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Abstract

In this work, we consider two problems. First we establish the existence of a positive

solution for semilinear elliptic equation in an exterior domain

{ —Au+V(z)u= f(u), in QCRY (Pv)

u e Hi(Q)

where N > 2, RV \Q is regular bounded domain but there is no restriction on its size, nor
any symmetry assumption. The nonlinear term f is a non homogeneous, asymptotically
linear or superlinear function at infinity. Moreover, the potential V is a positive function,
not necessarily symmetric. The existence of a solution is established in situations where
this problem does not have a ground state.

In the second problem we consider the Null Mass nonlinear field equation

—Au= f(u) in Q
u>0

u |an=0

where R \ Q is regular bounded domain and like as above there is no restriction on its
size, nor any symmetry assumption. The nonlinear term f is general non-homogeneous
non-linearities with double-power growth condition. The existence of bound state solu-

tion is established in situations where this problem does not have a ground state.

Keywords: Asymptotically linear, superlinear, nonlinear Schrodinger equation, ex-

terior domain, variational methods, nonlinear Null Mass equation.



Resumo

Estamos interessados na existéncia de uma solucao positiva para duas classes de

equacaoes nao lineares de Schrodinger em dominios exteriores:

{ —Au+V(z)u= f(u), in QCRY (Pv)

u e Hi(Q)

onde N > 2, RV \ ¢ um dominio limitado regular, mas nao h4 restri¢do sobre o seu

tamanho, nem qualquer hipotese de simetria e também

—Au = f(u) in Q,
u > 0, (P)

u |ag=0,

onde N > 3, RV\ Q ¢ um dominio limitado regular, e como acima nao ha restri¢ao sobre

o seu tamanho, nem qualquer hipotese de simetria.

Nosso objetivo no primeiro capitulo é mostrar a existéncia de uma solucao positiva do
problema (Py) onde o nivel minimo de energia nao pode ser obtido. Usando uma nova
abordagem desenvolvida recentemente por Evéquoz e Weth [31], Clapp e Maia [24] e
Maia e Pellacci [37] uma solugdo positiva é encontrada, estendendo os resultados de
existéncia obtidos nos artigos classicos de Benci e Cerami [9] e Bahri e Lions [6], para
nao-linearidades gerais nao homogéneas, superlineares ou assintoticamente lineares no

infinito em um dominio exterior.

O estudo de ondas solitarias de equagoes de Schrodinger nao lineares ou equagoes nao
lineares de Klein-Gordon é modelado por (Py) com € = RY. Da mesma forma, proble-
mas de fronteira de limite exterior podem estar associados a modelos de fluxos de estado
estacionario na dinamica de fluidos (ver [32]) e ao problema eletrostaatico de capacitores

(veja [27], Volume 1, Capitulo II), por exemplo.

Nossa contribui¢ao principal no primeiro capitulo foi estender o resultado de Bahri e



Lions [6] para f nao homogéneas, sem hipotese de simetria em V ou . Além disso,
permitimos que a funcao nao linear f seja uma funcao menos suave, apenas em C1,
melhorando as hipoteses em [24] e [37] onde esta foi considerada em C® por razdes
técnicas (veja o Lemma 3.3 em [24]). O método que empregamos para resolver (Py) tem
muitas ideias em comum com [24, 37]. Do mesmo modo, o trabalho de [31] forneceu
algumas ferramentas tteis e informacgoes para estimativas, mesmo que seu problema seja

para [ super-linear em todo RY e usa a variedade de Nehari generalizada.

Segundo o nosso conhecimento, os resultados que apresentamos aqui sao novos e esten-
dem os trabalhos anteriores encontrados na literatura para uma classe de problemas em

dominios exteriores. Consideramos o problema eliptico
—Au+V(z)u= f(u) , uwe H}Q) (Py)

onde N > 2, RN\ Q C Bg(0) a bola do raio K e centro na origem em RY; de fato R\

¢ limitado, 99 é regular e u € H}(2) e V é um potencial que satisfaca as condigoes:

(V1) Vel ), infeqV(z)>0e lim V(z)="V,;

|z| =400

(Va) V(2) < Vo +Ce Ml onde C > 0e v > 2y/Va.
As condigoes que consideramos na nao linearidade f sao as seguintes:
(f1) f € ([0,00));
(f2) Existe Cy >0e 1 <p; <pytal que py,pp <2 —1e
[FE(s)] < Cof[sfP = + [s[P2F)
por k€ {0,1} e s > 0;
(F) tim L)

s§—+400 S

m > V;

(f1) Se F(s) = /Osf(t)dt e Os) = %f(s)s—F(s), entio

lim Q(s) = +oo;

§—00

(fs) A funcao s — f(s)/s é crescente em s € (0, +00);



(U) A solugao positiva radialmente simétrica do problema limite
—Au+Vou=f(u) , ue H}(RY) (Ps)
¢ Unica.

O resultado principal do primeiro capitulo é o seguinte:

Teorema A: Sob hipoteses (Vi) — (Va), (f1) — (f5) e (U), o problema (Py) tem uma

solugdo positiva u em H; ().

No segundo capitulo, procuramos uma solugao positiva para o problema (P) onde um
nivel minimo de energia nao pode ser atingido. Aqui, estudamos nao linearidades nao
homogéneas gerais, com condi¢ao de crescimento em f de poténcia dupla, que se com-
porta como uma poténcia subcritica u? no infinito e uma poténcia supercritica u? perto
da origem, onde p < 2* < ¢, em qualquer dominio exterior. Usando as ideias introduzi-
das em |24, 25, 37|, estendemos os resultados de V. Benci e A. Micheletti [12] removendo

qualquer suposigao no tamanho da abertura RY \ Q.

Neste capitulo o método utilizado para encontrar uma solugao de (P) como um ponto
critico do funcional associado a equacao, restrito a variedade de Nehari do funcional, é
bastante natural por causa da geometria deste funcional devido ao crescimento super-
quadratico dos termos nao lineares. Entretanto, a novidade em nossa aproximacao €
encontrada principalmente em alguns resultados técnicos delicados, como as estimativas
exatas sobre o decaimento da solucao de nivel minimo de energia do problema em R
e suas implicagoes na interacao de duas copias distintas e distantes desses solitoes. Por
outro lado, um novo resultado de compacidade numa nova versao do Lema de Lions, que
nos permite contornar as dificuldades criadas por um dominio nao simétrico ilimitado e

abracar um problema muito geral.

Problemas como (P) com f/(0) = 0, o chamado caso de massa zero, aparecem no estudo
das equagoes de Yang-Mills e tem atraido o interesse dos pesquisadores, principalmente
no caso Q2 = RY (veja [13, 33, 46]).

O principal objetivo do segundo capitulo é resolver o problema (P), no caso de massa
zero, quando 2 é um dominio exterior que nao héa restricao sobre o seu tamanho. Para
fazermos isso, usamos nivel minimo de energial em todo o R, qual seja w, e mostramos
que existe u € D?(Q) que é solugao de (P), mas nao uma solugao de nivel minimo de
energia. Na verdade, nao existe uma solugdo de (P) que minimize a fun¢ao de energia

na variedade de Nehari. Estendemos os resultados em V. Benci e A. Micheletti [12], em
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que eles trabalharam com 2 tal que RY \ Q C B, quando e ¢ suficientemente pequeno.

Essa hipotese no tamanho de 2 é removida em nosso trabalho.

Uma caracteristica importante quando 2 ¢ um dominio exterior ilimitado ¢ que D'?(Q)
nao estd necessariamente contido em qualquer espago de Lebesgue L(Q2) com ¢ # 2*
e, portanto, ndo ha imersao de Sobolev padrao como as de HJ(2). Por esse motivo,
estudamos o espaco de Orlicz relacionado ao termo do lado direito f e exigimos que ele
satisfaca uma condicao de crescimento de dupla de poténcia e resulte na regularidade
necessaria do funcional de energia. Estes espacos de Lebesgue tém varias propriedades
importantes e essenciais que desempenham o mesmo papel para o espago de Hilbert
DY2(RY) que os espagos comuns de Lebesgue jogam para Hi(€)). Em um dominio
exterior, a principal dificuldade é a falta de compacidade. Aqui, usamos o Lema de
Splitting que é uma chave importante para superar a falta de compacidade. Este lema
¢ uma variante de um resultado bem conhecido de M. Struwe (veja [45]) relacionado
ao espaco D'?(Q) e também V. Benci e G Cerami [9] com uma descri¢ao precisa do
que acontece quando uma sequéncia de Palais-Smale nao converge para seu limite fraco.
Observe que, uma vez que o espago DV2(€2) nao esté necessariamente contido em H} (1),
nao podemos usar Lema de Lions como em [35]. Entao precisamos de outra versao do
Lema de Lions e lema de Splitting em espagos de Orlicz que mostramos em Lemma 2.3.3

e Lemma 2.3.5.

Finalmente, de acordo com o método que aplicamos neste segundo capitulo, precisamos
comparar o nivel minimo de energia associado & equacao em (P) com o nivel minimo de
energia associados com a equacao em RY. Estimativas de decaimento adequadas para
w, a solucao radial positiva do problema limite e Vw serao fundamentais para comparar
todos os termos nos funcionais de energia com o nivel minimo de energia. Gragas a J.
Vetois [47], encontramos estimativas de decaimento muito finas e exatas para w e Vw,

que desempenham papéis essenciais neste trabalho.

As condigoes que consideramos na nao linearidade f : R — R sao: ela é uma funcao

fmpar e de classe C*(R, R) tal que

(f1) Seja F(s):= / f(t)dt, entdo 0 < puF(s) < f(s)s < f'(s)s? para qualquer s # 0 e
para alguns p 0> 2;

(f2) F(0) = f(0) = f'(0) =0. Existem C; > 0e 2 < p < 2* <q tal que

O(s)] < Clsfr=t+) for |s] > 1
F9(s)] < Clsfr=t+) for |s] < 1



por k € {0,1}, s € R.

O resultado principal do segundo capitulo é o seguinte:
Teorema B: Suponha que a solucdao positiva em todo o RY ¢ tnica. Entao, sob as

hipoteses (f1) — (f2) , o problema (P) tem uma solucao classica positiva u € D?(Q).

Palavras-chave: Assintoticamente linear, superlinear, equacgao nao linear de Schrodinger,

dominio exterior, métodos variacionais, equacao de massa zero nao linear.
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Introduction

We are interested in the existence of a positive solution, not necessarily ground states,

for two classes of nonlinear Schrodinger equations in exterior domains:

{ —Au+V(z)u= f(u), in QCRN (Py)

u e Hi(Q)

where N > 2, RV \ Q is regular bounded domain but there is no restriction on its size,

nor any symmetry assumption and

—Au = f(u) in Q
u>0 in Q (P)

u |aQ: 0

where N > 3, RN\ Q, like as above is regular bounded domain but there is no restriction

on its size, nor any symmetry assumption.

Our goal in the first chapter is to show the existence of a positive bound state solution for
problem (Py/) where a ground state cannot be obtained. Using a new approach recently
developed by Evéquoz and Weth [31], Clapp and Maia [24] and Maia and Pellacci [37]
a positive solution is found, extending the existence results obtained in the celebrated
papers of Benci and Cerami 9] and Bahri and Lions [6], for general non-homogeneous
non-linearities, either superlinear or asymptotically linear at infinity in an exterior do-

main.

The study of solitary waves of nonlinear Schrodinger equations or of nonlinear Klein-
Gordon equations is modeled by (Py) with Q = RY. Likewise, exterior boundary-value
problems may be associated with models of steady-state flows in fluid dynamics (see [32])

and electrostatic problem of capacitors ( see [27],Volume 1,Chapter II), for instance.
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The primary works applying variational methods to find solutions of problems like (Py/)
report to the 80’s and 90’s with the articles of Benci and Cerami [9] and Bahri and Lions
[6]. The method applied in both works was finding critical points of a functional con-
strained on a manifold and absorbing a Lagrange multiplier by the homogeneity of the
nonlinear term f(z) = |u[P~*u where p € (2,2%) and 2* = 2L if N > 3,2* = c0 if N =2

in order to obtain a positive solution of the Euler equation in (Py).

One of the main challenges of trying to apply the usual variational method when €2 is
an unbounded domain is the lack of compactness of the Sobolev embeddings. In order
to circumvent this difficulty, a deeper study of the obstruction for compactness was per-
formed by Benci and Cerami in [9] and a clever description was obtained of what happens
when a Palais-Smale sequence does not converge to its weak limit (for details see [20]
and references therein). Problem (P,) with f(u) = |u[P72u, p € (2,2*) was solved in the
case that the ground state does not exist first in 9] in the autonomous case V(z) = A
a positive constant, proving the existence of a positive solution with some restriction
on the size of the hole RY \ €, and posteriorly that condition was eliminated in [6] and
existence was proved for potentials V' which decay to a constant potential V, at infinity.
In the same spirit, this problem has been extensively studied if 2 is an exterior domain
for power non-linearity f(u) = |u|[P~?u in recent years (see [6]). If the non-linear term
f is not a pure power with respect to u, there are few contributions in the literature.
In particular, the existence of solution is proved in [23], using topological methods, in
the case that f is super-linear and depends on the spatial variable but the asymptotic

nonlinearity f., of the autonomous problem, must satisfy a convexity assumption.

In the case €Q is spherically symmetric about some point, benefiting from the strength of

the symmetry property, this problem can be solved on H! ,(€) (subspace of radial func-

rad
tions in RY) which embeds compactly in LP(Q), if p € (2,2*). This idea was exploited
by Berestycki and Lions in [13], Coffman and Marcus in [26] and Esteban and Lions in
[30] when © is the complement of a ball. However, symmetry of {2 does not help if we
don’t have radial symmetry in V(). This is the case in our problem (Py) where we do

not assume any symmetry, neither in {2 nor in V(x).

In the past five decades a different approach has been successfully applied in order to
obtain solutions for this class of problems with no symmetry assumption. The so-called
Nehari method, [39] and [40], which consists of finding solutions of (Py/) which are criti-

cal points of a functional associated with the equation in (Py), restricted to the Nehari
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manifold. This method has been extensively used in the last years in order to find
ground state solutions as well as sign changing solutions of nonlinear elliptic problems
in RY and exterior domains (see |28, 36, 41] and references therein). When finding a
solution which is a minimum of the functional restricted to the Nehari manifold, the
Lagrange multiplier is proved to be zero, yielding that the constrained critical point is
in fact a free critical point of the functional, and that the manifold is natural. This
allows to solve the problem for non-homogeneous nonlinearties because the multiplier
does not have to be absorbed in the construction of a solution for the equation. Most
importantly, this approach enables to avoid the use of a technical algebraic inequality
(a4 0P > a? + b + (p— 1)(a?~'b + abP™!) largely applied in the case f(u) = |u[P~%u
(|5, 6, 21]). We follow these ideas, closely related to the arguments found in [24| and
[37], for general non-linearities f which satisfy the assumption that f(s)/s is increasing.
In this setting, not all functions u # 0 are projectable on the Nehari manifold , however
the class of functions which are good for projections in this environment is enough to

pursue the argument.

Our main contribution in the first chapter is extending the result of Bahri and Lions
[6] for non-homogeneous f, with no symmetry assumption on V or 2 . Moreover, we
allow the non-linear f to be a less smooth function just in C'!, improving the hypotheses
in [24] and [37] where it was considered in C? for technical reasons (see Lemma 3.3 in
[24] ). The method we employ in order to solve (P ) has many ideas in common with
[24, 37]. Likewise, the work of [31] provided some useful tools and insight for estimates,
even though their problem is for super-linear f in the whole R" and uses the generalized

Nehari manifold.

In the second chapter we look for a positive bound state solution for problem (P) where a
ground state cannot be obtained. Here we study general non-homogeneous non-linearities
with double-power growth condition on f, which behaves as a subcritical power u? at
infinity and a supercritical power u? near the origin, where p < 2* < ¢, in any exterior
domain. Using the ideas introduced in [24, 25, 37|, we extend the results of V. Benci
and A. Micheletti [12] by removing any assumption on the size of hole RV \ €.

The method used in this work, of finding a solution of (P) as a critical point of the func-
tional associated with the equation, constrained to the Nehari manifold of the functional,
is rather natural because of the geometry of this functional due to the super-quadratic

growth of the nonlinear terms. However, the novelty in our approach is found mostly
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in some clever technical results such as the sharp estimates on the decay of the positive
ground state solution of the problem in R and its implications in the interaction of
two distinct and distant copies of these solitons, and on the other hand, a new com-
pactness result which allows us to circumvent the difficulties created by an unbounded

non-symmetric domain and embrace a very general problem.

Problems like (P) with f/(0) = 0, the so-called zero mass case, appear in the study of
Yang-Mills equations and have attracted the interest of researchers mostly in the case
Q = R¥(see [13, 33, 46]). Also, electrostatic problem of capacitors that is modeled by

exterior boundary-value problems (see [27],Volume 1,Chapter II, for instance).

When Q = RV, we distinguish three different cases; f/(0) < 0, f/(0) > 0 and f’(0) = 0.
In the first case there is a quite large literature, where the first results on this subject
can be seen in [30] and [44]. Also H. Berestycki and P-L. Lions analyzed this problem
in [13] and [14]. In the second case there is no finite energy solutions in general. Finally,
when f/(0) = 0, the so-called zero mass case, has seen a growing interest in recent
mathematical literature where the zero mass limit case of noncritical elliptic problems is

of the form
—Au+ V(x)u = g(u),

for ¢'(0) = 0, and potentials satisfying li;ll glf V(z) = 0. The existence of solutions for
a null potential V' = 0 was obtained by H. Berestycki and P. L. Lions in [13], where
they used the double-power growth condition on ¢ and shown that there is a solution
u in DH2(RY). Further, many authors resumed the study of this kind of equation un-

der the double-power growth condition, after it was successfully exploited in [10] and [11].

The main purpose of the second chapter is to solve problem (P), in the null mass case,
when () is an exterior domain that there is no restriction on its size. In order to do so,
we make use of the ground state soluton in whole the RY, namely w, and show that
there exists u € D?(Q) that is solution of (P), but not a ground state solution. In fact,
there is no solution of (P) which minimizes the energy function on the Nehari manifold.
We extend the results in V. Benci and A. Micheletti [12], they worked with € such that
RN\ Q C B, when ¢ is sufficiently small. This assumption on the size of Q is removed

in our work.

An important feature when € is an unbounded exterior domain is that D%?(Q) is not
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necessarily contained in any Lebesgue space L9(2) with ¢ # 2* and thus, there are no
standard Sobolev embeddings like those of H}(2). For this reason we study the Orlicz
space related to the right hand side term f and require that it satisfies a double power
growth condition and obtain the regularity required in the energy functional. These
Lebesgue spaces have several important and essential properties that play the same role
for the Hilbert space DV?(RY) that the usual Lebesgue spaces play for Hi(€). In an
exterior domain, the main difficulty is the lack of compactness. Here we used a splitting
lemma that is an important key to overcome the lack of compactness. This lemma is
a variant of a well known result of M. Struwe (see [45] ) related to the space D?(Q)
and also V. Benci and G. Cerami 9] with a clever description obtained of what happens
when a Palais-Smale sequence does not converge to its weak limit. Note that since the
space D'2(Q) is not necessarily contained in Hj(2) , we cannot use Lions Lemma as
in [35], so we need another version of the Lions Lemma and Splitting Lemma in Orlicz

spaces which we show in Lemma 2.3.3 and Lemma 2.3.5.

Finally, according to the method that we apply in this chapter, we need to compare
energy functionals associated with the equation in (P) and there associated with the
equation in RY. Suitable decay estimates for w, the positive radial solution of limit
problem and Vw will be crucial in order to compare all the terms in the energy func-
tionals with the ground state level. Thanks to J. Vetois [47], we find very fine and exact

decay estimates for w and Vw, that play essential roles in this work.



Chapter 1

Asymptotically linear or superlinear

limit problem

We establish the existence of a positive solution for semilinear elliptic equation in exterior

domains

{ —Au+V(z)u= f(u), in QCRY (Py)

u € H}(Q)

where N > 2, RV \ Q is regular bounded domain but there is no restriction on its size, nor
any symmetry assumption. The nonlinear term f is a non homogeneous, asymptotically
linear or superlinear function at infinity. Moreover, the potential V is a positive function,
not necessarily symmetric. The existence of a solution is established in situations where

this problem does not have a ground state.

1.1 Introduction

To our knowledge the results we present here are new and extend the previous works
in the literature for a class of problems in exterior domains. We consider the elliptic
problem

—Au+V(z)u= f(u) , uwe H} Q) (Pv)

where N > 2, RNV \ Q C Bg/(0) the ball of radius K and center at the origin in RY, in
fact R \ © is bounded, 99} is regular and u € H} () and V is a potential satisfying the

conditions:
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(V1) Vel Q) ,inf,eqV(x) >0and lim V(z)=V,;

|z| =400

(Vo) V() < Voo + Ce 12l where C > 0 and v > 2/Va.
The conditions that we consider on the nonlinearity f are the following:
(f1) f€C'([0,00));
(f2) There exist Cy > 0 and 1 < p; < po such that p;,ps < 2* — 1 and
[f®(s)] < Colls* + [s[P27)
for k € {0,1} and s > 0;
f(s)

(fs) lm ——=>m > V;

s—+oo S
(f1) Tf F(s) = /Osf(t)dt and Q(s) = %f(s)s—F(s), then
lim Q(s) = +o0;

S§—00

(f5) The function s — f(s)/s is increasing in s € (0, +00);

(U) The positive radially symmetric solution of limit problem
—Au+Veu= f(u) , ue H}(RY) (Py)

is unique.

Remark 1.1.1 We have

Q(s) = %f(s)s —F(s)>0, Vs>0 (1.1.1)

because from (fs), (f(t))l = L = 1) > 0 and hence

F(s)s — 2F(s) = / (P — 20 ()dt = / CHF(E) — f(0)de > 0.

Remark 1.1.2 Note that f(s) > 0 for s > 0, since by (f2), f(0) = f'(0) =0, on the
)

other hand f'(0) = l%% = 11_1)1(1)@ and so by (fs), 9 > 0, now we can
f(s)

write f(s) = ——=s >0 for s > 0.
s



Chapter 1. Asymptotically linear or superlinear limit problem. 8

It is straightforward to verify that the superlinear model nonlinearity f(s) = s, s > 0

with p € (1,2*—1), and the asymptotically linear model nonlinearity f(s) = . j 7 5 with
s
b e (0,V") satisfy the hypotheses (f1) — (f5).
Remark 1.1.3 The assumption
’ —Voos + f(3> . . . . .
(U’) ¥(s) := ——————= 1is non decreasing in s € (T,400) where T is the unique

TSP (s - f(9)

positive number such that M = V., guarantees that the positive solution to the problem
T

(Py) is unique (see [38], Teorem 1 or [42], Teorem 1). It may be replaced by any other

assumption which guarantees the uniqueness of positive ground state solution.
The main result of this chapter is the following

Theorem 1.1.4 Under assumptions (Vi) — (Va), (f1) — (f5) and (U), problem (Py) has

a positive solution u in H(Q).

This chapter is organized as follows. In section 2, we formulate the variational setting
and present some preliminary results. Section 3 is dedicated to compactness condition.
In section 4, applying a topological argument, which involves the barycenter map, we

show that I, has a positive critical value.

1.2 Variational setting and exponential decay estimate

Note that by Remark 1.1.2, f(s) > 0 for s > 0, and we shall consider the extended
f(s) == —f(=s) for s < 0, so without loss of generality we may suppose that f is odd
and establish the existence of positive solution for it, which in particular will be a positive

solution of the problem with the original f. We will use the following notation:

(u,v)g = /Q(Vu Vo4 V(z)uwv)de , |ullg = /Q(|Vu| + V(z)u)dz

Our assumptions on V imply that |.|| is a norm in H}(Q)which is equivalent to the

standard one.We write

(u,v) = / (Vu - Vv + Vouv)dr ,  ul]* = / (|IVul|® + Voou?)dz
RN RN
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and our assumptions on V. imply that ||.|| is a norm in H*(RY) which is equivalent to
the standard one. If u € HZ () we may define v = 0 in RV \ €, in fact H}(Q2) ¢ HY(RY)
(see [16], Proposition 9.18).

The solutions of problem (Py) are critical points of the functional

T = lull = | Flud.

with w € H} (). Set
Ty (u) = Ty = Jully - / f(w)udr,
Q

Ny = {u € Hy(Q)\{0} : Jy(u) = 0},

and

cy = uleI/l\ﬁv Iy (u).

Also we denote in the same way

) = el = [ Fuyds,

Tl = Iy = [l = | fluyude,
Noo :={u € H'(RM)\{0} : Joo(u) = 0},
and

Coo = ug{ﬁw Io(u).

Let w be the unique positive radial solution of (Px), see [13, 15, 42|. It is well known,
see [34] that there are constants C' such that

C(1+|z)) "2 eVl < |Diw)| < C(1+|z)) "2 eVl i=0,1. (1.2.1)

Hereafter C' will denote a positive constant, not necessarily the same one. The following
lemma gives informations about the Nehari manifold Ny which are, by now, standard
(see |24] Lemma 2.1). We include them here for the sake of completeness.

Lemma 1.2.1 (a)There exists o > 0 such that ||u|lq > o for every u € Ny.

(b)Ny is a closed C'-submanifold of H}(QY) and natural constraint for I .
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(c)If u € Ny, the function t — Iy (tu) is strictly increasing in (0, 1] and strictly decreas-

ing in (1,00). In particular,

Iy(u) = r?;aova(tu) >0

Proof. (a) Property (f2) and the Sobolev embedding theorem imply that
Ty (u) > [|ull§, — C/ [ufPHde > ullg — Cllullg ™, w e Hy().
Q

: +1
if u € Ny then Jy(u) = 0 and soon C”mﬁz > 1 and as p, > 1 we have [Jul[>~! > £,

This proves (a).

(b) Since Jy (u) is continuous, it follows from (a) that Ny := {u € H}(Q)\{0} : Jy(u) =
0} is closed in H}(Q2). Moreover, property (f5) yields

Fotwu=2lulfs = [ e = [ sy = [ (1) = £wiu <o

for every u € Ny,. This implies that 0 is a regular value of Jy : Hj(Q2)\{0} — R. So, as
Jyv is of class C, Ny is a C'-submanifold of H} (). It also implies that u is not on the

tangent space of Ny at u and, therefore, that Ny is a natural constraint for Iy .
(c) Let u € Ny. Set QF :={z € Q;u(z) > 0}, Q™ :={z € Q;u(x) < 0}.

Then

< I(ru) = 7J(tu) = tul, - /Qf(t@“d“" = t/ﬂ [f(“) B @]u

I A )

By property (fs5) we have that @ is strictly increasing for u € (0,00) and strictly
decreasing for u € (—00,0). Therefore L1y (tu) > 0 if t € (0,1) and L1y (tu) > 0 if
t € (1,00). This proves (c). O
Now we present a sequence of lemmas that will help to show that Ny # (). As before, C

will always denote a positive constant, not necessarily the same one.

Lemma 1.2.2 For every 0 <v < p; —1 and p > 0 there exists C, > 0 such that for all
0 <wu,v < p we have

F(u+v) — F(u) — F(v) — f(u)v — f(v)u > —C,(uv)' 2.
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Proof. The inequality is obviously satisfied if u = 0 or v = 0. By (f5), f is increasing,
which yields

Flu+v) — Flu) = / N w)dw > Fu.

Moreover by (fy) for every 0 < v < p; — 1 we have
f(s)=o(|s|"*") as [s| =0,
and then C’p '= SUPg<y<) % < 00. Now for 0 < v < u < p, we deduce

Flu+wv) = F(u) = F(v) = f(u)o = f(v)u = =F(v) = f(v)u

’ (w) 14v f(v) 14w -, VP 5 14w
= i — T dw—mu Z—Cp2+V—Cpuv
1 v v ~ |14 3 jod v
> ~((G(2)F + —)5)C,(un) E = =20, (uv) 5.

By the symmetry in u and v, the same estimate holds for 0 < v < v, and the proof is

complete. 0

Lemma 1.2.3 If us > p1 > 0, there exists C > 0 such that, for all 1, x5 € RV,

/ e~ tlz—z1| ,—p2le—z2| 1. < Cetlzi—z2|
RN

If g > g > 0, and pz > py > 0, there exists C > 0 such that, for all xy,xq, w3 € RY,

/ e tlz—a1| ,—ple—w2| o —pslz—as| g, < Ce~ 5 (m1—aa|+we—zs|+|z3—z1])
RN

Proof. Since iy [x1 — wo|+(pa—p) |2 — wo| < i (|2 — 21| + |2 — w2l)+-(pa—p) [ — 22 =

p1 |z — @1| + po |z — 22|, we have

/ e~ tlz—z1| j—p2le—z2| 1, < / e—Hler—z2| o —(p2—pi)lz—w2| 1. — Cp—rrlz1i—m2 7
RN RN

The second inequality is obtained in a similar way. 0
The next four lemmas present some description of w the positive radial solution of (Px,)

and its translates. For A € (0,1] and r € (0,00) set ¢ : [0,1] x (0,00) — R as

e (T R
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and for A = 0 define ¢(0,7) := 0. By (f1) and (f2), ¢(\, ) is continuous.
By (fs5), ¢(\,7) is decreasing with respect to r. If rA > 1 then

A
ol — [ I - [ 0

and so ¢(\, 1) is decreasing with respect to A.

Lemma 1.2.4 There are Sy < 0 and Ty > 0 such that

PAT)+o(1—Ar)<So<0 ¥V r>TyAe[0,1].

Proof. The function ¢ is continuous and
o\ 7) < Jw|PA2=: AN2 ¥ 7€ (0,00),A € [0,1].

As w is a solution of problem (P,,) we have that

= ([, [ 12 )

There are two cases to study:

case 1) if lim Q) — oo (in fact f(u) is superlinear ) then by (f5) and the Monotone
u

U—00
Convergence Theorem

lim ¢(\,r) = —o00 , VA€ (0,1]

T—00
and if A =0, lim ¢(1,r) = —oo and this case is setted.
r—00
case 2) if lim,_,., @ — a (the nonlinearity f(u) is asymptotically linear) then by (fs)

and Lebesgue’s Monotone Convergence Theorem

lim (A, 7) = A2 (/RN {M —a] w2> = —B)N <0 , YA€ (0,1].

r—00 w

Due to the symmetry, with respect to A it suffices to consider A € [0,1/2]. Fix Xy €
(0,1/2) such that AN < £(1 — Xg)? and by the continuity of ¢ , there exists ro € (0, c0)
such that

¢(1 — )\0,7“0) = —§<1 — )\0)2

Then, for all A € [0, \] and all » > max{rg, 2} we have r(1 — ) > 1 and

BT+ 01— A,r) < AN+ 01~ Do, 70) = AN — D (1= X) < 0.
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On the other hand, if A € [A\g, 1/2], by fixing 1 > 1/X¢, we have that (1 — \) > rA > 1

for all » > r;. Hence,
dA )+ (1 =N, 1r) < d(No,7) + (1 — Ao, 7) <O, VYA E [N, 1/2] and 7 > ry.
Set Ty := max{ro, 1} and
So = jnax (N To) + (1 — A, Tp) <0,

we conclude that
AN T)+ (L= N1) < o\, Tp) + d(1 — N\, Tp) < Sp
for all r > T and A € [0, 1], as claimed. O

Now, let yo € RY with |yo| = 1 and Bs(yg) := {x € RY : |z — yo| < 2}, we write for each

y € OBs(yo)

wy' ==w(-—Ry) , wy:=w(-—Ry), R>0.

Lemma 1.2.5 Let ¢ > 0 and R > 0 be large enough then we have

a)/ lwgf|t < CR 7 e VV=R gpg / \wf\q < CR 77 ¢ aVVeR
Barc(0) Bo (0)

b)/ (Vi < CR 15 e WVeR 01 / ]wa\q < CR 15 ¢~ 1VVa R
B2k (0) Bak (0)

Proof. In order to prove the first estimate let 2K < %R, so that
1 1
§R =R— §R < |Ryo| — |x| < |x — Ryo| < 1+ |z — Ryo|, Vx € Bag(0). (1.2.2)

Now by (1.2.1) and (1.2.2) we have

[ b= e Rl <C [ (1= Ryl eV g
Bak (0) B2k (0) Bk (0)

< C’R_q¥e_qv Voo !

The proofs of the other estimates are similar. O
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Lemma 1.2.6 Letp > q > 1 then

-85t - N
/sz(wé{)q(w;f)p < CR 7 e 2VVaR 4 /RN<wf)q(wé?.)p < OR 7T e 20VVR,

Proof. Note that

{ if |z| >R then R <|z|+ 1 and (1.2.3)

if |x| <R then 2R— R < |R(y —yo)| — |z| <14 |z — R(y — yo)|-

Now by (1.2.1), (1.2.3) and Lemma 1.2.3 we have

/RN gy = /RN(w<x — ftyo))"wl(@ — Ry)'dr = / w(z)w(z — R(y — yo)’dx

]RN
< / (1+ ‘foq%efq\/@\xI(l + ]z — R(y — yO)D*p%efp\/K\:v*R(y*yo)l
RN
< / eVl (1 4 — R(y — yo)|) 7 e—nV Vo lo=Rl—w0)
Br(0)

. / e~ IVVlel (1 4 ()95 ¢V Vo o= Bly—p0)
Br(0)°

< CR-F R

Similarly we can prove the second estimate. 0

Lemma 1.2.7 For R > 0 sufficiently large we have

[ @) = voliv? < cro e R (129

[ @ - Vg < cr e (1.2.5)
and

/Q (V(2) = Vao)wlpwip < CR-W Ve 2V, (1.2.6)

Proof. In order to prove the first inequality, it follows from (V3) and estimative (1.2.1)
that

[ W@ - vty < [ ) - vty

RN
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< / e (1 + |z — Ryo|)" VeV Vacle=fiwl, (1.2.7)
RN
Now let o = % — @ > (), so we can write (1.2.7) as
/ e (1 4 |z — Ryo|)~ eV Vecle ol (1.2.8)
RN\BQR(R:UO)
+/ e (1 + [ — Ryp|) "N em2VVclem il (1.2.9)
BQR(RyO)

As |z — Ryo| > oR in RN\ B,r(Ryo), applying Lemma 1.2.3 with u; = v > po = 2¢/V,
we get
(1.2.8) < CR- NV 2VVeclt,

On the other hand, |z + Ryo| > Rlyo| — oR = (1 — o) R for = in B,r(0) and by making a

change of variables, we have

(1.2.9) < / e~z +Ryol o —2v Vo ||
BQR(O)

R
< ev(lg)R/ 672\/K\x| < Cle—1(1-0)R /Q PN-1 g,
BQR(O) 0
< CeVI-9ERN < C’R_(N_l)e_%/@R,

since by definition of g, (1 —0)R > (3 + @)R > (2 ++/Vo)R > 2¢/VR. The proof
of first inequality is complete. Similarly we can prove the second estimate.

Finally, in order to prove (1.2.6) we may repeat the above argument for B,gr(Ry) U
B,r(Ryo) rather than B,r(Ryo) . Note that |x — Ryo|,|x — Ry| > oR in

RM\{B,r(Ry) U B,r(Rys)}, performing a change of variables and applying Lemma 1.2.3

[ = voulvuv < [ vVie) - Voulu]
Q R

N

<

/ eﬂlx\(1+’x_RyO|)f%eﬂ/ﬁleyo\(1+’x_Ry|)f%eﬂ/K|foyl
RM\{B,r(Ry)UB,r(1yo)}

+/ (1 4 |z — Ryo|)~ 5 e—VTele—Rwol(1 4 | — Ry|)~ 5 e VVlo—Fyl
BQR(Ry)

+/ (1 4+ | — Ryo|)~ 5 emVT=l—Rwl(1 4 g — Ry|) 5t eVl
Bor(Ryo)

< CR N1 2VVeR
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O
In what follows we exploit the idea of Bahri and Li in [5] of working with a convex

combination of two translated copies of w, the ground state solution of (Ps) (see also
[24], [31] and [37]).

Define
Z3, =i + (1= Nw) . Ae0,1], R>0,

Y

and
Uy, =230 (1.2.10)

where 1) € C*(RY) is continuous radially symmetric and increasing cut-off function

0 lz] < K
Px)=4q 0<p<1 K<|z|<2K
1 |z| > 2K.

Note that here K is the radius of the sphere By (0) which contains RY \ . We can
consider U{f € H'(R") by extending U, = 0 outside Q.

Lemma 1.2.8 Uf — Z{ — 01 H'(RY), as R — oo.
Proof. First of all for R sufficiently large we claim that

Wi — Do, 0y < CR™V Ve 2VVR, (1.2.11)

Vwg — Vowd|3a s, o) < CR- Ve 2Vl (1.2.12)
Wl — pwh 3.5, o) < CR- VD 2VVR, (1.2.13)
[y} = w12y < OBV 2VIRE, (1.2.14)

therefore
U, — Z3, 1 < Mwf — vwlfll + (1 = X)wl — wl|

= Mlwi’ = Ywgll g sy o)) + (1 — MJwh — Vw1 (5 0))

1
= )\Hwé% - wwé%’%?(BgK(O)) + ]Vw{f - waé%ﬁ%BQK(O))P
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N

+(1 — )\)Hw W«U L2 (Baxc(0)) T \wa - V¢w5’%2(32K(o))]

and by the claim we have
U8, — 4 |F < CR-O-De-nvTEn

and this shows that U{", — Z{!, — 0 where R — oo as the lemma states.
Now in order to complete the proof we have to show the claim. To obtain the first

estimate (1.2.11) we use Lemma 1.2.5

‘wo WvUo L2(Bag (0)) — / 11— ¢|’w§’2d95
Bz (0)
< C’/ lwl2de < CR=W=De=2VVa R,
Bz (0)

To prove the second estimate (1.2.12) we have 1» € C'°, then there exists positive con-

stants C and (5 such that
V| = [(V)wy + (Vwg )| < Crlwg| + Co| V| in - Bag(0)  (1.2.15)
and so by Lemma 1.2.5

[Vwg' = Vowg' |22y, 0)) < / [(Cy + Dwg| + Co| V| de
Bak (0)

< CR- WD 2VVekt
as claimed. The proof of (1.2.13) and (1.2.14) are similar. O

Lemma 1.2.9 For any r > 0, Jo(rUJ,) — Jo(rZ3,) = 0 as R — oo.

Proof. By the definition of J,, we have

| T (rUY,) = Jos(rZ3Y)|

=Wl = [ seut ity =z P+ [ rezi ez,
RN RN

(1.2.16)

2
< HrUfy —TZﬁyH + ‘ /]RN f(?”Zf’y)TZ/}\?y - f(rU)fy)rUfy )

By Lemma 1.2.8 the first part of (1.2.16) is equal to og(1), then it is enough to show
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that

f(erjy)rZiy — f(rUgy)TUﬁy = / f(rZﬁy)er\?y — f(TU;fy)TU){?y = og(1).

RN Bk (0)

By (f2), Lemma 1.2.5 and the inequality (a + b)? < 2P(a? + bP) we have

/ f<rZ§y)TZ>}fy B f(rUfy)rUfy

B3k (0)

< / (P28 4 e 20 o)z, — (rUR P+ [rUf, Py U R,
B3k (0)

< / 11— |(r 2l P ezl ) < O / (128 1 4 |28, e
Bk (0) B3k (0)

<C [ (D (= N (1= Nl
Bar (0)

<C |w§‘p1+1 + ’w§|p2+1 + ’w5|p1+1 + ’wflle
By (0)

< CR W=D 2VVeelt — (1),
U

Our assumptions do not guarantee that every u € H}(Q) admits a projection onto Ny .
However, the following lemma says that U }fy does admit a projection onto Ny if R is

sufficiently large.

Lemma 1.2.10 There exist Ry > 0, Ty > 2 such that for each R > Ry, y € 0Bs(yo)

and X € [0, 1], there exists a unique T/{?y such that
Tﬁin?y € Nv,

Tfy € [0,Ty] and Tfy is a continuous function of the variables \,y and R. In particular

for A =1/2 we have Tfy — 2 as R — oo uniformly in y € 0Bs(yo).

Proof. First note that, for each u € H(2), u > 0, property (f5) implies that

Jy(ru 2 ru)
Ly R

r2

is strictly decreasing in r € (0,00). Therefore, if there exists r, € (0,00) such that

Jy(ryu) = 0, this number will be unique. Observe also that Jy (ru) > 0 for r small
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enough. Next, we will show that, for R large enough and some 7j > 0,
Jv(rUy,) <0 Vr>Ty. (1.2.17)

This implies that there exists Ty', € [0, Tp) such that Jy (T, U),) = 0,i.e. T, U, € Ny.
Let us prove (1.2.17). For u,v € HY(RY),u,v > 0, and r € (0,00), by using (f5) we

have

It ro) = 2(JulP + ol + 2w — [ TER)

(ru+ rv)?
ru -+ rv

< - [ o - [ I a0

Setting u := Awl! and v := (1 — /\)wf, performing a change of variable and Lemma 1.2.6
we conclude that

oo (rduwg + (1 = Nuwy) S T) + (L — A7) + 2A(1 — A)(w, wh)

Yy

r2

1
SSO—|—§<U](})%7QU5>:S()+OR(1) Vr > Ty, /\6[0,1]7

where ogr(1) — 0 as R — oo, uniformly in y € 0By(yo) and A € [0, 1] also Sy < 0 as in
Lemma (1.2.4). Now since Hg(Q2) € H'(RY) we can write

M) - B [ (i) - v

r2 r2

by Lemma 1.2.7 and Lemma 1.2.9

Jy (rUft
V<T2 ) < So+ogr(l)  Vr>Ty Ae€l0,1]

Hence, there exists Ry > 0 such that

Jy (rUE S
V(rzk’y)§?0<0 Vr > Ty, Ae[0,1], R> Ry.

This proves (1.2.17), and so we have showed that Ny # 0.
Now let ¢(u,v) = f(u+v) — f(u) — f(v), by mean value theorem

—OW < —f(v) < o) < flutv) - f(u) < Flut o) < Co
and by Lemma 1.2.6

—og(1l) = —C’/}RN(wz]f)le(If < /RN gp(w(lf,wf)wé% < C’/RN(wf)wé% = og(1)
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or
| letwft kol = onfa),

also by symmetry of u and v in ¢(u,v) we get similarly
[ (wg', wy)wy| = or(1),
RN
and from the two above estimates we have
/N lp(wd, w)) (w + wl)| = or(1). (1.2.18)
R
Now by Lemma 1.2.6 and (1.2.18) we can write

Tt ) = [t +fIP = [+ + )

— I+ o+ 2wl )~ [l - [ -
F () (wh) - / F(wP) () + / (w0l ) (wf + ")
RN RN RN

= Joo(wdt) + Joo(wf) +ogr(1) = og(1)

since w is a solution of (P.). So, by Lemma 1.2.9 we have

Joo (Wl + wf)@b) = Joo(wf + wf) +ogr(l) =0gr(l) as R — oo. (1.2.19)

Therefore, by (1.2.19), Lemma 1.2.7 and H}(Q) C H*(RY)

Tv(2UT ) = Jv ((wg' +w,))))

= T (w0 + wB)) + / (V() = Vao) (w0 + w62 = op(1)

since by Lemma 1.2.7

[ 0@ = v+ < [ (1@ - Vouf +uf? = onl)

and this proves the lemma. O
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1.3 Compactness results

Lemma 1.3.1 Any sequence (uy) satisfying
(ug) € Ny and  Iy(ug) — d

is bounded in H}(Q) .

Proof. First of all note that d > 0, since
, 1
Q

Now fix D > d. Assume, by contradiction, that ||uy| — oo and set vy := txuy with

ty = 2D By Lemma 1.2.1 (c , for k large enough we have that
y g g

[l

1

D Z [V(uk) Z I\/(Uk) = §t2||uk||2 - /QF(Uk) =2D —/QF(U]C)

By using hypothesis (fs), we get that
D < [ Flu) < llulth+ gzt

As D > d > 0 and (v;,) is bounded in H}(Q) C H*(RY), this lower bound, together with

Lions lemma [[48],Lemma 1.21], implies that there exist § > 0 and a sequence (y;) in

RY such that
/ v? = sup / vi > 0.
Bi(yx) yeRN J B1(y)

Set Gy () = ug(x + y) and Uy (z) = vp(x + yi). After passing to a subsequence 0 — v
weakly in HY(RY), o, — v in L2 (RY) and 0y(z) — v(x) a.e. in RY. Therefore,

loc

/ v® = lim 77 = lim v > 6.

B1(0) k=20 JBi(0) 5700 B (k)

Hence, v # 0 and there exists a subset A of positive measure in B;(0) such that v(z) # 0
for every x € A. It follows that |tg(z)| — oo for every x € A. Property (f5) implies
that %f(u)u — F(u) > 0if u € R\ {0}. So, from property (f;) and Fatou’s lemma, we
conclude that

1
D > lim Iy(ug) = lim [ [=f(ugp)up — F(uyg)]
k—o00 k—oo Jq 2

—tim [ pwu - Fu) = m [ r@)a - Foa)
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This is a contradiction. O
Lemma 1.3.2 ¢y, cy > 0.

Proof. Let u;, € Ny be such that Iy (u;y) — ¢y. By Lemma 1.3.1, after passing to a
subsequence, we have that (u;) is bounded in HJ(f2). From Lemma 1.2.1(a) and by
property (fz) we obtain

0< o < lulla = / Fluyur < c(luith + un20).

This inequality, together with Lions lemma (considering the extention of uy, to H(RY)),

implies that there exist § > 0 and a sequence (y;,) in RY such that

/ ui = sup / ui > 4.
Bi(yx) yeRN J By (y)

Set ax(x) = up(z + y) After passing to a subsequence @ — u weakly in H'(RY),
tr — win L2 (RY) and g (z) — u(x) a.e. in RY. Therefore,

loc

/ u? = lim i; = lim up > 4.

B1(0) k=20 JBi(0) k700 By ()

Hence, u # 0 and there exists a subset A of positive measure in B;(0) such that u(z) # 0
1

for every x € A. Property (f5) implies that §f(u)u — F(u) > 0if u e R\ {0}. So, from

the Fatou’s lemma, we conclude that

lim [%f(uk)uk — F(ug)]

cy = lim Iy (uy) =
k—o0 k—oo Q

=t [ G~ P =t [ A - P

k—o00 RN k—o0 RN
o I, . - TS S - 1
> liminf | [=f(ax)ux — F ()] > [ Uminf[= f(dg)a — F(u)] = [ [z f(w)u—F(u)] >0
as claimed. By repeating this argument we obtain c,, > 0. 0

Lemma 1.3.3 Ifu is a solution of (Py) with Iy (u) € [cy,2¢cy), then u does not change

s1gn.
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Proof. If u is a solution of P then
0 = I}, (v)u* = Jy(u?),

where v := max{u,0} and = := min{u,0} and so v* € Ny. Now if u™ # 0 and
u~ # 0 then
[V(U) = [V(qu) —+ [V(u*) Z 26\/.

This proves the lemma. 0

Note that Vo, Iy (u) is the orthogonal projection of VIy(u) onto the tangent space
of Ny at u that define by T,(Ny) = {v € H}Q); Ji,(u)v = 0}. Recall that a
sequence (uy) in Hg(Q) is said to be a (PS)4-sequence for Iyy on Ny if Iy (uy) — d and
|V ai Iy (ug)|| = 0. The functional Iy satisfies the Palais-Smale condition on Ny at the

level d if every (PS)4-sequence for Iy on Ny contains a convergent subsequence.

Remark 1.3.4 We can write VIy(u), the gradient of Iy at u, as
Viy(u) =V, Iy (u) + tVJy(u).
Indeed, by the definition (V g, Iy (u),v) = (VIy(u),v) for all v € T,(Ny) or
(Vi Iy (u) — VIy(u),v) =0, Yoe T,(Ny):={ve H(Q); Ji(u)v=0}.
On the other hand T, (Nv) is of codimension one and so
H(Q) = E=T,M)® < J(u) > .

Now by the Hahn-Banach Theorem, there is a continuous linear function Vs, Iy (u) on
E such that
Vi, Iy (u) = VIy(u) = tJy (u)

or

Vjv(u) = VNVI\/(U) + tVJV(u),

as we want.

As already said in the introduction, we will work on the Nehari manifold. nowadays,
Nehari manifold is a classical tool in variational methods because of its useful properties.

Next Lemma we shown that Ny manifold is a natural constraint.
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Lemma 1.3.5 Every (PS)4-sequence (uy) for Iy restricted the Ny contains a subse-

quence which is a (PS)q-sequence for Iy in H}(Q).

Proof. Let (uy) be (PS)s-sequence for Iy on Ny. By Lemma (1.3.1), after passing to a
subsequence, we have that (uy) is bounded in H} (). Write

Vlv(uk) = VNVIV(uk) + thJv(uk) (1.3.1)

By property (f4), the Sobolev embedding and Hélder’s inequality, for any v € Hj (),

/Q[f/(uk)uk — f(uw)lv

<C [l + o
Q

< Cllurlpy g1 [Vlprr1 + [kl 1 [0]por1)
< Clluelly + lluxll)vll < Cllvflo-

Therefore

(Vv (ur), v)al = [2(uk, v)o — /Q[f'(uk)uk + f(un)v] < Cllvlla Vo € Hy(9).

This proves that (VJy (ug)) is bounded.

As |V Iy (ug)ug| < [|VJIy(ug)||||ug]] < C, after passing to a subsequence, we have that
| (ug)ug] — p > 0. We show that p > 0.

From Lemma (1.2.1)(a) and by property (f2) we obtain

o<fswm@=ljwm%§mW&ﬁ+m&ﬁh

This inequality, together with Lions lemma, implies that there exist 6 > 0 and a sequence

(yx) in RY such that
/ ui = sup / ui > 4.
Bi(yk) yeRN J By (y)

Set g (x) = up(z + yr) After passing to a subsequence @, — u weakly in H(RY),
ay — u in L2 (RY) and 4 (z) — u(x) a.e. in RY. Therefore,

loc

/ u? = lim i; = lim ui > 6.
B1(0) k=00 J By (0) k=00 J By ()

Hence, u # 0 and there exists a subset A of positive measure in B;(0) such that u(z) # 0
for every & € A. Property (f5) implies that f/(u(z))(u(x))*— f(u(z))u(x) > 0if u(x) # 0.
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So, from the Fatou’s lemma, we conclude that

p=nmhmemaznmmmM@—/vaﬁ+¢meH
k—oo k—o0 Q

=anfWMé—ﬂmwk

k—o0

= lem [f/(uk>ui — flug)ug] = klim [f’(%)fti — f ()]
oo JrN —o0 JpN

> liminf | [f ()2 — f (i) ii] > / lim inf[ £/ (i )32 — f (g ) ] = /A (w2 —f(u)u] > 0.

Taking the inner product of (1.3.1) with u; we obtain
0= [(/(uk)uk = <VNV[V(Uk)7Uk> + thJv(uk)uk = Ok(l) + thJv(uk)uk

and so t; — 0 and from (1.3.1) we deduce VIy(ux) — 0 as Vi, Iy (ux) — 0 and this

proves the lemma. O

Lemma 1.3.6 (Splitting) Let (u) be a bounded sequence in Hj () such that
Iy(uy) = d and I (up) =0 in H Q).

Replacing uy, by a subsequence if necessary, there exist a solution uy de (Py), a number
m € N, m functions wy, -+ ,w, in HY(RY) and m sequences of points (yi) € RV,

1 <5 < m, satisfying:
a) uy — ug in HY(Q) or
b) w; are nontrivial solutions of the limit problem (Px);
¢) |yl = +oo and |y} — yi| = +o0 i # j;
d) w, — ij —ug in HY(RY).
i=1

e) d=1Ty(up) + > Io(w;).

=1

Proof. From Lemma 1.3.1, the sequence (uy) is bounded so, after passing to a subse-

2

quence, we may assume u; — ug weakly in HJ(Q) , ux — ug in L7,

in 2.

(Q) and uy, — uyp a.e.
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By the weak continuity of I{,, I, (ur) — I{,(up) and so Ij,(ug) = 0.

Now let uj, := uj,—ug and as we saw earlier define uj, := 0 in RV\Q and so u}, ¢ H'(RY)

then u}, — 0 in H*(RY) and as above we can assume u}, — 0 a.e. in R" and so
Lo(uy) = Iy (u},) + o(1) (1.3.2)

where o(1) — 0 for k large enough. Indeed I (up) = Iy (u}) + / (V(z) — Voo ) (up)?,
RN

‘ llim V(x) =V and uy, — ug in L2 () and so we have,

T|—+00

Also
I' (up) = I, (up) +o(1) in H Q) (1.3.3)

since for any ¢ € C*(Q) with ||¢|| = 1, (I’ (u}) — I (u}.), ¢) = o(1) without dependence

to ¢, because like as above by lim V(z) = V, up — 0 in L? (Q) and Holder’s

|| =400 loc
inequality we have

(Iufud) = Rl ) = [ (Vi) = Vi

= /BD(O)(V(x) — Voo )upp +/ (V(2) = Vao)upp

RNM\Bp(0)
s/’ o@¢+/ cubp < Clludllemoplliell + cCllu el = of1).
Bp(0) RN\Bp(0)

Now we claim that
Iy (uy) = Iy (ug,) — Iy (ug) + o(1), (1.3.4)
and

Iy (uy) = o(1), (1.3.5)
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so by replacing (1.3.4) in (1.3.2) as Iy (ug) — d we have
Io(uy) — d — Iy (ug). (1.3.6)
moreover by replacing (1.3.5) in (1.3.3) we have
I' (up) =0 in H Q). (1.3.7)
To show the claim, for (1.3.4) note that

1
() = 3l -+ wolly = | F(ul+0) = ) + Iy

+wwmQ—LFmbum—Fww—mm»

since uj, — 0 we have (u},, ug)qg — 0 as k — oo and so to prove the claim it is enough to

show

/ F(uj, + o) — F(u},) — F(ug) — 0. (1.3.8)

Since ug € H}(2), given € > 0 we can choose Bp(0) such that fRN\BD(O) (Vuo|? +ud < e.
Now, by the Mean Value Theorem and (f2) we have

/ Pl + uo) — Fub) — Flug)
RN\Bp(0)

< / f(uy, + Oug)ug + O (|ug %ﬁr\lBD + |uo %;\IBD)
RN\Bp(0)

and by the boundedness of u}, Holder’s inequality and Sobolev embedding
/ F(uj, + o) — F(u},) — F(up) < Ce. (1.3.9)
RN\Bp(0)
On the other hand, u; — 0 in Bp(0) and so since F' is continuous
/ Ful + ) — F(ul) — Flug) — 0, (1.3.10)
Bp(0)

hence (1.3.9) and (1.3.10) yields (1.3.8) and this proves (1.3.4) as we want.
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In order to prove claim (1.3.5) for any ¢ € C*°(2) with ||¢|| = 1 we have

(I (), 0) = (I (ug), ) + (L (o), 0 /fw+% fud) — Fluo)e

since I{,(ug) — 0 and I{,(up) = 0 it is enough to show

AUW%%@-ﬂ%%%WM@%O (1.3.11)

without dependence to ¢ and arguing as in the proof of (1.3.8), we obtain (1.3.11). Now
let

d:= lim sup / HE
k=00 yerN J B(y,1)
if § = 0, Lions’ lemma implies that uj, — 0 in LP(Q) , 2 < p < 2*. Since I’_(u}) — 0 it

follows that uj, — 0 in H*(Q2) and the proof is complete.
If 6 > 0, we may assume the existence of (y;) C RY such that

Let us define w}, := ul(- — yi). We may assume that w} — w; in HY(RY). By the weak

continuity of I’_, w; is solution of P, and w}(z) — wi(z) a.e. on RY. Since

)
jwil* >
/31(0) g 2

1)
/ jwy[* > 5
B1(0)

sow; # 0 and (y;) is unbounded since uj, — 0 in H*(RY).We may assume that |y;| — oo.

2._ 1 1 2 ot
Define uf := u; — wi(- — y;) then wu; satisfies as above

it follows that

Io(u}) — d — Iy (ug) — Ioo(wy)

and
I' (ui) =0 in H'(Q).

Any nontrivial critical point u of I, satisfies I(u) > co > 0. Iterating the above
procedure we construct sequences w; and (y]). Since for every i, Io(w;) > co0, the

iteration must terminate at some finite index m.
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Lemma 1.3.7 Problem (P ) does not have a solution u such that Io(u) € (Cooy2¢00)

Proof. Under our assumptions on f including that f is odd, the limit problem (Py,)
has a positive solution w with I(w) = ¢ [13|. If w is a solution of P,, such that
Io(u) € [Coo,2Cs) then, by Lemma (1.3.3), u does not change sign and, by [15], it is
radially symmetric. By assumption (U) problem (P,) has a unique positive solution

and therefore © = +w, up to a translation. Hence, I (u) = ¢x. U

Corollary 1.3.8 (Compactness) If ¢y is not attained, then cy > co, and Iy satisfies the

Palais-Smale condition on Ny at every level d € (Coo, 2¢s0)-

Proof. Let (uy;) be a (PS)g-sequence for Iy on Ny. By Lemmas 1.3.1 and Lemmas 1.3.5,
after passing to a subsequence, we have that (uy) is a bounded (PS)4-sequence for Iy,. By
the definition ¢y := inf,eny, Iy (u), there exists (u;) € My such that Iy (uj) — ¢y. Now
by the Ekeland variational principle there exists (@;) € Ny such that Iy (i;) — ¢y and
I{,(@;) = 0 (Theorem 8.5 [48]). Now by the Splitting lemma if d = ¢y is not attained,
we have cy = Iy (ug) + Zfoo(wj) and S0 ¢y > Coo. If d € (€0, 2¢s) and (uy) does not

i=1
have a convergent subsequence then, by the Splitting lemma,

m Ny if 1o = 0
{ e ST 1319)

2¢o > d = Iy (ug) + I (w;) >

v (o) ; (1) cy + My > (Mm+1)ce  if ug #0

then in both cases, m < 2 and so m = 1. The hypothesis 2c¢,, > d > (m + 1)cs, implies
that it is not possible m = 1 and uy # 0, there for uy = 0, that follows Iy (u,) —
I(wy) = d. But by (U) the solution is unique and so w; = w that yields there exists a
solution w of P, with d = I, (w), which contradicts Lemma 1.3.7. Hence, [y satisfies

the Palais-Smale condition on Ny at every d € (oo, 2¢s0)- O

Remark 1.3.9 If0 < Vj < V(z) < Vi, then ¢y < co and by Lemma 1.5.6, up — g
in HY(Q). There for, I'(ug) = 0 and I(ug) = ¢, > 0, here ug is a solution of (Py) and
cy is attained. If V(x) = Vi, then by [24] and [37] ¢y is not attained.
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1.4 Existence of a positive bound state solution

For R >0, |yo| = 1 and y € 0Bs(yo) let
€R = f wo / f(w wo

Remark 1.4.1 Note that in principle egr = €r(y) is dependent on y, but we are going

to show that the estimates on cg are independent of y.

Lemma 1.4.2 There exists C' > 0 such that
en < CR™T ¢ 2Vl (1.4.1)

for all y € 9Bs(yo) and R > 0 sufficiently large.

Proof. From property (f2), performing a change of variable, we have that

cn<( [ @plut - By -l + [ oot - Rl - )

As ps > p1 > 1, using estimates (1.2.1), Lemma 1.2.3 and Lemma 1.2.6 with p = p; and
g = 1 we obtain that

/ ()P fw(z — R(y — yo)| < CR™ 5 e 2VV=F
RN
and
[ @t~ Ry = w)lds < CR-F e/
RN

so the lemma is proved. O

Note that above lemma implies that

eg =0 as R — oo uniformly in y € 0Bs(yo).

Lemma 1.4.3 There exists C' > 0 such that for all s,t > % , Y € 0Bs(yo) and R large
enough,
f(swi )tw > CR "5 e VR,
RN

Proof. For |z| < 1 and R large enough we have

1+ x| <14z —R(y—y)| <1+ |z|+ R|(y —yo)| < 4R. (1.4.2)
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Now by (f5) (1.4.2) and the decay estimates (1.2.1) there exists C' > 0 such that

{f(sw(l)%)} wBwh
R 0™y

1 FGu)] ko n
= T,k | WolWy
B1(Ryo) 5 Wo

1 . f(lw(a:)}/
> - | min 42—~ w(z)w(r — R(y —
— 4 LeBl(o) %w(x) B1(0) (@)w( (v — %)
>C (1+ |x|)zN§167\/le\(1 + = Ry — o)) N Tl Riy-wo)

O
Remark 1.4.4 If we set s,t =1 in above lemma we have
er > CR 7 e 2VVk, (1.4.3)

Lemma 1.4.5 For every b > 1 there is a constant C, such that

/Q (s F(wlp) — Fswl)wip| < Cls — 1len,

for all s € 0,b], y € 0B2(yo) and R large enough.

Proof. Fix u € R and consider the function ¢(s) := sf(u) — f(su). By property (f2),
g'(s) = flu) = f(suu < |f ()| + (" Hul™ + 577 ul”)
< [f)]+ Cjul + |ul?) Vs €[0,1],
hence, by the Mean Value Theorem,
[sf(u) = f(su)] = |g(u) —g()] = lg'(H)l]s — 1

< [[f )l + C(ul™ + [ul??)]]s = 1].
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It follows that
/Qkﬁ(w§¢) F (sl

<ls =1l fuloyfo+C [l + ufur)eful,
Q
< |s _ 1|C/ (|w0 |p1 R(¢)p1+1 + |w0 |p2 R(w)pﬁl)-
Now applying Lemma 1.2.6 and being [¢)| < 1 we have
[ stutie) = fsufolufv <1s = 10(r) < Cls =1 <

for all s € [0,b], y € OB2(yo) as claimed. O

Proposition 1.4.6 There exists Ry > 0 and, for each R > Ry, a number n = ng > 0,
nr = ogr(1) such that
[V<TfyU£Ly) < 2Coo -

for all A € 10,1], y € 0B2(yo)-
Proof. Let us denote, for simplicity,
si=Ty,\ , =T (1-\).

Recall that, by Lemma 1.2.10, s,t € (0,7}) if R is large enough.
We have that

Iy (swityh + twR¢)

=2 [vetor+ 5 [viouter+ S [vwgor S [ views

+st/Q(Vw§zZJ)V(w5w) +st/QV(x)w§gz;wf¢_/Q Swo¢+twR¢)

=2 [vgor+ 5 [ velvr - [ Fouge) (144)
5 [Ivgor+ 5 [ vty - [ Peug) (1.45)
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+2 [0 - vafer + 5 [ - vy (1.46)
+-st / V(w (wit) + st / Voowg hwiia (1.4.7)
+st /Q (V(z) = Vao)wlivpwitep (1.4.8)

——K; Fswlt + twl) — F(swl) — F(tw) — f(swlh)twly — f(twlp)sulty (1.4.9)

—/ f(swp) twRq/) /f tsz/) )switap. (1.4.10)
Q

The sum in line (1.4.4) is equal to I (swl) + o(eg). Indeed,

2

(a0 = Iu(ouf)+ 5 [ Vo) - Vul
2 By (0)

2
w [ Vetlor = Vatef = [ Flsuf) - Flsufiv).
B2 (0) Bax(0)
But by Lemma 1.2.5 with ¢ = 2 and (1.2.15) we have
8_2 v R YV R 2Vvoo R, N2 RN2
v - e T [ ) - @l = olen).
Bar(0) Bay (0)

On the other hand, the Mean Value Theorem, (f;) and Lemma 1.2.5 yield

[ Pl = Flufw) = [ floult+ Asufio) sul - sulfv)
Bk (0) Bk (0)

<C (\swﬂm + |5w§|”2)sw§ =C (|sw§'\p1+1 + ]sw?\mﬂ) = o(eg),
Bak (0) B2k (0)

thus
(1.4.4) = Io(swl) + o(eR).

Since w{t is least energy solution of the limit problem (P) and by Lemma 1.2.1 (c) w
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have I, (swl’) < ¢, and similarly for the sum in line (1.4.5), s
(1.4.4) + (1.4.5) < 2¢o + 0(eR).
By Lemma 1.2.7 we have
(1.4.6) + (1.4.8)) = o(eR).

As to (1.4.9), by Lemma 1.2.2 there is 0 < v < p; — 1, now by Lemma 1.2.6 we have

- [ Pl alio) = Plsuf) = Fleufv) = fsuf)dio - o)l

< C(st)t*3 /

(wipwiap) 'tz < C(st)HS/ (wiwf)+e < CR- 520+ 20+ 5)VVaR
RN

RN
so we have shown that
(149) < O(ER).

We write the sum of the remaining terms as

(LAT) + (1410) = 5 [ [sf@ff) = Flsuf it + 5 [ o) = feufoufe

——/fs%wmﬁw——/fmﬁwa%w

By Lemma 1.4.5 there is a constant C' > 0 such that
t R R S R R
5 sty = foufoluliv + 5 [ o) - sefolulv < Cs=1+ 1= 1Dz

for all s,t € [0,Ty],y € 0B2(yo) and R large enough. Moreover like as the sum (1.4.4)

we have

/f swit) twa—l— /f twRib )swihp

= - flswihtw] + = / ftw)sw + o(er)

QRN

and by Lemma 1.4.3, there is a constant Cy > 0 such that

1

1
= f(switwk + —/ f(tw swih > Coeg
2 RN ¥ 2 RN

for all s,t > 1, y € 0Bs(yo) and R large enough. By Lemma 1.2.10, if A = 1/2; then
s,t — 1 as R — oo. So taking Ry > 0 sufficiently large and 6 € (0, 1/2) sufficiently small
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such that C(|s — 1| + [t — 1]) < £, we have

C
(1.4.7) 4 (1.4.10) < _TOER + o(cR)
forall X\ € [ — 6,3 + 6], y € OB2(yo) and R > Ry. Summing up, we have proved that

C
Iy (swif + tw)') < 25 — 708}3 + o(eR) (1.4.11)

forall X € [ — 6,5 + 6], y € OBs(yo) and R > Ry,
On the other hand, for all A € (0,3 — 6] U [ +6,1], y € 9Bs(yo) and R sufficiently large,
since if TyY, < 2 then s = T{" A € [0,1—26] or t = T\, (1—X) € [1,1—20] and if T\T > 2
then s = T4, A € [1+20,00] or t = Ty (1 — \) € [1 + 2§, 00], in fact one of 5 or t is in
[0,1—26]U[1+ 2§, 00] and so by Lemma 1.2.1(c) applied to V., there exists v € (0, cs)
such that

Lo(rwl) < co—~  Vrel0,1—26U[l+ 26,o]

also with our previous estimates we have (1.4.6)+...4(1.4.10)= O(eg), and so
Iy (swgf 4 twl) < 2c — v+ Oler). (1.4.12)

Inequalities (1.4.11) and (1.4.12), together, yield the statement of the proposition.  [J

Lemma 1.4.7 For any 0 > 0, there exists Ry > 0 such that
[V(T)]\?yU)Ify) < Coo F 0,

for X=0 and every y € 0Bs(yo) and R > Rs. In particular, ¢y < Cx.

Proof. By Lemma 1.2.10, Tfy is bounded uniformly in A,y and R. As wf is a ground

state of problem (P,,), using Lemma 1.2.1(c) and Lemma 1.2.7, we obtain

RATUR) = L)+ (T [ (V@) = Vi) wffo)?

< Tl +ole) + (T [ (V@) = Vil
< max [Oo(swf) +0(1) < ¢ +0r(1),
where og(1) — 0 as R — oo, uniformly in y € 0Bs(yo). d

Let 8 : L2(RY)\ {0} — RY be a barycenter map, i.e. a continuous map such that, for
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every u € L2(RY), every y € RY and every linear isometry A of RY,

Blu(-—y)) = B(u) +y and BluoA™) = A(B(w)). (1.4.13)

Note that (u) = 0 if u is radial. Barycenter maps have been constructed in [7].

Lemma 1.4.8 If ¢y is not attained then ¢y = ¢ and there exists § > 0 such that
Blu) #0, VYuec Ny NIt

where I& = {u € H}(Q), Iy(u) <c}.

Proof. If ¢y is not attained, Corollary 1.3.8 and Lemma 1.4.7 imply that ¢y = co.

Arguing by contradiction, assume that for each k € N there exists v, € Ny such that
Iv(vk) < cv + 3+ and B(vy) = 0. By Ekeland variational principle [29], there exists
a (PS)g-sequence (uy) for Iy on Ny at the level d = ¢y such that ||up — vg|| — 0
[[48], Theorem 8.5]. By Lemmas 1.3.5 and 1.3.1, after passing to a subsequence, we
have that (uy) is a bounded (PS)g-sequence for I,. As ¢y is not attained, Lemma
1.3.6 (splitting) implies that there exists a sequence (yx) in RY such that |yz| — oo
and |Jur — w(- — y)|| — 0, where w is the (positive or negative) radial ground state of
(Ps). Setting 0x(z) := vg(z + yi), and using properties (1.4.13) and the continuity of

the barycenter, we conclude that

—yi = B(vg) — yp = B(Tx) = B(w) =0
this is a contradiction. |

We have constructed all the tools in order to apply a topological argument analogous to
that found in [24] and prove the main result. For the sake of completeness we recall the

argument and prove theorem 1.1.4.

Proof of Theorem 1.1.4 : If ¢y is attained by Iy, at some u € Ny then, by Lemma
1.3.2, u is a nontrivial solution of problem (Py). So assume that ¢y is not attained.
Then, by Lemma 1.4.8, ¢y = ¢. We will show that I has a critical value in (cs, 2¢50)-

By Lemma 1.4.8, we may fix 0 € (0, =) such that

Bu) #0, Yue Ny NIt
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Proposition 1.4.6 and Lemma 1.4.7 allow us to choose 7 € (0, %) and R > 0 such that

IV(T/{?yU/Gy) <

2coo —n  forall A € [0,1] and all y € B2 (yo)
Coo+ 6 for A=0and all y € 0By(yo).

Define v : Bs(yo) — Ny N [‘2/600777 by
a((L=Nyo +Ay) = YUY, with A€ [0,1), y € 0Bayo).

Arguing by contradiction, assume that Iy does not have a critical value in (cs, 2¢0).
As, by Corollary 1.3.8, I, satisfies the Palais-Smale condition on Ny at every level in
(Coos 2¢o0), there exists € > 0 such that

IVa Iv(u)]| >, Yu €Ny NI ew + 6, 2000 — 7).

Hence, the negative gradient flow of Iy on Ny, which exists since Ny is a manifold of

class C!, yields a continuous function
p: Ny N [‘2/%0_77 — Ny N I‘C/OOJFJ

such that p(u) = u for all u € NyNIg=T (see [2]). Now we define T'(z) := (BopoaoT)(x),
where 7(x) = x + . By Lemma 1.4.8 T'(z) # 0 and so the function h : By(0) — 9Bs(0)

given by
; ()
h:=2
()]

is well defined and continuous. Moreover, if y € 0Bs(yp), then

a(y) =Ty Uk, = Totwit € Ng n 150

Y 0,y "y
and hence
(Bopoa)(y) =BTy w) =y.
Therefore, h(z) = #ﬁ(m) —yo = « for every x € 0B5(0) and since by Brouwer Fixed

Point Theorem such a map does not exist, Iyy must have a critical point u € Ny with
Iy (u) € (Coos2¢o). By Lemma 1.3.3, u does not change sign and, since f is odd, —u is

also a solution of (Py). This proves that problem (Py) has a positive solution.



Chapter 2
Zero mass limit problem

We consider the Null Mass nonlinear field equation

—Au = f(u) in Q
u>0 (P)
u | oN— 0
where R \ 2 is regular bounded domain and like in chapter 1 there is no restriction on

its size, nor any symmetry assumption. The nonlinear term f is under the double power

growth condition.

2.1 Introduction

We consider the problem

—Au = f(u) in Q,
u > 0, (P)

U |8Q: 07

where N > 3, RV \ Q C By(0) is a regular bounded domain and the conditions that we
consider on the nonlinearity f: R — R is odd and of class C*(R,R) such that:

(f1) Let F(s) := /Sf(t)dt, then 0 < puF(s) < f(s)s < f'(s)s? for any s # 0 and for

0
some [ > 2;
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(f2) F(0) = f(0) = f'(0) = 0. There exist C; > 0 and 2 < p < 2* < ¢ such that

[fP ()] < Clsfp=t+D - for [s] > 1
[fE(s)] < Cls|t=HD for [s] <1

for k € {0,1}, s € R.
Remark 2.1.1 [t is straightforward from (f1) that
F(s) > C|s|* , forall |s|>1, (2.1.1)
and by (f2) we can write

1F B (s)] < Cls)* ~* D for all s €R. (2.1.2)

Moreover, since uF(s) < f(s)s, then Cy|s|* < Cy|s? and so p < p.

A model nonlinear term which satisfies all assumptions is

wt if uw<1
f(U)Z{ N

a+bu+cuP if u>1

with a choice of constants for which f belongs to C*.

The energy functional associated with problem (P) is

1
To(u) = gJullh - /QF(u)dx, with u € D'2(Q).

The main result in this paper is the following theorem.

Theorem 2.1.2 Assume that the positive solution in the whole of RY is unique. Then,

under assumptions (f1)— (f2) , problem (P) has a positive classical solution u € D?((Q).

Remark 2.1.3 Note that the assumption of uniqueness of positive solution in the whole
of RN :
—Au= f(u)
. (Prx)
u € DM*(RY)
is a natural one. For instance, L. A. Caffarelli, B. Gidas and J. Spruck [18] proved that
the functions

N-2

Uy o (@) = (N(N = 2)7) T (v + |2+ 2]) T
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are the only positive solutions of (Pgn) with f(u) = u? ~! for some real number v > 0
and point o € RY.

For other non-linearities f(u) for which the uniqueness of positive solution holds see [25].

Remark 2.1.4 We may assume in Theorem 2.1.2 that the critical value (ground level)
¢ of the functional Iy~ is 1solated with radius r > ¢, rather than assuming the uniqueness

of positive solution of Prn.

This chapter is organized as follows. In section 2, we formulate the Orlicz space, the
variational setting and present some preliminary results. Section 3 is dedicated to com-
pactness condition. In section 4, applying a topological argument, which involves the
barycenter map, we show that the energy functional associated with problem (P) has a

positive critical value.

2.2 Preliminary results

We will use the following notation:
(oo = [ Vu-Vods .l = [ [VuPs
Q Q

and we denote by D%?(2) the completion of C§°(Q) with respect to the norm ||.||q or

|- [|pr2e).-

Likewise we write

(u, V)N = Vu-Vodr , ||lulz~ :/ |Vul*dz
RN RN
and also denote by D?(R") the completion of C§°(RY) with respect to the norm ||. ||z~
or ||.|[pr2@n). Note that, there is a canonical isometry from D%?(Q2) into D“?(R").
Indeed, consider the extension by 0 outside 2. The energy functional associated with
problem (P) is
To(u) = %||u||‘;’2 _ /QF(u)dx, with u € D2(Q).

Set
Amoz%mm=HWé—éfmmm,

Nq = {u € DY*(Q)\{0} : Jo(u) = 0},
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and

cq = uler/l\;ﬂ I(u).

The variational approach to solve this problem requires the study of the problem (Pgx)

in the whole RY with the functional

1
Ipn (u) = §||u||§w — /RN F(u)dw, with u € DM*(RY),

and in the same way
T (0) = Tpn (w)u = [[ullgy — / f(u)udz,
RN

Nen = {u € D"*(RY)\{0} : Jn (u) = 0},

and
c:= inf Ign(u).

UGNRN

Let w be a positive radial solution of (Pgr~) which is well known to exist by [13] and by

[47] there are positive constants C , Cy and C5 such that
Ci(1+ |z))~ M2 <Jw(z)| < Co(1 4+ |z])~W2, Vo e RY, (2.2.1)
and
|Vw(z)| < C5(1 + |z[)" W2, vz e RN (2.2.2)

Given 1 < p < ¢, now we consider the space LP + L? made up of functions v : Q@ — R
such that
v=1v +vy with vy € LP(Q),vy € LY().

LP + L9 is a Banach space with the norm

HUHL’”qu = inf{HmHLp + HUQHLq v =1+ Ug} (223)

and with equivalent norm

||U||LP+Lq = sup fv(ff)qb({lj)dx

, (2.2.4)
20 191l o + 110l 1o

we obtain LP + L = (L” + L)' (see [11] and [4]).
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Remark 2.2.1 V. Benci and D. Fortunato in [11] showed that L** C LP + L9 when
2 <p< 2" <q. Then, by the Sobolev inequality, we get the continuous embedding:

DY2(Q) C LP + LY.

Now we present a fundamental lemmas which its proof may be found in [12] and which

will be systematically used in the forthcoming arguments.

Lemma 2.2.2 The functional F : LP + L9 — R defined by

is of class C* and we have

Fu)v = / f(u)vdz,
Q
F'"(u)ow = / I (w)vwdz.
Q
Proof. [Lemma 2.6 [12] and the Appendix| O

Remark 2.2.3 Lemma 2.2.2 ensures that the functional

1
Ig(u) = §||u||522 — /QF(u)dx, with u € D*(Q).

is well defined, of class C* and any critical point of Ig is a weak solution of (P) .

Lemma 2.2.4 (a) Ngn is a closed C' manifold;

(b) given u # 0; there exists a unique number t = t(u) > 0 such that ut(u) € N~y and

Ign (t(u)u) is the mazimum for Ign (tu) when t > 0;
(c) the dependence of t(u) on u is of class C*;

(d) infuens,y [[ulles = p > 0.

Proof. Item (a) follows from (f;) and Lemma 2.2.2 for u € Ngn

Ipn (uw)u = /RN2|Vu\2—f(u)u—f’(u)u2dx = /RN|Vu]2—f’(u)u2dx = RNf(u)u—f’(u)qux <0
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and Ngv = Jox({0}) is closed subset of D(RY).
(b) Given u # 0, if we set

1
Gu(t) ::/ —t*|Vul® — F(tu)dz for t >0
RN
we have
)= [ AVl = fwuds . g0 = [ VuP - fewtd.
RN RN

By (f1) we see that if ¢ > 0 is a critical point of g,, then ¢/(f) < 0 so t is a point of
maximum for g. Furthermore, 0 = g,(0) = ¢,,(0) and ¢//(0) > 0, and hence 0 is a point
of minimum for g,. By (2.1.1) and F'(u) > 0 in (f1) we obtain

2
o) <= [ 1Vul2de - 0/
2 RN t

lu|<1

F(tu)dx — Ct“/ lul#d

tlu[>1

t2

< — [ |Vul’dx - cot“/ |u|#dz.

2 RN tlu|>1

Since u # 0, then there exists A € RY with |A| > 0 (Lebesgue positive measure) such
that |u |5 | < 0. By Monotone Convergence Theorem, g,(t) — —oc as t — co. At this

point we have the claim.
(c) We define the operator K : RT x D?(Q) — R by

K(t,u) = t/ \Vul*dz — [ f(tu)udz.

RN
By Lemma 2.2.2, K is of class C' and if (to, up) is such that K(tg,ug) = 0 and ¢, # 0,
then by (/)

f(toto)tio

— f/(t()UO)ugdﬂf < 0.
rv o

K!(ty, uo) = / Vol — f(tuuo)uis =
R

By the Implicit Function Theorem, we get that u — t(u) is of class C! and

t%/NQtovUOVQO - f(toUQ)QO - f/(tQUO)tQUO(,OdZL'
R

t'(uo) ] =

. f’(toUO) (toU())Q — f(tho)t()UOdI

where to = t(ug).

(d) By contradiction, suppose that the minimizing sequence (u,,) converges to 0. We set
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Up = t,v, With [Ju,||gy = 1. Since u,, € N~ and (¢,) converges to 0, we have:

t, = f(tpvn)v, < Cti*_l vy, z
RN RN

Hence, we get

1< O 2 ua*
RN

which yields a contradiction if ¢, — 0.

O

Remark 2.2.5 Similarly, by substituting RY with Q, Lemma 2.2.4 holds also for Ng.

Remark 2.2.6 Ifu # 0 is a critical point of the functional Ig on Nq, then u is a critical
point of Ig. Indeed, consider u € Nq and use (f1) in order to obtain
U _ 2 ! 2 f(u) ! 2
o wye =2z = [ Fy?+ fu< [ (D2 - pe))a? <o,
Q Q

u

Now, suppose that u € Nq is a constrained critical point of I, then there exists a real
number 0 such that I (u) —9JH(u) = 0; taking u as test function one gets ¥{J{u, u) = 0

then yields ¥ = 0, i.e. u is a free critical point.
Lemma 2.2.7 ¢cq =c¢ > 0.

Proof. We have ¢ < cq, because we consider No C Mg~ (indeed u € D?(Q) can be
extended by zero outside 2). On the other hand, by Lemma 2.4.5 in the following section
4 we have cq < ¢ and so cq = c.

Now we show that ¢ > 0. Let (u,) C N~y be a minimizing sequence of ¢, by (f1) we

have
1 1

1 1
- — — V'U/n2dx:_/ vun2__/ Up )Un
(Qu%g pr =5 [ V= [ r)

1
2 RN RN

= T (up). (2.2.5)

Now suppose by contradiction that ¢ = 0. Then the minimizing sequence (u,) is such
that (Ig~(u,)) goes to zero, hence by (2.2.5) (u,) converges to zero in DY2(Q2). This is
absurd by Lemma 2.2.4 (a) and (d). O
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Remark 2.2.8 The existence of a ground state solution w of (Prn) was proved by H.
Beresticky and P. L. Lions [13] under very general assumptions on f and a minimizer
w of ¢ 1= infueNRN Iy~ (u) is such that it is a positive spherically symmetric about the

origin; in other words, ¢ is attained.
Lemma 2.2.9 Problem (P) has no ground state, in other words, cq is not attained.

Proof. We proved in the previous lemma that c¢q = ¢ > 0. At this point, we suppose by
contradiction, that there exists u € Nq such that Iq(W) = cq. Setting u =0 in RV \ Q,
u can be regarded as an element of Nx~n. We can assume u > 0 since if 7 € Ny~ then
|| € Ngnv and Iy ([u|) = Ipn (U™ +07) = Ipn (™) + Ipn (W) = Izv (@) = ¢ . Hence u is
a minimizer of Izx on N~y and a solution of (Pgw~) in RY. Now by Brezis-Kato theorem
we see that u € C?*(RY) (we show details in the end of this chapter; this can be seen by
bootstrap procedure). Then, by the strong maximum principle, @ is strictly positive in

RY and so we have a contradiction.

Lemma 2.2.10 For every 0 < v < q—2 and p > 0 there exists C, > 0 such that for all
0 <u,v < p we have

F(u+v) — F(u) — F(v) — f(u)v — f(v)u > —C,(uv)'*2 (2.2.6)

Proof. The inequality (2.2.6) is obviously satisfied if u = 0 or v = 0. By (f;) the

function f(s) is increasing in s > 0, which yields for u,v > 0

Fu+v) — Flu) = / " Hw)dw > flu).

Moreover by (f2) for every 0 < v < ¢ — 2 it follows

flw) =o(lul"") as |u| =0,

and so C,, := SUPg<y<) % < 00. Now if 0 < v < u, we deduce

Flu+v)— F(u) — F(v) — f(u)v — f(v)u > =F(v) — f(v)u

! ('U}) 1+v f(’U) 1+v ~ U2+V ~ 1+v
— —WUJ—’_ dw—mUU—i_ 2—0p2+y—cpu7)+
Vv, Ve 1,0 ,0v7x v 3 ~ v

> [ (5D + L) Gu) > 20y (w)
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Using the symmetry of the expressions with respect to u and v, the same estimate holds

for 0 < u < v, and the proof is complete. O

Now let yo € RY with |yo| = 1 be fixed and let By(yp) := {x € RN : |z — yo| < 2}. We
write for each y € 0By (yo) and R > 0
wi = w(-— Ry) , w:=w(— Ry).

)

where w is the positive radial solution of (Pgw).

Lemma 2.2.11 Letr > 1 and R > 0 large enough, then

a)/ lwk|" < CRTW=2 qnd / [wl|” < CR"WN-2, (2.2.7)

Bak (0) B2k (0)

b) / IVwl" < CRT™™=2 and / IVwl|" < CRTN2), (2.2.8)
BQK(O) BQK(O)

Proof. In order to prove the first estimate, note that for 2K < %R

1 1

§R <R- §R < |Ryo| — |x| < |x — Ryo| < 1+ |x — Ryo|. (2.2.9)
Now by (2.2.9), (2.2.1) and r > 1, we have

/ fwie = Ryo)l'de < 0/ (1+ |z — Ryol) "™ Pdz < CRTN2),
Bak (0)

Bk (0)

The proofs of the other estimates in (2.2.7) and (2.2.8) are similar. O
Now we are going to obtain a more delicate estimate of the integrals in the whole RY
that we need this estimate for the proof of important Proposition 2.4.4, the proof of this
lemma is inspired by the work of M. Clapp and L. Maia [25].

Lemma 2.2.12 Let r > 2*/2 and s > 1 then
/[R § (wi)"(wf)* < CR™*W2), (2.2.10)

and

/ (Wi (wl)* < CRW=2, (2.2.11)
RN
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Proof. In order to prove the first estimate of the integral
[ = [ e - Rp)y (i - Ry,
RN RN

we consider the change of variables x = z + M, thus

[ (o= Ra) (wle = Re)ydo = [ (s = PO (e + T

RN

_ /RN(w(z — PR)) (w(z + Pr))dz = 2/@+ (w(z — Pp)) (w(z + Pr))*d=

= 2/ (w(z — Pr))"(w(z + Pgr))°dz + 2/ (w(z + Pgr))"(w(z — Pgr))*dz,
Bi1(Pr) Q*t\B1(Pr)
by denoting Pr = M, using the symmetry of the integrals and denoting Qt = {z €
RNI<Z—PR,PR>ZO}.
Note that for £ € Q" and R sufficiently large

(2.2.12)

if [§]>1 then R <1+ |+ 2P|,
if |£] <1 then 2R <1+ [+ 2P|

Now by another change of variables £ = z — Pg, with (2.2.12) and (2.2.1), we obtain

[ty =2 [ ey ey | (0(©) (w(E+2Pn)’dg

{Q+t—=Pr}\B1(0)

B:(0) {Q*—PrI\BL(0)

< CR—S(N—Q)/

B1(0)

dg + CR—S(N—Q) / |§|—T’(N—2)d§
{Q+t—=Pr}\B1(0)

S CR—S(N—Q) ,
since

/ ‘gyfT(NfQ)dg < / yfr(NfZ)nyldy
{Q*=PrI\B1(0) 1

and for r > Z- we have —r(N — 2) + N — 1 < —1. The proof of estimative (2.2.11) is

similar and this completes the proof of this lemma. O

Define for A € [0, 1]

Z3, = dwg + (1= Nw,)
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and
Uy, = Z3 (2.2.13)

where 1) € C*°(RY) is continuous radially symmetric and increasing cutoff function such

that

0 lz| < K,
Px)=4q 0<yp<1 K <|z| <2K,
1 |x| > 2K.

where K is the radius of the smallest sphere Bx (0) that contains R\ Q. We can consider
U, € DY*(RY) by extending Uy, = 0 outside Q.

Lemma 2.2.13 U{ — Z{ — 0in D"*(R"Y), as R — oo.

Proof. First of all, if R > 0 is sufficiently large we claim that
IVwi — V(wd) | 128y 0 < CR™NV2 (2.2.14)
and
IVwl — V()| 2oy < CR™N2). (2.2.15)
By the claim we have
U, — Z3, Ipre@yy < Mlwg’ — Ywglpregsy + (1 = A)|Jw)f — pwl||pragy)

= N|Vug — V0wl 2o oy + (1= Mllwf = pwlll 25,0 < CR™N?

and this shows that U {?y -7 f:'y — 0 if R — oo, which concludes proof of the lemma.
Now, in order to complete this proof we have to show the claim. Since 1» € C'°°, then

there exist positive constants C; and (5 such that
IV (wi)| = (V) wi + (Vug)e| < Crlwff| + Co| Vol in Bag(0)  (2.2.16)
and so by Lemma 2.2.11 with » = 2 and (2.2.16),

2
IVwg — V(w725 0y < / (Cilwg’| + (Co + 1) Vuwg]) “dz

BQK(O)
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as claimed. O
Lemma 2.2.14 Fort >0, Jpn (tUY)) — Jpn (tZ3)) = 0, as R — oco.

Proof. By the definition of Jynx we have

| e (EUY,) — Jen (t23)]

~[wo - [ seuteot - w2k [ ezt

< |JtUF, — tZ37 e~ + ‘ /R N fRZIZT, — FUT U, | (2.2.17)

By Lemma 2.2.13 the first term of (2.2.17) is equal to og(1) where og(1) — 0 as R — 0,

so it’s enough to show that

FZL,)(tZ3,)— F (UL, (tUR,) = or(1).

_ ‘ / Fz )t ZE )~ (Ul (LU,
B2k (0)

‘RN

For this purpose, (2.1.2), Lemma 2.2.11 and the inequality (a + b)? < 2P(a? 4 b) yield

<[ ek,
BQK(O)

< 0/ 1Z ) < O/ Awg + (1= Nw)f
BQK(O) BQK(O)

S 1708

/ F(EZR V(2R ) — F(tUR ) (tUR,)
Bk (0)

2%

s/ 1+ % |[t2E,
BQK(O)
<C / Wi + Jwl* < CR™TWY = op(1)
Bog (0

O

Lemma 2.2.15 a) There exist Ry > 0, Ty > 2 and for each R > Ry, y € 0By(yo) and
A€ [0,1], a unique Ty, such that

R R
T)\7yU>\7y < NQ,

Tfy € [0,Ty] and Tfy 1 a continuous function of the variables \,y and R.
b) for A =1/2 we have Tfy — 2 as R — oo uniformly in y € 0Bs(yo).
27

Proof. By Lemma 2.2.4 for each R > 0, y € 0By(yp) and A € [0, 1] there exists Tﬁy =
t(Uy,) such that t € C'. Now for such fixed R > 0, the function (\,y) — UY, is
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continuous and t(Uy,) is in C", since [0, 1] x 0By (yo) is a compact set in R?, then there
is To(R) = Ty, such that TF UF < d T}, € [0, To(R)].

ST = o, gy Do 1 that Ty Uy € Noand T, € [0, To(1)]

Supose by contradiction that Ty(R;) — oo as R; — 0o, since Ty(R;) =

R.
T then Ty(R;) = TV f A y). Let > 0 dr e (0
e [g%}axXaBQ( ) Vg then To(R;) Ay for some (A, y). Let u,v , and r € (0,00),
using that £ is increasing by assumption (f;),
TU 4 TV
Jaw(ru+ 7o) = 12l + 0l + 20, 0haw) — [ LEETD gy

RN TUF TV

2 <||u||fw _ /RN %M o2y — /RN @# + 2<u,v>RN) O (2218)

Now for A € [0,1] and y € dBs(yp), setting u := Mwg?, v = (1 — Nwy", r = Tf; and
(2.2.18), we obtain
RjrrR;
0 - JRN (T)\,yU/\ y)

f(T ARJ)\wé%] Rj\2
<@gy - [ L0

R])\ RJ

TR (1 — N 2 .
(1 = Nwh |2 —/ f(RA,’y( )Pf’, )((1 — Nwl) 207, (1 - A)wfj>RN)
RN T\9(1— ’

Mwy”)
Rj\2 f(w(l)%j) B f(Tf;)\w(?j)> wh 2
<(Ty,) { /R N( ol Tl (Awy?)
flw)  F(To0 - A)wiff)) o ane
+/RN( wy TG0 Ny (= Xw2) - onl) -

. R; e .
As we are assuming that 7,7 — oo as R; — oo , then we get a contradiction since by

(f1) and the Monotone Convergence Theorem

R R
/R N (f (wg) _ fu;é’ymﬁ >) (Awl)? < Sy <0

R
wy Ty, Awy

and

- : 1—A
/RN < wl TR (1= \uf (1= 2w))" < S <0,
for R; > Ry, A € [0,1] and y € 0Bs(yo), where Sy may be taken, for instance, as

S = L) foud)

wO 2w0

In order to prove part (b) let ¢(u,v) = f(u+v) — f(u) — f(v) from Lemma 2.2.12 we
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have
/ o(wlt, W) (Wl + wh)] < / (Wl (Wl + wF) = op(1).
RN RN
and

o+ ) = o+ i = [ pff + )+ wf)

o + e+ 2t s — [ ff ) - [ fufiwf)-
(wh) (wh) — / F(wP) () + / (w0l ) (wf 4w
RN R

= Jpv (w(l) + Jev (w))) + og(1) = og(1),

because w is a solution of (Pg~). So by Lemma 2.2.14 we have

Jev (Wi + wHY) = Jen (Wi + w)) + or(1) =o0r(1) as R—o0. (22.19)

Therefore, by (2.2.19) and D*?(Q2) C DM(RY)
Jo(2UE,) = Jo((uft + )

= Jen (wf + wih)) = or(1)

and so T fy — 2. Indeed, without loss of generality, suppose by contradiction that
27
Tfy — T > 2. Given 6 > 1 such that 2 < 20 < T, there exists Ry > 0 such that
27
T fy > 20 for all R > Ry, y € 0By(yo). Then by the previous argument, f(s)/s increasing
27

and the translation invariance of integrals

TR
TE TF TF 2 F2rwb)y (T7 2
O:JRN( YR 27wa) S‘ 30, R _/ ( 5 Wo )( nywR)
2 0
Tt 2 f(Tgawa) TE 2
Y 9 lvy
—i—H;wf N_/RN(T; y)<5w5> + og(1)
w ow
gz/RN (fi))—fgw))(éw)2+03(1)<0

and this is contradiction. Likewise if Tfy — T < 2 then Jpn (Fwf + Zwff) > 0, and this
2

completes the proof of the lemma.

O
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2.3 Compactness condition

First we present two fundamental lemmas which will be used in the proof of Splitting

Lemma.

Lemma 2.3.1 (a) If v and u are in a bounded subset of LP + L9, then f'(v)u is in a
bounded subset of L? + L7 ;

(b) ' is a bounded map from LP + L9 into LP/P=2 4 L4/472,

Proof. [Lemma 2.3 [12] and the Appendix| O
Lemma 2.3.2 Assume that the sequence {uy} converges to ug weakly in D?(2). Set
uj, = uy — ug then it holds:

(a) HUEH%M(Q) = Huku%w(n) - HUOHQDM(Q) +o(1) ;

o) [ syt = [ fu = [ o+ o

© [ Py = [ F) - [ P +o)

Proof. [Lemma 2.8, [12|] and Lemma 3.6 in [25]. O
Note that Iy I(u) is orthogonal projection of I;(u) onto the tangent space of Nq at
u, that is defined by T,(Ng) := {v € DDY?(Q); Js(u)v = 0}. Recall that a sequence
(ug) in D2(Q) is said to be a (PS)4-sequence for Iq restricted to Ny if In(uy) — d and
115, (ux)|] = 0. The functional I, satisfies the Palais-Smale condition on N at the level

d if every (PS)z-sequence for I on N contains a convergent subsequence.

Now we proceed with the study of Palais Smale sequences of I. Usually the compactness
results depend on P. L. Lion’s Lemma [35]. However that lemma does not apply directly
if (uy) is bounded in D'?(€)). We obtain the following result inspired by the work of A.
Azzollini, V. Benci, T. D’Aprile and D. Fortunato [Lemma 2, [3]].

Lemma 2.3.3 Suppose (uy) is bounded in DV*(RY) and there exists R > 0 such that
lim ( sup / lug|?) = 0,
k=00 "y erN J B(y,R)

th,en/ f(ug)ug, — 0.
RN
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Proof. Fix € € (0,1) and for every k consider the new sequence of functions

wr || lu| > e,
ke |y 2%/2.—(2*/2-1) ug| < e.

It is easy to verify

. - 27\’
ol < P < e < (5 ) 19ul

since

2 ‘uk|2 ‘uk| > €,
|wk| = 2 _—(2%—2) 2|uk‘2*—2 9
lug|* e < g o |u lug| < e,
O S LD
Jug|* e 2) lug| <,
V. — V|Uk| |Uk| Z g,
V(jun /2@ 20) = Zem@ A [F AV ) < BV <.
And so

el = [l + [V
RN
* * 2* *
< / \uk\Q e~ (22 +/ (—)QIVuk|2 < Qe @2,
RN RN 2
in particular wy, € H'(RY). We claim that

wy — 0 in L¥(RY) for each 2 < s < 2*.

Indeed for any y € RY and s € (2,2*), using the Sobolev continuous embedding
HY(B(y, R)) = L* (B(y, R)) we have
0s/2*
2*)

(1-6)s/2
[ < ( / |wk|2) ( [
B(y,R) B(y,R) B(y,R)

_ s—2 : 4 =
where ¢ = 7=N. Now suppose s > 2 i.e. s > & +2 =73, then

(1-0)s/2
/ |wk|s <(C (/ ’ka) (/ ‘wk|2 —+ |Vwk’2> ||wk|’iif(ﬂ2§N)
B(y,R) B(y,R) B(y,R)

Now, covering RY by balls of radius R, in such a way that each point of R is contained
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in at most N + 1 balls, we find

(1-6)s/2
/\WP§W+D&W(/ mw) o %1
RN yeRN B(y,R)

But w, € H(RY) and so by the assumption of lemma, w; — 0 in L¥(RY) for s > 5. If
2<s5<35,58=2043(1—40) for some 6 € (0, 1), hence by the Holder inequality,

1-0
Ls(RN)

lwill7s@ny < llwkll 2@y llws

and the claim then follows from the case already established. Now using ( f2) we conclude

ﬂmmkgc/ |Ww+c/ g
RN {lug|>1} {lup|<1}

gc/ el — C gl + C \Wm+c/ g
{lug|>e} {e<ug|<1} {e<]ug|<1} {lug|<e}
gc/ |WV—0/ IWP+O/ |WP+O/ g
flugl>e) {e<husl<1) {e<hul<1) flugl<e)
:c/ mm+o/ g
{Jug|>e} {Jux|<e}

S C/ |wk|p + C/ \uk\q*2*|uk
{lug|>e} {lur|<e}

< Cllwgllpgen, + Ce™* [lu

2%

2*
L (RN)

by which, since w; — 0 and ¢ > 2*

f(uk)uk S CEq_Q*.
RN

Because € € (0,1) is arbitrary we get the conclusion. O

Lemma 2.3.4 Every (PS)q-sequence (uy) for I restricted the N contains a bounded

subsequence which is a (PS)4-sequence for I in DV?(Q).

Proof. Let (u) be a (PS)g-sequence for Ig on Ng, by (2.2.5) with replaced RY by Q
and Io(ug) — d we have that (u;) is bounded. To complete the proof we show that
Iy, (ug) — 0 imply

IH(ug) — 0 in (DY*(Q)). (2.3.1)
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Write
Io(ur) = Iy, (wk) + teJo(ur) (2.3.2)

By property (f2) and Remark 2.1.1, Hélder’s inequality, Sobolev inequality and the
boundednes of (uy,), for any v € D?(Q),

2*—1
L2

0]l < Cllofa.

| / [ (u)us — F(u)lo] < C / (sl 1)o] < Cllug

Therefore

|(Ja(ur), v)al = [2{uk, v)o — /Q[f’(uk)uk + f(u)vl < Clloll, v € DV*(Q).

This proves that(J§(uy)) is bounded in (D*2(Q))'.

As |JG(ug)ug] < || TG (we)|]|uk]lo < C, after passing to a subsequence, we have that
| Jo(ug)ur] — 0 > 0. We will show that ¢ > 0. From Lemma 2.2.4 (d) and u; € Ny, we

have

0< p2 < ||Uk||%1,2(RN) = /RN f(uk)uk, (233)

then by Lemma 2.3.3 there is § > 0 such that

sup / |u;€|2 >0,
yERN J B(y,R)

and so there exists a sequence (yi) such that

/ lug|? > 6. (2.3.4)
B(yx,R)

Now consider @y = uy(- — yx), which is bounded and passing to a subsequence, u; — u
in DM2(RY) and @, — u in L}, (RY). We claim that u # 0. Indeed if ||tk || r2(5(0,r)) — 0
as k — oo we have a contradiction with (2.3.4). Hence, u #Z 0 and there exists a subset
A of positive measure such that u(x) # 0 for every x € A. Property (fi1) implies that

f'(s)s* — f(s)s > 0if s # 0. So, from Fatou’s lemma, we conclude that

o = liminf |.J'(uy)ug| = lim inf {QHukHQ — /[f’(uk)uz + f(uk)uk]}
k—oo k—oo Q

— liminf /Q F (w2 — F )]

k—o0
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= lim inf /RN [ (up)ui — f(ug)ug] = lim inf /RN [f' (g )iy — f (Tig) i)

k—o00 k—o00

> lim inf / ()@ — f (i) > / lim i [ ()22 — f ()] = / (e~ f ()] > 0,

k—o0 A k—o00

and the claim that ¢ > 0 is proved. Taking the inner product of (2.2.7) with u; we

obtain

so t, — 0 and from (2.2.7) we deduce If,(uy) — 0 as Iy, (ux) — 0 and this completes

the proof of the lemma.
Lemma 2.3.5 (Splitting) Let (ux) be a sequence in Ng such that
Io(ue) = d and Iy, (u) =0 in (D"(Q)).

Replacing uy by a subsequence if necessary, there exist a solution ug of (P), a number
m € N, m function wy,--- ,w,, in DY2(RY) and m sequences of points (yi) € RY,
1 < g < m, satisfying:
a) up — ug in DH(Q) or
b) w; are nontrivial solutions of (Pgx);
¢) lyil = +oo e lyp — yil = +o0 i # j;
m .
d) uy — ij(~ —yl) —uy in DYRY).
i=1
¢) d=1Io(ug) + Y Tpv(w;).
i=1

Proof. By Lemma 2.3.4 (u) is bounded and we can extract a subsequence, which
converges to uy weakly in DV2(2). We verify that ug solves (P). Indeed, by Lemma
2.34 for ¢ € C§°(Q2), we have

I (ug)p = /QVungpdm — /Qf(uk)gpdm — 0 as k — oc. (2.3.5)

By (b) of Lemma 2.3.1 and the fact that for p < 2*, (ux) — wg strongly in LP(I") where

[' is a bounded subset of 2, and using the mean value theorem

fug(x)) = flug(x)) = f(up(x) + 0(x)uo(z))(up(x) —ug(x)) with 0<6f(x) <1,
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(f2) and (2.1.2) we get

/ | f (ug) u0)|godx</ (|uk|+|u0|) (uk—uo)wdx—)() as k — oo,
suppy
and so

/VukV¢dx—/f(uk)¢dx—>/VUOVgpdac—/f(uo)godx as k—oo. (2.3.6)
Q Q Q Q

By (2.3.5) and (2.3.6), ug solves (P) and immediately ug € Ngo. Now set uj = uy — ug
and define u}, = 0 in RY \ , so u}, converges to 0 weakly in DV?(RY) and as we will see

in Remark 2.3.6, I}, (u} )u; — 0 and so
I (up vy, = / |V | — / flup)up — 0 as k — oco. (2.3.7)
Q Q
By (a) and (b) of Lemma 2.3.2, we have

luilDr2geny = luelpra@y) = luollpregsy +o(1) (2.3.8)

IRN(ullﬁ) = IQ(uk) — IQ(U()) + 0(1). (239)
Assume ui # 0 strongly in DV?(RY) (otherwise we have the claim), by (2.3.7)
0<n < uplpro@yy = Jav flurug +o(1). (2.3.10)

Then arguing as in Lemma 2.3.4, there is (yx) and § > 0 such that

/ lug|? > 6. (2.3.11)
B(yx,R)

Now consider @, = ui(- — yi), which is bounded, so passing to a subsequence there
(RM). We claim that u 2 0. Indeed if

@kl Le(B(0,R)) — 0 as k — oo this contradicts (2.3.11) and the claim is proved. Hence

is 4, — u in DY*(RY) and @ — w in L},

by the boundedness of u}, there exists w; € DV?(RY) such that ul(z — yi) — wy; # 0
weakly in D'?(R”) and the sequence (y;) € RY with y;, — oo as k — oo, since if (y})

were bounded, by passing to subsequence, we should find y' that y; — y' and

/ lug|? > 6 (2.3.12)
B(y',R)

and as above uj is bounded, so passing to a subsequence there is u' such that uj — u'

in DM?(B(y', R)) and u' # 0, which is contradictory with u;, converging weakly to 0 in
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DL2(RY). Moreover w; is a weak solution of (Pg~). The proof of this is Remark 2.3.6,
which is stated in what follows. Define u? := u, — w;(- — yi) then by arguing as before
uj satisfies

Ien (u?) — d — Ig(ug) — Iy (wy)

and if u /4 0 strongly in D'?(R”Y) (otherwise we have the claim) then there exists a
sequence {y2} € RN with {y?} — oo as k — oo and ui(x — y}) — wy # 0 weakly in
DY2(RY), such that ws, is a weak solution of (Pg~). Moreover any nontrivial critical
point u of Ipn satisfies Igxn(u) > ¢ > 0, so iterating the above procedure we construct
sequences w; and (y)). Since for every 4, Ipn(w;) > ¢, the iteration must terminate at

some finite index m.
Remark 2.3.6 We prove that wy is a weak solution of (Pgx)

Let ¢ € C°(RY), using the mean value theorem and (fs), by (b) of Lemma 2.3.1 we

have

" Vup(z — yp) Ve — flup(z —yp))e do

B /RN Vup(2)Veo(z +yp) — fup(2)e(z + yi) dz
_ /R () — So) — Sl + ) d= 4 o(1)

< / (o + u) — Flun)lolz + 4}) dz + / o+ ub) — F(ub)ep(z + ub) dz

RN\Bg

[ rtabete vy = [ pan)ple ) d+ o)
Br RN\Bpr

< Ol (Juol™ ™ + |uy

(- + yli)HLP/(]RN)ak,R

1

+C|(Juo* 7 + |ug

")+ Yl vy @vybr + o(1)

where ay g = [[u}l|zo(r), Or = |[Uoll o e v\ gy Since br — 0 as R — oo, and given

R, apr — 0 as k — oo, by above estimate we get

/ Vu(z — yp) Ve — flup(z —yp))p do — 0
RN

as k — oo. On the other hand, by (a) of Lemma 2.3.1, it is easy to see that

Vu(z — yp) Ve — flup(z — yp))e de —
]RN
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/ VunVp — f(wn))p du.
RN

So we get the claim and complete the proof of the lemma. 0

Corollary 2.3.7 (Compactness) Iq satisfies the Palais-Smale condition on Nq at every
level d € (c,2c).

Proof. Let (u;) be a (PS)g4-sequence for Ig on Ng. If d € (¢,¢) and (ux) does not have

a convergent subsequence then, by the Splitting lemma,

e>d=1Io(up) + Y  Ipn(wj) >

=1

if 1o =0
{ e oot (2.3.13)

cot+me>(m+1)c if ug#0

then in both cases, m < 2 and so m = 1. The hypothesis 2¢ > d > (m + 1)c implies
that it is not possible to have m = 1 and uy # 0, therefore uy = 0, which yields
Io(uy,) — Ign(wy) = d giving a contradiction with the uniqueness of solution of (Pgn).

Hence, I satisfies the Palais-Smale condition on N at every d € (¢, 2c¢). 0

Remark 2.3.8 If u is a solution of (P) with Io(u) € [c,2¢), then u does not change

sign. Since, if u is a solution of (P) then
0 = IH(u)u* = Jo(ut),
where ut := max{u,0} and v~ := min{u, 0} and So u* € Ng, now if u™ # 0 and u™ # 0

then
Io(u) = Io(u™) + In(u™) > 2c.

2.4 Existence of a positive solution

For R >0,y € 0Bs(yo), let us define
ER = f(wé%)w?]f.
]RN
Lemma 2.4.1 There exists C > 0 such that

en= | flwfw<Ccr "2 (2.4.1)
RN

for ally € 0By(yo) and R > 0 sufficiently large.
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Proof. It sufficient to take r = 2* and s = 1 in Lemma 2.2.12.

Note that the previous lemma implies

eg =0 as R — oo, uniformly for y € 0Bs(yo).

Lemma 2.4.2 There exists C' > 0 such that for all s,t > % ,y € 0Bs(yo) and R large

enough,
ER = f(sw(lf)tw;2 > CR W2, (2.4.2)

RN

Proof. For |z| < 1 and we R > 1 we have

1+ 2| <14z — Ry —v)| <1+ |z|+ R|(y —yo)| < 4R. (2.4.3)

Now by (f1), (2.4.3) and the decay estimates (2.2.1) there exists C' > 0 such that

f(swéz)twf = st /RN <fiﬁ))w§w5

RN

>1 f(%w(?) R R>1 f(%wé%) R R
=7 T JPoWy =7 1, r )Wo'y
RN Wo Bi(Ryo) 5 Wo

I f(%w(x)] /

> —| min w(z)w(x — Ry —
4 LEBl(O) sw(@) | Joen, ) (@) (v = 10))

B;(0)

> COR V-2
O
If we set s,t = 1 in the above lemma we have
(2.4.4)

ER = CRi(Niz).

Lemma 2.4.3 For every b > 1 there is a constant C' > 0 such that
[ st - slsufufe] < s 1] en,
Q

for all s € 10,b], y € 0B2(yo) and R large enough.
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Proof. Fix u € R and consider the function g(s) := sf(u) — f(su). By (2.1.2),

g'(s) = f(u) = f'(su)u < [f(u)| + C(s*Hu[*)
< Cluf*  Vselo1].
Hence, by the Mean Value Theorem,
|sf(u) = f(su)] = 1g(s) — g(1)| = [¢'(D)]]s — 1]

< Clul*|s — 1.

This inequality yields

=Cls—| [ ufEelr
RN

Now apply Lemma 2.2.12 and using that || < 1 we have
/ |s f(wiip) — f(swiv)|wi < Cls —1|O(eg) < Cls — 1] ex
RN

for all s € [0,b], y € 0B2(yo) as claimed. O

Proposition 2.4.4 There exists Ry > 0 and, for each R > Ry, a number n = ng > 0,
nr = ogr(1) such that
IQ(TfyUfy) <2c—n

for all A € 10,1], y € 0Bs(yo)-
Proof. Let us denote, for simplicity

si=Ty, N, =T (1-\),
we have that

(swo Y+ twa / |V (sw, B+ twR¢)| / (swo U+ twa)
Q
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=5 [vir S [ verr s [ Vedovgs)

_/Q (swhep) — LF(twfw) —/Q (swyt) + twyieh) — F(swyh) — F(twyp)

=5 [ IVador - [ Feufv) (245
+% /Q |V (w, )] = /Q F(tw!y) (2.4.6)
st /Q V ()Y () (2.4.7)

- /Q Flswlap 1 twlp) — F(swltp) — F(twfp) — f(swlt)twy — f(tufp)sult (2.4.8)

—/f swit) twRdJ /f tsz/J )swip (2.4.9)
0

The sum in line (2.4.5) is equal to Iy~ (sw) + o(er) since

(2.4.5) = on (s00) — T (su) / IV (w / Fswly)

32
— ow(sul) + 5 / IV (wl)? — [Vul] / Flswl) — F(swly)
2 JByy(0) Bax (0)

and by (2.2.8) Lemma 2.2.11, (2.4.1), (2.4.4) and s bounded by T we have

2
S
- [Vwgp|? = [Vug' [ = oler).
2 Bak (0)

On other hand, by the Mean Value Theorem, (f2) and Lemma 2.2.11 we have

/ F(sul) — F(swlf) = / F(swl + () swlp)(sul — swh)
By (0) Byk (0)

2%

<c / (Nl = C / wl? = o(er).
Bk (0) Bk (0)
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The sum gives that (2.4.5) = Iz~ (swl) + o(egr) and since wf is a least energy solution
of the limit problem (Pg~), by Lemma 2.2.4 (b) we have that I~ (swf) < c. Similarly

we have the same for the sum in line (2.4.6) and so

(2.4.5) + (2.4.6) < 2c+ o(ep).

As to (2.4.8), in Lemma 2.2.10 let 2* =2 <v <g—2andso 1+ % > %, now by Lemma
2.2.12 we have

= [ Flufv s o) = Flsuffe) = Feuf) = f(sufo)elit = feofv)sofy

< C(st)"+5 / (wWipwlp)+s < C(st) 5 / (whl)+s < CR-V-2059) = o(cp)
RN

RN
so we have shown that
(2.4.8) < o(eR).

Now like as line (2.4.5) we have

/Qf swit twa—i-/f twa )swil

= f(swghtwl + / ftw])swl + o(er)
RN RN

and so we can write the sum of the remaining terms as

(2.4.7) + (2.4.9) < 3tAVw§1/1wa¢ - /]RN f(swgHtw] — /]RN ftw)sw + o(er)

= st f(wf)wé% + st f(wé%)wf — f(swé?‘)twf — / f(twf)swé% + o(er)
2 JrN 2 Jrn RN RN
=5 [ sl = sl + 5 [ el = feluf
1 1
3/ f(swé%)twf —5 /RN f(twf)sw§ + o(er)

By Lemma 2.4.3 there is a constant C' > 0 such that

%/RN[Sf(wé%) — fswg))Jwy’ + 5 5 /RN[tf(uf) — ftwMwl < O(ls =1+t = 1)) er

for all s,t € [0, 7o),y € 0Bs2(yo) and R large enough. Moreover with Lemma 2.4.2, there
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is a constant Cy > 0 such that

1

1
-5 f(swé%)twf — 5/ f(twff)swé? > Cyer
RN RN

for all s,t > 1, y € OBs(yo) and R large enough. By Lemma 2.2.15, if A = 1/2, then
s,t — 1 as R — oo. So taking Ry > 0 sufficiently large and § € (0, 1/2) sufficiently small
such that for all A € [2 — 6,2 + 6], O(]s — 1| + |t — 1]) < L, we have

C
@47H%zu»§—§%R+d@)
for all y € 0Bs(yo) and R > Ry. Summing up, we have proved that
R R Co
Io(swy” +tw,’) < 2¢ — - €R + o(er) , (2.4.10)

for all y € 0Bs(yp) and R > Ry.
On the other hand, for all A € [0, 5 —6]U [ +6,1], y € dBs(yo) and R sufficiently large,
since if T}, < 2 then s = T{¥ A € [0,1 =20 or t = T)7 (1—A) € [1,1—20] and if T} > 2
then s = Ty*, A € [1+26,00] or t = Ty (1 — ) € [1 + 26, 00], in fact one of s or t is in
[0,1 —26] U [l + 26, 00] and so (2.4.5) + (2.4.6) < 2¢ — v+ O(eg). By Lemma 2.2.4(b),
there exists v € (0, ¢) such that

Ien(rwl) <c—v  V¥re[0,1—26] U1+ 25, 00]
also with our previous estimates we have (2.4.7)+...4(2.4.9)= O(eg), and so
Io(swf + tw]) < 2c — v+ O(eg). (2.4.11)

Inequalities (2.4.10) and (2.4.11), together, yield the statement of the proposition.  [J

Lemma 2.4.5 For any 0 > 0, there exists Ry > 0 such that
Io(TEUY,) < ¢+,
for A =0 and every y € 0Bs(yo) and R > R,.

R

Proof. T is bounded uniformly in A,y and R. As w]

(Pgn), like we saw for (2.4.5) we have

is a ground state of problem

Y
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< Iyn (T(fwa) + o(er)
< max Ipn(sw)) + o(er) < ¢+ o(er).

This proves the lemma. 0

Let B : DM2(RY)\ {0} — R” be a barycenter map, i.e. a continuous map such that, for
every u € DV2(RY) and every isometry A of RY,

Blu(-—y)) = B(u) +y and  BluoA™) = A(B(u)). (2.4.12)

Note that (u) = 0 if u is radial. Barycenter maps have been constructed in [4,9].

Lemma 2.4.6 There exists § > 0 such that
Blu) #0, Yue€ NonI§™

where 1§ = {u € HY(Q), Io(u) < c}.

Proof. Arguing by contradiction, assume that for each k € N there exists v, € Ny such
that Io(vy) < co + 3 and 8(vx) = 0. By Ekeland’s variational principle [29], there exists
a (PS)g-sequence (uy) for In on N at the level d = cq such that ||uy — v — 0 |24,
Theorem 8.5]. As cq is not attained, Lemma 2.3.5 (splitting) implies that there exists
a sequence (y) in RY such that |yi| — oo and |lug, — w(- — yi)|| — 0, where w is the
(positive or negative) radial ground state of (Pgrn). Setting 0x(z) := vg(z + yx), and

using properties (2.4.12) and the continuity of the barycenter, we conclude that

—yp = B(vr) — yr = B(0x) = B(w) =0

this is a contradiction. O

Proof of Theorem 2.1.2. We will show that I has a critical value in (¢, 2¢). By Lemma
2.4.6, we may fix 0 € (0, ) such that

Blu) #0, YueNgnNI§™.

Proposition 2.4.4 and Lemma 2.4.5 allow us to choose € (0, ) and R > 0 such that

[Q(Tﬁyle\?y) <

2c—n forall A € [0,1] and all y € 0Bs(yo)
c+6 for A\=0and all y € 9Bs(yo).
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Define « : Ba(yo) — No N ]éc—n by
a((1=Nyo + Ay) =T, UY,  with A €[0,1], y € 0Bs(yo).

Arguing by contradiction, assume that I does not have a critical value in (¢, 2¢). As,
by Corollary 2.3.7, Iq satisfies the Palais-Smale condition on Ny at every level in (¢, 2¢),
there exists € > 0 such that

IVaulo(w)|| =&, Yu € NonIyte+d,2c—).
Hence, the negative gradient flow of I on Nq yields a continuous function
p: NanN [écin — NgN [g;ré

such that p(u) = u for all u € No N I5™ ( see [2] or [48], Lemma 5.15). Now we define
['(z) := (BopoaorT)(x), where 7(xz) = x + yo is a normal transfer. By Lemma 2.4.6
I'(z) # 0 and so the function & : By(0) — 0B,(0) given by

is well defined and continuous. Moreover, if y € 9Bs(yp), then

a(y) = T(fyU(fy = T(fwa e Nagn [f;r‘s

and hence
(Bopoa)ly) = B(Ty,w) =y.

Therefore, h(z) = @B(m) — yo = x for every x € 0B»(0) and since by Brouwer Fixed
Point Theorem such a map does not exist, Io must have a critical point u € Ny with
Io(u) € (¢,2¢). By Remark 2.3.8 u does not change sign, now if v > 0 with the maximum
principle, we get u > 0 is a solution of (P). On other hand if v < 0, then by oddness
of f, f(u) < 0 and so —u is a positive solution. This proves that problem (P) has a
positive solution.

Now we can write (P) as

—Au = au

N
2

loc lo (]RN)
for all 1 < p < oo and so u € W,2’(RY) and by Sobolev embedding u € Cl(zcli?(RN),

loc

(RY) then by Brezis-Kato theorem [17] u € LY

_ f)
where a = ==, if we show a € L loc

now let p > N we have u is Holder continuous and by continuity of f we have f(u) is

hélder continuous and so by elliptic regularity theorems, u € C%(RY) and so u is classic
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N
solution. In order to complete the proof we show a € L2 (R"Y). By (f2) we have

(@) = 1 < =

&/wmﬂSO/wW5W=0/w9<w
N T T

for any open set I' CC R¥. Hence the theorem is proved.

and so
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Appendix

In this section we show and prove some useful properties of Orlicz space.

Lemma 3.0.1 (a) If v € L? + L9, the following inequalities hold:

1

,WHUHM(M}

max{|[v[|pa@mr,) — 1

< |[v|lzrsra

< max{||v|| pa@mr,), |Vl e}

(b) Let {vi} € LP + L9 and set Ty = {x € Q : |vg(x)| > 1}. Then {vp} is bounded in
LP + L% if and only if the sequences {|U'|} and {||vi|| pa@nr,) + |kl ze(r,) } are bounded;

(c) f is a bounded map from LP 4 L9 into LP N LY.

Proof. (a) First we prove the inequality

||U||Lp+Lq < maX{HUHLq(RN\FU)a HUHLP(FU)}-

Let ¢ € LP N LY we have

/RN v(z)p(z)dx /RN\FU v(x)o(z)dz —|—/ v(z)(x)de

Ty

< [[vlla@m e 1€l o @avry) + 0l ewn 191l o,

< max(|[olpa@mr,)s [0llzewn) QN o @ave,y + 190 2r )
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By equivalent norm obtain
[ollzosre = ||Vl Lo are < max{|[vl|lpa@mr,), [[0]le@,)}-

Next we prove the inequality

1

Tn s Pl < llvlleesso.

max{[|v[|a@mr,) — 1

Since p' > ¢’ we have |||,y < |Fv|%||¢||m’(rv)a then for ¢ € L¥ N LY we have

[ v(z)¢(x)dx
|v]|Lp4re = sup
i 620 |9l Lo + 18]l Lo

> sup fv(x)gb(x)dx
6£0,6N\ =0 |9l 1o + (10| o
d
B R L cors
oz0.6er () 191l 0yy + 10l Lo ()
> sup fv(a:)¢(2dx
s20.9eL () (|6l o p,) + ITol 70 19 o

1 [ v(z)p(x)dx

= ————  sup
1+ |Fvl% $#0,6€L?' (T'y) ||¢||LP'(FU)

1
= a>p HUHLP(FU)
L+ || #a

and

L ol < Ilo]
— 5 |Vl|lLr(ry) = [|V]|Le+La-
1+ D

So, in order to complete the proof of inequality it remains to show that

HUHL‘I(RN\FU) —-1< HU||LP+Lq.
Let € > 0, by (2.2.3) there exists v; € L? such that v — v; € L9 and

[vllzora = [[oallpe + v —v1lle — &

> (/ |U1|p+/ [0a]) M7
(RN\D,)NTy, (RN\T'y)\T',

+(/ |U—U1|q+/ |U—vl|q)1/q—5. (3.0.1)
(RN\TW)T, (RN\L,)\T,



Chapter 3. Appendiz.

70

Now set
5(x) = { v(z) for ze€ RY\T,)NT,,
vi(z) for z € (RN\T,)\T,.

Since RN\ T, = {z € RY;v(z) < 1} and T,, = {z € R";v;(x) > 1} we obtain

o(z)| = { lv(z)] <1< |v(z)] for ze€ (RV\T,)NT,,
lui(z)] <1 for z € (RV\T,)\T,,.

Now, since p < ¢, we have

/ |U1 |p + / |U1 |p
(RN\[',)NTa, (RNA\T')\T'oy

> [ o+ [ 317 = 111
(]RN\FU)OFUI (RN\T,)\I'y

1

Moreover,

/ |U—U1|q:/ |U—ﬁ|q
(RN\F’U)\F’Ul (RN\F’U)\F’Ul

and since v — ¥ = 0 in (RV\ T,) NT,,, we get

/ lv —v1]?
(RNAT,)\T'wy

= [ [ e alr= o ol
(RN\T',)\yy (RN\T',)NT"

v1

By (3.0.1), (3.0.2) and (3.0.3) we easily deduce that

lolrrza 2 60 Ty, + 10 = lla@mr,) — e

SO, if H’DHLq(RN\FU) —1< O, by (304) obtain

[vllzeqza > v = Ol Lamir,) + 19] La@iyr,)y — 1 =€ 2 ||v]|pa@ainr,) — 1 — ¢,

and if H77|’Lq(RN\Fv) -1 Z O, by (304) obtain

lvllzesza > [[v = Ol Lamir,y + 10] La@iyr,) — € 2> 0]l La@vir,) — €

Finally, since € > 0 is arbitrary, (3.0.5) and (3.0.5) imply the claim.

(3.0.2)

(3.0.3)

(3.0.4)

(3.0.5)

(3.0.6)
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(b) The "if" part clearly follows from the second inequality in (a). Now we prove the
"only if" part, so we assume that |vy| is a bounded sequence in LP 4+ L9. Then, by the

first inequality in (a), there exists ¢ > 0 such that, for any positive integer k,

1
q—p H k“Lp ka) S C
L4 [Ty [ 7
So, since |vg(x)| > 1 for x € Ty, , we have
Ll < [ JuP <00+ D5, 3.0
Ty,
and so {|T",, |} is bounded, since (4F)p=1—"% < 1. Then, from the first inequality in

(a) we find that

{”UkHLQ(RN\I‘k) + HUkHLP(Fk)}

is bounded.

(c) Let v € LP + L9, since ¢ = p + « for v > 0 and by (f2), for any ¢ € LP(RY) we have

[ ()l

—c [ s C [ gl
Iy

RN\T,,
—c [ el [ ol o
RN\T, Ty
sa/ Mwmmww/ B[P0 dz) P + CllollZ e 6]l o
RN\T,, RN\T,

sC(/ Ivlqd:v)””'</ |01 dx)? + Cllollfy i, 0]l o)
RN\T, RN\T,

Ol s 8y + Cllolrie [0l ogeny, (3.0.8)
and by part (a)
f(v) e L”. (3.0.9)

Now let ¢ € L4(RY), by boundedness of (I',) we have

[ )l

=0/ IW*WM+C/LW*WM
RN\FU Fv

0|l Lagen) + O[T, |42V ( A [0P) | ]| ooy

< C’HUHLq (RN\T,)
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< Ol 6l a@my + CIL TP ]2 6] sury, (3.0.10)
and by part (a)
f(v) e L”. (3.0.11)

Finally (3.0.9) and (3.0.11) imply that f maps L? + L9 into L” N LY.
Now we show that f is bounded. Let {v;} be bounded sequence in LP + L7 by part (b),

the sequences

{ITl} and {|lvellpa@y\ryy + okl o }

are bounded. Here (3.0.8) and (3.0.10) imply that f(v;) is a bounded in L* N LY.

Lemma 3.0.2 (a) If u and v are in a bounded subset of LP + L9, then f'(u)v is in a
bounded subset of LV + LY :

(b) ' is a bounded continuous map from LP + L7 into LP/P=2 4 [4/172,

Proof. (a) By (f2) we have

| 7w

<C [ fupellde+ € [ s
Ty NIy

—c [ rpelde [l ?oliglds

Ty, u>v Ty, uv

+O/ |W*MWM+O/ [l g]dz
Ny, u>v Ny, u<v

<c [ ureldesc [ popiields
Ty, u>v Ty,u<v

+C [u|" |¢|dx + C [0l dx

ON\Dy,u>v Ny, u<v

sc/‘MWWWM+c/‘MWHmw
Ty Ty

—i—C/ |u|q_1|¢|dx+0/ 0|7 Y| ¢p|dx. (3.0.12)
O\l O\L,
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Now let g = p+ a, @ > 0 and ¢ € LP()) we obtain

c/ hMﬂmM+c/rw*wm

O\ Ty

=q/ WWWWWM+C/LW*WM
O\, Ty

1 1
<[ ptpds)” ([ tertueds) + i, ol
O\, Oy

< Cllull¥For.

Ol + C”“Hig(lp“) Al Lr(0)- (3.0.13)

So by (3.0.12) and (3.0.13), f'(v)u € LP". On other hand for ¢ € L(Q) we obtain

C [T ¢ldz +C | |ulP~p|dx
O\l Ty

< Cllulldaionr 19l a@) + CITuP 2 |l 6] oo (3.0.14)

Lp(Ty,)

Since |I',| is bounded, by (3.0.12) and (3.0.14), f'(v)u € L?. By (3.0.12), (3.0.13),
(3.0.14), and (b) of Lemma 3.0.1 we get the claim.

(b) Let u € LP + L9, ¢ = p + a with a > 0 and ¢ € LP/?(Q), by (f») we have

"(u)pdx

<C [ ol C [ fur2iglis
1%

O\l

<c/ uPlul*|pldz + C | a2 |dz
Fu

Fu
_2 2
p
<C (/ |U|PIUIada;> (/ |¢|P/2‘u|adx> + Cllull i 10l Lovzge)
T O
2 _
< Clull 85 SN Loz + Clluloe, 6l 1oz e- (3.0.15)

So, f'(u) € LP/?=2, On other hand for ¢ € L¥?(Q) we have

"(u)odx

sc/ hMﬂmm+o/rw*wm
O\l u

sq/ ww%mww+c/rw*wm
O\l Ty
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q-2 p—2 2
gc(/ \u|qczx> ' (/ |¢|q/2d:v) Lo, (/ \u|pdx> ’ (/ |<;§|Q/2dx)q
O\l O\l O\T, O\T,

2(g—p)

< Cllulfaionr 190 o2y + CITul ™7 ull o 19] Lor2qey. (3.0.16)

Since |T,| is bounded, f'(u) € L%9~2 and by (3.0.15), (3.0.16) and (b) of Lemma 3.0.1

we get the claim.

Lemma 3.0.3 The map (u,v) — wv from (LP + L9)?% in L% 4 L% is a bounded map.

Proof. We set
A1 - Fu N Fv

={z el :v(r) <1 |ulx)v(x)] > 1}
={zel, ul) <1, u(x)v(z)] > 1}.

Then we have I'y,, = A; UAyU A3 and by (b) of Lemma 3.0.1, |T'y,| < 2(|0]+T]) < oo.
Now we set I; = [, |uv|P/*dz for j = 1,2,3. By hélder inequality we obtain

2 2
I = / wol?2dz < |[ull22r, + 0122,
1

I :/ luv|P2dx §/ luv|P/?dx
As TuN(Q\T)

1/2 1/2

< (/ \u|pd:v> (/ \v\pdx)

Iy O\
9 a
< ||U||%(ru) (/ |U|dex> |A2|(1
O\T,

l\.’)\»—‘

2 2 —
e R e A
and likewise
2 2 _
N A [ e M L

So

wv| g2y < Clullo,) + [0llzos) + 1l Lo 0l Lagyr,)  Dul /72

Fv‘qu/pq)'

vl oo |1l Lagra)
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Hence, by Lemma 3.0.1, we get that ||uv|,.2q\r,,) 13 bounded. In the same way we set
By =(Q\T,)N(Q\T,)
={xel,:ux) <l |u(z)v(r) <1}

Bs ={z el :v(z) <1, |u(z)v(z)] <1}.

Then we have Q\ T, = By U By U Bs. Now we set [; = [ lw]|??dz for j =1,2,3. By

holder inequality we obtain

2 2
/mem<wﬂmr+mmmm

I = luv|"2da :/ luv P2 |uw| 1P 2 dx §/ luv|P 2 da
Bs Bs LyN(Q\Cw)

1/2 1/2
()" ([ )
v Q\Fu

P

2 q 24 _p
<Hw%FU(LW\M%¢Q By|0Y)

D=

2 2 _
< [l lullto Tl 7772
and likewise
2 2 _
Iy < [ull e Il oy [Tl /22,

So, like as above and by Lemma 3.0.1, we get that ||uv|| 1420\ r,,) is bounded. Moreover,
for any ¢ € LP/P=2 N L9/972(Q)) we have

/ uvpdr = / uvpdr + / uvopdr
Q Q\Fuv uv

¢||Lq/q—2(9\rw)

< ”uv”LT’/Q(FuU)||¢||LP/P—2(FW) + |uv||L‘I/2(Q\Fm,)

< maX(HUUHLW(rw)’ HUUHLW(Q\FW))(H¢HLP/H(FW) + H¢HL‘1/‘1*2(Q\FM))'

Hence, by a duality argument, we get that uv € LP/? + L%2(Q) and by boundedness of

|uv|l Lasznr,,) @and ||uv]| ez r,,) We get the claim. O

Lemma 3.0.4 The functional F : LP + L? — R defined by
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is of class C* and we have

F'(uo)v = /Q fug)vdz, (3.0.17)

F" (ug)vw ::/Qf'(uo)vwd:v. (3.0.18)

Proof. Step 1: Existence of the first derivative of F at wuy.
To verify that F is differentiable at uy and that (3.0.17) holds, by (b) of Lemma 3.0.1
and by the fact that

[ Fw+0) = Fluo) = flayvds = [ (o + 0,00
Q Q

where 0 < 0, < 1, it is enough to show that

. Jo [/ (uo + O,0)v*dx _

v [0l o4 Lo

Since v — 0 in L? + L% by (a) of Lemma 3.0.2 we have f’(up + 6,v)v is bounded in
L¥ N LY, and we get the claim.

Step 2: Existence of the second derivative of F at w,.

We will show that

sup /Q[f(u(] +w) — f(ug) — f'(ug)wjvdx — 0

lvollzp4ra=1

as ||w| Lryra — 0. We can write

/Q[f(uo +w) — f(ug) — f'(ug)w|vdx = /Qf’(uo + 0,w) — f'(ug))wvdz

where 0 < 6, < 1. Since ||v||zrsre = 1 and [|0w]|zryre < || w||zprze — 0, by Lemma
3.0.2, we have that f’(ug + 6,w) — f'(uo))v is bounded in L¥ N L7, and so, we get the
result.

Step : F is of class C?.

We will show that

sup /Q(f/(uo +u) — f'(ug))vwdr — 0

lwllzp4La=|vllLryra=1
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as ||ul|r+re — 0. We can write

[ o ) = o)z = ((F (o +0) = £ (o) o)
Q
where by Lemma 3.0.3 uv is bounded in L?/2+ L9/% | and, by (b) of Lemma 3.0.2 we have

that f'(ug + u) — f'(ug) — 0 in L®P/2" 4 LW/ as 4y — 0 in LP + L9, and this complete
the proof. 0

Lemma 3.0.5 If the sequence {uy} converges tow in LP+L9, then the sequence / f (ug)ugdz
Q

converges to/f(uk)ukdx.
Q

Proof. By the Mean-Value Theorem exists 0 < # < 1 such that

/Q |f(ur)ue — f(u)uldx

< / | ) o, — iz + / ) — ) fulda

< / | ) s, — ez + / (g + 0u0) g — fuldz

since by Lemma 2.2.1 (c¢) {f(ux)} is bounded and by Lemma 3.0.2 (b) {f'(ux + 0u)|u|}

is bounded, we get the claim. 0
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