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RESUMO

ATTITUDE CONTROL OF RIGID BODIES WITH TIME-DELAYED MEASUREMENTS

Autor: João Vítor Cavalcanti Vilela

Orientador: Prof. João Yoshiyuki Ishihara, Department of Electrical Engineering/ University
of Brasilia

Programa de Pós-graduação em Engenharia Elétrica

Brasília, 14 de junho de 2016

Desenvolver condições de estabilidade e projeto de controladores para controle de atitude de cor-
pos rígidos sujeitos a atrasos no tempo é o objetivo desta dissertação. O modelo utilizado, escrito na
forma de equação diferencial atrasada, advém das equações cinemática e dinâmica do corpo rígido
modificadas considerando atrasos temporais. Estes atrasos podem representar latências dos sensores
e atuadores, além de tempo de processamento de dados (e.g., cômputo dos sinais de controle) e de
transmissão de dados quando os elementos do sistema de controle estão conectados por redes comu-
nicação. Em particular, são supostos atrasos desconhecidos e variantes no tempo, o que lhes confere
generalidade maior do que os casos abordados até então na literatura, onde os poucos trabalhos que
abordaram o problema aprensentam resultados dependentes do valor exato do atraso ou o assumem
constante, o que na prática dificilmente é verificado. As condições obtidas, escritas na forma de teo-
remas, são baseadas em sua maioria na teoria de Lyapunov-Krasovskii. Outro aspecto que diferencia
este trabalho em relação aos demais é que os teoremas são formulados como desigualdades matriciais
lineares (LMIs, em inglês). A formulação por LMIs é vantajosa não só pelas excelentes propriedades
computacionais das LMIs (resolução em tempo polinomial), mas também porque as condições são
escritas com variáveis, reduzindo o conservadorismo dos resultados e permitindo a automação do
processo de verificação de estabilidade e projeto de controladores, o que também é uma contribuição
desta dissertação. Além disso, os controladores possuem performance garantida segundo o critério
H∞, isto é, além de estabilidade, este tipo de controlador tem um nível mínimo de atenuação de
perturbações assegurado.
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ABSTRACT

ATTITUDE CONTROL OF RIGID BODIES WITH TIME-DELAYED MEASUREMENTS

Author: João Vítor Cavalcanti Vilela

Supervisor: Prof. João Yoshiyuki Ishihara, Department of Electrical Engineering/ University
of Brasilia

Electrical Engineering Graduation Program

Brasília, 14th June 2016

Developing stability and controller design conditions for rigid body attitude control subjected
to time delays is the goal of this dissertation. The rigid body model, written in form of functional
differential equation, stems from the kinematic and dynamic rigid body equations, modified to take
time delays into account. Such time delays may represent sensor and actuator latency, processing
time (e.g., computing control signals) and transmission lags when the control system elements are
connected by communication networks. In particular, time delays are considered unknown and time-
varying, which makes them generalizations of previous results in literature, where the scarce works
to tackle the problem present results dependent on the exact time delay value, which is hardly verified
in practice. The proposed conditions, written as theorems, are mostly based on Lyapunov-Krasovskii
theory. Another aspect that sets this work apart is that theorems are formulated as linear matrix
inequalities (LMIs). LMI formulation is advantageous not only for its excellent computational prop-
erties (polynomial time solving), but also for the conditions are written with variables, which reduces
results’ conservatism e enables automating stability verification and controller design, which is a
contribution of this work as well. In addition, controllers attain guaranteed performance according
to H∞ criterion, that is, besides stability, this kind of controller presents a known minimum level of
perturbation attenuation.
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NOTATION

In this dissertation, vectors are represented by boldfaced lowercase letters, whereas boldfaced upper-
case letters denote matrices. Sets and spaces are, in general, represented by uppercase calligraphic
letters.
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1 RESUMO EXTENDIDO

Satélites de telecomunicações precisam apontar suas antenas em direção à Terra para transmitir da-
dos, painéis solares montados em veículos espaciais têm de alinhar-se ortogonalmente ao Sol para
gerar energia e braços robóticos necessitam aproximar-se de objetos com determinadas orientações
para coletá-los. Estas são apenas algumas dentre uma infinidade de problemas de engenharia que
dependem fundamentalmente da orientação de corpos rígidos, e ressaltam a importância do problema
chamado Controle de Atitude.

Sistemas dinâmicos submetidos a atrasos no tempo também constituem uma área de pesquisa im-
portante, tanto pelo apelo teórico como pelo prático. Estes sistemas são caracterizados por equações
funcionais diferenciais [1], fundamentalmente distintas de equações diferenciais ordinárias [2, 3],
empregadas em sistemas dinâmicos típicos, o que torna diversos critérios de análise de estabilidade
inválidos [4, 5]. Isto requer que o problema seja analisado através de outras ferramentas, já que, em
geral, o efeito de atrasos em sistemas de controle é complexo, podendo desestabilizar sistemas está-
veis e vice versa [2, 3]. Em relação ao controle de atitude, os efeitos são majoritariamente indesejados,
incluindo comportamento oscilatório [6], deterioração de performance [7], e instabilidade [8]. Assim,
nesta dissertação as demonstrações baseam-se, em geral, na teoria de Lyapunov-Krasovskii [9, 2, 3],
uma extensão natural do (segundo) método de Lyapunov, onde os resultados dependem de funcio-
nais relacionados à energia do sistema considerando o estado xt do sistema atrasado. Tipicamente,
isto leva à verificação de desigualdades, que muitas vezes podem ser formuladas como problemas
de desiguldade lineares de matrizes (LMIs, em inglês) [10]. Estas desigualdades podem ser facil-
mente resolvidas devido a características computacionais muito favoráveis, resultado da convexidade
do problema.

Atrasos no tempo são comuns em sistemas dinâmicos, com exemplos em biologia, química, eco-
nomia e mecânica [9, 11, 2, 3]. Em particular, sensores e atuadores sempre introduzem atrasos no
tempo, independente de quão pequenos são [12], pois toda interação física propaga-se com velocidade
finita. Os computadores e redes de comunicação utilizados no cômputo da lei de controle e transmis-
são de dados em sistemas de controle também são fontes de atrasos temporais [13, 9, 11, 2, 3].

Sistemas de controle de atitude não são isentos de atrasos no tempo; tanto sensores como atuado-
res podem induzir atrasos no tempo. Sistemas de propulsão à jato, por exemplo, sofrem com atrasos
eletromecânicos nos circuitos valvuláres e fluxo propulsor [14]. Sensores embarcados de baixo custo
também podem introduzir atrasos. Magnetômetros, por exemplo, precisam ser desligados na presença
de torques magnéticos, postergando o acesso do controlador a medições de atitude [15]. Sensores de
estrela [16] e GPS [17, 18] também podem causar atrasos.

As não-linearidades oriundas da cinemática e dinâmica de corpos rígidos tornam controle de ati-
tude um problema complexo, principalmente quando são considerados atrasos no tempo. O termo
giroscópico, que caracteriza a não-linearidade dinâmica, é particularmente problemático, e três abor-
dagens são tipicamente empregadas para tratá-lo. A primeira consiste numa espécie de linearização,
onde um termo, baseado na matriz de inércia do corpo rígido compensa a não-linearidade dinâmica,
é acrescido ao controlador [19]. No entanto, a determinação dos parâmetros do modelo (matriz de
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inércia) pode ser difícil, e como não existem resultados baseados em modelo que sejam robustos a in-
certezas, isto pode comprometer a performance e estabilidade do sistema. Esta limitação é tratada por
controladores adaptativos, que estimam parâmetros de modelo em tempo real, dispensando informa-
ção prévia sobre o modelo. Em [15, 20], esta estratégia é utilizada no contexto de controle de trajetória
considerando apenas medições de atitude atrasadas. Além disto, os resultados obtidos são dependen-
tes do valor exato do atraso, considerado constante, e uma parametrização baseada em matrizes de
rotação é utilzada, o que requer mais parâmetros e é mais custosa do ponto de vista computacional
quando comparada com quatérnios. A terceira forma de tratar não-linearidades consiste em provar
resultados utilizando controladores que independam explicitamente de informação sobre o modelo.
No primeiro trabalho a considerar controle de atitude com atraso, [8] prova estabilidade exponencial
utilizando parâmetros de Rodrigues (que apresentam singularidades), e considerando atrasos constan-
tes. Os resultados dependem da atitude inicial do corpo, do valor exato dos atrasos, e de informações
do modelo (apesar do controlador não utilizá-la diretamente). Parâmetros de Rodrigues modificados,
também vítimas de problemas com singularidades, são utilizados por [21], que prova estabilidade
exponencial considerando estados medidos com atrasos desconhecidos, mas constantes. No entanto,
os resultados dependem da orientação inicial. O problema de singularidades e dependência de orien-
tação inicial é resolvido em [22], através da parametrização por quatérnios. Apenas uma cota para a
norma da matriz de inércia é necessária para provar os resultados baseados em controladores propor-
cionais derivativos, mas dependem do valor exato do atraso, considerado constante. Em seguida, [23]
extende [22] ao considerar controladores independentes de medições de velocidade.

Neste trabalho, são desenvolvidos critérios de estabilidade e performance para o problema de
controle de atitude. A abordagem distingue-se das anteriores no sentido de que as condições são
escritas na forma de LMIs, o que permite automatizar o projeto de controladores, algo inédito na área,
além de produzir resultados menos conservadores. Além disto, são considerados controladores com
performance garantida no que diz respeito a rejeição de perturbações (controle H∞), outra novidade
neste campo. Outrossim, os atrasos são supostos variantes no tempo e desconhecidos, e no caso
dinâmico, diferentes para atitude e velocidade. Estas são generalizações das hipóteses anteriores,
onde em geral são apenas atrasos constantes, muitas vezes conhecidos são tratados.
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2 INTRODUCTION

2.1 MOTIVATION AND BACKGROUND

Telecommunication satellites must point their antennas toward Earth to transmit data, solar panels
mounted on spacecraft need to face the Sun to generate power and robotic arms have to approach
objects with particular orientations to pick them up. These represent only a few among a myriad of
engineering problems where the orientation of a certain object is key, and shed light on the relevance
of the so-called Attitude Control Problem.

2.1.1 Attitude Control

The attitude of an object represents its orientation relative to a certain reference frame, and at-
titude control is concerned with steering the object to a, possibly time-varying, desired orientation.
For example, consider the Atacama Large Millimeter/submillimeter Array (ALMA), an astronomical
interferometer of radio telescopes on a plateau at five thousand meters altitude in the Atacama desert
of northern Chile. ALMA was conceived to study star birth during early universe and consists of sixty
six radio telescopes, partly depicted in Figure 2.1, observing at millimeter and submillimeter wave-
lengths (0.3 to 9.6 millimeters). In order to provide detailed images of 0.1” angular precision, the
telescopes must meet extremely tight attitude error requirements, especially considering the reference
frame in this case is moving: Earth is rotating and translating with respect to the Stars.

Figure 2.1: Four ALMA antennas.

The International Space Station (ISS) is a low Earth orbit artificial satellite that has been proges-
sively assembled since 1998, and is intended to be a microgravity and space environment research
laboratory. The experiments span a wide variety of scientifical fields, including astronomy, meteorol-
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ogy, and physics. In order to conduct these experiments, a complex set of instruments and equipment
is required, such as the Alpha Magnetic Spectrometer (AMS), which is designed to study antimatter.
The detectors placed in AMS, however, can only detect particles that enter it at certain orientations
(“top to bottom”), which makes attitude control crucial to AMS operation. Attitude control was also
vital for AMS to make its way to ISS: in order to be installed, the AMS needed to be removed from a
shuttle cargo using a robotic arm and handed off to ISS’s own robotic arm. Likewise, robotic arms are
constantly used by ISS to perform several other tasks, such as deploying cube satellites, as illustrated
by Figure 2.2. These represent only a few among multiple scenarios of equipment in ISS that rely on
attitude control to operate.

Figure 2.2: Cube satellites being deployed by ISS.

Attitude control is also crucial to an activity society already takes for granted: safe long-distance
commercial air transportation. Throughout last century, major technological breakthroughs boosted
the range of early aircraft models, enabling flights lasting several hours long. The increase in flight
hours, however, came at the price of further pilot fatigue. As a means to assist pilots by perform-
ing some of their tasks during flights, the autopilot was introduced in 1912 by Sperry Corporation.
Autopilots control aircraft trajectory, eliminating the need of continuous manual control by a hu-
man operator. These systems allow pilots to supervise higher-level aspects of flying aircraft, such
as weather, systems and trajectory, making flights less stressful, less demanding and, consequently,
safer. In fact, modern autopilot systems are even capable of executing automated landing under the
supervision of a pilot. This feature is currently available on many major airports runways, especially
those susceptible to severe adverse weather.

Autopilots typically use inertial guidance systems to assess aircraft’s position and attitude, which
are used to control orientation. The degree of autopilot control can be categorized into three types,
and the larger and more complex the aircraft, the higher the level of required control. Single-axis
autopilots, also called “wing levelers”, control aircraft in the roll axis, shown in Figure 2.3. Two-
axis consist in single-axis autopilots that also control the pitch axis, and three-axis autopilots are
two-axis autopilots that additionally control the yaw axis, also represented in Figure 2.3. Typically,
large commercial aircraft employ three-axis autopilots to automate most phases of flights (e.g., cruise,
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Figure 2.3: Autopilots regulate aircraft pitch, roll and yaw angles.

where aircraft must maintain a certain altitude).

The previous example introduced an intuitive attitude parameterization based on roll, pitch and
yaw angles. These are, in fact, a special case of a formal and more general parameterization named
Euler Angles [24]. Formal representation of attitude is an interesting problem in its own sake, and has
been the subject of research for more than a century [25], leading to almost a dozen of sound different
approaches. Each of these presents idiosyncrasies that make unique compromises between general
qualities. For example, attitudes require at least a three-element parameterization, called minimum
parameterizations [24]. Nevertheless, minimum parameterizations suffer from continuity issues [26]
that hinder representation at certain attitudes. Similar trade-offs have to be made regarding other
aspects of representations, such as computational burden and singularities.

In addition to particular technical aspects of each representation, from the dynamics stand-point
the attitude control problem is also a challenging one due to nonlinearities, typically dealt with using
three strategies [19]. Model-based control is the first one, where the rigid body’s matrix of inertia is
used directly cancel out the problematic terms, which is discussed in the context of delay-free tra-
jectory tracking by the classic work of [19]. In practice, however, it can be difficult to obtain model
parameters, and robustness is only proved for the delay-free case. The second strategy avoids this
issue with an adaptative scheme, where the feedforward stems from the estimated matrix inertia. Al-
though no model information is needed, performance can be deteriorated [19]. In the delayed case,
[15, 20] also treated adaptative tracking, but considered only attitude measurements were subjected
to constant time delays. In addition, results depend on the exact time delay value (i.e., the delay
is known) and were obtained using a vector form of rotation matrices, which require more parame-
ters and are more expensive from the computational standpoint compared to quaternions. The third
approach is to prove results without explicit model information. In [8], the first work to deal with at-
titude control with time delays, exponential stability is proved considering constant delays. Another
inconvenience is that results are dependent on initial attitude, the exact delay value, and model infor-
mation. Moreover, Rodrigues Parameters (RP) are used, which present singularities. The proposed
controller, which does not use velocity measurements, does have a feedforward term, but its purpose
is not to eliminate nonlinearities, and it’s chosen zero for stabilizing the origin. Modified Rodrigues
Parameters were chosen by [21] to prove exponential stability considering state measurements sub-
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jected to unknown constant delays. Nevertheless, sufficient conditions depend on initial orientations.
The singularity issue has been eliminated by [22], who used quaternion parameterization to prove
asymptotic stability. No model information is necessary, and results are proved assuming simple
Proportional Derivative (PD) controllers, but the stability conditions do depend on the delay value,
considered constant. This work was extended by [23], which considers velocity-free controllers.

2.1.2 Time-delay Systems

Dynamical systems that are subjected to delays are an important research area. The first in-
vestigations can be traced back to the time of the Bernoulli brothers and Euler in the eighteenth
century, whereas Bellman and Myshkis started systematical study at the 1940s [27]. Instead of or-
dinary differential equations (ODEs), the so-called Time-delay Systems1 (TDSs) are characterized by
infinite-dimensional Functional Differential Equations (FDEs) [1] because of the very nature of their
solutions [1, 2, 12]. This makes several classical stability analysis criteria not applicable [5, 3].

Time-delays are pervasive in dynamical systems, existing examples in several fields ranging from
biology, chemistry and economics to mechanics [1, 9, 11, 2]. In particular, sensor and actuator devices
always introduce time delays, regardless of how small these are [3]. Indeed, the so-called latency, is
a broad phenomenon that affects sensors and actuators and is consequence of the fact that any phys-
ical interaction propagates with limited velocity. Since these devices typically employ some kind
of transducer, which cannot transfer energy immediately due to latency, time-delays are introduced.
Also, most modern control systems rely on digital computers to calculate control signals [4, 3], which
cannot perform such calculations instantly. More recently, general multipurpose communication net-
works have gained popularity in control systems, in which they are used to connect its elements, such
as sensors and controllers. Introducing communication networks gives these systems an edge over tra-
ditional feedback architectures, where the components are typically connected through point-to-point
cables. Some of the advantages are reduced costs and weight, simpler installation and maintenance,
and remote control [28, 11]. The so-called Networked Control Systems (NCS) [13, 9, 11, 2, 3], how-
ever, suffer from undesirable effects caused by the networks, namely time-varying delays and packet
dropouts. Thus, despite common hypothesis such as states being instantly available for feedback and
actuators immediately acting upon processes, real-world control systems can all be considered TDSs
[3], as depicted in Figure 2.4.

Figure 2.4: Feedback system delays.

Attitude control systems are no exception, both sensors and actuators can induce time-delays.
1Alternative nomenclatures include systems with dead-time or affect effect, hereditary systems, equations with deviating

argument or differential-difference equations.
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Thrust profile of gas jet control systems, which are affected by electromechanical delays in valve
circuits and propellant flow [14], are an example of actuator capable of causing delays. Low-cost
onboard attitude sensors can also be responsible for introducing delays. For example, magnetometers.
In the presence of magnetic torques they must be turned off, delaying controller access to attitude
measurements [15]. Low-rate sensors might contribute with delays as well. Star trackers, for instance,
may need up to ten seconds to identify stars [16]. Global Positioning System (GPS) also causes
sensing delays due to data latency and momentary outages, while evaluating satellite position in orbit
[17, 18].

The impact of time-delays on control systems behavior is involved [9, 2, 3]. Stable systems can
become unstable, and, conversely, unstable systems can be stabilized by time-delays [9, 12]. Some-
times both scenarios are simultaneously possible, depending on the exact value of the delay [3].
Regarding the TDSs that are dealt with in this dissertation, the effects are mostly harmful. For ex-
ample, closed-loop performance can be damaged [7], reducing a system’s robustness to disturbances.
Even worse, delays can cause oscillations [6] and actual instability [8]. The stability and performance
analysis of these systems is nontrivial, especially because of the combination of nonlinearities with
time-delays. Indeed, TDSs are infinite-dimensional systems, and the corresponding characteristic
quasipolynomial [3] has, therefore, infinite solutions (poles). This immediately discards some classi-
cal analysis methods, such as root locus [5], and force others to be adapted, e.g., the Nyquist criterion
[5, 3]. The issue is aggravated by nonlinearities, which make several classical analysis methods use-
less.

The (second or direct) Lyapunov method, on the other hand, is an efficient and standard approach
to study stability of dynamical systems [29]. Grosso modo, it consists in finding energy-like positive
definite functionals/functions V that are coupled with the systems dynamics and whose derivative is
negative definite, i.e., V decays with time [29]. In the context of TDSs, two flavors of Lyapunov-like
techniques are prevalent: the Krasovskii method of Lyapunov functionals [30, 9, 11, 2, 3] and the
Razumikhin method of Lyapunov functions [13, 2, 3]. Krasovskii’s is a natural step from Lyapunov’s
second method, since it is based on an analogous process of finding energy-like functions, except
that these are functions of the TDS state, xt, which completely differs from ordinary control systems
modeled by ODEs [3]. Razumikhin’s method, on the other hand, does not explore functions of xt,
and, in general, leads to more conservative results.

As in standard Lyapunov analysis, assessing stability comes down to verifying inequalities
[10, 29, 2]. In the case of linear TDSs, this translates to Linear Matrix Inequalities (LMIs) conditions
[10]. Whenever the stability of a TDS, or dynamical system, in general, can be stated as LMI condi-
tions, due to convexity and nice numerical algorithms, the problem can be considered solved [10, 3].
The effort is then concentrated in tweaking Lyapunov terms to benefit from general mathematical
inequalities and identities in order to obtain less conservative results [31, 32, 33, 34, 35, 36, 37, 38].
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2.2 CHALLENGES AND PROBLEM STATEMENT

The presence of sensing and actuating time-delays reinvigorates many of the challenges which
have already been solved or partly solved in the context of attitude control. In particular, the interac-
tion of time-delays with nonlinearities of rigid body kinematics and dynamics is entangled and make
many available analysis and design techniques impractical or not directly applicable. This is also true
regarding TDS literature, which is more developed for linear systems than it is for nonlinear ones.
Moreover, the techniques which can be adapted are still widely unknown to a considerable part of
attitude control community. This leads to results that cannot be readily implemented, verified or opti-
mized. In this sense, the issues addressed in this dissertation can be segmented into the subproblems
below.

1. [PROB1] Time-delays is an undeveloped field in attitude control literature. Nevertheless, ev-
idence shows sensors and actuator technologies introduce time-delays in many practical ap-
plications. Overlooking the effects of these delays on closed-loop behavior can be disastrous,
culminating in poor performance or even unstable operation.

2. [PROB2] The nonlinearities associated with rigid body kinematics and dynamics have, so far,
led to nonlinear stability conditions which cannot be easily implemented or that are computa-
tionally inefficient to verify. In addition, the analysis techniques from TDS are seldom invoked,
which can potentially make results more conservative.

3. [PROB3] The few results in attitude control literature that address robustness to disturbances
do not provide conditions to design the controllers, neither works allow to actually quantify the
impact disturbances have on closed-loop performance.

2.3 GOALS AND OBJECTIVES

In light of the paucity of results and relevance of the problem depicted above, this dissertation
addresses the issues of attitude control problem subjected to time-delays, disturbances and attitude
control despite lack of model information. The main goals are presented in the following.

1. [GO1] Obtain LMI attitude stability conditions

State stability conditions in the form of LMI using state-of-the-art TDS analysis techniques. In
particular, adapt linear TDS methods to exploit kinematics and dynamics nonlinearities. Sta-
bility conditions may be model-dependent or model-independent. In practice, exact parameter
models (inertia J) are difficult to identify. Hence, model-independent conditions will be fa-
vored. This addresses [PROB1] and [PROB2].

2. [GO2] Determine LMI controller design conditions for attitude control

Establish LMI conditions to enable numerical controller design. More specifically, these con-
ditions should allow casting design as an optimization problem, where the LMIs are constraints
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of the problem. Moreover, results should warrant disturbance rejection performance quantita-
tively. By doing this, [PROB3] is encompassed.

3. [GO3] Develop attitude tracking controllers

Rigid bodies are often required to follow desired trajectories, instead of resting at equilibrium
orientations. Thus, it is important to establish results that guarantee precise trajectory tracking.

2.4 RESEARCH APPROACH AND CONTRIBUTIONS

The strategy to obtain the stability and design criteria that address the outlined problems is to mod-
ify classical rigid body kinematics and dynamics equations by adding time-delays, and use Lyapunov-
Krasovskii arguments to prove the results. This research started with the extension of state-of-the-art
linear TDS techniques that are suited to proportional controllers, to the more general case of dy-
namical controllers. Although the results, which produced two IEEE international conference papers
[39, 40], were not directly applied to the specific problem of attitude control, much of the acquain-
tance with TDS techniques was gained during that period.

The transition to the attitude control problem occurred naturally by, to the best of the author
knowledge, deriving the first controller design conditions that have guaranteed disturbance rejection
performance. Proposing a new technique to exploit kinematic nonlinearities, it was possible to adapt
efficient TDS techniques and obtain the results, which are described in Section 5.1, and also culmi-
nated in an IEEE international conference paper [7]. The same technique was used to address dynam-
ical trajectory tracking with attitude measurement delays. Subsection 5.2.1 describes the outcomes of
this study.

The final research stage was focused on solving the more general case of dynamical stabilization
with input delays. The stability criterion obtained is detailed in Subsection 5.2.2, and for the first
time considers distinct attitude and velocity time-varying delays. The criterion also introduces LMI
conditions, which distinguish the theorem from previous results, and is also responsible for reducing
the analysis conservatism. Furthermore, conditions are liable to relaxations that can be used to design
stabilizing controllers, which to best of the author knowledge is a completely unexplored problem.
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3 RIGID BODY KINEMATICS AND DYNAMICS

The attitude, or the orientation, of a rigid body can be represented through various mathematical de-
scriptions [24]. Since most engineering applications require calculations, storage and manipulation of
the objects that represent the attitude by some kind of computer, the choice of a particular description
is based on a compromise that favors certain aspects. Among such aspects, the following list ranks
the most relevant

1. Range and smoothness

Attitudes can be globally continuously represented by a single set of parameters.

2. Computational burden

The amount of operations (sums and multiplications) necessary to make calculations involving
the objects that represent attitude; The number of required parameters to store these objects,
which translates into memory usage.

3. Physical intuitiveness and algebraic complexity

Representation parameters have physical meaning; The complexity of a representation’s con-
ceptual foundations.

Taking the above criteria into account, quaternions are chosen to represent attitude. The interested
reader is referred to [24] for more details on quaternions and many other attitude representation ap-
proaches.

3.1 FRAMES AND RIGID MOTION

The orientation of an object is not absolute. It changes depending on the observer’s perspective.
For example, consider the attitude of satellite represented in Figure 3.1. If the observer is located
on Earth, the satellite is pointing at a different direction than the one observed by someone on the
moon. In fact, even two distinct observers on Earth or the moon can perceive different orientations
of the satellite. Thus, in order to provide an unambiguous description of attitude, a reference must be
adopted, and the orientation described relative to that reference.

Formally, a reference is defined by a coordinate system, which consists in a dextral orthonormal
basis of the three-dimensional vector space R3 [14, 41, 42, 24]. A coordinate system is denoted by E ,
representing a basis {e1, e2, e3} of orthonormal three-dimensional vectors, and is also called a frame.
The attitude or orientation, represents the coordinates of another coordinate system with respect to a
frame. In order to avoid ambiguity, a coordinate system must be arbitrated and attached to the object,
so that attitude can be precisely described as the coordinates of the object’s coordinate system with
respect to the reference frame. The coordinate system that is attached to the object is called the body
frame, denoted by B. A reference frame that does not present relative motion to the object is said to
be an inertial frame, represented by I.
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Figure 3.1: Different reference frames.

In general, the rotating motion of a particle p can be described by its body frame coordinates
at each instant of time relative to an inertial frame, attached to another particle o. Then, adopting
a determined attitude representation method, the orientation of p relative to o is described by the
coordinates of B relative to I. Analogously, this approach can be used to describe the collective
motion of a group of particles. In this sense, the notion of an undeformable body is introduced.
A collection of particles which preserves the distances between any two particles throughout time,
despite body motions and external forces, is called a rigid body [42, 43]. More formally, given a
set P representing a set of particles {p1,p2, . . .}, if any two particles pi and pj have their relative
coordinates expressed by maps pi : R≥0 → R3 and pi : R≥0 → R3, then

‖pi (t)− pj (t)‖ = ‖pi (0)− pj (0)‖

holds for all t greater than or equal to zero.

Analogously, a rigid motion1 of a particle set P is a movement of the particles of P , such that
distances between any two of them are preserved throughout time [43]. Although real bodies, such
as spacecraft, are not actually rigid [42, 6, 14], since the goal of this dissertation is to address the
interaction between time-delays and body dynamics from a more abstract point of view, rigid body
attitude and motion are considered. Indeed, the analysis of rigid body attitudes involves only three
degrees of freedom, in contrast with accurate structural analysis [42], which is outside the scope of
this work.

Although the definition of inertial and body frames allows the unambiguous characterization of a
rigid body’s attitude, the representation of the coordinates can be done following different approaches

1More specifically, the kind of motion called rigid transformations [43] is of interest, since it does not allow reflections.
Formally, a mapping r : R3 → R3 is a rigid transformation if distances and the cross-product are preserved, i.e.,

1. ‖r (p1)− r (p2)‖ = ‖p1 − p2‖ ,∀p1, p2 ∈ R3.

2. r (p1 × p2) = r (p1)× r (p2) , ∀p1, p2 ∈ R3.

From the definition of rotation matrices, it can be seen that rotations are rigid transformations.
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and conventions. Attitude representation, therefore, comprises the parameterization of such coordi-
nates. Rotation matrices, Euler angles, and Angle/Axis are only some of the possible choices [42, 24].
Quaternions, however, standout among them, and constitute a good balance between analytical and
computational aspects of representations.

3.2 QUATERNIONS

It is well-established one-to-one minimum representations of attitude without singularities do not
exist. In fact, the minimum continuous global one-to-one parametrization of rotations requires five
elements [26]. Nevertheless, by adding a fourth parameter, a continuous two-to-one representation
can be obtained. In 1843, Hamilton introduced four-dimensional hypercomplex numbers that can be
used to represent attitudes [25]. These hypercomplex numbers are called Quaternions, and noted by
H. In this dissertation, the adopted convention is described in the following. Let i, j,k be imaginary
numbers such that

i2 = j2 = k2 = ijk = −1, (3.1)

which implies

ij = −ji = k, jk = −kj = i,ki = −ik = j. (3.2)

A quaternion q can be written as

q = q0 + q1i + q2j + q3k,

with real numbers q0, q1, q2, q3. Quaternions also admit a more compact vector form [24]

q =
[
q0 q1 q2 q3

]T
.

In fact, it is more convenient to split the quaternion into two components: the scalar part η accounting

for q0 and the vector part ζ representing
[
q1 q2 q3

]T
. Thus, q can be compactly repesented as

q =
[
η ζT

]T
. (3.3)

Expression (3.3) defines the quaternion representation convention that will be adopted in this disser-
tation. A quaternion with zero vector part ζ, is called a real quaternion or scalar quaternion. On the
other hand, if η is zero, q is a vector quaternion or pure quaternion. Pure quaternions can represent

points and translations (vectors) [44]. Indeed, a pure quaternion p given by
[

0 ζTp

]T
, with ζp

equal to
[
px py pz

]T
, represents a point or a translation pv equal to ζp.

Now, considering map

[·]× : R3 → o (3)

x 7→ [x]× :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,
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and since
αq =

[
αη αζT

]T
,

for any given scalar α, the following operations, which are consistent with (3.1)-(3.2), are defined.

Definition 3.2.1. Quaternion Operations

Let α, β ∈ R, q1 =
[
η1 ζT1

]T
, q2 =

[
η2 ζT2

]T
∈ H.

1. The quaternion addition and subtraction, denoted by “±”, is defined as

αq1 ± βq2 =
[
αη1 ± βη2 (αζ1 ± βζ2)T

]T
. (3.4)

2. The quaternion multiplication, noted as “⊗”, is defined as

q1 ⊗ q2 =

[
η1η2 − ζT1 ζ2

η1ζ2 + η2ζ1 + [ζ1]× ζ2

]
. (3.5)

3. The quaternion conjugation of a quaternion is designated by a “ · ” and defined as

q1 =
[
η1 −ζT1

]T
. (3.6)

Combining operations (3.5) and (3.6), it is possible to define a norm [41], that is the same as l2
Euclidean norm.

Definition 3.2.2. The norm ‖·‖ of a quaternion q is defined as

‖q‖ = (q ⊗ q)
1
2 =

(
η2 + ζT ζ

) 1
2 . (3.7)

Note that (H,+) forms a group which is isomorphic2 to
(
R4,+

)
[24]. In addition, it follows

that (H,+, ·) is a division ring [24]. Indeed, even though (3.5) is distributive, it is not commutative.
Moreover, given a nonzero quaternion q, its multiplicative inverse q−1 is given by 1

‖q‖q.

In particular, the four-dimensional unit-sphere is an important subset of R4,

S3 =
{
q ∈ R4| ‖q‖ = 1

}
. (3.8)

Indeed, because of the R4-H isomorphism, S3 is isomorphic to an H subset, called Unit Quater-
nions–also Euler-Rodrigues symmetric parameters or simply Euler symmetric parameters [24]. Unit
quaternions form a group under multiplication: given two unit quaternions, q1 and q2, q1 ⊗ q2 also

belongs to S3; 1 is the identity element, given by
[

1 0
]T

in S3; and the inverse element of any
unit quaternion can be readily obtained by conjugation, since

q ⊗ q =

[
η2 − ζT (−ζ)

−η (−ζ) + η (−ζ) + [ζ]× ζ

]
=

[
‖q‖2

0

]
= 1.

2To see this, consider the mapping q0 + q1i + q2j + q3k 7→
[
q0 q1 q2 q3

]T
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From this point on, the quaternion multiplication symbol “⊗” will be omitted in order to simplify
notation. Quaternions provide a two-to-one parametrization of SO (3) [26, 24], a group that charac-
terizes three-dimensional rotations. This can be seen considering the map R : S3 → SO (3), such
that

R (q) = I + 2η [ζ]× + 2 [ζ]2× . (3.9)

The map R is called the Rodrigues formula, and from (3.9) it can be seen that R (q) = R (−q),

i.e.,R is two-to-one. Explicitly, considering quaternion q, given by
[
η ζ1 ζ2 ζ3

]T
, then

R (q) =

 ζ2
1 − ζ2

2 − ζ2
3 + η2 2 (ηζ1 + ζ2ζ3) 2 (ηζ2 − ζ1ζ3)

2 (ηζ1 − ζ2ζ3) −ζ2
1 + ζ2

2 − ζ2
3 + η2 2 (ζ1ζ2 + ηζ3)

2 (ηζ2 + ζ1ζ3) 2 (ζ1ζ2 − ηζ3) −ζ2
1 − ζ2

2 + ζ2
3 + η2

 . (3.10)

Conversely, given a rotation matrix R, the corresponding quaternion
[
η ζ1 ζ2 ζ3

]T
can be

obtained. Indeed, from (3.10), it follows that

ζ3 = ±1

2

√
1 + Tr (R). (3.11)

If ζ3 is nonzero, then

η = 1
4ζ3

(R23 −R32) , ζ1 = 1
4ζ3

(R31 −R13) , ζ2 = 1
4ζ3

(R12 −R21) .

On the other hand, if ζ3 is zero, then a nonzero element of the remaining three can be used to obtain
the others. Note that, since q is unit-norm, there always exist at least one such element. The ambiguity
of the sign in (3.11) reflects the double-covering of SO (3) by quaternions.

From (3.5) and (3.9), it follows that, given three unit quaternions q1, q2, q3 such that

q3 = q2q1,

then
R (q3) = R (q2)R (q1) .

Therefore, successive rotations can be represented by the product of the corresponding quaternions. A
quaternion can also be directly obtained from a rotation expressed in Axis/Angle form (n, θ) (depicted
in Figure 3.2), as

η = cos
(
θ
2

)
, ζ = sin

(
θ
2

)
n. (3.12)

3.2.1 Comparison between representations

Quaternions are compared individually with three classical representations in order to point out
the advantages of adopting this representation regarding the criteria mentioned at the beginning of
the chapter. Even though other representations are omitted (Rodrigues, Modified Rodrigues, Cayley-
Klein parameters, see [24]), similar arguments could be used to argue in favor of quaternions.
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Figure 3.2: Rotation by an angle θ about axis n.

Rotation Matrices versus Quaternions

Since the mathematical tools concerning rotation matrices involve basically linear algebra, rota-
tion matrices tend to be more intuitive to work with initially. For the same reason, there already exist
a breadth of available algorithms and programming libraries capable of handling rotation matrices.

Nevertheless, compared to rotation matrices, quaternions are a more economical parametrization,
requiring four elements, instead of nine. Even though both allow the composition of rotations to be
obtained through group multiplication, the one involving quaternions is significantly lighter, since
sixteen multiplications are necessary, instead of twenty seven. In addition, there are less constraints
in the quaternion case: only one unit-norm constraint, rather than six constraints [24]. Moreover, this
constraint is considerably less expensive from the computational standpoint than orthogonalization
algorithms [24].

Euler Angles versus Quaternions

The most appealing arguments in favor of Euler angles are that they are a minimal representation,
which require one less parameter than quaternions, and that they are conceptually more intuitive and
easy to grasp, since the parameters have direct physical meaning.

On the other hand, the extra parameter spares the quaternions from singularities, which ultimately
require two sets of Euler angles to be overcome, therefore eliminating the advantage of needing
less parameters. In addition, if the singularities are avoided, this implies switching the dynamic
system’s differential equations, which falls into the realm of hybrid systems, and would require more
sophisticated stability analysis tools [45]. Moreover, successive rotations can be readily combined
using quaternions, in contrast to the Euler angle setting [24].

Quaternions versus Axis/Angle

Quaternion parameters do not have an explicit physical significance, but they are closely related
to axis/angle’s. In this sense, the little gain in intuitiveness provided by the latter representation does
not justify its adoption, since axis/angle suffers from infinite possible choices of angles (multiples of
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2π) that force them to be constrained. This causes discontinuities around 0 and 2π and, consequently,
a similar problem regarding hybrid systems occur. In addition, rotations of zero degrees do not
admit valid axis. Moreover, successive axis/angle rotations are significantly harder to combine than
quaternion ones [24].

3.3 KINEMATIC AND DYNAMIC EQUATIONS

The previous sections introduced a formal approach to represent the orientation of a rigid body
with respect to a fixed reference. In particular, rigid motion was defined as a mapping that preserves
distances throughout time. This section will be concerned with establishing the equations that govern
the way the orientation of a rigid body evolves with time.

Kinematic equations

Kinematics3 is a classical mechanics subfield whose object of study is the motion of particles
disregarding their masses and the forces causing motion [42, 43]. More specifically, Kinematics
employs geometrical arguments to describe the way a particle’s position, velocity, acceleration and
all higher-order derivatives evolve in time given initial conditions. In this work, in particular, the
relationship between attitude and angular velocity will be explored.

Consider two frames B and I. Let q be a unit quaternion that represents the attitude of B relative
to I and suppose q is subjected to a small rotation ∆θ, represented by unit quaternion ∆q, such that
it can be approximated by its Taylor expansion

∆q =

[
cos 0

(sin 0) n

]
+

1

2

[
− sin 0

(cos 0) ∆θ

]
+O

(
‖∆θ‖2

)
=

[
1

1
2∆θ

]
+O

(
‖∆θ‖2

)
. (3.13)

Let ω denote the vector limt→0 ∆θ. Then, rotated quaternion q (t+ ∆t) is such that

d

dt
q (t) = lim

∆t→0

q (t+ ∆t)− q (t)

∆t
= lim

∆t→0

q∆q − q
∆t

= lim
∆t→0

q

([
1

1
2∆θ

]
−

[
1

0

])
∆t

=
1

2
q

[
0

ω

]
,

and the kinematic equation of the quaternion in vector notation is given by

q̇ (t) =
1

2

[
−ζT

ηI + [ζ]×

]
ω. (3.14)

Alternatively, (3.14) can be obtained using algebraic [46] and topological [26] arguments. Note that,
since ∆q corresponds to a small rotation with respect to B, the vector ∆θ represents the angular
velocity observed at B. For example, consider Figure 3.1, with I represented by {e1, e2, e3}, and
B collocated at the satellite’s center of mass, denoted by {b1, b2, b3}. Then, ω corresponds to local
measurements made by, for example, an onboard accelerometer.

3The term was introduced by Ampère (cinématique), and derives from the Greek word kinein (“to move”).
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Dynamic equations

Relying solely on the kinematic description of a rigid body to control its attitude presupposes that
angular velocities can be considered as control inputs, i.e., the relationship between velocities and
torques is transparent for the purposes of control. In many cases, however, it is not possible to ignore
this relationship, especially if the input torques are subjected to time-delays. Thus, the Dynamics of a
rigid body, which is precisely the description of how angular velocities and torques are related, must
be taken into account. For more on dynamics, the reader is referred to [14, 42, 6, 43].

LetR be map from R≥0 into SO (3), that corresponds to the attitude of body frame B with respect
to an inertial frame I. Since R (t) is orthogonal, it follows that

R (t)R (t)T = I, (3.15)

for all t ≥ 0. Differentiating (3.15) yields

dR

dt
R (t)T +R (t)

dRT

dt
= 0,

which means that

dR

dt
R (t)T = −R (t)

dRT

dt
= −

(
dR

dt
R (t)T

)T
, (3.16)

that is, R (t) dRdt
T

defines a skew-symmetric matrix. Because [·]× is bijective (Section I.1), for each t,
there exists a vector ω0 (t) in R3 and [ω0 (t)]× in SK3, where ω0 (t) is the angular velocity expressed
in the inertial frame. Then, substituting [ω0 (t)]× for R (t) dRdt

T
in (3.16) gives

Ṙ (t) = [ω0 (t)]×R (t) , (3.17)

that is, the rigid body angular velocity expressed in I. The angular velocity can also be expressed in
the body frame, as

ω (t) = R (t)T ω0 (t) . (3.18)

Now, Newton’s second law gives that the change in angular momentum equals the net torque
applied to the rigid body, that is

d

dt

(
R (t) JR (t)T ω0 (t)

)
=

d

dt
(R (t) Jω (t)) = τ0, (3.19)

where J represents the (constant) inertia matrix of the rigid body with respect to B, and τ0 represents
the net input torque expressed in I. Note that in (3.19), the change in angular momentum, is expressed
in I. Thus, (3.17) yields

d

dt
(R (t) Jω (t)) = Ṙ (t) Jω (t) +R (t) Jω̇ (t)

= [ω0 (t)]×R (t) Jω (t) +R (t) Jω̇ (t) , (3.20)

Then, considering the angular momentum expressed in B, and [·]× property (I.4), (3.20) yields

τ = R (t)T
(
[ω0 (t)]×R (t) Jω (t) +R (t) Jω̇ (t)

)
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=
[
R (t)T ω0 (t)

]
×
Jω (t) + Jω̇ (t) . (3.21)

Thus, assuming the control input u (t) is an input torque, (3.21) gives

Jω̇ (t) = − [ω (t)]× Jω (t) + u (t) , (3.22)

which is the dynamics equation of the rigid body expressed in B. The nonlinear vector map
[ω (t)]× Jω (t), called gyroscopic term is the source of many technical challenges in attitude con-
trol. Indeed, not only it is nonlinear, but also quadratic-like, which means it can only be bounded by
quadratic terms.

The motivation to express dynamics in the body frame are twofold. First, since B is attached to
the rigid body, J can be assumed constant, which simplifies the final expression. This choice is also
convenient from the control standpoint, since the velocity information that is available to controller
is measured locally, i.e., ω (t), instead of ω0 (t). Note, however, that since I is inertial, when ω (t)

tends to zero, so does ω0 (t), which is what (3.18) is expressing. Thus, because velocity control will
concern steering the rigid body to rest, there is no advantage in considering dynamics expressed in
the inertial frame.
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4 TIME-DELAY SYSTEMS FUNDAMENTALS

This chapter provides the fundamentals of Time-Delay Systems (TDSs) that will support the arguments
used to prove stability and design conditions to be established in the remainder of the chapter. For
complete references, the reader is referred to the excellent works of [28, 13, 11, 2, 3]. Otherwise, the
reader who is already familiar with TDSs may skip this section entirely, and move forward to Section
5.1.

4.1 PRELIMINARIES

Time-delays are a widespread phenomenon among dynamical systems. Control systems, in par-
ticular, are routinely subjected to delays, mostly because of the time required to acquire data, compute
control signals and actuate on the systems [28, 2, 3]. Also, modern control systems typically oper-
ate on sampling-based control feedback loops, which, because of its elements’ latency, introduce
sampling delays. Even though this is typically addressed using discrete control strategies [4], these
systems are amenable to the more general framework of TDS [11]. More recently, multipurpose com-
munication networks have experienced a surge in popularity among control systems due to benefits
they provide. Namely, reduced weight and costs, increased flexibility, maintainance and installation
ease, and remote control [28, 11]. Time-varying communication delays and package dropouts, how-
ever, are only two of the countereffects that are caused by such networks, and can seriously degrade
a control system’s peformance and stability [28, 11, 3]. Thus, actuators, sensors, controllers and field
networks are all responsible for introducing delays, that allow feedback control systems to be all
considered under the more general framework of TDS.

Contrary to dynamical systems, which are described by Ordinary Differential Equations (ODEs),
TDSs are characterized by Functional Differential Equations (FDEs) [13, 47, 3]. For example, con-
sider the simple TDS described by

ẋ (t) = −x (t− d) , x (t) ∈ R, d > 0, t ≥ 0 . (4.1)

The solutions of (4.1) for time t in [0, d] require the definition of x (t− d) for t in [0, d], which leads
to the initial value function

x (s) = φ (s) , s ∈ [−d, 0] ,

rather than an initial value x (0), which would be the case for a typical ODE. The solutions can then
be found via the step method by Bellman [27]. The method starts by finding a solution to (4.1) for t
in [0, d] by solving

t ∈ [0, d] , ẋ (t) = −φ (t− d) , x (0) = φ (0) ,

and procedure is repeated to find solutions for t in [d, 2d] , [2d, 3d], etc. Thus, in TDSs, states are
actually functions

xt : [−d, 0]→ R
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x (t) 7→ xt (θ) = x (t+ θ) , θ ∈ [−d, 0] ,

which means the domain of TDSs’ states is infinite-dimensional.

Time-delay systems can be divided into two categories: retarded TDSs (RTDSs) and neutral TDSs
(NTDSs). The former are characterized by delayed states only, whereas the latter have delayed higher-
order state derivatives. For instance,

ẍ (t) = aẋ (t− d2) + bx (t− d1) , x (t) ∈ R,

is an RTDS, contrary to
ẋ (t) = aẋ (t− d) + bx (t) , x (t) ∈ R,

which is an NTDS. The closed-loop kinematics and dynamics systems subjected to time-delays con-
sidered in this dissertation all fall into the RTDS case.

The general form of an RTDSs is

ẋ (t) = f (t,xt) ,

where x (t) is a vector in Rn, ẋ (t) is the right-hand derivative of x (t), and f : R×C [−d, 0]→ Rn,
whereC [−d, 0] denotes the function space of continuous function with compact support [−d, 0]. The
initial function φ : [−d, 0]→ Rn is assumed to be in C [−d, 0], and initial conditions are given by

x (t0 + θ) = xt0 (θ) = φ (θ) , θ ∈ [−d, 0] .

The interaction between time-delays and dynamical systems is involved. The presence of delays
can manipulate the solutions of dynamical system, compromising once stable systems. For example,
consider NTDS

ẋ (t)− aẋ (t− d) = ax (t− d)− x (t) , x (t) ∈ R,

with a greater than one. If d is zero, the system is exponentially stable, with solutions e−t. When d
is positive, however, the situation is quite different. The solutions, in this case, can be found via the
roots of characteristic equation

(s+ 1)
(

1− ae−ds
)

= 0,

which are given by −1, and

sn =
1

d
(ln a+ 2nπi) , n ∈ Z.

Thus, since the positive real part of sn, 1
d ln a, is positive, solutions esnt are unbounded, and the

system is unstable. This shows that even an arbitrarily small delay in the feedback loop are capable
of completely transforming the nature of solutions. In particular, this means controllers that are based
on derivative terms, such as Proportional-Integral-Derivative (PID) and Proportional-Derivative (PD)
controllers, are extremely vulnerable to feedback delays.

Time-delays are also dangerous in the case of Retarded Functional Differential Equations
(RFDEs). For instance, the system

ẋ (t) = −x (t− d) , x (t) ∈ R

20



is asymptotically stable for d in
[
0, π2

)
, but unstable for h greater than π

2 . Indeed, consider the system’s
characteristic equation

s+ e−ds = 0,

and assume solutions of form a+ bi. It follows that

a+ bi+ e−ad−bdi = a+ bi+ e−ad (cos bd− i sin bd) = 0,

which implies

a = −e−ad cos bd, b = e−ad sin bd .

For a to be positive, cos bd must be negative. If d belongs to
[
0, π2

)
, b must be greater than one in

module. This, however, contradicts the fact that both
∣∣e−ad∣∣ and |sin bd| are less than or equal to one.

Thus, the system does not admit solutions with positive real parts, and it is stable. Nevertheless, if d is
greater than π

2 , then there exist solutions with positive real parts, which means the system is unstable.

Sometimes, though, time-delays are benefitial to stability: the system

ẍ (t) + x (t)− x (t− d) = 0

is unstable for d equal to zero, but asymptotically stable when d equals one (consider the approxi-
mation ẋ (t) ' [x (t)− x (t− d)] /d) [3]. This illustrates how time-delays can alter the behavior of
dynamical systems in unexpected manners.

The previous examples showed the effects of time-delays on closed-loop systems are nontrivial,
and surprinsing, sometimes. The analysis of these effects relied on the examination of the systems’
characteristic equations, which are more complicated in the case of TDSs, since they are infinite-
dimensional. This approach, however, was only possible because the systems analyzed were linear,
which have simpler Laplace transforms. In the general case of nonlinear systems, transforms become
intractable and the resort is not available anymore. Thus, the behavior of TDSs need to be analyzed
using a more systematic and general approach.

4.2 LYAPUNOV-KRASOVSKII THEORY

The infinite-dimensional nature of TDSs automatically discard several of classical analysis meth-
ods such as root locus [4, 5]. Other classical tools, e.g., Nyquist criterion, need to be adapted, and
still, might only be available to linear systems.

Lyapunov’s direct method (also called the second method of Lyapunov) is an efficient approach
to analyze stability and performance of feedback systems. Introduced by Aleksandr Lyapunov [48]
in 1890, the direct method to analyze a dynamical system consists in finding an energy-like func-
tion whose dynamics are coupled with the system’s by means of the differential equation describing
the dynamical system, and proving that function decays, i.e., it dissipates the “energy”. Roughly
speaking, this implies the original system’s states tend to an equilibrium point, which is said to be
stable.

First, consider a dynamical systems without delays

ẋ (t) = f (x (t)) , (4.2)

21



where f : U → Rn is a locally Lipschitz map from an open set U contained in Rn into Rn, and
suppose there exists x̄ in U , such that f (x̄) equals x̄, which under these circumstances is called an
equilibrium point. Without loss of generality, x̄ is considered zero. Indeed, if x̄ is different from zero,
a change of variables y (t) = x (t)− x̄ results in

ẏ (t) = ẋ (t) = f (x (t)) = f (y (t) + x̄) .

Then, defining
g (y (t)) := f (y (t) + x̄) ,

the equilibrium of x̄ can be analyzed via the zero equilibrium point of g (y (t)).

Definition 4.2.1. Given positive real number ε, the equilibrium point x̄ (t0) = 0 of (4.2) is stable if
there exist δ (t0, ε), also positive real number, such that

‖x (t0)‖ < δ (t0, ε)⇒ ‖x (t)‖ < ε,∀t ≥ t0.

If, for any ε, there exist δ (t0) (not dependent on ε) and T (δ, ε) such that

‖x (t0)‖ < δ ⇒ ‖x (t)‖ < ε,∀t ≥ T (δ, ε) + t0,

then x̄ is asymptotically stable. If x̄ is not stable, it said to be unstable.

If δ do not depend on t0, then x̄ is said to be globally stable (globally asymptotically stable).

The distinction between a stable and an asymptotic stable point x̄ is that the former implies sys-
tem’s trajectories are guaranteed to stay within a certain neighborhood of x̄, whereas the latter ensures
trajectories actually converge to the origin. The Lyapunov Theorem provides sufficient conditions to
prove the origin is stable or asymptotically stable. The conditions are based on the construction of an
energy-like function which is always nonnegative, decreases with time, and is coupled with the sys-
tem’s dynamics via its differential equation. Nonnegative and nonpositive functions receive special
names.

Definition 4.2.2. Consider a function f : U → R, where U is an open set in Rn which contains the
origin. If

f (0) = 0, f (x) > 0, ∀x ∈ U\ {0} ,

then f is said to be a positive definite. Otherwise, if

f (0) = 0, f (x) < 0, ∀x ∈ U\ {0} ,

then f is called negative definite.

Theorem 4.2.3. Lyapunov Theorem[29]

Let x̄ = 0 be an equilibrium point for (4.2), that belongs to U , which is contained in Rn. Let
V : U → Rn be continuously differentiable positive definite function such that

V̇ (x (t)) =
∂V

∂x
f (x) ≤ 0,x (t) ∈ U.

Then, the origin is a stable equilibrium point. If V̇ (x (t)) is negative definite, then the origin is
asymptotically stable.
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Lyapunov’s method is a standard and powerful approach to study stability of feedback systems. It
is not, however, directly applicable to TDSs, for it is not adapted to the infinite-dimensional nature of
solutions time-delays imply. The energy functions are dependent on current states (i.e., x (t)) only,
instead of regarding states throughout the entire delay window [−d, 0], which makes the criterion
inconclusive when delays are present. For example, consider

ẋ (t) = ax (t) + bx (t− d) , d > 0, t ≥ 0, (4.3)

with x (t) in R. A natural choice as Lyapunov function V for linear systems, such as (4.3), is x2.
Then, the time derivative along the solutions of (4.3) gives

V̇ (x (t)) = 2x (t) ẋ (t) = 2x (t) [ax (t) + bx (t− d)] = 2ax (t)2 + 2bx (t)x (t− d) .

If b equals zero, then a negative suffices to prove (4.3) is asymptotically stable using Lyapunov’s
Theorem. Nevertheless, when b differs from zero, even if a is negative, not much can be said about
the sign of 2bx (t)x (t− d), regardless of the sign of b. The system is not stable (or unstable). Thus,
the method needs to be modified to prove anything about TDS.

This new requirement implies the concepts of stability, which are not suited to TDS, should also
be adapted. Similarly to the nondelayed case, trivial solutions (i.e., equilibrium points at the origin)
are the focus of stability investigations. Again, this represents no loss of generality, since stability of
nontrivial solutions y (t) can still be analyzed by changing variables

z (t) = x (t)− y (t) ,

and applying the subsection’s methods to

ż (t) = f (t, zt + yt)− f (t, yt) ,

with trivial solution z (t) equal to zero.

Consider the general retarded differential equation

ẋ (t) = f (t,xt) , t ≥ t0, (4.4)

where f : R × C [−d, 0] → Rn is continuous in both arguments, and f (t,0) equals zero, which
guarantees (4.4) admits a trivial solution.

Definition 4.2.4. The trivial solution of TDS (4.4) is said to be stable if for any ε > 0 and t0 ≥ 0

there exists a positive δ (ε, t0) such that for every initial function ϕ ∈ C ([−ν,−τ ] ,Rn), if ‖ϕ‖C less
than δ (ε, t0) implies

‖x (t)‖ < ε, t ≥ t0.

Definition 4.2.5. The trivial solution of TDS (4.4) is said to be asymptotically stable if it is stable and
there exists positive scalar δ (t0), t0 ≥ 0, such that for any positive scalar η there exists T (δ (t0) , η)

such that ‖xt0‖C less than δ (t0) implies

‖x (t)‖ < η, t ≥ t0 + T (δa, η) .

Remark 4.2.6. If δ in Definitions 4.2.4 and 4.2.5 is independent of t0, i.e., δ = δ (ε), then the trivial
solution is uniformly stable and uniformly asymptotically stable (in t0), respectively.
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(a) Stable origin: solutions remain bounded. (b) Asymptotically stable origin: solutions con-
verge to the origin.

Figure 4.1: Stability Notions.

Definition 4.2.7. The system is stable (asymptotically stable) if the trivial solution is stable (asymp-
totically stable).

Similarly to nondelayed dynamical systems, asymptotic stability guarantees that for initial con-
ditions functions sufficiently close to the origin, the solution of general RFDE (4.4) converges to
the trivial solution, as illustrated in Figure 4.1b. On the other hand, stability only ensures solutions
remain bounded with time, as in Figure 4.1a, not necessarily decreasing in norm.

Lyapunov’s Theorem has two main TDS versions. Krasovskii method, like Lyapunov’s, consists
in finding a positive definite function V , with negative definite derivative V̇ along the trajectories of
the system being analyzed. The function, however, stems not from x (t), but from the proper TDS
state xt. Thus, finding Lyapunov-Krasovskii Functionals (LKF) is a smooth transition from someone
used to applying Lyapunov’s method. On the other hand, Razumikhin method [3] is based on finding
positive definite functions V of x (t) with negative definite derivatives V̇ , but also guaranteeing that
V (x (t)) upper bounds V (x (t+ θ)) for the whole delay interval [−d, 0].

Since Krasovskii’s method is more natural for considering delay information, and generally leads
to less conservative stability and performance conditions, the proofs throughout the dissertation will
be mostly based on LKF functionals.

Theorem 4.2.8. Lyapunov-Krasovskii Theorem [2, 3]

Suppose f : R × C [−ν,−τ ] → Rn maps R×(bounded sets in C [−ν,−τ ]) into bounded sets
of Rn and that u, v, w : R≥0 → R≥0 are continuous nondecreasing functions, u and v positive
definite. The trivial solution of general RFDE (4.4) is uniformly stable if there exists a continuously
differentiable functional V : R×C [−ν,−τ ]→ R≥0, positive definite

u (‖ϕ (0)‖) ≤ V (t, ϕ) ≤ v (‖ϕ‖C) ,

such that its derivative along (4.4) is non-positive, that is

V̇ (t, ϕ) =
∂

∂x
V (t, ϕ) f (t, xt) ≤ −w (‖ϕ (0)‖) .
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If w is positive definite, then the trivial solution is uniformly asymptotically stable.

In addition, if lims→∞ u (s) = ∞, then the trivial solution is globally uniformly asymptotically
stable.

4.3 LINEAR MATRIX INEQUALITIES

Lyapunov’s and Lyapunov-like methods, such as Krasovskii’s, are based on building positive and
negative functionals. This means that verifying Lyapunov-based stability and performance conditions
always comes down to checking inequalities. For example, consider linear dynamical system

ẋ (t) = Ax (t) , t ≥ 0, (4.5)

with x (t) in Rn. Assume Lyapunov functional candidate x (t)T Px (t), P in Rn×n. If V is positive
definite and

V̇ (x (t)) = ẋ (t)T Px (t) + x (t)T P ẋ (t)

= x (t)T ATPx (t) + x (t)T APx (t)

= x (t)T
(
ATP + PA

)
x (t) < 0, (4.6)

holds, then (4.5) is asymptotically stable. Similarly to inequality (4.6), which is the notorious Lya-
punov inequality [48], many Lyapunov functionals are built based on matrices and result in conditions
involving matrices. In this sense, analogously to functions, positive and negative matrices can also be
defined.

Definition 4.3.1. Let P be a real symmetric matrix in Sn. Then, if

xTPx > 0, ∀x ∈ Rn\ {0} ,

holds, P is said to be a positive definite matrix. Otherwise, if

xTPx < 0, ∀x ∈ Rn\ {0} ,

holds, then P is said to be a negative definite matrix.

From Definition 4.3.1, it follows that if P is positive definite, then so is V , and (4.6) is satisfied if
ATP + PA is negative definite, proving (4.5) is asymptotically stable.

Likewise, the stability and performance of many other control systems can be stated in terms
of the “sign” of matrices. Indeed, the so-called Linear Matrix Inequalities (LMIs) are pervasive in
control theory, especially due to desirable computational properties [10]. This can be traced back
to the 1980s, with the realization LMIs can be cast as convex opmization problems [49], which
ignited the development of powerful solving methods, called interior point algorithms [10]. These
methods, which were pioneered by authors such as Nesterov and Nemirovskii [50], are available in
many programming packages such as SeDuMi [51] and SPDT3 [52]. Combined with a programming
interface, as, for instance, YALMIP [53], this makes the whole process of programming and verifying
LMIs extremely fast.
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LMIs have further advantageous properties from the control standpoint. Consider general-form
LMI

F (x) = F0 + Σn
i=1xiFi ≥ 0, (4.7)

where Fi are given matrices in Rn×n and xi are vectors in Rn (or matrices in Rn×n) that represent the
decision variables of the problem. The set defined by {x ∈ Rn|F (x) ≥ 0} is a convex set that defines
a convex restriction in x. Thus, multiple LMIs can be stacked to form a single LMI that fulfills several
conditions, i.e., LMIs can be used to cast multiobjective control problems. In addition, multiobjective
conditions can also be used as constraints in minimization problems of the form min

{
cTx

}
subjected

to F (x) ≥ 0, as in (4.7). This allows the design of controllers that ensure stability, but also satisfy
some performance criterion.

4.4 TDS ANALYSIS TECHNIQUES

Lyapunov-Krasovskii Theorem provides sufficient conditions to analyze stability and perfor-
mance of a TDS. It does not, however, tell how to. Several examples have been given, that show
the exact value of the delay can have enourmous impact on a TDS’s behavior, and shows they carry
essential information about the feedback system. In general, the more an LKF functional exploits
delay information, the less conservative the suficient conditions are. For this reason, delays can and
should be used to analyze TDSs, and the few following techniques are efficient ways to do that. For
that, consider a general TDS (4.4) with continuous time-varying delay

d : R≥0 → [τ, ν] (4.8)

t 7→ d (t)

4.4.1 Piecewise Analysis

Although the time-delay function takes values in the whole interval [τ, ν], it cannot take all its
values at once. This suggests only parts of the interval are actually valid at each instant of time. Hence,
considering LKF candidates “specialized” in each of the subintervals, less conservative analysis is
possible. This “divide and conquer” approach is called Piecewise Analysis Method (PAM) [54, 55, 56,
36] and consists in segmenting the total delay interval into an arbitrary number of disjoint subintervals
which cover [τ, ν]. For the sake of simplicity, consider two subintervals of the same length

[τ, ν] = [τ, µ] ∪ (µ, ν] ,

where
µ =

τ + ν

2
(4.9)

represents the mid-point of the total interval, as shown in Figure 4.2.

Given these two subintervals, let χ : [τ, ν]→ {0, 1} be defined as

χ (s) :

0, s ∈ [τ, µ]

1, s ∈ (µ, ν]
, (4.10)
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Figure 4.2: Piecewise analysis with two subintervals.

which is known as the indicator function. This allows an LKF candidate containing explicit delay
information to be rewritten considering χ and the corresponding delay interval. Hence, instead of
a monolithic V which guarantees stability for the whole delay interval, the LKF candidate might
be built as a sum of different terms that take care of a determined delay subinterval. These extra
degrees-of-freedom result in a less conservative analysis.

4.4.2 Delay Fractioning Analysis

The so-called Delay Fractioning Analysis (DFA) [37, 57] is conceptually similar to piecewise
analysis, but, rather than dividing the interval in that the delay function can actually take values, the
interval [0, τ ] is subdivided into smaller ones, resulting in LKF terms dedicated to each subinterval.
Once more, the extra degrees of freedom grant less conservative results. The technique is particularly
interesting in the case τ → ν, since the effectiveness of piecewise analysis is compromised because of
the nearly constant delay, which “shrinks” the smaller subintervals, and make the specialist conditions
more similar. Specifically, this can be done by adding terms to V containing auxiliary states

x
(
t− k τ

n

)
, 0 ≤ k ≤ n,

where k and n are integers, and the latter represents the amount of subintervals in that [0, τ ] is subdi-
vided. For example, Figure 4.3 shows the case where n equals two, and the grey boxes represent the
subintervals considered.

Figure 4.3: Delay-fractioning with two subintervals, n = 2.

4.4.3 Convex Analysis

In agreement with the previous two techniques, convex analysis also seeks to reduce the con-
straints over stability conditions by specializing in particular delay cases. Nevertheless, the strategy
differs from the others in that it focus on the compactness of delay interval, instead of the interval’s
values.

Consider the function

D : [τ, ν]→ [0, 1]

d (t) 7→ d (t)− τ
ν − τ
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The delay function d (4.8) is, by definition, continuous with compact interval domain [τ, ν]. Thus,
new function D is continuous, and defined on a compact interval. Consequently, it reaches a maximum
and a minimum value [58]. In particular, if D satisfies a certain property, called convexity [10], then
D reaches its extrema at the limits of the interval1 [τ, ν].

Definition. Let X be a convex set contained in a vector space and f a real-valued function of X ,
f : X → R. If, for any x1,x2 in X and t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t) f (x2) ,

then f is called convex function. If the inequality is strict, f is strictly convex.

By inspection, it can be verified D is convex with respect to d (t). Hence, if the derivative of
an LKF can be bounded by a function of D, it will be convex with respect to d (t). Therefore, this
convex function that bounds V̇ also reaches its maximum at the extrema of the delay interval, and if
negativity is verified at both of the interval limits, then V̇ is negative definite. This approach is called
Convex Analysis (CA) [59, 34]. In contrast with the two previous techniques, convex analysis exploits
the exact value of d (t). The goal is to obtain stability conditions that are convex with respect to d (t),
and verify feasibility only at the extrema of delay function. This also gives more freedom to the LMI
variables, since they need to satisfy only two inequalities per convex set. The technique is particularly
effective when combined with tools such as Jensen’s Inequality (II.0.3), which avoids replacing d (t)

for its worst case value, reducing analysis conservatism [36].

1This follows trivially from the definition of d (t): since it belongs to the interval [τ, ν], D reaches its maximum of one
and minimum of zero at ν and τ , respectively.
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5 ATTITUDE CONTROL WITH DELAYED MEASUREMENTS

Attitude control consists in steering a rigid body to a, possibly time-varying, desired orientation,
according to some reference frame. Considering the attitude of the rigid body a dynamical system
described by kinematics and dynamics equations (3.14) and (3.22), this translates to assessing the
equilibrium of certain attitudes.

In the delay-free case, the attitude control problem has been developed for several decades [19],
and is still a prolific research topic [15, 60, 8, 61, 62, 45, 22, 63, 64, 65, 66]. This can be partially
explained by the extensive range of applications that consist in attitude control problems, such as
rigid aircraft and spacecraft systems [60, 61, 67], multiagent coordination [60, 61, 68], among others
[69]. In the delay-free case, it is well-established that Proportional-Derivative (PD) [19, 15], and even
velocity-free controllers [8, 23] are enough to stabilize the system. When feedback delays are present,
however, this does not hold true. The problem is particularly challenging because of nonlinearities
introduced by kinematics and dynamics. For this reason, many of the techniques used to study linear
time-delay systems [13, 2, 3] are not suited to or not directly applicable to the attitude control problem
subjected to feedback delays. Among the scarce results, [8] first proposed a velocity-free solution to
the particular case where time-delays are constant and precisely known. Assuming similar delay
settings, [15] tackled the problem using modified Rodrigues parameters (MRP). The authors of [21]
extended this to the case with large unknown constant delays, but results are dependent on attitude
initial conditions. In [22], the problem was solved using singularity-free quaternion representation,
and then expanded to the velocity-free case in [23].

5.1 KINEMATIC ATTITUDE CONTROL

In some rigid bodies, low-level controllers are responsible for controlling input torques, which
might not available to the attitude controller (e.g., robotic arms [43, 69]). If this low-level controller is
fast enough, rigid body dynamics might be considered transparent, and angular velocities considered
control inputs. This is the kinematic attitude control problem, which serves as a good starting point
to the more general problem where rigid body dynamics is taken into account.

5.1.1 Kinematic Stabilization

Kinematic stabilization is the first step taken in this dissertation towards dynamic attitude control.
Rigid body kinematics is considered subjected to time-delays affecting attitude measurements, or
actuation. More precisely, (3.14) is slightly modified to become

q̇ (t) =

[
η̇ (t)

ζ̇ (t)

]
=

1

2

[
−ζ (t)T

η (t) I + [ζ (t)]×

]
ω (t− d (t)) , (5.1)
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where d : R≥0 → R≥0 represents the time-varying delay, and it is deemed bounded by known
nonnegative real numbers τ, ν such that

0 ≤ τ ≤ d (t) ≤ ν, ∀t ≥ 0. (5.2)

Hereafter, time dependency will be omitted whenever possible in order to simplify notation. From
unit-norm constraint quaternion definition (3.8) and from (3.3),

|η (t)| ≤ 1, ‖ζ (t)‖ ≤ 1, ∀t ≥ 0. (5.3)

The system’s input is driven by a standard proportional controller,

ω (t) = −κζ (t) (5.4)

with κ a positive real number, which will be shown to be enough to stabilize (5.1).

Proposition 5.1.1. Let P ∈ Sn be a positive definite matrix. Then, for all x ∈ Rn,

0 < λmin (P )xTx ≤ xTPx ≤ λmax (P )xTx

holds, where λmax (P ) and λmin (P ) represent the largest and smallest eigenvalues of P .

Proof. Since P is symmetric, it admits diagonal decomposition QTDQ, with Q orthogonal and D
diagonal matrix with P ′s eigenvalues. Let λmin (P ) , . . . λi, . . . , λmax (P ) be the ordered n eigenval-

ues of P , which are all real since P is symmetric. Assuming Q is given by
[
qT1 · · · qTn

]T
, it

follows that

xTPx = xTQTDQx = Σn
i=1x

TqTi λiqix ≤ Σn
i=1x

TqTi λmax (P ) qix = λmax (P )xTx.

Likewise, since P is positive definite, λmin (P ) is positive, and it follows that

0 < λmin (P )xTx = λmin (P ) Σn
i=1x

Tqiq
T
i x ≤ Σn

i=1x
Tqiλiq

T
i x = xTPx.

Proposition 5.1.2. Let P be a positive definite matrix in Sn, y a vector in Rn and ρ a positive real
number. Suppose x is a vector in Rn such that

xTx ≤ ρyTy.

If ρ satisfies

ρ ≤ λmin (P )

λmax (P )
,

where λmax (P ) and λmin (P ) denote the largest and smallest eigenvalues of P , respectively, then

xTPx ≤ yTPy.
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Proof. Let λmin (P ) ≤ . . . ≤ λmax (P ) be the ordered n eigenvalues of P . Note that λmin (P ) is
positive because P is positive definite. Assuming

ρ ≤ λmin(P )
λmax(P ) and xTx ≤ ρyTy,

hold, then

ρyTy ≤ λmin (P )

λmax (P )
yTy ⇒ xTx ≤ λmin (P )

λmax (P )
yTy ⇒ λmax (P )xTx ≤ λmin (P )yTy.

Therefore, from Proposition 5.1.1, it follows that

xTPx ≤ λmax (P )xTx ≤ λmin (P )yTy ≤ yTPy.

Stability of closed-loop system (5.1)-(5.4) will be proven using Lyapunov-Krasovskii arguments,
considering LKF candidate

V (t) =

4∑
i=1

Vi (t) , (5.5)

where

V1 (t) = 2
[
ζ (t)T ζ (t) + (1− η (t))2

]
,

V2 (t) =

∫ t

t− τ
2

[
ζ (s)

ζ
(
s− τ

2

) ]T [ Q11 Q12

∗ Q22

][
ζ (s)

ζ
(
s− τ

2

) ] ds
+

∫ t−τ

t−µ

[
ζ (s)

ζ (s− µ+ τ)

]T [
R11 R12

∗ R22

][
ζ (s)

ζ (s− µ+ τ)

]
ds,

V3 (t) =

∫ 0

−τ

∫ t

t+β
τ ζ̇ (s)T Uζ (s) dsdβ,

V4 (t) = (µ− τ)

∫ −τ
−µ

∫ t

t+β
ζ̇ (s)T Sζ̇ (s) dsdβ + (ν − µ)

∫ −µ
−ν

∫ t

t+β
ζ̇ (s)T T ζ̇ (s) dsdβ.

and µ is the mid-interval delay bound given by (4.9). The LKF components of (5.5) are standard in
TDS literature, and except for V1, each of them introduces one of the TDS analysis techniques pre-
sented in Section 4.4. V2 exploits both PAM (4.4.1) and FDA (4.4.2), while V3 employs PAM (4.4.1)
through Jensen’s Inequality (Lemma II.0.3). V4 also exploits PAM, but uses Jensen’s Inequality to
introduce CA (4.4.3) instead.

Since Lyapunov-Krasovskii theory will be used, V (5.5) must be positive definite. Because V is
composed of quadratic terms only, if

Q =

[
Q11 Q12

∗ Q22

]
> 0, R =

[
R11 R12

∗ R22

]
> 0, U > 0, S > 0, T > 0, (5.6)

all hold, V is positive definite.

Theorem 5.1.3. Given nonnegative real numbers τ and ν satisfying (5.2), and real positive LMI pa-
rameter α, the closed-loop system (5.1)-(5.4) subjected to measurement delay (5.2) is asymptotically
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stable if there exist proportional positive gain κ, and symmetric matrices Q,R and diagonal matrices
U, S and T satisfying (5.6), and free-weighting matrices Fl such that

Ω + Ωl|Dl + FlGl + G T
l F T

l < 0;

0 < κ ≤
√
α;

(5.7)

αλmax (Z) ≤ λmin (Z) , Z ∈ {U, S, T} ; (5.8)

hold for all Dl ∈ {0, 1} and l ∈ {1, 2} where

Ω =



Ω11 Q12 U 0 0 −κI 0

∗ Ω22 −Q12 0 0 0 0

∗ ∗ Ω3,3 R12 0 0 0

∗ ∗ ∗ Ω44 −R12 0 0

∗ ∗ ∗ ∗ −R22 0 0

∗ ∗ ∗ ∗ ∗ Ω66 0

∗ ∗ ∗ ∗ ∗ ∗ 0


, (5.9)

with

Ω11 = Q11 − U, Ω22 = Q22 −Q11,

Ω33 = R11 −Q22 − U, Ω44 = R22 −R11

Ω66 = (µ− τ)2 S + (ν − τ)2 T + τ2U,

Ω1|D1
= − (I4 − I5)T T (I4 − I5)− IT7 SI7, Ω2|D2

= − (I3 − I4)T S (I3 − I4)− IT7 T I7, (5.10)

G1 =
[

G 1 G1D1

]
, G2 =

[
G 2 G2D2

]
, (5.11)

G 1 =

[
0 0 −I 0 0 I

0 0 0 I 0 −I

]
, G 2 =

[
0 0 0 −I 0 I

0 0 0 0 I −I

]

G1D1
=

[
D1I(

1− D1

)
I

]
, G2D2

=

[
D2I(

1− D2

)
I

]
,

where Ik ∈ R3×21, k ∈ {1, . . . , 7} are block entry matrices with seven elements, e.g., I7=[
0 0 0 0 0 0 I

]
.

Proof. Suppose LKF variables Q,R,U, S and T satisfy (5.6), which means V is positive definite. It
remains to show its derivative, given by Σ4

i=1V̇i, is negative definite along trajectories of q, where

V̇1 = 2
d

dt

[
ζT ζ + (1− η)2

]
= −4η̇ = −2κζT ζ (t− d (t)) , (5.12)

V̇2 =

[
ζ

ζ
(
t− τ

2

) ]T Q[ ζ

ζ
(
t− τ

2

) ]− [ ζ (t− τ
2

)
ζ (t− τ)

]T
Q

[
ζ
(
t− τ

2

)
ζ (t− τ)

]

+

[
ζ (t− τ)

ζ (t− µ)

]T
R

[
ζ (t− τ)

ζ (t− µ)

]
−

[
ζ (t− µ)

ζ (t− ν)

]T
R

[
ζ (t− µ)

ζ (t− ν)

]
, (5.13)

V̇3 = τ2ζ̇TU ζ̇ − τ
∫ t

t−τ
ζ̇ (s)T U ζ̇ (s) ds, (5.14)

V̇4 = V̇4(0) + V̇4(I)
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V̇4(0) = (µ− τ)2 ζ̇TSζ̇ + (ν − µ)2 ζ̇TT ζ̇, (5.15)

V̇4(I) = − (µ− τ)

∫ t−τ

t−µ
ζ̇ (s)Sζ̇ (s) ds− (ν − µ)

∫ t−µ

t−ν
ζ̇ (s)T T ζ̇ (s) ds. (5.16)

Rather than proving V̇ is negative definite for the whole possible delay interval [τ, ν], the analysis
is broken down in two cases by considering mutually exclusive delay subintervals. Namely, using
equal-measure subintervals [τ, µ] and (µ, ν], indicator function χ (4.10) is invoked to define two
delay scenarios

S1 := {d (t) ∈ R|χ (d (t)) = 1} , S2 := {d (t) ∈ R|χ (d (t)) = 0} , (5.17)

such that
V̇4 = V̇4(0) + V̇4(S1) + V̇4(S2),

with

V̇4(S1) (t) := χ (d (t)) V̇4(I) (t) , V̇4(S2) (t) := (1− χ (d (t))) V̇4(I) (t) . (5.18)

Since d cannot belong to S1 and S2 simultaneously, one, and only one of V̇4(S1) or V̇4(S2) will be
different from zero at any given time. Thus, each scenario is addressed individually. For the former,
since d belongs to interval [τ, µ], χ (d (t)) equals one, and V̇4(S1) (t) is rewritten to introduce convex
analysis (4.4.3)

V̇4(S1) = −χ (d (t))

{
(µ− τ)

[∫ t−d(t)

t−µ
ζ̇ (s)T Sζ̇ (s) ds+

∫ t−τ

t−d(t)
ζ̇ (s)T Sζ̇ (s) ds

]

+ (ν − µ)

∫ t−µ

t−ν
ζ̇ (s)T T ζ̇ (s) ds

}
,

which is an inviting expression to Jensen’s Inequality (Lemma II.0.3), checking V̇4 such that

V̇4 ≤ (µ− τ)2 ζ̇TSζ̇ + (ν − µ)2 ζ̇TT ζ̇ − χ
{
ξ11

T (D1S) ξ11 + ξ12
T (1− D1)Sξ12

+ [ζ (t− µ)− ζ (t− ν)]T T [ζ (t− µ)− ζ (t− ν)]
}
, (5.19)

with
ξ11 (t) := µ−τ

d(t)−τ
∫ t−τ
t−d(t) ζ̇ (s) ds, ξ12 (t) := µ−τ

µ−d(t)

∫ t−d(t)
t−µ ζ̇ (s) ds. (5.20)

Expression (5.19) is convex with respect to d (t). Indeed, introducing

D1 (d (t)) :=
d (t)− τ
µ− τ

∈ [0, 1] (5.21)

shows that, and shows V̇4 is bounded by a convex functional with extrema at the edges of D1, namely
0 and 1.

If closed-loop system (5.1)-(5.4) was linear, the differential equation that governs its state changes
could be substituted for ζ̇, and analysis could be carried on. This is not the case, however, because of
the nonlinearities introduced by rigid body kinematics. Since the goal is to obtain conditions that can
be stated as LMIs, ζ̇ must be taken care of. From quaternion unit-norm constraint (5.3), [·]× operator
property

∥∥[ζ]×
∥∥ ≤ ‖ζ‖ (I.6), and triangle inequality, it follows that∥∥∥ζ̇∥∥∥ =

∥∥∥∥1

2

[
η (−κζ (t− d (t))) + [ζ]× (−κζ (t− d (t)))

]∥∥∥∥
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≤ 1

2

[∥∥[ζ]× (κζ (t− d (t)))
∥∥+ ‖ηκζ (t− d (t))‖

]
≤ 1

2
[‖ζ‖ ‖κζ (t− d (t))‖+ |η| ‖κζ (t− d (t))‖]

≤ 1

2
[‖κζ (t− d (t))‖+ ‖κζ (t− d (t))‖]

≤ κ ‖ζ (t− d (t))‖ , (5.22)

which implies
ζ̇T ζ̇ ≤ κ2ζ (t− d (t))T ζ (t− d (t)) . (5.23)

Now, suppose κ and U, S, T satisfy

0 < κ ≤
√
α,

αλmax (Z) ≤ λmin (Z) , Z ∈ {U, S, T} .

This implies that

κ2 ≤ min

{
λmin (U)

λmax (U)
,
λmin (S)

λmax (S)
,
λmin (T )

λmax (T )

}
.

Using Lemma 5.1.2, (5.23) bound yields

ζ̇T ζ̇ ≤ ζ (t− d (t))T Xζ (t− d (t)) , X ∈ {U, S, T} , (5.24)

that combined with V̇4 bound (5.19), gives

V̇4 ≤ (µ− τ)2 ζ (t− d (t))T Sζ (t− d (t)) + (ν − µ)2 ζ (t− d (t))T Tζ (t− d (t))

− χ
{
ξ11

T (D1S) ξ11 + ξ12
T (1− D1)Sξ12

+ [ζ (t− µ)− ζ (t− ν)]T T [ζ (t− µ)− ζ (t− ν)]
}
. (5.25)

Similarly,
∥∥∥ζ̇∥∥∥2

upper bound (5.24) and Jensen’s Inequality check V̇3 (5.14), such that

V̇3 ≤ τ2ζ (t− d (t))T Uζ (t− d (t))−
[∫ t

t−τ
ζ̇ (s) ds

]T
U

[∫ t

t−τ
ζ̇ (s) ds

]
. (5.26)

Since V̇4 bound (5.25) is convex with respect to d (t), it attains its maximum at D1 extrema. When
this occurs, D1 and 1 − D1 are mutually exclusive, which means either ξ11 or ξ12 vanishes from V̇4

bound expression (5.25). Thus, the upper bounds (5.12), (5.13), (5.25) and (5.26) lead to LMIs that
can be expressed as

V̇ ≤ ϑT1lΩϑ1l,

where
Ω = Ω + Ω1|D1

,

with Ω and Ω1|D1
given by (5.9) and (5.10), respectively, and ϑ1l given by

ϑ1l (t):=
[
ζ (t)T ζ

(
t− τ

2

)T
ζ (t− τ)T ζ (t− µ)T ζ (t− ν)T ζ (t− d (t))T ξ1l (t)

T
]T
,

where l belongs to {1, 2}, depending on which of ξ1l is nonzero.
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Let F1 be a free-weighting matrix, and G1 be defined as
[
G 1 Ĝ1D

]
, G 1 as in (5.11) and

Ĝ1D=

[
D1I(

1− D1

)
I

]
, (5.27)

with D1 in {0, 1}. For D1 equal to zero, that means d (t) equals τ . Then,

lim
d(t)→τ

G1ϑ1l= lim
d(t)→τ

[
−ζ (t− τ) + ζ (t− d (t)) + 0ζ̇ (t− d (t))

ζ (t− µ)− ζ (t− d (t)) + µ−τ
µ−d(t)

∫ t−d(t)
t−µ ζ̇ (s) ds

]

=

[
−ζ (t− τ) + ζ (t− τ) + 0ζ̇ (t− d (t))

ζ (t− µ)− ζ (t− τ) + (ζ (t− τ)− ζ (t− µ))

]

=

[
0

0

]
.

Analogously, when D1 equals one, G1ϑ1l equals zero, i.e., G1 and ϑ1l are orthogonal. Thus, from
Finsler’s Lemma (Lemma II.0.1), Ω is negative definite if, and only if,

Ω̃=Ω + F1G1 + G T
1 F T

1 <0.

Since ϑT1lΩ̃ϑ1l remains convex with respect to d (t), its extrema coincide with D1’s, i.e., ϑT1lΩ̃ϑ1l

reaches its maximum when D1 equals zero or one. Thus, if Ω̃ is negative definite when D1 equals one
and zero, then so is Ω, and V̇ is negative definite. Therefore, the closed-loop system is stable consid-
ering the first delay scenario. Similar analysis leads to the conclusion that V̇ is also negative definite
for the second delay scenario S2. Therefore, if the hypotheses of Theorem 5.1.3 are valid, V̇ is neg-
ative definite regardless of delay characteristics (first or second interval), and (5.1) is asymptotically
stable.

Although the design of controller gain κ via the conditions from Theorem 5.1.3 requires a prede-
termined α, since this parameter is a scalar, several searching algorithms (e.g., binary search) can be
used to find a feasible α.

5.1.2 H∞ Kinematic Control

Although Subsection 5.1.1 provided sufficient stability conditions in the form of LMIs, the ques-
tion remains whether the controllers are resilient to exogenous disturbances. This subsection ad-
dresses this issue.

The input angular velocity is assumed to be corrupted by an exogenous disturbance r1, such that

q̇ (t) =

[
η̇ (t)

ζ̇ (t)

]
=

1

2

[
−ζ (t)T

η (t) I + [ζ (t)]×

]
[ω (t− d (t)) + r1 (t)] , (5.28)

and the proportional feedback controller structure (5.4) is maintained.

The exact notion of resilience to disturbance is still vague, though. The following definition
formalizes the concept with an index that quantifies a controller’s ability to reject disturbances.
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Definition 5.1.4. For a positive real number γ, disturbance rejection is achieved withH∞ norm bound
γ if the following conditions are met

1. The closed-loop system is asymptotically stable with r1 = 0;

2. Assuming r1 and ζ belong to L2 [0,+∞), disturbance is attenuated below γ under zero initial
conditions, i.e., ‖ζ‖2 ≤ γ ‖r1‖2.

Similarly to the previous subsection, stability and now, disturbance rejection, are proved using
Lyapunov-Krasovskii arguments. Thus, let V be a modified LKF candidate such that

V (t) =

4∑
i=1

Vi (t) , (5.29)

where

V1 = 2β
[
ζT ζ + (1− η)2

]
,

V2 =

∫ t

t− τ
2

[
ζ (s)

ζ
(
s− τ

2

) ]T [ Q11 Q12

∗ Q22

][
ζ (s)

ζ
(
s− τ

2

) ] ds
+

∫ t−τ

t−µ

[
ζ (s)

ζ (s− µ+ τ)

]T [
R11 R12

∗ R22

][
ζ (s)

ζ (s− µ+ τ)

]
ds,

V3 =

∫ 0

−τ

∫ t

t+l
ζ̇ (s)T uζ̇ (s) dsdl,

V4 = (µ− τ)

∫ −τ
−µ

∫ t

t+l
ζ̇ (s)T sζ̇ (s) dsdl + (ν − µ)

∫ −µ
−ν

∫ t

t+l
ζ̇ (s)T tζ̇ (s) dsdl.

The replacement ofU, S, T with real number counterparts u, s, t is necessary, since
∥∥∥ζ̇∥∥∥2

bound (5.22)
can no longer be guaranteed because of r1. The introduction of a new variable β, will also be key to
obtaining LMIs liable to controller design. Since V is composed of quadratic terms only, inequalities

Q =

[
Q11 Q12

∗ Q22

]
> 0, R =

[
R11 R12

∗ R22

]
> 0, β > 0, u > 0, s > 0, t > 0, (5.30)

are sufficient to ensure V is positive definite.

Theorem 5.1.5. Let τ, ν be nonnegative real numbers checking time-delay d such that (5.2) holds.
Then, closed-loop system (5.28)-(5.4) is asymptotically stable and achieves disturbance rejection
with H∞ norm bound γ if there exist real matricesQ,R and positive real numbers β, u, s, t satisfying
(5.30), plus real number n, positive real numbers m, δ, α, and free-weighting matrices Fl such that

Ω + Ωl|Dl + FlGl + G T
l F T

l < 0 (5.31)
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holds for all Dl ∈ {0, 1} and l ∈ {1, 2}, where

Ω=



Ω11 Q12 U 0 0 −nI 0 nI

∗ Ω22 −Q12 0 0 0 0 0

∗ ∗ Ω33 R12 0 0 0 0

∗ ∗ ∗ Ω44 −R12 0 0 0

∗ ∗ ∗ ∗ −R22 0 0 0

∗ ∗ ∗ ∗ ∗ mI 0 −mI

∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ (m− δ) I


, (5.32)

and

Ω11=Q11 − uI + αI, Ω22=Q22 −Q11,

Ω33=R11 −Q22 − U, Ω44=R22 −R11,

Ω1|D1
=−t (J4 − J5)T (J4 − J5)− sJT7 J7, Ω2|D2

=−s (J3 − J4)T (J3 − J4)− tJT7 J7, (5.33)

G1=
[
G 1 G1D1

0
]
, G2=

[
G 2 G2D2

0
]
, (5.34)

G 1=

[
0 0 −I 0 0 I

0 0 0 I 0 −I

]
, G 2=

[
0 0 0 −I 0 I

0 0 0 0 I −I

]
,

G1D1
=

[
D1I(

1− D1

)
I

]
, G2D2

=

[
D2I(

1− D2

)
I

]
,

and Jk∈R3×24, k∈{1, . . . , 8} , are zero block entry matrices except for the k-th block, which is the
identity I3×3, e.g., J7=

[
0 0 0 0 0 0 I 0

]
.

Then, if (5.31) holds, the proportional stabilizing controller gain κ is given by

κ=2

 m[
(µ− τ)2 s + (ν − µ)2 t + τ2u

]


1
2

with guaranteed performance attenuation given by γ=κ−1
√
δα−1.

Proof. Suppose LKF variables Q,R, β, u, s, t satisfy inequalities (5.30). Then, V is positive definite.
Thus, asymptotic stability is conditional on V̇ , given by Σ4

i=1V̇i, being negative definite, where

V̇1 = −2βζT [κζ (t− d (t))− r1] , (5.35)

V̇2 =

[
ζ

ζ
(
t− τ

2

) ]T Q[ ζ

ζ
(
t− τ

2

) ]− [ ζ (t− τ
2

)
ζ (t− τ)

]T
Q

[
ζ
(
t− τ

2

)
ζ (t− τ)

]

+

[
ζ (t− τ)

ζ (t− µ)

]T
R

[
ζ (t− τ)

ζ (t− µ)

]
−

[
ζ (t− µ)

ζ (t− ν)

]T
R

[
ζ (t− µ)

ζ (t− ν)

]
, (5.36)

V̇3 = τ2ζ̇Tuζ̇ − τ
∫ t

t−τ
ζ̇ (s)T uIζ̇ (s) ds,

V̇4 = V̇4(0) + V̇4(I),

V̇4(0) = (µ− τ)2 ζ̇T sζ̇ + (ν − µ)2 ζ̇T tζ̇,
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V̇4(I) = − (µ− τ)

∫ t−τ

t−µ
ζ̇ (s)T sζ̇ (s) ds− (ν − µ)

∫ t−µ

t−ν
ζ̇ (s)T tζ̇ (s) ds.

Instead of proving V̇ is negative definite for the whole admissible delay interval [τ, ν], the analysis
is split in two cases by considering mutually exclusive delay subintervals. Namely, using equal-
measure subintervals [τ, µ] and (µ, ν], indicator function χ (4.10) allows two delay scenarios to be
defined, as in (5.17)

S1 := {d (t) ∈ R|χ (d (t)) = 1} , S2 := {d (t) ∈ R|χ (d (t)) = 0} ,

such that
V̇4 = V̇4(0) + V̇4(S1) + V̇4(S2),

with
V̇4(S1) (t) := χ (d (t)) V̇4(I) (t) , V̇4(S2) (t) := (1− χ (d (t))) V̇4(I) (t) .

Since d belongs to either one of S1 and S2 at a time, only one of V̇4(Sl) will be different from zero at
any given time. Therefore, scenarios are scrutinized separately. For S1, χ (d (t)) equals one, since d
belongs to [τ, µ], which allows V̇4(S1) to be restated as

V̇4(S1) = −χ (d (t))

{
(µ− τ)

[∫ t−d(t)

t−µ
ζ̇ (s)T Sζ̇ (s) ds+

∫ t−τ

t−d(t)
ζ̇ (s)T Sζ̇ (s) ds

]

+ (ν − µ)

∫ t−µ

t−ν
ζ̇ (s)T T ζ̇ (s) ds

}
,

a convenient expression to be checked using Jensen’s Inequality (Lemma II.0.3). The resulting V̇4

bound is convex with respect to d (t). Indeed, this becomes clearer by defining

D1 (t) :=
d (t)− τ
µ− τ

∈ [0, 1] ,

and shows that a convex functional, with extrema at the edges of D1 (t) (0 and 1), checks V̇4, where

V̇4 ≤ ζ̇T
[
(µ− τ)2 s + (ν − µ)2 t

]
ζ̇ − χ

{
ξ11

T (D1sI) ξ11 + ξ12
T (1− D1) sIξ12

+ [ζ (t− µ)− ζ (t− ν)]T tI [ζ (t− µ)− ζ (t− ν)]
}
. (5.37)

with
ξ11 (t) := µ−τ

d(t)−τ
∫ t−τ
t−d(t) ζ̇ (s) ds, ξ12 (t) := µ−τ

µ−d(t)

∫ t−d(t)
t−µ ζ̇ (s) ds.

V̇3 can also be upper bounded through Jensen’s Inequality, by

V̇3 ≤ τ2uζ̇T ζ̇ −
[∫ t

t−τ
ζ̇ (s) ds

]T
uI

[∫ t

t−τ
ζ̇ (s) ds

]
. (5.38)

If closed-loop system (5.1)-(5.4) was linear, the differential equation that governs its state changes
could be substituted for ζ̇, and analysis could be carried on. This is not the case, however, because of
nonlinearities introduced by rigid body kinematics. Since the goal is to obtain design conditions that
can be written as LMIs, ζ̇ must be dealt with. From (5.28) and triangle inequality,∥∥∥ζ̇∥∥∥2

≤ 1

4

{∥∥[ζ]× (κζ (t− d (t))− r1)
∥∥2

+ η2 ‖κζ (t− d (t))− r1‖2
}
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≤ 1

4

{[
‖ζ‖2 + η2

]
‖κζ (t− d (t))− r1‖2

}
≤ 1

4
‖κζ (t− d (t))− r1‖2 , (5.39)

since {
[ζ]× (κζ (t− d (t))− r1)

}
· (κζ (t− d (t))− r1) = 0,

and because q is unit-norm. Combining bounds (5.38), (5.37) and (5.39) yields

V̇3 ≤
τ2u

4
[κζ (t− d (t))− r1]T [κζ (t− d (t))− r1]−

[∫ t

t−τ
ζ̇ (s) ds

]T
uI

[∫ t

t−τ
ζ̇ (s) ds

]
,

V̇4 ≤
(µ− τ)2 s + (ν − µ)2 t

4

[
κ2ζ (t− d (t))T ζ (t− d (t))− κζ (t− d (t))T r1−

−κrT1 ζ (t− d (t)) + rT1 r1

]
−
{
ξT11 (D1sI) ξ11 + ξT12 (1− D1) sIξ12

+ [ζ (t− µ)− ζ (t− ν)]T tI [ζ (t− µ)− ζ (t− ν)]
}
. (5.40)

Since V̇4 bound (5.40) is convex with respect to d (t), it reaches peak value at D1 extrema, 0 and
1. This implies D1 and 1 − D1 are mutually exclusive, and either ξ11 or ξ12 vanishes from (5.40).
Thus, summing up bounds (5.35), (5.36), (5.38) and (5.40) lead to LMI

V̇ ≤ ϑ̃T1lΩ̃ϑ̃1l,

with

ϑ̃1l (t):=
[
ζ (t)T ζ

(
t− τ

2

)T
ζ (t− τ)T ζ (t− µ)T ζ (t− ν)T ζ (t− d (t))T ξ1l (t)T r1 (t)T

]
, l∈{1, 2} ,

and
Ω̃=Ω̄ + Ω1|D1

,

with Ω̄ and Ω1|D1
given by (5.32) and (5.33), respectively.

According to condition 1 from Definition 5.1.4, for the closed-loop system to achieveH∞ perfor-
mance, it must be asymptotically stable when r1 is absent. Denote Ω̃7×7 the upper-left seven-by-seven
diagonal block of Ω̃, as in

Ω̃=

[
Ω̃7×7 Ω̃8×1

∗ Ω88

]
,

with

Ω̃8×1 :=
[
nI 0 0 0 0 mI 0

]
,

Ω88 :=(m− δ) I,

and define

Ω:=

[
Ω7×7 Ω̃8×1

∗ Ω88

]
,

where
Ω7×7 :=Ω̃7×7 − diag {αI,0} .

Assuming r1 to be zero, it follows that

V̇ ≤ϑT1lΩ7×7ϑ1l
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with

ϑ1l :=
[
ζ (t)T ζ

(
t− τ

2

)T
ζ (t− τ)T ζ (t− µ)T ζ (t− ν)T ζ (t− d (t))T ξ1l (t)

T
]
, l∈{1, 2} .

Consequently, if Ω7×7 is negative definite, the closed-loop system is asymptotically stable. Note,
however, that if Ω̃ is negative definite, then so is Ω7×7. This can be concluded using Schur-
complement-based reasoning: from Lemma II.0.2 in Appendix II, if Ω is negative definite, then so
is Ω7×7 − Ω̃T

8×1Ω88Ω̃8×1. Since Ω is negative definite, so must be right-lower diagonal block Ω88,
implying

Ω7×7≤Ω7×7 − Ω̃T
8×1Ω88Ω8×1.

Since
Ω=Ω̃− diag {αI,0}≤Ω̃,

if Ω̃ is negative definite, so is Ω7×7.

Introducing more degrees of freedom in the form of free-weighting matrix F1, less conservative
conditions can be obtained. This is possible via Finsler’s Lemma, defining an orthogonal matrix G1.
Thus, let G1 be defined as

[
G 1 G1D1

0
]
, G 1 as in (5.34) and

Ĝ1D=

[
D1I(

1− D1

)
I

]
,

with D1 in {0, 1}. For D1 equal to one, d (t) equals µ, and it follows that

lim
d(t)→µ

G1ϑ̃1l= lim
d(t)→µ

[
−ζ (t− τ) + ζ (t− d (t)) + µ−τ

d(t)−τ
∫ t−τ
t−d(t) ζ̇ (s) ds

ζ (t− µ)− ζ (t− d (t))− 0ζ̇ (t− d (t))

]

=

[
−ζ (t− τ) + ζ (t− µ) + (ζ (t− τ)− ζ (t− µ))

ζ (t− µ)− ζ (t− µ) + 0ζ̇ (t− µ)

]

=

[
0

0

]
.

Analogously, when D1 equals zero, G1ϑ̃1l also equals zero, i.e., G1 and ϑ̃1l are orthogonal. Thus,
from Finsler’s Lemma (Lemma II.0.1), Ω is negative definite if, and only if,

Ω̃=Ω + F1G1 + G T
1 F T

1 <0.

Since ϑ̃T1lΩ̃ϑ̃1l remains convex with respect to d (t), its extrema coincide with D1’s, i.e., ϑ̃T1lΩ̃ϑ̃1l

reaches its maximum when D1 equals one or zero. Thus, if Ω̃ is negative definite, when D1 equals
zero and one, then so is Ω, and V̇ is negative definite. Therefore, the closed-loop system is stable
considering the first delay scenario. Analogous analysis prove V̇ is also definite negative for the sec-
ond delay scenario S2. Therefore, if the hypotheses from Theorem 5.1.5 hold, V̇ is negative definite,
independent if d takes values in S1 or S2, and closed-loop system (5.28)-(5.4) is asymptotically stable
when r1 is absent.

Nevertheless, the resulting expression is not in the form of an LMI. Indeed, because of the cross
product between ζ (t− d (t)) and r, (5.39) carries terms both with κ and κ2. In addition, the deriva-
tive of V̇1 introduces cross product term βκ, with β also a variable. Altogether, these issues would
precede establishing conditions that could be cast as LMIs in order to design controllers.
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Let κ be a positive real number. Then, congruence transformation Υ, given by diag {I, κI3×3},
multiplying Ω̃ as in ΥT Ω̃Υ and additional variables

n=βκ, m=κ2 [(µ−τ)2s+(ν−µ)2t+τ2u]
4 , (5.41)

can remedy these issues. Since Υ has full rank (because κ is positive), the “sign” of Ω̃ is not affected
by Υ, i.e., Ω̃ is negative definite if, and only if, ΥT Ω̃Υ is negative definite. The reason for introducing
variable β becomes apparent now, as it provides n with an extra degree of freedom which lets κ loose
and allows m to set the gain κ, since u, s and t are also variables. Hence, from (5.41), gain κ is
recovered through LMI variables as

κ=2

√
m
[
(µ− τ)2 s + (ν − µ)2 t + τ2u

]−1
. (5.42)

The effects of an exogenous perturbation on ζ can be assessed by considering term γ2rT1 r1,
which is added to ϑ̃T1lΩ̃ϑ̃1l. Nevertheless, by doing that, γ2 is also multiplied by κ2 when congruence
transformation Υ is done, once again resulting in nonlinear conditions. Nonetheless, introducing
a new variable δ can circumvent this. Even though δ=γ2κ2 might seem like an option, since the
goal is to establish conditions that allow to cast the design of H∞ controllers as an optimization
problem where the perturbation attenuation bound γ is to be minimized, this choice of δ would imply
minimizing the product γκ, rather than γ. Hence, δ is defined as −γ−2λ2 instead. Variable λ is an
extra degree of freedom transparent to the LMI which decouples the minimization of γ2 from that of
κ2. Thus, LMIs (5.31) are obtained.

Now, that sufficient stability conditions are stated in form of LMIs, controller performance can be
addressed. If (5.31) hold, then

V̇ + ζT ζ − γ2rT1 r1<0. (5.43)

Since V is positive definite and V̇ is negative definite, integrating (5.43) and assuming zero initial
condition yields ∫ +∞

0
ζ (s)T ζ (s) ds<γ2

∫ +∞

0
r1 (s)T r1 (s) ds,

that is
‖ζ‖22<γ

2 ‖r1‖22 ,

satisfying condition 2 of Definition 5.1.4.

It is now possible to cast H∞ controller design as a linear optimization problem with the condi-
tions from Theorem 5.1.5 considered the constraints, as in

min
s.t.Ω+Ωl|Dl+FlGl+G Tl FT

l <0 (5.31)
δ,

because the conditions are LMIs. Hence, using an appropriate optimization solver such as SeDuMi
[51] or SDPT3 [52], H∞ performance controllers can be readily designed in an automated fashion.
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5.1.3 Numerical Discussion

Theorem 5.1.5 provides LMI conditions that allow the design of H∞ controllers, but can also be
used as an instrument to assess the influence of different delay bounds τ and ν over the perturbation
attenuation bound γ. The following experiments are conducted in MATLAB environment, simula-
tions done in Simulink, and LMIs programmed using the YALMIP package [53]. SDPT3 solver [52]
seems to have an edge over SeDuMi [51] at this particular optimization problem and, therefore, is
adopted throughout this subsection.

The set of delay candidates is obtained by incrementing τ and ν in steps of 50 milliseconds, such
that ν is greater than or equal to τ . This delay grid is then used to obtain the corresponding disturbance
rejection norm bounds given by Theorem 5.1.5, yielding a three-dimensional surface, which provides
a more qualitative way to understand the nature of the relationship between disturbance rejection and
delays. Figure 5.1 exposes the detrimental effects of growing delay bounds τ and ν. As expected, the
larger the delays, the worse the perturbation rejection. Nonetheless, Figure 5.1 surface also presents
a surprisingly linear variation of γ with respect to both τ and ν. In particular, the specific ratio ν

τ

of 2.603 renders minimal disturbance rejection bounds according to Theorem 5.1.5. This “optimal
ratio”, however, is due to particular optimization conditions of Theorem 5.1.5 LMIs, and does not
represent an actual physical phenomenon. Indeed, if the system is stable and rejects disturbances
with H∞ norm bound γ for a delay interval of [τ1, ν], then disturbance rejection should be at least γ
for an interval [τ2, ν] if τ2 is greater than or equal to τ1, because this falls into a particular subcase of
the previous scenario:[τ2, ν] belongs to [τ1, ν]. In fact, when the interval length becomes smaller, the
delay tends to constant value ν.

Figure 5.1: Perturbation attenuation upper bound γ for different delay bounds τ and ν.

Since numerical results suggest the conditions from Theorem 5.1.5 have mechanisms and char-
acteristics that do not reflect real world’s, the conservatism of the Theorem is gauged by comparing
theoretical and experimental disturbance rejection performances. The procedure is to fix τ equal to
zero, vary ν and obtain the corresponding theoretical disturbance rejection H∞ norm bound, which
can be compared with the actual disturbance rejection obtained experimentally using the controller
designed through the same Theorem. For diversity’s sake, two different disturbance profiles, that are
shown in Table 5.1, are simulated. r̂1 and r̃1 are multiplied by 13×1 vector and N (0, 0.005) denotes
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Gaussian noise with zero average and variance of 0.005.

Table 5.1: Exogenous disturbance profiles r̂1 and r̃1.

t [s] 0 ≤ t ≤ 10 10 ≤ t ≤ 20 20 ≤ t ≤ 30 30 ≤ t ≤ 40

r̂1 (t) 0.1 cos (0.75πt) 0.02 0.05 sin (0.5πt) N (0, 0.005)

r̃1 (t) 0.1 sin (2πt) 0.1 N (0, 0.0035) 0.1 sin (πt) +N
(
0, 3 ∗ 10−6

)
Figures from Table 5.2 quantify the trend previously noted: increasing ν deteriorates perturba-

tion attenuation. The experimental disturbance attenuation γexp, which are numerically obtained by
squaring ‖r1‖ and ‖ζ‖ and taking the square root of MATLAB function trapz–that performs numer-
ical integration of the data–, also validate bounds provided by Theorem 5.1.5, since experimental
attenuation γexp is always smaller than theoretical one γth. Numerical evidence also disproves the
linear relationship between disturbance attenuation and delay suggested by Figure 5.1’s surface.

Table 5.2: Theoretical and simulated perturbation attenuation for different ν.

ν 0.001 0.011 0.087 0.43 0.92 3.73 6.19

γth 0.0015 0.0168 0.1326 0.6556 1.4026 5.6867 9.4372

γexp 0.0007 0.0073 0.0492 0.1932 0.2622 0.4921 0.6811

The second disturbance profile, denoted by r̃1 as in Table 5.1, is simulated changing the system’s
settings: controller κ is set equal to 25.1139 and time-delays uniformly distributed between 25 ms and
70 ms. Figure 5.2 shows the aftermath, depicting ζ state norm and disturbance norm. In agreement
with the theoretical H∞ norm bound of 0.0840 provided by Theorem 5.1.5, numerical calculation
using experimental data yield γsim smaller than γexp, and equal to 0.0376.

Figure 5.2: ‖ζ‖ superimposed on exogenous disturbance norm ‖r1‖.

The conservative gap between experimental and theoretical results would have been made larger
had the auxiliary variable δ not been introduced. Indeed, assuming previous delay interval of
[0.025, 0.07], Theorem 5.1.5 norm bound without δ is 4.257, opposed to 0.0608 when the variable is
considered. This represents a roughly 70 times improvement. Analogous comparisons are shown in
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Table 5.3, for different delay intervals, and reinforce the benefits of decoupling H∞ norm bound and
controller gain κ, as far as optimization is concerned.

Table 5.3: Disturbance rejection norm γ with and without δ.

Delay Interval [s] [0, 0.001] [0, 1] [50, 50.001] [0, 150] [1000, 1000.001]

Theorem 5.1.5 with δ 0.0015 1.5246 96.9352 304.9171 1.9387 ∗ 103

Theorem 5.1.5 without δ 0.1009 99.1489 6.1975 ∗ 103 2.1246 ∗ 104 1.7459 ∗ 105

5.2 DYNAMIC ATTITUDE CONTROL

When rigid body dynamics cannot be assumed transparent for the purposes of control, it is nec-
essary to take the relationship between angular momentum change and input torques into account. In
this case, the control input is considered the net torque applied to the rigid body, and actual attitude
is controlled indirectly via angular velocities through the angular momentum. The nonlinearities that
arise, are quadratic-like, and make the so-called dynamic attitude control problem a challenging one.

5.2.1 Model-based Tracking with Delayed Attitude Measurements

Typical attitude control applications assign a rigid body desired trajectories to follow, instead
of just stabilizing it at a certain orientation, and rigid body’s dynamics may not be transparent for
control purposes, i.e., it might only be possible to set angular velocity, which is governed by dynamics
equation (3.22), through input torques. Considering these two realistic assumptions toughens attitude
control, called the dynamic tracking problem. It is, however, possible to state dynamic tracking as an
stabilization problem, if attitude and velocity errors are appropriately defined.

Consider a rigid body whose kinematics are contaminated with exogenous perturbations as in
(5.28) and dynamics is given by (3.22), and let qd and ωd represent the attitude and angular velocity
states of a desired trajectory, relative to an inertial frame I. The discrepancies between the desired
and actual states can be captured by error states

qe = q−1
d q, (5.44)

ωe = ω − ωB, (5.45)

where
ωB = R (q)T ωd (5.46)

is the desired angular velocity expressed in body frame B coordinates, and R (q) can be obtained
through Rodrigues’ Formula (3.9). Equation (5.44) is convenient because the attitude error quaternion
qe is also unit-norm, since it is the product of two unit-norm quaternions, which form a group [44].
Thus, from (5.44) and (3.14), and assuming velocity inputs are affected by exogenous disturbance r1,
it follows that attitude error kinematics evolves according to q̇e, such that

q̇e (t) =

[
η̇e (t)

ζ̇e (t)

]
=

1

2

[
−ζe (t)T

ηe (t) I + [ζe (t)]×

]
[ωe (t) + r1 (t)] . (5.47)
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Analogously, from (5.45) and (3.22), angular velocity error dynamics is given by

Jω̇e = − [ω]× Jω + J
(
[ωe]×ωB − ω̇B

)
+ u. (5.48)

Thus, if attitude error system described by (5.47)-(5.48) is asymptotically stable, tracking errors
converge to zero, which implies the original system (5.28)-(3.22) follows the desired trajectory. The
states ωB and ω̇B are assumed available, since the desired trajectory is known to the rigid body.
The inertia matrix J is also considered known, and full state information is accessible, although
attitude measurements q are deemed subjected to time-delays. Real-world applications back the last
hypothesis, and prevent it from being considered artificial [15]. Indeed, attitude sensors are prone
to considerably larger measurement delays than velocity sensors are. For example, star trackers may
need up to ten seconds to produce attitude measurements [16].

Consider the feedforward-plus-proportional-derivative controller

u = [ω]× Jω − J
(
[ωe]×ωB − ω̇B

)
− κ1ζe (t− d (t))− κ2ωe, (5.49)

with κ1, κ2 positive real numbers. Model knowledge enables the controller to compensate dynamic
nonlinearities through the feedforward term [ω]× Jω − J

(
[ωe]×ωB − ω̇B

)
. On the other hand,

kinematics’ cannot be avoided. Fortunately, though, the source of kinematic nonlinearities, ζ̇e, is
bounded by a linear term.

Proposition 5.2.1. Let qe be a unit quaternion satisfying (5.47). Then∥∥∥ζ̇e (t)
∥∥∥2
≤ 1

4
‖ωe (t) + r1 (t)‖2 ,∀t ≥ 0.

Proof. From (5.47)∥∥∥ζ̇e∥∥∥2
= ζ̇Te ζ̇e =

1

4

{(
ηeI + [ζe]×

)
(ωe + r1)

}T {(
ηeI + [ζe]×

)
(ωe + r1)

}
.

Noting that
ηe
(
[ζe]× (ωe + r1)

)T
(ωe + r1) = 0,

from [·]× property
∥∥[ζe]×

∥∥ ≤ ‖ζe‖ (I.6), and unit-norm quaternion constraint (5.3), it follows that∥∥∥ζ̇e∥∥∥2
=

1

4

{
η2
e (ωe + r1)T (ωe + r1) +

(
[ζe]× (ωe + r1)

)T (
[ζe]× (ωe + r1)

)}
=

1

4

{
η2
e ‖ωe + r1‖2 +

∥∥[ζe]× (ωe + r1)
∥∥2
}

≤ 1

4

(
η2
e +

∥∥[ζe]×
∥∥2
)
‖ωe + r1‖2

≤ 1

4

(
η2
e + ‖ζe‖2

)
‖ωe + r1‖2

≤ 1

4
‖ωe + r1‖2 .

Proposition 5.2.2. Let P ∈ Sn be a positive definite matrix and let ρ be a positive real number. Then,
for x,y vectors in Rn

±2xTPy ≤ ρxTPx+
1

ρ
yTPy.
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Proof. Let ρ̃ be a nonzero real number. Since P is positive definite,

0 ≤
(
ρ̃x± 1

ρ̃
y

)T
P

(
ρ̃x± 1

ρ̃
y

)
= ρ̃2xTPx± 2xTPy +

1

ρ̃2
yTPy,

and the result follows by considering ρ equal to ρ̃2.

Since only attitude measurements are subjected to time-delays, LKF candidate used to obtain
controller design conditions in Subsection 5.1.2 suffices to handle kinematics. But because dynamics
is also considered, extra terms are required to ensure the stability of velocity error state ωe. Thus,
consider LKF given by

V =

4∑
i=1

Vi (t) , (5.50)

with

V1 = 2a
[
ζTe ζe + (1− ηe)2

]
+ bωTe Jωe + 2cζTe Jωe, (5.51)

V2 =

∫ t

t− τ
2

[
ζe (s)

ζe
(
s− τ

2

) ]T M [
ζe (s)

ζe
(
s− τ

2

) ] ds
+

∫ t−τ

t−µ

[
ζe (s)

ζe (s− µ+ τ)

]T
N

[
ζe (s)

ζe (s− µ+ τ)

]
ds, (5.52)

V3 = τ

∫ 0

−τ

∫ t

t+β
ζ̇e (s)T rζ̇e (s) dsdβ, (5.53)

V4 = (µ− τ)

∫ −τ
−µ

∫ t

t+β
ζ̇e (s)T sζ̇e (s) dsdβ + (ν − µ)

∫ −µ
−ν

∫ t

t+β
ζ̇e (s)T tζ̇e (s) dsβ, (5.54)

where a, b, c, r, s and t are real numbers and M,N symmetric matrices. LKF terms V1, V2 and V3

all facilitate the use of TDS analysis techniques discussed in Subsection 4.4. Namely, V1 enables
FA (4.4.2) and PAM (4.4.1), while V3 and V4 allow using PAM (4.4.1) and PAM plus CA (4.4.3),
respectively.

Because terms (5.52)-(5.54) consist of quadratic forms, positiveness of the corresponding scalar
and matrix variables suffices to guarantee positiveness of the V2, V3 and V4. Nevertheless, because of
cross term 2cζTe ωe in (5.51), a and b being positive does not suffice to ensure V1 is positive definite
(even if c is positive). Indeed, suppose a and b are positive. From Proposition 5.2.2,

V1 = 2a
[
ζTe ζe + (1− ηe)2

]
+ bωTe Jωe + 2cζTe Jωe

≥ 2aζTe ζe + bωTe Jωe + 2cζTe Jωe

≥ 2a

λmax (J)
ζTe Jζe + bωTe Jωe − |c| ζTe Jζe − |c|ωTe Jωe

=

(
2a

λmax (J)
− |c|

)
ζTe Jζe + (b− |c|)ωTe Jωe,

which reveals that the coefficients 2a
λmax(J) − |c| and b− |c| must also be positive. Therefore, (5.50) is

positive definite if

a > 0, b > 0, b > |c| , 2a > λmax (J) |c| , r > 0, s > 0, t > 0,

M =

[
M11 M12

∗ M22

]
> 0, N =

[
N11 N12

∗ N22

]
> 0.

(5.55)
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Theorem 5.2.3. Given nonnegative real numbers τ and ν, and positive controller gains κ1 and κ2,
the closed-loop system (5.47)-(5.49) is stable with positive disturbance rejection upper bound γ if
there exist positive real numbers a, b, c, r, s, t, and matrices M,N , satisfying (5.55), as well as free-
weighting matrices Fl such that

Ω̄ + Ωl|Dl + FlGl + G T
l F T

l < 0, (5.56)

hold for all Dl ∈ {0, 1} and l ∈ {1, 2}, where

Ω̄ =



Ω11 Ω12 Ω13 0 0 Ω16 Ω17 0 Ω19

∗ Ω22 Ω23 0 0 0 0 0 0

∗ ∗ Ω33 Ω34 0 0 0 0 0

∗ ∗ ∗ Ω44 Ω45 0 0 0 0

∗ ∗ ∗ ∗ Ω55 0 0 0 0

∗ ∗ ∗ ∗ ∗ 0 Ω67 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 Ω79

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99


(5.57)

with

Ω11 = M11 − rI + I, Ω34 = N12,

Ω12 = M12, Ω44 = N22 −N11,

Ω13 = rI, Ω45 = −N12,

Ω16 = −κ1cI, Ω55 = −N22,

Ω17 = (a− κ2c) I, Ω67 = −κ1bI,

Ω19 = aI, Ω77 = cJ + [MJc + m− 2κ2b] I,

Ω22 = M22 −M11, Ω79 = (m +MJc) I,

Ω23 = −M12, Ω99 = (m +MJc) I− γI,

Ω33 = N11 −M22 − rI, m =
1

4

[
τ2r + (µ− τ)2 s + (ν − µ)2 t

]
,

Ω1|D1
= −t (J4 − J5)T (J4 − J5)− sJT8 J8, Ω2|D2

= −s (J3 − J4)T (J3 − J4)− tJT8 J8, (5.58)

G1 =
[

Ḡ1 Ḡ1D1
0
]
, G2 =

[
Ḡ2 Ḡ2D2

0
]
, (5.59)

Ḡ1 =

[
0 0 −I 0 0 I 0

0 0 0 I 0 −I 0

]
, Ḡ2 =

[
0 −I 0 0 0 I 0

0 0 I 0 0 −I 0

]
,

G1D1
=

[
D1I(

1− D1

)
I

]
, G2D2

=

[
D2I(

1− D2

)
I

]
,

and Jk ∈ R3×27, k ∈ {1, . . . , 9} , are block entry matrices with nine elements whose k-th element is
the identity and all the others are null, e.g., J9 =

[
0 0 0 0 0 0 0 0 I

]
.

Proof. Once more, the goal is to establish sufficient conditions that satisfy Lyapunov-Krasovskii
theorem. In this sense, assume a, b, c, r, s, t, and M,N , satisfy (5.55). Then, LKF candidate (5.50) is
positive definite. It remains to show its derivative along trajectories of qe is definite negative.
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Let V1a, V1b be such that

V1 = V1a + V1b,

with

V1a = 2a
[
ζTe ζe + (1− ηe)2

]
,

V1b = bωTe Jωe + 2cζTe Jωe.

From the error kinematics (5.47), and since qe is also unit norm,

V̇1a = 2
d

dt
a
[
ζTe ζe + (1− ηe)2

]
= 2a

d

dt
(2− 2ηe) = −4aη̇e = 2aζTe (ωe + r1) . (5.60)

Taking into account closed-loop error system (5.47)-(5.48)-(5.49),
∥∥∥ζ̇e∥∥∥2

bound given by Proposition
5.2.1, and assuming c to be positive gives

d

dt

(
bωTe Jωe

)
= −2bκ1ζe (t− d (t))T ωe − 2bκ2ω

T
e ωe, (5.61)

d

dt

(
2cζTe Jωe

)
= 2cωTe J ζ̇e + 2cζTe [−κ1ζe (t− d (t))− κ2ωe]

≤ c
[
ωTe Jωe + ζ̇Te J ζ̇e

]
− 2cκ1ζ

T
e ζe (t− d (t))− 2cκ2ζ

T
e ωe (5.62)

= cωTe Jωe +
1

4
(ωe + r1)T

(
ηeI + [ζe]×

)T
J
(
ηeI + [ζe]×

)
(ωe + r1)

− 2cκ1ζ
T
e ζe (t− d (t))− 2cκ2ζ

T
e ωe

≤ cωTe Jωe +
1

4
c (‖ηe‖+ ‖ζe‖)2MJ (ωe + r1)T (ωe + r1)

− 2cκ1ζ
T
e ζe (t− d (t))− 2cκ2ζ

T
e ωe

≤ −2cκ1ζ
T
e ζe (t− d (t))− 2cκ2ζ

T
e ωe + cωTe (J +MJI)ωe

+ 2cωTeMJIr1 + crT1 MJIr1. (5.63)

Note thatωTe JJ
Tωe+ζ̇

T
e ζ̇e, rather thanωTe Jωe+ζ̇

T
e J ζ̇e, could have been used to bound 2ωTe J ζ̇e

in inequality (5.62). The resulting expression, in this case, would be cωTe
(
JJT + I

)
ωe + 2cωTe r1 +

crT1 r1. The latter can be more advantageous in case of large J , since the diagonal element Ω99

needs to compensate large MJ , forcing γ to be grow, which means a more conservative disturbance
rejection bound. On the other hand, JJT too large can compromise feasibility of the LMI because
of its presence in diagonal submatrix Ω77. Thus, the choice for ωTe Jωe + ζ̇Te J ζ̇e is because J is
considered small in examples.

Combining (5.61), and (5.63) with (5.60) gives

V̇1 ≤ −2cκ1ζ
T
e ζe (t− d (t)) + 2ζTe (a− cκ2) Iωe + 2aζTe r1 − 2bκ1ζe (t− d (t))T ωe

+ ωTe [c (J +MJI)− 2bκ2I]ωe + 2cωTeMJIr1 + crT1 MJIr1. (5.64)

The remaining three terms of V̇ are given by

V̇2 (t) =

[
ζe (t)

ζe
(
t− τ

2

) ]T M [
ζe

ζe
(
t− τ

2

) ]− [ ζe (t− τ
2

)
ζe (t− τ)

]T
M

[
ζe
(
t− τ

2

)
ζe (t− τ)

]
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+

[
ζe (t− τ)

ζe (t− µ)

]T
N

[
ζe (t− τ)

ζe (t− µ)

]
−

[
ζe (t− µ)

ζe (t− ν)

]T
N

[
ζe (t− µ)

ζe (t− ν)

]
, (5.65)

V̇3 (t) = τ2ζ̇e (t)T rζ̇e (t)− τ
∫ t

t−τ
ζ̇e (s)T rIζ̇e (s) ds, (5.66)

V̇4 (t) = V̇4(0) (t) + V̇4(I) (t) ,

V̇4(0) (t) = (µ− τ)2 ζ̇e (t)T sζ̇e (t) + (ν − µ)2 ζ̇e (t)T tζ̇e (t) , (5.67)

V̇4(I) (t) = − (µ− τ)

∫ t−τ

t−µ
ζ̇e (s)T sIζ̇e (s) ds− (ν − µ)

∫ t−µ

t−η
ζ̇e (s)T tIζ̇e (s) ds. (5.68)

Jensen’s Inequality (Lemma II.0.3) and Proposition 5.2.1 allow to conclude that

V̇3 ≤ τ2ζ̇e (t)T rζ̇e (t)−
[∫ t

t−τ
ζ̇e (s) ds

]T
rI

[∫ t

t−τ
ζ̇e (s) ds

]

≤ τ2r

4

(
ωTe ωe + 2ωTe r1 + rT1 r1

)
+

[
ζe (t)

ζe (t− τ)

]T [
−rI rI

rI −rI

][
ζe (t)

ζe (t− τ)

]
(5.69)

V̇4(0) ≤

[
(µ− τ)2 s + (ν − µ)2 t

4

] (
ωTe ωe + 2ωTe r1 + rT1 r1

)
. (5.70)

Instead of rushing to bound (5.68) using Jensen’s Inequality, which would hinder convex tech-
niques (Section 4.4.3) from being used, the analysis is broken in two by taking into account two
distinct delay scenarios S1 and S2, corresponding to subintervals [τ, µ] and (µ, ν], respectively, sim-
ilarly to (5.17). Based on S1 and S2, indicator function χ (4.10) allows V̇4(I) to be rewritten as the
sum of two mutually exclusive terms V̇4(S1) and V̇4(S2), and the integral term in (5.68) can be divided
to explore convexity. Namely, for the first scenario,

V̇4(S1) (t) = −χ (d (t))

[
(µ− τ)

∫ t−d(t)

t−µ
ζ̇e (s)T sIζ̇e (s) ds+ (µ− τ)

∫ t−τ

t−d(t)
ζ̇e (s)T sζ̇e (s) ds

+ (ν − µ)

∫ t−µ

t−ν
ζ̇e (s)T tIζ̇e (s) ds

]
. (5.71)

The convexity of V̇4’s bound becomes clearer when auxiliary states ξ11 and ξ12 are defined, as in
(5.20). Therefore, taking V̇4(0) bound (5.70) into account and applying Jensen’s Inequality (Lemma
II.0.3) to bound (5.71), gives

V̇4 ≤

[
(µ− τ)2 s + (ν − µ)2 t

4

] (
ωTe ωe + 2ωTe r1 + rT1 r1

)
− χ

{
ξT11 (D1sI) ξ11

+ξT12 (1− D1) sIξ12 + [ζe (t− µ)− ζe (t− ν)]T tI [ζe (t− µ)− ζe (t− ν)]
}
, (5.72)

which is convex with respect to d (t) because

D1 (d (t)) :=
d (t)− τ
µ− τ

∈ [0, 1] ,
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is convex with respect to d (t). Thus, V̇4’s bound (5.72) reaches its maximum at the edges of D1, 0 or
1. Since at each extremum of D1, either ξ11 or ξ12 will be weighted by a zero matrix, define

ϑ̃1l :=
[
ζTe ζe

(
t− τ

2

)T
ζe (t− τ)

T
ζe (t− µ)

T
ζe (t− ν)

T
ζe (t− d (t))

T
ωTe ξT1l r

T
1

]T
, l∈{1, 2} ,

and let Ω̃ be such that
Ω̃=Ω̄ + Ω1|D1

,

with Ω̄ and Ω1|D1
given by (5.57) and (5.58), respectively. Combining bounds (5.64), (5.65), (5.69)

and (5.72), it follows that for both extrema

V̇ ≤ϑ̃T1lΩ̃ϑ̃1l, l∈{1, 2} .

According to condition 1 from definition 5.1.4, for the closed-loop to achieve H∞ performance,
it must be asymptotically stable when r1 is zero. Denote Ω̃8×8 the upper-left eight-by-eight block of
Ω̃ such that

Ω̃=

[
Ω̃8×8 Ω̃9×1

∗ Ω99

]
,

with
Ω̃9×1=

[
ΩT

19 0 0 0 0 0 ΩT
79 0

]T
,

and define

Ω=

[
Ω8×8 Ω̃9×1

∗ Ω99

]
with

Ω8×8=Ω̃8×8 − diag{I,0} .

Assuming r1 is zero, it follows that

V̇ ≤ϑT1lΩ8×8ϑ1l,

where

ϑ1l=
[
ζTe ζe

(
t− τ

2

)T
ζe (t− τ)

T
ζe (t− µ)

T
ζe (t− ν)

T
ζe (t− d (t))

T
ωTe ξT1l

]T
, l∈{1, 2} .

Consequently, if Ω8×8 is negative definite, the closed-loop system is asymptotically stable. Note,
however, that if Ω̃ is negative definite, then so is Ω8×8. This can be seen using a Schur-complement-
type argument: from Lemma II.0.2, if Ω is negative definite, then so is Ω8×8 − Ω̃T

9×1Ω99Ω̃9×1.
Nonetheless, since Ω is negative definite, so must be Ω99, which implies that

Ω8×8≤Ω8×8 − Ω̃T
9×1Ω99Ω̃9×1<0.

Since
Ω=Ω̃− diag {I,0}≤Ω̃,

if Ω̃ is negative definite, then so is Ω8×8.

From Finsler’s Lemma (Lemma II.0.1), Ω̃ is negative definite if, and only if, Ω̃ +F1G1 +G T
1 F T

1

is negative definite, where F1 is a free-weighting matrix and G1 is given by (5.59). Since,
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ϑ̃
(

Ω̃ + F1G1 + G T
1 F T

1

)
ϑ̃ remains convex with respect to d (t), Ω̃ + F1G1 + G T

1 F T
1 need be

negative definite only at the extrema of D1. Therefore, if (5.56) holds, the error closed-loop system is
asymptotically stable. The second scenario S2 is amenable to similar arguments. Thus, closed-loop
system (5.47)-(5.49) is asymptotically stable when r1 is zero, and condition 1 from Definition 5.1.4
is satisfied.

Therefore, it remains to prove the second condition from Definition 5.1.4 is also valid. Assuming
r1 is nonzero, and using (5.56), gives

V̇ + ζTe ζe + rT1 r1<0. (5.73)

Since V is positive definite and V̇ is negative definite, assuming null initial conditions, integrating
(5.73) gives ∫ +∞

0
ζTe ζe<γ

2

∫ +∞

0
rT1 r1,

that is,
‖ζe‖22≤‖r1‖22 ,∀t≥0.

5.2.1.1 Experimental Analysis

Since Theorem 5.2.3 ensures the same disturbance attenuation bounds regardless of the trajectory
to be followed, it is reasonable to question whether this also holds in practice. Considering disturbance
behavior r1 in Table 5.4, the stabilization disturbance rejection performance is compared with actual
tracking’s. The desired trajectory evolves according to ω̇B, also in Table 5.4, and initial conditions of
the desired trajectory expressed in body frame B are assumed

qd (0) =
[

0.298 −0.536 0.318 0.723
]
, ωB =

[
0 0.1 0.05

]
.

Note that the rigid body’s initial conditions must match the desired trajectory’s since Theorem 5.2.3
assumes zero initial conditions, i.e., qe and ωe must equal 1 and 0, respectively. Attitude feedback
time-delays are considered uniformly distributed between 0 and 100 milliseconds, and the rigid body’s
inertia is deemed [22]

J = 10−2 ∗

 4.65 −0.07 0.04

−0.07 4.86 −0.21

0.04 −0.21 4.82

 .
In addition, assume control gains κ1 equal to 5 and κ2 equal to 1.

Table 5.4: Exogenous disturbance r1 (t) and desired trajectory’s acceleration ω̇B.

t [s] 0 ≤ t ≤ 10 10 ≤ t ≤ 20 20 ≤ t ≤ 30 30 ≤ t ≤ 60

r1 (t) 0.07 sin (1.25πt) 0.1 +N
(
0, 3 ∗ 10−4

)
0.1 sin (0.75πt) +N

(
0, 5 ∗ 10−5

)
N (0, 0.035)

ω̇B (t) 0.3 sin (1.25t) 0.01 0.07 sin (0.75t) 0.05 sin (t)

Experimental disturbance rejection, calculated using numerical integration through MATLAB
function trapz, is 0.1275, which is less than theoretical H∞ norm bound of 1.0063. The experimental
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figure confirms the visual intuition from Figure 5.3a that, even in the stabilizing case, taken rigid
body’s dynamics into account impairs the controller’s ability to reject disturbances compared with
the kinematic controller. Performance deteriorates further with actual tracking, as it can be seen in
Figure 5.3b, with γexp of 0.1862.

(a) Stabilization. (b) Tracking.

Figure 5.3: ‖ζe‖ and ‖r1‖ norms.

Since the desired trajectory is not continuous and simulation duration is not long, part of the
error norm could be attributed to asymptotic stability. Thus, removing disturbances indicates the
contribution of actual tracking error to poor disturbance rejection and, consequently, show how well
can the rigid body follow the desired trajectory. Numerical integration provides ‖ζe‖ equal to 0.0982,
which, as depicted in Figure 5.4a, confirms that part of the deterioration in disturbance rejection
performance is because of tracking errors.

(a) Tracking ‖ζe‖. (b) Tracking ‖ωe‖ .

Figure 5.4: Tracking errors with and without disturbances.

Note, however, norm magnitude spikes occur because ω̇B is discontinuous and contribute to error
norm as well, as shown in Figure 5.5a. Indeed, as the trajectories move away from discontinuities, the
bounces tend to decrease, which is evidenced by Figure 5.5b, and the rigid body successfully follows
the desired trajectories.
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(a) ζ2 and (ζd)2. (b) ωd and ω under disturbance.

Figure 5.5: Desired and actual trajectories.

5.2.2 Robust Dynamic Stabilization

This subsection addresses model-independent dynamic stability subjected to heterogeneous mea-
surement delays. By heterogeneous delays, it is meant that d1 and d2, the attitude and angular velocity
measurement delays, are independent delays and may have different bounds, such that

0 ≤ τ1 ≤ d1 (t) ≤ ν1, t ≥ 0,

0 ≤ τ2 ≤ d2 (t) ≤ ν2, t ≥ 0.
(5.74)

As it will be seen, asymptotic stability can be achieved without information of matrix inertia J .
The only assumption is the existence of known norm bounds MJ and mJ to J , i.e.,

mJ ≤ λmin (J) ≤ ‖J‖ = λmax (J) ≤MJ . (5.75)

Let κ1, κ2 be positive real numbers, and consider PD control law

u (t) = −κ1ζd1 − κ2ωd2 , (5.76)

where ζd1 denotes ζ (t− d1 (t)) and ωd2 denotes ω (t− d2 (t)). Assuming controller (5.76) is used,
the closed-loop rigid body’s dynamics equation can be rewritten as

Jω̇ = − [ω]× Jω − κ1ζd1 − κ2ωd2 . (5.77)

The following results will support the arguments used to prove stability in this subsection.

Proposition 5.2.4. Given positive definite matrix P in Sn, x and y in Rn, then

2xTy ≤ xTPx+ yTP−1y

holds.
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Proof. Since P is positive definite, there exists1 an invertible P
1
2 such that P equals

(
P

1
2

)2
, and it

follows that

0 ≤
(
P

1
2x− P−

1
2y
)T (

P
1
2x− P−

1
2y
)

= xTPx− 2xTy + yTP−1y.

Lemma 5.2.5. [22]Consider dynamics

Jω̇ = − [ω]× Jω + u,

with positive definite J in Sn, ω in R3 and u (t) a continuous map from R≥0 into R3, bounded by
positive constant Mu for t greater than or equal to t0. Then, for t0 greater than zero, and t greater
than t0,

ω (t)T Jω (t) ≤
(
ω (0)T Jω (0)

)
et−t0 +M2

um
−1
J

(
et−t0 − 1

)
(5.78)

holds.

Proof. Taking the derivative of ω (t)T Jω (t) yields

2ω (t)T Jω̇ (t) = 2ω (t)T
(
− [ω (t)]× Jω (t) + u (t)

)
= 2ω (t)T u (t) .

Then, Proposition 5.2.4 gives

2ω (t)T u (t) ≤ ω (t)T Jω (t) + u (t)T J−1u (t) ≤ ω (t)T Jω (t) +m−1
J M2

u .

Substituing 2ω (t)T u (t) for 2ω (t)T Jω̇ (t), and integrating the previous inequality, one recovers
(5.78).

Up to this point, results have been proved using Lyapunov-Krasovskii arguments, where an LKF is
built, and its derivative is shown to be upper bounded by some negative definite matrix, which allows
Lyapunov-Krasovskii Theorem to be used. When angular velocity delays are considered, however,
some technical issues arise. So far, the device used to introduce terms −ζT ζ and −ζTd1ζd1 , has
been the integral

∫ 0
−ν
∫ t
t+l ζ̇

T ζ̇. The term ζ̇T ζ̇ also arises, which can be handled because nonlinear
kinematics is linearly bounded. For the dynamic case, a similar procedure would introduce ω̇T ω̇.
This quadratic form, however, can only be bounded by something proportional to ‖ω‖4, because of
gyroscopic term [ω]× Jω. Thus, a different approach is needed. The next lemma provides another
path to determine stability.

Lemma 5.2.6. Barbalat’s Lemma [29]

Let f : R → R be a uniformly continuous map on [0,+∞), and suppose limt→+∞
∫ t

0 f (s) ds

exists and is finite. Then,
lim

t→+∞
f (t) = 0.

1Consider the diagonal decomposition QTDQ of P and take P
1
2 as QTD

1
2Q, where D

1
2 corresponds to the diagonal

matrix composed of the square roots of P eigenvalues. Since P is positive definite, all eigenvalues are positive and P
1
2 is

invertible.
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Although the proof of stability will rely on Barbalat’s lemma instead of Lyapunov-Krasovskii
theorem, a positive definite functional of states xt is also necessary. Thus, consider energy-like
function

V =
3∑
i=1

Vi, (5.79)

with

V1 = 2a
[
ζT ζ + (1− η)2

]
+ bωTJω + 2cζTJω, (5.80)

V2 = ν1p1

∫ 0

−ν1

∫ t

t+l
ζ̇ (s)T ζ̇ (s) dsdl + ν2p2

∫ 0

−ν2

∫ t

t+l
ω̇ (s)T ω̇ (s) dsdl, (5.81)

real number c and positive real numbers a, b, p1, p2 and r.

Because of cross term cζTJω, the positivity of term V1 (5.80) is not ensured if real numbers a

and b are greater than zero (even if c is positive). Indeed, using quadratic inequality from Proposition
5.1.1, cross-term bound from Proposition 5.2.2 and λmax (J) bound MJ (5.75), gives

V1 = 2a
[
ζT ζ + (1− η)2

]
+ bωTJω + 2cζTJω

≥ 2aζT ζ + bωTJω + 2cζTJω

≥ 2

λmax (J)
aζTJζ + bωTJω − |c| ζTJζ − |c|ωTJω

≥ 2

MJ
aζTJζ + bωTJω − |c| ζTJζ − |c|ωTJω

=

(
2

MJ
a− |c|

)
ζTJζ + (b− |c|)ωTJω.

Note that c need not be positive, but |c|must be taken to lower bound cross-term 2cζTJω. Thus, for
V to be positive, the constraints

a > 0, 2a > MJ |c| , b > 0, b > |c| , p1 > 0, p2 > 0, (5.82)

must hold.

Theorem 5.2.7. Let τ1, τ2, ν1 and ν2 be nonnegative real numbers satisfying delay bounds (5.74), let
Mω be a positive real number such that ‖ω (t)‖ is less than or equal to Mω for all t in [−ν, 0], where
ν is given by max {ν1, ν2}, and consider parameter Mp2 a positive real number. Then, if there exist
real numbers a, b, c, p1, and p2 such that (5.82),

Ω =


Ω11 Ω12 Ω13 Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 < 0, (5.83)

and

m−1
J < b, p2 < Mp2 , MV < m, (5.84)

hold, where

Ω11=−p1I, Ω22=
(
m−2
J (1 + κ1)κ1ν

2
2p2 − p1

)
I,
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Ω12=(p1 − κ1c) I, Ω24=m−2
J ν2

2κ1κ2p2I,

Ω13=aI, Ω33=

(
ν2

1

4
p1 + 4MJ |c|+

ν2
2

m2
J

(
M2
J −m2

J

)
(1 + κ1 + κ2)Mp2m− p2

)
I,

Ω14=−κ2cI, Ω34=(p2 − κ2b) I,

Ω23=−κ1bI, Ω44=
(
m−2
J (1 + κ2)κ2ν

2
2 − 1

)
p2I,

Mu=(κ1 + κ2Mω)2 , M‖ω‖=
[
eτm−1

J MJM
2
ω + (eτ − 1)m−2

J M2
u

] 1
2 , M1=max

{
M‖ω‖,Mω

}
,

MV =8a +
[
eτMJM

2
ω + (eτ − 1)m−1

J (κ1 + κ2Mω)2
]
b + 2MJM‖ω‖c

+
ν3

1

8
M2

1 p1 +
ν3

2

2
m−2
J

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

)
p2,

then closed-loop system (3.14)-(5.77) is asymptotically stable.

Proof. The path to prove the theorem is based on a two-step argument. First, using Barbalat’s Lemma,
a conditional proof of asymptotic stability is given depending on an upper bound of V , which is then
obtained in the final part of the argument. The aggregate requirements form the conditions stated by
the theorem.

Take V1a and V1b, such that

V1a = 2a
[
ζT ζ + (1− η)2

]
+ bωTJω,

V1b = 2cζTJω.

Then, using cross-term bound from Proposition 5.2.2 and quadratic upper bound from Proposition
5.1.1, and substituting (5.1) for ζ̇ and (5.77) for ω̇, results in

V̇1a =
d

dt

{
2a
[
ζT ζ + (1− η)2

]
+ bωTJω

}
=

d

dt

{
2a
[
ζT ζ + 1− 2η + η2

]}
+ 2bωTJω̇

=
d

dt
{4a (1− η)}+ 2bωT

(
− [ω]× Jω − κ1ζd1 − κ2ωd2

)
= −4aη̇ − 2κ1bω

T ζd1 − 2κ2bω
Tωd2

= 2aζTω − 2κ1bω
T ζd1 − 2κ2bω

Tωd2

=


ζ

ζd1
ω

ωd2


T 

0 0 aI 0

∗ 0 −κ1bI 0

∗ ∗ 0 −κ2bI

∗ ∗ ∗ 0




ζ

ζd1
ω

ωd2

 . (5.85)

V̇1b = 2cζ̇TJω + 2cζTJω̇

= cωT
(
ηI + [ζ]×

)T
Jω + 2cζT

(
− [ω]× Jω − κ1ζd1 − κ2ωd2

)
≤ 2MJ |c|ωTω − 2cζT

(
[ω]× Jω

)
− 2κ1cζ

T ζd1 − 2κ2cζ
Tωd2

≤ 4MJ |c|ωTω − 2κ1cζ
T ζd1 − 2κ2cζ

Tωd2
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=


ζ

ζd1
ω

ωd2


T 

0 −κ1cI 0 −κ2cI

∗ 0 0 0

∗ ∗ 4MJ |c| I 0

∗ ∗ ∗ 0




ζ

ζd1
ω

ωd2

 . (5.86)

Note that, in order to bound the terms cωT
(
ηI + [ζ]×

)
Jω and 2cζT

(
[ω]× Jω

)
,|c| must be used,

since c is not necessarily positive. Indeed, from the unit quaternion norm constraint (5.3) and property∥∥[ζ]×
∥∥ ≤ ‖ζ‖ (I.6), it follows that

cωT
(
ηI + [ζ]×

)T
Jω ≤ |c|

∥∥∥ωT (ηI + [ζ]×
)T
Jω
∥∥∥ ≤ |c| ∥∥ηI + [ζ]×

∥∥ ‖J‖ ‖ω‖2
≤ 2 |c|MJω

Tω,

−2cζT
(
[ω]× Jω

)
≤ 2 |c|

∥∥ζT ([ω]× Jω
)∥∥ ≤ 2 |c| ‖ζ‖ ‖J‖ ‖ω‖2

≤ 2 |c|MJω
Tω.

The combination of derivative terms V̇1a (5.85) and V̇1b (5.86) results in

V̇1 = V̇1a + V̇1b

≤


ζ

ζd1
ω

ωd2


T 

0 0 aI 0

∗ 0 −κ1bI 0

∗ ∗ 0 −κ2bI

∗ ∗ ∗ 0




ζ

ζd1
ω

ωd2



+


ζ

ζd1
ω

ωd2


T 

0 −κ1cI 0 −κ2cI

∗ 0 0 0

∗ ∗ 4MJ |c| I 0

∗ ∗ ∗ 0




ζ

ζd1
ω

ωd2



=


ζ

ζd1
ω

ωd2


T 

0 −κ1cI aI −κ2cI

∗ 0 −κ1bI 0

∗ ∗ 4MJ |c| I −κ2bI

∗ ∗ ∗ 0




ζ

ζd1
ω

ωd2

 . (5.87)

From delay bounds (5.74), and invoking Jensen’s Inequality, it follows V̇2 is also bounded, such
that

V̇2 = ν1p1

∫ 0

−ν1

[
ζ̇ (t)T ζ̇ (t)− ζ̇ (t+ l)T ζ̇ (t+ l)

]
dl

+ ν2p2

∫ 0

−ν2

[
ω̇ (t)T ω̇ (t)− ω̇ (t+ l)T ω̇ (t+ l)

]
dl

= ν2
1p1ζ̇

T ζ̇ − ν1p1

∫ t

t−ν1
ζ̇ (s)T ζ̇ (s) ds+ ν2

2p2ω̇
T ω̇ − ν2p2

∫ t

t−ν2
ω̇ (s)T ω̇ (s) ds

= ν2
1p1ζ̇

T ζ̇ + ν2
2p2ω̇

T ω̇ − ν1p1

∫ t

t−d1(t)
ζ̇ (s)T ζ̇ (s) ds− ν1p1

∫ t−d1(t)

t−ν1
ζ̇ (s)T ζ̇ (s) ds

− ν2p2

∫ t

t−d2(t)
ω̇ (s)T ω̇ (s) ds− ν2p2

∫ t−d2(t)

t−ν2
ω̇ (s)T ω̇ (s) ds
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≤ ν2
1p1ζ̇

T ζ̇ + ν2
2p2ω̇

T ω̇ − ν1p1

∫ t

t−d1(t)
ζ̇ (s)T ζ̇ (s) ds− ν2p2

∫ t

t−d2(t)
ω̇ (s)T ω̇ (s) ds

≤ ν2
1p1ζ̇

T ζ̇ − ν1
p1

d1 (t)

[∫ t

t−d1(t)
ζ̇ (s) ds

]T [∫ t

t−d1(t)
ζ̇ (s) ds

]

+ ν2
2p2ω̇

T ω̇ − ν2
p2

d2 (t)

[∫ t

t−d2(t)
ω̇ (s) ds

]T [∫ t

t−d2(t)
ω̇ (s) ds

]
≤ ν2

1p1ζ̇
T ζ̇ − p1 [ζ − ζd1 ]T [ζ − ζd1 ] + ν2

2p2ω̇
T ω̇ − p2 [ω − ωd2 ]T [ω − ωd2 ]

≤ ν2
1p1ζ̇

T ζ̇ + ν2
2p2ω̇

T ω̇ +


ζ

ζd1
ω

ωd2


T 
−p1I p1I 0 0

∗ −p1I 0 0

∗ ∗ −p2I p2I

∗ ∗ ∗ −p2I




ζ

ζd1
ω

ωd2


Now, let V2a, V2b be such that

V̇2 = V̇2a + V̇2b, (5.88)

V̇2a = ν2
1p1ζ̇ (t)T ζ̇ (t) + ν2

2p2ω̇ (t)T ω̇ (t) ,

V̇2b ≤


ζ

ζd1
ω

ωd2


T 
−p1I p1I 0 0

∗ −p1I 0 0

∗ ∗ −p2I p2I

∗ ∗ ∗ −p2I




ζ

ζd1
ω

ωd2

 .

From inequality
∥∥[ζ]×

∥∥ ≤ ‖ζ‖ (I.6),
∥∥∥ζ̇∥∥∥2

can be linearly bounded because

ζ̇T ζ̇ =
1

4
ωT
(
ηI− [ζ]×

) (
ηI + [ζ]×

)
ω =

1

4
ωT
(
η2I− [ζ]2×

)
ω ≤ η2 + ‖ζ‖2

4
ωTω

=
1

4
ωTω.

On the other hand, using cross-term bounds2, and ‖J‖ norm bounds (5.75)3

m2
J ω̇

T ω̇
(i)

≤ω̇TJJω̇

=
(
− [ω]× Jω − κ1ζd1 − κ2ωd2

)T (− [ω]× Jω − κ1ζd1 − κ2ωd2
)

=
(
[ω]× Jω

)T (
[ω]× Jω

)
+ 2κ1

(
[ω]× Jω

)T
ζd1 + 2κ2

(
[ω]× Jω

)T
ωd2

+ κ2
1ζ
T
d1ζd1 + 2κ1κ2ζ

T
d1ωd2 + κ2

2ω
T
d2ωd2

≤(1 + κ1 + κ2)
(
[ω]× Jω

)T (
[ω]× Jω

)︸ ︷︷ ︸
=‖ω‖2‖Jω‖2−(ωT Jω)2

+ κ1ζ
T
d1ζd1 + κ2ω

T
d2ωd2

+ κ2
1ζ
T
d1ζd1 + 2κ1κ2ζ

T
d1ωd2 + κ2

2ω
T
d2ωd2

≤
(
M2
J −m2

J

)
(1 + κ1 + κ2) ‖ω‖4 + κ1ζ

T
d1ζd1 + κ2ω

T
d2ωd2

2The term 2κ1ν2p2
(
[ω]× Jω

)T
ζ can also be checked using cross-term bound from Proposition 5.2.2.

3Since J is positive definite, it admits diagonal decomposition QTDQ, with Q orthonormal and D diagonal. Thus

J2 =
(
QTDQ

)(
QTDQ

)
= QTD2Q,

which means λ
(
J2
)

and λ (J)2 define the same set. This proves inequality (i).
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+ κ2
1ζ
T
d1ζd1 + 2κ1κ2ζ

T
d1ωd2 + κ2

2ω
T
d2ωd2 .

From the definition of V , and imposing m−1
J ≤b, inequalities

ωTω≤
m−1
J

b
bωTJω≤bωTJω≤V

hold, which means that

V̇2a≤ϑTΩ2aϑ, Ω2a=


0 0 0 0

∗ (Ω2a)22 0 (Ω2a)24

∗ ∗ (Ω2a)33 0

∗ ∗ ∗ (Ω2a)44

 , ϑ=


ζ

ζd1
ω

ωd2

 , (5.89)

with

(Ω2a)22=
ν2

2

m2
J

(1 + κ1)κ1p2I, (Ω2a)33=
ν2

1

4
p1I + V

ν2
2

m2
J

(
M2
J −m2

J

)
(1 + κ1 + κ2) p2I,

(Ω2a)24=
ν2

2

m2
J

κ1κ2p2I, (Ω2a)44=
ν2

2

m2
J

(1 + κ2)κ2p2I.

Combining inequalities (5.87) and (5.89) with identity (5.88) results in

V̇ ≤V̇1 + V̇2

≤


ζ

ζd1
ω

ωd2


T 

0 −κ1cI aI −κ2cI

∗ 0 −κ1bI 0

∗ ∗ 4MJ |c| I −κ2bI

∗ ∗ ∗ 0



ζ

ζd1
ω

ωd2



+


ζ

ζd1
ω

ωd2


T 
−p1I p1I 0 0

∗ −p1I 0 0

∗ ∗ −p2I p2I

∗ ∗ ∗ −p2I



ζ

ζd1
ω

ωd2

+ ϑTΩ2aϑ

=ϑTΩϑ, (5.90)

where

Ω=


Ω11 Ω12 Ω13 Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 ,

Ω11=−p1I Ω22=
(
m−2
J (1 + κ1)κ1ν

2
2p2 − p1

)
I

Ω12=(p1 − κ1c) I Ω24=m−2
J ν2

2κ1κ2p2I

Ω13=aI Ω33=

(
ν2

1

4
p1 + 4MJ |c|+ V ν2

2

(
M2
J −m2

J

)
m2
J

(1 + κ1 + κ2) p2 − p2

)
I

Ω14=−κ2cI Ω34=(p2 − κ2b) I

Ω23=−κ1bI Ω44=
(
m−2
J (1 + κ2)κ2ν

2
2 − 1

)
p2I
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Now, let τ be defined by min {τ1, τ2}, and suppose V (τ) is less than m, with m such that it makes
Ω negative definite if V is replaced by m in Ω33. Then, V (t) is less than m for all t greater than or
equal to τ . Indeed, by contradiction, assume that there is tc greather than τ , such that V (tc)=m.
This implies that there exists some tp in [τ, tc] such that V̇ (tp) is positive. For t in [τ, tp), V̇ (t) is
nonpositive, which means that V (t) is less than m. Then, because V is continuous, V (tp) must be
less than or equal to m. Thus, inequality (5.90) implies

V̇ (tp)≤ϑ (tp)
TΩ|V (tp)ϑ (tp)≤ϑ (tp)

TΩ|mϑ (tp)<0.

Contradicting the hypothesis that V̇ (tp) is positive. Therefore, V̇ (xt) is negative for t greater than
or equal to τ . This implies that ω (t) is bounded, and as a consequence, from (5.1)-(5.77), it follows
that q̇ (t) and ω̇ (t) are both bounded. Thus, it can be concluded via the Mean-value Theorem that
q (t) and ω (t) are uniformly continuous [58].

Because Ω is negative definite for t greater than or equal to τ , then

V̇ (xt)≤ϑ (t)T Ωϑ (t)<0,

holds for all t greater than or equal to τ . Integrating previous inequality from τ to t yields

V (xt)− V (xτ )≤
∫ t

τ
ϑ (s)T Ωϑ (s) ds<0. (5.91)

Let λmax (Ω) be the largest eigenvalue of Ω, which is negative because Ω is negative definite. For
V (xt) is nonnegative, it can be concluded via (5.91) that

−λmax (Ω)

∫ t

τ
ϑ (s)T ϑ (s) ds≤

∫ t

τ
ϑ (s)T (−Ω)ϑ (s) ds≤V (xτ ) .

This implies that
∫ t
τ ϑ (s)T ϑ (s) ds is finite. Since ϑ is uniformly continuous, from Barbalat’s

Lemma 5.2.6, it follows that ϑ (t) converges to zero, that is, q (t) and ω (t) both converge to zero.
Therefore, the system is asymptotically stable.

Now, it remains to obtain the conditions that m must satisfy in order to bound V (τ). Note that,
since m is considered a variable, and p2 multiplies m, term Ω33 makes the inequality nonlinear. In
this sense, imposing an extra constraint

p2<Mp2 ,

with Mp2 a given positive real number parameter, makes Ω linear with respect to the decision vari-
ables. An additional variable accounting for the product p2m could have been defined instead. Nev-
ertheless, the constraint to ensure m is, in fact, greater than V (τ), would again make the constraints
nonlinear4. Thus, Ω33 is considered

Ω33=
(
4MJ |c|+ ν2

2m
−2
J

(
M2
J −m2

J

)
(1 + κ1 + κ2)Mp2m− p2

)
I.

4Indeed, this would imply inequality
MV p2<pm=p2m,

which is not linear because MV carries decision variables.
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Now, the exact expression that bounds V (τ) must be obtained, so that m can be greater than it,
satisfying the assumption required to prove the theorem. Suppose ‖ω (t)‖ is less than Mω for all t in
[−ν, 0], with ν given by max {ν1, ν2}. This implies

u (t)T u (t)=‖−κ1ζ (t− d1 (t))− κ2ω (t− d2 (t))‖2

=κ2
1ζ (t− d1 (t))T ζ (t− d1 (t)) + 2κ1κ2ζ (t− d1 (t))T ω (t− d2 (t))

+ κ2
2ω (t− d2 (t))T ω (t− d2 (t))

≤κ2
1 + 2κ1κ2 ‖ζ (t− d1 (t))‖ ‖ω (t− d2 (t))‖+ κ2

2M
2
ω

≤κ2
1 + 2κ1κ2Mω + κ2

2M
2
ω

≤(κ1 + κ2Mω)2

=M2
u , (5.92)

for all t in [0, τ ] (note that t− d2 (t) belongs to [−ν, 0]). Substituting (5.92) for Mu in the inequality
from Lemma 5.78 shows that

ω (t)T Jω (t)≤eτ
(
ω (0)T Jω (0)

)
+ (eτ − 1) (κ1 + κ2Mω)2m−1

J

holds for all t in [0, τ ]. By hypothesis, ‖ω (t)‖ is less than Mω for all t in [−ν, 0]. This implies that

ω (t)T ω (t)≤m−1
J ω (t)T Jω (t)

≤m−1
J

[
eτ
(
ω (0)T Jω (0)

)
+ (eτ − 1)m−1

J (κ1 + κ2Mω)2
]

≤
[
eτm−1

J MJM
2
ω + (eτ − 1)m−2

J (κ1 + κ2Mω)2
]

=M2
‖ω‖

that is,

‖ω (t)‖≤
[
eτm−1

J MJM
2
ω + (eτ − 1)m−2

J (κ1 + κ2Mω)2
] 1

2
=M‖ω‖ (5.93)

for all t in [0, τ ]. On the other hand, substituting (3.14) for ζ̇, and (5.77) for ω̇, and using initial
conditions upper bound Mω, it can be concluded that, for all t in [0, τ ], inequalities∫ 0

−ν1

∫ t

t+l
ζ̇ (s)T ζ̇ (s) dsdl=

∫ 0

−ν1

∫ t

t+l

∥∥∥∥1

2

(
η (s) I + [ζ (s)]×

)T
ω (s)

∥∥∥∥2

dsdl

≤ 1

4

∫ 0

−ν1

∫ t

t+l
‖ω (s)‖2 dsdl

≤ 1

4

∫ 0

−ν1

∫ t

t+l
M2

1dsdl

=
1

4
M2

1

∫ 0

−ν1
ldl

=
ν2

1

8
M2

1 , (5.94)

with M1 given by max
{
M‖ω‖,Mω

}
, and∫ 0

−ν2

∫ t

t+l
ω̇ (s)T ω̇ (s) dsdl≤

∫ 0

−ν2

∫ t

t+l
m−2
J ω̇ (s)T JJω̇ (s) dsdl
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=m−2
J

∫ 0

−ν2

∫ t

t+l

∥∥− [ω (s)]× Jω (s) + u (s)
∥∥2
dsdl

≤m−2
J

∫ 0

−ν2

∫ t

t+l

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

)
dsdl

=m−2
J

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

) ∫ 0

−ν2
ldl

=
ν2

2

2
m−2
J

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

)
, (5.95)

must hold. Note that, because t is in [0, τ ] and l is in [−ν1, 0], the limits of the first inner integral∫ t
t+l ‖ω (s)‖2 ds are between [−ν, τ ]. Thus, ‖ω (s)‖ is limited by M1 in the integral since ‖ω (s)‖ is

less than or equal to Mω for s in [−ν, 0] and less than or equal to M‖ω‖ for s in [0, τ ]. The integrand
of the second inner integral is bounded using an analogous argument.

Combining inequalities (5.93), (5.94), and (5.95), yields

V1 (t)=2a
[
ζT ζ + (1− η)2

]
+ bωTJω + 2cζTJω

≤4a [1− η] + b
[
eτMJM

2
ω + (eτ − 1)m−1

J (κ1 + κ2Mω)2
]

+ 2c ‖ζ‖ ‖Jω‖

≤8a +
[
eτMJM

2
ω + (eτ − 1)m−1

J (κ1 + κ2Mω)2
]
b + 2MJM‖ω‖c, (5.96)

V2 (t)=ν1p1

∫ 0

−ν1

∫ t

t+l
ζ̇ (s)T ζ̇ (s) dsdl + ν2p2

∫ 0

−ν2

∫ t

t+l
ω̇ (s)T ω̇ (s) dsdl

≤ν1p1
ν2

1

8
M2

1 + ν2p2
ν2

2

2
m−2
J

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

)
=
ν3

1

8
M2

1 p1 +
ν3

2

2
m−2
J

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

)
p2, (5.97)

and

V (t)≤8a +
[
eτMJM

2
ω + (eτ − 1)m−1

J (κ1 + κ2Mω)2
]
b + 2MJM‖ω‖c

+
ν3

1

8
M2

1 p1 +
ν3

2

2
m−2
J

(
M2
JM

4
1 + 2MJM

2
1Mu +M2

u

)
p2

=MV .

for all t in [0, τ ]. Therefore, if m is greater than MV , it follows that

V (t)<m

holds for all t in [0, τ ]. In particular, V (τ) is less than m.

The idea of using initial conditions to overcome the fourth power of ‖ω‖ is not new [21, 22].
Nevertheless, in previous approaches, the delay was considered constant, known and d1 equal to d2.
In addition, more conservative techniques were used to establish inequalities based on the sum of
negative quadratic forms of q and ω only, instead of LMI conditions that embrace the delayed states.
The outcome is simpler and less conservative conditions. Another positive aspect of this approach is
that by imposing some relaxations, controller design can be envisioned, which to best of the author
knowledge, has not been accomplished so far. Moreover, even though TDS techniques were spared
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for the sake of simplicity in the proof, it is expected that including these strategies will lead to even
less conservative results.

Although some terms of LMI set (5.83)-(5.84) seem algebraically complicated, especially Ω33 and
MV , they carry a considerable amount of information that can provide intuition on how the system
behaves. As expected, the presence of squares ν2

1 and ν2
2 in the diagonal terms Ω22, Ω33 and Ω44

shows that delay increase can rapidly degrade stability. In fact, stability deteriorates at an even higher
rate, because of cubes ν3

1 and ν3
2 in MV , which must be smaller than m. Thus, m must grow, making

Ω33 less negative, and as a diagonal term, this makes it harder for Ω to be negative definite. The
diagonal sub matrices also carry terms proportional to squared gains κ2

1 and κ2
2, showing that large

gains ultimately reduce stability margin. This also explains why larger inertia J , which translates
into larger MJ , tends to deteriorate stability. Indeed, if J grows, larger gains are required to steer
the rigid body, decreasing stability margin. Initial conditions also negatively affect stability, since
the farthest the rigid body initially is from equilibrium, the higher control signals must be, implying
higher controller gains and, therefore, decreased stability margin. Numerically, this phenomenon
manifests through MV because of terms proportional to Mω and M2

ω, that force m to grow.

Some patterns, on the other hand, are less obvious. Dynamic nonlinearities, unequivocally the
greatest challenge in controlling rigid body orientation, arise because of gyroscopic term [ω]× Jω.
The term is also quadratic-like in nature, so it carries most of the system’s energy that must be con-
tained in order to steer the rigid body. If, however, J is proportional to identity matrix, then the term
cancels out and nonlinearities disappear. When J approaches the identity, its eigenvalues also con-
verge, that is, mJ and MJ converge to the same value. Then, the term M2

J −m2
J , which multiplies

m, tends to zero. Numerically, this means m can grow without affecting diagonal Ω33 so much, and
also provides some more room for larger delays, gains and initial conditions, because MV does not
strain m anymore. This also explains why larger mJ are numerically beneficial to the LMI by means
of terms m−2

J . Indeed, since mJ is less than or equal to Mj , instead of larger J , they suggest rigid
bodies whose inertia is closer to identity (mJ is closer to MJ ) are more stable.

5.2.2.1 Numerical experiments

Assuming identical delay upper bounds equal to 100 milliseconds, and lower delays bounds equal
to zero, the region of feasible {κ1, κ2} pairs is numerically assessed. For this, κ2 is incremented from
0 to 0.18 in one millisecond steps. Then, given κ2, the maximum and minimum feasible κ1 are
found using a binary-search-based algorithm. The process starts by determining a search interval
[κmin, κmax] and testing the feasibility of its midpoint κ. If LMI conditions of Theorem 5.2.7 are
feasible, the search continues in interval [κ, κmax]. If not, interval [κmin, κ] is considered. The process
goes on until two consecutive feasible gains κ are less than a parameter precision apart, or the search
interval itself is already smaller than precision parameter (i.e., no feasible κ1 for that κ2). Algorithm
5.1 illustrates the procedure considering 0.001 precision, and initial κ guess of 0.125. The search for
a minimum κ1 is analogous, except that the lower half of [κmin, κmax] is taken in case κ is feasible,
and vice versa. After the increments are exhausted, each κ2 has been assigned a feasible interval
[κ1 min, κ1 max]κ2 . Computing the convex hull of these slices through MATLAB function bwconvhull,
a feasible region is obtained.
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Algorithm 5.1 Maximum stable κ2 according to Theorem 5.2.7 using binary search.

1: precision← 10−3

2: κlow, κfeas1, κfeas2 ← 0

3: κupp ← 0.25

4: κ← κlow+κupp
2

5: while abs (κfeas1 − κfeas2) > precision ∨ κfeas2 == 0 ∧ κ > precision do
6: if Theorem 5.2.7 feasible then
7: κfeas2 = κfeas1, κfeas1 = κ

8: κlow = κ, κ =
κlow+κupp

2

9: else
10: κupp = κ, κ =

κlow+κupp
2

11: end if
12: end while

The feasible gain regions shown in Figure 5.6 confirm the shrink rate of feasible gain area is
highly nonlinear, becoming faster as initial conditions get more aggressive. Indeed, a nearly 300 time
increase in Mω from 0.03 rad/s to 9 rad/s represented a reduction in feasible gain area of approxi-
mately two thirds, depicted from the wavy grey to the dark grey shapes in Figure 5.6, while only 22

percent faster initial velocities caused a plunge of 73 percent in feasible gain area, displayed as the
light grey shape. Also, the figure suggests the existence of an “optimal” {κ1, κ2} pair, when it comes
to robustness to initial conditions. This pair is given by what seems to be the regions are converging
to as Mω grows. Figure 5.6 also supports that in general, higher κ1 gains are tolerable, compared
to κ2. A comparison with previous results from [22] corroborates that, though the relationship be-
tween feasible κ1 and κ2 is not exactly the same. Nevertheless, the strategy adopted in Theorem 5.2.7
produced a considerably larger area of feasible gains, which mean faster convergence.

Figure 5.6: Feasible κ1, κ2 for ν1 and ν2 equal to 0.1 s, and Mω equal to 0.03 rad/s.

In order to determine if these observations are merely artificial numerical factoids, consequences
of LMIs from Theorem 5.2.7, or if they actually hold in reality, a series of simulations are performed.
First, for the same delay settings described in Figure 5.6, a few runs are made with alternating values
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Figure 5.7: Feasible κ1, κ2 for ν1 and ν2 equal to 0.1 s, and Mω equal to 0.03 rad/s.

of {κ1, κ2}, that is, controller gains are simulated, and then swapped and simulated again. Controller
pairs {0.16, 0.04} and {0.04, 0.16} are chosen. The former is at the edge of the wavy region, whereas
the latter is not feasible according to theorem forMω greater than or equal to 0.03 rad/s . As a means to

gauge the conservatism of Theorem 5.2.7, initial conditions are set to 3∗1, where 1 =
[

1 1 1
]T

,
roughly 173 times larger than the what the wavy region in Figure 5.6 represents. Initial attitude

is considered
[
−1√

2
−
√

3
16

√
4
16 −

√
1
16

]T
. As it can be seen in Figure 5.8, both controllers

stabilize the system, although it takes a lot longer in the second case because of smaller attitude
feedback gain.

(a) {κ1, κ2} set to {0.16, 0.04}. (b) {κ1, κ2} set to {0.04, 0.16}.

Figure 5.8: Dynamic attitude stabilization with different gains and Mω equal to 3 ∗ 1.

Motivated by this apparent insensitivity to initial conditions, Mω is systematically increased, with
{κ1, κ2} considered {0.7, 0.7}. As Figure 5.9a illustrates, whenMω equals 3∗1, oscillatory behavior
is already observed. Surprisingly, however, even for initial conditions set to 3 ∗ 102 ∗1, the controller
is still capable of stabilizing the closed-loop system, despite the long convergence period observed
in Figure 5.9b. Nevertheless, when Mω is increased tenfold and reaches 3 ∗ 103 ∗ 1, the system
finally becomes unstable, as it can be seen in Figure 5.9c. This experimentally shows that closed-loop

65



stability does depend on initial conditions, in sharp contrast with the kinematic case, where stability
is achieved despite initial conditions. In addition, this also differs from the delay-free dynamic case,
which can be stabilized by PD controllers [19]. The relationship between stability and initial velocity
conditions is perhaps explained by the quadratic-like gyroscopic term [ω]× Jω, since feedback is
only proportional to angular velocity. Thus, given κ2, the controller ultimately becomes unable to
contain the nonlinear term when initial angular velocities are too high. These remarks suggest that
other controller structures should be studied, including quadratic compensation, for example.

(a) ω (0) set to 3 ∗ 1. (b) ω (0) set to 3 ∗ 102 ∗ 1. (c) ω (0) set to 3 ∗ 103 ∗ 1.

Figure 5.9: Closed-loop behavior for different initial conditions.

66



6 CONCLUSION

The general problem of rigid body attitude control subjected to closed-loop time-delays has been ad-
dressed. The approach was based on the quaternion representation, which is the minimum singularity-
free global attitude parametrization and is also advantageous from the computational standpoint.

The main contribution was to provide stability and controller design LMI conditions by develop-
ing novel techniques to circumvent the challenges imposed by quaternion and dynamics nonlineari-
ties. These conditions can be readily verified using efficient computational algorithms and at same
time provide insight into the role of each of the system’s components in terms of stability.

Important generalizations of the problem were solved, such as heterogeneous measurement de-
lays, model-independent and H∞ performance controllers. At the best of the authors knowledge,
this was the first time the problem was solved using LMI techniques, especially under such general
hypothesis.

The next step is to use the approach to develop multi-agent attitude synchronization and encom-
pass translation control. Indeed, although there exist results concerning the former, at the best of
the authors knowledge, none of them considered self-delays, i.e., time-delays afflicting local attitude
control in addition to inter-agent communication delays. The latter should also be an interesting de-
velopment, since results already involve quaternions and the transition to the dual quaternion setting
should be smoother. Moreover, the last result concerning attitude dynamics showed that PD con-
trollers are incapable of guaranteeing stability regardless of initial conditions. In this sense, other
controller structures should be investigated in order to address the very core of the issue.
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I. AUXILIARY ATTITUDE RESULTS
This appendix presents some important properties of the [·]× operator that are instrumental to the
proofs in this dissertation, and derives the quaternion equivalent of arbitrary rotations.

I.1 PROPERTIES OF THE [·]× OPERATOR

The skew-operator [·]× describes the nonlinearities in rigid body kinematics and dynamics, and
for this reason is ubiquitous in this dissertation. Thus, exploring a few of its properties will come in
handy. [·]× is defined as

[·]× : R3 → o (3)

x 7→ [x]×

where o (3) denotes the set of three-by-three skew-symmetric matrices (i.e., [x]T× = − [x]×), and

[x]× :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (I.1)

From (I.1), it follows that [·]× is bijective. Indeed, if [x]× equals [y]×, then xi equals yi for every i
in {1, 2, 3}. Thus, x equals y and [·]× is injective. Now, let S be a skew-symmetric matrix. From the
definition of a skew-symmetric matrix, it can be concluded that

S = −ST ⇒ S11 = S22 = S33 = 0, S12 = −S21, S13 = −S31, S23 = −S32,

that is,

S =

 0 −S21 S13

S21 0 −S32

−S13 S32 0

 = [s]× ,

where s is given by
[
S32 S13 S21

]
. Therefore, [·]× is bijective.

Consider scalars α, β, vectors x,y in R3 and a rotation R in SO (3). [·]× satisfies the following
properties

[αx+ βy]× = α [x]× + β [y]× , (I.2)

[x]× y = x× y, (I.3)

R
(
[x]× y

)
= [Rx]×Ry, (I.4)

R [x]×R
T = [Rx]× . (I.5)

Indeed, properties (I.2)-(I.4) follow from direct calculation, and prove (I.5), since

R
(
[x]×R

Ty
) (I.4)

= [Rx]×
(
RRTy

)
= [Rx]× y.

Note that if R is not orthogonal, (I.4) is not valid, in general.
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Let v be a vector in R3. Often, it is important to compare the norms of v and [v]×. In this sense,
regarding the [·]×’s linear operator facet, i.e.,

[v]× : R3 → R3

x 7→ v × x

and taking its induced norm, gives

∥∥[v]×
∥∥ = sup

‖x‖=1

∥∥[v]× x
∥∥

‖x‖
= sup
‖x‖=1

‖v‖ ‖x‖ sin θ

‖x‖
≤ sup
‖x‖=1

‖v‖ = ‖v‖ , (I.6)

where θ is the angle between v and x.

I.2 ROTATIONS

Consider a three-dimensional vector x, which is rotated by an angle θ about axis n according to
the right-hand rule, as illustrated in Figure I.1. Since R3 is a Hilbert space, x can be decomposed as

x = x‖ + x⊥, (I.7)

where x‖ and x⊥ are vectors parallel and orthogonal to n, such that

x‖ = (x · n)n = (‖x‖ cos θ)n, (I.8)

x⊥ = x− x‖ = x− (x · n)n. (I.9)

Figure I.1: Three-dimensional vector x rotated by θ about n.

Since x‖ is the projection of x onto n, it does not undergo any rotation, whereas x⊥ experiences
the full θ rotation about n. Now, consider the normal plane N defined by n, represented by the gray
ellipsis in Figure I.1. Then,

e1 = x⊥,

e2 = n× x⊥ = n× x⊥ + n× x‖ = n× x,

form a basis {e1, e2} of N . It follows that

x′⊥ = e1 cos θ + e2 sin θ = x⊥ cos θ + (n× x) sin θ,

and

x′ = x‖ + x′⊥
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= x‖ + x⊥ cos θ + (n× x) sin θ, (I.10)

known as the vector rotation formula. In fact, (I.10) can be used to verify that the quaternion equiv-

alent of (n, θ) is q =
[

cos
(
θ
2

)
sin
(
θ
2

)
nT

]T
. Indeed, considering the vector rotation form and

quaternion multiplication
x′ = q ⊗ x⊗ q,

with [
0

x′

]
=

[
cos
(
θ
2

)
sin
(
θ
2

)
n

]
⊗

[
0

x

]
⊗

[
cos
(
θ
2

)
− sin

(
θ
2

)
n

]
,

then

x′ = x cos2 θ

2
+ 2 (n× x) sin

θ

2
cos

θ

2
−
[
x
(
nTn

)
− 2n

(
nTx

)]
sin2 θ

2

= x

(
cos2 θ

2
− sin2 θ

2

)
+ (n× x)

(
2 sin

θ

2
cos

θ

2

)
+ n

(
nTx

)(
2 sin2 θ

2

)
= x cos θ + (n× x) sin θ + n

(
nTx

)
(1− cos θ)

=
(
x− nnTx

)
cos θ + nnTx+ (n× x) sin θ

= x⊥ cos θ + x‖ + (n× x) sin θ,

retrieving (I.10).
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II. TDS TOOLS
In this section, a few results which are commonly used in analysis techniques for Time-delay Systems
(TDS) are introduced.

Lemma II.0.1. Finsler’s Lemma [10]

Let x ∈ Rn,Ω ∈ Sn and G ∈ Rm×n such that rank (G ) < n. The following statements are
equivalent:

1. xTΩx < 0, for all Gx = 0,x 6= 0.

2.
(
G⊥
)T

ΩG⊥ < 0.

3. ∃µ ∈ R : Ω− µG TG < 0.

4. ∃F ∈ Rn×m : Ω + FG + G TF T < 0.

Remark. G⊥ represents a basis for null space of G ∈ Rm×n. That is, for all x in Rn such that
Gx = 0, there exists z in Rn such that x = G⊥z.

SCHUR COMPLEMENTS

Lyapunov analysis always comes down to obtaining and verifying inequalities, and often enough,
these are equivalent to matrix positiveness/negativeness. Nevertheless, dimensionality issues make
assessing these inequalities both computationally and analytically difficult. In this sense, the so-
called Schur Complement comes in handy since the “sign” of matrices can be stated in terms of its
Schur Complement, which has lower dimensions and can also be an important trick to dodge products
of variables and obtaining linear conditions (LMIs).

Let Ω be a real matrix in Rn×n which can be written as a two-by-two block matrix

P =

[
A B

C D

]
,

with A in Rp×p, D in Rq×q, and B,CT in Rp×q1. Consider x,y, z and w vectors in R3, and the
linear system [

A B

C D

][
x

y

]
=

[
z

w

]
.

Assuming D invertible and solving for y results in

y = D−1 (w − Cx) .

Substituting this expression for y yields(
A−BD−1C

)
x = z −BD−1w.

1From the definition of Ω, p and q must be such that n = p+ q.
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Then, if
(
A−BD−1C

)
is also invertible, the system can be solved as

x =
(
A−BD−1C

)−1 (
z −BD−1w

)
, (II.1)

y = D−1
(
z − C

(
A−BD−1C

)−1 (
z −BD−1w

))
. (II.2)

IfD is invertible, the matrixA−BD−1C is called the Schur Complement ofD inP . Analogously,
if A is invertible, the Schur complement of A in P is given by D − CA−1B.

Expanding (II.1)-(II.2) and stacking vectors, one obtains[
x

y

]
=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

][
z

w

]
,

which means the inverse of P can actually be written in terms of its Schur complement as[
A B

C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]

=

[ (
A−BD−1C

)−1
0

−D−1C
(
A−BD−1C

)−1
D−1

][
I −BD−1

0 I

]

=

[
I 0

−D−1C I

][ (
A−BD−1C

)−1
0

0 D−1

][
I −BD−1

0 I

]
.

Consequently, P can also be decomposed in terms of its Schur complement[
A B

C D

]
=

[
I BD−1

0 I

][
A−BD−1C 0

0 D

][
I 0

D−1C I

]
.

In particular, if P is symmetric, i.e., C = BT , then[
A B

C D

]
=

[
I BD−1

0 I

][
A−BD−1BT 0

0 D

][
I 0

D−1BT I

]
,

which shows the Schur complement (along with one of the diagonal matrices) is actually what deter-
mines if a matrix is positive or negative definite. This fact is formalized in the following Lemma.

Lemma II.0.2. Let P be a symmetric matrix of the form[10, 3]

P =

[
A B

BT C

]
.

If C is invertible, then

1. P > 0 if, and only if, C > 0 and A−BC−1BT > 0.

2. If C > 0, then P ≥ 0 if, and only if, A−BC−1BT ≥ 0.

Lemma II.0.2 can be used to prove the following form of Jensen’s Inequality, which is one of the
most important tools throughout the technical proofs in this dissertation.
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Lemma II.0.3. Jensen’s Inequality[70]

Given scalars r1, r2 such that r2 is greater than or equal to r1, and positive definite matrix P in
Sm, then for any x : [r1, r2]→ Rm,∫ r2

r1

x (s)T Px (s) ds ≥ 1

r2 − r1

(∫ r2

r1

x (s)T ds

)T
P

(∫ r2

r1

x (s) ds

)
.

All the technical proofs in this dissertation use Jensen’s Inequality in either the “greater than
or equal to direction” as stated in Lemma II.0.3 or with the inverted inequality, when the terms are
negative.
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