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ABSTRACT: Forest-to-agriculture conversion and soil management practices for soybean 
cropping are frequently performed in the Cerrado (Brazilian tropical savanna). However, 
the effects of these practices on the soil microbial communities are still unknown. 
We evaluated and compared the fungal community structure in soil from soybean cropland 
with soil under native Cerrado vegetation at different times of the year in the Tocantins 
State. Soil samples were collected in two periods after planting (December) and in two 
periods during the soybean reproductive growth stage (February). Concomitantly, soil 
samples were collected from an area under native Cerrado vegetation surrounding the 
agricultural area. The soil DNA was analyzed using a fingerprinting method termed 
Automated Ribosomal Intergenic Space Analysis (ARISA) to assess the fungal community 
structure in the soil. Differences in the fungal community structure in the soil were found 
when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 
1 and R = 0.641 for sampling 2). Changes in the fungal community structure after 
management practices for soybean planting in Cerrado areas were related to changes in 
soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, 
base saturation, and calcium to magnesium ratio. These results show the changes in 
the fungal community structure in the soil as an effect of agricultural soil management 
in Cerrado vegetation in the state of Tocantins.

Keywords: change in land use, soil microbiology, molecular ecology, soil fungi.
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INTRODUCTION
Agriculture expansion into the Cerrado (Brazilian tropical savanna) environment has led to 
rapid conversion of this biome into large areas of cattle farming, reforestation, and grain 
growing, especially soybeans (Bresolin et al., 2010; Lourente et al., 2011). The natural 
conditions of the Cerrado, such as flat terrains, enable agricultural mechanization and 
technological development for selection of cultivars highly efficient in nitrogen fixation. 
These factors have promoted the expansion of soybean cultivation into this biome, 
making it an economically viable and continuous practice.

Maintaining crop residues on the soil surface is a common practice in a low-management 
cropping system, and is an alternative for enhancing soil quality through an increase in 
aggregate stability, porosity, water holding capacity, and reduced water loss through 
evaporation (Lourente et al., 2011). Despite the adoption of low-management practices 
in most soybean-growing areas, agricultural expansion for grain cultivation involves 
the removal of native vegetation and the use of agricultural inputs (Bresolin et al., 
2010). When converting native forest areas to grain croplands, some soil chemical 
and microbiological properties are altered (Costa et al., 2006; Carneiro et al., 2009; 
Navarrete et al., 2013), which indicates the need to evaluate such properties under the 
agricultural soil management practices in the Cerrado areas.

One of the strategies used to evaluate changes in the soil environment due to changes 
in land use and agricultural management practices is to compare the properties of 
lands under soil management and those of adjacent areas under natural vegetation 
(Barros and Comerford, 2002). Several studies have highlighted soil management as an 
important factor influencing soil microbiota structure (Jesus et al., 2009; Taketani and 
Tsai, 2010; Navarrete et al., 2011). However, the mechanisms involved in changes in soil 
microbial communities are not yet fully understood (He et al., 2012). These microbial 
communities can be analyzed by molecular methods, such as Automated Ribosomal 
Intergenic Spacer Analysis (ARISA). This technique, based on DNA fingerprinting, allows 
a rapid and reproducible evaluation of the genetic structure of complex communities 
in different environments by exploring the length polymorphism of the ribosomal DNA 
region containing two internal transcribed spaces (ITS1 and ITS2) and gene 5, 8S rRNA 
in the case of fungi (Ranjard et al., 2001; Danovaro et al., 2009). The ARISA technique is 
based on the use of a fluorescence-labeled primer to amplify the genomic DNA through 
polymerase chain reaction (PCR), with subsequent discrimination of the size of the 
amplified fragment in an automated sequencer (Ranjard et al., 2001). This technique 
has been used for analysis of microbial communities present in environmental samples, 
including soil samples (Ranjard et al., 2001; Mougel et al., 2006; Blackwood and Buyer, 
2007; Navarrete et al., 2010; Jouquet et al., 2013).

The hypothesis of this study is that the conversion of Cerrado lands in the state of 
Tocantins into soybean croplands may have altered the chemical properties and the 
fungal community structure in the soil. In this sense, the ARISA technique was used to 
evaluate the structure of the fungal community (filamentous and yeast) present in soil 
under agricultural management for soybean cultivation from the Cerrado in Tocantins, 
and soil from an adjacent area under native vegetation, at different times of the year. 

MATERIALS AND METHODS

Sampling areas and collection of soil samples

The study was carried out in Porto Nacional, a municipality located in the state of Tocantins, 
Brazil. Soil samples were collected in an area under agricultural management (10° 10’ 
39.8” South and 48° 40’ 39.1” West) and in an area under native Cerrado vegetation 
(10° 10’ 31.7” South and 48° 40’ 35.5” West); these samples were denominated only 
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as “Agricultural” and “Cerrado”, respectively, in this study. At the time of sampling, the 
agricultural area had been under a no-tillage system (NT) for soybean planting for three 
consecutive years during the main crop season, and corn and sorghum planting in the 
off-season. The climate in the region is classified as humid sub-humid, with moderate 
water deficit (C2wA‘a’ according to the Thornthwaite classification system), with an 
average annual temperature between 26 and 27 °C, and average annual rainfall between 
2,000 and 2,100 mm (Seplan, 2012). The study area is in the Cerrado biome, which has 
vast areas directed to grain production, and remnant vegetation typical of the Cerrado 
in sensu stricto (the strict sense), which is characterized by the presence of defined 
arboreal, shrub, and herb strata, with random distribution of trees at different densities.

Soil sampling was performed in the rainy season, December 2012 and February 2013 
(sampling 1), and in December 2013 and February 2014 (sampling 2) (Table 1). The month 
of December corresponds to the post-planting period in the agricultural areas in both 
samplings, while the month of February corresponds to the soybean reproductive phase, 
phenological stage R4, in which most pods are in the upper third with a length of 2-4 cm 
(Ritchie et al., 1982).

A central sampling point was randomly defined in both areas for soil sampling. From the 
central point, four other points were established, positioned to the south, north, east, and 
west at 100 m from the central point. Composite soil samples were collected from each 
of the five sampling points. To do so, five sub-samples were taken at the 0.00-0.10 m 
depth using the same sample distribution described above, but at 2 m from the central 
point (Figure 1). Soil samples were transported in polystyrene boxes under ice gel from 
the field to the laboratory. Part of the sample was sent for chemical analysis, and 0.25 g 
was used for extracting the genomic DNA from the soil.

Chemical analyses

The following macro- and micronutrients were analyzed: Na, Z, B, Cu, Fe, Mn, Ca and Mg 
ratio (Ca+Mg), Ca, Mg, Al, K, P, and S. Cation exchange capacity (CEC), base saturation 
(V), aluminum saturation (m), potential acidity (H+Al), pH, and organic matter percentage 
(OM) were also analyzed. All analyses were made according to Donagema et al. (2011).

Extraction, amplification, and purification of genomic DNA from the soil

Genomic DNA from the soil was extracted using the Power Lyzer™ Power Soil® DNA Isolation 
kit (Mo Bio Laboratories, Carlsbad, CA), following manufacturer’s guidelines. The concentration 
and quality of the DNA were determined by NanoDrop spectrophotometer (NanoDrop® 
ND-1000 UV/vis-spectrophotometer, Peqlab Biotechnologie GmbH, Erlangen, Germany), 
followed by agarose gel electrophoresis in TBE buffer (200 mmol L-1 Tris-HCl (pH 8.4), 
500 mmol L-1 KCl) subjected to 90 V for 1 h. The DNA extracted was stored at -20 °C until use.

Table 1. Location of the sampling sites and number of soil sampling
Sampling period Area Period Number of samples

1
Agricultural Area

December 2012 5
February 2013 5

Cerrado Area
December 2012 5
February 2013 5

2
Agricultural Area

December 2013 5
February 2014 5

Cerrado Area
December 2013 5
February 2014 5

Total 40
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The PCR-ARISA reactions were prepared for a final volume of 25 μL using 1X 
Taq DNA polymerase buffer (20 mmol L-1 Tris-HCl (pH 8.4), 50 mmol L-1 KCl) 
(Invitrogen, Carlsbad, Calif.), 3 mmol L-1 MgCl2, 0.2 mmol L-1 dNTP’s, 5 pmoles of 
primer 2234Cf-FAM (5’-GTTTCCGTAGGTGAACCTGC-3’), 5 pmoles of primer 3126Tr 
(5’-ATATGCTTAAGTTCAGCGGGT-3’), both described by Ranjard et al. (2001), 10 ng DNA, 
1 U Platinum® Taq DNA Polymerase (Invitrogen, Life Technologies®, Brazil), and 17.3 μL 
sterile water. Reactions were performed in a thermocycler (GeneAmp PCR System 9700 
Applied Biosystems, Foster City, CA) under the following conditions: 94 °C for 3 min, 
35 cycles at 94 °C for 30 s, 59 °C for 45 s, 72 °C for 1 min, and 72 °C for 15 min. The 
amplification product was verified by an electrophoretic run on agarose gel at 90 V for 
1 h using TSB buffer (Brody and Kern, 2004). The PCR-ARISA products were purified using 
the GFX PCR DNA and Gel Band Purification kit (GE Healthcare, GE Brazil), according to 
manufacturer’s instructions.

Automated analysis of ribosomal intergenic spacer - ARISA

Discrimination by automated capillary electrophoresis required by the ARISA technique 
was performed on an ABI PRISM 3100 Genetic Analyzer automatic sequencer (Applied 
Biosystems, Foster City, CA). To load the samples into the sequencer, 1 μl of the purified 
PCR product, 8.8 μL of HiDi formamide, and 0.2 μL of a GeneScanTM 500 ROX standard 
length (Applied Biosystems, Foster City, CA) were used. The samples were then denatured 
by heating at 94 °C for 5 min, cooled at 0 °C for 3 min, and loaded into the sequencer.

Data processing and statistical analyses

The electropherograms resulting from capillary electrophoresis in an automated sequencer 
were analyzed for quality using the Peak Scanner version 1.0 software (Applied Biosystems, 
Foster City, CA). In summary, in each electropherogram resulting from DNA fingerprinting, 
the fluorescence units of each peak were converted into data on total fluorescence. 
To do so, the value attributed to the fluorescence of each peak was divided by the total 
fluorescence value of the sample (Culman et al., 2008).

Canonical Correspondence Analysis (CCA) was performed with the Canoco for Windows 
version 4.5 software (Biometris, Wageningen, The Netherlands). Analysis of similarity 
(ANOSIM) was performed using the Primer version 5.0 software (Plymouth Marine 
Laboratory, Primer-E, UK). Analysis of similarity is a permutation-based statistical 
hypothesis test used to test for differences between groups of samples from different 
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Figure 1. Representative schema of the soil sampling design used in both study areas.
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sites or experimental treatments (Mucha et al., 2013). In both the CCA and ANOSIM 
analyses, the distance between the samples was evaluated using the Bray-Curtis index. 
The sizes of the intergenic space of 50 to 800 base pairs were considered for the statistical 
analyses of the data obtained by the ARISA technique. The Tukey test was conducted with 
the aid of the Past version 2.04 software (Oyvind Hammer, University of Oslo, Norway) 
to evaluate the differences between the mean values for soil chemical factors.

RESULTS AND DISCUSSION

Changes in soil chemical properties

The Fe and Ca contents, Ca+Mg ratio, base saturation, potential acidity, and pH were 
significantly different between the soil samples from the soybean cropland and the area 
under Cerrado vegetation (sampling 1 and 2) (Table 2). In sampling 1, the contents of Mn, 
Mg, Al, and CTC and m showed significant differences between the two sampling areas. 
In sampling 2, both in the collections of December of 2013 and February of 2014, Fe content, 
Ca+Mg ratio, V, and pH showed significant differences between the soybean cropland and 
the area under Cerrado vegetation. However, the Na, Zn, B, S, and OM contents showed 
no significant differences between the sampling areas in any of the two samplings.

Agricultural soils had higher pH values, higher OM, and higher macronutrients (P, K, 
S, Ca, and Mg) contents than the native Cerrado soil. The higher pH in the agricultural 
area is due to the liming process carried out before soybean planting for pH correction, 
since the soil is naturally acidic in the area (Bresolin et al., 2010). Liming has a greater 
effect on soil surface layers, due to its low mobility in the soil profile (Frazão et al., 

Table 2. Chemical properties of the soil under Cerrado vegetation and soybean cropland in two sampling periods

Chemical 
properties(1)

Sampling 1 (December 2012 and February 2013) Sampling 2 (December 2013 and February 2014)
Agri D12(2) Cer D12(3) Agri F13(4) Cer F13(5) Agri D13(6) Cer D13(7) Agri F14(8) Cer F14(9)

Na (mg dm-3) 2.60a±1.52 2.20a±0.84 14.40a±1.14 14.00a±3.39 14.20a±0.45 13.80a±0.45 14.00a±0.71 13.40a±1.14

Zn (mg dm-3) 2.76a±1.19 1.74a±0.61 1.56a±0.77 1.48a±2.75 3.16a±1.45 2.08a±1.28 4.38a±2.71 2.08a±0.95

B (mg dm-3) 0.25a±0.04 0.24a±0.02 0.23a±0.06 0.21a±0.05 0.18a±0.05 0.18a±0.06 0.21a±0.05 5.17a±11.09

Cu (mg dm-3) 0.38a±0.25 0.26a±0.13 0.60a±0.26 0.40a±0.12 1.80a±0.35 5.48a±8.68 1.90a±0.40 1.24b±0.32

Fe (mg dm-3) 47.20b±3.96 98.18a±19.58 43.04b±5.32 71.30a±6.43 60.40b±16.95 121.42a±48.09 67.34b±4.59 145.80a±40.15

Mn (mg dm-3) 7.74a±1.99 8.64a±3.20 7.22a±1.40 4.74b±1.92 5.32a±1.45 4.36a±2.22 5.36a±1.29 4.56a±2.26

CEC (cmolc dm-3) 4.75b±0.38 5.99a±0.68 3.78a±0.39 3.85a±0.38 5.71a±0.51 5.40a±1.64 4.84a±0.26 5.83a±1.08

V (%) 61.26a±3.40 26.08b±5.34 55.97a±6.78 20.32b±5.20 68.09a±5.82 37.49b±12.17 64.64a±6.28 38.49b±7.32

m (%) 0.00a±0.00 3.70a±3.46 2.80b±4.37 22.55a±5.31 0.00a±0.00 8.74a±10.57 0.00a±0.00 13.55a±7.72

Ca+Mg 2.76a±0.25 1.50b±0.30 2.06a±0.39 0.72b±0.13 3.78a±0.50 1.86b±0.36 3.06a±0.27 2.18b±0.49

Ca2+ (cmolc dm-3) 1.76a±0.25 0.86b±0.15 1.28a±0.24 0.44b±0.05 2.74a±0.30 1.12a±0.22 2.08a±0.28 1.40b±0.33

Mg2+ (cmolc dm-3) 1.00a±0.00 0.64a±0.15 0.78a±0.16 0.28b±0.08 1.04a±0.30 0.74a±0.17 0.98a±0.16 0.78a±0.23

Al3+(cmolc dm-3) 0.00a±0.00 0.06a±0.05 0.06b±0.09 0.22a±0.04 0.00a±0.00 0.20a±0.28 0.00a±0.00 0.34a±0.21

H+Al (cmolc dm-3) 1.84b±0.23 4.44a±0.71 1.66b±0.26 3.08a±0.50 1.82a±0.38 3.50a±1.63 1.72b±0.38 3.60a±0.91

K (mg dm-3) 58.00a±20.33 19.40b±6.07 24.00a±10.20 17.20a±5.40 41.80a±10.50 16.20b±8.41 24.60a±5.32 18.40a±11.57

P (mg dm-3) 19.68a±25.29 0.34a±0.09 24.22a±18.44 0.96b±0.39 12.34a±9.23 1.04b±0.73 32.68a±39.17 2.42a±0.86

S (mg dm-3) 9.18a±4.08 6.92a±4.18 3.64a±0.95 3.60a±1.40 4.84a±4.12 1.24a±0.50 5.26a±1.53 7.36a±2.04

OM (%) 1.12a±0.13 0.98a±0.37 1.92a±0.70 1.44a±0.40 1.12a±0.37 1.14a±0.57 1.56a±0.77 1.24a±0.57

pH(CaCl2) 6.02(10)a±0.19(11) 4.38b±0.08 5.32a±0.26 4.42b±0.13 5.98(10)a±0.37(10) 4.44b±0.19 6.28a±0.19 4.52b±0.08
(1) Chemical properties analyzed according to Donagema et al. (2011). Agri: agricultural area; Cer: native Cerrado vegetation; D: December; F: February. 
Tukey test (p<0.05) comparing agricultural area and Cerrado [(2) vs (3), (4) vs (5), (6) vs. (7), (8) vs (9)], values followed by the same letter in rows 
do not differ significantly. (10) Average values of the five soil samples from the sample area followed by the standard deviation. (11) Standard deviation 
of the mean for the five soil samples from the sample area.
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2008). The structure of the soil microbial communities are strongly influenced by soil 
pH (Wakelin et al., 2008; Jesus et al., 2009; Val-Moraes et al., 2016).

Acidity and low nutrient levels, such as Ca and Mg, are characteristic of Cerrado soils. 
When the soil is acid, Al toxicity impairs the growth of plant roots, reducing the ability to 
take up water and nutrients. Thus, limestone treatment to raise soil pH, neutralize Al, and 
make Ca and Mg available is necessary to make agricultural production systems possible 
(Miranda and Miranda, 2007). Soil pH appeared as a factor related to the variability of 
other soil chemical properties, such as Fe and K, in all the analyses. The diversity of 
microbial communities is generally correlated with soil acidity, with properties such 
as pH, H+Al, and V (Jesus et al., 2009; Navarrete et al., 2013). Soil pH is an important 
feature and is related to changes in other soil properties, such as Al concentration and 
nutrient availability (McBride, 1994).

Base saturation showed significant values in the two samplings. The values of this 
property were higher in the agricultural areas. Frazão et al. (2008) evaluated the effect 
of different land uses and management systems on the chemical properties of a soil in 
the Cerrado of Mato Grosso. In the study mentioned, the authors also found the lowest 
V values in the native Cerrado area and observed that V was higher when management 
systems have been implemented for longer periods (four and five years), which provides 
better conditions for cultivation. These data corroborate the results of this study.

The OM and microorganism relation has a fundamental role in soil - changes in soil microbial 
diversity over time have been related to changes in environmental conditions, such as 
soil moisture and OM (Lombard et al., 2011). Soil moisture affects the physiological state 
of the microbial community, as well as soil physicochemical properties and plant yield. 
Increased plant yield may also alter soil microbial communities, as it results in increased 
soil carbon input (Castro et al., 2010). Microorganisms break down organic materials, which 
provide nutrients to plants (Schloter et al., 2003; Kujur et al., 2012). This OM present in 
the soil contributes around 30 to 50 % of total soluble P in most soils (Richardson et al., 
2009). In addition, some metabolic reactions occur unevenly in the soil and have large 
space-time differences along the soil profile. The accumulation of particulate OM, animal 
waste, and rhizosphere depositions promote the presence of microhabitats with high 
levels of biological activity and biodiversity (hot spots) (Gonzalez et al., 2012).

Changes in fungal community structure in the soil and their relationship to 
soil chemical properties

Initially, it is important to note that changes in the fungal community structure in the soil 
and their relationship to the soil chemical properties reported in this study were observed 
from soil sampling in the rainy season. The data on fluorescence unit percentage were 
ordered with soil chemical properties, revealing distinct clusters for the soil samples 
collected in soybean cropland and in the natural Cerrado vegetation (Figures 2a and 2b). 
The fungal communities in the areas studied differed in structure, and these differences 
were related to the soil chemical properties. In sampling 1, the soil chemical properties 
explained 76.3 % of the variability of the biological data, with a higher influence from 
Fe, H+Al, V, pH, and the Ca+Mg ratio (Figure 2a). In sampling 2, 93.1 % of the variability 
of the biological data was explained by the soil chemical properties, with V, pH, Ca+Mg, 
Ca, Fe, and the H+Al ratio exhibiting a greater relation to the fungal community structure 
in the soil (Figure 2b).

In general, analysis of similarity revealed significant statistical differences between the 
areas evaluated, and these differences were related to several soil chemical properties, 
such as pH and micronutrients contents (Figure 2 and 3). Based on the R-values, the fungal 
community structure exhibited well separated groups in the ordering spaces. Only the 
Cerrado vs. Cerrado and Agricultural vs. Agricultural interactions were non-significant, 
considering the abiotic data (Table 3).
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A difference was observed in the fungal community structure (R=0.932) upon comparing 
the data of the soybean cropland and of the area under Cerrado vegetation in sampling 1 
(Table 3). The data from sampling 2 indicated that the differences obtained for this group of 
samples were lower than those of sampling 1 (R =0.641), and for that reason, the samples 
were closer in the grouping (Figure 2a). In both campaigns, one grouping was formed from 
the samples of the soybean cropland and another from the area under Cerrado vegetation, 
with no overlapping of samples or areas (Figure 2). The agricultural area stands out in 
samplings 1 and 2 (Figure 3), in which the R-value for the biotic factors was 0.962 (Table 3). 
This indicates a significant difference between the structures of the fungal communities, 
which may be associated with the influence of soybean planting in the area. The value 
of R for abiotic factors was 0.318, and this may be due to the similarity of the chemical 
treatments performed on the soil before planting in the two sampling campaigns.

The table 4 shows the number of phylotypes present in each study area. In sampling 1, the 
Cerrado area had a higher total number of phylotypes than that shown for the agricultural 
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Figure 2. Canonical correspondence analysis based on the fungal community structure and soil 
chemical properties. (A) sampling 1; (B) sampling 2.
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Table 3. Similarity analysis considering biotic and abiotic factors of the agricultural and Cerrado area

Interaction(2) ANOSIM(1)

Biotic(3) Abiotic(4)

Cerrado A1 vs Agricultural A1 0.932 0.987
Cerrado A1 vs Agricultural A2 0.901 0.948
Cerrado A1 vs Cerrado A2 0.711 0.423
Agricultural A1 vs Agricultural A2 0.962 0.318
Agricultural A1 vs Cerrado A2 0.986 0.944
Agricultural A2 vs Cerrado A2 0.641 0.837

(1) Analysis of similarity. All values of “R” are expressed with p<0.001; values >0.75 are statistically different; 
values >0.5 are overlapping, but are still clearly different; and values <0.5 show no statistical difference. 
(2) A1: sampling 1; A2: sampling 2. (3) Analysis based on the fungal community structure. (4) Analysis based on 
soil chemical properties.

Table 4. Phylotypes present in each study area, total number of phylotypes, number of phylotypes with abundance >1 %, number 
of phylotypes shared between areas

Samp/
Period SA(1)

Total of phylotypes in 
each area(2)

TNP(3) NPA(4)

< 1 % 
NPA

> 1 %
Number of phylotypes with abundance > 1 % shared between:

A B C D E AS1(5) AS2(6) ACS12(7) AAS12(8) ACS1(9) ACS2(10) AAS1(11) AAS2(12)

1/D2012
Agri 39 67 86 79 76 191 147 44

3 7 7 8 31 44 25 32

Cer 93 51 81 113 54 236 164 72

1/F2013
Agri 72 61 94 61 44 175 115 60

Cer 100 39 79 49 59 197 117 80

2/D2013
Agri 108 104 127 113 116 326 239 87

Cer 126 91 120 124 135 343 261 82

2/F2014
Agri 152 136 109 158 84 338 254 84

Cer 139 131 116 148 63 332 246 86
Samp: Sampling; D: December; F: February; Agri: agricultural area; Cer: native Cerrado vegetation.(1) Study area. (2) A, B, C, D, and E represent the 
sampling locations in each study area. (3) Total number of phylotypes: the phylotypes that appeared in two or more places in the same area were 
counted only once, considering only presence or absence. (4) Number of phylotypes with abundance. (5) Areas of Sampling 1. (6) Areas of Sampling 2. 
(7) Areas of Cerrado (Sampling 1 and 2). (8) Agricultural Areas (Sampling 1 and 2). (9) Areas of Cerrado (Sampling 1). (10) Areas of Cerrado (Sampling 2). 
(11) Agricultural Areas (Sampling 1). (12) Agricultural Areas (Sampling 2).
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area. In sampling 2, the total number of phylotypes in the agricultural area was higher 
than that in the Cerrado area only in the February period. Upon considering the number of 
phylotypes with abundance >1 %, in sampling 1, the Cerrado area had a higher number 
of phylotypes; in sampling 2, the agricultural area had a value higher than that of the 
Cerrado area in the period of December. Fragments with relative abundance >1 % are 
considered the dominant organisms in this community (Lehours et al., 2005).

When we evaluated the number of phylotypes with abundance >1 % shared between 
the areas, higher values were found for sharing when compared to the same sampling, 
i.e., in a period near collection. When a comparison is made between samplings and 
between the different areas within the same sampling, the number of phylotypes 
with abundance >1 % exhibited less sharing. These observations suggest a clear 
structural difference in the fungal community between the samplings and the study 
areas (Agricultural and Cerrado). The Cerrado areas of sampling 2 had the highest 
number of shared phylotypes with abundance >1 %, thus suggesting that these 
areas are structurally similar. 

The fungal community, mainly associated with the degradation of plant residues, 
apparently undergoes changes due to vegetation type more intensely (Lorenzo et al., 
2010), since the physicochemical properties of the soils affect plant physiology and 
the composition of organic substances exuded by their roots, which in turn influence 
the composition of the soil microbiota (Beattie and Lindow, 1999). Therefore, the 
changes that occurred due to agricultural use of the soil may also have resulted in 
changes essential to soil functioning, which affects the microorganisms present in 
this environment. These data corroborate descriptions in the literature that show that 
changes in substrate quality and nutrient availability alter the fungal community and 
the community roles in a given environment (Allison et al., 2007; Lauber et al., 2008).

Although there was no identification of fungal species in this study, the repetition of 
time-space molecular and chemical analyses and statistical analyses evidenced that 
soil management and vegetation are factors that affect the fungal community present 
in the soil. As the quantity of nutrients required by each fungal species is different 
(Murray et al., 2010), the differences in soil abiotic factors, as well as heterogeneous 
availability of nutrients, may explain the differences in fungal abundance in soils 
with soybean crops and in native Cerrado areas, corroborating the results obtained 
by Navarrete et al. (2013) and Freitas et al. (2014). In addition, the accumulation 
of residues on the soil surface, a common practice in NT, may be responsible for 
the presence of fungal species in the soil that the phylloplane previously inhabited, 
which also contributed to the differences observed. However, more in-depth studies 
on the interaction of phylloplane microbiota with the soil microbiota are needed to 
confirm this inference.

The areas that constitute the Cerrado require studies on the response of the fungal 
community to the various types of land use. In addition, changes in the fungal community 
resulting from each land use system can provide important information for soil management 
and environmental impact assessment (Fracetto et al., 2013). In this context, the fungi 
present in the soil should be evaluated for their potential to indicate the predominant 
soil physicochemical changes, i.e., changes in the soil environment.

Thus, the results suggest that soils under agricultural activity have a fungal community 
distinct from that of soils under native Cerrado vegetation. Recent research involving soil 
fungal ecology, coupled with PCR techniques from soil genomic DNA, has significantly 
increased the understanding of fungal ecology in this environment. Up to the time 
of submission of this manuscript and to the best of our knowledge, this is the first 
study devoted to evaluating the fungal community structure through independent 
cultivation techniques in Cerrado areas under agricultural management and comparing 
it to native vegetation areas in the state of Tocantins.
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CONCLUSION
The use of molecular techniques to analyze the fungal community present in the soil, 
together with determination of soil chemical properties, revealed the effects of conversion 
of Cerrado areas into soybean cropland on the fungal community structure in the soil. 
Considering the ability of fungal community structure to respond to changes in soil 
chemistry from land-use conversion, our results open the possibility of considering such 
an ecological aspect on the fungal community level as a potential indicator of the effects 
of soil management on the soil of the Cerrado area in the state of Tocantins.
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