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RESUMO

Com a crescente demanda por serviços de vídeo, técnicas de compressão de vídeo tornaram-se

uma tecnologia de importância central para os sistemas de comunicação modernos. Padrões para

codi�cação de vídeo foram criados pela indústria, permitindo a integração entre esses serviços e

os mais diversos dispositivos para acessá-los. A quase totalidade desses padrões adota um mod-

elo de codi�cação híbrida, que combina métodos de codi�cação diferencial e de codi�cação por

transformadas, utilizando a compensação de movimento por blocos (CMB) como técnica central

na etapa de predição. O método CMB tornou-se a mais importante técnica para explorar a forte

redundância temporal típica da maioria das sequências de vídeo. De fato, muito do aprimora-

mento em termos de e�ciência na codi�cação de vídeo observado nas últimas duas décadas pode

ser atribuído a re�namentos incrementais na técnica de CMB. Neste trabalho, apresentamos um

novo re�namento a essa técnica.

Uma questão central à abordagem de CMB é a estimação de movimento (EM), ou seja, a

seleção de vetores de movimento (VM) apropriados. Padrões de codi�cação tendem a regular

estritamente a sintaxe de codi�cação e os processos de decodi�cação para VM's e informação de

resíduo, mas o algoritmo de EM em si é deixado a critério dos projetistas do codec. No entanto,

embora praticamente qualquer critério de seleção permita uma decodi�cação correta, uma seleção

de VM criteriosa é vital para a e�ciência global do codec, garantindo ao codi�cador uma vantagem

competitiva no mercado. A maioria do algoritmos de EM baseia-se na minimização de uma função

de custo para os blocos candidatos a predição para um dado bloco alvo, geralmente a soma das

diferenças absolutas (SDA) ou a soma das diferenças quadradas (SDQ). A minimização de qualquer

uma dessas funções de custo selecionará a predição que resulta no menor resíduo, cada uma em

um sentido diferente porém bem de�nido.

Neste trabalho, mostramos que a predição de mínima dispersão de resíduo é frequentemente

mais e�ciente que a tradicional predição com resíduo de mínimo tamanho. Como prova de con-

ceito, propomos o algoritmo de duplo critério de correspondência (ADCC), um algoritmo simples

em dois estágios para explorar ambos esses critérios de seleção em turnos. Estágios de minimiza-

ção de dispersão e de minimização de tamanho são executadas independentemente. O codi�cador

então compara o desempenho dessas predições em termos da relação taxa-distorção e efetivamente

codi�ca somente a mais e�ciente. Para o estágio de minimização de dispersão do ADCC, propo-

mos ainda o desvio absoluto total com relação à média (DATM) como a medida de dispersão a ser

minimizada no processo de EM. A tradicional SDA é utilizada como a função de custo para EM no

estágio de minimização de tamanho. O ADCC com SDA/DATM foi implementado em uma versão

modi�cada do software de referência JM para o amplamente difundido padrão H.264/AVC de cod-

i�cação. Absoluta compatibilidade a esse padrão foi mantida, de forma que nenhuma modi�cação

foi necessária no lado do decodi�cador. Os resultados mostram aprimoramentos signi�cativos com

relação ao codi�cador H.264/AVC não modi�cado.



ABSTRACT

With the ever growing demand for video services, video compression techniques have become a

technology of central importance for communication systems. Industry standards for video coding

have emerged, allowing the integration between these services and the most diverse devices. The

almost entirety of these standards adopt a hybrid coding model combining di�erential and trans-

form coding methods, with block-based motion compensation (BMC) at the core of its prediction

step. The BMC method have become the single most important technique to exploit the strong

temporal redundancy typical of most video sequences. In fact, much of the improvements in video

coding e�ciency over the past two decades can be attributed to incremental re�nements to the

BMC technique. In this work, we propose another such re�nement.

A key issue to the BMC framework is motion estimation (ME), i.e., the selection of appropriate

motion vectors (MV). Coding standards tend to strictly regulate the coding syntax and decoding

processes for MV's and residual information, but the ME algorithm itself is left at the discretion

of the codec designers. However, though virtually any MV selection criterion will allow for correct

decoding, judicious MV selection is critical to the overall codec performance, providing the encoder

with a competitive edge in the market. Most ME algorithms rely on the minimization of a cost

function for the candidate prediction blocks given a target block, usually the sum of absolute

di�erences (SAD) or the sum of squared di�erences (SSD). The minimization of any of these cost

functions will select the prediction that results in the smallest residual, each in a di�erent but well

de�ned sense.

In this work, we show that the prediction of minimal residue dispersion is frequently more

e�cient than the usual prediction of minimal residue size. As proof of concept, we propose the

double matching criterion algorithm (DMCA), a simple two-pass algorithm to exploit both of

these MV selection criteria in turns. Dispersion minimizing and size minimizing predictions are

carried out independently. The encoder then compares these predictions in terms of rate-distortion

performance and outputs only the most e�cient one. For the dispersion minimizing pass of the

DMCA, we also propose the total absolute deviation from the mean (TADM) as the measure of

residue dispersion to be minimized in ME. The usual SAD is used as the ME cost function in the

size minimizing pass. The DMCA with SAD/TADM was implemented in a modi�ed version of

the JM reference software encoder for the widely popular H.264/AVC coding standard. Absolute

compliance to the standard was maintained, so that no modi�cations on the decoder side were

necessary. Results show signi�cant improvements over the unmodi�ed H.264/AVC encoder.
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Chapter 1

Introduction

The ever increasing demand for video data calls for higher and higher video coding e�ciency.

Video compression relies on a combination of many techniques devised to remove the inherent

redundancy typically found in video signals. Of these techniques, motion compensation usually

stands out as one of the most important. After a brief review on video coding concepts, we propose

a new approach to motion compensation. This chapter gives a quick overview on the subject and

provides a road map to this manuscript.

1.1 Video Coding

Transmission or storing of raw video data is mostly infeasible for many applications. The

bandwidth or storing devices requirements for many services we take for granted today, such as

YouTubeTMor �lm distribution through Blu-ray DiscsTM, would be quite simply prohibitive if raw

video data was to be assumed [1]. More than a simple improvement, video compression techniques

are an enabling technology.

In addition to the continuous development of increasingly e�cient video compression tech-

niques, the development of industry standards has also been critical to the widespread adoption

of video technology. The importance of standardization cannot be overemphasized. It allows for

the interoperability of a multitude of devices with di�erent resources or from di�erent manufac-

tures, enabling the processing, transmission, and displaying of video data from a wide range of

possible sources by a wide range of potential users. Of course, standards allow some �exibility to

accommodate competition and are continuously revised to avoid sti�ing of compression technolo-

gies. Nonetheless, conformance to well established standards can be decisive for the success of new

techniques since it dictates the cost of adapting already deployed equipment.

Video signals, despite its own idiosyncrasies, are most easily understood as time sequences

of correlated pictures or frames. As such, many lossy and lossless image compression techniques

present themselves as viable tools to video compression. In fact, for example, the block-based

DCT transform coding framework of the successful JPEG [2] standard for image coding is also

found at the core of many modern video coding standards [1, 3]. However, those techniques by
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themselves are not enough to provide the compression rates needed in most applications. The

key to high quality video at accessible bit-rates lies in the high correlation present in most video

signals between frames in the time dimension. Not only does this correlation allows highly e�cient

inter-frame predictions for a di�erential coding framework, the way the human brain exploits this

temporal correlation to process visual information also allows us to get away with discarding a lot

of the numerical information, without hurting the video quality perceived by the end user [3]. Video

data is intended, after all, to be analysed or enjoyed by human consumers in most applications.

Several techniques have been developed over the years to exploit the temporal redundancy so

characteristic of video signal, of which block-based motion compensation (BMC) is arguably the

most successful [4, 5]. Most modern video coding standards o�er support for BMC. In fact, most

of these standards adopt a hybrid coding model with BMC at its core. In this hybrid framework,

a prediction of each frame to be coded is formed with BMC, based on previously coded frames.

The resulting residual, the di�erence between the target frame and its prediction, is then transform

coded with a block DCT transform. Much of the improvements in video compression e�ciency over

the past two decades can be directly attributed to successive re�nements to the BMC technique.

It is in this context that our own work is inserted. We propose a new such re�nement.

To form its predictions, BMC starts by dividing each target frame into several blocks of �xed

size. For each target block, a previously coded frame is then searched for a matching block to serve

as its prediction. This matching operation itself is known as motion estimation (ME). Finally, the

encoder outputs the motion vector (MV) for the selected prediction block, its relative displacement

with respect to the target block. The resulting residual block is used to compose the residual frame,

which will be subsequently transform coded. At the decoder side, the frames used for prediction

will have already been decoded by the time the MV's for the next frame is received. These MV's

can then be used to reconstruct the predicted frame. Also in possession of the residual frame, the

decoder can then recover the intended target frame.

Observe that the whole decoding operation is entirely transparent to the actual MV selection

process. That is, given a set of MV's, if they are encoded together with an appropriately formed

residual frame, the decoder can successfully recover the intended target frame even if the MV's

are selected at random. Evidently, however, judicious MV selection leads to MV sets and residual

frames that can be more e�ciently encoded, providing the encoder with a competitive edge on

the market. Therefore, most video coding standard tend to regulate only the encoding syntax and

the decoding processes for MV's and residual frames. The actual ME algorithms are let at the

discretion of the designers, thus fomenting competition and innovation all while promoting the

desired interoperability in compliant systems.

There are two key issues to the ME operation, namely, the de�nition of a match and the search

algorithm. A match is de�ned in terms of a matching criterion, which is usually the minimization

of a cost function, also referred to as the distortion measure between the prediction and target

blocks. The search algorithm then tests a number of candidate blocks and selects the one that

minimizes the prede�ned distortion measure to be the actual prediction block to the given target.

The most straight forward strategy is a full search (FS) algorithm, wherein every single one of all
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possible candidate blocks within a given search area is tested with respect to each given target

block in each target frame in terms of the selected distortion measure [4, 7]. While the FS algorithm

is guaranteed to reach the smaller residue within the constraints of the search area, it might be

too computationally expensive for many applications, especially in situations requiring real time

coding. The are several algorithms designed to o�er di�erent levels of trade-o� between prediction

optimality and computational requirements [4, 8]. Our focus within this work, however, lies on the

distortion measures and matching criteria.

1.2 Objectives: Minimal Dispersion Matching Criteria for ME

Some of the most popular matching criteria are the minimization of the sum of squared di�er-

ences (SSD) and the minimization of the sum of absolute di�erences (SAD), possibly weighting

the cost for encoding the appropriate motion vector [6]. The SSD and the SAD are both functions

of the residual alone, i.e., they both depend only on the di�erence between the prediction and

target block, but not on their actual values individually. Both of these cost functions are directly

related to well de�ned notions of distance, the L2 and the L1 norms, respectively. Therefore, the

minimization of any of them will result in a residual that is the smallest possible, each in a di�erent

but well de�ned sense.

In this work, we argue that, instead of always choosing the prediction of smallest residual, it

is sometimes more e�cient to chose the prediction that results in the residual most concentrated

around a central value, even if it may result in a large residual. A value around which a collection of

values tend to cluster is known as a central tendency of those sample values. Common measures of

central tendency include the mean, the median, and the mode. The spread of these values around

their central tendency is known as their dispersion. The most common measure of dispersion is

the mean squared deviation from the mean, also know as the variance, but several others can be

de�ned. In other words, in this work, we argue that the prediction of minimal residue dispersion

is sometimes more e�cient than the usual prediction of smallest residue.

There is a strong precedent for ME with minimal residue dispersion. However, it has gone

largely unnoticed in these terms, since it was given a very di�erent interpretation. In 2012, Blasi

et al. proposed the enhanced inter-prediction (EIP) method to improve the BMC approach [9].

Their method consisted in transforming the candidate blocks with an invertible parametric trans-

formation to better match the target block, only then comparing the candidate and target blocks in

terms of the SAD or in terms of the SSD. For each candidate, the parameters of the transformation

are optimized to that end. The parameters used for the winning block are then sent along with the

respective residue and motion information to the decoder over the bitstream, so that it can invert

the transformation. The premise behind EIP is that the extra bits spent coding the parameters of

the transformation are o�set by a smaller residue, which would require fewer bits to code.

As a proof of concept for the EIP, Blasi et al. also proposed the shifting transformation (ST) [9].

It consisted in a single parameter transformation which itself consisted in uniformly adding a single

constant to each block. For each block, the constant was optimized in the sense of minimizing the
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resulting residual after the comparison with the target block. They also devised an algorithm to

compute the optimal shift if the SAD is used as a measure of the residual and provided a closed

solution to the problem if the SSD is used instead. Their implementation of EIP with ST in the

H.264/AVC standard using the JM reference software [10] with the SAD metric showed signi�cant

gains over the base encoder [9]. In our work, however, rather than in its precise value, we are more

interested in a particular interpretation of the optimal shift.

In theory, a very wide range of invertible parametric transformations would be suitable for the

EIP approach. However, for the EIP to be e�ective, the residuals must frequently be smaller enough

to compensate for the cost of encoding the optimal parameters for every coded block. Actually,

then, it is not immediately obvious if there is any transform suitable for the EIP approach at all.

Taking that into account, it is rather remarkable that the shifting transformation can improve

coding e�ciency as much as shown in experiments [9]. Therefore, an insight on why EIP with ST

works might provide useful insight on the general matching criterion de�nition problem.

We show that, although it keeps the SAD or the SSD as a measure of distortion between

the transformed candidate block and the target block, the EIP approach changes the matching

criterion on its essence. In fact, in the case of the EIP with ST, the distortion measure itself is

fundamentally changed. The minimization of the SAD or of the SSD for the transformed candidate

blocks, given the target, results in the smallest residual possible. In general, it is always smaller

than or equal in size to the usual residual, since the usual prediction blocks themselves are also

accounted for with a zero shift parameter. That is, in terms of the transformed candidate blocks,

it would seem that nothing changed in the matching criterion, except that more candidate blocks

are tested due to the various possible values of the shifting parameter. In terms of the original

candidate block, however, the shifted SAD and SSD are no longer measures of size in any sense.

They do still have an interesting interpretation, though.

What we show in this work is that, irrespectively of whether the SAD or the SSD is used,

the optimal shift parameter is a function of the residual alone, as are the SAD and the SSD

themselves. Therefore, instead of testing a larger set of candidate blocks in terms of the usual

distortion functions, the EIP with ST e�ectively tests the same set of candidates in terms of a

completely di�erent distortion function. Although not immediately clear in the original work on

the EIP with ST by Blasi et al., the optimum shift parameter in the case of SAD distortion measure

is simply the negative median of the residual block, as we show later in this work. The SAD of

the residual block shifted by its negative median is simply the absolute deviation of the residual

from its median value, a measure of dispersion, much like the variance. In the case of the SSD

distortion measure, as shown already by Blasi et al. in their original work, the optimum shift is

simply the negative mean of the residual. The SSD of the residual block displaced by its mean is

also another measure of dispersion, actually proportional to the variance itself. In other words, in

the EIP with ST approach, the matching criterion is changed so that, instead of searching for the

prediction of smallest residue, the encoder actually searches for the prediction of minimal residue

dispersion.

Our goal is to show the e�ectiveness of motion estimation with minimal residue dispersion
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matching criteria in the BMC framework. Although we believe that the EIP with ST already

lends strong testimony to that end, we provide further proof of concept while overcoming the

most important shortcoming of the EIP approach, namely, the need to code and transmit the

optimum shift parameter separately, which renders it non-compliant to established video coding

standards. We devise a two-pass motion estimation algorithm combining both dispersion measures

and distance measures. It is implemented it in the widely popular H.264/AVC standard, with

extensive testing showing signi�cant improvement in coding performance. The generated bitstream

is made fully compliant to the standard, meaning that the proposed technique can be implemented

in an H.264/AVC coding system without the need to upgrade or replace decoders.

1.3 Manuscript Organization

The remaining of this work is organized as follows. In Chapter 2, video coding concepts

and techniques, including the EIP, are discussed in greater detail. In Chapter 3, we present our

proposed algorithm and its development with heuristic considerations over the EIP with ST leading

to dispersion measures as matching criteria for ME. In Chapter 4, we show some comparative results

demonstrating the gains in coding e�ciency achieved with the proposed algorithm. Finally, we

conclude our work in Chapter 5.
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Chapter 2

Video Coding

Video data can be viewed as a temporal sequence of images, which allows for a wide range of

image compression techniques and concepts to be adapted to video compression. In most video

sequences, however, these images are highly correlated to their temporal neighbours. Techniques

developed to exploit this temporal correlation between frames are collectively known as inter frame

coding. In this chapter, we brie�y review some of the most important concepts and techniques in

video compression, with particular attention to one such inter frame coding technique known as

block-based motion compensation.

2.1 Video Coding Concepts

Digital video sequences may arise form several processes such as computer animations or the

digitalization of natural or �real world� scenes. Either way, a digital video signal can be viewed as

a temporal sequence of still images, known as frames in this context. Each frame is a rectangular

array of color samples known as pixels, as illustrated in Figure 2.1. If each frame consists of N

lines by M columns of pixels, it is said the video sequence has N ×M resolution. These frames

are supposed to be displayed at a �xed rate known as the temporal resolution or simply the frame

rate, measured in frames per second (fps), to create the illusion of motion. The duration of a video

sequence is the amount of time required to reproduce the video sequence at the required frame

rate.

When we speak of a video signal or sequence, we are usually referring to a representation of

the signal suitable for immediate display, that is, a 3-dimensional array of pixels, whose colors are

coded with a �xed amount of bits known as depth. Finally, the size of a video sequence refers to

the amount of bits required to represent it. For example, 10 seconds of a 128×96 resolution video

sequence at 30 fps with 24 bits per pixel for color coding has size 10×30×128×96×24 = 88473600

bits, or about 11MB. We might also refer to the bit rate of the signal, which is usually the amount

of bits per second required to represent the sequence, but might also refer to the amount of bits

per frame or per pixel.

The ultimate goal of video compression is the e�cient representation of a digital video sequence.
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A video compression system is actually composed by two complementary systems, an encoder and

a decoder, also collectively referred to as a CODEC pair, or simply a codec. The input to the

encoder is a digital video sequence X . It produces a representation Y of this video sequence,

better suitable for storage or transmission, known as the bitstream. The bitstream is the input to

the decoder, whose output is a reconstruction X̂ of the original sequence. The process is illustrated

in Figure 2.2.

Video compression is usually lossy, which means we usually allow for X̂ 6= X [12, 3, 1]. There-

fore, the performance of a video compression system is measured both by the bit savings of the

representation Y over the representation X and by how well the reconstruction X̂ approximates

the original sequence X .

Assessment of compression performance is straightforward in terms of RY and RX , the rates of

the compressed and uncompressed signals, respectively. The quality of the reconstruction, however,

is quite an elusive concept, since video sequences are mostly intended to be ultimately appreciated

or analysed by human viewers [3]. Ideally, a measure of quality should convey this rather subjective

notion of quality in the minds of the intended audience. Such a measure is very hard to devise, so

we usually get by de�ning a more mathematically tractable measure of distortion D = f(X̂ −X ), a

function of the di�erence between the reconstructed and original signals, such as the signal-to-noise

ratio or the mean square error [3]. It is assumed that the smaller the distortion the higher the

quality of the reconstruction.

The performance of the compression system for a given sequence X is then given by the achiev-

able rate RY at a given distortion D or, alternatively, by the achievable distortion DX̂ at a given

Spacia
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Figure 2.1: Video signals sampling scheme.
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Figure 2.2: Encoding/decoding process.

rate R, as illustrated in Figure 2.3. The fundamental limits on the performances attainable in this

sense by any lossy compression scheme are given by the rate-distortion theory [13, 3], a sub-�eld of

information theory. Given a source S and its probability model, we de�ne the rate-distortion func-

tion RS(D) as the lowest possible rate to describe it with distortion at most D. The distortion-rate

function DS(R) is analogously de�ned. In theory, RS(D) or DS(R) are the milestones to which

RY(D) or DX̂ (R) should be compared. In practice, however, it is very hard to devise satisfactory

probability models to complex sources such as video and, even given one, RS and DS are notori-

ously di�cult to evaluate for all but a few simple probability models. Nonetheless, rate-distortion

theory does provide insight for practical lossy coding.

Rate (R)
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Figure 2.3: Rate-distortion operations points points for �xed sequence and �xed codec at di�erent con�guration

options. The convex hull delineated in the plot indicate the achievable rate-distortion performance for this given

codec-sequence pair.
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2.2 Video Coding Techniques

As with any data compression scheme, video compression is achieved by removing the redun-

dancy inherent to video data [3]. Statistical redundancy can be removed or mitigated with lossless

entropy coding methods [13, 12]. Perceptual or subjective redundancy can be removed by lossy

compression methods [3, 1]. These methods may incur in some data loss since they invariably

employ one form or another of quantization, an irreversible operation. However, far greater com-

pression is possible with lossy compression. For sound or image compression, for example, there

are several clever methods exploiting psychoacoustic or psycho-visual phenomena to selectively

discard data to which the human brain is less sensitive, allowing for a very good trade-o� between

compression and quality perceived by the end user [3]. In fact, for video coding at a �xed bit rate,

if the sampling scheme is allowed to change, it is possible that a greater quality is perceived by

the end user with lossy compression methods, since it allows for higher resolutions and frame rates

than those of a losslessly coded sequence at the same bit rate [1].

Structure inherent to most signals of interest, which manifest itself in the form of highly corre-

lated samples, can be exploited to improve lossless entropy coding. For most signals, however, this

structure is very di�cult to grasp in a probability model, required for direct applications of entropy

coding methods. Instead, it is usually preferable to produce a new, less correlated representation of

the data, in which its structure is described in a way that makes it amenable to the usual entropy

coding. Di�erential coding and transform coding are two widely popular classes of methods to

devise such representations [3]. Furthermore, the structure revealed by these representations can

often enable a more e�cient trade-o� between rate and distortion in lossy coding methods. Video

codecs employ methods in both classes to remove both temporal correlation and spatial correlation,

typical of video data.

Di�erential coding, often also referred to as di�erential pulse code modulation or DPCM [12],

works by producing a prediction of a value or set of values to be coded. The encoder then forms

a residual, the di�erence between the values to be coded and the prediction. The residual is then

coded, together with any information necessary for the decoder to reproduce the same prediction.

In face of lossy encoding, since the prediction formed at the decoder uses only past decoded values

to form the prediction, the encoder must implement a decoding loop itself so that it can produce its

predictions in synchrony with the decoder. Otherwise, the lost synchrony at the decoder produces

a cumulative error e�ect known as drifting [3].

Transform coding works by encoding a transformed representation of the values to be coded.

The transformation must be invertible, so that the decoder can recover the original values, or an

approximation of the original values in the case of lossy compression. For image compression, for

example, the selected transform might operate in the whole image, as in the case of the wavelet

transform used in JPEG2000 [14], or in blocks of pixels, as in the case of the block DCT used in

JPEG [2].
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2.2.1 Intra Coding and Inter Coding

Since we can view a video signal as a temporal sequence of still images, a host of image

compression techniques become readily available as tools for video compression as well. In fact,

some compression can be obtained by representing a video sequence as a series of independently

compressed still images, removing redundancy due to spacial correlation between samples within

each frame. This approach is known as intra coding. Intra coding can only achieve a limited

amount of compression, however, since it overlooks a great deal of correlation typically present

in the temporal domain in most video signals. Techniques that exploit this temporal correlation,

taking advantage of information present in preciously coded frames to improve the compression of

frames to be coded are collectively know as inter coding.

Both di�erential coding and transform coding are suitable techniques for either intra coding or

inter coding. Prediction formed in the intra coding framework is also known as intra-prediction,

while prediction techniques for inter coding are also known as inter-prediction. We refer to a

frame coded exclusively with intra coding techniques as an intraframe, and to a frame that uses

inter-prediction techniques, exclusively or not, as an interframe.

Most video codecs today employ both inter and intra coding techniques. Though inter coding

allows for greater compression, the periodic insertion of intraframes in the stream can add some

bene�ts. For example, it can avoid to some extent the propagation of decoding errors in time

and it also allows the access to the video content at random points in time without the need to

decode the entire sequence up to the desired point. Moreover, even in interframes, it might be

more e�cient to code some areas with intra coding techniques.

2.2.2 Block Motion Compensation

In this work, our focus lies in inter coding. In particular, we focus in an inter-prediction

technique known as block motion compensation (BMC) [1]. In the basic BMC approach, a frame

to be coded is divided in non-overlapping blocks of �xed size. For each block, a prediction is formed

by selecting a matching block in the previous frame. Note that the prediction need not conform to

the grid induced by the �xed size blocking. The encoder then forms a residual block and encodes

it together with the o�set between the position of the target block to be encoded and the position

of its prediction. This o�set is known as a motion vector (MV). The matching operation itself, or

MV selection, is known as motion estimation (ME).

Some commonly used extensions to this method include optional block splitting for more lo-

cally adaptive predictions [15], non-integer MV's to allow for closer matches from interpolated

frames [16], and multiple reference frames to better model long term correlations in time [17]. We

cover BMC in greater detail later in this chapter, including the precise de�nition of a �match� and

some common algorithms for ME.
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2.2.3 Hybrid Coding

Most major video codecs developed since the early 90's share a basic model known as hybrid

DPCM/DCT coding for inter coding. This model consists in a predictive step with BMC to form

a residual frame, which is then transform-coded with a block DCT. The motion compensated

prediction step promotes decorrelation in the time domain. The subsequent DCT step, besides

promoting further decorrelation in the spacial domain, also allows for more e�cient quantization,

taking advantage of the energy compacting properties of the DCT as well as the fact that video

signals are usually intended to be consumed by human viewers. Since it is known that the human

visual system is less sensitive to high frequency information [3], higher frequency AC coe�cients of

the residue DCT can usually be more aggressively quantized without great degradation of perceived

quality to the end user [1], resulting in a better trade-o� between rate and quality. The quantized

residue DCT coe�cients are then entropy coded and �nally written in the bitstream. Figures 2.4

and 2.5 summarizes the hybrid encoding and decoding process, respectively. Observe the decoding

loop in the encoder size to avoid drifting.

Quantization

RescalingIDCT

DCT

Motion
Estimation

Reconstructed
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Entropy
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Figure 2.4: Hybrid encoder.

Decoded
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Entropy
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Bitstream
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Decoded
Sequence

Figure 2.5: Hybrid decoder.

This hybrid coding scheme is not exclusive to inter coding. In fact, some codecs also employ

hybrid coding for intra coding [11]. In this case, intra-prediction techniques are used for the

di�erential step.

2.2.4 Rate Distortion Optimization

Video signals vary greatly in the form of its content. Not only between di�erent sequences but

also within particular sequences themselves or even in a single frame. Clearly, no single coding

technique can e�ciently compress general video sequences. Instead, video codecs usually equip

the encoder with an arsenal of coding techniques so that it can locally adapt to varying spatio-

11



temporal characteristics such as texture, movement, and variations in illumination conditions. The

bitstream is then formatted so that these local adaptations can be signalled to the decoder, which

usually lacks the information or the computational power to reliably infer them.

For example, for each block in an interframe, an encoder might be able to chose between intra

prediction or inter prediction. In the �rst case, it must then decide between several methods usually

available for intra prediction. In the second case, several forms of splitting of this fundamental

block might be allowed for a �ner grained motion estimation. Some times, for example, instead

of sending one MV and a 16×16 residual block, it might be more e�cient to send four MV's with

four 8×8 residual blocks. There is a clear trade-o� between the extra bits needed to code the three

extra MV's and the smaller residual one expects from this �ner motion estimation. In other words,

a hybrid encoder can usually select from a range of prediction modes for the DPCM step. Local

decisions about block transform sizes and quantization scheme for the DCT coding step are also

allowed for some codecs.

All these decisions taken at the encoder side must be coded into the bitstream. Once this

information is received, the decoder can readily reconstruct each block to the desired approxima-

tion. At the encoder, however, the issue of e�ciently making these decisions is a complicated

and fundamentally important one. A sensible way to approach this decision problem is through

rate-distortion optimization.

As stated before, the best performance achievable by any video codec is given by the distortion-

rate function. Even though we cannot usually evaluate the distortion-rate function, it makes

sense to state the mode decision problem and other related parameter selection problems so as to

approach it as close as possible when given a particular codec. So we state the decision problem,

or parameter selection problem, in terms of the minimization of the overall distortion D subject

to the restriction of the rate R to an overall bit budget Ro:

minD s.t. R ≤ Ro, (2.1)

in which the minimization is carried out over all possible combinations of decisions along the coding

process of the entire sequence. In practice, however, not only this minimization is infeasible, it

might also be undesired in common scenarios where a frame must be coded without access to

future frames or where the rate must be tightly controlled to �t a limited channel capacity at all

times, not only on a global average [18]. Instead, the optimization is usually carried out locally

for each single decision or a small set of related decision taken together, i.e., most of the time, the

optimization is carried out over the possible outcomes of each decision with D and R evaluated

only for the limited regions immediately a�ected by that particular decision such as a single block

or even a sub-partition of a block [19, 20].

In this local approach, however, problem (2.1) might have no meaningful solution if the con-

straint R ≤ Ro cannot be achieved by the particular decision being locally considered, so we

perform the minimization of its Lagrangean R-D cost function J instead [20]:
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min J , J = D + λR, (2.2)

in which λ is known as a Lagrange multiplier and the minimization is carried out locally for each

decision. Besides being always well de�ned, the minimization of the cost J also has an interesting

interpretation as the joint minimization of D and R, with λ as a design parameter which can also

be locally adapted to shift emphasis from distortion minimization to rate minimization or vice

versa. Figure 2.6 shows how this trade-o� is e�ected. Furthermore, it is known that when problem

(2.1) does have a solution, there is always a value λo for λ with which problems (2.1) and (2.2)

have the same solution [20, 21].
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Figure 2.6: The Lagrangean minimization in the rate-distortion space. The dashed lines represent constant-

valued Lagrangean functions. Each circled point represents a possible outcome j for decision i. Higher values

for the Lagrange multiplier would result in constant-valued Lagrangean lines more inclined to the left, favouring

operation points more to the right in the rate-distortion plane, with higher rates and lower distortions. Lower values

for the Lagrange multiplier would have the opposite e�ect.

Rate-distortion optimization (RDO) is usually understood in this local Lagrangean sense. The

λ parameter can be heuristically chosen given an user de�ned parameter of rate or quality [22], or it

can be iteratively selected given a target rate. Even then, for some decisions, further simpli�cations

may be needed since the precise calculations of D and R, which involves fully coding and decoding

the relevant regions, for each candidate solution in each local decision, can place an unrealistic

computational burden on the encoder. It might make sense then to substitute D and R by some

approximate estimation thereof [20].
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2.3 Standardization and the H.264/AVC Standard

The development of industry standards for video compression and formatting was crucial for

the widespread adoption of video technology we witness today. As stated before, video content

may arise from a multitude of sources. Furthermore, it may also be intended for displaying in a

wide range of devices for di�erent applications. Standardization has enabled this possibility by

allowing the interoperability of devices from distinct origins in a video communication system. It

accomplishes this goal by strict regulation of how a compressed video bitstream must be formed

and decoded.

Coding standards should leave enough room for improvements on coding performance and

competition between developers of coding tools. To that end, most standards try to limit its

scope as much as possible to the bitstream formatting and decoding process, as shown in Figure

2.7. For example, given the success and widespread adoption of the motion compensation scheme

described earlier, most standards provide a strict description of how motion vectors and residual

blocks should be written into the bitstream as well as a strict description of how this data will be

decoded and used at the decoder to recreate the prediction. That leaves the developers with a lot

of freedom at the encoder side to perform motion estimation, including the possibility of selecting

the search algorithm and the matching criterion as they see �t for their desired application. A

standard can also allow for several prediction modes, providing decoder with means to reproduce

these prediction and strictly prescribing how the encoder should write each mode to the bitstream,

but will usually not prescribe how mode decisions should be carried out at the encoder side.

Pre-processing Encoding

Post-processing Decoding
Destination

Source

Scope of Standardization

Figure 2.7: Standardization scope.

E�ectively, then, standards de�ne a data container and a set of tools available at the decoder.

That does, however, limit the overall system performance as well as it does limit the freedom at

the encoder side to some extent. Back to the motion compensation example, if the standard allows

for motion vectors with up to half-pixel accuracy using frame interpolation, the encoder cannot

e�ectively communicate a motion vector with quarter-pixel accuracy to the decoder since there are

no provisions for such motion vector in the data container de�ned by the standard. An encoder is

also not allowed to select a prediction mode not provided by the standard. That accounts for the

variety of video coding standards in existence today as well as for their continued revisions.

Since the introduction of the H.120 standard through the recent H.265/HEVC, video coding

standards have delivered a near halving in video bit rates at roughly ever 10 years over the last

30 years [1]. One of the most successful and still one of the most widely adopted formats is the
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H.264/AVC standard which we brie�y introduce now. For a historical account on video coding

standards development, see [23]. For a more detailed view on the H.264/AVC coding standard,

see [24, 25, 11].

The H.264/AVC coding standard, also known as MPEG-4 Part 10, is the result a joint collabo-

ration between ISO/IEC JTC1 Motion Picture Experts Group (MPEG) and ITU-T Video Coding

Experts Group (VCEG) [26]. The standard describe an array of coding tools for video encoding

and decoding, intended to work in a wide range of applications. In order to manage this variety

of scenarios, several pro�les are prescribed, each de�ning a subset of these tools which must be

supported by a decoder compliant to that pro�le. In addition, several levels are also speci�ed, im-

posing upper limits on frame size, processing rate and working memory available at the decoder.

A particular decoder compliant to a certain combination of pro�le and level is only required to be

able to decode sequences encoded in compliance to combinations of pro�les and levels up to its

own pro�le and level combination [11]. In this sense, the H.264/AVC coding standard is actually

a family of coding standards.

In order to achieve the �exibility required to meet the needs of a multitude of applications,

especially applications over mobile networks and the internet, the H.264/AVC standard de�nes

an hierarchical bitstream syntax. An encoder can then work separately in a video coding layer

(VCL), designed to e�ciently represent video content, and a network abstraction layer (NAL),

which encapsulates the VCL representation with suitable header information independently from

the actual network, relying in external protocols to actually transport or store the bitstream as

shown in Figure 2.8.
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Figure 2.8: Layered encoder operation.

As in most modern codecs, the H.264/AVC VCL design is based in the hybrid block coding

scheme described earlier. Each frame is partitioned in �xed size macroblocks covering a 16×16
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samples square area1. Each macroblock is predicted with intra or inter coding techniques and

the residual transform-coded with an integer approximation to the DCT. This DCT-like trans-

form operates in 4×4 blocks, with an optional 8×8 transform (not available in some pro�le-level

combinations). A quantization parameter QP, taking 52 integer values from 0 to 51, controls the

quantization of the residue transformed values. The quantization step is controlled logarithmi-

cally by QP, which provides the primary means of controlling the rate-distortion operation point.

Macroblocks are grouped in slices for encoding. Each slice either covers an entire frame or non-

overlapping regions of a frame, as in Figure 2.9, and each slice is independently coded.

Slice #0

Slice #1

Slice #2

Figure 2.9: Three slices covering a frame.

Slices come in �ve fundamental types: I slices, P slices, B slices, SP slices, and SI slices. We

cover the �rst three types, see [11] for informations on SP and SI slices.

An I slice is a slice in which every macroblock is coded using intra prediction only. There

are two basic intra prediction types supported: Intra_4×4 and Intra_16×16. Other modes might

be available in some pro�les. There are nine prediction modes of the Intra_4×4 type, in each of

which a 4×4 prediction block is formed from a set of neighbouring samples in previously coded

blocks. The encoder can select one of eight directional prediction modes as in Figure 2.10 or a

DC mode. In Intra_16×16 prediction, an entire macroblock is predicted at once with one of four

modes: horizontal, vertical, plane or DC.
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Figure 2.10: The eight 4×4 directional prediction modes. These are complemented by the DC mode, or mode 2,

when samples a-p a uniformly predicted from the average from samples A-M.

In a P slice, in addition to the intra prediction modes of I slices, a macroblock can also be coded

with a motion compensated signal. The syntax allows for multipicture motion compensation,

1For luma samples, with a corresponding block of chroma samples, which is usually smaller due to sub-sampling.
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that is, more than one reference frame can be used for motion compensation. Motion vectors

in H.264/AVC can have up to quarter integer precision. The �lters for half and quarter integer

interpolation are also de�ned by the standard.

BMC can be carried out for an entire 16×16 macroblock or for 16×8, 8×16, 8×8, 8×4, 4×8
or 4×4 blocks, as shown in Figure 2.11. Motion compensation for blocks smaller than 8×8 must

all use the same reference picture as the other blocks in its 8×8 region. Figure 2.12 illustrates a

possible macroblock partitioning for motion compensation.

Motion vectors are also di�erentially encoded using either median or direction prediction from

neighbouring macroblocks. No prediction takes place in slice boundaries.

A macroblock in a P slice can also be coded in Skip mode, in which no motion or residual

information is coded and the reconstructed signal is composed entirely by a prediction formed by

the predicted motion vector.

A B slice, in addition to the prediction modes allowed for I and P slices, also allows a macroblock

to be predicted by the superimposition of two motion compensated in a weighted average.
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Figure 2.11: Macroblocks partitions for motion compensation.
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Figure 2.12: A possible macroblock partition.

An H.264 bitstream consists in a series of NAL Units (NALUs), as illustrated in Figure 2.13.

The NALU header indicates if it is a sequence parameter set (SPS) NALU, a picture parameter

set (PPS) NALU or a VCL NALU. SPS NALUs contain information that applies to the whole

video sequence such as pro�le, level, resolution and other relevant information to the decoder

that are expected to keep constant. PPS NALUs contain more local information relevant for a
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group of frames such as the number of slices, the entropy coding mode and other initialization

parameters [11]. Each sequence starts with an instantaneous decoder refresh (IDR) slice. An IDR

slice is an intra coded frame informing the decoder that no future slices requires reference to any

slice previous to the IDR slice, allowing the the decoding process to start from there.

Figure 2.13: Typical H.264/AVC bitstream. Adapted from [11].

2.4 Motion Compensation

The block motion compensation technique brie�y introduced in Section 2.2.2 is arguably the

most successful method for inter-prediction in video coding [4, 5]. Due to its wide popularity, most

video coding standards allows for the e�ective encoding and decoding of motion compensated

sequences. In fact, much of the improvement in video coding e�ciency we witnessed in the past

two decades derive from the cumulative e�ects of several small re�nements to that basic BMC

approach. Our own proposal in this work is another such re�nement, so we now proceed to a

careful description of the BMC technique.
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In the basic BMC framework, a frame to be coded is divided into several blocks of size n×m
pixels, as illustrated in Figure 2.14. Each target block T in the frame is sequentially coded as

follows. A search area around the equivalent position of the target block in a previously coded

frame is de�ned by displacing the equivalent block by ±wx and ±wy pixels in the horizontal and

vertical directions respectively. The encoder then searches within this search area for a prediction

block P that better matches the target block T . Observe that, if lossy compression is allowed, as

is usually the case, the encoder must implement a decoding loop itself and search its predictions

within reconstructed frames to avoid drifting, as noted in Section 2.2.3. Once the best match is

found, the encoder outputs its corresponding motion vector (MV), indicated by ν. The search

process itself is known as motion estimation (ME). The residual block E = P − T , also known as

the prediction error, is also sent over the bit-stream. In possession of both ν and E, the decoder

can reproduce the prediction P and recover the target block T .

Frame to be coded

Previously coded frame

Target Block (T)Search area

Coded blockswx

wy ν

n m

Figure 2.14: Block-based motion compensation.

A better matching for a given target block T is evaluated in terms of a prede�ned matching cri-

terion, usually the minimization of a cost function or distortion measure cost(·, T ). More precisely,

the encoder outputs a motion vector νo for a prediction block Po, along with the corresponding

residue Eo = Po−T , if Po satis�es cost(Po, T ) ≤ cost(P, T ) for every candidate prediction block P

considered. The reasoning behind this scheme is that νo and Eo usually require less bits to encode

than T itself.

Underlying this BMC prediction approach there is a 2-dimensional rigid body translational

motion model. Heuristically, it is expected that a target block and its respective prediction block

both correspond to the same region of the same object in the scene, so that the corresponding

motion vector matches the actual movement undergone by that object from one frame to another,

as illustrated in Figure 2.15. Evidently, this hypothesis breaks down for rotations, deformations,

or even translational 3D movements. Besides, the boundaries of moving objects rarely conform to

the rectangular grid imposed by BMC and recently uncovered areas might not have meaningful

correspondences in previous frames. Nevertheless, BMC is known to work well even when its

motion model is not accurate and, in spite of its shortcomings, BMC is still the most popular inter

prediction technique to date. It is at the core of all current video coding standards.
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Figure 2.15: Translational motion hypothesis.

Both the matching criterion and the ME search algorithms are critical to the BMC approach

rate-distortion (R-D) performance. The matching criterion de�nes in what sense an optimal pre-

diction Po matches its target T while the search algorithm de�nes which candidate blocks P are

even tested for optimality. They also both have a great impact on the overall computational cost

of an encoder, since ME is carried out for each target block in each frame.

2.4.1 Search Algorithms

For a �xed target T , the cost function cost(P, T ) is a function of the candidate block P only.

Given such a cost function, whose minimization de�nes the matching criterion, an ME algorithm

or search algorithm consist in a systematic way to �nd the prediction Po which yields the minimum

cost among the considered candidates.

We start by delimiting which candidates are considered for each target block. Excluding border

considerations, this is usually done by de�ning a search area around the equivalent position of

the target block in the previously coded frame. The center of the search area, located at the

equivalent position r of the upper-left pixel of the target block T in the previously coded frame,

de�nes the position of zero displacement, or zero motion vector. The search area itself is de�ned

by displacements of up to ±wx and ±wy from r. That is, considered candidate blocks are all those

blocks P whose upper-left pixel is at r + ν, each respective motion vector ν = (νx, νy) satisfying

−wx ≤ νx ≤ wx and −wy ≤ νy ≤ wy.

Given a search area and a cost function, the most straightforward ME algorithm is the full

search algorithm (FS) [4, 7]. It simply visits every single candidate block, calculating the costs for

each of them while keeping track of the minimum value and its respective motion vector. The FS

algorithm is guaranteed to �nd a global minimum for the cost within a �xed search area, irrespective

of the visiting order, though the actual motion vector might change with the visiting order if the

minimum is not unique. This algorithm, however, can be too computationally expensive for some

applications since the cost function must be evaluated (2wx + 1)(2wy + 1) times for each target

block in each frame of the sequence.
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Several ME algorithms, provide di�erent level of trade-o� between rate-distortion (R-D) per-

formance and computational cost, with many providing R-D performance very close to the FS

algorithm at a fraction of its time. In fact, given a �xed time budget for ME, some of these

algorithms might in fact surpass the FS algorithm on the long run by allowing greater search

areas.

Examples of fast search algorithms include the two-dimensional logarithmic search [27], the

one-at-a-time search [28], and the three step search [29]. All of these algorithms are based on the

quadrant monotonic model, which assumes that the cost function is monotonically non-decreasing

in every direction when moving away from the optimal point [7]. Each of them employs a di�erent

strategy to exploit this model and track for a local minimum.

2.4.2 Matching Criterion

In spite of its name, the goal of BMC is not to closely match the movement of objects in the

scene, but actually to e�ectively predict a frame in a clearly de�ned sense, which is to allow for

R-D e�cient coding of the target block. With that in mind, we can devise an optimal matching

criterion. That would be the minimization of the Lagrangean R-D cost for the residual. This

approach, however, is too computationally expensive to be used in practice since it would require

the actual coding and decoding of each candidate residual for every target block to �nd their true

rates and distortions. A heuristic approach is usually taken instead.

If the energy left in the residual is the smallest possible, we can reasonably expect that most

of the energy in the signal is accounted for by the prediction itself, at least as much as it can be.

We can also reasonably expect that an already small residual would likely minimize the overall

impact of the subsequent quantization process, as well as require relatively few bits to code what

remains. This argument points to the minimization of themean square error (MSE) as a reasonable

matching criterion:

MSE(P, T ) =
1

N

N∑
i=1

(P (i)− T (i))2 =
1

N

N∑
i=1

E(i)2, (2.3)

in which N = n×m is the number of pixels in each block, n and m being their width and height,

respectively, and P (i) and T (i) are the i-th pixel in the prediction and target blocks, respectively.

For the minimization process, we can drop the 1/N factor and work with the sum of squared

di�erences (SSD):

SSD(P, T ) =
N∑
i=1

(P (i)− T (i))2 =

N∑
i=1

E(i)2. (2.4)

The need for squaring operations in equation (2.4) might still make it too expensive for some

applications. It is common to select instead with the sum of absolute di�erences (SAD) as a

distortion measure:
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SAD(P, T ) =

N∑
i=1

|P (i)− T (i)| =
N∑
i=1

|E(i)|. (2.5)

Both the SSD and the SAD in equations (2.4) and (2.5) yield the prediction that is the closest

to target in some sense. Minimization of the SSD is equivalent to the minimization of the L2 or

euclidian distance between the prediction and target blocks, while the minimization of the SAD

is equivalent to the minimization of the L1 or Manhattan distance between them. They are the

most popular distortion measures for motion estimation.

While the rate of the residual cannot be calculated for each candidate without actually coding

it, the rate for each motion vector can be easily estimated or even exactly calculated depending on

the entropy coding method used. Usually, it is weighted against the selected distortion measure to

form the actual cost in the spirit of equation (2.2):

cost(P, T ) = dist(P, T ) + λMER(ν), (2.6)

in which dist(P, T ) is either the SAD or the SSD for P and T , λME is a weighting factor and R(ν)

is the number of bits required to code the motion vector ν, the displacement between the positions

of P and T in their respective frames [6].

2.4.3 Enhanced Inter-prediction and the Shifting Transformation

Several techniques were proposed over the years to improve on the basic BMC approach de-

scribed in Section 2.4. These include alternative algorithms for ME [30, 31] or alternative matching

criteria [32, 33] to either speed up ME or to boost its R-D performance, as well as techniques to

expand [17, 16] or complement [34, 35] this basic approach itself. We have already brie�y men-

tioned some of these improvements in Sections 2.2.2 and 2.3. We now introduce the one proposed

approach to BMC that motivated our own work.

In 2012, Blasi et al proposed their enhanced inter-prediction (EIP) technique [9]. This technique

aims at improving the R-D performance of the BMC approach by considering a set of transformed

candidate blocks P ′ instead of the original candidate blocks P in the search area. In fact, each

original candidate block P in the search area gives rise to an entire set of transformed candidate

blocks Px, formally given by

Px = Θ(P |x1, x2, . . . xn) = Θ(P |x), (2.7)

in which Θ(·|x1, x2, . . . xn) is an invertible parametric transformation with associated parameters

x = (x1, x2, . . . xn). Motion estimation and compensation carries on as usual with its selected

matching criterion and ME algorithm, but for each candidate block P , we consider instead

P ′ = Θ(P |xo), (2.8)
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in which xo is the parameter set that minimizes the candidate cost. That is, for each candidate

block, x is optimized and set to xo so that P ′ = Θ(P |xo) satis�es cost(P ′, T ) ≤ cost(Θ(P |x), T )

for every valid parameter vector x.

Note that if Θ becomes the identity transformation for some given x, than we always have

cost(P ′, T ) ≤ cost(P, T ), which might give rise to a residual E′ = P ′ − T that reduces distortion

and requires fewer bits to code. However, once P ′o is found, its respective optimal parameter set

xo must also be coded into the bitstream along with the corresponding E′o and ν ′o, so that the

decoder can invert the transformation to recreate to appropriate prediction. It becomes readily

apparent that the EIP technique is only e�ective if, on average, the extra bits needed to code xo are

o�set by a residual that either actually requires su�ciently fewer bits to code, or su�ciently reduces

distortion, or both. Furthermore, since an optimal xo is calculated for every candidate block in the

search area, the transformation Θ(P |x) must also be so that the optimization of cost(Θ(P |x), T )

in x for given P and T can be done e�ciently, so as to keep the overall computational burden

feasible.

A particularly e�ective transformation for the implementation the EIP approach is the shifting

transformation (ST) [9], also proposed by Blasi et al along with the EIP itself. The ST is a single

parameter transformation Θ(·|s). The parametric candidate Ps is simply given by

Ps = Θ(P |s) = P + s, (2.9)

in which the sum is understood in the sense that the scalar parameter s is uniformly added to

each element of P . The e�ectiveness of EIP with ST stems from the fact that there is a simple

algorithm to �nd the optimal parameter so for each transformed candidate block P ′ = Θ(P |so),
and from the fact that so can be e�ectively coded.

The actual ME algorithm devised by Blasi et al, also provided in their original work as a proof

of concept for the EIP [9], did not completely substitute conventional BMC, but actually comple-

mented it. For each ME operation, their algorithm keeps track of the optimal usual prediction Po

along with optimal shifted prediction P ′o, which amount to testing each candidate twice, each turn

with a di�erent approach. At the end of each ME operation, both optimal solutions are tested

against each other in the sense of a cost function analogous to equation (2.6). The rate for so

weighted into the cost P ′o as in:

cost(P ′o, T ) = dist(P ′o, T ) + λMER(ν ′) + λshiftR(so), (2.10)

in which R(so) is the rate for an so shift and λshift is a suitably de�ned lagrangian parameter. The

rate for a zero shift is also similarly weighted into the cost of Po. The encoder then outputs the

prediction of minimal cost between the two, which is analogous to �turning o�� the EIP when it

does not provide su�cient gains over conventional BMC. With this algorithm, it has been shown

that EIP with ST can be integrated into the H.264/AVC framework to signi�cantly enhance its

performance [9]. However, compliance to the standard is lost due to the need to code the shifting

parameter.
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Chapter 3

Motion Compensation with Residue

Dispersion Measures

In this chapter, we propose a new matching criterion for ME and develop a two-pass ME

algorithm to exploit it alongside one of the usual matching criteria. Unlike the SSD and the SAD,

our proposed matching criterion does not minimize the size of the residual in any sense. Instead,

the dispersion of the residual is minimized. We begin by taking a closer look at the enhanced

inter-prediction with the shifting transformation introduced earlier. As we now show, it already

points towards the usefulness of the minimum dispersion prediction. Unlike the EIP, however,

our approach does not require side information coded into the bitstream, making it immediately

compliant to any coding standard based on the hybrid DPCM/DCT coding model with BMC.

3.1 Optimum Shift Parameter for EIP with ST

Blasi et al provided an e�cient algorithm to calculate the optimum shift parameter so along

with their EIP with ST proposal, given the SAD as a cost function for ME. We now proceed to

show that this optimal solution for so can be given a somewhat closed form. Though this new

solution is not any more e�cient than the original in any practical sense, it does reveal a lot

about the qualitative role of so in the e�ectiveness of the EIP with ST. We begin by retracing the

derivation of their original algorithm up to the point where a key property of the optimal solution

is disclosed. We then argue for a slightly di�erent solution.

Consider �rst that the cost of a candidate P is given by the SAD with respect to T and that

both P , T and E = P − T consists of blocks of N pixels. The cost then is given by

cost(P, T ) =

N∑
i=1

|P (i)− T (i)| =
N∑
i=1

|E(i)|, (3.1)

in which P (i), T (i) and E(i) refer to the i-th pixel in the P , T , and E blocks, respectively. Given

that this cost function is invariant under any reordering of the values, the particular order in which
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the single index i indexes the pixels in the two dimensional blocks is immaterial.

Since neither the SAD nor the form of Θ(·|s) as per equation (2.9) depends on the ordering

of the elements of P , T or E, we also assume, without loss of generality, that E is arranged in

increasing order by the indexation in i, that is, E(i) ≤ E(j), ∀i < j. Consider now, given �xed P ,

T , and E, the cost for a shifted candidate block:

cost(s) =
N∑
i=1

|(P (i) + s)− T (i)| =
N∑
i=1

|E(i) + s|, (3.2)

in which cost(s), a function of the shifting parameter s alone, is shorthand notation for cost(Ps, T )

with �xed P and T , Ps given by equation (2.9). Note that cost(P, T ) = cost(0), so, the identity

transformation is considered by the ST. We now evaluate cost(1), the cost for a candidate block

with positive unitary shift. Let N− be the number of negative entries in the original residual, E.

Similarly, let N0 and N+ be the numbers of zero and positive elements in E, respectively. Note

that N = N− +N0 +N+. The original candidate cost can then be written as

cost(0) = −
N−∑
i=1

E(i) +
N∑

i=N−+N0+1

E(i), (3.3)

while cost(1) is then given by

cost(1) = −
N−∑
i=1

(E(i) + 1) +

N−+N0∑
N−+1

(1) +
N∑

i=N−+N0+1

(E(i) + 1). (3.4)

After rearranging equation (3.4), we �nally have

cost(1) = cost(0)−N− +N0 +N+. (3.5)

Comparing equations (3.5) and (3.3), we see that cost(1) < cost(0) if, and only if

N− > N0 +N+. (3.6)

At this point, our derivation departs from the original work on the EIP with ST [9]. Adding N−

to both sides of inequality (3.6), we see that a positive unitary shift will reduce the cost for a

candidate prediction block if, and only if

N− >
N

2
. (3.7)

Similarly, it can be shown that a negative unitary shift will reduce the cost for a candidate predic-

tion block, i.e., cost(−1) < cost(0) if, and only if
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N+ >
N

2
. (3.8)

Note that both inequalities (3.7) and (3.8) are strict inequalities.

Suppose now that inequality (3.7) is true, which guarantees that inequality (3.8) is false. We

then apply a positive unitary shift transform and are left with P1 = P + 1 and E1 = E + 1.

We rede�ne N−, N0 and N+ analogously to the way we did before, according to the new shifted

residue E1. Suppose then that condition (3.7) is still met. It means that applying a further unitary

positive shift will further reduce the cost. Since

Θ(Θ(P, s1), s2) = Θ(P, s1 + s2), (3.9)

which can be trivially shown, it implies that

cost(2) < cost(1) < cost(0). (3.10)

We can now iterate this process until condition (3.7) is no longer met, at which point we are left

with the optimal shift parameter so, which is positive in this case, after exactly so iterations. We

are guaranteed that, after the last step, condition (3.8) will also be left unsatis�ed. Otherwise,

condition (3.7) would not have been met before the last step in the �rst place. We could have pro-

ceeded in a similar fashion for a negative shift, had the condition (3.8) been true at the beginning,

which would make condition (3.7) false.

The iterative algorithm just given will produce the optimal shift so. However, it involves

|so| recounts of N−, N0, and N+, in addition to |so| × N unitary sums or subtractions for every

candidate prediction block. It is basically a brute force search. Still, it provides us with a valuable

piece of information.

Remember that we assumed the E(i) to be sorted in ascending order. Since the uniform addition

of a constant value does not disturb this property, the optimal residual values Eso(i) = Pso(i)−T (i)

is also sorted in ascending order. At the optimal shift value, neither conditions (3.7) or (3.8) will

be satis�ed by Eso . Supposing that N is odd, this implies that the middle element in Eso = E+so

will be zero. That is, if N is odd, so is unique and it is simply given by so = −E(N+1
2 ) = −Ẽ, the

negative of the sample median of the entries in E. If N is even, the solution is no longer unique.

If one is interested in the smallest |so| to produce the optimal cost, which might be the case in

EIP since the shift parameter must be coded separately, one should select so = −E(N2 ) < 0 if

E(N2 ) > 0, so = −E(N2 + 1) > 0 if E(N2 + 1) < 0, or so = 0 otherwise. However, for N even, any

value for so that makes both −Eso(N2 ) ≤ 0 and −Eso(N+1
2 ) ≥ 0 will leave both conditions (3.7)

and (3.8) unmet, yielding the optimal cost. That is, any so satisfying −E(N2 + 1) ≤ so ≤ −E(N2 )

will result in the same optimal cost. In particular, the negative of the median,

so = −Ẽ, (3.11)
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which is simply the midpoint of this interval for even N , is still an optimal solution. That is,

equation (3.11), in which Ẽ is the suitably de�ned median, is valid for any N .

Equation (3.11) provides the optimal shift parameter when the cost function is given by the

SAD. Consider now the case in which the cost is given by the SSD. The cost for a shifted candidate

is analogously given by

cost(s) =
N∑
i=1

((P (i) + s)− T (i))2 =
N∑
i=1

(E(i) + s)2. (3.12)

Taking the derivative of equation (3.12) with respect to s and setting the result to zero at the

optimal shift so, we have

so = −
∑N

i=1E(i)

N
= −Ē, (3.13)

so that the optimal shift when the cost function is given by the SSD is simply the negative of the

mean values of the residue.

3.2 Heuristics for Motion Compensation with Dispersion Measures

Equation (3.13) for the optimal shift parameter in the SSD case was already given in the

original EIP paper in a slightly di�erent form [9]. Equation (3.11), however, is somewhat more

di�cult to grasp from their original derivation, which is why we chose to retrace it in the previous

section. We believe it reveals a lot on why EIP with ST is e�ective.

Consider the EIP with ST while using the SAD as the distortion measure. By equation (3.11),

each candidate prediction P is transformed to P ′ = P − Ẽ, which implies that each respective

residual E is transformed to E′ = E − Ẽ. Substituting E′ into equation (2.5), we have

SADshift =
N∑
i=1

|E(i)− Ẽ|. (3.14)

The shifted SAD is still a function of the residual alone, but it no longer measures the size of the

residual in any sense. It is now proportional to the mean absolute deviation of the residual from

its median. Analogously, using the SSD as the distortion measure, we get

SSDshift =

N∑
i=1

(
E(i)− Ē

)2
, (3.15)

which is also still a function of the residual alone but, again, also not a measure of its size. The

shifted SSD is proportional to the mean squared deviation of the residual from its mean. Both the

median and the mean are measures of the central tendency of the residual, i.e., they are estimates

of a central value around which the sample values in the residual tend to cluster. That makes both
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equations (3.14) and (3.15) measures of dispersion of the residual, i.e., they both measure how

much the sample values of the residual are spread around its central tendency. In fact, equation

(3.15) is clearly proportional to the usual sample variance.

We can now see that, instead of testing a larger set of candidate blocks in search of the

prediction that is the closest to the target in the sense of either the SAD or the SSD, the EIP

with ST e�ectively tests the same set of candidate blocks in search for the minimum dispersion

residual. In other words, the EIP with ST only changes the matching criterion for ME, so that the

prediction that results in the most concentrated residual is chosen instead of the one that generates

the smallest residual. Note that the residual of minimum dispersion can in fact be quite large in

terms of the SAD or the SSD, if its median or mean values are large, respectively.

For an intuitive understanding of why the prediction of minimal residue dispersion can be more

e�cient than the well established prediction of minimal residue size, consider the arti�cial example

in Figure 3.1. Given the target block T , candidate blocks P1 and P2 generate the candidate residual

blocks E1 and E2, respectively. The minimization of either the SAD or the SSD will lead to the

choice of P1 as the prediction for T , since it clearly results in the smallest residual. However,

candidate P2 leads to a completely �at residual, which can be entirely coded in the single DC

coe�cient of the residue DCT. Furthermore, although there are no AC coe�cients in the residual

block E2 itself, there are many AC details in the target block T . These details will be entirely

preserved by the prediction P2 alone, since none of it will be lost in the quantization of E2.
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Figure 3.1: The advantages of dispersion minimization. Candidate P1 is the prediction of minimal residue size,

while P2 is the prediction of minimal residue dispersion. Clearly, in this contrived example, residual E2 can be

coded more e�ciently than E1.

The extreme situation in the contrived example of Figure 3.1 is probably not representative of a

typical coding scenario. However, it does reveal an important advantage of the prediction of mini-

mal residue dispersion which is true in general. Since most modern codecs follow the DPCM/DCT

coding model, the residue block is usually �rst transformed by some DCT-like transform and only

then quantized before being actually encoded into the bit-stream. When we use either equations

(3.14) or (3.15) to choose a prediction block, the DC coe�cient looses its relative importance on
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that choice, so the AC coe�cients of the target block are better matched. It might imply less

nonzero coe�cients to be coded and possibly a smaller loss of texture details. Furthermore, a

smaller sample dispersion indicates a smaller sample entropy, which might also imply a smaller

number of bits needed to encode the block.

3.3 Compliant H.264/AVC Implementation

Equations (3.14) and (3.15) show that the e�ectiveness of the EIP with ST is already a com-

pelling reason to consider predictions of minimal residue dispersion. To further consolidate their

usefulness within the hybrid DPCM/DCT with BMC approach to video compression, we now de-

vise a simple technique to integrate predictions of minimal residue dispersion into the H.264/AVC

framework. Our proposed technique is fully compliant to the standard, so that no decoder adap-

tations are needed.

3.3.1 Proposed Dispersion Measure: The TADM

Though equation (3.14) is shown to be optimal in some sense, it is computationally expensive

to evaluate the median Ẽ. Even the most e�cient algorithms require at least a partial sorting of

the residue values. As the cost function, we propose the total absolute deviation from the mean

(TADM), given by

TADM =

N∑
i=1

|E(i)− Ē|, (3.16)

in which N is the number of pixels in a block. The TADM measures the absolute deviation of the

residue from its central tendency like equation (3.14), but it uses the mean value Ē as a measure

of its central tendency instead of the median. We chose this measure for its simplicity. Note that

it requires neither a sorting of the residue values like equation (3.14) nor a squaring of every term

like equation (3.15).

3.3.2 Practical Considerations

Though sub-optimal in the EIP sense, the mean Ē is almost as e�cient as the median Ẽ

when used as the shift parameter in the EIP framework, as Table 3.1 shows. Performance is given

in terms of the BD-rate [36], a measure of the average percent di�erences in rate between two

rate-distortion curves for a given PSNR interval, indicating which o�ers a better trade-o� between

rate and distortion. More details on the BD-rate measure in Chapter 4. Negative BD-rate values

indicate more e�cient codding on the average. Column EIP in Table 3.1 shows the BD-rate savings

for the original EIP with its original algorithm, while column EIP-DC shows the BD-rate savings

for the EIP with shift parameter given by the mean value of the residue block, which amounts to

using the TADM as given in equation (3.16) as the distortion function for ME. Both the EIP and
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Table 3.1: BD-rates for EIP and EIP-DC, both against the conventional H.264 codec. Time savings

are for the EIP-DC algorithm with respect to the EIP algorithm.

Sequence BD-Rate(%) Time

SavingsName Resolution FPS EIP EIP-DC

mother-daughter 352x288 30 -6.13 -5.40 27%

crew 352x288 30 -9.43 -9.10 25%

mobile 352x288 30 -0.13 -0.07 19%

foreman 352x288 30 -3.48 -3.26 23%

RaceHorses 832x480 30 -2.99 -2.75 24%

PartyScene 832x480 50 -1.60 -1.45 18%

Mean -3.96 -3.67 23%

the EIP-DC were implemented in a modi�ed JM Reference Software [10], and both their BD-rate

performances were calculated with respect to the unmodi�ed JM H.264 encoder. Con�gurations in

all three cases were set to use the full search algorithm with a single reference frame and variable

length source coding. The time savings in Table 3.1 refer to the mean di�erence between the

encoding times of the EIP-DC end the EIP algorithms with respect to the mean encoding time of

the EIP algorithm. Note that the savings in time for using the mean instead of the median are

very signi�cant, compensating for the slightly worse coding e�ciency.

We noted earlier that the potential advantage of a prediction of minimal dispersion residue is

that it might better match the AC coe�cients of the target, thus improving coding performance

in the hybrid DPCM/DCT coding model. However, the size of the transform blocks in the hybrid

framework need not conform to the size of the motion compensation blocks. For instance, the

size of a macroblock in the H.264/AVC standard, its basic motion compensation unit, is �xed to

16 × 16 pixels. For each macroblock, BMC can be carried out for sub-partitions of size 16 × 16,

16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8 or 4 × 4, allowing for BMC of variable block size. The actual

partition mode chosen for each macroblock is decided by the encoder, usually in an R-D sense. For

residue encoding, however, a complete 16 × 16 residual macroblock is divided in �xed partitions

of size 4 × 4 which are then DCT-transformed and quantized, regardless of the size of the blocks

actually used in ME.

To better exploit the relationship between the BMC block size and the DCT coding block size,

we further modify the TADM to measure dispersion within 4 × 4 sub-blocks of each candidate

prediction block as in

TADM =

Nsb∑
j=1

16∑
i=1

|Ej(i)− Ēj |, (3.17)

in which Nsb = N
16 is the number of 4× 4 sub-blocks in each candidate prediction block and Ēj is

the mean of the j-th 4× 4 sub-block Ej within each candidate prediction block. The H.264/AVC

standard might also allow an optional 8×8 DCT for residual quantizing and coding, depending on

the pro�le used. In this case, the TADM is analogously computed within 8× 8 sub-blocks for each
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Table 3.2: BD-rate EIP-DC-PURE against the conventional H.264 codec.

Sequence BD-Rate(%)

Name Resolution FPS EIP-DC-ONLY

mother-daughter 352x288 30 -1.43

crew 352x288 30 -6.21

mobile 352x288 30 3.55

foreman 352x288 30 3.33

RaceHorses 832x480 30 0.69

PartyScene 832x480 50 1.02

Mean 0.16

candidate prediction block. Henceforth, when we speak of the TADM, we mean either formula

(3.17) or its 8× 8 variant.

Furthermore, it should be noted that a simple naive substitution of the SAD by the TADM

in the H.264 codec is not enough to improve its coding e�ciency. In fact, not even the EIP can

consistently improve the coding e�ciency, even given its non-standard source coding dedicated

to the shift parameter. Both the EIP and the EIP-DC of Table 3.1 follow the complementary

approach given at the end of Section 2.4.3, which is, in essence, a two-pass algorithm. Unlike

them, the EIP-DC-PURE in Table 3.2 was modi�ed to always select the shifted prediction, which

amounts to implementing the TADM alone, without the complementary use of the SAD. Testing

conditions were the same as those for Table 3.1. Comparing Tables 3.2 and 3.1, we see that the

complementary use of the SAD is crucial for a consistent performance of the EIP with ST approach.

Though given only for a small sample, the almost insigni�cant mean gain of the EIP-DC-PURE

in Table 3.1, actually mean loss, seems to suggest that minimal residue dispersion prediction is

not in itself superior to the smallest residue prediction, neither it is clearly inferior. Bear in mind

that nothing else in the codec was adjusted for the new BMC distortion measure. In particular,

mode decision functions and parameters such as λME in (2.6) are still �ne-tuned for the original

SAD distortion measure. Even then, when we look at the performance of EIP-DC-PURE in

each individual sequence, we see a wide spread in the BD-rate performances, with large gains in

some sequences and large losses in others. This spread suggests that the minimum TADM and

the minimum SAD matching criteria give two signi�cantly di�erent accounts for the motion in the

sequence. The algorithm we propose, then, consists in a simple technique to exploit both accounts.

3.3.3 Proposed Algorithm: The DMCA

As stated before, in light of equations (3.14) and (3.15), the EIP with ST is already a proof

of concept in favour of minimal dispersion residue prediction. We now present an algorithm to

integrate our proposed minimal dispersion BMC approach into the hybrid DPCM/DCT coding

framework. In theory, this integration can be done seamlessly into any BMC-based hybrid codec,

maintaining full compliance to any standard based in this hybrid model. Experimental results

follow in Chapter 4 for a fully compliant H.264 implementation. It serves both as further proof
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of concept in favour of minimal dispersion residue prediction in general and as a case study for a

TADM-based cost function.

We propose a two-pass algorithm, henceforth referred to as DMCA, standing for `double match-

ing criterion algorithm. It produces two predictions for each macroblock, one with the original

SAD distortion function and another one with the TADM instead. The SSD can be used instead

of the SAD, with a total variance suitably de�ned in analogy to (3.17) instead of the TADM.

The encoder then outputs the better one in a true R-D sense. No other functionality need to be

modi�ed in the TADM pass, neither does any encoder parameter value, though it is reasonable to

to believe that doing so might improve the performance of the DMCA.

The algorithm is summarized in the pseudo-code below. Note that the macroblock predictions

MSAD and MTADM are completely independent, not only in their motion estimation but also in

their mode decision. That is, MSAD and MTADM can di�er not only in their motion vectors but

also in their partition modes. The rate-distortion cost J for each macroblock prediction M is

evaluated by

J(M) = D(M) + λR(M), (3.18)

in which D(M) and R(M) are the overall distortion and the overall rate implied the predictionM ,

respectively, and λ is a Lagrange multiplier. Note that the distortion D(M) is the real distortion

introduced by the actual quantization of the residual, and the rate R(M) is the actual rate needed

to code M , including mode signalling, motion vector encoding for each sub-block, and quantized

residual encoding. The DMCA then encodes only the best macroblock prediction in terms of the

cost J into the bit-stream.

Algorithm: DMCA

FOR each macroblock

MSAD ← Macroblock prediction using the SAD distortion measure only

MTADM ← Macroblock prediction using the TADM distortion measure only

IF J(MTADM ) < J(MSAD)

Write MTADM to the bit-stream

ELSE

Write MSAD to the bit-stream

Observe that the decoder cannot know and need not know whichever of the macroblock pre-

dictions MSAD or MTADM is chosen by the encoder. Both contain all the information needed for

decoding. Only the ME decision function is changed in each pass, but the compensation step and

the encoding process for each macroblock prediction is rigorously the same. There is no need for

the encoding of additional parameters nor of any side information at all. Therefore, the imple-

mentation of the DMCA at the encoder side requires no modi�cations at the decoder side, thus

making it compliant to the H.264/AVC coding standard.
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Notice the similarities and di�erences between the DMCA and the complementary SAD/EIP

algorithm of Section 2.4.3. They both test a smallest residue prediction and minimal residue

dispersion prediction. However, the latter tests these predictions against each other at every ME

operation, which might result in macroblock with both types of prediction. The DMCA, on the

other hand, produces two di�erent predictions for the entire macroblock, including mode decision,

with a di�erent yet �xed matching criterion for ME in each pass. Also, since minimal SAD and

the minimal DATM solutions are tested against each other only once, the true R-D cost as in (2.2)

can be used instead of the estimated cost (2.10). Finally, unlike the SAD/EIP algorithm, only

the cost function for candidate selection is changed, not the resulting residue itself. No additional

parameters must be coded into the bitstream then, making possible a compliant implementation

into any BMC hybrid coding standard.
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Chapter 4

Experimental Results

In this chapter, we test the performance of the double matching criterion algorithm proposed in

Section 3.3.3 against the reference H.264/AVC codec. The algorithm is tested for a large number

of sequences with varying characteristics for consistent gains in coding performance in a variety of

testing conditions.

4.1 Experimental Settings

For testing purposes, the DMCA was integrated into the JM reference software [10] for the

H.264/AVC standard. Only the encoder had to be modi�ed, since the resulting bit-stream is

rigorously compliant to the standard.

Our implementation was tested on several popular test sequences in their full length. These

sequences are identi�ed in Table 4.1 and their corresponding tags will be used to reference them

henceforth. To ensure that our tests cover a wide range spatial and temporal characteristics,

each sequence was tested for their spatial perceptual information (SI) and for their temporal

perceptual information (TI) [37]. The SI and TI measures try to encode the amount of the spatial

and temporal activities of an entire sequence in a single number, respectively, by measuring the

amount of variation in pixel values in space and time. The spacial and temporal perceptual content

for each sequence tested is given in Figure 4.1 in terms of SI and TI, where we can see that the

selected test sequences cover a broad range of characteristics.

In order to assess the performance of a video encoder for a given sequence, we need to evaluate

its e�ectiveness in the trade-of between the quality of the reconstructed test sequence and its

compressed bit-rate. One way to do that is to evaluate the PSNR between the reconstructed and

original sequences for several distortion operation points and plot it against their respective bit-

rates. We take that route in Figure 4.2, where we can see a sample result from the �rst test in the

next section. The R-D curve is interpolated from four QP operation points for both the original JM

encoder and the modi�ed encoder with the DMCA. As expected, for each QP value, the DMCA

has an operation point slightly above and to the right of the respective operation point for original

JM, resulting in an R-D curve that o�ers a better trade-o� between rate and distortion. However,
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Table 4.1: Sequences used throughout the tests in this chapter.

Resolution FPS TAG Name

352x288 30

S01 city

S02 crew

S03 foreman

S04 harbour

S05 mobile

S06 mother-daughter

S07 soccer

832x480 30
S08 RaceHorses

S09 Mobisode2

832x480 50
S10 BasketballDrill

S11 PartyScene

704x576 60

S12 city

S13 crew

S14 harbour

S15 soccer

1920x1080 24

S16 Kimono1

S17 ParkScene

S18 Tennis

1920x1080 50

S19 Cactus

S20 Crowdrun

S21 DucksTakeO�

S22 ParkJoy

S23 RushHour
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Figure 4.1: Motion content of tested sequences.

Figure 4.2 o�ers little insight into how much the DMCA is more e�cient than conventional motion

estimation. Besides, huge collections of such curves quickly become cumbersome and make it

di�cult to evaluate the overall performance gains for a large set of test �gures.
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Figure 4.2: Typical test result. Curve for sequence S02 under the test conditions of the �rst experiment in Section

4.2.

In order to overcome these di�culties, results for the DMCA are given in terms of the BD-

rate [36] against the unmodi�ed JM encoder. For each sequence, the BD-rate measures the mean

bit-rate di�erence in percent values between the test R-D curve and an anchor R-D curve over

an interval of PSNR values, thus expressing the comparative improvement over the R-D trade-o�

in a single number. As in Figure 4.2, the operation points for both the test encoder and the

anchor encoder are evaluated at four di�erent QP values. Their respective R-D operation points

are then interpolated for the calculation of the average di�erence in percent values over the full

PSNR range covered by the interpolated curves. Negative values express performance gains, while

positive values express performance loss. It is possible that the test and anchor R-D curves cross
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each other in the tested region, meaning that one is better than the other for some rate range

but worse in the remaining range. This behaviour cannot be captured in a single number. This

setback can be somewhat mitigated by taking the average only over the low rates range of the

curves, between the two operation points of higher QP values, and again only over the high rates

range of the curves, between the two operation points of lower QP values. Together, the BD-

rates for the full range, low rates range, and high rates range provide a good description of the

comparative performance of two encoders for a given sequence. For each experiment, each encoder

was tested on all of the sequences in Table 4.1 at four di�erent QP values, namely, 22, 27, 33, and

37.

4.2 Results

For the �rst experiment, the encoder was set to use exclusively P frames after the �rst IDR

frame, with �ve reference frames for ME and CABAC entropy coder. Intra modes were not allowed

for P slices, but skip mode was considered. Results are shown in Table 4.2.

The proposed technique consistently outperforms the unmodi�ed JM encoder in every sequence

tested. Results show gains of up to 3,81% and at least 0,70% on these sequences, with an average

2,04% gain. Results also show that considering the TADM leads to consistent gains over every

rate range, with higher gains being observed in the high-rates range for most tested sequences.

Table 4.3 compares the DMCA with absolute deviation from mean and with absolute deviation

from the median, both for 4 × 4 sub-blocks as in equation (3.17). Unlike in the EIP framework,

where Table 3.1 shows that the deviation from the median is generally more e�cient than the

deviation from the mean, the BD-rates of Table 4.3 show that the deviation from the mean is

consistently more e�cient than the deviation from the median in the DMCA framework.

The DMCA technique is similar to the optional multiple QP testing (MQPT), available in the

original JM codec. In fact, much of the code for the MQPT was reused in our implementation of

the DMCA. Much like the DMCA, the MQPT technique works by independently predicting each

macroblock in multiple passes, then encoding only the one prediction that performs best in the

R-D sense. As the name suggests, each pass of this technique tests a di�erent QP value for motion

estimation and mode decision. In Table 4.4 we compare the performances of the unmodi�ed

JM encoder with 2 and 3 QP values for MQPT, given in columns MQPT-2 and MQPT-3,

respectively, and the performance of the DMCA with a single QP tested, all three against the

original JM with a single QP. Also displayed in Table 4.4 is the savings in coding time for the

DMCA with respect to MQPT-3. These time saving refer to the mean di�erence in encoding

time between the DMCA and the MQPT-3 algorithms with respect to the mean encoding time

for theMQPT-3 algorithm. The MQPT method in the JM codec is only available when the rate-

distortion optimized quantization (RDOQ) [38, 39] is activated, so all four tests were performed

with RDOQ, unlike previous tests. Remaining con�gurations were held the same. We can see that

the DMCA consistently outperforms the triple-pass MQPT-3 while spending signi�cantly lower

computation time.
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Table 4.2: BD-rates of DMCA with TADM against conventional H.264/AVC.

TAG
BD-Rate

Full

Range

Low

Rates

High

Rates

S01 -0.70 -0.81 -0.72

S02 -3.75 -3.92 -3.27

S03 -2.52 -2.62 -2.06

S04 -1.06 -0.98 -1.11

S05 -0.83 -0.65 -1.08

S06 -1.50 -2.00 -1.31

S07 -1.38 -1.32 -1.58

S08 -2.27 -1.97 -2.36

S09 -3.81 -4.88 -3.07

S10 -3.13 -3.33 -2.75

S11 -1.32 -1.10 -1.51

S12 -1.09 -1.35 -0.59

S13 -3.25 -3.12 -2.80

S14 -1.69 -1.62 -1.66

S15 -1.59 -1.82 -1.29

S16 -3.70 -4.31 -3.05

S17 -1.46 -1.56 -1.40

S18 -2.05 -2.84 -1.36

S19 -3.07 -3.43 -2.43

S20 -1.68 -1.51 -1.85

S21 -1.71 -1.05 -2.56

S22 -0.90 -0.80 -1.06

S23 -2.55 -3.88 -1.93

Mean -2.04 -2.21 -1.86
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Table 4.3: BD-rates for DMCA with absolute deviation from mean and with absolute deviation

from the median, both against the conventional H.264 codec and both in the full range

TAG
BD-Rate

Mean Median

S01 -0.70 -0.60

S02 -3.75 -3.75

S03 -2.52 -2.45

S04 -1.06 -0.98

S05 -0.83 -0.71

S06 -1.50 -1.51

S07 -1.38 -1.20

S08 -2.27 -2.19

S09 -3.81 -3.50

S10 -3.13 -3.08

S11 -1.32 -1.25

S12 -1.09 -1.02

S13 -3.25 -3.28

S14 -1.69 -1.70

S15 -1.59 -1.55

S16 -3.70 -3.84

S17 -1.46 -1.42

S18 -2.05 -2.01

S19 -3.07 -3.02

S20 -1.68 -1.63

S21 -1.71 -1.70

S22 -0.90 -0.84

S23 -2.55 -2.61

Mean -2.04 -1.99
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Table 4.4: BD-rates for JM with 2 and 3 QP values tested and for DMCA, all against the con-

ventional H.264 codec with a single QP pass. Unlike previous tests, RDOQ was used in all four

cases. All BD-rates given for the full range only. Time saving are for the mean encoding time of

the DMCA against the mean encoding time for the MQPT-3

TAG
BD-Rate (%) Time

SavingsMQPT-2 MQPT-3 DMCA

S01 -0.16 -0.87 -0.99 14%

S02 0.16 -1.35 -3.56 13%

S03 -0.10 -1.23 -2.32 14%

S04 -0.01 -0.15 -1.01 15%

S05 -0.03 0.21 -0.84 15%

S06 -0.44 -1.41 -1.76 18%

S07 -0.15 -1.50 -1.46 12%

S08 -0.09 -0.92 -2.05 14%

S09 -0.07 -2.52 -4.17 21%

S10 0.06 -0.92 -2.92 16%

S11 0.02 -0.49 -1.20 17%

S12 0.03 -0.04 -1.03 15%

S13 0.02 -2.18 -3.16 17%

S14 -0.09 -0.77 -1.78 17%

S15 -0.05 -1.64 -1.62 14%

S16 0.14 -3.65 -3.50 27%

S17 0.02 -1.77 -1.34 26%

S18 0.02 -2.80 -1.97 23%

S19 -0.42 -1.85 -2.85 18%

S20 -0.09 -0.82 -1.76 13%

S21 -0.20 -0.54 -1.61 20%

S22 -0.01 -0.24 -0.94 15%

S23 0.08 -3.70 -2.56 15%

Mean -0.06 -1.35 -2.02 17%
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Table 4.5: BD-rates of DMCA with TADM against conventional H.264/AVC, now with weighted

prediction and biprediction allowed in both cases as well as varying transform block size.

TAG
BD-Rate (%)

Full

Range

Low

Rates

High

Rates

S01 -1.67 -1.55 -1.54

S02 -3.67 -3.75 -3.66

S03 -2.65 -2.39 -2.80

S04 -0.71 -0.58 -1.10

S05 -0.60 -0.73 -0.61

S06 -2.84 -2.71 -2.97

S07 -1.30 -1.21 -1.27

S08 -1.28 -1.35 -1.40

S09 -4.22 -5.19 -3.37

S10 -3.30 -4.04 -2.35

S11 -1.18 -1.31 -1.12

S12 -1.00 -1.19 -0.92

S13 -3.32 -2.99 -3.46

S14 -1.30 -1.02 -1.64

S15 -1.28 -1.30 -1.41

S16 -3.19 -3.04 -3.33

S17 -1.62 -1.62 -1.53

S18 -2.11 -2.87 -1.34

S19 -3.52 -3.82 -3.03

S20 -1.17 -1.08 -1.43

S21 -0.82 -0.82 -0.82

S22 -0.70 -0.80 -0.62

S23 -2.88 -3.06 -2.84

Mean -2.01 -2.11 -1.94
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Finally, we test the DMCA against the unmodi�ed JM encoder in a more general setting.

Results are shown in Table 4.5. For this �nal testing, weighted prediction and biprediction were

allowed, as well as local decisions between the 4×4 and the 8×8 transform blocks. Up to 5 frames

were used as reference for motion compensation and each P frame is followed by 7 B frames, with

B frames allowed to be used as references. Equation (3.17) was suitably modi�ed when 8×8 blocks

were tested and applied to the �nal residual of each candidate prediction after weighted prediction

and biprediction were applied. Results also show consistent gains for the DMCA in combination

with these other techniques.

4.3 Analysis

Results in Table 4.2 shows that the DMCA does indeed improve the coding e�ciency of the

BMC approach, both consistently and signi�cantly, for sequences in a wide range of characteristics

as per Figure 4.1. Besides, Table 4.3 also shows that there is no loss in coding performance if the

mean is used as a measure of central tendency for the residue instead of the median, which is optimal

in the EIP sense. In fact, though the mean was primarily chosen for its lower computational cost,

Table 4.3 actually shows that the mean is consistently superior to the median. That superiority

indicates that the heuristic reasoning of Section 3.2 might actually be more e�ective than optimality

in the EIP sense, thus providing further support for the minimal residue dispersion criterion for

block matching .

With a suitable rate-distortion optimizing decision function, a two-pass algorithm like the

DMCA can hardly degrade the coding performance, which might raise questions as to whether the

performance gains are worthy the extra computational cost. Table 4.4 dismisses those questions,

showing that the DMCA is both more reliable and more e�ective, as well as more cost-e�cient than

a similarly time-consuming multi-pass technique. Note that the intent of this limited experiment

is to show the suitability of the DMCA, not to present it as a substitute for multiple QP testing.

In fact, both techniques can be easily combined, possibly leading to further gains in performance.

Finally, Table 4.5 shows that the DMCA can still improve the BMC approach even when it is

already enhanced by other techniques such as biprediction, weighted prediction, and RD-optimal

transform size. In fact, comparing Tables 4.2 and 4.5, we perceive very similar performances, both

in the mean and consistently throughout the test sequences. This preservation of performance gains

in di�erent experimental settings, also observed in Table 4.4 with the use of RDOQ, indicates that

the DMCA can be e�ectively combined with a multitude of techniques. That is, the DMCA does

not �compete� against other techniques for gains, indicating that its gains are from a di�erent

nature. The higher e�ectiveness of the DMCA in Table 4.4 when compared with multiple QP

testing, which is a similar technique, seems to suggest that gains of the DMCA derive from a

higher diversity of options for rate-distortion optimization. This better diversity of options seems

to be observed even against the higher number of options in triple QP testing, thus reinforcing the

heuristic reasoning of Section 3.3.3 which led to the development of the DMCA in the �rst place.
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Chapter 5

Conclusions

The ever growing demand for video data presses for ever increasing video coding e�ciency.

The key to this e�ciency requirement lies in the high temporal redundancy characteristic of most

video signals. Block-based motion compensation has become the technique of choice for exploiting

this redundancy.

Another key factor for the ubiquity of video services is standardization. Industry standards have

allowed for the intercommunication of a wide rage of devices with di�erent resources. Compliance

to popular standards can decisively dictate the costs for the implementation of new techniques into

already deployed equipment. In tune with the widespread adoption of the BMC technique, most

modern video coding standards makes provision for its e�ective implementation.

In this work, we argue for the bene�ts of BMC informed by the dispersion of the residue values.

As noted, the EIP with ST already lends a strong testimony to these bene�ts, albeit at the cost of

coding specialized side information, which prevents its compliance to established coding standards.

To further consolidate the importance of minimal residue dispersion as a matching criterion for

ME, we present the DMCA, a two-pass technique to integrate the proposed TADM dispersion

measure into the BMC framework without the need for specialized side information.

The DMCA is implemented in the JM reference software for the popular H.264/AVC coding

standard, for testing against the unmodi�ed JM encoder. Full compliance to the H.264/AVC

is maintained. Results show signi�cant improvements over the original JM encoder with average

2.04% BD-rate gains, lending further support to our claim that ME can be improved by considering

the dispersion of the residue. The TADM is primarily chosen for its relatively low computational

cost, but it is also shown to outperform other dispersion measures in the DMCA framework.

Future research will include investigation for a single-pass algorithm, aiming for reducing com-

putation time. Current results suggests that it is unlikely that the TADM will ever consistently

outperform the SAD without joint consideration. However, a local low cost decision function for

automatic switching of the matching criterion may be a viable solution. Moreover, more robust

dispersion measures, as well as more sophisticated uses thereof, might bring about even higher

gains, even though the proposed technique might be appealing on itself given its simplicity and its

compliance to the H.264/AVC standard. Future work will also include research in that direction.
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