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The objective of this article, which is part of the research program developed by the authors on the role
of representation in science and science education, is to highlight the use of mechanisms and mathematical
principles as representational heuristics of physical phenomena. They have been used by Descartes and Fermat
in their respective investigations in the field of optics, more specifically in their analysis of the light refraction
phenomenon. With examples drawn from the works of the cited authors, we sought to reveal the distinct, but not
exclusive commitments and conceptions about the dynamics involved in building and developing scientific theories.
From the heuristic point of view, we raise the hypothesis of the complementarity and convergence between both
representations, with the argument it’s up to the mechanisms to capture the constituting material principle
of the phenomenon, while the abstract mathematical principles should take care of its formal organization. By
emphasizing aspects related to the dynamics of the construction and development of scientific theories, heuristic
elements essential to an understanding of the Nature of Science (NOS) and therefore relevant to the Descartes,
Fermat, Epistemology of physics, Heuristics, Physics Education teaching and learning process of physics will
emerge.
Keywords: Descartes, Fermat, Epistemology of physics, Heuristics, Physics Education

O objetivo deste artigo, que faz parte de um programa de pesquisa desenvolvido pelos autores sobre o papel da
representação na ciência e no ensino de ciências, é destacar o uso de mecanismos e prinćıpios matemáticos como
heuŕısticas representacionais dos fenômenos f́ısicos e utilizada, respectivamente, por Descartes e Fermat em suas
investigações no campo da óptica, mais especificamente em suas análises do fenômeno da refração da luz. Com
exemplos extráıdos da obra dos referidos autores, buscamos explicitar compromissos e concepções distintas, mas
não excludentes, acerca da dinâmica de construção e desenvolvimento de teorias cient́ıficas. Do ponto de vista
heuŕıstico, levantamos a tese da complementaridade e convergência entre ambas as representações, sob o argumento
de que caberia aos mecanismos capturar o prinćıpio material constitutivo do fenômeno, enquanto os prinćıpios
matemáticos abstratos se encarregariam da sua organização formal. Ao enfatizar aspectos relacionados à dinâmica
de construção e desenvolvimento de teorias cient́ıficas, elementos heuŕısticos essenciais a uma compreensão da
Natureza da Ciência e, portanto, relevantes ao processo de ensino e aprendizagem da F́ısica, surgirão.
Palavras-chave: Descartes, Fermat, Epistemologia da F́ısica, Heuŕıstica, Ensino de F́ısica.

1. Introduction

If we follow the analysis of Pierre Duhem (1861-1916),
it’s possible to identify in the history of science - and of
Physics, in particular - two different paths through which
one could treat natural phenomena based on the same
empirical base: on the one hand, we can try to understand
its real causes through causal explanations of empirical
laws, on the other, we can employ abstract representations
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that seek to summarize and logically classify these same
laws, without trying to explain them [1, p.7].

In the first path, which theoretical framework brings us
back to the thinking of René Descartes (1596-1650), the
causal explanations emerge initially associated with the
use of mechanisms - established here as representative
heuristic elements for solving problems in the context of
a Cartesian program - to justify and operationalize the
application of the mechanistic method. By representing
geometry through algebra - giving rise to analytical ge-

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
cassio@unb.br


e4602-2 The heuristics of representation in science

ometry - Descartes’ work has established itself as a true
milestone of representation in science, contributing to
the development of an arsenal of resources to formulate
and solve problems rationally.

In “La Dioptrique”(1637)1, a treaty on optics where
he formulates the law of sines for the refraction of light
(in Discourses I and II, to be more specific), Descartes
reveals and operationalizes his strategy for the “expli-
cation de la lumière et de ses rayons” [2, p.83], descrip-
tion/representation of the action of light through the
laws of mechanical movement.

In the second path, the one of “abstract representa-
tions”, we’ll seek references originating in the heuristic
resources used by Pierre de Fermat (1601- 1665), who
employed specific mathematical principles to try to con-
struct abstract theoretical models - based, for example,
on his “principle of least time”, a kind of union between
Metaphysics and Geometry - as a strategy for the deduc-
tion/representation of empirical laws.

Throughout this article, which will highlight the use of
mechanisms 2 and mathematical principles as representa-
tional heuristics of Physics, more specifically in the field
of Optics, we’ll seek to explore how the “Research Pro-
grams” [4] of Descartes and Fermat - placed here at the
origin of a broader heuristic program for representation
in science – developed themselves, pointing out how they
unfolded, their convergences and their repercussions.

2. Descartes and the construction of
mechanical models

In Duhem’s analysis, mechanistic physics was born in the
16th century with G. Galilei (1564-1642), M. Mersenne
(1588-1648), B. Pascal (1623-1662) and C. Huygens (1629-
1695), all contributing to its establishment and progress,
together with the development of an associated method-
ology and philosophy. Descartes, however, would be the
first to develop the Mechanism as a new conception of
knowledge and science, looking to build a new intelligi-
ble framework of the world in which mechanical theory
would play the role of unifying the structure of all science.
To this end, Descartes articulated a theory of science to
justify mechanistic physics as theoretical physics [5]. One
of the central elements of this theory - which actually
comprises a metaphysical, logic of science (methodology)
and physical theory - is its concept of rationality, mod-
eled on mathematics, in particular, on geometry. The
justification of mechanistic theory as physical theory, in
turn, is articulated through a system that not only turns
metaphysics into a science, but also into a base to deduct
and, consequently, to legitimize the principles of mecha-

1This is one of three scientific tests published by Descartes to-
gether with the “Discours de la Méthode”. The other two tests that
accompany it are “Les Météores” and “La Géometrie”.
2According to Bunge “a mechanism is defined as what makes a
concrete system tick, and it is argued that to propose an explanation
proper is to exhibit a lawful mechanism” [3, p. 410].

nistic physics as causal principles of natural phenomena.
Both the physical and metaphysical aim to offer causal
explanations and are built using the same method. In
this sense, Ontology creates a world of mechanical causes,
Epistemology ensures the conditions to know with cer-
tainty and to grasp the essence and the cause of the
things in this world, and Methodology, in turn, defines
the nature and the means to build a physical theory and
to solve problems [5] [6, pp.7-78].

In order to “fully eliminate the qualities of the study
of material things” [7], Descartes lets go of substantial
forms (qualities) as essential attributes of the body, re-
taining only its quantitative elements. His ontological
theses about the separation between mind and body and
about the quantitative attributes as essential properties
of bodies, are presented not only to make the tangible
world mathematical, but also to make it a pure effect of
mechanical causes. As such, he seeks to institutionalize,
from an ontological perspective, the Galilean dichotomy
between primary and secondary qualities, turning the
Aristotelian category of quality 3 into the intellectual
background on which he places a derived element in his
system. Underlying this ontology, is a commitment to the
idea that epistemology precedes ontology, which arises
from the Cartesian acknowledgment of mathematics as
the means to represent knowledge, and of the geometric-
deductive method as the formal resource to organize
it.

On these two epistemological assumptions, namely rep-
resentation (algebraic symbols) and organization (math-
ematical and geometrical systems), rests the Cartesian
criterion of rationality: the order of reasons. The more
abstract and essential characteristic of what science is,
is based on an idealization/abstraction of the geometric-
deductive method. This abstraction aims to apply the
criterion of the order of reasons (such as the rationality
criterion) to fields that transcend mathematics and ge-
ometry. In Descartes’ mind, the order according to which
a discipline is organized is characterized as knowledge,
which separates it from a revelation and an opinion.

Having established the problem of the nature of the
physical theory, Descartes also tries to demonstrate that
physical theories result in theoretical knowledge about
the external world. The solution he presented to the
problem concerning the objectivity of science is aligned
with his conception of truth. The objects of our knowledge

3Aristotle’s conception prevailed in the seventeen century, with his
doctrine of substantial forms and of real qualities. According to
this tradition, the qualities and powers constitute a category of
being, and everything that causes sensible perception is assumed
as a form of quality. As such, heat, color, soundness, solidity and
numerous other properties are noticeable because the body in
observation has certain powers. Cartesian ontology rejects not
only the proliferation of beings, but also the category of real
and independent qualities. In the opinion of Descartes, the only
category is that of quantities. There is no place for qualities in
the quantifiable world of cartesian science; they are disqualified as
primary concepts as they are representable by algebra, i.e. they
can’t be interpreted as quantities.
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are representations in our mind. Without a direct access
to the real world, how can we ensure the objectivity of
our representations?

Through purely theoretical considerations about the
nature of our faculties, of knowledge and of God, Descartes
obtains an epistemological guarantee that the innate
ideas are representations of real things in the world. This
way, he ensures the application of the theory of the cor-
respondence of truth with the basic mechanical concepts,
which he considered as innate ideas. These concepts rep-
resent objects in the world. As such, the objectivity of the
base spreads throughout the system through deduction.
This Cartesian system of principles (common notions)
ensures that deduction (collection of intuitions) leads
from truth to truth, showing that the mechanical concep-
tual world, founded on causal explanations, is not only
based on a possible representation of the world, but in a
faithful representation of it.

From the Cartesian perspective, the application of an
ideal axiomatic conception of science in the explanation
of physical phenomena cannot be implemented if the
first principles, or the connections between them and
the empirical laws, are not known. In general, however,
the understanding of such (necessary and essential) con-
nections between the theoretical and empirical base, is
not available. On the other hand, we should remember
that Cartesian ontology makes extension the essential
attribute of matter. This thesis makes an atomistic view
of matter unfeasible. It follows that the Cartesian con-
ception of science as an ideal axiomatic method cannot
tolerate the employment of atomic hypotheses. To oper-
ationalize his theory on the coherence of truth, and even
his ideal axiomatic system, Descartes decides, however,
to employ hypotheses, even if only provisionally. This
use seems to be a contingency of the implementation
of his mechanical theory to explain physical phenom-
ena, however, requiring an atomistic view of matter. His
methodology employs this theory as a way to articulate
and make effective the application of his mechanical the-
ory. As such, the gap between the first principles and the
empirical laws can be reduced through the hypostatiza-
tion of a theory of matter to which mechanical properties
are attributed.

In Descartes’ mind, it’s the use of science for practi-
cal purposes, where the “brevité de la vie” is a decisive
factor, which requires the temporary employment of hy-
potheses to circumvent the infinite time required for the
establishment of ideal science, that is, the deduction of
all physics from metaphysics. This perspective clearly
emerges early in Discourse I of “La Dioptrique”, where
he justified the use of hypotheses [“suppositions”] and
analogies [“comparaisons”] in his “explanation of light
and of its rays”:

Now since my only reason for speaking of
light here is to explain how its rays enter the
eye, and how they may be deflected by the
various bodies they encounter, I need not at-

tempt to say what is its true nature. It will,
I think, suffice if I use two or three compar-
isons in order to facilitate that conception of
light which seems most suitable for explain-
ing all those of its properties that we know
through experience and then for deducing all
the others that we cannot observe so easily.
In this I am imitating the astronomers, whose
assumptions are almost all false or uncertain,
but who nevertheless draw many very true
and certain consequences from them because
they are related to various observations they
have made. [2, v.6, p.83]

Pressed by the need to submit explanations articulated
in science, this new structure of the being (extension,
size and motion) sees the world as a machine, composed
of inert bodies moved by physical necessity and unified
by mechanical laws that are expressed precisely in terms
of shape, size and motion. Cartesian science as a rigorous
and thorough chain of reasons, starting from God until
the particularity of the physical phenomena, remains an
ideal that practical and provisional science is gradually
approaching, however.

Using the example of blind man who uses the move-
ments of a cane to perceive the objects around him
[mechanical analogy], Descartes proposes a way in which
light can be conceived as a “movement or an action”. As
he tells us:

In order to draw a comparasion from this, I
would have you consider the light in bodies
we call ‘luminous’ to be nothing other than
a certain movement, or very rapid and lively
action, which passes to our eyes through the
medium of the air and other transparent bod-
ies, just as the movement or resistance of the
bodies encountered by a blind man passes to
his hand by means of his stick [2, v.6, p.84].

Given that motion, from the Cartesian perspective,
is the fundamental force (or power) of nature 4 - lying
at the root of all phenomena - an explanation of light
and of its properties would involve knowing what kind
of motion the action of light is. Hence the initial strat-
egy of the mechanical analogy with the cane, which is
complemented by a second analogy [of the “barrel of
grapes”] in which Descartes introduces the idea of subtle
matter [methodological employment of an atomic theory
of matter], which, hypothetically, fills space and would
allow him to explain light as an action that propagates
in a straight line 5

4According to Sabra, this is simply a result of the metaphysical
principle that movement is the only force that can be rationally
stated to exist in nature [8, p.27].
5According to Sabra,“For although he [Descartes] does not conceive
of the propagation of light as an actual movement, he still asserts
that light is no more than a mechanical property of the medium
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Consider a wine-vat at harvest time, full to
the brim with half-pressed grapes, in the bot-
tom of which we have made one or two holes
through which the unfermented wine can flow
(see Figure 1). Now observe that, since there
is no vacuum in nature (as nearly all philoso-
phers acknowledge), and yet there are many
pores in all the bodies we perceive around us
(as experience can show quite clearly), it is
necessary that these pores be filled with some
very subtle and very fluid matter, which ex-
tends without interruption from the heavenly
bodies to us.

Figure 1: Figure extracted from the original text. See ref. [2, v.6,
pp.86-87]

Now, if you compare this subtle matter with
the wine in the vat, and compare the less fluid
or coarse parts of the air and other transpar-
ent bodies with the bunches of grapes which
are mixed in the wine, you will readily un-
derstand the following. The parts of wine at
one place tend to go down in a straight line
through one hole, while the parts at other
places also tend at the same time to go down
through these two holes, without these ac-
tions being impeded by each or by the resis-
tance of the bunches of grapes in the vat. (...)
In the same way, all the parts of the subtle
matter in contact with the side of the sun fac-
ing us tend in a straight line towards our eyes
at the very instant they are opened, without
these parts impeding each other, and even
without their being impeded by the coarse
parts of the transparent bodies which lie be-
tween them. (...) In the same way, considering
that the light of a luminous body must be
regarded as being not so much its movement
as its action, you must think of the rays of
light as nothing other than the lines along
which this action tends [2, v.6, pp.86-87].

transmitting it; it is, as we have seen, a static pressure existing
simultaneously in all parts of the subtle matter that pervades all
space [8, pp.78-79].

As a consequence of the practical impossibility of fully
developing an ideal science, and in order to improve our
knowledge of natural phenomena, he postulates materials
systems of defined corpuscles, whose motion, size, shape
and mechanical action are responsible for the produc-
tion of all phenomena. The straight propagation of light
would therefore be subject to deviations or buffering in
the interaction with other bodies, in the same way that
the movement of a ball, or of a stone thrown in the air, is
cushioned by bodies that it finds on its way. In this sense,
light, conceived as action, should follow the same laws
of mechanical motion. This is clearly explained when
Descartes compares the luminous ray to a ball put in
motion by a racket, and presents us with his characteri-
zation mechanism of the refraction phenomenon. Let’s
read his own words:

Consider that, if a moving ball encounters
obliquely the surface of a liquid body through
which it can pass more or less easily than
through that which it is leaving, it is deflected
and changes its course when it enters:

Figure 2: Figure extracted from the original text. See ref. [2, v.6,
pp.91-93]

as, for example, if, being in the air at point A
(fig. 2), it is impelled towards B, it will indeed
go in a straight line from A to B, if neither
its weight nor some other particular cause
prevent it; but, at point B, where I suppose
it to encounter the surface of the water CBE,
it is deflected and takes a path towards I,
going moreover in a straight line from B to
I, as is easy to verify by experiment(...) Fi-
nally, consider that the rays are also deflected,
in the same way as the ball just described,
when they fall obliquely on the surface of a
transparent body and penetrate this body
more or less easily than the body from which
they come. This mode of deflection is called
‘refraction’. [2, v.6, pp.91-93]

Revista Brasileira de Ensino de F́ısica, vol. 39, nº 4, e4602, 2017 DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0025



Laranjeiras e cols. e4602-5

In Descartes, a tension can be clearly seen between
two concepts of physical theory. On the one hand, a
theory is conceived as an ideal axiomatic system, based
on well-founded concepts and on self-evident principles;
i.e., all physical phenomena should, in principle, be de-
ducted from such concepts and principles. In this sense,
his conception of physical theory emerges here, or as
Sabra states: “as a deductive system whose premises are
rooted in metaphysics” [8, p.27]. On the other hand, this
theory is a definition that, through the use of figura-
tive representations, analogies or models, establishes the
bonds between the conceptual mechanic system and the
empirical base itself. Such mechanical models are based
on defined and concrete mechanisms of matter in motion,
instead of employing a rigorous chain of logical reasons
6. In addition, they have the status of hypotheses, and
not of self-evident presuppositions.

Still in “La Dioptrica”, Discourse II, using the research
strategies established in Regulae, more specifically Rules
V and VI, Descartes gives us an explanation of the phe-
nomenon of reflection as a type of intermediate step for
the understanding of what was to come next, namely
the exact determination of what he coined as being the
“quantity” of the refraction 7. To this end, he replaces
the surface CBE (thought of as a liquid surface in the
previous example - characterization of refraction) by a
rigid surface. His mechanism is presented in the following
way:

Let us suppose that a ball impelled by a ten-
nis racquet from A to B meets at point B
the surface of the ground CBE (fig. 3), which
stops its further passage and causes it to be
deflected; and let us see in what direction
it will go. To avoid getting involved in new
difficulties, let us assume that the ground is
perfectly flat and hard, and that the ball al-
ways travels at a constant speed, both in its
downward passage and in rebounding, leaving
aside entirely the question of the power which
continues to move it when it is no longer in
contact with the racquet, and without consid-
ering any effect of its weight, size or shape.
(...) Moreover, it must be noted that not only
the determination to move in a certain direc-
tion but also the motion itself, and in general
any sort of quantity, can be divided into all
the parts of which we can imagine that it is
composed. And we can easily imagine that

6The role of hypotheses and analogies in the [deductive] Cartesian
explanation scheme is clearly pointed out in his “Rules for the
Direction of the Mind” (1628), more specifically in rule VIII, where
he advises the investigator against the insistence on the strict
application of the preceding rules when the nature of the problem
so requires.
7Refraction is treated as a special case of reflection, a case in which
the perpendicular component of velocity is changed by the surface
CBE.

Figure 3: Figure extracted from the original text. See ref. [2, v.6,
pp.93-95]

the determination of the ball to move from
A towards B is composed of two others, one
making it descend from line AF towards line
CE and the other making it at the same time
go from the left AC towards the right FE,
so that these two determinations joined to-
gether direct it to B along the straight line
AB. And then it is easy to understand that its
encounter with the ground can prevent only
one of these two determinations, leaving the
other quite unaffected. For it must indeed pre-
vent the one which made the ball descend from
AF towards CE, because the ground occupies
all the space below CE. [2, v.6, pp.93-95, em-
phasis added]

Here, it’s worth emphasizing the Cartesian strategy
of splitting the “determination” 8 of the ball movement
[understood as its speed] toward AB into two [more
simple] parts, namely into the direction AC (vertical
component) and into the other direction AF (horizontal
component). This strategy, as we will see later, will be
strongly criticized by Fermat. In his Rule V (“Regulae”),
Descartes made it clear that complicated and obscure
propositions should be gradually reduced to more simple
propositions, seeking a more adequate understanding of
the former based on the latter.

By describing the route the ball would take after its
collision with the surface CBE, based on geometrical
arguments and always considering its speed module as
unchanged, Descartes builds a deduction of the exact
point that the ball will reach. Let’s see how he does this,
following the figure of the previous citation:

8It is important to note that Descartes distinguishes between what
he calls ’force’ of the ball movement and its ’determination’. Our
understanding is that when referring to the ’force’, he has the speed
module in mind, and from what he says in “determination”, he
thinks of speed as a vector (it may be divided into its components),
superposing this last concept a few times over amount of motion.
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To discover in precisely what direction the
ball must rebound, let us describe a circle,
with its centre at B, which passes through
point A; and let us say that in as much time as
the ball will take to move from A to B, it must
inevitably return from B to a certain point
on the circumference of the circle. This holds
in so far as the circumference contains all
the points which are as far the circumference
contains all the points which are as far from
B as A is, and the ball is supposed to be
moving always at a constant speed. Next, in
order to determine precisely to which point
on the circumference the ball must return, let
us draw three straight lines AC, HB, and FE,
perpendicular to CE, so that the distance
between AC and HB is neither greater nor
less than that between HB and FE. And let
us say that in as much time as the ball took
to move towards the right side from A (one
of the points on the line AC) to B (one of
those on the line HB), it must also advance
from the line HB to some point on the line
FE. For all the points on the line FE are
equidistant from the corresponding points on
HB, as are those on line AC; and also the ball
is as much determined to advance towards
taht side as it was before. So it is that the ball
cannot arrive simultaneously both at some
point on the line FE and at some point on the
circumference of the circle AFD, unless this
point is either D or F, as these are the only
two points where the circumference and the
line intersect. Accordingly, since the ground
prevents the ball from passing towards D, it is
necessary to conclude that it must inevitably
go towards F. And so you can easily see how
reflection takes place, namely at an angle
always equal to the one we call the angle
of incidence. In the same way, if a light-ray
coming from point A falls at point B on the
surface of a flat mirror CBE, it is reflected
towards F in such manner that the angle of
reflection FBE is neither greater nor less than
the angle of incidence ABC. [2, v.6, p.96]

Note that, in his deduction of the equality of the angles
of incidence and reflection, Descartes assumes that the
reflective surface does not alter the speed module of the
ball, i.e. the speed module of the incidence is equal to the
speed module of the reflection. This would correspond
to a perfectly elastic collision, where the kinetic energy
of the system remains unchanged 9.

9Sabra calls our attention to the fact that Descartes makes no
reference to the perpendicular component of incident velocity, not
assuming, for example that it will be reverted by the reflective
surface [8, p.85].

Following this chain of geometric reasoning, Descartes
returns to the situation where the ball encounters a liquid
surface, assuming this time that this surface will causing
a deviation in the trajectory of the ball [his analogy for
the refraction of light process], which will increase as the
inclination with which the ball hits the surface increases,
reaching a situation in which the ball will suffer reflection
and not refraction.

And we may note here that the deflection
of the ball by the surface of the water or
the sheet is greater, the more oblique the
angle at which it encounters it, so that if it
encounters it at a right angle (as when it
is impelled from H towards B) it must pass
beyond in a straight line towards G without
being deflected at all [fig. 4].

Figure 4: Figure extracted from the original text. See ref. [2, v.6,
p.99]

But if it is impelled along a line such as AB,
which is so sharply inclined to the surface
of the water or sheet CBE that the line FE
(drawn as before) does not intersect the circle
AD, the ball ought not to penetrate it at
all, but ought to rebound from its surface B
towards the air L, in the same way as if it had
strick the earth at that point [2, v.6, p.99].

While noting that no refraction occurs in the case
of a normal incidence (HB), and that the incident and
refracted ray turn in the same direction, thus revealing to
us the phenomenon of total reflection - in which case the
line FE does not cut the circle AD - he doesn’t consider
the critical intermediate case, which occurs when FE is
tangential to the circle. In this case, the angle of incidence
is such that the refracted ray makes 90 degrees with the
normal. After presenting his explanation for reflection,
Descartes now seeks to determine the exact “quantity”
of refraction suffered by ball that hits a liquid surface in
such a way that it passes through the surface with its
velocity increased by one-third in relation to the air.

But let us make yet another assumption here,
and suppose that the ball, having been first

Revista Brasileira de Ensino de F́ısica, vol. 39, nº 4, e4602, 2017 DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0025



Laranjeiras e cols. e4602-7

impelled from A to B, is again impelled at
point B by the racquet CBE [fig.5] which in-
creases the force of its motion, say by a third,
so that it can then make as much headway
in two seconds as it previously made in three.
This will have the same effect as if the ball
were to meet at point B a body of such nature
that it could pass through its surface CBE,
one-third again more easily than through the
air. And it follows manifestly from what has
already been demonstrated that if you de-
scribe the circle AD as before, and the lines
AC, HB, FE so that there is a third less dis-
tance between FE and HB than between HB
and AC, then point I, where the straight line
FE and the circular line AD intesect, will
indicate the position towards which the ball
must be deflected when at point B.

Figure 5: Figure extracted from the original text. See ref. [2, v.6,
p.100]

Now we can also draw the converse of this
conclusion and say that since the ball which
comes in a straight line from A to B is de-
flected when at point B and moves on towards
I, this means that the force or ease with which
it penetrates the body CBEI is related to that
with which it leaves the body ACBE as the
distance between AC and HB is related to
that between HB and FI - that is, as the line
CB is to BE. [2, v.6, p.100]

According to Descartes’ reasoning, the direction of
refraction is determined by the point I at which FE
cuts the circle. The trajectory of the refracted ray is
determined by the relation BE = 2

3CB, and the ratio
between the speed of the angle of refraction (vr) - [‘force’
(speed module) with which the ball enters the body CBEI
(water)] - and the speed of the angle of incidence (vi) -
[‘force’(speed module) with which the ball leaves the body
ACBE (air)] - is given by vr

vi
= CB

BE . The last relationship,

not only matches the statement that the speed of light is
a property of the environment in which it travels 10 , it
also clearly expresses the idea that the sines of the angles
are in an inverse ratio of their respective velocities, i.e.,
sin i
sin r = vr

vi
= n, where n is a constant 11.

The idea of an ideal axiomatic theory of physics is
essential to rationally explain the objectivity of science
(theoretical knowledge), in addition to Descartes’ com-
mitment to the objective (metaphysical) value of effective
physical theories. Such theories do not share the condi-
tions required by the ideal physical theory, since they
employ hypotheses as intermediate chains. As such, this
question immediately arises: how to explain the theoreti-
cal knowledge produced by them? This theoretical knowl-
edge is established through the relation between these
(effective) theories and the ideal axiomatic system that
represents the world. Descartes seems to understand that
the objective value (theoretical knowledge) of effective
physical theories is defined in terms of their contribution
to bringing them closer to the ideal physical theory, i.e.
to the very understanding of this latest theory. The in-
crease in our understanding of empirical laws and the
relations between such laws and the conceptual mechanic
system, decreases the variety of alternative hypotheses
that connect self-evident principles to the empirical base.
This leads to a broadening of our knowledge of the (real)
essential and necessary relationships between these two
bases, which constitutes the objective value of effective
physical theories. Its practical value is given through its
application to nature, constituting a relation between
physical theory and the world of phenomena.

3. Fermat and the use of mathematical
principles

In September 1637, soon after coming into contact with
Descartes’ ‘La Dioptrique’ through Marin Mersenne 12,
Fermat sent the latter a letter expressing his reservations
in relation to the arguments presented by Descartes in
his proof of the laws of reflection and refraction. In this
correspondence, which ended up being the first of a
sequence of letters, Fermat questioned the idea that
the effects of light should be understood based on our
knowledge about motion. In addition, he drew attention
to what he called a ‘particular disagreement’ [‘particuliére
disconvenance’] in Descartes’ reasoning [9, p. 109], by not
confronting his mechanical analogy of the ball’s motion,

10According to Sabra, this idea had already been used by Latin
writers since the translation of Ibn al-Haythan’s ‘Book of Optics’,
and is already found in Ptolemy. When Descartes formulated it in
1619-21, he departed from the generally accepted view that speed
is greater in more dense means.

11This result will be left as a legacy to corpuscular theory, that
would adopt it through a similar proof shown by Newton [8, p.111].

12At the time, Mersenne played an important role in the promo-
tion of scientific ideas in Europe, facilitating the contact between
various scientists, and he ended up working as intermediary be-
tween Descartes and Fermat, who exchanged several letters through
Mersenne.
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affected by a succession of small movements, with the
idea of the instantaneity of the propagation of light 13.

Fermat said he couldn’t accept Descartes’ reasoning,
which he considered logically flawed as legitimate proofs
and demonstrations of either reflection or refraction [9,
P.109]. For Fermat, Descartes’s procedure was arbitrary
because he had chosen a system of reference by presup-
posing the result that he wished to obtain in advance
and which he considered valid [9, P.110].

In a letter written in 1664 to an unknown recipient,
he even refers to the Cartesian proportions, used as
the foundation for his ’La Dioptrique’, as a true fallacy
14. His distrust was based on three basic arguments,
namely that analogies cannot establish evidence, that
the assumption that light has greater speed in more dense
means contradicts common sense 15, and, finally, that the
assumption that one of the directions or ’determinations’
of ball motion must remain unchanged after contact with
the medium, cannot be justified [10, p. 485-486] 16.

To justify his assumption about the conservation of
the horizontal component on the reflecting surface (a real
and impenetrable surface) Descartes had relied on the
fact that the surface did not oppose the movement of the
ball in that direction [9, p.114].17

To deduct the Law of Refraction, Fermat made use of
his own method, the “method of maxima and minima” 18,
which he had invented eight years before starting (1637)
his correspondence around the work of Descartes. In this
method, based on the metaphysical principle that nature

13By example of his predecessors, such as Grosseteste, Witelo and
Kepler, Descartes subscribed to the doctrine of the instantaneous
propagation of light.

14‘Sa démonstration me sembla un véritable paralogisme.’ [10, p.
485]

15Fermat worked with the idea that the speed of light is smaller
in denser media (or more refringent) than air. Martins and Silva
remind us that at this time it was not known how to measure the
speed of light in a refractive medium, which prevented the decision
of whether the speed was greater or less in these means [22, p.457,
footnote].The assuption that light has greater speed in denser
media has been adopted by Descartes since his earliest studies of
optics (1616-1621). The idea was not new and has its origins in
the works of Ptolemy (100-170 AD) and Ibn al-Haythan (965-1040
AD) in Optics.

16According to Sabra, if the first reason is removed, it would be
wrong to believe the last two would really be among the reasons
for the rejection by Fermat of Descartes’ proof. The foundation
of his argument lies in the fact that the question of the speed of
light had never been the object of discussion in the correspondence
between the two, and that Fermat’s objection regarding Descartes’
horizontal component of the ’determination of motion’ appears
for the first time only in 1658, in a letter to Clerselier, i.e. in the
second phase of his discussion about ‘La Dioptrique’ [8, p. 117].

17According to Sabra ”in agreement with a certain a priori conception
of matter, and in accordance with the decision to deal with natural
phenomena in a purely mathematical fashion, Descartes tried to
deduce the reflection law from merely assuming the impenetrability
of matter and the conservation of the absolute quantity of motion [8,
p. 92]

18This method was described by Fermat in the treaty “Méthode Pour
la Recherche du Maximum et du Minimum”, originally written in
Latin (“Methodus ad Disquirendam Maximam et Minimam”), and
sent, via Mersenne, to Descartes, who received it in the beginning
of 1638.

Figure 6: Figure utilized by La Chambre for his demonstration.
Extracted from the original text. See ref. [2, v.6, p.328]

performs its actions in the most simple and economical
way [optimization principle], the principle of least time
is presented.

In 1657, Fermat had received a copy of a treaty on light
[La Lumière], which had been sent to him by the author
himself [the physician Marin Cureau de la Chambre]
and published that same year, where light [able to move
instantaneously] was presented as a quality and not as a
substance [11]. In this sense, reflection and refraction were
explained based on what was described as the ‘animosity’
and ‘natural antipathy’ between light and matter.

Although not convinced by the arguments presented
by La Chambre in his treaty, Fermat made a point of
emphasizing a common aspect between the two in a
thank-you letter [august 1657], namely the principle that
nature always acts by choosing shortest path 19.

In order for us to better understand the path adopted
by Fermat in the development of his principle of refraction
- formulated based on the “principle of least time” -
let us quickly review a problem that was presented by
La Chambre in the aforementioned Treaty, where he,
making reference to the successful implementation of
the principle of economy [that nature always operates
along the shortest path] to the reflection of light on flat
surfaces, presented a geometric demonstration in which,
assuming that the angle of incidence is equal to the angle
of reflection, the path followed by an incident ray at point
B (starting from A) and reflected until C, is necessarily
shorter than the one incident at point E (starting from
A) and also reflected until C. The following figure 6 was
used by La Chambre for his demonstration.

The geometric demonstration is made by extending
the line AB until D, making an extension of the same
length of the reflected ray BC, such that ABD is equal
to ABC, and also extending the line AE until D, with
its extension having the same length as EV, such that
AED is equal to AEC. As such, one can see that ABD is
shorter than AED (AE+ED), because together they form

19“First, I acknowledge with you the truth of this principle: that
nature always operates along the shortest path.” [12, p.354].
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a triangle with ABD as its base and AE and ED as the two
sides, since in any triangle, two sides taken together are
longer than the third. Through this reasoning, therefore,
it was clear to La Chambre that the path ABC, assuming
equality between the incidence and reflection angles, was
necessarily shorter than AEC.

Right after this demonstration, La Chambre makes
reference to two difficulties that he identified in the path
to the effective adoption of this principle [of the shortest
way]. This is exactly where the problem arises which we
mentioned previously. Let us see how he presents the
first of these difficulties in his own words:

There are reflections that are made in concave
mirrors, where the angles are equal, but the
lines are always greater than if they were
different (see Figure 7).

Figure 7: Figure extracted from the original text. See ref. [11, pp.
313-314].

The lines AB and BC, which form equal an-
gles, are larger than the lines AD and DC,
which form different angles, as can be demon-
strated by geometry. Therefore, there is a
general rule that the equality of the angles
comes from shorter lines [11, pp. 313-314].

The second difficulty concerned the behavior of light
in refraction.

If nature makes its movements through the
shortest lines, it should necessarily also do
this in refraction. In any case, the lines that
contain the incidence and refraction angles
are larger than those [ADC] outlined from
one end to the other (see Figure 8).
Since the AB and BC lines, made by the
refraction, are larger than AD and DC, given
that AB and BC form two sides of a triangle,
with ADC as its base, and two sides are larger

Figure 8: Figure extracted from the original text. See ref. [11, pp.
314-315].

than the third side considered in itself. [11, pp.
314-315].

In response to these difficulties, La Chambre argued
that in the cases in question [in refraction], light is not
”free” to move, and is subject to constraints that force it
to follow a different path instead of the one it would follow
if it were moving according to its “natural inclination” [11,
p. 323]. In this sense, the principle of the shortest path
should be understood as ruling not the actual behavior
of light, but its propensity, effectively expressed solely in
the case of reflection on flat surfaces [8, p. 139].

Fermat tried to overcome these difficulties by looking
at them from a different perspective, adopting the idea
that “the principle of physics is that nature performs its
movements through the most simple paths” [12, p.355].
Assuming that different media offer different resistances,
and that there is always a defined proportion between
these two resistances [12, p.356], Fermat worked with
the idea that the straight line joining two points in such
means may not be the path that minimizes resistance,
and therefore not the simplest path. Fermat recasts the
problem taking the figure used by La Chambre as refer-
ence (see figure of the citation above), where a surface
DB separates media of different resistances to the passage
of light - with the medium of incidence (which contains
point C) having half the resistance of the medium of re-
fraction (which contains point A). In this sense, Fermat
explains, the sum of the resistances along the incident
ray CB and the refracted ray BA, can be represented
by CB + 2BA. Following a similar reasoning, the resis-
tance along the straight line CDA can be represented
by CD + 2DA. Although the path CB + BA is greater
than the path CDA, therefore, the sum of the resistances
CB + 2BA is smaller than the sum of the resistances
CD +2DA for a certain position of B. As such, assuming
that light follows the easiest path, the problem of refrac-
tion is reduced in this case to a problem of geometric
nature, which Fermat put in the following terms: given
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two points C and A, find the point of refraction B such
that the sum of the resistances CB + 2BA is a minimum.

By tackling this problem, Fermat presented a demon-
stration, based on a numeric example, that the straight
line was not necessarily the most economical path for the
refraction of light. His strategy was to apply his ”maxima
and minima method” to interpret the principle of the
easiest path as a principle of least time.

I arrived at that without effort, but the in-
vestigation had to be carried farther; for, in
order to satisfy my principle, it is not suffi-
cient to have found a certain point F through
which the natural movement is performed
more quickly, more easily and in less time
than along the straight line COG, but it was
necessary to find the point through which
the movement would be made in less time
than through any other point taken on either
side. For this purpose I had to appeal to my
method of maxima and minima which expe-
dites the solution of this sort of problem with
much success. [11, p. 460]

Initially Fermat assumed that through his method of
maxima and minima, the principle of the simplest path
would lead to a different law than the one proposed by
Descartes, in which he didn’t believe [12, p.356], [13,
pp.457-8], [10, pp.485-6]. When informed that the avail-
able empirical data was in agreement with the relation
proposed by Descartes, however, he chose to follow a
different path, considering the existence of an infinite
number of possible proportions which, although different
from the true one, would approximate it in such a way
as to deceive even the most capable observer [8, p.142].
Forced in a sense to not completely consider the relation
proposed by Descartes, Fermat therefore considered that
the true relationship could be such that it was very close
to, although not identical to this relation.

But how to identify it? It is here that Fermat’s thinking
regarding the use of abstract mathematical principles
as the heuristic foundation of his work becomes clear.
As well pointed out by Sabra, the question of the truth
or falsehood of the law of refraction was not decided,
in Fermat’s mind, solely by experimentation It had to
be based on a foundation that Fermat considered to be
more solid, because then it would rest on assumptions
whose truth he considered beyond any doubt [8, p.143].

To finish his calculations, Fermat saw himself faced
with a result that he [mistakenly] considered to be iden-
tical to the one obtained by Descartes as evidence of his
law of sines 20, feeling extremely surprised that such a re-
sult had been obtained by Descartes from an assumption
that the speed of light in denser media was greater than

20In his Synthèse Pour les Réfractions, Fermat attributed to
Descartes a theorem based on the relation sin i

sin r
= vi

vr
= n. The

correct relation was sin i
sin r

= vr
vi

= n. [8, p.149]

in more rarefied media 21 - as opposed to his assumption.
After all, he wondered, how could it be possible to reach
the same truth by diametrically opposed paths without
resorting to paralogisms? [13, p. 152] Although both re-
sults confirm the constancy of the ratio between the sine
of the angle of incidence and the sine of the angle of
refraction, the ratio between the speeds of incidence and
refraction is reversed.

Fermat ended up conceding that Descartes had made
an important discovery, of an empirical nature, but would
claim the evidence, the effective demonstration of what
he considered to be an important truth, for himself [13,
p.142].

In his exchange with Clerselier 22, initially mediated
through his correspondence with La Chambre, he sought
to clarify his point of view. Clerselier admitted that
Fermat’s proof, although logically valid, was only a moral
and not a physical principle, and as such it wasn’t or
couldn’t be the cause of any natural effect. His argument
was that it wasn’t this principle that made nature act,
but a force that resides in all things and the disposition
of these to receive it, which works without prediction,
without choice and through a ’required determination’
[12, p.465]. In his reply to Clerselier, Fermat wrote:

I believe that I have often said both to M. de
la Chambre and you that I do not pretend,
nor have I ever pretended to be in the inner
confidence of Nature. She has obscure and
hidden ways which I have never undertaken
to penetrate. I would have only offered her a
little geometrical aid on the subject of refrac-
tion, should she have been in need of it. But
since you assure me, Sir, that she can manage
her affairs without it, and that she is content
to follow the way that has been prescibed to
her by M. Descartes, I willingly hand over
to you my alleged conquest of physics; and
I am satisfied that you allow me to keep my
geometrical problem - pure and in abstracto,
by means of which one can find the path of
a thing moving through two different media
and seeking to complete its movement as soo
as it can [12, p. 483].

This answer with a clear tone of irony reveals Fermat’s
strategic choice to not prolong the discussion, since the
doesn’t find any receptivity to his ideas in the interlocutor.
Contrary to what a hasty interpretation of his response
may lead us to believe, he remained aware that his task
was not to restrict the law of refraction to no more than a
mathematical hypothesis, purely geometric, in abstracto,

21This hypothesis was deeply troubling to Fermat, who considered
that light should have a finite velocity and move slower in denser
media. In the mid 19th century, with the experiments of Foucault
and Fizeau to measure the speed of light, the issue would be decided
in favor of Fermat.

22Claude Clerselier (1614-1684) was a French publisher who edited
and translated several of Descartes’ works, especially his letters.
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but that its demonstration as a true principle of physics
would vindicate an approach based on the principle of
least time.

4. Mechanisms and mathematical
principles: a dynamic convergence of
representation

The works of Descartes and Fermat presented above
were presented to clarify two different theoretical ap-
proaches to physical phenomena, more specifically to the
phenomenon of the refraction of light – characterized
respectively by the use of heuristic strategies based on
mechanisms and mathematical principles.

Working on a framework that sought to remove the
final Aristotelian causes from the analysis of physical
phenomena, Descartes and his followers discarded a priori
any attempt to assign purpose to physical phenomena,
categorizing them as metaphysical. In this sense, the use
of analogies and mechanisms, such as a ball hitting the
water surface as a representation of the passage of light
through media with different refrangibilities, gave him
causal explanations for the phenomena of light reflection
and refraction.

In contrast to this perspective and making use of his
principle of least time, a clearly teleological principle,
Fermat advocates the legitimacy and authority of the use
of mathematical principles to carry out logical demon-
strations of empirical laws.

In Pierre Duhem, we found a characterization of the
physical theories that can help us understand Fermat’s
perspective. According to Duhem, a theory of physics is
a system of mathematical propositions, deducted from
a small number of principles, that seeks to represent a
set of experimental laws in the most simple, complete
and accurate way possible [1, p.19]. In this sense, Duhem
redefines the objective and the nature of physical theory
not in terms of explanation, that is, an understanding
of the real causes of the phenomena - as did Descartes
- but as a representation (or as linguistic symbols) that
have no intrinsic connection with the properties that they
represent, providing only the relation of the sign to the
thing signified. [1, p.20]

In mechanical theories, on the other hand, all the phys-
ical quantities on which the laws rest, in the condition of
being composed of geometric and mechanical elements
of a certain material system, are imposed, conditioning
all hypotheses to the implications of the dynamic proper-
ties of this system. This is the case, for example, of the
particles in motion, used by Descartes in his explanatory
mechanisms for the propagation of light [14, p.154-155].

Taking as reference Duhem’s critical analysis regarding
what he characterized as two methods of construction of
physical theories - the synthetic method and the analytical
method, each providing different visions about the mean-
ing and objectives of theories [15, p.95] - we can expand
our comprehension of the mechanisms and mathematical

principles as non-exclusive, but dynamically converging
heuristic strategies of representation.

The synthetic method - which is based on the Carte-
sian posture - consists in explaining physical phenomena
through the construction of mechanical models, which
are mechanisms made up of concrete elements, such as
masses in motion. The analytical method is geared toward
a more abstract approach, in the axiomatic form, gen-
erally appealing to principles of extremes (maxima and
minima) - as is clearly the case of Fermat with his princi-
ple of least time, and later Maupertuis with his principle
of least action, formulated strictly through concepts and
propositions following the protocols of the geometrical
model.

An example of this possible convergence of heuristic
strategies can be found in Descartes himself who, rec-
ognizing that the once the mind can’t capture, through
logical propositions, the essential relations that exist in
the world (metaphysical certainty), admits the provi-
sional use of hypothetical relations between the theoreti-
cal knowledge base and the propositions that one wants
to demonstrate (moral certainty) [6, rule VIII], [16, p.590].
Descartes and his interlocutors were trying to demon-
strate the existence of an (anaclastic) curve in which
parallel rays, refracted by a given surface, converge to a
single point. For this explanation, Descartes made use of
the geometrical proportions of the hyperbole, articulat-
ing mathematical reasonings (mathematical principles)
and the physical demonstration of the curve (mecha-
nisms) [17, pp.141-142].

Another example, also from Descartes, can be ex-
tracted from another one of his Discourses on the Method,
Les Météoros, where he presents a quantitative determina-
tion of the rainbow phenomenon using both the synthetic
method - through his model of the spherical drop and
his explanation for the colors using the rotation of the
particles of light, modeled as rotating spheres [2, pp.332-
333] - as the analytical method - which according to the
observed facts, enabled the geometric modeling for the
determination of primary and secondary arcs and angles
capable of producing the phenomenon [2, pp.337-344].

Modeling the water droplets in suspension in the at-
mosphere as a spherical drop and considering the sun
rays hitting it as straight parallel lines, the position of
arches was explained, following the outline of Figure 9.

For a continuous variation of the incident rays, the
values of the spread out rays, determined from the geo-
metrical model used by Descartes, ranged between 40o

and 42o for the primary arc and 50o and 52o for the
secondary arc [2, p.336], indicating that the luminous
rays that define the rainbow are those whose deviations
obey what we could call a principle of least angle. He
also appealed to an analogy between the colors produced
by the passage of light through the spherical water drop
and those arising from the dispersion of light by a prism,
which also depend on a minimum angle for their oc-
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Figure 9: Drawing by Descartes explaining how a drop of water
decomposes light to form the rainbow. Source: ref. [2, p. 328].

currence [2, p.341]. In Figure 10 the sketches used by
Descartes to illustrate this analogy are shown.

In Fermat we can also recognize signs where the pres-
ence of mechanisms was accepted, although he made
clear that these were dependent on principles capable of
performing what he characterized as ‘effective demonstra-
tion’ [13, p.142]. To make use of his maxima and minima
method in his demonstration of the law of refraction - a
demonstration based on abstract principles, as we saw
earlier - he was able to reconcile the existence of empirical
data that presented itself in defense of Descartes 23.

The original idea, which had served as the starting
point for the principle of Fermat, was subsequently taken
up by Pierre-Louis Moreau de Maupertuis (1698-1759)
in 1744, who offered a new interpretation of the principle
of economy, arguing that instead of traveling shorter
distances or times, light took a path that minimized
what he described as ‘quantity of action‘ ([21, p.262],
[22, p.456], [23, p.174]). In a certain sense, Maupertuis’
strategy sought to circumvent the constraints generated
by the exaggerated associated metaphysical dimension,

23Two authors who, in the second half of the 19th century, also made
use of convergent heuristics strategies - combining mechanisms and
mathematical principles - in the search for a statistical reasoning
for the general laws of Thermodynamics were J. C. Maxwell (1831-
79) and L. Boltzmann (1844-1906). With Boltzmann, the use of
mechanical analytical tools (based on mathematical principles),
guided by his atomistic perspective on the structure of matter
(mechanisms), enabled him to treat microscopic motion mathe-
matically and, subsequently, to construct a statistical approach as
heuristic representational resource to understand relations between
mechanics and thermodynamics within his research program. In
Maxwell, we find not only the combination of his gas model (“hard
sphere model”) with the existence of a “function distribution of
molecular speeds”, but also his subsequent use of the Lagrangian
and Hamiltonian formulation of analytical mechanics in the theo-
retical organization of electromagnetism to reconcile his mechanical
interpretation. [18], [19], [20, p. 297].

Figure 10: Sketches used by Descartes to illustrate his analogy.
See ref. [2, p.341]

both by the idea of minimizing the path of light as by
minimizing the travel time.

Meditating deeply on this subject, I thought
whether light, which abandons the shortest
path (or the straight line) when it passes from
one medium to another, could also fail to fol-
low the fastest path. Indeed, what preference
should time have over space here? As light
could no longer follow, at the same time, the
shortest and the fastest route, why would it
take one and not the other? In fact, it follows
neither, it takes a path that has a more real
benefit: the path it takes is the one in which
the quantity of action is minimal [24].24

Maupertuis’ reasoning was that when a body is carried
from one point to another, a certain “action” is required.
Considering that it depends on both the speed of the
body and on its path - combined, and not on each one

24An important translation (in Portuguese) of Maupertuis’s article
can be found in Ref. [23], along with a collection of his life and
work, as well as an abbreviated historical description of the various
types of variational principles used in Physics from Fermat (17th
century) to the 20th century.
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separately - he defined it as being proportionate to the
sum of the paths multiplied by their corresponding speeds.
In this sense the “quantity of action” will be greater as
the speeds and paths taken increase, and it’s exactly in
this that the true cost of nature lies, and it’s in this,
therefore, where savings are maximized in the movement
of light [24].

According to Sabra, Maupertuis’ procedure was no
less metaphysical than the Fermat’s, being as or more
arbitrary than it in so far as Fermat still could argue that
time was a basic and natural concept, whose intimate
relationship with motion made it a viable candidate as
a minimum quantity, while Maupertuis’ “action” was
artificially constructed [8, p. 157].

For Martins and Silva, Maupertuis was clearly aware
of the historical precedents of his principle and of the
metaphysical roots of his ideas - already present in the
works of Aristotle and some scholastic thinkers - and did
not consider these philosophical influences inappropriate.
[22, p.462].

It was with the work of Euler (1744) and Lagrange
(1867), the latter one expanding the applications of the
“principle of least action” made by the first, that Mauper-
tuis’ principle (as a principle of extremes) consolidated
itself - no longer as a metaphysical principle, but as a re-
sult of mechanical laws and as a heuristic resource for the
solution of different problems of dynamics [25, p.43-82].
With Lagrange, a new representation of mechanics was
born, called Analytical Mechanics, that had an impor-
tant impact on all physics [26]. Subsequently, working on
the rationalization of geometrical optics and inspired by
Lagrange’s representation, Hamilton (1931) added new
representational heuristic elements to these two fields, in
addition to articulating a new representation for Analyt-
ical Mechanics.

From the elements gathered here, a working hypothe-
sis could consist in understanding the mechanisms and
mathematical principles as different forms of represen-
tation of natural phenomena in a converging dynamic
for the comprehension of physical theories. In this sense,
the first should reveal the functions and the dynamics of
the causal relationships involved in a given phenomenon
- which is of great relevance for its reproduction and
for the application of its empirical laws; and the second
should serve as guide and abstract modeling, in addi-
tion to formalizing these laws. From the mechanisms, we
expect an indication of the possibilities to reconstruct
the conditions of nature, while the mathematical prin-
ciples should point to its modus operandi, for example,
how it operates according to the principles of economy
(or optimization) - as is the case with the principle of
minima.

From the heuristic point of view, we raise the possibility
of understanding both representations as complementary,
using the thesis that it’s up to the mechanisms to capture
the constituting material principle of the phenomenon,

while the abstract mathematical principles should take
care of its formal organization.

We believe that the exploitation of the compatibility
and complementarity between these two representations
may also help us understand both the construction dy-
namics of scientific theories and the models of rational-
ization and methodologies associated with them.

5. Implications for physics education

According to Hodson, a central aspect of scientific liter-
acy for the 21st century is directly related to what he
characterizes as ”learning about science”, that is, an un-
derstanding of its nature and methods, an appreciation
of its history and development, and an awareness of the
complex social relations that constitute it ([27, p.23], [28,
p.15]). In this direction, approaches involving the history
and philosophy of science have been pointed out as rele-
vant ([29], [30], [31], [32]), despite the immense challenges
to their effective incorporation into curricula [33].

By focusing on the use of mechanisms and mathemati-
cal principles as representational heuristics in the physics
of Descartes and Fermat, the analysis developed in sec-
tions II, III and IV can help teachers and students to
better understand the relevant historical and epistemolog-
ical aspects inherent in the dynamics of the construction
of scientific theories. These elements, in addition to being
essential for an understanding of the nature of science
(NoS), may broaden our pedagogical tools in the treat-
ment of refraction phenomena. In addition, to understand
causal explanations (in this case associated with the use
of mechanisms) and abstract representations (inherent
mathematical principles) as legitimate, complementary
and convergent heuristic representational resources in
the formulation of physics’s principles and laws can help
to relativize attitudes and beliefs about an absolute and
restrictive view of the ”scientific method”, still deeply
rooted in school culture.

In recent years, the relationships between learning
and representations have been studied in the physics
teaching, strongly suggesting that the representations we
use in physics play a critical role in the effectiveness of
students’ learning, engaging them interactively in their
learning environments and contributing significantly in
both conceptual understanding and broadening their
problem-solving strategies in this field ([34], [35], [36],
[37], [38], [39], [40], [43], [41], [42], [44], [46]).

Highlighting the importance of an adequate under-
standing of the thought processes underlying the pro-
duction of knowledge in physics teaching, Frederick Reif
establishes as a basic premise of his work the following
idea:

One cannot teach physics effectively without
an adequate understanding of the thought
process need in this field (no more than one
can teach someone how to play good chess
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without an adequate understanding of the
thought process need to play that game) [35,
p.17].

It’s precisely here that the different representations of
physical theories - such as those in the work of Descartes
and Fermat presented in this paper - show their pedagogi-
cal effectiveness, in so far as they explicit the thought pro-
cesses of these authors and incorporate different perspec-
tives and communication potential (“affordances ” [47])
around the topic studied. Once understood, such thought
processes can play a relevant role in the teaching and
learning strategies. Since one of the basic elements in
the teaching of science should be the heuristic structure
proper to the production of knowledge in science.

Considering that the affordances of different represen-
tations determine the role they can play in communi-
cation, and thus in the sharing of knowledge, Fredlung
et al sought to explore what they characterize as disci-
plinary affordances of representation that is the inherent
potential of that representation to provide access to disci-
plinary knowledge. In this sense, they argue that “physics
learning involves coming to appreciate the disciplinary
affordances of representations” [44].

An interesting way of developing these ideas in the
school context is to make use of ”case studies”. According
to Stinner et al ”case studies are historical contexts with
one unifying idea, designed according to the guidelines for
writing a large context problem” [45, p. 620]. Although it
was not the purpose of this article to develop a historical
case study with didactic purposes, which would require
an approach with aspects other than those presented
here, we believe we have gathered elements that can
subsidize works in this direction.

A central aspect of the analysis conducted here and
illustrated with elements drawn from the physics of
Descartes and Fermat is that Representation is a heuristic
tool for building laws, principles, and physical theories.

6. Conclusions

Throughout this article, we have sought to demonstrate
that the use of mechanisms and mathematical principles
were the representational structure of the physical phe-
nomena used by Descartes and Fermat, respectively, in
their investigations in Physics. With examples taken from
the works of these authors, specifically in their analysis
of the light refraction phenomenon, we revealed their dis-
tinct commitments and conceptions, thought processes,
which we don’t consider to be mutually exclusive - even
if we recognize their different functions - for the represen-
tation of physical phenomena. From the heuristic point
of view, we advocate that both approaches can be seen
as complementary and convergent, using the thesis that
it’s up to the mechanisms to capture the constituting
material principle of the phenomenon, and up to the
abstract mathematical principles to reveal their formal

organization. By emphasizing aspects related to the dy-
namics of the construction and development of scientific
theories, heuristic elements essential to an understand-
ing of nature of science and therefore to teaching and
learning physics was indicate.
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