If α(x) ≥ 0 and α(x) < 1 on ∂Ω, then

the functional

J̃(u) =

∫
Ω

|∇u|p(x)

p(x)
dx−

∫
Ω
F̃ (x, u)dx. (B.8)

belongs to C1(W
1,p(x)
0 (Ω),R), is coercive and weakly lower semicontinuous, where

f̃(x, t) =


a(x)v−α(x) + λf(x, v) t ≤ v,
a(x)t−α(x) + λf(x, t) v < t < v,

a(x)v−α(x) + λf(x, v) t ≥ v.
(B.9)

Proof. We start showing that Ĵ has Gateaux derivative for each u ∈ W
1,p(x)
0 (Ω). Let

u, v ∈W 1,p(x)
0 (Ω) and ε > 0 small. So, we have,∫

Ω

F̃ (x, u+ εv)− F̃ (x, u)

ε
=

∫
Ω

(∫ 1

0
f̃(x, u+ sεv)ds

)
vdx. (B.10)

Again, ∫ 1

0
f̃(x, u+ sεv)ds→ f̃(x, u) as ε→ 0 a.e x ∈ Ω, (B.11)

To use Lebesgue's dominated convergence theorem we need to show that(∫ 1

0
f̃(x, u+ sεv)ds

)
|v| ∈ L1(Ω).
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Initially, by using (B.9), we obtain(∫ 1

0
f̃(x, u+ sεv)ds

)
|v| ≤ 2a(x)

(
v−α(x) + u−α(x)

)
|v|

+ λ

(
f(x, v) + f(x, v) + X{v≤u+sεv≤u}(x)

∫ 1

0
f(x, u+ sεv)ds

)
|v|.

We only need to estimate the singular term a(x)v−α(x), because the estimate of other

terms follows from (B.5) and (B.6). To this end, by following the same arguments used in

proof of Lemma 3.2.5 we conclude that v(x) ≥ Cd(x) for all x ∈ Ω, for some C > 0. More,

from continuity of α(x), there exits 0 < δ1 < δ such that α(x) < 1 in Ωδ1 , with δ as in

hypothesis (H2). By using this and (H2)(ii) we have∫
Ω
a(x)v−α(x)vdx ≤

∥∥∥C−α(x)
∥∥∥
∞

∫
Ω
a(x)d(x)−α(x)vdx (B.12)

≤
∥∥∥C−α(x)

∥∥∥
∞

(
||a||L∞(Ωδ1 )

∫
Ωδ1

d(x)1−α(x) v

d(x)
dx+

∥∥∥δ−α(x)
1

∥∥∥
∞

∫
Ω\Ωδ1

a(x)vdx

)
.

Now, from Hölder's inequality and Lemma 1.2.5, we obtain∫
Ωδ1

d(x)1−α(x) v

d(x)
dx+

∫
Ω\Ωδ1

a(x)vdx

≤ C

(∥∥∥∥ v

d(x)

∥∥∥∥
Lp(x)(Ωδ1 )

∥∥∥d(x)1−α(x)
∥∥∥
Lp
′(x)(Ωδ1 )

+ ||a||r(x)||v||r′(x)

)
≤ C1

(
||∇v|||Lp(x)(Ωδ1 ) + ||v||r′(x)

)
≤ C2||v||. (B.13)

From (B.12) and (B.13) we deduce that a(x)v−α(x)v ∈ L1(Ω).Then, by Lebesgue's

dominated convergence theorem, the Gâteaux derivative J̃ ′(u) exists and is given by〈
J̃ ′(u), v

〉
=

∫
Ω
|∇u|p(x)−2∇u∇vdx−

∫
Ω
f̃(x, u)vdx, for all u, v ∈W 1,p(x)

0 (Ω).

Now, by following the same arguments as done in the proof of Lemma B.0.3 we obtain

the continuity of J̃ ′ and coercivity and weakly lower semi continuity of J̃ .

Lemma B.0.5 Assume (H1) − (H3) and (f1) holds. The functional Ĵ de�ned at (4.10)

belongs to C1(W
1,p(x)
0 (Ω),R) and is weakly lower semicontinuous. The same result is valid if

we consider the set of hypothesis (H1), (H2)(ii), (f2), (f3), α(x) < 1 in Ω and α(x) < 1 on

∂Ω.

Proof. The proof is analogous to that made in Lemmas B.0.3 and B.0.4.
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