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RESUMO

Este trabalho visa desenvolver uma métrica híbrida de qualidade de vídeo sem referência para
aplicações de transmissão digital, que leva em consideração três tipos de artefatos: perda de pa-
cotes, blocado e borrado. As características desses artefatos são extraídas a partir das sequências
de vídeo a fim de quantificar a força desses artefatos. A avaliação de perda de pacotes é dividida
em 2 etapas: detecção e medição. As avaliações de blocado e borrado seguem referências da lit-
eratura. Depois de obter as características dos três tipos de artefatos, um processo de aprendizado
de máquina (SVR) é utilizado para estimar a nota de qualidade prevista a partir das características
extraídas.

Os resultados obtidos com a métrica proposta foram comparados com os resultados obtidos
com outras três métricas disponíveis na literatura (duas métricas NR de perda de pacotes e 1
métrica FR) e eles são promissores. A métrica proposta é cega, rápida e confiável para ser usada
em cenários em tempo real.

ABSTRACT

This work aims to develop a hybrid no-reference video quality metric for digital transmission
applications, which takes into account three types of artifacts: packet-loss, blockiness and bluri-
ness. Features are extracted from the video sequences in order to quantity the strength of these
three artifacts. The assessment of the packet-loss strength is performed in 2 stages: detection and
measurement. The assessment of the strength of blockiness and blussiness follow references from
literature. After obtaining the features from these three types of artifacts, a machine learning al-
gorithm ( the support vector regression technique), is used to estimate the predicted quality score
from the extracted features.

The results obtained with the proposed metric were compared with the results obtained with
three other metrics available in the literature (two NR packet-loss metrics and one FR metric).
The proposed metric is blind, fast, and reliable to be used in real-time scenarios.
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1 INTRODUCTION

The consumption of internet services has grown sharply worldwide, especially over the last 10
years. The internet has become an essential tool in modern life. Social networks have conquered
considerable space and most people have Facebook, Instagram or Twitter accounts. The use of
smartphones and tablets and their applications have also proliferated. The applications are the
most diverse possible, like online chat, browsers, maps, music readers, radio and games. Due
to the wide use of smartphones, social network and high speed connections, video consumption
has increased and it now corresponds to 80 percent of the total bandwidth used worldwide [1].
As a consequence, the need to assess the quality of videos that travels over the network has also
increased over the last years.

Subjective quality assessment methods are considered the most precise way of estimating
video quality [2]. These methods consist of performing experiments in which non-experts hu-
man participants (usually 15 - 30) are asked to rate the quality of a set of test videos. To ensure
reproducibility and precision, these experiments are performed in controlled environments, fol-
lowing recommendations by International Telecommunication Union (ITU) [3]. For each test
video, the average of the scores given by all participants, i.e. Mean Opinion Score (MOS), pro-
vides an estimate of the quality of that video as perceived by human observers. MOS values
are generally used as a benchmark to test objective video quality metrics, which are basically
algorithms that estimate video quality by making physical measurements of the signal.

Depending on the amount of information that is required at the measuring point, objective
metrics can be classified into three categories: Full Reference (FR), Reduced Reference (RR)
and No-Reference (NR) methods. Figure 1.1 illustrates these three types of metrics. Notice
that, FR methods perform a comparison between original and test videos. This means that both
test (received) and reference (original) videos must be available at the measuring point. For RR
methods, some characteristics of the original video are extracted at the sender and transmitted to
the receiver. At the receiver, the characteristics of the test video are acquired and compared to
the characteristics of the original video. Although RR methods do not require the full original,
they still need partial information about it. NR methods estimate the quality of a video without
requiring the original. Since the original videos are not readily available in real-time scenarios,
such as wireless communications, video over IP application, cable TV, Digital TV, etc. The
development of NR methods is a rather important area of research.

As mentioned previously, the most accurate way to determine video quality is by measuring
it using psychophysical experiments with human subjects. Unfortunately, these experiments are
expensive, time-consuming and hard to incorporate into an automatic system. Therefore, there is
currently a need for fast and accurate algorithms (objective video quality metrics) that can provide
a measure of the video quality, as perceived by human users. Figure 1.2 shows how the objective
and subjective scores are compared to validate the objective quality assessment algorithms. If the
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Figure 1.1: Illustration of the 3 types of objective video quality assessment methods: Full Reference (FR), Reduced
Reference (RR) and No-Reference (NR).

Figure 1.2: Illustration of how the correlation between objective and subjective scores is performed.

correlation index between objective and subjective is close to ‘1’ (or ‘-1’), the objective quality
assessment algorithm is considered to have a good performance.

Video quality is still far from being a mature research topic and limited success has been re-
ported from evaluations of quality models, which are commonly tested under limited conditions
with a small diversity of distortions and content [4]. Most of the achievements in the area of video
quality have been in the development of full-reference video quality metrics that evaluate annoy-
ance caused by compression artifacts [5,6]. Unfortunately, as mentioned earlier, FR metrics have
limited applications and cannot be used in most real-time video transmission applications, like for
example, broadcasting and video streaming. In such cases, the undistorted signal (reference) is
not available or not accessible at the receiver side and, thereby, requiring even a small portion of
it becomes a serious impediment. But, although human observers can usually assess the quality
of a video without using the reference, designing a NR (blind) video quality assessment method
is a difficult task. Considering the difficulties faced by the FR metrics [7], this is no surprise. A
common approach taken by most NR metrics is to try to estimate the strength of the most relevant
impairments (e.g, blockiness, blurriness, noise, and ringing) [8].

Among the most important objective video quality metrics, it is worth mentioning some FR,
RR and NR works. As an example of an FR metric, we can cite the seminal work of Wang et al. [5]
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who proposed a quality measure that is based on the picture structural similarity (SSIM). The
work of Sarnoff [9] predicts image quality by taking into account a measure of the just noticeable
differences (JND) between original and distorted images. As an example of a RR metric, we can
cite the metric proposed by Gunawan and Ghanbari [10] that is based on a discriminate harmonic
measure of the gain/loss information. Kanumuri et al. [11] proposed a RR method that estimates
how packet-loss artifacts affect video quality. Finally, the NR metric proposed by Mittal et al. [12]
builds a ‘quality aware’ collection of statistical features that is based on a simple space domain
natural scene statistic model. The NR metric proposed by Moorthy et al. [13] is based on the
hypothesis that statistical properties of natural images are altered when they are distorted, making
them look unnatural.

1.1 PROBLEM STATEMENT

The Internatinal Telecommunication Union defines Quality of Service (QoS) as a set of chara-
teristics of a telecommunications service that targets user satisfaction [14, 15]. QoS measures are
basically physical measurements of the telecommunication services and structure that estimate
the system performance. Commonly used QoS measures are jitter, packet loss rate, delay, and
bandwith. On the other hand, Quality of Experience (QoE) measures take into account the user
satisfaction with the received audio-visual content [15]. More specifically, it measures the overall
experience of the final user, taking into account the way humans consume audio-visual contents.
It is worth mentioning that QoE is affected, not only by the quality of received signal, but also by
the content, physical environment, display device, reproduction playout, and the user expectation.

In subjective experiments, participants usually evaluate video quality by giving a numerical
score or an adjective (excellent, good, fair, poor or bad) [16] to describe the quality of the image.
It is known that to estimate quality human observers take into account factors like color bright-
ness, light intensity, contrast, sharpness, and the absence/presence of distortions [15]. According
to Baraković et al. [17], QoE evaluation is affected by the following aspects: (1) technological
performance, (2) usability, (3) subjective aspects, (4) expectation, and (5) context. Thus, QoE
encompasses more than a score, it represents a numbers of aspects that are considered important
by users when watching audio–visual content. Figure 1.3 depicts a possible relation between QoS
and QoE [15]. This graph shows that the relation between QoS and QoE is not well defined be-
cause QoE depends on several subjective factors. For example, if a video has a very poor quality,
viewers might simply not watch it. Therefore, only QoE can be used to quantify acceptability.

As expected, quality metrics play an important role in communications quality control sys-
tems. Although there are several subjective factors that influence QoE, the quality of the received
content has a direct effect on the user satisfaction and, consequently, on the acceptability of the
service [18]. Although there has been a lot of advances in the development of FR image quality
assessment methods, the design of a NR metric is still a big challenge. In order to be used in real-
time applications, NR methods need to be fast enough to deal with hundreds and thousands of

3



Figure 1.3: Relation between QoS and QoE measures [Extracted from [15]].

frames per second (fps), i.e. the algorithm cannot be complex. Also, one particular scenario that
still demands a lot of work is the digital transmission, which includes the internet based video
transmission. Up to date, there is no NR video quality metric that can estimate the quality of
streamed video in real-time.

1.2 PROPOSED APROACH

In the literature, among the quality metrics available for digital video transmission applica-
tions, we can cite the work of Garcia et al. [19] who implemented an audiovisual metric targeted
at network quality monitoring. Farias et al. [8] proposed a no-reference metric based on a com-
bination of blockiness, blurriness, and noisiness artifact measurements. Winkler [2] proposed
a no-reference hybrid video quality metric that combines network status information and data
extracted from the video bitstream. Babu et al. [20] studied the effect of block-edge and packet-
loss impairments in video streaming applications. So, very few pixel-based NR quality metrics
are able to measure degradations introduced by digital transmission, like packet-loss and jerki-
ness [21].

In this work, we propose a hybrid NR video quality metric that measures three different types
of digital transmission degradations: packet-loss, blockiness, and bluriness. The main goal of this
work is to develop a no-reference video quality metric for digital transmission applications. The
proposed approach is based on the extraction of features that characterize these three different
types degradations. A machine learning algorithm is used to combine the extracted features and
obtain an estimate for the video quality. The proposed metric is blind, fast, and reliable enough
to be used in real-time scenarios.

To validate our approach, the proposed metric is tested using several video quality databases.
Since packet-loss is one the of most relevant artifacts in digital transmission, we first design a
blind packet-loss metric that is able to detect and estimate the strength of this type of artifact.
Then we used the features used in the packet-loss metric, along with features used in blurriness

4



and blockiness metrics, to design the proposed metric.

1.3 ORGANIZATION

This dissertation is divided as follows. In Chapter 2, we give the background to the material
presented in this work, describing basic aspects of video transmission and compression, common
video degradations, popular video quality metrics, statistical measures and common video quality
databases. In Chapter 3, we propose the proposed methodology. In Chapter 4, we present our
results. Finally, in Chapter 5, we present future works and conclusions.
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2 DIGITAL VIDEO BACKGROUND

In this chapter, we present the basic background needed for this work, including a very brief
description of video compression algorithms, a description of the most common video degrada-
tions, a review of a set of popular video quality metrics, and a review of the machine learning
algorithms and statistical measures used in this work.

2.1 VIDEO COMPRESSION

Compression refers to the process of reducing the amount of data required to represent a given
quantity of information [22]. There are two types of compression: lossless and lossy. In lossless
compression, data is perfectly reconstructed without any loss when compared to the original data.
Huffman [22], Gollomb [22], Arithmetic [22], LZW [22] are some examples of these types of
compression algorithms. In lossy compression, the algorithm discards nonessential information
that is considered less perceptually relevant, according to human visual system models [22]. This
allows for a much higher compression rate. Examples of lossy compression algorithms are the
JPEG family of image compression algorithms and the MPEG and the ITU families of video
compression algorithms [22]. For instance, H.264 (joint MPEG/ITU algorithm) is used in the
Brazilian Digital TV system.

Given that our work focuses on video, we briefly describe the family of MPEG/ITU com-
pression algorithms. MPEG uses the same principles of the JPEG algorithms, which is a DCT
block-based lossy compression algorithm [22]. Besides reducing spatial redundancy like the im-
age compression algorithms, video compression algorithms also reduce the temporal redundancy
between video frames. With this goal, most video compression algorithms use motion estimation
and motion compensation algorithms. In the family MPEG compression algorithms, the video
frames are split into 8x8, 16x16 or 32x32 pixels depending on the type codec you use. MPEG-2
frames are divided in macroblocks (MB) of 16x16 pixels. To estimate motion, each MB in the
current frame is compared to a set of MB in the previous frame, as shown in Figure 2.1. The simi-
larity between these MBs is calculated by taking the sum of absolute differences (SAD) measure.
The most similar MB in the previous frame is chosen as a ‘prediction’ of the current MB. The
algorithm encodes the difference between current and predicted MB position and the position to
the predicted MB.

Two types of frame coding are used in MPEG: intra and inter frame coding. If intra frame
coding is used, the coding is performed independently of previous (or subsequent) frames. On
the other hand, if inter frame coding is used, MB in the current frame are compared to MB in
the previous (or subsequent) frames and only the prediction error and the MB position is coded.
Frames in MPEG are split into Group of Pictures (GOP), which contains an I (intra) coded frame
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Figure 2.1: Interframe Motion Compensation (Extracted from [23]).

Figure 2.2: Example of a video frame severely affected by packet-loss artifacts.

and a set of P (previous) and B (bidirectional) coded frames. One parameter of the algorithm is
the number of P and B frames in a GOP.

2.2 VIDEO DEGRADATIONS

In this section, we briefly describe the most common degradations present in digital video
transmission scenarios: packet-loss, blockiness, and bluriness.

2.2.1 Packet-Loss Artifacts

Packet-loss is an artifact that is generated when packets are lost during the transmission pro-
cess. Packets may be lost during severe channel transmission conditions or severe traffic conges-
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tions. You can lose MPEG slices, IP packets or TS packets. When packets are lost, information
corresponding to areas in the video frames are lost. Compression algorithms generally use error
concealment algorithms to mask these losses. But, if the lost packets belong to I and P frames,
the degradations may propagate for several frames. Therefore, the impact of packet losses on the
video quality depends on their corresponding temporal and spatial position in the frame and the
relevance of their content.

Figure 2.2 illustrates the visual effect of a packet-loss in a frame. Notice that, the blocks
affected by the packet-loss artifact can be easily perceived. This happens because, although the
decoder tries to predict the missing information, it fails to recover all original information. In this
figure, we can notice how the visibility of the artifact is affected by content. For example, the
robot’s head, arms, body, and background are severely affected by the packet-loss artifact. When
viewers watch this video, they perceive it as having a poor quality because of the presence of
these highly annoying artifacts.

It is worth mentioning that packet-loss artifacts do not occur uniformly over the frame. As
mentioned earlier, their behavior depends on the digital transmission conditions. As a conse-
quence, distortions can affect any part of the picture frame and, as shown in Figure 2.2, these
distortions are not correlated to one another. In other words, not all frames may be affected by
packet-loss artifacts, which are also generally not uniformly distributed in time and space.

2.2.2 Blockiness Artifacts

Blockiness is an artifact that is generated as a result of the compression process. As mentioned
earlier, compression algorithms split frames into blocks. Each block is coded independently, i.e.
different compression parameters may be used for different (sometimes neighboring) blocks. The
blockiness effect is created when differences between neighboring blocks is visible, what is more
frequent in high compression rates.

Figure 2.3 depicts the effect of a blockiness artifact in a video frame . In this particular frame,
the blockiness artifacts are spread all over the picture frame. It is important to mention that
the blockiness artifact affects the picture frame uniformly. However, depending on the content,
blockiness may be more or less visible. For instance, it is easier to see the artifact in the areas
showing ‘a man riding a bike’ and ‘a woman wearing a pink t-shirt and black pants’. Nevertheless,
the artifact is less visible in the buildings in the background.

2.2.3 Blurriness Artifacts

Blurriness is an artifact that is generated as a consequence of discarding high frequencies,
causing the image to loose sharpness or have softer edges. Figure 2.4 shows the blurriness effect
in a frame. Although there are seven people in the picture, the viewer cannot clearly identify all
of them because of how blurred the picture looks. It is also possible to see the effect on the grass,

8



Figure 2.3: Example of a video frame containing blockiness artifacts.

Figure 2.4: Example of a video frame containing blurriness artifacts.

trees and river.

2.3 OBJECTIVE QUALITY ASSESSMENT METHODS

In this section, we describe a set of quality metrics that are currently used in image quality.
The set includes FR and NR metrics that are considered relevant to this work.

9



2.3.1 Data Fidelity Metrics

Data metrics are metrics which simply compare the pixels of an image or a video, without
taking into account their content and their relation to other pixels. One of the most famous FR
data metrics is the mean square error (MSE). MSE has been widely used in signal processing
applications due to its simplicity and physical meaning. MSE is calculated using the following
equation:

MSE(Io, Id) =
1

MN

N∑
n=1

M∑
m=1

(Io(n,m)− Id(n,m))2 (2.1)

where M and N are the total number of rows and columns of the image. Notice that MSE is
fast, easy to understand and implement. As any quantitative full reference quality metric, MSE
requires the original (reference), Io, and the distorted (test),Id , images. So, MSE can be also
classified as a signal fidelity measure between "distorted" and original images.

Wang Z. and Bovik A. analyzed [24] the advantages and drawbacks of MSE. They showed
MSE has the following advantages:

(a) It is simple;

(b) All lp norms are valid: nonnegativity, identity, symmetry and triangular inequality;

(c) It has a clear physical meaning;

(d) It is an excellent metric in the context of optimization, statistics and, estimation;

MSE also works well for the same type of content and the same type of degradations. Despite
these interesting properties, MSE does not have a good correlation with the quality as perceived
by human observers [24].

Another FR data metric that is commonly used in image processing is the Peak signal-to-noise
ratio (PSNR), which is calculated with the following equation:

PSNR(Io, Id) = 10 log10
L2

MSE(Io, Id)
(2.2)

where L is the maximum possible value of the pixel, which is generally 255 for an eight-bit image.

One of the major reasons why MSE and PSNR (or any other data metric) do not perform as
desired is because they do not incorporate properties of the human visual system (HVS) in their
computation. Measurements produced by data metrics are simply based on a pixel to pixel (or
bit to bit) comparison of the data, without considering what is the content and the relationships
among the pixels in an image (or frames). For example, MSE and PSNR do not consider how
spatial and frequency components are perceived by human observers [24].

Figure 2.5 shows a comparison of four images with different PSNR and MSE values. Notice
that, the higher the PSNR and MSE values, the higher the image quality. Therefore, PSNR and
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(a) PSNR=35 dB, MSE=20.56 (b) PSNR=30 dB, MSE=65.02

(c) PSNR=25 dB, MSE=205.63 (d) PSNR=20 dB, MSE=650.25

Figure 2.5: Comparison between different PSNR.

MSE seem to be working as a quality measure in these cases. On the other hand, Figure 2.6 depicts
5 distorted images that have approximately the same MSE=144 (PSNR=26.55 dB). Notice that the
perceived qualities of these images are quite different. For example, the images in Figures 2.6.(b)
and 2.6.(c) have good quality levels, but the images in Figures 2.6.(d), 2.6.(e), and 2.6.(f) have
poor quality levels. So, we can conclude that MSE and PSNR are not good metrics to estimate
image quality in these cases, for which different distortions or image processing algorithms are
being compared.

2.3.2 Pixel Based Image Quality Metrics

Pixel-based metrics are metrics which estimate quality by analyzing the pixels of the image
or the video (decoded). These metrics generally take into account image characteristics and hu-
man visual models. Two basic approaches are generally used in their design: a vision modeling
approach and an engineering approach. The vision modeling approach explicitly incorporates
aspects of Human Vision System (HVS) into the algorithm. Nevertheless, it is important to point
out that knowledge about how the HVS works is still incomplete. Therefore, although image
processing and computer vision algorithms use these models to improve their efficiency, HVS
models are somewhat imprecise.

The engineering approach is based on the extraction of specific features of the visual signal,
like for example specific spatial and temporal frequencies, statistical measures, sharpness and
contrast measures, etc. A very popular type of features are the features that indicate the presence
of specific artifacts, like blockiness, ringing, and blurriness. This approach has been widely used
because of its simplicity. In this section, we describe three popular pixel-based metrics.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Comparison between the different pictures with the same MSE. (a) Original, MSE=0,SSIM=1 (b) Un-
sharped, MSE=144, PSNR=26.55 dB, SSIM=0.988 (c) MSE=144, PSNR=26.55 dB, SSIM=0.913 (d)MSE=144,
PSNR=26.55 dB, SSIM=0.840 (e) MSE=144, PSNR=26.55 dB, SSIM=0.694 (f) MSE=144, PSNR=26.55 dB,
SSIM=0.662

2.3.2.1 SSIM

The Structural Similarity (SSIM) is a full reference image quality assessment method devel-
oped by Wang [25]. SSIM compares three features of the reference and distorted image. These
features are luminance, contrast and structure. It performs its analysis on the luminance compo-
nent of the image. To compute the predicted score, the image is first divided in 8x8 blocks. For
each block the luminance, contrast and structure comparison measurements are performed.

The luminance comparison is calculated by the following equation:

l(Io, Id) =
2µoµd + C

µ2
o + µ2

d + C
, (2.3)

where µo and µd are the mean intensity of the original image block and the distorted (test) image
block, respectively. And C is a small constant necessary to avoid instability.

The Contrast Comparison is calculated by the following equation:

c(Io, Id) =
2σoσd + C2

σ2
o + σ2

d + C2

, (2.4)

where σo and σd are the standard deviation intensity of the original and distorted (test) image
block, respectively. And C2 is a small constant necessary to avoid instability.
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The Structure Comparison is calculated by the following equation:

s(Io, Id) =
σod + C3

σoσd + C3

, (2.5)

where σo and σd are the standard deviation intensity of the original and distorted block, σod is
the covariance between the original image block and the distorted (test) image block, and C3 is a
small constant necessary to avoid instability.

To combine these comparisons into a single SSIM map, we use the following equation:

SSIM(Io, Id) = l(Io, Id)
α · c(Io, Id)β · l(Io, Id)γ, (2.6)

where, to simplify, α = β = γ = 1. The average value of the SSIM map is the final score. To use
SSIM as a video quality method, we calculate the SSIM for each video frame and average these
values to obtain the video quality score.

As mentioned earlier, PSNR and MSE are not good quality metrics for the images in Figure
2.6. Nevertheless, this figure also shows the SSIM values for each image and we can notice that
SSIM is able to differentiate the different levels of quality of the images. For example, the good
quality images in Figures 2.6.(b)and 2.6.(c) obtain high SSIM values, while the lower quality
images in Figure 2.6.(d), 2.6.(e), and 2.6.(f) smaller SSIM values.

2.3.2.2 Blockiness NR Metric

Wang [26] proposed a NR metric to estimate the strength of blockiness artifacts. Figure 2.7
shows a block diagram of this algorithm. The algorithm takes the differences between consecutive
columns, as shown in the following equation:

dh(m,n) = Id(m,n+ 1)− Id(m,n) (2.7)

where Id is the luminance component of he video frame, M is the number of rows and N number
of columns.

The horizontal blockiness measure (Bh(k)) is computed using the following equation:

Bh(k) =
1

M(bN/8c − 1)

M∑
i=1

bN/8c−1∑
j=1

|dh(i, 8j, k)| (2.8)

where k is the frame number, which ranges from 1 to the NF . The vertical measure (Bv(k)) is
obtained in a similar way.
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Figure 2.7: Wang’s Blockiness NR Metric.

The final horizontal and vertical blockiness scores are given by:

WH =
NF∑
k=1

Bh(k) (2.9)

and

WV =
NF∑
k=1

Bv(k) (2.10)

where NF is the number of frames and k the frame number. The features WH and WV will be
used to compose the hybrid metric.

2.3.2.3 Bluriness NR Metric

Crété-Roffet [27] proposed a NR metric that quantifies the strength of bluriness. Figure 2.8
shows a block diagram of this algorithm. It compares the differences between neighboring pixels,
before and after the image is low-passed filtered and the luminance component (Y) is filtered in
vertical and horizontal directions separately. The filters are described by the following equations:

hh = hTv =
1

9

[
1 1 1 1 1 1 1 1 1

]
. (2.11)

Let’s denote I(x, y, k) as the k-th frame,BLh(x, y, k) as the blur horizontal image andBLv(x, y, k)
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Figure 2.8: Perceptual Blur NR Metric.

as the blur vertical image corresponding to this frame. Next, we calculate the horizontal and ver-
tical intensity differences of the frame I(x, y, k):

IDH(k) =
M−1∑
i=0

N−1∑
j=1

|I(i, j, k)− I(i, j − 1, k)| (2.12)

and

IDV (k) =
M−1∑
i=1

N−1∑
j=0

|I(i, j, k)− I(i− 1, j, k)|. (2.13)

where I(x, y, k) is the luminance component of the frame, M is the number of rows, N number
of columns and k is the frame index, ranging from 1 to NF . At the same time, we calculate
maximum difference between neighboring pixels in I(x, y, k) and BLh(x, y, k) or BLv(x, y, k),
which are given by the following equations:

MDH(k) =
M−1∑
i=0

N−1∑
j=1

max(0, |I(i, j, k)−I(i, j−1, k)|−|BLh(i, j, k)−BLh(i, j−1, k)|) (2.14)

and

MDV (k) =
M−1∑
i=1

N−1∑
j=0

max(0, |I(i, j, k)−I(i−1, j, k)|−|BLv(i, j, k)−BLv(i−1, j, k)|) (2.15)

Finally, bluriness is estimated using the following ratio:

blur(k) = max
(
IDH(k)−MDH(k)

IDH(k)
IDV (k)−MDV (k)

IDV (k)

)
(2.16)

Notice that, the higher the value of this ratio, the higher the strength of the blurriness. For the
complete video, the blur measure is obtained by taking the average of the blur estimate, given in
equation 2.16, for all NF frames.

The features IDV , IDH , MDH and MDV are used to compose the hybrid metric.
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2.3.2.4 Correlation Based Packet-loss Metric

Vlachos [42] proposed an NR metric to estimate the strength of blockiness artifacts in video
signals. The algorithm compares the cross-correlation of pixels inside (intra) and outside (inter)
the borders of the coding blocking structure of a video frame I(i, j, k), considering blocks of 8×8
and a downsampled version of the frame in vertical and horizontal directions.

In a previous work Farias [8, 43] modified Vlachos’ algorithm [42]. Farias proposed to split
the down-sampling process into separate vertical and horizontal directions. As a consequence,
a vertical downsampled image (SV ) and a horizontal downsampled image (SH) are generated
using the following equations:

SHm = {Y (i, j) : m = i mod 8} . (2.17)

SVn = {Y (i, j) : n = j mod 8} . (2.18)

where (i, j) are the horizontal and vertical co-ordinates and mod is the module operation. This
way, SVn and SHm contain subsets of pixels with coordinates congruent to 8, either horizontally
or vertically, respectively. The subscripts m and n can be viewed as the corresponding horizontal
and vertical phases, respectively.

Figures 2.9 (a) and (b) display the sampling structures used by Farias’ in the horizontal (SHm)
and vertical (SVn) directions, respectively. The image shows a 16 × 16 area of the frame, con-
taining four 8 × 8 blocks. Six sub-images are generated by downsampling pixels located at the
positions indicated by the six different symbols. Therefore, different symbols generate different
sub-images. The set of inter-block pixels in the vertical direction corresponds to the sub-images
SV0 and SV7 (Figure 2.9 (b)), while the set of inter-block pixels in the horizontal direction cor-
responds to the sub-images SH1 and SH7 (Figure 2.9(a)). The set of intra-block pixels in the
vertical direction corresponds to the sub-images SV0 and SV1 (Figure 2.9 (b)), while the set of
intra-block pixels in the horizontal direction corresponds to the sub-images SH1 and SH3 (Fig.
2.9 (a)).

Given that interlaced videos were used by Farias, the symbols in the horizontal downsampling
structure (see Figure 2.9 (a)) are 2 pixels apart, instead of only one pixel like in the vertical
downsampling structure (see Figure 2.9 (b)). For progressive videos, the symbols should be one
pixel apart for both directions. Figure 2.10 displays how the sub-image SV0 is obtained. In this
example, the original frame has 1280×720 pixels and the vertically-downsampled sub-image has
160× 720 pixels.

The cross-correlation between two frames, I1 and I2, is given by the following expression:

CI1,I2(i, j) = F−1
(
F ∗(I1(i, j)) · F (I2(i, j))
|F ∗(I1(i, j))F (I2(i, j))|

)
, (2.19)

where F and F−1 denote the forward and inverse two dimensional discrete Fourier transform, re-
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(a) (b)

Figure 2.9: Frame downsampling structure for: (a) horizontal and (b) vertical directions.

Figure 2.10: Illustration of vertical downsampling process used to obtain the sub-image SV0.

spectively, and ∗ denotes the complex conjugate. The magnitude of the highest peak is a measure
of the correlation between I1 and I2. But, before the maximum is calculated, the array elements
is filtered using a Hamming window, what forces the elements to a constant value around the
borders.

To estimate the blockiness signal strength, Farias measured the correlation between the intra-
and inter-block sub-images in both directions. For the vertical direction, the correlation was
calculated using the following equations:

CVintra(k) = max
i,j
{CSV0,SV1(i, j, k)} , (2.20)

CVinter(k) = max
i,j
{CSV7,SV0(i, j, k)} . (2.21)

The horizontal correlations, CHinter(k) and CHintra(k), were obtained in a similar way:

CHintra(k) = max
i,j
{CSH1,SH3(i, j, k)} , (2.22)

CHinter(k) = max
i,j
{CSH7,SH1(i, j, k)} . (2.23)

Then, the blockiness measure for one frame was given by:

Sbloc(k) =
CVintra(k) + CHintra(k)

CVinter(k) + CorrHinter(k)
. (2.24)

For frames with no blockiness, the value of CVintra(k) was close to CVinter(k) and CHintra(k)
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was close to CHinter(k). As blockiness was introduced, the values of CVinter(k) and CHinter(k)

became smaller and, consequently, the value of the blockiness metric increased.

Finally, the blockiness measure for the set of all frames was obtained by averaging the mea-
sures over all frames:

Bloc =
1

NF

NF∑
k=0

Sbloc(k), (2.25)

where k refers to the frame number and NF is the total number of frames.

2.3.3 Hybrid Metrics

A hybrid metric is a metric that combines different types of pixel-based metrics to obtain a
single quality estimate [2]. For example, we may combine blockiness, ringing, and blurriness
metrics to obtain a quality metric targeted at compression applications. In this work, we propose
to use this approach to combine features corresponding to degradations that are common in digital
transmission scenarios. In particular, we consider blockiness, blurriness, and packet-loss artifacts.
The features are combined using a Support Vector Regression (SVR) technique, which is detailed
in the next section. The metric is trained on a set of video quality databases which are described
in Section 2.4. More details of the proposed methodology will be given in the next chapter.

2.4 VIDEO QUALITY DATABASES

Objective video quality assessment methods are costumarily validated using anotated video
quality databases. These databases consist of a set of videos with a diverse content, which are
processed with different Hypothetical Reference Circuits (HRC). Different HRCs generate test
videos with different types of artifacts at different levels of annoyance. For each video in the
database, there is a corresponding mean observer score (MOS).

In this work, five video quality databases are used: Varium (Sets 1-3) [32–34], Roma [35–37],
Live [38, 39], CSIQ [40] and IVPL [41]. Table 2.1 shows a summary of characteristics of all
databases.

Table 2.1: Video Quality Database parameters.

Database No.videos Format Spatial Res. Temporal Res. Time Dur. Distortions
Roma 184 4:2:0 704x576 25,30 7-9 Packet loss rate, jitter, delay, and throughput

720x576
Live 150 4:2:0 768x432 25,50 10, 8.68 H264„MPEG2,IP error and wireless networks
CSIQ 216 4:2:0 832x480 24,25,30, 10 H.264, HEVC/H.265, Wavelet-based compression

50,60 wireless, transmission loss and AWGN
IPVL 128 4:2:0 1920x1088 25 8.96,10,11.2 H.264, MPEG2, Dirac coding, IP error
Varium
Set 1 84 4:2:0 1280x720 50 10 Packet-Loss
Set 2 119 4:2:0 1280x720 50 10 Blockiness and Blurriness
Set 3 140 4:2:0 1280x720 50 10 Packet-loss, Blockiness and Blurriness
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2.4.1 Varium

Figure 2.11: Sample frames of originals of the Varium database.

The Visual Artifacts Interference Understanding and Modeling (Varium) is a database that
contains the results of six experiments [32–34]. The database is divided into three sets of test
sequences. Set 1 contains sequences only with packet-loss artifacts at different strengths (packet-
loss rates: 0.7%, 2.6%, 4.3%, and 8.1%) and different durations (4, 8, and 12 frames). Set 2
contains videos with blockiness and bluriness artifacts. Finally, Set 3 contains videos with the
three types of artifacts.

For each set, two types of experiments were performed: annoyance and strength experiments.
In the annoyance experiments, participants were asked to rate the annoyance of the degradations
present in the test videos. In the strength experiments, participants are asked to rate the perceptual
strength of each type of artifact in the videos. Therefore, for each set in Varium, we have mean
annoyance (MAV) and mean strength values (MSV) scores for each test sequences.

Videos in Varium have a spatial resolution of 1280 × 720 and a temporal resolution of 50
frames per second (fps). They are all ten seconds long and were chosen with the goal of including
diversity in content in the test set. Figure 2.11 depicts sample frames of the original videos in the
Varium database.

Figure 2.12: Sample frames of originals of the Roma database.
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2.4.2 Roma database

ReTRiEVED Video Quality Database (Roma) database [35–37] contains 184 distorted videos,
with a color format YVV 4:2:0, spatial resolutions of 704×576 and 720×576, temporal resolution
of 25 and 30 frames per second (fps), and durations of 7, 8 or 9 seconds. This database contains
up to four types of distortions (HCRs): packet-loss rate, jitter, delay, and throughput. In this
work, we only used the test videos with packet-loss artifacts, given that the other distortions are
not measurable by pixel-based metrics. Figure 2.12 depicts sample frames of the original videos
in the Roma database.

Figure 2.13: Sample frames of originals of the Live database.

Figure 2.14: Sample frames of originals of the CSIQ database.
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2.4.3 Live database

The Live database [38, 39] consists of 150 videos, with YUV format YUV 4:2:0, spatial res-
olution of 768x432 pixels, temporal resolution of 25 and 50 fps, and durations of 10 and 8.68
seconds long. The database contains videos with up to four types of distortions: H264, MPEG2,
IP error and wireless networks. Figure 2.13 depicts sample frames of the original videos.

2.4.4 CSIQ database

The CSIQ database [40] contains 216 distorted videos with a spatial resolution of 832x480
pixels, format YUV 4:2:0, duration of 10 seconds long, temporal resolution of 24, 25, 30, 50 and
60 frames per second. The database contains videos with up to six types of distortions: H.264,
HEVC/H.265, MJPEG, Wavelet compression, Wireless and AWGN Noise.

2.4.5 IVPL database

The IPVL database [41] consists of 128 distorted videos, 10 reference videos (originals) with
spatial resolution of 1920 × 1088 progressive and temporal resolution of 25 frames per second
(fps). The Distortion types are H.264, MPEG2, Dirac coding, IP error. Figure 2.15 shows the
original videos of the IVPL database.

Figure 2.15: Sample frames of originals of the IVPL database.
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3 PROPOSED HYBRID NO-REFERENCE VIDEO
QUALITY METRIC

In this chapter, we detail the hybrid video quality assessment methodology developed in this
work. Figure 3.11 depicts a block diagram of this approach. Notice that the proposed methodol-
ogy consists of a hybrid approach that combines the features gathered by three individual artifacts
metrics. A support vector regression (SVR) algorithm combines these features to obtain an over-
all quality estimate. Contrary to previous approaches, SVR uses features collected by the artifacts
metrics and not the overall objective scores obtained by these metrics. Before describing the
hybrid approach, we present a packet-loss artifact metric that is designed as part of this work.

3.1 CORRELATION BASED PACKET-LOSS METRIC - PROPOSED METRIC

The proposed no-reference blockiness metric is based on the blockiness metric described in
the section 2.3.2.4 . To adapt the metric proposed by Farias [8,43] to measure packet-loss (instead
of blockiness), we first vary the size of the downsampling structure. Since videos compressed
with modern codecs (like H.264 and H.265) use macroblocks of several sizes, we generalize the
algorithm proposed by Farias for 8× 8, 16× 16, and 32× 32 block sizes. Figures 3.1 (a) and (b)
show the 8×8 vertical and horizontal downsampling frame structures. Again, the dark symbols in
the grids correspond to pixels in the resulting downsampled sub-images. The sampling structures
for 16× 16 and 32× 32 are similar. Differently from the algorithm proposed by Farias (see Fig.
2.9), the proposed algorithm simultaneously downsamples the original frame in both directions,
reducing the size of the original image in both dimensions.

A total of 6 downsampled images are obtained after the downsampling process, with three
sub-images being obtained from the vertical downsampling (DV7, DV0, DV1) and three sub-
images from the horizontal downsampling (DH7, DH0, and DH1). Then, we calculate the cross-
correlation between two sub-images to obtain the blockiness measure for a single frame (see
equations 3.1, 3.2, 3.3, 3.4). More specifically, for the vertical direction, we obtain the inter-block
correlation by calculating the correlation between sub-images DV7 and DV0 and the intra-block
correlation by calculating the correlation between sub-images DV0 and DV1:

CVintra,8(k) = max
i,j
{CDV0,DV1(i, j, k)} , (3.1)

CVinter,8(k) = max
i,j
{CDV7,DV0(i, j, k)} . (3.2)

Similarly, for the horizontal direction, we obtain the inter-block correlation calculating the
correlation between sub-images DH7 and DH0 and the intra-block correlation calculating the
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(a)

(b)

Figure 3.1: Frame downsampling structure for the proposed packet-loss metric: (a) vertical and (b) horizontal.

correlation between sub-images DH0 and DH1:

CHintra,8(k) = max
i,j
{CDH0,DH1(i, j, k)} , (3.3)

CHinter,8(k) = max
i,j
{CDH7,DH0(i, j, k)} . (3.4)

The 8× 8 block measure for the k-th frame is given by:

Sbloc,8(k) =
CVintra,8(k) + CVinter,8(k)

CHintra,8(k) + CHinter,8(k)
(3.5)

Notice that, given that we are assuming the frames are in a progressive format, there is no shift
between the pixels. To obtain a measure for the complete video, we average Sbloc,8(k) for all
frames, obtaining Bloc8.

Next, we use the same algorithm on blocks of size 16×16 (Bloc16) and 32×32 (Bloc32). The
final packet-loss metric value is a composition of the measures for the three block sizes (Bloc8,
Bloc16, and Bloc32), which is obtained using a support vector regression (SVR) [28–31] tech-
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nique. We choose to use SVR because similar machine learning-based approaches have been
used with success to model complex non-linear perceptual processes related to artifact annoy-
ance [44].

The correlation based packet-loss metric influences two characteristics in the Intensity Differ-
ence Packet-loss Metric. First, blocks cannot be considered uniformly in a frame, i.e. all blocks
are taken into account to quantify the strength of the artifact. Instead, a detection algorithm needs
to be implemented to identify frame areas where blocks were affected by packet-loss. Second,
three types of block size (8x8, 16x16, 32x32) are used, it happens because the correlation values
increases when these different blocks are considered. Therefore, these ideas were used in the
Intensity Difference metric.

3.2 INTENSITY DIFFERENCE PACKET-LOSS METRIC

The intensity difference packet loss metric has two stages: detection and measurement. The
detection stage has the goal of identifying which areas of the video contain packet-loss artifacts.
The second stage has the goal of measuring the number of packet-losses in the video and estimat-
ing their perceptual strength.
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 frame
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Algorithm
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  Pixels
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current
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Figure 3.2: Block Diagram of the Intensity Difference Packet Loss Metric.

Figure 3.2 shows a block diagram of the packet-loss detection stage. First, the difference
between the current and previous frame is calculated to remove any possible camera movements
and noise. After that, the difference map is split into 8×8 blocks and the DCT of each block is
calculated. It is worth pointing out that frames are divided in blocks 8×8 because the reference
detection algorithm [45] is performed this way. Since packet-loss artifacts are characterized by
the presence of strong edges, the detection stage aims to identify regions that contain high edges.
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More specifically, the algorithm uses the DC and AC DCT coefficients to detect these strong
edges. Bhattacharyya et al. [45] showed that it is possible to measure strong edges in the DCT
domain. They compared the DC coefficient of the luminance component of each block with
the DC coefficients of its immediate spatial neighbors. If the module of the energy difference
was higher than 150, their algorithm assumed that an edge was present in this location. AC
components were also taken into account. The sum of the module of the first five AC components
had to be higher than 50 for the area to be marked as an edge.

We propose a metric that is a modification of Bhattacharyya’s metric with AC and DC coef-
ficients conditions. First, instead of comparing the immediate spatial neighbors, we compare the
current blocks with the blocks immediately below. The module of the DC energy difference has
to be higher than 50, given by the following equation:

|DCcurrent −DCbelow| > 50 (3.6)

Second, the procedure for taking the AC components is the same as Bhattacharyya’s, i.e. the
sum of module of the first five AC components has to be higher than 50. The AC threshold
is taken of his work [45]. Three images are generated as a result of this process: a image of
selected pixels, an image of selected areas and an image of detected areas. Figures 3.3, 3.4, 3.5
show the three images obtained for a video frame from the Varium database.

Figure 3.3 (selected pixels) shows the selected high edges points that identify the packet-loss
artifacts. Each selected pixel is expanded into a 64×64 area, generating the selected areas image
depicted in Figure 3.4 (selected areas). Finally, the selected areas are multiplied by the DCT
diff Image. To better visualize the detected areas images that show the areas identified as having
packet-loss artifacts, Figure 3.5 (detected areas) shows this result. For comparison, Figure 3.6
depicts the original impaired frame in question, what allow us to compare the areas containing
packet-loss and the areas detected by the algorithm as having packet-loss. For instance, areas 1
and 2 in Figure 3.6 represent areas where the packet-losses can be found, while areas 3 and 4 in
the same figure show areas with camera movement that generated strong edges.

The packet-loss measurement stage estimates the percentual strength of the packet-loss arti-
facts, detected in the previous stage, by extracting additional features from the blocks identified
as packet-losses. A total of six types of features are extracted from the affected blocks: the sum
of DC Energy (SDC), the average of DC Energy (ADC), the sum of the absolute value the first
five AC coefficients (SAC), the sum of horizontal AC coefficients (SHAC), the sum of vertical AC
coefficients (SVAC) and difference of Borders (DB). To extract these features, the final image
obtained from the detection stage is simultaneously split into blocks of 8×8, 16×16, and 32×32
pixels. The six types of features are processed with the 3 different block sizes, generating a total
of 18 features.

Figure 3.7 illustrates how the DCT coefficient features are computed for a 8×8 block. The
same structure (with adaptations) is used for 16x16 and 32x32 blocks. Notice that the block has
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only one DC component, represented in green in Figure 3.7, which carries the block energy. The
AC coefficients are used in the features SAC , SHAC , and SVAC . The feature SAC is calculated
by summing the absolute values of the first five low-frequency elements, represented in yellow
in Figure 3.7. The feature SHAC is computed by summing the absolute values in the horizontal
direction, represented in blue in Figure 3.7. The feature SVAC is computed by summing the
absolute values in the vertical direction, represented in red in Figure 3.7.

The feature DB differs from the other features because it requires the current frame and the
detection image to calculate it. More specifically, when a block with packet-loss is identified, the
difference between the intensity of pixels (or the coefficients) in the top and bottom of the borders
is summed. Figure 3.8 illustrates these borders. The detection image shows the areas in which
packet-loss artifacts were identified. Therefore, the differences between the top and bottom pixels
of the borders are computed only for these areas.

Figure 3.3: Picture displaying points in the frame selected as edges.

Figure 3.4: Picture showing the 64×64 areas selected as having packet-loss areas.
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Figure 3.5: Detected Packet-Poss artifacts.

Figure 3.6: Database Varium Video 7 Frame 81, containing packet-loss artifacts (I=12 PLR=8.1%).

Figure 3.7: Block 8x8 - AC and DC features.

The feature DB is computed using the following equation:

DB =
NC∑
i=1

|B(i)− A(i)|+ |C(i)−D(i)| (3.7)
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Figure 3.8: Difference Borders feature.

where B and C are ‘up’ borders, A and D are ‘bottom’ borders of the current block, and NC is
the number of columns of the block (NC =8, 16, or 32 pixels).

The features SDC and ADC are computed in a similar way as DC Energy feature. The dif-
ference between them is basically that the SDC feature is obtained by summing all DC Energy
components while ADC is obtained by taking the average of DC Energy of the selected blocks.
The features SAC , SHAC , SVAC andDB are obtained by counting the characteristics of all blocks
affected by packet-loss. Each kind of block (8x8,16x16,32x32) creates a set features.

Figure 3.9 depicts a block diagram of the Feature Extration procedure. Notice that a total of
eighteen features are obtained by the extraction procedure. However, not all eighteen features are
statically relevant. Experimental results show that only three features were found to be statistically
significant in the temporal analysis: ADC,32, DB32, SVAC,32. A SVR algorithm combines these
features in an optimal way, taking into consideration the subjective quality values (MOS) of the
test sequences provided by the quality databases.

The block diagram of spatial analysis (Figure 3.2) is performed in a similar way, with the only
difference being that the spatial input uses a sobel filter in the current frame. The computation
of the DCT, detection stage, image with selected pixels, image with selected area and image with
detection images follow the same logic of the temporal analysis. SVR tests performed found that
three features are statistically significant: SB_SAC,16, SB_DB32 and SB_SVAC,8.

Figure 3.10 illustrates all packet-loss features, which include the spatial and temporal analysis.
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Figure 3.10: Packet-loss Summary.

Notice that three temporal and three spatial features are used. These six resulting features are
going to be used to compose to hybrid metric that will be explained in the next section.
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Figure 3.11: Hybrid Estimator.

3.3 HYBRID METRIC

The proposed hybrid metric combines several features that are taken from the artifact metrics
presented earlier to estimate the overall quality of the video. These features are combined with an
SVR technique taking into account three types of artefacts: packet-loss, bluriness and blockiness.

The six packet-loss features are obtained as explained in block diagram in Figure 3.10. The
blockiness features are obtained by the equations 2.9 and 2.10. The bluriness features of each
frame are based on equations 2.12, 2.13, 2.14 and 2.15 and the video features are obtained using
the following equations:

PS_V =
NF∑
k=1

IDH(k) (3.8)

PS_H =
NF∑
k=1

IDv(k) (3.9)

PV _V =
NF∑
k=1

MDH(k) (3.10)

PV _H =
NF∑
k=1

MDV (k) (3.11)
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Figure 3.11 shows a block diagram of hybrid process. In total, there are twelve features. Six
features correspond to the packet-loss artifact (ADC,32, DB32, SVAC,32, SB_SAC,16, SB_DB32,
SB_SVAC,8), two features correspond to the blockiness artifact (WH, WV) and four correspond
to bluriness artifact (PS_V, PS_H, PV_V, PV_H). It is worth pointing out that we take into account
only features metrics and not the overall score provided by these metrics.
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4 RESULTS

In this chapter, we present the results of the proposed hybrid NR video quality metric. Tests
are performed using five video quality databases: Varium, Roma, Live, CSIQ and IVPL (see
Section 2.4). We compare the results of our proposed methodology with two NR packet-loss
metrics and one FR quality metric.

4.1 TESTS OF INDIVIDUAL FEATURES

This section presents the results of each feature individually. First, the outcomes of the six
packet-loss features are shown in a video with strong packet-loss artifact. As the packet-loss
metric uses a new methodology, it is necessary to show if the features quantify well the strength
of the artifacts. Second, the twelve features of the proposed hybrid metric are submitted under
the five video quality databases to verify the behavior of them.

As explained in the previous chapter, twelve is the number of extracted features. Six are orig-
inated from packet-loss metric (ADC,32, DB32, SVAC,32, SB_SAC,16, SB_DB32, SB_SVAC,8),
two from a blockiness metric (WH and WV) and four from a bluriness metric (PS_V, PS_H,
PV_V, PV_H). Figures 4.1, 4.2 and 4.3 show the behavior of each feature individually. These
graphs are computed for a video of Varium database containing packet-loss distortions at a packet-
loss-rate (PLR) equals to 8.1% and a duration of 12 frames. Moreover, features are computed for
each of the 500 frames of the video.

Figure 4.1 depicts the packet-loss feature response. The six features are tested in a video with
strong packet-loss artifacts, located between frames 80 and 95. Notice that all features designed
for packet-loss are able to identify these distortions. Figure 4.1 (a) shows the feature ADC,32,
while Figure 4.1 (b) shows the SVAC,32. Both graphs have strong peaks near these frames. Figure
4.1 (d) shows SB_SAC,16, Figure 4.1 shows (e) SB_SVAC,8 and Figure 4.1(f) shows SB_DB32.
Again, notice that they all show a peak around the mentioned frames. Figure 4.1 (c) shows DB32,
which also shows a peak near the frames where the packet loss occurs. Nevertheless, the graph has
other peaks which shows the existence of strong edge areas in the frame and it is not necessarily
packet-loss artifacts.

Plots in Figure 4.2 depict the responses of blockiness features, while the plots in Figure 4.3
depict the responses of bluriness features. Observe that, none of the six features show a clear
detection of the packet-loss artifacts. This result is expected since this video is affected only with
packet-loss and it does not contain blockiness or bluriness artifacts.

Next, let’s see the behaviour of the twelve features in the five datatabases. Tables from 4.1 to
4.6 show the correlation values in the databases: CSIQ, Live, IVPL, Roma, and Varium. Table 4.1
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(a) ADC,32 (b) SVAC,32

(c) DB32 (d) SB_SAC,16

(e) SB_SVAC,8 (f) SB_DB32

Figure 4.1: Responses of the Packet-Loss Features to a video with strong packet-loss artifacts, located between
frames 80 and 95.

shows the Pearson (PCC) and Spearman (SCC) correlation coefficient values [47] for the CSIQ
database. The highest value of correlation is -0.51 obtained for the ADC,32 feature for the HEVC

33



(a) WH (b) WV

Figure 4.2: Responses of Blockiness Features to a video with strong packet-loss artifacts, located between frames 80
and 95.

distortion. Table 4.2 indicates the PCC and SCC correlation values for the Live database. The
maximum average correlation values are around 0.30 and the peak value 0.475 corresponds to the
PV_H feature for the MPEG distortion. Table 4.3 shows the PCC and SCC values for the IPVL
database. In this case, the maximum correlation values are a little higher, i.e the peak value is
0.587 corresponding to the PV_V feature for the H264 artifact. Table 4.4 shows the PCC and
SCC values for the Roma and Varium Set 1, respectively. These databases have mainly packet-
loss artifacts. In the Roma database, the maximum peak correlation values obtained is -0.338 for
the WV feature. In the the Varium Set 1 the maximum is 0.560 for the SB_SVAC,8 feature. On
average, the correlation values obtained for the Roma database are smaller than Varium Set 1.
Table 4.5 shows the PCC and SCC values for the Varium Set 2. The correlation maximum peak
achieved is 0.800 for the PS_H feature. Table 4.6 shows the PCC and SCC values for the Varium
Set 3. The correlation values in this table are very small. Thus, each feature cannot be represented
for these values in this database.

As a conclusion, individual features do not have a high correlation values with subjectives
quality scores given by human observers. This, however, does not mean that their combination
cannot provide a good prediction of the overall quality.

34



(a) PV_H (b) PV_V

(c) PS_H (d) PS_V

Figure 4.3: Responses of Bluriness Features to a video with strong packet-loss artifacts, located between frames 80
and 95.

Table 4.1: CSIQ - Pearson (PCC) and Spearman (SCC) correlation coefficients.

CSIQ

Feature H264 Pack MJPEG Wavelet Noise HEVC
PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

ADC,32 0.120 0.010 -0.290 -0.300 0.106 0.130 -0.090 -0.040 -0.196 -0.200 -0.510 -0.380
DB32 -0.238 -0.130 -0.255 -0.310 -0.128 -0.390 -0.163 -0.070 0.090 0.050 -0.139 -0.090
SVAC,32 -0.019 -0.300 -0.069 -0.060 0.192 0.140 -0.080 -0.210 -0.191 -0.290 -0.261 -0.110
SB_SAC,16 -0.079 -0.180 0.246 0.250 -0.091 0.020 -0.360 -0.350 -0.120 0.080 0.180 0.280
SB_DB32 -0.283 -0.250 0.058 0.010 0.128 0.110 -0.213 -0.210 0.256 0.120 -0.093 -0.080
SB_SVAC,8 -0.085 0.020 0.117 0.020 0.255 0.190 -0.151 -0.110 -0.092 -0.180 -0.115 -0.140
WH 0.105 0.190 0.215 -0.010 -0.349 -0.350 -0.486 -0.310 0.506 0.460 0.191 0.230
WV -0.110 -0.080 0.148 0.170 0.328 0.440 -0.180 -0.210 0.340 0.160 -0.037 0.010
PV_H -0.011 -0.070 0.120 0.070 -0.455 -0.470 -0.292 -0.230 0.488 0.350 0.201 0.370
PV_V -0.029 -0.030 0.177 0.030 0.255 0.080 -0.021 0.100 0.302 0.200 0.125 0.170
PS_H 0.305 0.250 0.225 -0.050 -0.347 -0.380 -0.251 -0.220 0.498 0.360 0.234 0.320
PS_V -0.085 -0.060 0.154 0.150 0.059 0.010 -0.016 -0.150 0.187 0.180 0.001 0.020
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Table 4.2: Live - Pearson (PCC) and Spearman (SCC) correlation coefficients.

Live

Feature Wireless IP H264 MPEG2
PCC SCC PCC SCC PCC SCC PCC SCC

ADC,32 0.079 0.220 0.269 0.200 -0.240 -0.140 -0.416 -0.280
DB32 0.156 0.220 -0.324 -0.350 0.226 0.220 -0.190 -0.220
SVAC,32 0.289 0.300 0.102 0.300 -0.149 -0.200 -0.171 -0.160
SB_SAC,16 0.241 0.360 0.102 0.150 -0.176 -0.140 -0.258 -0.140
SB_DB32 0.232 0.260 0.212 0.100 -0.161 -0.020 -0.297 -0.260
SB_SVAC,8 0.184 0.140 -0.320 -0.350 -0.106 -0.160 -0.404 -0.280
WH 0.277 0.320 0.039 -0.050 -0.017 0.060 -0.307 -0.240
WV 0.293 0.300 0.011 0.000 -0.284 -0.160 -0.404 -0.340
PV_H 0.127 0.060 -0.304 -0.250 0.215 0.140 0.475 0.440
PV_V 0.216 0.260 -0.376 -0.250 -0.249 -0.340 -0.295 -0.260
PS_H 0.287 0.320 -0.282 -0.350 0.030 0.080 0.037 -0.100
PS_V 0.258 0.240 0.026 -0.150 -0.351 -0.280 -0.364 -0.300

Table 4.3: IVPL - Pearson (PCC) and Spearman (SCC) correlation coefficients.

IVPL

Feature Dirac H264 MPEG2
PCC SCC PCC SCC PCC SCC

ADC,32 0.353 0.200 0.418 0.180 -0.138 -0.150
DB32 0.248 0.300 0.140 -0.040 -0.122 -0.100
SVAC,32 -0.273 -0.050 -0.181 -0.240 -0.166 -0.150
SB_SAC,16 0.114 0.100 0.420 0.480 -0.392 -0.350
SB_DB32 0.280 0.450 0.499 0.540 0.083 0.050
SB_SVAC,8 0.044 0.050 0.546 0.560 -0.164 -0.100
WH 0.227 0.100 0.328 0.480 -0.391 -0.350
WV -0.084 -0.150 0.541 0.480 -0.007 0.200
PV_H 0.458 0.450 0.312 0.380 0.079 0.150
PV_V 0.085 0.150 0.587 0.520 0.027 0.100
PS_H 0.266 0.200 0.273 0.480 -0.509 -0.250
PS_V -0.015 -0.050 0.512 0.400 0.106 0.200

4.2 HYBRID NR VIDEO QUALITY METRIC

This section explains how tests are performed and shows the results of the hybrid proposed
metric.

To train and test the proposed metric, a k-fold cross validation setup is used, which consists
of splitting the dataset up in k equally sized, non-overlapping sets. Then, we perform the test
k times, in each time a different groups (fold) are used as the test set, and the remaining k − 1

folds are used for training. This way, each data point has a chance of being validated against the
other [46]. In our experiments, k is set to 10, thereby running 10 repetitions of the training. In
terms of videos, it represents 90% for training and 10% for test. The k-fold cross validation setup
is used to avoid the overfitting of the regression model. After predicting the automatic score, a
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Table 4.4: Roma and Varium Set 1 - Pearson (PCC) and Spearman (SCC) correlation coefficients.

Roma and Varium Set 1
Roma Set 1

Feature Pkt Loss Pkt Loss
PCC SCC PCC SCC

ADC,32 0.049 0.110 0.559 0.501
DB32 0.004 -0.020 0.471 0.477
SVAC,32 0.164 0.109 0.491 0.441
SB_SAC,16 0.138 0.141 0.529 0.533
SB_DB32 0.161 0.153 0.533 0.543
SB_SVAC -0.069 -0.079 0.560 0.541
WH -0.015 0.088 0.515 0.538
WV -0.338 -0.266 0.547 0.519
PV_H -0.237 -0.185 0.440 0.443
PV_V -0.283 -0.206 0.440 0.420
PS_H -0.005 0.143 0.546 0.524
PS_V -0.153 -0.127 0.537 0.490

Table 4.5: Varium Set 2 - Pearson (PCC) and Spearman (SCC) correlation coefficients.

Varium - Set 2

Feature Bloc Blur BlocBlur
PCC SCC PCC SCC PCC SCC

ADC,32 -0.043 -0.050 -0.332 -0.350 -0.222 -0.200
DB32 0.027 0.050 -0.398 -0.400 0.125 0.150
SVAC,32 0.025 0.050 0.113 0.050 -0.111 -0.150
SB_SAC,16 -0.400 -0.400 0.008 0.000 -0.257 -0.300
SB_DB32 -0.198 -0.200 0.215 0.250 -0.079 -0.100
SB_SVAC,8 -0.284 -0.250 -0.191 -0.150 0.087 -0.050
WH -0.600 -0.600 -0.181 -0.150 -0.082 -0.150
WV -0.196 -0.200 -0.199 -0.200 -0.131 -0.150
PV_H -0.196 -0.200 -0.087 -0.150 -0.208 -0.150
PV_V -0.394 -0.400 -0.200 -0.200 -0.272 -0.350
PS_H -0.800 -0.800 -0.188 -0.150 0.026 0.000
PS_V 0.079 0.050 -0.193 -0.150 -0.029 -0.100

correlation is computed between the subjective data (MOS) and the predicted scores.

Table 4.9 shows the correlation values of the proposed NR Video Quality Hybrid Metric.
For comparison purposes, we also show the results for the metrics Babu [20], Xia Rui [48],
and SSIM [25]. Tables 4.7 and 4.8 show the correlation values per distortion type. There are nine
types of distortions: H.264, PktLoss, MJPEG, Noise HEVC, Wireless, IP, MPEG2, Dirac, and the
seven datasets. The CSIQ database has five distortions types: H.264, PktLoss, MJPEG, Noise,
HEVC. The correlation values for CSIQ are around of 0.5. The Live, in turn, has four distortions:
H264, Wireless, IP, MPEG2. The correlation values for the Live database range from 0.310 to
0.411. IVPL has three types of distortions: H.264, MPEG2 and Dirac. The correlation values for
the IVPL database range from 0.388 to 0.526.
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Table 4.6: Varium Set 3 - Pearson (PCC) and Spearman (SCC) correlation coefficients.

Varium - Set 3

Feature Pack Bloc Blur PackBloc PackBlur PackBlocBlur
PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

ADC,32 - - - - - - -0.452 -0.400 -0.046 -0.150 0.228 0.228
DB32 - - - - - - -0.034 -0.100 -0.217 -0.100 0.442 0.483
SVAC,32 - - - - - - -0.098 -0.200 0.065 0.000 0.509 0.540
SB_SAC,16 - - - - - - -0.461 -0.300 -0.077 0.050 0.205 0.311
SB_DB32 - - - - - - -0.355 -0.250 -0.077 0.250 0.370 0.523
SB_SVAC,8 - - - - - - -0.233 -0.200 0.317 0.450 0.577 0.621
WH - - - - - - -0.172 -0.050 -0.214 -0.150 0.377 0.406
WV - - - - - - -0.029 0.100 -0.278 -0.250 0.313 0.377
PV_H - - - - - - -0.262 -0.300 -0.268 -0.300 0.198 0.140
PV_V - - - - - - -0.411 -0.350 -0.116 -0.100 0.316 0.326
PS_H - - - - - - -0.134 -0.100 0.031 -0.050 0.269 0.203
PS_V - - - - - - -0.588 -0.550 -0.255 -0.150 0.326 0.284

Table 4.7: Pearson (PCC) and Spearman (SCC) correlation coefficients per distorton for the proposed hybrid metric
- part 1.

Distortion CSIQ Live IVPL Roma Set 1 Set 2 Bloc Set 2 Blur
PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

H.264 0.542 0.569 0.385 0.375 0.440 0.388 - - - - 0.802 0.794 0.677 0.617
PktLoss 0.479 0.541 - - - - 0.709 0.713 0.790 0.770 - - - -
MJPEG 0.529 0.516 - - - - - - - - - - - -
Noise 0.521 0.554 - - - - - - - - - - - -
HEVC 0.542 0.547 - - - - - - - - - - - -
Wireless - - 0.409 0.352 - - - - - - - - - -
IP - - 0.411 0.356 - - - - - - - - - -
MPEG2 - - 0.334 0.310 0.491 0.401 - - - - - - - -
Dirac - - - - 0.526 0.438 - - - - - - - -

Notice that the proposed metric has better results than the packet-loss metrics. The correla-
tion values for Roma database are around 0.700, what represents a good performance. The best
correlation values of Tables 4.7 and 4.8 are for the Varium Sets 1, 2 and 3. Table 4.7 Set 1, only
with the packet-loss artifacts, shows correlations values of 0.790. Table 4.8 Set 2, with blockiness
and bluriness, shows maximum correlation of 0.802 and Set 3 ,with blockiness, bluriness and
packet-loss, shows maximum correlation of 0.842.

Table 4.9 depicts the comparison between the proposed metric and two other no-reference
packet loss metrics and full reference metric. From the results, the proposed metric shows a
better correlation in almost all databases. The SSIM metric [49] has higher correlation values
in two databases: CSIQ and Live. Even though SSIM is a full reference metric, the proposed
metric correlation values for these two databases are not very different for SSIM values. For
other databases the proposed metric has a higher performance. The NR packet-loss metrics, Babu
and Xia Rui, have much lower correlation values than the proposed metric. Except in the case of
the Roma database, in which Xia Rui and proposed metrics show similar correlation values. But
the proposed metrics have a better prediction accuracy.
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Table 4.8: Pearson (PCC) and Spearman (SCC) correlation coefficients per distorton for the proposed hybrid metric
- part 2.

Distortion Set 2 BlocBlur Set 3 Bloc Set 3 Blur Set 3 PLR Set 3 PLRBloc Set 3 PLRBlur Set 3 PLRBlocBlur
PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

H.264 0.790 0.748 0.804 0.807 0.835 0.842 - - 0.821 0.813 0.831 0.829 0.820 0.828
PktLoss - - - - - - 0.764 0.783 - - - - - -
MJPEG - - - - - - - - - - - - - -
Noise - - - - - - - - - - - - - -
HEVC - - - - - - - - - - - - - -
Wireless - - - - - - - - - - - - - -
IP - - - - - - - - - - - - - -
MPEG2 - - - - - - - - - - - - - -
Dirac - - - - - - - - - - - - - -

Table 4.9: Comparison of correlation coefficients per reference metrics.

Database CSIQ LIVE ROMA IVPL Set 1 Set 2 Set3
PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

Proposed 0.525 0.530 0.452 0.452 0.691 0.658 0.452 0.452 0.758 0.750 0.736 0.726 0.846 0.866
Babu 0.081 0.085 -0.035 0.015 -0.161 -0.274 -0.012 0.042 0.352 0.318 -0.142 -0.108 0.072 -0.068

Xia Rui 0.126 0.088 0.127 0.137 0.678 0.587 0.222 0.133 0.389 0.369 0.313 0.327 0.475 0.493
SSIM 0.660 0.635 0.507 0.471 0.252 0.201 0.069 0.106 0.622 0.542 0.430 0.395 0.689 0.642
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5 CONCLUSIONS

In this dissertation, we proposed a hybrid no-reference video quality metric, which consid-
ers twelve features obtained from packet-loss, blockiness and bluriness metrics. The packet
loss features are achieved in two steps (detection and measure), generating a total of six fea-
tures. Three features are temporal (ADC32, DB32, SVAC,32) and the other three are spatial fea-
tures (SB_SAC,16,SB_DB32, SB_SVAC,8). The two blockiness features (WH and WV) come
from Wang’s algorithm and the four blurinesss features (PV_V, PV_H, PS_V, PS_H) from Crété-
Roffet’s algorithm.

When each feature was evaluated individually, results were not satisfactory with almost all
correlation values are below 0.5. However, when features were combined to compose a hybrid
NR video quality metric, outcomes improved considerably. The hybrid metric shows correlation
values higher than 0.7 in almost all databases where packet-loss, blockiness and bluriness are
present.

Tests were performed using five video quality databases, which contained nine types of distor-
tions: H.264, PktLoss, MJPEG, Noise HEVC, Wireless, IP, MPEG2, Dirac. If you consider only
the databases that contain packet-loss, bluriness and blockiness (Roma, Varium Set 1, Varium Set
2 and Varium Set 3), the correlation results show a satisfatory performance (approximately 0.7 or
higher). On the other hand, for the other databases, the correlation values were lower than 0.57.
This can be explained by the fact that these databases contain certain types of distortions that are
not considered by the proposed metric.

A comparison with other reference metrics was performed to test the performance of the
proposed metric. The SSIM metric did not behave as expected, showing a high performance for
only two databases: CSIQ and Live. The other NR packet-loss metrics (Xia Rui and Babu) also
showed very low correlation values. In summary, the proposed hybrid metric shows a higher
performance than the tested FR and NR metrics, for the databases Roma, IVPL, and Varium Sets
1, 2, 3.
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5.1 FUTURE WORKS

As future work, other types of artifact features can be included in the design of the hybrid met-
ric. Examples include noise, ringing, color degradations, etc. We believe that having a more di-
verse set of features can improve the correlation. Furthermore, the performance of the packet-loss
detection algorithm needs to be improved to reduce the rate of false positives. As the DCT worked
quite well for detecting packet-loss, a possibility would be to extract blockiness and bluriness fea-
tures from the same DCT frame already computed. Thus, packet-loss, blockiness, and bluriness
features would be extracted from just one DCT frame, what would reduce the computational cost
of the proposed metric.

In terms of time performance, future works could include the implementation of SVR tech-
nique in a faster programming language to make it possible to run applications in real time. Also,
DCT was applied in blocks 8x8. It would be interesting to test other block sizes (16x16, 32x32)
to verify if results would improve. Finally, in this work features are extracted from all frames of
a video. An interesting work would be to test the performance of the proposed method when we
reduce the number of frames and the spatial resolution.
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6 APPENDIX

6.1 DISCRETE COSINE TRANSFORM (DCT)

Discrete Cosine Transform is important to several applications that uses lossy compression
used in image and video compression systems such as MPEG-1,MPEG-2 and MPEG-4 codecs.
Essentially, the idea of this process is to transform the image in the pixel domain to the frequency
domain according to the following equation [50].

F (u, v) =
1

4
CuCv

7∑
i=0

7∑
j=0

f(i, j)cos(
(2i+ 1)uπ

16
)cos(

(2j + 1)vπ

16
) (6.1)

where i and j are the horizontal and vertical the block indices, and u and v are the horizontal and
vertical spatial frequencies indices. The constants Cu and Cv have the following values:

Cu =
1√
2

for u=0, Cu = 1, otherwise

Cv =
1√
2

for v=0, Cu = 1, otherwise

In order to have a better interpretation of how the DCT coefficients are distributed in trans-
formed frequency block, Figure 6.1 (a) shows the frequency distribution and Figure 6.1 (b), the
block feature of DCT coefficients. There is only one DC coefficient per block which gives the
block energy, all other coefficients are AC coefficients, i.e. they represent the energy of a par-
ticular spatial frequency in the signal. If AC coefficients are close to the DC coefficient, they
correspond to low frequency. So, in the image Figure 6.1 (a) is possible to see low, medium
and high frequencies. The Figure 6.1 (b) represents the DC, horizontal, vertical and diagonal
components.

Figure 6.1: DCT - (a) Frequency distribution and (b) block features of DCT coefficients [45]
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6.2 SOBEL

Sobel filters are simple and popular filters in image processing which are used to extract the
edges of a image. More specifically, they are able to detect changes in intensity by taking gradient
first deverivatives of the lines and columns of an image. The gradient is given by the following
equation :

∇f ≡ grad(f) ≡

[
gx

gy

]
≡


∂f

∂x
∂f

∂y

 (6.2)

where, f(x,y) is an image and (x,y) its coordinates. gx and gy are the gradient in the horizontal
and vertical directions respectively. According to the above equation , the image is independently
filtered with Gx and Gy.

gx =

 −1 0 1

−2 0 2

−1 0 1

 (6.3)

gy =

 1 2 1

0 0 0

−1 −2 −1

 (6.4)

The results are combined to obtain the final result. The magnitude, M, and the direction, θ, of
the gradient are obtained using the following equations:

G =
√
g2x + gy2 (6.5)

θ = arctan[
gy

gx
] (6.6)
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