

Departamento de Odontologia Faculdade de Ciências da Saúde Universidade de Brasília

AVALIAÇÃO IN VITRO DA ADAPTAÇÃO MARGINAL E INTERNA DE COROAS DE CERÂMICA E RESINA COMPOSTA FABRICADAS COM O SISTEMA CAD/CAM UTILIZANDO DUAS CÂMERAS INTRAORAIS DE MOLDAGEM DIGITAL.

ALESSANDRA CRISTINA DE PAULA SILVEIRA

BRASÍLIA

2015

	ALESSANDRA CRISTINA DE PAULA SILVEIRA
1	AVALIAÇÃO <i>IN VITRO</i> DA ADAPTAÇÃO MARGINAL E INTERNA DE COROAS DE CERÂMICA E RESINA COMPOSTA FABRICADAS COM O SISTEMA CAD/CAM UTILIZANDO DUAS CÂMERAS INTRAORAIS DE MOLDAGEM DIGITAL.
	BRASÍLIA
	2015

UNIVERSIDADE DE BRASÍLIA FACULDADE DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

ALESSANDRA CRISTINA DE PAULA SILVEIRA

AVALIAÇÃO IN VITRO DA ADAPTAÇÃO MARGINAL E INTERNA DE COROAS

DE CERÂMICA E RESINA COMPOSTA FABRICADAS COM O SISTEMA

CAD/CAM UTILIZANDO DUAS CÂMERAS INTRAORAIS DE MOLDAGEM

DIGITAL.

Dissertação apresentada como requisito parcial para a obtenção do Título de Mestre em Ciências da Saúde pelo Programa de Pós-Graduação em Ciências da Saúde da Universidade de Brasilia.

Orientadora: Profa Dra Ana Paula Dias Ribeiro

BRASÍLIA

2015

ALESSANDRA CRISTINA DE PAULA SILVEIRA

AVALIAÇÃO IN VITRO DA ADAPTAÇÃO MARGINAL E INTERNA DE COROAS
DE CERÂMICA E RESINA COMPOSTA FABRICADAS COM O SISTEMA
CAD/CAM UTILIZANDO DUAS CÂMERAS INTRAORAIS DE MOLDAGEM
DIGITAL.

Dissertação apresentada como requisito parcial para a obtenção do título de Mestre em Ciências da Saúde pelo Programa de Pós-Graduação em Ciências da Saúde da Universidade de Brasilia.

Aprovado em 04/12/2015

BANCA EXAMINADORA

Ana Paula Dias Ribeiro

Componente da banca - (presidente) - Universidade de Brasília

Leandro Augusto Hilgert

Componente da banca - Universidade de Brasília

Ana Paula Ribeiro do Vale Pedreira

Componente da banca - Universidade Católica de Brasília

Fernanda Cristina Pimentel Garcia

Componente da banca - Universidade de Brasília

DEDICO ESTE TRABALHO
o meu amado marido , Francisco , por ter sido companheiro nesta exaustiva jornada, po sempre me incentivar, apoiar, compreender e não me deixar desistir. Obrigada por se meu porto seguro nos momentos mais difíceis
Aos meus amados filhos , Pedro e Clara , por serem tão especiais e por aceitarem, ser restrições, todas as mudanças que exigi de vocês. Vocês são tudo aquilo que deseje.
Aos meus pais, Maria de Paula e Idmar pelo apoio, incentivo e carinho. Pelas vária orações pedidas e atendidas na hora do meu desespero
À minha irmã, Elisângela , presente, atenciosa e sempre pronta a me ajuda
Ao meu irmão Rodrigo , por ter sido companheiro e parceiro nesta longa caminhado

À Deus

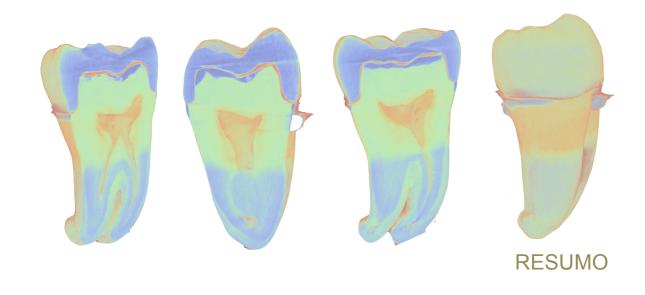
Por toda graça, honra e oportunidades a mim concedidas.

À minha orientadora, Ana Paula Dias Ribeiro, o meu obrigada por ter acreditado que fosse capaz de realizar este trabalho, por ter me apoiado e me guiado meu caminho até aqui. Por ter despendido o seu tempo a ser minha orientadora, pelos ensinamentos, pela serenidade e tranquilidade em tirar minhas dúvidas. Agradeço sua brilhante orientação, pelo incentivo , apoio e suporte intelectual prestado durante todo o meu estudo. Pela valiosa ajuda na análise estatística e mesmo com todos os compromisso, sempre disponibilizando e me apoiando em todos meus passos. Admiro muito sua dedicação à pesquisa. Agradeço pela grande oportunidade de aprendizado que me proporciou. Muito obrigada!

Aos professores colaboradores que tornaram a realização deste trabalho possível, Prof. **Sacha Braun Chaves** e **Leandro Hilgert**, pelas orientações, sugestões e ensinamentos, durante diversas etapas dos experimentos.

À Universidade de Brasília,

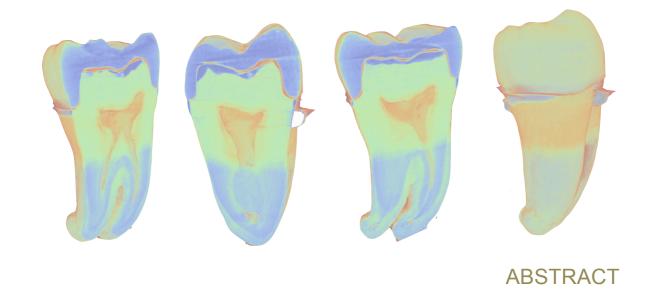
instituição que me proporcionou um grande crescimento pessoal e profissional.


À **Dutra Clinic, Domingos Dutra, Diego Dutra, Roberto Mendes,** por ter fornecido o equipamento CEREC AC – Omnicam. Obrigada por toda colaboração na realização deste trabalho.

Aos meus braços direito e esquerdo da minha casa e do meu consultório, **Eliane, Vera, Carla, Cris, Lara, Rapha, Gisa e Bia,** por me deixar tranquila nos tarefas do meu dia a dia, cuidando da minha casa, dos meus filhos e do meu consultório com tanta dedicação, durante este longo processo de aprendizagem.

À minha amiga de mestrado, **Lívia Malpeli**, pela verdadeira amizade, companheirismo e principalmente paciência nos momentos de desespero, apesar do pouco tempo de convívio.

Ao meus amigos **Ana Paula Vale** e **Antônio Ramos Neto** pela sincera amizade, e apoio, por tantas conversas, mensagens, telefonemas e conselhos sempre oportunos.



RESUMO

O objetivo deste estudo in vitro foi avaliar a adaptação marginal e interna de coroas totais obtidas a partir de blocos pré-fabricados de Lava Ultimate 3M ESPE (resina nanocerâmica) e IPS e.max CAD Ivoclar Vivadent (cerâmica de dissilicato de lítio) com dois tipos de moldagem digital, câmera intraoral Bluecam e câmera intraoral Omnicam, por meio do microtomógrafo. Métodos: Dez terceiros molares humanos hígidos foram preparados para receber coroas totais. Para cada molar preparado, foram realizadas duas impressões ópticas, uma com a Bluecam e a outra com a Omnicam, onde foram fresadas quatro diferentes coroas. Os quatro grupos formados foram: Grupo1 (Lava Ultimate+Bluecam); Grupo 2 (Emax+Bluecam); Grupo 3 (Lava Ultimate+Omnicam); Grupo 4 (Emax+Omnicam). A avaliação da adaptação marginal e interna sem ajuste foi realizada com a simulação da cimentação de cada coroa em seu respectivo dente com um silicone leve. O conjunto foi levado a um microtomógrafo e a discrepância marginal foi avaliada bidimensional e tridimensional para as variáveis gap axial (GA), gap oclusal (GO), gap marginal (GM), desadaptação marginal absoluta (DMA) e desadaptação entre a coroa e preparo (DCP). A significância estatística foi avaliada com o teste Shapiro-Wilk e ANOVA (p <0.05), teste de Tukey como post hoc associado com correção de Bonferroni e Kruskal Wallis (p<0.05) com Mann-Whitney, como post hoc associado com a correção de Bonferroni. Resultados: As câmeras Bluecam e Omnicam, não foram observadas diferenças significativas para as variáveis GA (p= 0.2325) e GO (p= 0.1400). Para os materiais, não foram observadas diferenças significativas para GA (p=0.9495). No entanto para GO, o material resinoso apresentou valores significativamente menores que o material cerâmico (p=0.0026). Para GM e DMA não indicou diferença significativa entre os grupos (p=0.8018). Para análise 3D, observou-se diferenças significativas entre as câmeras para a variável DCP (p=0.0212), sendo que a Bluecam apresentou os menores valores. Para os materiais, foram observadas diferenças significativas para variável DCP, sendo que o material resinoso apresentou valores significativamente menores que o material cerâmico (p=0.0052). Conclusão: As adaptações marginais avaliadas de todos os grupos apresentaram valores dentro da normalidade. Observou-se uma melhor adaptação das coroas fabricadas com material resinoso associado à Bluecam quando comparado aos grupos em que a câmera Omnicam foi usada. O uso do microtomógrafo permitiu a avaliação 2D e 3D da desadaptação marginal entre o preparo dental e a restauração.

Palavras-chave: Adaptação marginal. CAD/CAM. Microtomógrafo.

ABSTRACT

The aim of this *in vitro* study was to evaluate the quality of marginal and internal fit of full-crowns obtained from pre-fabricated blocks of Lava Ultimate 3M ESPE (nanoceramic resin) and IPS e.max CAD (lithium disilicate ceramic) with two intraoral cameras, Bluecam and OmniCam, using micro-tomography. Methods: Ten healthy human third molars were prepared to receive crowns. For each prepared molar, there were two digital impressions, one with Bluecam and the other with OmniCam. Four groups were formed: Group 1 (Lava Ultimate +Bluecam); Group 2 (Emax+Bluecam); Group 3 (Lava Ultimate+OmniCam); Group 4 (Emax+OmniCam). Before measuring the fit precision, all crowns were stabilized with a silicone material. After, each unit (crown + prepared tooth) was taken to the µCT and the marginal and internal discrepancy was analyzed by different software. A total of 120 measurements were performed in each crown: 40 for axial gap (GA), 40 for oclusal gap (GO), 20 for marginal gap (GM) e 20 for absolute marginal discrepancy (DMA). Results: Regarding internal adaptation, group 1 showed better GA values associated with lower value GO; while Group 4 showed low values of GA, but with high-value GO, thus suggesting the presence of premature contacts in the axial walls preventing better fit precision. Regarding marginal adaptation, no significant differences were observed. In assessing the mismatch between the crown and preparation (DCP) by the 3-D reconstruction, Group 1 presented significantly lower values as compared to groups 3 and 4. Conclusion: The marginal adaptations assessed in all groups showed values within the normal range. Moreover, the nanoceramic resin associated with the Bluecam intraoral showed the best results for marginal and internal adaptation when compared to the groups that used the Omnicam camera. The use of μCT provided a high resolution evaluation of marginal and internal gaps between tooth preparation and restoration, with a 2-D and 3-D assessment.

Key-words: Marginal fit. CAD / CAM. micro-tomography.

LISTA DE FIGURAS

Figura 1 -	Visualização dos 10 dentes hígidos utilizados na pesquisa 36
Figura 2 -	(A) Vista sequencial da limpeza dos dentes com cureta periodontal;(B) taça de borracha com pasta de pedra-pomes e água
Figura 3 -	(A) Peças plásticas (Monta Tudo, Elka Plásticos Ltda., São Paulo, SP, Brasil) para a inclusão dos dentes; (B) Sonda milimetrada posicionada a 5mm a partir da junção amelodentinária, para determinar o nível de inclusão da resina epóxica (Adaptado de Barbosa [41])
Figura 4 -	(A) Vista lateral do delineador utilizado para a inclusão dos dentes perpendiculares à base da peça plástica; (B) Manipulação da resina epóxica; (C) Vista aproximada do dente; (D) Resina epóxica sendo vertida no interior da peça plástica (Adaptado de Barbosa [41])39
Figura 5 -	(A) Dentes incluídos em resina epóxica nas peças plásticas; (B) Vista aproximada do conjunto (dente, peça plástica) incluído em resina epóxica; (C) Aspecto do conjunto dente e peça plástica "D" com suas respectivas guias de silicone utilizadas para orientação do desgaste durante a confecção dos preparos cavitários (Adaptado de Barbosa [41])
Figura 6 -	(A) Aplicação do spray de dióxido de titânio CEREC Optispray da SIRONA; (B) Captura da imagem utilizando a câmera intraoral BlueCam para a cópia biogenérica; (C) Câmera intraoral BlueCam
Figura 7-	(A) Captura da imagem utilizando a câmera intraoral OmniCam para a cópia biogenérica; (B) Câmera intraoral OmniCam41
Figura 8 -	(A) Brocas nº 446KR.017(FG); (B) Broca nº 446KRF017 (FG); (C) Ponta de Arkanza (nº 638.025ARK); (D) Kit 1904 Chanfro profissional do Dr Paulo Kano

Figura 9-	(A) Ponta diamantada posicionada paralela à inclinação das paredes circundantes vestibular, lingual e ao longo eixo do dente, para a confecção do sulco de orientação axial no terço cervical; (B) Vista vestibular do dente e da ponta diamantada (Adaptado de Barbosa [41]).
Figura 10 -	(A) Vista oclusal do dente com os sulcos de orientações axiais do terço cervical; (B) Sulcos de orientações axiais em duas inclinações; (C) Sulcos de orientações axiais e oclusais; (D) Desgaste da face proximal mesial (Adaptado de Barbosa [41])
Figura 11 -	(A) Acabamento com a ponta com diamantes de granulação fina; (B) O polimento foi realizado com ponta de Arkanza (nº 638.025ARK) pré contornada; (C) Vista oclusal do preparo para coroa total finalizado (Adaptado de Barbosa [41]).
Figura 12 -	Visualização de um preparo e sua respectiva guia posicionada para orientação de desgaste durante a realização do preparo cavitário (Adaptado de Barbosa [41])
Figura 13 -	(A) Bloco de Lava Ultimate cor A1-HT, tamanho 12; (B) Bloco de IPS e.max CAD cor A1, HT, tamanho I12
Figura 14 -	Sistema CAD/CAM CEREC-Sirona com suas unidades (A) CEREC AC – com a câmera BlueCam; (B) Unidade de fresagem do sistema CEREC-Sirona INLAB MC XL
Figura 15 -	(A) Imagem do dente ao usar o câmera intraoral BlueCam, que capta imagens altamente detalhadas usando um diodo azul com poderosos emissores de luz; (B) Câmera intraoral BlueCam
Figura 16 -	(A) Preparo dental sendo impregnado com o pó de dióxido de titânio (CEREC Optispray, Sirona Dental Systems GmbH Bensheim, Germany); (B) Vista lateral superior da ponta de leitura do escâner óptico BlueCam posicionado acima do dente para a captura da imagem do preparo impregnado com óxido de titânio

Figura 17 -	Procedimento realizado no Sistema CEREC AC SW4,0; (A) Seleção da
	imagem e informações do paciente, dentista, data do escaneamento e
	referência; (B) Seleção do tipo de restauração, do modo de design -
	cópia biogenérica e localização do dente
Figura 18 -	Seleção para escolher o fabricante e o material; (A) Fabricante: Ivoclar
	Vivadent, Material: IPS e.max CAD; (B) Fabricante: 3M ESPE,
	Material: Lava Ultimate 52
Figura 19 -	Cópia biogenérica da anatomia do dente; (A) Vista da face oclusal da
	cópia biogenérica; (B) Vista da face vestibular da cópia biogenérica52
Figura 20 -	Cópia do preparo; (A) Vista oclusal da cópia do preparo ; (B) Vista
	vestibular da cópia do preparo 53
Figura 21 -	Sobreposição da cópia biogenérica com a cópia do preparo.
	Visualização tridimensional do contorno da restauração; (A) Vista
	oclusal da sobreposição da cópia biogenéria e a cópia do preparo; (B)
	Vista vestibular da sobreposição da cópia biogenéria e a cópia do
	preparo53
Figura 22 -	(A) Definição do eixo do modelo; (B) Definir eixo de inserção 54
Figura 23 -	(A) Recorte virtual do modelo; (B) Desenho da margem do
	preparo
E: 04	
Figura 24 -	(A) Seleção dos parâmetros; (B) Vista aproximada dos
	parâmetros55
Figura 25 -	Delimitação da área desejada na cópia biogenérica; (A) Vista
	vestibular; (B) Vista em diagonal (vestibular e mesial) 55
Figura 26 -	Proposta inicial do desenho da coroa seguindo a cópia biogerérica; (A)
•	Vista oclusal: (B) Vista vestibular 56

Figura 27 -	Pequenos ajustes na restauração foram realizados com diferentes ferramentas do software; (A) Ajuste para adicionar volume; (B) Ajuste para suavizar o volume
Figura 28 -	Visualização tridimensional da restauração após os ajustes de contorno; (A) Vista oclusal; (B) Vista vestibular
Figura 29 -	(A) Posição da coroa no bloco com a visualização da localização do <i>sprue</i> ; (B) coroa pronta para fresagem do bloco
Figura 30 -	Bloco pré-fabricados: (A) IPS e.max CAD (cerâmica de dissilicato de lítio); (B) Lava Ultimate 3M ESPE (resina nanocerâmica) 58
Figura 31 -	(A) Pontas diamantadas cilíndrica de extremidade reta – Step Bur 12S; (B) Pontas diamantadas cilíndrica de extremidade ogival – Cylinder Pointed Bur 12S
Figura 32 -	Visualização da fresagem de um bloco de IPS e.max CAD; (A) Visualização da ponta diamantada cilíndrica Step Bur 12S e ponta diamantada Cylinder Pointed Bur 12S; (B) Processo de usinagem, fresando um bloco de IPS e.max CAD sob constante e abundante refrigeração com jatos de água
Figura 33 -	(A) coroa de IPS e.max CAD destacada do restante do bloco com a presença do <i>sprue</i> logo após o processo de fresagem; (B) Coroa de IPS e.max CAD com o <i>Sprue</i> logo após o processo de fresagem. (C) Coroa de Lava Ultimate sem o sprue.
Figura 34 -	Remoção do <i>Sprue</i> com borracha abrasiva Europol plus verde; (A) coroa de IPS e.max CAD; (B) Coroa de Lava Ultimate 60
Figura 35 -	(A) Câmera intraoral Omnicam posicionada sobre o dente hígido para obtenção de imagens para cópia biogenérica; (B) Câmera intraoral sobre o dente preparado para coroa total

Figura 36 -	Procedimento realizado no CEREC AC OmniCam U2.2.4; (A) Seleção da imagem e informações do paciente, dentista, data do escaneamento e referência; (B) Seleção do tipo de restauração, do modo de design e localização do dente
Figura 37 -	Seleção para escolher o fabricante e o material; (A) Fabricante: Ivoclar Vivadent, Material: IPS e.max CAD; (B) Fabricante: 3M ESPE, Material: Lava Ultimate
Figura 38 -	Cópia biogenérica; (A) Vista oclusal; (B) Vista vestibular 64
Figura 39 -	Cópia do preparo; (A) Vista oclusal; (B) Vista vestibular 64
Figura 40 -	Desenho da margem do preparo; (A) Vista oclusal; (B) Vista lateral. 65
Figura 41 -	(A) Definição do eixo de inserção; (B) Vista lateral da delimitação da cópia biogenérica
	(A) Seleção dos parâmetros usados para a confecção das coroas. (B) vista aproximada dos padrões selecionados
Figura 44 -	Ajuste para adicionar no volume; (B) Vista final da restauração após os ajustes de contorno
Figura 45 -	(A) Visualização tridimensional da restauração sobreposta ao preparo;(B) Vista da posição da coroa no bloco com a visualização da localização do sprue.67

Figura 46 -	(A) Ajuste posição de fresagem, modo de fresagem Normal; (B) Vista da posição da coroa no bloco com a visualização da localização do sprue e indicação do tempo de fresagem
Figura 47 -	(A) Vista do bloco de Lava Ultimate parcialmente fresado acoplado na fresadora InLab; (B) Blocos de Lava Ultimate e IPS e.max CAD logo após a fresagem
Figura 48 -	(A) Coroas de IPS e.max CAD sobre a bandeja de queima, fixadas com o IPS e.max CAD Crystallization Pin e IPS Object Fix Flow, antes da cristalização; (B) Coroas de IPS Emax CAD após o processo de cristalização; (C) Cuba Ultassônica para limpeza das coroas após fresagem e após o processo de cristalização; (D) Forno Programat® P300
Figura 49 -	(A, B) Silicone de adição de consistência leve GC Fit Checker Advanced, GC Dental Industrial Corp, Tóquio, Japão
Figura 50 -	Foi utilizado o dispositivo de estabilização adaptado, proposto por Delbons (43) para manter a coroa assentada a seu respectivo dente com preparo; (A) Coroa de IPS Emax CAD; (B) Coroa de Lava Ultimate
Figura 51 -	Visão de coroa com silicone assentada em seu respectivo dente preparado e mantida com pressão constante com o auxílio do dispositivo adaptado de Delbons (43) até a completa polimerização do Fit Tester, Fit Checker Advanced 1:1 Pkg. VPES Materials for Checking Fit e Occlusal Contact; (A) Coroa de IPS e.max CAD; (B) Coroa de Lava Ultimate: (C) Visão interna da coroa com a película de silicone. 75
Figura 52 -	Microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica)77
Figura 53 -	 (A) Dentes preparados com suas respectivas coroas foram estabilizados no tubo de digitalização do microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica) dentro de uma cama de isopor; (B) Software NRecon (Skyscan, Kontich, Bélgica) fazendo a

	reconstrução dos dentes; (C) microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica); (D) microtomógrafo Skyscan 1076 MicroCT com a visão do conjunto peça plástica/dente/coroa,
	estabilizados em uma cama de isopor no tubo de digitalização 77
Figura 54 -	Imagem da tela inicial do Software DataViewer® (Skyscan, Kontich, Bélgica) utilizado para converter os arquivos na extensão BMP em cortes tomográficos (A) transaxiais; (B) coronais; (C) sagitais
Figura 55 -	Corte tomográfico axial, mostrando os 5 cortes horizontais equidistantes no sentido vestíbulo-lingual e 5 cortes verticais equidistantes no sentido mesio-distal
Figura 56 -	(A) Corte tomográfico sagital; (B) Corte tomográfico coronal, mostrando as mensurações perpendiculares entre a coroa e o preparo dental. (GA) Gap axial, (GO) Gap oclusal
Figura 57 -	(A) Ampliação do Corte tomográfico coronal da desadaptação marginal, mostrando as mensurações entre a coroa e o preparo dental. (GM) Gap Marginal é a dasadaptação vertical que é avaliada através da distância perpendicular entre a superfície interna da coroa e o preparo dental, e a DMA (discrepância marginal absoluta) é a dasadaptação horizontal que é avaliada através da distância entre o ponto mais externo da margem da coroa e o preparo dental, que pode apresentar uma margem com sub extensão (B), com sobre extensão (C) ou sem extensão
Figura 58 -	Software CTanaliser onde mostra as imagens originais – Raw images para seleção do intervalo para seleção de interesse; (A) Set the Top of selection, define a imagem atual como nível superior da seleção; (B) Set the bottom of selection, define a imagem atual como nível inferior do intervalo da seleção.
Figura 59 -	Software CTanaliser (A) Raw images preview; (B) ROI - Regions of interest preview; (C) Corte de uma delimitação da área de interesse

Figura 60 -	Delimitação da área de interesse (ROI) 84
Figura 61 -	Seleção Binária com padronização na escala de limite superior de 78 e limite inferior de 23 para todas as amostras
Figura 62 -	Seleção Binária com padronização na escala de limite superior de 78 e limite inferior de 23 com modificação das cores para facilitar a visualização e diferenciar coroa/dente/silicone
Figura 63 -	Morfometria – análise do resultado 3D
Figura 64 -	Imagem 3D do espaço entre o dente e o preparo dental87
Figura 65 -	Reconstrução 3D da desadaptação interna entre a coroa e o preparo dental
Figura 66 -	(A) Reconstrução sagital (B) Reconstrução coronal do grupo 1 pelo software NRecon, mostrando as mensurações entre a coroa e o preparo dental (DMA), (GM), (GA), (GO)
Figura 67 -	Histograma da distribuição dos dados da variável GA91
Figura 68 -	Histograma da distribuição dos dados da variável GO93
Figura 69 -	Histograma da distribuição dos dados da variável GM 95
Figura 70 -	Histograma da distribuição dos dados da variável DMA 97
Figura 71 -	Imagens da desadaptação interna de um dente, reconstruídas em 3D
	para cada grupo, representadas por áreas claras
Figura 72 -	Histograma da distribuição dos dados da variável DCP100

LISTA DE QUADROS

Quadro 1 -	Especificações técnicas dos blocos pré-fabricados testados4	ŀ6
Quadro 2 -	Disposição dos grupos	47

LISTA DE TABELAS

Tabela 1 - Análise estatística descritiva para a variável GA	92
Tabela 2 - Análise estatística descritiva para a variável GO	94
Tabela 3 - Análise estatística descritiva para a variável GM	96
Tabela 4 - Análise estatística descritiva para a variável DMA	98
Tabela 5 - Análise estatística descritiva para a variável DCP (medida 3D)	101

LISTA DE ABREVIATURAS E SIGLAS

Al - Alumínio

2D - bidimensional

3D - tridimensional

CAD/CAM - Computer-aided design/Computer aided manufacturing

CEREC - Restauração Econômica Chairside Estética Cerâmica

CTAN® - Software de Análise Morfométrica

CTVOX® - Software para visualização e manuseio das imagens

tridimensionais

cm2 - centímetro quadrado

DATA VIEWER® - Software de Visualização Morfométrica

DP - desvio-padrão

DMA - discrepância marginal absoluta

DMH - desajuste marginal horizontal

DMV - desajuste marginal vertical

g - grama

GA - gap axial

GO - gap oclusal

GM - gap marginal

° - graus

•C - graus Celsius

h - hora(s)

HT - high translucency (alta translucidez)

HU - Hounsfield Unit

Kgf - quilogramas-força

kV - KiloVoltz

m - meses

MEV - microscopia eletrônica de varredura

Micro-CT - microtomografia

Min - minutos

mg - miligrama

MPa - megapascal

mm - milímetro

mm2 - milímetro quadrado

mm3 - milímetro cúbico

mW/cm2 - miliWatts por centímetro ao quadrado

μA - Microampere

μm - micrômetro (s)

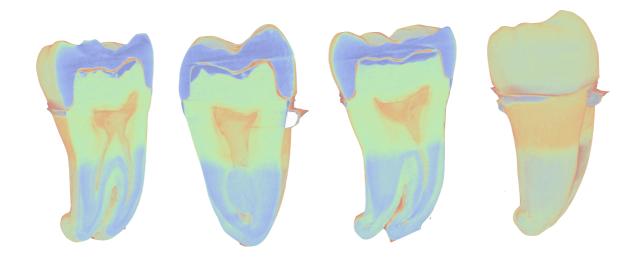
n - número de espécimes

NRECON® - Software usado para reconstruir imagens de seção transversal

a partir de imagens de projeção tomográfica

% - porcentagem

ROI - região de interesse


S, M, L - small, medium, large

Seg - segundos

VOI - volume de interesse

SUMÁRIO

1	INTRODUÇÃO	27
2	OBJETIVOS	33
3	MÉTODO	35
	3.1 OBTENÇÃO E SELEÇÃO DOS DENTES	35
	3.2 INCLUSÃO DOS DENTES	37
	3.3 ESCANEAMENTO DOS DENTES	39
	3.4 REALIZAÇÃO DOS PREPAROS DENTAIS	41
	3.5 DIVISÃO DOS GRUPOS	45
	3.6 CONFECÇÃO DAS COROAS	47
	3.6.1 Confecção das Coroas pelo Sistema Cerec AC	47
	3.6.1.1 Captura de imagens com a câmera intraloral BlueCam	49
	3.6.1.2 Captura de imagens com a câmera intraoral OmniCam	61
	3.6.2. Sequência do processo de captura e fresagem	69
	3.6.3. Cristalização das coroas de IPS Emax CAD (cerâmica de	
	dissilicato de lítio)	70
	3.6.3.1 Queima de Cristalização da coroa de IPS e.max CAD	71
	3.7 AVALIAÇÃO DA ADAPTAÇÃO MARGINAL E INTERNA	73
	3.7.1 Avaliação da Adaptação Marginal sem Ajuste Interno	74
	3.7.2 Aquisição das imagens microtomógrafo – micro CT	75
	3.7.2.1 Avaliação no Software Dataviewer	78
	3.7.2.2 Avaliação no Software CTanalyser	81
	3.7.3 Medição da Desadaptação Interna	87
	3.8 ANÁLISE ESTATÍSTICA	88
4	RESULTADOS	90
5	DISCUSSÃO	102
6	CONCLUSÕES	113
7	REFERÊNCIAS BIBLIOGRÁFICAS	115
8	APÊNDICE	123
9	ANEXO	139

INTRODUÇÃO

1 INTRODUÇÃO

A facilidade em obter informações sobre saúde bucal aliada a estética vem aumentando a cada dia em diversos tipos de mídias, incluindo redes sociais. Os pacientes estão à procura de tratamentos com técnicas mais rápidas e modernas para substituir as restaurações antigas e escuras por restaurações livre de metal. Esta demanda por restaurações altamente estéticas e por procedimentos restauradores indiretos, faz com que haja uma crescente busca de melhorias por parte dos dentistas, protéticos e fabricantes, trazendo assim novas técnicas, novos materiais cerâmicos e técnicas laboratoriais simplificadas (1).

Aided 0 sistema CAD/CAM (Computer Design/Computer Aided Manufacturing), é uma tecnologia inovadora, cujo planejamento e produção das próteses são realizados com o auxílio do computador, e que está mudando o conceito de odontologia restauradora. Esse sistema contém inicialmente uma ferramenta de digitalização do preparo protético que criará um modelo virtual na tela do computador para o planejamento da restauração. Após o planejamento virtual, estas informações são enviadas para uma unidade fresadora para execução da restauração (2), não havendo necessidade de etapas intermediárias de fabricação, diminuindo assim o custo, o tempo e a possibilidade de contaminação durante a fase de provisório (3). Embora a utilização clínica dos sistemas CAD/CAM em Odontologia tenha sido descrita desde meados dos anos 80, somente na segunda década dos anos 2000, houve um aumento na parcela dos usuários (cirurgiões dentistas, técnicos em prótese dental e pacientes) para construção de próteses dentárias e/ou estruturas protéticas (4). Existem três diferentes abordagens de produção disponíveis: laboratório de prótese dentária, centro de fresagem centralizado e chairside. No laboratório de prótese dentária, é realizado um molde a partir de uma impressão convencional usando elastômeros que é transferido para o laboratório para confecção de modelos de gesso que são escâneados, e os dados são enviados para um software para o planejamento do desenho da restauração e em seguida para um equipamento de fresagem da peça. Já em um centro de fresagem, os conjuntos de dados produzidos no laboratório dentário são enviados ao centro de produção para a fabricação com o dispositivo de CAD / CAM, e as restaurações são devolvidos para o laboratório de prótese dentária (2,5). Para a última abordagem, *chairside*, o instrumento de digitalização é uma câmera intraoral, que substitui uma impressão convencional. Os procedimentos de fresagem podem ser realizadas em um consultório odontológico utilizando os mais variados tipos de restaurações, desde inlays, onlays e coroas unitárias, infra-estruturas, *abutments* personalizados para implantes, restaurações provisórias em acrílico, infra-estruturas para próteses removíveis e outras. Entre os sistemas CAD/CAM disponíveis, o sistema CEREC (Restauração Econômica Chairside Estética Cerâmica), CE (cerâmica) REC (reconstrução) é comumente utilizado, por ter sido o primeiro a estar disponível comercialmente (2,4,6). O uso dessa tecnologia, trouxe outros novos procedimentos necessários, como a digitalização, design de *software*, fresagem e processamento de material, que requerem uma considerável curva de aprendizagem (5).

Com relação a digitalização do preparo protético, pode se dar pela impressão óptica com a câmera intraoral ou impressão convencional, confecção do modelo em gesso e em seguida a digitalização do modelo. A impressão óptica apresenta a grande vantagem de dispensar a moldagem com elastômeros. Após finalização do preparo dental, a câmera intraoral é posicionada sobre a região protética e diversas imagens são realizadas, a fim de fornecer ao software as informações necessárias para a criação do modelo virtual. As câmeras intraorais operam pela emissão de feixes de luz ou raios laser, cuja reflexão na superfície do modelo de gesso é captada por sensores que criam, com auxílio de um programa, o modelo virtual. Diversas imagens, em diferentes ângulos, são captadas pelas câmeras intraorais para gerar dados suficientes para a construção do modelo virtual (2). Apesar do seu avanço significativo da digitalização 3D, o uso de câmeras intraorais ainda não substituí completamente o método convencional de tomar impressões dos dentes preparados, em caso de reabilitações extensas (7). No início, a baixa resolução de digitalização resultou na má adaptação interna e marginal de próteses desses sistemas (8). No entanto, com os recentes avanços na tecnologia, engenharia e materiais levaram os sistemas CAD/CAM a melhorar seus sistemas de câmeras intraorais com alta precisão e sofisticados softwares para digitalizar as formas complexas exigidas em odontologia (9). As impressões orais são um passo importante na odontologia restauradora, pois transferem a situação intraoral para um

modelo extraoral, influenciando na precisão e longevidade das restaurações indiretas (10). A digitalização simplifica o fluxo de trabalho, facilitando a verificação do preparo dental e a sua relação com o antagonista, se há necessidade de possíveis correções, sem ter de repetir a totalidade do processo de impressão óptica. Todos os sistemas digitais permitem um melhor controle por meio da ampliação dos dentes digitalizados na tela e oferecem a possibilidade de examinar novamente as áreas insuficientemente reproduzidas (10).

Apesar dos aspectos positivos de procedimentos de impressão óptica intraorais, como por exemplo o conforto no tratamento da digitalização, um problema clínico fundamental permanece: as câmeras intraorais só podem gravar áreas visíveis. Assim, o sangue e, especialmente, saliva, combinados com linhas de término do preparo localizado subgengivalmente, complicam substancialmente o processo de digitalização. Isto é especialmente verdadeiro para a região molar, onde o espaço limitado na cavidade oral limita o manuseio da câmera (11,12).

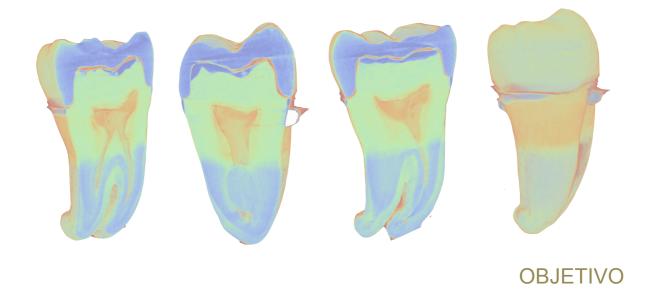
Existem duas opções de câmeras intraorais para os sistemas Sirona CEREC AC: BlueCam e Omnicam. Ambos os sistemas apresentam o objetivo de eliminar a necessidade de realizar procedimentos de moldagem tradicionais, gerando dados que serão transmitidos eletronicamente, eliminando procedimento de moldagem. Os dados da impressão óptica são transmitidos para uma unidade fresadora CEREC inLAB para fabricação da restauração final (13,14,15). O CEREC AC Bluecam apresenta o feixe de luz paralela e extensa profundidade de campo que garante uma qualidade das imagens. A câmera de LED tem uma luz azul, que pode capturar imagens com precisão, emitindo a luz em direção ao objeto e, em seguida, capta a luz que o objeto reflete de um ângulo diferente, técnica chamada de "Triangulação Ativa". Após a estabilização da câmera, inicia-se a gravação de todos os detalhes da dentição, a partir da vista oclusal após pulverizar toda superfície dental com um spray de dióxido de titânio, inclinando sobre os dentes adjacentes e com uma distância focal de 14 mm. Em seguida, o *software* constrói um modelo 3D por sobreposição de todas as imagens obtidas (16).

O sistema CEREC AC Omnicam apresenta um sistema de vídeo, sendo o primeira câmera intraoral do sistema CEREC, que de acordo com o fabricante, não requer aplicação de pó de dióxido de titânio. A eliminação do revestimento em pó

significa que o processo de digitalização é mais fácil e rápido, com uma exelente profundidade de campo, garantindo a qualidade de imagem. Ao colocar a câmera sobre a área desejada, a digitalização começa automaticamente. A ponta da câmera é mais compacta, com os contornos exteriores arredondados, garantindo uma facilidade de movimentação dentro da boca. Os dados são gerados sucessivamente em um modelo 3D que é exibido no monitor com os tons naturais das várias superfícies, conseguindo distinguir entre amálgama, ouro ou compósito e também de diferenciar dente, gengiva e a margem do preparo (14,17). Outra diferença entre os dois sistemas é que câmera intraoral Omnicam faz uma gravação de vídeo colorido no formato .avi, sem a necessidade do uso de pó refratário e a Bluecam é uma sobreposição de fotografias, que posteriormente são tratados no modelo virtual. Tanto para o sistema CEREC AC Bluecam, como para o sistema CEREC AC Omnicam é possível obter uma série de imagens de composições intraoral, mas cada um com a tecnologia diferente (14,18).

Atualmente, existe grande variedade de materiais. Essa variedade consiste principalmente de diferentes cerâmicas, resinas compostas, zircônia, metal e resinas acrílicas. Alguns destes materiais requerem processamento adicional após a fresagem, como o dissilicato de lítio e a zirconia, necessitando de equipamentos especializados para a queima, enquanto outros produtos podem ser concluídos com um polimento dentro do consultório (19). As cerâmicas prensadas foram desenvolvidas para tornar as coroas mais homogêneas e menos porosas que os processos de sinterização convencional, além de prevenir a propagação de micro trincas e melhorar a estabilidade mecânica da coroa gerada (20,21,22,23). Com os avanços na ciência dos materiais e tecnologias adesivas, as restaurações cerâmicas têm provado ser resistentes a fadiga o suficiente para satisfazer as necessidades funcionais e estéticas da restaurações orais, apresentando uma baixa condutividade térmica e biocompatíbilidade (5,24, 25).

Os blocos pré fabricados de dissilicato de lítio (IPS e.max-CAD Ivoclar Vivadent) apresentam alta resistência à fratura e baixo desgaste do material, e são amplamente utilizados na fabricação de coroas, produzindo restaurações com cor e translucidez semelhante ao esmalte dental (8,26,27). Apresentam coloração arroxeada, o que indica a organização dos componentes do bloco em uma forma pré-cristalizada e menos resistente, que permite um processo de usinagem com


maior agilidade e facilidade, gerando coroas que devem passar por um processo de cristalização, alcançando assim, sua resistência máxima (28,29,30). As restaurações cerâmicas podem promover desgaste excessivo aos dentes naturais ou aos materiais restauradores antagonistas (19). Afim de minimizar essa desvantagem, um considerável progresso foi feito na fabricação de resinas compostas. Recentemente, um novo bloco de resina composta (Lava Ultimate, 3M ESPE Dental Produtos, Seefeld, Alemanha) foi introduzido para o sistema CEREC. De acordo com o fabricante, os blocos pré-fabricados de resina (Lava Ultimate 3M ESPE) utilizam uma tecnologia de resina nanocerâmica, desenvolvidos com materiais que combinam as vantagens dos materiais cerâmicos com as dos compósitos altamente reticulados, resultando em um material mais resistente ao desgaste do que a resina. Este material veio com a proposta de ser capaz de absorver melhor as forças da mastigação, reduzindo o stress na restauração, apresentando excelente resistência ao desgaste e uma boa superfície de polimento, estabilidade de cor e com a capacidade de produzir margens bem ajustadas e contínuas após o processo de fresagem (31, 32).

Apesar de todas as vantagens relacionadas às coroas fabricadas por CAD/CAM, a adaptação marginal ainda é um importante aspecto a ser alcançado. Aspecto este que foi foco de estudo por várias décadas até os dias atuais (8,9,13,24), possibilitando a investigação da margem das coroas com o término do preparo no sentido horizontal e vertical, pois quaisquer desadaptações de ordem micrométrica, podem gerar problemas aos tecidos duros e moles, resultando em insucesso da reabilitação protética. O sucesso clínico destas restaurações depende da adaptação marginal que pode ser influenciado por múltiplos fatores, como a precisão do sistema de fresagem, da digitalização óptica, do tamanho da broca, espessura do espaço de cimentação, a calibração da máquina e da câmera intraoral (24,27,30,33,34,35,36,37,38). Assim, a longevidade da restauração dentária depende do valor estético, resistência à fratura, e adaptação marginal (24,34,39,40).

Adaptação da coroa é definida pelas medições das desadaptações marginais e internas de restaurações, tendo possibilidade das margens da coroa apresentar uma sobre extensão, uma sub extensão ou não apresentar extensões. Estas discrepâncias podem afetar os tecidos periodontais, aumentar a retenção de placa bacteriana, favorecendo o desenvolvimento de cáries recorrentes ou lesões de

polpa, e levar a reabsorção óssea (3,24,27,33), além de poder diminuir a resistência à fratura das restaurações cerâmicas, porque estas zonas com um grande gap interno podem induzir diferentes concentrações de carga, deixando a coroa mais susceptível à fratura (6,8,24,34,38,39,40).

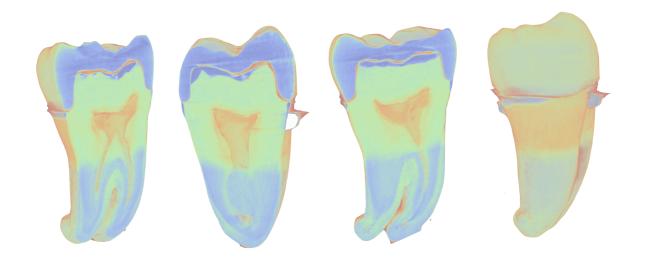
Pelo que foi mencionado acima, verifica-se que as variáveis envolvidas na precisão da adaptação marginal de coroas fabricadas com o sistema CAD/CAM podem influenciar na longevidade das restaurações. Assim, o presente estudo foi elaborado com o intuito de analisar a qualidade da interface da adaptação marginal e interna de coroas fabricadas com o sistema CAD/CAM CEREC, bem como se há interferência no método de moldagem digital e o uso de diferentes materiais restauradores. Há necessidade de mais estudos sobre a adaptação marginal com estes métodos comparativos (3,6,7,8,15,24,27,38).

2 OBJETIVO

O objetivo deste estudo foi avaliar *in vitro*, a adaptação marginal e interna de coroas totais obtidas a partir de blocos pré-fabricados de Lava Ultimate 3M ESPE (resina nanocerâmica) e IPS e.max CAD Ivoclar Vivadent (cerâmica de dissilicato de lítio) com dois modos de moldagem digital, câmera intraoral Bluecam e câmera intraoral Omnicam, por meio de microtomógrafo (micro-CT) utilizando método de avaliação bidimensional e tridimensional.

Os objetivos específicos foram:

- Avaliação 2D da adaptação interna


Avaliar a adaptação interna de coroas de cerâmica e resina fabricadas com sistema CAD/CAM utilizando dois tipos de moldagem digital por meio da mensuração das variáveis gap axial (GA) e gap oclusal (GO).

- Avaliação 2D da adaptação marginal

Avaliar a adaptação marginal de coroas de cerâmica e resina fabricadas com sistema CAD/CAM utilizando dois tipos de moldagem digital por meio da mensuração das variáveis gap marginal (GM) e discrepância marginal absoluta (DMA).

- Avaliação 3D da desadaptação entre coroa e preparo (DCP)

Analisar a adaptação marginal e interna das coroas delimitando a região entre a coroa e o dente preparado por meio da razão: espaço total da desadaptação interna/ superfície de contato.

METODOLOGIA

3 MATERIAIS E MÉTODOS

3.1 OBTENÇÃO E SELEÇÃO DOS DENTES

Este trabalho foi aprovado pelo Comitê de Ética em Pesquisa com seres humanos da Faculdadade de Ciências da Saúde da Universidade de Brasília sob número do CAAE 43445315.0.000.0030 (ANEXO A). Após um estudo piloto a fim de determinar os parâmetros a serem utilizados, 10 terceiros molares humanos hígidos, superiores e inferiores, recém-extraídos, foram coletados a partir da cessão desses dentes pelos pacientes e da assinatura do Termo de Consentimento Livre e Esclarecido (ANEXO B) (Figura 1). Os dentes foram selecionados e armazenados imediatamente após a extração e mantidos em potes hermeticamente fechados com solução de timol a 0,01% pelo período de 30 dias, antes dos procedimentos experimentais, para evitar a proliferação bacteriana.

Figura 1 Visualização dos 10 dentes hígidos utilizados na pesquisa.

Para a seleção, a porção radicular dos dentes foi raspada com o auxílio de curetas periodontais (Hu-Friedy, Chicago, IL, EUA) e limpos com taças de borracha impregnadas com uma pasta de pedra-pomes e água, montadas numa peça de mão de baixa rotação (Figura 2). Após a limpeza, os dentes foram inspecionados com uma lupa Exam Vision, com o objetivo de excluir dentes com trincas, fendas e alterações estruturais, as quais poderiam comprometer os resultados do presente estudo.

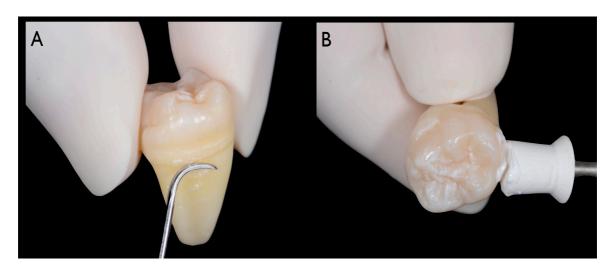


Figura 2 (A) Vista sequencial da limpeza dos dentes com cureta periodontal; (B) taça de borracha com pasta de pedra-pomes e água.

3.2 INCLUSÃO DOS DENTES

Para facilitar o manuseio durante as etapas subsequentes da pesquisa, foi realizada a inclusão dos dentes hígidos selecionados, utilizando o método segundo Barbosa (41).

Os dentes selecionados foram incluídos individualmente em peças plásticas (Monta Tudo, Elka Plásticos Ltda., São Paulo, SP, Brasil) (Figura 3 A), preenchidas com resina epóxica (Res.Epoxi SQ.2001 lote: 140318-1 e Endurecedor SQ-3154 lote: 140402-04 – Redelease).

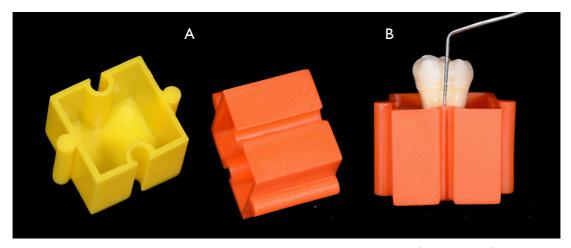


Figura 3 (A) Peças plásticas (Monta Tudo, Elka Plásticos Ltda., São Paulo, SP, Brasil) para a inclusão dos dentes; (B) Sonda milimetrada posicionada a 5mm a partir da junção amelodentinária, para determinar o nível de inclusão da resina epóxica (Adaptado de Barbosa [41]).

As coroas dos dentes foram fixadas com cera utilidade à haste vertical do Delineador B2 (Bio-Art Equipamentos Odontológicos, São Carlos, SP, Brasil) e posicionadas sobre as peças plásticas (Monta Tudo, Elka Plásticos Ltda., São Paulo, SP, Brasil), de forma que 5 mm de raiz cervical ficasse fora da resina epóxica, até a completa polimerização da resina (Figura 3B). Dessa forma, os dentes foram incluídos com os longos eixos perpendiculares às bases das peças plásticas (Figura 4 A-D).

Após a inclusão, cada conjunto dente e peça plástica foi identificado aleatoriamente com letras do alfabeto (de "A" a "J") e moldado duas vezes com o silicone de adição Elite HD+Putty Soft (Zhermack clinical, Lote 174780), para a confecção de guias de orientação de desgaste durante a realização dos preparos cavitários. Um dos guias foi fatiado ao meio no sentido vestibular/lingual, e o outro, fatiado em três partes, nos terços oclusal, médio e cervical. Cada metade foi identificada com uma letra para o dente e para a face a ser moldada (Figura 5 A-B).

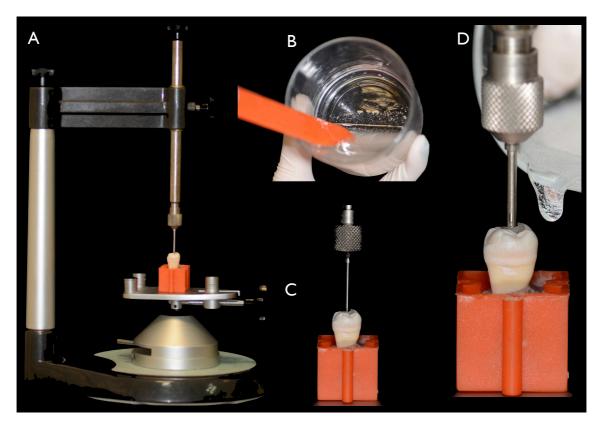


Figura 4 (A) Vista lateral do delineador utilizado para a inclusão dos dentes perpendiculares à base da peça plástica; (B) Manipulação da resina epóxica; (C) Vista aproximada do dente; (D) Resina epóxica sendo vertida no interior da peça plástica (Adaptado de Barbosa [41]).

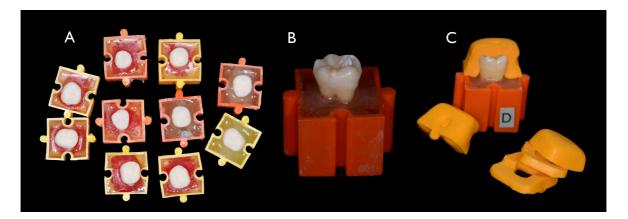


Figura 5 (A) Dentes incluídos em resina epóxica nas peças plásticas; (B) Vista aproximada do conjunto (dente, peça plástica) incluído em resina epóxica; (C) Aspecto do conjunto dente e peça plástica "D" com suas respectivas guias de silicone utilizadas para orientação do desgaste durante a confecção dos preparos cavitários (Adaptado de Barbosa [41]).

3.3 ESCANEAMENTO DOS DENTES

Antes de iniciar os preparos dos dentes, cada conjunto (dente e peça plástica) foi escaneado duas vezes. Foram utilizados duas formas de captura de imagem: uma com a câmera intra oral BlueCam (Figura 6 A-C) e a outra com a câmera intra oral OmniCam, para obter a cópia biogenérica do dente hígido (Figura 7A, B). A cópia biogenérica é um software que faz com que seja possível reconstruir superfícies dentárias da restauração a partir das características morfológicas da dentição natural do paciente, adaptando a forma anatômica para cada situação clínica.

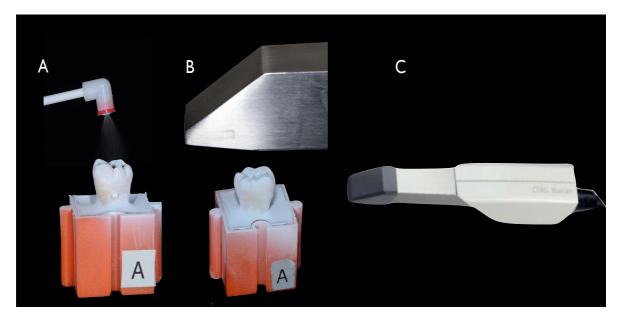


Figura 6 (A) Aplicação do spray de dióxido de titânio CEREC Optispray da SIRONA; (B) Captura da imagem utilizando a câmera intraoral BlueCam para a cópia biogenérica; (C) Câmera intraoral BlueCam.

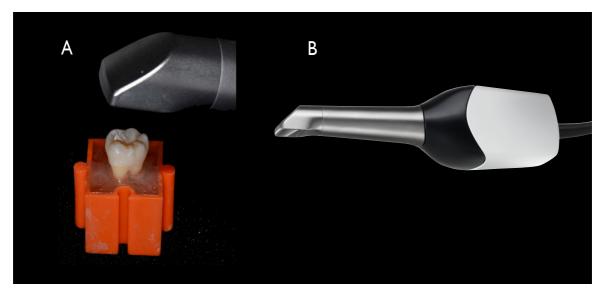


Figura 7 (A) Captura da imagem utilizando a câmera intraoral OmniCam para a cópia biogenérica; (B) Câmera intraoral OmniCam.

3.4 REALIZAÇÃO DOS PREPAROS DENTAIS

Os preparos dos dentes foram realizados utilizando as pontas diamantadas troncocônicas de extremo arredondado nº 446KR.017 (FG), nº 446KRF017 (FG) e ponta de Arkanza (nº 638.025ARK) do kit 1904 Chanfro profissional do Dr. Paulo Kano, com diâmetro máximo de 2,5 mm, que foram adaptadas a caneta de alta rotação (RS 350, Dabi-Atlante, Ribeirão Preto, SP, Brasil) (Figura 8 A-D).

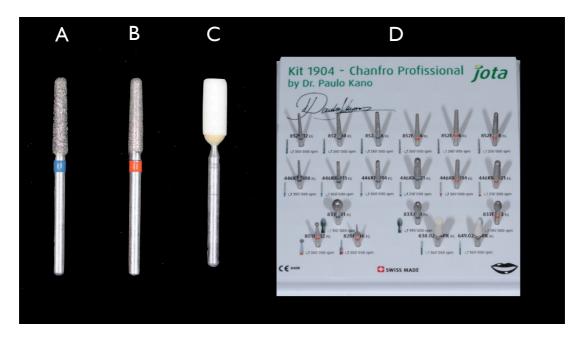


Figura 8 (A) Brocas nº 446KR.017(FG); (B) Broca nº 446KRF017 (FG); (C) Ponta de Arkanza (nº 638.025ARK); (D) Kit 1904 Chanfro profissional do Dr Paulo Kano.

O preparo cavitário convencional foi feito seguindo os seguintes passos: no primeiro passo, com a ponta diamantada troncocônica de extremo arredondado nº 446KR.017 (FG), em alta rotação, com irrigação abundante, paralela à inclinação das paredes circundantes vestibular, lingual e ao longo eixo do dente (Figura 9 A, B), na altura dos terços cervical e médio, foram realizados sulcos de orientação por cúspide, inserindo-se a metade do diâmetro da ponta diamantada selecionada, 1mm aquém do término cervical. Esses sulcos foram realizados de forma paralela à inclinação das paredes circundantes vestibular e lingual nos terços médio. No terço oclusal das paredes axiais, o desgaste foi realizado posicionando a ponta diamantada com inclinação de aproximadamente 6 graus de convergência para oclusal (Figura 10 A, B). Na face oclusal, os sulcos de orientação foram realizados de forma semelhante às faces circundantes, recebendo inicialmente um sulco de orientação por cúspide paralelo a ela (Figura 10 C).

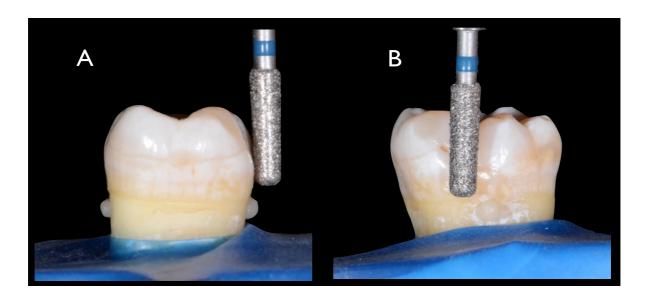


Figura 9 (A) Ponta diamantada posicionada paralela à inclinação das paredes circundantes vestibular, lingual e ao longo eixo do dente, para a confecção do sulco de orientação axial no terço cervical; (B) Vista vestibular do dente e da ponta diamantada (Adaptado de Barbosa [41]).

Figura 10 (A) Vista oclusal do dente com os sulcos de orientações axiais do terço cervical; (B) Sulcos de orientações axiais em duas inclinações; (C) Sulcos de orientações axiais e oclusais; (D) Desgaste da face proximal mesial (Adaptado de Barbosa [41]).

No passo seguinte, foi realizado o desgaste com a união dos sulcos de orientações com a mesma ponta diamantada troncocônica de extremo arredondado nº 446KR.017 (FG). Nas proximais, foi realizado um sulco de orientação por proximal e, posteriormente, o desgaste das proximais com a união dos desgastes das faces livres (Figura 10 D).

Após esse procedimento, a ponta diamantada troncocônica de extremo arredondado foi substituída por outra de formato idêntico, mas com diamantes de granulação fina nº 446KRF017 (FG), para o refinamento dos desgastes previamente realizados. Na sequência a ponta com diamantes de granulação fina foi substituída por uma ponta de Arkanza nº 638.025ARK pré contornada, com o objetivo de arredondar todos os ângulos, dando continuidade ao refinamento do preparo das paredes axiais dos terços cervical e médio, com movimentos leves, intermitentes e abundante refrigeração para evitar o aquecimento do dente, até a obtenção de uma superfície do preparo lisa e polida (Figura 11 A-C) (41).

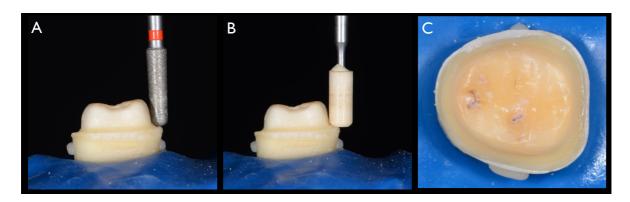


Figura 11 (A) Acabamento com a ponta com diamantes de granulação fina; (B) O polimento foi realizado com ponta de Arkanza (nº 638.025ARK) pré contornada; (C) Vista oclusal do preparo para coroa total finalizado (Adaptado de Barbosa [41]).

A cada cinco preparos as pontas foram substituídas por outras novas, para manter a eficiência do desgaste. Todos os preparos foram realizados com leve pressão e abundante refrigeração ar/água, para evitar o aquecimento da estrutura dental.

O preparo apresentou uma redução oclusal de 2 mm e uma redução axial de 1,5 mm, com margem cervical em forma de chanfro (42). Durante a realização do preparo cavitário, as guias de orientação foram posicionadas para acompanhar e orientar o desgaste (Figura 12).

.

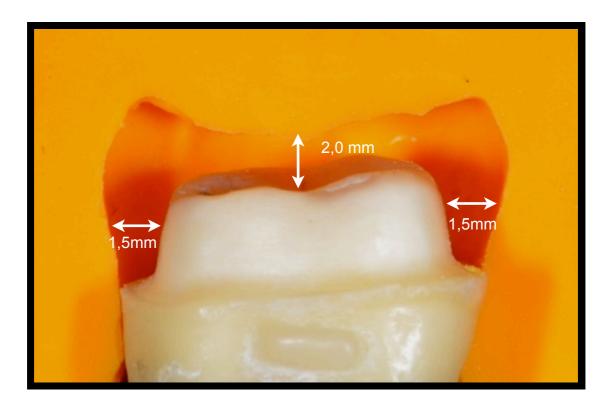


Figura 12 Visualização de um preparo e sua respectiva guia posicionada para orientação de desgaste durante a realização do preparo cavitário (Adaptado de Barbosa [41]).

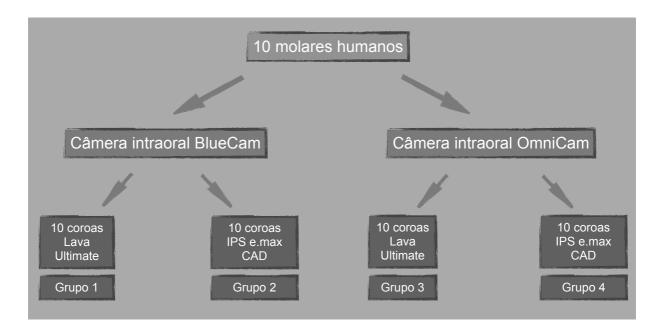
.

Após a finalização dos preparos cavitários, os dentes foram armazenados em potes fechados com solução de timol a 0,01% durante os processos de escaneamento, moldagem e testes de desadaptação marginal, para manter a umidade encontrada na cavidade oral e evitar a proliferação bacteriana.

3.5 DIVISÃO DOS GRUPOS

Os blocos pré fabricados testados, com o número de lote, fabricante e composição são indicados no Quadro 1.

Quadro 1 - Especificações técnicas dos blocos pré-fabricados testados


blocos pré-fabricados	Lote	Fabricante	Composição
IPS e.max CAD	S20621	Ivoclar Vivadent AG Schaan, Liechtenstein	Dissilicato de Lítio
Lava Ultimate 3M ESPE	1412500265	3M ESPE St. Paul, MN 55144-1000 USA	80% de resina nano cerâmica unida a uma matriz resinosa

O Sistema CEREC AC apresenta dois sistemas de câmeras intraoral para impressão digital: a câmera intraoral CEREC Bluecam e a câmera intraoral CEREC Omnicam.

As quarentas coroas foram confeccionadas da seguinte maneira:

- 1- Com a câmera intraoral CEREC Bluecam foram realizadas dez impressões ópticas em cada um dos dez molares para a confecção de dez coroas com o sistema restaurador IPS e.max CAD, cerâmica de dissilicato de lítio (Ivoclar Vivadent, Schaan, Liechtenstein, Lote S20621) e dez coroas com o sistema restaurador Lava Ultimate, resina nanocerâmica (3M ESPE lote 1412500265), totalizando vinte coroas fabricadas neste sistema.
- 2- Com a câmera intraoral CEREC Omnicam foram realizadas dez impressões ópticas em cada um dos dez molares para a confecção de dez coroas com o sistema restaurador IPS e.max CAD, cerâmica de dissilicato de lítio (Ivoclar Vivadent, Schaan, Liechtenstein, Lote S20621) e dez coroas com o sistema restaurador Lava Ultimate, resina de nanocerâmica (3M ESPE lote 1412500265), totalizando vinte coroas fabricadas neste sistema (Quadro 2).

Quadro 2 - Disposição dos grupos

3.6 CONFECÇÃO DAS COROAS

3.6.1 Confecção das Coroas pelo Sistema Cerec AC

Vinte coroas foram obtidas à partir da fresagem de blocos pré-fabricados de Lava Ultimate, resina nanocerâmica cor A1-HT, tamanho 12 (3M ESPE - lote 1412500265) e vinte coroas com a fresagem de blocos pré-fabricados de IPS e.max CAD, cerâmica de dissilicato de lítio cor A1, HT, tamanho I12 (Ivoclar Vivadent AG, Schaan, Liechtenstein, Lote S20621) (Figura 13 A, B), com o sistema CAD/CAM Cerec AC (Sirona, Bensheim, Alemanha) (Figura 14 A, B).

Figura 13 (A) Bloco de Lava Ultimate cor A1-HT, tamanho 12; (B) Bloco de IPS e.max CAD cor A1, HT, tamanho I12.

As impressões ópticas foram realizadas diretamente sobre os dentes preparados para coroa total para a confecções da coroas.



Figura 14 Sistema CAD/CAM CEREC-Sirona com suas unidades (A) CEREC AC – com a câmera BlueCam; (B) Unidade de fresagem do sistema CEREC-Sirona INLAB MC XL.

3.6.1.1 Captura de imagens com a câmera intraoral BlueCam

A câmera intraoral BlueCam, adquire uma série de imagens individuais, onde digitaliza a superfície dentária com precisão, com a finalidade de criar um modelo virtual 3D. Para que isso ocorra, as amostras foram impregnadas com spray de dióxido de titânio (CEREC Optispray, Sirona Dental Systems GmbH Bensheim, Germany, lote S50093), aspergido em quantidade homogênea em toda a extensão do dente para facilitar o processo de impressão. O pó de dióxido de titânio tem a função de padronizar a reflexão da luz em toda superfície do dente, permitindo a adequada impressão ótica por meio da câmera intraoral Bluecam, que capturou as imagens usando o feixe de luz azul paralela em extensa profundidade de campo garantindo uma excelente qualidade de imagem, gerando um modelo virtual (Figura 15 A, B). A forma exterior da restauração foi uma réplica da coroa do dente hígido a ser restaurado, antes de iniciar o preparo dental. Isto foi conseguido usando o modo "cópia biogenérica" do Sistema CEREC AC (Sirona, Bensheim, Alemanha) e o programa (CEREC inLab versão do software 4.02) (Figura 6 A-C).

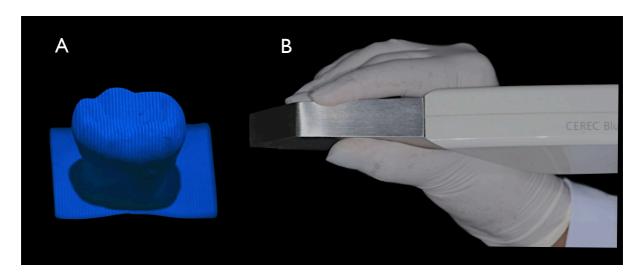


Figura 15 (A) Imagem do dente ao usar o câmera intraoral BlueCam, que capta imagens altamente detalhadas usando um diodo azul com poderosos emissores de luz; (B) Câmera intraoral BlueCam.

Após a captura de imagens dos dentes hígidos, os preparos dentais para coroa total foram realizados seguindo as orientações já mencionadas anteriormente. Em seguida, fez-se a captura de imagens dos preparos, usando a câmera intraoral BlueCam, impregnando o preparo dental com spray de dióxido de titânio (CEREC Optispray, Sirona Dental Systems GmbH Bensheim, Germany, lote S50093), aspergido em quantidade homogênea (aproximadamente 40 µm) em toda a extensão, deixando padronizado a reflexão em todas as áreas do preparo, permitindo uma adequada impressão óptica do preparo (Figura 16 A, B).

Na sequência, o leitor óptico do escâner foi posicionado sobre o dente preparado para coroa total, centralizado, estabilizado e enquadrado mediante a observação direta na tela do computador, que permite visualizar todo o contorno do preparo cavitário. Quando a imagem, centralizada na tela do computador, foi considerada nítida, automaticamente a imagem foi salva digitalmente. As imagens que não apresentaram nitidez foram descartadas e o procedimento foi repetido até se obter uma imagem nítida.

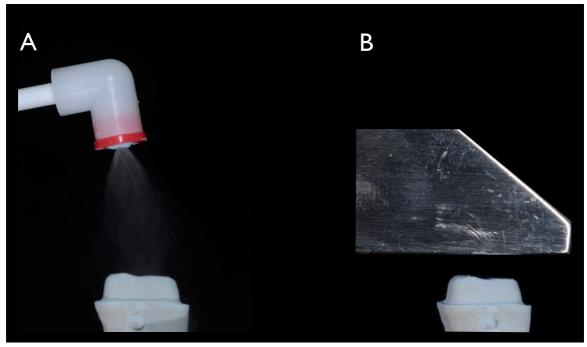


Figura 16 (A) Preparo dental sendo impregnado com o pó de dióxido de titânio (CEREC Optispray, Sirona Dental Systems GmbH Bensheim, Germany); (B) Vista lateral superior da ponta de leitura do escâner óptico BlueCam posicionado acima do dente para a captura da imagem do preparo impregnado com óxido de titânio.

Depois de verificar a qualidade das imagens, os dados foram armazenados no CAD (Computer Aided Design), no qual foram feitos os projetos das restaurações.

Dez modelos digitais foram gerados e uma sequência de etapas foi executada para a construção digital da restauração indireta. Dados como localização do dente, término cervical, tipo de preparo, espaçamento interno (80µm) e tipo do bloco a ser fresado foram informados até a completa confecção digital da restauração indireta (Figura 17 a 29).

A escultura oclusal selecionada foi a cópia biogenérica e a seleção dos parâmetros para coroa foi realizada, seguindo as orientação do fabricante: espaço de cimento (espaçador) 80 μm; desvio de fresagem oclusal -125 μm; resistência dos contatos proximais: 25 μm; resistência dos contatos oclusais: 0 μm; espessura mínima (radial): 500 μm para IPS e.max CAD; espessura mínima (oclusal): 500 μm; espessura de margem: 100 μm; ter em conta geometria de instrumento – SIM; remover áreas retentivas – SIM (Figura 24).

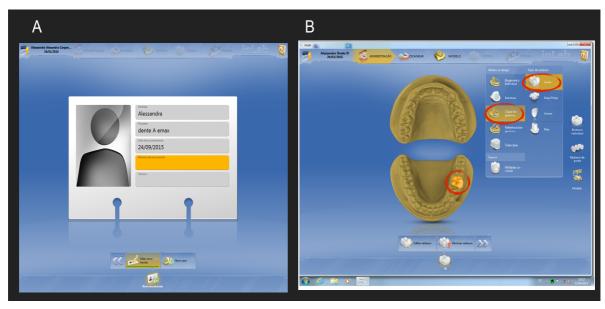


Figura 17 Procedimento realizado no Sistema CEREC AC SW4,0; (A) Seleção da imagem e informações do paciente, dentista, data do escaneamento e referência; (B) Seleção do tipo de restauração, do modo de design - cópia biogenérica e localização do dente.

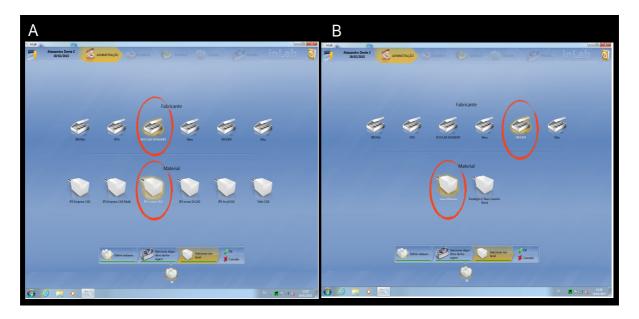


Figura 18 Seleção para escolher o fabricante e o material; (A) Fabricante: Ivoclar Vivadent, Material: IPS e.max CAD; (B) Fabricante: 3M ESPE, Material: Lava Ultimate.

Figura 19 Cópia biogenérica da anatomia do dente; (A) Vista da face oclusal da cópia biogenérica; (B) Vista da face vestibular da cópia biogenérica.

Figura 20 Cópia do preparo; (A) Vista oclusal da cópia do preparo ; (B) Vista vestibular da cópia do preparo.

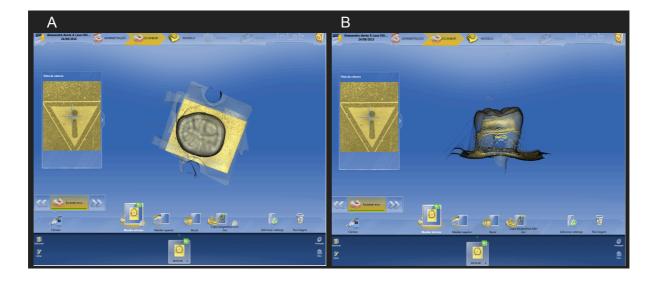


Figura 21 Sobreposição da cópia biogenérica com a cópia do preparo. Visualização tridimensional do contorno da restauração; (A) Vista oclusal da sobreposição da cópia biogenéria e a cópia do preparo; (B) Vista vestibular da sobreposição da cópia biogenéria e a cópia do preparo.

Figura 22 (A) Definição do eixo do modelo; (B) Definir eixo de inserção.

Figura 23 (A) Recorte virtual do modelo; (B) Desenho da margem do preparo.

Figura 24 (A) Seleção dos parâmetros; (B) Vista aproximada dos parâmetros.

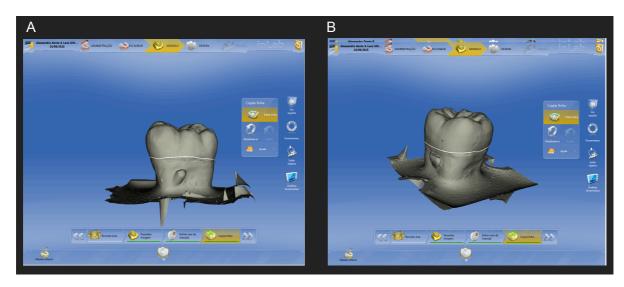


Figura 25 Delimitação da área desejada na cópia biogenérica; (A) Vista vestibular; (B) Vista em diagonal (vestibular e mesial).

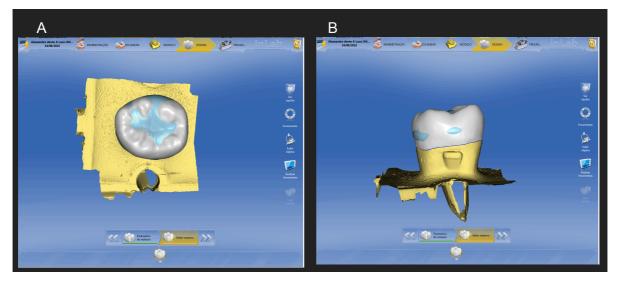


Figura 26 Proposta inicial do desenho da coroa seguindo a cópia biogerérica; (A) Vista oclusal; (B) Vista vestibular.

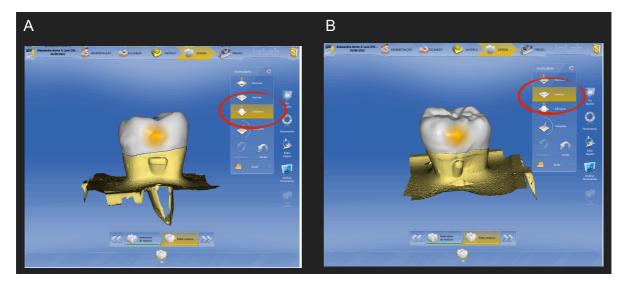


Figura 27 Pequenos ajustes na restauração foram realizados com diferentes ferramentas do software; (A) Ajuste para adicionar volume; (B) Ajuste para suavizar o volume.

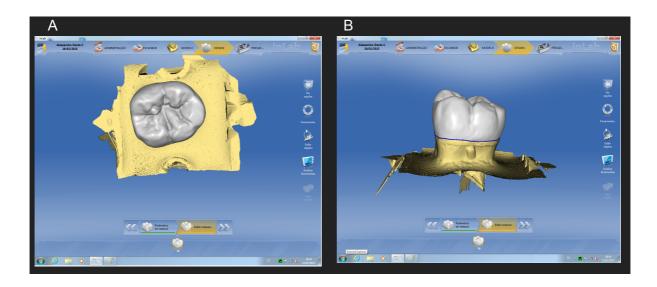


Figura 28 Visualização tridimensional da restauração após os ajustes de contorno; (A) Vista oclusal; (B) Vista vestibular.

Figura 29 (A) Posição da coroa no bloco com a visualização da localização do *sprue*; (B) coroa pronta para fresagem do bloco.

As imagens tratadas foram enviadas ao CAM (Computer Aided Manunfacturing), fresadora Cerec Inlab MCXL SW 4.0 (Sirona, Germany), onde as coroas foram fresadas a partir de blocos pré-fabricados de Lava Ultimate 3M ESPE resina nanocerâmica cor A1-HT, tamanho 12 (3M ESPE - lote 1412500265) e IPS e.max CAD (cerâmica de dissilicato de lítio cor A1- HT, tamanho I12, (Ivoclar

Vivadent, Schaan, Liechtenstein, Lote S20621). Os blocos cerâmicos consistem de uma peça cerâmica unida a uma haste metálica (Figura 13), que tem a finalidade de fixar o mesmo na unidade fresadora através do rosqueamento do parafuso de fixação (Figura 30 A, B).

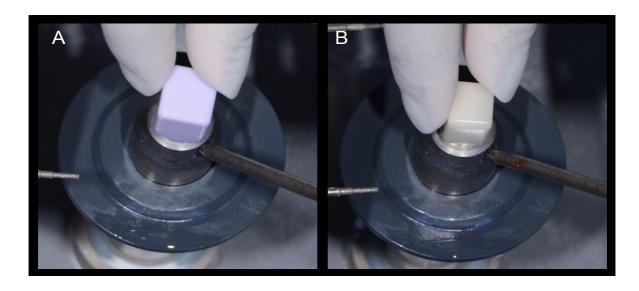


Figura 30 Bloco pré-fabricados: (A) IPS e.max CAD (cerâmica de dissilicato de lítio); (B) Lava Ultimate 3M ESPE (resina nanocerâmica).

Com o início do processo de fresagem do sistema, as pontas diamantadas (Sirona, Germany) cilíndrica de extremidade reta (Step Bur 12S) e outra cilíndrica de extremidade ogival (Cylinder Pointed Bur 12S) realizaram a fresagem dos planos axiais interno e externo e oclusal, respectivamente sob constante e abundante refrigeração com jatos de água (Figura 31 A, B) e (Figura 32).

Figura 31 (A) Pontas diamantadas cilíndrica de extremidade reta – Step Bur 12S; (B) Pontas diamantadas cilíndrica de extremidade ogival – Cylinder Pointed Bur 12S.

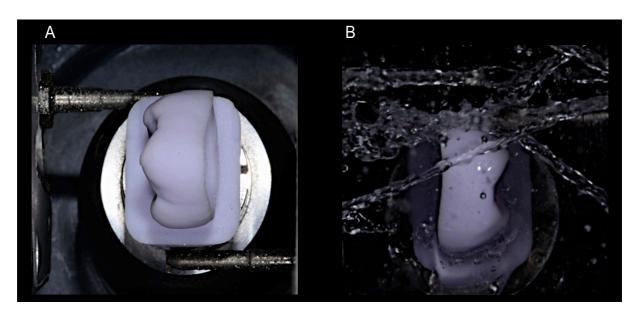


Figura 32 Visualização da fresagem de um bloco de IPS e.max CAD; (A) Visualização da ponta diamantada cilíndrica Step Bur 12S e ponta diamantada Cylinder Pointed Bur 12S; (B) Processo de usinagem, fresando um bloco de IPS e.max CAD sob constante e abundante refrigeração com jatos de água.

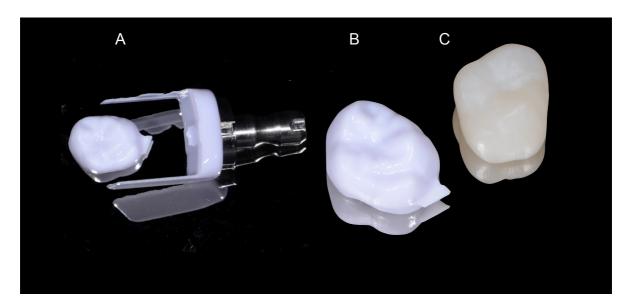


Figura 33 (A) coroa de IPS e.max CAD destacada do restante do bloco com a presença do *sprue* logo após o processo de fresagem; (B) Coroa de IPS e.max CAD com o *Sprue* logo após o processo de fresagem. (C) Coroa de Lava Ultimate sem o sprue.

Após o término da fresagem, a coroa é destacada do restante do bloco, com a presença do *sprue*. Na sequência, foi realizado a remoção do *sprue* com borracha abrasiva EUROPOL PLUS® verde Lentilha 26mm X 2mm 1ª fase (Polier Werk) em baixa rotação.

Figura 34 Remoção do *Sprue* com borracha abrasiva Europol plus verde; (A) coroa de IPS e.max CAD; (B) Coroa de Lava Ultimate.

Esse procedimeto descrito acima foi realizado para as vinte coroas, dez para as restaurações de IPS e.max CAD, e dez para as restaurações de Lava Ultimate que foram obtidas seguindo os mesmos critérios e etapas.

3.6.1.2 Captura de imagens com a câmera intraoral OmniCam

Para a captura de imagens usando a câmera intraoral OmniCam não houve necessidade do uso do spray de dióxido de titânio (CEREC Optispray, Sirona Dental Systems GmbH Bensheim, Germany). A câmera intraoral Omnicam permite o escaneamento das estruturas dos dentes naturais e da gengiva marginal sem o uso do pó para contraste (Figura 7 A, B).

Sendo assim, o leitor óptico da câmera foi posicionado sobre o dente hígido, e a digitalização começa automaticamente, copiando a forma exterior da restauração fazendo uma réplica da coroa do dente natural a ser restaurado. Isto foi conseguido usando o modo "cópia biogenérica" do CEREC AC SW4 versão 4.2.3 (Sirona, Bensheim, Alemanha) e o programa (CEREC inLab SW4 versão 4.2.4). Após a cópia da anatomia dental, o dente foi preparado seguindo as orientações já descritas anteriormente. Na sequência, o leitor óptico da câmera intraoral foi posicionado sobre o dente preparado para coroa total, centralizado, estabilizado e enquadrado mediante a observação direta na tela do computador, que permitiu enxergar todo o contorno do preparo cavitário (Figura 35). Quando a imagem, centralizada na tela do computador, foi considerada nítida, automaticamente as imagens foram sucessivamente geradas e salvas digitalmente criando um modelo 3D. As imagens que não apresentaram nitidez foram descartadas e o procedimento foi repetido até se obter uma imagem nítida.

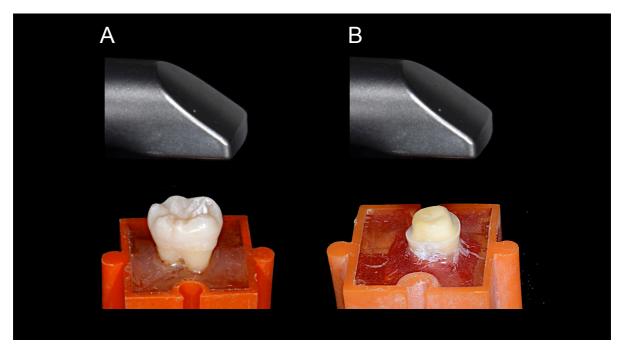


Figura 35 (A) Câmara intraoral Omnicam posicionada sobre o dente hígido para obtenção de imagens para cópia biogenérica; (B) Câmara intraoral sobre o dente preparado para coroa total.

Depois de verificar a qualidade das imagens, os dados foram armazenados no CAD (Computer Aided Design), onde foram feitos os projetos das restaurações, seguindo os passos descritos anteriormente. Os dez modelos digitais foram gerados e, uma sequência de etapas foram executadas para a construção digital da restauração indireta. Dados como localização do dente, término cervical, tipo de preparo, espaçamento interno (80µm) e tipo do bloco a ser fresado foram informados até a completa confecção digital da restauração indireta (Figura 36 a 46).

A escultura oclusal selecionada foi a cópia biogenérica e a seleção dos parâmetros para coroa foi realizada, seguindo as orientação do fabricante: espaço de cimento (espaçador) 80 μm; desvio de fresagem oclusal -125 μm; resistência dos contatos proximais: 25 μm; resistência dos contatos oclusais: 0 μm; força dinâmica do contato: 0 μm; espessura mínima (radial): 500 μm para IPS e.max CAD; espessura mínima (oclusal): 500 μm; espessura de margem: 100 μm; ter em conta geometria de instrumento – SIM; remover áreas retentivas – SIM (Figura 42).

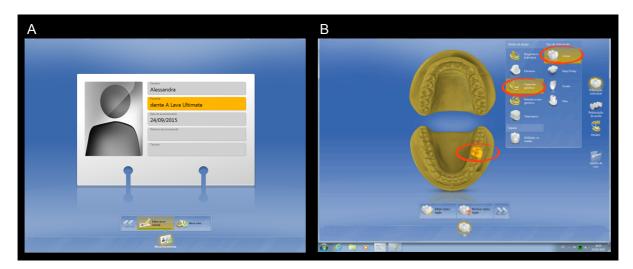


Figura 36 Procedimento realizado no CEREC AC OmniCam U2.2.4; (A) Seleção da imagem e informações do paciente, dentista, data do escaneamento e referência; (B) Seleção do tipo de restauração, do modo de design e localização do dente.

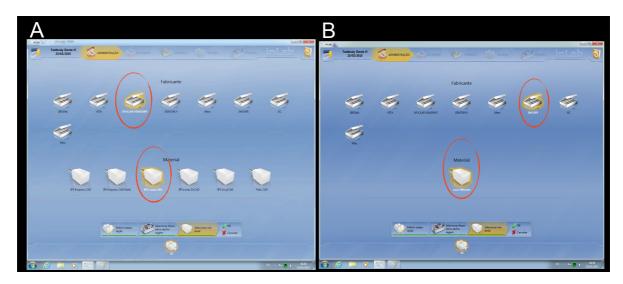


Figura 37 Seleção para escolher o fabricante e o material; (A) Fabricante: Ivoclar Vivadent, Material: IPS e.max CAD; (B) Fabricante: 3M ESPE, Material: Lava Ultimate.

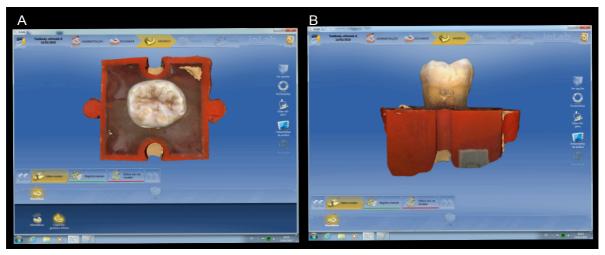


Figura 38 Cópia biogenérica; (A) Vista oclusal; (B) Vista vestibular.

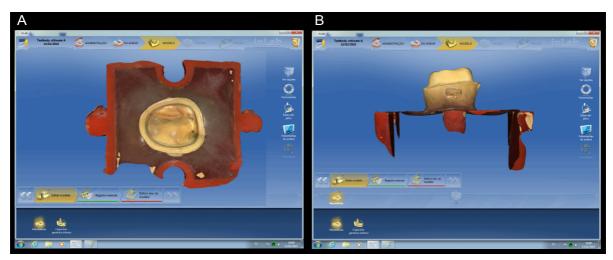


Figura 39 Cópia do preparo; (A) Vista oclusal; (B) Vista vestibular.

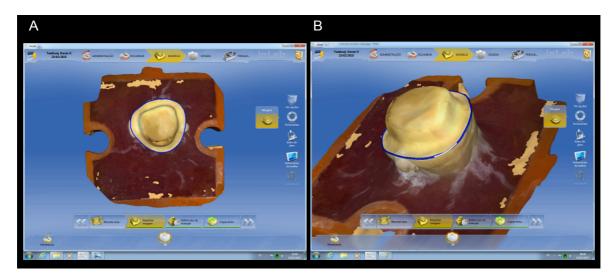


Figura 40 Desenho da margem do preparo; (A) Vista oclusal; (B) Vista lateral.

Figura 41 (A) Definição do eixo de inserção; (B) Vista lateral da delimitação da cópia biogenérica.

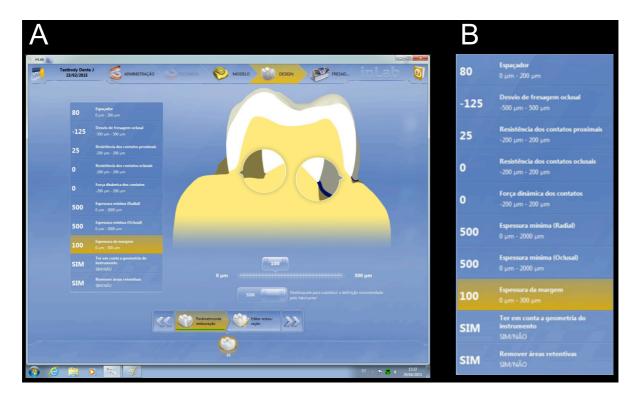


Figura 42 (A) Seleção dos parâmetros usados para a confecção das coroas. (B) vista aproximada dos padrões selecionados.

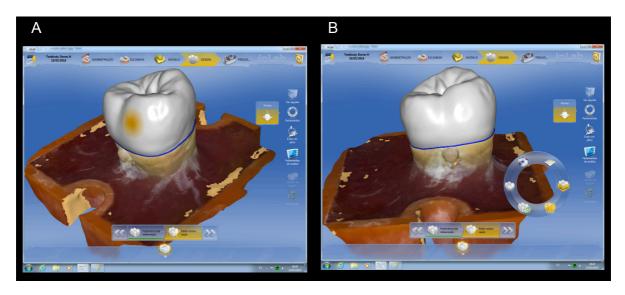


Figura 43 (A) Visualização tridimensional da restauração fazendo pequenos ajustes na restauração com diferentes ferramentas do software. (A) Ajuste para adicionar no volume; (B) Vista final da restauração após os ajustes de contorno.

Figura 44 (A) Visualização tridimensional da restauração após os ajustes de contorno; (A) Vista oclusal; (B) Vista vestibular.

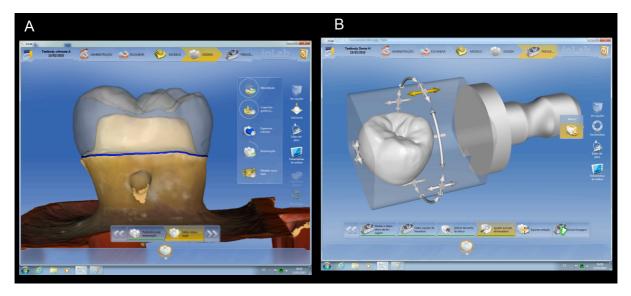


Figura 45 (A) Visualização tridimensional da restauração sobreposta ao preparo; (B) Vista da posição da coroa no bloco com a visualização da localização do *sprue*.

Figura 46 (A) Ajuste posição de fresagem, modo de fresagem Normal; (B) Vista da posição da coroa no bloco com a visualização da localização do *sprue* e indicação do tempo de fresagem.

As imagens trabalhadas foram enviadas ao CAM (Computer Aided Manunfacturing), fresadora Cerec Inlab MCXL SW4 versão 4.2.5 (Sirona, Germany), onde as coroas foram fresadas a partir de blocos pré-fabricados de Lava Ultimate 3M ESPE, resina nano cerâmica, cor A1-HT, tamanho 12 (3M ESPE - lote 1412500265) e blocos de IPS e.max CAD, cerâmica de dissilicato de lítio, cor A1-HT, tamanho I12, (Ivoclar Vivadent, Schaan, Liechtenstein, Lote S20621). Estes blocos foram acoplados e fixados com o rosqueamento do parafuso de fixação um de cada vez (Figura 30).

Com o acionamento da fresagem do sistema, as pontas diamantadas cilíndrica de extremo reto (Step Bur 12S) e cilíndrica de extremo ogival (Cylinder Pointed Bur 12S) realizou a fresagem dos blocos pré-fabricados sob constante e abundante refrigeração com jatos de água (Figura 31, 32).

Após o término da fresagem, a coroa ficou destacada do restante do bloco, com a presença do *sprue*. Na sequência, foi realizado a remoção do *sprue* com borracha abrasiva EUROPOL PLUS® verde Lentilha 26mm X 2mm 1ª fase (Polier Werk) em baixa rotação (Figura 34).

Esse procedimeto descrito acima foi realizado para as vinte coroas, dez para as restaurações de IPS e.max CAD, e dez para as restaurações de Lava Ultimate que foram obtidas seguindo os mesmos critérios e etapas.

3.6.2. Sequência do processo de captura e fresagem

Durante a realização da impressão óptica, o dente preparado, pode ser ligeiramente inclinado ou rotacionado para a obtenção de imagens nas diferentes faces do preparo, deixando a extremidade do leitor ótico voltado para distal do dente.

Após a impressão óptica, as imagens foram automaticamente salvas digitalmente criando um modelo 3D, onde uma sequência de etapas foram executadas para a construção digital da restauração indireta, já descrito anteriormente. Finalizando o processo de desenho das restaurações, as imagens foram enviadas ao CAM (Computer Aided Manunfacturing), fresadora Cerec Inlab MCXL (Sirona, Germany), onde as coroas foram fresadas a partir de blocos préfabricados. Os 20 blocos pré fabricados de IPS e.max CAD (cerâmica de dissilicato de lítio) e 20 blocos pré fabricados de Lava Ultimate 3M ESPE (resina nanocerâmica) foram acoplados individualmente à fresadora Cerec inlab MC XL e fixado com o aperto do parafuso de fixação (Figura 30). Ao final, a coroa fresada e o restante do bloco foram cuidadosamente removidos da Cerec inlab MCXL (Figura 47), removendo o sprue das coroas com borrachas abrasivas EUROPOL PLUS® verde Lentilha 26mm X 2mm 1ª fase (Polier Werk) em baixa rotação (Figura 34) e foram colocadas em um recipiente de plástico com tampa devidamente identificadas para evitar fraturas, trincas e trocas na identificação de cada coroa.

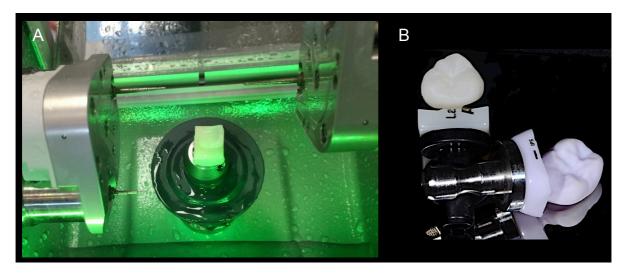


Figura 47 (A) Vista do bloco de Lava Ultimate parcialmente fresado acoplado na fresadora InLab; (B) Blocos de Lava Ultimate e IPS e.max CAD logo após a fresagem.

3.6.3. Cristalização das coroas de IPS Emax CAD (cerâmica de dissilicato de lítio)

A fresagem, das coroas de IPS e.max CAD (cerâmica de dissilicato de lítio) foi realizada em um estado cristalino intermediário no qual exibe uma coloração azulada (lilás). Segundo o fabricante, nesta fase, o bloco pode ser facilmente fresado no equipamento CAD/CAM, sendo possível verificar o encaixe e ajustar do material manualmente, de maneira rápida e fácil. Esta cor é criada pela microestrutura e composição da cerâmica vítrea. A resistência do material nesta fase intermediária é de 130–150 MPa.

Como já descrito anteriormente, as coroas passaram por processo de acabamento com brocas específicas (Figura 34 A). É importante o uso de instrumentos corretos para evitar o lascamentos das margens e superaquecimento localizado da cerâmica.

Na sequência, as coroas foram testadas cuidadosamente nos seus respectivos dentes. Antes da cristalização, as coroas de IPS e.max CAD foram

totalmente limpas com água em banho de ultra-som para a remoção de resíduos do aditivo de fresagem da unidade de fresagem CAD/CAM InLab MCXL. Os resíduos do aditivo de fresagem, remanescentes sobre a superfície, podem resultar em descoloração e promover problemas de ligação.

3.6.3.1 Queima de Cristalização da coroa de IPS e.max CAD

Após a limpeza das coroas de IPS e.max CAD, estas foram preenchidas com IPS Object Fix Flow que é uma pasta de queima auxiliar para estabilizar todas as restaurações de cerâmica pura durante os procedimentos de queima ou de cristalização, estabilizando e fixando a respectiva restauração sobre a bandeja de queima.

Inicialmente, escolheu-se o IPS e.max CAD Crystallization Pin (S, M, L) que melhor "preencheu" o interior da coroa, mas que não entrou em contato com as paredes circulares da coroa. Após a escolha do Pin, o interior das coroas foi preenchido com IPS Object Fix Flow até a margem da restauração. O IPS e.max CAD Crystallization Pin foi pressionado, para o interior do material IPS Object Fix Flow até que o pino permaneceu fixado de um modo adequado (Figura 48). Para a eliminação do excesso da pasta de queima auxiliar, foi utilizada uma espátula de plástico, até que o pino permaneceu fixado na pasta e que a margem da restauração ficou perfeitamente suportada. Qualquer resíduo existente foi limpo na superfície externa da restauração com um pincel úmido com água e seca.

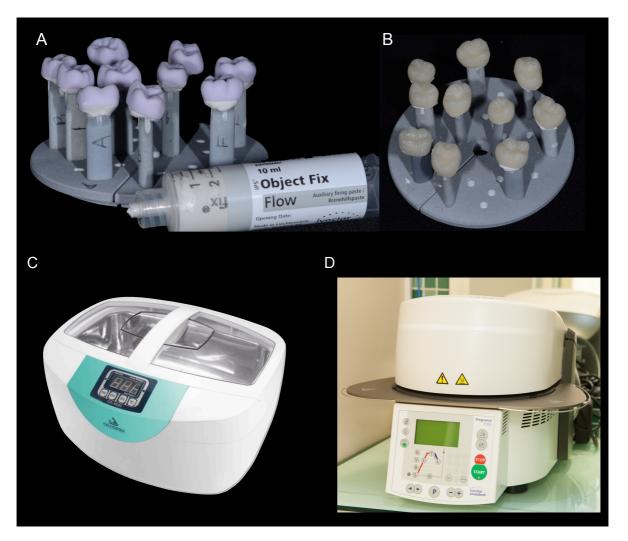


Figura 48 (A) Coroas de IPS e.max CAD sobre a bandeja de queima, fixadas com o IPS e.max CAD Crystallization Pin e IPS Object Fix Flow, antes da cristalização; (B) Coroas de IPS Emax CAD após o processo de cristalização; (C) Cuba Ultassônica para limpeza das coroas após fresagem e após o processo de cristalização; (D) Forno Programat® P300.

Após este procedimento, os blocos de IPS e.max CAD foram cristalizados em um forno cerâmico Programat® P300 (Ivoclar Vivadent) no ciclo P101 de acordo com as recomendações do fabricante (Figura 48 D), onde a regulação da temperatura e do tempo de cristalização do material é realizado automaticamente de acordo com a programação de aproximadamente 20 a 31 minutos e a uma temperatura de 840-850°C. O processo de cristalização produz uma alteração da microestrutura, que é o resultado de um crescimento controlado dos cristais de dissilicato de lítio, onde no processo de fresagem, o software de fresagem leva em

conta esta densificação resultante de 0,2%, não havendo contração de modo significativo. O IPS e.max CAD adquire a resistência final de 360MPa e as propriedades ópticas desejadas para o dente, tais como tom, translucência e refletividade, aproxima da cor dos dentes naturais.

Após a queima, as coroas de IPS e.max CAD foram esfriadas a temperatura ambiente. Na sequência, foi realizada a remoção da restauração endurecida de IPS Object Fix Flow, colocando-as em banho de água em um ultra-som (Figura 47 C). Em seguida, as coroas foram colocadas nos respectivos dentes preparados para coroa, para conferência da adaptação marginal.

Após a finalização da confecção das 40 coroas, foram iniciados os trabalhos de avaliação e adaptação mediante a determinação dos valores de discrepância marginal e interna entre as coroas e os respectivos dentes preparados.

Com a finalidade de avaliar as adaptações marginais e internas das coroas fabricadas no sistema CAD/CAM, mesmo não sendo primordial, a obtenção da anatomia e da cor das coroas cerâmicas adotou os passos normalmente executados nos laboratórios de prótese dental, para seguir com fidelidade as etapas de confecção de coroas cerâmicas para se aproximar da sequência clínica dos consultórios.

3.7 AVALIAÇÃO DA ADAPTAÇÃO MARGINAL E INTERNA

A adaptação marginal e interna das coroas fabricadas foram avaliadas usando o método do microtomógrafo (micro-CT), sem ajuste interno.

3.7.1 Avaliação da Adaptação Marginal sem Ajuste Interno

Para a avaliação da adaptação interna sem ajuste foi realizada a fixação de cada coroa em seus respectivos dentes com um material a base de silicone (GC Fit Checker Advanced, GC Dental Industrial Corp, Tóquio, Japão, Lote 1410101) (27) (Figura 49 A, B), que foi manipulado por 20 seg, conforme orientação do fabricante, com porções iguais de pasta catalisadora e base do silicone, sobre bloco de papel com espátula no 24 (Duflex, SSWhite Artigos Odontológicos, Rio de Janeiro, Brasil). O silicone manipulado foi pincelado no interior da coroa, e esta foi assentada com pressão digital sobre seu respectivo dente. O conjunto coroa, silicone e dente foi fixado no dispositivo adaptado de Delbons (43), e uma carga constante de 2kg foi aplicada durante 3 min, estabilizando sob pressão constante obtida com a fixação dos parafusos estabilizadores do dispositivo referido (Figuras 49, 50,51).

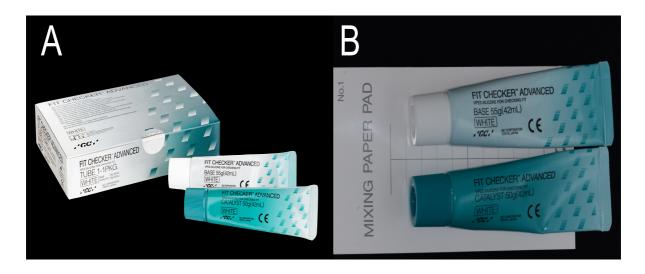


Figura 49 (A, B) Silicone de adição de consistência leve GC Fit Checker Advanced, GC Dental Industrial Corp, Tóquio, Japão.

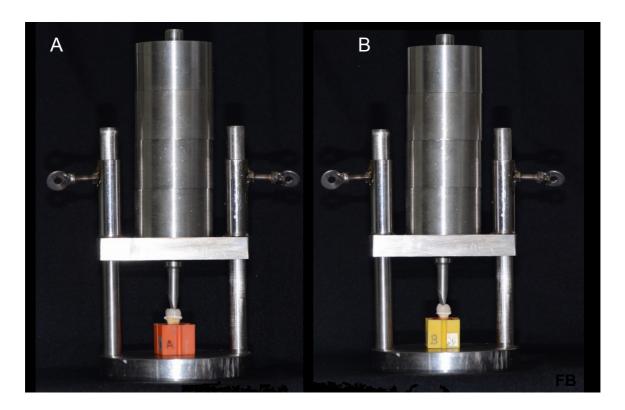


Figura 50 Foi utilizado o dispositivo de estabilização adaptado, proposto por Delbons (43) para manter a coroa assentada a seu respectivo dente com preparo; (A) Coroa de IPS Emax CAD; (B) Coroa de Lava Ultimate.

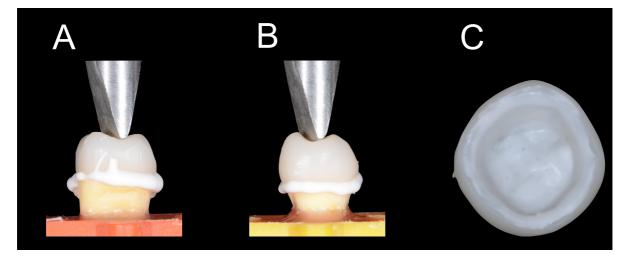


Figura 51 Visão de coroa com silicone assentada em seu respectivo dente preparado e mantida com pressão constante com o auxílio do dispositivo adaptado de Delbons (43) até a completa polimerização do Fit Tester, Fit Checker Advanced 1:1 Pkg. VPES Materials for Checking Fit e Occlusal Contact; (A) Coroa de IPS e.max CAD; (B) Coroa de Lava Ultimate: (C) Visão interna da coroa com a película de silicone.

3.7.2 Aquisição das imagens microtomógrafo – micro CT

A microtomografia das coroas foi realizada em parceria interdepartamental com o Instituto de Biologia da Universidade de Brasília.

Para obter as imagens que permitiram a mensuração da desadaptação marginal, o conjunto peça plástica/dente/silicone/coroa foram colocados em um suporte de isopor a fim de prevenir qualquer tipo de movimentação durante o escaneamento, e estabilizados no tubo de digitalização. O conjunto foi posicionado perpendicularmente ao feixe de raios X para a digitalização no microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica) (Figura 52, 53), seguindo alguns estudos (44, 45), os parâmetros foram previamente definidos: 100 kV, 100µA, 9,05 mm pixels, com filtro de Al de 1,0mm, degrau de rotação de 0,3°. A média de tempo de escaneamento foi de 2:20h para cada dente. Estas configurações para a digitalização das amostras foram determinadas por um estudo piloto. As imagens reconstruídas foram corrigidas para beam-hardening em 80% e smoothing em nível 2. O parâmetro ring artefact foi fixado na posição 9 e a escala de cinza variou de 0.003910 a 0.073633 HU (Hounsfield Unit). As imagens de cada amostra foram reconstruídas com o software específico NRECON® v1.6.3.3 (Skyscan, Kontich, Bélgica) em cerca de 1000 a 1200 fatias de acordo com os parâmetros adotados. A variedade de softwares (CTAN® v 1.10.11.0 e DATA VIEWER® v 1.4.3) para análise quantitativa SkyScan® 2D / 3D e visualização em 3D permitiu que cada conjunto dente/silicone/coroa fosse examinado pelo sistema de aplicativos de softwares fornecidos pela SkyScan®.

Figura 52 Microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica).

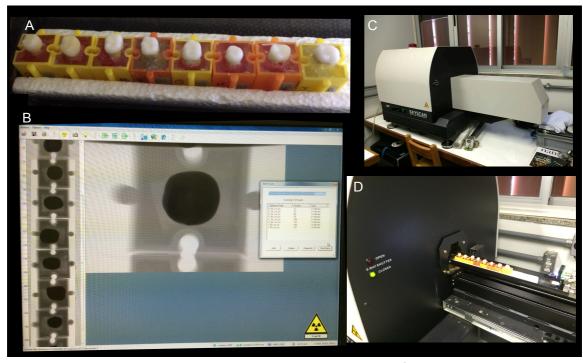


Figura 53 (A) Dentes preparados com suas respectivas coroas foram estabilizados no tubo de digitalização do microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica) dentro de uma suporte de isopor; (B) Software NRecon (Skyscan, Kontich, Bélgica) fazendo a reconstrução dos dentes; (C) microtomógrafo Skyscan 1076 MicroCT (Skyscan, Kontich, Bélgica); (D) microtomógrafo Skyscan 1076 MicroCT com a visão do conjunto peça plástica/dente/coroa, estabilizados em uma suporte de isopor no tubo de digitalização.

Após o escaneamento, as projeções tomográficas foram reconstruídas com o auxílio de um programa específico (N.Recon®, SkyScan®). Este programa gerou as imagens em 3D. O programa DataViewer® foi utilizado para visualização e avaliação em 2D (medidas lineares) dos eixos coronal, transaxial e sagital bem como a definição da desadaptação existente entre o dente e a coroa (Figura 54).

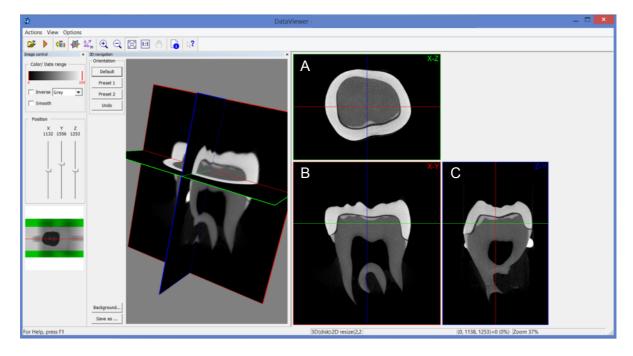


Figura 54 Imagem da tela inicial do Software DataViewer® (Skyscan, Kontich, Bélgica) utilizado para converter os arquivos na extensão BMP em cortes tomográficos (A) transaxiais; (B) coronais; (C) sagitais.

3.7.2.1 Avaliação no Software Dataviewer

As imagens reconstruídas foram randomizadas e renomeadas a fim de evitar que o avaliador identificasse o material ou técnica de impressão intrabucal utilizados. Assim, a avaliação da adaptação marginal e interna foi reliazada de forma cega.

No software Dataviewer, com ampliação de 400X, foi utilizado para a visualização e avaliação em 2D da distância entre a coroa e o preparo dental nos eixos coronal e sagital. Foi realizado uma padronização dos recortes de referência para cada amostra. Primeiramente, com a imagem tomográfica transaxial, foram

feitos cinco (5) cortes horizontais equidistantes no sentido vestíbulo-lingual, com a média de 45 fatias entre esses cortes, e cinco (5) cortes verticais equidistantes no sentido mesio-distal, com a média de 50 fatias entre esses cortes, dependendo do número de fatia de cada espécime (Figura 55), considerando o terço médio como terço a ser avaliado.

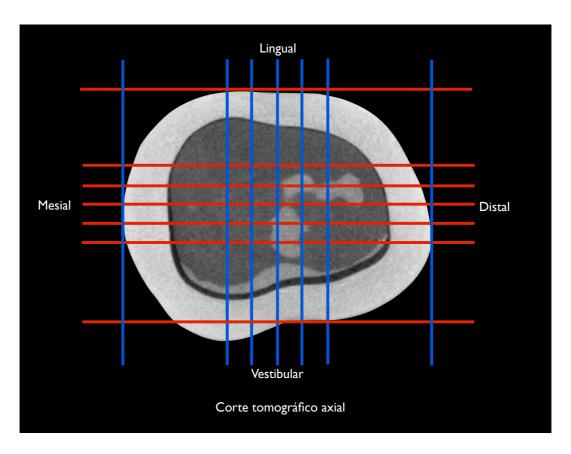


Figura 55 Corte tomográfico axial, mostrando os 5 cortes horizontais equidistantes no sentido vestíbulo-lingual e 5 cortes verticais equidistantes no sentido mesio-distal.

Foram selecionadas, quatro medidas do desajuste marginal horizontal (DMH), sendo duas medições para o gap marginal (GM), duas para a discrepância marginal absoluta (DMA) e oito medidas para o desajuste marginal vertical (DMV), sendo quatro para gap oclusal (GO), e quatro para gap axial (GA). Assim, vinte medições para GM e DMA, e quarenta medições para GO e GA foram obtidos para cada amostra, totalizando 120 medições. Para todas as medidas, foram feitas médias para cada variável (38) (Figura 56, 57).

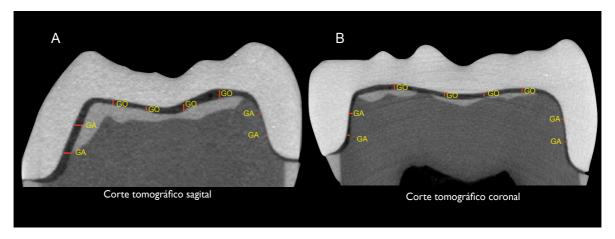


Figura 56 (A) Corte tomográfico sagital; (B) Corte tomográfico coronal, mostrando as mensurações perpendiculares entre a coroa e o preparo dental. (GA) Gap axial, (GO) Gap oclusal.

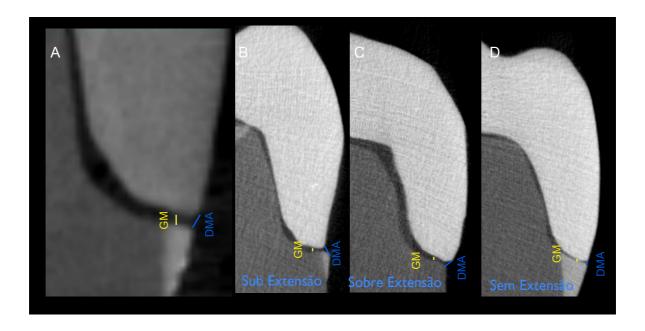


Figura 57 (A) Ampliação do Corte tomográfico coronal da desadaptação marginal, mostrando as mensurações entre a coroa e o preparo dental. (GM) Gap Marginal é a dasadaptação vertical que é avaliada através da distância perpendicular entre a superfície interna da coroa e o preparo dental, e a DMA (discrepância marginal absoluta) é a dasadaptação horizontal que é avaliada através da distância entre o ponto mais externo da margem da coroa e o preparo dental, que pode apresentar uma margem com sub extensão (B), com sobre extensão (C) ou sem extensão.

A GM e DMA foram medidos usando os critérios para a avaliação da adaptação marginal fornecido por Holmes et al. (46). A GM (Gap marginal) é a dasadaptação vertical que é avaliada através da distância perpendicular entre a superfície interna da coroa e o preparo dental, e a DMA (discrepância marginal absoluta) é a dasadaptação horizontal que é avaliada através da distância entre o ponto mais externo da margem da coroa e o preparo dental. A desadaptação da coroa (GM e DMA) ambos foram avaliados e montadas como valores positivos. A GO foi medido separadamente do GA para a avaliação de adaptação interna. Todas as variáveis foram avaliadas separadamente (DMA, GM, GO e GA). Todas as padronizações e medições das amostras foram realizadas pelo mesmo examinador.

3.7.2.2 Avaliação no Software CTanalyser

CT-Analyser (CTan - Skyscan, Kontich, Bélgica) é um aplicativo para medir parâmetros quantitativos com construção de modelos 2D e 3D, através de imagens reconstruídas pelo software NRecon® obtida pelo microCT SkyScan.

Todos os cálculos foram realizados sobre a região de interesse selecionado. Uma seleção correta das regiões de interesse é extremamente importante para a obtenção de dados precisos e significativos. Para melhor esclarer sobre a terminologia usada nesta avaliação foi utilizado o site (http://www.skyscan.be acessado em 10/08/2015). O termo "região de interesse", ou ROI, se refere a uma região selecionada de uma imagem única de seção transversal. A análise 2D é realizada dentro de um ROI. O "volume de interesse" ou VOI, refere-se à soma de todos os ROIs delimitados sobre um conjunto contíguo de fatias de imagem de seção transversal, representando um volume 3D selecionado. Dessa forma, as análises morfométricas em 3D são realizadas em um VOI.

Para esta avaliação foram escolhidos os cortes tomográficos coronal para facilitar no processo de delimitação da desadaptação entre a coroa e o dente preparado. Após a abertura das imagens no CTAn, aparece um conjunto de dados, *Raw images*, imagens originais, para seleção do intervalo de interesse. Foi feito a escolha do "*Top*" e do "*Bottom*". Primeiro, selecionou uma imagem inicial, que foi escolhido como ponto de partida, o corte (*slice*), em que se conseguiu visualizar o

início da linha do GAP na fase vestibular - *Set the Top of selection*, que definiu a imagem atual como nível superior da seleção. Em seguida, selecionou-se uma imagem final, que foi escolhida como ponto final da seleção, determinada quando se visualizou a linha final do GAP na fase lingual - *Set the bottom of selection*, que definiu a imagem atual como nível inferior do intervalo da seleção. O ROI composto por este estudo estabeleceu um intervalo de 900 a 1000 bmp (*slices*)(Figura 58).

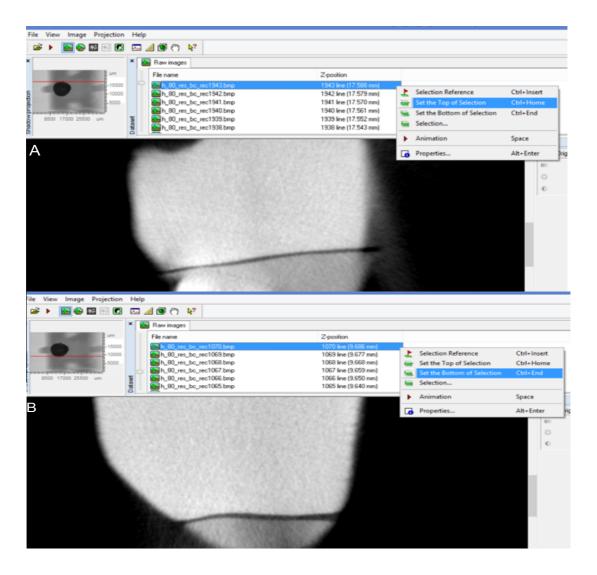


Figura 58 Software CTanaliser onde mostra as imagens originais – Raw images para seleção do intervalo para seleção de interesse; (A) Set the Top of selection, define a imagem atual como nível superior da seleção; (B) Set the bottom of selection, define a imagem atual como nível inferior do intervalo da seleção.

O próximo passo foi delinear a região de interesse, *Regions Of Interest* (ROI) a ser analisada. Nesta página, a imagem apresentou com um realce vermelho e azul. A região de interesse (ROI) refere-se a uma região selecionada e que neste estudo foi desenhada à mão livre a cada milímetro. Com o botão esquerdo do mouse pressionado no campo de uma imagem de *crossection*, foi feito uma linha que delimita o novo ROI, contornando o espaço entre o dente e o preparo. A cada avanço ao longo da imagem do prepare dental, um novo contorno foi realizado, delimitando assim a região de interesse. A linha desenhada tem pequenos marcadores quadrados nos cantos poligonais que podem ser movidos pelo botão do mouse, permitindo uma edição da forma desenhada. Os pontos também podem ser inseridos individualmente, movidos e removidos. A cada imagem em que o ROI foi delimitado, o programa fez a combinação ou a interpolação das imagens automaticamente, unindo os pontos e formando uma imagem em 3D (Figura 59 e 60).

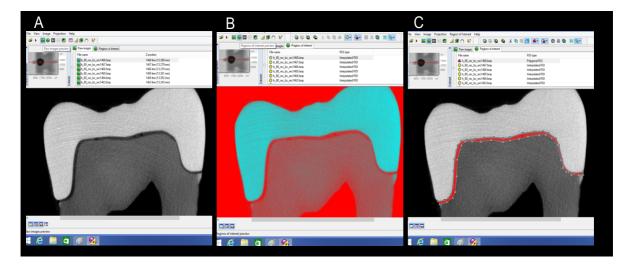


Figura 59 Software CTanaliser (A) Raw images preview; (B) ROI - Regions of interest preview; (C) Corte de uma delimitação da área de interesse.

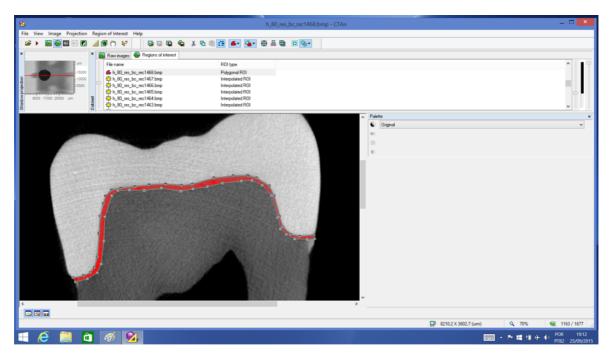


Figura 60 Delimitação da área de interesse (ROI).

Após o mapeamento longitudinal de cada espécime, uma região de interesse (ROI) foi salva. Salvar o ROI é arquivar os tamanhos, tipos e posições de todas as regiões editadas de interesse, do perímetro atual do volume de interesse.

Em seguida foi realizado o processo de binarização para diferenciar o dente, coroa e o espaço entre eles. Esse processo consiste na escolha de um valor limiar para os pixels ("threshold"), que foi aplicado à imagem. Na página da Seleção Binária foi feito o ajuste do contraste selecionado para uma possível diferenciação dentro da região de interesse. A Seleção Binária foi padronizada com o limite inferior em 23 e o limite superior em 78 (grayscale threshold 0-255), a mesma binarização foi usada para todas as amostras. Estes limites foram escolhidos arbitrariamente, tendo em vista que estes valores forneceram a melhor visualização para diferenciar coroa/silicone/dente (Figura 61). Em seguida, a imagem da seleção binária foi invertida para a verificação da coincidência das áreas previamente identificadas para facilitar a visualização, que exibe a imagem dos níveis de cinza original com realce verde, com a parte da imagem sobreposta no vermelho (Figura 62).

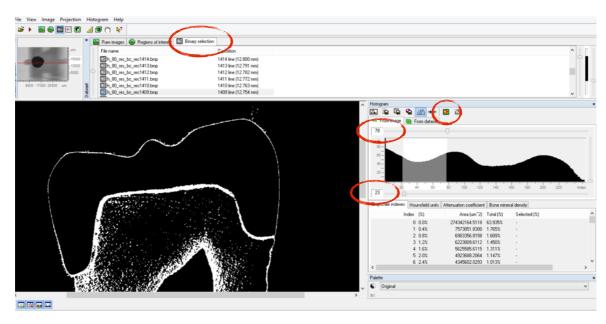


Figura 61 Seleção Binária com padronização na escala de limite superior de 78 e limite inferior de 23 para todas as amostras.

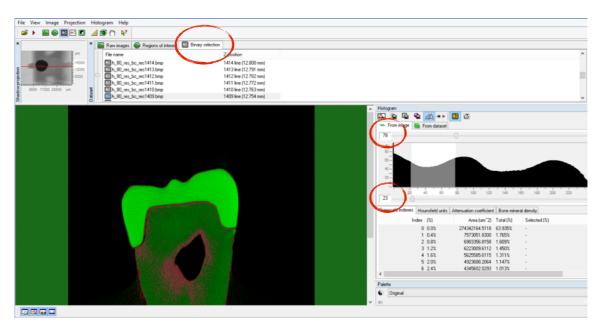


Figura 62 Seleção Binária com padronização na escala de limite superior de 78 e limite inferior de 23 com modificação das cores para facilitar a visualização e diferenciar coroa/dente/silicone.

A partir da área selecionada, um modelo tridimensional foi gerado. O *software* realizou a leitura, mensuração e quantificação do percentual da desadaptação entre a coroa e o preparo dental na região de interesse selecionada pelo examinador.

No passo seguinte, na página da morfometria, foram salvos em um arquivo de texto os valores da tabela de histograma que forneceram os dados requeridos e suas respectivas unidades de medida (Figura 63).

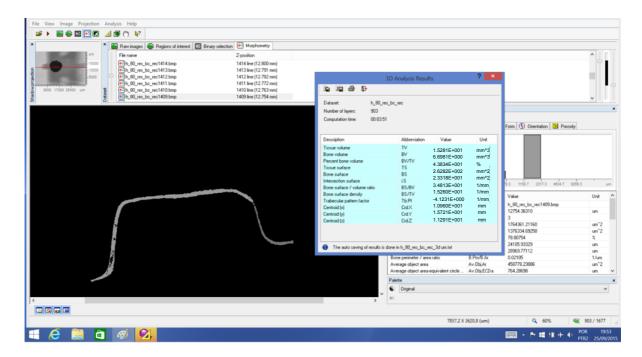


Figura 63 Morfometria – análise do resultado 3D.

Com os dados de cada parâmetro calculados, foi possível construir a imagem tridimensional (Figura 64) da área de interesse bem como da área total da amostra com a utilização do aplicativo CTan® e CTVOX®.

Adicionalmente, os dados das reconstruções foram utilizados para a produção de imagens e vídeos ilustrativos, utilizando o software CTvox e CTvol (Skyscan, Kontich, Bélgica).

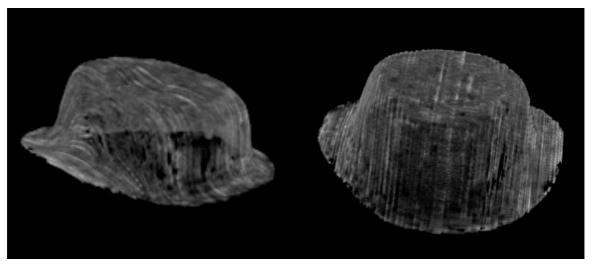


Figura 64 Imagem 3D do espaço entre o dente e o preparo dental.

3.7.3 Medição da Desadaptação Interna

Os arquivos originais foram convertidos em arquivos bmp, usando o *software* NRecon® (Skyscan, Aartselaar, Bélgica) e CTAN® (Skyscan, Aartselaar, Bélgica), para a reconstrução de imagens em 3D. A região interna, entre a coroa e o dente, foi designada em 900 a 1000 bmp (Figura 65). A desadaptação interna da coroa foi realizada através da reconstrução tridimensional aliada com base nas áreas designadas. A mensuração da desadaptação entre o preparo dental e a coroa foi calculado por meio da razão: entre espaço total da desadaptação interna (*Bone Volume*) e superfície de contato (*Bone Surface*) (3), onde os resultados foram tabelados e feito as análises estatística.

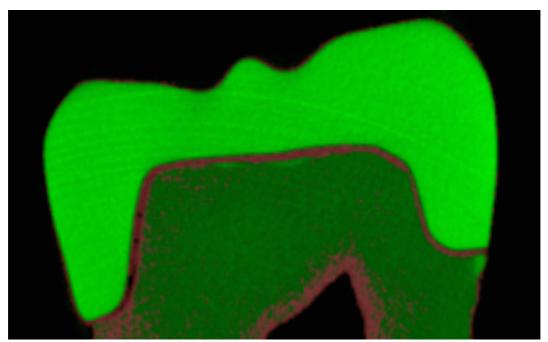
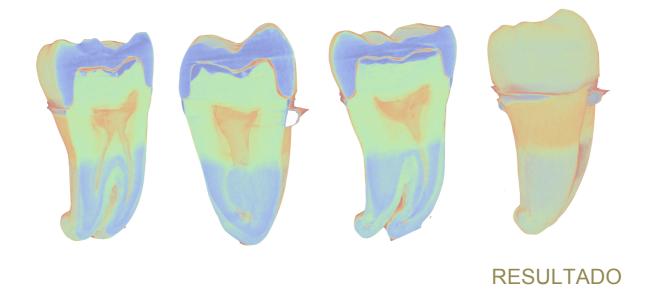



Figura 65 Reconstrução 3D da desadaptação interna entre a coroa e o preparo dental.

3.8 ANÁLISE ESTATÍSTICA

Para a análise dos resultados, realizou-se uma análise descritiva dos dados de discrepância marginal absoluta (DMA), gap marginal vertical (GM), gap oclusal (GO), gap axial (GA) e discrepância coroa preparo (DCP). Todas as mensurações foram avaliadas separadamente para cada variável, para verificar se houve diferenciação nos grupos em relação a cada variável. Foi realizado o teste de homogeneidade de variância e normalidade para saber se o dados apresentam distribuição normal (Shapiro-Wilk). As variáveis cuja distribuição foi normal, a análise de variância (ANOVA) foi utilizada com o nível de significância de p <0.05. Se identificada significância, o teste de Tukey foi utilizado como post hoc associado com a correção de Bonferroni. Para variáveis cuja distribuição não foi normal, o teste de Kruskal Wallis foi utilizado com o nível de significância de p <0.05. Uma vez identificada significância, o teste de Mann-Whitney foi utilizado como post hoc associado com a correção de Bonferroni para ajuste de múltiplas comparações.

4 RESULTADOS

4.1 ANÁLISE DA ADAPTAÇÃO INTERNA EM 2D

Os dados originais das medidas realizadas no estudo 2D estão apresentados no apêndice A. Inicialmente, realizou-se uma análise descritiva dos dados de gap axial (GA) e gap oclusal (GO). Para isso, todos os valores dos locais de mensuração, GA e GO, foram importados da base de dados e, a partir destes valores, foram feitas médias para cada espécime (33). Sendo assim, para cada espécime foram obtidas médias dos 40 valores de GA e 40 valores de GO. Todas as variáveis (DMA, GM, GO e GA) foram avaliadas separadamente (Figura 66).

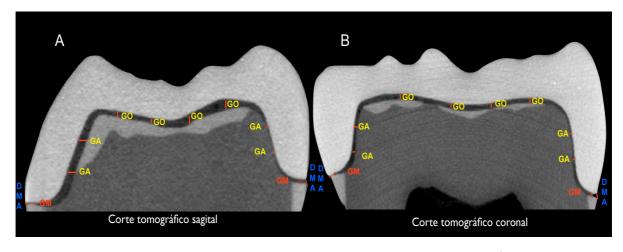


Figura 66 (A) Reconstrução sagital (B) Reconstrução coronal do grupo 1 pelo software NRecon, mostrando as mensurações entre a coroa e o preparo dental (DMA), (GM), (GA), (GO).

Para a variável GA, o pressuposto de normalidade foi verificado utilizando o testes de Shapiro Wilk. Tanto o teste de Shapiro Wilk (p=0.04428), como o histograma (Figura 67) indicam a violação desse pressuposto.

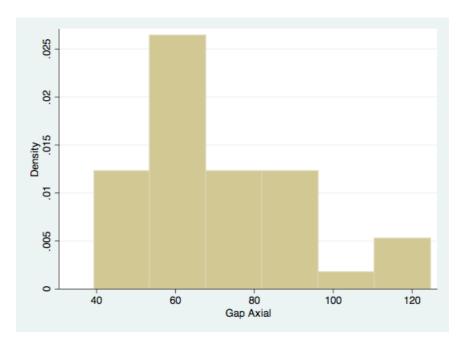


Figura 67 Histograma da distribuição dos dados da variável GA.

Assim, para essa variável, o teste de Kruskal Wallis foi utilizado com o nível de significância de p <0.05. Uma vez identificada significância, o teste de Mann-Whitney foi utilizado como post hoc associado com a correção de Bonferroni para ajuste de múltiplas comparações (6 comparações), com o valor final de p <0.008 para se considerar significância estatística. A tabela 1 apresenta os dados da análise estatística descrita para a variável GA, com a apresentação das medianas, amplitude de interquartis, assim como os valores máximos e mínimos para cada grupo.

Tabela 1 - Análise estatística descritiva para a variável GA

	Gap Axial (μm)				
Grupo	N	Mediana	AIQ	Mínimo	Máximo
1- (Lava Ultimate-Bluecam)	10	64.59 ^{a,b}	5.38	44.55	90
2- (Emax- Bluecam)	10	74.06 ^{a,b}	23.13	44.55	124.68
3- (Lava Ultimate-Omnicam)	10	86.68 ^a	26.45	62.55	117.7
4- (Emax- Omnicam)	10	52.46 ^b	26,23	39.37	83.97

AIQ: Amplitude inter-quartil

O teste de Kruskal Wallis indicou diferença significativa entre pelo menos dois grupos (p= 0.0156) para variável GA. O grupo 4 (Emax-Omnicam) apresentou os menores valores de GA, sendo estatisticamente diferente do Grupo 3 (Lava Ultimate-Omnicam) (p=0.0052), o qual apresentou os maiores valores de GA. Não foram observadas diferenças significativas nas demais comparações: Grupo 1 X Grupo 3 (p=0.0156); Grupo 1 X Grupo 2 (p= 0.2729); Grupo 1 X Grupo 4 (p=0.3643); Grupo 3 X Grupo 2 (p=0.1988); Grupo 2 X Grupo 4 (p=0.0821). O grupo 1 não foi diferente do grupo 3 (p=0.0156), considerando a correção de Bonferroni para múltiplas comparações cujo valor para ser significativo deve ser p <0.008.

Para a variável GO, o pressuposto de normalidade foi verificado utilizando o testes de Shapiro Wilk. Tanto o teste de Shapiro Wilk (p=0.02512), como o histograma (Figura 68) indicam a violação desse pressuposto.

^{*}Grupos identificados com letras iguais não indicam diferença significativa

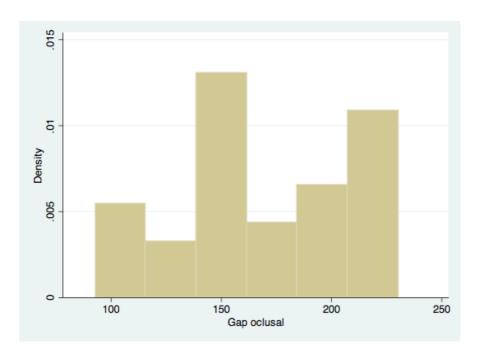


Figura 68 Histograma da distribuição dos dados da variável GO.

Assim, para essa variável, o teste de Kruskal Wallis também foi utilizado com o nível de significância de p <0.05. Uma vez identificada significância, o teste de Mann-Whitney foi utilizado como post hoc associado com a correção de Bonferroni para ajuste de múltiplas comparações (6 comparações), com o valor final de p<0.008 para se considerar significância estatística. A tabela 2 apresenta os dados da análise estatística descrita para a variável GO, com a apresentação das medianas, amplitude de interquartis, assim como os valores máximos e mínimos para cada grupo.

Tabela 2 - Análise estatística descritiva para a variável GO

	Gap Oclusal (μm)				
Grupo	N	Mediana	AIQ	Mínimo	Máximo
1- (Lava Ultimate-Bluecam)	10	138.64 ^a	35	99.68	195.15
2- (Emax- Bluecam)	10	166.13 ^{a,b}	66.58	92.78	230.38
3- (Lava Ultimate-Omnicam)	10	187.75 ^b	65.98	133.80	227.50
4- (Emax- Omnicam)	10	199.66 ^b	47.1	151.5	225.50

AIQ: Amplitude inter-quartil

O teste de Kruskal Wallis indicou diferença significativa entre pelo menos dois grupos (p= 0.0037) para variável GO. O grupo 1 (Lava Ultimate-Bluecam) apresentou os menores valores de GO, sendo estatisticamente diferente do Grupo 3 (Lava Ultimate-Omnicam) (p=0.0025) e do Grupo 4 (Emax-Omnicam) (p=0.0005), o qual apresentou os maiores valores de GO. Não foram observadas diferenças significativas nas demais comparações: Grupo 1 X Grupo 2 (p= 0.0696); Grupo 2 X Grupo 3 (p=0.3258); Grupo 3 X 4 (p=1); Grupo 2 X Grupo 4 (p=0.3258).

Com intuito de comparar especificadamente as câmeras intra-orais e os materiais, realizou-se o teste t não-pareado com nível de significância de 0.05%. Para a variável câmera, comparando-se Bluecam e Omnicam, não foram observadas diferenças significativas para as variáveis gap axial (p= 0.2325) e gap oclusal (p= 0.1400). Para a variável material, comparando-se Lava Ultimate e Emax-cad, não foram observadas diferenças significativas para variável gap axial (GA) (p= 0.9495). No entanto para a variável gap oclusal (GO), o material resinoso apresentou valores significativamente menores que o material cerâmico (p=0.0026).

^{*}Grupos identificados com letras iguais não indicam diferença significativa

4.2 ANÁLISE DA ADAPTAÇÃO MARGINAL EM 2D

Os dados originais das medidas realizadas no estudo 2D estão apresentados no apêndice A. Inicialmente, realizou-se uma análise descritiva dos dados de discrepância marginal absoluta (DMA) e gap marginal (GM). Para isso, todos os valores dos locais de mensuração, DMA e GM, foram importados da base de dados e, a partir destes valores, foram feitas médias para cada espécime (33). Sendo assim, para cada espécime foram obtidas médias dos 20 valores de GM e 20 valores de DMA. Todas as variáveis (DMA, GM, GO e GA) foram avaliadas separadamente (Figura 66).

Para a variável MG, o pressuposto de normalidade foi verificado utilizando o testes de Shapiro Wilk. Tanto o teste de Shapiro Wilk (p=0.05656), como o histograma (Figura 69) indicam a não violação desse pressuposto.

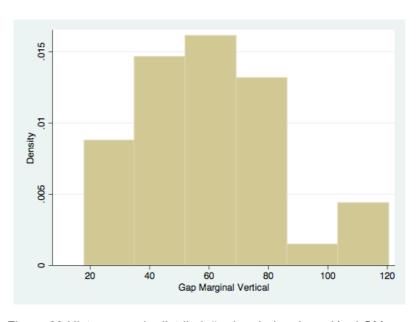


Figura 69 Histograma da distribuição dos dados da variável GM.

Dessa forma, para a variável GM, a análise de variância (ANOVA) foi utilizado com o nível de significância de p <0.05. Se identificada significância, o teste de Tukey seria utilizado como post hoc associado com a correção de Bonferroni para ajuste de múltiplas comparações (6 comparações), com o valor final de p <0.008 para se considerar significância estatística. A tabela 3 apresenta os dados da análise estatística descrita para a variável GM, com a apresentação das médias, desviopadrão, assim como os valores máximos e mínimos para cada grupo.

Tabela 3 - Análise estatística descritiva para a variável GM

	Gap marginal (µm)					
Grupo	N	Média	DP	Mínimo	Máximo	
1- (Lava Ultimate-Bluecam)	10	52.36 ^a	12.77	28.2	73.1	
2- (Emax- Bluecam)	10	62.44 ^a	32.83	18	120.5	
3- (Lava Ultimate-Omnicam)	10	61.16 ^a	25.14	24.3	111.1	
4- (Emax- Omnicam)	10	60.03 ^a	24.48	30.3	113.5	

DP: Desvio-padrão

O teste de ANOVA não indicou diferença significativa entre os grupos (p=0.8018) para variável GM, não sendo necessária a complementação com testes estatísticos post hoc.

Para a variável DMA, o pressuposto de normalidade foi verificado utilizando o testes de Shapiro Wilk. Tanto o teste de Shapiro Wilk (p=0.10236), como o histograma (Figura 70) indicam a não violação desse pressuposto.

^{*}Grupos identificados com letras iguais não indicam diferença significativa

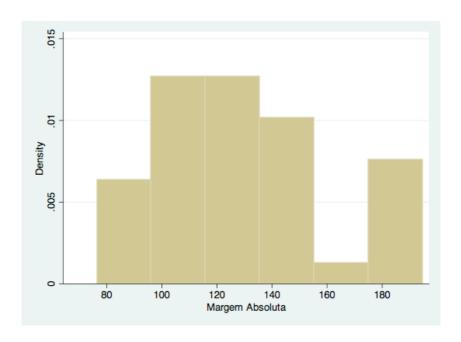


Figura 70 Histograma da distribuição dos dados da variável DMA.

Dessa forma, para a variável DMA, a análise de variância (ANOVA) foi utilizado com o nível de significância de p <0.05. Se identificada significância, o teste de Tukey seria utilizado como post hoc associado com a correção de Bonferroni para ajuste de múltiplas comparações (6 comparações), com o valor final de p<0.008 para se considerar significância estatística. A tabela 4 apresenta os dados da análise estatística descrita para a variável DMA, com a apresentação das médias, desvio-padrão, assim como os valores máximos e mínimos para cada grupo.

Tabela 4 - Análise estatística descritiva para a variável DMA

	Discrepância marginal absoluta (µm)				
Grupo	N	Média	DP	Mínimo	Máximo
1- (Lava Ultimate-Bluecam)	10	117.83 ^a	25.35	82.6	175.15
2- (Emax- Bluecam)	10	125.83 ^a	30.45	76.5	183.65
3- (Lava Ultimate-Omnicam)	10	136.96 ^a	34.39	87.3	194.05
4- (Emax- Omnicam)	10	134.77 ^a	36.01	90	194.7

DP: Desvio-padrão

O teste de ANOVA não indicou diferença significativa entre os grupos (p=0.754) para variável DMA, não sendo necessária a complementação com testes estatísticos post hoc.

4.3 ANÁLISE DA ADAPTAÇÃO INTERNA EM 3D

Os dados originais das medidas realizadas no estudo 3D estão apresentados no Apêndice B. As imagens da desadaptação interna para cada grupo foram reconstruídas em 3D (Figura 71). Inicialmente, realizou-se uma análise descritiva dos dados de obtidos. Para isso, a mensuração da desadaptação entre a coroa e o preparo dental (DCP) foi calculado por meio da razão: entre espaço total da desadaptação interna (*Bone Volume*) e superfície de contato (*Bone Surface*) (3), obtendo esta medida em micrômetros.

^{*}Grupos identificados com letras iguais não indicam diferença significativ

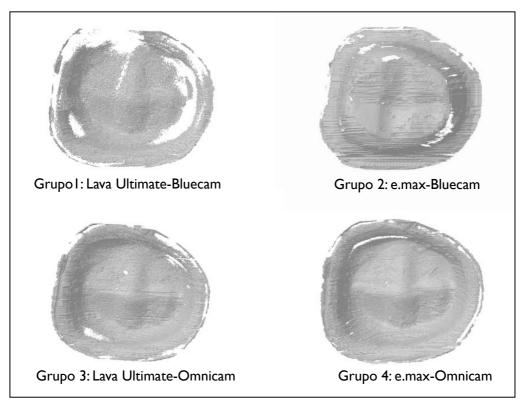


Figura 71 Imagens da desadaptação interna de um dente, reconstruídas em 3D para cada grupo, representadas por áreas claras.

Para a variável DCP, o pressuposto de normalidade foi verificado utilizando o testes de Shapiro Wilk. Tanto o teste de Shapiro Wilk (p=0.54034), como o histograma (Figura 72) não indicam a violação desse pressuposto.

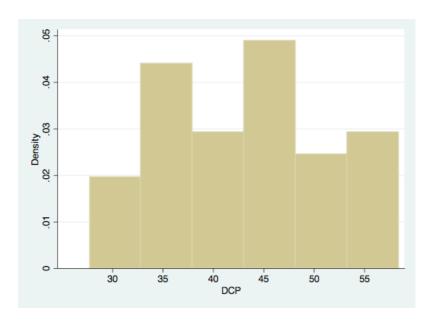
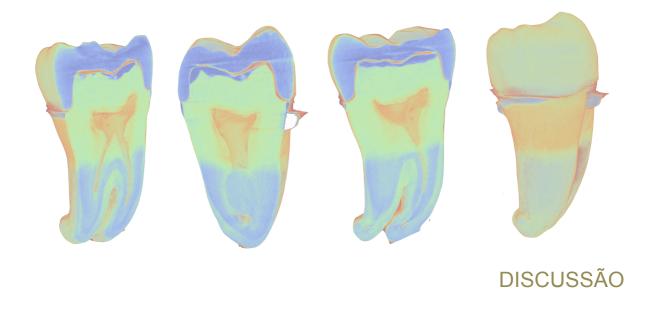


Figura 72 Histograma da distribuição dos dados da variável DCP.

Dessa forma, para a variável DCP, a análise de variância (ANOVA) foi utilizado com o nível de significância de p <0.05. Uma vez identificada significância, o teste de Tukey foi utilizado como post hoc associado com a correção de Bonferroni para ajuste de múltiplas comparações (6 comparações), com o valor final de p<0.008 para se considerar significância estatística. A tabela 5 apresenta os dados da análise estatística descrita para a variável DCP, com a apresentação das médias, desvio-padrão, assim como os valores máximos e mínimos para cada grupo.

Tabela 5 - Análise estatística descritiva para a variável DCP (medida 3D)


	Discrepância coroa preparo (µm)					
Grupo	N	Média	DP	Mínimo	Máximo	
1- (Lava Ultimate-Bluecam)	10	34.34 ^a	3.99	27.73	41.62	
2- (Emax- Bluecam)	10	44.63 ^{a,b}	8.75	28.73	58.37	
3- (Lava Ultimate-Omnicam)	10	45.77 ^b	6.98	33.67	55.26	
4- (Emax- Omnicam)	10	47.36 ^b	6.27	39.74	58.33	

DP: Desvio-padrão

O teste de ANOVA indicou diferença significativa entre pelo menos dois grupos (p= 0.0004) para variável DCP. Os menores valores de DCP foram obtidos para o Grupo 1 (Lava Ultimate-Bluecam), o qual foi estatisticamente diferente do Grupo 3 (Lava Ultimate-Omnicam) (p=0.003) e Grupo 4 (Emax- Omnicam) (p=0.001). O grupo 1 e grupo 2 não apresentaram diferença significativa devido a correção de Bonferroni (p=0.009). Os demais grupos foram estatisticamente semelhantes entre si (p=1).

Com intuito de comparar especificadamente as câmeras intra-orais e os materiais, realizou-se o teste t não-pareado com nível de significância de 0.05%. Para a variável câmera, comparando-se Bluecam e Omnicam, foram observadas diferenças significativas entre as câmeras para a variável DCP (p=0.0212), sendo que a câmera Bluecam apresentou os menores valores. Para a variável material, comparando-se Lava Ultimate e Emax-cad, também foram observadas diferenças significativas para variável DCP, sendo que o material resinoso apresentou valores significativamente menores que o material cerâmico (p=0.0052).

^{*}Grupos identificados com letras iguais não indicam diferença significativa

5 DISCUSSÃO

Restaurações Chairside CAD/CAM são atualmente utilizadas por um grande número de dentistas em todo o mundo, pois podem ser realizadas sem os passos intermediários, diminuindo assim o custo, o tempo de consultório, o tempo de processamento laboratorial e ainda a possibilidade de contaminação durante a fase de provisório quando comparadas às próteses fixas convencionais (3,27). No entanto, ainda é questionável a precisão da adaptação marginal das restaurações fabricadas por esses sistemas, pois vários fatores interferem em uma boa adaptação marginal como a precisão do sistema de fresagem, a moldagem digital, o tamanho da broca, a espessura do espaço de cimentação, a calibração da máquina e das câmeras intraorais (24,27,30,33,34,35,36,37,38). Apesar da utilização de blocos préfabricados, a melhora da resolução das câmeras intraorais para os procedimentos de digitalização de alta precisão, sofisticados softwares, e a padronização da fresagem (8,9), os valores da desadaptação marginal de coroas produzidas pelos sistemas CAD/CAM mostram-se semelhantes ou com valores mais elevados. quando comparadas às restaurações produzidas pelo técnico de laboratório dentário. Na literatura, a comparação entre os diferentes sistemas CAD/CAM é limitado (3,24,47,48,49,50,51) e poucos estudos têm um grupo de controle de metalocerâmica (25,27,38). Dessa forma, o presente estudo avaliou a adaptação marginal e interna de coroas totais de cerâmica e resina com moldagem digital, realizados por dois tipos de câmeras intraorais.

Neste estudo, optou-se por escolher dois diferentes tipos de bloco préfabricado: o dissilicato de lítio (IPS e.max-CAD Ivoclar Vivadent) e resina (Lava Ultimate 3M ESPE). O primeiro representa o grupo de materiais cerâmicos, que combina alta resistência à flexão com uma excelente estética, cor e translucidez semelhante ao esmalte dental (26,27), sendo amplamente utilizado na fabricação de coroas. No entanto, há uma incidência maior de falha destes materiais, possivelmente devido à natureza friável das cerâmicas, além de promover desgaste do dente antagonista (19). Já os blocos de resina (Lava Ultimate 3M ESPE) utilizam uma tecnologia de resina nanocerâmica, desenvolvidos com materiais que combinam as vantagens dos materiais cerâmicos com as dos compósitos altamente reticulado, resultando em um material mais resistente ao desgaste do que a resina

convencional e ainda veio com a proposta de ser capaz de absorver melhor as forças da mastigação, reduzindo o *stress* na restauração, apresentando excelente resistência ao desgaste, estabilidade de cor, uma boa superfície de polimento, e com a capacidade de produzir margens bem ajustadas e contínuas após o processo de fresagem (31,32).

Com relação a técnica de moldagem digital, foram avaliadas duas câmeras intraorais: CEREC Bluecam e CEREC Omnicam. Os mesmos parâmetros foram utilizados para as duas câmeras, seguindo o protocolo de desenho e fresagem do fabricante do equipamento SIRONA CEREC para confecção de coroas, e as mesmas digitalizações de cada câmera foram usadas para os dois tipos de materiais (IPS e.max CAD e Lava Ultimate).

As desadaptações marginal e interna foram avaliadas por meio da microtomografia. Este método permite medições 2D e 3D a serem realizadas a partir de qualquer ângulo ou posição da amostra (3,9,24,27,38,44,45,52). A adaptação marginal pode ser avaliada, tanto nos eixos coronal, transaxial e sagital, proporcionando uma percepção mais realista da situação. A microtomografia (Micro-CT) é um método preciso, não-destrutivo, como o estereomicroscópio (29,53,54). É confiável, pois permite uma investigação de alta resolução da desadaptação marginal entre o preparo dental e a restauração, de forma que se faz uma análise por fatias em planos, não apresentando sobreposições, diferentes de outras técnicas, tais como a Microscopia Eletrônica de Varredura (MEV) (55,56). Outra vantagem da utilização do micro-CT é de realizar as medidas em 400X de aumento, com uma boa resolução, facilitando o procedimento de medição. Em outros estudos, os tamanhos máximos de aumento descritos variaram em torno de 250X (46,57). As principais desvantagens deste método são artefatos de radiação, que são causadas pelas diferenças no coeficiente de absorção de radiação entre os diferentes materiais e a dificuldade na utilização de agentes de cimentação, porque a opacidade radiológica pode afetar a avaliação da diferença entre os materais (38,44,45). Outra desvantagem é o custo do procedimento e a demanda de tempo (58).

Outra questão importante a ser considerada é como a coroa foi fixada sobre os dentes para a análise no micro-CT. Alguns estudos utilizaram carregamento oclusal constante ou dispositivo de controle de torque para manter a coroa fixa sobre

o dente, evitando a cimentação (48,53,59) enquanto que Keshva et al.(29) e Lu et al. (60) utilizaram processo de cimentação clínica. Segundo diversos autores (50,57,61), a cimentação da coroa pode danificar os dentes e interferir nos resultados do valor da discrepância marginal medida. Nos estudos realizados por Seo et al. (3), utilizou-se cera utilidade ao redor da coroa assentada no preparo para que não houvesse movimentação da peça durante a avaliação no microtomógrafo e facilidade na visualização das delimitações das imagens entre dente, coroa e desadaptação. Levando em consideração estes fatos, no presente estudo, foram utilizados dez molares preparados para confecção de guarenta coroas, onde cada dente preparado recebeu quatro diferentes coroas. Com a intenção de padronizar as comparações, optou-se por fixar a coroa utilizando um material a base de silicone (GC Fit Checker Advanced, GC Dental Industrial Corp, Tóquio, Japão, Lote 1410101) para simular a cimentação (27,41,43). Ressalta-se que depois de fixadas, e lidas as desadaptações no micro-CT, as coroas demonstraram elevada resistência ao serem removidas do dente, confirmando que não houve movimentação durante a leitura. A posição das amostras foi padronizada e estabilizadas dentro do tubo de digitalização do micro-CT, sendo possível correlacionar às desadaptações marginais e os locais onde elas ocorreram.

Os trabalhos em geral (3,8,9,24,27,38,52) utilizaram modelos padrões (metal, resina, gesso), neste estudo foram utilizados dentes humanos, descartando a opção de utilizar materiais metálicos ou modelos typodont que poderiam apresentar-se com formas simplificadas, superficies oclusais mais planas e lisas, o que poderia facilitar as adaptações marginais e não retrataria a realidade da clinica odontológica (52).

Adaptação da coroa é definido pelas medições das desadaptações marginais e internas de restaurações (3,33,38,46). Holmes et al. (33) relatou em seus estudos que o desadaptação marginal vertical (DMV) é a medida perpendicular a partir da superfície interna da coroa com a superfície do dente preparado que compreende no gap axial (GA) e gap oclusal (GO). A desadaptação marginal horizontal (DMH) é a distância a partir da fenda marginal da coroas para o preparo dental, que foram divididas em duas variáveis: gap marginal (GM) e discrepância marginal absoluta (DMA). O Gap marginal (GM) é a distância perpendicular a partir da área interna da coroa até o preparo dental. A discrepância marginal absoluta (DMA) é a distância a

partir da margem da coroa até o ângulo cavo superficial do dente, que podem apresentar uma sobre extensão, uma sub extensão ou não apresentarem extensões. A discrepância marginal em sobre extensão ou em sub extensão podem afetar os tecidos periodontais, aumentar a retenção de placa bacteriana, favorecendo o desenvolvimento de cáries recorrentes ou lesões de polpa, e levar a reabsorção óssea (3,24,27,33).

Quanto ao número de locais de medida necessário para avaliar a adaptação marginal, também não há acordo na literatura (52). Este estudo avaliou quatro coroas fabricadas para o mesmo dente, as quais foram colocadas uma a uma para análise no microtomógrafo com uma padronização dos recortes de referência realizados para cada amostra seguindo as orientações adaptadas dos estudos realizados por Mously et al.(38). Foram realizadas 120 medidas em cada coroa, totalizando 1200 valores para cada grupo experimental, com o objetivo de obter informações clinicamente relevantes sobre a discrepância marginal. Optou-se por esta metodologia por ser mais atualizada e apresentar mais locais de medição, pois segundo Groten et al. (62), que relatou serem necessários 50 medidas bem distribuídas no entorno da amostra para obter informações clinicamente relevantes, pois quanto maior o número de medidas, mais confiança e precisão podem ser conseguidos.

Os resultados do presente estudo evidenciaram valores médios de desadaptação marginal horizontal (DMH): gap marginal (GM) de no máximo 62,5µm e para discrepância marginal absoluta (DMA) de aproximadamente 137µm. Na literatura, observa-se um consenso entre vários estudos que utilizaram o microtomógrafo (micro-CT) de que uma desadaptação marginal abaixo de 120 µm é clinicamente aceitável (24,49,50,52,61). Ainda que alguns autores utilizem esse valor como parâmetro, segundo Neves et al. (27), os valores de desadaptação marginal horizontal aceitáveis devem estar abaixo de 75µm. Já os estudos realizados por Tamer et al. (63) relatam que, para coroas fabricadas por CAD/CAM, a desadaptação marginal horizontal aceitável deve ser aproximadamente 90µm. Em um outro estudo (61), os autores sugerem que a desadaptação marginal horizontal (DMH) deve variar entre 50 a 100µm, e a desadaptação marginal vertical (DMV) deve variar entre 50 a 120µm para serem consideradas como clinicamente

aceitáveis, em termos de longevidade.

Na análise 2D, verificou-se que não houve diferença estatisticamente significante para a desadaptação marginal horizontal: a variável gap marginal (GM) entre os grupos experimentais, apresentaram valores que variaram entre 52,36 e 62,44 µm para o grupo1(Lava Ultimate-Bluecam) e o grupo 2 (Emax-Bluecam), respectivamente. No estudo de Neves et al.(27), as coroas de dissilicato de lítio preparadas com espaçamento 0 µm apresentaram uma média de 83,8 µm para variável GM. Já Mously et al. (38) obtiveram valores de 55,18 µm e 49,35 µm para coroas com espaçamento de 30 e 60 µm, respectivamente. Estes valores estão dentro dos limites aceitáveis da desadaptação marginal horizontal para restaurações cimentadas. Essas diferenças estão diretamente relacionadas ao espaço dado para o agente cimentante, pois segundo Evanthia et al. (9,10), a escolha de espaçamentos inferiores a 40µm, impede o assentamento da coroa, resultando em um aumento da discrepância marginal. Estas diferenças também podem ser atribuídas à diferença de equipamento utilizado, na configuração, na padronização no software ou variações no método de avaliação. Com relação a variável discrepância marginal absoluta (DMA), alguns autores sugerem que seu valor máximo deve estar entre 50 para 120 µm (64,65). Entrentato, já foram relatados valores na literatura das desadaptações marginais e espessuras de espaço de cimentação superiores, variando entre 120 a 250 µm (61,66). No presente estudo foram encontrados para DMA valores de 117,83 a 136,96 µm, sendo que não houve diferença significativa entre os grupos. Apesar de estarem ligeiramente acima do valor máximo sugerido $(120 \mu m)$, а metodologia de análise utilizada (microtomografia) produz valores mais precisos quando comparado as demais metodologias utilizadas nos estudos citados. A diferença encontrada é relativamente pequena, o que sugere uma insignificância na prática clínica, apesar de não haver diferença significativa entre as câmeras intraorais. A variável DMA pode estar relacionada com a qualidade da aquisição das imagens e processamento dos dados digitais, que pode melhorar a captação das imagens quando usar o pó antireflexo.

Somando os valores de sub extensão e os valores de sobre extensão de cada grupo separadamente, a discrepância marginal absoluta (DMA) apresentaram valores dentro do limite aceitável, mas quando estes dados são avaliados

individualmente, os valores observados se mostram com uma grande discrepância, como pode ser observado no Apêndice A. A desadaptação marginal absoluta (DMA), sugere uma limitação, gerando uma necessidade de ajuste em relação a estes excessos de restauração antes da cimentação clínica definitiva. Esta discrepância pode ter sido gerada pela pressão no momento da fixação ou uma irregularidade interna, que tenha impedido o assentamento total da coroa. Ressalta-se que em um dos lados da coroa os valores de adaptação vertical foram em sua maioria iguais a zero, porém em outros pontos, apresentaram valores altos de até 416mm (ver Apêndice A). A possibilidade da falha na fixação pode ter sido um problema, mesmo padronizando a pressão de fixação. Segundo Borba et al. (50), embora o fabricante recomende que se execute acabamento manual antes da sinterização das coroas, não foi realizado o acabamento externo e ajuste internos das peças, para não influenciar nos resultados, explicando assim, as margens ligeiramente excedidas observadas nas imagens transversais (Figura 57).

Para as avaliações para o Gap axial (GA), Borba et al. (50) relatou que um valor de Gap axial (GA) semelhante a 122 µm, podem reduzir a resistência à fratura de coroas. A uniformidade do espaço de cimento é importante para não comprometer as formas de retenção e resistência, especialmente para restaurações de cerâmica pura que têm um comportamento friável. O Gap axial (GA) encontrado neste estudo apresentaram valores médios abaixo deste limiar, sendo que os fatores como o tipo do material usado e a câmera intraoral afetaram diretamente a adaptação interna das restaurações de coroa cerâmicas. A câmera intraoral Bluecam não apresentou diferença estastística quanto a escolha do material restaurador utilizado. Com a câmera intra oral Omnicam, ao avaliar o tipo de material utilizado, houve uma diferença de valores significativamente importante entre um material para o outro, onde o Gap Axial do Grupo 3 (Lava Ultimate-Omnicam) apresentou os maiores valores de desadaptação com GA = 86,68 µm, enquanto que o grupo 4 (Emax-Omnicam) apresentou os menores valores de GA = 52,46 µm. Estes valores foram semelhantes aos encontrados por Mormann et al. (67) e Molin et al. (68) que consideraram os valores de 50-100 µm para gap internos, favoráveis para espessura do cimento resinoso. Os valores encontrados nesta presente pesquisa foram menores que os encontrados por Mously et al. (38), que encontrou valores de GA = 90,04 μm para coroas com espaçamento de 30 μm; GA = 127,68μm

para coroas com espaçamento de 60 μm; e GA = 147,71 μm para coroas de espaçamento de 100 μm. Quando há uma padronização do material, alterando somente a câmera intraoral, não há diferença significativa no valor do Gap Axial (GA). O Grupo 1 (Lava Ultimate-Bluecam) apresenta valor de GA = 64,59 μm e o Grupo 3 (Lava Ultimate-Omnicam) apresenta valor de GA = 86,68 μm que são estatisticamente semelhantes, mesmo tendo de usar o pó de dióxido de titânio para Bluecam. Um outro fator que alguns estudos relataram o problema da sombra distal que acontece em procedimentos *in vivo* que pode influenciar na adaptação de coroas fabricadas no Cerec. No entanto, isso não teve qualquer efeito sobre este estudo *in vitro*, pois o efeito de sombra distal causada pela impressão óptica baseada no princípio da triangulação ativa da câmera intraoral pode ter sido eliminado, quando não foi usado o modelo typodont, tendo a liberdade de angular a peca dente/coroa em várias posições.

Nas avaliações do gap oclusal (GO), o Grupo 1 (Lava Ultimate-Bluecam) apresentou os menores valores de GO =138,64µm, sendo estatisticamente diferente dos grupos que usaram a câmera Omnicam: Grupo 3 (Lava Ultimate-Omnicam) que apresentou valores de GO = 187,75µm e o Grupo 4 (Emax-Omnicam) que apresentou valores de GO = 199,66 µm que apresentaram os maiores valores de GO. Pode-se dizer que a câmera intraoral é um fator que interfere nos dados de GO e quando se tem a mesma câmera intraoral com materiais diferentes, os dados apresentaram valores estatisticamente semelhantes. Sabe-se também que, quando se tem um aumento na desadaptação marginal vertical (GA e GO) pode diminuir a resistência à fratura das restaurações cerâmicas, porque estas zonas com um grande gap interno pode induzir diferentes concentrações de carga, deixando a coroa mais susceptível à fratura (8,24,34,38,39,40). Os valores encontrados na desadaptação marginal vertical (DMV) que compreende em GA e GO, podem influenciar no desajuste da coroa, mas o menor valor não significa que seja clinicamente satisfatório, pois como estas variáveis foram avaliadas fazendo uma média entre elas, tivemos valores baixos em uma região e valores elevados em outra, gerando um gap oclusal maior, tendo como consequência a falta de assentamento final das coroas.

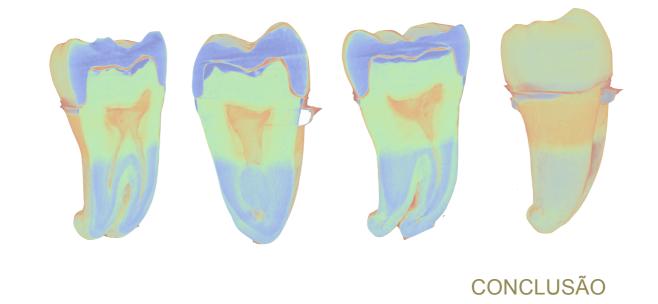
Na avaliação 2D, do grupo 4 (Emax-Omnicam) o valor de GA apresentou-se

menor e GO elevados quando comparados a Bluecam, apesar de não serem estatisticamente significativas, mostrando uma tendência a maior desadaptação. Quando avaliamos em 3D, onde todas as variáveis formam um conjunto de imagens, a Omnicam apresenta uma maior variação entre o valor mínimo e máximo da DCP mostrando novamente uma tendência a maior desadaptação, mostrando semelhança com os resultados em 2D.

Nas avaliações 3D, o Grupo 1(Lava Ultimate-Bluecam) apresenta o menor valor de desadaptação entre a coroa e o preparo (DCP) = $34,34~\mu m$, sendo estatisticamente semelhante ao Grupo 2 (Emax-Bluecam) que apresentou o valor de DCP = $44,63\mu m$, mas apresentou dados estatisticamente diferentes quando comparados com o Grupo 3 (Lava Ultimate-Omnicam) com DCP = $45,77\mu m$, e o Grupo 4 (Emax-cad-Omnicam) com DCP = $47,35\mu m$.

A câmera intraoral Bluecam apresentou valores estatisticamente menores para a discrepância entre a coroa e o preparo dental (DCP), e apresentou estatisticamente valores indiferentes quanto ao uso do material. Isto pode ser influenciado pelo uso do pó anti-reflexo que melhora a captação das imagens, mostrando assim um melhor resultado, podendo dizer que, a câmera intraoral interfere nos resultados da desadaptação entre a coroa e o preparo dental (DCP) das coroas fabricadas com o sistema CAD/CAM.

Quanto ao tipo de material também teve uma influência, onde os resultados quando usou o bloco pré-fabricado de Lava Ultimate usando Bluecam apresentou estatisticamente valores menores de DCP quando comparado com o bloco préfabricado de Lava Ultimate usando Omnicam. Não há diferenças estatísticas entre as mesmas câmeras em relação ao uso do material.

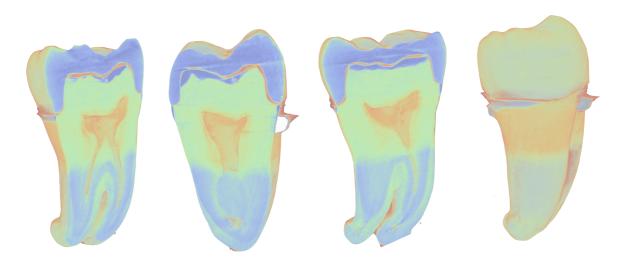

Os resultados mostram que há uma influência na adaptação marginal e interna dos diferentes tipos de materiais usados e a moldagem digital, quando se utiliza o sistema Cerec, mas apresentaram resultados dentro do padrão aceitáveis. No entanto, a comparação das mensurações entre as análises 2D com as análises 3D, considerando que a análise 3D é todo o conjunto da delimitação do espaço existente entre a coroa e o preparo, apresentando uma visão geral e a análise 2D é uma análise mais subjetiva, onde se faz uma média entre as medições colhidas, é

pontual, havendo a necessidade de selecionar os cortes das imagens e os pontos para a avaliação, que são feitos arbitrariamente pelo pesquisador. Com esta análise, mostrou que tanto bidimensional quanto tridimensional o material Lava apresentou menor Gap interno, provavelmente por apresentar um melhor ajuste de adaptação marginal por ser um material mais resiliente e menos duro quando comparado com a cerâmica. Além disso, a cerâmica passa por uma etapa adicional que é a cristalização, que produz uma alteração da microestrutura, apesar de todo o sistema CEREC, o software de fresagem apresenta uma compensação desta densificação resultante de 0,2%, durante o processo de fabricação, mas isso pode não ser suficiente para repor a contração, que a cerâmica apresenta, resultando em uma menor adaptação interna da coroa em relação a resina. Este resultado pode ter obtido, devido ao uso do espaçamento de 80 µm, que é um espaçamento baixo quando comparados clinicamente, que a maioria dos clínicos usam espaçamentos com valores maiores para evitar este contato das coroas nas paredes do preparo, obtendo uma menor interferência interna das coroas. Comparando as câmeras intraorais, somente na avaliação 3D, a câmera Omnicam obteve resultado menos favoráveis, apresentando maiores valores de discrepância de coroa e preparo (DCP) em relação a câmera Bluecam.

Boa parte dos estudos que avaliaram a adaptação marginal foram realizados com a cimentação das coroas, nosso estudo não utilizou a cimentação, pois a mesma poderia danificar o dente e prejudicar a adaptação das diferentes coroas testadas, sendo possível uma melhor comparação entre os materiais e câmeras. Outro ponto discordante com outros estudos foi não ter colocado os dentes em modelo Typodont. O dente foi fixado em uma peça plástica (41,43), para facilitar a captura das imagens sem interferir no resultado da pesquisa.

Percebe-se que a adaptação marginal de coroas fabricadas com a tecnologia CAD/CAM é dependente da precisão do sistema de fresagem, da moldagem digital, do tamanho da broca, juntamente com a calibração da máquina e da câmera intraoral. Assim, para fazer uma comparação justa, é necessário considerar o sistema, a sua versão, a técnica de medicão, o tipo de restauração (coroa, inlays, onlays), e o material restaurador (48,59). A tecnologia CAD/CAM é capaz de produzir restaurações de alta precisão, e totalmente em cerâmica, mostrando uma boa qualidade de adaptação marginal (24).

Todos os grupos no presente estudo apresentaram valores de adaptação marginal interna dentro dos padrões aceitáveis clinicamente. Para o material de resina, houve diferenças entre as câmeras, já para os materiais de cerâmica não houve diferença. De qualquer forma os equipamentos CAD/CAM do sistema CEREC oferecem uma adaptação marginal clinicamente aceitável com ambas as câmeras, trazendo para o consultório rapidez associada a eficiência e precisão.



6 CONCLUSÃO

No presente estudo, os resultados mostraram que houve uma influência na adaptação marginal e interna de acordo com os diferentes tipos de materiais usados e o modo de captura das imagens, quando se utiliza o sistema Cerec, ainda que todos os resultados encontrados estejam dentro do padrão clinicamente aceitável.

Assim concluímos que:

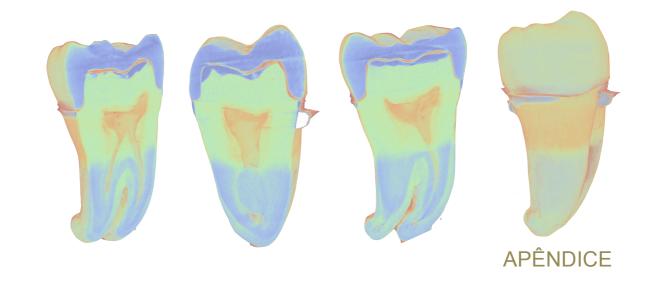
- Em relação a adaptação interna, os menores valores para a variável GA foram observados para o grupo 4 (Emax + Omnicam). Entretanto, esse mesmo grupo apresentou os maiores valores para variável GO, sendo estatisticamente diferente apenas do grupo 1 (Lava Ultimate + Bluecam). Dessa forma, sugere-se que contatos prematuros nas paredes axiais impediram o melhor assentamento da peça resultando em maiores valores de GO para o grupo 4.
- Com relação a adaptação marginal, não foram observadas diferenças estatisticamente significantes entre os grupos. Ainda, o grupo 1 (Lava Ultimate + Bluecam) apresentou em ambas as variáveis (GM e DMA) os menores valores de desadaptação e os menores valores de desvio-padrão.
- Na avaliação de desadaptação entre coroa e preparo, onde considerou-se o espaço total da desadaptação interna dividido pela superfície de contato, o grupo 1 (Lava Ultimate + Bluecam) apresentou valores significantemente menores de DCP quanto comparado aos grupos 3 (Lava Ultimate + Ominicam) e 4 (Emax + Omnicam). Dessa forma, considerando a desadaptação interna total, a utilização do material à base de resina associada ao uso da câmera intraoral Bluecam apresentou a melhor precisão de adaptação.

REFERÊNCIAS

7 REFERÊNCIAS BIBLIOGRÁFICAS:

- Della Bona A, Kelly JR. The clinical success of all-ceramics restorations. J Am Dent Assoc 2008;139 Suppl:8S-13S.
- Hilgert LA, Schweiger J, Beuer F, Andrada MAC, Araújo E, Edelhoff D. Odontologia Restauradora com sistemas CAD/CAM: o estado atual da arte. Parte 1 – Princípios de utilização. Clínica – Int J Braz Dent 2009 Jul-Set; 5(3): 294-303.
- Seo D, Yi Y, Roh B. The effect of preparation designs on the marginal and internal gaps in Cerec3 partial ceramic crowns. J Dent. 2009 May;37(5):374-82.
- Neves FD, Kayatt FE. Contextualização histórica. In: Kayatt FE, Neves FD. Aplicação dos sistemas CAD/CAM na odontologia restauradora. 1ª ed. Rio de Janeiro. Editora Elsevier. 2012. 1-12.
- 5. Euán R, Álvarez OF, Termes JC, Parra RO. Marginal adaptation of zirconium dioxide copings: Influence of the CAD/CAM system and the finish line design. J Prosthet Dent 2014 Aug;112(2):155-62.
- Souza RO, Ozcan M, Pavanelli CA, Buso L, Lombardo GHL, Michida SMA, Mesquita AM, Bottino MA. Marginal and Internal Discrepancies Related to Margin Design of Ceramic Crowns Fabricated by a CAD/CAM System. J Prosthodont 2011 Feb;21(2):94-100.
- 7. Trifkovic B, Budak I, Todorovic A, Vukelic D, Lazic V, Puskar T. Comparative analysis on measuring performances of dental intraoral and extraoral optical 3D digitization systems. Measurement 2014;47:45-53.
- Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry IL, Thomas GB, Qian F. Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent 2015 Apr;113(4):304-9.
- Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry IL, Thomas GB, Qian F. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont 2014 Dec;23(8):610-7.

- Ender A, Mehl A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J Prosthet Dent 2013 Feb;109(2):121-8.
- 11. Boeddinghaus M, Breloer E. S, Rehmann P, Wöstmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig 2015 Nov;19:2027-34.
- 12. Schepke U, Meijer HJ, Kerdijk W, Cune MS. Digital versus analog complete-arch impressions for single-unit premolar implant crowns: Operating time and patient preference. J Prosthet Dent 2015 Sep;114(3):403-6.
- 13. Neves FD, Kayatt FE, Kayatt DL, Carneiro TAPN. O CAD direto ou CAD de consultório ou CAD intraoral. In: Kayatt FE, Neves FD. Aplicação dos sistemas CAD/CAM na odontologia restauradora. 1ª ed. Rio de Janeiro. Editora Elsevier. 2012. 1-12.
- 14. Monzó VF. Características diferenciales de los sistemas de restauración CAD-CAM de mayor impacto actualmente. Sepes Ciencia y Diffusion 2011;18-23.
- 15. Renne W, Wolf B, Kessler R, Mcpherson K, Mennito AS. Evaluation of the Marginal Fit of CAD/CAM Crowns Fabricated Using Two Different Chairside CAD/CAM Systems on Preparations of Varying Quality. J Esthet Restor Dent 2015 Jul-Aug;27(4):194–202.
- Nedelcu RG, Persson AS. Scanning accuracy and precision in 4 intraoral scanners: An in vitro comparison based on 3-dimensional analysis. J Prosthet Dent 2014 Dec;112(6):1461-71.
- 17. Touchstone A, Nieting T, Ulmer N. Digital transition. The collaboration between dentists and laboratory technicians on CAD/CAM restorations. J Am Dent Assoc 2010 Jun;141 Suppl 2:15S-9S.
- 18. Fasabinder DJ. Digital Dentistry: Innovation for restorative treatment. Compend Contin Educ Dent 2010;4:2-11.
- 19. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015 Oct;114(4):587-93.
- 20. Guazzato M, albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004


- Jun;20(5):441-8.
- 21. Ohyama T, Yoshinari M, Oda Y. Effects of cyclic loading on the strength of all- ceramic materials. Int J Prosthodont 1999 Jan-Feb;12(1):28-37
- 22. Stappert C.F., Att W, Gerds T, Strub JR. Fracture resistance of different partial coverage ceramic molar restorations: an in vitro investigation. J Am Dent Assoc 2006 Apr;137(4);514-22.
- 23. Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A. Marginal and internal fit of pressed lithium dissilicate partial crowns in vitro: a threedimensional analysis of accuracy and reproducibility. Dent Mater 2012 Mar;28(3):320-6.
- 24. Borba M, Cesar PF, Griggs JA, Della Bona A. Adaptation of all-ceramic fixed partial dentures. Dent Mater 2011 Nov;27(11):1119-26.
- 25. Guess PC, Vagkopoulou T, Zhang Y, Wolkewitz M, Strub J R. Marginal and internal fit of heat pressed versus CAD/CAM fabricated all-ceramic onlays after exposure to thermo-mechanical fatigue. J Dent 2014 Feb;42(2):199-209.
- 26. Denry I, Holloway J. Ceramics for dental applications: a review. Materials 2010;3:351-68.
- 27. Neves FD, Prado CJ, Prudente MS, Carneiro TAPN, Zancopé K, Mendonça G, Cooper LF, Soares C J. Micro-computed tomography evaluation of marginal fit of lithium disilicate crowns fabricated by using chairside CAD/CAM systems or the heat-pressing technique. J Prosthodont 2014 nov;112(5):1134-40.
- 28. Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc 2010 jun;141 Suppl 2:10S-4S.
- 29. Keshvad A, Hooshmand T, Asefzadeh F, Khalilinejad F, Alihemmati M, Van Noort R. Marginal gap, internal fit, and fracture load of leucite-reinforced ceramic inlays fabricated by CEREC inLab and hot-pressed techniques. J Prosthodont 2011 Oct; 20(7):535-40.
- 30. Prudente M S. Avaliação de coroas de dissilicato de lítio obtidas por sistemas CAD/CAM de consultório e pela técnica de prensagem a quente por meio da adaptação marginal utilizando a microtomografia computadorizada [dissertação]. Uberlândia: Universidade Federal de

- Uberlândia, Faculdade de Odontologia; 2013.
- 31. Koller M. et al. Lava Ultimate resin nano ceramic for CAD/CAM: customization case study. Int J Comput Dent 2012;15(2):159-64.
- 32. Martin MP. Material and clinical considerations for full-coverage indirect restorations. Compend Contin Educ Dent. 2012 Nov;33 Spec No 6:2-5; quiz 6.
- 33. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989 Oct;62(4):405-8.
- 34. Sorensen JA. A rationale for comparison of plaque-retaining properties of crown systems. J. Prosthet. Dent 1989 Sep;62(3):264-9.
- 35. Goldman M, Laosonthorn P, White R.R. Mocroleakage-full crowns and the dental pulp. Jornal of Endod 1992 Oct;18(10):473-5
- 36. Lang NP, Kiel RA, Anderhalden K. Clinical and microbiological effects of subgengival restouations with overhanging or clinically perfect margins. J Clin Periodontol 1983 Nov;10(6):563-78.
- 37. Krasanaki ME, Pelekanos S, Andreiotelli M, Koutayas SO, Eliades G. X-ray microtomographic evaluation of the influence of two preparation types on marginal fit of CAD/ CAM alumina copings: a pilot study. Int J Prosthodont 2012 Mar-Apr;25(2):170-2.
- 38. Mously HA, Finkelman M, Zandparsa R, Hirayama H. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique. J Prosthet Dent 2014 Aug;112(2):249-56.
- 39. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 1991 Mar;65(3):357–64.
- 40. Hunter AJ, Hunter AR. Gingival margins for crowns: a review and discussion. Part II: Discrepancies and configurations. J Prosthet Dent 1990 Dec;64(6):636-42.
- 41. Barbosa MT. Avaliação in vitro da adaptação marginal e interna de coroas cerâmicas confeccionadas com sistemas injetável e cad/cam. [dissertação]. Florianópolis: Universidade Federal de Santa Catarina, Mestrado em Dentística, Programa de Pós-Graduação em Odontologia; 2008.

- 42. Akbar JH, et al. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J Prosthodont 2006 May;15(3):155-63.
- 43. Delbons FB. Avaliação da adaptação marginal de dois sistemas cerâmicos, IPS Empress e Cerec inLab, em restaurações MOD: um estudo *in vitro*. [dissertação]. Florianópolis: Universidade Federal de Santa Catarina, Mestrado em Odontologia, Programa de Pós-Graduação em Odontologia; 2007.
- 44. Soviero VM, Leal SC, Silva RC, Azevedo RB. Validity of MicroCT for in vitro detection of proximal carious lesions in primary molars. J Dent 2012 jan;40(1):35-40.
- 45. Pedreira APRV. Avaliação microtomográfica e da resistência de união de cimentos resinosos auto-adesivos à dentina intra-radicular. [dissertação]. Brasília: Universidade de Brasília, Faculdade de Ciências da Saúde, Programa De Pós-Graduação em Ciências da Saúde; 2015.
- 46. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent 1992 May;67(5):594-9.
- 47. Nakamura T, Tanaka H, Kinuta S, Akao T, Okamoto K, Wakabayashi K, et al. In vitro study on marginal and internal fit of CAD/CAM all-ceramic crowns. Dent Mater J 2005 Sep;24(3):456-9.
- 48. Lee KB, Park CW, Kim KH, Kwon TY. Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 2008 May;27(3):422-6.
- 49. Beuer F, Aggstaller H, Richter J, Edelhoff D, Gernet W. Influence of preparation angle on marginal and internal fit of CAD/CAM-fabricated zirconia crown copings. Quintessence Int 2009 Mar;40 (3):243–50.
- 50. Borba M, Miranda WG Jr, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using Micro-CT technology. Braz Oral Res 2013 Sep-Oct;27(5):396-402.
- 51. Azim TA, Rogers KBA, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent 2015 Oct;114(4):554-9.

- 52. Contrepois M, Soenen A, Bartala M, Laviloe O. Marginal adaptation of ceramic crowns: A systematic review. J. Prosthet Dent 2013 Dec; 110(6):447-54.
- 53. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent 2010 Oct;104(4):216-27.
- 54. Pimenta MA, Frasca LC, Lopes R, Rivaldo E. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology. J Prosthet Dent 2015 Aug;114(2):223-28
- 55. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005 Apr;113:174–9.
- 56. Oyague C, Sanchez R, Jorge MI, Turrion AS. Influence of CAM versus CAD/CAM scanning methods and finish line of tooth preparations in the vertical misfit of zirconia bridge structures. Am J Dent 2009 Apr;22(2):79–83.
- 57. Pak HS, Han JS, Lee JB, Kim SH, Yang JH. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. J Adv Prosthodont 2010 Jun;2(2):33-8.
- 58. Rungruanganunt P, Kelly JR, Adams DJ. Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns. J Dent 2010 Dec;38(12):995-1000.
- 59. Da Costa JB, Pelogia F, Hagedorn B, Ferracane JL. Evaluation of different methods of optical impression making on the marginal gap onlays created with CEREC 3D. Oper Dent 2010 May-Jun; 35(3):324-9.
- 60. Lu L, Liu S, Shi S, Yang J. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software. J Huazhong Univ Sci Tecnolog 2011 Oct;31(5):696-700.
- 61. Demir N, Ozturk AN, Malkoc MA. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur J Dent 2014 Oct; 8(4):437-44.

- 62. Groten M, Axmann D, Probster L, Weber H. Determination of the minimum number of marginal gap measeurements required for practical in vitro testing. J Prosthet Dent 2000 Jan;83(1):40-9.
- 63. Hamza TA, Ezzat HA, Khalil MM, Hossary EI, Katamish HAEM, Shokry TE, Rosenstiel SF. Accuracy of ceramic restorations made with two CAD/CAM systems. J Prosthet Dent 2013 Feb;109(2):83-7.
- 64. Suárez MJ, González de Villaumbrosia P, Pradíes G, Lozano JF. Comparison of the marginal fit of Procera AllCeram crowns with two finish lines. Int J Prosthodont 2003 May-Jun;16(3):229-32.
- 65. Boening KW, Wolf BH, Schmidt AE, Kästner K, Walter MH. Clinical fit of Procera AllCeram crowns. J Prosthet Dent 2000 Oct;84(4):419-24.
- 66. Pelekanos S, Koumanou M, Koutayas SO, Zinelis S, Eliades G. Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 2009 Aut;4(3):278-92.
- 67. Mormann WH, Bindl A, Luthy H, Rathke A. Effects of preparation and luting system on all-ceramic computer-generated crowns. Int J Prosthodont 1998 Jul-Aug;11(4):333-9.
- 68. Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dent Mater 1996 Jul;12(4):245-9.

Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
1	84	99	54	105	2	102	114	48	102	3	72	144	54	162
1	90	129	0	78	2	102	72	0	90	3	54	217	144	217
1	36	129	54	89	2	0	162	66	108	3	0	235	144	199
1	45	96	0	69	2	36	138	0	108	3	0	181	54	235
1	63	107	54	63	2	96	108	66	114	3	0	199	72	217
1	42	123	27	87	2	96	72	0	108	3	0	181	144	299
1	60	96	42	111	2	36	205	72	108	3	36	199	72	199
1	18	111	0	57	2	36	168	0	84	3	72	181	162	181
1	72	123	48	105	2	102	120	60	96	3	72	144	144	181
1	54	96	0	72	2	90	72	114	0	3	54	217	54	217
1	84	96	27	87	2	36	144	0	54	3	18	217	0	108
1	60	87	27	75	2	36	156	36	156	3	18	199	90	235
1	63	111	24	102	2	90	159	0	54	3	0	162	54	235
1	36	93	27	66	2	102	72	36	126	3	0	217	0	108
1	45	72	36	90	2	0	156	0	36	3	72	217	90	235
1	27	129	27	63	2	36	180	36	126	3	54	181	18	126
1	39	120	36	81	2	108	120	0	72	3	0	199	54	271
1	72	93	27	84	2	90	72	36	162	3	0	199	0	90
1	36	90	18	81	2	0	162	0	90	3	72	235	0	144
1	18	96	36	87	2	36	144	36	161	3	72	181	36	235
1	27	99			2	36	229			3	0	181		
1	27	111			2	0	211			3	18	217		
1	71	99 99			2	90	196			3	108	217 253		
1	108					138	162				72			
1	33 30	102 111			2	90	138 156			3	108 90	253 199		
1	90	93			2	132 90	187			3	90	217		
1	59	99			2	132	205			3	18	199		
1	42	156			2	36	151			3	72	217		
1	42	102			2	36	174			3	72	217		
1	90	111			2	114	168			3	18	235		
1	102	111			2	90	138			3	18	181		
1	36	108			2	150	150			3	18	217	•	
1	36	114			2	108	150			3	0	199		
1	81	120			2	36	186			3	90	181		
1	63	102			2	36	199			3	126	217		
1	45	117			2	36	289			3	18	217	1	
1	36	126			2	36	217			3	0	235		
1	84	102			2	90	174			3	90	217		
1	99	108			2	138	174			3	72	235		

				AFL				003	OKIG					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
4	168	174	36	126	5	58	217	45	75	6	72	211	36	54
4	138	108	96	96	5	81	208	54	174	6	90	90	54	54
4	0	132	36	90	5	36	241	69	153	6	18	199	54	90
4	0	169	96	111	5	0	238	60	99	6	18	247	36	54
4	144	150	0	120	5	0	253	51	114	6	18	199	36	36
4	144	126	102	102	5	36	274	54	181	6	18	241	39	114
4	0	131	108	123	5	75	211	45	162	6	108	120	36	60
4	0	150	36	108	5	72	226	57	84	6	72	186	72	96
4	144	150	36	114	5	81	226	48	102	6	90	223	72	102
4	144	149	114	96	5	60	262	54	171	6	90	190	36	54
4	0	138	36	96	5	0	235	90	162	6	18	199	108	181
4	0	138	36	36	5	18	232	36	0	6	36	247	72	90
4	144	156	36	54	5	45	280	81	178	6	84	120	72	90
4	144	120	36	102	5	51	280	36	0	6	90	211	108	174
4	0	138	0	36	5	63	217	90	177	6	18	187	126	181
4	0	150	54	72	5	75	150	36	0	6	18	217	54	72
4	150	168	36	102	5	75	199	36	0	6	36	193	90	181
4	162	126	72	36	5	81	211	99	162	6	18	217	108	72
4	0	126	72	36	5	0	247	87	178	6	108	126	72	90
4	0	138	54	90	5	45	241	36	0	6	78	193	181	90
4	120	144			5	54	190			6	126	181		
4	120	190			5	36	262			6	126	181		
4	54	181			5	45	217			6	0	223		
4	84	199			5	45	244			6	0	199		
4	90	259			5	36	177			6	0	199		
4	54	241			5	45	226			6	0	229		
4	108	144			5	75	220			6	108	193		
4	135	162			5	45	228			6	126	156		
4	72	175			5	36	164			6	112	162		
4	54	150			5	36	223			6	132	199		
4	102	150			5	45	199			6	0	235		
4	114	144			5	48	244			6	0	205		
4	120	162			5	45	211			6	162	181		
4	119	144			5	45	244			6	144	181		
4	72	167			5	36	226			6	0	217		
4	54	235			5	18	187			6	0	181		
4	90	223			5	36	181			6	0	235		
4	54	229			5	27	250			6	0	199		
4	108	156			5	45	223			6	181	199		
4	150	156			5	45	256			6	126	235		

				AFL				003	OKIGI					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
7	0	171	71	153	8	147	190	171	226	9	54	199	162	253
7	0	153	27	66	8	135	205	54	111	9	108	126	90	72
7	84	199	18	42	8	36	238	181	244	9	18	271	108	126
7	108	144	96	165	8	45	262	45	108	9	36	162	126	217
7	87	156	72	27	8	115	181	190	226	9	36	199	126	90
7	45	156	169	117	8	111	208	72	108	9	18	235	126	289
7	0	162	27	72	8	27	235	181	190	9	90	108	144	271
7	0	144	105	172	8	27	253	72	117	9	54	199	126	72
7	18	120	93	153	8	27	235	54	144	9	36	271	108	126
7	90	131	36	60	8	18	263	181	117	9	36	235	108	271
7	0	135	135	81	8	126	217	81	90	9	126	144	18	253
7	0	144	18	54	8	126	181	81	144	9	54	217	162	126
7	72	135	0	72	8	99	153	81	117	9	90	307	18	144
7	27	141	81	144	8	117	199	81	162	9	36	235	235	126
7	0	153	63	144	8	27	235	90	90	9	36	126	18	144
7	0	149	18	72	8	27	244	81	153	9	18	181	235	144
7	27	141	18	90	8	117	181	64	153	9	18	162	18	253
7	99	162	72	144	8	135	217	72	99	9	36	217	162	144
7	0	162	72	144	8	36	217	81	90	9	90	108	18	235
7	0	147	18	63	8	27	244	81	162	9	36	181	162	144
7	45	172			8	99	126			9	18	144		
7	27	144			8	99	162			9	18	217		
7	81	135			8	63	244			9	72	217		
7	72	135			8	45	289			9	72	217		
7	54	117			8	54	271			9	90	217		
7	72	117			8	72	280			9	90	217		
7	54	108			8	108	217			9	18	181		
7	27	144			8	90	144			9	18	181		
7	45	126			8	108	199			9	18	144		
7	36	135			8	108	162			9	18	217		
7	63	144			8	72	262			9	72	217		
7	81	135			8	45	289			9	72	217		
7	54	126			8	72	262			9	18	199		
7	90	117			8	63	244			9	18	199		
7	63	135			8	99	199			9	72	199		
7	27	153			8	108	181			9	72	235		
7	54	153			8	81	190			9	72	162		
7	27	108			8	99	126			9	90	235		
7	90	126			8	81	262			9	18	235		
7	63	117			8	36	289			9	18	126		

					IADIC			003	OKIGI					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
10	90	162	0	72	11	36	138	0	72	12	181	289	18	398
10	54	126	90	126	11	48	150	36	174	12	181	199	162	90
10	54	144	0	108	11	54	72	0	78	12	54	108	162	90
10	36	144	72	108	11	90	78	36	181	12	72	217	18	380
10	90	144	0	108	11	36	90	0	156	12	72	217	162	380
10	36	144	54	90	11	54	84	36	68	12	54	144	36	72
10	36	144	0	108	11	58	162	0	72	12	217	199	144	90
10	72	126	72	90	11	54	162	36	187	12	199	307	36	380
10	90	126	0	108	11	36	80	0	78	12	253	289	181	416
10	72	144	54	90	11	42	60	36	162	12	181	217	36	72
10	36	144	0	72	11	42	168	59	60	12	72	126	126	126
10	54	144	72	108	11	78	162	150	150	12	72	271	18	144
10	72	181	72	108	11	54	108	600	78	12	72	253	18	181
10	72	144	0	54	11	72	90	150	150	12	90	108	126	162
10	72	144	0	90	11	36	150	58	84	12	217	199	108	144
10	54	144	90	72	11	54	144	132	132	12	181	253	18	126
10	72	144	0	72	11	54	78	150	132	12	72	217	126	162
10	72	144	90	90	11	54	90	54	90	12	54	144	18	144
10	54	144	0	126	11	66	169	126	42	12	217	199	18	162
10	36	126	90	90	11	90	150	54	132	12	217	307	144	162
10	271	126			11	36	108			12	90	162		
10	271	126			11	36	126			12	90	162		
10	27	235			11	54	132			12	108	235		
10	27	144			11	84	36			12	108	325		
10	253	144			11	36	90			12	126	344		
10	235	126			11	36	120			12	90	271		
10	27	199			11	60	132			12	108	217		
10	27	108			11	60	36			12	90	162		
10	235	162			11	60	84			12	108	253		
10	253	235			11	84	108			12	90	235		
10	27	108			11	36	126			12	90	162		
10	27	108			11	36	36			12	72	181		
10	235	126			11	36	126			12	90	307		
10	217	217			11	36	126			12	90	235		
10	27	108			11	72	126			12	108	217		
10	27	144			11	90	36			12	108	144		
10	253	144			11	36	108			12	108	325		
10	253	144			11	36	108			12	126	253		
10	27	126			11	72	108			12	90	181		
10	27	126			11	90	36			12	90	181		

				AFL				003	OKIG					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
13	99	217	36	144	14	36	144	36	144	15	72	253	54	108
13	72	208	72	135	14	36	144	18	126	15	108	253	54	162
13	81	199	72	162	14	90	144	18	144	15	36	235	72	181
13	45	244	45	135	14	108	144	36	90	15	72	144	54	108
13	90	208	36	135	14	162	108	18	144	15	54	181	72	108
13	54	235	63	135	14	144	126	54	108	15	36	199	54	181
13	72	199	54	135	14	54	126	36	144	15	90	253	90	162
13	81	235	81	135	14	54	144	18	144	15	90	235	54	126
13	63	235	54	144	14	126	108	18	144	15	72	253	54	126
13	90	181	54	135	14	108	126	54	108	15	90	253	90	144
13	54	208	81	126	14	36	126	18	90	15	36	217	36	90
13	72	199	18	108	14	36	144	18	144	15	72	199	72	90
13	81	244	72	99	14	36	181	18	108	15	36	181	72	126
13	99	235	18	117	14	36	144	18	108	15	54	181	36	108
13	63	181	63	90	14	90	144	18	90	15	108	235	18	90
13	63	217	18	135	14	90	144	18	162	15	90	253	54	108
13	54	208	18	117	14	126	126	18	144	15	72	271	72	90
13	72	190	81	126	14	126	144	18	108	15	72	253	54	72
13	63	235	72	126	14	36	144	18	72	15	36	217	18	108
13	63	226	18	108	14	36	162	18	162	15	54	144	54	108
13	162	181			14	36	181			15	36	199		
13	45	253			14	72	162			15	72	199		
13	199	208			14	72	144			15	18	253		
13	54	162			14	54	217			15	108	235		
13	36	199			14	36	144			15	36	217		
13	63	235			14	90	144			15	90	253		
13	153	262			14	54	162			15	90	217		
13	217	181			14	72	181			15	18	199		
13	45	235			14	54	162			15	90	162		
13	36	208			14	36	162			15	36	253		
13	181	217			14	72	144			15	90	253		
13	153	135			14	18	217			15	18	181		
13	18	226			14	54	181			15	54	181		
13	153	162			14	54	162			15	18	199		
13	253	226			14	36	144			15	90	253		
13	63	244			14	72	144			15	72	253		
13	18	199			14	72	181			15	72	181		
13	36	199			14	54	199			15	54	199		
13	244	162			14	54	162			15	72	235		
13	162	235			14	36	162			15	18	235		

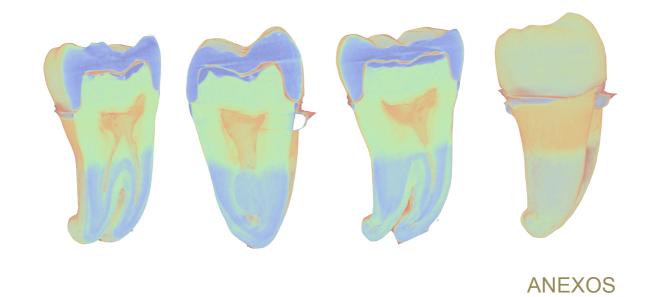
_					NDIC			003	OKIGI	,				
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
16	36	108	0	90	17	99	271	172	108	18	18	90	18	126
16	36	96	54	217	17	199	126	18	353	18	18	72	90	72
16	84	36	0	217	17	90	190	27	108	18	90	26	54	90
16	90	96	42	90	17	244	253	162	353	18	72	144	18	126
16	36	114	60	205	17	226	108	27	108	18	72	108	36	90
16	36	60	0	78	17	208	271	172	353	18	90	72	36	72
16	96	90	0	84	17	81	217	172	353	18	18	36	18	108
16	78	36	36	205	17	81	253	18	99	18	18	72	36	144
16	36	96	36	78	17	226	108	18	344	18	18	108	27	144
16	36	90	54	193	17	108	253	153	99	18	18	108	27	90
16	96	96	90	108	17	190	217	108	117	18	108	90	54	126
16	78	42	36	96	17	63	280	18	135	18	126	126	18	126
16	72	108	36	72	17	199	244	27	117	18	126	108	18	126
16	36	132	90	126	17	199	99	90	135	18	108	90	36	108
16	36	104	90	144	17	99	208	108	153	18	18	126	36	144
16	78	36	90	126	17	90	271	27	162	18	18	144	0	72
16	36	114	108	90	17	72	253	108	153	18	126	181	108	144
16	36	102	37	90	17	99	99	36	162	18	181	90	18	162
16	78	114	36	126	17	172	208	27	117	18	18	90	18	162
16	96	36	108	108	17	199	253	144	144	18	18	144	90	108
16	36	36			17	144	181			18	54	108		
16	36	108			17	81	153			18	54	126		
16	54	181			17	99	181			18	90	108		
16	54	90			17	63	153			18	54	108		
16	60	108			17	108	208			18	36	108		
16	36	102			17	99	208			18	36	90		
16	36	90			17	63	162			18	72	162		
16	36	36			17	108	262			18	108	126		
16	36	72			17	108	181			18	54	72		
16	36	90			17	108	181			18	108	54		
16	90	168			17	90	280			18	18	90		
16	90	96			17	117	253			18	18	90		
16	36	96			17	117	208			18	36	108		
16	36	168			17	117	190			18	36	90		
16	72	90			17	117	199			18	54	54		
16	72	36			17	81	217			18	90	54		
16	36	60			17	126	181			18	162	108		
16	36	126			17	81	208			18	90	36		
16	54	144			17	117	217			18	90	162		
16	54	108			17	99	262			18	54	108		

					IADIC			003	OKIGI					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
19	54	199	54	199	20	54	162	90	199	21	271	144	36	144
19	54	126	144	108	20	90	72	90	253	21	271	144	36	126
19	27	181	108	72	20	126	162	90	217	21	162	90	18	90
19	36	199	54	217	20	108	217	72	199	21	162	162	90	126
19	27	235	144	54	20	90	199	54	90	21	72	162	0	126
19	36	235	72	181	20	126	162	90	90	21	72	126	90	126
19	54	181	72	181	20	54	90	72	217	21	126	108	36	90
19	54	235	126	54	20	54	144	108	217	21	90	181	54	108
19	27	235	144	108	20	72	162	72	217	21	126	144	54	36
19	36	235	72	217	20	54	126	90	217	21	90	144	18	108
19	54	199	72	108	20	90	181	72	72	21	54	162	18	108
19	36	253	54	162	20	90	235	30	108	21	54	126	54	54
19	54	217	36	144	20	90	144	72	72	21	72	307	18	54
19	54	217	54	72	20	54	72	54	90	21	72	199	54	90
19	27	217	72	108	20	144	162	90	235	21	36	217	18	90
19	36	217	36	181	20	108	162	90	235	21	36	235	90	108
19	27	235	54	90	20	72	126	72	72	21	54	271	90	108
19	36	235	36	181	20	72	90	72	108	21	72	253	18	126
19	36	181	36	181	20	72	162	54	72	21	54	325	36	162
19	36	217	54	108	20	126	235	54	54	21	54	235	54	108
19	90	162			20	54	217			21	217	199		
19	72	126			20	36	108			21	181	144		
19	144	181			20	126	199			21	90	108		
19	126	253			20	90	217			21	36	162		
19	126	162			20	54	162			21	181	235		
19	126	217			20	36	144			21	181	181		
19	72	126			20	126	162			21	54	72		
19	72	235			20	90	217			21	54	90		
19	90	199			20	72	199			21	199	217		
19	90	199			20	90	90			21	235	162		
19	181	217			20	162	181			21	36	126		
19	126	217			20	90	199			21	36	126		
19	90	162			20	72	199			21	18	217		
19	90	162			20	54	144			21	36	162		
19	126	217			20	126	199			21	253	144		
19	108	217			20	126	235			21	271	144		
19	108	235			20	36	181			21	237	271		
19	144	217			20	36	108			21	271	144		
19	72	144			20	108	162			21	54	144		
19	108	217			20	90	199			21	36	144		

				AFL				003	OKIGI					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
22	72	72	0	108	23	90	126	90	126	24	144	199	36	235
22	72	90	72	126	23	81	144	18	153	24	144	72	90	217
22	90	90	0	90	23	208	144	90	172	24	72	162	90	162
22	108	126	54	90	23	208	108	63	135	24	54	126	144	325
22	72	72	0	144	23	135	135	90	181	24	108	199	18	235
22	72	72	72	36	23	135	162	63	117	24	90	144	144	181
22	36	72	36	90	23	54	135	45	144	24	36	108	18	217
22	54	181	36	54	23	36	99	108	90	24	18	90	126	126
22	72	126	18	144	23	90	153	90	90	24	72	162	162	307
22	54	144	36	162	23	135	153	18	117	24	90	126	18	72
22	54	126	36	90	23	18	117	45	36	24	72	108	36	126
22	36	90	72	72	23	27	126	18	36	24	36	144	36	90
22	0	181	54	108	23	18	108	45	45	24	108	126	18	108
22	0	144	108	90	23	18	144	27	90	24	108	144	72	217
22	36	181	54	162	23	135	190	27	90	24	54	108	72	72
22	54	199	36	108	23	90	181	54	45	24	54	108	54	199
22	54	199	54	162	23	90	190	36	117	24	18	126	54	108
22	36	181	18	344	23	108	190	72	81	24	18	144	27	181
22	0	162	54	144	23	18	144	99	90	24	126	162	0	217
22	0	253	72	90	23	18	153	36	135	24	144	126	0	108
22	108	181			23	126	99			24	90	162		
22	144	162			23	99	208			24	108	126		
22	36	54			23	45	126			24	90	126		
22	36	108			23	45	126			24	72	90		
22	162	325			23	54	126			24	54	162		
22	126	162			23	54	99			24	54	144		
22	18	54			23	99	108			24	36	90		
22	18	235			23	63	126			24	54	72		
22	126	235			23	36	99			24	54	108		
22	108	181			23	36	144			24	54	126		
22	18	54			23	0	181			24	27	126		
22	36	126			23	18	153			24	27	54		
22	18	108			23	0	144			24	36	181		
22	36	72			23	0	226			24	54	144		
22	162	126			23	18	162			24	0	162		
22	126	181			23	18	135			24	0	199		
22	18	90			23	0	117			24	0	108		
22	18	54			23	0	117			24	0	217		
22	181	144			23	27	153			24	108	181		
22	181	199			23	27	135			24	90	217		

				AFL				003	OKIGI					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
25	18	217	72	289	26	54	253	144	144	27	45	144	45	108
25	18	144	0	144	26	54	144	54	199	27	63	135	36	90
25	72	126	0	90	26	36	199	72	181	27	45	181	63	90
25	54	162	54	199	26	27	235	108	144	27	90	190	36	90
25	72	144	72	126	26	54	253	54	199	27	72	181	36	117
25	72	72	36	181	26	54	235	162	162	27	45	172	18	63
25	18	126	54	325	26	72	162	72	162	27	81	126	36	117
25	36	181	181	199	26	72	235	126	126	27	45	172	27	90
25	36	217	36	90	26	36	235	144	108	27	54	162	36	117
25	36	162	108	144	26	36	217	54	181	27	72	108	27	81
25	90	217	0	181	26	54	199	36	162	27	45	172	72	153
25	108	181	72	90	26	54	235	36	108	27	63	162	90	199
25	54	289	72	90	26	27	235	54	90	27	63	162	72	162
25	36	199	18	199	26	36	235	54	181	27	63	135	90	172
25	144	144	36	126	26	72	217	54	199	27	54	150	54	162
25	108	162	18	235	26	72	181	36	108	27	54	199	90	208
25	72	162	90	126	26	54	235	36	144	27	45	153	90	208
25	36	126	36	181	26	72	181	36	96	27	45	108	54	126
25	90	144	36	217	26	27	217	54	90	27	90	126	63	144
25	90	217	144	144	26	36	217	36	162	27	54	135	90	208
25	72	162			26	108	181			27	190	126		
25	54	181			26	72	126			27	217	162		
25	72	325			26	181	217			27	36	126		
25	36	217			26	144	253			27	72	117		
25	72	144			26	126	235			27	162	135		
25	54	162			26	126	253			27	190	172		
25	54	90			26	54	162			27	27	117		
25	54	253			26	108	199			27	63	108		
25	54	235			26	108	199			27	190	126		
25	54	162			26	54	162			27	226	162		
25	72	72			26	144	253			27	45	153		
25	72	217			26	199	307			27	45	135		
25	90	144			26	108	217			27	54	126		
25	90	217			26	90	144			27	27	90		
25	90	90			26	162	253			27	217	144		
25	72	253			26	126	217			27	172	135		
25	54	162			26	126	235			27	172	135		
25	108	72			26	162	199			27	199	153		
25	90	181			26	54	126			27	45	108		
25	126	162			26	108	181			27	63	117		

				AFL				003	OKIGI					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
28	172	208	72	135	29	0	199	54	54	30	54	217	0	108
28	181	235	18	99	29	36	217	72	144	30	36	199	36	108
28	45	162	18	117	29	54	217	54	126	30	144	126	0	108
28	63	199	81	181	29	72	253	72	54	30	126	162	36	144
28	63	208	54	162	29	126	199	54	72	30	36	162	0	72
28	45	190	18	99	29	54	199	108	108	30	18	162	18	90
28	181	226	45	153	29	36	217	54	54	30	144	199	0	126
28	162	217	18	99	29	0	181	90	126	30	144	235	36	72
28	162	253	27	99	29	0	181	54	108	30	54	181	0	144
28	162	244	45	181	29	36	235	54	72	30	54	144	27	108
28	36	190	27	72	29	36	217	72	72	30	126	162	18	90
28	63	208	162	199	29	90	253	0	90	30	108	235	72	126
28	199	226	190	199	29	0	253	90	90	30	36	199	90	90
28	162	244	27	90	29	36	253	0	90	30	18	144	18	108
28	36	181	18	208	29	36	217	90	90	30	126	181	18	108
28	63	199	199	90	29	72	199	0	90	30	144	217	72	90
28	54	208	18	208	29	90	235	72	90	30	54	181	18	90
28	36	162	199	90	29	54	199	0	90	30	18	108	72	126
28	153	226	36	90	29	36	235	90	90	30	126	199	18	126
28	162	226	199	199	29	0	181	0	90	30	144	162	54	108
28	144	208			29	36	162			30	72	181		
28	108	253			29	27	251			30	54	235		
28	0	226			29	72	199			30	54	253		
28	0	172			29	72	217			30	36	235		
28	0	181			29	36	181			30	54	181		
28	0	190			29	27	217			30	54	199		
28	135	271			29	54	217			30	108	272		
28	135	235			29	90	199			30	54	217		
28	135	244			29	18	181			30	72	181		
28	135	271			29	18	235			30	54	217		
28	0	208			29	36	235			30	72	235		
28	0	208			29	90	181			30	72	217		
28	126	199			29	36	162			30	72	199		
28	144	262			29	36	235			30	72	217		
28	0	208			29	54	253			30	54	217		
28	0	190			29	90	199			30	54	235		
28	0	190			29	36	162			30	90	181		
28	0	151			29	36	253			30	36	217		
28	126	280			29	54	217			30	72	253		
28	126	208			29	54	181			30	72	235		


				AFL				003	OKIG					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
31	54	199	18	162	32	0	126	0	126	33	72	181	36	117
31	54	199	18	36	32	0	108	0	54	33	72	135	81	108
31	27	144	18	72	32	90	126	18	72	33	27	72	81	126
31	36	217	18	162	32	108	144	0	72	33	18	117	27	126
31	54	144	18	54	32	90	108	18	72	33	36	126	63	117
31	72	126	18	181	32	90	108	18	144	33	27	72	27	117
31	36	181	18	54	32	0	126	0	90	33	63	126	27	135
31	36	181	18	199	32	0	144	0	90	33	63	162	81	126
31	36	199	18	36	32	90	144	18	108	33	72	135	72	117
31	36	126	18	199	32	90	144	0	72	33	63	63	27	126
31	36	162	72	144	32	0	108	18	36	33	36	126	81	108
31	36	181	36	144	32	0	126	54	90	33	36	181	36	126
31	36	199	54	144	32	108	126	36	18	33	81	162	36	108
31	36	181	36	126	32	126	90	18	90	33	72	108	63	117
31	54	217	72	126	32	0	162	0	36	33	27	54	72	135
31	72	144	18	126	32	0	144	54	90	33	27	117	27	117
31	54	144	18	126	32	0	144	36	36	33	27	144	63	117
31	54	144	72	144	32	0	144	18	72	33	36	81	27	99
31	27	199	54	144	32	108	108	18	126	33	54	126	81	126
31	36	181	18	144	32	108	108	36	36	33	63	162	27	108
31	72	144			32	54	181			33	54	72		
31	90	126			32	54	144			33	27	54		
31	36	126			32	72	144			33	144	135		
31	54	108			32	108	144			33	135	63		
31	90	126			32	126	126			33	153	72		
31	72	126			32	108	126			33	162	126		
31	54	90			32	36	126			33	45	63		
31	54	126			32	72	199			33	54	72		
31	72	162			32	126	126			33	63	72		
31	72	144			32	90	144			33	72	63		
31	36	126			32	54	181			33	181	153		
31	54	144			32	90	162			33	126	81		
31	90	108			32	108	108			33	54	81		
31	108	126			32	90	144			33	36	54		
31	36	144			32	54	199			33	162	126		
31	54	144			32	54	181			33	108	63		
31	36	144			32	54	199			33	36	72		
31	54	144			32	54	162			33	36	54		
31	108	108			32	90	162			33	153	126		
31	90	126			32	108	108			33	126	54		

				AFL				003	OKIG					
Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
34	54	144	36	398	35	0	126	0	72	36	99	262	252	298
34	54	126	36	90	35	0	144	72	0	36	172	253	63	90
34	90	181	36	416	35	36	144	90	54	36	0	235	45	271
34	126	181	36	90	35	18	108	18	0	36	18	217	235	81
34	36	126	54	72	35	0	108	0	90	36	18	262	217	226
34	54	126	54	398	35	0	144	90	0	36	0	217	63	90
34	90	162	36	108	35	36	144	18	72	36	172	226	63	262
34	126	181	36	362	35	27	126	72	0	36	126	208	226	90
34	54	181	36	362	35	0	144	72	0	36	117	226	54	226
34	36	126	36	90	35	0	162	18	72	36	153	226	208	81
34	108	181	36	162	35	36	126	36	307	36	0	253	18	172
34	108	162	54	90	35	18	108	36	54	36	18	226	181	45
34	90	181	36	126	35	27	90	36	90	36	126	217	27	208
34	108	162	72	108	35	36	126	54	325	36	126	208	199	45
34	54	108	36	126	35	0	126	36	289	36	0	253	18	190
34	54	144	54	144	35	0	144	36	90	36	18	226	172	54
34	54	126	36	144	35	0	108	36	271	36	18	235	27	153
34	36	144	54	126	35	0	126	36	90	36	0	235	152	54
34	90	162	36	162	35	54	162	36	54	36	136	235	18	63
34	108	162	72	108	35	36	144	36	217	36	99	226	172	190
34	36	126			35	36	126			36	27	253		
34	36	108			35	36	162			36	27	235		
34	90	108			35	108	162			36	144	208		
34	54	108			35	90	181			36	135	208		
34	36	144			35	90	162			36	27	226		
34	36	108			35	108	144			36	27	244		
34	54	108			35	36	144			36	126	217		
34	54	126			35	36	144			36	126	190		
34	36	90			35	54	144			36	27	208		
34	36	126			35	54	162			36	27	271		
34	36	126			35	126	162			36	126	262		
34	72	126			35	90	162			36	108	217		
34	54	126			35	90	162			36	36	217		
34	72	126			35	108	162			36	27	239		
34	72	126			35	54	144			36	126	244		
34	36	90			35	72	162			36	126	199		
34	36	108			35	36	162			36	27	226		
34	36	90			35	36	144			36	27	253		
34	72	108			35	90	144			36	108	244		
34	72	108			35	108	144			36	117	208		

Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA	Dte	GA	GO	GM	DMA
37	108	126	36	208	38	63	181	18	90	39	36	217	18	172
37	135	181	81	235	38	63	181	27	117	39	27	271	172	54
37	36	90	63	226	38	18	81	27	108	39	162	226	172	244
37	72	126	54	199	38	45	162	18	72	39	135	208	18	54
37	90	135	54	181	38	45	125	27	135	39	36	181	18	208
37	72	90	81	199	38	18	108	18	90	39	36	253	144	63
37	126	199	81	226	38	72	172	18	81	39	144	226	18	181
37	126	144	54	226	38	63	172	18	144	39	135	262	144	54
37	54	135	63	217	38	36	144	18	144	39	18	199	181	54
37	45	108	72	244	38	27	108	18	90	39	18	244	18	162
37	153	190	54	63	38	81	172	45	90	39	144	244	208	244
37	117	162	27	90	38	90	172	72	90	39	135	226	45	90
37	72	135	36	72	38	90	181	90	144	39	36	226	45	271
37	63	90	54	117	38	81	162	36	81	39	36	244	226	81
37	135	181	36	126	38	18	108	36	54	39	144	244	226	81
37	90	144	45	81	38	54	162	90	126	39	135	199	36	262
37	90	153	45	108	38	27	135	45	63	39	135	199	36	253
37	135	208	36	54	38	27	117	72	144	39	153	208	235	90
37	45	90	45	45	38	81	172	45	144	39	36	262	36	253
37	72	162	45	108	38	81	181	81	54	39	45	253	226	90
37	108	235			38	36	153			39	126	181		
37	90	162			38	18	190			39	144	226		
37	36	126			38	18	226			39	18	235		
37	27	181			38	27	90			39	45	262		
37	63	190			38	27	108			39	54	244		
37	45	135			38	18	235			39	36	217		
37	90	181			38	27	208 181			39	162	226 190		
37	81	235			38	36				39	126			
37 37	36 18	172 126			38	45 18	181 190			39 39	126 162	217 226		
37	108	181			38	18	244			39	18	235		
37	108	235			38	27	117			39	36	223		
37	54	172			38	27	153			39	144	235		
37	36	126			38	18	199			39	152	244		
37	72	181			38	18	235			39	27	226		
37	72	217			38	27	108			39	54	217		
37	90	208			38	36	181			39	45	217		
37	90	172			38	18	190			39	27	253		
37	27	126			38	18	244			39	162	226		
37	36	153			38	18	126			39	117	208		

D:	0:		0:1	Ar Liv
Dte	GA	GO	GM	DMA
40	18	126	18	217
40	18	126	63	90
40	144	108	72	199
40	135	63	18	90
40	117	63	81	81
40	162	135	18	199
40	18	144	18	162
40	18	117	63	90
40	27	135	81	190
40	27	108	18	90
40	135	135	54	90
40	172	117	81	90
40	18	135	72	108
40	18	108	45	90
40	144	135	63	126
40	117	81	72	117
40	18	72	63	117
40	18	117	54	126
40	153	152	63	135
40	117	144	72	108
40	81	144		
40	36	172		
40	45	108		
40	45	117		
40	36	126		
40	54	117		
40	54	172		
40	72	144		
40	81 45	108		
40	36	117 172		
40	45	90		
40	36	108		
40	45	117		
40	45	172		
40	72	153		
40	63	153		
40	54	181		
40	63	153		
40	54	108		
.0	5 7	-00		

ANÁLISE			bone volume/bone	bone volume/bone	
3D	BONE VOLUME	BONE SURFACE	surfasse em mm	surfasse em µm	
DENTE 01	8.90242 mm3	321.07339 mm2	0.027727065 mm	27,72707 µm	
DENTE 02	20.13043 mm3	345.12778 mm2	0,058327470 mm	58,32747 µm	
DENTE 03	13.60911 mm3	268.07489 mm2	0,050766080 mm	50,76608 µm	
DENTE 04	14.93721 mm3	342.04779 mm2	0,043669950 mm	43,66995 µm	
DENTE 05	18.15818 mm3	389.26825 mm2	0,046646960 mm	46,64696 µm	
DENTE 06	10.61819 mm3	304.82178 mm2	0,034834090 mm	34,83409 µm	
DENTE 07	6.465290 mm3	214.990020 m2	0,030072510 mm	30,07251 µm	
DENTE 08	17.75018 mm3	362.81502 mm2	0,04892350 mm	48,92350 µm	
DENTE 09	18.01006 mm3	328.83991 mm2	0,05476847 mm	54,76847 μm	
DENTE 10	18.51733 mm3	335.10441 mm2	0.05525839 mm	55,25839 µm	
DENTE 11	15.02300 mm3	343.10640 mm2	0,04378525 mm	43,78525 µm	
DENTE 12	17.65927 mm3	378.09660 mm2	0.04670570 mm	46,70570 µm	
DENTE 13	16.55054 mm3	369.98798 mm2	0.04473264 mm	44,73264 µm	
DENTE 14	11.29119 mm3	315.90558 mm2	0.03574229 mm	35,74229 µm	
DENTE 15	17.00845 mm3	361.64719 mm2	0.04703051 mm	47,03051 μm	
DENTE 16	15.86723 mm3	403.19104 mm2	0.03935412 mm	39,35412 μm	
DENTE 17	16.81233 mm3	367.88515 mm2	0.04569994 mm	45,69994 μm	
DENTE 18	9.699100 mm3	307.64826 mm2	0.03152659 mm	31,52659 µm	
DENTE 19	14.88416 mm3	366.68780 mm2	0,04059082 mm	40,59082 μm	
DENTE 20	15.24615 mm3	323.24528 mm2	0,04716589 mm	47,16589 μm	
DENTE 21	18.14468 mm3	338.33680 mm2	0,05362905 mm	53,62905 µm	
DENTE 22	11.09445 mm3	330.01996 mm2	0,03361751 mm	33,61751 µm	
DENTE 23	6.825320 mm3	182.14778 mm2	0,03747133 mm	37,47133 µm	
DENTE 24	8.082660 mm3	240.00249 mm2	0,03367740 mm	33,67740 µm	
DENTE 25	16.82815 mm3	365.44311 mm2	0,04604862 mm	46,04862 µm	
DENTE 26	20.95023 mm3	408.02392 mm2	0,05134559 mm	51,34559 µm	
DENTE 27	11.68323 mm3	315.00262 mm2	0,03708931 mm	37,08931 µm	
DENTE 28	10.81793 mm3	220.96845 mm2	0,04895690 mm	48,95690 μm	
DENTE 29	10.13472 mm3	233.39567 mm2	0.04342291 mm	43,42291 μm	
DENTE 30	16.03603 mm3	372.70199 mm2	0,04302641 mm	43,02641 µm	
DENTE 31	14.90877 mm3	355.75773 mm2	0,04190709 mm	41,90709 µm	
DENTE 32	12.88500 mm3	366.96000 mm2	0,03511282 mm	35,11282 µm	
DENTE 33	10.02000 mm3	280.48 000mm2	0,03572447 mm	35,72447 µm	
DENTE 34	9.050200 mm3	268.83000 mm2	0,03366514 mm	33,66514 µm	
DENTE 35	6.698100 mm3	233.18000 mm2	0,02872502 mm	28,72502 µm	
DENTE 36	12.58385 mm3	215.58479 mm2	0,05837077 mm	58,37077 μm	
DENTE 37	16.07638 mm3	323.92384 mm2	0,04963012 mm	49,63012 µm	
DENTE 38	8.529010 mm3	214.59609 mm2	0,03974448 mm	39,74448 µm	
DENTE 39	12.20686 mm3	222.78595 mm2	0,05479188 mm	54,79188 µm	
DENTE 40	13.19516 mm3	317.02267 mm2	0,04162213 mm	41,62213 µm	

ANEXO A - PARECER CONSUBTANCIADO DO CEP

FACULDADE DE CIÊNCIAS DA SAÚDE DA UNIVERSIDADE DE BRASÍLIA - CEP/FS-UNB

PARECER CONSUBSTANCIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: Avaliação in vitro da adaptação marginal de coroas de dois sistemas restauradores Lava Ultimate 3M ESPE e IPS Emax CAD fabricadas com o sistema CAD/CAM com dois diferentes modos de captura de imagens: BlueCam e OmniCam.

Pesquisador: ALESSANDRA CRISTINA DE PAULA SILVEIRA

Área Temática: Versão: 2

CAAE: 43445315.0.0000.0030

Instituição Proponente: Faculdade de Ciências da Saúde da Universidade de Brasília

Patrocinador Principal: Financiamento Próprio

DADOS DO PARECER

Número do Parecer: 1.139.972 Data da Relatoria: 08/07/2015

Apresentação do Projeto:

"Resumo:

Com o intuito de escolher um sistema de producao de coroas que possa fornecer uma adaptacao marginal e interna aceitavel, este estudo ira avaliar, in vitro a confeccao de coroa total fabricada com o sistema CEREC CAD/CAM (Sirona, Bensheim, Alemanha), usando dois diferentes metodos de captura de imagem (BlueCam e OmniCam). Dez terceiros molares humanos higidos, extraidos por razoes terapeuticas, serao fixados em pecas plastica (Monta Tudo da Elka), com resina epoxia onde serao realizados 10 preparos convencionais para receber coroas totais de blocos pre-fabricados de LAVA Ultimate 3M ESPE (ceramica em matriz de nano-resina) e IPS e.max CAD (ceramica de dissilicato de litio). Para cada dente preparado, serao fresadas quatro pecas ceramicas, usando dois diferentes scaner intraoral, formando assim quarto grupos: GRUPO OE: Scaner Omnicam com blocos de IPS e.maxCAD, GRUPO OL: Scaner Omnicam com blocos de LAVA Ultimate, GRUPO BE: Scaner BlueCam com blocos de IPS e.maxCAD, e GRUPO BL: Scaner Bluecam com blocos de LAVA Ultimate. Para a avaliacao da adaptacao interna sem ajuste sera realizada a cimentacao de cada coroa em seu respectivo dente com um silicone leve para

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro

Bairro: Asa Norte

CEP: 70.910-900

UF: DF Município: BRASILIA

Continuação do Parecer: 1.139.972

coroa ceramica, que sera assentada com pressao digital sobre seu respectivo dente. O conjunto coroa, silicone e dente sera fixado no dispositivo de Delbons (2007), e uma carga constante de 2 kg por 3 min, sera aplicada simulando a cimentacao. O conjunto sera escaneado em um Microtomografo e a discrepancia marginal sera analisada pelos softwares DataViewer, CTan, CTvol e CTvox. Serao realizadas 12 mensuracoes da espessura de pelicula de silicone, em cada plano (x, y), totalizando 24 mensuracoes por coroa. A microtomografia mostra-se um metodo eficaz na visualizacao e identificacao precisa das distancias criticas e para um numero suficiente de medicoes de folga. Os dados serao submetidos a analise estatistica, para concluir se ha um valor da adaptacao marginal clinicamente aceitavel quando se usa scanner e materiais ceramicos diferentes."

Objetivo da Pesquisa:

"Objetivo Primario:

O objetivo deste estudo e avaliar in vitro, a qualidade da adaptacao marginal e interna de coroas totais obtidas a partir de blocos pre-fabricados de LAVA Ultimate 3M ESPE (ceramica em matriz de nano-resina) e IPS e.max CAD (ceramica de dissilicato de litio) com dois modos de captacao de imagens: scaner Bluecam e scanner Omnicam. A avaliacao sera realizada por meio de microtomografo (micro-CT).

Objetivo Secundario:

Avaliar a integridade do material restaurador na margem da restauracao."

Avaliação dos Riscos e Benefícios:

Foi incluído o seguinte texto para análise de risco:

"Com relação aos riscos decorrentes dessa pesquisa, eles estão associados a possibilidade de risco de exposição da identidade dos participantes da pesquisa. Com intuito de minimizar os mesmos, os dentes cedidos serão codificados impossibilitando a identificação do participantes da pesquisa. Ainda, o nome dos participantes não será utilizado em nenhum momento no desenvolvimento da pesquisa, sendo mantido sigilo rigoroso."

Com relação aos benefícios decorrentes da pesquisa, esses não estão diretamente relacionados ao participante diretamente. A presente pesquisa objetiva identificar a melhor metodologia para captação do preparo dentário de uma coroa total além do melhor material a ser utilizado quanto a adaptação marginal. Dessa forma, os resultados podem ser maximizados para a comunidade a fim de evitar possíveis consequências de uma adaptação marginal inadequada, como carie secundária e consequente fracasso do tratamento restaurador.

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro
Bairro: Asa Norte CEP: 70.910-900

UF: DF **Município**: BRASILIA

Continuação do Parecer: 1.139.972

Comentários e Considerações sobre a Pesquisa:

Trata-se de um projeto de mestrado a ser desenvolvido no HUB, orientado pela Prof. Ana Paula Dias Ribeiro.

Metodologia Proposta:

Serao usados 10 terceiros molares, extraidos por indicacoes terapeuticas, que serao incluidos individualmente em pecas plasticas, preenchidas com resina epoxia. Estes serao identificados e moldados com o silicone de adicao, para a confeccao de guias de orientacao de desgaste para os preparos dentais. Antes de iniciar os preparos, cada dente sera scaneado com o scanner BlueCam e com o scanner OmniCam, para obter a copia biogeneria do dente.O preparo dental para coroa total sera realizado com as pontas diamantadas troncoconicas de extremo arredondado, seguindo todas as recomendacoes necessarias. Durante o preparo dental, as guias de orientacao serao posicionadas para acompanhar e orientar o desgaste. Serao 4 grupos: (n = 10) - Escaner bluecam/e.max (BE)(n = 10) - Escaner OmniCam/e.max(OE)(n = 10) - Escaner bluecam /Lava (BL)(n = 10) - Escaner OmniCam/Lava(OL)As restauracoes ceramicas serao obtidas a partir da fresagem blocos pre- fabricados de LAVA Ultimate 3M ESPE e IPS e.max CAD, com o sistema CAD/CAM Cerec AC. A impressao optica sera realizadas diretamente sobre os dentes preparados para coroa total. Para a captura de imagens usando o Scaner BlueCam, faz-se a aplicacao do spray de dioxido de titanio, em quantidade homogenea em toda a extensao do dente para padronizar a reflexao em todas as areas do dente, permitindo a adequada impressao optica., em seguida faz-se o preparo dental, seguindo as orientacoes necessarias e uma nova imagem dos preparos, usando o Scaner BlueCam, impregnando o preparo dental com spray de dioxido de titanio, para permitir uma adequada impressao optica do preparo. Para a captura de imagens usando o Scaner OmniCam nao ha necessidade do uso do spray de dioxido de titanio. O scaner Omnicam permite o escaneamento das estruturas dos dentes naturais e da gengiva marginal sem o uso do po para contraste. O leitor optico do scanner sera posicionado sobre o dente natural para que a forma exterior da coroa de ceramica seja uma replica da coroa do dente natural a ser restaurado. Apos a copia da forma dental, o dente sera preparado seguindo as orientacoes. O leitor optico do scanner sera posicionado sobre o dente preparado para coroa total, quando a imagem, centralizada na tela do computador, estiver considerada nitida, automaticamente a imagem sera salva digitalmente. Durante a realizacao da impressao optica, o dente preparado, pode ser ligeiramente inclinado ou rotacionado para a obtencao de imagens nas diferentes faces do preparo, com o preparo para coroa total. Apos a captura de imagens pelos scaners, no computador, uma sequencia de etapas sera executada para a construcao digital da restauracao indireta e uma imagem 3D formara na

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro

Bairro: Asa Norte

CEP: 70.910-900

UF: DF Município: BRASILIA

Continuação do Parecer: 1.139.972

tela, onde se podera definir o termino cervical.Os 20 blocos pre fabricados de IPS Emax CAD e 20 blocos pre fabricados de LAVA Ultimate 3M ESPE serao acoplado um a um a fresadora Cerec inlab MC XL e fixado com o aperto do parafuso de fixacao. Com o acionamento da fresagem do sistema, as pontas diamantadas cilindrica realizarao a fresagem dos blocos pre- fabricados sob constante e abundante refrigeracao com jatos de agua. Ao final, a coroa fresada e o restante do bloco serao cuidadosamente removidos da Cerec inlab MC XL onde a coroa fica destacada do restante do bloco, e com o sprue que sera removido com borracha abrasiva em baixa rotacao.As coroas fresadas serao dispostos em um recipiente de plastico com tampa devidamente identificada para evitar fraturas ou trincas. Apos o processo de fresagem, as coroas de IPS Emax CAD serao levadas ao forno Programat EP 300 (Ivoclar Vivadent) para a cristalizacao do bloco. O forno realizara automaticamente a regulacao da temperatura e do tempo de queima. Apos a queima IPS e.max CAD, a cor da coroa que e lilas se aproxima da cor dos dentes naturais. Apos a cristalizacao, as coroas apresentam-se com maior resistencia e serao colocadas nos respectivos dentes para conferencia da adaptacao marginal.

Considerações sobre os Termos de apresentação obrigatória:

Foram utilizados os seguintes documentos para análise das pendências solicitadas no parecer no.1.089.681:

CartaRespPendencias CEPFS- Alessandra-3.doc 24/06/2015

TECLE.docx 24/06/2015

Projeto Alessandra- CEP.docx 24/06/2015

PB_INFORMAÇÕES_BÁSICAS_DO_PROJETO_480449.pdf 25/06/2015

Planilha orçamenato CEPFS 08.2014-2-3.doc 24/06/2015

Recomendações:

Não se aplica.

Conclusões ou Pendências e Lista de Inadequações:

Análise das respostas às pendências apontadas no parecer No. 1.089.681:

Solicita-se adequar:

Pendencia 1: Esclarecer a contradicao entre declaracao de isencao de onus do HUB e o orcamento detalhado com microtomografias.

Foi esclarecido que foi realizada um declaração de isenção de ônus financeiro para o Hospital Universitário de Brasília. Inclui-se no projeto (pag 12, 1º parágrafo) que as microtomografias serão realizadas no Laboratório de Genética e Morfologia do Instituto de Biologia da Universidade de

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro

Bairro: Asa Norte

CEP: 70.910-900

UF: DF Município: BRASILIA

Continuação do Parecer: 1.139.972

Brasília, tendo como pesquisador colaborador o Prof. Dr. Sasha Braun Chaves. Essa parceria foi realizada com o intuito de utilizar esse micro-tomógrafo que é um equipamento multiusuário e estabelecer colaborações entre o Departamento de Odontologia da FS e o IB. PENDÊNCIA ATENDIDA.

Pendencia 2: Detalhar cronograma de execucao no projeto da plataforma. PENDÊNCIA ATENDIDA.

Pendencia 3: Considerando-se que segundo a Resolucao CNS 466/2012, item V, "Toda pesquisa com seres humanos envolve risco em tipos e gradacoes variados". E ainda, em seu item II.22, que risco da pesquisa e a "possibilidade de danos a dimensao fisica, psiquica, moral, intelectual, social, cultural ou espiritual do ser humano, em qualquer pesquisa e dela decorrente", solicita-se explicitar riscos e beneficios, bem como formas de minimizar os riscos nos projetos da Plataforma Brasil e detalhado. PENDÊNCIA ATENDIDA

Pendencia 4: Quanto ao TCLE:

4.a) O TCLE apresentado deve conter consentimento de autorizacao para a coleta, o deposito, armazenamento e utilizacao do material biologico humano atrelado ao projeto de pesquisa específico (Resolucao CNS 441/11, itens 2.II e 6; Portaria MS 2.201/11, Capitulo II, Artigos 5° e Capitulo III, Artigo 8). Solicita-se adequação.

Foi acrescido o seguinte parágrafo ao TCLE: "Se o(a) senhor(a) aceitar em participar da pesquisa estará consentindo na autorização para a coleta, o depósito, armazenamento e utilização do material biológico humano atrelado ao projeto de pesquisa em questão seguindo as normas da Resolução CNS 441/11 (itens 2.II e 6) e Portaria MS 2.201/11 (Capítulo II, Artigos 5° e Capítulo III, Artigo 8).". PENDÊNCIA ATENDIDA

4.b) Segundo o item II.23, da Res. CNS 466/2012, o TCLE e "documento no qual e explicitado o consentimento livre e esclarecido do participante e/ou de seu responsavel legal, de forma escrita, devendo conter todas as informacoes necessarias, em linguagem clara e objetiva, de facil entendimento, para o mais completo esclarecimento sobre a pesquisa a qual se propoe participar", devendo ainda o pesquisador, segundo item IV.1, subitem "b", "prestar informacoes em linguagem clara e acessivel, utilizando-se das estrategias mais apropriadas a cultura, faixa etaria, condicao socioeconomica e autonomia dos convidados a participar da pesquisa". Solicita-se que termos tecnicos como "material biologico", "biorrepositorio" sejam esclarecidos ou simplificado.

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro

Bairro: Asa Norte

CEP: 70.910-900

UF: DF Município: BRASILIA

Continuação do Parecer: 1.139.972

PENDÊNCIA ATENDIDA.

- 4.c) Solicita-se atualizar o horario de atendimento de 10:00hs as 12:00hs e de 13:30hs as 15:30hs, de segunda a sexta-feira, localizado na Faculdade de Ciencias da Saude, Campus Universitario Darcy Ribeiro, Universidade de Brasilia, Asa Norte. PENDÊNCIA ATENDIDA.
- 4.d) Solicita-se retirar campo para preenchimento do nome do participante de pesquisa no primeiro paragrafo do TCLE. PENDÊNCIA ATENDIDA.
- 4.e) Solicita-se informar que ao termino do presente projeto de pesquisa, o material biologico do participante de pesquisa sera destruido. Caso haja previsao para uso futuro, devera ser informado no TCLE que havera novo consentimento apos aprovacao por CEP.
- 4.f) Os termos "doacao", "doador", "doar" devem ser substituidos pelos termo "ceder o uso", "cessao", "cedente", visto que a propriedade do material biologico e SEMPRE do participante de pesquisa. PENDÊNCIA ATENDIDA.

Situação do Parecer:

Aprovado

Necessita Apreciação da CONEP:

Não

Considerações Finais a critério do CEP:

Em acordo com a Resolução 466/12 CNS, ítens X.1.- 3.b. e XI.2.d, os pesquisadores responsáveis deverão apresentar relatórios parcial semestral e final do projeto de pesquisa, contados a partir da data de aprovação do protocolo de pesquisa.

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro Bairro: Asa Norte CEP: 70.910-900

UF: DF Município: BRASILIA

Continuação do Parecer: 1.139.972

BRASILIA, 06 de Julho de 2015

Assinado por: Marie Togashi (Coordenador)

Endereço: Faculdade de Ciências da Saúde - Campus Darcy Ribeiro

Bairro: Asa Norte

CEP: 70.910-900

UF: DF Município: BRASILIA

ANEXO B - TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO TECLE

Termo de Consentimento Livre e Esclarecido - TCLE

Convidamos o(a) Senhor(a) a participar do projeto de pesquisa "Avaliação *in vitro* da adaptação marginal de coroas de dois sistemas restauradores Lava Ultimate 3M ESPE e IPS Emax CAD fabricadas com o sistema CAD/CAM com dois diferentes modos de captura de imagens: BlueCam e OmniCam", sob a responsabilidade do pesquisador Alessandra Cristina de Paula Silveira. O projeto é referente ao Mestrado da aluna juntamente a UnB e tem como objetivo medir a adaptação de coroas (blocos) fabricadas com cerâmica (porcelana) e resina.

O(a) senhor(a) receberá todos os esclarecimentos necessários antes e no decorrer da pesquisa e lhe asseguramos que seu nome não aparecerá sendo mantido o mais rigoroso sigilo pela omissão total de quaisquer informações que permitam identificá-lo(a)

A sua participação se dará por meio da cessão de seus 3º molares (dente ciso) após o procedimento cirúrgicos que o(a) senhor(a) irá realizar no Hospital Universitário de Brasília. A pesquisa não requer nenhum procedimento adicional, que poderia lhe causar qualquer dano físico. Caso o(a) senhor(a) apresente algum dente ciso que tenha indicação de extração, e que queira ceder para a presente pesquisa, os dentes serão coletados apos o procedimento cirúrgico e armazenados ate o inicio da pesquisa. Durante a pesquisa, os dentes serão usados para fabricar coroas de porcelana e resina, que serão depois avaliadas para medir a adaptação desses restaurações. Se o(a) senhor(a) aceitar em participar da pesquisa estará consentindo na autorização para a coleta, o depósito, armazenamento e utilização do material biológico humano atrelado ao projeto de pesquisa em questão seguindo as normas da Resolução CNS 441/11 (itens 2.II e 6) e Portaria MS 2.201/11 (Capítulo II, Artigos 5° e Capítulo III, Artigo 8).

Os riscos decorrentes de sua participação na pesquisa são estão associados a possibilidade de exposição da identidade dos participantes da pesquisa. Para garantir seu anonimato em quaisquer formas de divulgação das informações ou resultados associados ao seu dente utilizado, os dentes cedidos serão codificados impossibilitando a identificação do participantes da pesquisa. O nome dos participantes não serão utilizado em nenhum momento no desenvolvimento da pesquisa, sendo mantido um rigoroso sigilo. Se você aceitar participar, estará contribuindo para identificar qual melhor técnica e material para se fabricar coroas e assim evitar possíveis consequências cárie secundária, acúmulo de alimentos, doenças gengivais e consequente fracasso das restaurações.

Informamos que o (a) Senhor (a) poderá se recusar a ceder o uso de seus dentes, sem qualquer prejuízo ao atendimento realizado na unidade. Além disso, poderá retirar a guarda do dente a qualquer tempo e sem nenhum prejuízo. O seu dente ciso será armazenado ao longo da execução da pesquisa dentro das normas técnicas definidas sob a responsabilidade do pesquisador sem fins comerciais, sendo que após a pesquisa todos os dentes serão destruídos. Ainda, caso exista uma nova pesquisa que necessitará de seu dente, o senhor(a) será contatado para formalizar um novo consentimento específico, após a aprovação da nova pesquisa pelo Comitê de Ética em Pesquisa.

Sua participação é voluntária, isto é, não há pagamento por sua colaboração. Todas as despesas que você tiver relacionadas diretamente ao projeto de pesquisa (tais como, passagem para o local da pesquisa, alimentação no local da pesquisa ou exames para realização da pesquisa) serão cobertas pelo pesquisador responsável. Caso haja algum dano direto ou indireto decorrente de sua participação na pesquisa, você poderá ser indenizado, obedecendo-se as disposições legais vigentes no Brasil.

Os resultados da pesquisa serão divulgados na Universidade de Brasília podendo ser publicados posteriormente. Os dados e materiais serão utilizados somente para esta pesquisa e ficarão sob a guarda do pesquisador por um período de cinco anos, após isso serão destruídos.

Se o(a) Senhor(a) tiver qualquer dúvida em relação à pesquisa, por favor telefone para: Alessandra Cristina de Paula Silveira, na Universidade de Brasília (UnB) no telefone (61) 84471478 ou (61) 33827494, no horário das 8:00hs às 12:00 e de 14:00 às 18:00, ou através do e-mail alessandradipaula@gmail.com

Este projeto foi Aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Ciências da Saúde (CEP/FS) da Universidade de Brasília. O CEP é composto por profissionais de diferentes áreas cuja função é defender os interesses dos participantes da pesquisa em sua integridade e dignidade e contribuir no desenvolvimento da pesquisa dentro de padrões éticos. As dúvidas com relação à assinatura do TCLE ou os direitos do participante da pesquisa podem ser esclarecidos pelo telefone (61) 3107-1947 ou do e-mail cepfs@unb.br ou cepfsunb@gmail.com, horário de atendimento de 10:00hs às 12:00hs e de 13:30hs às 15:30hs, de segunda a sextafeira. O CEP/FS se localiza na Faculdade de Ciências da Saúde, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte.

Este documento foi elaborado em duas vias, uma ficará com o pesquisador responsável e a outra com o Senhor(a).

Nome / assinatura					
,					
Degavised on Degrapativel					
Pesquisador Responsável					
Nome e assinatura					
Brasília, dede					
Di asilia, utut					