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RESUMO

O consumo de vídeos digitais cresce a cada ano. Vários países já utilizam tv digital e o tráfego de
dados de vídeos na internet equivale a mais de 60% de todo o tráfego de dados na internet. Esse
aumento no consumo de vídeos digitais exige métodos computacionais viáveis para o cálculo
da qualidade do vídeo. Métodos objetivos de qualidade de vídeo são algoritmos que calculam
a qualidade do vídeo. As mais recentes métricas de qualidade de vídeo, apesar de adequadas
possuem um tempo de execução alto. Em geral, os algoritmos utilizados são complexos e extraem
características espaciais e temporais dos vídeos.

Neste trabalho, realizamos uma análise dos efeitos da redução da resolução espacial no desem-
penho dos métodos de avaliação da qualidade do vídeo. Com base nesta análise, nós propomos um
framework, para a avaliação da qualidade de vídeo que melhora o tempo de execução das métricas
objetivas de qualidade de vídeo sem reduzir o desempenho na predição da qualidade do vídeo. O
framework consiste em quatro etapas. A primeira etapa, classificação, identifica os vídeos mais
sensíveis à redução da resolução espacial. A segunda etapa, redução, reduz a resolução espacial
do vídeo de acordo com a distorção presente. A terceira etapa, predição de qualidade, utiliza uma
métrica objetiva para obter uma estimativa da qualidade do vídeo. Finalmente, a quarta etapa
realiza um ajuste dos índices de qualidade preditos.

Dois classificadores de vídeo são propostos para a etapa de classificação do framework. O
primeiro é um classificador com referência, que realiza medidas da atividade espacial dos vídeos.
O segundo é um classificador sem-referência, que realiza medidas de entropia espacial e espectral,
utilizando Support Vector Machine, para classificar os vídeos. Os classificadores de vídeo têm o
objetivo de selecionar o melhor fator de redução da resolução espacial do vídeo. Testamos o
framework proposto com 6 métricas objetivas de qualidade de vídeo e 4 bancos de qualidade de
vídeo. Com isso, melhoramos o tempo de execução de todas as métricas de qualidade de vídeo
testadas.

Também analisamos os efeitos da redução da resolução temporal no desempenho das métricas
de qualidade de vídeo. A análise mostra que as métricas de qualidade de vídeo, cujas medidas se
baseiam nas características temporais do vídeo, são mais sensíveis à redução temporal. Da mesma
forma, vídeos distorcidos por distorções temporais (e.g. perda de pacotes) são mais sensíveis à
uma redução temporal.



ABSTRACT

The consumption of digital videos increases every year. In addition to the fact that many
countries already use digital TV, currently the traffic of internet video services are more than 60%
of the total internet traffic. The growth of digital video consumption demands a viable method
to measure the video quality. Objective video quality assessment methods are algorithms that
estimates video quality. Recent quality assessment methods provide quality predictions that are
well correlated with the subjective quality scores. However, most of these methods are very
complex and takes long periods to compute.

In this work, we analyze the effects of reducing the video spatial resolution on the performance
of video quality assessment methods. Based on this analysis, we propose a framework for video
quality assessment that reduces the runtime performance of a given video quality assessment
method without reducing its accuracy performance. The proposed framework is composed of four
stages. The first stage, classification, identifies videos that are more sensitive to spatial resolution
reduction. The second stage, reduction, aims to reduce the video spatial resolution according
to the video distortion. The third stage, quality prediction, estimates the video quality using an
objective video quality assessment method. Finally, the fourth stage normalizes the predicted
quality scores according to the video spatial resolution.

We design two video classifiers for the first stage of the framework. The first classifier is a
full-reference classifier based on a video spatial activity measure. The second is a no-reference
classifier based on spatial and spectral entropy measures, which uses a Support Vector Machine
(SVM) algorithm. We use the video classifiers to identify the type of distortion in the video and
choose the most appropriate spatial resolution. We test the framework using six different video
quality assessment methods and four different video quality databases. Results show that the
proposed framework improves the average runtime performance of all video quality assessment
methods tested.

We also analyze the effects of a temporal resolution reduction on the performance of video
quality assessment methods. The analysis shows that video quality assessment methods based on
temporal features are more sensitive to temporal resolution reduction. Also, videos with temporal
distortions, like packet loss, are very sensitive to temporal resolution reduction.
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1 INTRODUCTION

In recent years there has been an increasing demand for video-based services. According to
Cisco in 2019, 80 percent of all consumer Internet traffic will be from video applications [5].
As consumption increases, the demand for a better user experience also increases. Many factors
contribute to the quality of the user experience, like the display in which the video is playing, the
ambient light, the user interest, and the video quality. It is worth pointing out that video quality
refers to the quality of the video signal, as perceived by the user.

There are basically two ways of assessing the quality of a video: subjectively and objectively.
Subjective video quality assessment methods estimate the quality of a video by performing a
series of pycho-physical experiments. In these experiments, subjects watch a series of videos
and give a quality score to each video. The average of these scores is the Mean Opinion Scores
(MOS), which is a subjective quality estimate. This type of video quality assessment method is
known to be the most reliable method [6]. However, psycho-physical experiments are expensive,
very difficult to replicate, and require a minimum number of subjects taken from a diverse pool of
people to provide reliable results. Most of the times, objective video quality assessment method-
ologies are used. Objective methods are basically algorithms that automatically compute a quality
estimate score for the video. These methods are faster and cheaper than the subjective methods,
but they are less precise.

In the early days, image quality assessment methods were adapted to measure the video qual-
ity. In other words, image quality assessment methods, like Peak Signal-to-Noise Ratio (PSNR),
were computed for each frame and averaged to provide the video quality predicted score [7].
However, using image quality assessment methods has limitations. The main issue is that these
methods do not account for temporal distortions. To solve this problem, some research add tem-
poral information to image quality assessment methods to improve their prediction accuracy per-
formances. For example, Wang et al. proposed adding a motion estimation stage to the Structural
Similarity Index (SSIM) [1], giving more weight to slow moving regions [8]. Vu et al. adapt
the Most-Apparent-Distortion (MAD), an image quality assessment method, to video by using
spatial-temporal slices and optical-flow [9].

Nowadays, most of the proposed video quality assessment methods use spatial and temporal
features to evaluate video quality. For example, Pinson et al. extracted several features from the
distorted and reference video to estimate the video quality [10]. Some of the features extracted
by this method include spatial activity, temporal activity, and color-based differences. Seshadri-
nathan used a 3D Gabor analysis to extract spatial, temporal, and spatial-temporal features from
the distorted video and compared them with the same features extracted from the reference (unim-
paired) video [11].

Although video quality assessment methods are becoming more precise, there are still chal-
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lenges in this area. Chandler and Wang discuss some of these challenges related to image/video
quality assessment methods [12, 13]:

• How to deal with multiple distortions: Many video quality assessment methods have a very
good performance when the content evaluated has the same distortion, i.e. when only the
level of the distortion is modified from one video to another. However, different video dis-
tortions affect the video in different ways and some video quality methods cannot interpret
which distortion is more or less visible.

• How to deal with image enhancements: Some video/image post-processing can improve
the perceptual quality of the video or image. Nevertheless, most video quality assessment
methods interpret this processing as a distortion, i.e. are not able to recognize quality en-
hancements.

• How to make the image/video quality assessment scores easy-to-use and easy-to-understand:
Image and video quality assessment methods are becoming more complex over the years.
Although most methods have a good correlation with subjective scores, they are often com-
plex algorithms that are hard to understand and use.

• How to estimates video quality of High Dynamic Range (HDR) content: HDR type content
is becoming more common, but most video quality assessment methods are not ready to
evaluate the quality of this type of content.

Finally, one big challenge that is mentioned in both articles:

• How to reduce the runtime performance of video quality assessment methods: Some of the
current video quality methods are so computationally complex that it is impossible to use
them in real time scenarios or any practical application. For example, the average runtime
of a recent developed method, the ViS3, is more than 600 seconds for videos 10 seconds
long [12].

Some video quality methods have options to reduce the runtime. For example, Wang’s video
quality method has an option to reduce the number of frames used by the algorithm to estimate
the video quality [8]. The VQM reduces the spatial and temporal resolution of the video to
improve the runtime performance [10]. And MOVIE analyzes the video in an 8-by-8 frame
interval [11]. But, although these methods offer options to improve the runtime performance,
they do not consider that different video distortions are more or less sensitive to reductions of
spatial or temporal resolution.

Our main objective is to create a framework to improve the runtime of video quality assess-
ment methods, without affecting their prediction accuracy performance. One of the simplest
methods to improve runtime performance is to reduce the video spatial resolution. However,
when the spatial resolution is reduced, the video quality may be altered and the accuracy perfor-
mance of the video quality assessment methods may decrease. In this work, we test the proposed
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framework using six video quality assessment methods. More specifically, we analyze their accu-
racy performance when we reduce the video spatial resolution. We also try to understand which
video distortions are more (or less) sensitive to spatial reductions. The proposed framework has
four steps. The first step, classification, consists of identifying the video distortions that are more
sensitive to a spatial resolution reduction. The second step, reduction, performs a resolution re-
duction, according to its distortion. The third step, quality prediction, uses an objective quality
assessment method to measure the video quality. Finally, the fourth step adjusts the predicted
score, making sure that the same scale is used for scores corresponding to videos with different
resolutions.

In this work, we design two video distortion classifiers to perform the first step of the proposed
framework. These two classifiers aim to identify which distortions are present in the video, so
that the video spatial resolution can be adjusted according to the sensitivity of the distortion. We
test the proposed framework with six objective quality assessment methods and on four different
video quality database. We also perform tests to analyze the effects of reducing the temporal res-
olution on the video quality assessment methods accuracy performance. Notice that reducing the
temporal resolution is another simple and fast way to decrease the runtime of quality assessment
methods.

We divide this work into six chapters. In Chapter 2, we give details of a digital video system,
briefly detailing video compression, processing, and transmission algorithms, along with common
video distortions. In Chapter 3, we describe the video quality assessment methods and the video
quality databases used in this work. In Chapter 4, we detail the proposed framework and video
classifiers. In Chapter 5, we present the results of this work. Finally, in Chapter 6, we present our
conclusion and discuss possible future works.
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2 DIGITAL VIDEO SYSTEM

Before a video reaches the final user, it has to go through some processing stages. Figure 2.1
shows an overview of a common digital video transmission system. First, the original video is
compressed to reduce its size and, consequently, increase the transmission speed. The encoding
stage includes the compression and the channel encoding. The result of the video compression
stage is a bitstream, in which the coded data is divided into packets for transmission. These pack-
ets are encoded according to the transmission protocol requirements. Then, the video is transmit-
ted through a channel that can be dynamic or static, packet-switched or circuit-switched. When
the video data reaches the receiver, it is decoded and decompressed in the decoding stage [14].

Figure 2.1: Overview of Video Transmission Diagram.

Video distortions are perceptible differences between the degraded video and the correspond-
ing reference video. These distortions are the result of one or more errors introduced in the videos
during compression, post processing or transmission stages. For example, the compression of a
video, usually, is a lossy compression, meaning that some of the video data is discarded and the
received video cannot be perfectly reconstructed [15]. Depending on the type of compression and
the compression rate, some visible artifacts can be present in the video. Also, during the trans-
mission stage through the physical channel, some of its packets can be lost, what may also affect
the video quality. Even after the video is received and decompressed, it can further be processed
for a better visualization on the display device. For example, if the video is in a lower resolution
than the display resolution, the video can be upscaled to the display resolution, what may also
alter its quality. Finally, the video can be corrupted by noise during the acquisition, transmission,
storage, or post-processing stages [16].

Next, we briefly describe the several stages of a modern video transmission scenario and the
several types of distortions that can be introduced in each stage.

2.1 VIDEO COMPRESSION ALGORITHMS

Data compression techniques have the goal of representing the data in a more compact form
[15]. Videos are compressed to reduce storage and transmission costs. There are lossless and lossy
compression algorithms. Although lossless compression algorithm can reduce the video size and
recover it without any errors, the compression ratio that can be achieved with lossless compression
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algorithm is limited [17]. Fortunally, since video sequences are usually very redundant, lossy
compression algorithms can achieve great compression rates with a good video quality. The most
popular lossy compression algorithms are MJPEG, MPEG-2, DIRAC-Wavelet, H.264 and HEVC.
Although lossy compression algorithms are more efficient in terms of compression rate, they may
introduce perceivable artifacts into the video.

The MJPEG compression algorithm is based on the JPEG image compression. JPEG makes
use of the Discrete Cosine Transform (DCT). First, the image is divided into 8x8 blocks and the
DCT of each block is computed. The DCT coefficients are quantized, removing most of the high
frequency coefficients. The quantized coefficients are rearranged and coded using a Huffman
coding algorithm [18]. In MJPEG each video frame is compressed as a JPEG image. Although
JPEG is very good at compressing images, using it to compress individuals video frames is not a
very good strategy. Video sequences have temporal redundancies that can be explored to allows
for a more efficient compression of video sequences. So, videos compressed by MJPEG have a
lower video quality than videos compressed by other compression standards, like MPEG-2 and
H.264, which take into account temporal redundancies.

Figure 2.2 shows an example of video frame compressed by MJPEG, which is affected by
blocking and blurring artifacts. The blocking artifact is a consequence of the quantization of the
DCT coefficients. Since the coefficients in each block are processed independently, regardless of
the spatial correlation between them, intensity differences between neighboring blocks cause the
edges/borders that characterize blockiness. The Human Visual System (HVS) can easily detect
blocking artifacts because of equidistant distribution of the blocks in the frame [19]. Blurring
artifacts, on the other hand are caused by any type of operation that discards high frequencies
DCT coefficients [19]. In image processing, the high frequencies coefficients are associated with
edges and abrupt changes in intensities [20]. Therefore, blurred images have less sharp edges and
borders.

MPEG-2 compression algorithm is a block-based motion-compensated video coding algo-
rithm. It is similiar to JPEG, but it uses motion estimation techniques to reduce temporal redun-
dancy. Since it also individually quantizes the DCT blocks, discarding most of the high frequen-
cies components, MPEG-2 may also introduce blockiness and blurring artifacts in the compressed
video. Motion estimation techniques search blocks in previous frames that are similar to blocks
in the current frame [21]. This way, only the coordinates of the similar blocks and the difference
between these blocks and the current blocks need to be encoded and sent to the receiver. As a
consequence of the motion estimation, videos compressed by MPEG-2 may also be affected by
mosquito noise. This artifact occurs when the predicted block contains only part of a moving
object. Mosquito noise is more visible in smooth texture regions around egdes [14]. Figure 2.3
shows a video frame compressed by MPEG-2 and the corresponding reference frame.

H.264 compression algorithm is also a block-based motion-compensated video coding algo-
rithm [22]. In H.264, the video is first divided into macroblocks (16×16 for the luminance com-
ponent and 8×8 for the chroma components), and, then, the DCT coefficients of each macroblock
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(a) Reference Frame

(b) MJPEG

Figure 2.2: Comparison between (a) the reference frame and (b) the frame compressed using a MJPEG algorithm.

are calculated and quantized. Next, a motion estimation algorithm is used to obtain inter-frame
predictions. Different from previous compression algorithms, each macroblock can be divided
into sub-macroblocks of different sizes, raging from 16×16 down to 4×4. This granularity im-
proves the quality of the prediction, specially for fast motion regions. Koh et al. show that the
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(a) Reference Frame

(b) MPEG-2

Figure 2.3: Comparison between (a) the reference frame and (b) the frame compressed using a MPEG-2 compression
algorithm.

blocking is the most annoying artifact present in videos compressed by MPEG-2 [23]. To improve
video quality, H.264 uses a deblocking filter to reduce the blocking artifacts, which are common
in other block-based compression algorithms. The use of a deblocking filter improves the qual-
ity of the video by 9% in PSNR [24]. Figure 2.4 shows a H.264 compressed video frame and
the corresponding reference frame. Notice that blocking artifacts are less visible in H.264 com-
pressed frames than in MJPEG or MPEG-2 compressed frames. However, H.264 compressed
video frames still present blurring artifacts.

DIRAC-Wavelet compression algorithm was developed by the British Brodcasting Corpora-
tion (BBC) [25]. The major difference between the DIRAC-Wavelet algorithm and other com-
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(a) Reference Frame

(b) H.264

Figure 2.4: Comparison between (a) the reference frame and (b) the frame compressed using an H.264 compression
algorithm.

pression algorithms, like MPEG-2 and H.264, is that it uses wavelets instead of DCT, reducing
the blockiness artifacts. But, the quantization of wavelet coefficients leads to ringing and blurring
artifacts. Ringing artifacts manifest themself as wave-like structures in edges regions. Figures 2.5
shows an example of a video frame distorted by a DIRAC-Wavelet compression. Notice that
ringing artifacts are present in areas around high contrast edges.
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H.265 or HEVC compression algorithm is an improved version of the H.264 compression.
One of the changes introduced by H.265 is the possibility of partitioning the video frame using
blocks of different sizes, which vary from 64x64 down to 8x8 [26]. The performance of H.265 is
50% better than the performance of H.264, i.e. for the same quality level, the bitrate obtained with
H.265 is half the bitrate obtained with H.264 [27]. Figure 2.6 shows a video frame distorted by a
H.265 compression compression. Videos compressed with H.265 at low bitrates contain mostly
blurring artifacts.

(a) Reference Frame

(b) DIRAC-Wavelet

Figure 2.5: Comparison between (a) the reference frame and (b) the frame compressed using a DIRAC-Wavelet
compression algorithm.
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(a) Reference Frame

(b) HEVC

Figure 2.6: Comparison between (a) the reference frame and (b) the frame compressed using an H.265 compression
algorithm.

2.2 UPSCALING PROCESSING

Sometimes the display where the video is presented has a higher resolution than the received
video. Algorithms of interpolation are then used to upscale the video resolution to the display
resolution. This type of processing is commonly used in streaming services applications, because
video resolutions vary according to the available bandwidth [28]. Interpolation algorithms used
in upscaling consider the neighboring pixels to estimate a pixel value.

There are different interpolation algorithms, including nearest-neighbor, bilinear, and bicu-
bic [29]. The nearest-neighbor algorithm is the most simple interpolation algorithm, consisting
simply of repeating the value of the neighboring pixel that is closer to the pixel. The biliniar
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and bicubic generate images with better quality, because they use more information to predict the
new pixel. However, the images generated using these interpolation algorithms are blurred. Fig-
ure 2.7 shows an example of video frame distorted by upscaling. In this example, the video was
compressed with H.264 and then upscaled to a higher resolution, using a bilinear interpolation
algorithm. Notice that the upscaled video frame is more blurred than the reference video frame.

(a) Reference Frame

(b) H.264

(c) H.264 with Upscaling

Figure 2.7: Comparison between (a) the reference frame and (b) the frame compressed by an H.264 algorithm and
(c) the frame compressed by an H.264 algorithm with Upscaling.
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(a) Reference Frame

(b) White Noise

Figure 2.8: Comparison between (a) the reference frame and (b) the frame distorted by white noise.

2.3 VIDEO TRANSMISSION

Video can be transmitted either in analog or digital channels. In analog transmissions, one
of the most common artifacts is noise, most commonly white noise that is a random signal that
occupies the whole spectrum. Noise can also be added in video sequences during the acquisition
and processing [16]. Figure 2.8 shows a video frame distorted by white noise. Notice that in this
case the noise is an additive distortion, which affects the whole frame.

In digital transmission, before the compressed video is transmitted over a channel (e.g. a
wired or wireless transmission channel), it is divided into packets. Sometimes these packets are
discarded due to the traffic in the network. The impact of a packet loss in video quality depends
on the content of the video and the channel loss distribution [30]. Packet loss is characterized
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(a) Reference Frame

(b) Packet Loss

Figure 2.9: Comparison between (a) the reference frame and (b) the frame distorted by packet loss artifacts.

by the presence of erroneously decoded blocks in the decoded video. In most video compression
algorithms, frames that are coded without any reference to previous frames are send periodically.
These frames are called I-Frames and are used as a reference to decode other frames. If the packet
loss occurs in these I-Frames, the distortions are more severe and may affect several frames [31].
Figure 2.9 shows a video frame distorted by packet-loss artifacts. Notice that packet-loss is a
local distortion, i.e. it is spatially and temporally concentrated.
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3 VIDEO QUALITY ASSESSMENT METHODS

In this chapter, we discuss objective methods to automatically estimate the quality of visual
signals (images and videos). More specifically, we present the different types of objective meth-
ods and present a review of the state-of-the-art of the area, describing the methods that are used
in this work. Finally, we also present the video quality assessment databases that are used as
benchmarks for the tests performed in this work.

3.1 OBJECTIVE QUALITY ASSESSMENT METHODS

There are two ways to evaluate the video quality. The first is to subjectively assess the quality
of videos. Subjective quality assessment methods are psycho-physical experiments in which sub-
jects (voluntary participants) evaluate the quality of a set of videos. To perform a subjective test
properly, experimenters follow recommendations established by the International Telecommuni-
cation Union (ITU) [32]. Subjective methods are known to provide the most reliable results for
video quality, however, they are very expensive and time-consuming.

The second way to evaluate the video quality consists of measuring the signal quality using
objective methods. These methods use mathematical models, which can be implemented in hard-
ware or software, to evaluate video quality. Depending on the information available, objective
methods can be categorize into three groups:

• Full-Reference (FR): the original and the test video are available to the method at the mea-
surement point;

• Reduced-Reference (RR): besides the test video, some information about the original video
is available to the method at the measurement point;

• No-Reference (NR): only the test video is available to the method at the measurement point.

Since FR methods require information about the reference video, what is frequently not available
in real-time applications, these methods are more adequate for laboratory applications. Codec
comparison and optimization are examples of scenarios in which these methods can be used.
Although FR methods are more precise, RR and NR methods are more appropriate for real-time
scenarios.

Objective quality assessment methodologies can also be classified as data metrics or picture
metrics [33]. Data metrics measure only the fidelity of the video signal, i.e. how similiar are the
test and reference video. Data metrics do not consider the content of the video or how degrada-
tions are perceived by human viewers. These metrics, often, are simple and fast. Mean Squared
Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are examples of data metrics. One of the
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problems of data metrics is that they do not consider the type of distortion present in the image
or video. Figure 3.1 shows five images that have the same MSE score, but are degraded with
different types of distortions and have different perceived quality levels. As can be seen in these
images, although the perceived quality of the images containing the distortions are different, the
MSE does not capture these differences. Another problem of data metrics is that they do not take
into consideration the content of the image or video. According to Wang, distortions may be less
visible in texture areas of the video frame or when the speed of motion is large [8]. Nevertheless,
it is worth pointing out that data metrics can be used in other contexts, when we simply want to
measure the differences between two video signals.

Figure 3.1: Comparison between the images with the same MSE score, but with different distortions. (a) Original
Image. (b) Contrast-stretched image. (c) Mean-shifted image. (d) JPEG compressed image. (e) Blurred image. (f)
Salt-pepper impulsive noise contaminated image. Original From [1].

In the last decades, researchers started developing pictures metrics, which are objective quality
assessment methods that take into consideration the intrinsic characteristics of a visual signal. In
other words, picture metrics analyze the visual data as visual information, considering the effects
of video distortions and content on the perceived quality. Picture metrics can be designed either
using a vision modeling approach or an engineering approach. The vision modeling approach
implements models of components of the HVS, like color perception, contrast sensitivity, and
pattern masking. One example of a video quality assessment method that uses a vision modeling
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approach is the Sarnoff Just Noticeable Differences (JND) method, which is based on the chro-
matic and luminance differences that can be perceived by human viewers, i.e. the just noticeable
perceived difference [34]. Another example of a video quality assessment method that uses visual
models is the Perceptual Distortion Metric (PDM), which is implements a perceptual color space
model, multi-channel representation of spatial and temporal mechanisms, contrast sensitivity and
pattern masking models [35].

The engineering approach is based on the analysis of certain features of the video, like the
spatial luminance gradient, the image structure, or specifics artifacts (like blur, noise, etc). Some
examples of video quality assessment methods that adopt an engineering approach are:

• SSIM – an image quality assessment method, that measures the mean, variance and covari-
ance of patches of the image [1];

• Gradient Magnitude Similarity Deviation (GMSD) – an image quality assessment method
that analyzes the spatial luminance gradient [36];

• Spatial and Spatial-Temporal Slices Gradient Magnitude Similarity Deviation (SSTS-GMSD)
– an extended version of the GMSD that analyzes the gradient of the Spatial-Temporal Slices
(STS) of the video [2].

On the other hand, there are methods that combine both approaches. One example is the
Video Quality Assessment via Analysis of Spatial and Spatial-Temporal Slices (ViS3), which
includes a data metric and a picture metric in its model [4]. First, a spatial distortion map is
computed using the Most Apparent Distortion algorithm (MAD), which takes into account on
how the HVS perceives video distortions [37]. Then, the spatial-temporal dissimilarity between
the reference and distorted videos is computed using spatial-temporal correlation and spatial-
temporal responses.

Recently, the use of machine learning algorithms for video quality assessment has become
extremely popular, specially for the no-reference quality assessment methods scenario. Most
machine learning based quality assessment methods extract features from the videos and use
machine learning techniques, like support vector regression or neural networks, to predict the
video quality scores. Xu et al. propose a no-reference video quality assessment method that uses
an unsupervised feature learning approach that trains a support vector regression to predict video
quality [38]. Saad et al. use a spatio-temporal natural scene statistics model and a motion model
to train a support vector regression algorithm [39].

Although prediction accuracy performance of video quality assessment methods are improv-
ing, these methods are becoming more complex, requiring large running times. Both ViS3 and
Spatial-Temporal Reduced Reference Entropy Difference (STRRED) take several minutes to es-
timate the quality of a video 10 seconds long [4, 40]. MOVIE, an algorithm that uses a 3D
Gabor filters, takes hours to estimate the quality of a video 10 seconds long [11]. Therefore, an
mentioned earlier, improving the runtime of video quality assessments methods is still an open
challenge [12, 13].
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Figure 3.2: Diagram of the SSIM Algorithm.

In this work, we study the performance of full-reference and reduced-reference video quality
assessment methods. Among the assessment methods studied in this work are the ViS3, SSTS-
GMSD, GMSD, SSIM and PSNR FR methods and the STRRED RR method. These methods are
detailed in the next sub-sections.

3.1.1 PSNR

The Peak Signal-to-Noise Ratio (PSNR) is a simple full-reference method. PSNR is based on
the mean squared error (MSE) difference of two images, given by the following equation:

MSE =

∑M−1
x=0

∑N−1
y=0 (Iref (x, y)− Idist(x, y))2

M ·N
, (3.1)

where Iref (x, y) is a pixel from the reference image, Idist(x, y) is a pixel from the distorted or
test image and MxN is the spatial dimension of these images. In this work, we consider only the
luminance component of the image to calculate the MSE.

PSNR is calculated using the following equation:

PSNR = 10 · log10
MAX2

I

MSE
, (3.2)

where MAXI is the maximum possible value of the image (for images with 8 bits, MAXI =

255). To use PSNR as a video quality method, we calculate the PSNR for each frame of the video
and average the frame results to obtain one video quality score.

3.1.2 SSIM

The Structural Similarity (SSIM) is a full reference image quality assessment method devel-
oped by Wang et al. [1]. SSIM compares three features of the reference and distorted image.
These features are luminance, contrast and structure, as shown in Figure 3.2.
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SSIM performs its analysis on the luminance component of the image. To compute the SSIM
score, the image is first divided in 8×8 blocks. For each block the luminance, contrast and
structure comparison measurements are performed. The luminance comparison is calculated by
the following equation:

l(x, y) =
2µxµy + C

µ2
x + µ2

y + C
, (3.3)

where µx and µy are the mean intensity of the original image block and the distorted (test) image
block, respectively, and C is a small constant necessary to avoid instability.

The Contrast Comparison is calculated by the following equation:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (3.4)

where σx and σy are the standard deviation intensity of the original and distorted (test) image
block, respectively, and C2 is a small constant necessary to avoid instability.

The Structural Comparison is calculated by the following equation:

s(x, y) =
σxy + C3

σxσy + C3

, (3.5)

where σx and σy are the standard deviation intensity of the original and distorted block, σxy is
the covariance between the original image block and the distorted (test) image block, and C3 is a
small constant necessary to avoid instability.

To combine these comparisons into a single SSIM map, we use the following equation:

SSIM(x, y) = l(x, y)α · c(x, y)β · l(x, y)γ, (3.6)

where, to simplify, α = β = γ = 1. The average value of the SSIM map is the final score. To use
SSIM as a video quality method, we calculate the SSIM for each video frame and average these
values to obtain the video quality score.

3.1.3 GMSD

The Gradient Magnitude Similarity Deviation (GMSD) is a full reference image quality as-
sessment method developed by Xue et al. [36]. It is based on the gradient differences be-
tween reference and distorted (test) gray-scaled images. The gradient magnitude is computed
using Prewitt filters for horizontal and vertical directions, as given by the following expressions:

hx =

∣∣∣∣∣∣∣
1/3 0 −1/3

1/3 0 −1/3

1/3 0 −1/3

∣∣∣∣∣∣∣ (3.7) hy =

∣∣∣∣∣∣∣
1/3 1/3 1/3

0 0 0

−1/3 −1/3 −1/3

∣∣∣∣∣∣∣ (3.8)
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Figure 3.3: Example of Spatial Temporal Slices. Originals taken from [2].

To compute the gradient magnitude image, we convolve the reference and distorted (test)
images with the Prewitt filters, as shown in the following equations:

mr =
√

(Iref ∗ hx)2 + (Iref ∗ hy)2 (3.9)

and
md =

√
(Idist ∗ hx)2 + (Idist ∗ hy)2, (3.10)

where Iref is the reference image, Idist is the distorted image, mr is the gradient magnitude of
the reference image, md is the gradient magnitude of the distorted image, and ∗ represents the
convolution operation.

Finally, we compare the gradient magnitude of the reference and distorted images using the
following equation:

GMSmap =
2mrmd + c

m2
r +m2

d + c
, (3.11)

where c is a small constant necessary to avoid instability. The GMSD final score is obtained by
calculating the standard deviation of the GMSmap. To use GMSD as a video quality method we
calculate the GMSD for each video frame and average these to obtain the video quality score.

3.1.4 SSTS-GMSD

The Spatial and Spatial-Temporal Slices Gradient Magnitude Similarity Deviation (SSTS-
GMSD) is a full-reference video quality assessment method based on GMSD, which was devel-
oped by Yan et al. [2]. It uses Spatial-Temporal Slices (STS) of the video to provide temporal
information to the GMSD. A video can be represented as a 3-D array, F (x, y, t), where the x and
y are spatial coordinates and the t is a temporal coordinate. Figure 3.3, depicts the STSs. Notice
that there are two types of STS: the vertical STS, represented by y and t coordinates, and the
horizontal STS represented by x and t coordinates.

The SSTS-GMSD algorithm computes the GMSD of the video frames (x,y), the horizontal
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STS (x,t) and the vertical STS (y,t), as shown in Figure 3.4. Then, the GMSD scores are sorted in
descending order and the average value of the first 20% GMSD scores is computed, for each of
these dimensions. This creates the Spatial GMSD index (S-GMSD), the Horizontal-Slice index
(H-GMSD), and the Vertical-Slice GMSD index (V-GMSD). The following equation shows how
these indices are combined into a single index that represents the quality of the video:

SSTS-GMSD =
√
S-GMSD · V -GMSD ·H-GMSD. (3.12)

Figure 3.4: Diagram of SSTS-GMSD. Original from [2].

3.1.5 STRRED

The Spatial-Temporal Reduced Reference Entropy Difference (STRRED) is a reduced refer-
ence video quality method developed by Soundararajan and Bovik [40]. It is based on a previously
work, the Reduced Reference Entropic Differencing (RRED) [41]. RRED is a reduced-reference
image quality assessment method based on the differences between the entropies of wavelet co-
efficients of the reference and distorted images. STRRED estimates video quality taking into
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account spatial and temporal distortions. The spatial distortions are measured using the Spatial
Reduced Reference Entropic Differences (SRRED). SRRED is based on the frame’s RRED in-
dex with the addition of a motion weight, what makes it more sensitive to distortions that occur
in slow motion regions. Temporal distortions are measured using Temporal Reduced Reference
Entropic Differences (TRRED), which is based on the adjacent frames difference RRED index.

The SRRED algorithm calculates the entropic differences of the wavelet coefficients between
reference and distorted frames. First, the wavelet coefficients are calculated using a steerable
pyramid decomposition with multiple scales and orientations [3]. Figure 3.5 shows an example
of a steerable pyramid decomposition in three scales and three orientations. Each image in the
steerable pyramid decomposition is considered a sub-band.

Figure 3.5: Result of steerable pyramid decomposition in three scales and three orientations. Three sub-bands images
at each scale and the final lowpass image. Original from [3].

The wavelet coefficient in a sub-band is partitioned in non-overlapping blocks of size 3x3.
Each block in a sub-band k (k ∈ 1, 2, 3, ..., k) is indexed by m (m ∈ 1, 2, ...,Mk). Let C̄mkf

denote a vector of wavelet coefficients in the mth block, the kth sub-band, and the fthframe.
The vector of wavelet coefficients from the reference video, C̄mkfr, is modeled as a continuous
Gaussian Scale Mixture (GSM) distribution [42], defined by the following equation:

C̄mkfr = SmkfrŪmkfr, (3.13)

where Smkfr are independent of Ūmkfr, with Ūmkfr ∼ N (0,KUkf). The vectors of wavelet
coefficients from the distorted video, C̄mkfd, are modeled in the same way.

SRRED is calculated with the following equation:

SRREDMk
k =

1

FMk

F∑
f=1

Mk∑
m=1

|γmkfrh(C ′mkfr|Smkfr = smkfr)−γmkfdh(C ′mkfd|Smkfd = smkfd)|,

(3.14)
where F is the total of frames in the video, Mk is the total number of blocks in the sub-band,
h(C ′mkfr|Smkfr = smkfr) and h(C ′mkfd|Smkfd = smkfd) are the entropies of C ′mkfr and C ′mkfd,
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which are conditioned on the maximum likelihood estimates Smkfr and Smkfd. Finally, γmkfr and
γmkfd are scale factors defined by the following equations:

γmkfr = log(1 + s2mkfr) (3.15)

and
γmkfd = log(1 + s2mkfd). (3.16)

The TRRED algorithm is based on the entropic differences of the wavelet coefficients of the
current frame and the next frame, in both the reference and distorted videos. Let D̄mkf denote
the vector of wavelet coefficients differences of the current frame (f ) and the next frame (f + 1),
corresponding to the mth block and the kth sub-band. The block D̄mkfr, from the reference video,
is modeled as a continuous GSM distribution [42], as defined by the following equation:

D̄mkfr = TmkfrV̄mkfr, (3.17)

where Tmkfr is independent of V̄mkfr, with V̄mkfr ∼ N (0,KV kf). The vectors of the wavelet
coefficients differences of the current and next distorted frames are modeled in the same way, and
defined as D̄mkfd.

TRRED is calculated using the following equation:

TRREDMk
k =

1

FMk

F∑
f=1

Mk∑
m=1

|δmkfrh(D′mkfr|Tmkfr = tmkfr)−δmkfdh(D′mkfd|Tmkfd = tmkfd)|,

(3.18)
where F is the total of frames in the video, Mk is the total number of blocks in the sub-band,
h(D′mkfr|Tmkfr = tmkfr) and h(D′mkfd|Tmkfd = tmkfd) are the entropies of D′mkfr and D′mkfd,
which are conditioned on the maximum likelihood estimates of Tmkfr and Tmkfd. Finally, δmkfr
and δmkfd are scale factors defined by:

γmkfr = log(1 + s2mkfr) log(1 + t2mkfr) (3.19)

and
γmkfd = log(1 + s2mkfd) log(1 + t2mkfd). (3.20)

SRRED and the TRRED is combined into a single STRRED quality index. For the kth sub-
band, the STRRED index is defined as:

STRREDk = SRREDk · TRREDk. (3.21)

Although the video is decomposed in many sub-bands. These sub-bands have different orien-
tations and size. STRRED is only computed for the sub-band with the vertical orientation and 1/4
of the video size, because this gives the best prediction accuracy performance among all different
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Figure 3.6: Diagram of ViS1 Algorithm. Original from [4].

orientations and scales.

3.1.6 ViS3

Video Quality Assessment via Analysis of Spatial and Spatial-Temporal Slices (ViS3) is a
full-reference video quality assessment method developed by Vu et al. [4]. This method computes
video quality in two stages. First, it estimates the degradations due to spatial distortions. This
stage is called ViS1. The second stage, ViS2, estimates the degradations due to joint spatial and
temporal distortions.

Figure 3.6 shows an overview of the ViS1 algorithm. To compute the visible distortion map,
the reference frame and the distorted frame are converted to perceived luminance values using the
following equation:

L = (α + kI)
γ
3 , (3.22)

where I is the video frame, α = 0, k = 0.02874 and γ = 2.2. These parameters are adjusted
for 8-bit pixel values and sRGB displays. An error frame (∆L) is computed using the following
equation:

∆L = Lref − Ldist, (3.23)

where Lref and Ldist are the reference and distorted frames converted to perceived luminance.
Then, a contrast sensitivity function is applied to the reference frames and error frames using the
following equation:

L̃ = F−1[H(u, v) ·F [L]], (3.24)

where F and F−1 correspond to the Discrete Fourier Transform (DFT) and the Inverse DFT,
and H(u, v) is the Contrast Sensitivity Function in its DFT version, as defined in [37].

After this pre-processing stage, a local Root Mean Squared (RMS) contrast map is computed
for the reference frame. The frame is divided in 16×16 blocks, with a 75% of overlap among
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neighboring blocks. The RMS contrast is computed for each block using the following equation:

Cref =
σ̃(b)

µref (b)
, (3.25)

where µref (b) is the average pixel value of block b of L̃, and σ̃(b) is the minimum of the standard
deviations of the four non overlapping 8×8 blocks within block b.

The local RMS contrast for the error frame (∆L) is computed. The frame is divided in 16×16
blocks, with a 75% overlap between neighboring blocks, and the RMS contrast is computed for
each block using the following equation:

Cerr(b) =


σerr(b)
µref (b)

if µref (b) > 0.5

0 otherwise,
(3.26)

where µref (b) is the standard deviation of the error frame (∆L) corresponding to block b. This
adapted RMS contrast algorithm takes into account the human visual system insensitivity to
changes in darker areas, by making the values of darker areas equal to zero.

The local distortion visibility map is computed using the following equation:

ζ(b) =


ln[Cerr(b)]− ln[Cref (b)] if ln[Cerr(b)]− ln[Cref (b)] > −5

ln[Cerr(b)] + 5 if ln[Cerr(b)] > −5 ≥ ln[Cref (b)]

0 otherwise.

(3.27)

Finally, the visible distortion map is computed using a point-by-point multiplication between the
local distortion visibility map (ζ) and the MSE of the reference and distorted frames, as given by
the following equation:

ΥD = ζ(b) ·MSE(b). (3.28)

The statistical difference map measures the differences between the local statistics of mul-
tiscale log-gabor filter response of reference and distorted frames. The reference and distorted
frames are filtered with a log-Gabor filter bank (with five scales s ∈ 1, 2, 3, 4, 5 and four orienta-
tions o ∈ 1, 2, 3, 4). The result are sets of log-Gabor subbands of the reference (Rs,o) and distorted
(R̂s,o) frames. Each log-Gabor subband is divided in 16×16 blocks, with a 75% overlapping be-
tween neighboring blocks. Then, the standard deviation, skewness, and kurtosis are computed for
each block. The statistical difference of the block b is computed as:

ΥA(b) =
5∑
s=1

4∑
o=1

ws[|σs,o(b)− σ̂s,o(b)|+ 2|ζs,o(b)− ζ̂s,o(b)|+ |κs,o(b)− κ̂s,o(b)|], (3.29)

where σs,o(b), ζs,o(b) and κs,o(b) are the standard deviation, skewness and kurtosis of block b and
subband (Rs,o), respectively. And σ̂s,o(b), ζ̂s,o(b) and κ̂s,o(b) are the standard deviation, skewness
and kurtosis of block b and subband (R̂s,o).
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Motion vectors are computed to model the effects of motion on video quality. In areas with
larges amount of movement, distortions are less visible. Alternatively, in areas with less motion,
distortions are more visible. Motion vectors are computed using the Lucas-Kanade method [43].
In this method, two matrices of motion vectors are obtained, Mv for the vertical motion and Mh

for the horizontal motion. The motion magnitude matrix is computed as:

M =
√
M2

v +M2
h . (3.30)

The visible distortion map, statistical difference map, and the motion magnitude map are
computed for a Group of Video Frames (GOF). The point-by-point average value of these maps
represents the map values for the GOF, given by the following equations:

ῩD
k =

1

N

N∑
τ=1

ῩD
N(k−1)+τ (3.31)

ῩA
k =

1

N

N∑
τ=1

ῩA
N(k−1)+τ (3.32)

ῩM
k =

1

N

N∑
τ=1

M̄N(k−1)+τ (3.33)

where N is the number of frames in the GOF. ViS3 uses N = 8.

Finally, ViS1 is a combination of the visible distortion map, statistical difference map and
motion magnitude map, given by:

V iS1 =
1

K

K∑
k=1

√√√√ 1

WH

W∑
x=1

H∑
y=1

[ῩD
k (x, y)]α̂(x,y) · ῩA

k (x, y)]1−α̂(x,y),√
1 + ῩM

k (x, y)
(3.34)

where α̂(x, y) is a parameter given by the following equation:

α̂(x, y) =
1

1 + β1 · [ῩD
k (x, y)]β2

, (3.35)

where β1 = 0.46711 and β2 = 0.12964. Basically, the ViS1 score is a weighted product of the
visible distortion map and the statistical difference map, divided by the motion magnitude map.

In ViS2, the frames are converted to the perceived luminance, as shown in Equation 3.22.
The spatial-temporal slices are extracted from the videos, similarly to what is done in SSTS-
GMSD. Let Sx(t, y) and Ŝx(t, y) denote the vertical slices of the reference and distorted videos,
and x ∈ [1,W ], where W is the video spatial width. Sy(x, t) and Ŝy(x, t) denote the horizontal
slice of the reference and distorted video, respectively, and y ∈ [1, H], where W is the video
spatial height. Figure 3.7 shows an overview of the ViS2 algorithm. First, the spatial-temporal
correlation map and spatial-temporal response difference map are computed. Then, both maps
are combined to compose the spatial-temporal dissimilarity map.
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Figure 3.7: Diagram of ViS2 Algorithm. Original from [4].

To compute the spatial-temporal correlation map, the spatial-temporal slice is divided in
16×16 blocks, with a 75% overlap among neighboring blocks. Local linear correlation coeffi-
cients of the spatial-temporal slices are extracted from the reference and distorted videos, respec-
tively, as defined in the following equation:

ρ̃(b) =


0, if ρ(b) < 0

1, if ρ(b) > 0.9

ρ(b) otherwise

(3.36)

where ρ is the linear correlation coefficient and b is the block of the spatial-temporal slice.

A spatial-temporal response map is computed using separate 1-D filters to each dimension
of the spatial-temporal slice. The spatial filter is a set of log-Gabor 1-D filters, gs, with s ∈
1, 2, 3, 4, 5. The frequency response of the filter is defined in the following equation:

Gs(ω) = exp

−(ln
∣∣∣ ωωs ∣∣∣)2

2(lnBs)2

 , (3.37)

where ωs is the center frequency of the filter gs, Bs is the bandwidth of the filter gs and ω ∈
[−ωs, ωs] is the 1-D spatial frequency.

The two temporal filters hz, z ∈ 1, 2 are defined as:

hz(t) = tnzexp(−t)

[
1

nz!− t2

(nz+2)!

]
, (3.38)

where n1 = 6 and n2 = 9. The spatial-temporally filtered images obtained by filtering Sx(t, y)

are given by:
Rs,z
x (t, y) = [Sx(t, y) ∗y gs] ∗t hz, (3.39)

The spatial-temporally filtered images obtained by filtering Sy(t, y) are given by:

Rs,z
y (x, t) = [Sy(x, t) ∗x gs] ∗t hz, (3.40)
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where ∗d is the convolution along dimension d and d ∈ x, y, t, s ∈ 1, 2, 3, 4, 5 and z ∈ 1, 2. So,
in total, there are 10 spatial-temporal filtered image for each spatial-temporal slice, Sx(t, y) and
Sy(t, y). Similarly, R̂s,z

x and R̂s,z
y are computed as the spatial-temporally filtered images of Ŝx and

Ŝy. The absolute difference of the spatial-temporally filtered images are computed by:

∆Rs,z
x (t, y) =

∣∣∣Rs,z
x (t, y)− R̂s,z

x (t, y)
∣∣∣ , (3.41)

∆Rs,z
y (x, t) =

∣∣∣Rs,z
y (x, t)− R̂s,z

y (x, t)
∣∣∣ . (3.42)

The response difference map is computed as a natural logarithm of a weighted sum of all
adjusted standard deviation maps. Dx and Dy are the log of response difference maps of the ver-
tical and horizontal spatial-temporal slices, respectively, which are computed using the following
equations:

Dx(t, y) = ln

{
1 + A

5∑
s=1

2∑
z=1

ws[σ̃
s,z
x (t, y)]2

}
, (3.43)

Dy(x, t) = ln

{
1 + A

5∑
s=1

2∑
z=1

ws[σ̃
s,z
y (t, y)]2

}
, (3.44)

where ws are weights, ws = 0.5, 0.75, 1, 5, 6, A = 104 is a scaling factor, and σ̃s,zx and σs,zy are
maps of adjusted standard deviation. σ̃s,zx and σs,zy are computed by:

σ̃s,zx (b) =

0, if µs,zx < p

σs,zx (b)
√

µs,zx (b)
p+µs,zx (b)

otherwise
, (3.45)

and

σ̃s,zy (b) =

0, if µs,zy < p

σs,zy (b)
√

µs,zy (b)

p+µs,zy (b)
otherwise

. (3.46)

The spatial-temporal dissimilarity value for the vertical and horizontal spatial-temporal slices
are computed as the RMS value of a combination of the spatial-temporal correlation map and the
log of the response difference map, as shown in the following equations:

∆̄FY
c =

√√√√ 1

FH

F∑
t=1

H∑
y=1

[Dx(t, y) ·
√

1− Px(t, y)]2, (3.47)

∆̄XT
r =

√√√√ 1

WF

W∑
x=1

F∑
t=1

[Dy(x, t) ·
√

1− Py(x, t)]2, (3.48)

where Px and Py are the spatial-temporal correlation maps of the vertical and horizontal spatial-
temporal slices, Dx and Dy are the log of the response difference maps of the vertical and hori-
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Figure 3.8: Diagram of ViS3 Algorithm. Original from [4].

zontal spatial-temporal slices, W is the width of the video, H is the height of the video and F is
the number of frames.

The ViS2 score represents the spatial-temporal dissimilarity value and is computed with the
following equation:

V iS2 =

√√√√ 1

W

W∑
c=1

[ ¯∆FY
c ]2 +

1

H

r=1∑
H

[ ¯∆XF
r ]2. (3.49)

Finally, Figure 3.8 shows how to calculate the ViS3 scores, by combining the ViS1 and ViS2
scores into a single scalar. More specifically, ViS3 is the geometric mean of ViS1 and ViS2, given
by:

V iS3 =
√
V iS1 · V iS2. (3.50)

The ViS3 score represents the overall perceived video quality.

3.2 VIDEO QUALITY DATABASES

Currently, there are several video quality databases available for download. These databases
are a collection of videos and their distorted versions. Each distorted video has a subjective
score that represents the quality of this video. In most cases, the distorted videos are labeled
according to their type of distortion (see previous chapter). In this work, we use four databases
as benchmarks to test the proposed video quality assessment framework: LIVE, CSIQ, IVP and
MCL-V. In the next subsections, we describe the specifications of each database.

3.2.1 LIVE Video Quality Assessment Database

The LIVE Video Quality Assessment Database is one of the most popular video quality
database [44, 31]. It was released in 2010 by the Laboratory for Image & Video Engineering
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(LIVE) of the University of Texas. This database has 10 reference videos and, for each reference
video, there are 15 test sequence with four types of distortions: MPEG-2 compression (4 test
videos per reference), H.264 compression (4 test videos per reference), simulated transmission
of H.264 compressed bitstreams through error-prone IP networks (3 test videos per reference)
and through error-prone wireless networks (4 test videos per reference). Figure 3.9 shows sample
frames from each reference video in the LIVE database.

The videos are provided in uncompressed YUV420 format at a 768x432 resolution. Nine of
the ten reference videos are 10 seconds long and one video is 8.68 seconds long. Seven out of
the ten reference videos have 25 FPS and the other three videos have 50 FPS. For the subjective
testing, a single stimulus methodology was adopted. In this methodology, the subject watches
a single video and then gives a quality score to this video using a continuous scale. All test
videos were evaluated by 38 subjects. Subjects evaluated reference and the impaired videos. The
Difference Mean Opinion Scores (DMOS) between each impaired video and the corresponding
reference was computed to provide a subjective quality score.

Figure 3.9: Sample frames of original videos in the LIVE Database.
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3.2.2 CSIQ Video Quality Database

The CSIQ Video Quality Database was released in 2013 by Laboratory of Computational Per-
ception & Image Quality at Oklahoma State University [4]. This database contains 12 reference
video sequences and 216 distorted video sequences. All videos were provided in uncompressed
YUV420 format with a spatial resolution of 832x480. Figure 3.10 shows sample frames from
each reference video in the CSIQ database.

The distorted video sequences were generated using 6 types of distortion: H.264 compression,
H.265 compression, MJPEG compression, wavelet-based compression using the Snow codec,
H.264 videos subjected to simulated wireless transmission loss, and additive white noise. To
generate all test videos, each reference video was distorted with all distortions in three different
levels.

The Subjective Assessment Methodology for Video Quality (SAMVIQ) was used in the sub-
jective tests [45]. SAMVIQ is a multi-stimulus experimental methodology. Subjects are presented
with the reference and distorted sequences from the same content. They evaluate each sequence
in any order. They can even change the quality score given to a sequence previously seen. All
videos were evaluated by 35 subjects. The MOS for each video sequence was released with the
database.

Figure 3.10: Sample frames of original videos in the CSIQ Database.
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3.2.3 IVP Subjective Quality Video Database

The IVP Subjective Quality Video Database was released in 2011 by the Image and Video
Processing Laboratory at The Chinese University of Hong Kong [46]. This database contains
10 reference video sequences and 128 distorted video sequences. The videos were provided in
uncompressed YUV420 format with resolution of 1920x1088. All videos have 25 FPS. Seven
of the reference video sequences are 10 seconds long, two are 11.2 seconds long and one is 8.96
seconds long. Figure 3.11 shows sample frames from each reference video in the IVPL database.

The distorted video sequences were generated using 4 types of distortion: MPEG-2 com-
pression (3 test videos per reference), wavelet compression (3 test videos per reference), H.264
compression (4 test videos per reference) and packet loss cause by H.264 streaming through IP
networks (4 test videos per reference). The packet loss distortions are presented only for seven
(out of ten) reference video sequences. All videos were evaluated by 42 subjects. The single stim-
ulus methodology was used in the subjective experiment. DMOS was provided as the subjective
quality measure.

Figure 3.11: Sample frames of original videos in the IVP Database.
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3.2.4 MCL-V Database

The MCL-V Database was released in 2014 by the USCMediaCommLab at the University
of Southern California [28]. This database contains 12 reference videos sequences and 96 dis-
torted video sequences. The distorted video sequences were generated using 2 types of distortion:
H.264 Compression (4 distorted video sequences per reference) and H.264 Compression follow
by scaling (4 distorted video sequences per reference). Figure 3.12 shows sample frames from
each reference video in the MCL database.

The video sequences are provided in uncompressed YUV420 format with a spatial resolution
of 1920×1080. Two of the reference video sequences have 24 FPS, six of them have 25 FPS and
the remaining sequences have 30 FPS. The videos sequences with 25 and 30 FPS are 6 seconds
long. One of the video sequences with 24 FPS is 5.5 seconds long and the other video sequence
is 5 seconds long.

The videos were evaluated by 45 subjects. A pairwise comparison experimental methodology
was used in the subjective test. This methodology is recommended by ITU [47] for detecting
small differences in quality. In this methodology the two video sequences (reference and test)
from the same source are presented simultaneously. Subjects are asked to choose which video
sequence has the best quality. The database provides the MOS for each test sequence.

Figure 3.12: Sample frames of original videos in the MCL-V Database.
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4 PROPOSED FRAMEWORK AND VIDEO CLASSIFIERS

One of the challenges of video quality assessment methods is to improve the runtime perfor-
mance of the algorithms [13]. The runtime performance of most of these metrics depends on
the video resolution. Therefore, reducing the video spatial resolution improves their runtime.
However, accuracy performance can be affected when the spatial resolution is reduced. More
specifically, video distortions that affect high frequencies are the most sensitive to video spatial
downsampling (MJPEG compression, packet-loss and white noise). Some examples of distor-
tions that are sensitive to downsampling include distortions introduced by MJPEG compression
algorithms (e.g. blocking artifacts), packet-loss and noise.

We propose a downsampling video framework that improves the runtime performance of video
quality assessment methods by reducing the video resolution, without interfering with the accu-
racy performance. Before reducing the spatial resolution, the technique identifies the videos that
are more sensitive to this reduction in spatial resolution. This framework is illustrated in Fig-
ure 4.1.

Figure 4.1: High Level Overview of the Downsampling Video Framework.

The framework has four main stages: the video classifier, the video downsampler, the quality
assessment method and the logistic transform. The video classifier stage identifies the types of
videos more sensitive to a spatial resolution reduction. The downsampler stage reduces the video
spatial resolution, accordingly, with the goal of optimizing the resolution according to the video
sensitivity. Finally, the logistic transform stage adjusts the predicted scores to a common scale.

We design two different video classifiers that have the goal of identifying the types of dis-
tortions in the video and choose the most adequate downsampling ratio. Video classifiers are
algorithms that classify videos by analyzing one or more features. Videos can be classified ac-
cording to their content, distortion type or others characteristics. Next, we describe the two video
classifiers proposed in this work: a spatial activity difference classifier and a SSEQ classifier.
Next, we describe the downsampling and logistic transform stage of the framework.
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4.1 SPATIAL ACTIVITY DIFFERENCE CLASSIFIER

The first proposed video classifier is the spatial activity difference classifier. This classifier is
based on a analysis of the Spatial Activity (SA) of the videos [48]. In our work, we have noticed
that videos distorted by MJPEG compression, white noise and packet-loss have a higher Spatial
Activity than the videos with others types of distortions, when considering video sequences with
the same content. This can be observed in Figure 4.2, where the white regions are the regions with
a higher SA. Because the frames filtered with Sobel have subtle intensity changes, for a better
visualization, we perform a post processing of these frames using a histogram equalization [20].
Blocking and erroneously decoded blocks leave false edges in the frame and the Sobel filter
can detect them. Therefore, the idea behind this classifier is to use the SA difference between
the reference and distorted videos to separate video distortions in two classes. The first class
correspond to videos distorted by white noise, packet-loss and MJPEG compression, while the
second class corresponds to videos distorted by H.264, MPEG-2, HEVC, wavelet compressions
and upscaling.

4.1.1 Spatial Activity

The spatial activity (SA) feature is computed by:

SA(tn) = RMS(Sobel(I(tn))), (4.1)

where I(tn) is the luminance component of the video frame tn, RMS is the RMS function over
the entire image, and Sobel is the Sobel Filter. The Sobel filter used in this work has two 3x3
kernels. The first one detects horizontal edges and is given by:

Gx =

∣∣∣∣∣∣∣
−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣ . (4.2)

The second kernel detects vertical edges, given by:

Gy =

∣∣∣∣∣∣∣
−1 −2 −1

0 0 0

1 2 1

∣∣∣∣∣∣∣ . (4.3)

Then, the luminance component of the video frame is filtered with the Sobel filter and com-
bined in the following form:

Sobel(tn) =
√

(Gx ∗ In)2 + (Gy ∗ In)2, (4.4)

where ∗ is the symbol for the convolution and In is the luminance component of the video frame.
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(a) Reference Frame (b) Spatial Activity = 91.11

(c) frame compressed with MJPEG (d) Spatial Activity = 101.38

(e) frame corrupted with White Noise (f) Spatial Activity = 119.76

(g) frame compressed with H.264 (h) Spatial Activity = 88.75

(g) frame compressed with HEVC (h) Spatial Activity = 83.71

Figure 4.2: Sample frames (unimpaired and distorted) are shown in the left, while their Sobel filtered versions are
shown in the right, along with the spatial activity (SA) measure.
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Figure 4.3: Diagram of the proposed Spatial Activity Classifier.

We use the implementation provided by the Monitoring Of Audiovisual Quality by Key Indicators
(MOAVI) group [49]. To calculate the video Spatial Activity, we average the SA values of all
frames in the video.

4.1.2 Spatial Activity Difference Algorithm

Figure 4.3 shows the diagram of the proposed classification method. First, we compute the SA
of the reference and distorted videos, and, then, we calculate their difference (∆SA). Considering
that the videos we are trying to identify have a higher (MJPEG compression and white noise) or a
slightly lower space activity (packet-loss) than the reference video, we can use a ∆SA threshold
to classify these videos.

To identify the best threshold, we tested 9 values of thresholds, with ∆SA values ranging from
-4 to 4. Then, we use the F1 score, which measures the accuracy of a classifier (see Appendix I),
to select the best threshold. The values of the F1 Score varies from 1 (best) to 0 (worst). Table 4.1
shows the results of using the 9 thresholds in all videos of the LIVE, CSIQ, IVPL and MCL-V
databases. We tested the classifier performance for videos in the original temporal resolution, as
well in four reduced temporal resolutions.

Notice that a threshold lower than 1 does not provides a good. Results show that the best
threshold value is 2, but it is not necessary to analyze all frames of the video sequence to obtain
a good classification. In fact, using a temporal resolution of 2 frames per second provides, sur-
prisingly, better classification results than what is obtained by analyzing all frames in the video
(original temporal resolution).

Table 4.1: F1 scores using threshold for the Difference in Spatial Activity (∆SA), varying from -4 to 4.

Spatial Activity Difference (∆SA)
FPS -4 -3 -2 -1 0 1 2 3 4
Original 0.6145 0.6216 0.6491 0.6752 0.7032 0.7805 0.7957 0.7869 0.7368
10 FPS 0.6109 0.6216 0.6491 0.6784 0.7032 0.7830 0.7957 0.7902 0.7415
8 FPS 0.6145 0.6216 0.6491 0.6816 0.7032 0.7753 0.7997 0.7907 0.7431
4 FPS 0.6145 0.6216 0.6491 0.6752 0.7093 0.7830 0.8076 0.7858 0.7415
2 FPS 0.6145 0.6216 0.6491 0.6784 0.7062 0.7830 0.8042 0.7832 0.7411
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4.2 SSEQ CLASSIFIER

The second classification method proposed in this work is based on the Spatial–Spectral
Entropy-based Quality (SSEQ), which is a no-reference image quality assessment method pro-
posed by Liu et al. (50). In this work, we use only the SSEQ feature extraction module. In this
section, we describe both the SSEQ feature extraction stage and the proposed classifier algorithm.

4.2.1 SSEQ Feature Extration Stage

SSEQ uses a 2-stage framework. First, the feature extraction stage extracts features from
the image and uses them in a distortion classification stage. Second, a quality prediction stage
estimates the video quality [51]. Again, we only use the feature extraction stage of the SSEQ.

Figure 4.4: Diagram of SSEQ Feature Extraction.

A high-level overview of the SSEQ feature extraction stage is presented in Figure 4.4. First,
the frame is downsampled by a factor of 2. A bicubic interpolation method is used in the down-
sampling step, generating frames with 3 different sizes (1, 0.5, and 0.25 of the original resolution).
For each size, the frame is divided into 8x8 blocks and, then, the spatial and spectral entropies
are computed for each block of the frame. The spatial entropy of a block is calculated with the
following equation:

Es = −
x=0∑
M−1

y=0∑
N−1

p(x, y) · log2(p(x, y)), (4.5)

where M × N is the block size and p(x, y) is the probability of the pixel intensity value. We
compute the spatial entropy (Es) for each block. Then, we obtain the set of spatial entropy values
per block, S(se1, se2, ..., sem), with sei being the spatial entropy of ith block.

To compute the spectral entropy, we first obtain the discrete cosine transform (DCT) of each
block [52]. Then, we normalize the AC DCT coefficients:

P (u, v) = − C(u, v)2∑x=0
M−1

∑y=0
N−1C(u, v)

, (4.6)
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where C(u, v) is the DCT coefficient block. The spectral entropy of a block is defined by:

Ef = −
x=0∑
M−1

y=0∑
N−1

P (x, y) · log2(P (x, y)). (4.7)

We compute the spectral entropy (Ef ) for each block in the frame. Then, we obtain the set of
spectral entropy values per block, Fr(fe1, fe2, ..., fem), with fei being the spectral entropy of
ith block.

SSEQ uses the percentile pooling as a feature pooling strategy. The percentile pooling tech-
nique consists of first sorting the S and F values in ascending order and, then, selecting the
60% central values. With this, two sets are created: Sc(seb0.2mc, seb0.2mc+1, ..., seb0.8mc) and
Frc(feb0.2mc, feb0.2mc+1, ..., feb0.8mc).

The features for each scale are composed by the average and skewness values of Sc and Frc:

fv = [mean(Sc), skewness(S),mean(Fc), skewness(F )] . (4.8)

For each frame, the SSEQ feature vector contains 12 elements, which correspond to the 3 frame
sizes and 4 different features.

4.2.2 SSEQ Classifier Algorithm

In our work, we extract the SSEQ features of each frame in the video, as described in the
earlier section. By the end of the SSEQ feature extraction stage, we have a set of feature vectors
Fv = fv1, fv2, ..., fvn, with fvi being the feature vector corresponding to the ith frame. Next, to
create a SSEQ feature vector for the entire video, we average each feature for all video frames, as
illustrated in Figure 4.5.

We use a Support Vector Machine (SVM) algorithm to classify image distortions. SVM were
first introduce by Cortes and Vapnik as a binary classifier [53]. Given a training set, the SVM can
obtain an optimal class separation hyperplane, which is defined as the plane with the maximum
margin of separation between the two classes. Also, the margin is the sum of the distances from
the hyperplane to the closest point of the two classes. Multiclass problems are solved as a combi-
nation of binary problems [54]. We have chosen SVM because of it good performance in several
applications, and it is used in the SSEQ image quality assessment method [55, 56, 57].

Figure 4.6 shows an overview of the proposed classifier algorithm. First, we randomly divide
the videos in training and testing sets. Then, we extract the SSEQ features of all training videos
and label them according to their distortion. Then, we train the SVM with these parameters
(SSEQ features and video distortion labels). Then, SVM creates a model that is used to classify
others videos in the testing set. In other words, SSEQ features are extracted from a test video.
Using the parameters obtained with the trained SVM, we obtain the estimated video distortion
label.
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Figure 4.5: SSEQ Video Feature Extraction.

Figure 4.6: High-level overview of SSEQ algorithm for traning and testing stages.

Table 4.2: F1 score of the proposed SSEQ-based classifier for different temporal resolutions.

FPS
Original 10 8 4 2

F1 Score 0.7999 0.8021 0.8016 0.8043 0.7981

We tested the proposed classifier using all videos from LIVE, CSIQ, IVPL and MCL-V
databases. We divided these videos into training and testing sets. The training set consists of
80% of all videos, while the testing set consist of 20% of all videos. There are no content over-
lapping in the sets, i.e. videos corresponding to the same original were always in the same set. To
compute the computational time of the SSEQ features extraction stage, we test the SSEQ video
classifier with different frame rates, as shown in Table 4.2. We use the F1-Score to measure the
accuracy performance of the classifier. We notice that even if we reduce the video temporal reso-
lution to 2 FPS, the performance of the proposed SSEQ-based classifier is practically unaltered.

Table 4.3 shows the mean confusion matrix for 1,000 simulations of the proposed classifier,
when computed for 2 FPS videos. The confusion matrix shows the proportion of positive and
negative results of the video classifier (see Appendix I). These results show that the classifier can
correctly identify videos distorted by MJPEG compression and white noise. But, it struggles to
identify videos distorted by packet-loss. We believe that packet-loss is a complicated distortion
to identify because it is, generally, a spatially and temporally localized distortion that does not

39



affect all frames in the same way.

Table 4.4 shows the median of precision (the F1 score) over 1,000 simulations of the proposed
SSEQ-based classifier. In more than half of these simulations, the proposed classifier identifies
all videos distorted by white noise and MJPEG compression, but only 60% of the videos distorted
by packet-loss. Also, from all videos classified as distorted by packet-loss, only 37% are actually
videos distorted by packet-loss. Although this classifier cannot identify packet-loss, we will show
in the next chapter that its performance is satisfactory for our propose.

Table 4.3: Mean Confusion Matrix of proposed SSEQ-based Distortion Classifier, for 1,000 simulations.

Distortion
Others MJPEG White Noise packet-loss

Others 0.8891 0.0149 0.000 0.0960
MJPEG 0.0622 0.9378 0.0000 0.0000
WhiteNoise 0.0000 0.0000 0.9935 0.0065

E
st

im
at

ed

packet-loss 0.6031 0.0005 0.0050 0.3914

Table 4.4: Evaluation of the proposed SSEQ-based Distortion Classifier: median values of Precision, Recall, and F1
Score for 1,000 simulations.

Distortion Precision Recall F1 Score
Others 0.900 0.790
MJPEG 1.000 1.000 0.799
White Noise 1.000 1.000
packet-loss 0.375 0.600

4.3 ADJUSTED PREDICTED SCORE

One of our goals is to test the performance of video quality assessment methods for which
the spatial resolution of the input videos is reduced. In this work, we noticed that all metrics are
sensitive to video resolution reduction. When the spatial resolution is reduced, the video quality
prediction is lower than the quality prediction obtained for a video in the original resolution. For
example, Figure 4.7 shows ViS3’s predicted scores for the CSIQ database, for the original spatial
resolution (768x432) and for a reduced verison (384x216) . Notice that, for videos in the reduced
384x216 resolution, ViS3’s predicted scores vary from 10−2 to 10. But, for the same videos in
768x432 resolution, they vary from 10−1 to 10. So, when we evaluate quality using a reduced
version of the video, the quality prediction value tends to be lower than the score obtained for the
original resolution.

In this work, we reduce the videos to 768x432 or 384x216, depending on the video distortion.
The 768x432 resolution was chosen because this is a resolution commonly used in the databases,
like for example LIVE. The LIVE database has the lowest spatial resolution among the databases
used in this work. In order for the predicted scores have the same range, independent of the video
resolution, we use a logistic function to normalize the predicted scores. Figure 4.8 shows an
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Figure 4.7: Plot of ViS3 versus Mean Opnion Score. The videos used were from CSIQ Database and they were
downsampling to 768x432 and 384x216.

Figure 4.8: High Level Overview of the Adjustment of Predicted Score.

overview operations performed to adjust the predicted score. As mentioned earlier, the downsam-
pling operation is performed using a bicubic interpolation in each frame [58], which generally
gives better results than simpler interpolation algorithms like nearest neighbor and bilinear. Also,
bicubic interpolation is the standard used in softwares like ffmpeg, Matlab, and Adobe Photo-
shop [20].

We chose the logistic function to normalize the scores from different resolutions because it
is the scaling transform recommended by the Video Quality Experts Group (VQEG) to remove
non-linearity behaviors and facilitate the comparison among scores provided by different video
quality assessment methods [59]. The logistic function is given by the following equation:

f(x) =
τ1

1 + τ2 · exp(−τ3 · x)
, (4.9)

where x is the predicted score and τ1, τ2 and τ3 are parameters used to provide the best fit of the
predicted score to the subjective score. After using the logistic function, each score is in the same
scale as the subjective scores and, therefore, we can compare them.

41



5 RESULTS

As mentioned in previous chapters, one of the challenges for video quality assessment meth-
ods is the runtime performance [12, 13]. These methods have become more complex over the last
decades, with some of the algorithms being extremely slow. Reducing the spatial resolution of a
video is one of the simplest and fastest methods to improve the running time of a video quality
assessment method. However, reducing the video resolution can introduce new distortions and
affect the quality prediction accuracy.

Based on the idea of reducing the spatial resolution, in this work we proposed a framework,
which improves the running time performance of video quality assessment methods, without
affecting its accuracy performance. In the previous chapters, we detailed this framework and
proposed two video classifiers that can be used in the framework. In this chapter, we study
which distortions are more sensitive to the video resolution reduction. We use the proposed
classifiers to identify these videos, perform a video resolution reduction, and test the framework
using both classifiers. Also, we compute the running time of the video quality assessment methods
to compare it to the running times of the same method using the proposed framework.

This chapter is divided in two sections. In the first section, we describe the experimental setup
used in our experiments. In the second section, we discuss our experimental results.

5.1 EXPERIMENTAL SETUP

The experiments were performed on an Intel i7-4790 processor at 3.60GHz. For all video
quality assessment methods, except for the SSTS-GMSD, the Matlab code was provided by the
authors. To evaluate the performance of each algorithm, we chose four video quality databases,
which have different resolutions and distortions. A description of the specifications of each
database was given in Chapter 3. For comparison purposes, Table 5.1 shows a summary of these
specifications. Notice that the databases are very different form each other. For example, the
videos of the IVP and MCL-V databases have a higher resolution than the videos in the LIVE and
CSIQ databases. On the other hand, CSIQ has more types of distortions and different temporal
resolutions than the other databases. It is worth pointing out that in the ‘real world’ videos do not
have the same resolution or are degraded by the same distortions. Therefore, it is important to
that the quality databases used in the test have a high content, resolution, format, and distortion
diversity.
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Table 5.1: Comparison of Video Quality Databases Specifications.

Reference
Videos

Total
Videos

Spatial
Resolution

Temporal
Resolution Type of Distortions

LIVE 10 150 768x432 25, 50
MPEG-2, H.264

Packet-Loss

CSIQ 12 216 832x480
24, 25, 30

50, 60

H.264, H.265, Wavelet,
MJPEG, White Noise,

Packet-Loss

IVP 10 128 1920x1088 25
MPEG-2, H.264,

Wavelet, Packet-Loss
MCL-V 12 96 1920x1080 24, 25, 30 H.264, Upscaling

5.2 EXPERIMENTAL RESULTS

In this section, we present all the tests performed in this work. First, we study the effect that
reducing the video spatial resolution has on the accuracy performance of video quality assessment
methods. Then, we study how different distortions affect the quality assessment methods. From
these results, we obtain the necessary information to design the proposed framework. Next, we
present the results of the proposed framework using two different video classifiers. Finally, we
present additional tests on the effect that reducing the temporal resolution has on the performance
of video quality assessment methods.

To study how the video resolution can affect the method accuracy performance, we used
different video quality assessment methods to estimate the quality of videos with different spatial
resolutions. To evaluate the prediction accuracy of each video quality assessment method, we
calculate the SCC between the subjective scores provided by the databases and the objectives
scores predicted by these methods [59]. The absolute value of SCC varies from 1 (best) to 0
(worst). When the SCC is closer to ±1, the predicted scores given by the quality assessment
methods are similar to the subjective scores provided by the database (see Appendix II).

It is worth mentioning again that, for some video quality assessment methods, reducing the
video resolution can cause a decrease in prediction quality accuracy. Tables 5.2- 5.5 shows the
SCC values for a set of video quality assessment methods, which were tested on the LIVE, CSIQ,
IVP, and MCL-V databases, respectively. Notice that for the IVP and MCL-V databases, there
is an improvement on accuracy performance when the video resolution is reduced, but for LIVE
and CSIQ databases the accuracy performance decreases. The accuracy performance of PSNR,
SSIM and GMSD increases for the LIVE database, but only the accuracy performance of SSIM
increases for the CSIQ Database. It is worth pointing out that the CSIQ Database has more
distortions than the others databases, while MCL-V and IVP databases have videos with a higher
resolution (1920x1080 for MCL-V and 1920x1088 for IVP).

In summary, the accuracy performance of the methods vary according to the databases, i.e.
according to the content and type of distortions. So, to verify if the video distortion has influence
on the accuracy performance of the methods, we analyze the data in groups separated by the types
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Table 5.2: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the LIVE database.

768x432 640x360 480x270 384x216
ViS3 0.8168 0.7995 0.7786 0.7595
STRRED 0.8007 0.7902 0.7691 0.7570
SSTS-GMSD 0.8389 0.8255 0.7988 0.7777
GMSD 0.7262 0.7354 0.7348 0.7264
SSIM 0.5251 0.6131 0.6696 0.7002
PSNR 0.5233 0.5750 0.6084 0.6285

Table 5.3: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the CSIQ database.

768x432 640x360 480x270 384x216
ViS3 0.8581 0.8574 0.8271 0.7897
STRRED 0.8035 0.7881 0.7666 0.7424
SSTS-GMSD 0.8457 0.8411 0.7950 0.7458
GMSD 0.8449 0.8449 0.8107 0.7729
SSIM 0.6236 0.6566 0.7016 0.7241
PSNR 0.5896 0.5853 0.5696 0.5585

Table 5.4: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the IVP database.

1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216
ViS3 0.8023 0.8822 0.8995 0.8968 0.9094 0.8981 0.8912
STRRED 0.7378 0.7426 0.7308 0.7296 0.7177 0.7160 0.7144
SSTS-GMSD 0.7560 0.8236 0.8683 0.8830 0.8880 0.8880 0.8722
GMSD 0.6924 0.7973 0.8493 0.8671 0.8791 0.8833 0.8672
SSIM 0.3739 0.4749 0.5277 0.5677 0.6077 0.6629 0.6965
PSNR 0.6566 0.7050 0.7312 0.7707 0.8086 0.8333 0.8374

Table 5.5: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the MCL-V
database.

1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216
ViS3 0.6361 0.6902 0.7167 0.7307 0.7408 0.7516 0.7674
STRRED 0.7433 0.7433 0.7738 0.7938 0.7964 0.8035 0.8177
SSTS-GMSD 0.6855 0.7395 0.7575 0.7768 0.7850 0.7989 0.8000
GMSD 0.6449 0.7068 0.7234 0.7369 0.7483 0.7625 0.7708
SSIM 0.4018 0.5408 0.6062 0.6415 0.6632 0.6961 0.7105
PSNR 0.4640 0.5328 0.5791 0.6097 0.6347 0.6668 0.6876

of distortion. These results are presented in Tables 5.6- 5.9.

Table 5.6 shows the accuracy performance of each method when the video resolution is re-
duced, tested on the CSIQ Database. The accuracy performance of PSNR and SSIM improves
when the video resolution is reduced. For PSNR, the improvement is 25.47% for videos com-
pressed with H.264, 33.30% for videos compressed with MPEG2, and 12.49% for videos distorted
by packet-loss. For SSIM, the improvement is 4.23% for videos compressed with H.264, 21.37%
for videos compressed with MPEG2, and 32.88% for videos distorted by packet-loss. For GMSD,
the accuracy performance improves for videos distorted by packet-loss (4.59% of improvement),
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Table 5.6: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the LIVE database.

Video Resolution
Metric Distortion 768x432 640x360 480x270 384x216
ViS3 H.264 0.7685 0.7598 0.7371 0.7405

MPEG2 0.7362 0.7639 0.7806 0.7774
Packet-Loss 0.8372 0.8298 0.8195 0.8270

STRRED H.264 0.8193 0.8223 0.8113 0.8304
MPEG2 0.7193 0.6986 0.6703 0.6769
Packet-Loss 0.7934 0.7904 0.7693 0.7510

SSTS-GMSD H.264 0.7974 0.7788 0.7615 0.7623
MPEG2 0.8125 0.8121 0.8362 0.8470
Packet-Loss 0.8151 0.8148 0.8044 0.7963

GMSD H.264 0.6471 0.6452 0.6302 0.6349
MPEG2 0.6915 0.6836 0.6725 0.6778
Packet-Loss 0.7457 0.7626 0.7775 0.7800

SSIM H.264 0.6561 0.7171 0.6961 0.6839
MPEG2 0.5609 0.6112 0.6679 0.6808
Packet-Loss 0.5151 0.5716 0.6337 0.6845

PSNR H.264 0.4730 0.5424 0.5856 0.5934
MPEG2 0.3830 0.4510 0.4825 0.5106
Packet-Loss 0.5799 0.6294 0.6550 0.6523

but decreases by 1.88% and 2.14% for videos compressed with H.264 and MPEG2, respectively.
For SSTS-GMSD, the accuracy performance improves by 4.25% for videos compressed with
MPEG2, but decreases for videos compressed by H.264 and distorted with packet-loss by 4.40%
and 2.30%, respectively. For STRRED, the accuracy performance improves by 1.35% for videos
compressed by H.264, decreases by 5.89% for videos compressed with MPEG2, and by 5.35%
for videos distorted with packet-loss. Finally, for ViS3, the accuracy performance improves by
5.61% for videos compressed with MPEG2, decreases by 3.64% for videos compressed with
H.264 and by 1.22% for videos distorted with packet-loss.

Table 5.7 shows the accuracy performance of each method when the video resolution is re-
duced, for the CSIQ Database. Notice that the accuracy performances of ViS3, SSTS-GMSD,
SSIM, and PSNR increase when the resolution is reduced, for videos compressed by H.264,
H.265, and Wavelet. The gain for videos distorted by H.264 Compression is 0.58% for ViS3,
1.42% for SSTS-GMSD, 6.74% for SSIM and 7.08% for PSNR. The gain for videos distorted
by H.265 Compression is 1.24% for ViS3, 0.06% for SSTS-GMSD, 9.13% for SSIM and 5.60%
for PSNR. The gain for videos distorted by Wavelet Compression is 2.89% for ViS3, 1.88% for
SSTS-GMSD, 5.30% for SSIM and 7.78% for PSNR. The accuracy performance of all meth-
ods decreases for videos distorted by MJPEG compression, packet-loss, and white noise. For all
methods, the worst accuracy performance corresponds to the resolution 384x216 for videos com-
pressed by MJPEG. The decrease in accuracy performance for videos compressed with MJPEG
is 26.08% for ViS3, 89.51% for STRRED, 9.46% for SSTS-GMSD, 16.54% for GMSD, 6.89%
for SSIM, and 63.75% for PSNR.
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Table 5.7: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the CSIQ database.

Video Resolution
Metric Distortion 768x432 640x360 480x270 384x216
ViS3 H.264 0.9300 0.9400 0.9421 0.9354

H.265 0.9331 0.9413 0.9537 0.9447
MJPEG 0.7776 0.7817 0.6829 0.5748
Packet-Loss 0.8381 0.8319 0.8051 0.7907
Wavelet 0.9161 0.9238 0.9398 0.9426
White Noise 0.9210 0.9192 0.9081 0.8929

STRRED H.264 0.9768 0.9753 0.9686 0.9637
H.265 0.9112 0.9238 0.9230 0.9202
MJPEG 0.5964 0.4839 0.1611 0.0625
Packet-Loss 0.8468 0.8551 0.8435 0.8353
Wavelet 0.9457 0.9351 0.9290 0.9266
White Noise 0.9192 0.9079 0.8772 0.8528

SSTS-GMSD H.264 0.9277 0.9292 0.9318 0.9282
H.265 0.9454 0.9552 0.9480 0.9472
MJPEG 0.8893 0.8885 0.8528 0.7840
Packet-Loss 0.8108 0.8031 0.7743 0.7495
Wavelet 0.8705 0.8718 0.8754 0.8754
White Noise 0.8847 0.8708 0.8072 0.7529

GMSD H.264 0.9441 0.9503 0.9532 0.9503
H.265 0.9408 0.9439 0.9326 0.9279
MJPEG 0.8994 0.9192 0.8741 0.7586
Packet-Loss 0.8631 0.8577 0.8512 0.8111
Wavelet 0.8764 0.8762 0.8623 0.8610
White Noise 0.9094 0.9068 0.8808 0.8391

SSIM H.264 0.8903 0.9143 0.9485 0.9503
H.265 0.8654 0.9053 0.9290 0.9444
MJPEG 0.8373 0.8456 0.8041 0.7797
Packet-Loss 0.8556 0.8535 0.8517 0.8492
Wavelet 0.8154 0.8317 0.8597 0.8587
White Noise 0.9269 0.9292 0.9223 0.9122

PSNR H.264 0.8687 0.8914 0.9218 0.9302
H.265 0.8556 0.8782 0.8986 0.9035
MJPEG 0.4672 0.4296 0.2847 0.1694
Packet-Loss 0.8481 0.8409 0.8322 0.8245
Wavelet 0.7941 0.8265 0.8479 0.8559
White Noise 0.9048 0.9060 0.9079 0.8947

Table 5.8 shows the accuracy performance for the IVP Database. Notice that, for most spa-
tial resolutions, the accuracy performance of videos distorted by packet-loss decreases for ViS3,
STRRED, and SSTS-GMSD. Nevertheless, it improves for the 768x432 resolution. For GMSD,
the best accuracy performance is obtained for videos distorted by packet-loss, in a 640x360 res-
olution. The accuracy performance for videos compressed with Wavelet and H.264 improves for
almost all methods, with the exception of STRRED for videos compressed with H.264.

Table 5.9 shows the accuracy performance for each method when the video resolution is re-
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Table 5.8: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the IVP database.

Video Resolution
Metric Distortion 1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216
ViS3 Wavelet 0.9186 0.9212 0.9132 0.9253 0.9368 0.9212 0.9306

H.264 0.8477 0.8735 0.8681 0.8538 0.8787 0.8864 0.8906
MPEG2 0.7918 0.8274 0.8527 0.8509 0.8394 0.8558 0.8658
Packet-Loss 0.7504 0.8057 0.7947 0.7750 0.7526 0.7280 0.6962

STRRED Wavelet 0.8554 0.8839 0.8932 0.8914 0.8910 0.8870 0.8843
H.264 0.8614 0.8505 0.8493 0.8477 0.8435 0.8454 0.8458
MPEG2 0.6752 0.6400 0.6427 0.6400 0.6360 0.6489 0.6570
Packet-Loss 0.6650 0.7028 0.6765 0.6661 0.6650 0.6158 0.5977

SSTS- Wavelet 0.8216 0.8509 0.8710 0.8763 0.8812 0.8968 0.9075
GMSD H.264 0.8463 0.8587 0.8651 0.8726 0.8809 0.8841 0.8876

MPEG2 0.7824 0.8073 0.8318 0.8443 0.8501 0.8714 0.8812
Packet-Loss 0.7663 0.7871 0.7937 0.7750 0.7603 0.7154 0.6907

GMSD Wavelet 0.8229 0.8763 0.8941 0.8790 0.9008 0.9110 0.9101
H.264 0.8630 0.8780 0.8826 0.8856 0.8880 0.8897 0.8902
MPEG2 0.8283 0.8256 0.8220 0.8211 0.8291 0.8251 0.8283
Packet-Loss 0.7121 0.8150 0.8413 0.8407 0.8467 0.8128 0.7849

SSIM Wavelet 0.7846 0.8029 0.8060 0.8140 0.8287 0.8492 0.8407
H.264 0.6636 0.7752 0.8146 0.8310 0.8407 0.8462 0.8418
MPEG2 0.5884 0.6436 0.6574 0.6783 0.6836 0.6690 0.6529
Packet-Loss 0.0482 0.1910 0.2638 0.3136 0.3985 0.4729 0.5161

PSNR Wavelet 0.8598 0.8603 0.8594 0.8759 0.8723 0.8914 0.8905
H.264 0.8218 0.8488 0.8681 0.8765 0.8811 0.8901 0.8901
MPEG2 0.6948 0.7130 0.7384 0.7620 0.7539 0.7673 0.7749
Packet-Loss 0.6393 0.6793 0.7115 0.7340 0.7630 0.7822 0.8051

Table 5.9: Spearman Correlation Coefficient (SCC) of the quality assessment methods, tested on the MCL-V
database.

Video Resolution
Metric Distortion 1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216
ViS3 H.264 0.5868 0.6625 0.6960 0.7273 0.7445 0.7655 0.7780

Upscaling 0.6890 0.7043 0.7245 0.7283 0.7304 0.7333 0.7440
STRRED H.264 0.7716 0.7716 0.7807 0.8055 0.8010 0.8035 0.8139

Upscaling 0.7040 0.7040 0.7436 0.7732 0.7714 0.7858 0.8123
SSTS- H.264 0.6921 0.7189 0.7423 0.7769 0.7867 0.7950 0.8058
GMSD Upscaling 0.6806 0.7477 0.7629 0.7785 0.7778 0.7843 0.7960
GMSD H.264 0.6452 0.7057 0.7332 0.7484 0.7635 0.7685 0.7905

Upscaling 0.6376 0.6789 0.6898 0.7021 0.6988 0.7100 0.7292
SSIM H.264 0.3545 0.5375 0.6172 0.6533 0.6764 0.7222 0.7360

Upscaling 0.4400 0.5300 0.5931 0.6242 0.6408 0.6616 0.6754
PSNR H.264 0.4215 0.5115 0.5634 0.5872 0.6203 0.6651 0.6761

Upscaling 0.4925 0.5382 0.5851 0.6216 0.6402 0.6537 0.6834

duced for the MCL-V Database. In this database, the accuracy performance of all methods are
improved when the video resolution is reduced. For videos compressed with H.264, the improve-
ment is 32.58% for ViS3, 5.48% for STRRED, 16.43% for SSTS-GMSD, 22.52% for GMSD,
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Table 5.10: Spearman Correlation Coefficient (SCC) of the VIS3 metric, tested on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8864 0.8988 0.9093 0.9125
H.264 0.8354 0.8469 0.8479 0.8473
H.265 0.9331 0.9413 0.9537 0.9447
MJPEG 0.7776 0.7817 0.6829 0.5748
MPEG2 0.8561 0.8766 0.8851 0.8848
Upscaling 0.7283 0.7304 0.7333 0.7440
Packet-Loss 0.8174 0.8179 0.8087 0.8028
White Noise 0.9210 0.9192 0.9081 0.8929

Table 5.11: Spearman Correlation Coefficient (SCC) of the STRRED metric, tested on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8505 0.8499 0.8548 0.8638
H.264 0.8822 0.8816 0.8810 0.8859
H.265 0.9112 0.9238 0.9230 0.9202
MJPEG 0.5964 0.4839 0.1611 0.0625
MPEG2 0.7993 0.7891 0.7874 0.7935
Upscaling 0.7732 0.7714 0.7858 0.8123
Packet-Loss 0.7881 0.7906 0.7793 0.7672
White Noise 0.9192 0.9079 0.8772 0.8528

Table 5.12: Spearman Correlation Coefficient (SCC) of the SSTS-GMSD metric, tested on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8035 0.8109 0.8234 0.8367
H.264 0.8520 0.8520 0.8539 0.8583
H.265 0.9454 0.9552 0.9480 0.9472
MJPEG 0.8893 0.8885 0.8528 0.7840
MPEG2 0.8776 0.8905 0.9032 0.9074
Upscaling 0.7785 0.7778 0.7843 0.7960
Packet-Loss 0.7785 0.7876 0.7794 0.7703
White Noise 0.8847 0.8708 0.8072 0.7529

107.62% for SSIM, and 60.40% for PSNR. For videos distorted by Upscaling, the improvement
is 7.98% for ViS3, 15.38% for STRRED, 16.96% for SSTS-GMSD, 14.36% for GMSD, 53.50%
for SSIM, and 38.76% for PSNR.

From these results, we can notice that, for all methods, the accuracy performance decreases
when videos distorted by MJPEG compression and white noise have their spatial resolution re-
duced. For videos distorted by packet-loss, the accuracy performance of most methods is better
when the video resolution is 640x360 or above.

To better evaluate the prediction quality accuracy of each method for each type of distortion,
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Table 5.13: Spearman Correlation Coefficient (SCC) of the GMSD metric, tested on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8430 0.8618 0.8655 0.8698
H.264 0.8405 0.8439 0.8482 0.8516
H.265 0.9408 0.9439 0.9326 0.9279
MJPEG 0.8994 0.9181 0.8741 0.7506
MPEG2 0.8282 0.8326 0.8360 0.8425
Upscaling 0.7031 0.7057 0.7207 0.7289
Packet-Loss 0.7828 0.7941 0.7979 0.7949
White Noise 0.9094 0.9068 0.8808 0.8347

Table 5.14: Spearman Correlation Coefficient (SCC) of the SSIM metric, tested on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.7981 0.8197 0.8469 0.8497
H.264 0.7962 0.8170 0.8344 0.8398
H.265 0.8654 0.9053 0.9290 0.9444
MJPEG 0.8373 0.8456 0.8041 0.7797
MPEG2 0.7682 0.7954 0.8160 0.8190
Upscaling 0.6242 0.6408 0.6616 0.6754
Packet-Loss 0.5446 0.5732 0.6112 0.6517
White Noise 0.9269 0.9292 0.9223 0.9122

Table 5.15: Spearman Correlation Coefficient (SCC) of the PSNR metric, tested on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.7756 0.8004 0.8184 0.8293
H.264 0.7488 0.7743 0.7994 0.8105
H.265 0.8556 0.8782 0.8986 0.9035
MJPEG 0.4672 0.4296 0.2847 0.1694
MPEG2 0.7012 0.7289 0.7520 0.7632
Upscaling 0.6216 0.6402 0.6537 0.6834
Packet-Loss 0.6591 0.6915 0.7115 0.7187
White Noise 0.9048 0.9060 0.9079 0.8947

we combine all videos (from all databases) with the same distortion type into the same group.
The accuracy performance of each method is, then, evaluated by comparing the predicted scores
with the subjective scores provided by the databases. But, the subjective scores provided by each
database were obtained using different experimental methodologies, with different subject pools,
and under different physical environments. For example, as described in Chapter 3, the LIVE and
IVP databases provide a DMOS for each distorted video, while the CSIQ and MCL-V databases
provide a MOS for each distorted video. So, to properly combine these subjective scores into a
single scale, we use the Iterated Nested Least-Squares Algorithm (INLSA) [60].

Tables 5.10-5.15 show the results of each method’s accuracy performance separated by video
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distortion. The video resolutions vary from 768x432 to 384x216. Notice that, for ViS3, STRRED,
and SSTS-GMSD, reducing the resolution of videos distorted by MJPEG, packet-loss, and white
noise decreases the accuracy performance. Table 5.13 shows the GMSD’s accuracy performance
for each video distortion. The accuracy performance decreases for videos distorted by white
noise, H.265, and MJPEG compression. But the decrease in performance for H.265 Compression
(1.37%) is lower than for MJPEG and white noise (16.54% and 8.21%). Even with this decrease
for the videos compressed with H.265, the accuracy performance is still good.

For SSIM and PSNR, when the resolution is reduced, the accuracy performance improves
for almost all video distortions. The only exceptions are the videos distorted by white noise
and MJPEG. Nevertheless, the accuracy performance of these methods are the worst among all
methods, probably because these methods are image quality metrics. If the spatial resolutions of
the videos distorted by white noise and MJPEG compression are reduced, the accuracy perfor-
mances of all video quality methods decrease. For videos distorted by packet-loss, the accuracy
performances of ViS3, STRRED, and SSTS-GMSD also decrease.

For these reasons, we use a classification method to identify videos distorted by packet-loss,
MPJEG compression, and white noise, and set their resolution to 768x432. Videos identified as
distorted by the other types of distortions should have their spatial resolution reduced to 384x216.
Next, we present the results obtained with the two proposed classifiers.

5.2.1 Spatial Difference Classifier Results

The first classifier, based on spatial activity, divided the videos into two groups: videos dis-
torted by packet-loss, MPJEG compression and white noise; and videos distorted by upscaling,
H.264, MPEG-2, H.265 and wavelet compression. Table 5.16 shows the accuracy performance
of each method using the spatial activity difference classifier. For comparison purposes, we also
show the accuracy performance using: (1) the original resolution, (2) all videos in 384x216 and
(3) an ideal classification. For the ideal classification, we label all videos according to its dis-
tortion and then reduce the spatial resolution to 384x216 (MJPEG, packet-loss, white noise) or
768x432 (others distortions). Notice that, for all databases, the accuracy performance of the pro-
posed method is better than using the original resolution, except for STRRED in LIVE and CSIQ.

Analyzing the accuracy performance of the framework using this classifier, we notice that this
approach is better than using the videos in the original resolution, for the CSIQ, IVP and MCL-V
Databases. For the LIVE Database, the accuracy performance using the classifier is worse than
using the videos in the original resolution for ViS3, STRRED, SSTS-GMSD, and GMSD. On
the other hand, for SSIM and PSNR the accuracy performance is better using the classifier. The
overall accuracy performance of the framework for all methods, when we consider the videos
in all databases, is better than using the videos in their original resolution. In some cases, the
accuracy performance using the classifier is better than using the ideal classification. This is
probably due to influences of the video content. The spatial activity difference classifier is better
to identify video contents that are more sensitive to resolution reduction. Finally, the accuracy
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Table 5.16: Spearman Correlation Coefficient (SCC) of all objective methods, using the proposed framework with
the Spatial Activity Difference Classifier.

Metric Type of Classification LIVE CSIQ IVP MCL-V All
ViS3 Original Resolution 0.8168 0.8325 0.7948 0.6361 0.7466

All Videos in 384x216 0.7595 0.7897 0.8912 0.7674 0.8030
Ideal Classification 0.7964 0.8646 0.8905 0.7674 0.8381
SA Difference Classification 0.7610 0.8632 0.8809 0.7727 0.8294

STRRED Original Resolution 0.8007 0.8129 0.7374 0.7433 0.6961
All Videos in 384x216 0.7570 0.7424 0.7144 0.8177 0.7774
Ideal Classification 0.7954 0.8460 0.7356 0.8119 0.8176
SA Difference Classification 0.7363 0.7622 0.6774 0.7938 0.7698

SSTS-GMSD Original Resolution 0.8389 0.8415 0.7560 0.6855 0.7403
All Videos in 384x216 0.7777 0.7458 0.8722 0.8000 0.7855
Ideal Classification 0.7364 0.8281 0.8699 0.8000 0.8028
SA Difference Classification 0.7720 0.8491 0.8780 0.8011 0.8250

GMSD Original Resolution 0.7262 0.8409 0.6924 0.6449 0.6781
All Videos in 384x216 0.7264 0.7729 0.8672 0.7708 0.7874
Ideal Classification 0.6787 0.8475 0.8611 0.7708 0.8020
SA Difference Classification 0.7217 0.8603 0.8708 0.7718 0.8225

SSIM Original Resolution 0.5251 0.5794 0.3560 0.4018 0.4833
All Videos in 384x216 0.7002 0.7241 0.6965 0.7105 0.7333
Ideal Classification 0.6567 0.6728 0.7624 0.7105 0.7217
SA Difference Classification 0.6849 0.7373 0.6775 0.6613 0.7324

PSNR Original Resolution 0.5233 0.5787 0.6566 0.4640 0.5795
All Videos in 384x216 0.6285 0.5628 0.8374 0.6876 0.6857
Ideal Classification 0.6239 0.6284 0.8663 0.6876 0.7132
SA Difference Classification 0.6158 0.5974 0.8039 0.5964 0.6879

performance for videos in 384x216 resolution, i.e. if we reduce the resolution regardless the
distortion, is worse than using the framework classifier, except for SSIM. Therefore, if we want
to improve the running time of a video quality assessment method, while maintaining the accuracy
performance, we have to identify the video distortion and reduce its resolution accordingly.

From the SCC of the video quality assessment methods, we know that the predicted scores
obtained via the proposed framework are more correlated with subjective scores than the pre-
dicted scores obtained without using the framework. However, it is important to evaluate if the
differences are statistically significant. To evaluate the statistical significance of the differences
in accuracy performance with and without the framework, we perform a t-test on the SCC values
obtained in 1,000 simulations [61]. In these simulations, we randomly choose 80% of the refer-
ence videos and their distorted versions for each simulation. The results of the t-test are shown in
Table 5.17. The value “1” in the table indicates that the method in the row is statistically superior
to the method in the column, while the value “-1” indicates that the method in the row is statisti-
cally inferior to the method in the column. Finally, the value “0” indicates that both methods are
statistically indistinguishable. Notice that for the overall accuracy performance, considering all
databases, the improvement using the framework with the spatial activity classifier is statistically
significant. Figure 5.1 shows the box plot of the SCC across the 1000 simulations.
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Figure 5.1: Box plot of SCC across 1000 simulations, where we ramdonly chose 80% of the reference videos and
their distortions versions.

As said in the beginning of this chapter, the objective of reducing the video resolution is to
reduce the running time of the video quality assessment method. The proposed classifier has the
goal of identifying which videos can have its resolution reduced, avoiding a decrease in accuracy
performance of the video quality assessment method. As mentioned in Chapter 4, we proposed
a methodology to evaluate the video quality, composed of three stages. The first stage consist of
identifying video distortion. The second stage reduces the video resolution to the smallest pos-
sible resolution, according to the video distortion. The third stage adjusts the predicted quality
score, according to the video resolution. From the results in Table 5.16, we know that using the
framework is a good way to maintain the accuracy performance of a quality assessment method.
But, if we want to improve the runtime performance of video quality assessment methods, the
running time of the classifier plus the running time of these methods has to be smaller than the
running time of the video quality assessment method using the video in its original spatial res-
olution. Table 5.18 presents the average running time of the video quality assessment methods
ran on videos in their original resolution and on videos with the resolution reduced, using the
proposed methodology with the spatial difference classifier. From these results, we notice that,
even adding the time spent to identify the video resolution and resizing the video, the proposed
methodology is faster than the original video quality assessment method. When image quality
assessment methods (GMSD,SSIM and PSNR) are used to measure video quality, the improve-
ment in running time is small (SSIM is 1.17x faster, GMSD is 1.11x faster). Nevertheless, for
more complex video quality assessment methods, the improvement in time is considerable (ViS3
is 2.85x faster, STRRED is 2.29x faster and SSTS-GMSD is 1.51x faster).
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Table 5.17: T-Test results between the SCC of various video quality assessment methods for all databases. The video
quality assessment methods evaluate the videos in their original spatial resolution (Ori), 384x216 resolution (Min),
using the framework with an ideal classifier (Ideal), and with SA classifier (SA).

ViS3 STRRED SSTS-GMSD
Ori Min Ideal SA Ori Min Ideal SA Ori Min Ideal SA

ViS3 Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 0 1 1 1 1 1 1 1 -1 -1
SA 1 1 -1 0 1 1 -1 1 1 -1 -1 -1

STRRED Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 -1 1 1 1 0 0 1 1 -1 -1
SA 1 1 -1 -1 1 1 0 0 1 -1 -1 -1

SSTSGMSD Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 1 -1 1 1 1 -1 1 1 0 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 0 1
SA 1 1 1 1 1 1 1 1 1 1 -1 0

GSMD Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 -1 -1
SA 1 1 1 1 1 1 1 1 1 1 -1 -1

SSIM Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
SA 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

PSNR Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
Ideal -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
SA -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1

GMSD SSIM PSNR
Ori Min Ideal SA Ori Min Ideal SA Ori Min Ideal SA

ViS3 Ori 1 -1 -1 -1 1 -1 -1 0 1 1 1 1
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SA 1 1 -1 -1 1 1 1 1 1 1 1 1

STRRED Ori 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SA 1 1 -1 -1 1 1 1 1 1 1 1 1

SSTSGMSD Ori 1 -1 -1 -1 1 -1 -1 -1 1 1 1 1
Min 1 1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 1 1 1 1 1 1 1 1 1 1
SA 1 1 1 1 1 1 1 1 1 1 1 1

GSMD Ori 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Min 1 0 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 0 1 1 1 1 1 1 1 1 1
SA 1 1 -1 0 1 1 1 1 1 1 1 1

SSIM Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 0 -1 1 1 1 1 1
Ideal 1 -1 -1 -1 1 1 0 1 1 1 1 1
SA 1 -1 -1 -1 1 -1 -1 0 1 1 1 1

PSNR Ori -1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 0 -1 1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 1 0 1
SA 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
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Table 5.18: Average running time for performing an objective quality assessment with and without spatial activity
classifier (in seconds).

ViS3 STRRED SSTS-GMSD SSIM GMSD PNSR
Original Resolution 639.135 215.973 13.557 13.108 5.951 5.033
SA Difference Classifier 223.784 94.384 8.911 11.221 5.330 5.029

5.2.2 SSEQ Classifier Results

The SSEQ Classifier uses a machine learning technique to classify the videos according to
their distortion. The videos in all databases are divided in training and testing groups. 80% of
the reference videos and their associated distorted versions were used for training and 20% of
the reference videos and their associated distorted versions were used for testing. We use a C-
SVM with linear kernel, as it was done in the original SSEQ algorithm for images. We combine
videos in all databases and divided the whole set in training and testing groups. The training
group consists of 472 to 480 video sequences, from which 120 video sequences are from LIVE
Database, 180 video sequences are from CSIQ Database, 72 video sequences are from MCL-V
Database and 100 to 108 video sequences are from IVP. Some reference video sequences in IVP

Table 5.19: Median Spearman Correlation Coefficient of all methods using SSEQ Distortion Classifier in 1000
simulations.

Metric Type of Classification LIVE CSIQ IVP MCL-V All
ViS3 Original Resolution 0.8499 0.8574 0.8470 0.5882 0.7532

All Videos with 384x216 0.7740 0.8085 0.9014 0.6765 0.7953
Ideal Classification 0.8202 0.8736 0.8998 0.6765 0.8294
Predicted Classification 0.7882 0.8521 0.8946 0.6765 0.8164

STRRED Original Resolution 0.8263 0.8093 0.7583 0.9941 0.7061
All Videos with 384x216 0.7873 0.7565 0.7931 0.9853 0.7957
Ideal Classification 0.7941 0.8331 0.7748 0.9853 0.8263
Predicted Classification 0.7931 0.8055 0.7871 0.9853 0.8136

SSTS-GMSD Original Resolution 0.8625 0.8389 0.7600 0.7529 0.7526
All Videos with 384x216 0.8327 0.7961 0.9146 0.9118 0.8230
Ideal Classification 0.8411 0.8741 0.8971 0.9118 0.8501
Predicted Classification 0.8314 0.8565 0.9078 0.9118 0.8430

GMSD Original Resolution 0.7967 0.8636 0.6705 0.7529 0.6757
All Videos with384x216 0.7784 0.7761 0.8757 0.9118 0.8045
Ideal Classification 0.7850 0.8862 0.8703 0.9118 0.8419
Predicted Classification 0.7780 0.8644 0.8706 0.9118 0.8347

SSIM Original Resolution 0.6535 0.6039 0.4105 0.4618 0.4877
All Videos with384x216 0.8167 0.7426 0.7597 0.9618 0.7715
Ideal Classification 0.7375 0.7764 0.8331 0.9618 0.7906
Predicted Classification 0.7595 0.7282 0.7477 0.9618 0.7585

PSNR Original Resolution 0.7112 0.6162 0.7187 0.5118 0.6052
All Videos with384x216 0.7517 0.5887 0.8238 0.9294 0.7204
Ideal Classification 0.6934 0.6489 0.8656 0.9294 0.7402
Predicted Classification 0.6211 0.6108 0.8446 0.9294 0.7028
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Database do not have Packet-Loss video sequences associated, that is why the number of video
sequences in the train sets varies. The test set consist of 110 to 118 video sequences, from which
30 video sequences are from LIVE Database, 36 video sequences are from CSIQ Database, 24
video sequences are from MCL-V Database and 20 to 28 video sequences are from IVP. The
training and testing sets do not share test sequences corresponding to the same content (original).
In summary, for 1,000 simulations, the databases are randomly divided in traning and testing
groups, with no overlap of content. Table 5.19 shows the median of the SCC values obtained for
these 1,000 simulations.

We compare the results obtained with the SSEQ classifier with the results obtained with the
videos in the original resolution, the videos in 384x216 resolution, and the videos with spatial
resolution chosen using an ideal classification. Figure 5.2 shows the box plot of SCC across
1,000 simulations for the overall accuracy performance, considering the videos of all databases.
Notice that using the ideal classification generates the best results.

The gain in accuracy performance using the ideal classification is 10.14% for ViS3, 17.30%
for STRRED, 13.32% for SSTS-GMSD, 25.01% for GMSD, 60.85% for SSIM, and 22.17%
for PSNR. The SSEQ classifier gives the overall second best, with the exception of SSIM and
PSNR. The gain in accuracy performance using the SSEQ classifier is 8.37% for ViS3, 15.70%
for STRRED, 12.64% for SSTS-GMSD, 23.94% for GMSD, 53.74% for SSIM, and 15.96% for
PSNR. The highest gains correspond to the MCL-V and IVP databases, which have the videos
with a higher resolution. Also, the gain in accuracy performance of image quality methods is

Figure 5.2: Box plot of SCC across 1000 test simulations, where we ramdonly chose 20% of the reference videos
and their distortions versions.
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Table 5.20: T-Test results between the SCC of various video quality assessment methods for all databases. The video
quality assessment methods evaluate the videos in their original spatial resolution (Ori), 384x216 resolution (Min),
using the framework with an ideal classifier (Ideal), and with SSEQ classifier (SSEQ).

ViS3 STRRED STS-GMSD
Ori Min Ideal SSEQ Ori Min Ideal SSEQ Ori Min Ideal SSEQ

ViS3 Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 0 1 1 1 1 1 1 1 -1 -1
SSEQ 1 1 -1 0 1 1 -1 1 1 -1 -1 -1

STRRED Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 -1 1 1 1 0 0 1 1 -1 -1
SSEQ 1 1 -1 -1 1 1 0 0 1 -1 -1 -1

SSTSGMSD Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 1 -1 1 1 1 -1 1 1 0 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 0 1
SSEQ 1 1 1 1 1 1 1 1 1 1 -1 0

GSMD Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 -1 -1
SSEQ 1 1 1 1 1 1 1 1 1 1 -1 -1

SSIM Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
SSEQ 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

PSNR Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
Ideal -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
SSEQ -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1

GMSD SSIM PSNR
Ori Min Ideal SSEQ Ori Min Ideal SSEQ Ori Min Ideal SSEQ

ViS3 Ori 1 -1 -1 -1 1 -1 -1 0 1 1 1 1
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SSEQ 1 1 -1 -1 1 1 1 1 1 1 1 1

STRRED Ori 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SSEQ 1 1 -1 -1 1 1 1 1 1 1 1 1

SSTSGMSD Ori 1 -1 -1 -1 1 -1 -1 -1 1 1 1 1
Min 1 1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 1 1 1 1 1 1 1 1 1 1
SSEQ 1 1 1 1 1 1 1 1 1 1 1 1

GSMD Ori 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Min 1 0 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 0 1 1 1 1 1 1 1 1 1
SSEQ 1 1 -1 0 1 1 1 1 1 1 1 1

SSIM Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 0 -1 1 1 1 1 1
Ideal 1 -1 -1 -1 1 1 0 1 1 1 1 1
SSEQ 1 -1 -1 -1 1 -1 -1 0 1 1 1 1

PSNR Ori -1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 0 -1 1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 1 0 1
SSEQ 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
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Table 5.21: Average running time for performing an objective quality assessment with and without SSEQ classifier
(in seconds).

ViS3 STRRED SSTS-GMSD SSIM GMSD PNSR
Original Resolution 647.5480 219.9712 13.7975 13.6208 6.1423 5.1625
SA Difference Classification 278.4741 157.7950 73.9999 76.2293 70.5274 70.2187

higher than of video quality methods. And, when using the SSEQ classifier, SSTS-GMSD has
the second best accuracy performance.

The statistical significance of the differences in accuracy performance was made using a t-
test with 1,000 simulations. Tables 5.20 shows the results of the t-test. The improvement when
using the framework with the SSEQ classifier is statistically significant. Notice that the results of
STRRED using the ideal classifier and of the SSEQ classifier are equivalent, even though the SCC
of STRRED with ideal classifier is greater than the SCC of STRRED with SSEQ classifier. For the
videos with original resolution, ViS3 has the best accurary performance among all video quality
assessment methods tested. It is worth noticing that all methods using the framework, except
for PSNR, have a better accuracy performance than the ViS3 on videos with original resolution,
which is the best method accuracy performance without using the framework.

Table 5.21 presents the average running time for video quality assessment methods for videos
in their original resolution and with the proposed methodology using the SSEQ classifier. Unfor-
tunately, the SSEQ classifier is slower than the SA Classifier, because it extracts more features
from the video. Only the running time of ViS3 and STRRED is improved when using the SSEQ
classifier (ViS3 is 2.32x faster and STRRED is 1.39x faster).

5.2.3 Influence of Frame Rate in Video Quality Metrics

Other way to improve the runtime performance of video quality assessment methods is to
reduce the frame rate of the videos. Table 5.22 shows the SCC of the video quality assessment
methods, when reducing the video frame rate to 24, 16, 8, and 4 FPS. There are no ViS3 results
for videos with 4 FPS in MCL-V database, because these videos do not have the temporal in-
formation required by ViS3. From these results, we notice that the ViS3 and STRRED accuracy
performances are better with a higher FPS. We believe this happens because these algorithms ana-
lyze the temporal information of the video to measure its quality. For example, ViS3 uses motion
vectors to give weight to specific areas in the spatial distortion map. Therefore, in this case, by
reducing the temporal resolution we might introduce temporal transitions to the video. STRRED,
on the other hand, analyses the differences among neighboring frames in the video. Therefore,
if there is a large time interval between to two consecutive frames, there will be a large temporal
difference between them. Nevertheless, for these two video quality assessment methods, we can
reduce the FPS to 16 FPS, without greatly affecting the accuracy performance.

For LIVE and CSIQ databases, the accuracy performance of SSTS-GMSD increases with
higher FPS. And, for IVP and MCL-V databases, the accuracy performance of SSTS-GMSD de-
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Table 5.22: Spearman Coefficient Correlation of the methods when varying the video FPS.

Métrica Banco FPS
de Dados Original 24 16 8 4

ViS3 LIVE 0.8168 0.8191 0.8108 0.8021 0.7586
CSIQ 0.8325 0.8379 0.8347 0.8040 0.7573
IVP 0.7948 0.7931 0.7998 0.7439 0.7466
MCL-V 0.6361 0.6500 0.6933 0.6693 -

STRRED LIVE 0.8007 0.8074 0.8002 0.7888 0.7773
CSIQ 0.8129 0.7995 0.7964 0.7799 0.7617
IVP 0.7374 0.7396 0.7475 0.7403 0.7393
MCL-V 0.7433 0.7431 0.7381 0.7281 0.7222

SSTS-GMSD LIVE 0.8389 0.8262 0.8182 0.7967 0.7813
CSIQ 0.8415 0.8492 0.8474 0.8430 0.8299
IVP 0.7560 0.7490 0.7553 0.7662 0.7863
MCL-V 0.6855 0.6881 0.6937 0.6932 0.7008

GMSD LIVE 0.7262 0.7311 0.7108 0.7358 0.6900
CSIQ 0.8409 0.8391 0.8390 0.8383 0.8364
IVP 0.6924 0.6839 0.6785 0.6894 0.6691
MCL-V 0.6449 0.6490 0.6477 0.6514 0.6608

SSIM LIVE 0.5251 0.5210 0.5010 0.5400 0.5137
CSIQ 0.5794 0.5793 0.5786 0.5852 0.5765
IVP 0.3560 0.3556 0.3493 0.3568 0.3404
MCL-V 0.4018 0.4009 0.4050 0.3976 0.4066

PSNR LIVE 0.5251 0.5096 0.4921 0.5348 0.5376
CSIQ 0.5794 0.5791 0.5761 0.5842 0.5847
IVP 0.6566 0.6469 0.6376 0.6501 0.6274
MCL-V 0.4640 0.4683 0.4659 0.4693 0.4771

creases with lower FPS. We believe this happens because SSTS-GMSD also performs a temporal
analysis. At the same time, the CSIQ, LIVE and IVP Databases have videos distorted by packet-
loss, which is a temporal distortion. Videos in the CSIQ and LIVE databases are in 768x432 and
832x480 spatial resolution, respectively, with 24, 25, 30, 50 and 60 FPS. Videos in the IVP and
MCL-V databases are in 1088x1920 and 1080x1920 spatial resolution, respectively, with 25 and
30 FPS. Therefore, when we discard frames from videos in the CSIQ and LIVE databases, a lot
more information is discarded.

For GMSD and SSIM, using videos sequences in 8 FPS is a reasonable trade-off between
accuracy performance and runtime performance. The GMSD accuracy performance for the LIVE
and MCL-V databases are better with videos sequence in 8 FPS than in the original FPS. For CSIQ
and IVPL, the loss in accuracy performance is of 0.3% and 0.4%, respectively, when comparing
videos in the original FPS and videos in 8 FPS. The SSIM accuracy performance is best for videos
in 8 FPS for LIVE, CSIQ, and IVP databases. For the IVP database, when we compare videos
in the original FPS and videos in 8 FPS, the loss in accuracy performance is of 1.04%. The best
accuracy performance for PSNR is obtained for videos in 4 FPS for LIVE, CSIQ, and MCL-V
database. For IVP database, the PSNR accuracy performance for videos in 4 FPS is 0.99% worse
than for videos in the original FPS.
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Figure 5.3: SSIM score of ’Blue Sky’ video distorted by H.264 Compression, MPEG-2 Compression and Packet-
Loss.

Although GMSD, SSIM, and PSNR are image quality metrics, they can be used to measure
video quality by using them to measure the quality of each frame and, then, averaging the frame
scores to obtain one overall video quality score. Figures 5.3 (a), (b), and (c) show the SSIM frame
scores for a video sequence distorted by H.264 Compression, MPEG-2 compression, and Packet-
Loss, respectively. Notice that, for videos distorted by compression, neighboring frames have
similar SSIM scores. SSIM frame scores for videos distorted by Packet-Loss have a different
behavior. When a packet-loss occurs, the frame SSIM scores suddenly change for the frames
where the distortion is located. Therefore, for temporal distortions, like packet-loss, discarding
frames may reduce the accuracy of the quality metric more than reducing the size of the frames.
In summary, unless the video has temporal distortions, it is fine to discard some frames when
using GMSD, SSIM ,and PSNR. Table 5.23 shows that, in most cases, the methods can perform
best for packet-loss when using videos in the original temporal resolution or with 24 FPS.

5.2.4 Discussion

One of the challenges in image/video quality assessment is the computational time required
by the quality metrics [12, 13]. Notice that ViS3 and STRRED take more than three minutes, on
average, to calculate the quality score of a video (see Table 5.18 ). Considering that all videos are,
approximately, 10 seconds long, these methods cannot be used in real-time scenarios or practical
applications.
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Table 5.23: Spearman Coefficient Correlation of the metrics when varying the video FPS for each video distortion.

Metric Distortion FPS
Original 24 16 8 4

ViS3 Wavelet 0.6537 0.6329 0.6345 0.5772 0.5132
H.264 0.7413 0.7479 0.7486 0.7481 -
H.265 0.9174 0.9236 0.9151 0.8878 0.8124
MJPEG 0.7349 0.7671 0.7560 0.6533 0.5613
MPEG2 0.5278 0.5308 0.5239 0.5028 0.5140
Upscaling 0.6890 0.6927 0.7369 0.7200 -
Packet-Loss 0.8163 0.8128 0.7993 0.7643 0.7335
White Noise 0.9202 0.9156 0.9125 0.8826 0.8669

STRRED Wavelet 0.7825 0.7608 0.7579 0.7419 0.7303
H.264 0.7718 0.7790 0.7768 0.7787 0.7605
H.265 0.9135 0.9187 0.9230 0.9310 0.9212
MJPEG 0.7290 0.7223 0.7145 0.6857 0.6752
MPEG2 0.6772 0.6615 0.6530 0.6289 0.6262
Upscaling 0.7040 0.7067 0.7006 0.6954 0.6902
Packet-Loss 0.8016 0.8067 0.8068 0.8014 0.7792
White Noise 0.9305 0.9377 0.9179 0.9192 0.9292

SSTS- Wavelet 0.5981 0.5915 0.5783 0.5546 0.5345
GMSD H.264 0.8025 0.7936 0.7921 0.7802 0.7861

H.265 0.9287 0.9359 0.9418 0.9375 0.9261
MJPEG 0.8803 0.8821 0.8736 0.8690 0.8396
MPEG2 0.6272 0.6136 0.6062 0.6053 0.6181
Upscaling 0.6795 0.6806 0.6854 0.6936 0.6945
Packet-Loss 0.7899 0.7842 0.7797 0.7708 0.7516
White Noise 0.8819 0.8860 0.8811 0.8682 0.8456

GMSD Wavelet 0.5812 0.5798 0.5818 0.5805 0.5636
H.264 0.7531 0.7517 0.7451 0.7640 0.7787
H.265 0.9418 0.9441 0.9398 0.9416 0.9369
MJPEG 0.8842 0.8842 0.8847 0.8893 0.8744
MPEG2 0.5501 0.5634 0.5371 0.5435 0.5569
Upscaling 0.6376 0.6378 0.6371 0.6400 0.6549
Packet-Loss 0.7770 0.7795 0.7708 0.7657 0.7172
White Noise 0.9094 0.9102 0.9102 0.9130 0.9066

SSIM Wavelet 0.6130 0.6141 0.6167 0.6106 0.6029
H.264 0.6257 0.6228 0.6223 0.6333 0.6464
H.265 0.8136 0.8139 0.8100 0.8124 0.8172
MJPEG 0.7969 0.7969 0.7969 0.8054 0.7974
MPEG2 0.4814 0.4854 0.4825 0.4791 0.5224
Upscaling 0.4400 0.4408 0.4467 0.4406 0.4425
Packet-Loss 0.4485 0.4504 0.4433 0.4541 0.4166
White Noise 0.9300 0.9300 0.9282 0.9274 0.9300

PSNR Wavelet 0.6696 0.6716 0.6697 0.6711 0.6623
H.264 0.6631 0.6616 0.6554 0.6714 0.6866
H.265 0.7846 0.7938 0.7701 0.8015 0.7969
MJPEG 0.5086 0.5112 0.5086 0.5086 0.5341
MPEG2 0.5371 0.5389 0.5282 0.5465 0.5475
Upscaling 0.4925 0.5015 0.4996 0.5045 0.5151
Packet-Loss 0.6509 0.6489 0.6401 0.6373 0.6252
White Noise 0.9063 0.9030 0.9063 0.9071 0.9009
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A simple method to reduce the computational time is to reduce the video spatial resolution.
As seen in Tables 5.2 5.3, this strategy may decrease the accuracy performance of the methods.
Since each database has a different set of distortions (see Tables 5.6- 5.9), when the spatial res-
olution is reduced, the methods may have different accuracy performances for each distortion.
Therefore, we proposed two distortion classifiers to identify distortions that more or less sensitive
to a reduction in spatial resolution. Tables 5.16 and 5.19 show the accuracy performance using
these two classifiers. In both cases, the overall accuracy performance of the proposed framework
is better than using the original resolution. For image quality assessment methods (PSNR, SSIM,
and GMSD), the accuracy performance improvement is greater than for video quality assessment
methods. Given that the accuracy performance when all videos are in 384x216 is worse, the
distortion classifier is an important stage of the proposed framework.

Figures 5.4 and 5.5 show the runtime performance of the spatial activity classifier and the
SSEQ classifier. The spatial activity classifier is a very fast method, allowing the framework
to increase the speed of the original quality assessment methods. From the results of the ac-
curacy performance analysis, we noticed that the framework with the spatial activity classifier
improves both the computational and accuracy performances. But, since the SSEQ classifier re-
quires extracting 12 features from each video frame, the framework with this classifier is slower.
Nevertheless, it is still able to improve the runtime performance of the ViS3 and STRRED video
quality assessment methods.

Finally, we analyze how a reduction in the temporal resolution affects the accuracy perfor-
mance of quality metrics. For a video quality metric, which takes into account temporal informa-
tion of the video, the accuracy performance is reduced when we decrease the temporal resolution
of the input video. However, for image quality metrics, a reduction temporal resolution reduction
does not affect the accuracy performance.
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Figure 5.4: Spearman correlation coefficient versus computational time (in log space). Comparing the accuracy
performance when using the Spatial Activity classifier and the video in their original resolution.
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6 CONCLUSIONS AND FUTURE WORKS

6.1 CONCLUSIONS

Over the last decades, several objective quality assessment methods have been design with the
goal of estimating video quality. Unfortunately, these methods have become more complex and
most of them cannot be used in real-time scenarios or in any practical application. For example,
the ViS3 and STRRED metrics take minutes to estimate the quality of a video 10 seconds long.
Therefore, one of the challenges in the area of video quality assessment is how to improve the
runtime performance of currently available methods [12].

One of the fastest and simplest methods to improve the runtime performance of video pro-
cessing algorithms is to reduce the spatial resolution of the video. In this work, we analyzed what
happens to the accuracy performance of a set of video quality assessment methods when the spa-
tial resolution is reduced. Six video quality assessment methods were used in this work: PSNR,
SSIM, GMSD, SSTS-GMSD, STRRED, and ViS3. PSNR, SSIM, GMSD are image quality as-
sessment methods that are frequently used to estimate video. SSTS-GMSD is a video quality
assessment method based on the GMSD metric, STRRED is a video quality assessment method
based on the entropic difference between the wavelet coefficients, and ViS3 is a video quality
assessment method that computes the spatial distortions and the spatio-temporal dissimilarities
between the reference and distorted video. These methods were chosen because each of them
uses a different approach to evaluate quality.

The spatial resolution analysis showed that the method’s accuracy performance is affected
differently when the spatial resolution is reduced. Videos distorted by MJPEG compression,
packet-loss and white noise are the most sensitive to the reduction of spatial resolution. In this
work, we proposed a framework to improve the runtime of a given video quality metric, without
decreasing its accuracy performance. This framework contains four stages: distortion classifi-
cation, spatial downsampling of the input video (according to the distortion), quality estimation,
and normalization of the predicted quality scores.

For the first stage, we proposed two classification methods to identify the videos that are
more sensitive to a spatial resolution reduction. The first classification method is based on the
spatial activity of the video. The performance of the framework using this classification method
is very good, providing a fast and reliable quality estimate. The second classification method is
based on spatial an spectral entropies. This method was originally developed as part of a quality
assessment method [50]. We adapted it to work as a video distortion classification. Results using
this classification method are also good, with the overall accuracy performance being sometimes
better than what was obtained with the original quality metrics. Nevertheless, this classifications
has a slow feature extraction process. As a consequence, this method only improves the speed of
the STRRED and ViS3 metrics.
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We also performed an analysis of how temporal resolution affected the performance accu-
racy of quality assessment methods. We noticed that a loss in accuracy only for video quality
assessment methods. Independently of the quality assessment method, the accuracy performance
only decreased for videos distorted by packet-loss. Since packet-loss is a temporal distortion that
may appear in any frame of the video, reducing the video temporal resolution may prevent the
algorithm from detecting the packet-loss artifacts.

6.2 FUTURE WORKS

We studied the influence of the video distortion on the performance of video quality assess-
ment methods when reducing the spatial resolution. When comparing the results for the spatial
activity classifier and the ideal classification, we noticed that sometimes the spatial activity clas-
sifier gives better results. This means that it is not only the video distortion that influences the
accuracy performance. Probably, the content of the videos also influences the method’s perfor-
mance. So, future works include analyzing the influence of the video content on the method’s
accuracy performance.

Another possible future work consists of analyzing the influence of reducing both spatial and
temporal resolutions on the accuracy performance of quality assessment methods. To improve
the proposed framework, it would be also important to find the optimal spatial and temporal
resolutions. It is worth pointing out that, although temporal resolution is important for the video
quality metrics, for the image quality metrics (e.g. GMSD, SSIM, and PSNR) a reduction of the
temporal resolution does not affect the accuracy performance.

Finally, another interesting work would be to test our framework with a set of no-reference
video quality assessment methods. In this case, the framework would require the use of a blind
classifier, like the classifier of SSEQ.

6.3 CONTRIBUTIONS

Our final objective was to create a framework, that was able to reduce the run-time perfor-
mance of video quality assessment methods. To achieve this objective, we did several analysis
and proposed two video classifiers. Therefore, the main contributions of this work are:

• We analyzed the accuracy performance of six video quality metrics when the spatial video
resolution was reduced. The tests were performed using four video quality databases.

• We analyzed an accuracy performance to identify which video distortions are more sensitive
to a reduction in spatial resolution. For this analysis, we combined all databases and used
the INSLA algorithm to normalize the database subjective scores.
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• We proposed two simple and fast video classifiers, which are able to identify which videos
are more sensitive to a spatial resolution reduction.

• We analyzed the accuracy performance of the six video quality metrics for different tempo-
ral resolutions. Again, we used the same four video quality databases. We conclude that
video quality assessment methods are more affected by temporal resolution reduction than
image quality metrics.

• We analyzed an accuracy performance to identify which video distortions are more sensitive
to a reduction in temporal resolution. For this analysis, we combined all databases and used
the INSLA algorithm to normalize the database subjective scores.

• Our major contribution is our proposed framework, which is able to improve the runtime
and accuracy performance of a given video quality assessment methods.
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I. EVALUTUATION MEASURES

To evaluate classification methods is common to use the recall, precision an F1-Score [62].
The results of a classification method can be represented in a confusion matrix. The example of a
confusion matrix in a binary classification is shown in Table I.1.

Table I.1: Example of a Confusion Matrix

Real Positive Real Negative
Predicted Positive True Positive False Positive
Predicted Negative False Negative True Negative

The confusion matrix represents all the results of a classifier into a single table. Predicted
Positive are the cases, which the method classify as positive. Predicted Negative are the cases,
which the method classify as negative. Real Positive are the cases that are labeled as positive.
And Real Negative are the cases labeled as negative. The true positive are the cases which the
classifier correctly predicted as positive or negative cases, respectively. The false positive and
false negative are the cases which the classifier wrongly predicted as positive or negative cases,
respectively.

I.1 RECALL

Recall measures the proportion of the real positive cases correctly classify by the classification
method. It is most relevant in applications that aim to identify real positive cases. Recall is defined
by:

Recall =
True Positive
Real Positive

, (I.1)

I.2 PRECISON

Precision measures the proportion of the predicted positive cases correctly classify by the
classification method. It is a measure of the true positive accuracy. Precision is define by:

Precision =
True Positive

Predicted Positive
, (I.2)
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I.3 F1-SCORE

F-Measure is a single measure that combines the results of precision and recall. F-Measure is
a harmonic mean of precision and recall, define by:

F −Measure =
1

α 1
Precision

+ (1− α) 1
Recall

=
(β2 + 1)Precision ·Recall
β2Precision+Recall

(I.3)

where β2 = 1−α
α

, β is a parameter that controls the balance of precision and recall. F1 Score is
the special case when β = 1, in other words, the F-Measure equally weights precision and recall.
F1 Score is defined by:

F1 =
2 · Precision ·Recall
Precision+Recall

, (I.4)
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II. SPEARMAN CORRELATION

The Spearman Correlation was proposed by Spearman in 1904 [63]. It measures the prediction
monotonicity of a model. In this work, we use the Spearman Correlation to compare the prediction
quality scores, given by the video quality assessment methods, with the subjective quality scores.
Let xi denote the predict score and yi denote the subjective score, where i ∈ 1, 2, ...,M . The
Spearman Correlation Coefficient SCC is defined by the following equation:

SCC =

∑M
i=1(χi − χ̄)(γi − γ̄)√∑M

i=1(χi − χ̄)2
√∑M

i=1(γi − γ̄)2
, (II.1)

where χi is the rank of xi and γi is the rank of yi in the ordered data series, χ̄ and γ̄ are the
respect midrank. The SCC makes no assumption about the shape of the relationship between xi
and yi.
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