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RESUMO

O crescimento explosivo do tráfego de dados móveis nas redes das operadoras de telefonia móvel
(MNO, do inglês mobile network operator) observado nos últimos anos tem levado as operadoras
a procurar maneiras eficientes de descongestionar a sua infra-estrutura central. Em particular,
as comunicações dispositivo-a-dispositivo têm surgido como uma tecnologia viável para alcançar
este objetivo. No entanto, a fim de que isto se torne realidade, os clientes das MNOs necessitam
ser devidamente incentivados a compartilhar os recursos dos seus dispositivos para o benefício dos
outros usuários. Uma solução para promover a colaboração entre usuários é a implementação de
leilões recursivos, ou seja, “licitações” salto-a-salto para encaminhar pacotes para o seu destino.
Neste cenário, cada cliente pode implementar sua própria estratégia de participação nos leilões, a
fim de que ele possa compartilhar os incentivos fornecidos pela MNO para realizar sua tarefa. A
operadora estabelece um orçamento máximo para cada pacote, e os clientes pagam uma multa se
o pacote não for entregue dentro de um dado prazo. Nesta dissertação, apresentamos a avaliação
de desempenho da Estratégia do Aperto para tais leilões recursivos. Esta estratégia baseia-se
na ideia do quão “apertado” um nó está para encaminhar um pacote para o seu destino dentro
do prazo estipulado. Diferentes funções de preferência (para decisão do vencedor dos leilões) são
investigadas, e o desempenho da estratégia é estudado em redes homogêneas, ou seja, quando todos
os dispositivos implementam a mesma estratégia. Este estudo é realizado com base em simulações a
eventos discretos em cenários estáticos e móveis. Para comparação de desempenho, duas estratégias
básicas também são investigadas: uma que prioriza a entrega de pacotes em detrimento de ganhos
orçamentários, e uma gananciosa, que sempre escolhe o menor lance independente da entrega
de pacote dentro do prazo. Todas estratégias são avaliadas a partir de simulações computacionais
utilizando o simulador ns-3, e comparadas segundo as medidas de taxa de entrega de pacotes, ganho
(lucro) médio por nó, justiça na distribuição dos ganhos, e número de saltos médio até o destino.
Os resultados apresentados mostram que a Estratégia do Aperto é mais eficaz que simplesmente
usar roteamento de menor caminho sem levar em conta os lances dos nós. Isso acontece porque os
nós que percebem uma condição “apertada” para entregar um pacote dentro do prazo anunciado
desencorajam o leiloeiro a escolhê-los escolhendo lances altos. A única métrica que a Estratégia do
Aperto é levemente inferior é a justiça, apesar de não sofrer grandes variações conforme se aumenta
a mobilidade, ou seja, é mais robusta.



ABSTRACT

The explosive growth of mobile data traffic in the last few years has lead mobile network
operators (MNO) to seek efficient ways to offload their core infrastructure. In particular, device-
to-device communications has emerged as a key technology to accomplish that. In order to work,
the MNO’s clients need to be properly incentivized to share their devices’ resources to the benefit
of others. One solution to promote user collaboration is the deployment of recursive auctions, i.e.,
hop-by-hop bidding contests for forwarding packets to their destinations. In this scenario, each
client can implement its own auction strategy, so it can share the incentives provided by the MNO
(payments, etc.) to accomplish its job. The operator sets a maximum budget for each packet, and
the clients pay a fine if the packet is not delivered within a given deadline. In this dissertation, the
Tightness strategy for such recursive auctions is evaluated, which is based on the idea of how “tight”
a node is to forward a packet to its destination within the associated deadline. Different preference
functions (for auction winner decision) are investigated, and the performance of the Tightness
strategy is studied in homogeneous networks, i.e., when all devices implement the same strategy.
This study is carried out based on discrete-event simulations under static and mobile scenarios.
For performance comparison, two baseline strategies are also investigated: one that prioritizes
packet delivery over budget gains, and a greedy one, that always pick the lowest bid regardless
of packet delivery within the deadline. All strategies are evaluated on discrete-event simulations
based on the ns-3 simulator, and compared according to packet delivery ratio, average budget per
node, budget fairness, and average number of hops to destination. The presented results show that
the Tightness strategy is more effective than simply using shortest-path routing without taking
into account the nodes’ bids. This happens because the nodes who perceive a “tight” condition to
deliver a packet within the announced deadline discourage the auctioneer from choosing them by
bidding high values. The only metric that the Tightness strategy is slightly lower is the fairness,
despite not presenting higher variations as the mobility increases, i.e., it is more robust.
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Chapter 1

Introdução

De acordo com uma série de projeções feitas pela indústria [1, 6], o crescimento explosivo
do tráfego de dados móveis que temos testemunhado até o momento deverá continuar nos próxi-
mos anos, sobretudo impulsionado por uma infinidade de comunicações máquina-a-máquina e um
aumento crescente do tráfego de vídeo digital (ver Figura 1.1). Essa demanda de tráfego sem
precedentes imposta sobre as operadoras de telefonia móvel (MNO, do inglês mobile network op-
erators) tem despertado várias iniciativas de pesquisa a fim de elaborar soluções para contornar o
congestionamento de tráfego de dados e a sobrecarga da infraestrutura central e redes de acesso via
rádio (RAN, do inglês radio access networks) das MNOs. Dentre as várias técnicas imaginadas para
combater essa questão, o escoamento de dados tem surgido como uma solução viável e efetiva para
aliviar esse problema. Em geral, o escoamento de dados é compreendido como qualquer mecanismo
que desvie parte do tráfego originalmente direcionado às redes celulares para outras tecnologias
sem fio alternativas. Para isso, muitas técnicas têm sido propostas, e tem sido mostrado que,
não somente um escoamento de tráfego significativo pode ser atingido, mas também uma maior
vazão agregada, extensão de cobertura da rede, melhor eficiência energética, e redução no tempo
de entrega do conteúdo [7, 8, 9].

Figure 1.1: Previsão de crescimento de tráfego feita pela CISCO para os anos de 2014 a 2019 [1]
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Dentre as várias soluções que têm sido propostas até o momento, diversos trabalhos têm defen-
dido o paradigma das comunicações dispositivo-a-dispositivo (D2D)1 para implementar o escoa-
mento de dados das redes de telefonia móvel (veja [10, 11, 12, 13] e suas referências). A Figura 1.2
ilustra algumas aplicações possíveis das redes D2D, como a disseminação de conteúdo, jogos, re-
transmissão de dados dos usuários, e entre essas aplicações também se encontra o escoamento de
tráfego de dados móveis. Em todos esses trabalhos sobre escoamento de dados via redes D2D,
entretanto, a participação voluntária do usuário é geralmente tratada como algo certo, ainda que
o compartilhamento dos recursos do cliente seja necessário para que o escoamento de dados fun-
cione (ex: energia, memória, largura de banda, etc.). Na prática, alguém pode esperar resistência
significativa do cliente para repassar o tráfego de alguém sem receber quaisquer incentivos. Mas,
conforme observado corretamente por Rebecchi et al. [13], a colaboração de usuários é essencial
para a implementação do escoamento de dados dispositivo-a-dispositivo. Mesmo assim, a questão
de como incentivar usuários para colaborar ativamente no escoamento de tráfego de redes móveis
não tem recebido muita atenção na literatura. Note que, esta questão é ligeiramente diferente
de simplesmente incentivar clientes tolerantes a atrasos a recuperarem seus dados de outras redes
não-celulares em instantes futuros [14]. Recentemente, alguns trabalhos começaram a investigar
mecanismos de incentivo para que as MNOs aluguem pontos de acesso (APs, do inglês access
points) de terceiros para fins de escoamento de tráfego [15, 3], como mostrado na Figura 1.3. Mas,
até o momento, nenhum trabalho olhou para a questão de se incentivar os próprios clientes a
participarem do escoamento da infraestrutura (que pode funcionar como um segundo passo do
escoamento após a negociação anterior de locação entre MNO/AP).

Alguns anos atrás, o desafio MANIAC (Mobile Ad Hoc Networking Interoperability and Co-
operation Challenge) de 2013 [16] apresentou um problema de escoamento de dados baseado em
um cenário onde os pontos de acesso (APs) da operadora escoariam pacotes para os dispositivos
dos clientes, que, em troca, teriam a tarefa de entregar os pacotes para APs de destino indicados
por APs fonte. Para realizar isso, um esquema de leilões recursivos deveria ser aplicado em cima
de uma rede ad hoc formada pelos dispositivos dos usuários, ou seja, “licitações” salto-a-salto de-
cidiriam o caminho de cada pacote de dados em direção ao seu destino. Neste cenário, cada pacote
anunciado por um AP fonte estaria associado a um orçamento máximo (para fins de pagamento)
e uma multa a ser paga no caso em que o pacote não fosse entregue dentro do prazo anunciado
(traduzido em um número máximo de saltos para o destino). O AP fonte sempre selecionaria o
próximo salto com o menor valor oferecido por um nó, enquanto que todos os outros dispositivos
escolheriam o nó seguinte baseado na sua própria estratégia, desde que respeitando um conjunto de
regras. Durante a disputa do MANIAC 2013, cada time foi autorizado a usar somente dois tablets
executando Android, o protocolo de roteamento OLSR (Optimized Link State Routing [17], com
base no qual os nós poderiam implementar suas próprias estratégias de encaminhamento), e a API
de desenvolvimento do MANIAC [18]. Muito embora a realização do MANIAC Challenge 2013
tenha permitido a obtenção de informações preliminares importantes, seu formato, duração, e li-
mitações físicas—adicionados ao número limitado de participantes e dispositivos—não permitiram
uma profunda avaliação de desempenho das estratégias concorrentes. Dificultando ainda mais a

1Nessa dissertação, o termo “comunicações device-to-device” é usado em um sentido amplo, ou seja, não é
específico à definição do 3GPP.
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Figure 1.2: Exemplos de implementação de escoamento de dados via comunicações D2D [2]

situação, diferentes estratégias atuaram na rede concomitantemente, o que tornou muito difícil
entender as suas interações, e o impacto que as estratégias poderiam ter umas nas outras. Mais
ainda, dependendo da localização e movimentação dos membros da equipe, nem todas estratégias
estavam competindo contra todas as outras em todos leilões, devido à topologia da rede. As-
sim, para cada leilão executado na rede, poderiam existir diferentes conjuntos de competidores e
leiloeiros, resultando em diferentes comportamentos e resultados. Em outras palavras, esse foi um
ambiente extremamente heterogêneo e complexo, cujas características tornaram-no bastante difícil
de entender o desempenho e o verdadeiro potencial de qualquer estratégia.

Baseado nessas observações, essa dissertação apresenta uma avaliação de desempenho da então
chamada Estratégia do Aperto, projetada para o desafio MANIAC de 2013 [18, 19]. O termo
“aperto” refere-se ao fato que a estratégia utiliza uma estimativa do quão “apertado” um nó está
com relação ao cumprimento da tarefa de entregar o pacote para o seu destino alvo dentro do
prazo estipulado. Na verdade, o conceito de “aperto” foi concebido com o objetivo de deixar algum
“espaço” (com respeito ao prazo) para absorver eventuais más decisões de encaminhamento feitas
por outros nós ao longo do caminho, de tal forma que a chance de entrega de pacote aumente (dentro
do prazo). A estratégia é composta por três sub-estratégias: a estratégia de construção do lance
para um leilão, a estratégia de definição do preço máximo a ser pago e multa associados ao pacote
a ser leiloado, e a estratégia de tomada de decisão com relação ao vencedor do leilão anunciado. O
conceito de aperto é usado em ambas as estratégias de definição de lance e de tomada de decisão.
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Figure 1.3: Exemplo de aluguel de APs pelas operadoras (MNOs) para escoamento de dados. Como
mostrado nesta figura, olhamos para o caso geral onde cada AP pode servir mais de uma MNO, e
cada MNO possui várias estações de base (BSs) e podem alugar múltiplos APs em diferentes locais
para escoar o tráfego dos seus usuários (APs são sobrepostos) [3].

Nessa dissertação, também estendemos a estratégia original [19] ao introduzir uma segunda função
de preferência para a sub-estratégia de tomada de decisão (um nó utiliza a função de preferência
para determinar quem vence seus leilões). Dois pontos de operação particulares são escolhidos para
essa segunda função de preferência, que nos permite investigar o desempenho de três variantes da
Estratégia do Aperto (incluindo a estratégia original).

Para efeito de comparação, duas estratégias básicas também são investigadas: uma que prioriza
a entrega de pacotes em detrimento dos ganhos (em créditos, unidades monetárias, etc) possíveis
(ao aplicar roteamento de menor caminho independente dos lances dos nós), e uma gananciosa,
onde os nós sempre escolhem o maior lance independente da sua chance de entregar o pacote
dentro do prazo. Essa dissertação estuda a implementação homogênea de cada estratégia, ou
seja, quando todos os nós da rede D2D implementam a mesma estratégia (exceto os APs). Uma
implementação homogênea é o primeiro passo para a compreensão do desempenho alcançável de
cada estratégia, ao contrário de uma heterogênea (pelas razões descritas anteriormente). Também,
com uma implementação homogênea, pode-se não somente avaliar os ganhos médios possíveis de
créditos (ou unidades monetárias) dos nós na rede D2D, mas também as características de justiça
da estratégia na distribuição de ganhos entre os nós. A avaliação de desempenho é baseada em
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simulações a eventos discretos realizadas com o simulador ns-3 [20], e estudamos ambos os cenários
estático e móvel sob diferentes velocidades dos nós.

Todas as estratégias são avaliadas com respeito à taxa de entrega de pacotes, ganho (lucro) médio
por nó, justiça na distribuição dos lucros, e número médio de saltos necessários para um pacote
alcançar seu destino. Até onde sabemos, este é o primeiro trabalho a avaliar o desempenho de
uma estratégia para leilões recursivos em comunicações dispositivo-a-dispositivo para escoamento
de dados sob restrição de prazo.

1.1 Objetivos da Dissertação

Esta dissertação teve como objetivos específicos:

• Avaliar e entender o comportamento da estratégia do aperto para escoamento de tráfego via
comunicações dispositivo-a-dispositivo;

• Avaliar o desempenho da implementação homogênea da estratégia do aperto, ou seja, quando
todos os nós da rede executam a mesma estratégia;

• Avaliar o impacto da velocidade dos nós no desempenho da estratégia do aperto;

• Avaliar o desempenho da estratégia do aperto quando implementada em redes maiores do
que aquelas estudadas no MANIAC Challenge;

• Comparar o desempenho da estratégia do aperto frente a outras estratégias básicas. Essas
estratégias básicas geram lances de valores aleatórios e não usam de inteligência para otimizar
a escolha entre a economia e a garantia na entrega de dados;

• Explorar o desempenho de outras sub-estratégias para a estratégia do aperto, em particular,
de variações da sub-estratégia de tomada de decisão.

1.2 Contribuições

As principais contribuições deste trabalho são listadas a seguir:

• Implementação no ns-3 do cenário de escoamento de tráfego proposto no MANIAC Challenge,
para fins de estudo do problema de leilões recursivos via comunicações máquina-a-máquina;

• Implementação no simulador ns-3 de um arcabouço que implementa outras estratégias de
participação de leilões recursivos;

• Avaliação de desempenho da estratégia do aperto e variantes, assim como duas estratégias
básicas, segundo a taxa de entrega de pacotes, ganho (lucro) médio por nó, justiça na dis-
tribuição dos lucros, e número médio de saltos necessários para um pacote alcançar seu
destino; As avaliações apresentadas consideram os cenários estático e móvel, sob diferentes
velocidades;
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• Segundo levantamento bibliográfico extenso, esta é a primeira avaliação de desempenho de
estratégias para leilões recursivos aplicadas ao problema de escoamento de tráfego via comu-
nicações máquina-a-máquina sob restrições de prazo.

1.3 Organização da Dissertação

O restante da dissertação está dividido conforme a seguir. O Capítulo 3 descreve trabalhos
relacionados na literatura. O Capítulo 4 descreve o cenário de rede para escoamento de tráfego e
as regras dos leilões recursivos e apresenta as estratégias avaliadas nesta dissertação, começando
com a própria Estratégia do Aperto. O Capítulo 5 descreve os cenários de simulação e explica a
estrutura do simulador e do arcabouço implementado, e o Capítulo 6 apresenta os resultados de
simulação. Finalmente, o Capítulo 7 contém as conclusões deste trabalho com uma discussão sobre
possíveis trabalhos futuros.
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Chapter 2

Introduction

According to a number of industry reports [1, 6], the explosive growth of mobile data traffic
we have witnessed so far is expected to continue in the years to come, especially driven by a
multitude of machine-to-machine communications and video-related content (see Figure 2.1). This
unprecedented traffic demand imposed on mobile network operators (MNOs) has ignited a number
of research initiatives to devise solutions to circumvent traffic congestion and overload of the MNO’s
core infrastructure and radio access networks (RANs). Among the various techniques envisioned to
tackle this issue, mobile data offloading has emerged as a viable and effective solution to alleviate
this problem. In general, mobile data offloading is understood as any mechanism that deviates part
of the traffic originally targeted for macrocellular networks to alternative wireless technologies. For
that, many techniques have been proposed, and it has been shown that, not only significant traffic
offloading can be achieved, but also higher aggregate throughput, extended network coverage,
better energy efficiency, and reduction of content delivery time [7, 8, 9].

Figure 2.1: Traffic growth forecast made by CISCO for the years of 2014 to 2019 [1]

Among the many solutions that have been proposed so far, a number of works have advocated
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the paradigm of device-to-device (D2D)1 communications to implement mobile data offloading
(see [10, 11, 12, 13] and references therein). The Figure 2.2 illustrates some possible applications
of the D2D networks, like content dissemination, gaming, user data relaying, and among these
applications also is the mobile data traffic offloading. In all these works about data offloading
via D2D networks, however, user participation is generally treated as a given, even though the
sharing of the client’s resources is needed for the data offloading to work (e.g., energy, memory,
bandwidth, etc.). In practice, one should expect significant client resistance to relay someone’s
traffic without receiving any incentives. But, as correctly pointed out by Rebecchi et al. [13], user
collaboration is key for deployment of device-to-device data offloading. Nevertheless, the issue
of how to incentivize users to actively collaborate in the offloading infrastructure has not received
much attention in the literature. Note that, this is slightly different from simply incentivizing
delay-tolerant clients to retrieve their data from other non-cellular networks [14]. Recently, some
works have started looking at incentive mechanisms for MNOs to lease third-party access points
(APs) for offloading purposes [15, 3], as showed in Figure 2.3. But, so far, no work has looked
at the issue of incentivizing the clients themselves to participate in the offloading infrastructure
(which could work as a second offloading step after previous MNO/AP leasing negotiation).

Figure 2.2: Examples of data offloading via D2D communications implementation [2]

A few years ago, the Mobile Ad Hoc Networking Interoperability and Cooperation (MANIAC)
Challenge 2013 [16] posed a data offloading problem based on a scenario where the operator’s access

1In this dissertation, the term “device-to-device communications” is used in a broad sense, i.e., it is not specific
to the 3GPP definition.
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Figure 2.3: Example of the leasing of APs by operators (MNOs) for data offloading. As shown in
this figure, we look at the general case where each AP can serve more than one MNO, and each
MNO owns several base stations (BSs) and may lease multiple APs at different locations to offload
the traffic of its users (APs are overlapping) [3].

points (APs) would offload data packets to clients’ devices, which, in turn, would have the job to
deliver these packets to destination APs indicated by the source APs. The incentive for customers
would be discounted monthly fees, and the incentive for operators would be decreased infrastructure
costs. To accomplish that, a scheme of recursive auctions should be deployed on top of an ad hoc
network formed by the clients’ devices, i.e., a hop-by-hop bidding contest would decide the path of
each packet towards its destination. In this scenario, each packet announced by a source AP would
be associated to a maximum budget (for payment purposes), and a fine to be paid in case the packet
was not delivered within the announced deadline (translated into a maximum number of hops to
destination). The source AP would always select the next hop with the lowest bid, while all other
devices would choose a downstream node based on their own strategy, as long as they abided to a
set of rules. During the contest, each team was allowed to use only two tablets running Android,
the OLSR (Optimized Link State Routing) routing protocol [17] (based on which the nodes could
implement their own forwarding ideas), and the MANIAC framework API [18]. In spite of the
invaluable preliminary insights resulted from the MANIAC Challenge 2013, its format, time, and
physical constraints—coupled with a limited number of devices and participants—did not allow
an in-depth performance evaluation of the competing strategies. To complicate matters, different
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strategies were in place concurrently, which made it very hard to understand their interactions, and
the impact that each strategy could have on one another. Moreover, depending on the location and
movement of team members, not all strategies were competing against each other in every auction,
as a result of network topology. Therefore, for every single auction in the network, there could
exist different sets of competitors and auctioneers, resulting in different behaviors and outcomes.
In other words, this was a highly heterogeneous and complex environment, whose characteristics
made it very difficult to understand the performance and true potential of any single strategy.

Based on these observations, this dissertation presents a performance evaluation of the so-called
Tightness strategy designed for the MANIAC Challenge 2013 [18, 19]. The tightness term refers to
the fact that it uses an estimate of how “tight” a node is with respect to fulfilling the job of delivering
a packet to its target destination within the given deadline. In fact, the “tightness” concept was
designed with the goal of making some “room” (with respect to the deadline) to absorb eventual
bad forwarding decisions made by other downstream nodes as a result of their own auctions, so that
the likelihood of packet delivery is increased (within the deadline). The strategy comprises three
sub-strategies: the bidding strategy, the budget-and-fine setup strategy, and the decision-making
strategy. The tightness concept is used in both bidding and decision-making sub-strategies. In this
dissertation, we also augment the original strategy [19] by introducing a second preference function
for the decision-making sub-strategy (a node uses the preference function to determine who wins
its auctions). Two particular operating points are chosen for this second preference function, which
allows us to investigate the performance of three variants of the Tightness strategy (including the
original one).

For comparison purposes, two baseline strategies are also investigated: one that prioritizes
packet delivery over budget gains (by applying shortest-path routing regardless of nodes’ bids),
and a greedy one, where the nodes always choose the highest bid regardless of its likelihood of
delivering the packet within the deadline. This dissertation studies the homogeneous deployment of
each strategy, i.e., when all nodes in the D2D network implement the same strategy (apart from the
APs). A homogeneous deployment is the first step towards understanding the achievable perfor-
mance of each strategy, as opposed to a heterogeneous one (for the reasons described previously).
Also, with a homogeneous deployment, one can better assess not only the average budget gains of
nodes in the D2D network, but also the fairness characteristics of the strategy in budget distribu-
tion among nodes. The performance evaluation is based on discrete-event simulations carried out
with the ns-3 simulator [20], and we study both static and mobile scenarios under different node
speeds. All strategies are evaluated with respect to packet delivery ratio, average budget per node,
budget fairness, and average number of hops needed for a packet to reach its destination. To the
best of our knowledge, this is the first work to evaluate the performance of a strategy for recursive
auctions in device-to-device communications for data offloading under deadline constraints.

2.1 Dissertation Objectives

This dissertation had the following objectives:
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• Evaluate and understand the behaviour of tightness strategy for traffic offloading via device-
to-device communications;

• Evaluate the homogeneous implementation performance of the tightness strategy, i.e., when
all network nodes execute the same strategy;

• Evaluate the nodes speed impact in the tightness strategy performance;

• Evaluate the tightness strategy performance when implemented in networks bigger than those
studied in the MANIAC Challenge;

• Compare tightness strategy performance against other basic strategies. These basic strategies
generate bids with random values and does not use intelligence to optimize the choice between
economy and the data delivery guarantee;

• Explore the performance of other sub-strategies for the tightness strategy, in particular, of
variations of the decision making sub-strategy.

2.2 Contributions

The main contributions of this work are listed as follows:

• Implementation in the ns-3 simulator of the traffic offloading scenario proposed in the 2013
MANIAC Challenge, for study of recursive auction strategies via device-to-device communi-
cations;

• Implementation in the ns-3 simulator of a framework that implements other strategies for
participation in recursive auctions;

• Performance evaluation of the “Tightness Strategy” its variants, as well as two baseline strate-
gies, based on packet delivery ratio, average budget per node, budget fairness, and average
number of hops; The assessments presented considers the static and mobile scenarios, under
different speeds;

• Based on an extensive bibliographic survey, this is the first work to evaluate the performance
of a strategy for recursive auctions in a device-to-device communications for data offloading
under deadline constraints.

2.3 Dissertation Organization

The rest of the Dissertation is divided as follows. Chapter 3 describes related works in the
literature. Chapter 4 describes the network scenario and auction rules and presents the strategies
evaluated in this dissertation, starting with the Tightness strategy itself. Chapter 5 contains the
simulation scenarios and explains the simulator structure and the framework deployed, and the
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Chapter 6 presents the simulation results. Finally, Chapter 7 contains the conclusions of this work
with a discussion of possible future works.
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Chapter 3

Related Work

One of the key issues to fully realize multi-hop terminal-to-terminal (or D2D) mobile data
offloading is how to incentivize users to let their devices work as packet relays to the benefit of
others. Buttyán and Hubaux [21] were one of the first to tackle this problem by introducing a
virtual currency named nuglets, with which nodes could pay other nodes to forward their packets.
According to their packet purse model, a source node needs to load a packet with sufficient nuglets
to reach its destination. Each forwarding node gets some nuglets from the packet in order to cover
its forwarding costs. A packet is discarded if it does not contain enough nuglets to be forwarded.
To control the number of nuglets taken out from a packet, a sealed bid second price auction is run at
each hop: each bidder determines the price for which it is willing to forward the packet, and sends
it to the forwarding node in a sealed form. The price is obtained from two utility functions that are
based on battery level and number of nuglets in the node. It is assumed that a bidding node has no
information about the total number of bidders participating in the auction, and the auction winner
is always the one with the lowest bid. Then, the forwarding node puts the value of the second
lowest bid in the packet and sends it to the winner. For proper operation, this scheme requires
the use of routing algorithms that allow nodes to have multiple entries in their routing tables with
different next hops to the same destination (e.g., TORA [22]). The performance evaluation of
the proposed approach has focused on packet delivery ratio for different battery energy levels over
static topologies. Also, in spite of targetting cooperation, the fairness in nuglets distribution among
nodes has not been evaluated, and no indication was given about the achievable average gain of
nuglets per node. Finally, this solution did not target packet delivery within a given deadline.

Anderegg and Eidenbenz [23] have proposed Ad hoc-VCG, a reactive routing protocol for ad
hoc networks where nodes are selfish and require payments for data forwarding. The protocol
is designed to achieve truthfulness (i.e., nodes reveal the true costs to forward data) and cost
efficiency (energy required to relay a packet to a given neighbor). It consists of two phases: route
discovery and data transmission. During route discovery, a minimum energy route is computed
from source to destination based on a weighted graph informed to the destination node. The edge
weights represent the payments a node has to receive if it transmits a packet along that edge. The
destination node computes the shortest path to it and all payments needed to be made. Then,
it sends this information back to the source node. In the data transmission phase, the source
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node sends the data packets with the electronic payments over the shortest path. For analysis,
this work has focused on proving truthfulness and cost efficiency mathematically, and provided
some results on experiments with random static topologies to analyze overpayment. However,
the protocol was not analyzed under mobility, and its performance was not evaluated regarding
packet delivery ratio and individual node profit gains (as well as fairness in profit distribution).
Similar to [21], the protocol does not consider packet delivery under a given deadline, and its route
discovery phase may stall network operation if routing paths change frequently, as pointed by the
authors themselves.

Luo et al. [24] have introduced the Unified Cellular and Ad Hoc Network (UCAN), one of
the first ideas to use device-to-device communications coupled with cellular networks with the
goal of improving the overall cell throughput (without focusing on cellular offloading). If a node
experiences low cellular downlink data rates, the base station transmits its data frames to another
client (the proxy client) with better channel conditions. Then, these frames are further relayed
through IP tunneling via intermediate clients over Wi-Fi links. Proxy discovery and maintenance
protocols were also proposed, which are used for routing purposes, too. Traffic scheduling at the
base station is performed by taking into account the destination client’s downlink data rate. By
using this metric—instead of the proxy’s data rate—it is shown that throughput balance can be
achieved between destination and proxy clients, while improving overall cell throughput. This fact
is used to incentivize clients to participate in the UCAN architecture, since their own data rates can
be improved. Finally, a secure crediting mechanism is proposed by which the base station can keep
track of the number of data frames relayed by each client (they focus on the security mechanism,
and suggest the use of a crediting scheme such Buttyán’s [21]). This work has clearly showed the
advantages of coupling cellular with D2D communications to improve overall network performance.
But, because it did not targeted the data offloading problem, the issue of data delivery within a
given deadline was not a concern.

The idea of using device-to-device communications to support data offloading has been inves-
tigated in a number of papers. In particular, delay-tolerant networks (DTNs) (or opportunistic
networks) have been considered as a mean to offload delay-tolerant traffic via content dissemi-
nation (“epidemically”) by exploiting the mobility of nodes. Therefore, a key question in such a
problem is how to choose the set of seeders to first bootstrap and initiate the distribution process.
Han et al. [10] have studied the target-set selection problem with a fixed number of k users, such
that the expected number of infected users is maximized. Along the same lines, Li et al. [11] have
investigated the optimal target-set selection by proposing a utility maximization problem under
multiple linear constraints. In both cases, the network provider needs to gather information about
the nodes’ contact rates (or contact statistics) in order to compute the best subset of seeders.
Whitbeck et al. [12] have also proposed epidemic content dissemination with their Push-and-Track
framework. The novelty of their approach is the introduction of a closed-loop control to supervise
the need of content re-injection in the network to guarantee full dissemination within some tar-
get delay. In all these content dissemination approaches, it has been assumed that all participant
nodes are interested in the same content. However, the question of having users forwarding content
they are not interested in is left as an open problem. So, some incentive mechanism is needed for
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forwarding unwanted traffic.

As far as incentive mechanisms for data offloading are concerned, Zhuo et al. have presented
Win-Coupon [14], an incentive framework based on reverse auctions to motivate users to leverage
their delay tolerance for 3G data offloading. This was arguably the first proposal to apply auction
mechanisms for 3G offloading. In this proposal, users receive discounts (“coupons”) for their service
charges if they are willing to wait longer for data downloading. During the delay, part of the 3G
traffic may be opportunistically offloaded through complementary networks (e.g., DTNs, WiFi
hotspots or femtocells). When the delay is over, the remaining part of the data is received via the
3G connection. To receive the coupons, the users send bids to the operator containing the delay
they are willing to experience and the discount they want to obtain. The operator acts as a buyer,
and decides the optimal auction outcome based on delay tolerance and offloading potential of users
to achieve the minimum incentive cost for a given offloading target. Although this work has not
addressed incentives mechanisms for D2D offloading via recursive auctions, DTN was employed
as a case study for the complementary network. In this case, nodes were assumed to retrieve
the desired data with high probability when approaching any node in the network (single-hop
transfers).

Yu et al. [25] have proposed INDAPSON, a system that promotes cooperative downloading
of cellular traffic by allowing users with a surplus of cellular data traffic to assist others with
a shortage of it. In their approach, a user who needs to download data (“primary user”) forms
a local wireless network in which “assistant users” are chosen to help download data from the
Internet through their cellular connections. Then, data segments are relayed to the primary user
through WiFi connections, and network management is done via the Bluetooth interface. In order
to incentivize users to assist others, a reputation adaptive pricing (RAP) scheme is applied, where
a primary user pays virtual credits to assistant users, which, in turn, can use these credits to
purchase the help of others in future downloads. A centralized virtual credit account is maintained
on a server, who keeps track of records of download and relay history of each user. In spite of
not addressing the data offloading problem (it actually aims higher download data rates with
simultaneous cellular connections), the issue of user reputation is explicitly included in the price
formulation. This is certainly another dimension to consider in the realm of D2D data offloading
under recursive auctions. The Tightness strategy proposed in this paper allows the incorporation
of similar reputation mechanisms through its preference functions. To accomplish that, the nodes
would have to maintain a forwarding (and packet delivery) history of participant nodes, but with
the added advantage of not relying on a central authority to manage that.

Gao et al. [15] have studied the incentive design problem in network-initiated mobile data
offloading through third-party APs (WiFi or femtocell). In this context, the operators propose the
price they are willing to pay to each AP for offloading its traffic. Then, each AP decides how much
traffic they will offload for each BS. This is studied as a two-stage multi-leader multi-follower game.
The authors characterize the Nash equilibrium of this game and compare it with the outcomes of
perfect competition market (no price participation) and monopoly market (no price competition),
and they show that the equilibrium price is upper-bounded by the market clearing price (that arises
in the equilibrium of perfect competition market), and lower-bounded by the monopoly price (no
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price competition). In their work, they assume that mobile users (MUs) either comply or are
properly incentivized in a way that they offload traffic exactly as the networks intend, or they are
unaware of the offloading process, i.e., the data offloading is totally transparent to MUs. Therefore,
the incentive for MUs to participate in the offloading process is not treated in their work. Along
the same lines, Iosifidis et al. [3] have also studied an offloading market where a set of MNOs
compete to lease a set of APs for the offloading service. In this case, the marketplace is managed
by a centralized broker, who collects the MNOs’ requests and the APs’ offers and determines how
much traffic of each MNO will be offloaded to each AP and at what price. The MNOs and APs
accept the broker’s decision if they find it advantageous. The broker is rewarded based on volume
of transactions, so that it does not deviate from the desirable market goal of maximizing market
efficiency. Then, an iterative double-auction scheme is employed that is proven to be efficient
(i.e., it maximizes the welfare), it is weakly budget-balanced (broker does not lose money), and
individually rational (MNOs and APs are willing to participate). In this architecture, there is no
direct participation of the mobile users.

Recently, Koutsopoulos et al. [26] have considered multi-hop D2D communications where social
network ties are leveraged by MNOs to achieve efficient data transport. Their work is based on
the D2D paradigm of 4G+ technologies, where end-to-end path formation and resource allocation
(e.g., spectrum management) are controled by the operator. However, data forwarding decisions
are left to the user, whose willingness to relay data packets (i.e., the user benefit) is related to the
strength of his social ties. The problem is modeled as a constrained minimum-cost problem on the
communication graph, where the constraints arise from the delivery probability derived from the
social network graph. We note that, although social ties may increase one’s willingness to forward
the packets, a scheme for actual compensation (e.g., discounts, credits, etc.) should suplement
this approach, since regardless of its social ties, all users will have to donate part of their precious
resources (battery life, storage, bandwidth, etc.) to the task of data offloading.

As we can see, none of previous works have dealt with the problem of employing recursive
auctions for purposes of data offloading via device-to-device commmunications under deadline
constraints. In fact, such a technique could be thought as a second step towards extending data
offloading, for example, after MNOs lease AP providers to carry out data offloading, as discussed
previously [15, 3].
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Chapter 4

Auction Participation Strategies

In this chapter, we first present a more detailed explanation of the data offloading scenario, as
well as the rules for the recursive auctions to happen. Then, we present the strategies we investigate
for devices to participate in the recursive auctions. Each strategy comprises three sub-strategies:
the bidding strategy, which defines how to set the value of a bid for a given RFB received from a
neighboring node, the budget-and-fine setup strategy, that defines how a node, who just won an
auction, sets the budget and fine values of its own RFB, and the decision-making strategy, which
defines how an auctioneer picks the winner of its announced RFB. Each of these sub-strategies can
be specified in different ways, according to different goals. The first strategy we introduce is actually
a class of strategies that is based on the central idea of “tightness” with respect to packet delivery
within a given deadline, i.e., how much “room” a node has (before reaching the deadline) to absorb
eventual bad forwarding decisions resulted from the unpredictable outcomes of other downstream
auctions. Therefore, we actually present a set of “Tightness Strategies,” and we differentiate them
in this dissertation with respect to the preference function used in the decision-making strategy
(the other two sub-strategies are kept the same, for the sake of evaluation). The idea of the
tightness strategy was introduced previously [19]. For completeness, we reproduce the main ideas
in this dissertation, followed by presentation of the other two variations in the decision-making
sub-strategy. Then, two other strategies are introduced for purpose of performance evaluation and
comparision. These two strategies do not make use of the “tightness” concept, and they differ with
respect to the bidding and decision-making strategies.

4.1 Network Scenario and Auction Rules

Figure 4.1 depicts the scenario considered in this dissertation for data offloading through D2D
communications using recursive auctions. The lines connecting the devices indicate wireless con-
nectivity, and the arrows indicate a path that a packet might take to traverse the D2D network
from a source access point (AP) to a destination AP after recursive auctions are performed by the
nodes themselves.

A backbone AP initiates a forwarding request by broadcasting a special packet that we name it
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Figure 4.1: Data offloading scenario via D2D communications and recursive auctions. The nodes
relay packets from one source AP to a destination AP.

“request for bids” (RFB). The RFB announced by a source AP contains the following information:

• Maximum budget B0 available for successful delivery of a given data packet to its destination
AP;

• Deadline for packet delivery, translated into a maximum number of hops H0 allowed for a
packet to traverse the D2D network before reaching the destination AP, beyond which it is
declared unsuccessful; It is assumed that the operator computes this quantity;

• A fine F0 to be paid if the packet is not delivered to destination within the “deadline” of H0

hops.

Every AP neighbor node that receives the RFB must participate in the auction by making a
bid with the sending of a bid packet. After waiting for a time interval t0 long enough to receive the
neighbors’ bids, the source AP decides for the auction winner by always choosing the node with the
lowest bid bi ≤ B0, ∀i ∈ B, where B is the set of nodes whose bids were received by the auctioneer
within the time interval t0. Only then, the source AP forwards the packet to the auction winner.
From this point on, per packet hop-by-hop recursive auctions are performed in order to forward
each data packet towards the destination AP. Each device has the freedom to deliver the packet to
the destination AP either via the D2D network or the provider’s infrastructure backbone of APs
(if within range, of course). Using any backbone AP for delivery guarantees 100% packet delivery,
but a node that bypasses the D2D network by using the backbone must pay a price equal to the
initial maximum budget B0 (when the packet was first introduced in the network).

Each node is free to advertise its own maximum budget and fine in its RFB, except for the
maximum number of allowed hops, which decreases from the original H0 every time the packet is
forwarded one hop. In the nth auction for a given packet, Fn ≤ Bn, i.e., the fine must be smaller
than or equal to the budget defined in the RFB. Also, the advertised fine in every auction must
be smaller than or equal than the fine agreed upon for the previous hop, i.e., Fn ≤ Fn−1, where n
indicates the nth auction for a given packet. After receiving the bids, a node chooses the winner
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downstream node based on its own strategy. A node that wins an auction is allowed to drop the
packet based on its own strategy. In order to avoid routing loops, a device is not allowed to bid
for a data packet it has already forwarded once. An upstream node pays the agreed budget to the
chosen downstream node if the packet is successfully delivered to the destination AP. Otherwise,
the downstream node must pay the agreed fine to the upstream node if the data packet does not
reach the AP destination within H0 hops (and then, successively, all the way upstream). A node’s
balance may be temporarily negative.

4.2 Tightness Strategies

When a source access point (AP) announces its request for bids (RFB), it announces the budget
B0 along with a fine F0 to be paid in case the data packet is not delivered to the destination AP
within a deadline H0. In this dissertation, the deadline is expressed in terms of number of hops,
since it is a metric easier to deal with in the context of D2D communications1. It is assumed that
the operator translates the actual time interval into a number of hops based on some estimate of
the average delay per hop. Let hci denote the number of hops (or “hop count”) of the shortest path
computed from node i to the destination AP. Also, let pi denote the number of hops traversed
by a packet from the source AP to a given node i in the network. A key metric in the tightness
strategy is the definition of a “tightness function” ∆i for a node i in the network, i.e., ∆i measures
how “tight” a node i is with respect to making the deadline H0 imposed by the source AP. In other
words, given the timeout H0 announced by the source AP, and the number pu of hops already
traversed by the data packet all the way to node i’s upstream node u (the one who issues the
RFB), ∆i measures the “surplus” or “deficit” (in number of hops) that node i possess with respect
to the timeout H0 if the data packet were forwarded through its shortest path to the destination
AP. In other words,

∆i = (H0 − pu − 1)− hci, ∀i ∈ N (u), (4.1)

where N (u) is the set of nodes who are able to overhear the RFB from node u, i.e., the neighbors
of node u. Therefore, if ∆i < 0, node i cannot deliver the data packet within the deadline (even if
the data packet follows node i’s shortest path to the destination AP). On the other hand, if ∆i = 0,
node i needs exactly the number of hops contained in its shortest path to the destination AP in
order to make the deadline. This is a “tight” situation for node i, since it relies on the unpredicted
outcome of other downstream auctions for the packet to arrive within the deadline. Finally, if
∆i > 0, node i has a higher chance to deliver the data packet within the deadline because the
packet may even deviate from its shortest path to the destination AP, but it has a “surplus” of
hops before the deadline is up.

4.2.1 Bidding Strategy

The rationale for making the bid takes into account the likelihood of fullfilling the task of
delivering the packet at destination within the deadline. Otherwise, a fine will be paid to the

1The deadline was also expressed in terms of number of hops to destination in the MANIAC Challenge 2013 [16].
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operator. Hence, each node needs to assess how likely it is to deliver the packet as compared to
other auction contenders (or competitors). For that, we first need to determine the set N (u) of
neighbors of the upstream node u. This set contains our competitors in the upcoming auction, and
it can be easily found because all nodes have complete knowledge of the network topology. For
each node i ∈ N (u), we compute ∆i according to (4.1). Based on the values of ∆i, we create a
subset S(u) ⊆ N (u) that contains all nodes in N (u) such that ∆i ≥ 0, i.e., the set S(u) contains
all nodes that are actually able to deliver the packet within the deadline and, therefore, they are
the ones most likely to win the auction announced by node u (our actual competitors). Observe
that, we are assuming that node u will usually prefer not to pay a fine. Given S(u), we want to
estimate how competitive we are in terms of packet delivery from the point of view of node u. It
is reasonable to expect that the likelihood of successfully delivering a packet will play a key role
in any decision making by any node. Therefore, we choose to find out how competitive we are
by using our “tightness function.” Specifically, we compute how “tight” we are with respect to the
average tightness ∆ of nodes in S(u), defined as

∆ =
1

|S(u)|
∑

i∈S(u)

(H0 − pu − 1)− hci = (H0 − pu − 1)− hc,

where |S(u)| is the cardinality of S(u), and hc is the average optimal hop count over all i ∈ S(u),
i.e., the average shortest path to the destination AP computed for each node i ∈ S(u). Once the
average tightness ∆ is found, we compute our relative tightness cn, defined by

cn =
∆n

∆
, (4.2)

where the subscript n is used to identify ourselves. It is important to mention that the above
computation will only happen if our tightness function is such that ∆n > 0 and |S(u)| > 0.
Otherwise, we have specific rules for making our bid (explained later).

Observe that, if cn < 1 and ∆n > 0, then our competitors are better positioned than us (on
average, with respect to a surplus of hop counts). Therefore, there is a high chance that they
become more aggressive to win the bidding, since they may feel that they can deliver the packet
in time. At the same time, since cn < 1, it means that we are running a higher risk on not having
the packet delivered to its final destination, compared to others. Therefore, we may want to set
a higher bid (closer to the budget Bu) because the risk should not be worth it to take. In case
cn ≈ 1, we have similar conditions than other competitors and, therefore, we should try to win
the auction with a lower bid compared to previous case. However, if cn > 1, it means that we are
better positioned than the average of our competitors. Therefore, we should strive to win the bid
by offering a very attractive price (closer to the fine Fu). In addition to cn, another important
metric to take into account is how ∆n (the value of our tightness function) compares to the biggest
value of ∆i for i ∈ S(u). This is because, if ∆n > ∆max = maxi∈S(u) ∆i, it means that we are
the best choice for the upstream node u in terms of a positive surplus of hop counts towards
destination. Therefore, we should strive to win the auction by becoming as aggressive as possible
in our bid (i.e., to set lower values for the bid to make sure we win the auction). Otherwise, if
∆n � ∆max, we should have very low expectations to win the auction and, therefore, we should
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not make dramatic changes in our bid for different values of cn. Based on that, we define the
parameter an that compares our tightness value with the best tightness value in S(u), i.e.,

an =
∆n

∆max
. (4.3)

Given the values of cn, an, the budget Bu, and fine Fu announced by the upstream node u, and
since Fu ≤ Bu (according to auction rules), our offered bid O(x), will be given by

O(x) = (Bu − Fu)

[
1− 1

1 + e−an(cn−1)

]
+ Fu, (4.4)

where x = [an cn Fu Bu], and Fu ≤ O(x) ≤ Bu, i.e., we opt for never making a bid less than
the established fine Fu. As it can be seen, the logistic function is centered on cn = 1, and the
steepness of the curve is controlled by an. Figure 4.2 shows an example of the offered bid function
for different values of an when Bu = 200 and Fu = 80. Finally, if ∆n < 0, we discourage the
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Figure 4.2: Example of offered bid curves O(cn) for different values of the parameter an when
Bu = 200 and Fu = 80.

upstream node from choosing us by setting our bid equal to the budget Bu. Likewise, if there is
no competition, i.e., we are the only node reachable by the upstream node, we set our bid to the
maximum value Bu, and if ∆n = 0, it means that we are very “tight” and, therefore, we should set
our bid to Bu (high risk).

4.2.2 Budget-and-Fine Set Up Strategy

Once an auction is won, the strategy to set the budget Bn and fine Fn values to be announced
in an RFB is based on a fixed rule. Given that an upstream node has paid a node n an amount
equal to the winner offer O∗, the budget Bn and fine Fn will be set to

Bn = 0.95×O∗n−1 and Fn = 0.4×Bn, (4.5)
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where the values of 40% and 95% were assumed to be reasonable values that can afford losses not
so high from time to time (according to auction rules).

4.2.3 Decision-Making Strategy

In order to determine who wins an auction, an auctioneer considers both the bid bi and relative
tightness ci of each node i who has replied to the announced RFB within a given time period
(a timeout value is set after which a decision is made). Let B denote the set of bidders to the
announced RFB. The node to which the packet is relayed is based on the outcome of a preference
function P evaluated on the set {(bi, ci)|i ∈ B}. The winner bidder is the one that provides the
largest P value, i.e.,

auction winner = arg max
i∈B

P (bi, ci). (4.6)

Notice that, for a given RFB, Fn ≤ bi ≤ Bn, and ci ≤ cmax, where cmax depends on the largest ∆i

for all i ∈ B. Therefore, the auctioneer needs to compute ci for all i ∈ B in order to decide the
winner. In this work, two types of preference functions are used, based on which three different
strategies are defined. The first preference function is based on a hyperplane, and the second is
based on a Gaussian function.

Hyperplane Preference Function: the main motivation for a hyperplane as a preference
function is its simplicity and low computational complexity. Also, by setting appropriate constant
values, the plane can be tilted to reflect a certain weight towards bi or ci in the decision-making
process. To define the hyperplane, we pick some points of interest and assign specific values to
it. For instance, the lowest preference should be given to bidders with ci = 0 and bi = Bn, since
these are nodes that charge the most to relay a packet in a very tight condition (no room for
mistakes in the forwarding process). Hence, we set Pn(0, Bn) = 0. On the other hand, the highest
preference should be given to bidders with ci = cmax and bi = 0, i.e., they have a “surplus” of hops
before timeout happens (they are less tight), and they relay the packet for free. Other interesting
cases are Pn(0, 0), where the bidder is “tight,” but it relays for free, and Pn(Bn, cmax), where the
bid is maximum, but the bidder has the lowest tightness. Hence, if we let Pn(0, 0) = k1 and
Pn(Bn, cmax) = k2, we may choose 0 < k1 < k2 to reflect our tendency to favor packet delivery as
opposed to increase our budget. The plane that intersects these points define Pn(bi, ci), given by

P (bi, ci) = k2

(
ci
cmax

)
− k1

(
bi
Bn

)
+ k1. (4.7)

Notice that, the input values to the hyperplane are based on the relative values ci/cmax and bi/Bn.
Therefore, this preference function is designed to work with any auction in the network, regardless
of the specific RFB and bid values. Figure 4.3 shows an example of a hyperplane preference
function with Bn = 20, cmax = 3, k1 = 2, and k2 = 3.

Gaussian Preference Function: For the second preference function, we want to investigate
a function that has a global maximum at a given local operating point. For that, we use a two-
dimensional Gauss-like function because the operating point can be easily set up and we want to
have its shape modified according to specific bid and RFB values of an auction (so, not only the
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Figure 4.3: Example of preference function for the values Bn = 20, cmax = 3, k1 = 2, and k2 = 3

operating point, but also the shape of the function is modified in every auction). Hence, P (bi, ci)

is given by

P (bi, ci) =
1

2πσbσc
√

1− ρ2
exp

{
−
[

(bi − b∗)2

2σ2b (1− ρ2)
− 2ρ(bi − b∗)(ci − c∗)

2σbσc(1− ρ2)
+

(ci − c∗)2

2σ2c (1− ρ2)

]}
, (4.8)

where (b∗, c∗) is the desired operating point, and σb, σc, and ρ control the shape of the function.
Hence, given a set of n = |B| bid values, σ2b and σ2c are computed as

σ2b =
1

n− 1

n∑
i=1

(bi − b∗)2 , σ2c =
1

n− 1

n∑
i=1

(ci − c∗)2 , (4.9)

i.e., σb and σc express the root-mean-square deviation from the operating point (b∗, c∗). Likewise,
borrowing from the definition of correlation,

ρ =

∑n
i=1(bi − b∗)(ci − c∗)

(n− 1)σbσc
, (4.10)

which gives an idea of how “correlated” the sets {bi} and {ci} are, and define the shape of P (bi, ci).
Figure 4.4 shows an example of a preference function generated from data drawn from one of the
auctions performed in simulations. Observe that, for each auction, one operating point is chosen,
and all bids and tightness values are compared to the optimal case in that particular auction. The
auction winner is the node whose bid and tightness values are closer to the operating point. In
simulations, we investigate two operating points.

4.3 Baseline Strategies

In this chapter we define two baseline strategies for purposes of performance evaluation. The
first strategy is designed to investigate what happens if the goal of every auctioneer is to deliver
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the packet to the destination no matter the values of the bids. In this case, the decision-making
strategy of every auctioneer is simply to use shortest-path routing, i.e., to always relay the packet to
the bidder in the shortest path towards destination, regardless of its bid. In addition, because the
value of the bid is not taken into consideration, it is assumed that each node has its own, unknown,
bidding strategy. To represent the collective behavior of every node having its own bidding strategy,
we make every node to bid a value uniformly drawn from the interval [Fu, Bu], where Fu and Bu

are the fine and budget values announced in the received RFB. Finally, the budget-and-fine setup
strategy follows the same one defined in Section 4.2. Henceforth, this strategy will be referred to
as Shortest Path strategy.

The other strategy we investigate assumes that every auctioneer always relay the packet to the
node whose bid is the lowest among the nodes i ∈ B. Therefore, with this strategy, we investigate
what happens if every auctioneer is greedy, and always want to increase its own budget regardless
of packet delivery. Similar to Shortest Path, we assume that nodes run different bidding strategies
that are collectively represented by random values chosen in [Fu, Bu]. Finally, the budget-and-fine
setup strategy follows the same one defined in Section 4.2. Henceforth, this strategy will be referred
to as Lowest Bid strategy.
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Chapter 5

Application Model in NS-3

5.1 The NS-3 Simulator

To evaluate the performance of our strategies we used the ns-3 simulator, which is a discrete-
event network simulator targeted primarily for research and educational use. The ns-3 project [20]
is an open-source project that started in 2006. It strives to maintain an open environment for
researchers to contribute and share their software (in our work we used the 3.17 version). Its
simulation core and models are implemented in C++. ns-3 is built as a library which may be
statically or dynamically linked to a C++ main program that defines the simulation topology and
starts the simulator. ns-3 also exports nearly all of its API to Python, allowing Python programs
to import an “ns3” module in much the same way as the ns-3 library is linked by executables in
C++.

5.1.1 NS-3 Organization

The source code for ns-3 is mostly organized in the src directory and can be described by the
diagram in Figure 5.1. This figure show the most important modules of the ns-3. An ns-3 module
may consist of more than one model (for instance, the internet module contains models for both
TCP and UDP). In general, ns-3 models do not span multiple software modules, however. Also,
modules only have dependencies on modules beneath them. Here it is important to distinguish
between modules and models:

• ns-3 software is organized into separate modules that are each built as a separate software
library. Individual ns-3 programs can link the modules (libraries) they need to conduct their
simulation.

• ns-3 models are abstract representations of real-world objects, protocols, devices, etc.

In Figure 5.1, the first module is the core of the simulator, which encompasses the components
that are common across all protocol, hardware, and environmental models. The simulation core is
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Figure 5.1: Software organization of ns-3 [4]

implemented in src/core. Packets are fundamental objects in a network simulator and are imple-
mented in src/network. These two simulation modules by themselves are intended to comprise
a generic simulation core that can be used by different kinds of networks, not just Internet-based
networks. The above modules of ns-3 are independent of specific network and device models.

The basic element of the simulator is the node (implemented by the ns3::Node class). To the
node are added the NetDevices (equivalent to the network adapters) and objects related to the
protocols and applications. The ns3::Node class can be inherited. However, it gives preference
to the aggregation and insertion of objects. The Figure 5.2 shows a high-level diagram and some
objects that can be aggregated to the node.

5.1.2 A New Application Model

In several cases, users may not be satisfied with a mere adaptation of the existing models.
They may want to extend the core of the simulator in an innovative way. The architecture of
the Figure 5.1 was designed to facilitate the addition of new features. For this, we need to
decide in which sub-folder we have to put the new model. The sub-folder src/devices con-
tain the network devices models, such as Wifi, Wimax, CSMA, P2P, etc. Whereas the sub-folder
src/applications comprises several types of applications, for instance, OnOff, UdpEcho, etc. The
sub-folder src/internet-stack has the classes that deal with the network and transport protocols.
The routing algorithms can be found in the src/routing sub-folder.

In this project, we created a new application model for mobile data traffic offloading, located at
the src/applications folder (application module). That is why we will describe with more details
its operation and organization. Below we briefly explain the packets structure of our new applica-
tion, the ns3::Offloading application class and the helper class (ns3::OffloadingHelper).
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Figure 5.2: High-level node architecture [5]

5.1.2.1 Packet Structure

As explained in Chapter 4, we have different types of packets for our application, each one with
different information in its headers. To manage this, we created the files offloading-packet.cc
and offloading-packet.h that contains the description of each packet structure and size (they
were placed in the src/applications/model/ directory). These files are essential to the operation
of the application, and are used in the ns3::Offloading class operation.

To facilitate the identification of the packets type, we used some notations in these files. The
MessageType enumerator represents these notations below:

enum MessageType

{

OFFLOADINGTYPE_RFB = 1, //!< OFFLOADINGTYPE_RFB

OFFLOADINGTYPE_BID = 2, //!< OFFLOADINGTYPE_BID

OFFLOADINGTYPE_DATA = 3, //!< OFFLOADINGTYPE_DATA

};

Then each packet type has its identification. To store this information in the packet we used the
ns3::TypeHeader class, which is inherited by the ns3::Header class. Thus the ns3::TypeHeader
class defines the type of each packet, which, consequently, defines the packet structure.

The RFB packet header is defined in the ns3::RFBHeader class, which is also defined in the
offloading.cc file (all the packet header classes created are defined in this file). The RFB packet
header has its format showed in Figure 5.3, with the length of each field expressed in bits. The

27



first field describes the type of packet, with a length of 1 byte (8 bits). The “Hop count” field (1
byte) represents the number of hops of the shortest path calculated via OLSR information from
the auctioneer node to the destination AP. The “Deadline” field (1 byte) is used by the source AP
to set the maximum number of hops allowed for the packet to traverse. It is an integer, constant
value that the nodes cannot change. The “Packet ID” field (1 byte) contains the ID of this packet.
It is generated by the source AP. The “Bn” and “Fine” fields (4 bytes each) are the budget and
fine values respectively, set by the auctioneer node. The “Source IP Address” and “Destination
IP Address” fields (4 bytes each) are the addresses of the APs involved (source and destination).
The last field, “RFB Source MAC Address” (6 bytes), is the MAC address of the auctioneer node,
which is used internally by the ns3::Offloading class to avoid collisions among the ARP packets.
The ARP protocol is responsible to “translate” the IP addresses to MAC addresses to make the
communication in the MAC layer feasible. However, in our auctions too many nodes tries to
broadcast bid packets at the same time which causes some collisions between the ARP packets
at the MAC layer. Then to prevent this, we pass the MAC address directly through the RFB
packet which force the participant nodes to complement its ARP tables and avoid to send ARP
packets later. At a real case, this field would not be mandatory since there are other solutions
to prevent ARP packets collisions, but we used this solution to our simulations as a temporary
solution. Thus, the total length of the RFB header is 26 bytes.

Figure 5.3: RFB packet header format.

For the bid packet header, we created the ns3::BidHeader class, and its header format is
presented in Figure 5.4. The fields “Type”, “Packet ID”, “Source IP Address” and “Destination IP
Address” have the same length and functions of the RFB header. The “Reserved” field (2 bytes)
is not used, but is reserved for this packet to future use. The “Bid Offer” field (4 bytes) is the
value of the bid of the node competitor that generated this packet. Finally, the total size of the
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bid packet is 16 bytes.

Lastly, the winner node of each auction will receive the packet containing the actual data.
We created the ns3::DataHeader class to describe the header of this packet, and its structure is
showed in Figure 5.5. This packet header is more simple, and only have some basic fields: “Type”,
“Source IP Address”, “Packet ID”, “Destination IP Address” and “Hop Count”. The total size of
this data header is 11 bytes. The size of the data payload is defined in the ns3::Offloading class.

Figure 5.4: Bid packet header format.

Figure 5.5: Data packet header format.

5.1.2.2 Offloading Helper

The ns-3 simulator makes use of various advanced programming concepts such as smart pointers
for reference-counted memory management, attributes, namespaces, callbacks, etc. Users who work
at this low-level API can interconnect ns-3 objects with fine granularity. However, a simulation
program written entirely using the low-level API would be quite long and tedious to code. For this
reason, a separate so-called “helper API” has been overlaid on the core ns-3 API.

A helper API has a few goals:

• The rest of src/ has no dependencies on the helper API; anything that can be done with
the helper API can be coded also at the low-level API
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• Containers: Often simulations will need to do a number of identical actions to groups of
objects. The helper API makes heavy use of containers of similar objects to which similar
or identical operations can be performed.

• The helper API is not generic; it does not strive to maximize code reuse. So, programming
constructs such as polymorphism and templates that achieve code reuse are not as prevalent.
For instance, there are separate CsmaNetDevice helpers and PointToPointNetDevice helpers
but they do not derive from a common NetDevice base class.

• The helper API typically works with stack-allocated (vs. heap-allocated) objects. For some
programs, ns-3 users may not need to worry about any low level Object Create or Ptr
handling; they can do with containers of objects and stack-allocated helpers that operate on
them.

The helper API is really all about making ns-3 programs easier to write and read, with-
out taking away the power of the low-level interface. And it was based on this principle that
we decided to build our own helper for our ns3::Offloading application. This helper is de-
scribed in the offloading-helper.h and offloading-helper.cc files, and they were placed in the
src/applications/helper/ directory. In these files we basically create the ns3::OffloadingHel-
per class and its functions that will help the simulation to use the ns3::Offloading class.

The first function is the constructor OffloadingHelper::OffloadingHelper, that creates an
instance of this helper. Following, the OffloadingHelper::SetAttribute function set the at-
tributes of the ns3::Offloading class. These attributes will be presented in Section 5.1.2.3. There
are three types of OffloadingHelper::Install functions: one that install a single node by read-
ing its smart pointer Ptr<Node>, other that installs a single node by reading its name and another
that installs all the nodes of the NodeContainer. All these three OffloadingHelper::Install

functions aim to install our Offloading application in the nodes.

The function OffloadingHelper::SetBackbone is used to inform some node about what is the
set of node IP addresses that belongs to the backbone, i.e., to inform some node the whole set of
APs. This helps the Offloading application to deliver the packets to the right destination. The
OffloadingHelper::SetTightnessParameters function sets directly to the application 4 basic
parameters of the “Tightness” strategies: k1, k2 and the RFB percentage parameters (0.95 and 0.4

in our simulations). The function OffloadingHelper::SetMapNodes passes the graph mapping
to all the nodes of the node container. This mapping is essential to the Dijkstra calculation of
the shortest path, because we have to map the IP addresses to integer numbers to allow the
graph calculation. Finally, all the remaining functions (OffloadingHelper::SetTopologyName,
OffloadingHelper::SetSeedIndex, OffloadingHelper::SetParamName and OffloadingHelper-

::SetExpIndex) are used to create the respective folder of the experiment, which must include the
topology name, seed number, parameters (k1 and k2 values) and the name of the experiment (the
name of the experiment is chosen by the simulator user at each new experiment).
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5.1.2.3 The Offloading Class

Now we will focus on explaining the ns3::Offloading class that is installed in each node
of the network. Similar to all ns-3 models, we have to set some attributes and functions. In
Section 5.1.2.2 we explained that the OffloadingHelper::SetAttribute is used to give values to
the ns3::Offloading class attributes. Now we will describe them.

The first attribute is the “NPackets”, which is the number of packets that the node will gen-
erate if the node is an AP. The “StrategyType” and “PreferenceFunctionType” are the types of
the strategy and Preference Function used by the node (in case that the strategy is a Tightness
strategy), respectively. The following values are the possible options for these two types:

enum StrategyType

{

STRATEGYTYPE_DUMMYBID = 1, //!< STRATEGYTYPE_DUMMYBID

STRATEGYTYPE_DUMMYPATH = 2, //!< STRATEGYTYPE_DUMMYPATH

STRATEGYTYPE_TIGHTNESS = 3, //!< STRATEGYTYPE_TIGHTNESS

};

enum PreferenceFunctionType

{

PREFERENCEFUNCTION_PLANE = 1, //!< PREFERENCEFUNCTION_PLANE

PREFERENCEFUNCTION_GAUSS = 2, //!< PREFERENCEFUNCTION_GAUSS

PREFERENCEFUNCTION_GAUSS_1 = 3, //!< PREFERENCEFUNCTION_GAUSS_1 (with cn=1)

};

The “Destination Address” is the IP address of the destination AP. “RemotePort” is the des-
tination port of the outbound packets (we used the port number “9” in the main script of the
simulations). The “Budget”, “Fine” and “Deadline” attributes are the basic parameters of the RFB
generated by the source AP, i.e., B0, F0 and H0. After the application is installed and initiated
in the AP node, the application waits for “StartOffloading” seconds to initiate packet generation.
Finally, “NumberNodes” is the number of nodes using OLSR, the routing protocol used to build
the topology graph in the “Tightness” strategies.

After defining the class attributes, we define the functions. The first is the basic construc-
tor Offloading::Offloading(), that sets initial values of some internal variables and events.
Next, we have a basic function called Offloading::SetRemote that sets the socket values (IP
address and port number), and it has two variants depending on the input address type. The
following set of functions (Offloading::SetBackbone, Offloading::SetTightnessParameters,
Offloading::SetMapNodes, Offloading::SetTopologyName, Offloading::SetSeedIndex, Off-
loading::SetParamName and Offloading::SetExpIndex) are the ones that are used by the Offlo-
adingHelper to facilitate the initial configuration of the application, as explained in Section 5.1.2.2.

In addition to these basic functions we have the essential functions that must exist in all the
application models: StartApplication and StopApplication. The Offloading::StartApplica-
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tion function configure the initial environment, like creating the offloading report files, separating
who is a backbone node (AP) (and not), configuring the application socket, mapping the network
graph nodes and initiating (and scheduling) the AP RFB event. The Offloading::StopApplica-
tion clears the sockets and cancels the application events.

Another essential function and very common in the ns-3 application models is the HandleRead
function. The basic idea of this function is to get the packets received by the node and treat each
of them. It is important to include this function because of the packet reception mechanism of the
ns-3 simulator. The Figure 5.6 shows how the packet arrives at the application layer, after passing
through all the lower layers.

Figure 5.6: Receive path of a packet [5].

To get the packet and treat its content, first we have to deal with the application socket by
using the RecvFrom(Address) function from the Ptr<Socket> smart pointer. This function will
return the packet received by the node socket from the node with the address “Address”. After
that, we remove the packet header, that contains the type of packet being treated (RFB, bid or
data). Then, the next action will depend on the type of the packet. For example, if we received
an RFB packet, we have to send our bid; or if we receive a bid packet, we have to decide who is
the winner node and send a data packet.

To take the actions after treating the packets in the Offloading::HandleRead function, we need
other three basic functions: Offloading::SendRFB, Offloading::SendData and Offloading::-
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SendBid. They are responsible for sending the three types of packets of the offloading application.
It is important to note that these three functions and the actions of the HandleRead function are
all based on the rules and strategies discussed in Chapter 4.

It is also very important to remember that this ns-3 offloading model is a cross-layer im-
plementation, which involves the application layer and the network layer, because of the OLSR
dependence. To communicate with this layer, and get the OLSR information about the topol-
ogy of the network, we created some specific functions, like Offloading::HopCountComputation,
Offloading::BuildGraphDijkstra, Offloading::DijkstraComputePaths and Offloading::Di-

jkstraGetShortestPathTo. All these functions use the OLSR state information, obtained from
the OLSR routing protocol model, located in the src/routing/olsr/ directory. To let the OLSR
state public, we had to modify some files, as showed in Section 5.1.3 and Appendix II.

Finally, we created the Offloading::WritePacket, which is responsible for writing the packet
information in the offloading reports. These reports and its post processing operation will be
discussed with more details in the Section 5.2.

5.1.3 Modified Modules

All the ns-3 files, released 3.17, that have been modified are showed in the Appendix II section.
These modifications were made to allow our application to access some ns-3 class information
(as in the OLSR case, where we modified the olsr-routing-protocol.h file) or to expand the
number of inputs allowed at some ns-3 core class functions (like the modifications made at the
make-event.h and simulator.h files). In the Apendix, we only show the differences between the
original and modified files, by using the Unix command diff.

5.2 Post Processing

After running simulations in the ns-3 simulator, we have to process all offloading data that is
gathered. All the simulation data is stored in reports using the text file format. Each node generates
a file containing a table with some columns representing packet information, and each row of the
table represents a packet that is offloaded by the node. As an example, Table 5.1 illustrates a
real case that we collected. This table was generated by the simulation of the Tightness strategy
without mobility, with k1 = 2 and k2 = 3 (in this case, the table corresponds to the whole report
file of node 032).

Each column of Table 5.1 has its meaning. The first column is the ID of the source Access
Point node that generated the packet (three digits, “000” to “999”). The second column indicates
the packet ID. Since each source node sends 50 packets, the packet ID ranges from “0” to “49”. The
“Next” column indicates the next node to which the packet was sent after the auction was over. In
other words, it is the winner node. In case of success (when the packet reaches destination within
the deadline), this node has to earn the bid that was negotiated in the auction with the upstream
node (“eBID” column), and it has to pay the bid that was negotiated with the next node winner
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Source pktID Next eBID pFINE pBID eFINE sBUDGET fBUDGET status balance accum
001 22 104 950.00 380.00 902.50 361.00 47.50 28.50 3 28.50 28.50
001 30 104 950.00 380.00 902.50 361.00 47.50 28.50 3 28.50 57.00
001 32 104 950.00 380.00 902.50 361.00 47.50 28.50 3 28.50 85.50
002 11 096 700.00 400.00 665.00 266.00 35.00 -99.00 1 35.00 120.50
002 16 096 700.00 400.00 665.00 266.00 35.00 -99.00 1 35.00 155.50
002 20 096 700.00 400.00 665.00 266.00 35.00 -99.00 1 35.00 190.50
002 38 096 700.00 400.00 665.00 266.00 35.00 -99.00 1 35.00 225.50
002 41 096 700.00 400.00 665.00 266.00 35.00 -99.00 1 35.00 260.50
002 47 096 700.00 400.00 665.00 266.00 35.00 -99.00 3 -99.00 161.50
030 19 034 665.00 266.00 631.75 252.70 33.25 19.95 1 33.25 194.75

Table 5.1: Example of a node offloading report at the end of a simulation.

(“pBID”). In case of fail, it will also have to pay the fine imposed by the upload node (“pFINE”),
and it will earn the fine of the next node (“eFINE”). In the end of the simulation (and before doing
the post processing) we already know that the budget of this packet will be a successful packet
budget (“sBUDGET”) if the packet reached the destination within the deadline, or a fail packet
budget (“fBUDGET”) if the packet was dropped. Then, depending on the final packet status, the
packet budget will assume one of the values presented in Eq.(5.1):

sBUDGET = eBID − pBID, or

fBUDGET = eBID − pBID − pFINE + eFINE
(5.1)

5.2.1 Accountability Process

Each node report file was generated by the ns-3 simulator. But, to process these reports after
simulations, we used Perl scripts, which is one of the best and simplest languages to manipulate this
kind of text files. So, the last three columns are used by the Perl scripts to make the computation,
which we called the accountability process, and it is the first part of the data processing.

The accountability can be done in real time or offline. The latter is simpler because it is done
after the network ends its operation, and then, the telecommunications company can collect all
the node reports and make all the accounts, including discounting fines. In the real time mode, it
does this process at the same time as the packet reaches the backbone or it is dropped. However,
as the real time case is more complex, and it does not represent such an advantage for this study,
we decided to use the offline case.

Now, let us understand what we computed and what these last 3 fields of the node report file
represents. First, the “status” field is a number that indicates what happened with the packet in
the end. If the packet was successful (reached the right destination within the deadline H0) then
status = 1; if it reached the backbone within the deadline, but at the wrong destination AP, then
status = 2; if it reached the backbone after the deadline, then status = 3; and finally status = 4 if
the packet was dropped before reaching the backbone. This “status” variable is important because
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it makes possible for the Perl scripts to calculate the Packet Delivery Ratio (PDR) of the AP
nodes, to know which nodes will have to pay a fine, how much this fine value would be (in case of
failure) and how many hops each packet had to go through.

The “balance” field depends on the status value. If status = 1, then balance = sBUDGET ,
otherwise balance = fBUDGET . Thus, the balance is nothing but a final “packet budget”. Finally,
the “accum” field is an accumulated value of each final packet budget. Therefore, the last field of
the last line of the report file table represents the total budget accumulated by the node.
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Chapter 6

Simulation Results

In the chapter, we present simulation results divided into two groups, according to node mo-
bility: static and mobile topologies. But first, let us discuss about the simulation scenarios. As
presented in Section 4.2 there are many possibilities to set up each sub-strategy in the “tightness
strategies” class. Therefore, we focus on three specific setups, which are defined according to the
chosen decision-making strategy and respective parameters. To differentiate them, the following
nomenclature is used:

• Tightness: this is the tightness strategy based on the hyperplane preference function with
parameters k1 = 2, and k2 = 3, i.e., a slightly higher weight is given to the ratio ci/cmax as
opposed to bi/Bn (packet delivery is considered more important than budget);

• Gauss: Gaussian preference function with operating point (Fu, cmax), i.e., highest preference
is given to the bid that is the closest to the smallest possible value (the announced fine
Fu), and whose node has a tightness value closest to cmax. This would locally maximize
the budget and the likelihood of deliverying the packet within the deadline (surplus of hops
before timeout is reached);

• Gauss1: Gaussian preference function with operating point (Fu, 1). In this case, the highest
preference is given to the bid that is the closest to Fu, but whose bidder has a tightness value
equal to the average tightness (cn = 1). This is a more relaxed situation, where the surplus
of hops to destination is not considered so critical to make a decision on the auction winner;

6.1 Simulation Scenarios

The performance of Tightness, Gauss, and Gauss1, as well as Shortest Path and Lowest Bid,
is evaluated with discrete-event simulations using the ns-3 network simulator [20]. Ten topologies
are used with 100 nodes forming the D2D network, and 32 other nodes acting as Wi-Fi access
points (APs) to the operator’s backbone. All AP nodes are fixed located and evenly spaced on
the border of a square terrain of 800 × 800 m. Two scenarios are investigated: static and mobile.
In the static scenario, one of the topologies is based on a grid of nodes forming the D2D network,
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while the other topologies are based on nodes randomly placed on the terrain. Figure 6.1 depicts
an example of a random topology used in simulations, where the green lines indicate connectivity
between nodes (transmission range).

Figure 6.1: Example of random topology used in simulations. The green lines indicate connectivity
between nodes based on the transmission range.

In the mobile scenario, all D2D nodes move according to the random walk mobility model
available in the ns-3 simulator. Three mobile scenarios are investigated, based on three different
speeds: 0.5 m/s, 0.75 m/s, and 1.0 m/s. In all three scenarios, nodes change direction every 10 m
(randomly). The chosen speeds reflect walking behavior, which is an appropriate scenario for per-
packet recursive auctions, and also because the investigated strategies rely on the knowledge of
network topology (apart from Lowest Bid): topology information becomes less reliable as mobility
becomes too high. All nodes utilize the OLSR protocol to gather topology information and to
run their strategies. Every simulation has a “warm-up” period of 30 s before any auction happens,
during which the nodes start moving around and OLSR operates. This is to allow dissemination
of topology control information and to let the nodes have their routing tables populated before the
beginning of any auction.

As far as traffic generation is concerned, each AP node offloads a total of 50 packets into the
D2D network. But, each AP only starts its auctions when its neighbor AP finishes the auction of all
50 packets, i.e., AP nodes transmit consecutively, one after the other. Also, each AP node has a fix
destination AP to which all of its 50 packets are addressed. The destination AP is roughly located
in the opposite direction of the transmitting AP in the topology (i.e., diametrically opposed) so
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that the number of hops to destination is maximized (to make the offloading job more challenging).
This traffic generation pattern aims to provide a somewhat fair distribution of data flows in the
network, while avoiding location-specific interpretation of results (one of the goals of this study is
to understand fairness issues between strategies).

The time interval between the issue of requests for bids is 3.0 s. The auction timeout, i.e., the
time interval that a node waits before deciding for the winner of an RFB is 50 ms. Consequently,
the next AP in sequence waits for 160 s before issuing its first RFB (time for offloading all 50 packets
plus a guard interval of 10 s). The simulation is over once every AP node finishes offloading all of its
packets. This happens after 5,200 seconds of network operation (simulated time), which includes an
extra time interval to guarantee the relay of any packet still traveling in the network. Each packet
has an initial “deadline” (H0) of 10 hops, an initial budget (B0) of 1000, and an initial fine (F0) of
400. Finally, for the MAC- and PHY-layer parameters, all network nodes operate according to the
IEEE 802.11g ad hoc mode in the 2.407 GHz frequency channel. All frames are transmitted at 1
Mb/s, and no RTS/CTS frames are used. Energy detection threshold is set to -67.5785 dBm, while
the CCA threshold is set to -71.1003 dBm. Transmit power is 16.0206 dBm, which corresponds to
a transmit range of 150 m under the Friis large-scale channel propagation model. No small-scale
fading was implemented, since we wanted to minimize the occurrence of errors due to channel
impairments (and have a better ideia of packet delivery by each strategy). But, errors due to
large-scale propagation effects (path loss) could still occur, as well as packet collisions, especially
with OLSR broadcast messages or simultaneous bids (under CSMA/CA operation, of course).

The strategies are investigated based on four performance metrics: packet delivery ratio (PDR),
defined as the ratio of the number of packets delivered to destinations to the total number of
packets offloaded to the network; the relative average budget (RAB), defined as the ratio of the
average accummulated budget per node to the initial budget announced by every access point (i.e.,
B0 = 1000). In this case, we compute a relative value because the initial budget is just a symbolic
value. Therefore, it makes more sense to understand the average accumulated budget per node as a
gain over the announced budget per packet. The other two metrics are fairness, defined according
to Jain’s fairness index [27]

J (x0, x1, x2, . . . , xn) =
(
∑n

i=0xi)
2

n
∑n

i=0x
2
i

, (6.1)

where xi is the final budget at node i; The idea of this metric is to understand how fair each
strategy is regarding budget distribution among nodes. Finally, we investigate the average number
of hops (ANH) traversed by all packets that are offloaded to the network (successfully transmitted
or not).

6.2 Static Topologies

Now we present simulation results, according to node mobility: static and mobile topologies.
Figure 6.2 presents the results for the relative average budget (RAB) of all strategies. All tightness
strategies perform better than Shortest Path. In particular, Tightness and Gauss present the best
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Parameter type Values
Topologies - Mobile scenario: 10 topologies randomly generated

- Static scenario: 1 grid + 9 randomly generated
800 × 800 m square terrain

Mobility - 1.0 m/s, 0.75 m/s and 0.5 m/s
- Random walk model: change direction every 10 meters

Traffic Deterministic (50 packets per AP)
Time Intervals - OLSR “’warm up” = 30 seconds

- Between RFBs = 3.0 seconds
- Auction timeout = 50 milliseconds
- Guard interval = 10 seconds
- Simulation time = 5200 seconds

RFB Values (AP) H0 = 10 hops
B0 = 1000
F0 = 400

MAC and PHY - IEEE 802.11g ad hoc mode, 2.407 GHz
- Frames at 1 Mb/s
- Energy detection threshold = -67.5785 dBm
- CCA threshold = -71.1003 dBm
- Transmit power = 16.0206 dBm
- Transmit range (Friis) = 150 meters

Performance Metrics Evaluated - PDR (packet delivery ratio)
- RAB (relative average budget)
- ANH (average number of hops)
- Fairness: Jain’s index

Table 6.1: Summary of parameters used in the simulations.

results, with RAB values of 12.20 and 12.17, respectively, while Gauss1 performs slitghly worse,
with 11.74 RAB, but still better than Shortest Path with its 8.96 RAB. This indicates that, in
the static scenario, the bell-shaped preference functions (with operating points) are as profitable
as the hyperplane preference function. Tightness provides a gain of 36.15% over Shortest Path,
while Gauss1 also obtains good performance, with a 31.03% gain over Shortest Path. Lowest Bid
delivers poor performance, since it always picks the node with the smallest bid, regardless of its
chances to deliver the packet at destination. These results indicate that one of the design goals of
the tightness strategies was achieved, which is that of incentivizing nodes to join the D2D network
by delivering high profits to those that participate in the recursive auctions.

Figure 6.3 presents the results for packet delivery ratio (PDR). Shortest Path, Tightness and
Gauss deliver similar performance, with 0.94, 0.929 and 0.928 PDR, respectively. Gauss1 also shows
competitive performance, with 0.91 PDR. These results are very important, since they show that
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Figure 6.2: Relative average budget of all strategies under static topologies.

it is possible to achieve packet delivery ratios as competitive as those provided by Shortest Path
while, at the same time, guaranteeing higher RAB values per node. Also, it is interesting to observe
the low PDR variability between topologies in all strategies (including the tightness strategies), as
indicated by the standard deviation in the graphs. This indicates that, in the static scenario, and
compared to budget results, all strategies tend to lead to more stable routes toward destinations (in
the sense of PDR within the deadline), while budget accumulation is more dependent on the type
of topology. Finally, as expected, Lowest Bid performs very poorly, delivering almost no packets
to destination. This is because it does not aim to deliver the packets within the deadline, which
leads to an excessive number of packet drops.
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Figure 6.3: Packet delivery ratio (PDR) of all strategies under static topologies.

Figure 6.4 depicts the average number of hops (ANH) traversed by packets (successfully or
not). Gauss and Tightness deliver the best performance with similar results: 8.33 ANH. Surpris-
ingly, Shortest Path performs slightly worse than Gauss and Tightness, with 8.69 ANH This result
suggests that introducing the timeout constraint into the bidding and decision process (in terms
of number of hops) has a clear benefit to the overall ANH traversed by packets. In the tight-
ness strategies, the nodes themselves encourage (or discourage) the reception of a packet through
their bids, which take into account how tight a node is to deliver the packet within the deadline.
Curiously, however, the request-for-bids strategy used by Gauss1 does not provide a good ANH.
This is related to the fact that Gauss1 uses the average tightness cn = 1 in its operating point,
as opposed to cmax used by Gauss. Thus, Gauss1 prefers to relay the packet to a node that is
as tight as its neighbors (on average), and whose bid is close to Fu. Consequently, it is prone to
deliver the packet to someone that is not so likely to deliver the packet to destination. Here, it is
important to remember that all nodes use the OLSR protocol, which delivers a partial view of the
network topology, since the paths are computed over the multipoint relays only [17]. Therefore,
not all nodes are known to everyone, and some inaccuracies exist on shortest-path computation.
Using the tightness information for the bidding and decision process, there is a reassurance of the
best path since nodes may have different topology information. As expected, Lowest Bid has the
poorest performance, with about 9.81 ANH.

Figure 6.5 shows the results for budget fairness among nodes. Shortest Path achieves the
best fairness with 0.69, surpassing Tightness with 0.579, Gauss with 0.578, and Gauss1 with 0.54.
Again, Lowest Bid delivers the worst performance with just 0.18. To understand these results,
notice that, when nodes follow tightness-based strategies, the auction winner is generally a node
whose bid value is close to the announced fine Fu (one of the goals of the preference functions, as
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Figure 6.4: Average number of hops per packet under static topologies.

presented in Section 4.2). Thus, because a winner node keeps 5% of its bid before setting up its
own budget and fine values, budget gains decay along a route towards destination: the nodes close
to the transmitting AP get higher gains than those close to the destination AP. This is actually
a reasonable policy, since the nodes close to the transmitting AP assume higher risks early on,
with unpredictable outcomes, compared to those close to the destination AP, which have a better
assessment of the likelihood of packet delivery within the deadline. Under Shortest Path, the
budget gains still decay towards destination, since the budget-and-fine setup strategy is the same.
But, the bids of the nodes are randomly distributed in [Fu, Bu], and the winner bid is always the
one on the shortest path towards destination. Consequently, the winning bid is not necessarily
close to Fu, and this leads to larger variations on budget gains for different packets towards the
same destination AP. This is why Shortest Path achieves higher fairness compared to the other
strategies.

It is clear from previous results that Lowest Bid performs very poorly because it does not aim to
deliver the packet within the deadline. Therefore, it performs even worse under mobile topologies.
For this reason, in the following, we omit the results for this strategy.

6.3 Mobile Topologies

Figures 6.6, 6.7 and 6.8 shows the results for the relative average budget (RAB) under mobility.
Compared to the static case, the RAB values of all strategies decrease as mobility increases, as
expected. The most significant decay in performance happens with Gauss1, whose RAB decays by
54.8% just by starting moving at 0.5 m/s. Also, Tightness RAB decays by 35.0%, while Shortest
Path drops by 38.7%, and Gauss by 39.6%. As a result, the difference between Tightness and
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Figure 6.5: Budget fairness under static topologies.

both Gauss and Gauss1 increase under mobility. In fact, Tightness dominates RAB performance
in all speed scenarios. At 0.5 m/s, Tightness performance is 7.8% better than Gauss, 44.3% better
than Shortest Path, and 49.2% better than Gauss1. As mobility increases, all tightness strategies
surpass Shortest Path (Gauss1 is a bit worse than Shortest Path at 0.5 m/s). At the speed of
1.0 m/s, Tightness RAB decreases to 5.73, which is about 92.93% higher than Shortest Path (2.97
RAB), 16.94% higher than Gauss (4.90 RAB), and 70.54% better than Gauss1 (3.36 RAB).

Figure 6.7: Relative average budget per node of each strategy under mobility at 0.75 m/s.
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Figure 6.6: Relative average budget per node of each strategy under mobility at 0.5 m/s.

It is interesting to notice that having a preference function that focus on an operating (target)
point does not necessarily deliver the best RAB results under mobility. Instead, the plane preference
function works best. It is worth noting that both the parameters and shape of the Gauss-like
preference functions depend on the specific bid and tightness values of a given auction. Therefore,
it seems that the “best” decisions are too localized, which seems to reflect on the overall performance
as mobility increases. In the case of the plane preference function, the parameters k1 and k2 are
kept fixed in every auction performed in the network (we can interpret the ratios opi/Bn and
ci/cmax as input variables to the plane). Therefore, the same preference function is applied in
every single auction. The plane does not define a specific “operation point,” based on which a
maximum value can be drawn. It simply picks the node whose bid and tightness values lead to
the maximum on the plane preference function.

The strength of the “tightness strategies” under mobility is best appreciated if we look at
the results for packet delivery ratio (PDR) in Figures 6.9, 6.10 and 6.11. Surprisingly, Tightness
and Gauss achieve better PDR than Shortest Path and Gauss1 when nodes move at all speeds
(0.5 m/s, 0.75 m/s and 1 m/s). This is quite interesting, since it means that the “offered price”
dimension in the preference function has a positive impact on the achievable PDR. When nodes
move at 0.5 m/s, Tightness achieves a PDR of 71.92%, while Shortest Path reaches 60.10%, Gauss
63.80%, and Gauss1 33.36%. In other words, Tightness and Gauss deliver 19.67% and 6.16% more
packets than Shortest Path, respectively, while Gauss1 is 44.49% worse than Shortest Path. When
nodes move at 0.75 m/s, the performance of all strategies degrades, but Tightness and Gauss are
30.25% and 9.54% better than Shortest Path, respectively. Still, Shortest Path is 85.81% better
than Gauss1. Finally, as nodes move at 1.0 m/s, performance degrades across all strategies, but
Tightness delivers 51.57% more packets than Shortest Path, while Gauss becomes 16.41% better
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Figure 6.8: Relative average budget per node of each strategy under mobility at 1.0 m/s.

than Shortest Path. It is important to remember that all the strategies rely on the information
provided by the OLSR protocol. Therefore, as mobility increases, the routing tables at nodes
become less reliable, and stale topology control information is disseminated on the network, which
reflects on routing decisions (Shortest Path) and tightness computations.

Figure 6.10: Packet delivery ratio of each strategy under mobility at 0.75 m/s.

The PDR results also show that the choice of operation point for the bell-shaped preference
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Figure 6.9: Packet delivery ratio of each strategy under mobility at 0.5 m/s.

functions has a clear impact on the final performance. Gauss is significantly better than Gauss1
in both RAB and PDR metrics. This means that relaying a packet to a neighbor whose tightness
(ci) is closer to the maximum possible value among competitors (cmax) is better than relaying the
packet to a node with average tightness (ci = 1) (assuming that in both cases the offered price
is close to the minimum possible Fu). It is also worth noting that, in spite of the lower PDR
values obtained at 1.0 m/s (compared to Shortest Path), Gauss1 deliver higher RAB value than
Shortest Path at this speed (see Figure 6.11). This means that, although Gauss1 have delivered
less packets, the nodes ended up accumulating higher profits. Under high mobility, one should
expect a higher reluctance from nodes to participate in the D2D network, because of the likelihood
of higher losses in a less predictable and stable environment. Therefore, it is reasonable to trade
off PDR with RAB, since the nodes are assuming higher risks (this is certainly not a favorable
situation to operators, but it is definitely better to participant nodes in the D2D network—the
prospect of some profit under a harsh environment).

Figures 6.12, 6.13 and 6.14 presents the results for the average number of hops (ANH) traversed
by successful packets in each strategy. Tightness, Gauss, and Shortest Path present similar results,
with Tightness delivering the best performance across all speeds. In spite of mobility, Tightness
manages to deliver packets within 1 to 1.5 hops away from the maximum number of hops allowed
to destination (on average). Gauss1 deviates the most from other strategies, delivering slitghtly
higher ANH values, especially at low mobility (similar to the static scenario). As mobility increases,
Tightness ANH values increase from 8.88 (at 0.5 m/s) to 9.11 (at 1.0 m/s), a 2.6% variation. Gauss
ANH values also increase with speed: from 9.07 (at 0.5 m/s) to 9.26 (at 1.0 m/s), which is a 2.09%
variation. Gauss1, however, is the only strategy whose ANH values decrease as mobility increases:
from 9.89 (at 0.5 m/s) to 9.61 (at 1.0 m/s), a variation of −2.83%.
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Figure 6.11: Packet delivery ratio of each strategy under mobility at 1.0 m/s.

Figure 6.13: Average number of hops per packet of each strategy under mobility at 0.75 m/s.
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Figure 6.12: Average number of hops per packet of each strategy under mobility at 0.5 m/s.

Figure 6.14: Average number of hops per packet of each strategy under mobility at 1.0 m/s.

Lastly, Figures 6.15, 6.16 and 6.17 presents the results on budget fairness among nodes under
mobility. Following the results on the static scenario, Shortest Path has the best performance at
speeds of 0.5 m/s and 0.75 m/s, where it achieves an average fairness of 0.73 and 0.74 respectively.
This is roughly 20% better than Gauss and Tightness in both scenarios. This is because, when
nodes follow the tightness strategies, the auction winners are those that bid values closer to the
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announced fine Fu, as dictated by the bidding and decision strategies presented in Section 4.2.
Thus, because the winner node keeps 5% of its bid before setting up its own budget and fine
values (see the Budget-and-Fine set up strategy), the accumulated budget drops fast as a packet
moves forward along a route (nodes that are closer to the AP gets more, since they assume a
task of high risk early on, of unpredictable outcome towards destination, while nodes that are
closer to destination have a much better idea of the possible success in the forwarding of a packet.
Hence, they should be less rewarded, comparatively). Under Shortest Path, however, the auction
participants offer random values within the interval [Fu, Bu], and the winner node is always the one
on the shortest path towards destination. This leads to a higher variation of accumulated budget
along a route. Note that, nodes still obey the Budget-and-Fine set up strategy under Shortest
Path, but the winner is no longer the one who bids a value close to the announced fine.

As far as resilience to mobility is concerned, Tightness presents the best performance, since
its fairness varies by only 26.7% as speed changes from 0.5 m/s to 1.0 m/s. Gauss comes next,
with a 38.3% variation, while Shortest Path has a variation of 54.8%, and Gauss1 undergoes a
56.2% variation. In fact, the performance decay of Shortest Path and Gauss1 is accentuated when
speed changes from 0.75 m/s to 1.0 m/s. Such a significant drop in fairness is probably due to the
low PDR of Shortest Path in this scenario. At the speed of 1.0 m/s, Tightness delivers the best
performance, with an average fairness of 0.44, against 0.37 of Gauss, 0.33 of Shortest Path, and
0.21 of Gauss1.

Figure 6.15: Budget fairness of each strategy under mobility at 0.5 m/s.
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Figure 6.16: Budget fairness of each strategy under mobility at 0.75 m/s.

Figure 6.17: Budget fairness of each strategy under mobility at 1.0 m/s.
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Chapter 7

Conclusions

This dissertation presented a comprehensive performance evaluation of the so-called Tightness
strategy for device-to-device data offloading via recursive auctions. This strategy was designed for
the offloading scenario where each packet announced by a source AP is associated to a maximum
budget (to be shared by the clients) and a fine, which must be paid (recursively) by the nodes
if the packet is not delivered to its target destination within the given deadline (translated to a
maximum number of hops to destination). The Tightness strategy uses the idea of estimating how
“tight” a node is to fullfill the job of delivering a packet to its destination within the announced
deadline. In other words, a node estimates how much “room” it has (with respect to the deadline)
to absorb eventual bad forwarding decisions resulted from the unpredictable outcomes of other
downstream auctions. For tightness computations, the nodes in the D2D network rely on topology
information (e.g., OLSR protocol). The tightness concept was used in the design of the bidding and
decision-making sub-strategies, which take as input parameters the offered price and the relative
tightness of the nodes.

The performance of the Tightness strategy was investigated for two specific preference functions
used in the decision-making substrategy, according to different operating points (leading to three
preference functions). Both static and mobile scenarios were investigated, for different node speeds,
using discrete-event simulations. Two baseline strategies were also investigated for purposes of
performance comparison: one that prioritizes packet delivery over budget gains, (using shortest-
path routing), and a greedy one, that always pick the highest bid regardless of packet delivery
within the deadline. The performance was carried out in scenarios where all nodes implement the
same strategy (i.e., the homogeneous case). All strategies were evaluated for packet delivery ratio,
average budget per node, budget fairness, and average number of hops to destination.

The presented results have shown that, apart from the Lowest Bid strategy, which delivered
very low packet delivery ratios, all strategies proved to be very suitable for D2D data offloading
under recursive auctions. Overall, they have provided consistent and positive results across all
performance metrics, in both static and mobile scenarios. According to the results, two of the
proposed variations of the Tightness strategy proved to be more effective than simply using shortest-
path routing without taking into account the nodes’ bids in the decision-making sub-strategy. In
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particular, the preference functions Hyperplane andGaussian (the one that prioritizes the lowest bid
with the highest relative tightness) performed better than Shortest Path with respect to average
budget per node, average number of hops to destination, and packet delivery ratio, especially
under mobility. This result indicates that the use of the tightness concept in both bidding and
decision-making sub-strategies is beneficial for cooperative behavior and better overall performance
of D2D offloading under recursive auctions. This happens because the nodes who perceive a
“tight” condition to deliver a packet within the announced deadline discourage the auctioneer from
choosing them by bidding high values. As far as fairness in budget distribution among nodes is
concerned, the Tightness strategies delivered slightly lower results than Shortest Path due to a
higher variation of accumulated budget along a route. However, the Tightness strategies presented
lower fairness variation across different mobility scenarios.

7.1 Future Work

The work developed in this dissertation can be extended in a number of ways, to address
other issues and challenges to be explored in the future. The first of them could be to carry
out a performance analysis with a mix of different strategies installed at different nodes. In this
dissertation, we have evaluated a homogeneous scenario, where all nodes implement the same
strategy. This is a likely scenario if, for instance, the MNOs could had the strategy deployed
in all of its clients “as it is”, by means of an app that would run on the background without
intervention of the user. But, in the case where each client could customize (or implement) its
own strategy, the end performance of the Tightness strategy could be totally different. This would
reflect the scenario envisioned in the MANIAC Challenge 2013, where each team deployed its own
strategy for competition on the challenge. But, as we have pointed out before, a key issue is
how to promote cooperation among nodes. Therefore, the study of heterogeneous environments is
important because it helps to understand the net result of different strategies deployed for the same
task. Additionally, the study of the Tightness strategy itself could still be extended, since different
preference functions can be used, as well as different choices for the bidding and budget-and-fine
setup strategies. In this dissertation, no alternatives were investigated for these two sub-strategies.

From this work, it would be very simple and useful to observe the impact of changing some
important parameters. The Budget-and-Fine set up strategy parameters make a difference at how
the budget value decay along the packets’ path. So by varying the current parameters (0.95 for
the budget and 0.4 for the fine, as explained in Chapter 4) could probably lead to different budget
distributions. Other interesting parameters to study would be the deadline, and the impact of
many OLSR parameters according to different mobility scenarios. In fact, we believe that the
OLSR parameters are strong candidates to increase the offloading performance if they are changed
according to the mobility patterns of nodes. The time intervals in the OLSR operation may be too
long for our D2D communications under mobility. Depending on the mobility of the nodes, the
topology information may not be accurate, and the strategy will make use of unreliable information
to make decisions. It would be also very interesting to add some new parameters at the strategies,
like the energy of the participant nodes, the nodes’ reputation, and other metrics. These new
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parameters might be included, for example, at the “tightness” concept.

Another important aspect to consider in future work is the introduction of delay-tolerant tech-
niques at each node for purposes of increasing the packet delivery ratio. For instance, in the current
implementation, if a node does not receive any bids after issuing its RFB, it drops the packet with-
out any retransmission of its RFB (no retries for auction the same packet). This situation could
happen because of mobility or channel conditions. By using delay-tolerant techniques, the nodes
could keep the packet until favorable conditions to execute their auction could be found.

Game Theory has been used to understand and devise efficient algorithms for reversed auctions
(such as in our case). In the recursive auction scenario, we have a different game every time a node
announces an auction. Both homogeneous and heterogeneous scenarios could be studied. Works
such as [15] and [3] could serve as a starting point for that.

Studying other types of data traffic models are also important. In this work, we used a traffic
with deterministic characteristics, i.e., with fixed time interval between packets. But, for more
realistic scenarios, it would be good to simulate traffic with different statistical behavior. However,
the code developed for this work does not allow multi-threading, and it does not handle multiple
auctions at the same time. Therefore, each node can only handle one packet at a time. This is a
limitation to the time interval between packets at data traffic generation. In the future, this code
will also need to have the capacity of processing simultaneous packet auctions, so that the data
traffic can be more intense (higher throughputs). Lastly, the impact of different mobility models
can also be evaluated. In this work, it was used the Random Walk 2D mobility model of the ns-3.
But, there are a lot of other mobility models, such as the Random Waypoint mobility model (ns-3)
and some Social/Human walk mobility models [28].

53



REFERENCES

[1] CISCO. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014-2019
White Paper. 2015.

[2] ASADI, A.; WANG, Q.; MANCUSO, V. A survey on device-to-device communication in cellular
networks. IEEE Communications Surveys Tutorials, v. 16, n. 4, p. 1801–1819, Fourthquarter
2014. ISSN 1553-877X.

[3] IOSIFIDIS, G.; GAO, L.; HUANG, J.; TASSIULAS, L. A double-auction mechanism for mobile
data-offloading markets. Networking, IEEE/ACM Transactions on, v. 23, n. 5, p. 1634–1647,
Oct 2015.

[4] NS-3.17 Manual. https://www.nsnam.org/docs/release/3.17/manual/singlehtml/index.html.

[5] NS-3.17 Model Library. https://www.nsnam.org/docs/release/3.17/models/ns-3-model-
library.pdf.

[6] ERICSSON. Ericsson Mobility Report. 2014.

[7] BALASUBRAMANIAN, A.; MAHAJAN, R.; VENKATARAMANI, A. Augmenting mobile 3G
using WiFi. In: Proceedings of the 8th International Conference on Mobile Systems, Applications,
and Services. New York, NY, USA: ACM, 2010. (MobiSys ’10), p. 209–222.

[8] DIMATTEO, S.; HUI, P.; HAN, B.; LI, V. Cellular traffic offloading through WiFi networks.
In: Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International Conference on.
[S.l.: s.n.], 2011. p. 192–201.

[9] LEE, K.; LEE, J.; YI, Y.; RHEE, I.; CHONG, S. Mobile data offloading: How much can WiFi
deliver? Networking, IEEE/ACM Transactions on, v. 21, n. 2, p. 536–550, April 2013. ISSN
1063-6692.

[10] HAN, B.; HUI, P.; KUMAR, V.; MARATHE, M.; SHAO, J.; SRINIVASAN, A. Mobile data
offloading through opportunistic communications and social participation. Mobile Computing,
IEEE Transactions on, v. 11, n. 5, p. 821–834, May 2012.

[11] LI, Y.; SU, G.; HUI, P.; JIN, D.; SU, L.; ZENG, L. Multiple mobile data offloading through
delay tolerant networks. In: Proceedings of the 6th ACM Workshop on Challenged Networks.
New York, NY, USA: ACM, 2011. (CHANTS ’11), p. 43–48.

54



[12] WHITBECK, J.; LOPEZ, Y.; LEGUAY, J.; CONAN, V.; AMORIM, M. D. de. Push-and-
track: Saving infrastructure bandwidth through opportunistic forwarding. Pervasive and Mobile
Computing, v. 8, n. 5, p. 682 – 697, 2012. ISSN 1574-1192.

[13] REBECCHI, F.; AMORIM, M. Dias de; CONAN, V.; PASSARELLA, A.; BRUNO, R.;
CONTI, M. Data offloading techniques in cellular networks: A survey. Communications Surveys
Tutorials, IEEE, v. 17, n. 2, p. 580–603, Secondquarter 2015.

[14] ZHUO, X.; GAO, W.; CAO, G.; DAI, Y. Win-coupon: An incentive framework for 3G traffic
offloading. In: Proc. ICNP. [S.l.: s.n.], 2011. p. 206–215.

[15] GAO, L.; IOSIFIDIS, G.; HUANG, J.; TASSIULAS, L. Economics of mobile data offloading.
In: IEEE. Computer Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Confer-
ence on. [S.l.], 2013. p. 351–356.

[16] BACCELLI, E.; JURASCHEK, F.; HAHM, O.; SCHMIDT, T. C.; WILL, H.; WAHLISCH,
M. The MANIAC challenge at IETF 87. The IETF Journal, v. 9, n. 2, p. 27–29, Nov 2013.

[17] CLAUSEN, T.; JACQUET, P.; LAOUITI, A.; MUHLETHALER, P.; QAYYUM, A.; VIEN-
NOT, L. Optimized link state routing protocol. In: Proc. IEEE National Multi-Topic Conference
(INMIC). [S.l.: s.n.], 2001.

[18] BACCELLI, E.; JURASCHEK, F.; HAHM, O.; SCHMIDT, T. C.; WILL, H.; WAHLISCH,
M. Proceedings of the 3rd MANIAC challenge. In: . [s.n.], 2013. Available from Internet:
<http://arxiv.org/html/1401.1163v2>.

[19] KALEJAIYE, G. B.; RONDINA, J. A.; ALBUQUERQUE, L. V.; PEREIRA, T. L.; CAM-
POS, L. F.; MELO, R. A.; MASCARENHAS, D. S.; CARVALHO, M. M. Mobile offloading in
wireless ad hoc networks: The tightness strategy. SIGCOMM Comput. Commun. Rev., ACM,
New York, NY, USA, v. 44, n. 3, p. 96–102, jul. 2014.

[20] The ns-3 Network Simulator. http://www.nsnam.org.

[21] BUTTYAN, L.; HUBAUX, J.-P. Nuglets: a Virtual Currency to Stimulate Cooperation in
Self-Organized Mobile Ad Hoc Networks. Lausanne, January 2001.

[22] PARK, V. D.; CORSON, M. S. A highly adaptive distributed routing algorithm for mobile
wireless networks. In: Proc. IEEE INFOCOM. [S.l.: s.n.], 1997. v. 3, p. 1405–1413.

[23] ANDEREGG, L.; EIDENBENZ, S. Ad hoc-VCG: A truthful and cost-efficient routing protocol
for mobile ad hoc networks with selfish agents. In: Proc. ACM MobiCom. [S.l.: s.n.], 2003. p.
245–259.

[24] LUO, H.; MENG, X.; RAMJEE, R.; SINHA, P.; LI, L. The design and evaluation of unified
cellular and ad-hoc networks.Mobile Computing, IEEE Transactions on, v. 6, n. 9, p. 1060–1074,
Sept 2007.

55



[25] YU, T.; ZHOU, Z.; ZHANG, D.; WANG, X.; LIU, Y.; LU, S. INDAPSON: An incentive data
plan sharing system based on self-organizing network. In: Proc. INFOCOM. [S.l.: s.n.], 2014. p.
1545–1553.

[26] KOUTSOPOULOS, I.; NOUTSI, E.; IOSIFIDIS, G. Dijkstra goes social: Social-graph-
assisted routing in next generation wireless networks. In: Proc. European Wireless 2014. [S.l.:
s.n.], 2014. p. 1–7.

[27] JAIN, R.; HAWE, W. R.; CHIU, D.-M. A quantitative measure of fairness and discrimination
for resource allocation in shared computer system. [S.l.]: Eastern Research Laboratory, Digital
Equipment Corporation Hudson, MA, 1984.

[28] RHEE, I.; SHIN, M.; HONG, S.; LEE, K.; KIM, S. J.; CHONG, S. On the levy-walk nature
of human mobility. IEEE/ACM Trans. Netw., IEEE Press, Piscataway, NJ, USA, v. 19, n. 3, p.
630–643, jun. 2011.

56



APPENDIX

57



I. NS-3 DEVELOPED CODE

I.1 Application Module

I.1.1 offloading.h

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright 2014 Universidade de BrasÃŋlia, Brazil
*
* offloading.
*
* Created on: 06/01/2014
* Author: Lucas Soares de Brito
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#ifndef OFFLOADING_H_
#define OFFLOADING_H_

#include "offloading-packet.h"
//#include "dijkstra.h"
#include "ns3/application.h"
#include "ns3/event-id.h"
#include "ns3/ptr.h"
#include "ns3/ipv4-address.h"
#include "ns3/traced-callback.h"
#include "ns3/address.h"

#include <vector>
#include <iostream>
#include <string>
#include <list>
#include <limits> // for numeric_limits
#include <set>
#include <utility> // for pair
#include <algorithm>
#include <iterator>

namespace ns3 {

class Socket;
class Packet;

enum StrategyType
{

STRATEGYTYPE_DUMMYBID = 1, //!< STRATEGYTYPE_DUMMYBID
STRATEGYTYPE_DUMMYPATH = 2, //!< STRATEGYTYPE_DUMMYPATH
STRATEGYTYPE_TIGHTNESS = 3, //!< STRATEGYTYPE_TIGHTNESS

};

enum PreferenceFunctionType
{
PREFERENCEFUNCTION_PLANE = 1, //!< PREFERENCEFUNCTION_PLANE
PREFERENCEFUNCTION_GAUSS = 2, //!< PREFERENCEFUNCTION_GAUSS
PREFERENCEFUNCTION_GAUSS_1 = 3, //!< PREFERENCEFUNCTION_GAUSS_1 (with cn=1)
};

enum NodeType
{
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NODETYPE_AP = 1, //!< NODETYPE_AP
NODETYPE_NETWORK = 2, //!< NODETYPE_NETWORK

};

typedef int vertex_t;
typedef double weight_t;

struct neighbor {
vertex_t target;
weight_t weight;
neighbor(vertex_t arg_target, weight_t arg_weight)

: target(arg_target), weight(arg_weight) { }
};

typedef std::vector<std::vector<neighbor> > adjacency_list_t;

/**
* \ingroup offloading
* \brief An Offloading app
*
* Every packet sent should be returned by the server and received here.
*/

class Offloading : public Application
{
public:

static TypeId GetTypeId (void);
Offloading ();
virtual ~Offloading ();

void SetRemote (Address ip, uint16_t port);
void SetRemote (Ipv4Address ip, uint16_t port);
void SetBackbone (std::vector<Ipv4Address > backbone);
void SetTightnessParameters (double k1, double k2, double budget_percentage, double fine_percentage);
void SetMapNodes (std::map<Ipv4Address, int> nodes_id);
void SetTopologyName (std::string topologyName);
void SetSeedIndex (int seedIndex);
void SetParamName (std::string paramName);
void SetExpIndex (std::string expIndex);

protected:
virtual void DoDispose (void);

private:

virtual void StartApplication (void);
virtual void StopApplication (void);

void SendData (Ipv4Address source, Ipv4Address destination, int dataEventNumber, bool toBackbone);
void SendBid(Ptr<Socket> socket, uint32_t Bu, uint32_t Fu, uint8_t H0, int packetID);
void BufferBid(Address from, uint32_t bid, Ipv4Address source, Ipv4Address destination);
void SendRFB(Ipv4Address source, Ipv4Address destination, int packetID);

void ScheduleSendFirstRFB (Time dt);
void ScheduleSendData (Time dt);
bool IsLastHop (Ipv4Address dest);
//void SendLastHopData(void);
bool isBackbone(Ipv4Address ipv4address);
bool haveNeighborBackbone(Ipv4Address dest, Ipv4Address src);
bool isOldPacket(Ipv4Address source, int packetID);
//int FindBidNumber(Ipv4Address source, Ipv4Address destination);

void HandleRead (Ptr<Socket> socket);
void ImprimeTopologySet (void);
void WritePacket(int sourceID, int pktID, int nextID, int status, double reserved);

void HopCountComputation (Ipv4Address dest, int nodetype);
void BidComputation (uint32_t Bu, uint32_t Fu, uint8_t H0);

void PopulateArpCache (void);

void MapNode (void);
void BuildGraphDijkstra (adjacency_list_t &grafo_dijkstra);
void ImprimeGrafo (bool sort, adjacency_list_t &grafo_dijkstra);
bool FindGraphEdge (int a, int b, adjacency_list_t &grafo_dijkstra);
Ipv4Address FindMapAddress (int a);
void DijkstraComputePaths(vertex_t source,

const adjacency_list_t &adjacency_list,
std::vector<weight_t> &min_distance,
std::vector<vertex_t> &previous);

std::list<vertex_t> DijkstraGetShortestPathTo(vertex_t vertex, const std::vector<vertex_t> &previous);
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double m_offerBid;
double m_Bn;
double m_Fn;
double m_payFINE, m_winner_bid;
uint8_t m_deadline;

//Tightness strategy parameters:
double m_k1, m_k2, m_budget_percentage, m_fine_percentage;

//Hop count and delta:
std::vector<int> m_hc;
std::vector<int> m_delta, m_able_nodes;
uint8_t m_pu;

int m_nPackets;
Ipv4Address m_dest, m_source;
//std::vector<std::pair<Ipv4Address, Ipv4Address> > m_backbonePair;//Vetor de leilÃţes que estÃčo ocorrendo simultaneamente neste nÃş
Ipv4Address m_nodeAddr;
Mac48Address m_nodeMacAddr;
Address m_upload;
Mac48Address m_uploadMAC;
Ipv4Address m_dropDest;

double m_tempo_envio;
double m_start;
std::vector<std::pair<Ipv4Address, int> > m_loopControl;//Fila de leilÃţes que jÃą terminaram neste nÃş
int m_pkt_count;
double m_timeout;
double m_timeBetweenSourcePacket;

Ptr<Node> m_thisNode;
std::vector<uint32_t > m_cn_buffer;
std::vector<uint32_t > m_bid_buffer;
std::vector<Address > m_address_buffer;
std::vector<Ipv4Address > m_source_buffer;
std::vector<Ipv4Address > m_destination_buffer;
std::vector<Ipv4Address > m_backbone;
std::vector<Ipv4Address > m_hc_address;

std::map<Ipv4Address, int> m_map_address_graphnode, m_nodes_id;

Ptr<Socket> m_socket;
Address m_peerAddress;
uint16_t m_peerPort;
EventId m_send_AP_rfbEvent;
EventId m_send_dataEvent;
EventId m_send_bidEvent;

//Callbacks for tracing the packet Tx and Rx events:
TracedCallback<Ptr<const Packet> > m_txTrace;
TracedCallback<Ptr<const Packet>, const Address &> m_rxTrace;

//Lado "Servidor":
uint16_t m_port;
Address m_local;

uint16_t node_type, strategy_type, preference_function_type;
int number_nodes;

//Create files to report auctions and budgets:
FILE *report_user;
std::string dir_myreport_user, filename_report_user, content, m_topologyName, m_paramName;
int m_seedIndex;
std::string m_expIndex;

int m_wrong_order;

};

} // namespace ns3

#endif /* OFFLOADING_H_ */

I.1.2 offloading.cc
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright 2014 Universidade de BrasÃŋlia, Brazil
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*
* offloading.cc
*
* Created on: 06/01/2014
* Author: Lucas Soares de Brito
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <iomanip>
#include <cmath>
#include "ns3/random-variable.h"
#include "ns3/log.h"
#include "ns3/ipv4.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/ipv4-address.h"
#include "ns3/mac48-address.h"
#include "ns3/wifi-net-device.h"
#include "ns3/nstime.h"
#include "ns3/inet-socket-address.h"
#include "ns3/socket.h"
#include "ns3/simulator.h"
#include "ns3/socket-factory.h"
#include "ns3/packet.h"
#include "ns3/uinteger.h"
#include "ns3/trace-source-accessor.h"
#include "ns3/address-utils.h"
#include "ns3/udp-socket.h"
#include "ns3/olsr-routing-protocol.h"
#include "ns3/object-vector.h"
#include "ns3/pointer.h"
#include "offloading.h"
#include <vector>
#include <iostream>
#include <map>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string>
#include <fstream>
#include <boost/lexical_cast.hpp>
#include <sys/stat.h>

namespace ns3 {

NS_LOG_COMPONENT_DEFINE ("OffloadingApplication");
NS_OBJECT_ENSURE_REGISTERED (Offloading);

TypeId
Offloading::GetTypeId (void)
{
static TypeId tid = TypeId ("ns3::Offloading")

.SetParent<Application> ()

.AddConstructor<Offloading> ()
.AddAttribute ("NPackets",
"Number of packets that this node will generate (if APType = 1).",

IntegerValue(0),
MakeIntegerAccessor (&Offloading::m_nPackets),
MakeIntegerChecker<int> ())

.AddAttribute ("StrategyType",
"The type of the strategy: "
" STRATEGYTYPE_DUMMYBID (1) = Lowest Bid"
" STRATEGYTYPE_DUMMYPATH (2) = Shortest Path Dummy"
" STRATEGYTYPE_TIGHTNESS (3) = Tightness",
UintegerValue(STRATEGYTYPE_TIGHTNESS),
MakeUintegerAccessor (&Offloading::strategy_type),
MakeUintegerChecker<uint16_t> ())

.AddAttribute ("PreferenceFunctionType",
"The type of the Preference Function: "
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" PREFERENCEFUNCTION_PLANE (1) = A simple plane P = K1 - (K1/Bn)*bid + (K2/cn_max)*cn;"
" PREFERENCEFUNCTION_GAUSS (2) = The same graph as the 2-dimensional Gaussian distribution, centered at [Fn,c_max]",
UintegerValue(PREFERENCEFUNCTION_PLANE),
MakeUintegerAccessor (&Offloading::preference_function_type),
MakeUintegerChecker<uint16_t> ())

.AddAttribute ("DestinationAddress",
"The destination Address of the packets offloaded",
Ipv4AddressValue ("10.0.0.25"),
MakeIpv4AddressAccessor (&Offloading::m_dest),
MakeIpv4AddressChecker ())
.AddAttribute ("RemotePort",
"The destination port of the outbound packets",
UintegerValue (0),
MakeUintegerAccessor (&Offloading::m_peerPort),
MakeUintegerChecker<uint16_t> ())
.AddAttribute ("Budget",
"The initial Budget B0",
DoubleValue (100.0),
MakeDoubleAccessor (&Offloading::m_Bn),
MakeDoubleChecker<double> ())
.AddAttribute ("Fine",
"The initial Fine F0",
DoubleValue (50.0),
MakeDoubleAccessor (&Offloading::m_Fn),
MakeDoubleChecker<double> ())
.AddAttribute ("Deadline",
"The Deadline H0 to reach the destination",
UintegerValue (10),
MakeUintegerAccessor (&Offloading::m_deadline),
MakeUintegerChecker<uint8_t> ())
.AddAttribute ("StartOffloading",
"Time (seconds) to initiate packet generation.",
DoubleValue (0.),
MakeDoubleAccessor (&Offloading::m_start),
MakeDoubleChecker<double> ())
.AddAttribute ("NumberNodes",
"Number of nodes using OLSR. Used to build the Topology Graph in the Tightness strategy.",
IntegerValue(100),
MakeIntegerAccessor (&Offloading::number_nodes),
MakeIntegerChecker<int> ())
.AddTraceSource ("Tx", "A new packet is created and is sent",
MakeTraceSourceAccessor (&Offloading::m_txTrace))

.AddTraceSource ("Rx", "A packet has been received",
MakeTraceSourceAccessor (&Offloading::m_rxTrace))

;
return tid;
}

Offloading::Offloading ()
{
NS_LOG_FUNCTION (this);
m_socket = 0;
m_send_AP_rfbEvent = EventId ();
m_send_dataEvent = EventId ();
m_send_bidEvent = EventId ();
m_tempo_envio = 0.0;
m_timeout = 0.050;
m_timeBetweenSourcePacket = 3.0;
m_pkt_count = 0;
m_pu = 0;
m_offerBid = 0.0;
m_winner_bid = 0.0;
m_peerAddress = Ipv4Address("255.255.255.255");
filename_report_user = "report_user";
m_wrong_order = 0;

}

Offloading::~Offloading()
{
NS_LOG_FUNCTION (this);
m_socket = 0;
}

void
Offloading::SetRemote (Address ip, uint16_t port)
{
NS_LOG_FUNCTION (this << ip << port);
m_peerAddress = ip;
m_peerPort = port;
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}

void
Offloading::SetRemote (Ipv4Address ip, uint16_t port)
{
NS_LOG_FUNCTION (this << ip << port);
m_peerAddress = Address (ip);
m_peerPort = port;
}

void
Offloading::SetBackbone (std::vector<Ipv4Address > backbone)
{
m_backbone = backbone;
}

void
Offloading::SetTightnessParameters (double k1, double k2, double budget_percentage, double fine_percentage)
{
m_k1 = k1;
m_k2 = k2;
m_budget_percentage = budget_percentage;
m_fine_percentage = fine_percentage;
}

void
Offloading::SetMapNodes (std::map<Ipv4Address, int> nodes_id)
{
m_nodes_id = nodes_id;
}

void
Offloading::SetTopologyName (std::string topologyName)
{
m_topologyName = topologyName;
}

void
Offloading::SetSeedIndex (int seedIndex)
{
m_seedIndex = seedIndex;
}

void
Offloading::SetParamName (std::string paramName)
{
m_paramName = paramName;
}

void
Offloading::SetExpIndex (std::string expIndex)
{
m_expIndex = expIndex;
}

void
Offloading::DoDispose (void)
{
NS_LOG_FUNCTION (this);
Application::DoDispose ();
}

void
Offloading::StartApplication (void)
{
NS_LOG_FUNCTION (this);

// Saving this node address:
m_thisNode = this->GetNode();
Ptr<WifiNetDevice> netDevice = DynamicCast<WifiNetDevice> (m_thisNode->GetDevice(0));
m_nodeMacAddr = Mac48Address::ConvertFrom (netDevice->GetAddress());
Ptr<Ipv4> ipv4 = m_thisNode->GetObject<Ipv4>();
Ipv4InterfaceAddress iaddr = ipv4->GetAddress(1,0);
m_nodeAddr = iaddr.GetLocal();
NS_LOG_INFO("ADDRESS = " << m_nodeAddr);

//Accountability report file name and directory:
if(m_thisNode->GetId() < 10)
filename_report_user = filename_report_user + "00" + boost::lexical_cast<std::string>(m_thisNode->GetId());
else if(m_thisNode->GetId() < 100)
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filename_report_user = filename_report_user + "0" + boost::lexical_cast<std::string>(m_thisNode->GetId());
else
filename_report_user = filename_report_user + boost::lexical_cast<std::string>(m_thisNode->GetId());

std::string home_dir(getenv("HOME"));
if((strategy_type == STRATEGYTYPE_TIGHTNESS) && (preference_function_type == PREFERENCEFUNCTION_PLANE)){
dir_myreport_user = home_dir + "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp" + m_expIndex + "/" + m_paramName + "/seed"
+ boost::lexical_cast<std::string>(m_seedIndex) + "/tp" + m_topologyName + "/report_user";

}
else{
dir_myreport_user = home_dir + "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp" + m_expIndex + "/seed"
+ boost::lexical_cast<std::string>(m_seedIndex) + "/tp" + m_topologyName + "/report_user";

}
mkdir (dir_myreport_user.c_str(),0777);
dir_myreport_user = dir_myreport_user + "/" + filename_report_user + ".txt";

//Report table header:
content = content + "Source" + "\t";
content = content + "pktID" + "\t";
content = content + "Next" + "\t";
content = content + "eBID" + "\t";
content = content + "pFINE" + "\t";
content = content + "pBID" + "\t";
content = content + "eFINE" + "\t";
content = content + "sBUDGET" + "\t";
content = content + "fBUDGET" + "\t";
content = content + "status" + "\t";
content = content + "BALANCE" + "\t";
content = content + "accumulative" + "\t";
content = content + "\n";

NS_LOG_INFO("->" << m_nodeAddr);
report_user = fopen(dir_myreport_user.c_str(), "w+");
fputs(content.c_str(), report_user);
fclose(report_user);

//Identify if this node is an AP or not:
node_type = NODETYPE_NETWORK;
if(isBackbone(m_nodeAddr))
node_type = NODETYPE_AP;

//Configure socket:
TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory");
if (m_socket == 0){
m_socket = Socket::CreateSocket (GetNode (), tid);

if (Ipv4Address::IsMatchingType(m_peerAddress) == true)
{
int status;
InetSocketAddress src = InetSocketAddress (Ipv4Address::GetAny (), m_peerPort);
status = m_socket->Bind (src);
NS_ASSERT (status != -1);
InetSocketAddress dst = InetSocketAddress (Ipv4Address::ConvertFrom(m_peerAddress), m_peerPort);
status = m_socket->Connect (dst);
NS_ASSERT (status != -1);

m_socket->SetAllowBroadcast(true);
}
}

m_socket->SetRecvCallback (MakeCallback (&Offloading::HandleRead, this));

//Graph Mapping: node number --> address
MapNode();

if((node_type == NODETYPE_AP)&&(m_nPackets > 0)){
m_pu = 0;
m_send_AP_rfbEvent = Simulator::Schedule (Seconds (m_start), &Offloading::SendRFB, this, m_nodeAddr, m_dest, 0);
}
}

void
Offloading::StopApplication ()
{
NS_LOG_FUNCTION (this);

if (m_socket != 0)
{
m_socket->Close ();
m_socket->SetRecvCallback (MakeNullCallback<void, Ptr<Socket> > ());
m_socket = 0;
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}

Simulator::Cancel (m_send_AP_rfbEvent);
Simulator::Cancel (m_send_dataEvent);
Simulator::Cancel (m_send_bidEvent);
}

void
Offloading::HandleRead (Ptr<Socket> socket)
{
NS_LOG_FUNCTION (this << socket);

NS_LOG_INFO("--> PACKET RECEIVED BY: " << m_nodeAddr);

RFBHeader rfbHeader;
BidHeader bidHeader;
DataHeader dataHeader;

Ptr<Packet> packet;
Address from;

double getOfferbid;
int packetID;
bool toBackbone;
//int bid_index = 0;

while ((packet = socket->RecvFrom (from)))
{
TypeHeader tHeader (OFFLOADINGTYPE_RFB);
packet->RemoveHeader (tHeader);

if (!tHeader.IsValid ())
{
NS_LOG_INFO ("Offloading message " << packet->GetUid () << " with unknown type received: " << tHeader.Get () << ". Drop");
return; // drop
}

if (InetSocketAddress::IsMatchingType (from)){
switch(tHeader.Get()){

case OFFLOADINGTYPE_RFB:
//If this node is an AP, so don't process the RFB (backbone cannot participate on the biddings):
if(node_type == NODETYPE_NETWORK){
//Extract packet:
packet->RemoveHeader (rfbHeader);
m_dest = rfbHeader.GetDst();
m_source = rfbHeader.GetSrc();
packetID = rfbHeader.GetPacketID();
m_pu = rfbHeader.GetHopcount();
m_deadline = rfbHeader.GetDeadline();
m_upload = from;
m_uploadMAC = rfbHeader.GetSrcRFB();
m_payFINE = rfbHeader.GetFine()/pow(10,2); //In case of packet delivery failure, paid this Fine;

//If this packet was already auctioned, do nothing. Otherwise, proceed with the bidding process:
if(!isOldPacket(m_source, packetID)){
//Save the bids that this node is participating at this moment:
//m_backbonePair.push_back(std::make_pair(rfbHeader.GetSrc(),rfbHeader.GetDst()));
//bid_index = FindBidNumber(rfbHeader.GetSrc(), rfbHeader.GetDst());

NS_LOG_INFO ("["<< m_source <<"->"<< m_dest <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" received a RFB from " << InetSocketAddress::ConvertFrom (from).GetIpv4 () );

m_send_bidEvent = Simulator::Schedule (Seconds (0.), &Offloading::SendBid, this,
socket, rfbHeader.GetB0(), rfbHeader.GetFine(), rfbHeader.GetDeadline(), packetID);

//SendBid(socket, rfbHeader.GetB0(), rfbHeader.GetFine(), rfbHeader.GetDeadline());
}
}
break;

case OFFLOADINGTYPE_BID:
packet->RemoveHeader (bidHeader);

getOfferbid = bidHeader.GetOfferedBid()/pow(10,2);
packetID = bidHeader.GetPacketID();

//bid_index = FindBidNumber(bidHeader.GetSrc(), bidHeader.GetDst());
NS_LOG_INFO ("["<< bidHeader.GetSrc() <<"->"<< bidHeader.GetDst() <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "<<
Ipv4Address::ConvertFrom (m_nodeAddr) <<

" received a BID from " << InetSocketAddress::ConvertFrom (from).GetIpv4 () <<
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" Offered Bid = " << getOfferbid);
BufferBid(from, bidHeader.GetOfferedBid(), bidHeader.GetSrc(), bidHeader.GetDst());

break;

case OFFLOADINGTYPE_DATA:
//DATA received.
packet->RemoveHeader (dataHeader);
packetID = dataHeader.GetPacketID();
m_pu = dataHeader.GetHopcount() + 1; //Update 'pu' (hop count until here)
//bid_index = FindBidNumber(dataHeader.GetSrc(), dataHeader.GetDst());

NS_LOG_INFO ("["<< dataHeader.GetSrc() <<"->"<< dataHeader.GetDst() <<"]["<<packetID<<"]At "
<< Simulator::Now ().GetSeconds () << "s "<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" received a DATA from " << InetSocketAddress::ConvertFrom (from).GetIpv4 ());

if(isBackbone(m_nodeAddr)){//If this node is an AP:
if(m_nodeAddr == dataHeader.GetDst()){
if(m_pu <= m_deadline){
//If the packet arrived to the correct destination within deadline:
NS_LOG_INFO("-----------------------------------------------------------------------------------------");
NS_LOG_INFO("SUCCESSFULL PACKET [" << packetID << "] RECEIVED AT AP[" << dataHeader.GetDst() << "] FROM AP[" << dataHeader.GetSrc() << "]
- Hop Count 'pu' = " << static_cast<int>(m_pu) << ".");

NS_LOG_INFO("-----------------------------------------------------------------------------------------");

//WRITE SUCCESSFULL PACKET:
int pktStatus = 1;
int sourceID = m_nodes_id[Ipv4Address::ConvertFrom(dataHeader.GetSrc())];
int nextID = -1;
WritePacket(sourceID, packetID, nextID, pktStatus, 0.0);
}
else{
//If the packet arrived to the correct destination, but after the deadline:
NS_LOG_INFO("------------------------------------------------------------------------------------------------");
NS_LOG_INFO("(ALMOST) SUCCESSFULL PACKET [" << packetID << "] RECEIVED AT AP[" << dataHeader.GetDst() << "] FROM AP[" << dataHeader.GetSrc() << "]
- Hop Count 'pu' = " << static_cast<int>(m_pu) << ".");

NS_LOG_INFO("------------------------------------------------------------------------------------------------");

//WRITE ALMOST SUCCESSFULL PACKET:
int pktStatus = 3;
int sourceID = m_nodes_id[Ipv4Address::ConvertFrom(dataHeader.GetSrc())];
int nextID = -1;
WritePacket(sourceID, packetID, nextID, pktStatus, 0.0);
}
}
else{
if(m_pu <= m_deadline){
NS_LOG_INFO("-----------------------------------------------------------------------------------");
NS_LOG_INFO("SUPER FINE [" << packetID << "] RECEIVED AT AP[" << dataHeader.GetDst() << "] FROM AP[" << dataHeader.GetSrc() << "]
- Hop Count 'pu' = " << static_cast<int>(m_pu) << ".");

NS_LOG_INFO("-----------------------------------------------------------------------------------");

//WRITE BACKBONE SUPER FINE PACKET:
int pktStatus = 2;
int sourceID = m_nodes_id[Ipv4Address::ConvertFrom(dataHeader.GetSrc())];
int nextID = -1;
WritePacket(sourceID, packetID, nextID, pktStatus, 0.0);
}
else{
//If the packet arrived to the correct destination, but after the deadline:
NS_LOG_INFO("------------------------------------------------------------------------------------------------");
NS_LOG_INFO("(ALMOST) SUCCESSFULL PACKET [" << packetID << "] RECEIVED AT AP[" << dataHeader.GetDst() << "] FROM AP[" << dataHeader.GetSrc() << "]
- Hop Count 'pu' = " << static_cast<int>(m_pu) << ".");

NS_LOG_INFO("------------------------------------------------------------------------------------------------");

//WRITE ALMOST SUCCESSFULL PACKET:
int pktStatus = 3;
int sourceID = m_nodes_id[Ipv4Address::ConvertFrom(dataHeader.GetSrc())];
int nextID = -1;
WritePacket(sourceID, packetID, nextID, pktStatus, 0.0);
}
}
}
else{
if(m_pu < m_deadline){//Caso esteja dentro do prazo, enviar RFB (ou DATA, caso seja Ãžltimo salto):
if(IsLastHop(dataHeader.GetDst())){
toBackbone = true;
SendData(dataHeader.GetSrc(),dataHeader.GetDst(), packetID, toBackbone);
}
else{
//std::cout <<"\n";

66



//std::cout << " NEW BID " << std::endl;
NS_LOG_INFO("BIDDER = " << m_nodeAddr);
//TODO Analyze a backbone delivery (the Budget X Throughput tradeoff). Not used in this strategy, but can be used at other strategies.
SendRFB(dataHeader.GetSrc(),dataHeader.GetDst(), packetID);
}
}
else
{
NS_LOG_INFO("Prazo (Deadline) estourado. Entregando pacote para o Backbone...");
if(haveNeighborBackbone(dataHeader.GetDst(), dataHeader.GetSrc())){
//If the backbone is near,send to the AP neighbor (ALMOST SUCCESSFULL case):
toBackbone = true;
//TODO If m_dropDest is the source, report this as a loop...
SendData(dataHeader.GetSrc(),m_dropDest, packetID, toBackbone);
}
//Caso backbone esteja distante, tratar pacote como perdido:
else{
NS_LOG_INFO("----------------------------------------------------------------------------------");
NS_LOG_INFO("DROP PACKET [" << packetID << "] AT NODE[" << m_nodeAddr << "] FROM AP[" << dataHeader.GetSrc() << "]
- Hop Count 'pu' = " << static_cast<int>(m_pu) << ".");

NS_LOG_INFO("----------------------------------------------------------------------------------");

//WRITE DROP PACKET:
int pktStatus = 4;
int sourceID = m_nodes_id[Ipv4Address::ConvertFrom(dataHeader.GetSrc())];
int nextID = -1;
WritePacket(sourceID, packetID, nextID, pktStatus, 0.0);
}
}
}
break;
}
}
m_rxTrace (packet, from);
}
}

// Se receber Dados, enviar RFB
void
Offloading::SendRFB(Ipv4Address source, Ipv4Address destination, int packetID)
{
NS_LOG_FUNCTION (this);
NS_ASSERT (m_send_AP_rfbEvent.IsExpired ());

//int bid_index = 0;

RFBHeader rfbHeader;
rfbHeader.SetDeadline(m_deadline);
rfbHeader.SetHopcount(m_pu);
rfbHeader.SetPacketID(packetID);
rfbHeader.SetSrcRFB(m_nodeMacAddr);
rfbHeader.SetSrc(source);
rfbHeader.SetDst(destination);

if(node_type == NODETYPE_AP){
//m_backbonePair.push_back(std::make_pair(source,destination));
//bid_index = FindBidNumber(source, destination);

//ImprimeTopologySet ();

//std::cout << std::endl;
//std::cout << " NEW PACKET -> ID["<< packetID <<"] SOURCE["<< source <<"]" << std::endl;
//std::cout <<"\n";

}
else{
//bid_index = FindBidNumber(source, destination);
//rfbHeader.SetSrc(source);
//rfbHeader.SetDst(destination);

//if(strategy_type == STRATEGYTYPE_TIGHTNESS){
m_Bn = m_budget_percentage * m_offerBid;
m_Fn = m_fine_percentage * m_Bn;
NS_LOG_INFO("Budget percentage = " << m_budget_percentage << ", Fine percentage = " << m_fine_percentage);
//}
}

NS_LOG_INFO("Bn = " << m_Bn);
rfbHeader.SetB0(m_Bn*pow(10,2));
rfbHeader.SetFine(m_Fn*pow(10,2));
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Ptr<Packet> packet = Create<Packet> ();
packet->AddHeader (rfbHeader);
TypeHeader tHeader (OFFLOADINGTYPE_RFB);
packet->AddHeader (tHeader);

// call to the trace sinks before the packet is actually sent,
// so that tags added to the packet can be sent as well
m_txTrace (packet);

SetRemote(Ipv4Address("255.255.255.255"),m_peerPort);
InetSocketAddress dst = InetSocketAddress (Ipv4Address::ConvertFrom(m_peerAddress), m_peerPort);
m_socket->Connect(dst);
m_socket->Send (packet);

m_tempo_envio = Simulator::Now ().GetSeconds ();

double getBn = rfbHeader.GetB0()/pow(10,2);
double getFn = rfbHeader.GetFine()/pow(10,2);

if (Ipv4Address::IsMatchingType (m_peerAddress))
{
NS_LOG_INFO ("["<< source <<"->"<< destination <<"]["<<packetID<<"]At "
<< Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a RFB."
" Budget B0 = " << getBn <<
" Fine F0 = " << getFn <<
" Deadline H0 = " << static_cast<int>(rfbHeader.GetDeadline()) <<
" Hop Count 'pu' = " << static_cast<int>(rfbHeader.GetHopcount()));
}
else
NS_LOG_INFO ("["<< source <<"->"<< destination <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a RFB."
" Budget B0 = " << getBn <<
" Fine F0 = " << getFn <<
" Deadline H0 = " << static_cast<int>(rfbHeader.GetDeadline()) <<
" Hop Count 'pu' = " << static_cast<int>(rfbHeader.GetHopcount()));

m_send_dataEvent = Simulator::Schedule (Seconds (m_timeout), &Offloading::SendData, this, source, destination, packetID, false);

if((packetID < (m_nPackets - 1))&&(node_type==NODETYPE_AP)){
m_pu = 0;
packetID++;
m_send_AP_rfbEvent = Simulator::Schedule (Seconds (m_timeBetweenSourcePacket), &Offloading::SendRFB, this, m_nodeAddr, m_dest, packetID);
}
}

void
Offloading::SendData (Ipv4Address source, Ipv4Address destination, int packetID, bool toBackbone)
{
NS_LOG_FUNCTION (this);

NS_ASSERT (m_send_dataEvent.IsExpired ());

//Send "DATA" to the Winner node (or to the Backbone):
Ptr<Packet> packet = Create<Packet> (100);

DataHeader dataHeader;
dataHeader.SetSrc(source);
dataHeader.SetDst(destination);
dataHeader.SetPacketID(packetID);
dataHeader.SetHopcount(m_pu);
packet->AddHeader (dataHeader);

NS_LOG_DEBUG("");
NS_LOG_DEBUG("*********************************************************************");
NS_LOG_DEBUG("BIDDER: "<< m_nodeAddr << " [SOURCE: " << source << ", PACKET_ID: " << packetID << "]");

//int bid_index = FindBidNumber(source, destination);
int winner_index = 0;
double bid(0.0), power(0.0);
m_winner_bid = 0.0;//Helps to calculate the preference function at the Gauss strategy.
int pktStatus, sourceID, nextID;//Used to write packet
int tight = 0;
int count = 0;
double optimal_cn(0.0), optimal_bid(0.0);
double var_opi(0.0), var_cn(0.0), sd_opi(0.0), sd_cn(0.0), cov(0.0), corr(0.0);
double cn, wrong_cn, cn_max, delta_avg;
int able_nodes_count = 0;
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//If it's a DATA send because timeout is over, choice the winner BID:
if(toBackbone == false){
//Choice winner if has received some BIDs:
if(m_bid_buffer.empty() == false){
//If it's the first bid, AP node does not use strategy. Choice the lowest BID:
if(node_type == NODETYPE_AP){

NS_LOG_DEBUG("B0 = " << m_Bn );
NS_LOG_DEBUG("");

count = 0;
for(std::vector<uint32_t >::iterator it = m_bid_buffer.begin(); it != m_bid_buffer.end(); it++, count++){
NS_LOG_DEBUG("");
NS_LOG_DEBUG("Competitor = " << InetSocketAddress::ConvertFrom (m_address_buffer.at(count)).GetIpv4());
bid = ((*it)/pow(10,2));
NS_LOG_DEBUG("Bid = " << bid);
}

int min = 0;
for(int i = 0;i < m_pkt_count;i++){
bid = m_bid_buffer.at(i)/pow(10,2);
if(bid < m_bid_buffer.at(min)/pow(10,2)){
min = i;
}
}
//Winner Choice:
SetRemote(m_address_buffer.at(min),m_peerPort);
m_winner_bid = m_bid_buffer.at(min)/pow(10,2);

//TODO Deal with the case that the competitors are all negative or zero in the first RFB.
}
else if(node_type == NODETYPE_NETWORK){

//Calculate hop count (m_hc)
HopCountComputation (destination,1);
Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();
OlsrState olsrState = routing->GetOlsrState();

std::vector<uint32_t >::iterator winner_dummy_bid;
std::vector<int>::iterator winner_dummy_path_hc;
std::vector<Address >::iterator winner_dummy_path;
int winner_index_hc = std::distance(m_hc.begin(), winner_dummy_path_hc);
double bid_dummy = 0.0;

switch(strategy_type){

case STRATEGYTYPE_DUMMYBID:

count = 0;
for(std::vector<uint32_t >::iterator it = m_bid_buffer.begin(); it != m_bid_buffer.end(); it++, count++){
NS_LOG_DEBUG("");
NS_LOG_DEBUG("Competitor = " << InetSocketAddress::ConvertFrom (m_address_buffer.at(count)).GetIpv4());
bid_dummy = ((*it)/pow(10,2));
NS_LOG_DEBUG("Bid = " << bid_dummy);
}

//Winner choice:
winner_dummy_bid = std::min_element(m_bid_buffer.begin(), m_bid_buffer.end());//Choose the Lowest Bid.
winner_index = std::distance(m_bid_buffer.begin(), winner_dummy_bid);
bid_dummy = ((m_bid_buffer.at(winner_index))/pow(10,2));
NS_LOG_DEBUG("Minimum Bid = " << bid_dummy);

NS_LOG_DEBUG("---------------------------------------------------------------------");
NS_LOG_DEBUG("WINNER: "<< InetSocketAddress::ConvertFrom (m_address_buffer.at(winner_index)).GetIpv4() );
SetRemote(m_address_buffer.at(winner_index),m_peerPort);
m_winner_bid = m_bid_buffer.at(winner_index)/pow(10,2);

break;

case STRATEGYTYPE_DUMMYPATH:

count = 0;
for(std::vector<int >::iterator it = m_hc.begin(); it != m_hc.end(); it++, count++){
NS_LOG_DEBUG("");
NS_LOG_DEBUG("Competitor = " << m_hc_address.at(count));
NS_LOG_DEBUG("Hop Count = " << *it);
}

//Winner choice:
winner_dummy_path_hc = std::min_element(m_hc.begin(), m_hc.end());//Choose the Shortest Path.
winner_index_hc = std::distance(m_hc.begin(), winner_dummy_path_hc);
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//Find bid of the node "m_hc_address.at(winner_index_hc)":
winner_index = 0;
for(winner_dummy_path = m_address_buffer.begin(); winner_dummy_path != m_address_buffer.end(); winner_dummy_path++, winner_index++){
NS_LOG_INFO("Buffer Address = " << InetSocketAddress::ConvertFrom (*winner_dummy_path).GetIpv4());
bid_dummy = m_bid_buffer.at(winner_index)/pow(10,2);
NS_LOG_INFO("Buffer Bid = " << bid_dummy);
if((InetSocketAddress::ConvertFrom (*winner_dummy_path).GetIpv4()) == m_hc_address.at(winner_index_hc))
break;
}
//winner_dummy_path = std::find(m_address_buffer.begin(), m_address_buffer.begin(), m_hc_address.at(winner_index_hc));
//winner_index = std::distance(m_address_buffer.begin(), winner_dummy_path);
m_winner_bid = m_bid_buffer.at(winner_index)/pow(10,2);
SetRemote(m_address_buffer.at(winner_index) , m_peerPort);

NS_LOG_DEBUG("Minimum Hop Count = " << m_hc.at(winner_index_hc));
NS_LOG_DEBUG("---------------------------------------------------------------------");
NS_LOG_DEBUG("WINNER: "<< InetSocketAddress::ConvertFrom (m_address_buffer.at(winner_index)).GetIpv4() );

NS_LOG_DEBUG("Winner index = " << winner_index);
NS_LOG_DEBUG("Winner Bid = " << m_winner_bid);

break;

case STRATEGYTYPE_TIGHTNESS:

int N_competitors = 0;
int hc_buffer_equivalent_index = 0;
std::vector<Ipv4Address >::iterator hc_buffer_equivalent;
for(std::vector<Address>::const_iterator itCompetitors = m_address_buffer.begin ();
itCompetitors != m_address_buffer.end (); itCompetitors++){
//Find and print the equivalent Hop Count for each buffer address (because m_hc and Buffer are at different orders):
hc_buffer_equivalent = std::find(m_hc_address.begin(), m_hc_address.end(), InetSocketAddress::ConvertFrom (*itCompetitors).GetIpv4());
hc_buffer_equivalent_index = std::distance(m_hc_address.begin(), hc_buffer_equivalent);
NS_LOG_INFO("m_hc["<< InetSocketAddress::ConvertFrom (*itCompetitors).GetIpv4() <<"] = "
<< m_hc.at(hc_buffer_equivalent_index) <<".");
}

//Calculate delta_i:
N_competitors = 0;
for(std::vector<int>::const_iterator it_hc = m_hc.begin(); it_hc != m_hc.end(); it_hc++, N_competitors++){
m_delta.push_back((m_deadline - m_pu - 1) - *it_hc);
if(((m_deadline - m_pu - 1) - *it_hc) <= 0)
tight++;
NS_LOG_INFO("m_delta["<< m_nodeAddr <<"][" << *it_hc << "] = (H0 - pu - 1)- hci = (" << static_cast<int>(m_deadline) << " - " <<
static_cast<int>(m_pu) << " - 1) - " << *it_hc << " = " << m_delta.at(N_competitors));

}

//When all competitors are "Tight", do a special winner choice (*not in the original strategy):
if(tight == N_competitors){
int max = 0;
bool equal = true;

for(int delta_index = 0;delta_index < (N_competitors-1);delta_index++)
{
if(m_delta.at(delta_index) != m_delta.at(delta_index+1)){
equal = false;
break;
}
}
//If all deltas are equal:
if(equal){
winner_index = 0;//Choice the first bid as the winner.
NS_LOG_INFO("IT WORKS! CASE 1 -> winner_index = 0");
}
//If there are different values of deltas:
else{
max = *std::max_element(m_delta.begin(), m_delta.end());//Choice the maximum value of deltas.
for(int delta_index = 0;delta_index < N_competitors;delta_index++)
{
if(m_delta.at(delta_index) == max){
winner_index = delta_index;//Choice the first maximum competitor.
NS_LOG_INFO("IT WORKS! CASE 2 -> winner_index = " << winner_index);
break;
}
}
}
}
//'Normal' cases:
else{
//Calculating average Delta:
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delta_avg = 0;
able_nodes_count = 0;
for(std::size_t i = 0; i < m_delta.size(); i++){
if(m_delta.at(i) >= 0){
able_nodes_count++;
delta_avg += m_delta.at(i);
NS_LOG_DEBUG("delta_avg += m_delta.at(" << i << ") --> delta_avg += " << m_delta.at(i) );
}
}
delta_avg /= able_nodes_count;
NS_LOG_DEBUG("delta_avg /= able_nodes_count = " << delta_avg);

//Calculating maximum 'cn':
if(delta_avg != 0)
cn = m_delta[0]/delta_avg;
else if(m_delta[0] >= 0)
cn = m_delta[0] + 1;// We add "+ 1" to force this "cn" to be greater than when m_delta[0] = 0
else
cn = m_delta[0];
cn_max = cn;
for(int i = 0;i < m_pkt_count;i++){
if(delta_avg != 0)
cn = m_delta.at(i)/delta_avg;
else if(m_delta.at(i) >= 0)
cn = m_delta.at(i) + 1;// We add "+ 1" to force this "cn" to be greater than when m_delta[0] = 0
else
cn = m_delta.at(i);

cn_max = std::max(cn_max, cn);
}

if( (preference_function_type == PREFERENCEFUNCTION_GAUSS)||(preference_function_type == PREFERENCEFUNCTION_GAUSS_1) ){

if(preference_function_type == PREFERENCEFUNCTION_GAUSS_1)
optimal_cn = 1;
else
optimal_cn = cn_max;
optimal_bid = m_Fn;
NS_LOG_DEBUG("OPTIMAL VALUES:");
NS_LOG_DEBUG("Offerede Price = " << optimal_bid << "; Relative Tightness = " << optimal_cn);

//Calculate Offered Price Variance:
var_opi = 0;
for(int i = 0;i < m_pkt_count;i++){
bid = (m_bid_buffer.at(i))/pow(10,2);
NS_LOG_DEBUG("bid = " << bid );
power = pow((bid - optimal_bid),2);
NS_LOG_DEBUG("pow((bid - optimal_bid),2) = pow((" << bid << " - " << optimal_bid << "), 2) = " << power );
var_opi += power;
NS_LOG_DEBUG("sum(var_opi) = " << var_opi);
}
var_opi /= m_pkt_count;
NS_LOG_DEBUG("var_opi = " << var_opi);

//Calculate Relative Tightness Variance:
var_cn = 0;
for(int i = 0;i < m_pkt_count;i++){
if(delta_avg != 0)
cn = m_delta.at(i)/delta_avg;
else if(m_delta.at(i) >= 0)
cn = m_delta.at(i) + 1;// We add "+ 1" to force this "cn" to be greater than when m_delta[0] = 0
else
cn = m_delta.at(i);

NS_LOG_DEBUG("cn = m_delta.at(" << i << ")/delta_avg = " << cn);
power = pow((cn - optimal_cn),2);
NS_LOG_DEBUG("pow((cn - optimal_cn),2) = pow((" << cn << " - " << optimal_cn << "), 2) = " << power );
var_cn += power;
NS_LOG_DEBUG("sum(var_cn) = " << var_cn);
}
var_cn /= m_pkt_count;
NS_LOG_DEBUG("var_cn = " << var_cn);

//Calculate Covariance between Offered Price and Relative Tightness:
cov = 0;
for(int i = 0;i < m_pkt_count;i++){
if(delta_avg != 0)
cn = m_delta.at(i)/delta_avg;
else if(m_delta.at(i) >= 0)
cn = m_delta.at(i) + 1;// We add "+ 1" to force this "cn" to be greater than when m_delta[0] = 0
else
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cn = m_delta.at(i);

cov += ((m_bid_buffer.at(i)/pow(10,2)) - optimal_bid)*(cn - optimal_cn);
}
cov /= m_pkt_count;

//Calculate standard deviation:
sd_opi = sqrt(var_opi);
sd_cn = sqrt(var_cn);

//Calculate correlation:
corr = cov/(var_opi*var_cn);
}

//Calculating the Preference Function:
std::vector<double > P;
double preference = 0.0;

NS_LOG_DEBUG("k1 = " << m_k1 << ", k2 = " << m_k2);
NS_LOG_DEBUG("cn_max = " << cn_max);
NS_LOG_DEBUG("");

//Show m_hc_address addresses:
int hc_addr_index = 0;
for(std::vector<Ipv4Address >::iterator it = m_hc_address.begin(); it != m_hc_address.end(); it++, hc_addr_index++){
NS_LOG_INFO("m_hc_address[" << hc_addr_index << "] = " << *it);
}

//Calculate Preference Function values:
for(int i = 0;i < m_pkt_count;i++){
bid = m_bid_buffer.at(i)/pow(10,2);

//Find the equivalent Hop Count for each buffer address (because m_hc and the Buffer are at different orders, and m_delta is at the same order as m_hc):
hc_buffer_equivalent = std::find(m_hc_address.begin(), m_hc_address.end(), InetSocketAddress::ConvertFrom (m_address_buffer.at(i)).GetIpv4());
hc_buffer_equivalent_index = std::distance(m_hc_address.begin(), hc_buffer_equivalent);
if(delta_avg != 0)
cn = m_delta.at(i)/delta_avg;
else if(m_delta.at(i) >= 0)
cn = m_delta.at(i) + 1;// We add "+ 1" to force this "cn" to be greater than when m_delta[0] = 0
else
cn = m_delta.at(i);

//Select Preference Fuction:
switch(preference_function_type){

case PREFERENCEFUNCTION_PLANE:
preference = m_k1 - (m_k1/m_Bn)*bid + (m_k2/cn_max)*cn;
break;

case PREFERENCEFUNCTION_GAUSS:
//Calculate 2-dimensional Gauss centered at [Fn,c_max]:
preference = (1/(2*M_PI*sd_opi*sd_cn*sqrt(1 - pow(corr,2)))) * exp( (-1/(2*(1 - pow(corr,2)))) * ( (pow((bid - optimal_bid),2)/var_opi) +
(pow((cn - optimal_cn),2)/var_cn) - ((2*corr*(bid - optimal_bid)*(cn - optimal_cn))/(sd_opi*sd_cn)) ) );

break;

case PREFERENCEFUNCTION_GAUSS_1:
//Calculate 2-dimensional Gauss centered at [Fn,c_max]:
preference = (1/(2*M_PI*sd_opi*sd_cn*sqrt(1 - pow(corr,2)))) * exp( (-1/(2*(1 - pow(corr,2)))) * ( (pow((bid - optimal_bid),2)/var_opi) +
(pow((cn - optimal_cn),2)/var_cn) - ((2*corr*(bid - optimal_bid)*(cn - optimal_cn))/(sd_opi*sd_cn)) ) );

break;

}

NS_LOG_DEBUG("COMPETITOR " << InetSocketAddress::ConvertFrom (m_address_buffer.at(i)).GetIpv4() << ":");

//Show the problem of order effect:
if(hc_buffer_equivalent_index != i){
m_wrong_order++;
NS_LOG_INFO("");
NS_LOG_DEBUG("WRONG ORDER!! Total order errors = " << m_wrong_order);
NS_LOG_INFO("Buffer index (wrong Delta) = " << i << " <--> HC index (correct Delta) = " << hc_buffer_equivalent_index);
NS_LOG_INFO("m_delta[" << i << "] = " << m_delta.at(i) << " <--> m_delta[" << hc_buffer_equivalent_index << "] = " << m_delta.at(hc_buffer_equivalent_index) );
wrong_cn = m_delta.at(i)/delta_avg;
NS_LOG_INFO("cn[" << i << "] = " << wrong_cn << " <--> cn[" << hc_buffer_equivalent_index << "] = " << cn );
NS_LOG_INFO("");
}

//Show preference values:
NS_LOG_DEBUG("Bid = " << bid << " Relative Tight (cn) = " << cn );
NS_LOG_DEBUG("Preference value = " << preference);
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P.push_back(preference);
}

//Winner choice:
std::vector<double >::iterator winner;
winner = std::max_element(P.begin(), P.end());//Choose the largest preference function.
winner_index = std::distance(P.begin(), winner);
}

if( (preference_function_type == PREFERENCEFUNCTION_GAUSS)||(preference_function_type == PREFERENCEFUNCTION_GAUSS_1) ){
//Statistical data of competitors:
NS_LOG_DEBUG("");
NS_LOG_DEBUG("###### Statistical data of competitors:");
NS_LOG_DEBUG("Offered Price variance = " << var_opi);
NS_LOG_DEBUG("Relative Tightness variance = " << var_cn);
NS_LOG_DEBUG("Covariance between Relative Tightness and Offered Price = " << cov);
NS_LOG_DEBUG("Offered Price standard deviation = " << sd_opi);
NS_LOG_DEBUG("Relative Tightness standard deviation = " << sd_cn);
NS_LOG_DEBUG("Correlation between Relative Tightness and Offered Price = " << corr);
}

NS_LOG_DEBUG("---------------------------------------------------------------------");
NS_LOG_DEBUG("WINNER: "<< InetSocketAddress::ConvertFrom (m_address_buffer.at(winner_index)).GetIpv4() );
SetRemote(m_address_buffer.at(winner_index),m_peerPort);
m_winner_bid = m_bid_buffer.at(winner_index)/pow(10,2);

break;
}
}
}
//No BIDs received after timeout:
else{
NS_LOG_INFO("No BIDs received at "<< m_nodeAddr <<".");
if(node_type == NODETYPE_NETWORK){
//If there is a backbone nearby, sends to the neighbor AP:
if((haveNeighborBackbone(destination, source))&&(node_type == NODETYPE_NETWORK)){
//Here is a case of dead end, with an AP nearby (even within deadline).
toBackbone = true;
//TODO If m_dropDest == source, report this as a loop?
SetRemote(m_dropDest,m_peerPort);
}
else{//No backbone nearby:
//Here is a case of dead end, with no neighbor (or AP) nearby (even within deadline).
NS_LOG_INFO("----------------------------------------------------------------------------------");
NS_LOG_INFO("DROP PACKET [" << packetID << "] AT NODE[" << m_nodeAddr << "] FROM AP[" << dataHeader.GetSrc() << "] - Hop Count 'pu' = "
<< static_cast<int>(m_pu) << ".");
NS_LOG_INFO("----------------------------------------------------------------------------------");

//WRITE DROP PACKET:
pktStatus = 4;
sourceID = m_nodes_id[Ipv4Address::ConvertFrom(source)];
nextID = -1;
WritePacket(sourceID, packetID, nextID, pktStatus, 0.0);
return;
}
}
else{
//If this node is AP source, so it could not send any packet yet:
NS_LOG_INFO("THIS AP SOURCE CANNOT START A BID. NO BIDs RECEIVED YET...");

//TODO Retransmit an RFB packet?

return;
}
}
}
else
SetRemote(destination,m_peerPort);

TypeHeader tHeader (OFFLOADINGTYPE_DATA);
packet->AddHeader(tHeader);

if(toBackbone == false){
m_socket->SendTo (packet, 0, m_peerAddress);

if (Ipv4Address::IsMatchingType (m_peerAddress))
{
NS_LOG_INFO ("["<< source <<"->"<< destination <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a DATA to " << Ipv4Address::ConvertFrom (m_peerAddress));
}
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else{
NS_LOG_INFO ("["<< source <<"->"<< destination <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a DATA to " <<
InetSocketAddress::ConvertFrom (m_peerAddress).GetIpv4 ());
}
}
else{
InetSocketAddress dst = InetSocketAddress (Ipv4Address::ConvertFrom(m_peerAddress), m_peerPort);
m_socket->Connect(dst);
m_socket->Send (packet);

if (Ipv4Address::IsMatchingType (m_peerAddress))
{
NS_LOG_INFO ("["<< source <<"->"<< destination <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a DATA to " << Ipv4Address::ConvertFrom (m_peerAddress) <<
"Hop Count 'pu' = " << static_cast<int>(m_pu));
}
else{
NS_LOG_INFO ("["<< source <<"->"<< destination <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a DATA to " <<
InetSocketAddress::ConvertFrom (m_peerAddress).GetIpv4 () <<
" Hop Count 'pu' = " << static_cast<int>(m_pu));
}
}

//WRITE OFFLOADED PACKET:
sourceID = m_nodes_id[Ipv4Address::ConvertFrom(source)];
if(toBackbone == false){
nextID = m_nodes_id[InetSocketAddress::ConvertFrom (m_peerAddress).GetIpv4 ()];
pktStatus = 5;
}
else{
nextID = m_nodes_id[Ipv4Address::ConvertFrom(m_peerAddress)];
pktStatus = 6;
}
WritePacket(sourceID, packetID, nextID, pktStatus, m_winner_bid);

//Clean buffer:
m_bid_buffer.erase (m_bid_buffer.begin(),m_bid_buffer.end());
m_address_buffer.erase (m_address_buffer.begin(),m_address_buffer.end());
m_pkt_count = 0;

//Clean vectors:
m_hc.erase (m_hc.begin(),m_hc.end());
m_hc_address.erase (m_hc_address.begin(),m_hc_address.end());
m_delta.erase (m_delta.begin(),m_delta.end());

//m_backbonePair.erase(m_backbonePair.begin() + bid_index);

//Loop control:
m_loopControl.push_back(std::make_pair(source, packetID));
m_pu = 0;
}

// Guardar no buffer se receber proposta (bid) dentro do Timeout:
void
Offloading::BufferBid(Address from, uint32_t bid, Ipv4Address source, Ipv4Address destination)
{
if((Simulator::Now ().GetSeconds () - m_tempo_envio) < m_timeout){
m_bid_buffer.push_back(bid);
m_address_buffer.push_back(from);
//m_source_buffer.push_back(source);
//m_destination_buffer.push_back(destination);
m_pkt_count++;
}
}

// Se receber RFB, enviar lance
void
Offloading::SendBid(Ptr<Socket> socket, uint32_t Bu, uint32_t Fu, uint8_t H0, int packetID)
{
NS_LOG_LOGIC ("Sending bid...");

NS_ASSERT (m_send_bidEvent.IsExpired ());

//ImprimeTopologySet ();
HopCountComputation (m_dest,0);
BidComputation (Bu, Fu, H0);
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BidHeader bidHeader;
bidHeader.SetOfferedBid(m_offerBid*pow(10,2));
bidHeader.SetSrc(m_source);
bidHeader.SetDst(m_dest);
bidHeader.SetPacketID(packetID);

Ptr<Packet> packet = Create<Packet> ();
packet->AddHeader (bidHeader);
TypeHeader tHeader (OFFLOADINGTYPE_BID);
packet->AddHeader (tHeader);

//Insere endereÃğo MAC do nÃş leiloeiro (upload) na tabela ARP:
PopulateArpCache();

socket->SendTo(packet, 0, m_upload);

double getOfferbid = bidHeader.GetOfferedBid()/pow(10,2);

if (InetSocketAddress::IsMatchingType (m_upload))
{
NS_LOG_INFO ("["<< m_source <<"->"<< m_dest <<"]["<<packetID<<"]At " << Simulator::Now ().GetSeconds () << "s "
<< Ipv4Address::ConvertFrom (m_nodeAddr) <<
" sent a BID to " <<
InetSocketAddress::ConvertFrom (m_upload).GetIpv4 () <<
" Offered Bid = " << getOfferbid);
}

//Limpa vetores:
m_hc.erase (m_hc.begin(),m_hc.end());
m_hc_address.erase (m_hc_address.begin(),m_hc_address.end());
m_delta.erase (m_delta.begin(),m_delta.end());
m_able_nodes.erase (m_able_nodes.begin(),m_able_nodes.end());
//grafo_dijkstra.erase(grafo_dijkstra.begin(),grafo_dijkstra.end());
}

bool
Offloading::IsLastHop (Ipv4Address dest){

Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();
std::vector<RoutingTableEntry> entry = routing->GetRoutingTableEntries();

for (std::vector< RoutingTableEntry, std::allocator<RoutingTableEntry> >::iterator i = entry.begin(); i!=entry.end(); i++)
{
if((i->destAddr == dest) && (i->distance == 1))
return true;
}

return false;
}

//Store the hop counts of this node competitors in the array "m_hc".
//If this node is the Bidder, nodetype=1. If this node received a RFB, nodetype=0:
void
Offloading::HopCountComputation (Ipv4Address dest, int nodetype)
{
/*
* Hop counts:
* - m_hc[0] representa o hci deste nÃş
* - m_hc[i] p/ i != 0 representa o hci dos competidores deste nÃş
*/

Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();
OlsrState olsrState = routing->GetOlsrState();

//Construir Grafo via repositÃşrio OLSR. Grafo(grafo_dijkstra) Ãľ usado no algoritmo Dijkstra:
adjacency_list_t grafo_dijkstra(number_nodes);
BuildGraphDijkstra(grafo_dijkstra);

//AplicaÃğÃčo de Dijkstra sobre o Grafo:
std::vector<weight_t> min_distance;
std::vector<vertex_t> previous;

int delta = 0;
//CÃąlculo do Hop Count deste nÃş (m_hc[0]):
if(nodetype == 0){
DijkstraComputePaths(m_map_address_graphnode[m_nodeAddr], grafo_dijkstra, min_distance, previous);
m_hc.push_back(min_distance[m_map_address_graphnode[dest]]);
m_hc_address.push_back(m_nodeAddr);
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NS_LOG_DEBUG("Calculo de HopCounts pelo no " << m_nodeAddr << " para calcular Offered Bid:");
delta = (m_deadline - m_pu - 1) - min_distance[m_map_address_graphnode[dest]];
NS_LOG_DEBUG("m_hc["<< m_nodeAddr <<"]["<< m_nodeAddr <<" -> " << dest << "] = "
<< min_distance[m_map_address_graphnode[dest]]
<< " Delta = (H0 - pu - 1)- hci = ("
<< static_cast<int>(m_deadline) << " - " << static_cast<int>(m_pu) << " - 1) - "
<< min_distance[m_map_address_graphnode[dest]] << " = " << delta);
}

if(nodetype == 0)//TODO Problem of incomplete network (OLSR). Pass 'hc' of competitors via RFB?
for ( TwoHopNeighborSet::const_iterator itTwohopNeighbor = olsrState.GetTwoHopNeighbors ().begin ();
itTwohopNeighbor != olsrState.GetTwoHopNeighbors ().end (); itTwohopNeighbor++)
{
//Verifica somente os vizinhos do nÃş leiloeiro (upload node) e que nÃčo sejam APs (nÃčo pertenÃğam ao backbone):
if((itTwohopNeighbor->neighborMainAddr == InetSocketAddress::ConvertFrom (m_upload).GetIpv4 ())&&(!isBackbone(itTwohopNeighbor->twoHopNeighborAddr))){
DijkstraComputePaths(m_map_address_graphnode[itTwohopNeighbor->twoHopNeighborAddr], grafo_dijkstra, min_distance, previous);
m_hc.push_back(min_distance[m_map_address_graphnode[dest]]);
m_hc_address.push_back(itTwohopNeighbor->twoHopNeighborAddr);
delta = (m_deadline - m_pu - 1) - min_distance[m_map_address_graphnode[dest]];
NS_LOG_DEBUG("m_hc["<< m_nodeAddr <<"]["<< itTwohopNeighbor->twoHopNeighborAddr <<" -> " <<

dest << "] = " << min_distance[m_map_address_graphnode[dest]]
<< " Delta = (H0 - pu - 1)- hci = ("

<< static_cast<int>(m_deadline) << " - " << static_cast<int>(m_pu) << " - 1) - "
<< min_distance[m_map_address_graphnode[dest]] << " = " << delta);

}
}
else
for ( std::vector<Address>::const_iterator itCompetitors = m_address_buffer.begin ();
itCompetitors != m_address_buffer.end (); itCompetitors++)
{
DijkstraComputePaths(m_map_address_graphnode[InetSocketAddress::ConvertFrom (*itCompetitors).GetIpv4()], grafo_dijkstra, min_distance, previous);
m_hc.push_back(min_distance[m_map_address_graphnode[dest]]);
m_hc_address.push_back(InetSocketAddress::ConvertFrom (*itCompetitors).GetIpv4());
delta = (m_deadline - m_pu - 1) - min_distance[m_map_address_graphnode[dest]];
NS_LOG_INFO("m_hc["<< m_nodeAddr <<"]["<< InetSocketAddress::ConvertFrom (*itCompetitors).GetIpv4() <<" -> " <<

dest << "] = " << min_distance[m_map_address_graphnode[dest]]
<< " Delta = (H0 - pu - 1)- hci = ("

<< static_cast<int>(m_deadline) << " - " << static_cast<int>(m_pu) << " - 1) - "
<< min_distance[m_map_address_graphnode[dest]] << " = " << delta);

}
}

void
Offloading::BidComputation (uint32_t Bu, uint32_t Fu, uint8_t H0){

UniformVariable uv;
if((strategy_type == STRATEGYTYPE_DUMMYBID) || (strategy_type == STRATEGYTYPE_DUMMYPATH)){
// Calculate the Random offered Bid for the Dummy cases:
m_offerBid = (uv.GetValue(Fu/pow(10,2), Bu/pow(10,2)));
NS_LOG_INFO("* Offered Bid [" << m_nodeAddr << "] = " << m_offerBid);
}
else if(strategy_type == STRATEGYTYPE_TIGHTNESS){
//Calculate delta_i
int i = 0;
for(std::vector<int>::const_iterator it_hc = m_hc.begin(); it_hc != m_hc.end(); it_hc++, i++){
m_delta.push_back((H0 - m_pu - 1) - *it_hc);
NS_LOG_INFO("m_delta["<< m_nodeAddr <<"][" << i << "] = (H0 - pu - 1)- hci = (" << static_cast<int>(H0) << " - " << static_cast<int>(m_pu) << " - 1) - " <<
*it_hc << " = " << m_delta[i]);

}
NS_LOG_INFO("m_delta["<< m_nodeAddr <<"][0] = (H0 - pu - 1)- hci = (" << static_cast<int>(H0) << " - " << static_cast<int>(m_pu) << " - 1) - " <<
m_hc.at(0) << " = " << m_delta[0]);

//Calculate parameters:
double delta_avg = 0.0;
int delta_max = 0;
double cn = 0.0;
double an;

//Set S(u)[m_able_nodes]:
for(std::vector<int>::const_iterator it = m_delta.begin(); it != m_delta.end(); it++){
if(*it >= 0){
m_able_nodes.push_back(*it);
NS_LOG_INFO("m_able_nodes.push_back("<< *it <<")");
}
}

//If exist able nodes to compete with this node AND this node is able to compete, cn = delta/delta_avg:
if((m_delta[0] > 0)&&(m_able_nodes.size() > 1)){
delta_max = *std::max_element(m_able_nodes.begin()+1, m_able_nodes.end());
NS_LOG_INFO("delta_max = " << delta_max);
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for(std::size_t i = 0; i < m_able_nodes.size(); i++)
delta_avg += m_able_nodes.at(i);
delta_avg /= m_able_nodes.size();
NS_LOG_INFO("delta_avg = " << delta_avg);

cn = (m_delta[0])/delta_avg;
NS_LOG_INFO("cn = " << cn);
an = m_delta[0];
if(delta_max!=0)// If all able competitors are zero, an = this node Delta. Not specified at original strategy.
an /= delta_max;
NS_LOG_INFO("an = " << an);

m_offerBid = (Bu/pow(10,2) - Fu/pow(10,2))*(1-(1/(1+ exp(-(an*(cn - 1))) ))) + Fu/pow(10,2);
}
else
m_offerBid = Bu/pow(10,2);//If this node is not an able competitor OR it is the unique able competitor OR ther is no competitors

NS_LOG_INFO("m_offerBid = " << m_offerBid);
}
}

void
Offloading::BuildGraphDijkstra(adjacency_list_t &grafo_dijkstra){

Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();
OlsrState olsrState = routing->GetOlsrState();
const TopologySet &topology = olsrState.GetTopologySet ();

// ConstruÃğÃčo do Grafo (adjacency_list):
// Parte 1: TopologySet - OLSR:
for (std::map<Ipv4Address, int>::const_iterator mapGraphNode =
m_map_address_graphnode.begin (); mapGraphNode != m_map_address_graphnode.end (); mapGraphNode++)
{
for(TopologySet::const_iterator tuple = topology.begin ();
tuple != topology.end (); tuple++)
{
if(mapGraphNode->first == tuple->lastAddr){

if(!FindGraphEdge(mapGraphNode->second, m_map_address_graphnode[tuple->destAddr], grafo_dijkstra)){
grafo_dijkstra[mapGraphNode->second].push_back(neighbor(m_map_address_graphnode[tuple->destAddr], 1));//ida
//NS_LOG_INFO(mapGraphNode->first << " --> " << tuple->destAddr);
}
if(!FindGraphEdge(m_map_address_graphnode[tuple->destAddr], mapGraphNode->second, grafo_dijkstra)){
grafo_dijkstra[m_map_address_graphnode[tuple->destAddr]].push_back(neighbor(mapGraphNode->second, 1));//volta
//NS_LOG_INFO(tuple->destAddr << " --> " << mapGraphNode->first);
}

}
if(mapGraphNode->first == tuple->destAddr){

if(!FindGraphEdge(mapGraphNode->second, m_map_address_graphnode[tuple->lastAddr], grafo_dijkstra)){
grafo_dijkstra[mapGraphNode->second].push_back(neighbor(m_map_address_graphnode[tuple->lastAddr], 1));//ida
//NS_LOG_INFO(mapGraphNode->first << " --> " << tuple->lastAddr);
}
if(!FindGraphEdge(m_map_address_graphnode[tuple->lastAddr], mapGraphNode->second, grafo_dijkstra)){
grafo_dijkstra[m_map_address_graphnode[tuple->lastAddr]].push_back(neighbor(mapGraphNode->second, 1));//volta
//NS_LOG_INFO(tuple->lastAddr << " --> " << mapGraphNode->first);
}
}
}
}

//Parte 2: NeighborSet - OLSR:
for ( NeighborSet::const_iterator itNeighbor = olsrState.GetNeighbors ().begin ();
itNeighbor != olsrState.GetNeighbors ().end (); itNeighbor++)
{
if( (!FindGraphEdge(m_map_address_graphnode[m_nodeAddr], m_map_address_graphnode[itNeighbor->neighborMainAddr], grafo_dijkstra) )){
grafo_dijkstra[m_map_address_graphnode[m_nodeAddr]].push_back(neighbor(m_map_address_graphnode[itNeighbor->neighborMainAddr], 1));
grafo_dijkstra[m_map_address_graphnode[itNeighbor->neighborMainAddr]].push_back(neighbor(m_map_address_graphnode[m_nodeAddr], 1));
}
}

//Parte 3: TwoHopNeighborSet - OLSR:
for ( TwoHopNeighborSet::const_iterator itTwohopNeighbor = olsrState.GetTwoHopNeighbors ().begin ();
itTwohopNeighbor != olsrState.GetTwoHopNeighbors ().end (); itTwohopNeighbor++)
{
//NS_LOG_INFO("Neighbor: " << itTwohopNeighbor->neighborMainAddr << " --> TwoHopNeighbor: " << itTwohopNeighbor->twoHopNeighborAddr);
if( (!FindGraphEdge(m_map_address_graphnode[itTwohopNeighbor->neighborMainAddr], m_map_address_graphnode[itTwohopNeighbor->twoHopNeighborAddr], grafo_dijkstra)) &&
(!FindGraphEdge(m_map_address_graphnode[itTwohopNeighbor->twoHopNeighborAddr], m_map_address_graphnode[itTwohopNeighbor->neighborMainAddr], grafo_dijkstra)) ){
grafo_dijkstra[m_map_address_graphnode[itTwohopNeighbor->neighborMainAddr]].push_back(neighbor(m_map_address_graphnode[itTwohopNeighbor->twoHopNeighborAddr], 1));
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grafo_dijkstra[m_map_address_graphnode[itTwohopNeighbor->twoHopNeighborAddr]].push_back(neighbor(m_map_address_graphnode[itTwohopNeighbor->neighborMainAddr], 1));
}
}
//ImprimeGrafo (true, grafo_dijkstra);
}

//Verifica se existe determinada aresta direcionada (a --> b) no Grafo:
bool
Offloading::FindGraphEdge (int a, int b, adjacency_list_t &grafo_dijkstra){

int i = 0;
for(std::vector<std::vector<neighbor> >::const_iterator it_a = grafo_dijkstra.begin(); it_a != grafo_dijkstra.end(); it_a++, i++)
for(std::vector<neighbor>::const_iterator it_b = it_a->begin(); it_b != it_a->end(); it_b++)
if((i == a) && (it_b->target == b))
return true;

return false;
}

void
Offloading::ImprimeTopologySet ()
{
Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();

//Imprime TopologySet:
OlsrState olsrState = routing->GetOlsrState();
const TopologySet &topology = olsrState.GetTopologySet ();
NS_LOG_INFO (Simulator::Now ().GetSeconds ()
<< "s ** BEGIN dump TopologySet for OLSR Node " << m_nodeAddr);
for (TopologySet::const_iterator tuple = topology.begin ();
tuple != topology.end (); tuple++)
{
NS_LOG_INFO (*tuple);
}
NS_LOG_INFO ("** END dump TopologySet Set for OLSR Node " << m_nodeAddr);

}

void
Offloading::ImprimeGrafo (bool sort, adjacency_list_t &grafo_dijkstra)
{
int node = 0;
int edge = 0;
if(sort){
for(std::map<Ipv4Address, int>::const_iterator mapGraphNode = m_map_address_graphnode.begin ();
mapGraphNode != m_map_address_graphnode.end (); mapGraphNode++, node++)
for(std::vector<neighbor>::const_iterator it = grafo_dijkstra[mapGraphNode->second].begin(); it != grafo_dijkstra[mapGraphNode->second].end(); it++){
NS_LOG_INFO (mapGraphNode->first << " <--> " << FindMapAddress (it->target));
edge++;
}
}
else{
for(std::vector<std::vector<neighbor> >::const_iterator it_a = grafo_dijkstra.begin(); it_a != grafo_dijkstra.end(); it_a++, node++)
for(std::vector<neighbor>::const_iterator it_b = it_a->begin(); it_b != it_a->end(); it_b++){
NS_LOG_INFO (FindMapAddress (node) << " <--> " << FindMapAddress (it_b->target));
edge++;
}
}

NS_LOG_INFO("Este Grafo possui " << node << " no's e " << edge << " arestas.");
}

//Verifica endereÃğo IPv4 do nÃş 'a' no Grafo:
Ipv4Address
Offloading::FindMapAddress (int a){
Ipv4Address mapAddr;

for(std::map<Ipv4Address, int>::const_iterator mapGraphNode = m_map_address_graphnode.begin ();
mapGraphNode != m_map_address_graphnode.end (); mapGraphNode++){
if(mapGraphNode->second == a)
mapAddr = mapGraphNode->first;
}
return mapAddr;
}

void
Offloading::DijkstraComputePaths(vertex_t source,
const adjacency_list_t &adjacency_list,
std::vector<weight_t> &min_distance,
std::vector<vertex_t> &previous)
{
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int n = adjacency_list.size();
min_distance.clear();
min_distance.resize(n, std::numeric_limits<double>::infinity());
min_distance[source] = 0;
previous.clear();
previous.resize(n, -1);
std::set<std::pair<weight_t, vertex_t> > vertex_queue;
vertex_queue.insert(std::make_pair(min_distance[source], source));

while (!vertex_queue.empty())
{
weight_t dist = vertex_queue.begin()->first;
vertex_t u = vertex_queue.begin()->second;
vertex_queue.erase(vertex_queue.begin());

// Visit each edge exiting u
const std::vector<neighbor> &neighbors = adjacency_list[u];
for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();
neighbor_iter != neighbors.end();
neighbor_iter++)
{
vertex_t v = neighbor_iter->target;
weight_t weight = neighbor_iter->weight;
weight_t distance_through_u = dist + weight;
if (distance_through_u < min_distance[v]) {
vertex_queue.erase(std::make_pair(min_distance[v], v));

min_distance[v] = distance_through_u;
previous[v] = u;
vertex_queue.insert(std::make_pair(min_distance[v], v));

}

}
}
}

std::list<vertex_t>
Offloading::DijkstraGetShortestPathTo(vertex_t vertex, const std::vector<vertex_t> &previous)
{
std::list<vertex_t> path;
for ( ; vertex != -1; vertex = previous[vertex])
path.push_front(vertex);
return path;
}

void
Offloading::MapNode(void){

Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();
OlsrState olsrState = routing->GetOlsrState();
const TopologySet &topology = olsrState.GetTopologySet ();

//NS_LOG_INFO("Mapeamento de Grafo para o nÃş " << m_nodeAddr << " :");

int i = 0;
// Mapeamento via TopologySet- [EndereÃğo Ipv4 -> nÃžmero do nÃş no Grafo]:
for (TopologySet::const_iterator tuple = topology.begin (); tuple != topology.end (); tuple++)
{
if(m_map_address_graphnode.find(tuple->destAddr) == m_map_address_graphnode.end()){ //Se o endereÃğo nÃčo estiver mapeado...
m_map_address_graphnode[tuple->destAddr] = i++; //...adiciona nÃžmero do nÃş.
//NS_LOG_INFO("m_map_address_graphnode[" << tuple->destAddr << "] = " << m_map_address_graphnode[tuple->destAddr]);
}
if(m_map_address_graphnode.find(tuple->lastAddr) == m_map_address_graphnode.end()){
m_map_address_graphnode[tuple->lastAddr] = i++;
//NS_LOG_INFO("m_map_address_graphnode[" << tuple->lastAddr << "] = " << m_map_address_graphnode[tuple->lastAddr]);
}
}

// Mapeamento via NeighborSet- [EndereÃğo Ipv4 -> nÃžmero do nÃş no Grafo]:
for (NeighborSet::const_iterator tuple = olsrState.GetNeighbors().begin (); tuple != olsrState.GetNeighbors().end (); tuple++)
{
if(m_map_address_graphnode.find(tuple->neighborMainAddr) == m_map_address_graphnode.end()){ //Se o endereÃğo nÃčo estiver mapeado...
m_map_address_graphnode[tuple->neighborMainAddr] = i++; //...adiciona nÃžmero do nÃş.
//NS_LOG_INFO("m_map_address_graphnode[" << tuple->neighborMainAddr << "] = " << m_map_address_graphnode[tuple->neighborMainAddr]);
}
}

}

void
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Offloading::PopulateArpCache (void)
{
Ptr <ArpL3Protocol> arpL3 = m_thisNode->GetObject <ArpL3Protocol> ();
Ptr <ArpCache> arp = arpL3->FindCache (m_thisNode->GetDevice(0));

arp->SetAliveTimeout (Seconds(3600 * 24 * 365));

ArpCache::Entry * have_entry = arp->Lookup(InetSocketAddress::ConvertFrom (m_upload).GetIpv4 ());
//Caso a entrada na tabela nÃčo exista, adiciona entrada. Caso contrÃąrio nÃčo faz nada:
if(have_entry == 0){
ArpCache::Entry * entry = arp->Add(InetSocketAddress::ConvertFrom (m_upload).GetIpv4 ());
entry->MarkWaitReply(0);
entry->MarkAlive(m_uploadMAC);

Ptr<Ipv4L3Protocol> ip = m_thisNode->GetObject<Ipv4L3Protocol> ();
NS_ASSERT(ip !=0);
ip->GetInterface(0)->SetAttribute("ArpCache", PointerValue(arp));
}
}

//Check if this node have some neighbor that is AP, and if the final destination 'dest' is a neighbor too.
//Store address in 'm_dropDest':
bool
Offloading::haveNeighborBackbone(Ipv4Address dest, Ipv4Address src)
{
Ptr<RoutingProtocol> routing = this->GetNode()->GetObject<RoutingProtocol>();
OlsrState olsrState = routing->GetOlsrState();
bool haveNeighborAP = false;

for (NeighborSet::const_iterator tuple = olsrState.GetNeighbors().begin (); tuple != olsrState.GetNeighbors().end (); tuple++){
if(isBackbone(tuple->neighborMainAddr)){
if(tuple->neighborMainAddr == src){
//Only choice 'source' if it's the only choice:
if(olsrState.GetNeighbors().size() == 1){
m_dropDest = tuple->neighborMainAddr;
haveNeighborAP = true;
}
else
continue;
}
else {
m_dropDest = tuple->neighborMainAddr;
haveNeighborAP = true;
if(tuple->neighborMainAddr == dest)
break;//The 'destination' is the priority.
}
}
}

return haveNeighborAP;
}

//Verifica se o endereÃğo 'ipv4address' Ãľ AP:
bool
Offloading::isBackbone(Ipv4Address ipv4address)
{
for (std::vector<Ipv4Address >::const_iterator backbone = m_backbone.begin(); backbone != m_backbone.end(); backbone++){
if(*backbone == ipv4address){
return true;
}
}

return false;
}

//Verifica se determinado par de APs jÃą fez Offloading:
bool
Offloading::isOldPacket(Ipv4Address source, int packetID)
{
for(std::vector<std::pair<Ipv4Address, int> >::const_iterator it = m_loopControl.begin(); it != m_loopControl.end(); it++){
if((it->first == source) && (it->second == packetID))
return true;
}
return false;
}

void
Offloading::WritePacket(int sourceID, int pktID, int nextID, int status, double reserved)
{
m_winner_bid = reserved;
//Auxiliary strings. Used to make the file content.
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std::stringstream str;
std::string s;

//BIDs and Fines (used to make accounts):
double earnBID;
double earnFINE;
double payBID;
double payFINE;

switch(status){
case 1://Success
earnBID = 0.0;
payFINE = 0.0;
payBID = 0.0;
earnFINE = 0.0;
break;
case 2://Super fine success
earnBID = 0.0;
payFINE = 0.0;
payBID = 0.0;
earnFINE = 0.0;
break;
case 3://Almost success
earnBID = 0.0;
payFINE = 0.0;
payBID = 0.0;
earnFINE = 0.0;
break;
case 4://Drop
earnBID = m_offerBid;
payFINE = m_payFINE;
payBID = 0.0;
earnFINE = 0.0;
break;
case 5://Normal auction(User only)
earnBID = m_offerBid;
payFINE = m_payFINE;
payBID = m_winner_bid;
earnFINE = m_Fn;
break;
case 6://Last hop(User only)
earnBID = m_offerBid;
payFINE = m_payFINE;
payBID = 0.0;
earnFINE = 0.0;
break;
default:
break;
}

//Fill the Source node id with zeros:
if(sourceID < 10)
content = content + "00" + boost::lexical_cast<std::string>(sourceID) + "\t";
else if(sourceID < 100)
content = content + "0" + boost::lexical_cast<std::string>(sourceID) + "\t";
else
content = content + boost::lexical_cast<std::string>(sourceID) + "\t";

content = content + boost::lexical_cast<std::string>(pktID) + "\t";

if(nextID != -1){
//Fill the Next node id with zeros:
if(nextID < 10)
content = content + "00" + boost::lexical_cast<std::string>(nextID) + "\t";
else if(nextID < 100)
content = content + "0" + boost::lexical_cast<std::string>(nextID) + "\t";
else
content = content + boost::lexical_cast<std::string>(nextID) + "\t";
}
else if((status == 1)||(status == 2)||(status == 3))
content = content + "end" + "\t";
else if(status == 4)
content = content + "drop" + "\t";
else
content = content + "error" + "\t";

//BIDs and Fines:
str << std::fixed << std::setprecision(2) << earnBID;
s = str.str();
content = content + s + "\t";
str.str(std::string());
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str << std::fixed << std::setprecision(2) << payFINE;
s = str.str();
content = content + s + "\t";
str.str(std::string());
str << std::fixed << std::setprecision(2) << payBID;
s = str.str();
content = content + s + "\t";
str.str(std::string());
str << std::fixed << std::setprecision(2) << earnFINE;
s = str.str();
content = content + s + "\t";

//Successful packet balance:
str.str(std::string());
str << std::fixed << std::setprecision(2) << (earnBID - payBID);
s = str.str();
content = content + s + "\t";

//Fail packet balance:
str.str(std::string());
str << std::fixed << std::setprecision(2) << (earnBID - payFINE - payBID + earnFINE);
s = str.str();
content = content + s + "\t";

//Status:
if((status == 1)||(status == 2)||(status == 3)||(status == 4))
content = content + boost::lexical_cast<std::string>(status) + "\t";
else if((status == 5)||(status == 6))
content = content + " " + "\t";//Don't write. Used by the user only.

//Packet balance:
switch(status){
case 1:
str.str(std::string());
str << std::fixed << std::setprecision(2) << (earnBID - payBID);
s = str.str();
content = content + s + "\t";
break;
case 2:
content = content + " " + "\t";
break;
case 3:
str.str(std::string());
str << std::fixed << std::setprecision(2) << (earnBID - payFINE - payBID + earnFINE);
s = str.str();
content = content + s + "\t";
break;
case 4:
str.str(std::string());
str << std::fixed << std::setprecision(2) << (earnBID - payFINE - payBID + earnFINE);
s = str.str();
content = content + s + "\t";
break;
case 5:
content = content + " " + "\t";
break;
case 6:
content = content + " " + "\t";
break;
default:
break;
}

//Accumulative balance (reserved to the telecommunications company):
content = content + " " + "\t";
content = content + "\n";

report_user = fopen(dir_myreport_user.c_str(), "w+");
fputs(content.c_str(), report_user);
fclose(report_user);
}

} // Namespace ns3

I.1.3 offloading-packet.h
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014 UnB, Departamento de Engenharia ElÃľtrica
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*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Lucas Soares de Brito <lucasbrito573@gmail.com>
*/

#ifndef OFFLOADINGPACKET_H
#define OFFLOADINGPACKET_H

#include <iostream>
#include "ns3/header.h"
#include "ns3/enum.h"
#include "ns3/ipv4-address.h"
#include "ns3/mac48-address.h"
#include <map>
#include "ns3/nstime.h"

namespace ns3 {

enum MessageType
{

OFFLOADINGTYPE_RFB = 1, //!< OFFLOADINGTYPE_RFB
OFFLOADINGTYPE_BID = 2, //!< OFFLOADINGTYPE_BID
OFFLOADINGTYPE_DATA = 3, //!< OFFLOADINGTYPE_DATA

};

/**
* \ingroup offloading
* \brief Offloading types
*/
class TypeHeader : public Header
{
public:

TypeHeader (MessageType t = OFFLOADINGTYPE_RFB);

///\name Header serialization/deserialization
//\{
static TypeId GetTypeId ();
TypeId GetInstanceTypeId () const;
uint32_t GetSerializedSize () const;
void Serialize (Buffer::Iterator start) const;
uint32_t Deserialize (Buffer::Iterator start);
void Print (std::ostream &os) const;
//\}

/// Return type
MessageType Get () const { return m_type; }
/// Check that type if valid
bool IsValid () const { return m_valid; }
bool operator== (TypeHeader const & o) const;

private:
MessageType m_type;
bool m_valid;

};

std::ostream & operator<< (std::ostream & os, TypeHeader const & h);

/**
* \ingroup offloading
* \brief Request For Bid (RFB) Message Format

\verbatim
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Hop count | Deadline | Packet ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| B0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Fine |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source IP Address |
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RFB Source MAC Address... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...RFB Source MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\endverbatim

*/

class RFBHeader : public Header
{
public:

RFBHeader (uint8_t hopcount = 0, uint8_t deadline = 0, uint8_t packet_id = 0,
uint32_t b0 = 0.0, uint32_t fine = 0.0,
Ipv4Address dst = Ipv4Address (),
Ipv4Address src = Ipv4Address (),
Mac48Address srcRFB = Mac48Address ());

///\name Header serialization/deserialization
//\{
static TypeId GetTypeId ();
TypeId GetInstanceTypeId () const;
uint32_t GetSerializedSize () const;
void Serialize (Buffer::Iterator start) const;
uint32_t Deserialize (Buffer::Iterator start);
void Print (std::ostream &os) const;
//\}

///\name Fields
//\{
void SetHopcount (uint8_t hopcount) { m_hopcount = hopcount; }
uint8_t GetHopcount () const { return m_hopcount; }
void SetDeadline (uint8_t deadline) { m_deadline = deadline; }
uint8_t GetDeadline () const { return m_deadline; }
void SetPacketID (uint8_t a) { m_packet_id = a; }
uint16_t GetPacketID () const { return m_packet_id; }
void SetB0 (uint32_t b0) { m_b0 = b0; }
uint32_t GetB0 () const { return m_b0; }
void SetFine (uint32_t fine) { m_fine = fine; }
uint32_t GetFine () const { return m_fine; }
void SetDst (Ipv4Address a) { m_dst = a; }
Ipv4Address GetDst () const { return m_dst; }
void SetSrc (Ipv4Address a) { m_src = a; }
Ipv4Address GetSrc () const { return m_src; }
void SetSrcRFB (Mac48Address a) { m_srcRFB = a; }
Mac48Address GetSrcRFB () const { return m_srcRFB; }
//\}

bool operator== (RFBHeader const & o) const;
private:

uint8_t m_hopcount; ///< Hop Count 'pu'
uint8_t m_deadline; ///< Deadline H0
uint8_t m_packet_id; ///< Packet ID
uint32_t m_b0; ///< Budget B0
uint32_t m_fine; ///< Fine F0
Ipv4Address m_dst; ///< Destination IP Address
Ipv4Address m_src; ///< Source IP Address
Mac48Address m_srcRFB; ///< RFB Source MAC Address

};

std::ostream & operator<< (std::ostream & os, RFBHeader const &);

/**
* \ingroup offloading
* \brief Bid Message Format

\verbatim
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Reserved | Packet ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bid Offer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

\endverbatim
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*/
class BidHeader : public Header
{
public:

BidHeader (uint16_t reserved = 0, uint8_t packet_id = 0, uint32_t offeredBid = 0,
Ipv4Address dst = Ipv4Address (),

Ipv4Address src = Ipv4Address ());

///\name Header serialization/deserialization
//\{
static TypeId GetTypeId ();
TypeId GetInstanceTypeId () const;
uint32_t GetSerializedSize () const;
void Serialize (Buffer::Iterator start) const;
uint32_t Deserialize (Buffer::Iterator start);
void Print (std::ostream &os) const;
//\}

///\name Fields
//\{
void SetPacketID (uint8_t a) { m_packet_id = a; }
uint16_t GetPacketID () const { return m_packet_id; }
void SetOfferedBid (uint32_t offeredBid) { m_offeredBid = offeredBid; }
uint32_t GetOfferedBid () const { return m_offeredBid; }
void SetSrc (Ipv4Address a) { m_src = a; }
Ipv4Address GetSrc () const { return m_src; }
void SetDst (Ipv4Address a) { m_dst = a; }
Ipv4Address GetDst () const { return m_dst; }
//\}

bool operator== (BidHeader const & o) const;
private:

uint16_t m_reserved; ///< Not used
uint8_t m_packet_id; ///< Packet ID
uint32_t m_offeredBid; ///< Offered Bid 'O(cn)'
Ipv4Address m_src; ///< Source IP Address
Ipv4Address m_dst; ///< Destination IP Address

};

std::ostream & operator<< (std::ostream & os, BidHeader const &);

/*
* O nÃş vencedor irÃą receber DADOS e seu endereÃğo de AP fonte.
*
* The winner node will receive DATA and its source AP address.
*
*/

/**
* \ingroup aodv
* \brief Winner (DATA) Message Format

\verbatim
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Source IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet ID | Destination IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hop Count |
+-+-+-+-+-+-+-+-+

\endverbatim
*/

class DataHeader : public Header
{
public:

DataHeader (Ipv4Address src = Ipv4Address (),
uint8_t packet_id = 0,
Ipv4Address dst = Ipv4Address (),
uint8_t hopcount = 0

);

///\name Header serialization/deserialization
//\{
static TypeId GetTypeId ();
TypeId GetInstanceTypeId () const;
uint32_t GetSerializedSize () const;
void Serialize (Buffer::Iterator i) const;
uint32_t Deserialize (Buffer::Iterator start);
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void Print (std::ostream &os) const;
//\}

///\name Fields
void SetPacketID (uint8_t a) { m_packet_id = a; }
uint8_t GetPacketID () const { return m_packet_id; }
void SetDst (Ipv4Address a) { m_dst = a; }
Ipv4Address GetDst () const { return m_dst; }
void SetSrc (Ipv4Address a) { m_src = a; }
Ipv4Address GetSrc () const { return m_src; }
void SetHopcount (uint8_t hopcount) { m_hopcount = hopcount; }
uint8_t GetHopcount () const { return m_hopcount; }

bool operator== (DataHeader const & o) const;
private:

Ipv4Address m_src; ///< Source IP Address
uint8_t m_packet_id; ///< Packet sequence number
Ipv4Address m_dst; ///< Destination IP Address
uint8_t m_hopcount; ///< Number of hops at the moment of DATA send

};
std::ostream & operator<< (std::ostream & os, DataHeader const &);

}
#endif /* OFFLOADINGPACKET_H */

I.1.4 offloading-packet.cc
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2014 UnB, Departamento de Engenharia ElÃľtrica
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Lucas Soares de Brito <lucasbrito573@gmail.com>
*/

#include "ns3/log.h"
#include "offloading-packet.h"
#include "ns3/address-utils.h"
#include "ns3/packet.h"

namespace ns3
{
NS_LOG_COMPONENT_DEFINE ("OffloadingPacket");

NS_OBJECT_ENSURE_REGISTERED (TypeHeader);

TypeHeader::TypeHeader (MessageType t) :
m_type (t), m_valid (true)

{
}

TypeId
TypeHeader::GetTypeId ()
{

static TypeId tid = TypeId ("ns3::TypeHeader")
.SetParent<Header> ()
.AddConstructor<TypeHeader> ()

;
return tid;

}

TypeId
TypeHeader::GetInstanceTypeId () const
{

return GetTypeId ();
}
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uint32_t
TypeHeader::GetSerializedSize () const
{

return 1;
}

void
TypeHeader::Serialize (Buffer::Iterator i) const
{

i.WriteU8 ((uint8_t) m_type);
}

uint32_t
TypeHeader::Deserialize (Buffer::Iterator start)
{

Buffer::Iterator i = start;
uint8_t type = i.ReadU8 ();
m_valid = true;
switch (type)

{
case OFFLOADINGTYPE_RFB:
case OFFLOADINGTYPE_BID:
case OFFLOADINGTYPE_DATA:

{
m_type = (MessageType) type;
break;

}
default:

m_valid = false;
}

uint32_t dist = i.GetDistanceFrom (start);
NS_ASSERT (dist == GetSerializedSize ());
return dist;

}

void
TypeHeader::Print (std::ostream &os) const
{

switch (m_type)
{
case OFFLOADINGTYPE_RFB:

{
os << "RFB";
break;

}
case OFFLOADINGTYPE_BID:

{
os << "BID";
break;

}
case OFFLOADINGTYPE_DATA:

{
os << "DATA";
break;

}
default:

os << "UNKNOWN_TYPE";
}

}

bool
TypeHeader::operator== (TypeHeader const & o) const
{

return (m_type == o.m_type && m_valid == o.m_valid);
}

std::ostream &
operator<< (std::ostream & os, TypeHeader const & h)
{

h.Print (os);
return os;

}

//-----------------------------------------------------------------------------
// RFB
//-----------------------------------------------------------------------------
RFBHeader::RFBHeader (uint8_t hopcount, uint8_t deadline, uint8_t packet_id,

uint32_t b0, uint32_t fine,
Ipv4Address dst,
Ipv4Address src,
Mac48Address srcRFB) :
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m_hopcount (hopcount), m_deadline (deadline), m_packet_id (packet_id),
m_b0 (b0), m_fine (fine),
m_dst (dst),
m_src (src),
m_srcRFB (srcRFB)

{
}

NS_OBJECT_ENSURE_REGISTERED (RFBHeader);

TypeId
RFBHeader::GetTypeId ()
{

static TypeId tid = TypeId ("ns3::RFBHeader")
.SetParent<Header> ()
.AddConstructor<RFBHeader> ()

;
return tid;

}

TypeId
RFBHeader::GetInstanceTypeId () const
{

return GetTypeId ();
}

uint32_t
RFBHeader::GetSerializedSize () const
{

return 25;
}

void
RFBHeader::Serialize (Buffer::Iterator i) const
{

i.WriteU8 (m_hopcount);
i.WriteU8 (m_deadline);
i.WriteU8 (m_packet_id);
i.WriteHtonU32 (m_b0);
i.WriteHtonU32 (m_fine);
WriteTo (i, m_dst);
WriteTo (i, m_src);
WriteTo (i, m_srcRFB);

}

uint32_t
RFBHeader::Deserialize (Buffer::Iterator start)
{

Buffer::Iterator i = start;
m_hopcount = i.ReadU8 ();
m_deadline = i.ReadU8 ();
m_packet_id = i.ReadU8 ();
m_b0 = i.ReadNtohU32 ();
m_fine = i.ReadNtohU32 ();
ReadFrom (i, m_dst);
ReadFrom (i, m_src);
ReadFrom (i, m_srcRFB);

uint32_t dist = i.GetDistanceFrom (start);
//NS_LOG_DEBUG("DIST=" << dist);
NS_ASSERT (dist == GetSerializedSize ());
return dist;

}

void
RFBHeader::Print (std::ostream &os) const
{

os << " Budget B0 " << m_b0
<< " Fine F0 " << m_fine
<< " Deadline H0 " << m_deadline
<< " Hop Count 'pu' " << m_hopcount
<< " destination: ipv4 " << m_dst
<< " source: ipv4 " << m_src
<< " Packet ID " << m_packet_id
<< " Source RFB : MAC48 " << m_srcRFB ;

}

std::ostream &
operator<< (std::ostream & os, RFBHeader const & h)
{

h.Print (os);
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return os;
}

bool
RFBHeader::operator== (RFBHeader const & o) const
{

return (m_b0 == o.m_b0 && m_fine == o.m_fine &&
m_deadline == o.m_deadline && m_hopcount == o.m_hopcount
&& m_dst == o.m_dst
&& m_src == o.m_src
&& m_packet_id == o.m_packet_id
&& m_srcRFB == o.m_srcRFB);

}

//-----------------------------------------------------------------------------
// Bid
//-----------------------------------------------------------------------------

BidHeader::BidHeader (uint16_t reserved, uint8_t packet_id,
uint32_t offeredBid,
Ipv4Address src, Ipv4Address dst):

m_reserved (reserved), m_packet_id (packet_id),
m_offeredBid (offeredBid),
m_src(src), m_dst(dst)

{
}

NS_OBJECT_ENSURE_REGISTERED (BidHeader);

TypeId
BidHeader::GetTypeId ()
{

static TypeId tid = TypeId ("ns3::BidHeader")
.SetParent<Header> ()
.AddConstructor<BidHeader> ()

;
return tid;

}

TypeId
BidHeader::GetInstanceTypeId () const
{

return GetTypeId ();
}

uint32_t
BidHeader::GetSerializedSize () const
{

return 15;
}

void
BidHeader::Serialize (Buffer::Iterator i) const
{

i.WriteU16 (m_reserved);
i.WriteU8 (m_packet_id);
i.WriteHtonU32 (m_offeredBid);
WriteTo (i, m_src);
WriteTo (i, m_dst);

}

uint32_t
BidHeader::Deserialize (Buffer::Iterator start)
{

Buffer::Iterator i = start;
m_reserved = i.ReadU16 ();
m_packet_id = i.ReadU8 ();
m_offeredBid = i.ReadNtohU32 ();
ReadFrom (i, m_src);
ReadFrom (i, m_dst);

uint32_t dist = i.GetDistanceFrom (start);
//NS_LOG_DEBUG("DIST=" << dist);
NS_ASSERT (dist == GetSerializedSize ());
return dist;

}

void
BidHeader::Print (std::ostream &os) const
{

os << " Lance: " << m_offeredBid
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<< " Packet ID: " << m_packet_id
<< " source: " << m_src
<< " destination: " << m_dst;

}

std::ostream &
operator<< (std::ostream & os, BidHeader const & h)
{

h.Print (os);
return os;

}

bool
BidHeader::operator== (BidHeader const & o) const
{

return (m_offeredBid == o.m_offeredBid &&
m_reserved == o.m_reserved && m_packet_id == o.m_packet_id
&& m_src == o.m_src && m_dst == o.m_dst);

}

//-----------------------------------------------------------------------------
// Data (Winner)
//-----------------------------------------------------------------------------

/*
* O nÃş vencedor irÃą receber somente DADOS.
* Se quiser adicionar algum cabeÃğalho, remova os comentÃąrios abaixo e faÃğa suas alteraÃğÃţes.
*
* The winner node will only receive DATA.
* If you want to add some header, remove comments below and make your changes.
*
*/

DataHeader::DataHeader (Ipv4Address src,
uint8_t packet_id,

Ipv4Address dst,
uint8_t hopcount
) :

m_src (src),
m_packet_id (packet_id),
m_dst (dst),
m_hopcount (hopcount)

{
}

NS_OBJECT_ENSURE_REGISTERED (DataHeader);
TypeId
DataHeader::GetTypeId ()
{

static TypeId tid = TypeId ("ns3::DataHeader")
.SetParent<Header> ()
.AddConstructor<DataHeader> ()

;
return tid;

}

TypeId
DataHeader::GetInstanceTypeId () const
{

return GetTypeId ();
}

uint32_t
DataHeader::GetSerializedSize () const
{

return 10;
}

void
DataHeader::Serialize (Buffer::Iterator i ) const
{

WriteTo (i, m_src);
i.WriteU8 (m_packet_id);
WriteTo (i, m_dst);
i.WriteU8 (m_hopcount);

}

uint32_t
DataHeader::Deserialize (Buffer::Iterator start )
{

Buffer::Iterator i = start;
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ReadFrom (i, m_src);
m_packet_id = i.ReadU8 ();
ReadFrom (i, m_dst);
m_hopcount = i.ReadU8 ();
uint32_t dist = i.GetDistanceFrom (start);
NS_ASSERT (dist == GetSerializedSize ());
return dist;

}

void
DataHeader::Print (std::ostream &os ) const
{
os << " source: ipv4 " << m_src

<< " destination: ipv4 " << m_dst
<< " packet ID number: " << m_packet_id
<< " hop count: " << m_hopcount;

}

std::ostream &
operator<< (std::ostream & os, DataHeader const & h )
{

h.Print (os);
return os;

}

bool
DataHeader::operator== (DataHeader const & o ) const
{

return (m_src == o.m_src
&& m_packet_id == o.m_packet_id
&& m_dst == o.m_dst
&& m_hopcount == o.m_hopcount);

}

}

I.2 Application Helper

I.2.1 offloading-helper.h
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2008 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
*/

#ifndef OFFLOADING_HELPER_H
#define OFFLOADING_HELPER_H

#include <stdint.h>
#include <map>
#include "ns3/application-container.h"
#include "ns3/node-container.h"
#include "ns3/object-factory.h"
#include "ns3/ipv4-address.h"
#include "ns3/ipv6-address.h"

namespace ns3 {

/**
* \brief create an application which sends a udp packet and waits for an echo of this packet
*/

class OffloadingHelper
{
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public:
/**
* Create OffloadingHelper which will make life easier for people trying
* to set up simulations with biddings.
*
* \param ip The IP address of the remote udp echo server
* \param port The port number of the remote udp echo server
*/

OffloadingHelper (uint16_t port);
//OffloadingHelper (Ipv4Address ip, uint16_t port);

/**
* Record an attribute to be set in each Application after it is is created.
*
* \param name the name of the attribute to set
* \param value the value of the attribute to set
*/

void SetAttribute (std::string name, const AttributeValue &value);

/**
* Create a udp echo client application on the specified node. The Node
* is provided as a Ptr<Node>.
*
* \param node The Ptr<Node> on which to create the UdpEchoClientApplication.
*
* \returns An ApplicationContainer that holds a Ptr<Application> to the
* application created
*/

ApplicationContainer Install (Ptr<Node> node) const;

/**
* Create a udp echo client application on the specified node. The Node
* is provided as a string name of a Node that has been previously
* associated using the Object Name Service.
*
* \param nodeName The name of the node on which to create the UdpEchoClientApplication
*
* \returns An ApplicationContainer that holds a Ptr<Application> to the
* application created
*/

ApplicationContainer Install (std::string nodeName) const;

/**
* \param c the nodes
*
* Create one udp echo client application on each of the input nodes
*
* \returns the applications created, one application per input node.
*/

ApplicationContainer Install (NodeContainer c) const;

/**
* Pass the "Tightness" strategy parameters to 'node'. The Install() method should have previously been
* called by the user.
*
* \param node the node to change the parameters
* \param k1 constant that multiply the Budget at the preference function
* \param k2 constant that multiply the Relative Tightness at the preference function
* \param budget_percentage percentage that multiply the offered Bid to send at a new RFB (next auction)
* \param fine_percentage percentage that multiply the new Budget(Bn = budget_percentage*offerBid) to send at a new RFB (next auction)
*/

void SetTightnessParameters (Ptr<Node> node, double k1, double k2, double budget_percentage, double fine_percentage);

/**
* Pass the Backbone addresses to 'node'. The Install() method should have previously been
* called by the user.
*
* \param node the node to receive Backbone addresses
* \param backboneAddr AP address of the backbone
*/

void SetBackbone (Ptr<Node> node, std::vector<Ipv4Address > backbone);

/**
* Pass the nodes IDs and its respective IPv4 addresses to the node container 'c'. The Install() method should have previously been
* called by the user.
*
* \param c node container
* \param nodes_id map nodes (node address --> node id)
*/

void SetMapNodes (NodeContainer c, std::map<Ipv4Address, int> nodes_id);
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/**
* Pass the topology name to the node container 'c'. The Install() method should have previously been
* called by the user.
*
* \param c node container
* \param topologyName topology name
*/

void SetTopologyName (NodeContainer c, std::string topologyName);

/**
* Pass the seed index to the node container 'c'. The Install() method should have previously been
* called by the user.
*
* \param c node container
* \param seedIndex seed index
*/

void SetSeedIndex (NodeContainer c, int seedIndex);

/**
* Pass the parameters folder name to the node container 'c'. The Install() method should have previously been
* called by the user.
*
* \param c node container
* \param paramName parameters folder name
*/

void SetParamName (NodeContainer c, std::string paramName);

/**
* Pass the experiment index to the node container 'c'. The Install() method should have previously been
* called by the user.
*
* \param c node container
* \param expIndex experiment index
*/

void SetExpIndex (NodeContainer c, std::string expIndex);

private:
Ptr<Application> InstallPriv (Ptr<Node> node) const;
ObjectFactory m_factory;

};

} // namespace ns3

#endif /* OFFLOADING_HELPER_H */

I.2.2 offloading-helper.cc
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2008 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
*/
#include "offloading-helper.h"
#include "ns3/offloading.h"
#include "ns3/uinteger.h"
#include "ns3/names.h"

namespace ns3 {

OffloadingHelper::OffloadingHelper (uint16_t port)
{

m_factory.SetTypeId (Offloading::GetTypeId ());
//SetAttribute ("RemoteAddress", AddressValue (address));
SetAttribute ("RemotePort", UintegerValue (port));

}
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/*
OffloadingHelper::OffloadingHelper (Ipv4Address address, uint16_t port)
{

m_factory.SetTypeId (Offloading::GetTypeId ());
//SetAttribute ("RemoteAddress", AddressValue (Address(address)));
SetAttribute ("RemotePort", UintegerValue (port));

}
*/

void
OffloadingHelper::SetAttribute (

std::string name,
const AttributeValue &value)

{
m_factory.Set (name, value);

}

ApplicationContainer
OffloadingHelper::Install (Ptr<Node> node) const
{

return ApplicationContainer (InstallPriv (node));
}

ApplicationContainer
OffloadingHelper::Install (std::string nodeName) const
{

Ptr<Node> node = Names::Find<Node> (nodeName);
return ApplicationContainer (InstallPriv (node));

}

ApplicationContainer
OffloadingHelper::Install (NodeContainer c) const
{

ApplicationContainer apps;
for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)

{
apps.Add (InstallPriv (*i));

}

return apps;
}

void
OffloadingHelper::SetBackbone (Ptr<Node> node, std::vector<Ipv4Address > backbone){
Ptr<Offloading> offloading = DynamicCast<Offloading> (node->GetApplication (0));
offloading->SetBackbone(backbone);
}

void
OffloadingHelper::SetTightnessParameters (Ptr<Node> node, double k1, double k2, double budget_percentage, double fine_percentage){
Ptr<Offloading> offloading = DynamicCast<Offloading> (node->GetApplication (0));
offloading->SetTightnessParameters (k1, k2, budget_percentage, fine_percentage);
}

void
OffloadingHelper::SetMapNodes (NodeContainer c, std::map<Ipv4Address, int> nodes_id)
{

for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)
{

Ptr<Offloading> offloading = DynamicCast<Offloading> ((*i)->GetApplication (0));
offloading->SetMapNodes(nodes_id);

}
}

void
OffloadingHelper::SetTopologyName (NodeContainer c, std::string topologyName)
{

for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)
{

Ptr<Offloading> offloading = DynamicCast<Offloading> ((*i)->GetApplication (0));
offloading->SetTopologyName(topologyName);

}
}

void
OffloadingHelper::SetSeedIndex (NodeContainer c, int seedIndex)
{

for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)
{

Ptr<Offloading> offloading = DynamicCast<Offloading> ((*i)->GetApplication (0));
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offloading->SetSeedIndex(seedIndex);
}

}

void
OffloadingHelper::SetParamName (NodeContainer c, std::string paramName)
{

for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)
{

Ptr<Offloading> offloading = DynamicCast<Offloading> ((*i)->GetApplication (0));
offloading->SetParamName(paramName);

}
}

void
OffloadingHelper::SetExpIndex (NodeContainer c, std::string expIndex)
{

for (NodeContainer::Iterator i = c.Begin (); i != c.End (); ++i)
{

Ptr<Offloading> offloading = DynamicCast<Offloading> ((*i)->GetApplication (0));
offloading->SetExpIndex(expIndex);

}
}

Ptr<Application>
OffloadingHelper::InstallPriv (Ptr<Node> node) const
{

Ptr<Application> app = m_factory.Create<Offloading> ();
node->AddApplication (app);

return app;
}

} // namespace ns3

I.3 Main Script

I.3.1 offloadingScript.cc
#include "ns3/wifi-module.h"
#include "ns3/mobility-module.h"
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/applications-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/olsr-helper.h"
#include "ns3/flow-monitor-module.h"
#include "ns3/random-variable.h"
#include <cmath>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <string>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <stdexcept>
#include <boost/lexical_cast.hpp>
//#include <math.h>
#include <sys/stat.h>
#include <sys/types.h>

using namespace ns3;
using namespace std;

NS_LOG_COMPONENT_DEFINE ("offloadingScript");

// MAC and PHY layers data:
bool useTwoRay = false;
double txPowerDbm = 16.0206;
double distancia = 150;//max distance
double altura = 1.0;//height
const double lambda = (299792458 / 2.407e9); // v = lambda(meters) * freq --> v = speed of light(ns3 default value), freq = 2.4 GHz(WiFi)

//Nodes coordinates and number of nodes:
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float *x_readTopo, *y_readTopo;
int total_nodes, backbone_size, offloading_size;

//Variables used to configure the AP nodes:
double *initialBudget, *initialFine, *startGen;
int *deadline, *Npackets, *destBackbone;

//Tightness parameters:
double *k1, *k2, *budget_percentage, *fine_percentage;

//Backbone vector (used to "inform" to all the nodes which are the AP nodes):
std::vector<Ipv4Address > backbone;

//Node map (used to map all nodes and its respective IPv4 addresses):
std::map<Ipv4Address, int> nodes_id;

void readConfig (char *topofile_backbone, char *topofile_offloading, char *configfile_backbone, char *configfile_tightness);
double rxPowerDbm (double distance, double height, double txPowerDbm, bool useTwoRay);

int
main (int argc, char *argv[])
{
GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));
//LogComponentEnable ("OlsrRoutingProtocol", LOG_LEVEL_INFO);
LogComponentEnable ("OffloadingApplication", LOG_LEVEL_DEBUG);
LogComponentEnable ("OffloadingPacket", LOG_LEVEL_DEBUG);

std::string home_dir(getenv("HOME"));
std::string topologyName("");
std::string paramName("");
std::string expIndex = "";
int seedIndex = 0;
int seedValue = 0;
double simStop = 5200.0;
double appStart = 30.0;
double appStop = simStop - 1.0;
int strategy = STRATEGYTYPE_TIGHTNESS;
int preference_function = PREFERENCEFUNCTION_PLANE;
double mobility_speed = 0.0;

CommandLine cmd;
cmd.AddValue("topologyName","The topology selected", topologyName);
cmd.AddValue("seedIndex","The seed selected", seedIndex);
cmd.AddValue("expIndex","The experiment index", expIndex);
cmd.AddValue("seedValue","The seed value", seedValue);
cmd.AddValue("paramName","The parameters folder name selected", paramName);
cmd.AddValue("preferenceFunctionType","The type of preference function used", preference_function);
cmd.AddValue("strategyType","The type of strategy used", strategy);
cmd.AddValue("mobilitySpeed","The speed of mobility used. Static if zero.", mobility_speed);
cmd.Parse (argc, argv);

char topofile_backbone[200], topofile_offloading[200], configfile_backbone[200], configfile_tightness[200]; //Files path name
if((strategy == STRATEGYTYPE_TIGHTNESS) && (preference_function == PREFERENCEFUNCTION_PLANE)){
sprintf (topofile_backbone,"%s%s%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/",
paramName.c_str(), "/seed", seedIndex, "/tp",topologyName.c_str(),"/backbone/topo.dat");
sprintf (topofile_offloading,"%s%s%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/",
paramName.c_str(), "/seed", seedIndex, "/tp",topologyName.c_str(),"/network/topo.dat");
sprintf (configfile_backbone,"%s%s%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/",
paramName.c_str(), "/seed", seedIndex, "/tp",topologyName.c_str(),"/backbone/config.dat");
sprintf (configfile_tightness,"%s%s%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/",
paramName.c_str(), "/seed", seedIndex, "/tp",topologyName.c_str(),"/network/config.dat");
}
else{
sprintf (topofile_backbone,"%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/seed",
seedIndex, "/tp",topologyName.c_str(),"/backbone/topo.dat");
sprintf (topofile_offloading,"%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/seed",
seedIndex, "/tp",topologyName.c_str(),"/network/topo.dat");
sprintf (configfile_backbone,"%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/seed",
seedIndex, "/tp",topologyName.c_str(),"/backbone/config.dat");
sprintf (configfile_tightness,"%s%s%s%s%d%s%s%s", getenv("HOME"), "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp", expIndex.c_str(), "/seed",
seedIndex, "/tp",topologyName.c_str(),"/network/config.dat");
}

readConfig (topofile_backbone, topofile_offloading, configfile_backbone, configfile_tightness);
std::cout << "Function readConfig terminated." << endl;
std::cout << "backbone_size = " << backbone_size << "\n";
std::cout << "offloading_size = " << offloading_size << "\n";
std::cout << "total_nodes = " << total_nodes << "\n";

//Creating all nodes:
NodeContainer nodes;
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nodes.Create(total_nodes);

// Topology:
MobilityHelper mobility_backbone;
Ptr<ListPositionAllocator> positionAlloc_backbone = CreateObject<ListPositionAllocator> ();
for(int j=0;j<backbone_size;j++) positionAlloc_backbone->Add (Vector (x_readTopo[j],y_readTopo[j],altura)); //backbone node position allocation
mobility_backbone.SetPositionAllocator (positionAlloc_backbone);
mobility_backbone.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

MobilityHelper mobility_network;
Ptr<ListPositionAllocator> positionAlloc_network = CreateObject<ListPositionAllocator> ();
for(int j=backbone_size;j<total_nodes;j++) positionAlloc_network->Add (Vector (x_readTopo[j],y_readTopo[j],altura)); //network node position allocation
mobility_network.SetPositionAllocator (positionAlloc_network);

std::string speed_attribute;
// Mobility Model
if(mobility_speed != 0.0){
speed_attribute = "ns3::ConstantRandomVariable[Constant=" + boost::lexical_cast<std::string>(mobility_speed) + "]";
mobility_network.SetMobilityModel ("ns3::RandomWalk2dMobilityModel","Bounds", RectangleValue (Rectangle (0, 800, 0, 800)),
"Distance", DoubleValue(10.0),
"Speed", StringValue(speed_attribute));
}
else{
mobility_network.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
}

int node_count = 0;
for(NodeContainer::Iterator it = nodes.Begin();it!=nodes.End();it++, node_count++){
if(node_count<backbone_size)
mobility_backbone.Install(*it);
else
mobility_network.Install(*it);
}
std::cout << "Mobility installed (mobility speed = " << mobility_speed << ")" << endl;

// MAC and PHY: WiFi Ad Hoc:

//Change seed:
uint32_t oldSeed = RngSeedManager::GetSeed();
srand(seedValue);
RngSeedManager::SetSeed(rand());

// MAC:
NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();
wifiMac.SetType ("ns3::AdhocWifiMac");

// PHY:
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.Set ("TxPowerStart", DoubleValue(txPowerDbm));
wifiPhy.Set ("TxPowerEnd", DoubleValue(txPowerDbm));
wifiPhy.Set ("TxGain", DoubleValue(0));
wifiPhy.Set ("RxGain", DoubleValue(0));
wifiPhy.Set ("EnergyDetectionThreshold", DoubleValue(rxPowerDbm (distancia, altura, txPowerDbm, useTwoRay)));
wifiPhy.Set ("CcaMode1Threshold", DoubleValue(rxPowerDbm (distancia*1.5, altura, txPowerDbm, useTwoRay)));

// Channel:
YansWifiChannelHelper wifiChannel;
wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
if(!useTwoRay)
wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel",
"Frequency", DoubleValue(2.407e9));
else
wifiChannel.AddPropagationLoss ("ns3::TwoRayGroundPropagationLossModel",
"Frequency", DoubleValue(2.407e9));
wifiPhy.SetChannel (wifiChannel.Create ());

// WiFi Helper
WifiHelper wifi = WifiHelper::Default ();
wifi.SetStandard (WIFI_PHY_STANDARD_80211g);
wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
"DataMode", StringValue ("DsssRate1Mbps"),
"RtsCtsThreshold", UintegerValue (1000));

NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, nodes);
std::cout << "MAC and PHY installed" << endl;

RngSeedManager::SetSeed(oldSeed);

// OLSR
OlsrHelper olsr;
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// Internet stack, with OLSR as routing protocol
InternetStackHelper stack;
stack.SetRoutingHelper (olsr);
//stack.Install (nodesource);
stack.Install (nodes);
Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> ("routes.log", std::ios::out);
olsr.PrintRoutingTableAllEvery (Seconds (15), routingStream); //Useful to estimate stabilization time.

// IP addressing
Ipv4AddressHelper address;
address.SetBase ("10.0.0.0", "255.0.0.0");
Ipv4InterfaceContainer interfaces = address.Assign (devices);
std::cout << "IPv4Adress installed" << endl;

//Aplication: offloading

//Write backbone and respective initial budgets (B0) on file (used to make account):
FILE *backbone_file;
std::string dir_mybackbone , filename_report, content;
dir_mybackbone = home_dir + "/Dropbox/unb/mestrado/tese/simulations/";
filename_report = "backbone";
dir_mybackbone = dir_mybackbone + filename_report + ".txt";

std::stringstream str;
std::string s;
for(int i = 0; i<backbone_size;i++){
str << std::fixed << std::setprecision(2) << initialBudget[i];
s = str.str();
//Fill the backbone node id with zeros:
if(i < 10)
content = content + "00" + boost::lexical_cast<std::string>(i) + "\t" + s;
else if(i < 100)
content = content + "0" + boost::lexical_cast<std::string>(i) + "\t" + s;
else
content = content + boost::lexical_cast<std::string>(i) + "\t" + s;

if(i < (backbone_size - 1))
content = content + "\n";

str.str(std::string());
}

backbone_file = fopen(dir_mybackbone.c_str(), "w+");
fputs(content.c_str(), backbone_file);
fclose(backbone_file);

//Initialization of backbone vector:
for(int i = 0;i<backbone_size;i++)
backbone.push_back(((nodes.Get(i)->GetObject<Ipv4>())->GetAddress(1,0)).GetLocal());

std::cout << "Backbone stored" << endl;

//'Helper' creation:
OffloadingHelper offloadinghelper (9);
offloadinghelper.SetAttribute ("StrategyType" , UintegerValue (strategy)); //Choice strategy.
offloadinghelper.SetAttribute ("PreferenceFunctionType" , UintegerValue (preference_function)); //Choice preference function type.
offloadinghelper.SetAttribute ("NumberNodes" , IntegerValue(total_nodes));

//Declare 'Application':
ApplicationContainer offloadingApp;
std::cout << "Application container created" << endl;
std::cout << endl;

//Install 'applications' at nodes:
int i = 0;
for(NodeContainer::Iterator it = nodes.Begin() ; it != nodes.End() ; it++, i++){
//Mapping node id and address:
Ptr<Ipv4> ipv4 = (*it)->GetObject<Ipv4>();
Ipv4InterfaceAddress iaddr = ipv4->GetAddress(1,0);
nodes_id[iaddr.GetLocal()] = (*it)->GetId();

if(i<backbone_size){
//Backbone nodes configuration:
offloadinghelper.SetAttribute ("NPackets" , IntegerValue(Npackets[i]));
if(Npackets[i] > 0){
offloadinghelper.SetAttribute ("Budget" , DoubleValue(initialBudget[i]));
offloadinghelper.SetAttribute ("Fine" , DoubleValue(initialFine[i]));
offloadinghelper.SetAttribute ("Deadline" , UintegerValue(deadline[i]));
offloadinghelper.SetAttribute ("DestinationAddress" , Ipv4AddressValue(Ipv4Address::ConvertFrom(((nodes.Get(destBackbone[i])->
GetObject<Ipv4>())->GetAddress(1,0)).GetLocal())));
offloadinghelper.SetAttribute ("StartOffloading" , DoubleValue(startGen[i]));
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}
}

//Install nodes:
offloadingApp.Add(offloadinghelper.Install (*it));
offloadinghelper.SetBackbone(*it, backbone);
if(i >= backbone_size)
offloadinghelper.SetTightnessParameters(*it, k1[i - backbone_size], k2[i - backbone_size], budget_percentage[i - backbone_size], fine_percentage[i - backbone_size]);
}
std::cout << "Application installed." << endl;
offloadinghelper.SetMapNodes(nodes, nodes_id);
offloadinghelper.SetTopologyName(nodes, topologyName);
offloadinghelper.SetSeedIndex(nodes, seedIndex);
offloadinghelper.SetParamName(nodes, paramName);
offloadinghelper.SetExpIndex(nodes, expIndex);

offloadingApp.Start (Seconds (appStart));
offloadingApp.Stop (Seconds (appStop));

// Tracing:
std::string trace_dir;
if((strategy == STRATEGYTYPE_TIGHTNESS) && (preference_function == PREFERENCEFUNCTION_PLANE))
trace_dir = home_dir + "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp" + expIndex + "/" + paramName + "/seed" +
boost::lexical_cast<std::string>(seedIndex) + "/tp" + topologyName + "/traces/";
else
trace_dir = home_dir + "/Dropbox/unb/mestrado/tese/simulations/topology_config/exp" + expIndex + "/seed" + boost::lexical_cast<std::string>(seedIndex) +
"/tp" + topologyName + "/traces/";

std::string pcap_dir = trace_dir + "pcap/node";
//wifiPhy.EnablePcapAll (pcap_dir, false);

/*
AsciiTraceHelper ascii;
std::string ascii_dir = trace_dir + "ascii/";
//Generate a log from IP layer
std::string ascii_ipv4 = ascii_dir + "ipv4.tr";
Ptr<OutputStreamWrapper> stream = ascii.CreateFileStream(ascii_ipv4);
stack.EnableAsciiIpv4All(stream);

//Generate a mobility log
AsciiTraceHelper ascii2;
std::string ascii_mob = ascii_dir + "mob.tr";
MobilityHelper::EnableAsciiAll (ascii2.CreateFileStream (ascii_mob));

//Generate a log from PHY layer
AsciiTraceHelper ascii3;
std::string ascii_phy = ascii_dir + "phy.tr";
wifiPhy.EnableAsciiAll (ascii3.CreateFileStream (ascii_phy));

//Generate a log from MAC layer:
std::string ascii_mac = ascii_dir + "mac.tr";
std::ofstream ascii4(ascii_mac);
*/

//std::cout << "Traces generated." << endl;

Simulator::Stop (Seconds(simStop));
Simulator::Run ();

Simulator::Destroy ();
return 0;
}

void
readConfig (char *topofile_backbone, char *topofile_offloading, char *configfile_backbone, char *configfile_tightness)
{
ifstream in_topo_backbone, in_topo_offloading, in_config_backbone, in_config_tightness;
char ch;
backbone_size = 0;
offloading_size = 0;
total_nodes = 0;

//Counting number of lines. Number of lines is the number of AP nodes:
in_topo_backbone.open(topofile_backbone);
if (!in_topo_backbone){
cerr << "Backbone topology file not found" << endl;
return;
}else{
while (in_topo_backbone.get(ch)){
if (ch=='\n'){ backbone_size++;}
}
}
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in_topo_backbone.close ();

//Counting number of lines. Number of lines is the number of offloading nodes:
in_topo_offloading.open(topofile_offloading);
if (!in_topo_offloading){
cerr << "Offloading topology file not found" << endl;
return;
}else{
while (in_topo_offloading.get(ch)){
if (ch=='\n'){ offloading_size++;}
}
}
in_topo_offloading.close ();

//Allocate coordinates vectors (x,y):
total_nodes = backbone_size + offloading_size;
x_readTopo = (float *)malloc(total_nodes * sizeof(float));
y_readTopo = (float *)malloc(total_nodes * sizeof(float));

//Backbone parameters:
initialBudget = (double *)malloc(backbone_size * sizeof(double));
initialFine = (double *)malloc(backbone_size * sizeof(double));
deadline = (int *)malloc(backbone_size * sizeof(int));
Npackets = (int *)malloc(backbone_size * sizeof(int));
destBackbone = (int *)malloc(backbone_size * sizeof(int));
startGen = (double *)malloc(backbone_size * sizeof(double));

//Tightness parameters:
k1 = (double *)malloc(offloading_size * sizeof(double));
k2 = (double *)malloc(offloading_size * sizeof(double));
budget_percentage = (double *)malloc(offloading_size * sizeof(double));
fine_percentage = (double *)malloc(offloading_size * sizeof(double));

//Read AP nodes coordinates and store at (x,y):
in_topo_backbone.open(topofile_backbone);
if (!in_topo_backbone){ cerr << "Backbone topology file not found!" << endl; }
else{
while (in_topo_backbone){
for(int i=0; i<backbone_size; i++){in_topo_backbone >> x_readTopo[i] >> y_readTopo[i];}
in_topo_backbone.close ();
}
}
in_topo_backbone.close ();

//Read offloading nodes coordinates and store at (x,y), after the last AP coordinate:
in_topo_offloading.open(topofile_offloading);
if (!in_topo_offloading){ cerr << "Offloading topology file not found!" << endl; }
else{
while (in_topo_offloading){
for(int i=backbone_size; i<total_nodes; i++){in_topo_offloading >> x_readTopo[i] >> y_readTopo[i];}
in_topo_offloading.close ();
}
}
in_topo_offloading.close ();

//Read AP configurations:
in_config_backbone.open(configfile_backbone);
if (!in_config_backbone){ cerr << "Backbone Configuration file not found!" << endl; }
else{
while (in_config_backbone){
for(int i=0; i<backbone_size; i++){in_config_backbone >> initialBudget[i] >> initialFine[i] >> deadline[i] >> Npackets[i] >> destBackbone[i] >> startGen[i];}
in_config_backbone.close ();
}
}
in_config_backbone.close ();

//Read Tightness parameters:
in_config_tightness.open(configfile_tightness);
if (!in_config_tightness){ cerr << "Tightness Parameters file not found!" << endl; }
else{
while (in_config_tightness){
for(int i=0; i<offloading_size; i++){in_config_tightness >> k1[i] >> k2[i] >> budget_percentage[i] >> fine_percentage[i];}
in_config_tightness.close ();
}
}
in_config_tightness.close ();

}

double
rxPowerDbm (double distance, double height, double txPowerDbm, bool useTwoRay)
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{
double lossPowerDbm;

if (useTwoRay){
double dCross = (4 * 3.141592 * height * height) / lambda;
if (distance <= dCross){
lossPowerDbm = 10 * log10( lambda*lambda / (16.0 * 3.141592 * 3.141592 * distance*distance));
} else {
lossPowerDbm = 10 * log10( (height*height*height*height) / (distance*distance*distance*distance) );
}
}
else {
lossPowerDbm = 10 * log10( lambda*lambda / (16.0 * 3.141592 * 3.141592 * distance*distance));
}

return txPowerDbm + lossPowerDbm;
}
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II. NS-3 CHANGELOG

Below we provide the changelog of the NS-3 files using the Unix diff command.

II.1 Internet Module

II.1.1 arp-cache.h
59a60
> void Print (void);
207a209,215
>
> public:
> /**
> * \brief Get the entry state
> */
> ArpCacheEntryState_e GetEntryState (void);
>

II.1.2 arp-cache.cc
182a183,197
> ArpCache::Print (void)
> {
> ArpCache::Entry* entry;
> for (CacheI i = m_arpCache.begin (); i != m_arpCache.end (); i++)
> {
> entry = (*i).second;
> if (entry)
> {
> NS_LOG_UNCOND ("mac: " << entry->GetMacAddress() << " ipv4:" << entry->GetIpv4Address() << " State:" << entry->GetEntryState());
> }
>
> }
> }
>
> void
432a448,453
> }
>
> ArpCache::Entry::ArpCacheEntryState_e
> ArpCache::Entry::GetEntryState (void)
> {
> return m_state;

II.1.3 arp-l3-protocol.h
90d89
< Ptr<ArpCache> FindCache (Ptr<NetDevice> device);
95a95,97
>
> public:
> Ptr<ArpCache> FindCache (Ptr<NetDevice> device);

II.2 OLSR Model

II.2.1 olsr-routing-protocol.h
105a106,113
> /**
> * Return the state of OLSR
> **/
> OlsrState GetOlsrState ()
> {

102



> return m_state;
> }
>

II.3 Core Module

II.3.1 make-event.h
31a32,36
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventImpl * MakeEvent (MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
52a58,61
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventImpl * MakeEvent (void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
273a283,323
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventImpl * MakeEvent (MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> // six argument version
> class EventMemberImpl6 : public EventImpl
> {
> public:
> EventMemberImpl6 (OBJ obj, MEM function, T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> : m_obj (obj),
> m_function (function),
> m_a1 (a1),
> m_a2 (a2),
> m_a3 (a3),
> m_a4 (a4),
> m_a5 (a5),
> m_a6 (a6)
> {
> }
> protected:
> virtual ~EventMemberImpl6 ()
> {
> }
> private:
> virtual void Notify (void)
> {
> (EventMemberImplObjTraits<OBJ>::GetReference (m_obj).*m_function)(m_a1, m_a2, m_a3, m_a4, m_a5, m_a6);
> }
> OBJ m_obj;
> MEM m_function;
> typename TypeTraits<T1>::ReferencedType m_a1;
> typename TypeTraits<T2>::ReferencedType m_a2;
> typename TypeTraits<T3>::ReferencedType m_a3;
> typename TypeTraits<T4>::ReferencedType m_a4;
> typename TypeTraits<T5>::ReferencedType m_a5;
> typename TypeTraits<T6>::ReferencedType m_a6;
> } *ev = new EventMemberImpl6 (obj, mem_ptr, a1, a2, a3, a4, a5, a6);
> return ev;
> }
>
438a489,528
> return ev;
> }
>
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventImpl * MakeEvent (void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> // six arg version
> class EventFunctionImpl6 : public EventImpl
> {
> public:
> typedef void (*F)(U1,U2,U3,U4,U5,U6);
>
> EventFunctionImpl6 (F function, T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> : m_function (function),
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> m_a1 (a1),
> m_a2 (a2),
> m_a3 (a3),
> m_a4 (a4),
> m_a5 (a5),
> m_a6 (a6)
> {
> }
> protected:
> virtual ~EventFunctionImpl6 ()
> {
> }
> private:
> virtual void Notify (void)
> {
> (*m_function)(m_a1, m_a2, m_a3, m_a4, m_a5, m_a6);
> }
> F m_function;
> typename TypeTraits<T1>::ReferencedType m_a1;
> typename TypeTraits<T2>::ReferencedType m_a2;
> typename TypeTraits<T3>::ReferencedType m_a3;
> typename TypeTraits<T4>::ReferencedType m_a4;
> typename TypeTraits<T5>::ReferencedType m_a5;
> typename TypeTraits<T6>::ReferencedType m_a6;
> } *ev = new EventFunctionImpl6 (f, a1, a2, a3, a4, a5, a6);

II.3.2 simulator.h
210a211,229
>
> /**
> * @param time the relative expiration time of the event.
> * @param mem_ptr member method pointer to invoke
> * @param obj the object on which to invoke the member method
> * @param a1 the first argument to pass to the invoked method
> * @param a2 the second argument to pass to the invoked method
> * @param a3 the third argument to pass to the invoked method
> * @param a4 the fourth argument to pass to the invoked method
> * @param a5 the fifth argument to pass to the invoked method
> * @param a6 the sixth argument to pass to the invoked method
> * @returns an id for the scheduled event.
> */
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static EventId Schedule (Time const &time, MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
>
275a295,309
> * @param time the relative expiration time of the event.
> * @param f the function to invoke
> * @param a1 the first argument to pass to the function to invoke
> * @param a2 the second argument to pass to the function to invoke
> * @param a3 the third argument to pass to the function to invoke
> * @param a4 the fourth argument to pass to the function to invoke
> * @param a5 the fifth argument to pass to the function to invoke
> * @param a6 the sixth argument to pass to the function to invoke
> * @returns an id for the scheduled event.
> */
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static EventId Schedule (Time const &time, void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
> /**
360a395,414
>
> /**
> * This method is thread-safe: it can be called from any thread.
> *
> * @param time the relative expiration time of the event.
> * @param context user-specified context parameter
> * @param mem_ptr member method pointer to invoke
> * @param obj the object on which to invoke the member method
> * @param a1 the first argument to pass to the invoked method
> * @param a2 the second argument to pass to the invoked method
> * @param a3 the third argument to pass to the invoked method
> * @param a4 the fourth argument to pass to the invoked method
> * @param a5 the fifth argument to pass to the invoked method
> * @param a6 the sixth argument to pass to the invoked method
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> */
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static void ScheduleWithContext (uint32_t context, Time const &time, MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
437a492,508
> * This method is thread-safe: it can be called from any thread.
> *
> * @param time the relative expiration time of the event.
> * @param context user-specified context parameter
> * @param f the function to invoke
> * @param a1 the first argument to pass to the function to invoke
> * @param a2 the second argument to pass to the function to invoke
> * @param a3 the third argument to pass to the function to invoke
> * @param a4 the fourth argument to pass to the function to invoke
> * @param a5 the fifth argument to pass to the function to invoke
> * @param a6 the sixth argument to pass to the function to invoke
> */
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static void ScheduleWithContext (uint32_t context, Time const &time, void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
> /**
502a574,589
>
> /**
> * @param mem_ptr member method pointer to invoke
> * @param obj the object on which to invoke the member method
> * @param a1 the first argument to pass to the invoked method
> * @param a2 the second argument to pass to the invoked method
> * @param a3 the third argument to pass to the invoked method
> * @param a4 the fourth argument to pass to the invoked method
> * @param a5 the fifth argument to pass to the invoked method
> * @param a6 the sixth argument to pass to the invoked method
> */
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static EventId ScheduleNow (MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
558a646,658
> * @param f the function to invoke
> * @param a1 the first argument to pass to the function to invoke
> * @param a2 the second argument to pass to the function to invoke
> * @param a3 the third argument to pass to the function to invoke
> * @param a4 the fourth argument to pass to the function to invoke
> * @param a5 the fifth argument to pass to the function to invoke
> * @param a6 the sixth argument to pass to the function to invoke
> */
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static EventId ScheduleNow (void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
> /**
624a725,740
>
> /**
> * @param mem_ptr member method pointer to invoke
> * @param obj the object on which to invoke the member method
> * @param a1 the first argument to pass to the invoked method
> * @param a2 the second argument to pass to the invoked method
> * @param a3 the third argument to pass to the invoked method
> * @param a4 the fourth argument to pass to the invoked method
> * @param a5 the fifth argument to pass to the invoked method
> * @param a6 the sixth argument to pass to the invoked method
> */
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static EventId ScheduleDestroy (MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
680a797,809
> * @param f the function to invoke
> * @param a1 the first argument to pass to the function to invoke
> * @param a2 the second argument to pass to the function to invoke
> * @param a3 the third argument to pass to the function to invoke
> * @param a4 the fourth argument to pass to the function to invoke
> * @param a5 the fifth argument to pass to the function to invoke
> * @param a6 the fifth argument to pass to the function to invoke
> */
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> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> static EventId ScheduleDestroy (void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6);
>
> /**
861a991,998
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventId Simulator::Schedule (Time const &time, MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return DoSchedule (time, MakeEvent (mem_ptr, obj, a1, a2, a3, a4, a5, a6));
> }
>
895a1033,1038
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventId Simulator::Schedule (Time const &time, void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return DoSchedule (time, MakeEvent (f, a1, a2, a3, a4, a5, a6));
> }
941a1085,1092
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> void Simulator::ScheduleWithContext (uint32_t context, Time const &time, MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return ScheduleWithContext (context, time, MakeEvent (mem_ptr, obj, a1, a2, a3, a4, a5, a6));
> }
>
976c1127,1132
<
---
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> void Simulator::ScheduleWithContext (uint32_t context, Time const &time, void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return ScheduleWithContext (context, time, MakeEvent (f, a1, a2, a3, a4, a5, a6));
> }
1027a1184,1192
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventId
> Simulator::ScheduleNow (MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return DoScheduleNow (MakeEvent (mem_ptr, obj, a1, a2, a3, a4, a5, a6));
> }
>
1067a1233,1239
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventId
> Simulator::ScheduleNow (void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return DoScheduleNow (MakeEvent (f, a1, a2, a3, a4, a5, a6));
> }
1118a1291,1299
> template <typename MEM, typename OBJ,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventId
> Simulator::ScheduleDestroy (MEM mem_ptr, OBJ obj,
> T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return DoScheduleDestroy (MakeEvent (mem_ptr, obj, a1, a2, a3, a4, a5, a6));
> }
>
1156a1338,1345
> }
>
> template <typename U1, typename U2, typename U3, typename U4, typename U5, typename U6,
> typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
> EventId
> Simulator::ScheduleDestroy (void (*f)(U1,U2,U3,U4,U5,U6), T1 a1, T2 a2, T3 a3, T4 a4, T5 a5, T6 a6)
> {
> return DoScheduleDestroy (MakeEvent (f, a1, a2, a3, a4, a5, a6));
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